
Mārı̄te Kirikova · Kjetil Nørvåg
George A. Papadopoulos (Eds.)

 123

LN
CS

 1
05

09

21st European Conference, ADBIS 2017
Nicosia, Cyprus, September 24–27, 2017
Proceedings

Advances in Databases
and Information Systems

Lecture Notes in Computer Science 10509

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Mārīte Kirikova • Kjetil Nørvåg
George A. Papadopoulos (Eds.)

Advances in Databases
and Information Systems
21st European Conference, ADBIS 2017
Nicosia, Cyprus, September 24–27, 2017
Proceedings

123

Editors
Mārīte Kirikova
Riga Technical University
Riga
Latvia

Kjetil Nørvåg
Norwegian University of Science
and Technology

Trondheim
Norway

George A. Papadopoulos
University of Cyprus
Nicosia
Cyprus

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66916-8 ISBN 978-3-319-66917-5 (eBook)
DOI 10.1007/978-3-319-66917-5

Library of Congress Control Number: 2017951433

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1678-9523
http://orcid.org/0000-0001-9250-4916

Preface

The 21st European Conference on Advances in Databases and Information Systems
(ADBIS 2017) took place in Nicosia, Cyprus, during September 24–27, 2017.
The ADBIS series of conferences aims at providing a forum for the dissemination of
research accomplishments and at promoting interaction and collaboration between the
database and information systems research communities from European countries and
the rest of the world. The ADBIS conferences provide an international platform for the
presentation of research on database theory, development of advanced DBMS tech-
nologies, and their advanced applications. As such, ADBIS has created a tradition: its
21st anniversary edition in 2017 continued the series held in St. Petersburg (1997),
Poznan (1998), Maribor (1999), Prague (2000), Vilnius (2001), Bratislava (2002),
Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna (2007),
Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011), Poznan (2012), Genoa
(2013), Ohrid (2014), Poitiers (2015), and Prague (2016). The conferences are initiated
and supervised by an international Steering Committee consisting of representatives
from Armenia, Austria, Bulgaria, the Czech Republic, Cyprus, Estonia, Finland,
France, Germany, Greece, Hungary, Israel, Italy, Latvia, Lithuania, the FYR of
Macedonia, Poland, Russia, Serbia, Slovakia, Slovenia, and the Ukraine.

The program of ADBIS 2017 included keynotes, research papers, thematic work-
shops, and a doctoral consortium. The conference attracted 107 paper submissions from
38 countries from many continents. After rigorous reviewing by the Program Com-
mittee (88 reviewers from 33 countries in the Program Committee and additionally by
26 external reviewers), the 26 papers included in this LNCS proceedings volume were
accepted as full contributions, making an acceptance rate of 24%. Springer sponsored
the ADBIS 2017 best paper award. Furthermore, the Program Committee selected 12
more papers as short contributions. The authors of the ADBIS 2017 papers come from
38 countries. The four workshop organizations acted on their own and accepted 25
papers for the BigNovelTI (50% acceptance rate), AMSD (50% acceptance rate),
SW4CH (54% acceptance rate), and DaS 2017 (55% acceptance rate) workshops, as
well as 3 for the doctoral consortium. Short papers, workshop papers, and the paper on
Contributions from ADBIS 2017 workshops are published in a companion volume
entitled New Trends in Databases and Information Systems in the Springer series
Communications in Computer and Information Science. All papers were evaluated by
at least three reviewers. The selected papers span a wide spectrum of topics in data-
bases and related technologies, tackling challenging problems and presenting inventive
and efficient solutions. In this volume, these papers are organized according to the nine
sessions: (1) Conceptual modeling and human factors; (2) Subsequence matching and
streaming data; (3) OLAP; (4) Graph databases; (5) Spatial data management;
(6) Parallel and distributed data processing; (7) Query optimization, recovery, and
databases on modern hardware; (8) Semantic data processing; and (9) Additional
database and information systems topics. For this edition of ADBIS 2017, we had two

keynote talks: the first one by Ernesto Damiani from the Khalifa University of Science,
Technology & Research, United Arab Emirates, on “Model-Based Big Data as a
Service,” and the second one by Demetris Zeinalipour from the University of Cyprus,
Cyprus, on “Indoor Navigation Services from Mobile Data.”

The best papers of the main conference and workshops were invited to be submitted
to special issues of the following journals: Information Systems and Informatica.

We would like to express our gratitude to every individual who contributed to the
success of ADBIS 2017. Firstly, we thank all authors for submitting their research
papers to the conference. We are also indebted to the members of the community who
offered their precious time and expertise in performing various roles ranging from
organizational to reviewing roles – their efforts, energy, and degree of professionalism
deserve the highest commendations. Special thanks to the Program Committee mem-
bers and the external reviewers for their support in evaluating the papers submitted to
ADBIS 2017, ensuring the quality of the scientific program. We also offer thanks to all
the colleagues, secretaries, and engineers involved in the conference and workshop
organization. We acknowledge the assistance and guidance of the Steering Committee,
especially the Vice Chair Yannis Manolopoulos.

The conference would not have been possible without our supporters and sponsors:
Austrian Airlines, Cyprus Tourism Organization, and the University of Cyprus. Finally,
we thank Springer for publishing the proceedings containing invited and research
papers in the LNCS series. The Program Committee work relied on EasyChair, and we
thank its development team for creating and maintaining it; it offered great support
throughout the different phases of the reviewing process.

July 2017 Mārīte Kirikova
Kjetil Nørvåg

George A. Papadopoulos

VI Preface

Organization

Program Committee

Bader Albdaiwi Kuwait University, Kuwait
Bernd Amann LIP6-UPMC, France
Grigoris Antoniou University of Huddersfield, UK
Ladjel Bellatreche LIAS/ENSMA, France
Klaus Berberich Max Planck Institute for Informatics, Germany
Maria Bielikova Slovak University of Technology in Bratislava, Slovakia
Doulkifli Boukraa Université de Jijel, Algeria
Drazen Brdjanin University of Banja Luka, Bosnia and Herzegovina
Stephane Bressan National University of Singapore, Singapore
Bostjan Brumen University of Maribor, Slovenia
Albertas Caplinskas Vilnius University, Lithuania
Barbara Catania DIBRIS-University of Genoa, Italy
Marek Ciglan Institute of informatics, Slovak Academy of Sciences,

Slovakia
Isabelle Comyn-Wattiau ESSEC Business School, France
Alfredo Cuzzocrea ICAR-CNR and University of Calabria, Italy
Ajantha Dahanayake Georgia College & State University, USA
Christos Doulkeridis University of Piraeus, Greece
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Erki Eessaar Tallinn University of Technology, Estonia
Markus Endres University of Augsburg, Germany
Werner Esswein Technische Universität Dresden, Germany
Georgios Evangelidis University of Macedonia, Greece
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Peter Forbrig University of Rostock, Germany
Flavius Frasincar Erasmus University Rotterdam, Netherlands
Jan Genci Technical University of Kosice, Slovakia
Jānis Grabis Riga Technical University, Latvia
Gunter Graefe HTW Dresden, Germany
Franceso Guerra University of Modena and Reggio Emilia, Italy
Hele-Mai Haav Institute of Cybernetics at Tallinn University

of Technology, Estonia
Theo Härder TU Kaiserslautern, Germany
Katja Hose Aalborg University, Denmark
Ekaterini Ioannou Technical University of Crete, Greece
Mirjana Ivanovic University of Novi Sad, Serbia
Hannu Jaakkola Tampere University of Technology, Finland
Lili Jiang Univeristy of Umeå, Sweden

Ahto Kalja Tallinn University of Technology, Estonia
Dimitris Karagiannis University of Vienna, Austria
Randi Karlsen University of Tromsø, Norway
Panagiotis Karras Aalborg University, Denmark
Zoubida Kedad University of Versailles, France
Marite Kirikova Riga Technical University, Latvia
Margita Kon-Popovska Ss. Cyril and Methods University, Macedonia
Michal Kopecký Charles University, Czech Republic
Michal Kratky VSB-Technical University of Ostrava, Czech Republic
John Krogstie NTNU, Norway
Ulf Leser Humboldt-Universität zu Berlin, Germany
Sebastian Link The University of Auckland, New Zealand
Audrone Lupeikiene Vilnius University, Lithuania
Hui Ma Victoria University of Wellington, New Zealand
Leszek Maciaszek Wrocław University of Economics, Poland
Federica Mandreoli DII - University of Modena, Italy
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Tadeusz Morzy Poznan University of Technology, Poland
Martin Nečaský Charles University, Czech Republic
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Boris Novikov St. Petersburg University, Russia
Eirini Ntoutsi Gottfried Wilhelm Leibniz Universität Hannover, Germany
Andreas Oberweis Karlsruhe Institute of Technology (KIT), Germany
Andreas L. Opdahl University of Bergen, Norway
Odysseas Papapetrou EPFL, Switzerland
Jaroslav Pokorný Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Boris Rachev Technical University of Varna, Bulgaria
Milos Radovanovic University of Novi Sad, Serbia
Heri Ramampiaro Norwegian University of Science and Technology

(NTNU), Norway
Tore Risch University of Uppsala, Sweden
Gunter Saake University of Magdeburg, Germany
Petr Saloun VSB-TU Ostrava, Czech Republic
Kai-Uwe Sattler TU Ilmenau, Germany
Ingo Schmitt Technical University Cottbus, Germany
Tomas Skopal Charles University in Prague, Czech Republic
Bela Stantic Griffith University, Australia
Kostas Stefanidis University of Tampere, Finland
Panagiotis Symeonidis Free University of Bolzano, Italy
James Terwilliger Microsoft Corporation
Goce Trajcevski Northwestern University, USA
Christoph Trattner MODUL University Vienna, Austria
Raquel Trillo-Lado Universidad de Zaragoza, Spain
Yannis Velegrakis University of Trento, Italy

VIII Organization

Goran Velinov Ss. Cyril and Methods University, Macedonia
Akrivi Vlachou University of Piraeus, Greece
Gottfried Vossen ERCIS Muenster, Germany
Robert Wrembel Poznan University of Technology, Poland
Anna Yarygina St. Petersburg University Russia
Weihai Yu University of Tromsø, Norway
Arkady Zaslavsky CSIRO, Australia

Additional Reviewers

Hosam Aboelfotoh
Dionysis Athanasopoulos
George Baryannis
Sotiris Batsakis
Panagiotis Bozanis
Loredana Caruccio
Vincenzo Deufemia
Senén González
Sven Hartmann
Zaid Hussain
Pavlos Kefalas
Julius Köpke
Vimal Kunnummel

Jens Lechtenbörger
Jevgeni Marenkov
Denis Martins
Robert Moro
Ludovit Niepel
Wilma Penzo
Horst Pichler
Benedikt Pittl
Tarmo Robal
Eliezer Souza Silva
Nikolaos Tantouris
Eleftherios Tiakas
H. Yahyaoui

Organization IX

Abstracts

Toward Model-Based Big Data-as-a-Service:
The TOREADOR Approach

Ernesto Damiani1,2, Claudio Ardagna1,3, Paolo Ceravolo1,3,
and Nello Scarabottolo1,3

1 Consorzio Interuniversitario Nazionale per l’Informatica, Italy
2 EBTIC/Khalifa University of Science and Technology, UAE

3 Università degli Studi di Milano, Italy

Abstract. The full potential of Big Data Analytics (BDA) can be unleashed only
by overcoming hurdles like the high architectural complexity and lack of
transparency of Big Data toolkits, as well as the high cost and lack of legal
clearance of data collection, access and processing procedures. We first discuss
the notion of Big Data Analytics-as-a-Service (BDAaaS) to help potential users
of BDA in overcoming such hurdles. We then present TOREADOR, a first
approach to BDAaaS.

Short Biography: Ernesto Damiani is the Director of the Information Security
Research Center at Khalifa University, Abu Dhabi, and the leader of the Big Data
Initiative at the Etisalat British Telecom Innovation Center (EBTIC). Ernesto is on
extended leave from the Department of Computer Science, Università degli Studi di
Milano, Italy, where he leads the SESAR research lab and coordinates several large
scale research projects funded by the European Commission, the Italian Ministry of
Research and by private companies such as British Telecom, Cisco Systems, SAP,
Telecom Italia and many others. Ernesto's research interests include business process
analysis and privacy-preserving Big Data analytics. Ernesto is the Principal Investi-
gator of the TOREADOR H2020 project on models and tools for Big data-as-a-service.

Indoor Navigation Services from Mobile Data

Demetrios Zeinalipour-Yazti

Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus
dzeina@cs.ucy.ac.cy

Abstract. People spend 80–90% of their time in indoor environments such as
offices, undergrounds, libraries, shopping malls and airports. On the other hand,
the uptake of interesting applications in indoor spaces has so far been hampered
by the lack of technologies that can provide indoor location (position) accu-
rately, in real-time, in an energy-efficient manner and without expensive addi-
tional hardware. In this scope, the pervasiveness of smartphones is leading to the
uptake of a new class of Internet-based Indoor Navigation (IIN) services, which
rely on geo-location databases to store spatial indoor models along with wire-
less, light and magnetic signals used to localize users and provide better power
efficiency and wider coverage than predominant approaches. In this talk, I will
overview the research behind the building blocks of the Anyplace IIN, an open,
modular, extensible and scalable navigation architecture that exploits crowd-
sourced Wi-Fi data to develop a novel navigation service that won several
international research awards for its utility and accuracy (i.e., less than
2 meters). Our MIT-licenced open-source software stack has to this date been
used by hundreds of researchers and practitioners around the globe, with the
public Anyplace service reaching over 100,000 real user interactions. In the
second part of this talk, I will focus on an algorithm we developed for protecting
users from location tracking by the IIN service, without hindering the provi-
sioning of fine-grained location updates on a continuous basis. Our algorithm
exploits a k-Anonymity Bloom filter and a generator of camouflaged localiza-
tion requests, both of which are shown to be resilient to a variety of privacy
attacks. My talk will conclude with a summary of related research challenges
and results.

Short Biography: Demetrios Zeinalipour-Yazti (PhD, University of California,
Riverside, 2005) is an Assistant Professor of Computer Science at the University of
Cyprus, where he founded and directs the Data Management Systems Laboratory
(DMSL). Before his current appointment, he served the University of Cyprus and the
Open University of Cyprus as a Lecturer of Computer Science. He has also been a
short-term Visiting Researcher at the Network Intelligence Lab of Akamai Technolo-
gies, Cambridge, MA, USA (2004), a Marie-Curie Fellow at the University of Athens,
Greece (2007) and a Visiting Researcher at the University of Pittsburgh, PA, USA
(2015). During 2016–2017, he is a Humboldt Fellow at the Max Planck Institute for
Informatics, Saarbrücken, Germany. His research interests include Data Management in
Computer Systems and Networks, in particular Mobile and Sensor Data Management;

Big Data Management in Parallel and Distributed Architectures; Spatio-Temporal Data
Management; Network and Web 2.0 Data Management; Crowd and Indoor Data
Management as well as Data Privacy Management. He is an ACM Distinguished
Speaker (2017–2020), a Senior Member of ACM, a Senior Member of IEEE, and
Member of USENIX. More Info: https://www.cs.ucy.ac.cy/*dzeina/.

Indoor Navigation Services from Mobile Data XV

https://www.cs.ucy.ac.cy/~dzeina/

Contents

ADBIS 2017 - Keynote Papers

Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach . . . 3
Ernesto Damiani, Claudio Ardagna, Paolo Ceravolo,
and Nello Scarabottolo

Conceptual Modeling and Human Factors

General and Specific Model Notions . 13
Bernhard Thalheim

“Is It a Fleet or a Collection of Ships?”: Ontological Anti-patterns
in the Modeling of Part-Whole Relations . 28

Tiago Prince Sales and Giancarlo Guizzardi

Context-Aware Decision Information Packages: An Approach
to Human-Centric Smart Factories. 42

Eva Hoos, Pascal Hirmer, and Bernhard Mitschang

Subsequence Matching and Streaming Data

Fast Subsequence Matching in Motion Capture Data 59
Jan Sedmidubsky, Pavel Zezula, and Jan Svec

Interactive Time Series Subsequence Matching . 73
Danila Piatov, Sven Helmer, and Johann Gamper

Generating Fixed-Size Training Sets for Large and Streaming Datasets 88
Stefanos Ougiaroglou, Georgios Arampatzis, Dimitris A. Dervos,
and Georgios Evangelidis

OLAP

Detecting User Focus in OLAP Analyses . 105
Mahfoud Djedaini, Nicolas Labroche, Patrick Marcel,
and Verónika Peralta

Sparse Prefix Sums . 120
Michael Shekelyan, Anton Dignös, and Johann Gamper

http://dx.doi.org/10.1007/978-3-319-66917-5_1
http://dx.doi.org/10.1007/978-3-319-66917-5_2
http://dx.doi.org/10.1007/978-3-319-66917-5_3
http://dx.doi.org/10.1007/978-3-319-66917-5_3
http://dx.doi.org/10.1007/978-3-319-66917-5_4
http://dx.doi.org/10.1007/978-3-319-66917-5_4
http://dx.doi.org/10.1007/978-3-319-66917-5_5
http://dx.doi.org/10.1007/978-3-319-66917-5_6
http://dx.doi.org/10.1007/978-3-319-66917-5_7
http://dx.doi.org/10.1007/978-3-319-66917-5_8
http://dx.doi.org/10.1007/978-3-319-66917-5_9

Targeted Feedback Collection Applied to Multi-Criteria Source Selection. . . . 136
Julio César Cortés Ríos, Norman W. Paton, Alvaro A.A. Fernandes,
Edward Abel, and John A. Keane

Graph Databases

Cost Model for Pregel on GraphX. 153
Rohit Kumar, Alberto Abelló, and Toon Calders

Historical Traversals in Native Graph Databases . 167
Konstantinos Semertzidis and Evaggelia Pitoura

Formalising openCypher Graph Queries in Relational Algebra 182
József Marton, Gábor Szárnyas, and Dániel Varró

Spatial Data Management

SliceNBound: Solving Closest Pairs and Distance Join Queries
in Apache Spark . 199

George Mavrommatis, Panagiotis Moutafis, Michael Vassilakopoulos,
Francisco García-García, and Antonio Corral

A Comparison of Distributed Spatial Data Management Systems
for Processing Distance Join Queries . 214

Francisco García-García, Antonio Corral, Luis Iribarne,
George Mavrommatis, and Michael Vassilakopoulos

A Generic and Efficient Framework for Spatial Indexing
on Flash-Based Solid State Drives. 229

Anderson Chaves Carniel, Ricardo Rodrigues Ciferri,
and Cristina Dutra de Aguiar Ciferri

Parallel and Distributed Data Processing

Incremental Frequent Itemsets Mining with MapReduce. 247
Kirill Kandalov and Ehud Gudes

Towards High Similarity Search Throughput by Dynamic Query
Reordering and Parallel Processing . 262

Filip Nalepa, Michal Batko, and Pavel Zezula

Comparative Evaluation of Distributed Clustering Schemes
for Multi-source Entity Resolution. 278

Alieh Saeedi, Eric Peukert, and Erhard Rahm

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-66917-5_10
http://dx.doi.org/10.1007/978-3-319-66917-5_11
http://dx.doi.org/10.1007/978-3-319-66917-5_12
http://dx.doi.org/10.1007/978-3-319-66917-5_13
http://dx.doi.org/10.1007/978-3-319-66917-5_14
http://dx.doi.org/10.1007/978-3-319-66917-5_14
http://dx.doi.org/10.1007/978-3-319-66917-5_15
http://dx.doi.org/10.1007/978-3-319-66917-5_15
http://dx.doi.org/10.1007/978-3-319-66917-5_16
http://dx.doi.org/10.1007/978-3-319-66917-5_16
http://dx.doi.org/10.1007/978-3-319-66917-5_17
http://dx.doi.org/10.1007/978-3-319-66917-5_18
http://dx.doi.org/10.1007/978-3-319-66917-5_18
http://dx.doi.org/10.1007/978-3-319-66917-5_19
http://dx.doi.org/10.1007/978-3-319-66917-5_19

Query Optimization, Recovery, and Databases on Modern Hardware

Cost-Function Complexity Matters: When Does Parallel Dynamic
Programming Pay Off for Join-Order Optimization 297

Andreas Meister and Gunter Saake

Instant Restore After a Media Failure . 311
Caetano Sauer, Goetz Graefe, and Theo Härder

Rethinking DRAM Caching for LSMs in an NVRAM Environment 326
Lucas Lersch, Ismail Oukid, Ivan Schreter, and Wolfgang Lehner

Semantic Data Processing

SPARQL Query Containment with ShEx Constraints. 343
Abdullah Abbas, Pierre Genevès, Cécile Roisin, and Nabil Layaïda

Updating RDF/S Databases Under Constraints . 357
Mirian Halfeld-Ferrari and Dominique Laurent

Additional Database and Information Systems Topics

Migrating Web Archives from HTML4 to HTML5: A Block-Based
Approach and Its Evaluation. 375

Andrés Sanoja and Stéphane Gançarski

A Tool for Design-Time Usability Evaluation of Web User Interfaces 394
Jevgeni Marenkov, Tarmo Robal, and Ahto Kalja

Genotypic Data in Relational Databases: Efficient Storage
and Rapid Retrieval. 408

Ryan N. Lichtenwalter, Katerina Zorina-Lichtenwalter,
and Luda Diatchenko

Author Index . 423

Contents XIX

http://dx.doi.org/10.1007/978-3-319-66917-5_20
http://dx.doi.org/10.1007/978-3-319-66917-5_20
http://dx.doi.org/10.1007/978-3-319-66917-5_21
http://dx.doi.org/10.1007/978-3-319-66917-5_22
http://dx.doi.org/10.1007/978-3-319-66917-5_23
http://dx.doi.org/10.1007/978-3-319-66917-5_24
http://dx.doi.org/10.1007/978-3-319-66917-5_25
http://dx.doi.org/10.1007/978-3-319-66917-5_25
http://dx.doi.org/10.1007/978-3-319-66917-5_26
http://dx.doi.org/10.1007/978-3-319-66917-5_27
http://dx.doi.org/10.1007/978-3-319-66917-5_27

ADBIS 2017 - Keynote Papers

Toward Model-Based Big Data-as-a-Service:
The TOREADOR Approach

Ernesto Damiani1,2(B), Claudio Ardagna1,3, Paolo Ceravolo1,3,
and Nello Scarabottolo1,3

1 Consorzio Interuniversitario Nazionale per l’Informatica, Rome, Italy
2 EBTIC/Khalifa University of Science and Technology, Abu Dhabi, UAE

ernesto.damiani@kustar.ac.ae
3 Università degli Studi di Milano, Milan, Italy

Abstract. The full potential of Big Data Analytics (BDA) can be
unleashed only by overcoming hurdles like the high architectural com-
plexity and lack of transparency of Big Data toolkits, as well as the high
cost and lack of legal clearance of data collection, access and processing
procedures. We first discuss the notion of Big Data Analytics-as-a-Service
(BDAaaS) to help potential users of BDA in overcoming such hurdles.
We then present TOREADOR, a first approach to BDAaaS.

1 Introduction

Big Data technology has recently become a major market estimated to reach
$203 billion in 2020, growing at a CAGR of 11.7% [11]. According to [9], every
human in the world is producing over 6 megabytes for minute, a total of 1.7
million billion bytes of data. Also, the Compliance, Governance and Oversight
Council claimed that the information volume doubles every 18–24 months for
most organizations [5]. Many organizations have discovered that, in order to
remain competitive, they have to deal with business cases where the volume
of data reaches terabytes and even petabytes, and whose requirements include
low latency and handling a variety of datatypes [2]. Still, Big Data applications
are complex systems whose design and deployment poses challenges at multi-
ple levels, ranging from data representation and storage issues to choice and
adaptation of analytics, parallelisation and deployment strategies as well as dis-
play and interpretation of results. ICT companies propose to their customers to
tackle Big Data application development using a mix of technologies going from
NoSQL (“notonlySQL”) databases like Cassandra or HBase, data preparation
utilities like Paxata, and distributed, parallel computing systems like Apache
Hadoop, Stark or Flink. However, the high architectural complexity and lack of
transparency of Big Data toolkits leads many customers to use them as black-
boxes, with little or no insight on how analytics are actually executed. Another
major factor hindering Big Data Analytics (BDA) adoption is the “regulatory
barrier:” concerns about violating data access, sharing and custody regulations
when using BDA, and the high cost of obtaining legal clearance for their spe-
cific scenario are discouraging for many organizations. Finally, the limited size of
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 3–9, 2017.
DOI: 10.1007/978-3-319-66917-5 1

4 E. Damiani et al.

the BDA talent pool makes Big Data scientists, architects, and developers costly
and in high demand internationally. Even outsourcing BDA to a service provider
and/or engaging consultants does not eliminate the need of costly in-house skills.
Having to tackle these challenges from scratch creates an entry barrier for small
organisations, particularly SMEs, that cannot access the data science and data
technology competence pools. This paper presents TOREADOR, a model-based
approach for fast specification and roll-out of Big Data applications, fostering
reuse via a Software Product Line approach. The TOREADOR methodology
and toolkit support collecting user requirements and preferences in a declarative
format, converting them into a procedural model of the Big Data computa-
tion, and compiling the latter into low-level specification directly deployable on
a number of execution platforms and technologies. In this paper, we first give
an overview of Big Data concepts (Sect. 2); we then define and compare BDA
and BDAaaS providing some relevant application scenarios (Sect. 3); we finally
discuss the TOREADOR approach and design to BDAaaS (Sect. 4).

2 Big Data: Overview

In the rest of the paper, we shall use the term Big Data to refer to data sets and
flows whose size and update frequency cannot be handled by traditional database
systems [15]. Big Data have been defined using the so called 5 V model: Volume,
Variety, Velocity, Value, Veracity [13]. The term Big Data Analytics refers to
the implementation of analytics over architectures that automatically adapt to
the volume, variety and velocity of data, making it possible to extract valuable
results within strict deadlines. Following [4], we now describe some major hurdles
that Big Data Analytics is facing today.

The technology opacity hurdle. While Big Data analytics can in principle
support existing or new value propositions in a number of business domains,
choosing and deploying the “right” analytics on the “right” computational
infrastructure is still more an art than an engineering practice [8,12]. Today,
only large organizations with deep pockets can afford going trial-and-error for
weeks on failure-prone, resource intensive Big Data Analytics projects. If SMEs
and other limited budget actors, like start-ups and no-profit organization, have
to join the Big Data ecosystem, provisioning a Big Data analysis process must
become fast, transparent, affordable, repeatable and robust.

The data diversity hurdle. According to the current Big Data hype, the
world is awash in readily accessible Big Data having common time, location, and
identity references. Reality is very different. A few Over-The-Top (OTT) oper-
ators, like Google, have proprietary, semantically rich, and homogeneous data
sources; they can conceivably expand their scope, adding uniform location and
identity metadata. For others, data diversity is much higher [1,16,21], as data
are independently collected and supplied by multiple actors: utility companies
own sensor, management and billing information, telecommunication operators
offer location and identity data, while public administrations supply open data

Toward Model-Based Big Data-as-a-Service: TheTOREADOR Approach 5

on their territory and urban environments. With respect to relatively uniform
OTT-style data, these multi-owner data sources are highly diverse: they differ in
volume (involving small giga-scale and large peta-scale data sizes), granularity
and veracity.

The compliance hurdle. Vertical domains where BDA can make a real differ-
ence (healthcare, transportation and energy) are highly regulated [7,14]. Regu-
latory peculiarities cannot be addressed on a project-by-project basis. Rather,
certified compliance of each BDA (e.g., in the form of a Privacy Impact Assess-
ment) should be made available from the outset to all actors that use BDA
in their business model. Also, BDA comes with legal issues that may trigger
unwanted litigation. How to account intellectual property and how to shape the
economical exploitation of BDA in multi-party environments [23]? How to pro-
vide evidence that data processing is compliant to ethics, beyond norms and
directives [18]? Those are among the questions that still require mature and
reliable solutions.

We believe these hurdles to have played a major role in hindering BDA accep-
tance [20,22]. For example, IDC [10] reports that 60% of organizations are ham-
pered by too little business intelligence and only 10% of employees are satisfied
with the Big Data technology resources available [10]. Big Data Analytics-as-a-
Service can play a role in bringing Big Data to the mass, representing the entry
point also for companies lacking Big Data skills and competences.

3 Big Data Analytics-as-a-Service

The BDAaaS paradigm [4] represents the next evolution step of Big Data to
accomplish the hurdles discussed in Sect. 2. It consists of a set of automatic tools
and methodologies that allow customers lacking Big Data expertise to manage
BDA and deploy a full Big Data pipeline addressing their goals. BDAaaS can
be seen as a function that takes as input users’ Big Data goals and preferences,
and returns as output a ready-to-be-executed Big Data pipeline.

Users with different skills and expertise can benefit by using a BDAaaS para-
digm. Users lacking expertise proper of data scientists (e.g., modeling, analysis,
problem solving) can use a BDAaaS solution for preparing the real analytics,
reason on data to find out hidden patterns and information, and solve business
problems. Users lacking data engineering expertise (e.g., build a robust data
pipeline, install a Big Data toolkit) can use a BDAaaS to automatically identify
and deploy the proper set of technologies that accomplish their requirements.
Users lacking both expertise can still use BDAaaS solutions for a proper initia-
tion in the Big Data realm.

Users’ requirements are in the form of platform-independent declarative
goals, which are then transformed in low-level platform-dependent configura-
tions of the Big Data pipeline. Requirements can be defined in five different
conceptual areas as follows:

– Data preparation specifies all activities aimed to prepare data for analytics.
For instance, it defines how to guarantee data owner privacy.

6 E. Damiani et al.

– Data representation specifies how data are represented and expresses rep-
resentation choices for each analysis process. For instance, it defines the data
model and data structure.

– Data analytics specifies the analytics to be computed. For instance, it
defines the expected outcome and the type of analytics.

– Data processing specifies how data are routed and parallelized. For
instance, it defines the processing type and the parameters driving a map-
reduce processing.

– Data visualization and reporting specifies an abstract representation
of how the results of analytics are organized for display and reporting. For
instance, it defines visualization type and visual density.

BDAaaS paradigm applies to Big Data scenarios involving enterprises that,
for different reason, cannot rely on the adequate level of Big Data competences
and/or on skilled data scientists and engineers. In the following, we discuss the
issues and challenges introduced by the BDAaaS paradigm.

4 The TOREADOR Methodology

Let us consider a Big Data Analytics application from the point of view of the
final user. Most of the times, some or all the following activities are needed (not
necessarily in this order):

– Define a business value proposition. What income increase or cost reduction
will the BDA results enable?

– Identify the data. Which inputs are needed to feed the BDA ?
– Define the ingestion data flows (and the data lake where data will be ingested).

Where are (and who supplies) the data ingestion hooks (e.g., URLs or call-
backs)? Are the ingestion flows stream or batch-like? Are the data flows to
be processed immediately or will they feed a “lake” from which the BDA will
periodically take its inputs?

– Select and apply data preparation filters. Will the flows be filtered (e.g., for
anonymity/obfuscation or density) before ingestions?

– Select and apply data protection measures. Will after-ingestion access control
be applied on the data lake, so each BDA will be able to access only the
information it is entitled to?

– Select analytics. Given the available data and a description, classification or
prediction goal, which algorithm or model should be employed to achieve the
best results?

– Define the analytics processing. Will the BDA code be executed in a parallel
way? Which HPC parallelization paradigm will be employed?

– Define visualization, reporting and interaction. Should the results be pre-
sented in a visual fashion, will they be stored in the data lake or will they
feed other BDAs?

The questions above can be easily mapped into the five areas discussed in
Sect. 3, which are then implemented by the TOREADOR methodology in five
steps as follows:

Toward Model-Based Big Data-as-a-Service: TheTOREADOR Approach 7

1. A declarative model is used to describe the desired functional and non-
functional goals of the BDA. The model is generated by a form where the ques-
tions listed above are answered by choosing among a closed list of answers,
expressed in TOREADOR controlled vocabulary. In a nutshell, the declara-
tive model is expressed as a list of lists, each list corresponding to one the
five areas of the BDA. The atoms within each list are {property, value} pairs
where property expresses functional or non-functional indicators, while value
can be either 0 or 1, for Boolean properties, or a value in an ordinal scale.

2. The TOREADOR declarative model is checked for consistency to eliminate
conflicting requirements [3].

3. The declarative model is used to instantiate a platform-independent proce-
dural model that describes the BDA computation. This model is a linear
composition represented in OWL-S and consists of 5 pipeline stages,1 one
for each area of the BDA pipeline (i.e., preparation, representation, analyt-
ics, processing, reporting/visualization). For each stage, the TOREADOR
toolkit generates an intra-area procedural model, specifying the composition
of internal services within the stage. More in detail, the toolkit feeds each list
of {property, value} pairs into a SPARQL query pattern [19]. The query is
then applied to a pre-defined OWL-S service ontology that lists the available
services for each area (e.g., k-anonymity obfuscation service for area data
preparation). The result is a list of services compatible with the preferences
expressed in the declarative model.

4. The user is then called in to specify how the abstract services should be
composed. These compositions are not necessarily pipelines; for instance, the
analytics stage may involve disjunction, parallel execution of services and even
loops [17]. To simplify this operation, the user can choose among a number
of pre-defined composition patterns. Once the abstract service interface and
their composition have been specified, the TOREADOR toolkit adds to the
model the service interface’s grounding, that is, the corresponding URLs in
a target execution environment (e.g., Apache Flink, Spark) selected by the
user.

5. Each intra-area procedural model is then compiled by the TOREADOR
toolkit into a platform-dependent deployment model. The deployment model
can be either executed via SaaS or PaaS service interface on the target deploy-
ment environment, according to the user preferences. In the former case,
the composition workflow is translated in an XML incarnation (e.g., Apache
Oozie), whose execution is supported by the target environment; in the lat-
ter case, an executable image (a Python bundle or a Docker image [6]) is
generated ready for execution on a service provider’s infrastructure.

5 Conclusions

In this paper, we defined the Big Data Analytics-as-a-Service (BDAaaS) para-
digm as the next evolution step of Big Data domain. We then briefly outlined the
1 Again, the order of the stages depends on the specific BDA and is decided by the

user.

8 E. Damiani et al.

TOREADOR approach to BDAaaS as a suitable driver bringing BDA to those
organizations and SMEs lacking sufficient in-house competences. The TORE-
ADOR toolkit and the project open deliverables describing the toolkit in detail
are available on the site www.toreador-project.eu.

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the TOREADOR project,
grant agreement No. 688797. It was also partly supported by the program “piano
sostegno alla ricerca 2016” funded by Università degli Studi di Milano.

References

1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J.,
Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy,
A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden,
S., Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston,
C., Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom, J.: The
beckman report on database research. ACM SIGMOD Rec. 43(3), 61–70 (2014)

2. Ardagna, C., Damiani, E.: Network and storage latency attacks to online trading
protocols in the cloud. In: Proceedings of the International Conference on Cloud
Computing, Trusted Computing and Secure Virtual Infrastructures, Amantea,
Italy, October 2014

3. Ardagna, C.A., Bellandi, V., Bezzi, M., Ceravolo, P., Damiani, E.: Model-driven
methodology for big data analytics-as-a-service. In: Proceedings of the 6th IEEE
International Congress on Big Data (BigData Congress 2017), Honolulu, HI, USA,
June 2017

4. Ardagna, C.A., Ceravolo, P., Damiani, E.: Big data analytics as-a-service: issues
and challenges. In: Proceedings of the IEEE International Conference on Big Data
(Big Data 2016), Washington, DC, USA, December 2016

5. Austin, D.: eDiscovery Trends: CGOCs Information Lifecycle Governance Leader
Reference Guide. http://www.ediscoverydaily.com

6. Boettiger, C.: An introduction to docker for reproducible research. ACM SIGOPS
Oper. Syst. Rev. 49(1), 71–79 (2015)

7. Eckhoff, D., Sommer, C.: Driving for big data? privacy concerns in vehicular net-
working. IEEE Secur. Priv. 12(1), 77–79 (2014)

8. Ekbia, H., Mattioli, M., Kouper, I., Arave, G., Ghazinejad, A., Bowman, T., Suri,
V.R., Tsou, A., Weingart, S., Sugimoto, C.R.: Big data, bigger dilemmas: a critical
review. J. Assoc. Inf. Sci. Technol. 66(8), 1523–1545 (2015)

9. Commission, E.: Helping SMEs Fish the Big Data Ocean. http://ec.europa.eu/
digital-agenda/en/news/helping-smes-fish-big-data-ocean

10. IDC: Six patterns of big data and analytics adoption, March 2016. http://www.
oracle.com/us/technologies/big-data/six-patterns-big-data-infographic-2956541.
pdf

11. IDC: Worldwide Semiannual Big Data and Analytics Spending Guide, October
2016. http://www.idc.com/getdoc.jsp?containerId=prUS41826116

12. Jagadish, H.V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J.M.,
Ramakrishnan, R., Shahabi, C.: Big data and its technical challenges. Commun.
ACM 57(7), 86–94 (2014)

www.toreador-project.eu
http://www.ediscoverydaily.com
http://ec.europa.eu/digital-agenda/en/news/helping-smes-fish-big-data-ocean
http://ec.europa.eu/digital-agenda/en/news/helping-smes-fish-big-data-ocean
http://www.oracle.com/us/technologies/big-data/six-patterns-big-data-infographic-2956541.pdf
http://www.oracle.com/us/technologies/big-data/six-patterns-big-data-infographic-2956541.pdf
http://www.oracle.com/us/technologies/big-data/six-patterns-big-data-infographic-2956541.pdf
http://www.idc.com/getdoc.jsp?containerId=prUS41826116

Toward Model-Based Big Data-as-a-Service: TheTOREADOR Approach 9

13. Lomotey, R.K., Deters, R.: Analytics-as-a-service framework for terms association
mining in unstructured data. Int. J. Bus. Process Integr. Manage. (IJBPIM) 7(1),
49–61 (2014)

14. Lu, R., Zhu, H., Liu, X., Liu, J.K., Shao, J.: Toward efficient and privacy-preserving
computing in big data era. IEEE Netw. 28(4), 46–50 (2014)

15. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: the next frontier for innovation, competition, and productivity
(2011). http://tinyurl.com/z9wjhuw

16. Markl, V.: Breaking the chains: On declarative data analysis and data indepen-
dence in the big data era. Proc. VLDB Endow. 7(13), 1730–1733 (2014)

17. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,
D., Parsia, B., Payne, T., Sabou, M., Solanki, M., et al.: Bringing semantics to
web services: the owl-s approach. In: Proceedings of the International Workshop
on Semantic Web Services and Web Process Composition (SWSWPC 2004), San
Diego, CA, USA, July 2004

18. Martin, K.E.: Ethical issues in the big data industry. MIS Q. Execut. 14, 2 (2015)
19. Prud, E., Seaborne, A., et al.: SPARQL query language for RDF (2006)
20. Rahman, N.: Factors affecting big data technology adoption (2016). http://

pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1099
21. Russom, P.: Big Data Analytics. TDWI best practices report, TDWI

Research (2014). http://www.iso.org/iso/home/news index/news archive/news.
htm?refid=Ref1821

22. Salleh, K.A., Janczewski, L.: Adoption of big data solutions: a study on its security
determinants using sec-toe framework. In: Proceedings of the International Con-
ference on Information Resources Management (CONF-IRM 2016), Cape Town,
South Africa, May 2016

23. Wu, D., Greer, M.J., Rosen, D.W., Schaefer, D.: Cloud manufacturing: strategic
vision and state-of-the-art. J. Manufact. Syst. 32(4), 564–579 (2013)

http://tinyurl.com/z9wjhuw
http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1099
http://pdxscholar.library.pdx.edu/cgi/viewcontent.cgi?article=1099
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1821
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1821

Conceptual Modeling
and Human Factors

General and Specific Model Notions

Bernhard Thalheim(B)

Department of Computer Science, Christian Albrechts University Kiel,
Olshausenstr. 40, 24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract. Models are a universal and widely used instrument in Com-
puter Science and Computer Engineering. There is a large variety of
notions of models. A model functions in a utilisation scenario as an
instrument. It is well-formed, adequate and dependable. It represents
or deputes origins. This conception of the model is a very general one.
Based on the notion of a stereotype as a starting point we show that spe-
cific or particular model notions are specialisations of the general notion.

1 Models in Computer Engineering and Computer
Science

Models are principle instruments in modern computer engineering (CE), in
teaching any kind of computer technology, and also modern computer science
(CS). They are built, applied, revised and manufactured in many CE&CS sub-
disciplines in a large variety of application cases with different purposes and
context for different communities of practice.

1.1 The Omnipresence of Models in CE&CS

The wide deployment of models is supported by an expansive scientific literature
on model usages. There are many different model notions, e.g. [30] discussed more
than 50 different definitions of models used in CE&CS programs. All subdisci-
plines in CE&CS use models such as phenomenological models, computational
models, developmental models, explanatory models, didactic models, imaginary
models, mathematical models, substitute models, iconic or diagrammatic mod-
els, formal models, and analogue models. There is no branch in CE&CS that
does not widely use models as instruments.

It is now well understood that models are something different from theo-
ries. They are often intuitive, visualisable, and ideally capture the essence of
an understanding within some community of practice and some context. At the
same time, they are limited in scope, context and the applicability.

We realised also that models become an research issue on their own. Models
are expressions, descriptions, icons, statements, etc. from one side and desiderata,
representations, deputies, instruments, designs, products etc. from the other side.
They might suggest something that we might later be able to explain or to
construct. Models also help us to explain a system, help us to deal with more
realistic situations, and tell us which intuition and understand is a good one.
How we handle such variety of deployments, understandings, and approaches?
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 13–27, 2017.
DOI: 10.1007/978-3-319-66917-5 2

14 B. Thalheim

1.2 The General Notion of the Model

There is however a general notion of a model and of a conception of the model:

Amodel is a well-formed, adequate, and dependable instrument that rep-
resents origins [6,24–26].

Its criteria of well-formedness, adequacy, and dependability must be com-
monly accepted by its community of practice within some context and corres-
pond to the functions that a model fulfills in utilisation scenarios.

The model should be well-formed according to some well-formedness crite-
rion. As an instrument or more specifically an artifact a model comes with its
background , e.g. paradigms, assumptions, postulates, language, thought commu-
nity, etc. The background its often given only in an implicit form.

The background is often implicit and hidden. Is there any approach to con-
sider the background in a simpler form?

An well-formed instrument is adequate for a collection of origins if it is anal-
ogous to the origins to be represented according to some analogy criterion, it is
more focused (e.g. simpler, truncated, more abstract or reduced) than the origins
being modelled, and it sufficiently satisfies its purpose.

So far, the adequateness notion is far too fuzzy and too wide. Can be develop
a simpler notion of adequateness that still covers the approaches we are used in
our subdiscipline?

Well-formedness enables an instrument to be justified by an empirical corrob-
oration according to its objectives, by rational coherence and conformity explic-
itly stated through conformity formulas or statements, by falsifiability, and by
stability and plasticity within a collection of origins.

The instrument is sufficient by its quality characterisation for internal qual-
ity, external quality and quality in use or through quality characteristics [20] such
as correctness, generality, usefulness, comprehensibility, parsimony, robustness,
novelty etc. Sufficiency is typically combined with some assurance evaluation
(tolerance, modality, confidence, and restrictions).

A well-formed instrument is called dependable if it is sufficient and is justified
for some of the justification properties and some of the sufficiency characteristics.

Again, dependability is a wide field. Do we need this broad coverage for mod-
els? Or is there any specific treatment of dependability for subdisciplines or spe-
cific deployment scenarios?

If there are many specific and particular notions of the model: Can we relate
different notions of models with each other? Can be define interfaces among mod-
els? Is there any standard notion for a sub-discipline? Are specific or particular
notions derivable from the general notion of the model?

And finally, this notion is a very general one. How does the general notion
match with other understandings and approaches to modelling in CE&CS?
Or more generally for sciences based on Occam’s razor principle: Are there spe-
cific or particular notions of the model within specific constellations that suffi-
ciently represent all relevant aspects requested and nothing more?

General and Specific Model Notions 15

1.3 Generality versus Specificity

The general notion of a model covers all aspects of adequateness, dependability,
well-formedness, scenario, functions and purposes, backgrounds (grounding and
basis), and outer directives (context and community of practice). It covers all
known so far notions in agriculture, archeology, arts, biology, chemistry, com-
puter science, economics, electrotechnics, environmental sciences, farming, geo-
sciences, historical sciences, languages, mathematics, medicine, ocean sciences,
pedagogical science, philosophy, physics, political sciences, sociology, and sports.
The models used in these disciplines are instruments used in certain scenarios.

Sciences distinguish between general, particular and specific things. Partic-
ular things are specific for general things and general for specific things. The
same abstraction may be used for modelling. We may start with a general model.
So far, nobody knows what is such general model for most utilisation scenar-
ios. Models function as instruments or tools. Typically, instruments come in a
variety of forms and fulfill many different functions. Instruments are partially
independent or autonomous of the thing they operate on.

Models are however special instruments. They are used with a specific inten-
tion within a utilisation scenario. The quality of a model becomes apparent in
the context of this scenario.

It might thus be better to start with generic models. A generic model
[3,15] is a model which broadly satisfies the purpose and broadly functions in
the given utilisation scenario. It is later tailored to suit the particular purpose
and function. It generally represents origins under interest, provides means to
establish adequacy and dependability of the model, and establishes focus and
scope of the model. Generic models should satisfy at least five properties: (1)
they must be accurate; (2) the quality of the generic model allows that it is used
consciously; (3) they should be descriptive, not evaluative; (4) they should be
flexible so that they can be modified from time to time; (5) they can be used as
a first “best guess”.

Generic models might also be an abstraction of other models that are used
as an inspiration for development of the new model and that are based on the
experience of the modeller. Generic models can be calibrated to specific models
through a process of data or situation calibration, refinement, concretisation,
context enhancement, or instantiation.

Generic models [29] are typically specialised to more specific ones in a devel-
opment process. Generic models are widely used under different names or devel-
opment approaches such as inverse modelling, model-driven architectures and
development, universal applications, data mining and analysis, pattern-based
development, reference models, inductive learning, and model forensics. All these
approaches develop models by stepwise refinement of the root or initial model,
by selection and integration of model variations, and by mutation and recombi-
nation of the model where the root model is a generic model with parameters
(also structures and operations as parameters as well as the architecture).

Instead, we also may start with general models. Typically, we prefer however
particular or idealised models as a starting point for a specific community of

16 B. Thalheim

practice with a specific background, within a specific context, and for represen-
tation of a specific world of origins under consideration. Generic models can be
calibrated to specific models through a process of data or situation calibration,
refinement, concretisation, context enhancement, or instantiation. Lightweight
models [28] typically cut off background and context. They assume per default
some utilisation scenario and reduce the functions of the model to the main
function. The purpose is then driven by this function. Often the community of
practice is set to some standard community that uses a specific kind of justifi-
cation.

Therefore, we face the problem: What is the best starting point for develop-
ment of a model. This paper answers this question by introducing stereotypes of
particular models in Sects. 3 and 4. For this we use the separation of abstraction
into stereotypes, pattern, and templates [1].

1.4 The Storyline and Objectives of This Paper

Since the model notion is too broad we might ask ourselves whether more specific
notions can be used in subdisciplines of CE&CS. We might also consider whether
some of the proposed notions are simpler and better to use. We might start with
the main properties of models (mapping or analogy, truncation or abstraction
or focus, pragmatic, amplification, distortion, idealisation, carrier, added value,
purpose [12,16,18,21]) and specialise them. We might also discuss the variety of
notions [23,30] and compare them with the general one. The main question is
however whether these different notions are sufficient within their environment,
i.e. which specific notion of the model is sufficient for which utilisation, for which
community, within which context, under which general conditions and within
which understanding.

Models are used as perception models, mental models, situation mod-
els, experimentation models, formal model, mathematical models, conceptual
models, computational models, inspiration models, physical models, visualisa-
tion models, representation models, diagrammatic models, exploration models,
heuristic models, etc. Although this categorisation provides an entry point for a
discussion of model properties, the phenomenon of being a model can be prop-
erly investigated. Each category is too broad and combines too many different
aspects at the same time.

We thus first discuss notions which are commonly accepted and discover
that these notions are laden by background, community, context, and utilisation
scenarios. This ladenness can be represented by definitional frames for the model
notion. These frames may now be used for defining stereotypes of model notions.

2 Specialising and Refining the Model Notion

2.1 Stereotypes for Models and Particular Notions of Models

Modelling stereotypes describe the general modelling situation. Generic models
are typically a general modelling solution in a certain utilisation scenario, con-
text, background, and community of practice. For instance, a structure stereotype

General and Specific Model Notions 17

describes data structuring environment within a certain modelling situation. The
corresponding generic models can be refined and used during model development.
They can be considered to be classes or collections of potential models.

2.2 Two Model Notions and Their Specific Approaches

Let us consider two of the 49 model notions we collected [27] for CE&CS. We
will show that these notions are applicable but are heavily biased and thus
paradigmatically use a lot of latent semantics behind.

Models for Model-Based Development. The Scandinavian and Dutch
schools of (conceptual) modelling have developed a sophisticated approach to
modelling since the late 60ies. One result is the famous FRISCO report [7].
More recently, J. Krogstie [11] states:

“Model: A model is an abstraction externalised in a professional language. A

model is assumed to be simpler than, resemble, and have the same structure and

way of functioning as the phenomena it represents.

Phenomenon. A phenomenon is something as it appears in the mind of a person.

The world is perceived by persons to consist of phenomena. ...

Property. A property is an aspect of a phenomena that can be described and given

a value. A phenomenon will have a set of potentially relevant properties. ...

Constitutive rule. A deontic rule that applies to phenomena that exist only

because a rule exist. ...

Professional language. A professional language is a language used by set of per-

sons working in certain kind of area or in a scienctrific discipline. Usually such a

language is not learned before the person has been active in the area for a while.

Language model. The model of a language. Within conceptual modelling, this

is often termed ‘meta-model’, which is only a proper term when looking upon it

from the point of view of repository-management for a modelling tool where the

instantiation of the model is another model in the same or a different modelling

language.

Conceptual model. A model of a domain made in a formal language or semi-

formal language with a limited vocabulary.

System. A system is a set of correlated phenomena, which is itself a phenom-

enon. ...

System model. A model of a system.”

Analysing these notions and more specifically the notion of the model, we
realise that there must exist an origin that we can call matured perception model.
At the same time, the modelling approach is entirely biased by its discipline,
its school of thought, it context, and - as a partially explicit component - its
community of thought. At the same time, we consider only phenomena in a set-
based fashion and not within a conception/conception network. So, the modelling
approach is using a rather restricted world view.

18 B. Thalheim

This restricted world view is however entirely sufficient since the model is
used in one very specific utilisation scenario: system construction. We observe
the import of latent paradigmatic (computing-oriented, function-backed, eco-
nomic, ...) models with predefined meaning, specific context and background
concepts (space, time, settlement, environment, ...) within this scenario. The
main function of the model is that of a mediator that describes the (aug-
mented and perceived) model and that prescribes a system to be investigated or
perceived. The adequateness property uses homomorphisms.

This approach is typical for model-based (software) development [4,10,11,17]
within the specific consideration of specific platform-independent models such
as conceptual models and of platform-dependent models as refinements of the
generic ones. This approach uses latent hidden generic models as community
knowledge. Beside the community dependence, the development biases are also
latent in this model notion.

Model Notions with Justification. Extending and revisiting the model
notion with its mapping, truncation and pragmatic properties by H. Stachowiak
[16], R. Kaschek [9] introduces a model as a material or virtual artifact (1) that
is called a model within a community of practice (2) based on a judgement (3) of
appropriateness for representation of other artifacts (things in reality, systems,
...) and serving a purpose (4) within this community.

Already [9] discussed the forgetful development of software products. Clas-
sically we observe that (i) developers base their design decisions on a “partial
reality”, i.e. on a number of observed properties within a part of the application,
(ii) developers are developing the information system within a certain context,
(iii) developers reuse their experience gained in former projects and solutions
known for their reference models, and (iv) developers use a number of theories
with a certain exactness and rigidity.

The design decisions made during the design process are deeply influenced
by these four hidden factors. In some approaches revisions made during the
information systems development are recorded. However, since the background
knowledge is not recorded the documentation of the information systems devel-
opment is fragmentary.

The justification of models [9] is here explicit. It should however be combined
with a statement of quality that has been achieved so far. The quality criteria are
implicit. The model notion [9] is based on the community of practice behind the
model. Forgetful development is one of the specific properties. The community
of practice drives the context of the model and of modelling. At the same time,
appropriateness is more general than (homomorphic) mapping and truncation.

2.3 The Background as the Hidden Component of Models

The two cases show that the model notion is often laden by its specific back-
ground. The background consists of undisputable elements (grounding: para-
digms, postulates, restrictions, theories, culture, foundations, commonsense) and

General and Specific Model Notions 19

disputable one (basis: concepts, foundations, language as carrier, assumptions,
thought community, thought style, conventions, practices). Background laden
models are already using the grounding and the basis without making it explicit.

2.4 The Particular Notion of a Conceptual Model

Conceptual models are nothing else as models that incorporate concepts and
conceptions which are denoted by names in a given name space. A concept space1

consists of concepts [13] as basic elements, constructors for inductive construction
of complex elements called conceptions, a number of relations among elements
that satisfy a number of axioms, and functions defined on elements.

The general Sapir-Whorf hypothesis [33,36] states the principles of language
determinism (the language governs thinking) and language relativity (coded dis-
tinctions made in one language might not be expressible in another language).
The weak form refers to the dependence of perception, remembering and sim-
plicity on language. We may transfer this hypothesis to concept-ladenness of
languages. Some languages might have richer concepts and conceptions than
others2. Therefore, concepts and conceptions that are expressed in certain lan-
guage heavily influence semiotics of models since the basis of models is also
concerned with concepts and conceptions to be used and thus related to the
(discipline’s context).

They use a specific background: a concept space that clarifies the meaning
of the elements of the model. The concept space is often application dependent
and based on the understanding of notions in the application area. The linguistic
meaning of designators and annotations is an inherent but hidden element of the

So, we notice: the conceptual model is concept space laden .

2.5 The Ladenness of Model Notions

In a similar way we observe also other kinds of ladenness:

Context-ladenness: The application domain and disciplinary context is often
already given due to the introduction of the model. It is often enhanced by
focus and scope depending on the concrete deployment of the model. The
time and space issues are typically implicit.

Community-ladenness: A community of practice tries to be efficient. Such
kind of efficiency includes an agreement of the way how thing are considered,
i.e. a “school of thought” and commonly accepted practices, conventions, and
assumptions.

Development- and utilisation-ladenness: Models must function effectively
within the utilisation scenarios. For this reason, a number of biases are inher-
ited by the the model notion due to the orientation and function of the model.

1 We follow R.T. White [24,35] and distinguish between concepts, conceptual, concep-
tional, and conceptions.

2 Think for instance about the finer notions for whole in Aborigine language: yarla,
pirti, pirnki, kartalpa, yulpilpa, mutara, nyarrkalpa, pulpa, makarnpa, and katarta.

20 B. Thalheim

Utilisation also determines most of the quality characteristics, the assessment
of the model, and the tolerance that might be applied.

2.6 Lessons Learning: Towards a General Approach to Modelling

We observe that modelling mainly consists of three macro-steps, two intentional
and implicit and one extensional and explicit:

(I) Setting the definitional frame with priming, language, and actor setting:
Priming defines the undisputable decisions (called grounding), the concept
space, and the context. Actors within a community of practice act in cer-
tain roles while fulfilling a task. They are biased by their disputable but
somehow accepted background or basis.

(II) Choice of a model stereotype consisting of accepting the definitional frame,
of agenda setting, and of initialisation pattern: Agenda setting restrict
potential utilisation scenarios of models. It thus results in a clarification
of the model functions and thus also purpose and goal. Initialisation may
be based on generic models or modelling experience, e.g. on the basis of
reference models.

(III) Model development and deployment is the classical macro-step and well
investigated for many modelling problems.

The two first intentional macro-steps are hardly often explicitly mentioned. We
often use already existing models (generic, reference, perception, situation, doc-
umentation, etc.) as a starting point without making a reference to it.

3 Definitional Frames for Model Notions

Definitional frames are often somehow agreed practice and commonsense within
a context and within a community of practice. They are somehow implicit. With-
out knowing and managing them we might however come-up with models that
drive us to spurious results or pitfalls. This paradox is well known for natural
sciences or economics. Disputes in the past on whether semantical modelling,
object-role modelling, relational modelling etc. are based on a misunderstanding
of the definitional frames that have been used.

3.1 Priming and Orientation

The model is mostly developed within some context of a discipline, an application
area, and an environment such as an infrastructure. Context may also incorpo-
rate certain foci and scopes for the model. Context may also be concerned with
time. The context is taken as granted and not questioned.

Models are instruments and therefore design for utilisation. That means they
are also set into the existing world. This world is based on some fundament or
grounding. The grounding consists of the commonly accepted and not disputed

General and Specific Model Notions 21

postulates, paradigms, restrictions, theories, culture, foundations, and common-
sense. Models thus inherit this grounding and do not explicitly refer to this
grounding.

Models represent origins. These origins bring in their own world view, their
own concepts and conceptions. The concept(ion) space is therefore for models
some referred background. It is used for assigning a meaning to the constructs of
the model, for consideration of properties of the model, and for validation of the
model. Therefore, models often use concepts either in an explicit form (becoming
thus conceptual models) or in a reference form as abstract formal notations which
provide potentially an explanation of the model and its elements (most often for
formal or mathematical models). In the first case, the concept space is given
and not disputed whereas in the second case the concept space is hidden but
available upon demand.

The fourth component of priming is the context agreement. It integrates the
application domain, the specific thoughts in this application and thus the dis-
ciplinary context, scope, focus, infrastructure and time. We answer the when,
whereat, whereabout, wherein, where, for what, wherefrom, and whence ques-
tions, may be partially also the what question.

3.2 Actors

The community of practice is far more influential than typically assumed. Com-
munity members play their specific roles, have their task portfolio, responsibili-
ties and obligations during a development process. They have however also their
interests which are injected into the modelling decisions. They have their pre-
ferred method spectrum and neglect others [2]. So, they choose also the modelling
language [32] with all the limitations and potential of the language.

A community of practice is typically not interested in revision of the ground-
ing. The community agrees typically also on the basis, i.e. on assumptions, on
the thought style and understanding, on practices, and on conventions within
the setted definitional frame. That means the community of practice determines
the background meaning of a model and adequateness and dependability. The
community also has a hidden raw understanding what means that a model is well-
defined, analogous, focused and purposeful. A similar raw agreement is already
made on dependability, i.e. on justification and sufficiency. The corroboration,
rational coherence, validation, stability and plasticity is somehow already gener-
ically set and taken as commonly agreed.

So, we need to question the influence of the social and professional community:
whom (to whom, by whom), whichever. These questions answer to the presetting
of the model. The message of the model is the same within the community.

3.3 Languages and Basics

Languages enable and restrict at the same time [33,36]. They have their own
obstinacy and thus restrict representability. From the other side, the provide
rules for well-formedness, especially for syntactic ones. Professional languages

22 B. Thalheim

additionally provide rules for semantic well-formedness. The community of prac-
tice also introduces its rules of pragmatic well-formedness. So, the language sup-
ports ‘beauty’ of models due to the inherent phonetics. We known from audience
theory that representation determines later thinking, usage, and understanding
of a model.

For instance, ER modelling supports well a global-as-design procedure on the
basis of a global conceptual schema. If we follow the approach that syntactics
also determines the operations and the algebra [19] then the different viewpoints
which are required by the business user can be expressed via view collections
defined on top of the conceptual schema.

Due to the carrier property, the language enables also to adjust practices,
methodologies, pattern, typical routines, and commonsense. These elements of
the basis complete the background. The language has a symbolic level which
formes the culture of its users and provides a meaning. Professional languages
use denotations and connotations. They provide a code that professionals learned
to read.

So, the language answers the wherewith question. The imposed basics answer
the question with what means. The language and the background form together
some kind of ‘gatekeeper’ since we implicitly decide what to represent.

4 Stereotypes of Models in Utilisation Scenarios

Stereotypes of modelling have already been considered in discussions on method-
ologies, e.g. [5,8,14]. Typically, a methodology is bound to one stereotype and
one kind of model within one utilisation scenario. We can however be more flex-
ible. Stereotypes are governing, conditioning, steering and guiding the model
development. They determine the model kind, the background and way of mod-
elling activities. They persuade the activities of modelling. They provide a means
for considering the economics of modelling.

4.1 Starting with Completing the Definitional Frame

The potential definitional frames are either selected on convenience or after
consideration of appropriateness. Often one frame is taken for granted in most IT
modelling approaches. The definitional frame sets up the acceptable background
of a model. It is typically implicit.

4.2 Model Utilisation Scenario

Models are used as instruments in some utilisation scenarios. They have a num-
ber of functions in these scenarios. Based on an understanding of these functions
we know what is the goal and purpose of such models. Therefore, we can now
define the profile (goals, purposes, functions) that a model must fulfill. Due to
the instrument property we also know which tasks are going to be solved with
instruments. That means we know the task portfolio.

General and Specific Model Notions 23

The profile and the portfolio create the ‘spin’ of the model since they convey
a value judgement that might be immediately apparent and they create inherent
bias by setting of the modelling task. The spin attempts to steer the way a model
becomes useful to others.

4.3 Agenda Setting

Finally, we can define what is the agenda of the modelling tasks and of the model
deployment. The agenda setting answers the why, for which reason, wherefore,
worthiness, and whither away questions. This agenda can be formalised as a
protocols setting and an orientation behind the model.

Based on the agenda, we sketch also adequateness and dependability. We can
determine what means that a model is well-formed, which analogy or similarity
is going the be used, which kind of focus allows to restrict the modelling task,
and what means to be purposeful for a model.

At the same time, we have set up the main justification approaches. We
already know explanatory statements and viability for the elements of the model
based on the profile and background. We can sketch the arguments that sup-
port the model. We reflect norms and standards accepted by the community
of practice, e.g. common practices for achieving inner coherence. The valida-
tion procedure is already set up for the model. We also may use which kind of
robustness the model must have in order not to be over-fitted.

The model must not represent anything what might be representable. We
know in this pre-setting which quality characteristics for quality in use, external
and internal quality must be observed and which ones can be neglected. The
quality characteristics are enhanced by evaluation procedures. So, we already
define which discrimination is tolerated, which modality (necessity, contingency
or possibility, relativity) can applied within the context, and which confidence
of the evaluation is necessary.

Justification and sufficiency form our criteria for dependability. We can define
for the model that is intended to build what means to be admissible, rigid, right,
and fit.

4.4 Initial Model Setting

Models represent their origins. We might start from scratch, explore origins,
discover essential and relevant elements, decompose them and explore then the
modelling task. A first (nominal) model is the result of a composition or amal-
gamation step. Model formulation results then in development of a model. We
might also base modelling on already existing models either for a given system or
on the basis of referential models. We might also start with a generic model. In all
these cases, we are already conditioned by the definitional frame. Additionally,
we selected a modelling workflow or development strategy [19,22].

The initial setting also inherits latent models that come with the grounding,
the context, and the basis.

24 B. Thalheim

After setting the stereotype, we start with model development according to
the chosen strategy within the agenda and the definitional frame. The typical
questions answered in this step are: whereof, how, what, with which restrictions.
Additional questions are concerned with adequateness and dependability of the
model especially with quality characteristics.

4.5 A Test Case for the Approach

We might consider all notions in [27,31]. Let us only consider the construction
scenario for IT systems. The stereotype we shall use incorporates (1) the typi-
cal and also specific IT grounding with all its paradigms, postulates, theories,
foundations, culture, commonsense, and restrictions, (2) the mediator function
of models in the construction scenario, (3) the IT community of practice with its
obligations, interests, tasks portfolio from one side, and the biases accepted in the
community such as school of thought, practices, commonsense, and assumptions,
and (4) the selection of the languages and concept space that might be used. It
also provides a collection of reference models as their basis for opportunities.
These reference models are latent models.

So, in this case, the modelling case is based on the needs and the functions
a model might play in system construction. The context is given by current IT
systems, current infrastructures and by system development foci and scopes.
Therefore, IT grounded is not reconsidered. The choice of the concept space is
determined by the notion of the system. The community of practice determines
the language and the biases the community likes. The agenda is a mediating
one. The model is used either for description of a development idea and for
prescription of a forthcoming system or for documentation of an existing sys-
tem. Initialisation might be based on generic models, on reference models or on
already existing models.

Then we arrive with some model definition as [34]:

“A model is a simplified reproduction of a planned or real existing sys-
tem with its processes on the basis of a notational and concrete concept
space. According to the represented purpose-governed relevant properties,
it deviates from its origin only due to the tolerance frame for the purpose.”

5 Concluding: Stereotyping as the Spinning Principle

Models are one of the instrument in sciences, engineering and every life. They
are not yet properly understood for their way of functioning, their impact, their
potential, their capacity, and their anti-profile (not-supported utilisations). We
do not want to overload the notion. Models should be used and understood.
Therefore, we need a notion that is as simple as possible in the given scenario and
given situation. At the same time, we should not loose the specific agreements we
have made for models. Models must be effective, efficient, user-friendly, economic,
and well-organised. Otherwise, nobody can properly use the conclusions and

General and Specific Model Notions 25

results that have been generated by the help of models. Sometimes, models may
mis-orientate, condition, biase or persuade [23] users in their understanding and
must be corrected after paradigmatic revision and synthesis.

So, we need a general specification of the model kind that allows from one
side to reason on the potential, capacity, adequacy, and dependability of the
given model and from the other side to be aware of the anti-profile and the
cases in which the model is not promising, not adequate, may direct to wrong
conclusions, and has its pitfalls.

This paper uses definitional frames and stereotypes for a holistic treatment of
models. From one side, the model notion covers all what is necessary. From the
other side, the specific agreements have to be explicitly given and must not be
guessed. So providing the stereotype allows to understand the model, its quality
characteristics, its capacity and its potential. It also allows to understand in
which cases the model is not useful or more explicitly to know in which cases
the model should not been used.

This paper does not claim that existing models or model notions are bad. We
cannot handle here the large variety of modelling techniques. Model management
is out of scope of this paper. Instead, we contribute to general model theory and
harmonise notions of models by development of an approach that allows to derive
specific notions of a model from the general one and thus to inherit investigations
made for one model notion by other approaches to modelling.

References

1. AlBdaiwi, B., Noack, R., Thalheim, B.: Pattern-based conceptual data modelling.
In: Information Modelling and Knowledge Bases, volume XXVI. Frontiers in Arti-
ficial Intelligence and Applications, vol. 272, pp. 1–20. IOS Press (2014)

2. Berghammer, R., Thalheim, B.: Methodenbasierte mathematische Modellierung
mit Relationenalgebren. In: Wissenschaft und Kunst der Modellierung: Modelle,
Modellieren, Modellierung, pp. 67–106. De Gryuter, Boston (2015)

3. Bienemann, A., Schewe, K.-D., Thalheim, B.: Towards a theory of genericity based
on government and binding. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER
2006. LNCS, vol. 4215, pp. 311–324. Springer, Heidelberg (2006). doi:10.1007/
11901181 24

4. Bjørner, D.: Domain Engineering. COE Research Monographs, vol. 4. Japan
Advanced Institute of Science and Technolgy Press, Ishikawa (2009)

5. Brackett, M.H.: Data Resource Quality. Addison-Wesley, Boston (2000)
6. Embley, D., Thalheim, B. (eds.): The Handbook of Conceptual Modeling: Its Usage

and Its Challenges. Springer, Heidelberg (2011)
7. Falkenberg, E.D., Hesse, W., Lindgren, P., Nilsson, B.E., Han, O.J.L., Rolland, C.,

Stamper, R.K., Van Assche, F.J.M., Verrijn-Stewart, A.A., Voss, K.: A Frame-
work of Information System Concepts, The FRISCO Report (Web Edition). IFIP,
ifip@ifip.or.at (1998)

8. Fleming, C.C., von Halle, B.: Handbook of Relational Database Design. Addison-
Wesley, Reading, MA (1989)

9. Kaschek, R.: Konzeptionelle Modellierung. Ph.D. thesis, University Klagenfurt,
Habilitationsschrift (2003)

http://dx.doi.org/10.1007/11901181_24
http://dx.doi.org/10.1007/11901181_24

26 B. Thalheim

10. Kleppe, A., Warmer, J., Bast, W., Explained, M.D.A.: The Model Driven Archi-
tecture - Practice and Promise. Addison Wesley, Boston (2006)

11. Krogstie, J.: Model-Based Development and Evolution of Information Systems.
Springer, London (2012)

12. Mahr, B.: Information science and the logic of models. Softw. Syst. Model. 8(3),
365–383 (2009)

13. Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2001)
14. Simsion, G.: Data Modeling - Theory and Practice. Technics Publications, LLC,

New Jersey (2007)
15. Simsion, G., Witt, G.C.: Data Modeling Essentials. Morgan Kaufmann,

San Francisco (2005)
16. Stachowiak, H.: Modell. In: Seiffert, H., Radnitzky, G. (eds.) Handlexikon zur Wis-

senschaftstheorie, pp. 219–222. Deutscher Taschenbuch Verlag GmbH & Co. KG,
München (1992)

17. Stahl, T., Völter, M.: Model-Driven Software Architectures. dPunkt, Heidelberg
(2005). (in German)

18. Steinmüller, W.: Informationstechnologie und Gesellschaft: Einführung in die
Angewandte Informatik. Wissenschaftliche Buchgesellschaft, Darmstadt (1993)

19. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-
ogy. Springer, Berlin (2000)

20. Thalheim, B.: Towards a theory of conceptual modelling. J. Univers. Comput. Sci.
16(20), 3102–3137 (2010). http://www.jucs.org/jucs 16 20/towards a theory of

21. Thalheim, B.: The theory of conceptual models, the theory of conceptual modelling
and foundations of conceptual modelling. In: Embley, D., Thalheim, B. (eds.) The
Handbook of Conceptual Modeling: Its Usage and Its Challenges, chap. 17, pp.
547–580. Springer, Berlin (2011). doi:10.1007/978-3-642-15865-0 17

22. Thalheim, B.: The art of conceptual modelling. In: Information Modelling and
Knowledge Bases XXII. Frontiers in Artificial Intelligence and Applications, vol.
237, pp. 149–168. IOS Press (2012)

23. Thalheim, B.: The conception of the model. In: Abramowicz, W. (ed.) BIS
2013. LNBIP, vol. 157, pp. 113–124. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38366-3 10

24. Thalheim, B.: The conceptual model ≡ an adequate and dependable artifact
enhanced by concepts. In: Information Modelling and Knowledge Bases, volume
XXV. Frontiers in Artificial Intelligence and Applications, vol. 260, pp. 241–254.
IOS Press (2014)

25. Thalheim, B.: Models, to model, and modelling - towards a theory of conceptual
models and modelling - towards a notion of the model. Collection of recent papers
(2014). http://www.is.informatik.uni-kiel.de/∼thalheim/indexkollektionen.htm

26. Thalheim, B.: Conceptual modeling foundations: the notion of a model in concep-
tual modeling. In: Encyclopedia of Database Systems (2017)

27. Thalheim, B., Nissen, I. (eds.): Wissenschaft und Kunst der Modellierung: Modelle,
Modellieren, Modellierung. De Gruyter, Boston (2015)

28. Thalheim, B., Tropmann-Frick, M.: Wherefore models are used and accepted?
The model functions as a quality instrument in utilisation scenarios. In: Comyn-
Wattiau, I., du Mouza, C., Prat, N. (eds.) Ingenierie Management des Systemes
D’Information (2016)

29. Thalheim, B., Tropmann-Frick, M., Ziebermayr, T.: Application of generic work-
flows for disaster management. In: Information Modelling and Knowledge Bases,
volume XXV. Frontiers in Artificial Intelligence and Applications, vol. 260, pp.
64–81. IOS Press (2014)

http://www.jucs.org/jucs_16_20/towards_a_theory_of
http://dx.doi.org/10.1007/978-3-642-15865-0_17
http://dx.doi.org/10.1007/978-3-642-38366-3_10
http://dx.doi.org/10.1007/978-3-642-38366-3_10
http://www.is.informatik.uni-kiel.de/~thalheim/indexkollektionen.htm

General and Specific Model Notions 27

30. Thomas, M.: Modelle in der Fachsprache der Informatik. Untersuchung von Vor-
lesungsskripten aus der Kerninformatik. In: DDI. LNI, vol. 22, pp. 99–108. GI
(2002)

31. Thomas, O.: Das Modellverständnis in der Wirtschaftsinformatik: Historie,
Literaturanalyse und Begriffsexplikation. Technical report Heft 184, Institut für
Wirtschaftsinformatik, DFKI, Saarbrücken, Mai (2005)

32. von Dresky, C., Gasser, I., Ortlieb, C.P., Günzel, S.: Mathematische Modellierung:
Eine Einführung in zwölf Fallstudien. Vieweg (2009)

33. Wanner, P. (ed.): The Cambridge Encyclopedia of Language. Cambridge University
Press, New York (1987)

34. Wenzel, S.: Referenzmodell fr die simulation in produktion und logistik. ASIM
Nachr. 4(3), 13–17 (2000)

35. White, R.T.: Commentary: conceptual and conceptional change. Learn. Instr. 4,
117–121 (1994)

36. Whorf, B.L.: Lost generation theories of mind, language, and religion. Popular
Culture Association, University Microfilms International, Ann Arbor, Mich (1980)

“Is It a Fleet or a Collection of Ships?”:
Ontological Anti-patterns in the Modeling

of Part-Whole Relations

Tiago Prince Sales1,2 and Giancarlo Guizzardi3,4(&)

1 Department of Information Engineering and Computer Science,
University of Trento, Trento, Italy

tiago.princesales@unitn.it
2 Laboratory for Applied Ontology, ISTC-CNR, Trento, Italy

3 NEMO Group, Federal University of Espírito Santo, Vitória, Brazil
gguizzardi@unibz.it

4 Faculty of Computer Science,
Free University of Bozen-Bolzano, Bolzano, Italy

Abstract. Over the years, there is a growing interest in employing theories
from philosophical ontology, cognitive science and linguistics to devise theo-
retical, methodological and computational tools for information systems engi-
neering, in general, and for conceptual modeling, in particular. In this paper, we
discuss one particular kind of such tools, namely, ontological anti-patterns.
Ontological anti-patterns are error-problem modeling structures that can create a
deviation between the possible and the intended interpretations of a model. In
this paper, we present two empirically elicited ontological anti-patterns related
to the modeling of part-whole relations. In particular, these anti-patterns identify
possible mistakes in the modeling of collectives (complex entities that have a
uniform role-based structure) and functional complexes (complex entities
composed of functional parts). Besides identifying these anti-patterns, the paper
presents a series of rectification plans that can be used to eliminate their
occurrence in models. Finally, we present a model-based computational tool that
supports the automated detection, analysis and elimination of these anti-patterns.

Keywords: Ontology-based conceptual modeling � Anti-patterns � Parthood

1 Introduction

In recent years, there has been an increasing interest in the application of ontologies in
conceptual modeling, including the use of foundational ontological theories to improve
the theory and practice of this discipline [1, 2]. In these scenarios, ontological theories
can play a fundamental role in improving the quality of enterprise-wide conceptual
models, improving their quality as artifacts supporting communication, problem-
solving, meaning negotiation and, chiefly, semantic interoperability in its various
manifestations (e.g., enterprise application integration) [3].

Given the increasing complexity of ontology-driven conceptual modeling, there is
an urging need for developing a new generation of complexity management tools for

© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 28–41, 2017.
DOI: 10.1007/978-3-319-66917-5_3

this discipline [1, 4]. These include a number of methodological and computational
tools that are grounded on sound ontological foundations. In particular, as defended in
[1], we should advance in these disciplines a well-tested body of knowledge in terms of
Ontology Patterns, Ontology Pattern Languages and Ontological Anti-Patterns. This
article focuses on the latter.

An anti-pattern is a recurrent error-prone modeling decision [5]. In this paper, we
are interested in one specific sort of anti-patterns, namely, model structures that, albeit
producing syntactically valid conceptual models, are prone to result in unintended
domain representations. In other words, we are interested in configurations that, when
used in a model, will typically cause the set of valid (possible) instances of that model
to differ from the set of instances representing intended state of affairs in that domain
[1, 6]. Such a difference occurs either because the model allows unintended model
in-stances or because it forbids intended ones. We name these configurations Onto-
logical Anti-Patterns.

In this article, we focus on the study of Ontological Anti-Patterns in a particular
conceptual modeling language named OntoUML [7]. OntoUML is a language whose
meta-model has been designed to comply with the ontological distinctions and
axiomatization of a theoretically well-grounded foundational ontology named UFO
(Unified Foundational Ontology) [7, 8]. UFO is an axiomatic formal theory based on
theories from Formal Ontology in Philosophy, Philosophical Logics, Cognitive Psy-
chology and Linguistics. OntoUML has been successfully employed in several
industrial projects in different domains, such as petroleum and gas, digital journalism,
complex digital media management, off-shore software engineering, telecommunica-
tions, retail product recommendation, and government [8]. A recent study shows that
UFO is the second-most used foundational ontology in conceptual modeling and the
one with the fastest adoption rate [2]. Moreover, the study also shows that OntoUML is
among the most used languages in ontology-driven conceptual modeling (together with
UML, (E)ER, OWL and BPMN).

This article can be seen as complementary to our earlier work in [9, 10]. In [9], we
have focused on anti-patterns that are connected to the modeling of material relations
(roughly domain associations) and, in [10], on those connected to the modeling of
roles. Here, in contrast, we focus on some anti-patterns that emerge when modeling
parthood (part-whole) relations. In particular, we focus on anti-patterns that emerge
when modelers confuse the ontological unity criteria involved in the modeling of two
particular type of parthood relations, namely, the member of relation and the component
of relation.

The contributions of this paper are three-fold. Firstly, we contribute to the identifi-
cation of two new Ontological Anti-Patterns for conceptual modeling, in general, and for
OntoUML, in particular. Secondly, after precisely characterizing these anti-patterns, we
propose a set of refactoring plans that can be adopted to eliminate the possible unin-
tended consequences induced by the presence of each of these anti-patterns. Finally, we
present an extension for the Menthor Editor1, an open-source OntoUML model-based
editor that: (i) automatically detects anti-patterns in their models; (ii) supports users in

1 https://github.com/menthortools/menthor-editor.

Is It a Fleet or a Collection of Ships? 29

https://github.com/menthortools/menthor-editor

exploring whether the presence of an anti-pattern indeed characterizes a modeling error;
(iii) automatically executes refactoring plans to rectify the model.

The remainder of this article is organized as follows: in Sect. 2, we briefly elaborate
on the modeling language OntoUML and some of its underlying ontological categories,
with a particular focus on the modeling of parthood relations; In Sect. 3, we first briefly
present the anti-pattern elicitation method employed here and characterize the model
benchmark used in this research; In Sect. 4, we present the newly elicited Ontological
Anti-Patterns with their unintended consequences, as well as possible solutions for their
rectification in terms of model refactoring plans; Sect. 5 elaborates on the extensions
implemented in the OntoUML editor taking into account these anti-patterns; Finally,
Sect. 6 presents some final considerations.

2 Ontological and Cognitive Aspects

Parthood is a relation of fundamental importance in conceptual modeling. As such, it is
present as a primitive in practically all major conceptual modeling languages and as a
micro-theory in all foundational ontologies used in conceptual modeling [7].

Being a cognitively-oriented descriptive ontology, UFO includes micro-theories to
address the four kinds of parthood relations generally recognized in Cognitive Science
[11, 12], namely, the relations of subquantity-quantity, subcollective-collective, mem-
ber-collective and component-functional complex. In UFO, these relations are fully
axiomatized and, in their corresponding formal axiomatizations, these relations are
characterized w.r.t. formal theories in classical and non-classical mereology [13–17]. In
particular, all these relations are shown to conform to the following standard mereo-
logical principles: non-reflexivity, asymmetry and the so-called Weak Supplementation
Principle (WSP). WSP mandates that if an individual X is part of an individual Y then
there must exist at least another individual Z that is mereological disjoint from X and
that is also part of Y. In other words, if an individual is mereologically non-atomic (i.e.,
if it has parts), then it must have at least two disjoint parts.

Being based on UFO, OntoUML has modeling primitives termed subQuantityOf,
subCollectiveOf, memberOf and componentOf representing these four types of part-
hood relations, respectively. Moreover, it includes in its metamodel formal constraints
representing the axiomatization of these relations according to UFO.

The subquantity-quantity is focused on modeling parts of an amount of matter (e.g.,
alcohol-wine, gin-Martini, ice cream-milkshake) and has been discussed in depth in
[17]. This paper focuses on part-whole relations of the three remaining kinds, i.e., the
ones involving collectives and their parts (subCollectiveOf and memberOf) the one
involving functional complexes and their parts (componentOf).

There is an important difference between an ontological account of parthood such
as the one included in UFO and classical mereological theories [13], namely, whilst the
latter theories are about a binary relation between the part and the whole, the former
theories also address the relations that have to hold between the parts in order for them
to form a whole. In other words, we must address the question of what kind of unity
principle binds the parts together such that they can form a particular whole.

30 T.P. Sales and G. Guizzardi

An important ontological distinction between collectives and functional complexes
is related exactly to the differentiation between the types of unity principles that form
these two types of wholes. In the case of collectives, this unity principle is a uniform
relationship (i.e., a relation instance) that holds between all parts and only those parts
[14, 15]. Because of the uniformity of this relationship, the collective has a uniform
structure, i.e., all its members are undifferentiated w.r.t. to the whole. In other words,
they can be said to play the same role w.r.t. the whole. Take for example collectives
such as a forest, a crowd, a pack of lions or a deck of cards with their corresponding
instances of the memberOf relation (i.e., tree-forest, person-crowd, lion-pack,
card-deck). In all of these cases, the wholes have a uniform structure provided by a
uniform unity principle (e.g., a crowd is a collective of person all which are positioned
in a particular topologically self-connected spatial location) and their parts are all
considered to play the same role w.r.t. the whole (e.g., all persons are equally con-
sidered to be membersOf the crowd). Having uniform criteria regarding their mem-
bership does not entail that collectives cannot have differentiated parts. However, these
parts are of a different kind, namely, they further structure collectives in terms of sub-
collectives. For example, the male portion of the crowd and the female portion of the
crowd are subcollectivesOf the crowd. Likewise, the teenager portion of the crowd is
another subcollectiveOf the crowd that mereologically overlaps with at least one the
former sub-collectives.

In contrast to collectives, functional complexes are unified by a functional archi-
tecture formed by a chain of functional dependence relations [16]. In a functional
complex, there is a differentiation of the roles played by the different parts. Moreover,
by playing these different functional roles, the parts contribute in complementary
manners to the functionality of the whole. Take for example functional complexes such
as a circulatory system, a car, a computer network, or an organization and their cor-
responding componentOf relations (i.e., heart-circulatory system, engine-car,
router-computer network, presidency-organization). In all these examples, the parts
play particular functional roles contributing in specific ways to the functionality of the
whole (e.g., the heart plays the functional role of pumping blood w.r.t. to the circu-
latory system such that the circulatory system cannot function as such without having a
component play that particular role of blood pump) [16].

Fig. 1. Fleet as a functional complex versus fleet as a collection.

Is It a Fleet or a Collection of Ships? 31

Finally, it is important to highlight that many natural language terms exhibit a case
of systematic polysemy [18] in referring both to collectives and functional complexes.
For example, take the case of a fleet, as discussed by [11, 12]. In the case that all ships
of a fleet are conceptualized as playing solely the role of a memberOf a fleet, then the
term fleet can be said to refer to a collection. In contrast, if a fleet is conceptualized
from a functional perspective in which roles are further specialized in leading ship,
defense ship, storage ship and so forth, the fleet term refers to a functional complex. In
other words, the term fleet seems to refer in a polysemic manner to two different
entities: one that is an organizational entity/functional complex that has a functional
architecture in which parts play a number of differentiated roles; another that is just a
collection of ships. On one hand, these two entities are distinct, following different
identity and unity principles (e.g., while replacing an individual ship creates a different
collective of ships it does not alter the identity of the fleet-qua-functional-organization).
On the other hand, they bear a particular relation to each other, namely, a relation of
constitution [7], i.e., the fleet-qua-functional-organization is constituted by the fleet-
qua-collection-of-ships, as depicted in Fig. 1.

Following the ontological distinctions put forth by UFO, OntoUML countenances
three different stereotypes that can be applied to types of substantial entities in the
domain, depending on the nature of their unity criteria: «kind» for types of functional
complexes, «collective» for types of collectives, and «quantity» for types of quanti-
ties. The types marked with these three stereotypes represent what the modeler deems
to be the kinds of entities in the domain (in the ontological sense). As such, these types
aggregate essential properties for their instances. For this reason, they are static (i.e.,
modally rigid types), meaning that they classify their instances in all possible situa-
tions. Rigid types that specialize those former three types are stereotyped as «sub-
kind» (e.g., the «subkind» Man specializes the «kind» Person); dynamic types
specializing them are either stereotyped as «role», when their dynamic classification
condition is a relational one (e.g., student, husband, father), or «phase», in case their
dynamic classification condition is an intrinsic one (e.g., teenager, puppy or living
person); abstract types (aka dispersive types [7]) that classify instances of more than
one kind (i.e., more than one type stereotyped as «kind», «collective» or «quantity», or
any combination of these) are stereotyped as «category» (in case they are rigid abstract
types, e.g., the type Physical Object rigidly classifying entities of kinds people,
buildings, dogs, car, etc.), «roleMixin» (in case they are dynamic and relational
abstract types, e.g., the type Customer classifying entities of kinds people and orga-
nization) or «mixin» (an abstract type that is static to some instances and dynamic to
others, e.g., the type Insured Item classifying rigidly things of the type Car and
dynamically things of the kinds Trip and Building).

For an in depth discussion and formal characterization of UFO and OntoUML, one
should refer to [7]. In particular, for ontological and cognitive aspects and formal
characterization of collectives and functional complexes in UFO, as well as the cor-
responding OntoUML profiles for the memberOf/subCollectiveOf and componentOf
relations, one should refer to [15, 16], respectively.

32 T.P. Sales and G. Guizzardi

3 Methods and Materials

Our approach to identify ontological anti-patterns is an empirical qualitative analysis. It
starts with the selection of a model for analysis, which is followed by the identification
of relevant model fragments for analysis. Such fragments can consist of a whole dia-
gram, a subset of a diagram or even a new “artificial” diagram produced for the sake of
analysis (model inspection). Step three is to inspect the selected portion of the model in
order to uncover possible problems. We conduct this activity using visual model sim-
ulation [1, 6]. This simulation consists in converting OntoUML models into Alloy [19]
specifications, generating possible model instances and contrasting these instances with
the set of intended instances of the model. The set of intended instances correspond to
those that represent intended state of affairs [1, 6] according the creators of the models.
Upon the identification of a mismatch, we register it as a potential problem. After
detecting a possible problem, we analyze the model in order to identify which structures
(i.e., combination of language constructs) caused that problem. In the sequence, we
interact with the modelers (when available) or inspect the documentation accompanying
the model to define whether the identified structure is indeed problematic. If that is the
case, we propose a possible solution to rectify the model and register it as a
problem-solution pair. With a modified model, we go back to step three. This iteration is
repeated until no more problems can be identified in that fragment and then, another
fragment is selected. The analysis stops whenever we inspect all relevant model frag-
ments. After inspecting each model, we analyze the generated problem-solution pairs in
order to generalize them into pairs of anti-patterns/refactoring plans.

Our empirical analysis for uncovering anti-patterns was performed using a repos-
itory of 54 models2. Out of these, 11 models were developed in the context of academic
research without industry collaboration. An example is The Configuration Management
Task Ontology [20], a product of a Masters dissertation. Furthermore, 7 models had
total or partial participation of private companies and/or governmental organizations,
the most significant being the MGIC Ontology [21], developed within a re-search
project with a regulatory agency responsible for controlling ground transportation
services in Brazil.

Concerning the purpose for which the models have been created, the repository
contains 10 models (16%) that are intended to serve as a reference domain or core
ontologies (e.g. UFO-S [22] for the domain of services). Another 10 models (16%)
have been developed in order to perform ontological analysis on existing formaliza-
tions, databases or modeling languages. An example is the refactoring of the Con-
ceptual Schema of Human Genome presented in [23]. The repository also contains 8
models (13%) designed for knowledge-based applications, 6 (10%) whose main
intention was to support semantic interoperability between systems and/or organiza-
tions, and only 2 (3%) for the purpose of enterprise modeling. For the remainder 26
models (42%), there is no information w.r.t. this aspect of classification.

2 The models we used in our research, with an exception of a few (due to non-disclosure agreements),
are available at http://www.menthor.net/model-repository.html.

Is It a Fleet or a Collection of Ships? 33

http://www.menthor.net/model-repository.html

Regarding the modeler’s overall expertise in OntoUML, 22 models (41%) have
been developed by beginners (18 of these models are also graduate course assignments)
and 32 (59%) developed by experienced modelers. Finally, we look into the total
number of modelers involved in the model construction. Most models (35 out of 54)
were developed individually, whilst 15 were the product of a collaboration between 2–
4 people, and 4 involved 7–10 people.

The two anti-patterns discussed in next section appeared in 37,04% of the models
with 142 occurrences (HomoFunc, see Sect. 4.2) and in 12,96% of the models with 60
occurrences (HetColl, see Sect. 4.1).

4 Ontological Anti-patterns

4.1 Heterogeneous Collective (HetColl)

As we discussed in Sect. 2, a collective is an entity whose parts (members) play the
same role w.r.t. whole. If we say that a troupe is a collection of artists, we are implying
that all artists play merely the generic role of being part of the troupe. Conversely,
functional complexes are entities whose parts play different roles w.r.t. whole, thus
making different contributions to the behavior of the whole. For instance, the CPU is a
functional part of a computer, as well as the hard-drive, since the former is responsible
for processing operations, whilst the latter is responsible for storing non-volatile data.
As discussed in [7], sometimes, different conceptualizations can articulate a notion in
reality as a functional complex or as a collective. As previously mentioned, one con-
ceptualization can articulate a fleet as a functional complex, in which different ships
play different functional roles, while another conceptualization can articulate it as
merely a collection of ships.

In OntoUML, collectives can be further refined into sub-collections. Again,
although defining collective parts of super-collective provides further structure to the
whole, it still does not differentiate roles played by their members. For instance, the
troupe could be refined into sub-collections of singers, dancers and actors, whose
members are the artist who can sing, dance and act, respectively. In this case, the
principle unifying these sub-collections is just a strengthen of the common principle
that unifies the collection in the first place [15] and, thus, all the members of the
collection are still undifferentiated w.r.t. the whole. In other words, the whole regards
them merely as members.

The Heterogeneous Collective (HetColl) anti-pattern identifies collectives that are
connected via membership relation to members classified under different types. This
can be an indication that the modeler either confused the collection and functional
complex interpretations of the same notion or confused the membership and
sub-collection relations. By analyzing the models in the OntoUML repository and by
discussing their intended semantics with their respective modelers, we have notice that
whenever a collective noun (like fleet, group, pack) is used, modelers are most likely to
represent it as a collective, without fully analyzing the subtleties of the particular
conceptualization at hand.

34 T.P. Sales and G. Guizzardi

The key aspect to successfully analyze this anti-pattern is to identify the nature of
the unity criteria connecting the parts that form the whole. If one concludes that the
parts in fact play different roles w.r.t the whole, the refactoring plan is to change the
ontological category of the whole to a functional complex (if necessary, also change the

Table 1. Characterization of the HetColl anti-pattern.

Is It a Fleet or a Collection of Ships? 35

ontological category of parts) and then to change the stereotype of the meronymic
relations to componentOf, instead of memberOf. Alternatively, if one concludes that the
members indeed play the same role regarding the whole, we propose to make this
position explicit by creating a type as the direct parent of all current part types and then
merge all memberOf relations into a new that is connected to this newly created
supertype. Yet a third alternative is presented when the modeler concludes that the
types representing the members are in fact sub-collections, i.e., they are refinements of
internal structure of the collective whole [15]. To rectify this case, one must change the
stereotypes of the memberOf relations to subCollectionOf and, if necessary, adjust the
ontological category of the parts to be that of a collection (Table 1).

Note that in both the first and third refactoring plans described, whenever there is a
need to ontological category of either a part type or a whole type, the following strategy
can be adopted. If (1) a type A is erroneously stereotyped as a «kind» or a «quantity»,
then A should be represented as a «collective». However, if (2) A is stereotyped
as «subkind», «role» or «phase» and (directly or indirectly) specializes a «kind» or
a «quantity» type S, one can: (2.1) change the stereotype of S to «collective»; (2.2)
select another «collective» in the model and make A specialize it; or (2.3) create a
new «collective» be the supertype of A. Finally, if (3) P is stereotyped as a «cate-
gory», «mixin» or «roleMixin», strategies (1) and (2) should be adopted for every
subtype of P.

An example of the occurrence of HetColl is depicted in Fig. 2 below. This model is
an adaptation of a fragment extracted from a governmental conceptual model in the
domain of agricultural protection. The fragment describes a particular type of work
group, named Technical Administrative Support Group, which has employees that play
the roles of technical and/or administrative support. The cardinalities constraints
defined in the association ends of parts show that this type of work group requires
employees performing different duties. The requirement of the presence of people
playing these different roles indicates that the work group should be really modeled a
functional complex instead of a collective. As it is typical in these cases, there is
another implicit entity, namely, the staff of the work group, which at each point in time
constitutes the Work Group as a functional complex. However, the Work Group itself
and its staff are ontologically distinct entities as these are associated with different
identity criteria (e.g., while changing a member of the staff creates a different staff, it
can still be the same Work Group, just then constituted by a different staff) [7].

Fig. 2. HetColl occurrence in a fragment of a governmental model.

36 T.P. Sales and G. Guizzardi

4.2 Homogeneous Functional Complex (HomoFunc)

The Homogeneous Functional Complex (HomoFunc) anti-pattern is the counterpart of
the HetColl anti-pattern. As discussed in Sect. 2, functional complexes have hetero-
geneous structures, such that its parts play different functional roles w.r.t. the whole.
Therefore, when a modeler describes a functional complex, it is usually expected that
she would represent multiple componentOf relations connected to such type to account
for the diversity of such functional roles.

In OntoUML, a type represents a functional complex when: (i) it is stereotyped as
a «kind»; (ii) it is a subtype of kind (i.e., as a «subkind», «role» or «phase»); (iii) it
represents a non-sortal type (i.e., «category», «mixin» or «roleMixin») and all its
(direct or indirect) sortal subtypes satisfy conditions (i) or (ii). An occurrence of the
HomoFunc anti-pattern is observed in a model when there is a model fragment rep-
resenting a homogenous structure of a functional complex, i.e., there is a «kind» type
connected through a single componentOf relation to one single type of part.

In our empirical investigation, we observed that a common reason for an occur-
rence of HomoFunc is when a modeler mistakenly represents a functional complex
while actually intending to represent a collective. This can happen because alternative
conceptualizations can ascribe different interpretations for the same term in the domain
(see discussion on Sect. 4.1). For this case, we propose the following refactoring plan
(see Table 2): one should transform the functional parthood relation at hand (a com-
ponentOf) in a membership relation (a memberOf). Then, one should change the
ontological category of the whole type to that of a collection.

In a second situation, we have that a modeler actually intended to represent a
heterogeneous structure for the whole. In this case, the modeler should refine the model
to include additional types of part. This can be accomplished in two different albeit
non-exclusive ways. First, through the specification of new types of functional parts,
i.e., types that bear no taxonomic relations to the type already present in the model
representing the part (see refactoring plan 2 in Table 2). Second, through the creation
of subtypes of the single functional part, alongside with the additional corresponding
componentOf relations (see refactoring plan 3 in Table 2).

In Table 2, the constraint number 2 for the characterization of this anti-pattern
expresses that the parthood relation represented should satisfy the weak supplemen-
tation axiom (one of the most fundamental axioms of parthood, see [13–17]). Other-
wise, the situation would indicate simply an incomplete model and would not
exemplify an occurrence of this anti-pattern. Constraint number 3, instead, exclude the
situation in which role differentiation is guarantee by additional parthood relations
inherited from a possible supertype of the type representing the whole.

An example of the occurrence of HomoFunc is depicted in Fig. 3. The model
fragment is extracted from the PAS 77 ontology [25], a model in the domain of IT
architecture. Notice that the IT Architecture type is defined as being solely composed of
IT Components, which in turn can be sites, platforms, operating systems and data
storage units. In its original form, the model suggests that all architectural parts are equal
w.r.t. the IT Architecture and, hence, that an IT architecture is simply a collection of IT
components. If this is the intended semantics, a more suitable formalization would be to
represent IT Architecture as a collective connected to its parts by a memberOf relation

Is It a Fleet or a Collection of Ships? 37

Table 2. Characterization of the HomoFunc anti-pattern.

38 T.P. Sales and G. Guizzardi

(as described by the first refactoring plan on Table 2). Conversely, if this would not the
intended semantics, the model would be more accurate if the specific parthood relations
between IT Architecture and its different functional components were made explicit
(following a the third refactoring plan proposed in Table 2).

5 Tool Support

The Menthor Editor, formerly known as OntoUML Lightweight Editor (OLED), is an
open-source ontology-driven conceptual modeling environment. A full support for
anti-pattern management has been implemented in this editor. Following the strategy
adopted in [9], these anti-pattern management functionalities include anti-pattern
detection, analysis (via a wizard-based feature) and elimination (using the rectification
plans proposed here). In other words, by employing the explicitly defined MOF
metamodel on which this editor is based, we have: firstly, implemented algorithms to
automatically detect anti-pattern occurrences, accessible through a detection dialog
window (see example in the left part of Fig. 3); in sequence, based on our pre-defined
solutions (rectification plans), we implemented wizards to interact with users to support
anti-pattern analysis (the right part of Fig. 3 depicts a wizard for the HetColl
anti-pattern); finally, we implemented algorithms to automatically rectify the model

Fig. 3. HomoFunc occurrence in a fragment of an IT infrastructure model.

Fig. 4. Tool support for anti-pattern management.

Is It a Fleet or a Collection of Ships? 39

using the input provided during the interaction with this wizard. In the Fig. 4, we have
used these automated functionalities to evaluate the model of Fig. 2.

6 Final Considerations

In this paper, we extended our work on ontological anti-patterns, proposing three new
error-prone structures in combination with pre-defined rectification solutions. In par-
ticular, we focused on anti-patterns related to the modeling of parthood (collectives and
functional complexes) in conceptual modeling. Parthood is of fundamental importance
in conceptual modeling, in general, and in areas such as Enterprise Modeling, Economy
and Finance, Manufacturing, Life Sciences, among others, in particular. For this rea-
son, the identification of these anti-patterns and their associated rectification plans as
well as their automation in a model-based computational tool constitutes important
contributions to the theory and practice of these disciplines.

We emphasize that it is not among our goals in this paper to defend particular
modeling choices for specific concepts such as fleet, IT architecture or Work Group. In
other words, we have no stand here in whether, in general, concepts such as these are
better represented as functional complexes or collectives. The adequacy of a repre-
sentation choice over another (or even both choices used simultaneously, following a
modeling pattern such as the one of Fig. 1) depends exclusively on the rationale of a
particular model and its underlying conceptualization. Nonetheless, the anti-patterns
proposed in this paper are able to identify situations in which modelers recurrently
make mistaken representation choices in that respect, i.e., choosing to use a collection
to represent what is a functional complex in the domain, or vice-versa.

References

1. Guizzardi, G.: Ontological patterns, anti-patterns and pattern languages for next-generation
conceptual modeling. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 13–27. Springer, Cham (2014). doi:10.1007/978-3-319-12206-9_2

2. Verdonck, M., Gailly, F.: Insights on the use and application of ontology and conceptual
modeling languages in ontology-driven conceptual modeling. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 83–
97. Springer, Cham (2016). doi:10.1007/978-3-319-46397-1_7

3. Nardi, J.C., Falbo, R.A., Almeida, J.P.A.: Foundational ontologies for semantic integration
in EAI: a systematic literature. Review. I3E(2013), 238–249 (2014)

4. Guizzardi, G.: Theoretical foundations and engineering tools for building ontologies as
reference conceptual models. Semant. Web J. 1, 3–10 (2010). Editors-in-Chief: Pascal
Hitzler and Krzysztof Janowicz, IOS Press, Amsterdam

5. Koenig, A.: Patterns and antipatterns. J. Object-Oriented Prog. 8(1), 46–48 (1995)
6. Benevides, A.B., et al.: Validating modal aspects of OntoUML conceptual models using

automatically generated visual world structures. J. Univers. Comput. Sci. Special Issue
Evolving Theories Concept. Model. 16, 2904–2933 (2010). Editors: Klaus-Dieter Schewe
and Markus Kirchberg

40 T.P. Sales and G. Guizzardi

http://dx.doi.org/10.1007/978-3-319-12206-9_2
http://dx.doi.org/10.1007/978-3-319-46397-1_7

7. Guizzardi, G.: Ontological Foundations for Structural Conceptual Modeling. Telematics
Institute Fundamental Research Series, Enschede, The Netherlands (2005)

8. Guizzardi, G., et al.: Towards ontological foundation for conceptual modeling: the unified
foundational ontology (UFO) story. Appl. Ontol. 10 (2015). IOS Press

9. Sales, T.P., Guizzardi, G.: Ontological anti-patterns: Empirically uncovered error-prone
structures in ontology-driven conceptual models. DKE 99, 72–104 (2015)

10. Sales, T.P., Guizzardi, G.: Anti-patterns in ontology-driven conceptual modeling: the case of
role modeling in OntoUML. In: Gangemi, A., Hizler, P., Janowicz, K., Krisnadhi, A.,
Presutti, V. (eds.) Ontology Engineering with Ontology Design Patterns: Foundations and
Applications. IOS Press, The Netherlands (2016)

11. Pribbenow, S.: Meronymic Relationships: From Classical Mereology to Complex
Part-Whole Relations, The Semantics of Relationships. Kluwer Academic Publishers,
Dordrecht (2002)

12. Gerstl, P., Pribbenow, S.: Midwinters, end games, and bodyparts: A classification of
part-whole relations. Int. J. Hum.-Comput. Stud. 43, 865–889 (1995)

13. Varzi, A.C.: Parts, wholes, and part-whole relations: the prospects of mereotopology. J. Data
Knowl. Eng. 20, 259–286 (1996)

14. Simons, P.M.: Parts: An Essay in Ontology. Clarendon Press, Oxford (1987)
15. Guizzardi, G.: Ontological foundations for conceptual part-whole relations: the case of

collectives and their parts. In: 23rd International Conference on Advanced Information
System Engineering (CAiSE 2011), London, UK (2011)

16. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual modeling
revisited. In: 21st International Conference on Advanced Information Systems Engineering
(CAISE 2009), Amsterdam, The Netherlands (2009)

17. Guizzardi, G.: On the representation of quantities and their parts in conceptual modeling. In:
Proceedings of FOIS 2010. IOS Press, Toronto (2010)

18. Ravin, Y., Leacock, C.: Polysemy: Theoretical and Computational Approaches, p. 240.
Oxford University Press, USA (2002)

19. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT press, Cambridge
(2012)

20. Calhau, R.F., Falbo, R.A.: A configuration management task ontology for semantic
integration. In: Proceedings of the 27th Symposium on Applied Computing, SAC 2012,
pp. 348–353. ACM, New York (2012)

21. Bastos, C.A.M., et al.: Building up a model for management information and knowledge: the
case-study for a Brazilian regulatory agency. In: International Workshop on Software
Knowledge (SKY) (2011)

22. Nardi, J.C., et al.: Towards a commitment-based reference ontology for services. In:
Proceedings of the 17th International Enterprise Distributed Object Computing Conference
(EDOC 2013), pp. 175–184. IEEE (2013)

23. Ferrandis, A.M.M., et al.: Applying the principles of an ontology-based approach to a
conceptual schema of human genome. In: Proceedings of ER 2013, Hong Kong

24. Costal, D., et al.: Formal semantics and ontological analysis for understanding subsetting,
specialization and redefinition of associations in UML. In: 30th International Conference on
Conceptual Modeling (ER 2011), Brussels, Belgium (2011)

25. e Silva, H.C., Cassia Cordeiro de Castro, R., Gomes, M.J.N., Garcia, A.S.: Well-founded IT
architecture ontology: an approach from a service continuity perspective. In: Benlamri, R.
(ed.) NDT 2012. CCIS, vol. 294, pp. 136–150. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30567-2_12

Is It a Fleet or a Collection of Ships? 41

http://dx.doi.org/10.1007/978-3-642-30567-2_12
http://dx.doi.org/10.1007/978-3-642-30567-2_12

Context-Aware Decision Information Packages:
An Approach to Human-Centric Smart Factories

Eva Hoos1,3(B), Pascal Hirmer2, and Bernhard Mitschang2,3

1 Daimler AG, 71034 Böblingen, Germany
Eva.Hoos@daimler.com

2 Institute of Parallel and Distributed Systems, University of Stuttgart,
70569 Stuttgart, Germany

{Pascal.Hirmer,Bernhard.Mitschang}@ipvs.uni-stuttgart.de
3 Graduate School of Excellence Advanced Manufacturing Engineering,

University of Stuttgart, 70569 Stuttgart, Germany

Abstract. Industry 4.0 enables the integration of new trends, such as
data-intensive cyber physical systems, Internet of Things, or mobile appli-
cations, into production environments. Although it concentrates on highly
data-intensive automated engineering and manufacturing processing, the
human actor is still important for decision making in the product lifecycle
process. To support correct and efficient decision making, human actors
have to be provided with relevant data depending on the current context.
This data needs to be retrieved from distributed sources like bill of mater-
ial systems, product data management and manufacturing execution sys-
tems, holding product model and factory model. In this paper, we address
this issue by introducing the concept of decision information packages,
which enable to compose relevant engineering data for a specific context
from distributed data sources. To determine relevant data, we specify a
context-aware engineering data model and corresponding operators. To
realize our approach, we provide an architecture and a prototypical imple-
mentation based on requirements of a real case scenario.

Keywords: Industry 4.0 · Context-awareness · Data provisioning ·
Smart factory

1 Introduction

Industry 4.0 is a new trend that drives the digitization of production environ-
ments. Especially data-driven cyber physical systems [14] and Internet of Things
[27] enable new approaches such as self-organization of production processes.
However, human interaction and decision making is still mandatory and beneficial
in the smart factory [8,30]. This especially holds in the domain of pre-production
plants that manufacture the first prototypes of a product. Hence, lots of failures
may occur that have to be quickly resolved by human workers. An efficient decision
making process to find appropriate solutions to these failures has to consider dif-
ferent kinds of data. Examples are 3D-geometry data or a bill of material (BOM)
representing the product structure, simulation data, process data, or measure-
ment data of the exact dimensions of the product. These data are distributed onto
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 42–56, 2017.
DOI: 10.1007/978-3-319-66917-5 4

Context-Aware Decision Information Packages 43

heterogeneous IT systems that are not integrated yet [15,23,26]. At the moment,
workers have to manually collect all data relevant for decision making. We call this
set of relevant data decision information packages (DIP). The composition of rele-
vant data is a cumbersome task, since workers are trained to solve domain-specific
problems, and not to find relevant data that requires comprehensive IT skills. To
address this issue, we provide an approach to automatically compose DIPs in a
compact manner in order to relief the decision maker from browsing complex IT
systems and to redirect his focus on domain-specific problem-solving. We aug-
ment and go beyond existing approaches in providing relevant data via context-
aware filtering [2,4,6] and data integration in engineering [15,26] in order to fulfill
domain-specific requirements. Key requirements are generation of DIPs without
comprehensive IT knowledge and integration of context-aware filtering into the
existing engineering IT landscape.This paper is the realization of the vision intro-
duced in [12]. Detailed contributions of the paper are:

(1) Definition of DIP Structure: We performed a case study in the pre-
production plant to identify requirements regarding DIPs. The IT landscape is
composed of heterogeneous IT systems. Each of them represents a specific view
of product data. To combine these views and assign the appropriate data to it,
we design a generic schema for DIPs reflecting the product structure as well. The
focus on the product structure is important so that workers can easily interpret
relevant data. The generic schema serves as basis for the virtual integration
facilitating decision making processes by integrating data from different sources.

(2) Context-Aware Composition of DIPs: Since there is a large amount of
engineering data, it is important for an efficient decision making process that the
amount of data is reduced and only relevant data is composed. Context data can
be used to filter meaningful data. In the pre-production plant, for example, the
context of shop floor workers is dependent on their current task, location and of
the state of the environment, which often can, e.g., be captured by sensors [11].
Hence, context data has to be linked to engineering data to derive meaningful
data for decision making. This should be possible without comprehensive IT
knowledge. To address these issues, we develop a context-aware engineering data
model and operators to process the data. They abstract from technical details
of IT systems and context data, which facilitates the linking by domain experts.

(3) Architectural Realization for the Engineering Domain: The archi-
tecture to automatically compose and acquire DIPs needs to be integrated into
the existing engineering IT landscape which is composed of legacy systems and
dynamically appearing IT systems. Therefore, we define a system architecture
that realizes our approach. The architecture serves as basis for our prototypical
implementation, which is evaluated based on our real-world case scenario.

This paper is structured as follows: Sect. 2 introduces the use case scenario
and defines the structure of DIPs. Section 3 contains the main contribution of our
paper: an approach to compose DIPs. Section 4 introduces a system architecture,
which serves as basis for the evaluation of our approach conducted in Sect. 5.
Finally, Sect. 6 covers related work and Sect. 7 summarizes the paper.

44 E. Hoos et al.

2 Decision Information Packages in Engineering

This section introduces our case study at a German car manufacturer, which
emphasizes the demand and utility of DIPs. Based on this, we derive a generic
schema for DIPs in the engineering domain.

2.1 Case Study: Pre-production Plant

The case study is part of the manufacturing of car prototypes, also known as
pre-production test. During the production in a preproduction plant, the cars
pass several assembly stations of a production line. At each station, a shop
floor worker assembles multiple parts. Since the product and the process are
not as well defined as in series production, plenty of failures may occur. For
example, parts cannot be assembled because the tolerances do not match. In the
following, we describe a case scenario, in which the part “console” does not fit
into the apparatus of the front-end assembly station, that assembles the front
section of the car shell: The worker at the front-end assembly station recognizes
the problem and needs to resolve it. There could be plenty of causes for this
problem. In the following and due to space reason, we only look into three
representative kinds of information to identify an error:

(1) Basic information about the part is required to identify name, version and
material. These are stored in the bill of material (BOM) system, which con-
tains information about all parts necessary to manufacture the product [9].

(2) The visualization of the 3D-Geometry model is necessary to check the cor-
rectness of the part’s geometry. The worker has to access the product data
management system (PDM) to find the appropriate 3D geometry file with
respect to different versions and variants [22].

(3) Measurement reports are necessary to check tolerances. Measurement
reports are stored in a file system in PDF format and contain the exact
dimensions of an assembly.

The corresponding DIP is shown in Fig. 1 and discussed in the next subsection.

. . .

Data from Data Source 1

Data from Data Source 2

Related Engineering Artefacts

Engineering Artifact 1

Engineering Artifact 2

Engineering Artifact 3DIP

BOM
Name: Front End Assembly
Version: 001.02

PDM
P1-CAD-Modell.jt

P2, P5, P6

P1

F1

P3

Fig. 1. left: Generic Schema of the DIP, right: DIP of the Case Study

Context-Aware Decision Information Packages 45

2.2 Decision Information Packages

DIPs provide required information for decision making. They compose data from
multiple, heterogeneous data sources with respect to the context of the problem.
Thereby, different views of the data should be combined. To enhance the compre-
hensibility of the worker, DIPs should reflect the product structure. The product
structure defines the relation between parts. Accordingly, we use engineering
artifacts as structuring elements. Engineering artifacts virtually represent all
parts and components required to build a product, also including manufacturing
parts. They have a unique identifier already used in product model and factory
model. Figure 1 shows an abstract model of a DIP. A DIP encapsulates data of
multiple engineering artifacts. For each engineering artifact, information from
different data sources are composed. The data format of the data sources varies
from relational data and XML data to file-based data. Also, related engineering
artifacts are provided. For example, related engineering artifacts of a part can
be subcomponents or machines at which the part is manufactured.

In the depicted example, on the right of Fig. 1, the DIP contains information
about the engineering artifacts P1, F1 and the P3. These are the unique identi-
fiers. The name of the part P1 and the current version number are acquired from
the BOM. From the PDM system, the file containing the 3D model is included,
called P1-CAD-Modell.jt, which is necessary to visualize the part. P1 is related
to P2, P5, and P6, which are subcomponents.

3 Context-Aware Composition of Decision Information
Packages

This section presents (i) the context-aware engineering data model (CAEM)
to link engineering data and context data, and (ii) context-aware operators to
compose the DIPs based on this model.

3.1 Context-Aware Engineering Data Model

In order to link engineering data and context data in the CAEM, we introduce a
context model which structures the context data and enables to define situations
of users. We use the definition of context models as introduced in [13]. The
context model is based on context entities and context attributes, characterizing
the entities. Furthermore, it contains relations between entities. Figure 2 shows a
simple context model for the engineering domain. This simple model is sufficient
since the focus of the paper is not to provide a comprehensive context model
but rather to link context with engineering data. Context entities are station,
actor, and project. Actor is characterized by its context attributes name, role,
and task. Each new product, e.g., a new car model, is defined as development
project, which is divided into various phases such as pre-production test batches.
The values of the attributes define the state of an entity. Situations derived from
this context model can describe at which station an actors works, and also in

46 E. Hoos et al.

Actor

Name

Role

Task

Station

Project

Name

Name
Works on

Works in

Belongs to

Context
Entity

Context
Attribute

Phase
Legend

Fig. 2. Our context model

Data Source
Engineering

Artifact
Engineering

Link

Data Link

Context ValueContext
Link

Context
Link

Fig. 3. Context-aware engineering model

Fig. 4. Excerpt of a CAEM instance for the use case scenario

what project. An exemplary situation for our case scenario is: (i) the actor has
the role prototype engineer, (ii) the phase is the pre-production test batch 2, and
(iii) the station is the front-end assembly station.

The context-aware engineering data model is shown in Fig. 3. It mod-
els context values, engineering artifacts and data sources as entities as well as
links between these entities. Note that the context value is the value of the
context attribute defined in Fig. 2, such as that “front-end-assembly station” is
the value of the context attribute “station name”. Data sources represent an
abstraction of data sources, in which engineering data are stored, e.g., the bill of
material. Engineering links describe the semantic relation between engineering
artifacts, such as “is part of” or “is manufactured by”. Data links describe in
which data sources information about the engineering artifact is stored. Context
links describe in which context the engineering artifact is relevant. They can be
established between context elements and data sources.

Context-Aware Decision Information Packages 47

Figure 4 shows an excerpt of a CAEM instance according to our use case
scenario. The semantics of the excerpt is as follows: (i) at the station front-
end assembly, the part front-end is manufactured, (ii) the prototype engineer
is interested in information from the data sources: BOM, PDM and reports,
whereas the shop floor worker is only interested in BOM and PDM data. (iii)
The front-end assembly station manufactures the right-hand-drive and the left-
hand drive. (iv) At the pre-production test batch 2 (second test batch) only the
right-hand-drive variants are manufactured.

3.2 Operators for Decision Information Package Composition

The composition of DIPs is supported by four operators which interact with the
CAEM. In order to define operators, we interpret the CAEM as set of items and
define set-operators for it. According to our context-aware engineering model
shown in Fig. 3, we define three sets:

EngineeringArtifacts : EA = {ea1, ea2, ..., ean}
ContextV alues : CV = {cv1, cv2, ..., cvm}

DataSources : DS = {ds1, ds2, ..., dsp}

We model the links of the CAEM as relations between target and source artifacts.

ContextEALinks : CEA ⊆ {(cvi, eaj)|cvi ∈ CV, eaj ∈ EA}
ContextDSLinks : CDS ⊆ {(cvi, dsj)|cvi ∈ CV, dsj ∈ DS}

DataLinks : DL ⊆ {(eai, dsj)|eai ∈ EA ∧ dsj ∈ DS}
EngineeringLinks : EL ⊆ {(eai, eaj)|i �= j ∧ eai, eaj ∈ EA}

We define a particular situation of a user X as SITx = {cvx1, cvx2, ...}.

Engineering Artifact Selection: The operator SelectEA selects all engineering
artifacts which are relevant for the given situation SITx:

SelectEA(SITx) =
⋂

cvxj∈SITx

{eai|(cvxj , eai) ∈ CEA} (1)

Selection of relevant data sources: The operator SelectDS filters the relevant
data sources for a particular situation SITx:

SelectDS(SITx) = {dsi|(cvxj , dsi) ∈ CDS ∧ cvxj ∈ SITx} (2)

Discovery of data sources: The operator DiscoverDS identifies all data sources
which provide information about the relevant engineering artifact ea:

DiscoverDS(ea) = {dsi|(ea, dsi) ∈ DL} (3)

48 E. Hoos et al.

Fig. 5. Construction of a DIP using the operators with respect to the use case scenario

Discovery of related engineering artifacts: The operator DiscoverEA discovers
engineering artifacts that are related to a particular other engineering artifact:

DiscoverEA(eaj) = {eai|(eai, eaj) ∈ EL ∨ (eaj , eai) ∈ EL} (4)

To compose a DIP for a given situation SITx, SelectEA creates the list of
engineering artifacts relevant for the situation. This operator uses an intersection
to be more restrictive and reduces the number of engineering artifacts more
than using union. Afterwards, the data sources are determined using SelectDS
or DiscoverDS. If SelectDS has an empty set as result, which means that no
context value is assigned to a data source, DiscoverDS explore the data sources.
Finally, DiscoverEA finds the related engineering artifacts for each relevant
engineering artifact defined by SelectEA. Figure 5 visualizes a DIP and how to
construct it using the operators. Furthermore, it shows the result for applying
the operators to the context model.

Note that all these operators are set-oriented, because the result of an oper-
ation execution may end in a set of selected or discovered EA and DS. Further-
more, the operators hide from e.g., connectivity, data source types and access
mechanisms to the data sources. Hence, the realization approach of the opera-
tors has to cope with this abstract operator level and provide a transformation
to the underlying IT environment, e.g., to the sources of the systems. All these
issues are covered in the next chapter.

4 Architecture to Provide Decision Information Packages

In order to realize our approach, we introduce the system architecture depicted
in Fig. 6. The architecture enables to integrate the concept into the engineering
environment. The environment is characterized by the users and their applica-
tions and the engineering context, which comprises all data in the engineering
domain such as data stored in IT systems and context data such as sensor
data, machine data, and user data. The architecture consists of three compo-
nents, namely Context-Aware Provisioning, Resource Access Platform and Con-
text Management.

Context-Aware Decision Information Packages 49

Resource
Access
Platform Adapter

Management

Data
Provisioning

Data Source
Adapter

Data Source
Adapter

Data Source
Adapter

Adapter
Repository

Context-Aware
Provisioning

CAEM
Automatic Link Creation Link Management

DIP Composition

Data Service
Catalogue

Context
Management

User and
Application

Engineering
Context

Data Service Data Service Data Service

BOM …PDM

Equipment GPS-Sensor Machine

Fig. 6. System architecture to provision DIPs

Environmental context is gathered by the Context Management, which
processes the low-level engineering context into higher-level context, also known
as situations. For example, it derives given GPS coordinates of a user into the
situation that the user “is in the manufacturing plant”. Note that we do not
focus on the Context Management and assume that there is an appropriate
implementation available such as the ones introduced in [11,29].

4.1 Context-Aware Provisioning

The context-aware provisioning layer consists of a database managing context-
aware engineering data model (CAEM) and of the subcomponents DIP Compo-
sition, Link Management and Automatic Link Creation.

In order to realize the CAEM, we use an entity-relation model to implement
it into a relational database. The link management provides an API to create
and delete links as well as to store the engineering artifacts, context elements,
and data sources in the CAEM. This simplifies the definition of context links
and engineering links for domain experts. The automatic link creation facil-
itates the creation of context links, which is a high effort task when conducted
manually. It enables to create a set-based definition of links, for example, if the
engineering artifacts have common attribute values. Second, it allows to import
relations from other systems. For example, sometimes the information which part
is manufactured, and on which station, is stored in another IT system. Finally, it
is possible to integrate learning mechanisms so that the domain expert gets pro-
posals for context links if relations with similar engineering artifacts exist. The
DIP composition component gathers all the information required to compose
a DIP as shown in Fig. 5. It receives the situation from the context manage-
ment. According to the situation determined by the context values, the DIPs
are constructed using the operators.

50 E. Hoos et al.

4.2 Resource Access Platform

The Resource Access Platform (RAP) serves as single entry point to access data
sources through uniform interfaces. The RAP provisions data sources to the
DIP Composition. The Resource Access Platform consists of two components:
(i) the adapter management component, and (ii) the data provisioning component.

The adapter management component is responsible for binding data
sources to the Resource Access Platform. This component consists of the Data
Source Adapter Repository that stores adapters used for binding, and of a
runtime environment to deploy and execute them. Adapters can be automati-
cally and dynamically deployed using software provisioning technologies such as
TOSCA [19]. To bind data sources, adapters for each data source are extracted
from the Data Source Adapter Repository, are parameterized, and are then auto-
matically deployed. The data provisioning component is accessed by the
DIP Composition and contains the Data Service Catalog that provides meta-
information about all available data sources. Furthermore, it contains Data Ser-
vices that offer access to the actual data. First, the RAP is accessed by the
DIP Composition in order to search for relevant data sources found in the CAEM
in the Data Service Catalog. The RAP then provides references to corresponding
Data Services that encapsulate access to underlying data using proper adapters.

The Resource Access Platform is based on the Resource Management Plat-
form as introduced by Hirmer et al. [10]. We extend this platform to support
specific needs of the engineering domain. By doing so, we support data sources
of the engineering domain, e.g., CAD models, sensor data, or simulation data.
In addition, we automate the lookup in the Data Service Catalog, which is pre-
viously done manually. The interface to applications accessing the RMP (e.g.,
the DIP Composition) remains the same.

5 Evaluation

We evaluate our approach according to the goal of DIPs which is to improve
decision making on the shopfloor. With our approach, we enable to automati-
cally compose and provide DIPs in the engineering domain. To evaluate this, we
created a proof of concept implementation. Furthermore, we aim to reduce the
information according to the context of the users in order to provide compact
DIPs. This is important in order to relief the worker from meaningless informa-
tion. Therefore, we applied our approach on a real data set of the introduced
case scenario and investigate the reduction of information.

5.1 Proof-of-Concept Implementation

We implemented a prototype as proof-of-concept for our approach. The archi-
tecture depicted in Fig. 6 serves as basis for this implementation. As user inter-
face, we implemented a mobile app using HTML5, CSS, and JavaScript and
offers functionality to provide DIPS to the user. The implementation of the

Context-Aware Decision Information Packages 51

context-aware provisioning is as follows: The CAEM itself is implemented
as a relation model used as schema for an SQLite1 database, which can be
accessed through a Java-based interface connecting to the database with the
corresponding SQLite driver. The Java interface is hosted on an Apache Tomcat
application server. For the implementation of the Context Management, we
used the existing tool SitOPT [11,29], which provides an interface to register
on situations that are derived based on context data. As mentioned above, the
Resource Access Platform consists of two components. For the implemen-
tation of the adapter layer, we use MongoDB2 as adapter repository as well
as an Apache Tomcat Java runtime environment for the adapters. Hence, all
adapters are implemented in Java, exclusively. For the deployment of adapters,
we use the TOSCA runtime OpenTOSCA [3]. To implement the data provision-
ing layer, we use Java REST services as well as a Java-based implementation of
the Data Service Catalog, which stores its data into a MySQL database.

5.2 Case-Oriented Evaluation of Information Reduction

In order to evaluate how well context can be used to filter relevant data, we apply
our approach on a real data set and determine the information reduction. The
data set originates from our case study introduced in Sect. 2. We look into data
to assemble the bottom of the car shell. Table 1 shows the number of items in the
CAEM. Engineering artifacts are the parts of the bottom of the car shell. The
context values are belonging to the entities station, actor, and project. The data
sources are BOM, PDM, and measurement reports. Engineering links describe
the part-of relation of the parts. In order to evaluate how well context can be
used to filter data, we investigate the compactness of the DIPs. The compactness
of DIPs is dependent on the number of engineering artifacts and the data size
of the information packages of engineering artifacts. We assume, the smaller the
DIPs are, the more effective the context-aware filtering.

Reduction of Number of Engineering Artifacts. We analyze the reduction
of engineering artifacts per DIPs using different kinds of situations. A situation
consists of values from the names of actors and stations as well as from the phase

Table 1. CAEM data

Data type Number

EngineeringArtifacts 785

ContextAttributes values 88

ContextLinks 5261

EngineeringLinks 964

DataLink 2355

1 https://sqlite.org/.
2 http://mongodb.com/.

https://sqlite.org/
http://mongodb.com/

52 E. Hoos et al.

Table 2. Reduction of engineering artifacts

Station Phase Actor Number of DIPs Average number of EA per DIP

Yes No No 34 3,44

No No Yes 41 9,41

No Yes No 13 366

Yes No Yes 46 2,3

Yes Yes No 383 1,17

No Yes Yes 453 6,5

Yes No Yes 46 2,3

Yes Yes Yes 332 1,17

Fig. 7. Boxplot of DIP size

of projects. We have calculated 1348 DIPs and count the number of engineering
artifacts per DIP. The results are shown in Table 2. The first three columns
indicate which context attributes are used to define a situation. We build every
valid situation according to the context attributes. Column number of DIPs
reflects only DIPs for valid situations. The next column reports the average
number of EAs per DIP. Without our approach, in the worse case a human
worker would have to examine all 785 engineering artifacts. The results show that
with two different kinds of context attributes, we get comparatively small DIPs,
which contain between 1 and 6 engineering artifacts in average. We conclude
that using at least two different kinds of context values reduces the number of
engineering artifacts by a factor of 100.

Reduction of the DIP size. We also investigate the DIP sizes resulting from
the considered situations. Therefore, we calculate the DIP size for each possible
situation based on two or three different kinds of context attributes. In our
case, the critical file size is the one of the geometry model, which is required to

Context-Aware Decision Information Packages 53

visualize the 3D-Model of the car. We neglect data from the BOM since they are
only key-value pairs and the measurement reports, since their size is constant.
Figure 7 shows the results via a box-plot. Despite few huge outliers, such as
a DIP with size of 18.12 GB, over half of the DIPs range between 97 MB and
687 MB as well as the size of DIPs.

The evaluation of the reduction shows that the size of DIPs can be reduced
significantly by filtering it via the context. This enables a more efficient decision
making process because the worker does not have to browse meaningless data.
Station, actor and phase are appropriate types of context, since they reduce the
number of EAs in DIPs drastically and, thus, influence the size of DIPs.

6 Related Work

The DIP approach can be seen as virtual integration. Yet, in contrast to federated
database systems [21] and recent ontology-based integration approaches [18,28],
DIPs do not require a complex mediated schema nor schema matching process,
which is required to integrate domain experts without IT knowledge into the inte-
gration process. With respect to related work, we differentiate four groups accord-
ing to automatic context-aware provisioning of DIPs. The first group reviews
approaches to abstract data sources for automatic data provisioning. The second
group comprises approaches in the engineering domain that acquire engineering
data in the client without filtering relevant data. The third and fourth group focus
on filtering relevant data either on data level or on application level.

A lot of middleware platforms have been developed that abstract from access-
ing data sources [1,7,16], belonging to the first group. However, none of the
existing approaches provide the functionality needed to provision DIPs. First of
all, dynamic environments of the engineering domain need to be handled with
frequently (dis-)appearing data sources. In this paper, we introduce the RAP to
bind these data sources dynamically through adapters that are deployed using
TOSCA. Furthermore, the RAP is generic, i.e., it supports all kinds of sources
assuming that a corresponding adapter exists for them. Consequently, the RAP
fits our approach very well and was integrated instead of other approaches.

Approaches belonging to the second group, provide data acquisition from mul-
tiple engineering IT systems. Katzenbach et al. introduce a common engineering
client, where data are provisioned by an engineering service bus [15]. Similarly, the
authors of [26] suggest a system-level integration using standards and harmonized
human interfaces. However, none of them consider filtering relevant data.

The third group integrates context into data sources. Martinenghi and
Torlone [17] and Roussous et al. [20] extend the relational data model with
context and define an appropriate query language. Stavrakas et al. [24] inte-
grate context into XML by developing a multidimensional semi-structured data
model and a query language to process them [25]. Since all approaches inte-
grate context into an existing data model, there is no generally defined con-
text model involved. Furthermore, the databases have to be adapted to inte-
grate the context in contrast to our approach which integrate context virtu-
ally. The fourth group addresses linking context and data on the application

54 E. Hoos et al.

level. Bobillo et al. [4] develop a model to manage context-relevant knowl-
edge in ontologies. This is based on the domain ontology of the knowledge-
based system and on a context ontology. Barkat et al. [2] define a context
ontology to integrate context into the semantic databases, called OntoDB.
Hence, their approach is restricted to applications using exactly this database.
Bolchini et al. [5] introduce a context ontology based on a self-developed con-
text model to define the portion of the ontology which are relevant. Similar to
this, they provide a method to define context-aware views for relational data-
bases [6]. Hence, many related approaches try to achieve similar goals regarding
context-aware filtering of relevant data using ontology models. In our approach,
we decided to omit the use of ontologies to reduce the complexity. Most advan-
tages of ontologies come with reasoning and linking to other ontologies. For our
approach, a simple meta-model is sufficient.

7 Summary

In this paper, we introduce an approach to compose and provide decision infor-
mation packages (DIPs) to support problem resolving in the smart factory. We
introduce DIPs on the basis of a real use case at a German car manufacturer.
DIPs are constructed using a meta-model and corresponding operators. The
meta-model links engineering data to context data. The operators process this
model to find data relevant for specific situations, e.g., of a shop floor worker
being faced with issues assembling a specific part. To realize this approach and
to integrate it into the engineering domain, we introduce a system architecture.
The approach is evaluated through a prototypical implementation to demon-
strate its feasibility and a case-oriented evaluation using real data to highlight
the compactness of DIPs. Our approach leads to a significant information reduc-
tion.

References

1. Barbosa, A.C.P., Porto, F.A.A., Melo, R.N.: Configurable data integration mid-
dleware system. J. Braz. Comput. Soc. 8, 12–19 (2002)

2. Barkat, O., Bellatreche, L.: Linking context to ontologies. In: 2015 11th Interna-
tional Conference on Semantics, Knowledge and Grids (SKG) (2015)

3. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45005-1 62

4. Bobillo, F., Delgado, M., Gómez-Romero, J.: Representation of context-dependant
knowledge in ontologies: a model and an application. Expert Syst. Appl. 35, 1899–
1908 (2008)

5. Bolchini, C., Curino, C., Schreiber, F.A., Tanca, L.: Context integration for mobile
data tailoring. In: 7th International Conference on Mobile Data Management
(MDM 2006) (2006)

http://dx.doi.org/10.1007/978-3-642-45005-1_62

Context-Aware Decision Information Packages 55

6. Bolchini, C., Quintarelli, E., Schreiber, F.A., Baldassarre, M.T.: Context-aware
knowledge querying in a networked enterprise. In: Anastasi, G., Bellini, E.,
Nitto, E., Ghezzi, C., Tanca, L., Zimeo, E. (eds.) Methodologies and Technologies
for Networked Enterprises. LNCS, vol. 7200, pp. 237–258. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31739-2 12

7. Grant, A., Antonioletti, M., Hume, A.C., et al.: OGSA-DAI: middleware for data
integration: selected applications. In: 2008 IEEE Fourth International Conference
on eScience, eScience 2008 (2008)

8. Gröger, C., Kassner, L., Hoos, E., Königsberger, J., Kiefer, C., Silcher, S.,
Mitschang, B.: The data-driven factory - leveraging big industrial data for agile,
learning and human-centric manufacturing. In: ICEIS 2016 (2016)

9. Hegge, H., Wortmann, J.C.: Generic bill-of-material: a new product model. Int. J.
Prod. Econ. 23, 117–128 (1991)

10. Hirmer, P., Wieland, M., Breitenbücher, U., Mitschang, B.: Automated sensor
registration, binding and sensor data provisioning. In: Proceedings of the CAiSE
2016 Forum (2016)

11. Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Breitenbücher, U., Sáez,
S.G., Leymann, F.: Situation recognition and handling based on executing situation
templates and situation-aware workflows. Computing 99, 163–181 (2016)

12. Hoos, E., Hirmer, P., Mitschang, B.: Improving problem resolving on the shop floor
by context-aware decision information packages. In: Proceedings of the CAiSE 2017
Forum (2017)

13. Hoos, E., Wieland, M., Mitschang, B.: Analysis method for conceptual con-
text modeling applied in production environments. In: Abramowicz, W. (ed.)
BIS 2017. LNBIP, vol. 288, pp. 313–325. Springer, Cham (2017). doi:10.1007/
978-3-319-59336-4 22

14. Jazdi, N.: Cyber physical systems in the context of Industry 4.0. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics (2014)

15. Katzenbach, A.: Automotive. In: Stjepandić, J., Wognum, N., Verhagen W.J.C.
(eds.) Concurrent Engineering in the 21st Century, pp. 607–638. Springer, Cham
(2015). doi:10.1007/978-3-319-13776-6 21

16. Langegger, A., Wöß, W., Blöchl, M.: A semantic web middleware for virtual data
integration on the web. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 493–507. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-68234-9 37

17. Martinenghi, D., Torlone, R.: Querying context-aware databases. In: Andreasen,
T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009.
LNCS (LNAI), vol. 5822, pp. 76–87. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04957-6 7

18. Noy, N.F.: Semantic integration. ACM. SIGMOD Rec. 33, 65–70 (2004)
19. OASIS: Topology and orchestration specification for cloud applications
20. Roussos, Y., Stavrakas, Y., Pavlaki, V.: Towards a context-aware relational model.

In: International Workshop on Context Representation and Reasoning (2005)
21. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Comput. Surv. 22, 183–236
(1990)

22. Stark, J.: Product lifecycle management. In: Product Lifecycle Management (Vol-
ume 2). Decision Engineering, pp. 1–35. Springer, Cham (2015). doi:10.1007/
978-3-319-24436-5 1

23. Stark, R., Hayka, H., Israel, J.H., Kim, M., Müller, P., Völlinger, U.: Virtuelle
Produktentstehung in der Automobilindustrie. Informatik-Spektrum (2011)

http://dx.doi.org/10.1007/978-3-642-31739-2_12
http://dx.doi.org/10.1007/978-3-319-59336-4_22
http://dx.doi.org/10.1007/978-3-319-59336-4_22
http://dx.doi.org/10.1007/978-3-319-13776-6_21
http://dx.doi.org/10.1007/978-3-540-68234-9_37
http://dx.doi.org/10.1007/978-3-642-04957-6_7
http://dx.doi.org/10.1007/978-3-642-04957-6_7
http://dx.doi.org/10.1007/978-3-319-24436-5_1
http://dx.doi.org/10.1007/978-3-319-24436-5_1

56 E. Hoos et al.

24. Stavrakas, Y., Gergatsoulis, M.: Multidimensional semistructured data: represent-
ing context-dependent information on the web. In: Pidduck, A.B., Ozsu, M.T.,
Mylopoulos, J., Woo, C.C. (eds.) CAiSE 2002. LNCS, vol. 2348, pp. 183–199.
Springer, Heidelberg (2002). doi:10.1007/3-540-47961-9 15

25. Stavrakas, Y., Pristouris, K., Efandis, A., Sellis, T.: Implementing a query lan-
guage for context-dependent semistructured data. In: Benczúr, A., Demetrovics, J.,
Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 173–188. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30204-9 12

26. Trippner, D., Rude, S., Schreiber, A.: Challenges to digital product and process
development systems at BMW. In: Stjepandić J., Wognum N., Verhagen W.J.C.
(eds.) Concurrent Engineering in the 21st Century. Springer, Cham, pp. 555–569
(2015). doi:10.1007/978-3-319-13776-6 19

27. Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. River Publishers, Alsbjergvej (2013)

28. Wauer, M., Meinecke, J., Schuster, D., Konzag, A., Aleksy, M., Riedel, T.: Semantic
federation of product information from structured and unstructured sources. In:
Web-Based Multimedia Advancements in Data Communications and Networking
Technologies. IGI Global (2013)

29. Wieland, M., Schwarz, H., Breitenbücher, U., Leymann, F.: Towards Situation-
Aware Adaptive Workflows. In: PerCom (2015)

30. Zuehlke, D.: SmartFactory-towards a factory-of-things. Annu. Rev. Control 34,
129–138 (2010)

http://dx.doi.org/10.1007/3-540-47961-9_15
http://dx.doi.org/10.1007/978-3-540-30204-9_12
http://dx.doi.org/10.1007/978-3-319-13776-6_19

Subsequence Matching
and Streaming Data

Fast Subsequence Matching in Motion
Capture Data

Jan Sedmidubsky1(B), Pavel Zezula1, and Jan Svec2

1 Masaryk University, Brno, Czech Republic
xsedmid@fi.muni.cz

2 University of West Bohemia, Pilsen, Czech Republic

Abstract. Motion capture data digitally represent human movements
by sequences of body configurations in time. Subsequence matching in
such spatio-temporal data is difficult as query-relevant motions can vary
in lengths and occur arbitrarily in a very long motion. To deal with these
problems, we propose a new subsequence matching approach which (1)
partitions both short query and long data motion into fixed-size seg-
ments that overlap only partly, (2) uses an effective similarity measure
to efficiently retrieve data segments that are the most similar to query
segments, and (3) localizes the most query-relevant subsequences within
extended and merged retrieved segments in a four-step postprocessing
phase. The whole retrieval process is effective and fast in comparison
with related work. A real-life 68-minute data motion can be searched in
about 1 s with the average precision of 87.98% for 5-NN queries.

1 Introduction

Motion capturing technologies can accurately record human movements at high
spatial and temporal resolutions. The recorded motion sequence (or simply
motion) is represented as an ordered sequence of poses that describe skele-
ton configurations in corresponding video frames. Note that terms “frame”
and “pose” are sometimes used interchangeably when referring to a given time
moment. Each pose is represented by a set of 3D coordinates determining posi-
tions of captured body joints in space. An example of a single pose with 31 joints
is visualized in Fig. 1a.

Recorded spatio-temporal motions are analyzed in a variety of applications,
e.g., in security to monitor and detect suspicious events from surveillance cam-
eras or in computer animation to search large databases of human motions for
production of realistically looking games or movies. These applications require
efficient subsequence matching: Given a short query motion and a long data
motion, search the data motion and locate its subsequences that are the most
similar to the query motion. For example, find occurrences of acrobatic elements
within a 5-minute dancing performance. Locating such query-relevant subse-
quences constitutes a hard task since their exact lengths and starting/ending
positions are not known in advance. Even when textual annotations are avail-
able, they cannot be employed because the query need not correspond to any
semantic action. To deal with these problems, a general subsequence matching
approach for spatio-temporal motion data is needed.
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 59–72, 2017.
DOI: 10.1007/978-3-319-66917-5 5

60 J. Sedmidubsky et al.

2 Related Work

Subsequence matching methods for motion capture data generally require a (1)
segmentation technique to partition a data motion into meaningfully-long data
segments, (2) similarity measure to compare query and data segments, and (3)
matching algorithm to efficiently localize query-similar subsequences by grouping
the most relevant data segments.

Segmentation. A segmentation technique partitions the data motion into short
segments that are directly comparable with segments of the query motion. The
segmentation can be done by determining non-overlapping segments that corre-
spond to repetitive movements [17] or predefined actions (e.g., walking, kicking
and jumping) [10]. However, these techniques are not suitable for general subse-
quence retrieval because they do not cope well with queries that do not belong
to any predefined action class. Moreover, query-relevant subsequences that occur
on the boundaries of non-overlapping segments are difficult to be identified. To
guarantee findability of any data subsequence, both query and data motions are
partitioned into short segments of a fixed-size. The query can be partitioned into
overlapping segments using the sliding-window principle and the data motion
into disjoint (i.e., non-overlapping) segments to reduce the data replication, or
vice versa [5]. In both cases, query segments need to be matched with data
segments respecting their temporal order.

Similarity Measure. Feature extraction is applied to spatio-temporal motion
data to discover key motion characteristics in a low dimensional feature
space. Features can be either carefully chosen [10] or learned automatically on
the domain of motion data using Neural Networks [3,18] or Support Vector
Machines [6]. Although machine-learning approaches are generally very effective
in classification, they can hardly be employed to calculate similarity in the task
of subsequence matching. There are some exceptions [13,18] that additionally
extract discriminative features for similarity comparison.

A variety of measures exists to determine pair-wise similarity of motion fea-
tures, such as joint-angle rotations [15] or distances between joints [8]. Motion
features are usually compared by temporal alignment techniques, e.g., by the
Dynamic Time Warping and its variants [1,10,12]. Although such techniques
deal well with temporal discrepancies, such as faster and slower movements of
otherwise same actions, they have quadratic time complexity. To decrease com-
plexity, fixed-size features are extracted and efficiently compared, e.g., 4, 096D
motion features by the Euclidean distance [13], 160-bit features by the Hamming
distance [18], and 282D feature vectors by a weighted metric function [4].

Matching Algorithm. Having the data motion partitioned, a retrieval algo-
rithm is used to locate data segments that are similar to query segments. To
speed-up similarity searching within a large amount of data segments, scalable
index structures can be utilized. For example, the iSAX2+ index is employed to
search large collections of time series [2], a trie-based structure is traversed to
identify query-relevant parts in the data motion [7], or the M-Index is used to

Fast Subsequence Matching in Motion Capture Data 61

efficiently search for similar key poses that determine relevant data segments [15].
To decrease search costs, the query motion is not partitioned and directly com-
pared against data segments that are organized in multiple levels [13]. Although
this approach does not require postprocessing of retrieved segments in temporal
order, it restricts the query motion in its size.

Our Contributions. In this paper, we propose a new subsequence matching
approach for searching for subsequences that are similar to an arbitrary query,
i.e., the query need not correspond to any predefined action. Even if the data-
motion segmentation is inspired by traditional techniques [5], it generates much
lower number of segments, compared to [5,13]. Both query and data segments
are efficiently compared on the basis of the Euclidean distance, in contrast to
the expensive Dynamic Time Warping used in [1,10]. We do not additionally
limit the query in its size, in contrast to [13]. The suitability of the proposed
approach is also demonstrated by comparing the results with related work from
both accuracy and performance points of view.

3 Subsequence Matching

We propose a subsequence matching approach that inspects a long data motion
and finds its query-relevant subsequences. In particular, we fix the segment size
and partition the short query motion into a small number of disjoint (consecutive
non-overlapping) segments, while the long data motion into a moderate number
of segments that overlap only partly. Starting positions of adjacent data segments
can differ by a large margin (e.g., about 30–50% with respect to the segment
size) due to the ability of a neural-network similarity measure to effectively
compare shifted motions. This measure uses the Euclidean distance on 4, 096D
feature vectors that are extracted from segments using a deep convolutional
neural network. Since the Euclidean distance can be indexed, query-relevant
data segments are efficiently retrieved. In an advanced postprocessing phase, the
retrieved segments are extended and merged to determine relevant data parts.
Such parts are then inspected by another joint-coordinate similarity measure to
identify starting and ending positions of the most similar candidate motions.

3.1 Problem Definition

Motion sequence (or simply motion) M = (P1, . . . , Pn) is defined as a sequence
of poses Pi (i ∈ [1, n]), where n = |M | equals to the motion length (i.e., the
number of captured poses/frames). Each pose Pi = (C1, . . . , C31) consists of 3D
real-world coordinates Ci ∈ R

3 (i ∈ [1, 31]) that correspond to specific body
joints visualized in Fig. 1a. Subsequence M [is : ie] is again a motion starting
at the is-th frame (inclusive) and ending at the ie-th frame (exclusive) within
motion M , i.e., |M [is : ie]| = ie − is.

The subsequence matching problem is to inspect long data motion D and
find its k ∈ N subsequences D1[is1 : ie1], . . . , Dk[isk : iek] that are the most similar

62 J. Sedmidubsky et al.

Fig. 1. (a) Pose captured at a given frame. (b) A relative shift of 50% of two consecutive
data segments having the fixed size of sl frames.

Table 1. Table of symbols.

Symbol Description

M Motion M = (P1, . . . , Pn) defined as a sequence of poses Pi (i ∈ [1, n])

|M | Motion length corresponding to the number of poses (frames)

M [is, ie] Subsequence of motion M starting at the is-th pose (inclusive) and ending at the

ie-th pose (exclusive), i.e., |M [is : ie]| = ie − is−−→
FM 4, 096-dimensional feature vector that compactly describes short motion M

D Long data motion (e.g., taking several hours)

Q Short query motion (e.g., taking several seconds)

nD/nQ Number of generated data/query segments

sl Segment length in number of poses (user-defined parameter)

ssf Segment shift factor (ssf ∈ (0, 1]) that determines a relative shift between

consecutive data segments (user-defined parameter)

k/k′ Number of the most similar subsequences retrieved for a k-NN query/number of the

most similar data segments retrieved for each query segment

to typically-short query motion Q. Since there can be a number of similar subse-
quences that heavily overlap, only the most similar and non-overlapping ones are
returned as the query result. The notation along with user-defined parameters
is summarized in Table 1.

3.2 Similarity of Motions

We calculate similarity between relatively short motions taking approximately
several seconds, e.g., between query and data segments. Similarity is determined
on the basis of differences between spatio-temporal joint trajectories of com-
pared motions. Inspired by related papers [13,16], we preprocess original 3D
joint coordinates by normalizing the actor’s position, orientation and body size.
In particular, original 3D joint locations are translated to the body coordinate
system with its origin on the “root” joint (red joint in Fig. 1a), followed by a
3D rotation to fix the x-axis parallel to the 3D line from“right hip” to“left hip”.
In the last step of normalization, all the 3D coordinates are scaled so that the
normalized skeleton has the same proportions – sizes of bones – as a standard-
ized (average) actor. Such normalization is supposed to be suitable for searching

Fast Subsequence Matching in Motion Capture Data 63

for general actions (e.g., jumping and walking) which we evaluate in the experi-
ments. We define the two following distance measures to calculate similarity of
normalized motions.

1. Joint-Coordinate Distance Measure simJC. This measure evaluates
differences between normalized positions of corresponding joints in each
pose. The differences are calculated by the Euclidean distance and summed
together to determine similarity of the same-length motions M1 and M2 (i.e.,
|M1| = |M2|) as:

simJC(M1,M2) =
|M1|∑

i=1

31∑

j=1

∥∥∥∥C
P

M1
i

j − C
P

M2
i

j

∥∥∥∥ , (1)

where C
P

M1
i

j /CP
M2
i

j is 3D position of j-th joint in i-th pose of motion M1/M2.
2. Neural-Network Distance Measure simNN. Firstly, normalized motion

M is transformed into a visual image representation [14]. The image has
the size of 31 × |M | pixels, where rows correspond to individual joints while
columns to poses. Color of image pixel [x, y] (x ∈ [1, 31], y ∈ [1, |M |]) approxi-
mates the normalized 3D position of the x-th joint in the y-th frame within a
discrete RGB color space of 2563 bins. The generated image is then processed
by a reference model1 of a deep convolutional neural network to discover
inherent visual patterns in diversely colorful motion images. The output of
the last hidden layer of the network is a 4, 096-dimensional feature vector

−−→
FM

that describes motion M compactly. More details about feature extraction can
be found in [14]. The feature vector has the fixed size even for motions of a

variable length. Feature vectors
−−→
FM1 and

−−→
FM2 extracted for motions M1 and

M2 are compared by the Euclidean distance to determine their similarity as:

simNN(
−−→
FM1 ,

−−→
FM2) =

√√√√
4,096∑

i=1

(−−→
FM1 [i] −

−−→
FM2 [i]

)2

. (2)

Utilization of Distance Measures. Although both distance measures calcu-
late motion similarity based on normalized joint coordinates, the neural-network
measure is more effective due to its ability to learn diverse motion patterns.
Moreover, it is still effective even when a certain amount of noise is added to
compared motions. This property is utilized to significantly decrease the num-
ber of generated data segments by shifting them about a much longer distance
in comparison with 1-frame shift. On the other hand, there is a need to train
a neural-network model based on training motion data and mainly to extract
a feature vector for each motion, which is quite an expensive operation taking
approximately 25 ms using a single GPU card. Although we spend some time
to extract features of all data segments in a preprocessing phase, during query
1 https://github.com/BVLC/caffe/tree/master/models/bvlc reference caffenet.

https://github.com/BVLC/caffe/tree/master/models/bvlc_reference_caffenet

64 J. Sedmidubsky et al.

processing the number of feature extractions is limited only to a small number
of query segments and identified query-relevant motion candidates.

The joint-coordinate measure does not require an expensive feature-
extraction process because it calculates similarity directly on normalized motion
data. Although it is not so effective as the simNN measure, it is sufficient to
be utilized in the postprocessing step where starting/ending positions of query-
relevant candidate motions are needed to be refined in real time. This includes
calculating similarity between a query and motion parts that are not known in
advance.

3.3 Offline Segmentation and Indexing of Data Motion

The neural-network distance measure is proposed to calculate similarity of mean-
ingfully long motions, taking approximately several seconds. Since a searched
data motion can be very long (e.g., taking several hours), it must be partitioned
into short segments that are comparable by this distance measure. In this paper,
we use a fixed length of segments which is quantified by segment length para-
meter sl ∈ N

+. An appropriate setting of this parameter primarily depends on
a target application and future queries.

Inspired by Faloutsos et al. [5], we partition a query motion into disjoint (i.e.,
consecutive non-overlapping) segments, while the data motion into overlapping
segments. Due to the “noise tolerance” property of the neural-network distance
measure, data segments can be shifted by a large margin. We quantify a rel-
ative shift of consecutive data segments by segment shift factor ssf ∈ (0, 1].
The absolute shift (in number of poses) between two consecutive data segments
is calculated with respect to segment length sl as ssf · sl. In the experiments,
we show that relative shifts of 30–50% contribute to high search effectiveness,
while generating orders of magnitude fewer data segments compared to the tra-
ditional 1-pose shift. The smaller number of data segments is generated, the
faster retrieval is achieved. Figure 1b illustrates a shift of 50% (i.e., ssf = 0.5)
which results in involving each data-motion pose within two data segments – it
corresponds only to a twofold data replication.

Based on the absolute shift of sl · ssf poses between consecutive data seg-
ments, data motion D is segmented into the total number of nD segments:

nD =
⌈ |D| − sl

sl · ssf
⌉
. (3)

Individual overlapping data segments D1, . . . , DnD are cut from the data motion,
where the position of j-th segment Dj (j ∈ [1, nD]) is defined as:

Dj

[
ijs : min

{
ijs + sl, |D| + 1

}]
ijs = (j − 1) · sl · ssf + 1. (4)

All the data segments have a fixed length of sl poses. The only exception is the
last segment DnD that can be shortened maximally by ssf · 100% with respect
to the segment length.

Each data segment Dj is then processed by the reference model of the deep
convolutional neural network to extract its 4, 096-dimensional feature vector.

Fast Subsequence Matching in Motion Capture Data 65

Indexing Data Segments. The extracted feature vectors of data segments can
be optionally indexed to speedup the retrieval process. As the feature vectors
are compared by the Euclidean distance, any high-dimensional- or metric-based
index structure can be utilized. We confront the naive sequential scan with the
usage of index structure in the experiments.

3.4 Query Processing

The retrieval process evaluates a k-nearest neighbor (k-NN) query that inspects
long data motion D and localizes its k subsequences that are the most similar
to short query motion Q. In particular, the query motion is partitioned into
disjoint (consecutive non-overlapping) segments which are independently used
to retrieve similar data segments by the effective neural-network distance mea-
sure. The retrieved segments are extended and merged together to determine
potentially relevant parts within the long data motion. Each relevant part is
then explored to localize its best subsequence match, so-called candidate, by the
efficient joint-coordinate distance measure. The localized candidates are finally
ranked by the neural-network distance and the k most relevant ones are returned
as the query result. The whole search process is schematically illustrated in Fig. 2
and described in the following steps in more detail.

Online Query Segmentation. Query Q is partitioned into nQ (nQ = �|Q|/sl�)
disjoint segments Q1, . . . , QnQ , each of them having the length of sl poses. The
exception is the last nQ-th segment that can be shorter – it has |Q|−(nQ−1) ·sl
poses. The position of the j-th segment Qj (j ∈ [1, nQ]) is defined as:

Qj [ijs : min{ijs + sl, |Q| + 1}] ijs = (j − 1) · sl + 1. (5)

All the query segments are then processed by the neural network to extract their
4, 096-dimensional feature vectors

−−→
FQ1 , . . . ,

−−−→
FQ

nQ .

Retrieval. Feature vector
−−→
FQj of each query segment Qj is used as a query

object of k′-NN(
−−→
FQj) sub-query that independently searches by the simNN

measure for the k′ ∈ N most similar data segments among all features−−→
FD1 , . . . ,

−−−→
FDnD . Constant k′ is a user-defined parameter and its appropriate set-

ting is evaluated within the experiments. Similar data segments can be retrieved
efficiently if an index structure on feature vectors of data segments is constructed.

Postprocessing. In total, nQ · k′ data segments are retrieved by all k′-NN
sub-queries. The retrieved segments are postprocessed in the following steps.

(a) Extension of data segments – retrieved data segments are extended to the
same length as the query motion by considering their surrounding poses in

66 J. Sedmidubsky et al.

Fig. 2. Illustration of the retrieval process that inspects a data motion of 20 overlapping
segments to obtain the two most similar subsequences (i.e., two ranked candidates) with
respect to a query consisting of 2 disjoint segments. Although the retrieved candidates
are not perfectly aligned with the actual query-relevant subsequences, they overlap
with them in the majority of frames.

the data motion. The same number of poses surrounding a given query seg-
ment on its left/right side within the query motion is considered to extend
the left/right side of data segments retrieved to that query segment. For-
mally, the data segment which is retrieved as similar to query segment
Qj (j ∈ [1, nQ]), is extended by adding (j − 1) · sl of its preceding poses and
(|Q|−j ·sl) of its succeeding poses, i.e., data segment D[is, ie] is extended to
D[is − (j − 1) · sl, ie + |Q| − j · sl]. Such extensions can better mark relevant
parts within the data motion.

(b) Union of data segments – extended data segments that mutually overlap are
merged together to identify non-overlapping relevant data parts. Two seg-
ments D[is, ie] and D′[i′s, i

′
e] overlap if and only if min{ie, i′e} ≤ max{is, i′s}.

(c) Localization of candidates – each relevant data part is processed to identify
its best subsequence match, so-called candidate, having the same length
while being the most similar with respect to the query motion. Merged data
part D[is, ie] (longer than the query motion) is scanned by a sliding window
of the same length as the query motion to determine the best candidate
match. Specifically, all possible windows D[i′s : i′s + |Q|] (i′s ∈ [is, ie − |Q|])
are compared by the simJC measure against the query motion and the most
similar one is considered as the candidate. Since there can be dozens of

Fast Subsequence Matching in Motion Capture Data 67

windows, we use the fast joint-coordinate distance measure that does not
involve an expensive feature-extraction step.

(d) Ranking of candidates – identified candidates are finally ranked by calculat-
ing the simNN distance between the 4, 096-dimensional feature vector of the
query motion and the feature vectors extracted for these candidates. The k
most ranked candidates are finally returned as the result of k-NN query Q.

Main bottlenecks of query processing are (1) retrieval of the most similar
data segments to query segments and (2) the extraction of feature vectors for
query segments and identified candidates. Since the extraction of 4, 096D features
is expensive, we limit the number of extractions by considering a reasonable
number of candidates – extraction times take several hundreds of milliseconds
on average for each query, as demonstrated in the experiments.

4 Experimental Evaluation

We experimentally evaluate both effectiveness and efficiency of the proposed sub-
sequence matching approach and compare the results against existing solutions.
We also make a study on a large-scale scenario to enable subsequence matching
potentially in an 87-day motion in couple of seconds.

4.1 Dataset

Both effectiveness and efficiency are evaluated on the motion capture dataset
HDM05 [9]. This dataset contains 324 motions performed by 5 different actors
(with sampling frequency of 120 Hz). Similarly as in [10,13,15], we use a sub-
set of 102 motions (68 min in total) for which a ground truth is provided. This
ground truth annotates 1, 464 subsequences within the 102 motions. The anno-
tated subsequences are divided into 15 non-uniformly populated categories that
correspond to exercise actions, such as moving, jumping or punching. The aver-
age action takes 2.36 s (283 frames) while the shortest and longest ones have
0.34 s (41 frames) and 17.2 s (2, 063 frames), respectively. Without loss of gener-
ality, we concatenate the 102 motions into a single 68-minute data motion and
keep a track of motion boundaries in a supplemental data structure.

4.2 Methodology

Based on settings of parameters of segment shift ssf and segment length sl, the
68-minute data motion is preprocessed to determine a particular number of data
segments to be generated. These segments are then processed by the reference
model of neural network (see Sect. 3.2) to extract their 4, 096-dimensional feature
vectors. The network model is trained by fine-tuning the original reference model
with another subset of the HDM05 dataset that classifies 2, 328 short motions
into 122 categories (see [14] for more details).

The proposed approach is analyzed by evaluating k-nearest-neighbor (k-NN)
queries. As the sparsest ground-truth category contains only 6 motion instances,

68 J. Sedmidubsky et al.

k is fixed to 5. A 5-NN query is constructed for each of 1, 464 ground-truth sam-
ples, that are used as query objects. The retrieved subsequences that overlap with
the query-object sample (i.e., exact matches) are excluded. Due to unionizing
data segments within the query postprocessing step, only the non-overlapping
subsequences are returned as the query result.

Search effectiveness is measured for each query by the precision as the frac-
tion of true-positive retrieved subsequences. A subsequence is true positive if it
overlaps with some ground-truth sample that is labeled with the same category
as the query object. The global precision is then averaged over all 1, 464 queries.

4.3 Analysis of Preprocessing Phase

The preprocessing phase primarily involves the extraction of 4, 096D feature
vectors for all data segments. The total number of generated data segments
depends on the setting of parameters of segment length sl and shift factor ssf .
A specific setting is always a trade-off between search performance and accu-
racy. Lower values of ssf constitute higher overlaps between consecutive data
segments, which increases a chance of locating query-relevant data parts but, on
the other hand, increases the amount of data replication. An appropriate set-
ting of both parameters depends on estimated lengths of future queries and the
ability of the simNN distance measure to retrieve relevant data segments whose
content is not properly aligned (i.e., the content is shifted) with respect to the
content of query segments.

As parameters of segment length and shift factor are set, a data motion
is partitioned into nD segments (see Eq. 3). The most expensive operation is
the extraction of feature vectors taking 25 ms on average for a single segment.
However, we can still extract the feature vectors in real time using a single GPU
card even in the worst considered scenario when ssf = 0.1 and sl = 90. With
this setting, the 68-minute data motion is partitioned into about 54 k segments
and it takes approximately 23 min to extract 54 k feature vectors.

Figure 3a demonstrates search accuracies in 60 different combinations of set-
tings of segment length and shift factor (by fixing parameter k′ = 50). In partic-
ular, for each of six different segment lengths ranging from 90 to 240 poses, ten
different settings of segment shift factor (ssf ∈ {0.1, 0.2, . . . , 1.0}) are evaluated.
As expected, the search accuracy generally decreases with an increasing value of
shift factor ssf , i.e., with smaller overlaps between data segments. For the used
dataset of 1, 464 queries that significantly vary in lengths, the segment length
of 150 poses along with the shift factor of 0.3 are the most appropriate setting,
achieving the precision of 87.98%. Note that queries being shorter than a single
segment (i.e., sl poses) are processed in the same way as longer segments because
a 4, 096D feature vector can be principally extracted for any motion size.

4.4 Analysis of Retrieval Effectiveness

We fix the most appropriate setting of segment-length and shift-factor parame-
ters as sl = 150 and ssf = 0.3 and measure how the search precision changes

Fast Subsequence Matching in Motion Capture Data 69

 81
 82
 83
 84
 85
 86
 87
 88
 89

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on
 (

%
)

segment shift factor ssf

(a) Accuracy of different segmentations

90
120

150
180

210
240

 81
 82
 83
 84
 85
 86
 87
 88
 89

 10 20 30 40 50

P
re

ci
si

on
 (

%
)

k’

(b) Accuracy of query-postprocessing steps

All steps
Ext+Union+Rank

Union+CandLoc+Rank
Union+Rank

Fig. 3. (a) Search accuracy of the retrieval algorithm for different segmentation settings
– segment lengths sl ∈ {90, 120, 150, 180, 210, 240} and shift factor ssf ∈ [0.1, 1.0]. (b)
Influence of excluding query-postprocessing steps “Extension of data segments” (Ext)
and “Localization of candidates” (CandLoc) on the precision. Steps “Union of data
segments” (Union) and “Ranking of candidates” (Rank) are included in all variants.

with an increasing number of retrieved data segments, which is quantified by
parameter k′. Since each k′-NN sub-query retrieves exactly k′ segments, the total
number of retrieved data segments for each query equals to k′ ·nQ. At the same
time, we analyze a significance of individual query-postprocessing steps on the
search precision. In Fig. 3b, we can see that the precision generally increases with
an increasing number k′ of retrieved segments. The only exception is the variant
with the excluded candidate-localization step (Ext+Union+Rank). Such variant
unionizes extended data segments into longer and longer parts with increasing k′.
Although these parts contain a query-relevant subsequence, they are too long
to be ranked as globally similar to the query motion. When both “Localiza-
tion of candidates” and “Extension of data segments” steps are excluded from
the query evaluation (Union+Rank), the search precision is quite low – 84.58%
for k′ = 50. It increases to 86.16% when relevant data parts are additionally
inspected to localize best-match candidates (Union+CandLoc+Rank). In addi-
tion, when the best-match candidates are localized within extended (longer)
relevant data parts, the precision achieves up to 87.98% (All steps).

4.5 Analysis of Retrieval Efficiency

Search costs are primarily influenced by (1) evaluating k′-NN sub-queries and
(2) extracting 4, 096D feature vectors for query segments and best-match can-
didates localized within relevant data parts. Using a single CPU thread (i7 960
at 3.2 GHz) and main-memory sequential scan, we are able to evaluate a sin-
gle k′-NN sub-query in 8 ms and 216 ms with respect to the best and worst
scenario with 2 k (sl = 240, ssf = 1.0) and 54 k (sl = 90, ssf = 0.1) data seg-
ments, respectively. The scenario achieving the highest effectiveness (sl = 150,
ssf = 0.3) generates about 11 k data segments that can be searched in 44 ms by
a single sub-query. Although there are nQ independent sub-queries to be eval-
uated (as the number of query segments), they can be processed in parallel to

70 J. Sedmidubsky et al.

decrease the query response time. Specifically, there are 1.6 and 3.6 sub-queries
on average for the shortest and longest segment sizes of 90 and 240 poses. For the
segment size of 150 poses, about 2.4 query segments are generated on average.

The number of feature extractions mainly depends on the number of merged
query-relevant data parts. Considering segment length sl = 150 and shift factor
ssf = 0.3, from 14.3 to 55.9 merged query-relevant data parts are discovered for
k′ ranging from 10 to 50. These merged data parts are inspected to localize best-
match candidates from which feature vectors are extracted within 350–1, 400 ms.
The features are also extracted for the whole query motion and a small number
of query segments, which takes (1 + 2.4) · 25 ms = 85 ms on average.

Without any parallel processing, we need about 1.35 s to search the 68-minute
motion and localize its query-relevant subsequences. In particular, we need (1)
106 ms to retrieve similar data segments with respect to 2.4 query segments on
average using by a simple sequential scan in main memory, (2) 85 ms to extract
feature vectors of the query motion and query segments, and (3) 1, 163 ms to
extract features of 47 localized candidates on average. These times are measured
for the setting achieving the highest effectiveness of 87.98%.

Efficiency Study on a Disk-Oriented Index Structure. Our objective is to
efficiently search very long data motions having lengths in order of days or even
months. As such large motion dataset is not publicly available, we simulate search
efficiency by adopting data from the experimental evaluation presented by Novak
et al. [11]. They introduce a disk-oriented approximate index structure, called
the PPP-Codes, and evaluate it on the same type of features. In particular, they
use the same reference model of neural network to extract 4, 096D feature vectors
for common photographs. Even if the domain of photographs is different from
our motion images, the extracted feature vectors exhibit similar characteristics.

The experiment in [11] indexes 20 million image features that are stored on
an SSD disk. In the retrieval phase, a single 40-NN query is evaluated in 770 ms
on average, while achieving a recall ≥85% (it is the percentage of the same
vectors retrieved by the PPP-Codes with respect to the sequential scan). Such
recall value is reached by accessing only about 10, 000 vectors out of 20 M. The
level of PPP-Codes search approximation can be additionally controlled by a
user to find an appropriate trade-off between search effectiveness and efficiency.
More detailed information about the experiment and the PPP-Codes structure
is available in [11].

We could possibly employ the PPP-Codes to index all data segments and then
retrieve query-similar ones much more efficiently in comparison with the sequen-
tial scan. By considering the most effective setting (i.e., sl = 150, ssf = 0.3,
k′ = 40), 20 M data segments would correspond to about an 87-day motion. The
extraction of 20 M feature vectors would take about 6 days using a single graph-
ics card, while indexing by the PPP-Codes roughly 12 h only. Such very long
motion could be then searched practically in real time (i.e., 1.85 s for retrieving
query-similar segments and 1.25 s for feature extraction, without any parallelism)

Fast Subsequence Matching in Motion Capture Data 71

to obtain the five most similar subsequences with respect to a short query motion
having a length of about 3 s on average.

4.6 Comparison with State-of-the-Art Approaches

There are few approaches that focus on efficient subsequence matching in motion
capture data. Unfortunately, some of them [7,18] do not evaluate a search accu-
racy on any standardized ground truth. We compare the results against the
most recent approach in [13] that beats earlier papers [4,15]. The competitive
approach [13] achieves the precision of 82.98% for 5-NN queries on the same
HDM05 subset of 15 categories. We outperform this result by achieving 87.98%
using the same segment shift (ssf = 0.3). From the efficiency point of view,
query response times are comparable on very long motions. Note that individual
sub-queries can be processed in parallel and the postprocessing phase requires a
constant time, disregarding the data motion length. More importantly, our app-
roach does not limit the size of query and has a much smaller space complexity.
The number of data segments in our approach increases linearly with respect to
an increasing segment shift ssf , which is not true for the competitive approach
in [13] having an exponential increase of data segments. For example, by fixing
ssf = 0.1, our approach generates 32, 842 data segments while the competitive
approach 631, 846 segments for the same 68-minute data motion, which is nearly
20-times more data.

Some other papers do not consider search efficiency, e.g., the approach in [1]
needs about 36 s to search 100 k motion samples. By using a sequential scan
without any index support, we need only 0.4 s to search such dataset.

5 Conclusions

We propose a new subsequence matching approach that employs two distance
measures. Due to the “noise ability” of the neural-network distance measure,
adjacent data segments can be shifted by a large margin (e.g., about 30–50%
w.r.t. the segment size), which results in partitioning a long data motion into
a moderate number of segments. The neural-network measure is also effective
and indexable which enables accurate and fast retrieval of query-similar data seg-
ments. The retrieved segments are then extended and merged into relevant parts
that are inspected on the basis of another joint-coordinate distance measure. This
measure is very fast to localize starting and ending positions of the best-match
candidates within the merged relevant parts. The candidates are finally ranked
by the effective neural-network distance measure. The whole approach achieves
high effectiveness, e.g., reaching 87.98% for 5-NN queries evaluated on the 68-
minute motion. Such precision clearly outperforms those approaches reported
in related work and can even be achieved by searching the motion using the
sequential scan in real time. The disk-based PPP-codes index could additionally
increase the searchable length to 87 days with query response time around 3 s.

Acknowledgements. This research was supported by GBP103/12/G084.

72 J. Sedmidubsky et al.

References

1. Beecks, C., Hassani, M., Obeloer, F., Seidl, T.: Efficient query processing in 3D
motion capture databases via lower bound approximation of the gesture matching
distance. In: ISM 2015, pp. 148–153 (2015)

2. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.: Beyond one
billion time series: indexing and mining very large time series collections with
isax2+. Knowl. Inf. Syst. 39(1), 123–151 (2014)

3. Du, Y., Wang, W., Wang, L.: Hierarchical recurrent neural network for skeleton
based action recognition. CVPR 2015, 1110–1118 (2015)

4. Elias, P., Sedmidubsky, J., Zezula, P.: Motion images: an effective representation
of motion capture data for similarity search. In: Amato, G., Connor, R., Falchi,
F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 250–255. Springer, Cham
(2015). doi:10.1007/978-3-319-25087-8 24

5. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. SIGMOD Rec. 23(2), 419–429 (1994)

6. Kadu, H., Kuo, C.C.: Automatic human mocap data classification. IEEE Trans.
Multimedia 16(8), 2191–2202 (2014)

7. Kapadia, M., Chiang, I.K., Thomas, T., Badler, N.I., Kider Jr., J.T.: Efficient
motion retrieval in large motion databases. In: ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games (I3D 2013), pp. 19–28. ACM (2013)

8. Liu, X., He, G.F., Peng, S.J., Cheung, Y., Tang, Y.Y.: Efficient human motion
retrieval via temporal adjacent bag of words and discriminative neighborhood pre-
serving dictionary learning. IEEE Trans. Hum.-Mach. Syst. PP(99), 1–14 (2017)

9. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Doc-
umentation Mocap Database HDM05. Technical report, CG-2007-2, Universität
Bonn (2007)

10. Müller, M., Baak, A., Seidel, H.P.: Efficient and robust annotation of motion cap-
ture data. In: SCA 2009, p. 10. ACM Press (2009)

11. Novak, D., Cech, J., Zezula, P.: Efficient image search with neural net features.
In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol.
9371, pp. 237–243. Springer, Cham (2015). doi:10.1007/978-3-319-25087-8 22

12. Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D.:
Embedding-based subsequence matching in time-series databases. ACM Trans.
Database Syst. 36(3), 17:1–17:39 (2011)

13. Sedmidubsky, J., Elias, P., Zezula, P.: Similarity searching in long sequences
of motion capture data. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.)
SISAP 2016. LNCS, vol. 9939, pp. 271–285. Springer, Cham (2016). doi:10.1007/
978-3-319-46759-7 21

14. Sedmidubsky, J., Elias, P., Zezula, P.: Effective and efficient similarity searching
in motion capture data. Multimed. Tools Appl. 1–22 (2017)

15. Sedmidubsky, J., Valcik, J., Zezula, P.: A key-pose similarity algorithm for
motion data retrieval. In: Blanc-Talon, J., Kasinski, A., Philips, W., Popescu, D.,
Scheunders, P. (eds.) ACIVS 2013. LNCS, vol. 8192, pp. 669–681. Springer, Cham
(2013). doi:10.1007/978-3-319-02895-8 60

16. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+D: a large scale dataset
for 3D human activity analysis. In: CVPR 2016 (2016)

17. Vögele, A., Krüger, B., Klein, R.: Efficient unsupervised temporal segmentation of
human motion. In: ACM Symposium on Computer Animation (2014)

18. Wang, Y., Neff, M.: Deep signatures for indexing and retrieval in large motion
databases. In: 8th ACM Conference on Motion in Games, pp. 37–45. ACM (2015)

http://dx.doi.org/10.1007/978-3-319-25087-8_24
http://dx.doi.org/10.1007/978-3-319-25087-8_22
http://dx.doi.org/10.1007/978-3-319-46759-7_21
http://dx.doi.org/10.1007/978-3-319-46759-7_21
http://dx.doi.org/10.1007/978-3-319-02895-8_60

Interactive Time Series Subsequence Matching

Danila Piatov, Sven Helmer(B), and Johann Gamper

Free University of Bozen-Bolzano, Bolzano, Italy
{danila.piatov,sven.helmer,johann.gamper}@unibz.it

Abstract. We develop a highly efficient access method, called Delta-
Top-Index, to answer top-k subsequence matching queries over a time
series data set. Compared to a näıve implementation, our index has a
storage cost that is up to two orders of magnitude smaller, while pro-
viding answers within microseconds. We demonstrate the efficiency and
effectiveness of our technique in an experimental evaluation with real-
world data.

1 Introduction

Similarity search in time series plays an important role for monitoring dynamic
environments in areas such as meteorology, road traffic, financial markets, sensor
and computer networks. In line with the growing amount of available data and
the need to put it to use, there has been a lot of work on storing, querying,
and analyzing such data. In the past decade, researchers have investigated novel
methods and techniques for representing, indexing, classifying, clustering, search-
ing, and approximating time series data (see [2,3,5,13] for a non-exhaustive list).

We focus on efficient mechanisms for searching for subsequences or patterns in
time series, doing so in the context of an agricultural setting in South Tyrol. The
South Tyrolean association for consulting fruit and wine growers, “Südtiroler
Beratungsring für Obst- und Weinbau” (SBR), collects weather data from 115
weather stations located in orchards and vineyards throughout the province.
The measurements include quantities such as temperature (at different elevation
levels above ground), wind speed, rainfall, and humidity and they are recorded at
a sampling rate of five minutes.1 SBR uses this data to advise the local growers
on their decisions, in which weather plays a crucial role, as wrong ones may have
a major impact and result in the loss of valuable crops, e.g. caused by severe
hail- or thunderstorms.

A typical query consists of a time series for a given location and time period
in the data set and searches for the most similar periods in the data set. The idea
is to see which decisions were made during similar circumstances and how the
situation unfolded. Figure 1 shows the formulation of an example query using a
prototype of our system by choosing a weather station and a date range. Here
we select a station in Nals on 11 August 2011, which recorded a sharp rise in
temperature during the early morning hours on that day. In the lower half of the
screenshot the ten most similar time series are displayed. Our goal was to build
1 Altogether there are around twenty different parameters.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 73–87, 2017.
DOI: 10.1007/978-3-319-66917-5 6

74 D. Piatov et al.

Fig. 1. Example for a temperature time series

a system that is able to deliver results instantaneously, providing an interactive,
real-time interface. Moving the indicator, which is the vertical blue bar in the
upper half of the figure, will immediately show new results in the lower half. In
summary, we make the following contributions:

– We generalize prefix-sum Euclidean distance matrices by introducing segmen-
tation to speed up the computation of the distances between subsequences of
long time series.

– Taking this further, we develop Top-Index, an access method that can produce
answers to top-k subsequence matching queries ultrafast.

– Our Delta-Top-Index exploits the redundancy found in a Top-Index to store
the same information in a hundredth of the space.

– In an experimental evaluation with real-world data sets we demonstrate that
a Delta-Top-Index can decompress the answer to a query in a matter of
microseconds.

2 Related Work

Early work in the area of time series matching is based on ε-matching, which
means we are looking for time series that have a Euclidean distance smaller
than ε to each other. Agrawal et al. worked on indexing whole sequences via
the Discrete Fourier Transform (DFT) [1]. DFT is applied to each time series,
but only the first few coefficients are taken and indexed using an R*-tree. This
access method acts as a filter, creating a candidate set that may include false
positives, which have to be removed in a second step. Faloutsos et al. extended
this to matching subsequences instead of whole sequences [3]. A sliding window

Interactive Time Series Subsequence Matching 75

of width w is placed at every possible position in the time series and the result-
ing subsequences are indexed similarly to [1]. In order to reduce the number of
data points in the index, a heuristic groups close points into minimum-bounding
rectangles (MBRs) and then indexes the MBRs instead. However, a query time
series longer than w has to be split into disjoint sequences of length w and each
one is used to query the index (with an adjusted value for ε). Moon et al. devel-
oped a variation of this by splitting the time series into disjoint sequences and
the query sequence is scanned via a sliding window [8]. This has the advantage
that it needs to index a much smaller number of points (so MBRs are not needed
anymore), but at the price of a larger number of queries (every sliding window
over the query becomes one index access).

Further improvements were suggested: Kim et al. proposed using a spa-
tial join to search the index for multiple query points simultaneously [6] and
Moon et al. developed a generalized version of [3,8], allowing some trade-offs
between the size of the index and the number of queries. One drawback of all these
approaches is the need to calibrate the parameter w. Lim et al. note that the per-
formance of these approaches deteriorates when the query sequence is much longer
than the window length w and propose building multiple indexes for different val-
ues of w, accelerating queries at the price of a larger storage overhead [7].

In 2000, Yi and Faloutsos [12] proposed the idea of segmented means as a
basis for fast indexing of time series data. A similar idea has been proposed a
short time later by Keogh et al. [5], called piecewise aggregate approximation.
Both approaches segment the data in equal parts along the time dimension and
calculate the average value for each segment, achieving a dimensionality reduc-
tion along the time dimension. Shieh and Keogh then moved on to a symbolic
representation called SAX, which was refined and extended to an indexable
version of SAX, called iSAX [11]. Zoumpatianos et al. [13] present an adap-
tive version of the iSAX index. Ding et al. [2] provide an overview of different
state-of-the-art techniques by conducting a series of experiments for eight dif-
ferent representation methods and nine different similarity measures. There are
also index solutions for other distance measures, such as dynamic time warping
(DTW) [10] and longest common subsequence (LCS) [4].

Closest to us is the work by Mueen et al., who use the same principle as
our basic prefix-sum Euclidean distance matrix to compute so-called shapelets,
but they do not optimize this matrix in any way [9]. As we will see, the non-
optimized version of the matrix is only usable for short time series. With the
help of our optimized matrix, we can handle much larger time series.

3 Problem Formalization

3.1 Basic Terminology

A time series x is a sequence of n measurements in chronological order with a
constant time interval between the measurements:

x := x1,x2, . . . ,xn = {xi : 1 � i � n}, n = |x|.

76 D. Piatov et al.

For instance, the records for the air temperature2 at a specific weather station
wsi taken every five minutes can be represented as a time series:

tempwsi = 15, 15, 14, 13, 13, 12, . . .

There are different ways to measure the similarity or distance between two
time series. The one we use, the Euclidean distance, is one of the most common
ones. The distance between the time series x and y is computed in the following
way:

ED(x,y) :=

√
√
√
√

n∑

i=1

(xi − yi)2, n = |x| = |y|.

We define a subsequence of a time series by the index of its first element s and
its length l (the resulting time series elements are re-indexed starting from 1):

x[s, l] := {xi : s � i < s + l}.

For example, tempwsi [2, 3] is equal to 15, 14, 13.

3.2 Computing Similarities

On account of the needs of SBR, we are interested in three particular ways of
querying the time series data, which we describe below.

All-Pairs Subsequence Matching. The first one, all-pairs subsequence
matching is defined as follows: given two time series x and y, compute the
Euclidean distances between all possible pairs of subsequences of x and y of the
same length (x and y can be the same time series). More formally,

∀ l = 1, . . . ,min{|x|, |y|}, ∀ s1 = 1, . . . , |x| − l + 1, ∀ s2 = 1, . . . , |y| − l + 1
compute ED(x[s1, l],y[s2, l])

Top-k Subsequence Matching. Next, given two time series x and y (not
necessarily distinct) and a query subsequence x[s1, l] of x, we want to find the
top-k subsequences y[s2, l] of y closest to the query subsequence in terms of
Euclidean distance.

Full Top-k Subsequence Matching. Finally, in the full top-k subsequence
matching, given a set of time series x1, . . . , xm and the query 〈t, s1, l〉, defined
by the subsequence xt[s1, l], we want to find the top-k closest subsequences
within all m time series. This includes xt, but excludes the query subsequence
itself.

2 We use integers to simplify the matter, the actual temperatures are represented by
real numbers.

Interactive Time Series Subsequence Matching 77

4 Prefix-Sum Euclidean Distance Matrix

Assuming for a moment that two time series x and y have the same length, the
complexity of computing the distances between all pairs of subsequences of x
and y näıvely is O(n4), which is prohibitively expensive. We now turn towards
computing the Euclidean distances more efficiently.

4.1 Basic Distance Matrix

The Euclidean distance matrix Axy for two time series x and y is defined as:

Axy ∈ R
|x|×|y|, Axy[i, j] := (xi − yj)2.

It allows us to express the Euclidean distance between any pair of subsequences
of x and y of the same length l as:

ED(x[s1, l],y[s2, l]) =

√
√
√
√

l−1∑

k=0

Axy[s1 + k, s2 + k].

We observe that we always compute the sum of matrix elements along its diag-
onals (parallel to the main diagonal). Thus, we can replace the elements of each
diagonal with their prefix sum sequence, obtaining the prefix-sum Euclidean dis-
tance matrix Pxy:

Pxy ∈ R
|x|×|y|, Pxy[i, j] := Axy[i, j] + Pxy[i − 1, j − 1],

where Pxy[i, 0] := 0 and Pxy[0, j] := 0 for any i and j. This gives us

l−1∑

k=0

Axy[s1 + k, s2 + k] := Pxy[s1 + l − 1, s2 + l − 1] − Pxy[s1 − 1, s2 − 1].

Therefore, computing the Euclidean distance between any pair of subsequences
of x and y of the same length l boils down to:

ED(x[s1, l],y[s2, l]) =
√

Pxy[s1 + l − 1, s2 + l − 1] − Pxy[s1 − 1, s2 − 1].

As an example, let us assume that x = 1, 2, 3 and y = 2, 3, 4. Then we have

Axy =

⎛

⎝

1 4 9
0 1 4
1 0 1

⎞

⎠ , Pxy =

⎛

⎝

1 4 9
0 2 8
1 0 3

⎞

⎠ .

and computing ED(x[1, 2],y[2, 2]) is equal to
√

Pxy[2, 3] − Pxy[0, 1] =
√

8.3

In the special case of x = y, we have square matrices with Axx[i, i] = 0,
Pxx[i, i] = 0, Axx[i, j] = Axx[j, i], and Pxx[i, j] = Pxx[j, i]. Consequently, we
only have to compute and store the elements below (or above) the main diagonal
of A or P , saving storage space.
3 Remember that Pxy [i, 0] := 0 and Pxy [0, j] := 0.

78 D. Piatov et al.

4.2 Generalized Prefix-Sum Euclidean Distance Matrix

Building and storing a full matrix is not always an option, as it will contain n2

elements, n being the length of the time series we want to match. For instance, for
our weather station data set, which spans a period of eight years with record-
ings for every five minutes, this would mean that each individual time series
(e.g., temperature readings for weather station wsi) contains ∼840,000 points,
resulting in a matrix with ∼700 billion elements.

However, we do not always need a very fine granularity for the subsequence
offsets and lengths. For several of the queries on the weather station data set we
only need a precision on the level of a day. Typical queries are “what are the
seven days most similar to last week?” or “what are the 30 days most similar to
the month a week ago?”.

We propose the generalized prefix-sum Euclidean distance matrix to get the
size of the matrix down to manageable levels. The idea is to define a segment
size p and allow only subsequences that start and end at segment boundaries.
We call such subsequences segment subsequences:

x[s, l, p] := x[ps − p + 1, pl].

The generalized Euclidean distance matrix Axyp then looks like this:

Axyp ∈ R
�|x|/p�×�|y|/p�, Axyp[i, j] := (ED(x[i, 1, p],y[j, 1, p]))2.

The generalized prefix-sum Euclidean distance matrix Pxyp is defined as before,
by replacing each diagonal of Axyp with its prefix-sum sequence.

Also, the Euclidean distance between segment subsequences can be computed
in exactly the same manner in constant time as before:

ED(x[s1, l, p],y[s2, l, p]) =
√

Pxyp[s1 + l − 1, s2 + l − 1] − Pxyp[s1 − 1, s2 − 1].

5 Speeding up Similarity Computations

The prefix-sum Euclidean distance matrix reduces the complexity of computing
the Euclidean distance from linear to constant, takes O(n2) time to build, and
requires O(n2) space to store, helping us to compute the queries defined in
Sect. 3.2 more efficiently.

5.1 All-Pairs Subsequence Matching

As mentioned above, the complexity of the näıve computation is O(n4). Using
the prefix-sum Euclidean distance matrix we can bring this down to O(n3). This
follows from the fact that we need O(n2) time to build the matrix and O(n3)
time to query it for all possible combinations of parameters: length l, subsequence
offset s1, and subsequence offset s2.

Interactive Time Series Subsequence Matching 79

5.2 Top-k Subsequence Matching

The complexity of a näıve computation of the top-k subsequence matching is
O(n2), as we have to compute the Euclidean distance for every target subse-
quence offset. We can reduce this to O(n) if we use a precomputed matrix that
is stored in an index. Although the size of the matrix is O(n2), we only need to
access a small part of it to compute a top-k subsequence match.

5.3 Full Top-k Subsequence Matching

Building generalized prefix-sum Euclidean distance matrices for all pairs of the
time series and querying them would still not scale for full top-k subsequence
matching. We develop another index structure, called Top-Index, which is based
on the idea of precomputing and storing the answers to all possible queries.
Implementing a Top-Index in a näıve way would still not scale. Nevertheless,
here we explain the basic concepts of the Top-Index without any optimizations
(to illustrate how it works) and then move on to the compressed Delta-Top-Index
in Sect. 6.

Top-Index. Assume we have m time series x1, x2, . . . , xm with (for simplicity
and without loss of generality) the same length of n segments of length p. We
also fix an upper bound for k, meaning that we are able to answer all top-k
queries up to this upper bound.

A query is defined by the triplet 〈t, s, l〉, denoting the segment subsequence
xt[s, l, p]. The query result are the top-k subsequences from all m time series
and n − l + 1 offsets, excluding the query subsequence itself. The basic unit of
the Top-Index is the top list, that represents the result of a single query:

toplistk(t, s, l) := 〈d1, t′1, s′
1〉, 〈d2, t′2, s′

2〉, . . . , 〈dk, t′k, s′
k〉.

Each tuple in the top list denotes the address of a matching subsequence (time
series index t′i, offset s′

i, length l) and the Euclidean distance from the query
subsequence to the matching subsequence (di).

The Top-Index is then defined as the set of top lists for all possible queries:

TopIndexk := {toplistk(t, s, l) : t = 1..m, l = 1..n, s = 1, . . . ,n − l + 1}.

With this Top-Index in place, it becomes very easy to find the top-k subsequences
closest to xt[s, l, p]. We simply retrieve toplistk(t, s, l), which is the complete
solution.

The pseudocode for building a Top-Index is shown in Algorithm 1. The basic
idea is to create an empty index, look up the Euclidean distances between all
possible combinations of subsequences in the precomputed prefix-sum matrix,
and insert them into the index, keeping only the best matches and discarding
the rest. When adding tuple 〈d, t, s〉 to a top list, we first check whether d is
smaller than the biggest d in the list. If not, we discard the tuple. If yes, we
remove the element with the biggest d from the list and insert the new tuple to
the appropriate position (so the list is again ordered by d).

80 D. Piatov et al.

Algorithm 1. Build the Top-Index
input : Segment size p, number of matches k, sequence of m time series

x1, . . . ,xm of length n segments
output : TopIndexk for the input data

1 Allocate TopIndexk, initialize all fields d to +∞
2 foreach t1 = 1 to m do
3 foreach t2 = 1 to t1 do
4 Compute the generalized prefix-sum matrix for xt1 and xt2

5 foreach l = 1 to n do
6 foreach s1 = 1 to n − l + 1 do
7 foreach s2 = 1 to (if t1 = t2 then s1 − 1 else n − l + 1) do
8 d ← ED(xt1 [s1, l, p],xt2 [s2, l, p])

9 Add 〈d, t1, s1〉 to toplistk(t2, s2, l) of the TopIndexk

10 Add 〈d, t2, s2〉 to toplistk(t1, s1, l) of the TopIndexk

11 Discard the prefix-sum matrix

12 return TopIndexk

Updating a Top-Index. Even though a Top-Index is expensive to build,
updating and maintaining it is not very expensive. The reason for this is the
way that time series are updated: we either append new data items to them or
we create completely new time series (which are, in turn, updated by appending
items). Similar to Algorithm 1, we add new top lists for new segment offsets
and lengths. We also need to compute distances of the newly added segments to
other subsequences and insert them into the Top-Index.

Further Notes. Although the Top-Index can be used for any distance mea-
sure, we optimize it for the Euclidean distance using the generalized prefix-sum
Euclidean distance matrices. We do not have to keep all matrices in memory, as
the algorithm builds a matrix for a pair of time series, uses it, and then discards
it before building a new matrix.

Even using generalized prefix-sum Euclidean distance matrices, Algorithm 1
is rather inefficient, as it contains five nested loops. Nevertheless, it is embar-
rassingly parallelizable: in our implementation we can (and actually did) execute
lines 4–11 in parallel.4 Moreover, in the following section we illustrate how to
optimize full top-k subsequence matching further.

6 Delta-Top-Index

The storage overhead of a Top-Index is high, but in turns out that it contains a
lot of redundant data. In the following we illustrate how to build a compressed

4 We avoid race conditions by protecting top list modifications with a critical section.

Interactive Time Series Subsequence Matching 81

version of the Top-Index, called Delta-Top-Index, which achieves a compression
rate of more than 100.

6.1 Basic Idea

First of all, we investigate redundancy in the index by taking every top list

toplistk(t, s, l) := 〈d1, t′1, s′
1〉, 〈d2, t′2, s′

2〉, . . . , 〈dk, t′k, s′
k〉

and stripping out the distance information and element order, treating them as
a set of references to top-k matched subsequences:

strippedtoplistk(t, s, l) := {〈t′1, s′
1〉, 〈t′2, s′

2〉, . . . , 〈t′k, s′
k〉}.

Let us compare an arbitrary strippedtoplistk(t, s, l − 1) to its slightly longer
counterpart strippedtoplistk(t, s, l), and assume for the moment that these two
lists have an overlap (we will show later that this is often the case):

strippedtoplistk(t, s, l − 1) = {u1, . . . ,uk−r, d1, . . . , dr},

strippedtoplistk(t, s, l) = {u1, . . . ,uk−r, i1, . . . , ir}.

Some elements can be found in both sets (unchanged), while the rest will have
been replaced by deleting old elements from the first set and inserting new
elements into the second set. We denote the number of replaced elements by r.

If we look at a whole sequence of stripped top lists, which we call a top list row,

strippedtoplistk(t, s, 1), strippedtoplistk(t, s, 2), . . . ,

strippedtoplistk(t, s,n − s + 1).

we only store a complete list of elements for the first list, strippedtoplistk(t, s, 1),
the other lists can be represented by the deltas to their preceding lists. A sim-
ple way to implement this delta is to store the set of deleted and the set of
inserted elements.5 With this information, given strippedtoplistk(t, s, i), we can
reconstruct strippedtoplistk(t, s, i + 1). Clearly, this only saves storage space if
r < k

2 .
So, an important questions remains: how large is r typically? We have found

that for real-world data sets r tends to be very small when computing the delta
between two stripped top lists. Very often it is zero and it is rarely greater than
one. Figure 2 shows a typical distribution of values for r (for a fixed query time
series index and different offsets s and lengths l). We observe that this is a very
sparse matrix, all the empty cells contain a zero. Secondly, the larger l, the more
empty cells we have. This can be explained by the fact that adding one more
segment to an already long subsequence will not make a large difference in terms
of similarity.

5 We will look at a more sophisticated implementation in the following section.

82 D. Piatov et al.

Subsequence length l, segments

Subsequence offset s, segments

2 3 4 5 10 15 20 25 30 35 40 45

1
2
3
4
5
6
7
8
9

10

6 2 2 2 2 2 1 1 1 1 1 1 1 1
8 5 3 1 1 1 1 1 1 1 1 1
9 7 1 1 1 1 1
5 1 1 1 1 1
4 1 2 1 1 1 1 1 1 1
5 3 1 1 1 1 1 1 1 1 1
6 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
8 1 2 1 1 1 1 1 1 1 1 1 2
3 3 1 1 1 1 1 1 1 2
3 3 3 2 1 1 1 1 1 1 1 2

Fig. 2. Number of changes (r) in stripped top lists when switching from subsequence
length l − 1 to l. Zero values are shown as empty cells.

6.2 Efficient Implementation of Deltas

A straightforward implementation of the delta as described in the previous
section has two major issues, both caused by representing the elements of a
stripped top list as sets. First, we have to include 2r elements in the delta: the
set of deleted elements and the set of newly inserted elements. Computing a set
difference, which we have to do to apply a delta, is also not very efficient. The
options for implementing the set difference range from hash-maps or sort-merge
algorithms all the way to nested loops. As we have to apply multiple consecutive
deltas, one on top of the other, the performance of this step is crucial.

Encoding the Delta. To eliminate the need for the computation of a set
difference and the explicit storage of deleted elements, we impose an order on
the elements found in stripped top lists. Instead of storing the deleted items,
we can then use their index in the previous list. Moreover, since the indices
are integers in the range from 0 to k − 1, we can store them in a bitmask b,
further reducing the storage overhead. For example, encoding the deletion of the
elements at positions 0, 2, and 5 for k = 8 results in 20 + 22 + 25 = 0010 01012
for the bitmask. Consequently, a delta uses the following encoding:

〈b, (i1, i2, . . . , ir)〉,

with b standing for the bitmask of deleted items and ij for an inserted element.

Applying the Delta. Contemporary CPUs have a constant-time instruction
for looking up the index of the least significant bit set in a bitmask, which is also
supported by compilers. We use this instruction to obtain from the bitmask the
index of the first deleted item and replace this element with the first inserted
item i1. We then shift the bitmask, find the index of the second deleted element,
replace it with the second inserted element i2 and so on, until the bitmask is
empty. This procedure is fast, in-place, and does not use additional memory,
therefore all the data is kept and processed in the L1 CPU cache.

Interactive Time Series Subsequence Matching 83

6.3 Handling a Top List Row

Encoding. Given a single top list row, we first write to the output stream all
k elements of the first top list (with l = 1). We then skip to the next top list
with a non-empty delta (r > 0) and write the following to the output stream:
the l of the top list, the bit-mask b of the deleted elements, and the sequence of
the inserted elements i1, . . . , ir. We do not have to write r itself, as it can be
derived from b. We keep skipping to the next list with a non-empty delta and
processing it, until no more top lists are left.

Querying. Given an encoded top list row, we now want to extract the original
top list for query length lq. For that we load the first k elements from the encoded
row stream to an array of k elements. We then sequentially read and apply the
deltas from the stream. We stop when we reach the end of the stream or a length
l greater than our query length lq. The array now contains the information we
are looking for.

6.4 Putting It All Together

A Delta-Top-Index is a disk- or memory-based file with a dictionary and a set
of encoded top list rows. The dictionary maps a query time series index t and
the subsequence offset s to the corresponding top list row.

Processing a query works as follows: we look up the series index t and the
subsequence offset s in the dictionary, getting back a delta-compressed top list
row. We then query this encoded row for the query length lq as described in
Sect. 6.3. Overall one Delta-Top-Index query requires two random lookups and
one sequential scan of an encoded top list row.

7 Experimental Evaluation

7.1 Environment

All algorithms and structures were implemented in-memory in C++ and com-
piled with GCC 4.9.2 using -O3 optimization flag to 64-bit binaries. The exe-
cution was performed on a machine with two Intel Xeon E5-2667 v3 processors
under Linux.

7.2 Test Time Series

Synthetic Time Series. Synthetic time series give us more control over inves-
tigating the impact of time series length on the performance of the algorithms.
We used a random walk time series, where the value of each element is the value
of the previous element (or 0 if it is the first) plus a normally-distributed random
value with a mean of 0 and a variance of 1. If several time series were used in
an experiments, all were generated using a different random generator seed.

84 D. Piatov et al.

Real-World Time Series. For real-world data we took the air temperature
time series of the SBR data (described in Sect. 1). The set consists of 115 time
series, each having ∼840,000 points (five-minute sampling rate for a period of
eight years).

7.3 Experiments and Results

Prefix-Sum Euclidean Distance Matrix Operations. We begin with the
empirical evaluation of the prefix-sum Euclidean distance matrix. For this exper-
iment we used two synthetic time series and varied their length. The query was:
for a given subsequence length l, find a pair of subsequences with the smallest
Euclidean distance between them. The results are shown in Fig. 3. We measured
the time needed to build the matrix, the time needed to answer the query using
a horizontal scan of the matrix, the time needed to answer the query using a
vertical scan of the matrix, and a baseline (answering the query by directly
computing the Euclidean distances).

First of all, we observe that the performance of the näıve approach dete-
riorates very quickly as the query subsequence length grows (note the double-
logarithmic scales). We also observe that the order in which we query the ele-
ments of the Euclidean distance matrix is important—doing so by row is several
times faster than by column, and the difference grows with increasing subse-
quence length l and increasing time series length.

When the query length is roughly comparable to the time series length, there
are fewer offsets to be considered by the query. Thus, for short time series lengths
the algorithms are faster for query length l = 1000 compared to l = 10 in Fig. 3.

Top-Index Creation. In this experiment we investigate the performance of
creating a Top-Index. We use 20 synthetic time series of length n = 1000, and
vary the number of results k, the segment size p, and the thread count. The
results are shown in Fig. 4.

We observe that by increasing the segment size p we can achieve a significant
performance boost (using multiple threads also helps) and that the algorithm

Build the matrix Query matrix by row Query matrix by col The baseline (ED)

103 104 105
10−2

10−1

100

101

102

Time series length, points

O
pe
ra
tio

n
tim

e,
s

subsequence length l = 10

103 104 105

Time series length, points

subsequence length l = 100

103 104 105
10−2

10−1

100

101

102

Time series length, points

subsequence length l = 1000

Fig. 3. Prefix-sum Euclidean distance matrix operation performance

Interactive Time Series Subsequence Matching 85

Top-1 Top-5 Top-10 Top-15

1 4 8 12 16
10−1

100

101

102

103

104

Concurrency, threads

In
de
xi
ng

tim
e,
s

segment size p = 1

1 4 8 12 16

Concurrency, threads

segment size p = 5

1 4 8 12 16
10−1

100

101

102

103

104

Concurrency, threads

segment size p = 10

Fig. 4. Top-Index indexing time for 20 synthetic time series of length 1000

p = 288 p = 576 p = 1152

1 5 10 15
10
50

100

200

300

Number of top matches k

C
om

pr
es
si
on
,t
im

es

time series count n = 115

1 5 10 15

Number of top matches k

time series count n = 58

1 5 10 15
10
50

100

200

300

Number of top matches k

time series count n = 29

Fig. 5. Delta-Top-Index compression rate

scales very well (note the logarithmic y-axis). Finally, we see that the number
of top matches, k, does not have a big impact on the performance.

Delta-Top-Index Compression Rate. The compression rate of the Delta-
Top-Index is the ratio of the size of the Top-Index to the size of the corresponding
Delta-Top-Index. To study it, we used the full set of 115 real-world time series
and 50% and 25% subsets. Again, we varied the segment size p and the number
of top elements k maintained by the index. The results are shown in Fig. 5.

A Delta-Top-Index scales much better with an increasing k and an increasing
precision (i.e., decreasing p) compared to the Euclidean distance matrix and the
Top-Index, starting at a factor of around ten and going beyond 200. Decreasing
p means that a Top-Index has a finer granularity with more redundancy that
can be exploited by the Delta-Top-Index. In absolute numbers, the size of a Top-
Index is 55 GB compared to the 260 MB of the corresponding Delta-Top-Index
for n = 115, p = 288, and k = 15. For n = 115, p = 1152, and k = 1 the numbers
are 234 MB and 38 MB, respectively.

Delta-Top-Index Query Performance. In this experiment we explore the
query latency of the Delta-Top-Index. Again, we use the real-world dataset.

86 D. Piatov et al.

Top-1 Top-5 Top-10 Top-15

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Query subsequence length l

Q
ue
ry

tim
e,
µs

segment size p = 288

100 101 102 103

Query subsequence length l

segment size p = 576

100 101 102
0

0.2

0.4

0.6

0.8

1

Query subsequence length l

segment size p = 1152

Fig. 6. Delta-Top-Index query performance

We explore different Delta-Top-Indexes with different number of matches k. We
then vary the query subsequence length. The results are presented in Fig. 6.

We notice that the Delta-Top-Index is able to decompress and return the
resulting top list within a microsecond even for very long query subsequences,
which is of course more than enough for instantaneous interactive subsequence
matching. If the Delta-Top-Index is handled by a centralized server with multiple
clients, a latency this small allows a throughput of thousands of queries per
second.

8 Conclusions

We developed a prototype for the efficient analysis of time series data, with
the help of which queries can be answered instantaneously, i.e., within a time
frame of microseconds. In order to do so, we generalized a prefix-sum Euclidean
distance matrix, in which a lot of precomputed data we need to answer queries
is stored. We go a step further by proposing an access method, called Top-Index,
with which queries can be answered even more quickly then with the distance
matrix alone. While it is not cheap to build such an index for a high-resolution
segmentation of the data, updating and maintaining the index via append-only
operations is efficient. The creation of the index can also be accelerated by paral-
lelizing the task. Using a clever compression scheme, this index is implemented
in a way that reduces the size of the näıve Top-Index by up to two orders
of magnitude, making it applicable to longer time series as well. In summary,
our Delta-Top-Index is suitable for interactive applications where low-latency
responses have a high priority.

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence data-
bases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993). doi:10.1007/3-540-57301-1 5

http://dx.doi.org/10.1007/3-540-57301-1_5

Interactive Time Series Subsequence Matching 87

2. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1(2), 1542–1552 (2008)

3. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: SIGMOD, pp. 419–429 (1994)

4. Han, T.S., Ko, S.-K., Kang, J.: Efficient subsequence matching using the longest
common subsequence with a dual match index. In: Perner, P. (ed.) MLDM 2007.
LNCS (LNAI), vol. 4571, pp. 585–600. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-73499-4 44

5. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowl. Inf. Syst. 3(3),
263–286 (2001)

6. Kim, S.W., Park, D.H., Lee, H.G.: Efficient processing of subsequence matching
with the Euclidean metric in time-series databases. IPL 90(5), 253–260 (2004)

7. Lim, S.H., Park, H., Kim, S.W.: Using multiple indexes for efficient subsequence
matching in time-series databases. Inf. Sci. 177(24), 5691–5706 (2007)

8. Moon, Y.S., Whang, K.Y., Loh, W.K.: Duality-based subsequence matching in
time-series databases. In: ICDE, pp. 263–272 (2001)

9. Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for
time series classification. In: Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2011, pp. 1154–1162.
ACM (2011)

10. Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D.:
Embedding-based Subsequence matching in Time-series Databases. ACM Trans.
Database Syst. 36(3), 17:1–17:39 (2011)

11. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
SIGKDD, pp. 623–631 (2008)

12. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In:
VLDB, pp. 385–394 (2000)

13. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the adaptive data series index.
VLDB J. 25(6), 843–866 (2016)

http://dx.doi.org/10.1007/978-3-540-73499-4_44
http://dx.doi.org/10.1007/978-3-540-73499-4_44

Generating Fixed-Size Training Sets for Large
and Streaming Datasets

Stefanos Ougiaroglou1,2(B), Georgios Arampatzis1, Dimitris A. Dervos1,
and Georgios Evangelidis2

1 Department of Information Technology, Alexander TEI of Thessaloniki,
57400 Sindos, Greece

stoug@uom.edu.gr, arampatzisgi@gmail.com, dad@it.teithe.gr
2 Department of Applied Informatics, School of Information Sciences,

University of Macedonia, 54636 Thessaloniki, Greece
gevan@uom.gr

Abstract. The k Nearest Neighbor is a popular and versatile classifier
but requires a relatively small training set in order to perform adequately,
a prerequisite not satisfiable with the large volumes of training data that
are nowadays available from streaming environments. Conventional Data
Reduction Techniques that select or generate training prototypes are also
inappropriate in such environments. Dynamic RHC (dRHC) is a proto-
type generation algorithm that can update its condensing set when new
training data arrives. However, after repetitive updates, the size of the
condensing set may become unpredictably large. This paper proposes
dRHC2, a new variation of dRHC, which remedies the aforementioned
drawback. dRHC2 keeps the size of the condensing set in a convenient,
manageable by the classifier, level by ranking the prototypes and remov-
ing the least important ones. dRHC2 is tested on several datasets and
the experimental results reveal that it is more efficient and noise tolerant
than dRHC and is comparable to dRHC in terms of accuracy.

Keywords: k-NN classification · Data reduction · Prototype genera-
tion · Data streams · Clustering

1 Introduction

The problem of handling fast data streams [1] or large datasets that cannot
reside in main memory has attracted the attention of the Data Mining and
Machine Learning research communities. Moreover, researchers focus on how to
run data mining algorithms on devices with limited memory (e.g., sensor devices)
avoiding data transferring costs to powerful processing servers. Classification is
a typical data mining task that has many applications on all aforementioned
environments.

Classification algorithms (or classifiers) try to assign unclassified items to a
set of predefined classes, on the basis of the available training dataset, i.e., a
set of already classified items. Classifiers can be either model-based (eager) or
instance-based (lazy). Both aim at accurate class prediction but they differ on
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 88–102, 2017.
DOI: 10.1007/978-3-319-66917-5 7

Generating Fixed-Size Training Sets 89

how they work. An eager classifier pre-processes the training set and builds a
model that is then used to classify unclassified items. In contrast, lazy classi-
fiers do not build any model. They classify a new item by scanning the whole
training set. The size and the quality of the training set is vital for both types
of classifiers. These factors determine the effectiveness and the efficiency of the
classifier. However, if the size of the training set is very large, the usage of any
classifier is prohibitive due to the high computational cost involved.

k-Nearest Neighbors (k-NN) is a well-known and extensively used lazy clas-
sifier [5]. When an unclassified item arrives, the algorithm scans the available
training data and retrieves the k nearest items or neighbors to it according to a
distance metric (e.g., Euclidean distance). Then, the unclassified item is assigned
to the most common class among the classes of the k nearest neighbors.

The k-NN classifier is an effective classifier especially when it is used on small
training sets. For larger training sets, its performance degrades because all dis-
tances between the new item and the training data items must be computed.
In addition, contrary to the eager classifiers that can discard the training data
after the construction of the classification model, the k-NN classifier has higher
storage requirements since it must have the training set always available. In
addition, k-NN classifier is not noise tolerant. Noise misleads the classifier and
downgrades classification accuracy. The application of a Data Reduction Tech-
nique (DRT) that builds a small representative (condensing) set of the initial
training data as a preprocessing step can deal with these weaknesses.

Since the k-NN classifier does not build any classification model, it can be
easily adapted in streaming environments [1]. However, it can be used only on
a portion of a training stream (e.g., a data window thresholded by the user).
Another approach could be the maintenance of a condensing set built from the
data stream.

Dynamic RHC (dRHC) [12] is a DRT that incrementally builds its condensing
set. A new training data segment can be used to update an existing condensing
set without applying the prototype generation procedure from scratch over the
complete training data (new and old training data). Therefore, dRHC is appro-
priate for dynamic environments where new training data becomes gradually
available and for very large datasets that can not fit in main memory.

The experimental results presented in [12] demonstrate that dRHC is a fast
DRT, achieves high reduction rates and does not degrade the classification accu-
racy achieved by the k-NN classifier on the original training set. However, after
repetitive updates of the condensing set, its size may exceed the size of the avail-
able memory. This observation is behind the motivation of the present work. The
contribution is the development of a new version of dRHC that remedies this
drawback by keeping the size of the condensing set fixed. In particular, the paper
proposes dRHC2 that ranks the prototypes and removes the weakest ones when
the size of the condensing set exceeds a predefined threshold value. The exper-
imental study shows that dRHC2 is faster than dRHC while keeping accuracy
at high levels.

90 S. Ougiaroglou et al.

The rest of this paper is structured as follows: Sect. 2 discusses the back-
ground knowledge on DRTs and their limitations. Section 3 reviews the dRHC
algorithm. Section 4 considers in detail the proposed dRHC2 algorithm. In
Sect. 5, both algorithms are experimentally compared to each other on four-
teen datasets. The experimental results are validated by the Wilcoxon signed
rank test. Section 6 concludes the paper and proposes directions for future work.

2 Background Knowledge

Data Reduction Techniques can be grouped into two main categories: (i) Proto-
type Selection (PS) algorithms that collect representative items (or prototypes)
from the initial training set [8], and (ii) Prototype Generation (PG) algorithms
that generate prototypes by summarizing on similar items [15]. PS algorithms
can be either condensing or editing. The latter aim for improved classification
accuracy by removing noise from the training data and by “cleaning” the decision
boundaries between the discrete classes. On the other hand, PS-condensing and
PG algorithms aim for data condensation, i.e., the construction of a condensing
set of the initial training data.

Most PS-condensing and PG algorithms are based on a simple observation:
the items that do not define the decision boundaries between classes can be
removed without loss of accuracy. Consequently, PS-condensing algorithms try
to collect only the items that are close to the decision boundaries (border items).
On the other hand, PG algorithms generate many prototypes for the close-border
areas and few for the “internal” data areas. It is worth mentioning that most of
the PG and PS-condensing algorithms are sensitive to noise. Hence, for training
sets with noise, an editing algorithm must be applied beforehand.

A great number of DRTs have been proposed in the literature. PS and PG
algorithms are reviewed, categorized and compared to each other in [15] and [8],
respectively. Although there are some exceptions (e.g., IBL algorithms [2,4]),
DRTs are usually memory-based. This implies that the whole training set must
reside in main memory. This property renders DRTs inappropriate for very large
training sets that cannot fit into the device’s memory or for devices with limited
memory (e.g., sensor devices) without transferring data to a server over the
network for processing.

Furthermore, these DRTs cannot consider new training items after the con-
struction of the condensing sets, i.e., they cannot update their condensing set
in a dynamic manner. Suppose that a DRT is applied over a training set
TS and builds a condensing set. Moreover, suppose that new training items
D become available. For the construction of an updated condensing set, the
DRT must run from scratch over the complete training set TS ∪ D. There-
fore, all training items must always be available. Hence, DRTs are inappro-
priate for dynamic/streaming environments where new training items become
gradually available. The Dynamic RHC is a PG algorithm that can be used in
dynamic/streaming environments [12].

Generating Fixed-Size Training Sets 91

3 The dRHC Algorithm

Dynamic RHC (dRHC) is a descendant of the Reduction through Homogeneous
Clusters (RHC) algorithm [11,12]. The latter is based on the concept of cluster
homogeneity. RHC utilizes k-means clustering. Initially, it considers the training
set with D classes as a non-homogeneous cluster C. The algorithm computes a
class-mean for each class in C by averaging on the corresponding items. Then,
k-means clustering is applied on C by using these class-means as initial seeds
and D clusters are formed. Each item in C is assigned to one of the D clusters.
Then, RHC examines the D clusters. If a cluster is homogeneous (i.e., has items
of only one class), its cluster-mean constitutes a prototype and is placed in the
condensing set. If a cluster is non-homogeneous, the aforementioned procedure is
applied recursively on it. RHC terminates when there are no non-homogeneous
clusters left. In other words, each homogeneous cluster contributes a prototype.

RHC builds many prototypes for close-border areas and fewer for the “inter-
nal” areas. By using the class-means as initial seeds for k-means clustering, quick
discovery of large homogeneous clusters is feasible (the larger clusters discovered,
the higher reduction rates achieved). The main disadvantage of RHC is that it
is memory-based. Moreover, it cannot cope with training sets that cannot fit in
memory or streaming data.

The dRHC algorithm retains all the properties of RHC. In addition, it can
also manage large or streaming datasets by considering the available data in the
form of data segments. The application of dRHC involves two phases (see Fig. 1):
(i) initial condensing set construction and (ii) condensing set update. The initial
condensing set construction phase is executed only once, when the first data
segment arrives. The following data segments are processed by the condensing set
update phase. The initial condensing set construction phase is almost identical
to RHC. The only difference is that each prototype of the Condensing Set (CS)
stores a weight attribute that counts how many items are represented by the
specific prototype. The condensing set update phase uses the prototypes of the
current condensing set and the items of a new data segment in order to build a
set of initial clusters and then it proceeds similarly to RHC.

The condensing set update phase can be easily understood by considering
Algorithm 1. The algorithm has two input parameters: an already constructed
(old) condensing set (OCS) and a data segment (Seg) with new training items.
The output is an updated (new) condensing set (NCS). The condensing set
update phase utilizes a queue (Q) data structure to hold the unprocessed clusters
(lines 2–3). Initially, the condensing set update phase initializes as many clusters,
as the number of prototypes in OCS (lines 3–6). Each cluster contains only the
prototype. Then, for each item x in Seg, the algorithm identifies the nearest
prototype and assigns x to the corresponding cluster (lines 7–11). All items
in Seg have weight = 1. Hence, each cluster contains an old prototype with
weight >= 1 and items (from Seg) with weight = 1. The clusters are enqueued
to Q for further processing (lines 12–14).

The condensing set update phase generates the updated condensing set NCS
considering the weight values. For each homogeneous cluster, it computes the

92 S. Ougiaroglou et al.

Fig. 1. Classification using dRHC

weighted mean of the cluster (lines 19–22). For each non-homogeneous cluster
C, a weighted mean is estimated for each class in C (lines 24–29). Like RHC,
dRHC utilizes the weighted class means as initial seeds for k-Means clustering
(line 30). Of course, dRHC uses the version of k-means that computes the cluster
means by considering the corresponding weights. Thus, a vector attribute aj ,
j = 1, 2, . . . , n of a class or cluster mean mC (lines 20, 26) is computed by the
following formula:

mC .aj =

∑
xi∈C xi.aj × xi.weight
∑

xi∈C xi.weight

k-means clustering builds as many clusters as the number of different classes
in C. They are enqueued to Q for further processing. The repeat-until loop
(lines 17,35) ends when all clusters become homogeneous, i.e., when Q is empty.
Note that old prototypes usually have weights greater than one and have higher
influence in the computation of a new weighted class or cluster mean than any
item of a new data segment, whose weight is one.

An example of the execution of the condensing set update phase is depicted in
Fig. 2. More specifically, Fig. 2(a) presents an existing condensing set created by
either the initial CS construction phase or by a previously executed condensing
set update phase. The condensing set has three prototypes with the corresponding
weights. Suppose that a segment with seven new training items is available and is
about to be processed (Fig. 2(b)). Each new item has a weight equal to one. The
first step is the assignment of each new item to the cluster of the nearest prototype
(Fig. 2(c)). The new items assigned to cluster A have the same class as the class
of the prototype in A. Therefore, the prototype “moves” towards the new items
(Fig. 2(d)). This is achieved by computing the weighted mean in A. The latter
constitutes the new prototype and is placed in the condensing set along with its
new weight. On the other hand, there is no item that has been assigned to cluster
B. Hence, the corresponding prototype remains unchanged. Cluster C becomes
non-homogeneous. For each class in C, a weighted class mean is computed,
k-means is executed and two homogeneous clusters are built (see Fig. 2(d,e)).

Generating Fixed-Size Training Sets 93

Algorithm 1. dRHC: condensing set update phase
Input: OCS, Seg
Output: NCS

1: {Queue Initialization}
2: Q ← ∅

3: CLi ← ∅ {empty list of clusters}
4: for each prototype m ∈ OCS do
5: add new cluster C = {m} in CLi
6: end for
7: for each item x ∈ Seg do
8: x.weight = 1
9: find the Cluster Cx ∈ CLi with the nearest to x prototype

10: Cx ← Cx ∪ {x} {The mean of Cx is not recomputed}
11: end for
12: for each cluster C in CLi do
13: Enqueue(Q, C)
14: end for
15: {Construction of NCS}
16: NCS ← ∅

17: repeat
18: C ← Dequeue(Q)
19: if C is homogeneous then
20: m ← weighted mean of C
21: m.weight ←∑xi∈C xi.weight
22: NCS ← NCS ∪ {m}
23: else
24: M ← ∅ {M is the set of weighted class means}
25: for each class L in C do
26: mL ← weighted mean of L
27: mL.weight ←∑xi∈L xi.weight
28: M ← M ∪ {mL}
29: end for
30: NewClusters ← k-means(C, M)
31: for each cluster NC ∈ NewClusters do
32: Enqueue(Q, NC)
33: end for
34: end if
35: until IsEmpty(Q)
36: return NCS

Finally, a weighted cluster mean for each cluster is computed and its weight is
estimated. They constitute new prototypes and they are placed in the condensing
set (Fig. 2(f)).

In the experimental study presented in [12], RHC and dRHC were compared to
each other and against state-of-the-art PS [2,9,10,17] and PG [14] algorithms. It
turns out that dRHC is the fastest algorithm (with the lowest preprocessing cost)
and builds the smallest condensing set without loss of classification accuracy.

94 S. Ougiaroglou et al.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Example of execution of the condensing set update phase of dRHC

4 The Proposed dRHC2 Algorithm

Although dRHC seems to be appropriate for large training datasets or stream-
ing environments, it has a major drawback: after repetitive executions of the
condensing set update phase, the condensing set may become very large. There-
fore, there is a need to keep the size of the condensing set fixed. The dRHC2
algorithm is a new version of dRHC that copes with this drawback.

dRHC2 accepts an input parameter that is the desirable maximum size of
the condensing set. In effect, dRHC2 executes similarly to dRHC, but when
the size of the condensing set exceeds the maximum size (T), the algorithm
removes prototypes to save space. In other words, dRHC maintains the size of
the condensing set equal to T by removing the least important prototypes from
the updated condensing set. Thus, dRHC2 introduces a post-processing step in
the condensing set update phase presented in Sect. 3. T is adjusted by the user
taking into account the trade-off between accuracy and computational cost, the
level of noise in the data and of course the system limitations.

The dRHC2 algorithm includes a mechanism that ranks the prototypes
according to their importance. Next, it retains only the T first prototypes and
removes the rest. An essential role to the determination of the prototypes’ “impor-
tance” plays the concept of prototype weight. One may claim that a prototype
with high weight value is more important than a prototype with lower weight.
This is not absolutely true. If a prototype was generated in a recent condensing
set update phase, it probably has a lower weight value than an older prototype.

Generating Fixed-Size Training Sets 95

Therefore, it is doomed to be discarded. On the other hand, an old prototype that
has survived many executions of the condensing set update phase, probably has a
high weight value. Thus, the latter tends to be favored against the new prototypes
and will survive in the condensing set. Consequently, if dRHC2 ranks the proto-
types according to their weight, it may discard most of the prototypes arriving in
later stages.

In order to more appropriately rank the prototypes, dRHC2 keeps a counter
of the data segments that have arrived and adds an extra attribute to each pro-
totype that denotes the number (r) of the data segment on which the prototype
was generated. After each execution of the condensing set update phase, dRHC2
ranks the prototypes according to a measure called AnA, which stands for Aver-
age number of Arrivals and takes into account the weight and the age of each
prototype. In effect, AnA estimates the prototype weight per data segment. AnA
is computed as follows:

AnA =
w

ds − r + 1
where

– w is the prototype weight that is the number of items summarized together
and represented by the specific prototype

– r is the number of the data segment on which the prototype was generated
– ds is the number of the current data segment

By using AnA, no prototypes are favored in the ranking. The AnA of the
most recent prototypes, i.e., the ones created by the last condensing set update
phase, is equal to their w. On the other hand, the AnA of older prototypes is
practically their w divided by their age.

Algorithm 4 summarizes the post-processing step introduced by dRHC2. This
step is the only difference between dRHC and dRHC2. The algorithm accepts
the set maximum condensing set size T and the condensing set produced by
either the initial condensing set construction phase or a condensing set update
phase (NCS) as input parameters. When |NCS| > T , the algorithm returns a
new condensing set NCS with |NCS| = T .

Algorithm 2. dRHC2: Post-processing step
Input: NCS, T
Output: NCS

1: if |NCS| > T then
2: NCS ← keep the T prototypes with the highest AnA
3: end if
4: return NCS

In case of datawith noise, dRHC inevitably generates prototypes that represent
noisy items. However, these prototypes usually have low weight and AnA values.
If we adopt dRHC2 instead of dRHC, these prototypes are eventually removed.

96 S. Ougiaroglou et al.

Therefore, we expect dRHC2 to handle noisy training data and, in such cases,
achieve higher accuracy than dRHC.

One can claim that dRHC2 maintains a condensing set that adapts according
to the concept drift [16] that may exist in the data stream. This assumption may
not be absolutely correct. The newly generated prototypes or the prototypes that
are updated after a condensing set update are not favored against the older ones.

5 Performance Evaluation

5.1 Experimental Setup

The performance of dRHC2 was tested against dRHC using fourteen datasets
distributed by the KEEL dataset repository1 [3]. Table 1 summarizes on the
datasets used. In the experimental study presented in [12], RHC and dRHC were
evaluated against five state-of-the-art data reduction techniques [2,9,10,14,17]
on the same fourteen datasets. Therefore, we “indirectly” compare dRHC2 to
these techniques. The reader can execute dRHC and dRHC2 over the particular
datasets using WebDR2 [13].

The Euclidean distance was adopted as the distance metric. All algorithms
were implemented in C. Except KDD, all the other datasets were used without
normalization. We randomized the datasets that were distributed sorted on the
class label. For each dataset and algorithm, three average measurements obtained
via five-fold cross-validation were estimated: (i) Accuracy (ACC), (ii) Reduction
Rate (RR), and, (iii) Preprocessing Cost (PC) in terms of distance computations.
To be fair, we should notice that PC measurements do not include the small cost
overhead introduced by the ranking of the prototypes. Accuracy was estimated
by running k-NN classification with k = 1. Note that we did not use special
evaluation methods for data streams (e.g., test-then-train) [7], since the used
datasets do not exhibit concept drift.

For KDD, we removed the three nominal and the two fixed-value attributes
that exist in the dataset. Moreover, KDD contains many duplicates that were
also removed. The attribute ranges of KDD vary extremely. We normalized them
to the [0, 1] range.

The dRHC and dRHC2 algorithms consume data in the form of data seg-
ments. Thus, the training sets of the datasets were split into segments of a specific
size. The data segment that we adopted for each dataset is presented by the last
column in Table 1. The segment size corresponds to either the size of the buffer
that accepts data from a stream or the size of the available memory (scenario of
limited main memory and/or large datasets). The experimental study presented
in [12] shows empirically that the size of the data segment does not affect the
performance of dRHC. Therefore, we did not conduct experiments with differ-
ent segment sizes. The performance measurements were estimated following the
arrival of all the data segments.

1 http://sci2s.ugr.es/keel/datasets.php.
2 https://atropos.uom.gr/webdr.

http://sci2s.ugr.es/keel/datasets.php
https://atropos.uom.gr/webdr

Generating Fixed-Size Training Sets 97

Table 1. Dataset description

Dataset Size Attributes Classes Memory/Buffer size

Letter Image Recognition (LIR) 20,000 16 26 2,000

Magic G. Telescope (MGT) 19,020 10 2 1,902

Pen-Digits (PD) 10,992 16 10 1,000

Landsat Satellite (LS) 6,435 36 6 572

Shuttle (SH) 58,000 9 7 1,856

Texture (TXR) 5,500 40 11 440

Phoneme (PH) 5,404 5 2 500

Balance (BL) 625 4 3 100

Pima (PM) 768 8 2 100

Ecoli (ECL) 336 7 8 200

Yeast (YS) 1,484 8 10 396

Twonorm (TN) 7,400 20 2 592

MONK 2 (MN2) 432 6 2 115

KddCup (KDD) 141,481 36 23 4,000

The dRHC2 algorithm accepts as an input parameter the set maximum con-
densing set size (T). For each dataset, T was adjusted to a certain percentage of
the size of the condensing set generated by dRHC. The T values chosen were the
85%, 70%, 55% and 40% of the size of the condensing sets constructed by dRHC.
In other words, when dRHC builds a condensing set with 1000 prototypes, four
experiments were conducted to evaluate the performance of dRHC2 with the
following T values: T = 850, T = 700, T = 550, T = 400.

5.2 Comparisons

Table 2 presents the performance measurements of dRHC and dRHC2. The best
measurements are highlighted in boldface. The preprocessing cost measurements
are in million distance computations. Although, both dRHC and dRHC2 are
adopted when the conventional k-NN classifier cannot be applied due to its
limitations, for reference, we report the accuracy measurements achieved by
applying k-NN on the original complete training set.

Obviously, the lower the T value used, the higher reduction rates achieved,
the lower preprocessing cost needed and, of course, the faster the classifier is.
Therefore, the results that concern RR and PC measurements are to be expected
since dRHC2 adopts a ceiling value for the maximum size of its condensing set
and maintains it throughout the whole execution. Figure 3 depicts this property
of dRHC2 by presenting diagrams for two indicative datasets. The diagrams
illustrate how the preprocessing cost and the size of the condensing set initially
increases and remains constant when T is reached.

The ACC performance measurements for dRHC2 are most promising (see in
Table 2). In cases of datasets with low level of noise, dRHC2 achieves accuracy

98 S. Ougiaroglou et al.

Table 2. Comparison of dRHC2 and dRHC in terms of Accuracy (ACC(%)), Reduction
Rate (RR(%)) and Preprocessing Cost (PC (millions of distance computations))

Data T % ACC (%) RR (%) PC (M)

1NN dRHC dRHC2 dRHC dRHC2 dRHC dRHC2

LIR 85: 95.83 93.92 93.40 88.18 89.95 19.57 19.18

70: 92.84 91.73 17.72

55: 91.85 93.50 15.36

40: 90.08 95.27 12.29

MGT 85: 78.14 72.97 74.19 74.62 78.42 26.03 25.85

70: 74.64 82.24 24.41

55: 75.11 86.04 21.71

40: 75.97 89.95 17.73

PD 85: 99.35 98.49 98.60 97.23 97.65 1.44 1.41

70: 98.63 98.06 1.32

55: 98.34 98.48 1.16

40: 97.73 98.90 0.93

LS 85: 90.60 88.50 88.61 88.35 90.09 1.53 1.51

70: 88.53 91.84 1.42

55: 88.58 93.59 1.27

40: 87.89 95.34 1.03

SH 85: 99.82 99.70 99.69 99.50 99.58 7.98 7.61

70: 99.61 99.65 6.91

55: 99.56 99.72 5.95

40: 99.37 99.80 4.73

TXR 85: 99.02 97.60 97.38 94.95 95.71 0.68 0.67

70: 97.00 96.46 0.62

55: 96.46 97.23 0.53

40: 95.76 97.98 0.43

PH 85: 90.10 85.38 86.14 82.34 84.99 1.64 1.62

70: 85.62 87.65 1.52

55: 85.21 90.29 1.33

40: 84.88 92.95 1.08

BL 85: 78.40 70.56 71.84 78.12 81.40 0.029 0.029

70: 73.12 84.60 0.027

55: 77.28 88.00 0.025

40: 81.60 91.20 0.021

PM 85: 68.36 63.93 65.23 65.11 70.41 0.064 0.063

70: 67.96 75.61 0.060

55: 68.09 80.81 0.055

40: 68.23 86.02 0.046

(continued)

Generating Fixed-Size Training Sets 99

Table 2. (continued)

Data T % ACC (%) RR (%) PC (M)

1NN dRHC dRHC2 dRHC dRHC2 dRHC dRHC2

ECL 85: 79.78 71.46 74.73 68.92 73.61 0.015 0.015

70: 76.22 78.44 0.015

55: 78.28 82.90 0.014

40: 79.75 87.73 0.013

YS 85: 52.02 48.38 48.31 51.23 58.59 0.306 0.306

70: 48.65 65.91 0.306

55: 48.99 73.23 0.278

40: 52.83 80.47 0.244

TN 85: 94.88 93.08 94.03 95.37 96.06 0.695 0.688

70: 94.54 96.76 0.654

55: 95.45 97.45 0.590

40: 95.93 98.14 0.495

MN2 85: 90.51 97.68 96.28 96.88 97.63 0.0040 0.0039

70: 96.29 97.80 0.0038

55: 94.45 98.27 0.0038

40: 93.52 98.84 0.0040

KDD 85: 99.71 99.42 99.47 99.22 99.34 54.70 53.56

70: 99.51 99.46 49.81

55: 99.50 99.58 43.48

40: 99.48 99.69 34.60

AVG 85: 86.89 84.36 84.84 84.29 86.67 8.19 8.04

70: 85.22 89.01 7.49

55: 85.51 91.36 6.55

40: 85.93 93.73 5.26

comparable to that of dRHC. On the other hand, in cases of datasets with a
high level of noise, dRHC2 achieves higher accuracy than dRHC. This happens
because some less important dRHC prototypes originate from noisy data. These
prototypes probably have low AnA values, they are ranked low, and they get
discarded, eventually. Hence, in cases of datasets with high level of noise, we
observe that dRHC2 with the lowest T value achieves even higher accuracy than
the conventional k-NN classifier.

One final comment concerning the average measurements depicted in the
last row of Table 2: dRHC2 can achieve even better accuracy than dRHC by
avoiding the arbitrary growth in size of the condensing set, and by reducing the
preprocessing cost.

100 S. Ougiaroglou et al.

(a) LIR:Preprocessing cost (b) LIR:Data reduction

(c) KDD:Preprocessing cost (d) KDD:Data reduction

Fig. 3. Processing per data segment

Table 3. Results of Wilcoxon signed rank test

Methods Accuracy

w/l Wilc.

dRHC vs dRHC2 (T = 85%) 5/9 0.158

dRHC vs dRHC2 (T = 70%) 4/10 0.103

dRHC vs dRHC2 (T = 55%) 6/8 0.363

dRHC vs dRHC2 (T = 40%) 7/7 0.397

5.3 Wilcoxon Signed Rank Test

The experimental study is complemented by providing the results of Wilcoxon
signed rank test [6] to statistically validate the ACC measurements presented
in Table 2. The test compares dRHC and dRHC2 in pairs considering the per-
formance on each dataset. All four versions of dRHC2 (with different T values)
were included in the test. Since dRHC2 is the dominant algorithm in terms of
RR and PC, there is no need to include the corresponding measures in the test.

Table 3 presents the results of the Wilcoxon test. Columns labeled with
“w/l” show the number of wins and losses, respectively. The Wilcoxon value

Generating Fixed-Size Training Sets 101

(“Wilc.” column) shows how significant the difference between the algorithms
is. If it is lower than 0.05, one can claim that the difference is statistically signif-
icant. The results of the test reveal that dRHC and dRHC2 do not statistically
differ in terms of accuracy. Thus, dRHC2 can be used instead of dRHC when
there is need for a condensing set with a fixed size.

6 Conclusions and Future Work

The paper reports on dRHC2, a noise-tolerant PG algorithm that maintains a
fixed size condensing set by monitoring a training data stream or by managing
a large dataset which cannot reside in memory. The experimental study yields
promising results. Even when the condensing set generated by dRHC2 is less
than half the size of that generated by dRHC, there is no loss in accuracy and in
many cases the accuracy achieved by dRHC2 is even higher. In addition, because
the size of the condensing set is not arbitrary increased and remains constant,
the preprocessing cost remains low and constant till the end of the execution.

Our plans for future work include the development of variations of dRHC2
that will be able to fully handle data streams with concept drift. This could be
achieved by increasing the importance of newly generated prototypes.

References

1. Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Sys-
tems Series. Springer, Heidelberg (2007)

2. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach.
Learn. 6(1), 37–66 (1991). http://dx.doi.org/10.1023/A:1022689900470

3. Alcalá-Fdez, J., Fernández, A., Luengo, J., Derrac, J., Garćıa, S.: KEEL data-
mining software tool: data set repository, integration of algorithms and experi-
mental analysis framework. Multi. Valued Logic Soft Comput. 17(2–3), 255–287
(2011)

4. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams.
Intell. Data Anal. 11(6), 627–650 (2007). http://dl.acm.org/citation.cfm?id=
1368018.1368022

5. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theor.
13(1), 21–27 (2006). http://dx.doi.org/10.1109/TIT.1967.1053964

6. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006). http://dl.acm.org/citation.cfm?id=1248547.1248548

7. Gama, J.A., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learn-
ing algorithms. In: Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 329–338, KDD 2009. ACM,
New York (2009). http://doi.acm.org/10.1145/1557019.1557060

8. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012). http://dx.doi.org/10.1109/TPAMI.2011.142

9. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3),
515–516 (1968)

http://dx.doi.org/10.1023/A:1022689900470
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dl.acm.org/citation.cfm?id=1368018.1368022
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://doi.acm.org/10.1145/1557019.1557060
http://dx.doi.org/10.1109/TPAMI.2011.142

102 S. Ougiaroglou et al.

10. Olvera-Lopez, J.A., Carrasco-Ochoa, J.A., Trinidad, J.F.M.: A new fast prototype
selection method based on clustering. Pattern Anal. Appl. 13(2), 131–141 (2010)

11. Ougiaroglou, S., Evangelidis, G.: Efficient dataset size reduction by finding homo-
geneous clusters. In: Proceedings of the Fifth Balkan Conference in Informatics, pp.
168–173, BCI 2012. ACM, New York (2012). http://doi.acm.org/10.1145/2371316.
2371349

12. Ougiaroglou, S., Evangelidis, G.: RHC: a non-parametric cluster-based data reduc-
tion for efficient k-NN classification. Pattern Anal. Appl. 19(1), 93–109 (2014).
http://dx.doi.org/10.1007/s10044-014-0393-7

13. Ougiaroglou, S., Evangelidis, G.: WebDR: a web workbench for data reduction.
In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) Machine Learning
and Knowledge Discovery in Databases. LNCS, vol. 8726, pp. 464–467. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-44845-8 36

14. Sánchez, J.S.: High training set size reduction by space partitioning and prototype
abstraction. Pattern Recogn. 37(7), 1561–1564 (2004)

15. Triguero, I., Derrac, J., Garcia, S., Herrera, F.: A taxonomy and experimental study
on prototype generation for nearest neighbor classification. Trans. Sys. Man Cyber
Part C 42(1), 86–100 (2012). http://dx.doi.org/10.1109/TSMCC.2010.2103939

16. Tsymbal, A.: The problem of concept drift: definitions and related work. Technical
report TCD-CS-2004-15, The University of Dublin, Trinity College, Department
of Computer Science, Dublin, Ireland (2004)

17. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learn-
ing algorithms. Mach. Learn. 38(3), 257–286 (2000). http://dx.doi.org/10.1023/
A:1007626913721

http://doi.acm.org/10.1145/2371316.2371349
http://doi.acm.org/10.1145/2371316.2371349
http://dx.doi.org/10.1007/s10044-014-0393-7
http://dx.doi.org/10.1007/978-3-662-44845-8_36
http://dx.doi.org/10.1109/TSMCC.2010.2103939
http://dx.doi.org/10.1023/A:1007626913721
http://dx.doi.org/10.1023/A:1007626913721

OLAP

Detecting User Focus in OLAP Analyses

Mahfoud Djedaini(B), Nicolas Labroche, Patrick Marcel, and Verónika Peralta

University of Tours, Tours, France
{mahfoud.djedaini,nicolas.labroche,patrick.marcel,

veronika.peralta}@univ-tours.fr

Abstract. In this paper, we propose an approach to automatically detect
focused portions of data cube explorations by using different features of
OLAP queries. While such a concept of focused interaction is relevant
to many domains besides OLAP explorations, like web search or interac-
tive database exploration, there is currently no precise formal, commonly
agreed definition. This concept of focus phase is drawn from Exploratory
Search, which is a paradigm that theorized search as a complex interac-
tion between a user and a system. The interaction consists of two different
phases: an exploratory phase where the user is progressively defining her
information need, and a focused phase where she investigates in details
precise facts, and learn from this investigation. Following this model, our
work is, to the best of our knowledge, the first to propose a formal feature-
based description of a focused query in the context of interactive data
exploration. Our experiments show that we manage to identify focused
queries in real navigations, and that our model is sufficiently robust and
general to be applied to different OLAP navigations datasets.

1 Introduction

Interactive Data Exploration (IDE) is the task of efficiently extracting knowledge
from data even if we do not know exactly what we are looking for [4]. Typically,
an exploration includes several queries where the result of each query triggers the
formulation of the next one. OLAP analysis of data cubes is a particular case of
IDE, that takes advantage of simple primitives like drill-down or slice-and-dice
for the navigation. For example, an analyst may explore several attributes and
cross several dimensions, in order to find clues, causes or correlations to explain
unexpected data values, until identifying the most relevant data subsets and
deeply analyzing them. While OLAP has been around for more than 20 years,
little is known about typical navigational behavior.

Exploratory Search, however, is a sub-domain of Information Retrieval that
studies user behaviors during their explorations [11]. The basic model of explo-
ration distinguishes two main phases. In a first phase, called exploratory brows-
ing, users are likely to explore the space, as well as better defining and under-
standing their problem. At this stage, the problem is being limited, labeled,
and a framework for the answer is defined. Over time, the problem becomes
more clearly defined, and the user starts to conduct more targeted searches.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 105–119, 2017.
DOI: 10.1007/978-3-319-66917-5 8

106 M. Djedaini et al.

In this second phase, called focused phase, users (re)formulate query statements,
examine search results, extract and synthesize relevant information.

Detecting focused phases in an exploration can be exploited in a variety of
applications, for instance in the context of user exploration assistants. When
focused, an analyst would expect more precise queries, related to what she is
currently analyzing. On the contrary, when exploring the data, the analyst would
prefer more diverse queries, for a better data space coverage. Focus detection
could also be used in data visualization. In a focus phase, an analyst would prefer
a highly focused interface, presenting to her in details what she is currently
investigating. Oppositely, an analyst who is exploring the data would rather
expect an interface presenting an overview of available data, highlighting the
diversity of available dimensions of analysis.

In this paper, we propose an approach to automatically detect focused phases
in OLAP explorations. While there exists no formal definition or consensual for-
mula to decide whether an OLAP exploration or a query is focused or not, the
concept of focus can be intuitively described by different characteristics that
indicate a focused activity. Our hypothesis is indeed that a definition of focus is
highly dependent of a fine characterization of the queries composing an explo-
ration. For instance, the granularity level or the number of filters of a query,
or the number of OLAP operations that separate two consecutive queries, are
such characteristics. In our proposal, we identify a total of 19 characteristics to
finely describe different aspects of a query, either intrinsically, relatively to its
predecessor or relatively to the whole exploration containing it. We show that
it is possible to define a metric to quantify each of these characteristics. It is
then possible to see the central question of defining a formal model of the focus
based on the characteristics as a classification problem where the descriptive
features are the metrics’ scores and the output variable indicates if a query is
focused or not. By choosing an appropriate classification approach and well spec-
ified metrics, our work demonstrates that it is possible to build an interpretable,
yet efficient, model for the focus that is consistent with expert evaluation on
real OLAP navigations and predefined behavioral patterns on simulated OLAP
navigations that were defined agnostic of any focus definition.

The paper structure is as follows: Sect. 2 showcases an example for motivat-
ing our approach, which is introduced in Sect. 3. Section 4 describes the formal
framework and Sect. 5 details the metrics used to characterize focus. Section 6
highlights experiments and discusses results. Finally, before concluding, Sect. 7
presents related works.

2 Motivating Example

Our example is taken from the Star Schema Benchmark (SSB) specification [8]1.
This benchmark defines a workload consisting of 4 flights of queries.
1 We redirect the reader to the SSB specification for the logical schema and the exact

SQL text of the queries. In our example, we consider the instance is generated with
a scale factor of 1.

Detecting User Focus in OLAP Analyses 107

Table 1. Description of SSB query flight 3. The measure sum(lo revenue) is the same
in all queries.

Query flight 3 Q1 Q2 Q3 Q4

Where Year in [1992,1997],

c region=ASIA,

s region =ASIA

Year in [1992,1997]

c nation = ‘US’,

s nation = ‘US’

Year in [1992,1997]

(c city= ‘UKI1’or

‘UKI5’),

(s city= ‘UKI1’ or

‘UKI5’)

Yearmonth=Dec97,

(c city= ‘UKI1’or

‘UKI5’),

(s city=‘UKI1’ or

‘UKI5’)

Group by c nation, s nation,

year

c city, s city, year c city, s city, year c city, s city, year

Cells 150 596 24 3

Tuples examined 200 k 8 k 329 5

Each flight can be seen as an exploration over a 5 dimensional cube whose
schema corresponds to the relational star schema defined by the benchmark.
We particularly pay attention to flight number 3, that consists of 4 queries Q1,
Q2, Q3 and Q4, analyzing revenue volume (see Table 1). Q1 asks for revenue
generated for region Asia (for both suppliers and customers) between 1992 and
1997, by nations. It examines over 200,000 tuples of the fact table and produces
150 cells of the cube. Q2 asks for revenue in the United States at the city level,
for the same time period. It examines 8000 tuples and produces 596 cells. Q3
remains at the city level but asks for revenue in the United Kingdom, and only
for two cities in the UK, examining 329 tuples and producing 24 cells. These two
cities remain selected in Q4 that drills the time dimension at the month level,
to just one month, examining only 5 tuples and producing 3 cells.

It can be seen that the beginning of the navigation is not focused, while
the second half (Q3 and Q4) start to focus on a particular zone in the cube.
The benchmark specification actually accounts for this, indicating that the last
query was deliberately specified to be a “needle-in-haystack” query. We now
review what differentiates the first half of the navigation, which is exploratory,
from the second, focused, part.

The first two queries are only loosely related to each other. They move by
relatively big jumps in the data space. They are coarse in terms of the filters
and the granularity levels used, which results in big portions of the fact table
being analyzed to produce relatively large answer sets. This may induce high
execution time but surely also high consideration time (time taken by the user
to analyze the answer set).

On the contrary, queries 3 and 4 are separated by one OLAP operation
(specifically, a drill down operation), and the text of query 4 is obtained from that
of query 3 with only a few modifications. The queries become finer, in the sense
that more filters are accumulated on finer granularity levels, targeting a smaller
portion of the fact table. The result sets are also much smaller. Content-wise,
the “needle-in-haystack” effect indicates that this focus is justified by something
surprising in the data.

As we will see in the next sections, our study of real navigation logs col-
lected from users corroborate these intuitive considerations. Specifically, we have

108 M. Djedaini et al.

observed in these logs that longer navigations tend to incorporate quite long
focused sequences, often at the middle or end of the navigation, corresponding
to short jumps in the data space. In these focused sequences, queries are close to
each other in terms of OLAP operations and text, and their answer sets often share
cube cells. Being able to automatically detect such focus zones in navigations has
many advantages, for example in experience sharing among users (the needle in
the haystack, discovered in a former navigation, may be useful to other analysts)
or suggesting recommendations in line with the user’s immediate interests, and
more generally to make user experience with big datasets less disorienting.

These observations led us to define 3 categories of features to characterize
focused zones in navigations. The first category corresponds to intrinsic proper-
ties of the query taken independently of the other queries, like the filters, the
answer set, etc. The second category positions a query respectively to its imme-
diate predecessor in the navigation, for instance to detect OLAP operations.
Finally, the last category positions the query relatively to the navigation itself,
for instance to check if the query appears in a long chain of similar queries.

3 Characterizing and Detecting Focus Phases

Our approach aims at automatically detecting focus phases in user explorations.
As mentioned above, there is yet no formula for deciding whether a query is
focused or not. However, as illustrated by the previous motivation example, an
expert is able to recognize a focus activity by looking at various characteristics
of the queries and the exploration.

In order to quantify these intuitive characteristics, we define a set of metrics.
As such, these metrics characterize different aspects of a query: the user intention
(e.g., the desired granularity expressed through the aggregation level), the results
(e.g., the number of cube cells retrieved), as well as its relationship to other
queries (e.g., the differences between a query and its predecessor).

Then, the question of formally characterizing a focused query can be
expressed as a classification problem in which all queries can be represented
by scores issued from the metrics and the class output variables is binary, either
“focused” or “not focused”. These are the only two classes we are able to define
regarding the fuzzy notion of focus. The main difficulty in this case relates to
the building of a proper corpus of annotated queries by experts, to learn the
model from it. Not all the classifiers meet this requirement. Indeed, as the abil-
ity to interpret what makes a query focused is a major objective in our work, we
limit ourselves to linear models that learn a weight for each metric’s score and
then output a focus score that is computed as weighted sum over the metrics
values for each query. In this context, we use an off-the-shelve SVM classifier
whose separative hyperplane equation provides the expected relation to qualify
the focus of a query based on our metrics scores and their associated weights.
Moreover, this formalization allows to understand in a very intuitive way how
each metric contributes to the detection of focus.

As detailed in Sect. 6, we used a set of real explorations over a real data cube
to train and test the classifier. All the queries of all the explorations were labeled

Detecting User Focus in OLAP Analyses 109

by a human expert, familiar with both the cube explored and the front end tool
used for the explorations. Each query is then labeled either as focused or as
exploratory. The labels we obtain are used as a ground truth for our classifier.

4 Formal Framework

This section introduces the formal framework underlying our approach, in which
explorations are treated as first class citizens.

Exploration. An exploration is a triple 〈e, lts, ets〉, where e = 〈q1, . . . , qp〉 is a
sequence of p OLAP queries, lts is a function that gives for a query its launch
time-stamp, and ets is a function that gives for a query its evaluation time-
stamp. With a slight abuse of notation, we note q ∈ e if a query q appears in
the exploration e.

During their explorations, users inspect the elements of a cube instance (or
simply, cube) retrieved by a query.

Cube model. Without loss of generality, the OLAP queries we consider are dimen-
sional aggregate queries over a data cube [2]. We consider cubes under a ROLAP
perspective, where dimensions consist of one or more hierarchies, each hierarchy
consisting of one or more levels. Formally, a cube schema consists of: (i) n hier-
archies, each hierarchy hi being a set Lev(hi) = {L0

i , . . . , L
d
i } of levels together

with a roll-up total order �hi
of Lev(hi), (ii) a set of measure attributes M , each

defined on a numerical domain. For a n-dimensional cube, a group-by set is an
element of Lev(h1) × . . . × Lev(hn).

The elements of a cube are called cells.

Cells. Cells are tuples 〈m1, . . . ,mn,meas〉 where the mi are taken in Dom(Lji
i),

Lji
i ∈ Lev(hi), for all i, and meas is a measure value.

Query model. A query 〈G,P,M〉 is defined by a group by set G (identifying the
query granularity), a set of boolean predicates P , and a set of measures M . The
answer to a query q, denoted answer(q), is the set of non empty cells whose
coordinates are defined by the query group by set and selection predicates.

Among the set of cells in an answer, we distinguish between base cells and
aggregated cells. In base cells, mi are taken in Dom(L0

i). In aggregate cells,
there exists one mi not in Dom(L0

i). An aggregate cell 〈m1, . . . ,mn,meas〉 can
be defined as the result of a query 〈{L1, . . . , Ln}, {L1 = m1, . . . , Ln = mn}, {m}〉
for some measure m.

5 Metrics

This section details the metrics we identified to describe quantitatively the dif-
ferent aspects of focus for a query. We organize these metrics in three categories:
(i) intrinsic to the query, i.e., only related to the query itself, (ii) delta metrics,

110 M. Djedaini et al.

i.e., dependent on the query’s predecessor in the exploration, and (iii) contex-
tual, i.e., dependent on the complete exploration, to provide more context to the
metric. Each of these 3 categories can be then refined into 3 subcategories. Some
of them relate to (T) the text of the query and cube schema, (R) the result of the
query and (C) the chronology of the session, be it the time, or the sequentiality.
Formal definitions are only given for non trivial metrics. In metric definitions,
let qk be a query in an exploration e = 〈q1, . . . , qp〉.

Table 2. Overview of the considered metrics. For convenience, we also put in this table
coefficients (Coef) of the features, that relate to the experiments (see Sect. 6).

Cat Metric name Description Coef

Intrinsic metrics

T Number of measures (NoM) Number of measures used in qk 0,246

T Number of filters (NoF) Number of filters (or selections) used in qk 0,553

T Number of aggregations (NoA) Number of aggregations (or projections)
used in qk

0,192

T Aggregation Depth (ADepth) Level of aggregation w.r.t. available cube
levels

0,217

T Filter Depth (FDepth) Ratio of filtered data w.r.t. available cube
data

0,147

R Number of cells (NoC) Number of non null cells in answer(qk) −0, 395

R Relevant New Information (RNI) Amount of information in answer(qk) 0,068

C Execution Time (ExecTime) Time taken for executing qk 0,030

Delta metrics

T Iterative Edit Distance (IED) Edition effort required to get qk from qk−1 −0, 201

R Iterative Recall (IR) Recall of answer(qk) w.r.t answer(qk−1) 0,008

R Iterative Precision (IP) Precision of answer(qk) w.r.t answer(qk−1) 0,203

C Consideration Time (ConsTime) Time taken by the user to consider
answer(qk)

0,084

Contextual metrics

T Click Per Query (CPQ) Number of subsequent queries at distance 1
from qk

−0, 100

T Click Depth (CD) Length of the query chain qk belongs to 0,491

R Increase in View Area (IVA) Amount of new cells in qk −0, 051

C Number of Queries (NoQ) Number of queries executed so far in the
exploration

0,176

C Query relative position (QRP) Relative position of qk within the exploration −0, 057

C Query Frequency (QF) Frequency at which the DB has been queried
so far

0,019

C Elapsed Time (ElTime) Elapsed time since the beginning of the
exploration

0,007

Detecting User Focus in OLAP Analyses 111

Intrinsic Metrics. This category concerns metrics that are exclusively related
to a given query, independently of the exploration the query belongs to. Most
metrics of subcategories (T) and (R) follow the intuition that the more focused
a user, the more complex and detailed the queries she evaluates and the fewest
the number of cells. In other words, if the user carefully chooses measures and
filters, and sufficiently drills down, she has a precise idea of what she is looking
for. These features can be computed straightforwardly from query text or query
results and their definition is omitted due to lack of space. Aggregation Depth
(ADepth) defines the aggregation depth of the query relatively to the levels of
the cube. Consider a cube with l levels, depth(li, hi) being the depth of the level
li in hierarchy hi, and noting li ∈ P if level li appears in the set P of predicates
of query q, ADepth(q) =

∑
li∈P depth(li,hi)

l . Filter Depth (FDepth) is computed
similarly by considering for each filter its corresponding level. Relevant New
Information (RNI) is a measure of entropy of the query result. For a query qk, it
evaluates the quantity of information contained in answer(qk). Formally, RNI =
1 − (interest(answer(qk))), where interest measures the interestingness degree
as a simple normalized entropy, defined by: interest(C) = (−∑m

i=1 p(i) log(p(i)))

log(m) ,

with |C| = m, C(i) is the ith value of the set C and p(i) = C(i)∑m
i=1 C(i) denotes

the ith cell occurrence. Execution Time (ExecTime) is also related to query
complexity, assuming all queries are executed in the same environment. It is
computed as ExecT ime(qk) = ets(qk) − lts(qk).

Delta Metrics. They characterize a query relatively to the previous query in
the exploration. Here the intuition is that the closer two consecutive queries, the
more they have in common, the more focused the user. Iterative Edit Distance
(IED) represents the edition effort, for a user, to express the current query start-
ing from the previous one. It is strongly related to OLAP primitives operations,
and computed as the minimum number of atomic operations between queries,
by considering the operations of adding/removing a measure, drilling up/down,
and adding/removing a filter. The considered cost for each observed difference
(adding/removing) is the same. Iterative Recall (IR) and Iterative Precision (IP)
are computed as classical recall and precision by considering the current query
result cells as the retrieved set, and the previous query result cells as the relevant
set. Thus, the larger the intersection between queries in terms of accessed cells,
the more focused we are. Formally, IR(qk, qk−1) = (answer(qk)∩answer(qk−1))

answer(qk−1)
and

IP (qk, qk−1) = (answer(qk)∩answer(qk−1))
answer(qk)

. We give a default neutral score to the
first queries of the exploration, by defining IR(q1) = IP (q1) = 0.5. We approx-
imate Consideration Time (CT) by computing the time between the end of
execution of the current query and the beginning of execution of the subsequent
one: ConsT ime(qk) = lts(qk+1)−ets(qk). We fixed ConsT ime to a neutral value
(the average of all the previous queries) for the last query of the exploration.
ConsT ime does not take into consideration the size of visualized data, as this is
an independent feature (in NoC). The importance granted to the combination
of ConsT ime and NoC features is delegated to the SVM.

112 M. Djedaini et al.

Contextual Metrics. Contextual metrics characterize a query relatively to an
exploration, and more specifically its position within it. In particular, a query
occurring in different explorations, can get different scores for these metrics. The
two contextual metrics in subcategory (T) adapt popular activity metrics used
in Web Search. In this domain, Clicks Per Query is used to evaluate search
engines through their Search Engine Results Pages (SERP). Given a SERP,
CPQ represents the number of links in this page that have been clicked by
the user. We adapt it by considering a click as obtaining a new query that
differs in one operation from the current query. This model allows to repre-
sents typical user behaviors in front of OLAP systems. Formally, we count the
number of queries occurring after qk in the exploration, that are at edit dis-
tance one from qk: CPQ(qk, e) = |{qp ∈ e | p > k, IED(qk, qp) = 1}|. In
web search, Click Depth evaluates the number of pages that have been suc-
cessively visited, by following hyper links, from one result in a SERP. For a
given query qk, we adapt it by calculating the length of the chain of queries
starting from qk that are distant of one OLAP operation from their imme-
diate predecessor, without discontinuity. CD(qk, e) = |Skp|, where Skp is the
longest subsequence of exploration e starting at query qk and ending at query
qp inclusive, such that ∀qi, qi+1 ∈ e, IED(qi, qi+1) ≤ 1. Increase in View Area
(IVA) characterizes the increase in terms of new cells in answer(qk) compared
to all the cells seen during the previous queries of the exploration. Formally,
IV A(qk, e) =

|answer(qk)\
⋃

i∈[1,k−1] answer(qi)|
|⋃i∈[1,k] answer(qi)| . Number of Queries (NoQ) repre-

sents the absolute number of previous queries in the exploration. It is useful to
capture the correlation between the tediousness of an exploration and the focus.
Query Relative Position (QRP) allows to capture the influence of the position
of the query in the exploration on the focus. We expect queries at the beginning
of an exploration to be more exploratory, and the ones at the end to be more
focused. It is computed as the rank of the query in the exploration, normalized
by the size of the exploration: QRP (qk, e) = k

|e| . Query Frequency captures the
engagement of the user by measuring how many queries she submits per unit
of time. QF (qk) = NoQ(qk)/ElT ime(qk). Finally, Elapsed Time computes the
time from the beginning of the exploration: ElT ime(qk, e) = ets(qk) − lts(q1).

6 Experiments

This section presents the setup and outcomes of the experiments we conducted
to evaluate our approach. We first discuss to which extent the coefficients learned
by the model to weigh each descriptive metric (see Sect. 3) are consistent with
the human expertise. Then, we show that our model, once learned on a dataset,
can be generalized to other OLAP navigation datasets without any significant
loss in prediction rate.

6.1 Experimental Setup

Data set. We worked with a real database instance, namely a cube called
MobPro, built from open data on workers mobility. In MobPro, facts represent

Detecting User Focus in OLAP Analyses 113

individuals moves between home and workplace, and dimensions allows to char-
acterize a move depending on its frequency, the vehicle used, the traveled dis-
tance, etc. The cube is organized as a star schema with 19 dimensions, 68 levels
in total, and 24 measures. 37,149 moves are recorded in the facts table.

User explorations. In this experiment, we asked 8 junior analysts (who are stu-
dents in a master’s degree specialized in BI), to analyze the cube using Saiku2.
They were familiar with OLAP tools, but not necessarily with the data within
MobPro. We gathered 22 explorations from the system logs. In total, these explo-
rations represent 913 queries.

Query labeling. In order to learn our metric scores weights, we need to label
the 913 queries, stating if they are focused or not. The 913 queries have been
annotated by one expert, with the help of a web application specifically developed
for this purpose. A second expert independently annotated 100 of those queries.
Both experts are teachers in the masters degree in BI, and co-authors of this
paper. On the 100 queries, a high agreement of 89% has been observed between
the two experts, ensuring the representativeness of the 913 labels.

6.2 Model Training

Using our set of 913 queries, each described by the 19 features and the label, we
trained a linear SVM classifier. The linear SVM outputs coefficients that traduce
the relative importance of each feature. As the metrics are not normalized, the
weights learned may be due to SVM compensating for initial low or high values of
the metrics, and not only due to the relative intrinsic importance of the features.
With a reasonable assumption of normal distribution of our metrics, we used a
z-score for normalizing each metrics scores independently before training our
model. Z-score ensures that for a given feature, each value is expressed relatively
to this feature variance.

We used 76% of our data (700 queries) for training our model, while the
other 24% (213 queries) constitute the test set. Both training and test sets are
described in Table 3. We parameterized the SVM so that it performs a 10-fold
cross validation while learning on the training set, and obtained an accuracy of
80%.

Table 3. Description of training and test sets for linear SVM

Description Training set Test set

Queries 700 213

% Focus 46,7% 59,2%

% Non focus 53,3% 40,8%

2 http://meteorite.bi/products/saiku.

http://meteorite.bi/products/saiku

114 M. Djedaini et al.

Model Discussion. Feature coefficients we obtained are presented in Table 2.
By observing them, weights can be easily classified into 4 categories, using 2
dimensions that we call polarity and intensity. The impact of a metric on the
focus can be positive/negative in terms of polarity, and high/low in terms of
intensity. Impact polarity depends on the sign of the coefficient of the metrics,
whereas impact intensity depends on the absolute value of the coefficient. Here,
we highlight trends and discuss in details some of the features.

A focused analyst has a relatively well defined information need in mind,
which is clearly evidenced by the weights discovered. Indeed, among the metrics
related to text (T) and results (R), we observe that all the metrics that restrict
the perimeter of the analyzed data (like NoF, FDepth, NoA, ADepth, NoM) have
a positive impact on focus. And as expected, metrics that relax the perimeter of
analyzed data, like NoC and IVA, appear to have a negative impact on focus.

Metrics that characterize an important move within the data space have a
negative impact on focus. IED and IVA are particularly concerned by this. Again,
as expected, metrics that measure a closeness between two consecutive queries
have a positive impact on the focus. IP is the best representative of that in the
sense that its value decreases with the amount of new cells gathered compared
to cells in the previous query.

Interestingly, most metrics relative to chronology (C) have little impact on
the focus, with the notable exception of Number of Queries, which tends to
confirm that focus phases indeed happen after rather long exploratory phases.
Another rather surprising finding is that complex metrics in (R) like RNI do not
show a significant impact on focus.

More generally, we observe that the importance of a feature is fairly related
to the metrics categories and subcategories. No category or subcategory should
be ignored, in the sense that all of them include metrics having high weights.
A general trend is that metrics relative to the text of the query (T) have in
general higher weights, which indicates that focus is highly correlated to the user
intention expressed in the query syntax. Likewise, in general, intrinsic metrics
tend to have a higher impact on the focus (as seen on NoC, NoF, NoM). But this
is counterbalanced by the fact that CD, of category (C) has the second highest
weight, meaning that the context of the exploration indeed provides semantics
when assessing focus.

6.3 Model Performance

We previously described the meaningfulness of the features coefficients provided
by the SVM. We also conducted different experiments, described below, to check
the robustness of the predictive power of our classifier.

Testing on Artificial Explorations. The objective of this experiment is to
validate our model on explorations whose focus is known. For that, we used Cube-
Load [9] for generating realistic explorations. CubeLoad takes as input a cube
schema and creates the desired number of sessions according to templates mod-
eling various user exploration patterns. Patterns available in Cubeload simulate:

Detecting User Focus in OLAP Analyses 115

(Goal Oriented) users with limited OLAP skills pursuing a specific analysis goal,
(Slice And Drill and Slice All) more advanced users navigating with a sequence
of slice and/or drill operations, (Exploratory) users tracking unexpected results
with exploratory sessions.

Following the definition of the patterns, we expect Goal Oriented explorations
to be highly focused, while Exploratory are expected to be much less focused.
For this experiment, we used the SSB schema [8] and generated a collection of
49 explorations (500 queries) over it. Table 4 presents, per exploration pattern,
the ratio of (non) focused queries as predicted by our algorithm. The average
ratio of focused queries per exploration pattern confirms our expectations. Goal
Oriented explorations have a much higher ratio of focused queries compared to
Exploratory ones. We also notice that Exploratory and Slice All have a similar
ratio of focused queries. However, Exploratory explorations are much less focused
than Slice All ones in terms of average focus intensity. Slice and Drill is correctly
recognized as an intermediate behavior.

Table 4. Ratio of focus queries in terms of cubeload patterns

Patterns Explorative Goal oriented Slice and Drill Slice All

of explorations 15 13 14 7

of queries 171 123 126 80

% of focused queries 18,13 64,23 49,21 18,75

Avg focus −0, 568 −0, 070 −0, 193 0,738

Stdev focus 1,072 1,024 0,955 0,841

Testing on Real Explorations. We created a test set of 213 labeled queries
from the 22 explorations we collected over the MobPro cube. We obtained an
accuracy of 69, 9%, meaning that 69, 9% of the queries have been similarly clas-
sified by the expert and the model. Moreover, our model is pretty balanced, as
we could retrieve focused (resp., non focused) queries with an accuracy of 71, 4%
(resp., 67, 8%). These scores are good, especially given that a naive classifier that
would always predict the focus class would reach an accuracy of 59, 2% on the
test set.

6.4 Focus vs Analyst Skills

In general, a skilled analyst performs more focused explorations as she has a
better knowledge of data. The objective of this experiment is to verify that our
model is capable of retrieving this correlation.

We used a set of explorations, previously labeled by the same expert who
labeled the queries for the focus. Our expert labeled each exploration with one
of three labels: A, B, C. These labels categorize the user knowledge acquisition,

116 M. Djedaini et al.

Table 5. Correlation between exploration focus and analyst skills

Analyst skills A B C

Min Focus −0, 558 −1, 806 −2, 366

Max Focus 1,657 1,126 −1, 174

Avg Focus 0,241 −0, 240 −1, 767

Stdev Focus 0,861 0,895 0,513

from A when the user conducts a in depth analysis and benefits from it in terms of
knowledge, to C when the user conducts a very poor analysis and did not benefit
from it. We used this as a ground truth. Besides, we used our model to predict
the focus of the queries in these explorations. For each query, we predict not
only its class (focus or not), but also the degree to which it belongs to the class,
by computing the distance to the separation hyperplan found by the SVM. We
compute the degree of focus of an exploration as the average of its queries focus
degree. After matching explorations degree focus and skill label, we verify that
our model is in accordance with intuition. Results are presented in Table 5. From
this table, it is easy to identify that classes A and C are clearly distinguished
by their degree of focus. Users who acquired knowledge conducted more focused
explorations in average, with a minimum (resp., maximum) of focus relatively
low (resp., high) compared to the others. This reasoning is inversely true for
exploration in class C. Class B is an intermediate situation, quite ambiguous,
where it cannot be stated clearly that the skill has been mastered or not.

6.5 Computation Efficiency

Besides the experiments that validate the robustness of our model, we evaluated
the average computation time for each metric. Indeed, as we motivated focus
detection as a way to improve user experience, we have to ensure that metrics
computation runs in near real time. In average, it appears that for a given
query, each metric computation does not require more than a few hundred of
milliseconds. In average, the computation of all the metrics for a given query is
695 ms, which is negligible given that the average consideration time for a query
result is 11200 ms. Having their metrics scores, the query classification is then
instantaneous, which validates our approach.

7 Related Work

Analyzing user sessions has been studied for many years in web search. Recent
works aim at characterizing the difficulty of search tasks and detecting variations
in sessions. For instance, in [1], Athukorala et al. proposed a method for distin-
guishing between exploratory phases and lookup phases in the context of Infor-
mation Retrieval. Their idea consists in experimentally discovering features that

Detecting User Focus in OLAP Analyses 117

can be used for this distinction. They submitted several tasks to participants.
Some of these tasks require exploration while other require more simple lookups.
Based on objective measurements, they could identify that query length, comple-
tion time, and maximum scroll depth (in the browser), are the most distinctive
indicators for distinguishing between exploratory/lookup tasks. Although they
address a problem very similar to the one we tackle in this paper, they work at
the exploration level, while our method gives finer results by characterizing each
query of an exploration.

A recent trend in web search is to analyze web search sessions by means of
machine learning, and more particularly with classifiers. In [3], the goal is to
discover new intent and obtain content relevant to users’ long-term interests.
They develop a classifier to determine whether two search queries address the
same information need. This is formalized as an agglomerative clustering problem
for which a similarity measure is learned over a set of descriptive features (the
stemmed query words, top 10 web results for the queries, the stemmed words
in the titles of clicked URL, etc.). Perhaps closer to focus detection is the work
of Odijk et al. [7] for characterizing user struggling during web searches. They
propose a method for distinguishing between users exploring search results from
user struggling for satisfying a given information need. They tackle this problem
by using an approach similar to what we propose in terms of methodology. They
use a bunch of keyword features, and using a large real set of explorations, they
trained a machine learning algorithm for learning how to differentiate between
the two aforementioned types of explorations.

In the databases domain, however, to the best of our knowledge, only a
handful of works were interested in analyzing real database sessions. As noted
by Jain et al. [5], there exists only two real world SQL workloads available to
the research community: the SQLShare workload [5] and the Sloan Digital Sky
Server workload [10]. In [5], authors present their enhanced SQL web based
tool. They made their tool available online for several years, permitting users
to upload their datasets and perform advanced analysis. From this, they could
gather a rich workload of SQL queries, performed on different datasets, by dif-
ferent users. Based on different metrics computed on each single query (length of
the query text, number of distinct operators, query runtime, . . .), they propose
to characterize each query according to its complexity. An interesting aspect of
this work is the investigation of metrics for measuring the cognitive load of users
that is indirectly translated in the complexity of the queries they issue. More-
over, at the workload scale, authors show that queries have a high diversity,
considering a query similarity measure based on the query text. Authors also
propose to classify user behaviors as exploratory and analytical, based on the
number of queries per dataset. According to them, a user is analyzing when she
submits a lot of queries to the same dataset. This simple distinction is rather
coarse compared to the 19 dimensions we use in this paper for analyzing the
same distinction.

Nguyen et al. [6] propose an approach for discovering the most accessed
areas of a relational database to characterize user interests. Their notion of user

118 M. Djedaini et al.

interest relies on the set of tuples that are more frequently accessed, and is
expressed as selection queries (mostly range queries). They use DBSCAN to
cluster user interests in the Sky Server dataset. Their similarity metric relies on
Jaccard coefficient of the accessed tables and on overlapping of predicates. In this
work also, only one metrics (most frequent accessed tuples) is used. Additionally,
we note that, being tailored for range queries, their metric is inappropriate for
OLAP queries that are mostly dimensional (i.e., point based), due to the nature
of the hierarchical dimensions used to select data.

With the growing interest around exploratory search in the context of inter-
active database exploration, we believe that our work constitute a first important
contribution for understanding the different aspects of user navigations in struc-
tured data.

8 Conclusion

Exploratory search considers a search as a complex interaction between a user
and a system, including exploratory phases and focus phases. In this paper,
we highlight the usefulness of detecting which phases a user is currently in,
in the context of OLAP exploration of data cubes. We propose an automatic
method, based on a state of the art machine learning algorithm, modeling this
detection as a classification problem. To our knowledge, our contribution is a
pioneer of its kind. We successfully built a model, trained on a relatively large
set of real explorations. We validated experimentally our model on a test set of
real explorations, as well as on an artificially, driven, state-of-the-art exploration
generator. On top of that, we checked the coherence of our model by using it to
detect how skilled is a data analyst.

We plan to follow up our investigations in two main directions. First, we
will study the use of focus as a score for evaluating the overall quality of an
exploration. Second, we plan to generalize our approach to relational databases
and more general types of explorations.

References

1. Athukorala, K., Glowacka, D., Jacucci, G., Oulasvirta, A., Vreeken, J.: Is
exploratory search different? A comparison of information search behavior for
exploratory and lookup tasks. JASIST 67(11), 2635–2651 (2016)

2. Golfarelli, M., Rizzi, S., Design, D.W.: Modern Principles and Methodologies.
McGraw-Hill, New York (2009)

3. Guha, R., Gupta, V., Raghunathan, V., Srikant, R.: User modeling for a personal
assistant. In: WSDM, pp. 275–284 (2015)

4. Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration tech-
niques. In: SIGMOD, pp. 277–281 (2015)

5. Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: Sqlshare: results from a
multi-year SQL-as-a-service experiment. In: Proceedings of SIGMOD, pp. 281–293
(2016)

Detecting User Focus in OLAP Analyses 119

6. Nguyen, H.V., Böhm, K., Becker, F., Goldman, B., Hinkel, G., Müller, E.: Iden-
tifying user interests within the data space - a case study with skyserver. EDBT
2015, 641–652 (2015)

7. Odijk, D., White, R.W., Awadallah, A.H., Dumais, S.T.: Struggling and success
in web search. In: Proceedings of CIKM, pp. 1551–1560 (2015)

8. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark
and augmented fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC
2009. LNCS, vol. 5895, pp. 237–252. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-10424-4 17

9. Rizzi, S., Gallinucci, E.: CubeLoad: a parametric generator of realistic OLAP
workloads. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos,
Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 610–624.
Springer, Cham (2014). doi:10.1007/978-3-319-07881-6 41

10. Szalay, A.S., Gray, J., Thakar, A., Kunszt, P.Z., Malik, T., Raddick, J., Stoughton,
C., vandenBerg, J.: The SDSS skyserver: public access to the sloan digital sky server
data. In: Proceedings of SIGMOD, pp. 570–581 (2002)

11. White, R.W., Roth, R.A., Search, E.: Beyond the Query-Response Paradigm.
Morgan & Claypool Publishers, San Rafael (2009)

http://dx.doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-642-10424-4_17
http://dx.doi.org/10.1007/978-3-319-07881-6_41

Sparse Prefix Sums

Michael Shekelyan(B), Anton Dignös, and Johann Gamper

Free University of Bozen-Bolzano, Bozen, Italy
{michael.shekelyan,dignoes,gamper}@inf.unibz.it

Abstract. The prefix sum approach is a powerful technique to answer
range-sum queries over multi-dimensional arrays in constant time by
requiring only a few look-ups in an array of precomputed prefix sums. In
this paper, we propose the sparse prefix sum approach that is based on
relative prefix sums and exploits sparsity in the data to vastly reduce the
storage costs for the prefix sums. The proposed approach has desirable
theoretical properties and works well in practice. It is the first approach
achieving constant query time with sub-linear update costs and storage
costs for range-sum queries over sparse low-dimensional arrays. Exper-
iments on real-world data sets show that the approach reduces storage
costs by an order of magnitude with only a small overhead in query time,
thus preserving microsecond-fast query answering.

1 Introduction

Prefix sums are a widely known technique across many fields to enable range-
sum queries over grids in constant time, i.e., independent of the size of the grid.
Range-sum queries sum the cell values along rectangular shapes. The technique
is used in many disciplines, e.g., in On-Line Analytic Processing (OLAP) to
answer aggregate range queries [11,13], in computer vision to efficiently com-
pute features for object recognition [18] and in data mining to efficiently find
maximum rectangular subarrays [17].

Given a d-dimensional grid, the basic idea of the classical prefix sum tech-
nique [11] is to precompute and store for each grid cell a so-called prefix sum.
The prefix sum of a cell is the sum over all grid cells in the range from the origin
up to and including itself. At query time, the prefix sums allow to evaluate any
range-sum query in constant time by looking up and combining 2d prefix sums.
Consider Fig. 1, which shows around 2.9 billion GPS coordinates collected for
the OpenStreetMap project1. The range-sum over the query rectangle spanned
by the points A and D can be derived from four range sums that are anchored
at the origin O, i.e., |AD| = |OD| − |OB| − |OC| + |OA|, where |XY | rep-
resents the value of the range sum determined by X and Y . The range-sums
that are anchored at the origin O are precomputed as prefix sums, hence at
query time only four look-ups are required to answer any range query. While the
prefix sum technique enables constant query time, it leads to very high update

1 www.openstreetmap.org.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 120–135, 2017.
DOI: 10.1007/978-3-319-66917-5 9

Sparse Prefix Sums 121

costs, because updating an individual cell value requires updating all origin-
anchored range-sums that contain that cell. To overcome this problem, relative
prefix sums [10] were introduced that split a grid with N cells into

√
N blocks

with
√
N cells each. The key behind this approach is to break the dependency

between groups of cells within different blocks. Relative prefix sums preserve
constant query time and vastly improve the update efficiency to O(

√
N).

O

A B

C D

Fig. 1. Prefix sum: range-sum over query box |AD| = |OD| − |OC| − |OB| + |OA|
where |OD|, |OC|, |OB| and |OA| are the prefix sums of the query box’s corners.

The key problem with the prefix sum and the relative prefix sum approaches
is their high storage costs for sparse data and high-resolution grids. The prefix
sums need to be precomputed for each grid cell, yielding a dense array of prefix
sum values which need to be materialized. This is completely independent from
the sparsity of the data.

To overcome this storage problem, in this paper we propose the sparse prefix
sum technique. It is based on relative prefix sums, but additionally adopts a
semi-sparse representation. Some cells in the grid always have to be materialized
to ensure constant query time, but many cells can be stored implicitly using look-
up tables, because there are many repetitions of values caused by empty cells in
the data grid. The look-up tables cause almost no querying time overhead. As a
result we get the first approach to achieve constant query time, sub-linear update
costs, as well as sub-linear storage costs for sparse low-dimensional arrays.

The main technical contributions can be summarized as follows:

– We propose sparse prefix sums that are based on relative prefix sums, but
adopt a semi-sparse representation for the prefix sums to achieve sub-linear
storage costs for sparse low-dimensional arrays.

– We describe an algorithm to construct sparse prefix sums without materi-
alizing the whole grid that has sub-linear construction costs for sparse low-
dimensional arrays.

– We propose an algorithm to answer range queries using sparse prefix sums in
constant time.

122 M. Shekelyan et al.

– We empirically compare the sparse prefix sum approach with other constant-
time approaches on real-world datasets. The results show that, for sparse low-
dimensional arrays, our approach leads up to an order of magnitude reduction
in storage costs with only a small overhead in query time, still keeping the
query time in the range of microseconds.

Structure. Section 2 discusses related work. Section 3 recaps the prefix sum app-
roach. In Sect. 4 we introduce our prefix sum approach. Section 5 reports the
result of an empirical evaluation, and Sect. 6 concludes the paper and points to
future work.

2 Related Work

Range-sum queries can be answered by using basic tree-based data structures,
such as quadtrees, k-d trees, R-trees or range trees. A survey of such tech-
niques can be found in [15]. More sophisticated data structures were proposed
in computational geometry [2,8]. Using modified versions of range/segment
trees as in [5,6] and fractional cascading, it is possible to achieve O(logdS)
update, O(logd−1S) querying time, and O(S) storage, where S is the number of
non-empty grid cells. Unlike the proposed sparse prefix sum method, all these
approaches cannot offer constant query time.

The (conventional) prefix sum technique [11] precomputes cumulative sums
to answer range-sum queries in constant time. However, the O(N) update and
storage costs make it unsuitable for high-resolution grids with a very large num-
ber of cells N .

To overcome this problem, the relative prefix sum technique [10,16] splits
the grid into blocks and stores conventional prefix sums only along the block
borders. In the inner region of the blocks, local prefix sums are stored, which
only sum over cells inside the block. By breaking dependencies between the cells
in different blocks, the update cost is reduced to O(

√
N). While the query time

remains constant, the data sparsity cannot be exploited, yielding linear storage
costs similar to the prefix sum approach.

Multiple techniques were proposed in the past to further reduce the update
complexity [3,4,9,13]. However, unlike our sparse prefix sum approach, none of
these techniques offers constant query time and is able to exploit sparsity in the
data. One notable exception is the dynamic data cube technique [9], which can
exploit data sparsity in cases when large contiguous blocks are empty.

Other techniques were proposed to exploit sparsely populated grids, but none
of them offers comparable properties to our approach, in particular constant
query time. The blocked array technique [11] creates prefix sums at a smaller
resolution and stores the high-resolution grid without prefix sums as a sparse
array, which reduces storage costs. The prefix cube pool technique [7] identifies
dense subregions and constructs local prefix sums for each subregion. It can only
reduce storage costs in case of large contiguous blocks of empty cells. The pCube
technique [14] stores only sparse grid cells and uses data indices such as quadtrees

Sparse Prefix Sums 123

or R-Trees to speed-up querying. The sub-cube compression technique [12] is a
lossless compression technique that stores sparse prefix cubes by decomposing
them into sub-cubes, where each sub-cube results from a different combination of
sparse cells. Unlike our prefix sum approach, none of these approaches achieves
constant query time and a significant reduction of storage costs.

3 Background

In this section, we provide the formal background for prefix sums [11] and relative
prefix sums [10]. We use A to denote the d-dimensional grid over which range-
sums are computed and Ac1,...,cd to denote the grid cell value with coordinates
(c1, . . . , cd). The prefix sum of the cell with coordinates (t1, . . . , td) is defined as

Pt1,...,td =
t1∑

c1=0

. . .

td∑

cd=0

Ac1,...,cd .

That is, a prefix sum Pt1,...,td is the sum of all cells in the range with lower
corner (0, . . . , 0), i.e., the origin of the data space, and upper corner (t1, . . . , td).
Consider the 2-dimensional grid A in Fig. 2a, which is used as a running example.
The array of prefix sums P is shown in Fig. 2b. For instance, the prefix sum P2,2

is computed as P2,2 = A0,0 + A0,2 = 1 + 7 = 8, whereas P7,7 is the sum of all
grid values.

1 7 8

6

7 6

5 16

5 6 77

8 2 5

54

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(a) Sparse array A

1 1 1 1 1 8 8 16

1 1 1 7 7 14 14 22

8 8 8 14 14 21 21 35

8 8 13 35 35 42 42 56

8 13 18 40 46 53 53 144

16 21 26 48 54 63 68 159

16 21 26 102 108 117 122 213

16 21 26 102 108 117 122 213

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(b) Prefix sums P

0 0 6 0 0 0

0 0 6 0 0 6

0 5 27 0 0 6

0 0 0 2 7 7

0 0 54 2 7 7

0 0 54 2 7 7

1 0 0 0 1 7 7 15

0 6

7 13

7 34

8 5 10 32 46 7 7 98

8 8

8 62

8 62

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(c) Relative prefix sums R

Fig. 2. Prefix sum techniques.

Corollary 1 (Range-sums). Let Q be a d-dimensional range with lower cor-
ner (s1, . . . , sd) and upper corner (t1, . . . , td) and let [C] be equal to 1 iff C is
true and 0 otherwise. The range-sum |Q| can be computed with the help of prefix
sums as

|Q| = Pt1,...,td +
∑

∅�=D⊆{1,2,...,d}
(−1)|D| · PD,

where PD = P(s1−1)[1∈D]+(t1)[1/∈D],...,(sd−1)[d∈D]+(td)[d/∈D].

124 M. Shekelyan et al.

For instance, for d = 2 dimensions, the non-empty subsets D ⊆ {1, 2} are
{1}, {2} and{1, 2}, and for D = {1} we have PD = P(s1−1)·1+t1·0,(s2−1)·0+t2·1 =
Ps1−1,t2 . This gives |Q| = Pt1,t2 − Ps1−1,t2 − Pt1,s2−1 + Ps1−1,s2−1. Consider the
query range in Fig. 2a with lower corner (3, 3) and upper corner (7, 4) (thick
rectangle). The sum over this query range is Q = 16+6+77 = 99. Using Corol-
lary 1, this range sum can be computed from the four prefix sums in boldface in
Fig. 2b as Q = P7,4 − P2,4 − P7,2 + P2,2 = 144 − 18 − 35 + 8 = 99.

A problem with prefix sums is their dependency from many grid cells, which
leads to large update costs and makes it difficult to exploit sparsity. Relative
prefix sums [10] break these dependencies. The main idea is to partition a grid
of size N into

√
N blocks à

√
N cells. Each cell in a block stores a local prefix

sum, which depends only on the cells in that block. The relative prefix sum of
a cell with coordinates (t1, . . . , td) that is located in a block with lower corner
(a1, . . . , ad) is then defined as follows:

Rt1,...,td =

⎧
⎪⎨

⎪⎩

Pa1,...,ad
if t1 = a1 ∧ . . . ∧ td = ad,

Pt1,...,td − Pa1,...,ad
if ∃i,j : ti = ai ∧ tj �= aj ,∑t1

c1=a1+1 . . .
∑td

cd=ad+1 Ac1,...,cd otherwise.
(1)

Each block is identified by an anchor cell, i.e., the lower corner of the block with
coordinates (a1, . . . , ad). The relative prefix sum at the anchor cell corresponds to
the conventional prefix sum Pa1,...,ad

(case 1). All cells (c1, . . . , cd) that share at
least one coordinate with the anchor cell and differ in at least one coordinate are
called overlay cells. At the overlay cells, the relative prefix sum corresponds to
the prefix sum Pc1,...,cd minus the value of the anchor cell Pa1,...,ad

. The remaining
cells are called local cells and store the prefix sum over the block cells excluding
anchor and overlay cells. Figure 2c shows the relative prefix sum for our running
example. For visibility we only use 4 blocks rather than

√
N = 8 blocks. Anchor

cells are shown in boldface, whereas local cells are in gray. Relative prefix sums
reduce the update costs from O(N) to O(

√
N), while preserving constant query

costs and construction costs of O(N).
The following corollary shows how to derive prefix sums from relative prefix

sums so that Corollary 1 can be used to answer range sum queries.

Corollary 2 (Constructing prefix sums from relative prefix sums). Let
Rt1,...,td denote the relative prefix sum of the cell with coordinates (t1, . . . , td) and
let [C] be equal to 1 iff C is true and 0 otherwise. The prefix sum Pt1,...,td can
be calculated as follows:

Pt1,...,td =

⎧
⎪⎨

⎪⎩

Ra1,...,ad
if t1 = a1 ∧ . . . ∧ td = ad,

Rt1,...,td + Ra1,...,ad
if ∃i,j : ti = ai ∧ tj �= aj ,

Rt1,...,td +
∑

∅�=E⊆{1,2,...,d} (−1)|E|−1
PE otherwise,

where a1, . . . , ad is the lower corner of the block containing t1, . . . , td and PE =
P(a1)[1∈E]+(t1)[1/∈E],...,(ad)[d∈E]+(td)[d/∈E].

Sparse Prefix Sums 125

For the range-sum query in Fig. 2a we have P7,4 − P2,4 − P7,2 + P2,2. To
reconstruct prefix sums P7,4 and P2,4, the second case in Corollary 2 applies,
i.e., P7,4 = R7,4 + R5,5 = 98 + 46 = 144 and P2,4 = R2,4 + R1,3 = 10 + 8 = 18
(cf. Figs. 2b and c). For prefix sums P7,2 and P2,2, the third case applies, i.e.,
P7,2 = R7,2+(R7,0+R5,0)+(R5,2+R5,0)−R5,0 = 6+(15+1)+(34+1)−1 = 56
and P2,2 = R2,2+(R2,0+R0,0)+(R0,2+R0,0)−R0,0 = 0+(0+1)+(7+1)−1 = 8.
The final result is calculated as P7,4 − P2,4 − P7,2 + P2,2 = 99.

4 Sparse Prefix Sums

In this section, we first describe the construction of sparse prefix sums and
the data structures used for the internal representation. Then, we describe an
algorithm for answering range queries, followed by a complexity analysis.

4.1 Constructing Sparse Prefix Sums

Similar to relative prefix sums, the sparse prefix sum approach splits a grid
A with N cells into

√
N blocks. However, instead of storing dense arrays of

cumulative sums, sparse prefix sums take advantage of sparsity in A and store
only a subset of the sums. The construction of sparse prefix sums consists of
two main steps: (1) computing local prefix sums and (2) computing anchor and
overlay prefix sums. In the sequel, we describe and illustrate these two steps
(cf. Fig. 4).

Step 1: Computing Local Prefix Sums. In the first step, we compute for
each block the required local prefix sums, taking as input the data from a sparse
array A. Different from relative prefix sums, we do not compute a dense array
of local prefix sums. Instead, we take advantage of the sparsity in the data
and identify those cells, for which the computation of local prefix sums can be
avoided.

Definition 1 (Block slice). A block slice is defined as the subset of all cells in
a block B that share the same coordinate C in a dimension i, i.e., {(c1, . . . , c2) ∈
B : ci = C}.

Block slices consist of all block cells that share the same coordinate in a
specific dimension, e.g., rows and columns in two-dimensional blocks/arrays.
The basic idea of the sparse representation of prefix sums is that we can omit
the computation of local prefix sums for empty block slices and only store the
remaining cells. Since only entire block slices are removed, we obtain a regular
grid with a reduced coordinate space. Figures 3a and b illustrate this for the
3 × 3 local cells of the first block in our running example. The first column and
the second row are completely empty, hence they are removed before the local
prefix sums are computed.

After removing empty block slices, we compute the local prefix sums for
all remaining cells in the reduced grid. This reduced block of prefix sums is

126 M. Shekelyan et al.

0 1 2

0 6

1

2 5 16

(a) Sparse array

0 1

0 6

1 5 16

(b) Removed slices

0 1

0 0 6

1 5 27

(c) Materialized

0 1 2

L1 -1 0 1

L2 0 0 1

(d) Lookup tables

Fig. 3. Constructing a block’s local prefix sums and lookup tables.

eventually materialized. For our example, the local prefix sums in the reduced
space of 2×2 cells are shown in Fig. 3c. The value 27 in the cell (1, 1) is computed
as the sum 6 + 5 + 16 = 27.

Definition 2 (Materialized local block). A materialized local block consists
of all local block cells that do not belong to an empty block slice. For these cells,
local prefix sums are computed.

To guarantee a constant look-up time for cells in the reduced coordinate
space, given a query range in the original space, we introduce so-called block
look-up tables.

Definition 3 (Block look-up table). A block look-up table Li for dimension
i maps a coordinate ci along dimension i to Li[ci], such that ci − Li[ci] is the
number of (omitted) empty block slices between 0 and ci.

Each block has one look-up table per dimension that maps block coordi-
nates in the original grid to block coordinates in the materialized grid. Figure 3d
shows the two look-up tables for the first block in our running example. They
translate coordinates from the original 3 × 3 grid (Fig. 3b) into coordinates of
the reduced 2 × 2 grid (Fig. 3c). L1 maps the horizontal dimension and L2 the
vertical dimension. For instance, the first column is mapped to −1, the second
to 0 and the third to 1. Intuitively, a value of −1 or a repetition of the same
value in a look-up table indicates one omitted slice in that dimension. To access
the prefix sum of the cell (1, 2) in the original space, we have to access the cell
(L1[1], L2[2]) = (0, 1) in the reduced space. The situation of the running example
after step 1 is shown in Fig. 4b.

Step 2: Computing Anchor and Overlay Prefix Sums. In the second
step, we compute the values for the anchor cell and the overlay cells for each
block (cf. case 1 and case 2 in Eq. 1). A näıve approach would be to compute the
prefix sum for the entire grid and then discard the local cells. Since this would
require excessive construction time and memory, we propose an algorithm that
only materializes the sparse prefix sums plus a few additional values that are
needed during construction process.

The key idea behind our algorithm for computing anchor and overlay cells
is to exploit diagonals in the grid: prefix sums along a diagonal only depend
on prefix sums along diagonals that are closer to the origin, while cells along

Sparse Prefix Sums 127

1 7 8

6

7 6

5 16

5 6 77

8 2 5

54

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

(a) Sparse array A

0 6

6

5 27

2 7

54

(b) After step 1

1 0 0 0 1 7 7 15

0 0 6 6

7 13 6

7 5 27 34

8 10 32 32 46 7 7 98

8 8 2 7

8 54 62

8 62

(c) After step 2

Fig. 4. Construction of sparse prefix sums from an array A (affected cells are hatched).

one diagonal are independent from each other. To enumerate diagonals, we sum
the coordinates of the cells, i.e., the cell with coordinate (s1, . . . , sd) lays on the
diagonal s1 + . . .+ sd. It is easy to see that all cells on a diagonal have the same
sum of their coordinates. The blocks and the corresponding anchor and overlay
cells are processed in increasing order of the sum s1 + . . . + sd. This ensures
that diagonals with a lower number are processed first. For instance, in Fig. 4c
we first process the top-left block, followed by the top-right and lower-left block
(same diagonal) in any order as they only depend on the top-left block. The last
block is the lower-right that depends on both the top-right and lower-left block.

In our implementation, we additionally exploit the fact that neighboring over-
lay prefix sums share the same preceding prefix sums. These are either overlay
prefix sums that have already been computed, or they lay on the upper border
of a block and need to be computed. To avoid that the prefix sums of the upper
border are computed multiple times, we compute them once when all overlay
prefix sums in a block are available, and store them temporarily during the con-
struction process (similar as the overlay prefix sums). After the construction,
the upper block prefix sums can be discarded.

For the construction of the sparse prefix sum, we still need to compute the
prefix sums for the overlay cells. Previous approaches compute prefix sums by
a summation along any dimension individually. In contrast, we compute prefix
sums (along the diagonals) incrementally from already existing prefix sums, as
shown in the following lemma.

Lemma 1. Each overlay prefix sum can be computed from preceding prefix sums
using

Pt1,...,td = At1,...,td +
∑

∅�=D⊆{1,2,...,d}
(−1)|D|−1

PD,

where PD = P(t1−1)[1∈D]+(t1)[1/∈D],...,(td−1)[d∈D]+(td)[d/∈D].

Proof. It follows directly from solving the equation in Corollary 1 for Pt1,...,td . �	
Each overlay prefix sum is the sum of the value of the sparse array A at

the corresponding cell plus the value of 2d−1 cells that, in a non-empty subset

128 M. Shekelyan et al.

D ⊆ {1, . . . , d}, have a cell coordinate in each dimension i ∈ D that is decre-
mented by one.

4.2 Data Structures

The data structure to store sparse prefix sums consists, for each block, of an
overlay array O, d lookup tables L, and an array M to store the materialized
block. The data structures for our example with four blocks from Fig. 4c are
shown in Fig. 5.

The overlay array O is of fixed size, since all overlay cells are materialized
and we have the same number of overlay cells for each block. To store the overlay
cells using a single one-dimensional array, we conceptually split the array into
2d−1 groups. Each group intuitively represents a lower border of a block in a
subset of all dimensions, i.e., group 0 is the anchor cell that is on the lower
border in all dimensions, group 1 are the overlay border cells that are not on
the lower border in the first dimension, group 2 are the overlay border cells that
are not on the lower border in the second dimension, and so on. For instance,
in Fig. 5 the first value in O is the anchor cell of a block, the next three values
are the remaining overlay cells in the horizontal dimension (cf. Fig. 4c), and the
last three in the vertical dimension. The offsets of the groups in array O are the
same for all blocks, such that they can be simply precomputed once.

The sparse local cells of each block are stored as a one-dimensional array
M in row-major order. The lookup tables L are used to translated coordinates
from the block coordinate space into the coordinate space of M . This is the
key idea behind sparse prefix sums to accomplish both constant query time and
a sparse representation. For instance, in Fig. 5 the top-left block only requires
materializing four of the nine inner block cells. The coordinate (2, 1) is translated
using (L1[2], L2[1]) into (1, 0) and M1,0 = 6. The coordinate (0, 2) is translated
using (L1[0], L2[2]) into (−1, 1) and any value for negative coordinates is equal
to 0, i.e., the local prefix sum is 0.

O 1 0 0 0 0 7 7

L1 -1 0 1 L2 0 0 1

M 0 6 5 27

O 1 7 7 15 6 13 34

L1 -1 -1 0 L2 -1 0 0

M 6

O 8 10 32 32 8 8 8

L1 -1 -1 0 L2 -1 0 0

M 54

O 46 7 7 98 8 62 62

L1 0 1 1 L2 0 0 0

M 2 7block 0, 0 block 1, 0 block 0, 1 block 1, 1

Fig. 5. Sparse prefix sum data structures.

4.3 Querying Sparse Prefix Sums

Sparse prefix sums are queried similarly to relative prefix sums, i.e., we recon-
struct first relative prefix sums which in turn are transformed into prefix sums
as shown below:

Range-sum
Corollary 1←−−−−−−−− conventional

prefix sum
Corollary 2←−−−−−−−− relative prefix

sum
Corollary 3←−−−−−−−− sparse prefix

sum

Sparse Prefix Sums 129

Algorithm 1. Querying
Input: Query range Q from (s1, . . . , sd) to (t1, . . . , td)
Output: Range-sum over |Q|

1 q = 0
2 foreach ∅ �= D ⊆ {1, . . . , d} do
3 (j1, . . . , jd) ← ((s1 − 1)[1 ∈ D] + (t1)[1 /∈ D], . . . , (sd − 1)[d ∈ D] + (td)[d /∈ D])
4 Determine block containing (j1, . . . , jd) with anchor (a1, . . . , ad), overlay cells O,

materialized local block M , and look-up tables L
5 if ∃i : ji = ai then
6 if ∃i : ji �= ai then
7 Pj1,...,jd

← Oj1−a1,...,jd−ad
+ O0,...,0

8 else
9 Pj1,...,jd

← Oj1−a1,...,jd−ad

10 else

11 (k1, . . . , kd ← (L1[j1 − a1], . . . , L
d[jd − ad])

12 if ∃i : ki = −1 then
13 p ← 0
14 else
15 p ← Mk1,...,kd

16 foreach ∅ �= E ⊆ {1, . . . , d} do
17 (c1, . . . , cd) ← (a1[1 ∈ E] + j1[1 /∈ E], . . . , ad[d ∈ E] + jd[d /∈ E])
18 if ∃i : ji �= ai then
19 Pc1,...,cd

← Oc1−a1,...,cd−ad
+ O0,...,0

20 else
21 Pc1,...,cd

← Oc1−a1,...,cd−ad

22 p ← p + (−1)|E|−1 · Pc1,...,cd

23 Pj1,...,jd
← p

24 q ← q + (−1)|D|Pj1,...,jd

25 return q

Corollary 3 (Constructing relative prefix sums from sparse prefix
sums). Let (t1, . . . , td) be a cell in a block with anchor (a1, . . . , ad), overlay
cells O, materialized local block M and block look-up tables L. The relative prefix
sum Rt1,...,td can be calculated as follows:

Rt1,...,td =

⎧
⎪⎨

⎪⎩

Ot1−(a1+1),...,td−(ad+1) if ∃i : ti = ai,

0 if ∃i : Li[ti − (ai + 1)] = −1,
ML1[t1−(a1+1)],...,Ld[td−(ad+1)] otherwise.

The algorithm for range-sum queries using sparse prefix sums is shown in
Algorithm 1. It is based on the algorithm of relative prefix sums, which first
reconstructs the prefix sums and then calculates range-sum queries using these
prefix sums (cf. Corollary 1 and 2). In our sparse prefix sum algorithm the
relative prefix sums are stored in a sparse representation and thus need to be
reconstructed using Corollary 3. For each prefix sum to compute, we first deter-
mine the block that contains the cell (line 4). For better readability, we index
O and M in the algorithm as grids rather than as linearized arrays. Lines 6–9
handle the cases where the cell is an overlay cell: we retrieve the cell value from
O (cf. case 1 in Corollary 3) and proceed to produce the prefix sum. Lines 11–23

130 M. Shekelyan et al.

handle the cases where the coordinate is a local cell: we first translate, with the
help of the look-up tables, the cell coordinates to the coordinates of the material-
ized local block, considering the case that the coordinate might be −1 (cf. case 2
and case 3 in Corollary 3). Then, from the reconstructed relative prefix sum the
prefix sum is computed and the algorithm proceeds as for relative prefix sums.

4.4 Complexity Analysis

Theorem 1. Sparse prefix sums have space complexity O(N1− 1
2d + SN

1
2− 1

2d),
where N is the size of the grid, S is the number of non-empty cells and d is the
dimensionality.

Proof. The number of stored values is determined as the sum of the number
of overlay cells, the number of values in the look-up tables and the number of
values of the materialized blocks. Let wd =

√
N be the total number of cells in

a block, i.e., w = N
1
2d .

Number of overlay cells: The number of local cells is (w − 1)d. Thus, the number
of overlay cells in each block is equal to wd−(w − 1)d = (1+(w−1))d−(w−1)d,
which by the binomial theorem can be transformed to

(∑d
k=0

(
d
k

)
(w − 1)k

)
−

(w−1)d =
∑d−1

k=0

(
d
k

)
(w − 1)k. Clearly,

∑d−1
k=0

(
d
k

)
(w − 1)k < 2d(w−1)d−1. Hence,

the number of overlay cells cannot exceed 2d(w − 1)d−1
√
N < 2dwd−1

√
N =

2dN
1
2− 1

2d
√
N = 2dN1− 1

2d , which is in O(N1− 1
2d).

Size of look-up tables: The number of block look-up table values is equal to
d(w − 1)

√
N < dN (1

2+
1
2d), which is in O(N

1
2+

1
2d).

Number of non-empty local cells: The storage costs of a block’s local cells with
s sparse values cannot exceed min((w − 1)d, sd). The worst case maximizes the
storage costs per sparse value min((w−1)d,sd)

s , which is maximized for s = w − 1.
Thus, the storage costs for S sparse values cannot exceed S

(w−1) (w − 1)d =

S(w − 1)d−1 = S(N
1
2d − 1)

d−1
< SN (1

2− 1
2d) which is in O(SN (1

2− 1
2d)).

Taken the three parts together, the overall storage costs are in O(N1− 1
2d +

SN (1
2− 1

2d)). �	

The construction algorithm has time complexity O(N1− 1
2d + SN (1

2− 1
2d)).

Step 1 has time complexity O(SN (1
2− 1

2d)), since it materializes at most that
many cells. Step 2 has time complexity O(N1− 1

2d), since it computes at most
that many overlay prefix sums, and each overlay prefix sum is constructed from
a constant number of preceding overlay prefixes.

The update complexity is O(
√
N) as for relative prefix sums, as it is identical

to relative prefix sums apart from the local block cells. All local block cells can
be updated in O(

√
N), since a block has at most O(

√
N) materialized values.

An overview of the theoretical properties is given in Table 1.

Sparse Prefix Sums 131

Table 1. Complexity results for a grid of size N and d dimensions (treated as constant);
S is the number of non-empty grid cells.

Query costs Update costs Storage/construction costs

(Conventional) prefix sums
(CPS)

O(1) O(N) O(N)

Relative prefix sums (RPS) O(1) O(
√
N) O(N)

Sparse prefix sums (SPS) O(1) O(
√
N) O(N (1− 1

2d) + SN (1
2− 1

2d))

5 Experimental Evaluation

5.1 Setup and Datasets

In the experiments, we compare our sparse prefix sums technique (SPS) to con-
ventional prefix sums (CPS) [11] and relative prefix sums (RPS) [10]. All algo-
rithms are implemented in C++ by the same author and were compiled with
GCC 4.9.2 using -O3 and run on a single core. The experiments run on a machine
with an Intel(R) Xeon(R) CPU E5-2667 v3 @ 3.20 GHz and 100 GB of main
memory.

We use the following datasets for the experiments: OSM – a spatial dataset
from the OpenStreetMap project that records 2.9 billion two-dimensional GPS-
coordinates (see Fig. 1). ZIPF – a synthetic dataset with 1000 cluster centers
and a total of 107 points that are distributed according to a Zipf distribution
between clusters in all dimensions, i.e., some clusters have much more points
than others. The cluster centers are uniformly distributed, and the cluster mem-
bers are normally distributed around the center. For this dataset we vary the
dimensionality. HRSL [1] – a set of population datasets developed for eight
countries for the year 2015 on grids with a resolution of roughly 30 meters.

5.2 Results

Impact of Grid Resolution. In the first experiment, we use the OSM dataset and
create prefix sums at different resolutions to show the effect of the grid size N
on the construction time, the memory usage, and the query time. The results for
conventional prefix sums (CPS), relative prefix sums (RPS), and sparse prefix
sums (SPS) are shown in Fig. 6 and confirm the theoretical results in Table 1.
As expected, the storage costs of SPS are significantly smaller than for CPS and
RPS, which have identical storage costs as both compute and store dense arrays.
For instance, CPS and RPS require 64 GB for a grid with about 8 billion cells,
whereas SPS only requires 5.1 GB. In terms of construction time, we observe that
CPS is the fastest approach. SPS is only slightly slower than CPS, but clearly
faster to construct than RPS (upon which SPS is based), since a large number
of cells need not to be computed. The query time for all approaches is constant
in the order of some microseconds. Compared to RPS, the query time of SPS

132 M. Shekelyan et al.

0 2 4 6 8
0

20

40

60

grid cells N [billions]

m
ai
n
m
em

or
y
[G

B
] CPS/RPS

SPS

0 2 4 6 8

0

2

4

6

8

10

grid cellsN [billions]

co
ns
tr
uc
tio

n
tim

e
[m

in
s]

CPS

RPS

SPS

0 2 4 6 8

0

2

4

6

grid cellsN [billions]

qu
er
y
tim

e
[µ

s]

CPS

RPS

SPS

Fig. 6. Impact of grid resolution (OSM dataset).

is higher, because it has to store blocks in multiple pieces and the overhead of
addressing these pieces causes an increase in query time.

Next, we repeat the same experiment, but for very high resolutions up to
300 · 109 cells. The results are shown in Fig. 7. Since for such high resolutions
both CPS and RPS exceeded the memory capacity of our server, we were not
able to run them; the memory usage in Fig. 7 is analytically computed, which
is easy for dense arrays. In contrast, SPS can be constructed in the order of
minutes and requires only 79 GB memory for the highest resolution, whereas
the other two approaches would require more than 2TB. The query time of SPS
remains roughly constant in the order of some microseconds.

0 100 200 300
100

1,000

2,000

grid cellsN [billions]

m
ai
n
m
em

or
y
[G

B
] CPS/RPS

SPS

0 100 200 300
0

20

40

60

grid cells N [billions]

co
ns
tr
uc
tio

n
tim

e
[m

in
s.
]

SPS

0 100 200 300
0

2

4

6

grid cellsN [billions]

qu
er
y
tim

e
[µ

s]

SPS

Fig. 7. Impact of a very high grid resolution (OSM dataset).

Impact of Dimensionality. Although we focus on low-dimensional data, for the
sake of completeness we analyze the behavior of the three approaches for higher-
dimensional data. We vary the number of dimensions in the ZIPF dataset,
keeping the number of grid cells constant at N = 268 ·106. The results are shown
in Fig. 8. For higher-dimensional data, the memory usage of SPS quickly reaches
the one of the competitors. This confirms our analytical results. The reason is
that the number of border cells increases drastically with higher dimensions, thus
a comparably much larger number of cells is materialized. The same observation
holds for the construction time. Since there is not much gain in the number
of non-materialized cells, the construction of the sparse representation is more
expensive than the dense representation. We could achieve a similar construction

Sparse Prefix Sums 133

2 3 4 5 6
0

1

2

3

4

data dimensionality d

m
ai
n
m
em

or
y
[G

B
] CPS/RPS

SPS

2 4 6

0

5

10

data dimensionality d

co
ns
tr
uc
tio

n
tim

e
[m

in
s.
]

CPS

RPS

SPS

2 4 6

0

10

20

30

data dimensionality d

qu
er
y
tim

e
[µ

s]

CPS

RPS

SPS

Fig. 8. Impact of dimensionality (ZIPF dataset).

Table 2. Storage costs, construction time and query time (HRSL datasets).

Data properties Storage Construction Query

Resolution Sparsity CPS/RPS SPS CPS RPS SPS CPS RPS SPS

South Africa 66612 × 45748 99.55% 22.7GB 1.7GB 52 s 197 s 52 s 0.3µs 0.5µs 1.4µs

Madagascar 28311 × 49159 99.78% 10GB 0.7GB 17 s 68 s 5 s 0.2µs 0.6µs 1.6µs

Burkina Faso 28521 × 20442 99.75% 4.3GB 0.5GB 7 s 35 s 5 s 0.2µs 0.6µs 1.4µs

Ivory Coast 23663 × 23147 99.77% 3.8GB 0.3GB 8 s 29 s 4 s 0.2µs 0.5µs 1.7µs

Ghana 17639 × 23151 99.64% 2.9GB 0.4GB 5 s 25 s 10 s 0.2µs 0.6µs 1.4µs

Malawi 11606 × 27931 99.44% 2.4GB 0.4GB 4 s 15 s 3 s 0.2µs 0.7µs 0.9µs

Sri Lanka 8757 × 14103 96.89% 0.9GB 0.3GB 2 s 6 s 4 s 0.2µs 0.5µs 1.3µs

Haiti 12473 × 7513 98.15% 0.6GB 0.1GB 1 s 3 s 1s 0.2 µs 0.6µs 1.0µs

time by first computing CPS or RPS and then deriving SPS. However, such an
approach would have the same intermediate memory requirements as CPS/RPS.

Gridded Real-World Data. In the last experiment, we compare all three tech-
niques on the eight real-world datasets in HRSL. The construction time, query
time and storage costs for each dataset together with the resolution and the spar-
sity are summarized in Table 2. To facilitate the comparison, the performance
measures are also plotted in Fig. 9. We can observe that the more sparse the
data is the better is the memory improvement of SPS over the competitors. For
instance, for the “South Africa” and “Madagascar” datasets, SPS not only yields

0 1 2 3
0

10

20

grid cellsN [billions]

m
ai
n
m
em

or
y
[G

B
] CPS/RPS

SPS

0 1 2 3

0

100

200

grid cells N [billions]

co
ns
tr
uc
tio

n
tim

e
[m

in
s.
]

CPS

RPS

SPS

0 1 2 3

0

5

10

grid cellsN [billions]

qu
er
y
tim

e
[µ

s]

CPS

RPS

SPS

Fig. 9. Impact of grid resolution (HRSL datasets).

134 M. Shekelyan et al.

huge reductions in memory consumption, but it has also a faster construction
time. For the query time we observe the same picture as in the previous experi-
ments, i.e., SPS is slower than the other approaches due to the storage of blocks
in multiple pieces, but all approaches have constant query times in the range of
some microseconds.

6 Conclusion and Future Work

In this paper, we presented the sparse prefix sum technique. The basic idea is to
start from relative prefix sums and then avoid materializing local rows/columns
that are equal to zero in the data array. This leads to an order of magnitude
reduction in storage costs for sparse low-dimensional arrays, while maintain-
ing constant query time and a comparable construction time. As a result, the
proposed approach makes it feasible to run microsecond-fast range sum queries
on consumer hardware at vastly higher resolutions than before. We also show
that, for high-precision grids based on satellite imagery, the approach reduces
the storage costs by an order of magnitude.

In future work, we want to apply the proposed technique to dynamic data
summaries and investigate how the approach can be improved to better deal
with more data dimensions.

References

1. Facebook Connectivity Lab, Center for International Earth Science Information
Network - CIESIN - Columbia University 2016. High Resolution Settlement Layer
(HRSL). Source imagery for HRSL c© 2016 DigitalGlobe. http://www.ciesin.
columbia.edu/data/hrsl/. Accessed 01 Mar 2017

2. Agarwal, P.K., Erickson, J., et al.: Geometric range searching and its relatives.
Contemp. Math. 223, 1–56 (1999)

3. Bengtsson, F., Chen, J.: Space-efficient range-sum queries in OLAP. In:
Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181,
pp. 87–96. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30076-2 9

4. Chan, C.Y., Ioannidis, Y.E.: Hierarchical prefix cubes for range-sum queries. In:
VLDB, pp. 675–686 (1999)

5. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Com-
put. 15(3), 703–724 (1986)

6. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

7. Chun, S., Chung, C., Lee, S.: Space-efficient cubes for OLAP range-sum queries.
Decis. Support Syst. 37(1), 83–102 (2004)

8. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational
geometry. Computational Geometry, pp. 1–17. Springer, Heidelberg (2000). doi:10.
1007/978-3-662-04245-8 1

9. Geffner, S., Agrawal, D., Abbadi, A.: The dynamic data cube. In: Zaniolo, C.,
Lockemann, P.C., Scholl, M.H., Grust, T. (eds.) EDBT 2000. LNCS, vol. 1777, pp.
237–253. Springer, Heidelberg (2000). doi:10.1007/3-540-46439-5 17

http://www.ciesin.columbia.edu/data/hrsl/
http://www.ciesin.columbia.edu/data/hrsl/
http://dx.doi.org/10.1007/978-3-540-30076-2_9
http://dx.doi.org/10.1007/978-3-662-04245-8_1
http://dx.doi.org/10.1007/978-3-662-04245-8_1
http://dx.doi.org/10.1007/3-540-46439-5_17

Sparse Prefix Sums 135

10. Geffner, S., Agrawal, D., El Abbadi, A., Smith, T.R.: Relative prefix sums: an
efficient approach for querying dynamic OLAP data cubes. In: ICDE, pp. 328–335
(1999)

11. Ho, C., Agrawal, R., Megiddo, N., Srikant, R.: Range queries in OLAP data cubes.
In: SIGMOD Conference, pp. 73–88 (1997)

12. Kang, H., Min, J., Chun, S., Chung, C.: A compression method for prefix-sum
cubes. Inf. Process. Lett. 92(2), 99–105 (2004)

13. Liang, W., Wang, H., Orlowska, M.E.: Range queries in dynamic OLAP data cubes.
Data Knowl. Eng. 34(1), 21–38 (2000)

14. Riedewald, M., Agrawal, D., El Abbadi, A.: pCUBE: update-efficient online aggre-
gation with progressive feedback and error bounds. In: SSDBM, pp. 95–108 (2000)

15. Riedewald, M., Agrawal, D., El Abbadi, A.: Dynamic multidimensional data cubes.
In: Multidimensional Databases, pp. 200–221 (2003)

16. Riedewald, M., Agrawal, D., Abbadi, A.E., Pajarola, R.: Space-efficient data cubes
for dynamic environments. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.)
DaWaK 2000. LNCS, vol. 1874, pp. 24–33. Springer, Heidelberg (2000). doi:10.
1007/3-540-44466-1 3

17. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electr. Notes Theor. Comput. Sci. 61, 191–200 (2002)

18. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple
features. In: CVPR (1), pp. 511–518 (2001)

http://dx.doi.org/10.1007/3-540-44466-1_3
http://dx.doi.org/10.1007/3-540-44466-1_3

Targeted Feedback Collection Applied
to Multi-Criteria Source Selection

Julio César Cortés Ŕıos(B), Norman W. Paton, Alvaro A.A. Fernandes,
Edward Abel, and John A. Keane

School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

juliocesar.cortesrios@manchester.ac.uk

Abstract. A multi-criteria source selection (MCSS) scenario identifies,
from a set of candidate data sources, the subset that best meets a user’s
needs. These needs are expressed using several criteria, which are used
to evaluate the candidate data sources. A MCSS problem can be solved
using multi-dimensional optimisation techniques that trade-off the differ-
ent objectives. Sometimes we may have uncertain knowledge regarding
how well the candidate data sources meet the criteria. In order to over-
come this uncertainty, we may rely on end users or crowds to annotate the
data items produced by the sources in relation to the selection criteria. In
this paper, we introduce an approach called Targeted Feedback Collec-
tion (TFC), which aims to identify those data items on which feedback
should be collected, thereby providing evidence on how the sources sat-
isfy the required criteria. TFC targets feedback by considering the confi-
dence intervals around the estimated criteria values. The TFC strategy
has been evaluated, with promising results, against other approaches to
feedback collection, including active learning, using real-world data sets.

Keywords: Data integration · Source selection · Feedback collection ·
Pay-as-you-go · Multi-objective optimisation

1 Introduction

The number of available data sources is increasing at an unprecedented rate [8].
Open data initiatives and other technological advances, like publishing to the
web of data or automatically extracting data from tables and web forms, are
making the source selection problem a critical topic. In this context, it is crucial
to select those data sources that satisfy user requirements on the basis of well-
founded decisions.

Regarding the properties that the data sources must exhibit, there have been
studies of the source selection problem considering specific criteria, such as accu-
racy, cost and freshness [5,18]. In this paper, we deploy a multi-criteria approach
that can be applied to diverse criteria in order to accommodate a wider variety
of user requirements and preferences, while considering the trade-off between

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 136–150, 2017.
DOI: 10.1007/978-3-319-66917-5 10

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 137

the required criteria. In this approach, from a collection of sources, S, the prob-
lem is to identify a subset of the sources S′ from which R data items can be
obtained that reflect the user’s preferences. These preferences are represented by
a collection of weighted criteria; for example, the criteria could be of the form
accuracy:0.4, freshness:0.3, relevance:0.3, indicating that freshness and relevance
are of equal importance to the user, and that accuracy is more important still.

To solve the multi-dimensional source selection problem, where each dimen-
sion represents a different criterion relating to the data sources, a multi-
dimensional optimisation technique is used to provide a solution that takes into
account the user’s preferences (represented as weights) in relation to the criteria.
This Multi-Criteria Source Selection problem (MCSS) has been addressed before
(e.g. [16,17]). This paper addresses the MCSS problem using an approach where
the objective is to retrieve an optimal number of items from each supplier given
the weighted criteria [21] that model a user’s requirements.

To inform the source selection process, where criteria estimates are likely to
be unreliable, we need to annotate the candidate data sources to obtain their
criteria values; this is an essential step, as we need to know how each source
scores for each criterion. Given that there may be many sources and criteria, the
source annotation process can become expensive. In this paper, we focus on pay-
as-you-go approaches, and collect feedback in the form of true and false positive
annotations on data items, that indicate whether or not these data items satisfy
a specific criterion. Such feedback could come from end users or crowd workers,
and has been obtained in previous works [1,2,7,19].

Having an efficient way to collect the feedback required to improve our knowl-
edge of the data sources is important, as there are costs involved. Hence, we need
to carefully identify the data items on which to ask for feedback in order to max-
imise the effect of the new evidence collected, and to minimise the amount of
feedback we need to collect. Some recent work has focused on targeting feed-
back, especially in crowdsourcing (e.g. [4,9,14]); here we complement such work
by providing an approach to feedback collection for multi-criteria source selec-
tion.

In this paper, we build upon the same statistical foundation as [19], which also
targets feedback in a way that takes into account the margins of error in criteria
estimates. However, in [19] the approach targeted feedback in a setting where
there was a trade-off between two fixed criteria (precision and recall), which was
explored using single-dimensional, constrained optimisation. In contrast, here
there may be arbitrary numbers of criteria, these criteria are weighted, and the
search for solutions involves multi-dimensional, constrained optimisation. So, in
comparison with [19], the problem solved in this paper is harder in the sense
that a solution must satisfy a variable number of weighted criteria of different
types (and not only in terms of data quality).

The following contributions are reported in this paper: (i) a strategy for
targeted feedback collection for use with MCSS in which there are arbitrary
numbers of weighted criteria; (ii) an algorithm that implements the strategy,
using the confidence intervals around the criteria estimates to identify those

138 J.C. Cortés Ŕıos et al.

sources that require more feedback to improve the results of MCSS; and (iii)
an experimental assessment of our approach using real-world data to show that
TFC can consistently and considerably reduce the amount of feedback required
to achieve high-quality solutions.

2 Problem Description

MCSS is a complex problem when the number of criteria is large and the user
can declare preferences over these criteria. Concretely, the MCSS problem can be
defined as: given a set of candidate sources S = {s1, . . . , sm}, a set of user criteria
C = {c1, . . . , cn} with weights W = {w1, . . . , wn}, and a target number of data
items R, identify a subset S′ of S that satisfies the requirements expressed by
the user while maximising the combined criteria. The solution is presented as a
collection X with m elements, indicating how many data items each source in S
contributes to the solution. Sources in S \ S′ do not contribute.

Fig. 1. Multi-criteria data source selection without (a) and with (b) uncertainty.

Consider the example presented in Fig. 1(a), in which there are 10 data
sources S = {A,B,C,D,E, F,G,H, I, J}, and 2 data property criteria to bal-
ance: relevance (c1) and correctness (c2) with the following weights W = {w1 =
0.5, w2 = 0.5}. The user requires a particular number of data items (R) from a
subset of sources in S that maximise both criteria and reflect the weights W (in
this case, the user considers the two criteria to be of identical importance).

This problem can be solved by using linear programming or other multi-
dimensional optimisation techniques. In our case, we are considering an addi-
tional factor, the presence of uncertainty in the source criteria estimates. This
uncertainty is caused by incomplete evidence, and can be reduced by annotating
data items produced by each source to determine if they satisfy the conditions
for each criterion. We developed the TFC strategy to identify the data items
that reduce this uncertainty to support better solutions for the MCSS problem.

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 139

To solve the MCSS problem we can apply an optimisation technique, such
as that presented in Subsect. 3.3, and obtain a solution X which is a vector
containing the values of the decision variables x after the optimisation for all
the sources. This solution indicates how many data items each data source
from S contributes. In Fig. 1(a) we draw a line to highlight the sources in
S′ = {A,C,D,E, J}, that in our example contribute data items to the solution.

We now consider the case where we have uncertain knowledge about the
criteria values. This brings an even more complex problem. In Fig. 1(b), instead
of dots representing the data sources in the multi-criteria space, we have bi-
dimensional intervals representing the uncertainty around each source’s criteria
values. The real criterion value may be expected to lie within this area, but, in
the absence of more evidence, we do not know exactly where. Therefore, now the
question is: how can we cost-effectively select data items to collect feedback on, in
order to reduce the uncertainty in a way that benefits the optimisation technique
in solving the MCSS problem? We propose TFC, an approach that minimises
the number of data items on which we need to collect feedback and determines
the point beyond which the collection of more feedback can be expected to have
no effect on which sources were selected.

3 Technical Background

3.1 Data Criteria

A data criterion is a metric that can be applied to a data set to evaluate how
the data set fares on that criterion. There are many different criteria that can be
applied to the data source selection problem. For instance, in [15,17] accuracy
(degree of correctness) and freshness (how recent is the information) were used.

In this paper, we evaluate the estimated value of a data criterion ĉ as the
ratio between the elements satisfying the notion for a given metric (and for
which feedback has been collected) or true positives, tp, and all the elements
that have been annotated (which is the sum of the true and false positives, fp).
For example, to evaluate the relevance of a source we divide the number of
relevant data items over the total number of data items labelled for that source.
We use the following formula to compute the ratio of expected data items over
all the data items on which feedback has been collected for a source s:

ĉs =
|tps|

|tps| + |fps| (1)

3.2 Confidence Interval, Overlap and Sample Size

Our strategy is based on classifying the candidate sources into those that are suit-
able (given a collection of data criteria) to include in a solution, and those sources
that are not. This classification is done by analysing the overlapping of the con-
fidence intervals around the criteria value estimates for each source. A confi-
dence interval is the range formed by flanking the estimated value (based on the

140 J.C. Cortés Ŕıos et al.

available evidence or feedback) with a margin of error for a required confidence
level and represents the space in which the true value is expected to be contained.
This confidence interval is associated with a given confidence level, which is the
percentage of all possible samples that can be expected to include the real value.
Following this definition, the larger the number of data items we have labelled
for a source, the greater the confidence in the estimated values, and hence, the
smaller the confidence intervals around these estimates. We use the following
formulae to compute the confidence intervals for a source s [3] (assuming the
data is normally distributed as the real distribution is unknown):

ses =

√
ĉs · (1 − ĉs)

Ls
(2)

fpcs =
√

Ts − Ls

Ts − 1
(3)

es = zcL · ses · fpcs (4)

To compute the upper and lower bounds of the confidence interval we have:

upCI = min(ĉs + es, 1.0) (5)

lowCI = max(ĉs − es, 0.0) (6)

where s is a source in the set of candidate data sources S, ses is the standard
error, fpcs is the finite population correction factor used to accommodate data
sources of any size assuming that they have a finite number of data items, Ls is
the number of feedback instances collected for s, Ts is the total number of data
items produced by s, ĉs is the estimated data criterion, and lowCI and upCI are
the lower and upper bounds of the confidence interval, respectively. The result
is the margin of error es around our estimate, e.g. ĉs ± es, for a given confidence
level cL and its corresponding z–score zcL.

An important part of our strategy relies on the confidence intervals surround-
ing the criteria estimates for each source, and how these confidence intervals
overlap. The approach [10] is to determine not only if two confidence intervals
overlap, but also the amount of overlapping. Analysis of this overlapping helps
in determining whether two intervals are significantly different or else can be
considered as equivalent. In our approach we only consider intervals which are
significantly overlapping, i.e. if the values are significantly different (thereby pro-
viding strong evidence). The estimated values are significantly different if:

ĉs1 − ĉs2 > zcL ·
√

se2s1 + se2s2 , (7)

and there is no overlap between confidence intervals if:

ĉs1 − ĉs2 > zcL · (ses1 + ses2). (8)

The TFC strategy uses the notion of sampling size to compute the number
of data items required to obtain a representative sample of the entire population

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 141

given a confidence level and a margin of error. Feedback on the sample elements is
then obtained to establish an initial understanding of the underlying data quality.
The sample size sS for a finite population T [6,12] is also used to estimate the
number of elements required during each feedback collection episode:

sST =
ssInf

1 + ssInf−1
|T |

(9)

which is based on the formula for the sample size of a very large (infinite) pop-
ulation for a given margin of error e and a desired confidence level cL:

ssInf =
z2cL · (ĉs · (1 − ĉs))

e2
(10)

3.3 Multi-criteria Optimisation

Regarding the multi-dimensional or multi-criteria optimisation techniques, we
consider that the data criteria are evaluated using linear functions and there-
fore linear-programming techniques can be used to find the optimal solution
that balances all the criteria and user preferences (represented as weights). To
solve the optimisation problem, we have selected Min-sum, a Multi-objective lin-
ear programming (MOLP) algorithm, whose objective is to maximise the over-
all weighted utility of the solution considering the minimum deviation λ from
the objectives, and the trade-off between all the objectives. This can be repre-
sented as a linear programming problem with a collection of objective functions
Z and their associated constraints, and the general goal of maximising the over-
all weighted utility of the solution. The solution is represented as the vector X
containing the values of all the decision variables x after the optimisation.

First we need to obtain the ideal Z∗
k and negative ideal Z∗∗

k solutions (best
and worst possible solutions respectively) for each criterion k by using single
objective optimisation. These solutions are found by optimising each criterion
with respect to the following single objective function Z:

Zk =

m∑
i=1

xi · ĉksi

R
k = 1, 2, . . . , n, (11)

where m is the number of candidate sources available, n is the number of user
criteria, xi is the number of data items used from source si, ĉksi

is the value of
the criterion k for source si, and R is the number of data items requested.

The objective function in Eq. 11 is solved as both maximisation and minimi-
sation objective functions for each criterion k. These functions are constrained
as follows. The number of data items chosen from each source in S, xi, cannot
exceed the maximum number of data items |s| produced by that source:

xi ≤ |si| i = 1, 2, . . . ,m (12)

142 J.C. Cortés Ŕıos et al.

The total number of data items chosen must equal the amount requested:

m∑
i=1

xi = R (13)

And the minimum value for the decision variables x is 0 (non-negativity):

xi ≥ 0 i = 1, 2, . . . ,m (14)

The ideal and negative ideal solutions for each criterion k are then computed to
obtain the range of possible values. These solutions, along with the constraints
from Eqs. 12–14, and the user preference weights w are used to find a solution
that minimises the sum of the criteria deviations. Each per-criterion deviation
measures the compromise in a solution with respect to the corresponding ideal
value given the user weights.

The weighted deviation for each criterion Dk is computed by comparing how
far the current solution is from the ideal solution, as follows:

Dk =
wk · (Z∗

k − Zk)
Z∗
k − Z∗∗

k

k = 1, 2, . . . , n, (15)

And finally, the optimisation model consists in minimising the sum of criteria
deviations λ (measure of the overall deviation from the objective) by considering
the constraints in Eqs. 12–15 as follows:

min λ, λ = D1 + D2 + . . . + Dn, (16)

4 Targeting Feedback Using Multi-dimensional
Confidence Intervals

We now define the TFC strategy. Consider the MCSS example problem described
in Sect. 2, where the goal is to select, from the available candidates, the data
sources that provide the maximum combined relevance and correctness. For this
goal, some budget was allocated to fund feedback on b data items. We assume
no up-front knowledge of the relevance or correctness.

To solve this problem, we need some initial estimates about the values of the
criteria for the candidate data sources as shown in Fig. 1(b). We obtain these
by collecting feedback on a representative random sample of data items (Eq. 9).
To compute the criteria estimates, we use Eq. 1, and calculate the associated
margin of error with Eqs. 4, 5 and 6, to obtain the confidence intervals for each
criterion for each data source as shown in Fig. 2(a).

Given these initial estimates, we address the goal of finding the combina-
tion of sources that maximises the desired criteria (relevance and correctness in
the example) while considering the trade-off between them. We can formulate
this objective as a Min-sum model using Eq. 16 with the criteria estimates as
our coefficients and the number of data items from each source as the decision

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 143

variables. Min-sum then finds the combination of data items returned by each
source that yields the maximum overall weighted utility oU for the optimisation
goal (maximum combined relevance and correctness).

By applying Min-sum over the candidate sources, we find the subset of sources
forming a non-dominated solution Ss = {A,C,D,G, J}. This preliminary solu-
tion is illustrated in Fig. 2(a). In the same figure, a different subset of sources
So = {B,E, I} is identified that are not part of Ss but that have confidence
intervals for the optimisation criteria that overlap with sources in Ss (graphi-
cally, the areas defined by the confidence intervals of B, E and I overlap those
defined by the the confidence intervals of the sources in the non-dominated solu-
tion, whereas F and H do not). This overlap is computed using Eqs. 7 and 8.
It suggests that, in addition to the sources in the non-dominated solution, we
need to collect more feedback on B, E, and I in order to decide whether they
belong to the solution or not. Our strategy then collects more feedback on a
new set, S′ = Ss ∪ So = {A,B,C,D,E,G, I, J}. The sources in S′ benefit from
additional feedback either by reducing the uncertainty as to whether or not they
should contribute to the solution, or by refining their criteria estimates.

Having decided on the data sources we need to collect more feedback on, we
determine how much feedback should be obtained. This is obtained with Eq. 9,
which computes the sample size over a population which, in this case, are the
unlabelled data items produced by all the sources in S′.

Having decided on the number of data items that we need to collect feedback
on, we collect the feedback and use it to refine our criteria estimates; this is
done by recalculating the estimates and margin of error for each criterion for
each source. We follow this approach for the sources which are either part of a
preliminary solution or are candidates to become part of the solution.

This refinement continues while we have enough budget b for additional feed-
back collection, there is still some overlap between the confidence intervals of
sources contributing to the solution and those from non-contributing sources,
and there are still unlabelled data items.

It is important to notice that in Fig. 2(a), some sources are not considered
for further feedback collection (viz., F and H), since their confidence intervals
do not overlap with those of any of the sources contributing to the solution, and
therefore, they have no statistical possibility of being part of it, unless there is a
need for more data items than those produced by sources in S′. By filtering out
these outliers, TFC focuses on those sources that can be part of the solution.

The strategy leads to a state where the confidence intervals for sources in the
solution do not overlap with the intervals of other sources, as shown in Fig. 2(b).
The result is a solution with low error estimates and a set of data sources that
were excluded from additional feedback collection as they have a low likelihood
of being part of an improved solution.

An important feature of our strategy is that it can be applied to problems
with multiple criteria, varied user preferences (weights) for each criterion, and
over a large number of data sources of variable size and quality.

144 J.C. Cortés Ŕıos et al.

Fig. 2. Confidence intervals with overlapping (a) and without overlapping (b)

5 Algorithm

In this section, we describe our algorithm for the TFC strategy applied to the
MCSS problem. The pseudo-code for the algorithm is given in Fig. 3.

The inputs for the algorithm are: S: the collection of sources from which we
need to select a subset that together satisfy the user requirements considering
the criteria and specific preferences; C: the collection of criteria modelled as
described in Subsect. 3.1; U : the set of unlabelled data items produced by sources
in S; W : the collection of criteria weights representing the user’s preferences; b:
the allocated budget for the total number of items on which feedback can be
obtained; R: the total number of user requested data items; and for statistical
estimations cL: the confidence level; and e: the initial margin of error. The output
is a vector X with the number of data items each source contributes.

To solve the MCSS problem, based on the criteria estimates refined by our
TFC approach, we first need to obtain the sample size for the number of data
items that need to be annotated to achieve a statistically representative view of
all candidate data items (line 3). We compute this sample size with Eq. 9 using
the number of unlabelled data items produced by sources in S′ to represent
the sample population. The confidence level and margin of error determine the
sample size of the data items on every source.

The function collectFeedback (line 4) represents the feedback collection
process, which takes as arguments the set of sources considered for feedback
S′, the set of unlabelled data items U , and the number of additional data items
on which feedback is required sS. This function randomly selects from U at most
sS data items on which feedback needs to be collected. The remaining budget is
updated accordingly depending on the number of data items identified (line 5).

The criteria values can be estimated for each candidate data source in S once
the feedback is collected and assimilated. The function estCriteriaValues (line 6)
uses the candidate data sources S, the sets of labelled and unlabelled data items
L and U , the collection of criteria C, and a given confidence level and margin
of error cL and e, to compute the collection of estimated criteria values Ĉ for

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 145

each data source. These estimates rely on the data items already labelled and
are computed with Eq. 1, as described in Subsect. 3.1. The estimates obtained
are used to build the confidence intervals (Eqs. 5 and 6) around each criterion
estimate (and for each source), by computing the margin of error with Eq. 4.
The confidence intervals are then analysed for overlapping one dimension at a
time. We follow this approach to handle multiple dimensions without consid-
ering simultaneously for the statistical computations. An example of how the
confidence intervals may look at this early stage of the process is shown in Fig. 1
from Sect. 2, where there is high overlapping between the confidence intervals
and no clear candidate sources.

Fig. 3. TFC algorithm

At this point, with initial esti-
mated criteria values for all the candi-
date sources, the MCSS problem can
be solved by applying an optimisa-
tion model as described in Subsect. 3.3
(Min-sum) to obtain a solution that
maximises the overall weighted utility
oU . The solveMCSS function (line 7)
represents this step and requires the
collection of candidate data sources S,
the set of estimated criteria Ĉ, the set
of weights representing the user pref-
erences W , and the total number of
user requested data items R. The out-
put from this optimisation is a vector
X with the number of data items each
candidate source contributes. The set
S′ is initialised before processing the
candidate sources (line 8).

Having the confidence intervals for
each criterion and data source, and
the sources that contribute to a preliminary solution X, we can analyse the
overlap between these intervals. This analysis is performed in the isSignificantly-
Overlapping function (line 12), which is called with the estimate for each criterion
c in C applied to each data source s in S. The function also requires the solution
for the MCSS problem X to determine which intervals from sources contributing
to the solution significantly overlap with intervals from non-contributing sources.
The overlapping analysis uses the concepts defined in Subsect. 3.2, in particular
Eqs. 7 and 8 to determine if two intervals are significantly overlapping or not.
As we evaluate this overlapping at source level (not criterion level), when at
least one criterion is evaluated with significant overlap the source s is therefore
considered for feedback collection (condition: or oL in line 12).

The next step is for each source contributing to the solution or for each non-
contributing source that has some significant overlap with sources contributing
to the solution (line 14), to be added to the set S′ which holds the sources on

146 J.C. Cortés Ŕıos et al.

which feedback needs to be collected (line 15). S′ is used in the next cycle to
compute a new sample size sS over the remaining unlabelled data items. After
a few rounds of feedback collection the scenario can be as in Fig. 2(a), where
there is still some overlapping but the sources contributing to the solution are
now mostly identified.

The iteration continues while any of the following conditions hold (line 2): (i)
There is overlapping between confidence intervals of sources that contribute to
the solution and sources that do not contribute. (ii) The number of data items
on which to collect additional feedback obtained by using Eq. 9 is greater than
zero. In other words, we have still some data items left for feedback collection.
(iii) The remaining budget b is greater than zero.

When the loop exits, the solution X (line 19) is in the form of a collection of
counts of the number of data items to be used from each candidate source in S.
Figure 2(b) presents a potential image at this stage, where no overlapping exists
between confidence intervals of sources contributing and not contributing to the
solution. Note that when the loop exists because there is no longer any overlap
between the confidence intervals of sources that contribute to the solution and
sources that do not contribute, this indicates that the selected sources should not
change if additional feedback is collected. This is, thus, a well-founded approach
to deciding when additional feedback is unlikely to be fruitful.

6 Evaluation: TFC vs. Random and Uncertainty
Sampling

In this section we present the experimental results for evaluating the TFC strat-
egy against two competitors: random and uncertainty sampling. Random acts
as a baseline. Uncertainty sampling is a general technique that is applicable to
the setting we are exploring. To the best of our knowledge there are no specific
contributed solutions to this problem in the research literature.

The random sampling does not target specific data items for feedback. This
baseline competitor considers, as candidates for feedback, all unlabelled items
produced by the sources, providing an even distribution of the feedback collected.

Uncertainty sampling is a technique that follows the active learning paradigm,
which is based on the hypothesis that if a learning algorithm is allowed to choose
the information from which it is learning then it will perform better and with
less training [20]. In the uncertainty sampling technique, an active learner poses
questions to an oracle over the instances for which it is less certain of the correct
label [11]. Often the uncertainty is represented by a probabilistic model that
represents the degree of uncertainty we have in the instances. In this paper,
the uncertainty is represented by a heuristic that considers the weights of the
criteria and the margins of error for the estimated criterion of a source. Feedback
is collected first on those data items whose originating source has the largest
margin of weighted error, thus taking into account the importance the user
places on the criterion. The uncertainty is computed using this formula

ut = max(w(ĉks
) · e(st, ĉks

)); k = 1, 2, . . . , n (17)

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 147

where t is a data item produced by the source s, u is the uncertainty value on
which the items are ranked, w is the data criterion weight, e is the margin of error
(Eq. (4)), ĉks

is the data criterion, and n is the number of criteria. For feedback
collection we target first those items with the highest uncertainty, considering
all criteria and candidate sources.

6.1 Experimental Setup

The evaluation uses a data set about food (world.openfoodfacts.org/data). This
data set contains nutritional information about world food products in an open
database format. The information has been gradually collected from vendor’s
websites and added to the database by unpaid contributors. An additional data
set (about UK real estate data) was used to evaluate our approach but since the
results were very similar to those presented here, we have not included them as
well.

For these experiments, we consider 86,864 different data items produced by
117 virtual sources (where each virtual source represents a contributor to the
database). Each data item has the following attributes: code, url, creator, prod-
uct name, quantity, origins, countries, serving size, additives, nutrition score; all
of which were stored as text strings. The targeting approaches were tested with
2, 4 and 6 data criteria, and varied weights among them (user’s preferences).
The data criteria considered were (in order): correctness, relevance, usefulness,
consistency, conciseness and interpretability. The weights corresponding to each
tested scenario and for each data criterion are presented in Table 1.

Table 1. Criteria weights for experimental scenarios

2 criteria (w1) 4 criteria (w2) 6 criteria (w3)

Accuracy (c1) 0.5 0.4 0.3

Relevance (c2) 0.0 0.2 0.1

Usefulness (c3) 0.0 0.1 0.2

Consistency (c4) 0.5 0.3 0.1

Conciseness (c5) 0.0 0.0 0.2

Interpretability (c6) 0.0 0.0 0.1

The experiments were repeated 20 times to reduce the fluctuations due to
the random sampling, and the average values were reported. All the statistical
computations assume that the data for every source is normally distributed, and
are based on a 95% confidence level (z − score = 1.96) with an error of 0.05.

For these experiments, the feedback collected is simulated by sampling over
the ground truth, in order to evaluate the performance of the approaches with-
out considering additional factors like worker reliability in crowdsourcing [13].

http://www.world.openfoodfacts.org/data

148 J.C. Cortés Ŕıos et al.

The ground truth was obtained by modelling a typical user’s intention over the
food data and evaluating this intention across the 6 data criteria in Table 1.

In these experiments, we evaluate the maximum overall weighted utility oU
by applying the Min-sum model from Eq. 16 to solve the MCSS problem. oU is
a measure of the utility of a solution considering the user’s preferences.

6.2 Results

The plots presented in Fig. 4 show the oU for the 3 targeting strategies compared
on 3 different scenarios for which the weights are given in Table 1.

In Fig. 4(a) we compare the averaged oU for the 3 targeting strategies with
incremental levels of feedback for 2 criteria. The dotted line represents a reference
solution achieved without uncertainty (100% of the data items labelled). In these
results, TFC found a solution above 0.8 oU with only 2.5% of the data items
labelled, in comparison with 0.32 and 0.43 oU achieved by the random and
uncertainty sampling approaches, respectively, for the percentage of feedback
collected. As this scenario considers only 2 criteria (W1) the solution is hard
to find, because the number of potential solutions is larger than when we have
more criteria to balance, in other words, if the number of constraints increases (by
having more criteria to select the data items), the number of potential solutions
decreases which, in turn, reduces the complexity of the optimisation problem.

In Fig. 4(b) TFC still clearly outperforms its competitors, in a scenario with 4
data criteria. The averaged overall weighted utility oU for the reference solution
is not as high as in the previous scenario due to the reduction in the number of
potential solutions, which is caused by imposing more restrictions (more criteria)
in the optimisation problem. This reduces the difference between the 3 strategies
but, even so, TFC reaches the reference solution with 6% of the data items
labelled while the other approaches have reached barely above the half of the
reference oU at the same point. In terms of the improvement, by using TFC
the solution, with 2.5% of labelled data items, has 0.7 oU , while random and
uncertainty sampling achieve 0.33 and 0.39 respectively.

Figure 4(c) shows the averaged oU for the scenario with 6 criteria. In this case,
as we increase even more the number of constraints, the optimisation algorithm
finds solutions with lower combined oU hence the smaller difference between the
3 strategies. The advantage of the TFC approach is smaller but it still reaches
the reference solution with less feedback than the competitors. For instance, with
2% of labelled data items, TFC allows a solution with oU of 0.6, compared with
0.31 and 0.39 for random and uncertainty sampling respectively.

In the three figures described, the return on investment is clearly favourable
for the TFC approach as the overall weighted utility oU of the solution achieved
by solving the MCSS problem is always larger with TFC, particularly for small
amounts of feedback, which is aligned to the objective of reducing the feedback
required to obtain effective when following a pay-as-you-go approach.

Targeted Feedback Collection Applied to Multi-Criteria Source Selection 149

Fig. 4. Results summary for MCSS experiments for (a) 2, (b) 4, and (c) 6 criteria.

7 Conclusions

This paper presented TFC, a strategy for targeting data items for feedback,
to enable cost-effective MCSS. TFC was developed to address the problem of
incomplete evidence about the criteria that inform source selection. Key features
of the approach are that: (i) Feedback is collected in support of multi-criteria
optimisation, in a way that takes into account the impact of the uncertainty on
the result of the optimisation. (ii) Feedback is collected not for individual sources
in isolation, but rather taking into account the fact that the result is a set of
sources. (iii) Feedback is collected on diverse types of criteria, of which there
may be an arbitrary number, and user preferences in the form of weights are
taken into account during the targeting. (iv) Feedback collection stops when the
collection of further feedback is expected not to change which sources contribute
to a solution (i.e. there is no significant overlap between the criteria estimates for
the selected and rejected sources). (v) Experimental results, with real world data,
show substantial improvements in the cost-effectiveness of feedback, compared
with a baseline (random) solution and an active learning technique. Future work
will evaluate the TFC approach using feedback collected using crowdsourcing,
and under a complex and well-known problem domain, i.e. supplier selection.

Acknowledgement. Julio César Cortés Ŕıos is supported by the Mexican National
Council for Science and Technology (CONACyT). Data integration research at
Manchester is supported by the UK EPSRC, through the VADA Programme Grant.

References

1. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A.A., Hedeler, C.:
Incrementally improving dataspaces based on user feedback. Inf. Syst. 38(5), 656–
687 (2013)

2. Bozzon, A., Brambilla, M., Ceri, S.: Answering search queries with crowdsearcher.
In: WWW 2012, Lyon, France, pp. 1009–1018, 16–20 April 2012

3. Bulmer, M.G.: Principles of Statistics. Dover Publications, New York (1979)

150 J.C. Cortés Ŕıos et al.

4. Crescenzi, V., Merialdo, P., Qiu, D.: Crowdsourcing large scale wrapper inference.
Distrib. Parallel Databases 33(1), 95–122 (2015)

5. Dong, X.L., Saha, B., Srivastava, D.: Less is more: selecting sources wisely for
integration. PVLDB 6(2), 37–48 (2012)

6. Foley, D.H.: Considerations of sample and feature size. IEEE Trans. Inf. Theor.
18(5), 618–626 (1972)

7. Franklin, M., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: Crowddb: answering
queries with crowdsourcing. In: ACM SIGMOD, pp. 61–72 (2011)

8. Halevy, A., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.:
Goods: organizing google’s datasets. In: ACM SIGMOD, pp. 795–806 (2016)

9. Hung, N.Q.V., Thang, D.C., Weidlich, M., Aberer, K.: Minimizing efforts in vali-
dating crowd answers. In: SIGMOD, Australia, pp. 999–1014 (2015)

10. Knezevic, A.: Overlapping confidence intervals and statistical significance. Stat-
News, Cornell University, Cornell Statistical Consulting Unit 73 (2008)

11. Lewis, D.D., Gale, W.A.: A sequential algorithm for training text classifiers. In:
ACM-SIGIR, pp. 3–12 (1994)

12. Lewis, J.R., Sauro, J.: When 100% really isn’t 100%: improving the accuracy of
small-sample estimates of completion rates. JUS 3(1), 136–150 (2006)

13. Liu, X., Lu, M., Ooi, B.C., Shen, Y., Wu, S., Zhang, M.: CDAS: a crowdsourcing
data analytics system. PVLDB 5(10), 1040–1051 (2012)

14. Mozafari, B., Sarkar, P., Franklin, M.J., Jordan, M.I., Madden, S.: Scaling up
crowd-sourcing to very large datasets: a case for active learning. PVLDB 8(2),
125–136 (2014)

15. Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM
45(4), 211–218 (2002). Supporting community and building social capital, USA

16. Rekatsinas, T., Deshpande, A., Dong, X.L., Getoor, L., Srivastava, D.: Sourcesight:
enabling effective source selection. In: SIGMOD Conference, San Francisco, CA,
USA, pp. 2157–2160 (2016). http://doi.acm.org/10.1145/2882903.2899403

17. Rekatsinas, T., Dong, X.L., Getoor, L., Srivastava, D.: Finding quality in quantity:
the challenge of discovering valuable sources for integration. In: CIDR (2015)

18. Rekatsinas, T., Dong, X.L., Srivastava, D.: Characterizing and selecting fresh data
sources. In: SIGMOD, pp. 919–930 (2014)

19. Ŕıos, J.C.C., Paton, N.W., Fernandes, A.A.A., Belhajjame, K.: Efficient feedback
collection for pay-as-you-go source selection. In: SSDBM, pp. 1:1–1:12 (2016)

20. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114
(2012)

21. Ting, S.C., Cho, D.I.: An integrated approach for supplier selection and purchasing
decisions. Supply Chain Manag. Int. J. 13(2), 116–127 (2008)

http://doi.acm.org/10.1145/2882903.2899403

Graph Databases

Cost Model for Pregel on GraphX

Rohit Kumar1,2(B), Alberto Abelló2, and Toon Calders1,3

1 Department of Computer and Decision Engineering,
Université Libre de Bruxelles, Brussels, Belgium

rohit.kumar@ulb.ac.be
2 Department of Service and Information System Engineering,

Universitat Politécnica de Catalunya (BarcelonaTech), Barcelona, Spain
3 Department of Mathematics and Computer Science, Universiteit Antwerpen,

Antwerp, Belgium

Abstract. The graph partitioning strategy plays a vital role in the over-
all execution of an algorithm in a distributed graph processing system.
Choosing the best strategy is very challenging, as no one strategy is
always the best fit for all kinds of graphs or algorithms. In this paper, we
help users choosing a suitable partitioning strategy for algorithms based
on the Pregel model by providing a cost model for the Pregel implemen-
tation in Spark-GraphX. The cost model shows the relationship between
four major parameters: (1) input graph (2) cluster configuration (3) algo-
rithm properties and (4) partitioning strategy. We validate the accuracy
of the cost model on 17 different combinations of input graph, algorithm,
and partition strategy. As such, the cost model can serve as a basis for
yet to be developed optimizers for Pregel.

1 Introduction

Large graphs with millions of nodes and billions of edges are becoming quite
common now. Social media graphs, road network graphs, and relationship graphs
between buyers and products are some of the examples of large graphs gener-
ated and processed regularly [3]. With the increase in size of these graphs, the
classical approach of graph processing is becoming insufficient [7,8]. Hence, to
address these shortcomings, vertex-centric programming models [10] have been
proposed to transform the way graph problems are managed. Pregel [11] is one
such programming models which supports distributed (parallel) graph compu-
tations. Many distributed graph computing (DGC) systems like PowerGraph [4]
and Spark-GraphX [15] provide implementations of the Pregel model for graph
computations. DGC systems distribute the graph computation by partitioning
the graph over different nodes of a cluster.

There are many partitioning strategies proposed in literature [4,12,14] for
performing efficient graph computations on DGC systems. Most of the DGC
systems provide the same programing model and offer similar features and strate-
gies to use. Depending on the internal implementation of these strategies and
algorithms, the systems can give different performance. Even once a user has

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 153–166, 2017.
DOI: 10.1007/978-3-319-66917-5 11

154 R. Kumar et al.

decided a system to use, there are not enough guidelines on which partitioning
strategy to use for which application or graph. Verma et al. in [13] attempts to
address this question with an experimental comparison of different partitioning
strategies on three different DGC systems resulting in a set of rules. However,
there is no clear theoretical justification of why one partitioning strategy per-
forms better than another depending on a particular combination of graph and
algorithm. Moreover, the paper does not consider the cluster properties which
according to our cost model, is one of the parameters in deciding the best par-
titioning strategy. In this paper, we address this question by providing a cost
model for the Pregel implementation in GraphX. Cost models are used in the
database community for query plan evaluation. We contend that DGC systems
should be able to choose the best partitioning strategy for a given graph and
algorithm using our cost model in iterative graph computations.

Concretely, in this paper, we make the following contributions: (i) we for-
mulate a cost model to capture the different dominating factors involved in the
Pregel model (Sect. 3); (ii) we validate our cost model on GraphX by estimating
the computation time and comparing it with real execution time (Sect. 4). To
the best of our knowledge this is the first work in which a cost model based
approach has been proposed for Pregel to help users to choose the best parti-
tioning strategy. Similar cost models could be obtained for Pregel on other DGC
systems.

2 Background

In this section, we present background information on (1) the Pregel model, and
(2) the different partitioning strategies we used in the experiments.

2.1 Pregel Model

In order to render graph computations more efficient, new graph programming
models such as Pregel have been introduced [11]. In Pregel, graph algorithms
are expressed as iterative vertex-centric computations which can be easily and
transparently distributed automatically. We illustrate this principle with the fol-
lowing graph algorithm CC for computing connected components in a graph: we
start with assigning to each vertex a unique identifier. In the first step each ver-
tex sends a message with its unique identifier to all its neighbors. Subsequently,
for each vertex the minimum is computed of all incoming identifiers. If this min-
imum is lower than its own identifier, the vertex updates its internal state with
this new minimum and sends a message to its neighbors to notify them of its new
minimum. This process continues until no more messages are sent. It is easy to
see that this iteration will terminate and that the result will be that each vertex
holds the minimal identifier over all vertices in its connected component, which
can then serve as an identifier of that connected component.

As we can see in this example, a user of Pregel only has to provide the
following components:

Cost Model for Pregel on GraphX 155

– Initialization: one initial message per vertex. In the case of CC, this initial
message contains the unique identifier of that vertex;

– Function to combine all incoming messages for a vertex. In our example, the
combine function takes the minimum over all incoming identifiers.

– A function called the vertex program to update the internal state of the
vertex if the minimum identifier received is less than the current identifier of
the vertex.

– A function to send the vertex current identifier to its neighbors. In CC, the
internal state of a vertex is updated only if the vertex receives a identifier
smaller than it is already storing. Only in that case messages are sent to its
neighbors with this updated minimum.

Figure 1 illustrate this programming model; every iteration of running the
vertex program and combining the messages that will be input for the next iter-
ation is called a super-step. In the first super-step every vertex is activated and
executes its vertex program. In Fig. 1, the vertex programs are called “tasks”and
the blue lines represent messages sent between vertices. In the second super-step
in this figure, vertex 1 does not receive any message and hence will not be active
in super-step 2. Vertex 2 receives two messages which are combined and the ver-
tex program is executed. Similarly, vertex 3 receives one message and executes
its vertex program. The time it takes for each task could be different and hence
there is a synchronization barrier after every super-step. Finally, in super-step 4
no messages are generated and the computation stops.

The main benefit of the Pregel programming model is that it provides a
powerful language in which many graph algorithms can be expressed in a natural
way. At the same time, however, the programs are flexible enough to allow for
automatically and transparently distributing their execution as we will see in
next section.

Fig. 1. An example of Pregel model consisting of three vertices.

156 R. Kumar et al.

2.2 Partitioning

There are two kinds of partitioning strategies for distributed graph processing:
(1) vertex-cut [4] and (2) edge-cut [1,6]. In vertex-cut partitioning the edges are
assigned to partitions and thus the vertices can span partitions i.e. vertices are
replicated or mirrored across partitions. In edge-cut, the vertices are partitioned
and the edge can span across partitions i.e. edge is replicated or mirrored across
partitions. GraphX utilizes the vertex-cut partitioning strategy. In vertex-cut
partitioning, the goal of a partitioning strategy is to partition the edges such
that the load (number of edges) in every partition is balanced and vertex repli-
cation (number of mirrors of vertex) is minimum. Average replication factor is
a common metric to measure the effectiveness of vertex-cut partitioning.

The simplest vertex-cut partitioning strategy is to partition edges using a
hash function. GraphX [15] has two different variants for this: Random Vertex
Cut (RVC) and Canonical Random Vertex Cut (CRVC). Given a hash function
h, RVC assigns an edge (u, v) based on the hash of the source and destination
vertex (i.e. A(u, v) = h(u, v) mod k). CRVC partitions the edge regardless of
the direction and hence an edge (u, v) and (v, u) will be assigned to the same
partition. CRVC or RVC provides a good load balance due to the randomness in
assigning the edges but do not grantee any upper bound on the replication factor.
There is another strategy which uses two-dimensional sparse matrix and is sim-
ilar to grid partitioning [5], EdgePartition2D [2]. In EdgePartition2D partitions
are arranged as a square matrix, and for an edge it picks a partition by choosing
column on the basis of the hash of the source vertex and row on the basis of
the hash of the destination vertex. It ensures a replication factor of (2

√
N − 1)

where N is the number of partitions. In practice, these approaches result in large
number of vertex replications and do not perform well for a power-law graphs.

Recently, a Degree-Based Hashing (DBH) algorithm [14] was introduced with
improved grantees on replication factor for power-law graphs. DBH partitions
edges based on the hash of its lowest degree end point thus forcing replication
of high degree vertices. GraphX does not provide an implementation for this
strategy. Thus, we implemented DBH and used it in our experiments to compare
with other partitioning strategies provided in GraphX.

3 Cost Model for Pregel GraphX

In Sect. 3.1, we present the implementation details of the Pregel model in GraphX
with the help of a Business Process Model and Notation (BPMN) diagram. Then
in Sect. 3.2, we use the BPMN diagram to derive the cost model for the Pregel
model in GraphX.

3.1 Pregel Model in GraphX

GraphX is built on top of Apache Spark which uses a distributed data structure
called Resilient Distributed Datasets (RDD) [16]. A graph in GraphX is repre-
sented as a pair of vertex and edge property collections namely VertexRDD and

Cost Model for Pregel on GraphX 157

EdgeRDD . The VertexRDD contains all the vertices of the graph and acts as the
master copy, which runs the updateVertex program. The EdgeRDD contains
all the edge attributes and the vertex ids of the source and destination vertices.
During Pregel execution, a materialized view (EdgeTripletRDD) is created by
joining VertexRDD and EdgeRDD for the set of active vertices. The RDDs are
partitioned across the cluster nodes and the computation happens in a shared-
nothing architecture. The VertexRDD is partitioned randomly based on the hash
of the vertex id and the EdgeRDD is partitioned using the graph partitioning
strategy provided (vertex-cut strategies discussed in Sect. 2.2). EdgeTripletRDD
is partitioned using the same partitioner used by EdgeRDD .

The Pregel computation in GraphX consists of four phases: Initialization,
Apply, Gather and Reduce. The Initialization happens only once and the other
three repeat in a loop until the program stops or a given maximal num-
ber of super-steps is exceeded. The Initialization phase, is executed by the
driver/master as a single instance. The other three phases run in multiple
instances. Each instance is processing of one partition of either the VertexRDD
or EdgeRDD . After the Initialization phase the Apply phase runs one instance
per partition of the VertexRDD and updates the vertices state. Then the Gather
phase runs one instance per partition of the EdgeRDD to fetch the latest copy
of the vertex state from VertexRDD and generate messages for next super-step.
The Gather phase does a local reduce of the messages as well by combining all
the messages generated for the same vertex on each instance. Finally, the reduce
phase does a global reduce by combining of all the messages generated for the
same vertex at vertex partitions. The reduce phase runs one instance per par-
tition of the VertexRDD . Figure 2 shows all the phases and precedences. Please
note, unlike the ideal Pregel model where every vertex could execute the vertex
program in parallel and send and receive messages in parallel, in GraphX the
parallelization is at the level of an instance or partition. For example, the vertex
program of CC algorithm in GraphX will run during the Apply phase in parallel
for every partition of the VertexRDD . Inside one partition of a VertexRDD , the
vertex program will run in sequence for all the vertices.

Fig. 2. BPMN diagram representing the Pregel computation model.

158 R. Kumar et al.

3.2 The Cost Model Formulation

For the sake of simplicity of the cost model we make following assumptions:

1. All the nodes in the cluster have the same characteristics, i.e. they have
same processing speed, IO and network bandwidth. This assumption does
not reduce the applicability of the model, since extending it to heterogeneous
nodes is straight forward.

2. Resource scheduling is not considered and hence, we assume all the instances
run in parallel. This assumption is a natural choice to maximize performance
as it offers maximum parallelization. To ensure this we just need to make sure
that we keep the number of partitions to be equal to the number of available
workers in the cluster.

From the BPMN diagram in Fig. 2, it is clear that the cost of the Pregel job
is the sum of the costs of four phases. We represent the cost of the Initializa-
tion phase as a function cInit which depends on: the vertices (V), the algorithm
(A) which determines the cost of creating the initial message and its size, and
finally, the number of vertex partitions to which the initial message will be sent.
We combine the remaining three: Apply, Gather and Reduce phases, in function
cSuperStep, representing the cost of the subsequent super-steps. Let s be the
number of super-steps. Hence, we can represent the cost of the Pregel model
(cPregel) as shown in Eq. (1). For a super-step i the cost cSuperStep depends
on: currently active vertices (Vi), currently active edges (Ei) and the messages
(Mi−1) generated in previous super-step. How a vertex or an edge becomes
active depends on the algorithm (A). We define Av, As, and Am as three func-
tions for updateVertex, sendMsg, and mergeMsg programs respectively.
Additionally, cSuperStep also depends on how Vi and Ei is partitioned (i.e.,
vertex partitioning strategy (Pv) and edge partitioning strategy (Pe)).

cPregel(V,E, s,A, Pe, Pv) := cInit(V,A, |Pv|)

+
s∑

i=1

cSuperStep(Vi, Ei, A,Mi−1, Pe, Pv)
(1)

The Apply, Gather and Reduce phases run in sequence and hence the cost of
one super-step is the sum of the cost of each phase. But, as shown in the BPMN
diagram there are multiple instances of each phase. As per our assumption,
we have all the instances running in parallel in the cluster. Hence, we denote
the cost of running one phase as the maximum cost among all the instances
of that phase. There are tasks inside each phase which run sequentially except
in the case of Reduce phase where there is only one task. Let |Pv| and |Pe| be
number of vertex and edge partitions respectively, and q (0 ≤ q ≤ |Pv|) and k
(0 ≤ k ≤ |Pe|) as corresponding index of vertex or edge partition. We define,
Ek

i ⊂ Ei as set of active edges on a partition k; V k
i as set of vertices at super-

step i in edge partition k which is either a source or destination vertex of an
active edge Ek

i ; V q
i ⊂ Vi as set of active vertices in vertex partition q; Mk

i as
set of messages generated in super-step i in edge partition k; Mq

i ⊂ Mi as set of

Cost Model for Pregel on GraphX 159

messages received in super-step i in vertex partition q. We represent the cost of
each super-step as shown in Eq. (2).

cSuperStep(Vi, Ei, A, Mi−1, Pe, Pv) := max
0≤q≤|Pv|

{cApply(V q
i , Mq

i−1, Av, Pe, Pv)}

+ max
0≤k≤|Pe|

{cGather(Ek
i , Mk

i , V k
i , As, Am, Pe)}

+ max
0≤q≤|Pv|

{cReduce(Mq
i , V q

i , Am, Pe, Pv)}
(2)

As shown in Fig. 2, the Apply phase has two tasks:

– The first task is to run the updateVertex program on the active vertices. It
runs sequentially for every vertex in the local partition. Hence, the total cost of
the first task is defined as the sum of the cost of running the updateVertex
program for every active vertex in the partition, which depends on the vertex
state, the input message and the algorithmic characteristics. We capture all
this as a function cV ertexProg and assume its cost is known to the user
defining the algorithm.

– The second task is to write the updated vertex attributes to file so that it can
be sent to required edge partitions. It consists of creating |Pe| different file
segments, one for each edge partition. The writing is buffered, so each write
task writes in an internal memory buffer of size Bs, and when the buffer is full,
the content is flushed to the file segment. For example, in Fig. 3a the mapper
node having the vertex partition 1 with vertices a, b, c, d will create two files.
As one vertex can have its replication in more than one edge partition, it
needs to be written in more than one file segment. Let V ∗q

i ⊆ V q
i be the set of

vertices which updated their state after the first task. We define replication(v)
as the number of replication of vertex v in edge partitions and sizeOf(v) as
the size of vertex object v in bytes. Hence, the total blocks written would be
equal to the size of every vertex object times its replication. Let Bw be the
cost of writing one block and Bs be the size of one block, hence the total cost
for this task would be Bw × Total bytes written

Bs
.

Apart from the cost of the above mentioned task we define α1 as a constant to
capture some housekeeping tasks done by Spark (like task scheduling) for this
phase. We use α2 and α3 as separate constant costs for the other two phases.
The cost of Apply phase is given as the sum of the cost of the two task and the
constant α1 in Eq. (3).

cApply(V q
i , Mq

i−1, Av, Pe, Pv) :=
∑

v∈V
q
i

cV ertexProg(v, Mq
i−1(v), Av)

+ βw ×
⌈∑

v∈V
∗q
i

sizeOf(v) × replication(v)

Bs

⌉
+ α1

(3)

160 R. Kumar et al.

Fig. 3. Data shuffle between the phases. Dashed arrows represent in-memory data
transfer, Solid arrows represent memory to local disk write and dotted arrows represent
remote disk to memory read.

The Gather phase consists of four tasks :

– The first task consists of reading the file segments created in the previous
phase. For simplicity, we focus only on the remote reads as local reads are
quite fast and do not affect the overall cost significantly. Each file will be read
and deserialized to create or update an AppendOnlyMap (an internal data
structure used by Spark to create an RDD). In this case there is only one key
in the map (the partition id) and the value is a list with vertex attributes.
For example, as shown in Fig. 3a there is only one record in the map with key
“1” and value a list of vertex attributes of a, b and c. The AppendOnlyMap
is then converted into an RDD and combined with EdgeRDD to generate
EdgeTripletRDD . As the number of records in the map is just one, the cost
of this task is due to the size of the list. Let V ∗

i be the set of all vertices which
got updated in previous phase, then the list of vertices read in this task is
given as V k

i ∩ V ∗
i . We represent the total cost of this task as total bytes read

multiplied by the cost of reading and deserializing one byte (βr).
– The second task consists of running the sendMsg program on every active

edge. It depends on the attributes of the source and destination vertices and
the algorithm definition As. We capture this cost as a function cSendProg.
Hence, the total cost for this task is given as the sum of running the
cSendProg for every active edge.

– The third task consist of running the mergeMsg program to combine
all the messages generated for a vertex v ∈ V k

i . We define the cost of

Cost Model for Pregel on GraphX 161

running mergeMsg program which combines two messages as cMergeProg.
It depends on the algorithm definition Am. We define Mk

i (v) as the set of
messages generated for a vertex v. mergeMsg will run |Mk

i (v)| − 1 times.
– The final task is the shuffle write task, which consists of writing to disk the

final list of reduced messages M̂k
i as shown in Fig. 3b. The writing will be

buffered as in the Apply phase, but the number of records written will be
equal to the number of final messages (|M̂k

i |). One message can belong only
to one shuffle file, hence the total blocks written would be size of all messages
divided by the block size.

The cost of the Gather phase is defined as the sum of the cost of the four tasks
and the constant α2 given in Eq. (4).

cGather(Ek
i ,Mk

i , V k
i , As, Am, Pe) := βr ×

∑

v∈V k
i ∩V ∗

i

sizeOf(v)

+
∑

(u,v)∈Ek
i

cSendProg(u, v,As)

+ cProcess(Mk
i , V k

i , Am)

+ βw ×
⌈∑

m∈̂Mk
i

sizeOf(m)

Bs

⌉
+ α2

(4)

where,

cProcess(Mk
i , V k

i , Am) :=
∑

v∈V k
i

(|Mk
i (v)| − 1

) × cMergeProg(Am) (5)

The Reduce phase consists of only one task which is to fetch the messages gen-
erated in the previous phase and reduce the messages for the same vertex into
one message. For example, as shown in Fig. 3b amsg1 and amsg2 are fetched from
two mappers and reduced into one message for vertex a. Unlike the read in the
Gather phase, in this phase the number of records in the AppendOnlyMap will
be equal to the numbers of messages. For example, as shown in Fig. 3 there is
one record in the shuffle file for the Gather phase where as upto 3 records in the
shuffle file for the Reduce phase. The size of each message record is constant,
hence the cost of the read is dominated by the number of records and not the
size of the record. We define γ as the constant cost of reading and updating the
AppendOnlyMap per record. Thus, we can define cost for the read task as γ
times number of records fetched. The reducing of the messages can start as soon
as there are two messages for the same vertex. As Spark uses parallel threads to
read data and process data, there will be an overlap in the execution of these
tasks. Hence, in a multi-core system, as soon as first block of messages is read,
it can start processing the messages while in parallel keep fetching remaining
blocks. Let C be the number of cores in a cluster node; hence C threads can
fetch data in parallel. Let b be the number of blocks of messages received in this
phase and M b represent the set of messages in the bth block. Then, the overall

162 R. Kumar et al.

cost of this phase is given as the sum of the cost of fetching the first block plus
the cost of processing all messages (if processing is slower than fetching) or the
cost of fetching remaining blocks plus processing the last block (if fetching is
slower than processing) as expressed in Eq. (6).

cReduce(Mq
i , V q

i , Am, Pe, Pv) := γ × |M1|
+ max {cProcess(Mq

i , V q
i , Am),

γ

C
×

∑

2≤j≤b

|M j | + C × cProcess(M b, V q
i , Am)}

+ α3

(6)
For a single core node, the fetching of data and processing can not run in parallel,
hence Eq. (6) simplifies to the sum of the cost of fetching all messages and
processing them as given in Eq. (7).

cReduce(Mq
i , V q

i , Am, Pe, Pv) := γ × |Mq
i |

+ cProcess(Mq
i , V q

i , Am) + α3

(7)

4 Experimental Validation of the Cost Model

In this section, we describe the experimental setup to obtain the cluster specific
variables (α1, α2, α3, βr, βw and γ) in the cost model and then share the results
of the validation of the cost model on different configurations.

4.1 Experiment Configuration and Setup

There are four main parameters which affect the execution of a GraphX Pregel
job: (1) Cluster setup, (2) Input Graph, (3) Partitioning Strategy, and (4) Graph
Algorithm to be executed. In our experiments, we always keep the cluster setup
constant and vary the other three. All experiments are done on a cluster with a
master node and 5 worker nodes. All nodes are Linux systems with Intel Xeon
E5-2630L v2 a 2.40 GHz processor, 1 TB SATA-3 Hard disk, 128 GB RAM, and
4 GB Ethernet. We deployed Spark 2.0.2 in cluster mode with each worker node
having 1 executor with 1 thread and 45 GB RAM assigned to it.

Input Graph: We used three real world datasets: the CollegeMsg network is
a directed graph of messages sent between users on a Facebook-like platform at
UC-Irvine; Higgs activity time (Higgs) is a dataset which provides information
about activity on Twitter during the discovery of the Higgs boson particles (both
datasets were taken from the SNAP repository [9]); Apart from this, we also use
a re-tweet network collected from information about activity on Twitter during
the Punjab Election 2017 (twitter) in India collected by ourselves for 3 days.

Partitioning Strategy: We use three partitioning strategies in the experi-
ments: EdgePartition2D; Canonical Random Vertex Partitioning(CRVC) (both

Cost Model for Pregel on GraphX 163

strategies provided by the default GraphX API) and our own implementation of
Degree Based hashing (DBH). As explained earlier, these partitioning strategies
only partition the EdgeRDD . For VertexRDD we used the default random Hash
Based partitioner provided by Spark. The number of partitions was equal to 5
in all experiments.

Graph Algorithm: We used the classical PageRank and Connected Component
algorithms in our experiments.

4.2 Estimating Cluster Specific Variables

Monitoring the factors in the cost model is not straightforward. Hence, we
applied following simplifications to approximate the value of the constant para-
meters:

1. We used the same code provided in GraphX for the Page Rank and Connected
component algorithms but just added additional counters on each of the three
GraphX functions to keep a count of how many times the updateVertex,
sendMsg and mergeMsg programs were executed in each task of a super-
step.

2. The execution time of the three functions is very small and difficult to mon-
itor precisely. A more accurate measurement of these functions allows for a
more accurate estimation of the cluster constants in the formula, hence we
introduced a constant time delay of 1 millisecond in all three functions. This
constant time delay is only for accurate estimation of the cluster parameters
and does not affect the cost model accuracy. Let count(f) be the number of
times a program f is executed in an instance. This enables us to approximate:

–
∑

cV ertexProg(v,Mq
i−1(v), Av) = count(updateVertex) × 1 ms

–
∑

cSendProg(u, v,As) = count(sendMsg) × 1 ms
–

∑(|Mk
i (v)| − 1

) × cMergeProg(Am) = count(mergeMsg) × 1 ms
3. We kept the number of edge partitions, vertex partitions and number of nodes

in the cluster equal, so that every node in the cluster is processing only one
partition of the VertexRDD and EdgeRDD (i.e. |Pe| = |Pv| = N).

4. Every node has only one core assigned to it (i.e. C = 1), hence we can use
Eq. 7 for the reduce phase.

We used twitter graph data with the CRVC partitioning strategy and the
Page Rank algorithm to estimate the constants α1, α2, α3, βr, βw and γ of the
cost model. We used the SPARK UI API (a monitoring service provided by
Spark) to get the run time of each phase separately and other factors of the
cost model. Since we used a shared cluster while running the experiments, we
repeated the experiments 10 times and took the minimum execution time of a
super-step as the baseline cost of that super-step, assuming that higher time to
execute the same super-step is due to the interferences with parallel executions
of other processes on the cluster. cInit is a constant one time cost for a graph
and algorithm and do not change based on the partitioning strategy hence we
do not estimate this cost for every partitioning strategy.

164 R. Kumar et al.

We estimated the value of α1 and βw from Eq. 3 by substituting the values
of all other factors. For every super-step, we replaced cApply by the execution
time of the phase,

∑
cV ertexProg(v,Mq

i−1(v), Av) by count(updateVertex)
and the number of blocks written by total bytes written divided by 32 MB (the
default value of Bs in Spark), for the task which took the maximum time for this
phase. Substituting these values, results in a linear equation of the form Y =
βw×X+α1 where Y = cApply−count(updateVertex) and X is the number of
blocks written. We got the value of X and Y for all the super-steps and obtained
α1 and βw by ordinary least square (OLS) method. The result of the linear
curve fitting is show in Fig. 3. We get α1 = 1.366 ms and βw = 100.77 ms/block
with a R-squared value of 0.9815. We believe the deviation(outliers) from the
line is due to discretization of the write bytes into number of buckets as for
some cases the last bucket would be almost full and for some it will be almost
empty resulting in different write time. Similarly, we estimated α2 and βr from
Eq. 4 by replacing βw with 100.77; cGather by the stage execution time. For
the right hand side parameters of the equation we substituted values for the
longest running task. Hence, we replaced

∑
v∈V k

i ∩V ∗
i

sizeOf(v) by the volume
of remote bytes read by the task, cProcess(Mk

i , V k
i , Am) by count(mergeMsg),∑

(u,v)∈Ek
i

cSendProg(u, v,As) by count(sendMsg) and the number of blocks
written by the volume of total bytes written by the task divided by 32 MB.
Substituting these values, results in a linear equation of the form Y = βr ×
X + α2, where Y = cGather − count(mergeMsg) − count(sendMsg) − βw ×
#blocks and X is remote bytes read. After applying OLS we get α2 = 43.214 ms

(a) Apply Phase (b) Gather Phase

(c) Reduce Phase

Fig. 4. Using Linear curve fitting to estimate the variables in the cost model

Cost Model for Pregel on GraphX 165

and βr = 0.012 ms/byte with a R-squared value of 0.953 as shown in Fig. 4a.
Similarly, from Eq. 7 we get a linear equation of the form Y = γ ×X +α3 where,
Y = cReduce−count(mergeMsg) and X is the number of message records. We
get α3 = 17.367 ms and γ = 0.0405 ms/record with R-squared value of 0.993 as
shown in Fig. 4c.

4.3 Cost Model Validation

We used 3 different graph data, 3 different edge partitioning strategy and 2 differ-
ent graph algorithms in our experiments resulting in 18 different combinations of
graph, partitioning strategy and algorithm. In order to validate the cost model,
we estimated the cluster constants α1, α2, α3, βr, βw and γ in the cost model
for graph = twitter, partitioning strategy = CRVC and algorithm = Page Rank
(Sect. 4.2), then we used other 17 combinations of graph, partitioning strat-
egy and algorithm to estimate the execution cost. We replace the values of
α1, α2, α3, βr, βw and γ in the cost model and predict the job execution time
by measuring other attributes required by the cost model. Then we estimate
the accuracy of the cost model by comparing with the actual execution time of
all the super-steps. We report the prediction accuracy in Table 1. We get 96.9%
average accuracy in predicting the job execution time in 17 different combination
with minimum accuracy of 94.6% and maximum accuracy of 99.8%.

Table 1. Prediction accuracy(%) of the cost model for different combinations of
dataset, partitioning strategy and graph algorithm.

Partition strategy

Dataset Algorithm EdgePartition2D CRVC DBH

CollegeMsg PageRank 96.4 97.9 97.7

CC 97.6 96.1 96.7

twitter PageRank 97.7 - 99.3

CC 98.9 98.7 97.1

Higgs PageRank 94.6 97.2 99.8

CC 97.9 95.9 94.9

5 Concluding Remarks

We presented a cost model to estimate the execution cost of Pregel-based algo-
rithms on Spark GraphX and evaluated on different combinations of input graph,
algorithm and partitioning strategy. We see from the cost model that the overall
execution time depends on different factors such as: the execution time of each
function (i.e., updateVertex, sendMsg and mergeMsg); the cluster config-
uration (such as data transfer between different nodes). The cost model depends

166 R. Kumar et al.

on many variables which are not known before hand and hence, for an optimizer,
they will need to be estimated. In future work, we will experiment by varying
the different dominating factors in the cost model, to see how they determine
the best partitioning strategy.

Acknowledgement. This work was supported by the Fonds de la Recherche
Scientifique-FNRS under Grant(s) no. T.0183.14 PDR. The student is also part of
IT4BI DC program.

References

1. Barnard, S.T.: Parallel multilevel recursive spectral bisection. In: Proceedings of
the 1995 ACM/IEEE Conference on Supercomputing, p. 27. ACM (1995)

2. Çatalyürek, Ü.I.T.V., Aykanat, C., Uçar, B.: On two-dimensional sparse matrix
partitioning: models, methods, and a recipe. SIAM J. Sci. Comput. (2010)

3. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion
edges: graph processing at facebook-scale. VLDB (2015)

4. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: OSDI (2012)

5. Jain, N., Liao, G., Willke, T.L.: Graphbuilder: scalable graph ETL framework. In:
GRADES (2013)

6. Karypis, G., Kumar, V.: Multilevel graph partitioning schemes. In: ICPP, vol. 3
(1995)

7. Kumar, R., Calders, T.: Information propagation in interaction networks. In: Pro-
ceedings of the 20th International Conference on Extending Database Technology,
EDBT 2017 (2017)

8. Kumar, R., Calders, T., Gionis, A., Tatti, N.: Maintaining sliding-window neigh-
borhood profiles in interaction networks. In: Appice, A., Rodrigues, P.P., Santos
Costa, V., Gama, J., Jorge, A., Soares, C. (eds.) ECML PKDD 2015. LNCS, vol.
9285, pp. 719–735. Springer, Cham (2015). doi:10.1007/978-3-319-23525-7 44

9. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection,
http://snap.stanford.edu/data

10. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. (2007)

11. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD
(2010)

12. Petroni, F., Querzoni, L., Daudjee, K., Kamali, S., Iacoboni, G.: HDRF: stream-
based partitioning for power-law graphs. In: CIKM. ACM (2015)

13. Verma, S., Leslie, L.M., Shin, Y., Gupta, I.: An experimental comparison of parti-
tioning strategies in distributed graph processing. Proc. VLDB Endow. (2017)

14. Xie, C., Yan, L., Li, W.J., Zhang, Z.: Distributed power-law graph computing:
theoretical and empirical analysis. In: Advances in Neural Information Processing
Systems (2014)

15. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: Graphx: a resilient distributed
graph system on spark. In: GRADES. ACM (2013)

16. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. USENIX Association (2012)

http://dx.doi.org/10.1007/978-3-319-23525-7_44
http://snap.stanford.edu/data

Historical Traversals in Native Graph Databases

Konstantinos Semertzidis(B) and Evaggelia Pitoura

Department of Computer Science and Engineering,
University of Ioannina, Ioannina, Greece

{ksemer,pitoura}@cs.uoi.gr

Abstract. Since most graph data, such as data from social, citation and
computer networks evolve over time, it is useful to be able to query their
history. In this paper, we focus on supporting traversals of such graphs
using a native graph database. We assume that we are given the history
of an evolving graph as a sequence of graph snapshots representing the
state of the graph at different time instances. We introduce models for
storing such snapshots in the graph database and we propose algorithms
for supporting various types of historical reachability and shortest path
queries. Finally, we experimentally evaluate and compare the various
models and algorithms using both real and synthetic datasets.

Keywords: Graph database · Historical traversals · Reachability · Path
computation

1 Introduction

Recently, increasing amounts of graph structured data are made available from
a variety of sources, such as social, citation, computer, hyperlink and biological
networks. Almost all such real-world networks evolve over time. Querying the
evolution of such graphs is an important and challenging problem.

In this paper, we assume that we are given the history of an evolving graph
in the form of a sequence of graph snapshots representing the state of the graph
at different time instances. Our focus is on efficiently storing and querying these
snapshots using a native graph database. Native graph databases offer an attrac-
tive means for storing and processing big graph datasets.

To store the sequence of graph snapshots in a graph database, we propose
models based on associating with each node and edge, its lifespan, i.e., the time
intervals, during which the node and edge is valid. The multi-edge approach
(me) uses a different edge type for each of the time instances during which the
edge was valid. The single-edge approaches use a single edge annotated with a
complex type for representing the lifespan of the edge. We consider two single-
edge approaches, one that models the lifespan as an ordered list of time instances
(setp), and one that uses an interval representation (seti).

We also introduce historical graph traversals that consider paths that existed
in a sufficient number of graph snapshots. We exploit variants of two types
of historical traversals, reachability and shortest paths. Historical reachability
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 167–181, 2017.
DOI: 10.1007/978-3-319-66917-5 12

168 K. Semertzidis and E. Pitoura

queries ask whether two nodes are connected in some time instance, in all time
instances, or in a sufficient number of time instances. Historical shortest path
queries ask for the shortest path between two nodes posing requirements on the
lifespan of such paths. We present algorithms for processing historical queries
for both the multi-edge and the single-edge approaches.

We have implemented our approach in the Neo4j graph database and present
experimental results using both real and synthetic datasets. For very short-lived
edges, using multiple edges to represent lifespans, seems to work well by tak-
ing advantage of the built-in traversal methods of the native graph database.
However, for all other cases, using the interval-based approach to represent lifes-
pans (seti) proves more efficient both in terms of processing time and storage.
We also present a case study regarding connectivity among authors of different
conferences through time.

Related Work: There has been recent interest on analytical processing and
mining of evolving graphs, including among others developing models [15], dis-
covering communities [2], and computing measures such as PageRank [3]. There
has been also research on building graph engines tailored to supporting ana-
lytical processing in dynamic graphs, such as Kineograph [5] and Chronos [7].
However, our focus here is on query processing.

There has been some work on historical query processing. The common
assumption is that the graph is either kept in main memory or is stored in
disk, but not in a native graph database. Most research assumes as a first step
the reconstruction of the relevant snapshots. Then, queries are processed through
an online traversal on each of the snapshots. Various optimizations for reducing
the storage and snapshot reconstruction overheads have been proposed. Opti-
mizations include the reduction of the number of snapshots that need to be
reconstructed by minimizing the number of deltas applied [12], using a hier-
archical index of deltas and a memory pool [11], avoiding the reconstruction
of all snapshots [17], and improving performance by parallel query execution
and proper snapshot placement and distribution [14]. Other research considers
in-memory processing of specific types of historical queries [1,4,9,13,18,19].

Very few works [4,6,8,20] are built on top of a native graph database. In
particular [4] proposes an approach for storing time-varying networks in the
Neo4j graph database using a hierarchical time index to support snapshots with
different granularity (e.g., months and days). They do not discuss historical
traversal queries, but, instead consider retrieving specific snapshots. In [6] the
authors focus on graph data with structural changes, and present time logs
that capture when an event has occurred (i.e. add/remove of edge/node) in the
history of the graph. Although, their indexes are used to retrieve fast a state
of the graph in a given period they are not designed for supporting historical
traversal queries. A short discussion of the storage models me and setp is made
in position paper [20]. Finally, the work in [8] targets specific types of graphs
with static structure but frequent changes in node and edges properties. Our
focus here is on structural updates and reachability and path queries.

Historical Traversals in Native Graph Databases 169

Paper outline: The rest of this paper is structured as follows. In Sect. 2, we
formally define historical traversal queries. We introduce three approaches for
storing the graph snapshots in graph databases in Sect. 3 and algorithms for
processing historical traversal queries in Sect. 4. In Sect. 5, we experimentally
evaluate the different approaches. Section 6 concludes the paper.

2 Traversals in Historical Graphs

In this section, we first define historical graphs and then introduce traversal
queries on them.

2.1 Historical Graphs

Graphs are used to represent relationships between entities where entities are
modeled as nodes and relationships as edges between them. Labels may be
assigned to both edges to capture different types of relationships and to nodes
to capture node attributes. Formally, a node and edge labeled graph G is a
tuple (V,E, λV , λE) where V is a set of nodes, E ⊆ V × V is a set of edges,
λV : V → LV and λE : E → LE are labeling functions that map a node and
an edge to a label from a set LV of node labels and a set LE of edge labels
respectively. Some graph databases also support an extension of labeled graphs,
termed property graphs, where instead of labels, a set of property-value pairs is
associated with nodes and edges. Such pairs are also sometimes called attributes.

Most real world graphs evolve over time. New nodes and edges are added, and
existing nodes or edges are deleted. We assume that time is discrete and use suc-
cessive integers to denote successive points in time. We use Gt = (Vt, Et, λ

V
t , λE

t)
to denote the graph snapshot at time instance t, that is the sets of node, edge
and labeling functions that exist at time instance t.

Definition 1 (Historical graph).
A historical graph G[ti,tj] in time interval [ti, tj] is a sequence {Gti , Gti+1, . . . ,
Gtj} of graph snapshots.

An example is shown in Fig. 1 which depicts a historical graph G[1,5] consisting
of five graph snapshots {G1, G2, G3, G4, G5}. Nodes and edge labels are omitted
for simplicity. Note that the granularity of creating time instances and graph
snapshots may vary. For example, we may create a new graph snapshot at every
second, hour or day.

We use the term lifespan (ls) to refer to the period of time that a graph
element, that is, a node, edge, or labeling function, existed. Lifespans are sets of
time intervals. Set of time intervals are also known as temporal elements [10]. For
example, the lifespan ls((u1, u3)) of edge (u1, u3) in Fig. 1 is equal to {[1, 1], [3, 4]}
meaning that edge (u1, u3) existed in graph snapshots G1, G3 and G4. We also
define a useful operation on interval sets, called time join [18]. Given two sets
of intervals I and I ′, their time join I ⊗ I ′ is the set of time intervals that
includes the time instances that exist in both I and I ′. For example, {[1, 3],
[5, 10], [12, 13]} ⊗ {[2, 7], [11, 15]} is equal to {[2, 3], [5, 7], [12, 13]}.

170 K. Semertzidis and E. Pitoura

u1

u4

u2 u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

u1

u4

u2

u6

u3

u5

G1 G2 G3 G4 G5

Fig. 1. Example of a historical graph

2.2 Historical Traversal Queries

A graph traversal allows the navigation of the structure of the graph and is
a fundamental graph query. In an abstract form, a traversal query Q can be
expressed as a path query Q = u

α−→ v, where α specifies conditions on the paths
that we wish to traverse and u, v denote the starting and ending points of these
paths. The starting and ending points can be specific nodes or properties of the
nodes, or a mix of both. The expression α involves constraints on the properties
(or, labels) of the nodes and edges in the path. For example, we may look for
paths connecting two people in a social network with edges labeled as “friends”.

Traversals retain the paths from u to v that satisfy α. In general, there are
may be many such paths, even an infinite number, if there are cycles in the
dataset. Thus, besides maintaining all possible paths, various other semantics
may be associated with the evaluation of traversals. Common ones are retaining
only the shortest paths, or only paths that consist of no-repeated nodes or edges.

We now define traversal queries on historical graphs. First, let us define the
lifespan of a path. Let G[ti,tj] be a historical graph and p = u1u2 . . . um be a path
of m nodes where uk ∈ ∪tj

tl=tiVtl , 1 ≤ k ≤ m. We define the lifespan, ls(p), of
path p as follows: ls(p) = ls((u1, u2)) ⊗ ls((u2, u3)) . . . ⊗ ls((um−1, um)). For
example, the lifespan of path u1u3u6 of G[1,5] in Fig. 1 is {[3, 4]}.

Definition 2 (Historical Traversal Query).
A traversal query QH on a historical graph, G[ti,tj], called a historical traversal
query, is a tuple (Q, I, L) where Q is a traversal query Q = u

α−→ v, I is a set
of time intervals and L is a positive integer. For a path p, let D(p) = ls(p)⊗I⊗
[ti, tj]. QH retains the paths p from u to v in G[ti,tj] that satisfy α and for which
in addition D(p) contains at least L time instances.

Intuitively, we ask that the paths retained by a historical query exist in at
least L of the graph snapshots. At one extreme a path must appear at least once
in the graph history, in which case L = 1. At the other extreme, a path must
appear in all time instances, in which case L must be equal with the number of
time instances in I⊗ [ti, tj].

A traversal query may produce different outputs. For example, the output
may be the set of the retained paths, or, the set of nodes, or edges on the retained
paths. Furthermore, in the special case of reachability queries, the output of the
traversal is boolean, i.e., true if there exists a path, and false otherwise. Without
loss of generality, in this paper we focus on reachability shortest path queries.
Additional semantics may be associated with the output of historical traversals.

Historical Traversals in Native Graph Databases 171

For example, for reachability queries, we may ask that two nodes are reachable in
at least one time instance (disjunctive queries), in all time instances (conjunctive
queries), or in at least-k time instances. For shortest path queries, we may ask,
for example, for the earliest shortest path (ESP), for the shortest among the
paths that existed in all time instances (stable shortest path (SSP)), or, for the
shortest among the paths that existed in at least-k snapshots (KSP).

3 Storing Historical Graphs

In this section, we present different approaches for representing a historical graph
in a native graph database. The basic idea is to augment each graph element with
its lifespan. For edges and nodes, lifespans are stored as labels (i.e., property,
attribute) of the corresponding edge and node. Based on the type of labels used,
we have two different approaches.

Multi-edge Representation. The multi-edge approach (me) utilizes a different
edge type between two nodes u and v for each time instance of the lifespan of
the edge (u, v). The multi-edge representation of the historical graph G[1,5] of
Fig. 1 is depicted in Fig. 2. For instance, to represent a relationship between
nodes u1, u3 with lifespan {[1, 1], [3, 4]}, we use three edges with different labels
to connect u1 and u3. Since all native graph databases provide efficient traversal
of edges having a specific label, the me approach provides an efficient way of
retrieving the graph snapshot Gt corresponding to time instance t. Similarly,
multiple labels are associated with each node.

u1 u2 u3

u5u4 u6

[1] [3] [4] [5]

Time Instances

[1][1]

[1]

[2]

[2]
[2]

[2]

[3]

[3]

[3][3]

[3]
[1]

[2]

[4]

[4]

[4]

[4]

[4]

[4]

[5]

[5]

[5]

[5]

[5]

Fig. 2. me representation of the historical graph of Fig. 1 (nodes labels are not shown
for clarity)

Single-edge Representation. The single-edge approach uses a single edge
between any two nodes appropriately labeled with the lifespan of the edge. To
represent the lifespan of an edge or node, we consider two different approaches. In
the single-edge with time points approach (setp), the lifespan of a node or edge is
modeled using a label that is a sorted list of the time instances in their lifespan.
The setp representation of the historical graph G[1,5] of Fig. 1 is shown in Fig. 3(a).

172 K. Semertzidis and E. Pitoura

For example, the lifespan of edge (u1, u3) is now represented by a single edge hav-
ing as label [1, 3, 4]. In the single-edge with time intervals approach (seti), we
use Ls and Le, each one an ordered list of m elements, where m is the number of
time intervals in the lifespan of the edge or node. In particular, Ls[i], 1 ≤ i ≤ m,
denotes the start of the i-th interval in the lifespan, while Ls[i] the end of the inter-
val. An example is shown in Fig. 3(b). With the single-edge approaches, retrieving
the graph snapshot Gt at time instance t requires further processing of the related
labels.

u1 u2 u3

u5u4 u6

[1,3,4]

[4, 5]

[2, 3, 4, 5]

[4, 5]

[1, 2, 3, 4, 5]

[1, 3, 5]

(a) setp representation

u1 u2 u3

u5u4 u6

Ls: [1, 3] | Le: [1, 4]

Ls: [4] | Le: [5]Ls: [1] | Le: [5]

Ls: [4] | Le: [5]

Ls: [2] | Le: [5]Ls: [1, 3, 5] |
Le: [1, 3, 5]

(b) seti representation

Fig. 3. Single-edge representations of the historical graph of Fig. 1 (nodes labels are
not shown for clarity)

Indexing. For faster retrieval of specific graph snapshots, we build an index
within the graph database by creating a new node type T where each node of
the given type has a unique value that corresponds to a specific time instance.
A T node that denotes a time instance t is connected with all nodes that existed
at time instance t. To retrieve the nodes that exist in a time interval, we get the
neighbors of the T nodes that correspond to this interval. Figure 4(a) shows the
index of the historical graph in Fig. 1.

Time-varying labels. Finally, we discuss how to store labels that change over
time. Current graph databases do not support versioning on labels and thus we
need to create for each unique label value l, a new node of type l. We connect all
nodes or edges that have value l at some time instance with the node representing
l using one of the three edge approaches presented previously. Doing so, we only
store each label once and to retrieve the labels of a node u in a time interval,
we retrieve all the nodes type of l that are connected to u by edges that refer to
the time instances in the interval. In Fig. 4(b), we depict an example of storing
the time-varying labels of two nodes u1, u2 using setp.

4 Processing Historical Traversal Queries

In this section, we focus on processing historical traversal queries in native graph
databases. For simplicity, we consider a single interval I, but the algorithms
easily extend to sets of time intervals.

Historical Traversals in Native Graph Databases 173

Fig. 4. (a) Time index of the historical graph of Fig. 1 and (b) an example of time-
varying labels

Multi-edge Representation. A basic functionality provided by all native
graph databases is a traversalBFS method that implements a BFS traver-
sal of all edges of a specific type (i.e., with a specific label) starting from a
source node. At each step, traversalBFS returns either the current traversed
node or all the previously traversed nodes in a form of a path. One approach for
retrieving the paths that exist between two nodes u and v during a time interval
I is to invoke traversalBFS starting from u once for each time instance t
in I and then combine these results. Another approach is to process paths an
edge-at-a-time. Starting from u for each time instance t in I we traverse only the
edges of type t until we reach v. Which of the two approaches is more efficient
depends on the type of the traversal query under consideration.

For reachability queries where we ask that two nodes are reachable, without
posing any requirement on the lifespan of the paths that connect them, the
approach that uses the built-in traversalBFS is more efficient. We invoke
traversalBFS for each time instance t in I until: (a) for disjunctive queries:
the first time instance that we find v, (b) for conjunctive queries: the first time
instance that we do not find v and (c) for the least-k queries: when we find v in
at least k time instances, or the remaining time instances are not enough to get
reachability at k time instances.

For queries that require that the paths exist in at least L > 1 time instances,
using the traversalBFS method is in general expensive, since we retrieve all
paths at each time instance, even those paths that appear only in a single time
instance. Thus, traversalBFS is used only for the earliest shortest path (ESP)
queries, where it returns the shortest path that connects u to v in the first time
instance. For stable (SSP) and at least-k (KSP) shortest path queries, we use
the second approach. We traverse the edge type that refers to the first time
instance in I and we continue the traversal only if for each edge (w, x) there
are all (SSP) or at least k (KSP) type of edges (w, x) that refer to other time
instances in I.

Single-edge Representation. For the single-edge approaches, we cannot use
the traversalBFS, since we need to post-process the lifespan label of each
edge to determine the time instances where the edges were active. Thus, we
implemented our own traversalBFS algorithm which traverses edges that are

174 K. Semertzidis and E. Pitoura

Algorithm 1. (setp-seti) Conjunctive-BFS(u, v, I)

Require: nodes u, v, interval I
Ensure: True if v is reachable from u in all time instances in I and false otherwise

1: create a queue N , create a queue INT
2: enqueue u onto N , enqueue I onto INT
3: while N �= ∅ do
4: n ← N.dequeue()
5: i ← INT.dequeue()
6: for each e ∈ n.getEdges() do
7: Ie ← TIME JOIN(e, i)
8: if Ie = ∅ then
9: continue
10: end if
11: w ← r.getOtherNode(n)
12: if w = v then
13: R ← R ∪ Ie
14: if R 	 I then
15: return true
16: end if
17: continue
18: end if
19: if IN (w) �	 Ie then
20: IN (w) ← IN (w) ∪ Ie
21: enqueue w onto N
22: enqueue Ie onto INT
23: end if
24: end for
25: end while
26: return false

alive in the given interval. We present in Algorithm1, the algorithm for process-
ing conjunctive reachability queries. Algorithm1 can be used for processing all
other types of historical queries with only small modifications.

Since a node v may be reachable from u through different paths at different
graph snapshots, we maintain an interval set R with the part of ls(u → v) ∪ Ie

covered so far (line 13), where Ie is the intersection of the lifespan of an edge
with a given interval. The traversal ends when R covers the whole query time
interval I (lines 14–16).

To retrieve Ie, we use method Time Join (line 7) and getOtherNode(n)
which given a node n that is attached to an edge, returns the other node (line 11).
In setp, Time Join retrieves the lifespan label from the edge and using an
intersection algorithm for sorted lists it returns the intersection of edge lifespan
and I. In seti, Time Join retrieves the edge lifespan labels Ls and Le and
for each [s′, e′] ∈ I s.t. ∃ i s.t max(Ls[i], s′) ≥ min(Le[i], e′) it returns the
overlapping time instances {[s′, e′] ∩ [Ls[i], Le[i]]}.

To speed-up traversal, we perform a number of pruning tests. The traversal
stops when we traverse an edge that is not alive in the query interval (lines 7–10).
Still an edge may be traversed multiple times, if it participates in multiple paths
from source to target. To reduce the number of such traversals, we provide
additional pruning by recording for each node w, an interval set IN (w) with
the parts of the query interval for which it has already been traversed. If the
query reaches w again looking for interval Ie ⊆ I and IN (w) � I, the traversal
is pruned (lines 19–23).

Historical Traversals in Native Graph Databases 175

Indexing. The time index can be used similarly in all approaches to prune
some computations. For example, for the least-k reachability query that asks
whether nodes u and v are reachable in at least k time instances, we can first
check using the index whether both nodes were active in at least k common
time instances. If they were not active, we do not need to traverse the graph.
Otherwise, we traverse the graph using a subinterval of I that contains only the
instances when both nodes were active.

5 Experimental Evaluation

In this section, we present an experimental comparison of the different
approaches for supporting historical traversal queries in a native graph data-
base. We used the Neo4j1 graph database that supports fast processing of graph
data and implemented all algorithms using the Neo4j Java API.

We use two real and one synthetic dataset. In particular, we use DBLP2 in
time interval [1959, 2016] where each graph snapshot corresponds to one year. At
each graph snapshot, a node represents an author and an edge a co-authorship
relation between two authors in the corresponding year. We also use a FB [21]
dataset which consists of 871 daily snapshots where at each snapshot a node
represents a user and an edge represents a relation between two users. The syn-
thetic dataset was generated using a preferential attachment graph generator
[16], where a new snapshot is created after 10,000 nodes. The dataset character-
istics are summarized in Table 1(a). The FB dataset and the default synthetic
dataset are insert-only, i.e., contain no node/edge deletions.

We ran our experiments on a system with a quad-core Intel Core i7-3820
3.6 GHz processor, with 64GB memory. We only used one core in all experiments.

Table 1. Dataset and Graph database characteristics

Dataset # Nodes # Edges # Snapshots

DBLP 1,167,854 5,364,298 58

FB 61,967 905,565 871

Synthetic 1,000,000 1,999,325 100

(a) Dataset characteristics

Dataset GDB Size (MB) Index Size (MB) Time (sec)

DBLP
me 353

131.37
39

setp 528.84 22
seti 546.55 23

FB
me 6,000

830
631

setp 400 65
seti 31.98 33

Synthetic
me 4,500

1,700
1,620

setp 513 145
seti 253 86

(b) Graph database size and creation time

5.1 Size and Load Time

We stored all datasets in three different database instances (GDBs) using the
three different representations, namely, me, setp, and seti introduced in Sect. 3.
1 https://neo4j.com/.
2 http://dblp.uni-trier.de.

https://neo4j.com/
http://dblp.uni-trier.de

176 K. Semertzidis and E. Pitoura

Also, in each GDB we stored a time index on the lifespan of the nodes. Table 1(b)
shows the size and construction time of each graph database instance. Multi-edge
approaches use a different edge type for each time instance, which leads to larger
sizes. This difference in size is more evident in the FB dataset, since most edges
in the DBLP dataset have short lifespans, because many co-authorships appear
only once or span very few years. To load the datasets into the graph databases
we used the CSV importing system of Neo4j. Again, me requires more time to
be loaded since it has to create more edges than the other models.

0

1000

2000

3000

4000

5000

200000 400000 600000 800000 1000000

Si
ze

 (M
B)

of nodes

ME SETP SETI

(a)

0

900

1800

2700

3600

4500

10 20 30 40 50

Si
ze

 (M
B)

% of dele�ons

ME SETP SETI

(b)

Fig. 5. Size (a) for varying number of nodes and (b) percentage of deletions

In Fig. 5(a), we report graph database sizes for varying number of nodes (and
thus snapshot) using the synthetic dataset. As shown, the single-edge approaches
are much smaller than the multi-edge in all cases, as expected. We also vary the
percentage of edge deletes. For each edge, we randomly remove 10% to 50% of
the time instances in its lifespan. Figure 5(b) presents the results. We observe
that the size of me decreases; since removing a time instance leads to less edges
types. The number of removals in the lifespan (stored as lists) in setp leads to
slower size reduction. seti size is increasing since removing time instances leads
to more subintervals and thus to larger Ls and Le lifespan structures. Overall,
that single-edges are the best choice in terms of size efficiency for storing large
graphs. Among them, seti is more space-efficient, especially, when there are few
subintervals in the lifespan.

5.2 Query Processing

We now focus on query processing. We report the average execution time of
200 historical traversal queries where the source and target nodes are chosen
uniformly at random with the restriction that both nodes are present in the
graph at the beginning and the end of the query interval. For the FB and the
synthetic dataset, the query interval is chosen randomly. However, in DBLP
dataset which is more active in the last two decades, we use I = [2011, 2016] as
default query interval. For larger intervals we increase it using earlier years for
starting time instances. For the at least-k queries we set k to be equal to |I|/2.

Historical Traversals in Native Graph Databases 177

Reachability Queries. In Figs. 6 and 7, we depict the average query times
for DBLP and FB. A general remark that holds independently of the graph
representation model and the dataset is that disjunctive queries are faster than
conjunctive queries, since they stop once an instance where the nodes are reach-
able is found. Conjunctive queries are in turn faster than at least-k queries, since
they stop once an instance where the nodes are not reachable is found.

The main difference between the two datasets is that in DBLP edges represent
co-authorships, consequently, in general, their lifespans include very few years, in
most cases, just 1 or 2. In FB, lifespans are larger, and since we have no deletions,
include just one interval. The me approach is very fast for short-lived edges and
is a clear winner for reachability queries in DBLP. For FB which contains a large
number of multiple edge types, the response time of me increases linearly with
the size of the query interval. An exception is disjunctive reachability queries,
where traversal stops once an instance where a path exists is found and me
remains competitive.

Among the single edge approaches, setp outperforms seti only when the
lifespan includes very few time instances (as in DBLP). In this case, the time
join between the lifespan and any interval is fast. Furthermore, in this case,
seti includes many small intervals. When lifespans become larger and more
continuous (as in FB), seti outperforms setp.

To study further the effect of lifespans on query performance, we experimented
using the synthetic dataset with different percentage of deletions and with a query
interval of length 10 in Fig. 8. We observe that me and seti are competitive
in conjunctive and disjunctive queries whereas in at least-k queries seti is the
winner. me takes advantage of the use of the native traversalBFS method.

0
5

10
15
20
25
30

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(a) Conjunctive

0
2
4
6
8

10
12

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(b) Disjunctive

0
10
20
30
40
50
60
70

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(c) Least-k

Fig. 6. Query time for historical reachability queries in DBLP

0

5

10

15

20

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(a) Conjunctive

0
2
4
6
8

10
12

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(b) Disjunctive

0

5

10

15

20

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(c) Least-k

Fig. 7. Query time for historical reachability queries in FB

178 K. Semertzidis and E. Pitoura

0

50

100

150

200

10 20 30 40 50

Ti
m

e
(s

ec
)

% of dele�ons

ME SETP SETI

(a) Conjunctive

0
5

10
15
20
25
30

10 20 30 40 50

Ti
m

e
(s

ec
)

% of dele�ons

ME SETP SETI

(b) Disjunctive

0

20

40

60

80

100

10 20 30 40 50

Ti
m

e
(s

ec
)

% of dele�ons

ME SETP SETI

(c) Least-k

Fig. 8. Query time for historical reachability queries in the synthetic dataset

0

30

60

90

120

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(a) SSP

0

3

6

9

12

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(b) ESP

0

30

60

90

120

150

6 12 18 24 30

Ti
m

e
(s

ec
)

Query Interval

ME SETP SETI

(c) KSP

Fig. 9. Query time for historical shortest path queries in FB

seti performs well in all type of queries and it is starting to slow down when the
percentage of deletions is getting higher and the number of intervals in the lifespan
gets large.

Path Queries. We also evaluated the performance of historical path queries.
ESP queries perform similar to disjunctive reachability queries, since we seek
for the shortest path in the first instance when the two nodes are connected.
However, in case of SSP and KSP we need to locate the shortest among paths
that exist in all or in at least-k instances. We experimented with a large number
of random pair of nodes and observed that in DBLP no paths that connect these
pairs exist in more than 6 time instances. Furthermore, in most cases, these paths
existed in just a single instance. In Fig. 9, we report the average time for shortest
path queries in FB. The processing in me is costly since for each traversed edge
that connects u to v the traversal algorithm has to check if there are also other
type of edges that refer to all (or k) time instances that u to v. Thus, we set a
limit of 120 s for each path query type. KSP queries in me exceed the time limit
for computing a solution. In general, seti is the fastest one and setp comes
second in SSP and KSP queries, since they traverse a small number of queries
compared to multi-edge and the edge lifespan verification in the given interval
is performed fast.

Time Index. Finally, we ran the same historical traversal queries in DBLP and
FB datasets without using the time index and we observed that in general the
time index improves query performance. Due to space constraints, we only depict
the change in performance for conjunctive queries in Fig. 10(a)(b). In particular,
in DBLP dataset we observe high performance as long as the query interval is

Historical Traversals in Native Graph Databases 179

0

20

40

60

80

100

6 12 18 24 30

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

Query Interval

ME SETP SETI

(a) DBLP

-20

-10

0

10

20

30

40

6 12 18 24 30

Pe
rf

or
m

an
ce

 G
ai

n
(%

)

Query Interval

ME SETP SETI

(b) FB

0
10
20
30
40
50
60
70
80

1 2 3 4 5

Co
nn

ec
te

d
(%

)

k

ADBIS SIGMOD VLDB ICDE SODA STOC

(c)

0
10
20
30
40
50
60

1 2 3 4 5

Co
nn

ec
te

d
(%

)

k

ADBIS ADBIS - SIGMOD ADBIS - VLDB

ADBIS - ICDE ADBIS - SODA ADBIS - STOC

(d)

Fig. 10. (a)(b) Time index performance boost for conjunctive queries and (c)(d) per-
centage of connected pair of nodes in various conferences

increasing since there are not many connected pairs in all time instances and
thus indexing returns the negative answers very fast. However, in FB dataset
where there are nodes that are connected in whole interval even for larger ones,
we notice that indexing is more helpful in me and setp since we do not pay the
cost for traversing the graph for pairs that are not connected. seti performance
in FB does not increase very much since traversal algorithms run very fast by
pruning edges that are not active in the interval. The same trend is observed in
historical path queries and thus results are omitted.

5.3 Case Study

In this study, we use historical queries to study connectivity between authors
at difference conferences in DBLP. We selected 4 database (ADBIS, SIGMOD,
VLDB, ICDE) and 2 theory (SODA, STOC) conferences. For each conference,
we randomly selected 500 pair of nodes representing authors that have at least
one publication in the conference and examined whether they are reachable in
at least k years in the interval [1959, 2016]. We depict the results in Fig. 10(c)
where we observe that theory conferences have the most reachable pairs of nodes
which indicates that they consist of more well-connected communities compared
to database conferences. As expected, the percentage of nodes that are reachable
decreases as k increases. We also conducted a second study to show connectiv-
ity between ADBIS authors and authors in the other 5 conferences. As show
in Fig. 10(d), somehow surprisingly ADBIS authors are more connected with
authors in the theory conferences than with authors in the database confer-
ences. Not surprisingly, connectivity between authors of the same conference is
larger than connectivity among ADBIS and other conferences.

6 Conclusions

In this paper, we study the problem of storing and querying the history of
an evolving graph in a native graph database. We have proposed different
approaches for storing such graphs based on associating with each node and
edge a lifespan, i.e., a set of time intervals indicating when they were valid. We
have also proposed algorithms for processing various types of traversal queries
using the proposed storage models. For very short-lived edges, using multiple
edges to represent lifespans, one for each time instance, seems to work well by

180 K. Semertzidis and E. Pitoura

taking advantage of the built-in traversal methods of the native graph databases.
However, for all other cases, using an interval-based approach to represent lifes-
pans proves more efficient both processing and storage wise. There are many
possible directions for future work. One is to extend historical queries to include
time-varying node and edges labels, that is labels, that change over time. Another
direction is to provide support for historical graph queries inside the native graph
database.

References

1. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance
queries on large evolving networks by pruned landmark labeling. In: WWW, pp.
237–248 (2014)

2. Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group formation in
large social networks: membership, growth, and evolution. In: KDD, pp. 44–54
(2006)

3. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. PVLDB 4(3), 173–184 (2010)

4. Cattuto, C., Quaggiotto, M., Panisson, A., Averbuch, A.: Time-varying social net-
works in a graph database: a Neo4j use case. In: GRADES, p. 11 (2013)

5. Cheng, R., Hong, J., Kyrola, A., Miao, Y., Weng, X., Wu, M., Yang, F., Zhou, L.,
Zhao, F., Chen, E.: Kineograph: taking the pulse of a fast-changing and connected
world. In: EuroSys, pp. 85–98 (2012)

6. Durand, G.C., Pinnecke, M., Broneske, D., Saake, G.: Backlogs and interval
timestamps: building blocks for supporting temporal queries in graph databases.
In: EDBT/ICDT Workshops (2017)

7. Han, W., Miao, Y., Li, K., Wu, M., Yang, F., Zhou, L., Prabhakaran, V., Chen,
W., Chen, E.: Chronos: a graph engine for temporal graph analysis. In: EuroSys,
p. 1 (2014)

8. Huang, H., Song, J., Lin, X., Ma, S., Huai, J.: Tgraph: a temporal graph data
management system. In: CIKM, pp. 2469–2472 (2016)

9. Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social
graphs. In: SSDBM, p. 38 (2014)

10. Jensen, C.S., Snodgrass, R.T.: Temporal element. In: Liu, L., Tamer Özsu, M.
(eds.) Encyclopedia of Database Systems, p. 2966. Springer, Heidelberg (2009).
doi:10.1007/978-0-387-39940-9 1419

11. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data.
In: ICDE, pp. 997–1008 (2013)

12. Koloniari, G., Souravlias, D., Pitoura, E.: On graph deltas for historical queries.
In: WOSS (2012)

13. Labouseur, A.G., Birnbaum, J., Olsen Jr., P.W., Spillane, S.R., Vijayan, J., Hwang,
J.H., Han, W.S.: The G* graph database: efficiently managing large distributed
dynamic graphs. Distrib. Parallel Databases 33, 479–514 (2014)

14. Labouseur, A.G., Olsen, P.W., Hwang, J.H.: Scalable and robust management of
dynamic graph data. In: VLDB, pp. 43–48 (2013)

15. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: KDD, pp. 177–187 (2005)

16. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev.
45(2), 167–256 (2003)

http://dx.doi.org/10.1007/978-0-387-39940-9_1419

Historical Traversals in Native Graph Databases 181

17. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph
sequences. PVLDB 4(11), 726–737 (2011)

18. Semertzidis, K., Lillis, K., Pitoura, E.: Timereach: historical reachability queries
on evolving graphs. In: EDBT, pp. 121–132 (2015)

19. Semertzidis, K., Pitoura, E.: Durable graph pattern queries on historical graphs.
In: ICDE, pp. 541–552 (2016)

20. Semertzidis, K., Pitoura, E.: Time traveling in graphs using a graph database. In:
EDBT/ICDT Workshops (2016)

21. Viswanath, B., Mislove, A., Cha, M., Gummadi, P.K.: On the evolution of user
interaction in Facebook. In: WOSN, pp. 37–42 (2009)

Formalising openCypher Graph Queries
in Relational Algebra

József Marton1(B), Gábor Szárnyas2,3, and Dániel Varró2,3

1 Database Laboratory, Budapest University of Technology and Economics,
Budapest, Hungary
marton@db.bme.hu

2 Fault Tolerant Systems Research Group,
MTA-BME Lendület Research Group on Cyber-Physical Systems,

Budapest University of Technology and Economics, Budapest, Hungary
{szarnyas,varro}@mit.bme.hu

3 Department of Electrical and Computer Engineering,
McGill University, Montreal, Canada

Abstract. Graph database systems are increasingly adapted for stor-
ing and processing heterogeneous network-like datasets. However, due to
the novelty of such systems, no standard data model or query language
has yet emerged. Consequently, migrating datasets or applications even
between related technologies often requires a large amount of manual
work or ad-hoc solutions, thus subjecting the users to the possibility of
vendor lock-in. To avoid this threat, vendors are working on supporting
existing standard languages (e.g. SQL) or standardising languages.

In this paper, we present a formal specification for openCypher, a
high-level declarative graph query language with an ongoing standardis-
ation effort. We introduce relational graph algebra, which extends rela-
tional operators by adapting graph-specific operators and define a map-
ping from core openCypher constructs to this algebra. We propose an
algorithm that allows systematic compilation of openCypher queries.

1 Introduction

Context. Graphs are a well-known formalism, widely used for describing and
analysing systems. Graphs provide an intuitive formalism for modelling many
real-world scenarios, as the human mind tends to interpret the world in terms of
objects (vertices) and their respective relationships to one another (edges) [15].

The property graph data model [17] extends graphs by adding labels/types
and properties for vertices and edges. This gives a rich set of features for users to
model their specific domain in a natural way. Graph databases are able to store
property graphs and query their contents with complex graph patterns, which
otherwise would be are cumbersome to define and/or inefficient to evaluate on
traditional relational databases [21].

Neo4j1, a popular NoSQL property graph database, offers the Cypher query
language to specify graph patterns. Cypher is a high-level declarative query
1 https://neo4j.com/.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 182–196, 2017.
DOI: 10.1007/978-3-319-66917-5 13

https://neo4j.com/

Formalising openCypher Graph Queries in Relational Algebra 183

language which allows the query engine to use sophisticated optimisation tech-
niques. Neo Technology, the company behind Neo4j initiated the openCypher
project [13], which aims to deliver an open specification of Cypher.

Problem and Objectives. The openCypher project provides a formal specifi-
cation of the grammar of the query language and a set of acceptance tests that
define the semantics of various language constructs. This allows other parties
to develop their own openCypher-compatible query engine. However, there is no
mathematical formalisation for the language. In ambiguous cases, developers are
advised to consult Neo4j’s Cypher documentation or to experiment with Neo4j’s
Cypher query engine and follow its behaviour. Our goal is to provide a formal
specification for the core features of openCypher.

Contributions. In this paper, we use a formal definition of the property
graph data model [7] and relational graph algebra, which operates on multi-
sets (bags) [6] and is extended with additional graph-specific operators. Using
these foundations, we construct a concise formal specification for the core fea-
tures in the openCypher grammar. This specification is detailed enough to serve
as a basis for an openCypher compiler [23].

2 Data Model and Running Example

Data model. A property graph is defined as G = (V,E, st , L, T,L, T , Pv, Pe),
where V is a set of vertices, E is a set of edges and st : E → V × V assigns the
source and target vertices to edges. Vertices are labelled and edges are typed:

– L is a set of vertex labels, L : V → 2L assigns a set of labels to each vertex.
– T is a set of edge types, T : E → T assigns a single type to each edge.

To define properties, let D = ∪iDi be the union of atomic domains Di and
let ε represent the NULL value.

– Pv is a set of vertex properties. A vertex property pi ∈ Pv is a partial function
pi : V → Di ∪ {ε}, which assigns a property value from a domain Di ∈ D to
a vertex v ∈ V , if v has property pi, otherwise pi(v) returns ε.

– Pe is a set of edge properties. An edge property pj ∈ Pe is a partial function
pj : E → Dj ∪ {ε}, which assigns a property value from a domain Dj ∈ D to
an edge e ∈ E, if e has property pj , otherwise pj(e) returns ε.

In the context of this paper, we define a relation as a bag (multiset) of tuples:
a tuple can occur more than once in a relation [6]. Given a property graph G,
relation r is a graph relation if the following holds:

∀A ∈ sch(r) : dom(A) ⊆ V ∪ E ∪ D,

where the schema of r, sch(r), is a list containing the attribute names, dom(A)
is the domain of attribute A, V is the vertices of G, and E is the edges of G.

184 J. Marton et al.

Fig. 1. Social network example represented graphically and formally. To improve read-
ability, we use letters for vertex identifiers and numbers for edge identifiers.

Property access. When defining relational algebra expression on graph relations,
it is often required (e.g. in projection and selection operators) to access a certain
property of a vertex/edge. Following the notation of [7], if x is an attribute of a
graph relation, we use x.p to access the corresponding value of property p. Also,
L(v) returns the labels of vertex v and T (e) returns the type of edge e.

Running example. An example graph inspired by the LDBC Social Network
Benchmark [5] is shown on Fig. 1(a), while Fig. 1(b) presents the formalised
graph. The graph vertices model four Persons and three Messages, with edges
representing LIKES, REPLY OF and KNOWS relations. In social networks, the
KNOWS relation is symmetric, however, the property graph data model does not
allow undirected edges. Hence, we use directed edges with an arbitrary direction
and model the symmetric semantics of the relation in the queries.

3 The openCypher Query Language

Cypher is the a high-level declarative graph query language of the Neo4j graph
database. It allows users to specify graph patterns with a syntax resembling
an actual graph, which makes the queries easy to comprehend. The goal of the
openCypher project [13] is to provide a specification of the Cypher language. In
the following, we introduce features of the language using examples.

3.1 Language Constructs

Inputs and Outputs. openCypher queries take a property graph as their input,
however the result of a query is not a graph, but a graph relation.

Formalising openCypher Graph Queries in Relational Algebra 185

Vertex and Path Patterns. The basic building blocks of queries are patterns
of vertices and edges. List. 3.1 shows a query that returns all vertices that model
a Person. The query in List. 3.2 matches Person and Message pairs connected by
a LIKES edge and returns the person’s name and the message language. List. 3.3
describes person pairs that know each other directly or have a friend in common,
i.e. from person p1, the other person p2 can be reached using one or two hops.

MATCH (p:Person)

RETURN p

List. 3.1. Getting vertices

MATCH (p:Person)-[:LIKES]->(m:Message)

RETURN p.name, m.language

List. 3.2. Pattern matching

MATCH

(p1:Person)-[ks:KNOWS*1..2]-

(p2:Person)

RETURN p1, p2

List. 3.3. Variable length path

MATCH (p:Person) WITH p

UNWIND p.speaks AS language

RETURN language,

count(DISTINCT p.name) as cnt

List. 3.4. Grouping

Filtering. Pattern matches can be filtered in two ways as illustrated in List. 3.5
and List. 3.6. (1) Vertex and edge patterns in the MATCH clause might have vertex
label/edge type constraints written in the pattern after a colon, and (2) the
optional WHERE subclause of MATCH might hold predicates.

MATCH (p1:Person)-[k:KNOWS]-(p2:Person)

WHERE k.since < 2000

RETURN p1.name, p2.name

List. 3.5. Filtering for edge property

MATCH (p:Person)

WHERE p.name ='Bob'
RETURN p.speaks

List. 3.6. Filtering

Unique and Non-unique Edges. A MATCH clause defines a graph pattern. A
query can be composed of multiple patterns spanning multiple MATCH clauses.
For matches of a pattern within a single MATCH clause, edges are required to be
unique. However, matches for multiple MATCH clauses can share edges. This means
that in matches returned by List. 3.7, k1 and k2 are required to be different, while
in matches returned by List. 3.8, k1 and k2 are allowed to be equal. For vertices,
this restriction does not apply.2 This is illustrated in List. 3.9, which returns
adjacent persons who like the same message.

2 Requiring uniqueness of edges is called edge isomorphic matching. Other query
languages and execution engines might use vertex isomorphic matching (requiring
uniqueness of vertices), isomorphic matching (requiring uniqueness of both vertices
and edges) or homomorphic matching (not requiring uniqueness of either) [8].

186 J. Marton et al.

MATCH (p1)-[k1:KNOWS]-(p2),

(p2)-[k2:KNOWS]-(p3)

RETURN p1, k1, p2, k2, p3

List. 3.7. Different edges

MATCH (p1)-[k1:KNOWS]-(p2)

MATCH (p2)-[k2:KNOWS]-(p3)

RETURN p1, k1, p2, k2, p3

List. 3.8. Non-unique edges

MATCH (m:Message)<-[:LIKES]-(p1:Person)--(p2:Person)-[:LIKES]->(m)

RETURN p1, p2, m

List. 3.9. Triangle

Creating the Result Set. The result set3 of a query is basically given in the
RETURN clause, which can be de-duplicated using the DISTINCT modifier, sorted
using the ORDER BY subclause. Skipping rows after sorting and limiting the result
set to a certain number of records can be achieved using SKIP and LIMIT modifiers.

List. 3.10 illustrates these concepts by returning the name of the persons.
The result set is restricted to the second and third names in alphabetical order.

MATCH (p:Person)

RETURN DISTINCT p.name

ORDER BY p.name

SKIP 1 LIMIT 2

List. 3.10. Deduplicate and sort

1 MATCH

2 ()-[:LIKES]->(m:Message)<-[:LIKES]-(),

3 (m)<-[:REPLY_OF]-(r)

4 RETURN r

List. 3.11. Multiple patterns

Combining Patterns. Multiple patterns (in the same or in different) MATCH

clauses are combined together based on their common variables. List. 3.11 illus-
trates this by showing two patterns on lines 2 and 3. The first pattern describes
a message m that has at least two likes. The second pattern finds replies to m.

Aggregation. openCypher specifies aggregation operators for performing cal-
culations on multiple tuples.4 Unlike in SQL queries, the grouping criteria is
determined implicitly in the RETURN as well as in and WITH clauses. Each expres-
sion of the expression list in WITH and RETURN are forced to contain either (1) no
aggregate functions or (2) a single aggregate function at the outermost level.
The grouping key is the tuple built from expressions of type (1).5 The query of
List. 3.4 counts the number of persons commanding each language.

3 The term result set refers to the result collection, which can be a set, a bag or a list.
4 The avg, count, max, min, percentileCont, percentileDisc, stdDev, stdDevP, sum

functions return a single scalar value, while collect returns a list.
5 Decision on grouping semantics is due after the camera ready submission deadline.

The semantics presented in this paper is one of the possible approaches.

Formalising openCypher Graph Queries in Relational Algebra 187

MATCH (p:Person) WITH p

UNWIND p.speaks AS lang

RETURN p.name, lang

List. 3.12. Unwind Fig. 2. Output of the unwind query.

Unwinding a List. The UNWIND construct takes an attribute and multiplies each
tuple by appending the list elements one by one to the tuple, thus modifying the
schema of the query part. By applying UNWIND to the speaks attribute List. 3.12
lists persons along the languages they speak. Figure 2 shows the output of this
query. As Cecil speaks two languages, he appears twice in the output. Note that
“Daisy” speaks no languages, thus no tuples belong to her in the output.

3.2 Query Structure

In openCypher a query is composed as the UNION of one or more single queries.
Each single query must have the same resulting schema, i.e. the resulting tuples
must have the same arity and the same name at each position.

Single Queries. A single query is composed of one or more query parts written
subsequently. Query parts that form a prefix of a single query have one result
set with the schema of the last query part’s schema in that prefix.

Query Parts. Clause sequence of a query part matches the regular expression
as follows: MATCH*((WITH UNWIND?)|UNWIND|RETURN). They begin with an arbitrary
number of MATCH clauses, followed by either (1) WITH and an optional UNWIND, (2) a
single UNWIND, or (3) a RETURN in case of the last query part.6

The RETURN and WITH clauses use similar syntax and have the same semantics,
the only difference being that RETURN should be used in the last query part while
WITH should only appear in the preceding ones. These clauses list expressions
whose value form the tuples, thus they determine the schema of the query parts.

Example. An openCypher single query composed of two query parts is shown
on List. 3.13 along with its result on Fig. 3. It retrieves the language of messages
that were written in a language no other message uses. If that message was a
reply, the language of the original message is also retrieved.

The first query part spans lines 1–3 and the second spans lines 4–6. The result
of the first query part is a single tuple 〈“fr”, 1〉 with the schema 〈singleLang, cnt〉.

6 In openCypher, the filtering WHERE operation is a subclause of MATCH and WITH. When
used in WITH as illustrated on line 3 of List. 3.13, WHERE is similar to the HAVING

construct of SQL with the major difference that, in openCypher it is also allowed
when no aggregation was specified in the query.

188 J. Marton et al.

1 MATCH (m1:Message)

2 WITH m1.language AS singleLang, count(*) AS cnt

3 WHERE cnt = 1

4 MATCH (m2:Message) WHERE m2.language = singleLang

5 OPTIONAL MATCH (m2)-[:REPLY_OF]->(m3:Message)

6 RETURN m2.language as reply, m3.language as orig

List. 3.13. Single query with multiple query parts Fig. 3. Result.

The second query part takes this result as an input to retrieve messages of the
given languages and in case of a reply the original message in m3. The result
of these two query parts together produces the final result whose schema is
determined by the RETURN of the last query part (line 6).

4 Mapping openCypher to Relational Graph Algebra

In this section, we present relational graph algebra using the examples of Sect. 3.1
and provide a mapping that allows compilation from openCypher to this algebra.

Table 1. Number of operands, properties and result schemas of relational graph algebra
operators. A unary operator α is idempotent (i), iff α(x) = α(α(x)) for all inputs.
A binary operator β is commutative (c), iff x β y = y β x and associative (a), iff
(x β y) β z = x β (y β z). For schema transformations, append is denoted by ‖ , while
removal is marked by \. L represents a (possibly empty) set of vertex labels and T
represents a (possibly empty) set of edge types.

Formalising openCypher Graph Queries in Relational Algebra 189

4.1 An Algebra for Formalising Graph Queries

We present both standard operators of relational algebra [4] and operators for
graph relations. Table 1 provides an overview of the operators of relational graph
algebra. We follow the openCypher query language and present a mapping from
the language constructs to their algebraic equivalents7, summarized in Table 2.
The corresponding rows of the table (e.g. 1) are referred to in the text.

Basic Operators. The projection operator π keeps a specific set of attributes
in the relation: t = πx1,...,xn (r) . Note that the tuples are not deduplicated (i.e.
filtered to sets), thus t will have the same number of tuples as r. The projection
operator can also rename the attributes, e.g. πx1→y1 (r) renames x1 to y1.

The selection operator σ filters the incoming relation according to some cri-
teria. Formally, t = σθ (r) , where predicate θ is a propositional formula. Relation
t contains all tuples from r for which θ holds.

Vertices and Patterns. 1 – 2 The get-vertices [7] nullary operator
©(v:l1∧...∧ln) returns a graph relation of a single attribute v that contains ver-
tices that have all of labels l1, . . . , ln. Using this operator, the query in List. 3.1
is compiled to

©(p:Person)

3 – 6 The expand-out unary operator ↑ (w:l1∧...∧ln)
(v) [e : t1 ∨ . . . ∨ tk] (r) adds

new attributes e and w to each tuple iff there is an edge e from v to w, where e
has any of types t1, . . . , tk, while w has all labels l1, . . . , ln.8 More formally, this
operator appends the 〈e, w〉 to a tuple iff st(e) = 〈v, w〉, l1, . . . , ln ∈ L(w) and
T (e) ∈ {t1, . . . , tk}. Using this operator, the query in List. 3.2 can be formalised
as

πp.name,m.language ↑ (m:Message)
(p) [e1 : LIKES] ©(p:Person)

Similarly to the expand-out operator, the expand-in operator ↓ appends
〈e, w〉 iff st(e) = 〈w, v〉, while the expand-both operator uses edge e iff either
st(e) = 〈v, w〉 or st(e) = 〈w, v〉. We also propose an extended version of this
operator, ↑ (w)

(v) [e∗max
min], which may use between min and max hops. Using this

extension, List. 3.3 is compiled to
7 Patterns in the openCypher query might contain anonymous vertices and edges. In

the algebraic form, we denote this with names starting with an underscore, such as
v1 and e2.

8 Label and type constraints can be omitted for the get-vertices operator and the
expand operators. For example, ©(v) returns all vertices, while ↑ (w)

(v) [e] (r) traverses

all outgoing edges e from vertices v to w, regardless of their labels/types.

190 J. Marton et al.

πp1,p2 �≡ks (p2:Person)
(p1)

[
ks : KNOWS∗21

]
©(p1:Person)

Combining and Filtering Pattern Matches. 7 – 11 In order to express
the uniqueness criterion for edges (illustrated in Sect. 3.1) in a compact way,
we propose the all-different operator. The all-different operator �≡E1,...,En

(r)
filters r to keep tuples where variables in ∪iEi are pairwise different. Note that
the operator is actually a shorthand for the following selection:

�≡E1,...,En
(r) = σ ∧

e1,e2∈∪iEi
e1 �=e2

r.e1 �= r.e2(r)

Using the all-different operator, query in List. 3.7 is compiled to

πp1,k1,p2,k2,p3 �≡k1,k2↑ (p3)
(p2) [k2 : KNOWS] ↑ (p2)

(p1) [k1 : KNOWS] ©(p1)

7 – 8 The result of the natural join operator �� is determined by creating
the Cartesian product of the relations, then filtering those tuples which are equal
on the attributes that share a common name. The combined tuples are projected:
from the attributes present in both of the two input relations, we only keep the
ones in r and drop the ones in s. Thus, the join operator is defined as

r �� s = πR∪S

(
σr.A1=s.A1 ∧ ... ∧ r.An=s.An) (r × s)

)
,

where {A1, . . . , An} = R ∩S is the set of attributes that occur both in R and S.
In order to allow pattern matches to share the same edge, they must be included
in different MATCH clauses as shown on List. 3.8 which is compiled to

πp1,p2,p3

((
 (p2)

(p1) [e1 : KNOWS] ©(p1)

)
��

(
 (p3)

(p2) [e2 : KNOWS] ©(p2)

))

The query in List. 3.11 with two patterns in one MATCH clause is compiled to:

πr �≡ e1, e2, e3

((
↓ (v2)

(m) [e2 : LIKES] ↑ (m:Message)
(v1) [e1 : LIKES] ©(v1)

)

��
(

↓ (r)
(m) [e3 : REPLY OF] ©(m:Message)

))

9 – 11 The left outer join operator produces t = r ��s combining matching
tuples of r and s according to a given matching semantics.9 In case there is no
matching tuple in s for a particular tuple e ∈ r, e is still included in the result,
with tuple attributes that exclusively belong to relation s having a value of ε.
9 Matching semantics might use value equality of attributes that share a common

name (similarly to natural join) to use an arbitrary condition (similarly to θ-join).

Formalising openCypher Graph Queries in Relational Algebra 191

Result and Subresult Operations. 16 The duplicate-elimination operator
δ eliminates duplicate tuples in a bag.

17 The grouping operator γ groups tuples according to their value in one
or more attributes and aggregates the remaining attributes.

We generalize the grouping operator to explicitly state the grouping criteria
and allow for complex aggregate expressions. This is similar to the SQL query
language where the grouping criteria is explicitly given in GROUP BY.

We use the notation γc1,c2,...
e1,e2,..., where c1, c2, . . . in the superscript form the

grouping criteria, i.e. the list of expressions whose values partition the incoming
tuples into groups. For each and every group this aggregation operator emits a
single tuple of expressions listed in the subscript, i.e. 〈e1, e2, . . .〉. Given attributes
{a1, . . . , an} of the input relation, ci is an arithmetic expression built from aj

attributes using common arithmetic operators, while ei is an expression built
from aj using common arithmetic operators and grouping functions.

We have discussed the aggregation semantics of openCypher in Sect. 3.1. The
formal algorithm for determining the grouping criteria is given in Algorithm1.
Building on this algorithm and the grouping operator, List. 3.4 is compiled to

γlanguage

language,count distinct(p.name)→cnt
ωp.speaks→language©(p:Person)

Data: E is the list of expressions in the RETURN or WITH clause
1 Function DetermineGroupingCriteria(E)

2 G ← {} // initial set of grouping criteria

3 foreach e ∈ E do
4 if e has an aggregate function call at its outermost level then
5 // do nothing as this is an aggregation

6 else if e contains aggregate function call then
7 // aggregation allowed only at the outermost level

8 raise SemanticError(Illegal use of aggregation function)

9 else
10 G ← G ∪ {e} // append to the grouping key

11 end

12 end
13 return G

Algorithm 1: Determine grouping criteria from return item list.

Unwinding and List Operations. 19 The unwind [3] operator ωxs→x takes
the list in attribute xs and multiplies each tuple adding the list elements one by
one to an attribute x, as demonstrated in Fig. 2. Using this operator, the query
in List. 3.12 can be formalised as

πp.name,langωp.speaks→langπp©(p:Person)

192 J. Marton et al.

20 The sorting operator τ transforms a bag relation of tuples to a list of
tuples by ordering them. The ordering is defined for selected attributes and with
a certain direction for each of them (ascending ↑/descending ↓), e.g. τ↑x1,↓x2(r).

21 The top operator λs
l (adapted from [11]) takes a list as its input, skips

the first s tuples and returns the next l tuples.10

Using the sorting and top operators, the query of List. 3.10 is compiled to:

λ1
2τ↑p.nameδ πp.name©(p:Person)

Combining Results. The ∪ operator produces the set union of two rela-
tions, while the � operator produces the bag union of two operators, e.g.
{〈1, 2〉, 〈3, 4〉}�{〈1, 2〉} = {〈1, 2〉, 〈1, 2〉, 〈3, 4〉}. For both the union and bag union
operators, the schema of the operands must have the same attributes.

4.2 Mapping openCypher Queries to Relational Graph Algebra

In this section, we give the mapping algorithm of openCypher queries to rela-
tional graph algebra and also give a more detailed listing of the compilation rules
for the query language constructs in Table 2. We follow a bottom-up approach
to build the relational graph algebra expression.

1. Process each single query as follows and combine their result using the union
operation. As the union operator is technically a binary operator, the union
of more than two single queries are represented as a left-deep tree of UNION

operators.
3. For each query part of a single query, denoted by t, the relational graph

algebra tree built from the prefix of query parts up to—but not including—
the current query part, process the current query part as follows.
1. A single pattern is turned left-to-right to a get-vertices for the first ver-

tex and a chain of expand-in, expand-out or expand-both operators for
inbound, outbound or undirected relationships, respectively.

2. Comma-separated patterns in a single MATCH are connected by natural
join.

3. Append an all-different operator for all edge variables that appear in the
MATCH clause because of the non-repeating edges language rule.

4. Process the WHERE subclause of a single MATCH clause.
5. Several MATCH clauses are connected to a left-deep tree of natural join.

For OPTIONAL MATCH, left outer join is used instead of natural join. In case
there is a WHERE subclause, its condition becomes part of the join condition,
i.e. it will never filter on the input from previous MATCH clauses.

6. If there is a positive or negative pattern deferred from WHERE processing,
append it as a natural join or a combination of left outer join and selection
operator filtering on no matches were found, respectively.

10 SQL implementations offer the OFFSET and the LIMIT/TOP keywords.

Formalising openCypher Graph Queries in Relational Algebra 193

7. If this is not the first query part, combine the current query part with the
relational graph algebra tree of the preceding query parts by appending
a natural join here. Its left operand will be t and its right operand will be
the relational graph algebra tree built so far from the current subquery.

8. Append grouping, if RETURN or WITH clause has grouping functions inside.
9. Append a projection operator based on the RETURN or WITH clause. This

operator will also handle the renaming (i.e. AS).
10. Append a duplicate-elimination operator, if the RETURN or WITH clause has

the DISTINCT modifier.
11. Append a selection operator if WITH had the optional WHERE subclause.

4.3 Summary and Limitations

In this section, we presented a mapping that allows us to express the example
queries of Sect. 3.1 in graph relational algebra. We extended relational algebra
by adapting operators (©, ↑, τ , λ), precisely specifying grouping semantics (γ)
and defining the all-different operator (�≡). Finally, we proposed an algorithm
for compiling openCypher graph queries to graph relational algebra.

Our mapping does not completely cover the openCypher language. As dis-
cussed in Sect. 3, some constructs are defined as legacy and thus were omit-
ted. The current formalisation does not include expressions (e.g. conditions in
selections) and maps. Compiling data manipulation operations (such as CREATE,
DELETE, SET, and MERGE) to relational algebra is also subject of future work.

5 Related Work

Property Graph Data Models. The TinkerPop framework aims to provide
a standard data model for property graphs, along with Gremlin, a high-level
imperative graph traversal language [16] and the Gremlin Structure API, a low-
level programming interface.

EMF. The Eclipse Modeling Framework is an object-oriented modelling frame-
work widely used in model-driven engineering. Henshin [1] provides a visual
language for defining patterns, while Epsilon [9] and Viatra Query [2] provide
high-level declarative (textual) query languages, the Epsilon Pattern Language
and the Viatra Query Language.

SPARQL. Widely used in semantic technologies, SPARQL is a standardised
declarative graph pattern language for querying RDF [24] graphs. SPARQL bears
close similarity to Cypher queries, but targets a different data model and requires
users to specify the query as triples instead of graph vertices/edges [14]. G-
SPARQL [19] extended the SPARQL language for attributed graphs, resulting
in a language with an expressive power similar to openCypher.

194 J. Marton et al.

Table 2. Mapping from openCypher constructs to relational algebra. Variables, labels,
types and literals are typeset as . The notation �p� represents patterns resulting
in a relation p, while �r� denotes previous query fragment resulting in a relation r.
To avoid confusion with the “..” language construct (used for ranges), we use ··· to
denote omitted query fragments.

SQL. In general, relational databases offer limited support for graph queries:
recursive queries are supported by PostgreSQL using the WITH RECURSIVE keyword
and by the Oracle Database using the CONNECT BY keyword. Graph queries are
supported in the SAP HANA prototype [18], through a SQL-based language [10].

Formalising openCypher Graph Queries in Relational Algebra 195

Cypher. Due to its novelty, there are only a few research works on the formal-
isation of (open)Cypher. The authors of [7] defined graph relations and intro-
duced the GetNodes, ExpandIn and ExpandOut operators. While their work
focused on optimisation transformations, this paper aims to provides a more
complete and systematic mapping from openCypher to relational algebra.

In [8], graph queries were defined in a Cypher-like language and evaluated on
Apache Flink. However, formalisation of the queries was not discussed in detail.

Comparison of Graph Query Frameworks. Previously, we published the
Train Benchmark, a framework for comparing graph query frameworks across
different technological spaces, such as property graphs, EMF, RDF and SQL [21].

6 Conclusion and Future Work

In this paper, we presented a formal specification for a subset of the openCypher
query language. This provides the theoretical foundations to use openCypher as
a language for graph query engines.

As future work, we plan to provide a formalisation based on graph-specific
theoretical query frameworks, such as [12]. We will also give the formal spec-
ification of the operators for incremental query evaluation, which requires the
definition of maintenance operations that keep the result in sync with the latest
set of changes [22]. Our long-term research objective is to design an openCypher-
compatible distributed, incremental graph query engine [20].11

Acknowledgements. Gábor Szárnyas and Dániel Varró were supported by the MTA-
BME Lendület Research Group on Cyber-Physical Systems and the NSERC RGPIN-
04573-16 project. The authors would like to thank Gábor Bergmann and János Mag-
inecz for their comments on the draft of this paper.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 9

2. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,
A.: Incremental evaluation of model queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-16145-2 6

3. Botoeva, E., et al.: OBDA beyond relational DBs: a study for MongoDB. In: Pro-
ceedings of the 29th International Workshop on Description Logics (2016)

4. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 3rd edn. Addison-
Wesley-Longman, Boston (2000)

11 Our prototype, ingraph, is available at: http://docs.inf.mit.bme.hu/ingraph/.

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_6
http://docs.inf.mit.bme.hu/ingraph/

196 J. Marton et al.

5. Erling, O., et al.: The LDBC social network benchmark: interactive workload. In:
SIGMOD, pp. 619–630 (2015)

6. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book, 2nd edn. Pearson Education, Harlow (2009)

7. Hölsch, J., Grossniklaus, M.: An algebra and equivalences to transform graph pat-
terns in Neo4j. In: GraphQ at EDBT/ICDT (2016)

8. Junghanns, M., et al.: Cypher-based graph pattern matching in GRADOOP. In:
GRADES at SIGMOD (2017)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063,
pp. 46–60. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69927-9 4

10. Krause, C., Johannsen, D., Deeb, R., Sattler, K.-U., Knacker, D., Niadzelka, A.: An
SQL-based query language and engine for graph pattern matching. In: Echahed,
R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 153–169. Springer, Cham
(2016). doi:10.1007/978-3-319-40530-8 10

11. Li, C., Chang, K.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization
for relational top-k queries. In: SIGMOD, pp. 131–142 (2005)

12. Libkin, L., et al.: Querying graphs with data. J. ACM 63(2), 14:1–14:53 (2016)
13. Neo Technology. openCypher project (2017). http://www.opencypher.org/
14. Pérez, J., et al.: Semantics and complexity of SPARQL. ACM TODS 34(3), 1–45

(2009)
15. Rodriguez, M.A.: A collectively generated model of the world. In: Collective Intel-

ligence: Creating a Prosperous World at Peace, pp. 261–264 (2008)
16. Rodriguez, M.A.: The gremlin graph traversal machine and language (invited talk).

In: DBPL, pp. 1–10 (2015)
17. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. In: Graph Data Man-

agement: Techniques and Applications, pp. 29–46 (2011)
18. Rudolf, M., et al.: The graph story of the SAP HANA database. In: BTW (2013)
19. Sakr, S., Elnikety, S., He, Y.: G-SPARQL: a hybrid engine for querying large

attributed graphs. In: CIKM, pp. 335–344 (2012)
20. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.: IncQuery-

D: a distributed incremental model query framework in the cloud. In: Dingel, J.,
Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol.
8767, pp. 653–669. Springer, Cham (2014). doi:10.1007/978-3-319-11653-2 40

21. Szárnyas, G., et al.: The train benchmark: cross-technology performance evaluation
of continuous model validation. Softw. Syst. Model. 1–29 (2017)

22. Szárnyas, G., Maginecz, J., Varró, D.: Evaluation of optimization strategies for
incremental graph queries. Periodica Polytechnica, EECS (2017)

23. Szárnyas, G., Marton, J.: Formalisation of openCypher queries in relational alge-
bra. Technical report, Budapest University of Technology and Economics (2017).
http://hdl.handle.net/10890/5395

24. W3C. Resource Description Framework (2014). https://www.w3.org/RDF/

http://dx.doi.org/10.1007/978-3-540-69927-9_4
http://dx.doi.org/10.1007/978-3-319-40530-8_10
http://www.opencypher.org/
http://dx.doi.org/10.1007/978-3-319-11653-2_40
http://hdl.handle.net/10890/5395
https://www.w3.org/RDF/

Spatial Data Management

SliceNBound: Solving Closest Pairs
and Distance Join Queries in Apache Spark

George Mavrommatis1(&), Panagiotis Moutafis1,
Michael Vassilakopoulos1, Francisco García-García2,

and Antonio Corral2

1 Data Structuring & Engineering Lab,
Department of Electrical and Computer Engineering,

University of Thessaly, Volos, Greece
{gmav,pmoutafis,mvasilako}@uth.gr

2 Department of Informatics, University of Almeria, Almeria, Spain
{paco.garcia,acorral}@ual.es

Abstract. The (K) Closest-Pair(s) Query, KCPQ, consists in finding the
(K) closest pair(s) of objects between two spatial datasets. Recently, several
systems that enhance Apache Spark with spatial-awareness have been presented,
providing a variety of queries for spatial computation, but not the KCPQ. Since
queries are of different nature and one processing technique does not fit all cases,
we need specialized algorithms for specific queries that exploit the power pro-
vided by parallel systems such as Apache Spark. This paper addresses the
problem of answering the KCPQ in Apache Spark, by presenting such a spe-
cialized, fast algorithm that can easily be imported in any, spatial-oriented or
general, Spark-based system. Furthermore, it presents a variant of this algorithm
that solves the Distance Join Query. Experiments and comparison to other
solutions indicate that our method is fast and efficient.

Keywords: Spatial Query Processing � Closest-pairs query � Distance Join
Query � Data partitioning � Apache Spark

1 Introduction

The (K) Closest-Pair(s) Query, KCPQ, finds the (K) closest pair(s) of object(s) (usually
ordered by distance), between two spatial datasets. The KCPQ has received consid-
erable attention from the database community, due to its importance in various
applications [1, 2] and has been actively studied in centralized environments, when
both [3], one [4] or none [5] of the two spatial datasets are indexed.

During the last decades we have witnessed a huge increase of data in various fields.
The term Big Data refers to large volumes of unstructured data that appear in a vast
variety of contemporary applications and need real-time analysis [6]. The ubiquity of
mobile devices, among others, is resulting to a fast increase in the scale of the big input
datasets and particularly datasets containing location data. Spatial computing [7] is
becoming more and more significant. Running queries on spatial databases is a core
operation of spatial computing. Although most commercial and open source spatial

© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 199–213, 2017.
DOI: 10.1007/978-3-319-66917-5_14

databases provide solutions to answer a variety of spatial queries, processing these
queries can become very demanding if the volume of data on which such a query is
applied is big (e.g. tens or hundreds of millions of items), or if the number of the
combinations of data objects that need to be examined for answering such a query are
big. One option for answering spatial queries in reasonable response time is exploiting
the scalability provided by Hadoop MapReduce based systems [8, 9], as already done
in several specialized, spatial-oriented systems, like SpatialHadoop [10] and
Hadoop-GIS [11]. Although these systems outperform spatial extensions of relational
database systems, they do not take advantage of the power of distributed memory, nor
are they able to reuse intermediate data [12].

Apache Spark (henceforth Spark), the distributed in-memory computation frame-
work was developed to overcome limitations of the MapReduce paradigm [13]. Many
researchers have recently used or extended Spark to handle big spatial data [14–19].
Within these software artifacts, several parallel algorithms for spatial operations and
queries have been designed and implemented in Spark (KNN joins, spatial joins, range
queries, etc.). But, to best of the authors’ knowledge, there are only two research works
on parallel and distributed KCPQ processing on large spatial data, a challenging task
becoming increasingly essential as datasets continue growing. In [20] SpatialHadoop
was utilized to perform efficient parallel KCPQ computation and recently an algorithm
for processing the KCPQ in Spark [21] was presented. Experimental results in the latter
had been quite promising, showing efficiency and potentiality of improvement.

Motivated by these observations, we utilize, elaborate and adapt ideas presented in
[5, 20, 21] to propose a new algorithm for the KCPQ in Spark, called SliceNBound
(SnB). The contributions of this paper are the following:

• A novel, four-phased, iterative algorithm in “plain” Apache Spark to perform
efficient parallel KCPQ processing on big spatial datasets. It is based on a simple
and, therefore, not very computationally demanding partitioning scheme that
enables the two datasets to share a common partitioning. Additionally, it only
exploits built-in functions of Spark, thus making it easy to be imported in any
spatial-oriented, or general, Spark-based parallel system.

• A couple of fast heuristic methods that use a two-stage sampling technique to
compute good upper bounds of the distance value of the K-th closest pair. These
methods can be used as a preprocessing phase for any technique that uses
preprocessing.

• A version of SnB algorithm for Distance Join Queries (DJQs). As already men-
tioned, apart from [21], there is no other research paper on KCPQ processing in
Spark, so the SnB technique is being compared to this work. However, in order to
compare the performance of our method against other solutions, we have imple-
mented an extension of our algorithm to answer DJQs. In [19], it has been reported
that Simba yields superior performance compared against other spatial analytics
system (GeoSpark, SpatialSpark, SpatialHadoop, Hadoop GIS etc.). Simba does not
support KCPQs, but does support DJQs. Results indicate that, in the case of the
DJQ, our method is faster than the one embedded in Simba.

• The execution of an extensive set of experiments using big real-world points
datasets that demonstrate the efficiency and scalability of our proposal.

200 G. Mavrommatis et al.

The rest of the paper is organized as follows. In Sect. 2 we present preliminaries
concerning Spark, DJQs, KCPQs and we review related work on Spark systems that
support spatial operations. In Sect. 3, the new parallel algorithms for processing the
KCPQ and DJQ in Spark are being presented. In Sect. 4, we present representative
results of the experimentation we have performed, using real-world datasets and taking
into account different performance parameters. Finally, in Sect. 5 we discuss the dif-
ferences between SnB and the method in [21], we present conclusions and plans for
related future work directions.

2 Preliminaries and Related Work

In this section, we define KCPQs and DJQs, introduce the basic characteristics of Spark
and review Spark extensions supporting spatial query processing.

2.1 Distance Join and K Closest Pairs Query

The Spatial Join Query, one of the most frequent queries in spatial database systems,
finds all pairs of objects from two spatial datasets that satisfy a predicate ∂ (i.e.
distance, intersect, overlap, etc.). In the special case that ∂ is distance we are dealing
with distance join queries (DJQ), according to the following definition.

Definition 1 (Distance Join): Given two datasets, P and Q, and a distance threshold
epsilon > 0, the distance join between P and Q, denoted as DJQ(P, Q, epsilon), finds
all pairs (p, q), p 2 P and q 2 Q, within distance epsilon:

DJQ P; Q, epsilonð Þ ¼ fðp; qÞ 2 P� Q : distðp; qÞ� epsilong ð1Þ

One of the most prominent and studied DJQs in the spatial database field is the
K Closest Pairs Query (KCPQ), which is defined as follows.

Definition 2 (K Closest Pairs): Given two datasets P and Q where P ¼ fp1; p2; ::; png
and Q ¼ fq1; q2; ::; qmg and a number K[0;K 2 N, the K Closest Pairs Query is an
ordered subset of P � Q denoted by KCPQ(P, Q, K), where KCPQðP;Q;KÞ ¼
fðp1; q1Þ; . . .; ðpK ; qKÞ : ðpi; qiÞ 2 P� Q; ðpi; qiÞ 6¼ ðpj; qjÞ; 81� i; j�Kg and distðp1;
q1Þ� . . .� distðpK ; qKÞ� distðp; qÞ8ðp; qÞ 2 P� Q� KCPQðP;Q;KÞ.

The distance function dist is a distance metric defined on points in the data space.
A very commonly used such distance function is the Euclidean distance, but depending
on the application, other functions may be more appropriate.

The Spatial Join Query is a very expensive query type and is often being used for
benchmarking purposes [22]. The KCPQ is a combination of two expensive queries,
spatial join and K Nearest Neighbor (KNN), and therefore is even more costly [20].

2.2 Apache Spark

Spark allows a user application to cache data in memory in a flexible manner that lets the
application decidewhat data should be cached and atwhat point in the processingflow [23].

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 201

It uses an advanced job execution scheme based on creation of a directed acyclic graph
(DAG) of stages and a lazy evaluation that allowsprevious knowledge of the full processing
path, thus making it easier to optimize the execution. This functionality makes Spark ideal
for iterative algorithms implementation.

The Spark API relies, among others, on the abstraction of Resilient Distributed
Dataset (RDD). Data are being represented as RDDs in the Spark context, and are
distributed among Workers of the cluster. Spark provides several methods that operate
on the RDDs and finally on the underlying data. Although Spark uses a shared-nothing
architecture, it also supports the concept of shared variables that are being materialized
as broadcasts and accumulators. By using broadcast variables, Spark sends data to each
node, enabling all Workers to share a piece of information.

Broadcast variables may be useful in cases of problems in the field of combinatorial
optimization. For example, in NP-hard graph problems such as the maximum clique
number, knowing a good lower bound of the maximum clique helps pruning the search
space and speeding up the computation [24]. A similar notion holds for the KCPQ. If
we know a good upper bound for the k-th smaller distance and transmit it to all
Workers, this will lead to discarding a large volume of computation among pairs of
points that their distance is greater than the upper bound.

2.3 Spatial Computing in Apache Spark

During the recent few years, several systems and algorithms have been presented that
support spatial queries over distributed spatial data using a cluster of commodity
machines and Spark. Most systems are either using the on-top or the built-in imple-
mentation approach [8]. This section presents a brief overview.

GeoSpark [16] uses Spark as its base layer and adds two more layers, the Spa-
tial RDD (SRDD) Layer and Spatial Query Processing Layer. The SRDD layer consists
of three newly defined RDDs, PointRDD, RectangleRDD and PolygonRDD and
supports geometrical operations, like Overlap and Minimum Bounding Rectangle.
SRDDs are automatically partitioned by using the uniform grid technique, where the
global grid file is split into a number of equal geographical size grid cells. GeoSpark
provides spatial indexes like Quadtree and R-Tree on a per partition base. The Spatial
Query Processing Layer includes spatial range query, spatial join query, and spatial
KNN query. Experiments, reported in [16], show that GeoSpark outperforms its
Hadoop-based counterparts (e.g., SpatialHadoop).

SpatialSpark [17] supports indexed spatial joins and range queries. Authors report
that in some cases of data intensive applications SpatialSpark performs worse on
multiple computing nodes than on a single node, thus showing low scalability. This fact
is attributed to possible bottlenecks due to communication overheads among com-
puting nodes a factor that is related to the number of partitions.

LocationSpark [18] is built as a library on top of Spark. It provides Dynamic Spatial
Query Execution and operations (Range, kNN, Insert, Delete, Update, Spatial-Join,
kNN-Join, Spatio-Textual). The system builds two indexes, a global (grid, quadtree and
a Spatial-Bloom Filter) and a local per-worker, user-decided index (grid, rtree, etc.).
Global index is constructed by sampling the data. Spatial indexes are aiming to tackle
unbalanced data partitioning. Additionally, the system contains a query scheduler,

202 G. Mavrommatis et al.

aiming to tackle query skew. As reported in [18], LocationSpark outperforms GeoS-
park by one order of magnitude.

Simba [19] extends the Spark SQL engine to support spatial queries and analytics
through SQL and the DataFrame API. Simba partitions data in a manner such that the
resulting partitions are of proper and balanced size and records that are located closely
in space are contained in the same partition. It builds a local index per partition and a
global index by aggregating information from local indexes. It supports range and kNN
queries, kNN and distance joins. As being reported in [19], Simba outperforms Spa-
tialHadoop, HadoopGIS, SpatialSpark and GeoSpark by a few or more orders of
magnitude. In the case of distance join queries, Simba is reported to run about 1.2–1.5
times faster than its closest counterparts, GeoSpark and SpatialSpark.

In [20], the KCPQ is being answered by partitioning datasets into blocks and
assigning pairs to workers for local computation. Afterwards, all results are being
collected and the top-k ones (with the smallest distances) form the solution. Pruning is
being done by sampling and computing an upper bound for the solution.

Finally, in [21] we first compute an upper bound bnd for the K distances we are
seeking, by sampling the datasets and selecting the K smaller distances among points of
the sample. Then, each dataset is being independently divided into strips. All combi-
nations of strips from the two datasets are subject to evaluation with respect to their x-
axis distance compared to bnd. Pairs that may contribute to the solution (overlapping or
having their x-distance less than bnd) are being processed in the cluster, by using a
plane-sweep algorithm. Local results are gathered by the driver program and taking the
first (sorted on increasing distance) K tuples with the smaller distances, yields the final,
exact solution.

3 SliceNBound in Apache Spark

In this Section, we describe SliceNBound, our four phased approach to KCPQ algo-
rithm on top of Spark. As it can be inferred from its name, our method slices the plane
into strips and uses sampling to bound the solution space. The bound is used as a
pruning criterion in several phases of the computation. The algorithm, iteratively and
incrementally, approximates the solution in three major phases, until the exact solution
is derived in Phase four. Before presenting the phases of the algorithm as a whole,
several details need first to be clarified.

3.1 Local Computation of the KCPQ

Regardless of any other detail, one dealing with the KCPQ eventually needs a method
to actually compute it. This also holds for parallel systems such as Spark. Some of the
most important techniques for the KCPQ computation are the Plane-Sweep (PS) family
of algorithms. In our implementation we use the Classic PS algorithm [5]:

1. sort in increasing order the entries of the two point sets, P and Q, based on the
coordinates of one of the axes (e.g. Y)

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 203

2. initialize two pointers p and q to point to the first entry for processing of each sorted
array of points. Set the reference point be the one with the smallest y-value pointed
by one of these two pointers, for example, suppose reference = p

3. pair up the reference point with all the points stored in the other sorted array of
points from smaller to larger y-value, satisfying the following condition (d is the
distance of the k-th closest pair found so far):

q � y � reference � y\ d ð2Þ

5. increase to the next entry the pointer of the array that reference points to (in our
example p is increased) and update the reference point with the point of the next
smallest y-value pointed by one of the two pointers

6. repeat steps 3–4 until one of the sorted array of points is completely processed.

We have implemented two slight variations of the above algorithm, namely
fy_bounded and fy, depending on whether we already know an upper bound (e.g. from
previous computation) or not. Both are being passed as functions to the workers via
Spark engine. In both, we maintain a local maxHeap of type Tuple3[Distance, Point,
Point] and with fixed size K. At any point of the computation, the maxHeap stores the
best K pairs that have been locally found so far. Initially, maxHeap is empty.

In the case of fy, workers directly store the first K pairs they examine and their
corresponding distances. Then, for each consecutive pair it is tested whether condition
(2) holds or not. The value of d is h, the head of maxHeap.

In the case of fy_bounded, the first K pairs are also stored into maxHeap. Condition
(2) is tested for every consecutive pair of points, where d = min(h, bnd)

Only for pairs of points that (2) is true, their distance is being fully computed and
compared to the distance value stored at the head of maxHeap. If the new distance is
smaller, the head is extracted (discarded) and the new pair is inserted, otherwise the
pair is discarded.

After computation in all workers finishes, all partial results are collected on the
driver side and by taking the K ordered with smaller distance pairs, we have the
K closest pairs between the datasets that were submitted.

3.2 Partitioning a Single Dataset

One of the first things one has to tackle when dealing with spatial queries, especially in
parallel systems, is selecting a proper data partitioning strategy that will avoid data
skew. In most real-world cases, data are not uniformly distributed and using certain
partitioning techniques, such as uniform grid, very often leads to partitions containing
much more objects than others. In a parallel system, as partitions are assigned to
workers, some of them require much more processing time, thus leading to straggler
processes that delay the whole computation. One can find many alternative strategies in
the literature aiming to tackle the data skew. Most of them require the construction of
sophisticated data structures such as Quadtrees or R-trees. These methods have been
extensively used in centralized environments with excellent results and in the recent

204 G. Mavrommatis et al.

years are being incorporated in spatial-aware parallel systems based on Spark. How-
ever, not all queries are of the same nature.

Splitting into strips [22] is a data partitioning technique used in several applications
of parallel systems on various disciplines [25]. Partitioning into strips is lightweight,
since it does not need extra computing time to construct and maintain complex data
structures that may not be necessary in the case of the query we are dealing with. Most
spatial-aware systems based on Spark use a twofold indexing scheme. First a global
index is created, then data is shuffled to workers and finally each worker creates its own
local index. Albeit this is time consuming, it usually rewards when used, but obviously
this depends, among others, on the query itself. In our case, for the KCPQ (like other
spatial join queries), it is enough to utilize all cluster resources and achieve a high
degree of parallelism, in contrast to other queries, like the range query [26]. This is due
to the fact that, in the KCPQ, pairs of the solution are usually dispersed all over the
search space and indexing would not accelerate computation.

But, still, we need to slice a dataset into N parts (strips) in a way that they will
contain roughly equal number of points. This probably means strips of unequal width
corresponding to ascending intervals along one of the dimensions (x axis dimension is
assumed, w.l.o.g.) and is achieved by the following procedure (also used in [21] and
presented here in detail): first, we take a sample of size M, then we extract all x-axis
values of the sample into an array xCoord and perform quicksort on it. We calculate
step as the quotient M/N and finally the split (partitioning) points are extracted as
certain x-values of xCoord, as it can be seen in the following pseudo code snippet. This
partitioning is then applied to the whole dataset. Our experiments have shown that this
technique, based on function takeSample() of Spark works quite well, and produces
strips of variable width, containing number of points that vary within less than 10%
between them.

createSplitPoints(dataSet, N): find split points for a single dataset
1: sampledData = dataSet.takeSample(noReplace, M)
2: xCoord = sampledData.map(point=>point.x)
3: quicksort(xCoord)
4: step = M / N
5: splits = Array(xCoord(step), xCoord(step*2),…, xCoord(step*(N-1))

3.3 Pair-Partitioning of Datasets

Upon loading the two datasets, we calculate their max and min values for each
dimension, thus creating an Envelope = Env[minX, maxX, minY, maxY] for each one.
We use two partioning variants, parent-child and common-merged, both ending to split
both datasets into the same strips, N in the first case and 2N + 1 in the latter one.

Parent-child partition. We consider one of the two datasets as the parent and the other
as the child. Then createSplitPoints is used on parent to partition it into a user defined
number of N strips (Fig. 1, left). Afterwards, child dataset is being partitioned by using
the split points of the parent. In Fig. 1 parent is P and child is Q. Obviously,

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 205

some partitions of child Q may be empty, or skewed. The existence of empty partitions
hardly affects computing time, since no records are to be examined and skewness of
child dataset is not a problem in the case of small datasets (e.g. samples). Note that this
partition is applied only on the samples, while the next one is applied on the full datasets.

Common-merged partition. createSplitPoints is used on each dataset to compute the
split x-coordinates. Then we merge them into an array allPoints, together with the
minX, maxX values of both (Fig. 1, right). The array of length 2N + 2 is being sorted.
The first and the last element of this array contain the min and max x-coordinates of all
points, and are being removed, thus leaving 2N split x-coordinates allSplits, from which
we create the 2N + 1 strips, with a minimum width e, for both datasets.

In both alternatives, the common Envelopes of the strips from both datasets are
formed and broadcasted to the workers. Next, workers assign a proper key to each
locally stored point, according to the Envelope it belongs and a shuffling is executed to
create the N or 2N + 1 partitions (according to the alternative used) for each dataset.
Thus, points in both datasets that belong to the same strip get the same key.

3.4 Approximating the KCPQ

By cogrouping the two, pair-partitioned datasets, a new RDD is being created. This new,
cogrouped, RDD contains items in the form (stripNo, (Iterable[Point], Iterable[Point]))
where stripNo is the number of the strip, the first iterable contains points from P and the
second points from Q, that belong to the same strip, therefore are close to each other.

Fig. 1. Pair-partitioning: parent-child (left), common-merged (right)

206 G. Mavrommatis et al.

Each partition in this RDD is submitted for computation. Then all results are collected
and the top-k among them form an approximation to the solution. Note that this solution
is probably not accurate, since there may be points from P and Q in different strips that
belong to the result. Still, the larger distance of the pairs found by this approach, is a
good upper bound for the final KCPQ.

3.5 Cross-Border Computations

Suppose that we have finished the computation between pairs of strips and have found
an upper bound bnd, as the distance of the k-th closest pair. Also, suppose that Xi is one
splitting point (Fig. 2, left). In order to find the exact solution, we need to check
whether points from each dataset belonging to different strips have their distance less
than bnd as it has been computed in the previous step.

We have already searched pairs of points in the strip on the left of Xi and pairs on
the right of Xi as well. A pair of points (p, q) is a candidate pair only if dist(p, q) < bnd
and therefore, one of the following conditions may hold:

• p belongs to Strip 1 and q belongs to Strip 4, or
• p belongs to Strip 2 and q belongs to Strip 3

The bound bnd is broadcasted to the workers. Then, on a per-partition basis, data in
each dataset is being filtered so that only points between Xi − bnd and Xi + bnd are
being included in the newly created RDDs. Additionally, during the procedure, each
worker assigns the proper indexes to the points, in a cross-border manner as shown in
Fig. 2 (right).

The two newly created RDDs are being joined in order to create all candidate
cross-border pairs. In the case that one of the corresponding (sub)partitions is empty,
then no pairs will be created. As in previous step, a local maxHeap is being utilized
during processing. The first K pairs and their corresponding distances are being stored
in the maxHeap. Then, for each consecutive pair, it is tested whether condition (2)
holds or not, where in this case d = h, the distance of the head of the (local) maxHeap.

3.6 Phases of SliceNBound for the Exact KCPQ

As in many demanding problems, knowing a good bound for the solution in question
accelerates the total execution, since this bound helps in pruning the search space.
Sampling for upper bound computation has been used in both [20, 21] and reported that

Fig. 2. Cross-border eligible strips (left), cross-border indexing (right)

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 207

this increases efficiency. During the computations, sampling is utilized in two cases,
one in order to derive the splitting points and two in order to derive an upper bound of
the KCPQ. The algorithm proceeds in four major phases, as being depicted in the
following pseudo code snippet.

SliceNBound (P, Q, k, N, fraction)
1: sP = P.sample(noReplace, fraction)
2: sQ = Q.sample(noReplace, fraction)
3: parent-childPartition (parent sP, child sQ)
4: sampledKApproxDist= KCPQ_approximation(sP, sQ, k) //plane sweep
5: Broadcast sBound = max_distance {sampledKApproxDist}
6: createSplitPoints(P, N)
7: createSplitPoints(Q, N)
8: mergeSplitPoints(P, Q, N, sBound)
9: common-mergedPartition(P, Q)
10:approxKDist = KCPQ_approximation(P, Q, k) //plane sweep
11:Broadcast bnd = max_distance {approxKDist}
12:crossDist = crossBorderComputation(P, Q, k)
13:allResults = Merge_array(approxKDist, crossKDist)
14:KCPQ(P,Q,k) = allResults.sortByDistance.take(k)

Phase one consists of steps 1 to 5 and is used to quickly compute a first upper
bound of the KCPQ. Phase two, consisting of steps 6 to 11, computes an approximation
of the KCPQ over the whole datasets. Phase three, in step 12, performs the cross-border
computation as described in Subsect. 3.5 and, finally, Phase four consisting of steps 13
and 14 collects partial results from Phases two and three and merges them in an array
from where the final result is extracted as the top-k (smaller distances). Due to the
nature of the partitioning, no pairs are possible to be included in the result twice, so
there are no duplicates in the final solution.

Based on our experimental results, we are using parent-child partitioning for
computing the KCPQ over the relatively small sample (Step 3 of the above algorithm)
and common-merged partitioning for the computation on the whole datasets (Step 9 of
the above algorithm), a combination shown to work effectively. Notice that, in case the
common-merged partitioning procedure is used as part of the exact KCPQ computation
in Phase two, special care has to be taken so that the width of every strip does not fall
under the value of e = bnd. If such case is found, then the split point is moved
rightwards so that width is greater than bnd.

3.7 SliceNBound for the DJQ

In the case of the DJQ, the upper bound is already known. Following this observation,
there are three major differences compared to the KCP Query.

First, there is no need for Phase one to compute an initial upper bound via sam-
pling. Second, there is no need for maxHeap to store (part of) the K best pairs, since all
pairs (p, q) such that distðp; qÞ� epsilon are part of the solution. Instead, a local list is
being utilized. And, third, we don’t have to collect results from Phase two before

208 G. Mavrommatis et al.

proceeding to Phase three. The algorithm proceeds by performing Phase two and Phase
three and each one creates an intermediate RDD. The two RDDs contain all pairs that
form the exact result, which can be collected or stored.

4 Experimentation

We have used 2d point datasets to test our KCPQ/DJQ algorithms in Spark derived
from OpenStreetMap [10]: WATER resources (5,836,360 line segments), PARKS
(11,504,035 polygons) and BUILDINGS of the world consisting (114,736,611 poly-
gons) have been used to create sets of 2D points. Experiments run on a cluster of 5
nodes, each one having 4 vCPUs at 2.1 GHz, with a total of 16 GB of main memory
per node (12 GB for Spark), running Ubuntu Linux 16.04 operating system, Spark
2.0.2 on Hadoop 2.7.2 Distributed File System (HDFS with 128 MB block size). Four
nodes (4 nodes � 4 vCPUs = 16 vCPUs) were used as HDFS DataNodes and Spark
Worker nodes. Java openjdk ver. 1.8.0 and Scala code runner ver. 2.11 were used. We
performed each experiment several times and averaged the total response time that
expresses the overall CPU, I/O and communication time needed for the execution of
each query from startup until count of the results. In all experiments, sample fraction
for upper bound computation in Phase one was set to 0.01 and sample size for split
points computation was set to noOfRecords/N (N the initial number of partitions).

Our first experiment measures the efficiency of SnB for the KCPQ as compared to the
method presented in [21]. It also examines the effect of the number of partitions and the
increase of theK value. In the case of SnB, each dataset startswithN partitions (Phase one)
and ends with 2N + 1 (Phases two and three). In Fig. 3 left experiments were conducted
for both methods, using the PARKS � WATER datasets combination. The total
height of each vertical bar presents time measured for alg. [21] and the bottom part
presents timemeasured for SnB. The upper part of each vertical bar presents the difference
(gain) of SnB compared to alg. [21]. It can be seen that the improvement varies
around 30–60%, mainly due to the elaborate partitioning schemes. In Fig. 3
right experiments were conducted solely for SnB and are presented versus the best
results recorded in [21] (using the same infrastructure and settings) using the

Fig. 3. SnB vs. algorithm in [21] for the KCPQ.

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 209

BUILDINGS � WATER datasets combination. There is also a substantial improvement
in total response time that exceeds 30%. The total execution time growsmoderately as the
number of results to be obtained increases. It may be concluded that there is no significant
impact on the execution time but, in general, as K increases, pruning gets less effective.
Results verify the recommendationofhaving anumber of partitions that equals 2 to 4 times
the number of cores. Larger number of partitions overwhelms the computing cluster.

The second experiment (Fig. 4 left) measures the computing time for the case of
BUILDINGS x PARKS (line with diamonds, left vertical axis) and the speedup (right
vertical axis) of SnB for the KCPQ, varying the number of computing nodes. The
dotted line shows the ideal (theoretical) speedup. It could be inferred that the perfor-
mance of SnB will increase if more computing nodes are added.

The third experiment (Fig. 4 right) presents the performance of the SnB algorithm
variant for the Distance Join Query, compared to Simba [19], for the case of the
PARKS x WATER dataset combination. We have used branch simba-spark-1.6 and the
Distance Join example, as provided by the project with very few modifications in order
to best fit to our cluster. In both methods, the number of partitions was set to 65, which
means starting with 32 for SnB, finally leading to 2N + 1 = 65. The value of epsilon
distance varied from 0 (solution contains no points) to 6E-4. In the latter, the cardinality
of the solution set is more than half a billion points, as shown on the horizontal axis.
The diamond-marked line presents time measured for Simba and the square-marked
line shows time measured for SnB (denoted as SnB PS1). We have observed, though,
that in contrast to the KCPQ variant of our algorithm where Phase two dominates the
computing time, in the case of the DJQ, Phase three also takes a large amount of time,
since we are dealing with large sets of eligible cross-border points. To tackle this, we
used the plane sweep technique in Phase three as well. As shown by the
triangle-marked line (denoted as SnB PS2), there is a considerable increase in the
efficiency of SnB. However, either with or without plane sweep during the cross-border
computation, SnB performs significantly better in our cluster than the method provided
by Simba, in almost all cases taken into consideration.

Fig. 4. Total response time and speedup of SnB for the KCPQ (left) and SnB for the DJQ
compared to the DJQ in [19] (right).

210 G. Mavrommatis et al.

5 Concluding Remarks

In this paper, we studied the problem of answering the KCPQ and DJQ in Spark and
proposed SnB, a family of new parallel algorithms on big spatial datasets, utilizing
parent-child and common-merged strip partitioning, local/global bounding and the
plane-sweep technique. The performance of the methods has been evaluated with big
real-world points datasets. Response times for the KCPQ were compared to the ones in
[21]. SnB shares some common parts with the method presented in [21] but also
incorporates quite important improvements leading to the substantial reduction of
response time and increase in scalability, as observed and recorded in the previous
section. Concerning the similarities, both methods use plane sweep to compute the
KCPQ. Also, they both utilize sampling to find the partition points for a single dataset
and the same technique to strip-partition a single dataset. Both use bounds for the
solution, one in the case of [21], where it is computed from a sample and used to find
all the eligible pairs of strips, two in SnB.

The major improvements in SnB are as follows: [21] separately partitions each
dataset to strips and then performs the computation on the eligible pairs of strips that
are extracted by utilizing a bound. SnB proceeds in a completely different manner. It
actually creates the overlapping pairs by sharing the same partition points between the
two datasets. Disjoint pairs are not considered for computation in the first place, but are
taken into account in Phase three, now heavily pruned. Initially, sampling is used in
combination with parent-child partition to find a good upper bound, since parent-child
partition creates pairs of strips with points more or less close to each other. In contrast,
upper bound in [21] is being computed with a more naive and time consuming method,
leading to the need of selecting of smaller sample fraction and consequently to sig-
nificant fluctuation in the quality of the bound. Phase two of SnB is preceded by a
common-merged partitioning scheme that generates pairs of strips while ensuring that
data points are equally shared among them and that all strips have width greater than
the bound found so far. In SnB the usage of the bound is twofold: first it serves as a
measure for the minimum width of each strip in Phase two and secondly it is used to
prune the search space. In Phase three SnB performs the cross border computation on
strips that are bounded by the solution found in Phase two, a solution that is already
quite accurate and minimizes the need for extra computation.

SnB for the DJQ was also compared to the results derived by using Simba [19]. The
presented technique has been proved to be of superior performance.

Future work could include of comparing the performance of the presented tech-
nique to the performance of techniques utilizing different partitioning approaches [20].
Since partitioning in strips is well suited for processing the KCPQ and DJQ in parallel
and distributed environments, future work could also include of embedding the pre-
sented technique in spatially enabled Spark extensions [16–19]. Using of a similar
partitioning scheme to answer other queries (e.g. all K Nearest Neighbors, skyline) and
adapting the presented technique to data of higher dimensions are also promising
research directions.

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 211

References

1. Smid, M.: Closest-point problems in computational geometry. In: Sack, J.-R., Urrutia,
J. (eds.) Handbook of Computational Geometry, Ch. 20, pp. 877–935. Elsevier (2000)

2. Gao, Y., Chen, L., Li, X., Yao, B., Chen, G.: Efficient k-closest pair queries in general metric
spaces. VLDB J. 24(3), 415–439 (2015)

3. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms for
processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1), 67–104
(2004)

4. Gutierrez, G., Sáez, P.: The k closest pairs in spatial databases - when only one set is
indexed. GeoInformatica 17(4), 543–565 (2013)

5. Roumelis, G., Corral, A., Vassilakopoulos, M., Manolopoulos, Y.: New plane-sweep
algorithms for distance-based join queries in spatial databases. GeoInformatica 20(4), 571–
628 (2016)

6. Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19, 171–209 (2014)
7. Shekhar, S., Feiner, S.K., Aref, W.G.: Spatial computing. Commun. ACM 59(1), 72–81

(2016)
8. Eldawy, A., Mokbel, M.F.: The era of big spatial data: a survey. DBSJ J. 13(1), 25–36

(2015)
9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI

2004, pp. 137–150 (2004)
10. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial data. In:

ICDE Conference, pp. 1352–1363 (2015)
11. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.H.: Hadoop-GIS: a high

performance spatial data warehousing system over MapReduce. PVLDB 6(11), 1009–1020
(2013)

12. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J.,
Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI 2012, pp. 15–28. USENIX (2012)

13. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot
Topics in Cloud Computing (2010)

14. Chen, D., Shen, C., Feng, J., Le, J.: An efficient parallel top-k similarity join for massive
multidimensional data using spark. Int. J. Database Theor. Appl. 8(3), 57–68 (2015)

15. Dustakar, N.R., Dustakar, S.R.: Computational geometry leveraged by apache spark.
J. Innov. Electron. Commun. Eng. 5(2), 15–31 (2015)

16. Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for processing
large-scale spatial data. In: SIGSPATIAL 2015, Bellevue, WA (2015)

17. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in cloud. In:
CloudDM Workshop (2015)

18. Tang, M., Yu, Y., Malluhi, Q.M., Ouzzani, M., Aref, W.G.: Locationspark: a distributed
in-memory data management system for big spatial data. Proc. VLDB Endowment 9, 1565–
1568 (2016)

19. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spatial
analytics. In: SIGMOD 2016, San Francisco (2016)

20. García-García, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos, Y.:
Enhancing SpatialHadoop with closest pair queries. In: Pokorný, J., Ivanović, M., Thalheim,
B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 212–225. Springer, Cham (2016).
doi:10.1007/978-3-319-44039-2_15

212 G. Mavrommatis et al.

http://dx.doi.org/10.1007/978-3-319-44039-2_15

21. Mavrommatis, G., Moutafis, P., Vassilakopoulos, M.: Closest-pairs query processing in
apache spark. In: Proceedings of the Eighth International Conference on Cloud Computing,
GRIDs, and Virtualization, pp. 26–31. IARIA (2017)

22. Aji, A., Vo, H, Wang, F.: Effective Spatial Data Partitioning for Scalable Query Processing.
arXiv:1509.00910v1 [cs.DB]. Downloaded from https://arxiv.org/pdf/1509.00910v1.
21 December 2016

23. Guller, M.: Big Data Analytics with Spark. Apress, distributed by Springer Science
+Business Media, New York (2015)

24. Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique problem. Oper.
Res. Lett. 9, 375–382 (1990)

25. Borges, F., Gutierrez-Milla, A., Suppi, R., Luque, E.: Strip partitioning for ant colony
parallel and distributed discrete-event simulation. Procedia Comput. Sci. 51, 483–492 (2015)

26. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in Spa-
tialHadoop. Proc. VLDB Endowment 8(12), 1602–1605 (2015)

SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark 213

http://arxiv.org/abs/1509.00910v1
https://arxiv.org/pdf/1509.00910v1

A Comparison of Distributed Spatial Data
Management Systems for Processing Distance

Join Queries

Francisco Garćıa-Garćıa1, Antonio Corral1(B), Luis Iribarne1,
George Mavrommatis2, and Michael Vassilakopoulos2

1 Department of Informatics, University of Almeria, Almeria, Spain
{paco.garcia,acorral,liribarn}@ual.es

2 DaSE Lab, Department of Electrical and Computer Engineering,
University of Thessaly, Volos, Greece

{gmav,mvasilako}@uth.gr

Abstract. Due to the ubiquitous use of spatial data applications and
the large amounts of spatial data that these applications generate, the
processing of large-scale distance joins in distributed systems is becom-
ing increasingly popular. Two of the most studied distance join queries
are the K Closest Pair Query (KCPQ) and the ε Distance Join Query
(εDJQ). The KCPQ finds the K closest pairs of points from two datasets
and the εDJQ finds all the possible pairs of points from two datasets,
that are within a distance threshold ε of each other. Distributed cluster-
based computing systems can be classified in Hadoop-based and Spark-
based systems. Based on this classification, in this paper, we compare
two of the most current and leading distributed spatial data manage-
ment systems, namely SpatialHadoop and LocationSpark, by evaluating
the performance of existing and newly proposed parallel and distributed
distance join query algorithms in different situations with big real-world
datasets. As a general conclusion, while SpatialHadoop is more mature
and robust system, LocationSpark is the winner with respect to the total
execution time.

Keywords: Spatial data processing · Distance joins · SpatialHadoop ·
LocationSpark

1 Introduction

Nowadays, the volume of available spatial data (e.g. location, routing, naviga-
tion, etc.) is increasing hugely across the world-wide. Recent developments of
spatial big data systems have motivated the emergence of novel technologies
for processing large-scale spatial data on clusters of computers in a distributed
fashion. These Distributed Spatial Data Management Systems (DSDMSs) can be

F. Garćıa-Garćıa, A. Corral, L. Iribarne and M. Vassilakopoulos — Work funded by
the MINECO research project [TIN2013-41576-R].

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 214–228, 2017.
DOI: 10.1007/978-3-319-66917-5 15

A Comparison of Distributed Spatial Data Management Systems 215

classified in disk-based [8] and in-memory [18] ones. The disk-based DSDMSs are
characterized by being Hadoop-based systems and the most representative ones
are Hadoop-GIS [1] and SpatialHadoop [5]. The Hadoop-based systems enable
to execute spatial queries using predefined high-level spatial operators without
having to worry about fault tolerance and computation distribution. On the
other hand, the in-memory DSDMSs are characterized as Spark-based systems
and the most representative ones are SpatialSpark [14], GeoSpark [16], Simba
[13] and LocationSpark [11,12]. The Spark-based systems allow users to work
on distributed in-memory data without worrying about the data distribution
mechanism and fault-tolerance.

Distance join queries (DJQs) have received considerable attention from the
database community, due to their importance in numerous applications, such
as spatial databases and GIS, data mining, multimedia databases, etc. DJQs
are costly queries because they combine two datasets taking into account a dis-
tance metric. Two of the most representative ones are the K Closest Pair Query
(KCPQ) and the ε Distance Join Query (εDJQ). Given two point datasets P

and Q, the KCPQ finds the K closest pairs of points from P × Q according to
a certain distance function (e.g., Manhattan, Euclidean, Chebyshev, etc.). The
εDJQ finds all the possible pairs of points from P×Q, that are within a distance
threshold ε of each other. Several research works have been devoted to improve
the performance of these queries by proposing efficient algorithms in central-
ized environments [2,9]. But, with the fast increase in the scale of the big input
datasets, processing large data in parallel and distributed fashions is becoming
a popular practice. For this reason, a number of parallel algorithms for DJQs in
MapReduce [3] and Spark [17] have been designed and implemented [6,12].

Apache Hadoop1 is a reliable, scalable, and efficient cloud computing frame-
work allowing for distributed processing of large datasets using MapReduce
programming model. However, it is a kind of disk-based computing frame-
work, which writes all intermediate data to disk between map and reduce tasks.
MapReduce [3] is a framework for processing and managing large-scale datasets
in a distributed cluster. It was introduced with the goal of providing a simple
yet powerful parallel and distributed computing paradigm, providing good scal-
ability and fault tolerance mechanisms. Apache Spark2 is a fast, reliable and
distributed in-memory large-scale data processing framework. It takes advan-
tage of the Resilient Distributed Dataset (RDD), which allows transparently
storing data in memory and persisting it to disk only if it is needed [17]. Hence,
it can reduce a huge number of disk writes and reads to outperform the Hadoop
platform. Since Spark maintains the status of assigned resources until a job is
completed, it reduces time consumption in resource preparation and collection.

Both Hadoop and Spark have weaknesses related to efficiency when applied
to spatial data. A main shortcoming is the lack of any indexing mechanism that
would allow selective access to specific regions of spatial data, which would in
turn yield more efficient query processing algorithms. A solution to this problem

1 Available at https://hadoop.apache.org/.
2 Available at https://spark.apache.org/.

https://hadoop.apache.org/
https://spark.apache.org/

216 F. Garćıa-Garćıa et al.

is an extension of Hadoop, called SpatialHadoop [5], which is a framework that
supports spatial indexing on top of Hadoop, i.e. it adopts two-level index struc-
ture (global and local) to organize the stored spatial data. And other possible
solution is LocationSpark [11,12], which is a spatial data processing system built
on top of Spark and it employs various spatial indexes for in-memory data.

In the literature, up to now, there are only few comparative studies between
Hadoop-based and Spark-based systems. The most representative one is [10],
for a general perspective. But, for comparing DSDMSs, we can find [7,15,16].
Motivated by this fact, in this paper we compare SpatialHadoop and Location-
Spark for distance-based join query processing, in particular for KCPQ and
εDJQ, in order to provide criteria for adopting one or the other DSDMS. The
contributions of this paper are the following:

– Novel algorithms in LocationSpark (the first ones in the literature) to perform
efficient parallel and distributed KCPQ and εDJQ, on big real-world spatial
datasets

– The execution of a set of experiments for comparing the performance of the
two DSDMSs (SpatialHadoop and LocationSpark).

– The execution of a set of experiments for examining the efficiency and the
scalability of the existing and new DJQ algorithms.

This paper is organized as follows. In Sect. 2, we review related work on
Hadoop-based and Spark-based systems that support spatial operations and
provide the motivation for this paper. In Sect. 3, we present preliminary con-
cepts related to DJQs, SpatialHadoop and LocationSpark. In Sect. 4, the parallel
algorithms for processing KCPQ and εDJQ in LocationSpark are proposed. In
Sect. 5, we present representative results of the extensive experimentation that
we have performed, using real-world datasets, for comparing these two cloud
computing frameworks. Finally, in Sect. 6, we provide the conclusions arising
from our work and discuss related future work directions.

2 Related Work and Motivation

Researchers, developers and practitioners worldwide have started to take advan-
tage of the cluster-based systems to support large-scale data processing. There
exist several cluster-based systems that support spatial queries over distributed
spatial datasets and they can be classified in Hadoop-based and Spark-based sys-
tems. The most important contributions in the context of Hadoop-based systems
are the following research prototypes:

– Hadoop-GIS [1] extends Hive and adopts Hadoop Streaming framework and
integrates several open source software packages for spatial indexing and
geometry computation. Hadoop-GIS only supports data up to two dimen-
sions and two query types: rectangle range query and spatial joins.

– SpatialHadoop [5] is an extension of the MapReduce framework [3], based on
Hadoop, with native support for spatial 2d data (see Sect. 3.2).

A Comparison of Distributed Spatial Data Management Systems 217

On the other hand, the most remarkable contributions in the context of
Spark-based systems are the following prototypes:

– SpatialSpark [14] is a lightweight implementation of several spatial operations
on top of the Spark in-memory big data system. It targets at in-memory
processing for higher performance. SpatialSpark adopts data partition strate-
gies like fixed grid or kd-tree on data files in HDFS and builds an index to
accelerate spatial operations. It supports range queries and spatial joins over
geometric objects using conditions like intersect and within.

– GeoSpark [16] extends Spark for processing spatial data. It provides a new
abstraction called Spatial Resilient Distributed Datasets (SRDDs) and a few
spatial operations. It allows an index (e.g. Quadtree and R-tree) to be the
object inside each local RDD partition. For the query processing point of
view, GeoSpark supports range query, KNNQ and spatial joins over SRDDs.

– Simba (Spatial In-Memory Big data Analytics) [13] offers scalable and effi-
cient in-memory spatial query processing and analytics for big spatial data.
Simba is based on Spark and runs over a cluster of commodity machines.
In particular, Simba extends the Spark SQL engine to support rich spatial
queries and analytics through both SQL and the DataFrame API. It intro-
duces partitioning techniques (e.g. STR), indexes (global and local) based on
R-trees over RDDs in order to work with big spatial data and complex spatial
operations (e.g. range query, KNNQ, distance join and KNNJQ).

– LocationSpark [11,12] is an efficient in-memory distributed spatial query
processing system (see Sect. 3.3 for more details).

As we have seen, there are several distributed systems based on Hadoop or
Spark for managing spatial data, but there are not many articles comparing
them with respect to spatial query processing. The only contributions in this
regard are [7,15,16]. In [15,16], SpatialHadoop is compared with SpatialSpark
and GeoSpark, respectively, for spatial join query processing. In [7], Spatial-
Hadoop is compared with GeoSpark with respect to the architectural point of
view. Motivated by these observations, and since KCPQ [6] is implemented in
SpatialHadoop (its adaptation to εDJQ is straightforward), and in Location-
Spark neither KCPQ nor εDJQ have been implemented yet, we design and
implement both DJQs in LocationSpark. Moreover, we develop a comparative
performance study between SpatialHadoop and LocationSpark for KCPQ and
εDJQ.

3 Preliminaries and Background

In this section, we first present the basic definitions of the KCPQ and εDJQ,
followed by a brief introduction of the preliminary concepts about SpatialHadoop
and LocationSpark, the DSDMSs to be compared.

218 F. Garćıa-Garćıa et al.

3.1 The K Closest Pairs and ε Distance Join Queries

The KCPQ discovers the K pairs of data formed from the elements of two
datasets having the K smallest distances between them (i.e. it reports only
the top K pairs). The formal definition of the KCPQ for point datasets (the
extension of this definition to other, more complex spatial objects – e.g. line-
segments, objects with extents, etc. – is straightforward) is the following:

Definition 1 (K Closest Pairs Query, KCPQ). Let P = {p0, p1, · · · , pn−1}
and Q = {q0, q1, · · · , qm−1} be two set of points, and a number K ∈ N

+.
Then, the result of the K Closest Pairs Query is an ordered collection,
KCPQ(P,Q,K), containing K different pairs of points from P × Q, ordered
by distance, with the K smallest distances between all possible pairs:
KCPQ(P,Q,K) = ((p1, q1), (p2, q2), · · · , (pK , qK)), (pi, qi) ∈ P×Q, 1 ≤ i ≤ K,
such that for any (p, q) ∈ P × Q \ KCPQ(P,Q,K) we have dist(p1, q1) ≤
dist(p2, q2) ≤ · · · ≤ dist(pK , qK) ≤ dist(p, q).

Note that if multiple pairs of points have the same K-th distance value, more
than one collection of K different pairs of points are suitable as a result of the
query. Recall that KCPQ is implemented in SpatialHadoop [6] using plane-sweep
algorithms [9], but not in LocationSpark.

On the other hand, the εDJQ reports all the possible pairs of spatial objects
from two different spatial objects datasets, P and Q, having a distance smaller
than a distance threshold ε of each other [9]. The formal definition of εDJQ for
point datasets is the following:

Definition 2 (ε Distance Join Query, εDJQ). Let P = {p0, p1, · · · , pn−1}
and Q = {q0, q1, · · · , qm−1} be two set of points, and a distance threshold ε
∈ R≥0. Then, the result of the εDJQ is the set, εDJQ(P,Q, ε) ⊆ P×Q, containing
all the possible different pairs of points from P × Q that have a distance of each
other smaller than, or equal to ε:
εDJQ(P,Q, ε) = {(pi, qj) ∈ P × Q : dist(pi, qj) ≤ ε}

The εDJQ can be considered as an extension of the KCPQ, where the dis-
tance threshold of the pairs is known beforehand and the processing strategy
(e.g. plane-sweep technique) can be the same as in the KCPQ for generating
the candidate pairs of the final result. For this reason, its adaptation to Spatial-
Hadoop from KCPQ is straightforward. Note that εDJQ is not implemented in
LocationSpark.

3.2 SpatialHadoop

SpatialHadoop [5] is a full-fledged MapReduce framework with native support
for spatial data. It is an efficient disk-based distributed spatial query process-
ing system. Note that MapReduce [3] is a scalable, flexible and fault-tolerant
programming framework for distributed large-scale data analysis. A task to be
performed using the MapReduce framework has to be specified as two phases:

A Comparison of Distributed Spatial Data Management Systems 219

the map phase is specified by a map function takes input (typically from Hadoop
Distributed File System (HDFS) files), possibly performs some computations
on this input, and distributes it to worker nodes; and the reduce phase which
processes these results as specified by a reduce function. Additionally, a com-
biner function can be used to run on the output of map phase and perform some
filtering or aggregation to reduce the number of keys passed to the reducer.

SpatialHadoop is a comprehensive extension to Hadoop that injects spatial
data awareness in each Hadoop layer, namely, the language, storage, MapRe-
duce, and operations layers. MapReduce layer is the query processing layer that
runs MapReduce programs, taking into account that SpatialHadoop supports
spatially indexed input files. The Operation layer enables the efficient implemen-
tation of spatial operations, considering the combination of the spatial indexing
in the storage layer with the new spatial functionality in the MapReduce layer.
In general, a spatial query processing in SpatialHadoop consists of four steps
[5,6] (see Fig. 1): (1) Preprocessing, where the data is partitioned according to a
specific spatial index, generating a set of partitions or cells. (2) Pruning, when
the query is issued, where the master node examines all partitions and prunes
by a filter function those ones that are guaranteed not to include any possible
result of the spatial query. (3) Local Spatial Query Processing, where a local
spatial query processing is performed on each non-pruned partition in paral-
lel on different machines (map tasks). Finally, (4) Global Processing, where the
results are collected from all machines in the previous step and the final result of
the concerned spatial query is computed. A combine function can be applied in
order to decrease the volume of data that is sent from the map task. The reduce
function can be omitted when the results from the map phase are final.

Fig. 1. Spatial query processing in SpatialHadoop [5,6].

3.3 LocationSpark

LocationSpark [11,12] is a library in Spark that provides an API for spatial
query processing and optimization based on Spark’s standard dataflow opera-
tors. It is an efficient in-memory distributed spatial query processing system.
LocationSpark provides several optimizations to enhance Spark for managing
spatial data and they are organized by layers: memory management, spatial

220 F. Garćıa-Garćıa et al.

index, query executor, query scheduler, spatial operators and spatial analytical.
In the Memory Management layer for spatial data, LocationSpark dynamically
caches frequently accessed data into memory, and stores the less frequently used
data into disk. For the Spatial Index layer, LocationSpark builds two levels of
spatial indexes (global and local). To build a global index, LocationSpark sam-
ples the underlying data to learn the data distribution in space and provides a
grid and a region Quadtree. In addition, each data partition has a local index
(e.g., a grid local index, an R-tree, a variant of the Quadtree, or an IR-tree).
Finally, LocationSpark adopts a new Spatial Bloom Filter to reduce the com-
munication cost when dispatching queries to their overlapping data partitions,
termed sFilter, that can speed up query processing by avoiding needless commu-
nication with data partitions that do not contribute to the query answer. In the
Query Executor layer, LocationSpark evaluates the runtime and memory usage
trade-offs for the various alternatives, and then, it chooses and executes the bet-
ter execution plan on each slave node. LocationSpark has a new layer, termed
Query Scheduler, with an automatic skew analyzer and a plan optimizer to mit-
igate query skew. The query scheduler uses a cost model to analyze the skew to
be used by the spatial operators, and a plan generation algorithm to construct
a load-balanced query execution plan. After plan generation, local computation
nodes select the proper algorithms to improve their local performance based on
the available spatial indexes and the registered queries on each node. For the
Spatial Operators layer, LocationSpark supports spatial querying and spatial
data updates. It provides a rich set of spatial queries including spatial range
query, KNNQ, spatial-join, and KNNJQ. Moreover, it supports data updates
and spatio-textual operations. Finally, for the Spatial Analytical layer, and due
to the importance of spatial data analysis, LocationSpark provides spatial data
analysis functions including spatial data clustering, spatial data skyline compu-
tation and spatio-textual topic summarization. Since our main objective is to
include the DJQs (KCPQ and εDJQ) into LocationSpark, we are interested in
the Spatial Operators layer, where we will implement them.

Fig. 2. Spatial query processing for DJQs in LocationSpark, based on [12].

To process spatial queries, LocationSpark builds a distributed spatial index
structure for in-memory spatial data. As we can see in Fig. 2, for DJQs, given
two datasets P and Q, P is partitioned into N partitions based on a spatial
index criteria (e.g. N leaves of a R-tree) by the Partitioner leading to the

A Comparison of Distributed Spatial Data Management Systems 221

PRDD (Global Index). The sFilter determines whether a point is contained
inside a spatial range or not. Next, each worker has a local data partition Pi

(1 ≤ i ≤ N) and builds a Local Index (LI). QRDD is generated from Q by
a member function of RDD (Resilient Distributed Dataset) natively supported
by Spark, that forwards such point to the partitions that spatially overlap it.
Now, each point of Q is replicated to the partitions that are identified using
the PRDD (Global Index), leading to the Q’RDD. Then a post-processing step
(using the Skew Analyzer and the Plan Optimizer) is performed to combine the
local results to generate the final output.

4 DJQ Algorithms in SpatialHadoop and LocationSpark

Since KCPQ is already implemented in SpatialHadoop [6], in this section, we will
present how we can adapt KCPQ to εDJQ in SpatialHadoop and how KCPQ
and εDJQ can be implemented in LocationSpark.

4.1 KCPQ and εDJQ in SpatialHadoop

In general, the KCPQ algorithm in SpatialHadoop [6] consists of a MapReduce
job. The map function aims to find the KCP between each local pair of par-
titions from P and Q with a particular plane-sweep KCPQ algorithm [9] and
the result is stored in a binary max heap (called LocalKMaxHeap). The reduce
function aims to examine the candidate pairs of points from each LocalKMax-
Heap and return the final set of the K closest pairs in another binary max heap
(called GlobalKMaxHeap). To improve this approach, for reducing the number of
possible combinations of pairs of partitions, we need to find in advance an upper
bound of the distance value of the K-th closest pair of the joined datasets,
called β. This β computation can be carried out by sampling globally from both
datasets or by sampling locally for an appropriate pair of partitions and, then
executing a plane-sweep KCPQ algorithm over both samples.

The method for the εDJQ in MapReduce, adapting from KCPQ in Spatial-
Hadoop [6], adopts the map phase of the join MapReduce methodology. The
idea is to have P and Q partitioned by some method (e.g., Grid) into two sets
of cells, with n and m cells of points, respectively. Then, every possible pair of
cells is sent as input for the filter function. This function takes as input, com-
binations of pairs of cells in which the input set of points are partitioned and a
distance threshold ε, and it prunes pairs of cells which have minimum distances
larger than ε. By using SpatialHadoop built-in function MinDistance we can
calculate the minimum distance between two cells (i.e. this function computes
the minimum distance between the two MBRs, Minimum Bounding Rectangles,
of the two cells). On the map phase, each mapper reads the points of a pair
of filtered cells and performs a plane-sweep εDJQ algorithm [9] (variation of
the plane-sweep-based KCPQ algorithm) between the points inside that pair of
cells. The results from all mappers are just combined in the reduce phase and
written into HDFS files, storing only the pairs of points with distance up to ε.

222 F. Garćıa-Garćıa et al.

4.2 KCPQ and εDJQ in LocationSpark

Assuming that P is the largest dataset to be combined and Q is the smallest
one, and following the ideas presented in [12], we can describe the Execution
Plan for KCPQ in LocationSpark as follows. In Stage 1, the two datasets are
partitioned according to a given spatial index schema. In Stage 2, statistic data
is added to each partition, SP and SQ, and they are combined by pairs, SPQ. In
Stage 3, the partitions from P and Q with the largest density of points, Pβ and
Qβ , are selected to be combined by using a plane-sweep KCPQ algorithm [9] to
compute an upper bound of the distance value of the K-th closest pair (β). In
Stage 4, the combination of all possible pairs of partitions from P and Q, SPQ, is
filtered according to the β value (i.e. only the pairs of partitions with minimum
distance between the MBRs of the partitions is smaller than or equal to β are
selected), giving rise to FSPQ, and all pairs of filtered partitions are processed
by using a plane-sweep KCPQ algorithm. Finally, the results are merged to get
the final output.

With the previous Execution Plan and increasing the size of the datasets,
the execution time increases considerably due to skew and shuffle problems. To
solve it, we modify Stage 4 with the query plan that is used for the algorithms
shown in [12], leaving the plan as shown in Fig. 3.

Fig. 3. Execution plan for KCPQ in LocationSpark, based on [12].

Stages 1, 2 and 3 are still used to calculate the β value which will serve
to accelerate the local pruning phase on each partition. In Stage 4, using the
Query Plan Scheduler, P is partitioned into PS and PNS being the partitions that
present and do not present skew, respectively. The same partitioning is used
to Q. In Stage 5, a KCPQ algorithm [9] is applied between points of PS and QS

that are in the same partition and likewise for PNS and QNS in Stage 6. These
two stages are executed independently and the results are combined in Stage 7.
Finally, it is still necessary to calculate if there is any present candidate for each
partition that is on the boundaries of that same partition in the other dataset.
To do this, we use β′ which is the maximum distance from the current set of
candidates as a radius of a range filter with center in each partition to obtain
possible new candidates on those boundaries. The calculation of KCPQ of each
partition with its candidates is executed in Stages 8 and 9 and these results are
combined in Stage 10 to obtain the final answer.

A Comparison of Distributed Spatial Data Management Systems 223

The Execution Plan for εDJQ in LocationSpark is a variation of the KCPQ
one, where the filtering stages are removed, since SPQ is filtered by ε (i.e. β =
β′ = ε), which is the threshold distance known beforehand.

5 Experimentation

In this section we present the results of our experimental evaluation. We have
used real 2d point datasets to test our DJQ algorithms in SpatialHadoop and
LocationSpark. We have used three datasets from OpenStreetMap3: BUILD-
INGS which contains 115M records of buildings, LAKES which contains 8.4M
points of water areas, and PARKS which contains 10M records of parks and
green areas [5]. Moreover, to experiment with the biggest real dataset (BUILD-
INGS), we have created a new big quasi-real dataset from LAKES (8.4M), with
a similar quantity of points. The creation process is as follows: taking one point
of LAKES, p, we generate 15 new points gathered around p (i.e. the center of
the cluster), according to a Gaussian distribution with mean = 0.0 and standard
deviation = 0.2, resulting in a new quasi-real dataset, called CLUS LAKES,
with around 126M of points. The main performance measure that we have used
in our experiments has been the total execution time (i.e. total response time).
All experiments are conducted on a cluster of 12 nodes on an OpenStack envi-
ronment. Each node has 4 vCPU with 8 GB of main memory running Linux
operating systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores
for MapReduce2/YARN use. The version of Spark used is 1.6.2. Finally, we used
the latest code available in the repositories of SpatialHadoop4 and Location-
Spark5.

Table 1. Configuration parameters used in the experiments.

Parameter Values (default)

K 1, 10, (102), 103, 104, 105

ε (×10−4) 2.5, 5, 7.5, 12.5, (25), 50

Number of nodes 1, 2, 4, 6, 8, 10, (12)

Type of partition Quadtree

Table 1 summarizes the configuration parameters used in our experiments.
Default values (in parentheses) are used unless otherwise mentioned. Spatial-
Hadoop needs the datasets to be partitioned and indexed before invoking
the spatial operations. The times needed for that pre-processing phase are
94 s for LAKES, 103 s for PARKS, 175 s for BUILDINGS and 200 s for

3 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
4 Available at https://github.com/aseldawy/spatialhadoop2.
5 Available at https://github.com/merlintang/SpatialSpark.

http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/aseldawy/spatialhadoop2
https://github.com/merlintang/SpatialSpark

224 F. Garćıa-Garćıa et al.

CLUS LAKES. We have shown the time of this pre-processing phase in Spatial-
Hadoop (disk-based DSDMS), since it would be the full execution time, at least
in the first running of the query. Note that, data are indexed and the index is
stored on HDFS and for subsequent spatial queries, data and index are already
available (this can be considered as an advantage of SpatialHadoop). On the
other hand, LocationSpark (in-memory-based DSDMS) always partitions and
indexes the data for every operation. The partitions/indexes are not stored on
any persistent file system and cannot be reused in subsequent operations.

Our first experiment aims to measure the scalability of the KCPQ and εDJQ
algorithms, varying the dataset sizes. As shown in the left chart of Fig. 4 for
the KCPQ of real datasets (LAKES × PARKS, BUILDINGS × PARKS
and BUILDINGS × CLUS LAKES), the execution times in both DSDMSs
increase linearly as the size of the datasets increase. Moreover, LocationSpark
is faster for all the datasets combinations except for the largest one (e.g. it is
29 s slower for the biggest datasets, BUILDINGS ×CLUS LAKES (BxC L)).
However, it should be noted that SpatialHadoop needs a pre-indexing time of
175 and 200 s for each dataset (depicted by vertical lines in the charts) and that
difference can be caused by memory constraints on the cluster.

As we have just seen for KCPQ, the behavior of the execution times when
varying the size of the datasets is very similar for εDJQ. For instance, for the
combination of large datasets (see the right chart of Fig. 4), BUILDINGS ×
CLUS LAKES (BxC L), SpatialHadoop is 32 s faster than LocationSpark.
However, for smaller sets, LocationSpark shows better performance (e.g. it is
96 s faster for the middle size datasets, BUILDINGS ×PARKS (BxP)). From
these results with real data, we can conclude that both DSDMSs have similar
performance, in terms of execution time, even showing LocationSpark better
values in most of the cases, despite the fact that neither pre-partitioning nor
pre-indexing are done.

The second experiment studies the effect of the increasing both K and ε value
for the combination of the biggest datasets (BUILDINGS ×CLUS LAKES).
The left chart of Fig. 5 shows that the total execution time for real datasets grows

LxP BxP BxC L
0

250

500

750

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

KCPQ of real datasets

LxP BxP BxC L
0

250

500

750

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

εDJQ of real datasets

SpatialHadoop LocationSpark

Fig. 4. KCPQ (left) and εDJQ (right) execution times considering different datasets.

A Comparison of Distributed Spatial Data Management Systems 225

slowly as the number of results to be obtained (K) increases. Both DSDMSs,
employing Quadtree, report stable execution times, even for large K values (e.g.
K = 105). This means that the Quadtree is less affected by the increment of K,
because Quadtree employs regular space partitioning depending on the concen-
tration of the points. As shown in the right chart of Fig. 5, the total execution
time grows as the ε value increases. Both DSDMSs (SpatialHadoop and Loca-
tionSpark) have similar relative performance for all ε values, with SpatialHadoop
being faster, except for ε = 50 × 10−4, where LocationSpark outperforms it (i.e.
LocationSpark is 377 s faster). This difference is due to the way in which εDJQ
is calculated in the latter, where fewer points are used as candidates and skew
cells are dealt with its Query Plan Scheduler. For smaller ε values SpatialHadoop
preindexing phase reduces time considerably for very large datasets.

The main conclusions that we can extract for this experiment are: (1) the
higher K or ε values, the greater the possibility that pairs of candidates are not
pruned, more tasks would be needed and more total execution time is consumed
and, (2) LocationSpark shows better performance especially for higher values of
K and ε thanks to its Query Plan Scheduler and the reduction of the number
of candidates.

1 10 102 103 104 105
0

500

1,000

1,500

K: # of closest pairs

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxCLUS LAKES - KCPQ

2.5 5 7.5 12.5 25 50
0

500

1,000

1,500

ε: distance threshold values (×10−4)

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxCLUS LAKES - εDJQ

SpatialHadoop LocationSpark

Fig. 5. KCPQ cost (execution time) vs. K values (left) and εDJQ cost (execution
time) vs. ε values (right).

The third experiment aims to measure the speedup of the DJQ MapReduce
algorithms (KCPQ and εDJQ), varying the number of computing nodes (n). The
left chart of Fig. 6 shows the impact of different number of computing nodes on
the performance of parallel KCPQ algorithm, for BUILDINGS × PARKS
with the default configuration values. From this chart, it could be concluded
that the performance of our approach has direct relationship with the number
of computing nodes. It could also be deduced that better performance would be
obtained if more computing nodes are added. LocationSpark is still showing a
better behavior than SpatialHadoop. In the right chart of Fig. 6, we can observe
a similar trend for εDJQ MapReduce algorithm with less execution time, but

226 F. Garćıa-Garćıa et al.

in this case LocationSpark shows worse performance for a smaller number of
nodes. This is due to the fact that LocationSpark and εDJQ depends more on
the available memory and when the number of nodes decreases, this memory
also decreases considerably.

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n: # of available computing nodes

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxPARKS - KCPQ

1 2 4 6 8 10 12
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n: # of available computing nodes

T
o
ta

l
E

x
ec

u
ti

o
n

T
im

e
(i

n
se

c)

BUILDINGSxPARKS - εDJQ

SpatialHadoop LocationSpark

Fig. 6. Query cost with respect to the number of computing nodes n.

By analyzing the previous experimental results, we can extract several con-
clusions that are shown below:

– We have experimentally demonstrated the efficiency (in terms of total exe-
cution time) and the scalability (in terms of K and ε values, sizes of datasets
and number of computing nodes (n)) of the proposed parallel algorithms for
DJQs (KCPQ and εDJQ) in SpatialHadoop and LocationSpark.

– The larger the K or ε values, the larger the probability that pairs of candidates
are not pruned, more tasks will be needed and more total execution time is
consumed for reporting the final result.

– The larger the number of computing nodes (n), the faster the DJQ algorithms
are.

– Both DSDMSs have similar performance, in terms of execution time, although
LocationSpark shows better values in most of the cases (if an adequate
number of processing nodes with adequate memory resources are provided),
despite the fact that neither pre-partitioning nor pre-indexing are done.

6 Conclusions and Future Work

The KCPQ and εDJQ are spatial operations widely adopted by many spatial
and GIS applications. These spatial queries have been actively studied in cen-
tralized environments, however, for parallel and distributed frameworks has not
attracted similar attention. For this reason, in this paper, we compare two of
the most current and leading DSDMSs, namely SpatialHadoop and Location-
Spark. To do this, we have proposed novel algorithms in LocationSpark, the

A Comparison of Distributed Spatial Data Management Systems 227

first ones in literature, to perform efficient parallel and distributed KCPQ and
εDJQ algorithms on big spatial real-world datasets, adopting the plane-sweep
technique. The execution of a set of experiments has demonstrated that Loca-
tionSpark is the overall winner for the execution time, due to the efficiency of
in-memory processing provided by Spark and additional improvements as the
Query Plan Scheduler. However, SpatialHadoop is a more mature and robust
DSDMS because of time dedicated to investigate and develop it (several years)
and, it provides more spatial operations and spatial partitioning techniques.
Future work might cover studying other Spark-based DSDMSs like Simba [13],
implement other spatial partitioning techniques [4] in LocationSpark and, design
and implement other DJQs in these DSDMSs for further comparison.

References

1. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.H.: Hadoop-GIS:
a high performance spatial data warehousing system over MapReduce. PVLDB
6(11), 1009–1020 (2013)

2. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing K-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI Conference, pp. 137–150 (2004)

4. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in Spatial-
Hadoop. PVLDB 8(12), 1602–1613 (2015)

5. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial
data. In: ICDE Conference, pp. 1352–1363 (2015)

6. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos,
Y.: Enhancing SpatialHadoop with closest pair queries. In: Pokorný, J., Ivanović,
M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 212–225.
Springer, Cham (2016). doi:10.1007/978-3-319-44039-2 15

7. Lenka, R.K., Barik, R.K., Gupta, N., Ali, S.M., Rath, A., Dubey, H.: Comparative
analysis of SpatialHadoop and GeoSpark for geospatial big data analytics, CoRR
abs/1612.07433 (2016)

8. Li, F., Ooi, B.C., Özsu, M.T., Wu, S.: Distributed data management using MapRe-
duce. ACM Comput. Surv. 46(3), 31:1–31:42 (2014)

9. Roumelis, G., Corral, A., Vassilakopoulos, M., Manolopoulos, Y.: New plane-sweep
algorithms for distance-based join queries in spatial databases. GeoInformatica
20(4), 571–628 (2016)

10. Shi, J., Qiu, Y., Minhas, U.F., Jiao, L., Wang, C., Reinwald, B., Özcan, F.: Clash
of the titans: mapreduce vs. spark for large scale data analytics. PVLDB 8(13),
2110–2121 (2015)

11. Tang, M., Yu, Y., Malluhi, Q.M., Ouzzani, M., Aref, W.G.: Locationspark: a dis-
tributed in-memory data management system for big spatial data. PVLDB 9(13),
1565–1568 (2016)

12. Tang, M., Yu, Y., Aref, W.G., Mahmood, A.R., Malluhi, Q.M., Ouzzani, M.: In-
memory distributed spatial query processing and optimization, April 2017. http://
merlintang.github.io/paper/memory-distributed-spatial.pdf

13. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory
spatial analytics. In: SIGMOD Conference, pp. 1071–1085 (2016)

http://dx.doi.org/10.1007/978-3-319-44039-2_15
http://merlintang.github.io/paper/memory-distributed-spatial.pdf
http://merlintang.github.io/paper/memory-distributed-spatial.pdf

228 F. Garćıa-Garćıa et al.

14. You, S., Zhang, J., Gruenwald, L.: Large-scale spatial join query processing in
cloud. In: ICDE Workshops, pp. 34–41 (2015)

15. You, S., Zhang, J., Gruenwald, L.: Spatial join query processing in cloud: Analyzing
design choices and performance comparisons. In: ICPPW Conference, pp. 90–97
(2015)

16. Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing framework for processing
large-scale spatial data. In: SIGSPATIAL Conference, pp. 70:1–70:4 (2015)

17. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: NSDI Conference, pp. 15–28 (2012)

18. Zhang, H., Chen, G., Ooi, B.C., Tan, K.-L., Zhang, M.: In-memory big data man-
agement and processing: a survey. TKDE 27(7), 1920–1948 (2015)

A Generic and Efficient Framework for Spatial
Indexing on Flash-Based Solid State Drives

Anderson Chaves Carniel1(B), Ricardo Rodrigues Ciferri2,
and Cristina Dutra de Aguiar Ciferri1

1 Department of Computer Science, University of São Paulo,
São Carlos, SP 13566-590, Brazil

accarniel@gmail.com, cdac@icmc.usp.br
2 Department of Computer Science, Federal University of São Carlos,

São Carlos, SP 13565-905, Brazil
ricardo@dc.ufscar.br

Abstract. Speeding up the spatial query processing on flash-based Solid
State Drives (SSDs) has become a core problem in spatial database appli-
cations, and has been carried out aided by flash-aware spatial indices.
Although there are some existing flash-aware spatial indices, they do
not exploit all the benefits of SSDs, leading to loss of efficiency. In this
paper, we propose a new generic and efficient F ramework for spatial
INDexing on SSDs, called eFIND. It takes into account all the intrinsic
characteristics of SSDs by employing (i) a write buffer to avoid random
writes; (ii) a read buffer to decrease the overhead of random reads; (iii) a
temporal control to avoid interleaved reads and writes; (iv) a flushing
policy based on the characteristics of the indexed spatial objects; and
(v) a log-structured approach to provide data durability. Performance
tests showed that eFIND is very efficient. Compared to existing indices,
eFIND improved the construction of spatial indices from 22% up to 68%
and the spatial query processing from 3% up to 50%.

1 Introduction

Spatial indices are largely used to improve spatial query processing since they
reduce the search space of spatial data, discarding portions of the dataset where
the answer cannot be found [4]. Nowadays, there is an increase number of spatial
database applications requiring the use of spatial indices to retrieve efficiently
spatial objects stored in flash-based Solid State Drives (SSDs) [2]. In fact, SSDs
have been widely used as secondary storage in notebooks, desktops, and database
servers because of their improved characteristics compared to Hard Disk Drives
(HDDs) [9]. These characteristics include smaller size, lighter weight, lower power
consumption, better shock resistance, and faster reads and writes.

On the other hand, SSDs have intrinsic characteristics that introduce several
system implications [3,7]. A well-known characteristic is that a write requires
more time and power consumption than a read. In addition, random writes can
lead to erase-before-update operations and thus, sequential writes are preferable.
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 229–243, 2017.
DOI: 10.1007/978-3-319-66917-5 16

230 A.C. Carniel et al.

To deal with these characteristics, some flash-aware spatial indices have been
proposed [6,8,10,11], which extend indices originally designed for HDDs like the
R-tree [5]. We term these indices for HDDs as disk-based spatial indices.

In general, existing flash-aware spatial indices employ buffers in the main
memory to store index modifications, instead of directly performing random
writes on the SSD. When the buffer is full, these indices perform a flushing
operation, which can encompass a flushing policy to choose a set of nodes to be
written sequentially to the SSD. Further, the structure of the index can also be
changed to reduce even more the number of writes [6].

However, current flash-aware spatial indices do not exploit all the benefits of
SSDs. First, these indices execute an excessive number of random reads, which
can degenerate the performance of SSDs [7]. Second, they perform interleaved
reads and writes, also impacting negatively the performance [3,7]. Third, they
employ flushing policies that do not take into account characteristics of the
spatial index, leading to unnecessary writes.

In this paper, we go one step forward to existing work by proposing the effi-
cient Framework for spatial INDexing on SSDs (eFIND). It is a generic frame-
work that transforms a disk-based spatial index into a flash-aware spatial index
without requiring modifications in the structure and algorithms of the underlying
index. Instead, eFIND efficiently changes the way in which reads and writes are
performed on the SSD. Hence, eFIND can be incorporated into existing spatial
database systems without high implementation costs. To achieve its efficiency,
eFIND employs a set of design goals, which are introduced in this paper and
specifically defined to take into account all the intrinsic characteristics of SSDs.

Our experiments showed that eFIND is very efficient since it provides a con-
sonance among the following elements:

– write buffer to avoid random writes to the SSD;
– read buffer to decrease the overhead of random reads;
– temporal control to avoid interleaved reads and writes;
– flushing algorithm to sequentially write modifications according to a flushing

policy that is based on the characteristics of the indexed spatial objects;
– log-structured approach to guarantee data durability.

This paper is organized as follows. Section 2 introduces our design goals.
Section 3 surveys related work. Section 4 proposes eFIND. Section 5 details the
experiments. Section 6 concludes the paper and presents future work.

2 Design Goals for Flash-Aware Spatial Indices

Despite the fact that the intrinsic characteristics of SSDs have been studied
in the literature [3,7,9], it remains unclear how to deal with them to achieve
good spatial indexing performance. Indeed, we will see in Sect. 3 that existing
flash-aware spatial indices do not consider important intrinsic characteristics
of SSDs. In this section, we introduce a set of design goals that correlate the
intrinsic characteristics of SSDs with the characteristics of the spatial indexing.

A Generic and Effecient Framework for Spatial Indexing on SSDs 231

These design goals should be employed as a basis to create efficient and robust
flash-aware spatial indices.

Goal 1 - Avoid excessive random reads in frequent locations. There is a
common assumption that the random read is the fastest operation of SSDs. How-
ever, because of the reliability management on reads and resource conflicts [7],
reads can become the worst operation of SSDs if they are performed always in
the same location or interleaved with writes [3]. To achieve Goal 1, a flash-aware
spatial index should use a buffer for reads in the main memory, called read buffer.

Goal 2 - Prioritize sequential writes instead of random writes. Random
writes are the most expensive operations of SSDs and can lead to erase-before-
updates [3,7]. To achieve Goal 2, a flash-aware spatial index should employ a
buffer in the main memory to store the most recent modifications of the index,
called write buffer. Further, flushing operations should be made by applying in
batch a set of modifications on SSDs.

Goal 3 - Avoid interleaved reads and writes. The performance of SSDs
can be negatively affected by interleaved reads and writes. This is due to the
internal buffer and parallelism of SSDs, which may require that a read operation
must wait for a previous write request that is still internally buffered [3,7]. To
achieve Goal 3, a flash-aware spatial index should use read and write buffers
together with a temporal control of reads and writes to take into account the
order of these reads and writes in future operations.

Goal 4 - Choose dynamically modifications to be flushed. A flushing
operation that writes all the modifications in the write buffer is inefficient since
it leads to a big write to the SSD, degenerating its performance. Further, it
writes nodes that would be potentially modified soon [10]. To achieve Goal 4,
a flash-aware spatial index should use a flushing unit creator that picks a set
of modified nodes, according to a flushing policy, to be written in batch to the
SSD. The flushing operation should also consider Goals 2 and 3.

Goal 5 - Provide data durability. System crashes and power failures impact
the write buffer since buffered modifications would be lost. To achieve Goal 5, a
flash-aware spatial index should use a log-structured approach that sequentially
writes to the SSD the modifications stored in the write buffer. Hence, it is possible
to rebuild the write buffer after a system crash.

3 Related Work

There are few flash-aware spatial indices that have been proposed in the litera-
ture. The first indices, i.e., the RFTL [11] and the LCR-tree [8], are straightfor-
ward extensions of the R-tree. They do not change the structure of the R-tree
and only employ a write buffer to deal with the well-known poor performance
of random writes of SSDs.

Subsequently, FAST [10] has been proposed to generalize the write buffer
for any hierarchical index, and to guarantee data durability. It also provides a

232 A.C. Carniel et al.

flushing algorithm that writes a flushing unit chosen from a flushing policy. But,
FAST can write a flushing unit containing a node without modification and thus,
leading to unnecessary writes to the SSD. This is due to the static creation of
flushing units as soon as nodes are created in the index.

Posteriorly, the FOR-tree [6] was introduced. It improves the flushing algo-
rithm by dynamically creating flushing units considering only the modifications
stored in the write buffer. Further, it allows overflowed nodes by eliminating
splits in the R-tree. According to a read counter, a merge back operation groups
the overflowed nodes to be stored in the next level of the tree, growing up the
tree if needed. However, the counter for the root node is never incremented in
an index construction. As a consequence, the spatial objects are stored in this
node with overflowed nodes in a sequential form instead of a hierarchical form.

Table 1 compares the existing flash-aware spatial indices taking as a basis
our design goals. In this table, we note that there is a lack of indices aimed to
improve the performance of reads, and to avoid interleaved reads and writes.

On the other hand, eFIND fulfills all the design goals. As a result, it improves
the performance of index construction and spatial query processing on SSDs, as
reported in Sect. 5.

Table 1. Comparison of flash-aware spatial indices according to our proposed design
goals (Sect. 2).

RFTL LCR-tree FAST FOR-tree eFIND

(1) Read buffer �
(2) Write buffer � � � � �
(3) Temporal control of reads/writes �
(4) Flushing units and flushing policy � � �
(5) Data durability � �

4 The Efficient Framework for Spatial Indexing on SSDs

This section details eFIND, a generic framework that transforms any hierarchi-
cal spatial index to an efficient flash-aware spatial index by following the design
goals of Sect. 2. Figure 1 depicts its architecture, which includes three compo-
nents: (i) Buffer Manager, (ii) Flushing Manager, and (iii) Log Manager. These
components are detailed as follows.

Buffer Manager. This component contains two in-memory buffers: (i) a read
buffer, which stores frequently accessed nodes (Goal 1); and (ii) a write buffer,
which stores the modifications of nodes generated from insertions, updates, and
deletions over the spatial index (Goal 2).

Flushing Manager. This component contains three interacting elements:
(i) flushing unit creator, which creates flushing units by grouping sequential

A Generic and Effecient Framework for Spatial Indexing on SSDs 233

Fig. 1. The architecture of eFIND.

nodes; (ii) flushing policy, which ranks the flushing units according to the
quantity of modifications, recency of modifications, and structure of the index
(Goal 4); and (iii) temporal control, which stores frequently accessed nodes to
the read buffer and avoids interleaved reads and writes (Goal 3).

Log Manager. This component is responsible to keep log of all writes performed
on the SSD, thus providing data durability (Goal 5). Modifications lost after a
system crash can be recovered by dispatching a restart operation.

The three components interact in a flushing operation as follows. When the
write buffer is full, the Flushing Manager performs this operation by writing only
some modifications to the SSD, while the Log Manager keeps log of the flushed
nodes. Thus, the spatial index can be partially stored in three different locations:
(i) the SSD, (ii) the read buffer, and (iii) the write buffer. For searching purposes,
a specific algorithm that considers all these locations is applied to retrieve nodes
from the index (see Algorithm 2 in Sect. 4.1).

4.1 Maintenance Operations

Here, we detail how the eFIND’s components are employed to perform mainte-
nance operations, which insert, update, or delete objects in the spatial index.

Data Structures. We use Fig. 2 to exemplify the use of the data structures on
an R-tree index (Fig. 2a). The temporal control employs two arrays, named TCR
and TCW, to store the node identifiers of the last performed reads and writes,
respectively. Figure 2b shows that the last read nodes are R, B, B, and C, and
the last written nodes are A, B, C, and R.

The write buffer stores, in a hash table named Write Buffer Table, the mod-
ifications of nodes that were not applied to the SSD yet. The key of this hash
table is the unique node identifier (node id) and its value stores modifications
in the format (h, mod count, timestamp, status, mod list). Here, h refers to the
height of the modified node; mod count is the quantity of in-memory modifi-
cations; timestamp informs when the last modification was made; status is the
type of modification that can be NEW, MOD, or DEL to represent nodes newly

234 A.C. Carniel et al.

created in the buffer, nodes stored in the SSD but with modified entries, and
deleted nodes, respectively. For status equal to NEW or MOD, mod list is a list
containing elements in the form (e, mod result), where mod result is the new
value of the entry e resulted from a maintenance operation. Figure 2c depicts an
example of the Write Buffer Table after inserting the spatial objects O9 and
O10, and deleting the last entry of the root node in an R-tree (showed in gray
in Fig. 2a). For instance, the first line of this hash table shows that R, located
in the height equal to 1, has three modifications. The first two modifications are
derived from the insertions of O9 and O10, where the second and third elements
of R were adjusted to encompass the new spatial objects. The last modification
is related to the deletion of the last entry of R, which was performed in the
time equal to 43460. Note that the same format of an entry of the underlying
index of eFIND is used for each value of mod result. In Fig. 2c, MBR considers
the current modifications to calculate a minimum bounding rectangle (MBR).
For instance, (B, MBR(B)) corresponds to an entry of R taking into account
current modifications of B in the write buffer.

Fig. 2. Graphical representation of the eFIND’s data structures using an R-tree index.

The read buffer maintains, in another hash table named Read Buffer Table,
the nodes that are already stored in the SSD by prioritizing nodes located in
the highest levels of the index and frequently accessed by searching routines.
The key of this hash table is the unique node identifier (node id) and its value
stores (h, entries), where h is its height and entries is a list of node entries of
the underlying index. Figure 2d depicts that R and C are stored in the Read
Buffer Table. The entries of R reflect what is stored in the SSD and thus, MBRS

considers only the stored MBR. That is, the modifications of B and C, and the
remotion of D are not taken into account. Further, the node C is cached since
it is the last accessed node before inserting the new objects into the index.

A Generic and Effecient Framework for Spatial Indexing on SSDs 235

Algorithm 1. Execution of a maintenance operation OP using eFIND
1 N ← a list of modified nodes from the in-memory execution of OP ;
2 foreach Ni in N do
3 HashWEntry ← the entry of node Ni in the WriteBufferTable;
4 if HashWEntry is not NULL then
5 if Ni is a deleted node then
6 free all modifications contained in the HashWEntry ;
7 set the status of the HashWEntry to DEL;

8 else
9 append the changes of Ni to the mod list of HashWEntry ;

10 else
11 HashWEntry ← a new entry in the WriteBufferTable with key = Ni;
12 if Ni is a newly created node then
13 set the status of the HashWEntry to NEW;
14 else
15 set the status of the HashWEntry to MOD;

16 append the changes of Ni to the mod list of HashWEntry ;

17 call Log Manager to append the changes of Ni to the log file;

18 if WriteBufferTable is full then
19 call Flushing Manager to execute a flushing operation (Algorithm 3);

To guarantee data durability, eFIND also keeps the modifications in a log file.
The format (node id, height, mod count, timestamp, status, entry, mod result)
is employed to store each modification in the log file. It has a very similar format
to the format employed in the Write Buffer Table.

General Algorithm. Algorithm 1 shows how eFIND executes a maintenance
operation. Since eFIND only changes the way in which reads and writes are
performed on the SSD, the first step executes the corresponding maintenance
operation as an in-memory operation (line 1). It returns a list of modifications
made on the index, which can include the creation of new nodes resulted from
splits, the deletion of underflowed nodes, and the adjustment of MBRs. After
that, these modifications are stored in the Write Buffer Table (lines 2 to 16).
If a modified node has an entry in this hash table, the corresponding entry is
modified accordingly (lines 4 to 9). Otherwise, the algorithm creates a new hash
entry (line 11), which can be a newly created node (line 13) or a node with
in-memory modifications (line 15). Note that we call the Log Manager to keep
log of all modifications of a node (line 17). This is a low latency operation since
involves only sequential writes. The final step of the algorithm is the execution
of a flushing operation, if the buffer is full (lines 18 and 19).

The execution of an in-memory maintenance operation needs a new algorithm
for retrieving nodes. For instance, to choose a leaf node to accommodate or delete
a spatial object. The reason is that a node can be cached in the Read Buffer Table

236 A.C. Carniel et al.

Algorithm 2. Retrieving a node N using eFIND
1 HashWEntry ← the hash entry of N in the WriteBufferTable;
2 if HashWEntry has status equal to NEW or DEL then
3 return the node pointed by HashWEntry ;

4 R ← empty;
5 HashREntry ← the hash entry of N in the ReadBufferTable;
6 if HashREntry is not NULL then
7 R ← HashREntry ;
8 update the recency of access of N in the ReadBufferTable;

9 else
10 R ← read N from the SSD;
11 possibly store R in ReadBufferTable according to a replacement policy;
12 append to TCR that the node N was read from the SSD;

13 if HashWEntry has status equal to MOD then
14 unify the modifications contained in HashWEntry to R;

15 return R;

and/or contain modifications in the Write Buffer Table. Algorithm 2 details
how to retrieve a node considering all these aspects. If the node is a newly
created node or a deleted node, the algorithm returns the node pointed by its
corresponding entry in the Write Buffer Table (lines 2 and 3). Otherwise, it gets
the last stored version of the node that is either buffered in the Read Buffer
Table (lines 6 to 8) or stored in the SSD (lines 9 to 12). In the latter case, the
node is read from the SSD and stored in the Read Buffer Table (lines 10 and
11) if it has available space, or if the height of the least recently accessed node
is smaller than or equal to the height of the read node. Thus, the Read Buffer
Table only stores nodes near to the root node, which are frequently accessed in
the index. Further, the read operation is appended to TCR for the temporal
control of reads performed on the SSD (line 12). The last step of the algorithm
is to apply any change contained in the Write Buffer Table to the node (lines 13
and 14) to be returned (line 15). For instance, to retrieve the node C from the
index of Fig. 2a, Algorithm 2 gets its cached version from the Read Buffer Table
and then applies its modification contained in the Write Buffer Table, without
requiring reads from the SSD.

Flushing Operation. Algorithm 3 details the flushing operation (executed at
line 19 in Algorithm 1). Instead of writing all the modifications to the SSD,
eFIND smartly selects only some of them to be written to the SSD. Firstly,
the algorithm forms a list F composed of nodes with the oldest modifications
contained in the Write Buffer Table according to the timestamp (line 1). By
using a parameter value p, the size of F is the p% of the total number of modified
nodes stored in the Write Buffer Table.

A Generic and Effecient Framework for Spatial Indexing on SSDs 237

Algorithm 3. Execution of the eFIND’s flushing operation
1 F ← a list of the first p% oldest modified nodes of the WriteBufferTable;
2 sort in ascending order the list F by the node identifiers;
3 FU ← a list of flushing units created from the list F ;
4 foreach FU i in FU do

5 FU i.d ←
FU i.n∑

j=1

FU i[j].mod count ∗ (FU i[j].h + 1)

6 sort in descending order the list FU by the d value;
7 chosenFU ← a flushing unit picked by the Temporal Control ;
8 nodesToFlush ← an empty list of nodes to be flushed;
9 foreach Ni in chosenFU do

10 RN ← retrieve node Ni (Algorithm 2);
11 append RN to nodesToFlush;
12 if RN is a frequently accessed node then
13 store RN in the ReadBufferTable;
14 else
15 update RN in the ReadBufferTable if it is stored there;

16 write in batch nodesToFlush to the SSD;
17 call Log Manager to append the flushed nodes to the log file;
18 append to TCW that the nodes in nodesToFlush were written to the SSD;
19 free the modifications of the nodes in nodesToFlush from the WriteBufferTable;

Assuming a flushing unit size equal to s, the next s nodes of F , previously
sorted by the node identifiers (line 2), define a flushing unit (line 3). Thus,
flushing units are formed by sequential nodes. For each created flushing unit,
the algorithm computes a degree (lines 4 and 5) that is used to sort the flushing
units in descending order (line 6). The degree of a flushing unit is the sum of the
number of modifications of each node times its height. Hence, the height works
as a weight to give higher degrees for nodes located in the highest levels of the
index, which are not so frequently modified. After this ranking, the temporal
control uses TCW to choose a flushing unit that leads to a sequential write or
possibly to a stride write considering previous performed writes (line 7).

Next, the nodes that compose the chosen flushing unit are retrieved (lines 8
to 11). Here, the temporal control plays an important role (line 12). By using
TCR, the temporal control can store a node in the Read Buffer Table based on its
read frequency (line 13). Thus, it avoids a possible read after a write operation.
Otherwise, the algorithm updates the content of a node if necessary (line 15). It
then sequentially writes the flushing unit to the SSD (line 16), which was built
considering a balance between recency of the modifications in the write buffer,
quantity of modifications, and the structure of the index. Finally, the algorithm
keeps log of the flushed nodes, appends the made writes to TCW, and frees them
from the Write Buffer Table (lines 17 to 19).

238 A.C. Carniel et al.

4.2 Search Operations

eFIND does not change the search algorithm of the underlying index. But, the
algorithm should use Algorithm 2 to retrieve nodes. For instance, the classical
recursive searching operation of the R-tree should use Algorithm 2 to retrieve a
node when the entry that points to this node satisfies a determined topological
relationship. When the node is a leaf node, the searching operation returns the
most recent version of the entries to answer a spatial query.

4.3 System Restart

Since eFIND guarantees data durability, it permits to reconstruct the Write
Buffer Table after a system crash, fatal error, or failure power. Thus, after a
system restart, eFIND recovers all the modifications that were not effectively
applied to the index. This is possible by reading the log file in reverse order
since the modifications are written to the log as append-only operations (line
17 in Algorithm 1). Further, the log file possibly can store flushed nodes (line
17 in Algorithm 3). This means that modifications of these nodes prior to the
flushing operation can be ignored since they were already written to the SSD.
Optionally, after the log file reaches a specific size, eFIND may use a compactor
to remove modifications already flushed to the SSD.

5 Experimental Evaluation

5.1 Experimental Setup

Dataset. We extracted a real spatial dataset from the OpenStreetMap1, which
consisted of 1,486,557 complex regions possibly with holes representing the build-
ings of Brazil like hospitals, universities, schools, houses, and stadiums.

Configurations. We compared the following configurations: (i) the R-tree with
a standard LRU buffer of 512 KB caching nodes in the highest levels of the tree;
(ii) the FAST R-tree with a buffer of 512 KB, log capacity of 10 MB, and FAST*
flushing policy; and (iii) the eFIND R-tree with a buffer of 512 KB where 80%
was dedicated for the write buffer and 20% for the read buffer, log capacity of
10 MB, flushing percentage (p) of 40%, and read frequency of 40% for the tem-
poral control. We applied the quadratic split algorithm of the R-tree for all the
configurations, and the best parameters values of the FAST R-tree according
to [10]. We also employed the best parameters values of eFIND based on an
experimental evaluation that studied the impact of the design goals on our pro-
posed framework. We considered FAST as the state of art since, as reported in
Sect. 3, it is the most complete related work. We did not compare the FOR-tree
because it failed to construct indices over our dataset.

1 http://www.openstreetmap.org/.

http://www.openstreetmap.org/

A Generic and Effecient Framework for Spatial Indexing on SSDs 239

Varied Parameters. We employed page sizes (i.e., node sizes) from 2 KB to
16 KB for all the configurations. Further, we used flushing unit sizes from 1 to 5
for the FAST R-tree and the eFIND R-tree.

Workloads. We executed two workloads: (i) index construction, and (ii)
processing of intersection range queries (IRQ) [4], considering three different sets
of query windows. Each set was composed of 100 query windows corresponding
respectively to 0.001%, 0.01%, and 0.1% of area of the total extent of Brazil.
Considering that the selectivity of a query is the ratio between the number of
returned objects and the total objects, these sets of query windows form spatial
queries with low, medium, and high selectivity, respectively. For each configu-
ration, we executed these workloads as a sequence, i.e., the index construction
followed by the processing of the three sets of IRQs. Each sequence was executed
10 times. We flushed the system cache after the execution of each sequence and
calculated the elapsed time as follows. For the first workload, we collected the
average elapsed time. For the second workload, we collected the average elapsed
time of the execution of each IRQ, and then calculated the sum of the average
elapsed times of the 100 IRQs for each set of query windows. Hence, we analyzed
the performance of each index in specific workloads.

Running Environment. We employed FESTIval [1], an open-source Post-
greSQL extension to benchmark disk-based and flash-aware spatial indices2. We
performed the tests locally to avoid network latency. The experiments were con-
ducted on a local server equipped with an Intel� CoreTM i7-4770 with frequency
of 3.40 GHz, 32 GB of main memory, and an SSD 480 GB Kingston V300. We
used Ubuntu Server 14.04 64 bits, PostgreSQL 9.5, and PostGIS 2.2.0.

5.2 Index Construction

Figure 3 depicts the obtained results for index construction. In this figure, the
R-tree only has elapsed times for the flushing unit size equal to 1 in all the
page sizes since it only writes one node by time to the SSD. Clearly, the eFIND
R-tree greatly overcame its competitors for all the page sizes, followed by the
R-tree, which in turn outperformed the FAST R-tree. Compared to the R-tree,
the eFIND R-tree introduced performance gains varying from 22% to 43%. If
compared to the FAST R-tree, the performance gains of the eFIND R-tree were
yet more expressive, ranging from 62% to 68%.

The eFIND R-tree exploited the benefits of SSDs because eFIND takes into
account the intrinsic characteristics of these memories. For instance, compared
to its closest competitor, the R-tree, the eFIND R-tree decreased the number of
writes by up to 99% and the number of reads by up to 96%. The contribution of
the read buffer to obtain these results was very important. Even using a relative
small percentage of the buffer size dedicated for the read buffer, eFIND provided
an expressive reduction in the number of reads without impairing the number
of writes. Further, the use of the temporal control guaranteed that frequently

2 http://gbd.dc.ufscar.br/festival/.

http://gbd.dc.ufscar.br/festival/

240 A.C. Carniel et al.

Fig. 3. Performance results to construct spatial indices on the SSD.

accessed nodes were stored beforehand in the read buffer. Moreover, eFIND did
not show significant overhead in flushing operations.

Regarding the FAST R-tree, it reduced the number of writes by up to 99%
compared to the R-tree, but at the same time increased the number of reads from
9% to 123%. This means that the FAST R-tree more than doubled the number
of reads in some situations. Hence, the reduction of the number of writes was
important but not sufficient to achieve good performance on SSDs.

In general, the construction of the indices by using the page sizes equal to
2 KB and 4 KB required less time than the construction by using other page
sizes. The page size equal to 16 KB provided the worst results since the indices
had to process several entries in the main memory. For the FAST R-tree and the
eFIND R-tree, the flushing unit size equal to 2 provided the best performance
results. This indicates that writing two nodes achieved a good granularity for
writes.

5.3 Spatial Query Processing

Figure 4 depicts the obtained results for processing of IRQs. Considering the
best performance results, the eFIND R-tree overcame its competitors, followed
by the R-tree, which in turn outperformed the FAST R-tree in most cases.

Regarding query windows with 0.001% (Fig. 4a), all the configurations
showed faster elapsed times using page sizes equal to 2 KB and 4 KB. The main
reason is that these IRQs have low selectivity, where each IRQ returned up to
82 objects from the dataset. Thus, smaller page sizes required the processing
of less entries in the main memory, reducing the processing time. For the page
size equal to 4 KB, the eFIND R-tree provided performance gains of 32% over
the R-tree and of 50% over the FAST R-tree. Here, the read buffer of eFIND
improved the retrieval of nodes from the index. Comparing the R-tree to the
FAST R-tree, while the former avoided some reads by accessing nodes from its
LRU buffer, the latter had to read the majority of the accessed pages from the
SSD. This impaired the performance of the FAST R-tree.

With respect to query windows with 0.01% (Fig. 4b), the page size equal
to 16 KB showed the best performance results for the majority of the indices,
although these results were very close to the page size equal to 8 KB.

A Generic and Effecient Framework for Spatial Indexing on SSDs 241

Fig. 4. Performance results to process IRQs on the SSD using query windows with
0.001% (a), 0.01% (b), and 0.1% (c) of area of the total extent of Brazil.

Since these IRQs have a medium selectivity, returning up to 11,771 objects, the
use of smaller page sizes decreased the performance by requiring more accesses
to entries. For the page size equal to 16 KB, the eFIND R-tree showed reductions
of 3% compared to the R-tree and of 29% compared to the FAST R-tree.

Regarding query windows with 0.1% (Fig. 4c), the largest employed page
size, i.e. 16 KB, showed the fastest elapsed times for all the configurations. The
high selectivity of these IRQs, which returned up to 515,117 objects, required
the traversal of several nodes of the index to find all the objects that answer
the spatial query. Due to this, the page size containing the greatest number of
elements improved the performance of these spatial queries. For the page size
equal to 16 KB, the eFIND R-tree obtained performance gains of 9% over the
R-tree and of 5% over the FAST R-tree.

242 A.C. Carniel et al.

6 Conclusions and Future Work

This paper proposes eFIND, a new generic and efficient framework to transform
disk-based spatial indices into flash-aware spatial indices. It does not change the
algorithms of the underlying index. Instead, it only changes the way in which
reads and writes are performed on the SSD. Thus, eFIND can be integrated into
existing spatial database systems without high implementation costs.

eFIND exploits the advantages of SSDs since it is based on distinctive design
goals that take into account the intrinsic characteristics of these memories. A
write buffer is used to deal with the poor performance of random writes of the
SSDs. A read buffer is employed to improve the performance of random reads.
A temporal control is applied to avoid the performance interference of reads and
writes. The flushing policy is based on the characteristics of the indexed spatial
objects. Finally, a log-structured approach is used to provide data durability.

Thanks to the great power of these design goals, our performance tests showed
that eFIND is very efficient, compared to the R-tree and FAST. The eFIND R-
tree overcame the R-tree, which in turn outperformed the FAST R-tree for the
most of cases. Compared to the R-tree, the eFIND R-tree showed performance
gains from 22% up to 43% to construct spatial indices on the SSD. If compared
to the FAST R-tree, the performance gains of the eFIND R-tree were yet more
expressive, ranging from 62% to 68%. Further, the eFIND R-tree showed perfor-
mance gains from 3% up to 32% over the R-tree, and gains from 5% up to 50%
over the FAST R-tree in the spatial query processing.

Future work will deal with the evaluation of eFIND under other workloads,
considering sequences of insertions, deletions, and queries. We also plan to use
other spatial data types like lines and points in the indexed spatial dataset.

Acknowledgments. This work has been supported by CAPES, CNPq, and FAPESP.
A. C. Carniel has been supported by the grant #2015/26687-8, FAPESP. R. R. Ciferri
has been supported by the grant #311868/2015-0, CNPq.

References

1. Carniel, A.C., Ciferri, R.R., Ciferri, C.D.A.: Experimental evaluation of spatial
indices with FESTIval. In: Brazilian Symposium on Databases - Demonstration
Track, pp. 123–128 (2016)

2. Carniel, A.C., Ciferri, R.R., Ciferri, C.D.A.: The performance relation of spatial
indexing on hard disk drives and solid state drives. In: Brazilian Symposium on
GeoInformatics, pp. 263–274 (2016)

3. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and
system implications of flash memory based solid state drives. In: International
Conference on Measurement and Modeling of Computer Systems, pp. 181–192
(2009)

4. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998)

5. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM
SIGMOD International Conference on Management of Data, pp. 47–57 (1984)

A Generic and Effecient Framework for Spatial Indexing on SSDs 243

6. Jin, P., Xie, X., Wang, N., Yue, L.: Optimizing R-tree for flash memory. Expert
Syst. Appl. 42(10), 4676–4686 (2015)

7. Jung, M., Kandemir, M.: Revisiting widely held SSD expectations and rethink-
ing system-level implications. In: International Conference on Measurement and
Modeling of Computer Systems, pp. 203–216 (2013)

8. Lv, Y., Li, J., Cui, B., Chen, X.: Log-compact R-tree: an efficient spatial index for
SSD. In: International Conference on Database Systems for Advanced Applications,
pp. 202–213 (2011)

9. Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile mem-
ories for storage and main memory systems. IEEE Trans. Parallel Distrib. Syst.
27(5), 1537–1550 (2016)

10. Sarwat, M., Mokbel, M.F., Zhou, X., Nath, S.: Generic and efficient framework
for search trees on flash memory storage systems. GeoInformatica 17(3), 417–448
(2013)

11. Wu, C.H., Chang, L.P., Kuo, T.W.: An efficient R-tree implementation over flash-
memory storage systems. In: ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 17–24 (2003)

Parallel and Distributed Data Processing

Incremental Frequent Itemsets Mining
with MapReduce

Kirill Kandalov1(&) and Ehud Gudes1,2

1 Open University, Ra’anana, Israel
kirill.kandalov@gmail.com

2 Ben-Gurion University, Beer-Sheva, Israel
ehud@cs.bgu.ac.il

Abstract. Frequent itemsets mining is a common task in data mining. Since
sizes of today’s databases go far beyond capabilities of a single machine, recent
studies show how to adopt classical algorithms for frequent itemsets mining for
parallel frameworks such as MapReduce. Even then, in case of a slight database
update a re-run of the MapReduce mining algorithm from the beginning on the
whole data set is required and could be far from optimal. Thus, a variation of
these algorithms for incremental database update is desired.
The current paper presents a general algorithm for incremental frequent

itemsets mining and shows how to adapt it to the parallel paradigm. It also
provides optimizations that are unique to a constrained model of MapReduce for
an effective algorithm.

1 Introduction

The amount of information generated in our world has grown in the last few decades at
an exponential rate. This process resulted with a new term called “Big Data”. Classical
databases (DB) are unable to handle such size and velocity of data. So, special tools
were developed for this task. One of them is the MapReduce (MR) framework [11]. It
was originally developed by Google, but currently, the most researched version is an
open source project called Hadoop [12]. MR provides parallel distributed model and
framework that scales to thousands of machines.

Frequent Itemsets (FI) Mining (FIM) is the most computational intensive part of
association rules mining [3, 5, 13]. Solving FIM efficiently allows efficiently finding
the association rules. The association rules mining has been heavily researched and few
solutions were proposed for running classical FIM algorithms in the MR framework
[15, 16, 20, 21]. These algorithms find frequent itemsets for a given static database. But
in the world of constantly aggregated data, databases are dynamic. So, there’s a need
for an algorithm that will be able to update the FI effectively when the database is
updated, instead of rerunning the full FIM algorithm on the whole DB.

There exist incremental versions of FIM algorithm [9, 19]. Some of these algo-
rithms even suit a distributed environment [10] but not for the MR model. Because the
MR model is more limited than general distributed or parallel computation models,
these algorithms cannot be used as is. So, the algorithm should be carefully designed to

© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 247–261, 2017.
DOI: 10.1007/978-3-319-66917-5_17

be efficient. In this paper, we investigate and develop algorithms for incremental FIM
for the MR model. Specifically, our contributions are:

1. Defining a general scheme for incremental FIM which is agnostic to the underlined
FIM algorithm and is suitable for the MR framework.

2. Evaluation of the general incremental scheme with one of the best known so far
FIM algorithm for MR.

3. Usage of additional optimizations for general distributed DB.
4. Optimizing the algorithm to overcome MR weak points.

This paper is structured as follows. Section 2 discusses the background and related
work. Section 3 defines the problem. Section 4 presents several algorithms and opti-
mizations to solve it. Section 5 shows the experimental evaluation of our algorithms
and comparison to a full scan algorithm and we conclude in Sect. 6.

2 Background and Related Work

2.1 Association Rules, Frequent Itemsets and Incremental Update

Association Rule mining was introduced in [3, 5] as a market basket analysis. Finding
items that were bought together - if a customer bought item X, then he has a high
probability to buy also item Y (X) Y). A pre-requisite to finding association rules is
the mining of frequent itemsets, itemsets that appear in at least some percent of
transactions.

One of the most well-known algorithms for association rules is the Apriori algo-
rithm [3, 5]. This algorithm uses a pruning rule called Apriori - an itemset may be
frequent iff all its subsets are also frequent. Apriori algorithm iteratively generates
candidates for frequent itemsets and prunes them. Once FI are found it generates all
association rules.

There exist several versions of implementing Apriori in the distributed environment
[4, 22]. The most important idea is that if an itemset is frequent in a union of distributed
databases, it must be frequent in at least one of them.

The idea not to generate candidates but calculate frequent itemsets directly was
used in FP-growth [23]. That algorithm uses the original DB to build a compact
FP-Tree. This tree is used to find all frequent itemset. The algorithm is reported to be
faster than Apriori based algorithms. In our tests in the cloud the algorithm wasn’t
significant faster than Apriori based. But the higher memory requirements limited the
use of many types of machines in the cloud. As this work isn’t about comparison
between different FIM algorithms we chose to use Apriori based algorithm for our tests
(see IMRApriori in Sect. 2.3).

The idea of maintenance of association rules and frequent itemsets during database
update has been discussed shortly after the first algorithms for FIM appeared. The reason
for it is that the updated part is usually much smaller than the full DB and this fact could
be used for faster algorithms. A well-known efficient algorithm for it is called “Fast
Update” (FUP) [9]. It is based on the fact that for an item to be frequent in the updated

248 K. Kandalov and E. Gudes

database (DB+) it must be frequent in the DB or the new added transactions (deltaDB).
Table 1 describes the options for an itemset to become frequent in DB+.

FUP is working iteratively by mining only the new delta DB by a method similar to
Apriori. At the end of each iteration, the algorithm decides if the itemset is frequent, not
frequent or needs to be counted in the old DB. The last kind of transactions being
recounted in old DB. The survivors are used to create candidates for next iteration.

ARMIDB [13] is based on FUP but tries to minimize scans over the original DB. It
uses data from the original FI, updates them and then uses a technique called “Look
Ahead for Promising Items” (LAPI). Then it scans for candidates in deltaDB only for
those items that may be frequent in DB+. It’s not a distributed algorithm like ours.

2.2 MapReduce Model and Incremental Computation

MapReduce is a parallel model and framework introduced in [10]. The abstract model
requires defining of two functions (algorithms):

The framework takes care of everything else - reading input, splitting it to dis-
tributed nodes, running the map function tasks, sending results (partitioning) to the
reduce function tasks and stores the final results from the reducers. Each Map and
Reduce combination called a Job. Some algorithms may require multiple consecutive
MR jobs. E.g. Apriori may require K jobs. Data in MR is saved in a distributed file
system (HDFS in Hadoop) as blocks of constant size with common sizes of 32, 64 and
128 MB.

In MapReduce, each chunk of split input is called simply a “Split”. The standard
way of MapReduce to split the input is by using a constant size of HDFS blocks or its
multiplier. Some of the MR steps could be customized to support advanced scenarios
(e.g. instead of reading input line by line, the whole file could be read as a single
chunk).

Most of the time, when data is changed or added the result of the algorithm also
changes. MR doesn’t provide built-in tool in the model that supports an update of the
result. There’re researches which attempt to enhance the MR model to support this.

One of the attempts is the Incoop system [8]. This paper proposes a way, that is
almost transparent to the user of MR, to keep the results of the algorithm updated as
new data is added. The system treats the computations as a Directed Acyclic Graph
(DAG) of data that flows from input to output and on the way, is transformed by user
functions. When data is updated the system reruns only the part of the graph that has

Table 1. Cases for item to be frequent and the outcome

Frequent in DB Not frequent in DB

Frequent in deltaDB Frequent in DB+ Unknown
Not frequent in deltaDB Unknown Not frequent in DB+

Map (k1,v1) ! list(k2,v2)

reduce (k2,list(v2)) ! list(v2)

Incremental Frequent Itemsets Mining with MapReduce 249

some new input. This system uses a Memoization technique to keep the
data-algorithm-result dependencies. This works well for the Mapper (map job) as few
data records mostly affect small number of Mappers. In case a new key-value pair is
generated for the Reducer, it will need to rerun its function on the whole input (new and
old values).

A similar approach can be found in DryadInc [18]. The main difference with MR is
that Dryad allows any DAG of computations and not only Map and Reduce. In the
incremental version, there’s also a Cache server that keeps input/output relations and
result is being reused if it wasn’t changed from a previous run.

2.3 Apriori MapReduce Algorithm

There are several known MapReduce Apriori algorithms. PApriori algorithm [16] uses
classical algorithm inside the main program in a sequential way except for the fre-
quency count, which is done in parallel with the MR algorithm. Apriori-Map/Reduce
[20] is similar to PApriori but also does the candidate generation in parallel by using a
MR job. Both algorithms require K steps to find the frequent itemsets of length K.

MRApriori [21] is different and presents a two steps algorithm. The first step is to
run Apriori inside each Mapper to find “locally” frequent itemsets. Reducer joins the
results of all Mappers and they become candidates for global frequent itemsets set. The
second job/step is just counting of all candidates’ appearance in each split and filtering
only the frequent itemsets that pass the minimum support.

IMRApriori [15] works similar to MRApriori with one add-on/observation that an
itemset may become candidate itemset only if it appeared locally frequent in “enough”
splits. More precisely, let S1; . . .; Sm be splits of DB in step 1. Denote their sizes to be
jSij. If itemset X is locally frequent in k (k�m) splits. Without loss of generality, let’s
say S1; . . .; Sk. Let Ci be the count of occurrence of X in split Si. Let minsup be the
minimum support. Then:

Count X;DBð Þ�
Xk

1

Ci þ
Xm

kþ 1

Sij j � minsup� 1ð Þ ð1Þ

If this number is less than minsup*|DB| then there is no need to calculate X’s
occurrences in DB in step 2 as it doesn’t have a chance to be frequent anymore (early
pruning). This observation is applied in the first Reducer of IMRApriori. This algo-
rithm is shown to outperform all previous ones [15] and a variation of it will be used by
us.

2.4 Join Operation and MapReduce

The Join operation of two or more datasets is one of the standard operations in rela-
tional DB. The operation combines records from input datasets by some rule (predi-
cate). Several Join algorithms for MR were proposed [1, 2, 7]. One of them is a
repartition join: data from all datasets sent to Mappers, that identify which dataset is
used and outputs the input together with a dataset’s “tag”. The key is the predicate

250 K. Kandalov and E. Gudes

value (in equi-join it’s the value for the join). Reducer groups records by the input key,
extracts dataset tags and generates the combinations. It is used in our algorithm and
therefore relevant here.

3 Problem Definition

Following is a formal definition of frequent itemsets mining (similar to [1, 2]): Let
I = fi1; i2; ...,img be set of all unique items. Transaction T is a subset of items I (T�I).
It is said to contain itemset X, if X�T . Database DB is a set of transactions. Number of
occurrences of X in DB is defined as: Count X,DBð Þ ¼ T jTDB,XTf gj j.

Support of itemset X is s and it’s a fraction of transactions in DB that contain X:

s ¼ supportðX;DBÞ ¼ CountðX;DBÞ=jDBj

Frequent itemsets is a set of all itemsets X such that support X,DBð Þ�minsup.
We’ll denote this set as FI. We’ll also denote frequent itemsets of specific DB with
minimum support minsup as FI DB,minsupð Þ. We may omit minsup from the function
if the support is clear from the context. We’ll call X 2 FI frequent itemset or just
“frequent”. The process of finding the FI set is called Frequent Itemsets Mining (FIM).

Definition of incremental frequent itemsets mining: Let DB be a database, PK be
some previous knowledge that we acquired during the FIM over DB, deltaDB
be the set of additional transactions and DB+ be a new database defined as
DB+ = DB[deltaDB. Given also minsup and FI(DB,minsup) the problem is to find FI
(DB+, minsup). We’ll refer to FI(deltaDB) as deltaFI.

4 Algorithms

4.1 General Scheme

We first propose a general algorithm (Algorithm 1) for incremental frequent itemsets
mining. It can be used for any distributed or parallel framework, but it also suits the
model of MapReduce. The algorithm is loosely based on the FUP [9] algorithm and
shares similarity to ARMIDB [13] (see Sect. 2.1). The idea is first to find all frequent
itemsets in the new database FI deltaDB,minsupð Þ, unite (join) the new frequent
itemsets with the old frequent itemsets and, lastly, revalidate itemsets which are in the
“unknown” state in each database. This algorithm is general as it doesn’t set any
constraints on the FIM algorithm. We can use Apriori or non Apriori based algorithm
(e.g. FP-growth) for FIM, as long as these algorithms generates full and correct FI.

Brief description of the algorithm: Steps 1–2 find frequent itemsets of deltaDB.
Steps 3 just checks if this is an incremental run or not. If it is an incremental run, we
proceed mining FI DB + ,minsupð Þ. As mentioned in Sect. 2.1, adding new transac-
tions may generate locally frequent itemsets that have 3 options. To determine to which
option each itemset applies we propose using MR Join job (steps 4–6). The key of the
“Join”‘s reducer would be the itemset itself and the list of values would be the

Incremental Frequent Itemsets Mining with MapReduce 251

occurrences of the itemset in the different DB parts together with their count. Step 5
determines the further processing for each itemset and is composed of three cases:

1. Frequent in deltaDB and DB - it’s frequent in DB+ and outputted immediately (6).
2. Frequent only in deltaDB - we need to count it in DB (7–8 by using count MR job).
3. Frequent only in DB - we need to count it in deltaDB (9–10 by using same MR job).

All 3 outputs of steps 6, 8 and 10 represent together FI DB + ,minsupð Þ.
The scheme contains 3 different kinds of MR jobs: A. FIM of deltaFI by using any

MR algorithm for it. B. Join MR job. Any join algorithm may be used (our evaluation
used Repartition Join). The only modification is that the Reducer should have 3 output
files (instead of just one). C. Count of itemsets inside the database. It may be applied
twice, once for DB and once for deltaDB.

General Incremental Frequent Itemsets Mining
Input: minsup, deltaDB, DB, FI(DB), Optional: Previous knowledge (PK).

1: Mine Frequent Itemsets with MapReduce Job on deltaDB with minsup
2: Save frequent itemset for deltaDB as deltaFI
3: if no (old) DB exists then report deltaFI as total frequent itemsets and end.
4: Join Job: Join Mapper loads all frequent itemsets and send them to reducer
5: Join Reducer joins itemset I from FI(DB) and deltaFI and categories I into

one of 3 sets: Appears in both FIs, appears only in deltaFI and only in FI(DB)
6: All itemsets that appear in FI of both DBs are outputted as frequent itemsets
7: Count Job: Itemsets that are frequent only in deltaDB are counted in old DB
8: Count Reducer: outputs only itemset I that satisfies

Count(I,DB)+Count(I,deltaDB)≥minsup
9: Count Job: Itemsets that’re frequent only in DB are counted in deltaDB
10: Count Reducer: outputs only itemset I that satisfies

Count(I,DB)+Count(I,deltaDB)≥minsup
11: end /* All outputs together generate FIM(DB+) */

Algorithm 1: General Incremental Frequent Itemsets Mining

There’s at most one pass over old DB for counting. There’s no requirement for any
additional input for general FIM (i.e. Previous Knowledge, PK).

4.2 Early Pruning Optimizations

In Algorithm 1 only one step requires accessing the old DB, whose size may be huge
compared to deltaDB. This is the step of recounting local FI(deltaDB) which didn’t
appear in FI(DB). To minimize access to the old DB we suggest using early pruning
techniques which consider the relation between the old DB size and the deltaDB size.
These are additions to the early pruning of IMRApriori technique but are not unique for
MR algorithms and could be used in every incremental FIM algorithm:

252 K. Kandalov and E. Gudes

Let inc be size of deltaDB relatively to DB size and n the size of DB (n = |DB|)
then the size of deltaDB is inc*n or inc*|DB|.

IeFI DBþ ;minsupð Þ ! Count I;DBð ÞþCount I; deltaDBð Þ ¼ Count I;DBþð Þ
�minsup DBþj j ¼ minsupðjDBj þ inc � jDBjÞ ð2Þ

Lemma 1 (Absolute Count):

IeFI DB;minsupð1þ incÞð Þ ! IeFI DBþ ;minsupð Þ ð3Þ

Proof of Lemma 1:

IeFI DB;minsup � 1þ incð Þð Þ !
Count I;DBþð Þ�Count I;DBð Þ�minsup � 1þ incð Þ DBj j ¼ minsup � jDBþ j

I.e. CountðI;DBÞ�minsupð1þ incÞn ! IeFIðDBþ ;minsupÞ;
Lemma 1 ensures that if I is “very” frequent in old DB (support is at least minsup *

(1 + inc)) then it will be frequent in DB+ even if I didn’t appear in deltaDB at all.

Lemma 2 (Minimum Count):

IeFI DBþ ;minsupð Þ ! Count I;DBð Þ� nðminsupþminsup � inc� incÞ ð4Þ

Proof of Lemma 2:

Count I; deltaDBð Þ� deltaDBj j ¼ inc � n;
deltaDBj j þCount I;DBð Þ�Count I; deltaDBð ÞþCount I;DBð Þ

�minsup � DBþj j ¼ minsup � 1þ incð Þ � n;

Count I;DBð Þ�minsup � 1þ incð Þ � n� deltaDBj j
¼ minsup � 1þ incð Þ � n� inc � n
¼ n � minsupþminsup � inc� incð Þ;

For answering if I can be in FI DB + ,minsupð Þ without even looking at deltaDB
we need to know if IeFI DB,minsup + minsup*inc - incð Þ: Lemma 2 puts a lower
bound of occurrences of I in old DB, so it’d still have a potential to appear in FI(DB+).

Lemma 3:

Count I; deltaDBð Þ�minsup � 1þ incð Þ � n ! IeFI DBþ ;minsupð Þ; ð5Þ

Incremental Frequent Itemsets Mining with MapReduce 253

Proof of Lemma 3: Similar to Lemma 1 conclusion:

Count I;DBþð Þ ¼Count I;DBð ÞþCount I; deltaDBð Þ�Count I; deltaDBð Þ
�minsup � 1þ incð Þ � n ¼ minsup � jDBþ j;

Lemma 3 tells us that if I is “very” frequent in deltaDB (deltaDB is large enough or
minsup is small enough), then I will appear in FI of DB+ no matter what. So, it’s a
pruning condition. If itemset I satisfies it then there’s no need to count I in old DB.

Observation from Lemma 3 (Absolute Count Delta):

IeFI deltaDB;minsup � ð1þ 1=incÞð Þ ! IeFI DBþ ;minsupð Þ; ð6Þ

Proof:

IeFIðdeltaDB;minsup � ð1þ 1=incÞÞ ! CountðI; deltaDBÞ
�minsup � ð1þ 1=incÞ � jdeltaDBj
¼ minsup � ð1þ 1=incÞ � inc � n ¼ minsupð1þ incÞ � n;

To use the above lemmas in our algorithm we modify the FIM algorithm to keep
the itemset together with its potential “minimum count” and “maximal count” (for each
Split). If there’s no information from some split about some itemset I, we’re using
observation from IMRApriori and set “maximal count” to be Ceil Split Sizej j�ð
minsupÞ�1 and “minimum count” set to 0. This is done in the Reducer of Stage 1 of
IMRApriori. Let viðI) be an indicator function that is 1 iff I was locally frequent in split
Si. The Reducer would output a triple <I, mincount, maxcount>:

mincount ¼
X Splitsj j

i¼1
vi Ið Þ � Count I; Sið Þ ð7Þ

maxcount ¼
X Splitsj j

i¼1
vi Ið Þ � Count I; Sið Þþ 1� vi Ið Þð Þ � Sij j � minsupd e � 1ð Þ ð8Þ

Note that when exact count is known then mincount equals to maxcount. If
maxcount \minsup* DBj j then I is pruned. If mincount�minsup*DB then I is
globally frequent and should not need to be recounted in missed splits. Lemmas are
applied in the algorithm during the Join step. We know the sizes of DB and deltaDB (n
and inc). So, we compare potential counts of itemset directly to sizes of databases.
Algorithm 2 determines the total potential counts and takes the corresponding decision.

Split size information and total DB size is being passed as “previous knowledge”
(PK) input into FIM incremental algorithm in “General Scheme”, Algorithm 1.

By using early pruning optimization we’re able to reduce the number of candidates.
Which reduces the output of MR and saves CPU in future jobs that otherwise would
require counting of the non-potential “candidates”. The above optimization is valid for
any distributed framework. Next section shows optimizations specific to MapReduce.

254 K. Kandalov and E. Gudes

4.3 Optimizing Algorithm for MapReduce

There are few known drawbacks of the MapReduce framework [12, 14] that can harm
the performance of any algorithm. We’ll concentrate on the overhead of establishing a
new computational job - creation of physical process for Mapper and IO. Our per-
formance evaluation (see Sect. 5) of the General Scheme, showed that CPU time of the
algorithms is lower compared to full process of DB+ from scratch but parallel run time
could be the same. It happens for databases that are small and whose delta is also small.
The first reason for this is that the incremental scheme has many more MR jobs
compared to non-incremental. The overhead of job creation overrides the benefit of the
incremental algorithm run time (although each machine still consumes less energy).
Another reason is that the general scheme needs to read deltaDB from remote location
several times for each job execution. In the non-incremental FIM algorithm the amount
of IO reads of whole DB+ is dependent on the underlying FIM algorithm and later
output of FI(DB+). In the general scheme the same FIM is executed only on deltaDB
with output of FI(deltaDB), but there’s also a requirement to read all FI(deltaDB) back
from a network disk to join with FI(DB). Moreover, it’s required to read deltaDB again
for the recounting step.

Join's Reducer Phase with Lemmas Applied
Input: I, List<DBPartMarker, MinCount, MaxCount>, |DB|. |deltaDB|, minsup

1: init values: MinDB = 0, MaxDB = |DB|, MinDelta = 0, MaxDelta = |deltaDB|
2: foreach T in List<DBPartMarker,MinCount, MaxCount>
3: if DBPartMarker = DB then MinDB=MinCount, MaxDB=MaxCount
4: else MinDelta = MinCount, MaxDelta = MaxCount
5: end foreach
6: Min = MinDB + MinDelta
7: Max = MaxDB + MaxDelta
8: if Min >=minsup*(|DB|+|deltaDB| then //Lemma 1 or 3
9: Output <I,Min,Max> in frequent itemset file and end
10: if Max < minsup*(|DB|+|deltaDB|) then end //by Lemma 2
11: if MinDB<>MaxDB then Output<I,MinDelta,MaxDelta> in "Count in DB" file
12: if MinDelta<>MaxDelta then Output<I,MinDB,MaxDB> in "Count in deltaDB"

Algorithm 2: Optimized Join's Reducer Phase with Lemmas Applied

To work around these limitations of the incremental scheme we suggest to reduce
the number of jobs that are used in the general scheme. The Join job (steps 6–7) is
required to read the output of the previous FIM job (step 4) immediately. We suggest to
merge this step with the Join job. It should receive additional input of FI(DB) and
instead of writing only FI(deltaDB) it will do the “join” of the results. It will still have 3
outputs. All optimizations discussed in Sect. 4.2 should also be applied.

Next job that would be removed is the recounting step in deltaDB (steps 11–12).
The only itemsets that could be qualified for this output are itemsets that weren’t

Incremental Frequent Itemsets Mining with MapReduce 255

frequent in deltaDB and were frequent in DB. We suggest counting all itemsets from
FI DBð Þ during step 3 of FIM in deltaDB, there’s already a pass over deltaDB anyway.
Enhance FIM algorithm of candidate validation (recounting) to count also FI DBð Þ.

Our performance evaluation also revealed additional condition when the incre-
mental algorithm performs worse than non-incremental one. It happens when the input
for some Split is very small and the minimum support level is also small. Under such
conditions the minimum required occurrences for an itemset to become candidate for
frequent itemset is very low, it may be as low as a single transaction and then almost all
combinations of items would become candidates. Such small job may run longer than
mining whole DB+. To overcome this problem, we propose few techniques:

1. In case deltaDB is being split by the MR framework to Splits, it is being split to
chunks of equal predefined size. We need to make sure that last chunk is larger than
previous (instead of being smaller). MR systems, like Hadoop, append the last
smaller input part to a previous chunk. So, the last Split actually becomes largest.

2. If the total input divided by minimum Split amounts is still too small, it’s preferably
to manually control the number of Splits. In most of the cases it’s better to sacrifice
parallel computation for gaining a speed up with less workers or even use a single
worker. Once again, it’s possible to control the splitting process in Hadoop.

3. If deltaDB is still very small for a single worker to process it effectively, it’s better
to use non-incremental algorithm for calculation of DB+.

Merge of MR jobs into one allowed us to achieve an algorithm that has only two
steps. First step is MapReduce FIM step for deltaDB only. The second step is the
optional step of counting candidates in old DB (at most one pass).

5 Experimental Results

5.1 Algorithms and Datasets

We compare the performance of three algorithms described in Sect. 4. We denote the
algorithm from Sect. 4.2 - incremental algorithm with IMRApriori and early pruning
optimization as “Delta”. The algorithm from Sect. 4.3 with minimum steps is called
“DeltaMin”. The baseline for the comparison of the algorithms is running previously
published non-incremental FIM algorithm - IMRApriori [15] on DB+. It is called
“Full” (justification for comparing only to “full” is discussed in Sect. 5.4).

The first tested dataset is synthetically generated T20I10D100000 K (will be ref-
erenced as T20) [6] it contains almost 100 M (D100000 K) transactions of average
length 20 (T20) and average length of maximal potential itemset is 10 (I10), of size
13.7 Gb. The second dataset is “WebDocs” [17]. It is based on real world information
collected by web spiders. Its size is 1.48 Gb with almost 1.7 M transactions (5 M +
unique items).

The datasets were cut to two equal size halves. The first half of each dataset is used
as the baseline of 100% size (DB). The other part was used to generate deltaDB. E.g.
Webdocs was cut to a file of 740 Mb. Its delta of 5% was cut from the part that was left
out and its size would be 37 Mb. The running time of the incremental algorithms on the

256 K. Kandalov and E. Gudes

5% delta was compared to the full process of 777 Mb file (joined 740 Mb base file with
5% delta of 37 Mb to a single file). Similarly, T20 baseline of 100% have size of
6.7 GB with 10% increments of 700 Mb. We used different minsup values for each
dataset. For T20 we tested minsup 0.1% and 0.2%. Webdocs was tested with 15%,
20%, 25%, 30% (although we show graphs only of 15% and 20%).

More datasets were tested but not presented in this paper, like synthetic
T5I2D10000K, T40I10D100K, T10I5D1000K. Previous works used them for bench-
marks. We omit their results as they’re too small to consider them as large databases.

5.2 Evaluation of Algorithms

The executions were done in Google Compute Engine Cloud (GCE) by directly
spanning VMs with Hadoop with “bdutil” script. We tried different cluster sizes with 4,
5, 10 and 20 cores (we used instance types of n1-standard-1 or n1-standard-2). We
measured “Run time” (measured by the “Driver” program from the start of the run until
output is ready) and “CPU time” (time that all cluster machines consumed together as
measured by the MR framework). In our experiments, we were changing deltaDB
sizes, minimal support level and the cluster size.

Fig. 4. T20 Cpu time minsup 0.2% Cluster 5Fig. 3. T20 Run time minsup 0.2% Cluster 5

Fig. 1. T20 Run time minsup 0.1% Cluster 5 Fig. 2. T20 Cpu time minsup 0.1% Cluster 5

Incremental Frequent Itemsets Mining with MapReduce 257

5.3 Results and Analysis

Figures 1 and 2 demonstrate run and cpu times of each algorithm for dataset T20 on
GCE cluster of size 5 and minsup 0.1%. It shows that incremental algorithms behave
better than full in both parameters. The increase in delta increases computation time.
Figures 3 and 4 are similar to 1 & 2 but the minsup is 0.2%. In this case the run time of
“Delta” is higher than “Full”, “DeltaMin” behaves same or better than “Full”. Cpu time
of “Delta” and “DeltaMin” is still lower than of “Full”. Figures 5 and 6 show algo-
rithms run and cpu times behavior for T20, minsup 0.1% and inc 10% as GCE cluster
size changes from 5 to 10 and to 20 nodes/cores. We can see that the algorithms scale
well with more cores added to the system. Figures 7 and 8 show WebDocs with minsup
20% run and cpu time as (inc)rement size varies. It shows that run time of “Delta” is no
better than “Full” but its cpu time is better. Figures 9 and 10 show same for minsup
15%. As frequent itemsets mining for minsup of 15% is more computationally
extensive than 20% the times are higher. In this case, incremental algorithms behave
much better than the full algorithm.

Our evaluation showed that incremental algorithms do similar or better than full
recalculation on smaller size datasets with larger support in terms of Cpu time. While
the Run time wasn’t always better for less optimized “Delta” algorithm.

As the support threshold decreased all incremental algorithms had better Run and
Cpu time than “Full”. They outperformed the “Full” algorithm by several times. Its
explanation is that more time is required to mine FI than just do the candidates counting.

The Run time of “DeltaMin” is always superior to “Delta”. CPU time is also better
than “Delta”‘s. The largest differences between incremental and full were observed
when incremental algorithms managed to eliminate completely the counting step over
the old DB.

Algorithms’ run time and cpu time showed almost linear growth relatively to
increase in input size (deltaDB). Cluster size change showed that larger cluster improves
the run time. It’s not always linear as splitting the input in to too many small chunks
generate too many locally frequent itemsets and requires longer recounting steps.

Fig. 5. T20 Run time minsup 0.1%, inc 10% Fig. 6. WebDocs Run time minsup 15%
inc 10%

258 K. Kandalov and E. Gudes

5.4 Comparison to Previous Work

FUP algorithm [9] was the first to provide incremental scheme which is based on
mining the deltaDB. The algorithm is not distributed or parallel. It mines deltaDB by
iterative steps from candidates of size 1 to K and stop when no more candidates
available. At each step, this algorithm scans old DB to check validity of its candidates.
Implementing this algorithm as is in MR would require K scans over the old DB.
Which would generate K-times more IO than our algorithms and would be less
effective.

ARM IDB [13] provides optimizations on incremental mining via using TID-lists
intersection and its “LAPI” optimization. The algorithm doesn’t deal with distributed
environment (and of course MR) so it has no way to scale out.

Incoop and DryadInc don’t support more than one input for DAG (and we need to
be able to get DB and candidate set as an input). As there’s no known way to overcome
this difference it doesn’t allow a direct comparison. These systems can’t extract useful
information from the knowledge of the algorithm goal or specific implementation and
therefore improve their runtime. Let’s assume that there’s a way to compare these
systems and go over the following execution example (we use 2-steps IMRApriori):

Fig. 9. WebDocs minsup 15% Run time Fig. 10. WebDocs minsup 15% Cpu time

Fig. 7. WebDocs minsup 20% Run Time Fig. 8. WebDocs minsup 20% Cpu Time

Incremental Frequent Itemsets Mining with MapReduce 259

1. Assume that we have calculated FI(DB) and new data (deltaDB) arrives.
2. Run new mappers on deltaDB that will calculate FI(deltaDBi) for each split i.
3. Send data to a reducer that would merge FI(deltaDBi) with FI(DBi) (we have to

store information about candidates of each split for FI(DB) calculation too) and it
may spawn number of reducers equal to original number of reducers used for FI
(DB). The output would be new candidates list for FI(DB+). As new transactions,
could be added and old removed there’s a high chance for reducer cache miss (if the
cache stays coherent in these algorithms, then in our algorithm there’re no new
candidates and count step over old DB would be eliminated).

4. Due to cache inconsistency, in step 2, all mappers will be re-executed with new
candidates over DB[deltaDB. All candidates, even from DB, would be once again
recalculated against DB. In our algorithm, we would never count FI(DB) in DB.

5. Output would be sent to reducers to join data of DB and deltaDB to generate FI.

The above example demonstrates additional computation that generic incremental
system has compared to our solution. If we change the FIM algorithm to some K steps
MR algorithm, then fan-out of DAG would only grow (and may require K passes over
old DB) and general incremental frameworks would become even less effective.

6 Conclusions

This paper presented a generic way of performing incremental frequent itemset mining
in the MapReduce framework. We also proposed several optimizations for the algo-
rithms to run more effectively in MR. Our experimental evaluation showed that
“DeltaMin” algorithm perform better than the non-incremental computation. The lower
is the support rate, the harder the computations are, the more benefit could be achieved
by incremental algorithms.

Future work may examine additional optimizations for MapReduce based algo-
rithms. They may also test the effect of the Split size and the number of generated
candidates on these algorithms. Another interesting topic is to check how the split size
can be combined with the cluster size and find the optimal point for the Run time.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Proceedings
of the 13th International Conference on Extending Database Technology, pp. 99–110 (2010)

2. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

3. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in
large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)

4. Agrawal, R., Shafer, J.: Parallel mining of association rules. IEEE Trans. Knowl. Data Eng.
8, 962–969 (1996)

5. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of
20th International Conference on Very large data bases, VLDB, vol. 1215, pp. 487–499
(1994)

260 K. Kandalov and E. Gudes

6. Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. IBM Almaden Research Center,
San Jose, California. http://www.almaden.ibm.com/cs/quest/syndata.html

7. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join
algorithms for log processing in mapreduce. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pp. 975–986 (2010)

8. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquin, R.: Incoop: MapReduce for
incremental computations. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing, p. 7. ACM (2011)

9. Cheung, D.W., Han, J., Ng, V.T., Wong, C.Y.: Maintenance of discovered association rules
in large databases: an incremental updating technique. In: Proceedings of the Twelfth
International Conference on Data Engineering, 1996, pp. 106–114. IEEE (1996)

10. Das, A., Bhattacharyya, D.K.: Rule mining for dynamic databases. In: Sen, A., Das, N.,
Das, S.K., Sinha, B.P. (eds.) IWDC 2004. LNCS, vol. 3326, pp. 46–51. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30536-1_6

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

12. Doulkeridis, C., Nørvåg, K.: A survey of large-scale analytical query processing in
MapReduce. Int. J. Very Large Data Bases 23(3), 355–380 (2014)

13. Duaimi, I.G., Salman, A.: Association rules mining for incremental database. Int. J. Adv.
Res. Comput. Sci. Technol. 2, 346–352 (2014)

14. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.: Twister: a
runtime for iterative mapreduce. In: Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, pp. 810–818. ACM (2010)

15. Farzanyar, Z., Cercone, N.: Efficient mining of frequent itemsets in social network data based
on MapReduce framework. In: Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pp. 1183–1188. ACM
(2013)

16. Li, N., Zeng, L., He, Q., Shi, Z.: Parallel implementation of apriori algorithm based on
MapReduce. In: 2012 13th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel & Distributed Computing, pp. 236–241.
IEEE (2012)

17. Lucchese, C., Orlando, S., Perego, R., Silvestri, F.: WebDocs: a real-life huge transactional
dataset. In: FIMI, vol. 126 (2004)

18. Popa, L., Budiu, M., Yu, Y., Isard, M.: DryadInc: reusing work in large-scale computations.
In: USENIX workshop on Hot Topics in Cloud Computing (2009)

19. Thomas, S., Bodagala, S., Alsabti, K., Ranka, S.: An efficient algorithm for the incremental
updation of association rules in large databases. In: KDD, pp. 263–266 (1997)

20. Woo, J.: Apriori-map/reduce algorithm. In: The 2012 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA 2012)

21. Yahya, O., Hegazy, O., Ezat, E.: An efficient implementation of Apriori algorithm based on
Hadoop-Mapreduce model. Int. J. Rev. Comput. 12, 59–67 (2012)

22. Zaki, M.J., Parthasarathy, S., Ogihara, M., Li, W.: New algorithms for fast discovery of
association rules. In: KDD, vol. 97, pp. 283–286 (1997)

23. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM
Sigmod Rec. 29(2), 1–12 (2000)

Incremental Frequent Itemsets Mining with MapReduce 261

http://www.almaden.ibm.com/cs/quest/syndata.html
http://dx.doi.org/10.1007/978-3-540-30536-1_6

Towards High Similarity Search Throughput
by Dynamic Query Reordering

and Parallel Processing

Filip Nalepa(B), Michal Batko, and Pavel Zezula

Faculty of Informatics, Masaryk University, Brno, Czech Republic
f.nalepa@gmail.com

Abstract. Current era of digital data explosion calls for employment
of content-based similarity search techniques since traditional searchable
metadata like annotations are not always available. In our work, we focus
on a scenario where the similarity search is used in the context of stream
processing, which is one of the suitable approaches to deal with huge
amounts of data. Our goal is to maximize the throughput of processed
queries while a slight delay is acceptable. We extend our previously pub-
lished technique that dynamically reorders the incoming queries in order
to use our caching mechanism more effectively. The extension lies in
adoption of a parallel computing environment which allows us to process
multiple queries simultaneously.

Keywords: Stream processing · Similarity search · Parallel processing

1 Introduction

Huge amounts of unstructured data are being produced nowadays resulting from
the current digital media explosion. Many tasks targeting the processing of
such data involve, in some form, searching in the data. Unfortunately, tradi-
tional search techniques based on exact match of data attributes often cannot
be applied to such data types. Instead, content-based search that treats the data
by similarity is a viable option. Such search then usually uses k-nearest-neighbors
queries (kNN), which retrieve the k objects that are the most similar to a given
query object.

Due to the nature of the data and applications which use them, it can be
desired to view the data as a potentially infinite stream which is continuously
being created. For example, consider a text search-engine crawler that gath-
ers images from the web and needs to continuously annotate them by textual
descriptions according to the image content. Another example can be a spam
filter that receives incoming emails and compares them to some learned spam
knowledge base so that the spam messages can be detected. Finally, consider a
news notification system which needs to compare the newly published articles
to the profiles of all the subscribed users to find out who should be notified.

A subtask of all these applications is processing the streamed data items by
some form of content-based searching. The performance of these applications
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 262–277, 2017.
DOI: 10.1007/978-3-319-66917-5 18

Dynamic Query Reordering and Parallel Processing 263

is mostly determined by the number of processed data items in a given time
interval, i.e., the throughput is the most important metric. The individual query
search time can be improved by applying some similarity indexing technique, for
which there are efficient algorithms based on the metric model of similarity [20].
As opposed to interactive applications focusing on the single query optimization,
in our scenario, we can afford a slight delay of the single query processing if
the overall throughput of the system is improved. Performance of such stream
processing applications is studied in [12,13].

I/O costs typically have a significant effect on the performance of similarity
search techniques. In our work, we exploit the fact that some orderings of the
processed queries can result in considerably lower I/O costs and overall process-
ing times than random orderings. This is based on the assumption that two
similar queries need to access similar data of the search index. By obtaining an
appropriate ordering of queries, the accessed data can be cached in the main
memory and reused for evaluation of similar queries thus lowering down the I/O
costs. We have previously published [14] a technique which dynamically reorders
the incoming queries that allows to achieve a significant improvement of the
throughput.

In this paper, we provide an extension of the technique by adopting it to a
parallel computing environment where multiple queries can be processed simul-
taneously by individual query processors. Due to the nature of our approach,
it is very important how the streamed query objects are distributed among the
query processors, i.e., which query object goes to which query processor. The
main contribution of this work is a proposal of effective and efficient ways in
which the query objects are spread among the processors so that high through-
put is achieved.

The rest of the paper is organized as follows. First, we present related work on
caching and query reordering in similarity search, and parallelization in stream
processing. In Sect. 3 we formally define our problem. The originally published
technique is summarized in Sect. 4. Its adoption to the parallel computing envi-
ronment is presented in Sect. 5. Experimental evaluation can be found in Sect. 6.

2 Related Work

The usage of a caching mechanism in similarity search has been proposed in
several papers to reduce the amount of I/O operations. In [6], the authors propose
caching of similarity search results and reusing them to produce approximate
results of similar queries. The concept of caching similarity search results is used
also in [16]. The paper focuses on caching policies which incrementally reorganize
the cache to ensure that the cached items cover the similarity space efficiently.
The Static/Dynamic cache presented in [19] consists of a static part to store
queries (along with their results) that remain popular over time and a dynamic
part to keep queries that are popular for a short period of time. Authors of
[4] present a caching system to obtain quick approximate answers. If the cache
cannot provide the answer, the distances computed up to that moment are used
to query the index so that the computations are not wasted.

264 F. Nalepa et al.

Another way to improve the throughput of a stream of kNN queries, is to
reorder the queries. In [17], the authors optimize nearest neighbor search for
videos. Intersections of candidate sets between every pair of queries need to be
computed and updated periodically. This approach is designed for a relatively
small number of queries (tens). Since we have tens of thousands of queries to be
evaluated (as will be seen in Sect. 6), the overhead of such computations is likely
to be very high.

The authors of the paper [18] propose D-cache which stores distances com-
puted during previous queries. The Snake Table [2] uses a cache of distances
to improve performance of processing streams of queries with snake distribution
(i.e., consecutive query objects are similar). In [1], an inverted cache index stores
statistics about usefulness of data partitions in order to modify priority queues.

All the aforementioned techniques are designed for interactive applications
when queries are evaluated immediately. We focus on scenarios when delays are
affordable and the throughput is the main issue which calls for a different type
of a solution.

Speaking generally of stream processing, parallelization is a common tech-
nique for throughput enhancement. This is typically referred to as an operator
replication where an operator is a component for processing the stream. Each
data item of the stream is sent to one of the replicas where it is subsequently
processed. There is a number of issues which need to be dealt with, e.g., deter-
mining optimal number of replicas or creating an appropriate strategy for decid-
ing which data item is processed by which replica. These challenges have been
widely explored [7,8,10,11]. In our work, we do not aim at enhancing parallel
stream processing of general applications. We rather focus on designing schemas
of the parallelization applicable to our specific case which is not covered by the
general approaches.

In [3], techniques for parallelization of similarity search are studied. The
approaches are based on creating distributed metric index structures and par-
allelization of a single query evaluation. In our work, we use the parallelization
to evaluate multiple queries concurrently. In our case, we avoid the overhead
related to the distribution of a single query to multiple processing components
and the overhead caused by merging partial results into the final answer.

3 Problem Definition and Objectives

Suppose there is a domain of complex objects D (e.g., images) and a large
database containing such objects X ⊆ D. Let s = (d1, d2, . . .) be a stream, i.e.,
a potentially infinite sequence of data items. Each item of the stream is a pair
di = (qi, ti) where qi ∈ D is a query object and ti is the time it was created
(entered the application). It holds that ti ≤ ti+1 for each i and t1 = 0.

As a universal model of similarity we use the metric space (D, d) [20], where
d is a total distance function d : D ×D → R. The distance between two objects
corresponds to the level of their dissimilarity (d(p, p) = 0, d(o, p) ≥ 0).

For each query object qi in the stream s, a k-nearest neighbors query
NN(qi, k) is executed which returns k nearest objects from the database to the

Dynamic Query Reordering and Parallel Processing 265

query object. It is allowed to change the order of the processed query objects.
More precisely, at time t, any query object qi, where (qi, ti) is a data item of the
stream and ti ≤ t, can be processed.

The goal is to process the query objects of the stream so that the throughput
is maximized. Specifically, we want to maximize the number of processed query
objects of a given stream until a given time T . Alternatively, the criteria can be
defined as minimization of the number of unprocessed query objects at the time
T , i.e., the number of (qi, ti) where ti ≤ T and qi is not processed.

Our objective is to extend our previously proposed technique enhancing the
throughput of the similarity search. The extension lies in parallel processing of
multiple queries. In particular, we focus on the ways to distribute the queries
among individual query processors to gain maximum effectiveness.

4 Enhancing Throughput with a Single Query Processor

In this paper, we build upon our previous work [14] in which we proposed a
technique for enhancing the throughput of the similarity search by dynamically
reordering the queries combined with a caching mechanism to lower down the
I/O costs during processing. In this section, we summarize this technique.

We consider a generic metric index which uses data partitioning P =
{p1, . . . , pn} where pi ⊆ D. When evaluating a query, a subset of the partitions
Q ⊆ P needs to be accessed. The partitions are typically stored on a disk [20].
A frequent bottleneck of similarity search techniques is the reading of the parti-
tions from the disk during a query evaluation. Our solution aims at decreasing
the number of disk accesses and consequently the time to process the queries.

We make use of the following feature of data partitioning methods. If two
query objects are very similar to each other, the sets of accessed data partitions
are also very similar. This property can be used to speed up the processing of
query objects q1 and q2. First, q1 is evaluated, and the accessed data parti-
tions are kept in the main memory cache. When q2 is being evaluated, the data
partitions stored in the cache can be reused to avoid expensive disk accesses.

However, the caching itself is not typically enough for the speedup. Since
huge databases are often used in practice, there is a very low probability that
two subsequent queries in the stream are similar enough to access similar sets of
data partitions during their evaluation. For the cache to be sufficiently utilized,
the query objects in the stream need to be reordered so that sequences of similar
query objects are obtained.

To sum it up, the approach consists of two parts. The first one is the in-
memory caching of recently loaded data partitions and reusing them for eval-
uation of subsequent queries. The second one is the query object reordering
allowing to process sequences of similar query objects to maximize the cache
utilization.

266 F. Nalepa et al.

4.1 Query Ordering

The problem of the query object ordering can be viewed as a graph problem. Let
s = ((q1, t1), (q2, t2), . . .) be the stream to be processed. Let ((q1, t1), . . . , (qk, tk))
be a finite subsequence of s so that tk ≤ t and tk+1 > t for a given t, i.e.,
the query objects which have become available by the time t. We define the
query graph Gt = (V,E) at the time t. The set of vertices is comprised of the
subsequence items V = {(q1, t1), . . . , (qk, tk))}. In other words, each query object
of the stream subsequence represents a vertex in the query graph.

The graph is complete, i.e., there is an edge between every pair of vertices
(qi, ti) and (qj , tj) where i �= j. A value is associated with each edge denoting
the query time to process qi right after qj or vice versa. The assigned time is
based on the extent of the cache utilization.

To formally define the throughput maximization, given the time limit t, the
task is to find the longest path ((qi1 , ti1), . . . , (qik , tik)) in Gt so that startk < t.
The path represents the ordering of the queries; startk is the time when the last
query object qik starts to be evaluated. The length of the path is measured as
the number of vertices, i.e., the number of processed query objects. This is in
fact a variation of the traveling salesman problem (an NP-hard problem). There
is an added difficulty since the query graph evolves throughout the time, i.e., Gt

is not completely known before the time t.
Since searching for the optimal solution is unfeasible, we apply a greedy

approach trying to minimize average edge values (i.e., the query times). For
this we proposed a combined heuristics of a dense subgraph and the nearest-
neighbor strategy. The intuition is to find a subgraph containing short edges
between the vertices and process the corresponding query objects in a nearest-
neighbor manner, thus minimizing query times. To implement the heuristics, we
build hierarchical clusters of the query objects using a pivoting technique. In
particular, let there be a fixed set of objects in the metric space; we will denote
them as pivots. When a new query object q is to be added to the graph, distances
of the query object q to all the pivots are computed. The pivots are ordered
from the nearest to the farthest one which defines a permutation of the pivots.
This pivot permutation identifies the cluster where the query object belongs.
By taking just a prefix of the permutation, hierarchical clustering is obtained.
The length of a common prefix of two query objects is used to approximate the
corresponding edge value in the query graph.

4.2 Architecture

This section describes the architecture of the system using the proposed tech-
nique. Its schema is depicted in Fig. 1.

Let us have a stream ((q1, t1), (q2, t2), . . .). A query object qi enters the appli-
cation at the time ti, and it is inserted into a component called buffer. The
buffer is used to temporarily store the incoming query objects which are await-
ing processing. This is the component where the query reordering takes place.

Dynamic Query Reordering and Parallel Processing 267

Fig. 1. Architecture

Another part of the architecture is the metric index which takes care of
the query object evaluation. It contains a disk where the database of objects is
stored and a main memory cache which is used to store the recently loaded data
partitions from the disk.

When the metric index is ready for processing another query, a query object
is picked from the buffer according to the ordering strategy. During the query
processing, the metric index exploits the cache to possibly use any data partitions
obtained from evaluating recent queries. If the data are not in the cache, they
are loaded from the disk.

5 Parallelization

In general, a way to speed up computer processing is to use parallel computa-
tions. In stream processing, the parallelization can be accomplished by creating
several instances (replicas) of the processing component. Each data item of the
stream is sent to one of the replicas where it is processed. This results in such a
scheme where several data items can be processed in parallel. In this section we
discuss the applicability of such parallelization method to our case of processing
a stream of query objects.

Formally, given the stream ((q1, t1), (q2, t2), . . .), the number of replicas r
and the time limit t, we generate a set of r disjoint paths (i.e., no vertex can
be a part of two paths) in the query graph Gt : {((qi11 , ti11), (qi12 , ti12), . . .,
(qi1k1

, ti1k1
)), . . . , ((qir1 , tir1), (qir2 , tir2), . . . , (qirkr

, tirkr
))} so that startkj

< t for
1 ≤ j ≤ r where startkj

is the time when the processing of the kth
j query object

of the jth replica starts. Each path represents the order of the query objects
processed at a particular replica. The goal is to identify such paths which in sum
give the largest number of vertices (query objects) to maximize the throughput.

5.1 Parallel Architecture

A generic architecture of the parallel processing system can be seen in Fig. 2.
There are several instances (replicas) of the query processor whose task is to
evaluate query objects. Each query processor maintains its own cache. During
evaluation, the query processor needs to access some data partitions which can
be either acquired from the cache or they have to be loaded from a disk. The
figure contains just two replicas for simplicity reasons.

268 F. Nalepa et al.

Fig. 2. Generic architecture of parallel processing

In our experiments, we consider the situation when the database is shared
among all the query processors, i.e., they access the same storage space (the disk
in the figure). Such a setup allows to quickly add or remove query processors
without significant overhead which is advantageous in dynamic environments
when it is needed to create or remove replicas on the fly to adapt to load changes.

An important component of the architecture is the splitter which serves as
the entry point to the rest of the system. It decides for each query object by
which query processor it will be processed. The splitting strategy significantly
influences the efficiency of the processing as will be seen in the experiment results.
We present three approaches that differ in the functionality of the splitter.

5.2 Push Technique

The first approach is based on a push technique. In this scenario every query
processor instance possesses its own buffer of waiting query objects. As soon
as a query object arrives at the splitter, it is pushed to the instance of the
query processor having the least number of query objects waiting in the buffer.
This ensures all the buffers are loaded evenly. The schema is depicted in Fig. 3a.
Each query processor continuously evaluates query objects of its own buffer; the
same technique for the ordering of the query objects is applied as for the case
with a single processor. An advantage of this approach is the low overhead of
the splitter, so it can scale well with increasing number of query processors. A
disadvantage is that the query graph is not considered for the distribution of
query objects among the replicas which can result in ineffective distribution.

Consider two query objects q1, q2 needing similar data partitions for their
evaluation, i.e., there is a short edge between them in the query graph. If the
two query objects are processed by the same replica, the cache may be used to
speedup the processing. If each of them is processed by a different replica, the
similarity of the query objects cannot be benefit from the cache. This implies
that the query objects connected by short edges in the query graph should be
processed by the same replica whenever possible.

Dynamic Query Reordering and Parallel Processing 269

(a) Push technique (b) Pull technique (c) Advanced push technique

Fig. 3. Replication schemas; QP – query processor, B – buffer, C – cache, D – disk

The dimension of the time plays its role too. Consider two data items (q1, t1),
(q2, t2) where t1 ≤ t2 and a path where q2 is scheduled for processing at some
point after q1. The bigger the difference between the entry times t2 and t1 is,
the smaller is the probability that the data partitions needed for processing q1
are still in the cache when processing q2 since q2 may be processed a long time
after q1. This observation is based on the query ordering strategy presented in
Sect. 4.1.

5.3 Pull Technique

The disadvantages of the first approach are avoided by the second one which is
based on a pull technique. There is one shared buffer for all the query processors
which pull query objects from it. The schema can be seen in Fig. 3b. In this case
the splitter is in charge of the buffer. A query processor sends a request to the
splitter which, according to the ordering strategy, returns a query object from the
buffer. The splitter maintains a state for each query processor consisting of the
last processed query object by this processor. This is used to enable processing of
the query clusters (defined in Sect. 4.1) independently for each query processor.
Moreover, the state is used to lock the currently processed cluster. This ensures
that a particular cluster cannot be simultaneously processed by multiple query
processors. This enables to achieve higher cache utility than in the case of the
push technique since all the query objects of the particular cluster which are
currently in the buffer are processed by the same replica. Possible disadvantages
may occur with a large number of query processors. The splitter then becomes
a bottleneck that gets overloaded with requests from the processors. Another
possible disadvantage may be when the size of the shared buffer grows over the
limits which can fit into the memory.

5.4 Advanced Push Technique

The third approach (advanced push technique) tries to combine advantages of
the two previous approaches while mitigating their disadvantages. It is based

270 F. Nalepa et al.

on a push technique meaning that the splitter actively pushes query objects
to the query processors. Each processor possesses its own buffer of waiting
query objects. This time the splitter maintains mapping of clusters to individual
query processors. This ensures query objects belonging to the same cluster are
processed by the same query processor which increases the chances of high cache
utility. The schema is depicted in Fig. 3c.

The mapping of the clusters to the replicas works as follows. At first, a
predefined cluster hierarchy level e ≥ 1 is selected. When a query object arrives at
the splitter, its pivot permutation is computed, and the prefix of length e is taken
representing a cluster. If the cluster is already mapped to a query processor,
the query object is sent there for processing. Otherwise the cluster is mapped
to the replica having the least number of query objects in the buffer at that
moment. The distribution of the streamed query objects among the clusters is
not known beforehand and it can change throughout the time. Therefore having
such a mapping mechanism may lead to imbalanced load of the replicas. To
prevent this, whenever the difference of the maximal and minimal buffer size of
all the replicas exceeds a given threshold, remapping of clusters to the replicas
is performed to balance the buffer sizes.

The advantage of this technique is that the splitter maintains just the map-
ping of the clusters to the replicas, and the burden of query ordering is spread
among individual replicas. At the same time, the mapping ensures high effec-
tiveness of the distribution of the query objects to the replicas.

6 Experiments

In this section, we provide results of experiments with parallel processing of a
stream of query objects using the three approaches presented in the previous
section.

6.1 Setup

Let us start with describing the setup of the experiments.
We use the M-Index [15] structure to index the metric-space data. It employs

many principles of metric space partitioning, pruning, and filtering, thus reaches
very high search performance. The actual data are partitioned into buckets which
are stored as separate files on a disk and read into the main memory during query
evaluations. To partition the data, M-Index uses a set of pivots. To insert an
object into the index, the pivots are sorted based on the distance to the object.
In this way, a pivot permutation is obtained which identifies the data partition
to insert the object. During a similarity search, mutual distances between the
query object and the pivots are used to reduce the set of data partitions which
need to be accessed. The M-Index supports executing approximate kNN queries
among other operations. One of the stop conditions of a query evaluation is given
by the maximum number of accessed objects (the size of a candidate set). Such
a stop condition is used in our experiments.

Dynamic Query Reordering and Parallel Processing 271

The M-Index uses the same set of pivots as are used for the query graph
construction. This is beneficial for the effectiveness of the query ordering since
the partitioning schema of the metric space used in the M-Index and used for
the query graph construction is synergic. This also improves efficiency since the
distances from a query object to the pivots can be computed just once and used
both in the query graph and in the M-Index.

For the experiments, we use the Profimedia dataset of images [5]. We created
two different subsets of the images and extracted their visual-feature descriptors.
The generated datasets are: 1 million Caffe descriptors [9] (4096 dimensional
vectors) and 10 million MPEG-7 descriptors (280 dimensional vectors with com-
plex distance function). Separately, we created streams of images represented by
corresponding descriptors. During each experiment, images from the respective
collection are continuously streamed to the application and being processed as
approximate 10-NN queries. For the approximate kNN queries, we used candi-
date sets of size 1, 000 for the Caffe dataset and size 2, 000 for the MPEG-7
dataset.

The maximum size of the cache is set to 40,000 descriptors for the Caffe
dataset (i.e., 4% of the database); up to 90,000 descriptors are stored for the
MPEG-7 dataset (i.e., 0.9% of the database). The least recently used policy is
used when inserting to the full cache. In particular, the data partitions with the
oldest last access time are discarded and replaced with the new partitions of the
current query so that the maximum size of the cache is preserved. This strategy
is appropriate since there is a high probability that recently needed partitions
will be reused for evaluation of subsequent queries.

All the query processors are run on a single machine in multithreaded envi-
ronment. For the advanced push technique, the remapping of the subclusters
occurs when the ratio of the maximal and minimal buffer size of the replicas
exceeds 1.2 (i.e., 20%).

6.2 Evaluation

Fixed Input Frequency. In the first group of experiments, the input frequency
of query objects was fixed to 10 ms. This simulates the standard stream process-
ing scenario when the application cannot control the rate of incoming data. The
experiments were run with different numbers of query processors: 2, 4 and 8.
Each experiment was run for 2 hours for the 1 mil. Caffe dataset and for 4 hours
for the 10 mil. MPEG-7 dataset.

The results can be seen in Figs. 4 and 5 depicting the evolution of the buffer
sizes during the experiments. For the push techniques, the overall buffer size is
taken as a sum of all the buffer sizes at individual replicas. The worst through-
put was observed for the simple push technique because of its ineffective dis-
tribution of the query objects to the replicas. The other two approaches pro-
vide comparable results which are significantly better than those obtained for
the simple push approach. Although the advanced push technique distributes
the query objects much more effectively than the simple push technique, the
pull technique manages to keep the buffer size a little lower most of the time.

272 F. Nalepa et al.

0 2,000 4,000 6,000
0

5,000

10,000

15,000

Time [s]

B
uf
fe
r
si
ze push

pull
adv. push

(a) 2 query processors

0 2,000 4,000 6,000
0

2,000

4,000

6,000

Time [s]

B
uf
fe
r
si
ze

(b) 4 query processors

0 2,000 4,000 6,000
0

2,000

4,000

6,000

Time [s]

B
uf
fe
r
si
ze

(c) 8 query processors

Fig. 4. The buffer size evolution in time during processing of the 1 mil. Caffe dataset

0 5,000 10,000
0

50,000

1 · 105

1.5 · 105

Time [s]

B
uf
fe
r
si
ze push

pull
adv. push

(a) 2 query processors

0 5,000 10,000
0

20,000

40,000

60,000

Time [s]

B
uf
fe
r
si
ze

(b) 4 query processors

0 5,000 10,000
0

20,000

40,000

Time [s]

B
uf
fe
r
si
ze

(c) 8 query processors

Fig. 5. The buffer size evolution in time during processing of the 10 mil. MPEG-7
dataset

This shows an advantage of the centralized buffer where a better ordering of
the query objects can be obtained due to the access to all the buffered query
objects rather than just to portions of the data at individual replicas. Another
disadvantage of the partial buffers is a fragmentation of clusters among multiple
replicas caused by remapping of the clusters to the replicas. On the other hand,
if the splitter becomes a bottleneck, the advanced push technique is expected to
provide the best performance.

Dynamic Query Reordering and Parallel Processing 273

Table 1. Parallelization statistics for the 1 mil. Caffe dataset

Push Pull Adv. push

Query processors 2 4 8 2 4 8 2 4 8

Max delay [s] 354 179 90 358 180 90 199 99 81

Median delay [s] 319 140 110 193 100 70 75 23 11

Load difference 1 1 1 0.99 0.99 1 0.98 0.98 0.98

Table 2. Parallelization statistics for the 10 mil. MPEG-7 dataset

Push Pull Adv. push

Query processors 2 4 8 2 4 8 2 4 8

Max delay [s] 3356 1440 964 2197 554 327 3131 718 345

Median delay [s] 1300 636 435 917 186 59 1080 255 90

Load difference 0.99 1 0.99 0.99 0.99 0.99 0.99 0.97 0.97

0 5,000 10,000
0

2,000
4,000
6,000
8,000

Time [s]

B
uf
fe
r
si
ze

Fig. 6. The buffer size evolution in time per replica for adv. push technique with 4
replicas, 10 mil. MPEG-7 dataset

Tables 1 and 2 present the results considering maximal and median delays
(the time since a query object arrives at the application until it is processed). The
delays decrease with higher number of query processors. The tables also capture
the difference in the number of processed queries by individual query processors
computed as s

b where s is the smallest number of queries processed by a single
replica; b is the biggest number of queries processed by a single replica. In all
the scenarios, the differences in the load of the query processors were negligible.

Due to the nature of the advanced push technique, there can be temporal
buffer size imbalances of the individual replicas, and remapping of clusters has to
be performed. Figure 6 depicts how the buffer size evolves for individual replicas
during the experiment with the MPEG-7 dataset and 4 replicas. Each curve
represents the buffer size of one replica. It can be seen the relative difference
between the maximal and minimal buffer sizes is kept within the predefined
limit of 20%.

Figure 7 shows results of the experiments comparing throughput for high
input frequencies (3, 4 and 5 ms). These were conducted for the Caffe dataset
using 4 replicas and the pull technique. While the 5 ms input frequency can be
coped with, higher frequencies cause the buffer to grow to very large sizes.

274 F. Nalepa et al.

0 5,000 10,000
0

50,000
1 · 105

1.5 · 105

2 · 105

Time [s]
B
uf
fe
r
si
ze 5 ms

4 ms
3 ms

Fig. 7. The buffer size evolution for pull technique with 4 replicas and various input
frequencies, 1 mil. Caffe dataset

Table 3. Throughput speedup for parallel processing with no reordering relatively to
a single query processor

Query processors 2 4 8

Caffe 1.90 3.37 5.56

MPEG-7 1.73 3.38 5.83

No Optimizations. In the next experiments, we explore the parallelization
impact when no caching and no reordering is used, i.e., the queries are processed
in their original order. Whenever a replica is ready for processing, another query
object of the stream is pulled and processed. Table 3 shows throughput speedup
for different numbers of used query processors. The speedup is computed as the
ratio of the average query time (i.e., the time to evaluate a single query object)
when just one query processor is used and the average query time when a given
number of query processors are used. Since all the replicas access the same
database storage, the speedup is not linear. The results serve as the baseline for
the following experiments where the optimization techniques are used.

Fixed Buffer Size. Another set of experiments was conducted with a fixed size
of the buffer of 10, 000 query objects so that we can compare the throughput of
the techniques with a steady state of the buffers. For the push approaches, the
buffer size constraint was applied as a limit of the sum of the individual buffer
sizes. A next query object was loaded from the stream by the splitter after every
processed query object to keep the overall buffer size constant. 100, 000 query
objects were evaluated during each experiment. Table 4 captures the throughput
speedup (the first three rows). A single query processor with no reordering and
no caching is taken as the baseline. The speedup is computed as the ratio of the
time needed to process 100, 000 query objects with a single query processor with
no reordering and no caching, and the time needed by a given number of query
processors with given optimization techniques applied. For the reference, the
results contain also the speedup using one query processor with applied reorder-
ing and caching (i.e., our original single replica approach). The best speedup
can be observed for the pull technique, followed by the advanced push tech-
nique. Comparing 8 query processors of the pull technique to a single query

Dynamic Query Reordering and Parallel Processing 275

Table 4. Throughput speedup with fixed buffer size relatively to a single query proces-
sor with no reordering; the column headers are in the format: # query processors;
technique (PS – push, PL – pull, AP – adv. push)

Dataset Buffer size 1; PS 2; PS 2; PL 2; AP 4; PS 4; PL 4; AP 8; PS 8; PL 8; AP

Caffe 104 3.7 5.9 6.7 6.5 8 11.2 10.2 8.2 15.6 13

MPEG-7 104 2 3.5 4.2 4.2 4.6 6.8 6.4 6.1 10 9

Caffe 104· # query proc. 3.7 6.9 7.8 7.7 11.2 14.1 14.3 15.2 22.8 21

MPEG-7 104· # query proc. 2 4.1 4.9 5.1 6.8 9.7 9.6 9.8 16.3 16.2

processor with applied optimizations, the processing is 4.2 times faster for the
Caffe dataset and 5 times faster for the MPEG-7 dataset. One reason of such
a rather small factor is sharing the same database storage. Another reason is a
small buffer size relatively to the number of query processors which results in
small cache utility.

We considered another scenario when, together with the number of query
processors, also the buffer size is increased. We used the factor of 10, 000 to set
the buffer size; in particular, for 2 query processors, 20, 000 size of the buffer
was used, 40, 000 for 4 query processors and 80, 000 for 8 replicas. See the last
two rows of Table 4 for the results. For the MPEG-7 dataset, the speedup of the
pull technique using 8 query processors compared to one query processor with
applied optimizations is 8.1, i.e., better than linear speedup. The buffer size
can be observed to be an important aspect of the proposed approaches. (This
observation was also made in our previous work for the single processor cases.)
Also very small differences between the pull and the advanced push techniques
can be noted as the partial buffers of the push technique are of larger sizes
than in the previous scenario and so the distribution of query objects among the
replicas can be more effective.

To sum up, the distribution strategy of the query objects by the splitter
to individual replicas was observed to have a significant impact on the overall
throughput of the system. The highest effectiveness of the distribution is achieved
by the pull technique. However, it is closely followed by the advanced push
technique which eliminates possible scalability issues when a large number of
replicas are used. We used an HDD for all the experiments, and different numbers
can be expected for an SSD. However, the proposed approaches should still bring
improvement due to decompression which has to be carried out when loading
the data from the disk.

7 Conclusion

We have presented an extension of the technique for enhancing the throughput
of similarity search query processing by dynamic query reordering. The exten-
sion lies in the adoption to a parallel environment where multiple queries can
be processed simultaneously. We described three approaches to such parallel
processing and showed the importance of an appropriate distribution strategy
of the query objects to individual query processors.

276 F. Nalepa et al.

The best results are achieved with the pull technique when the query ordering
is centralized. However, it is closely followed by the advanced push approach
when the query objects are intelligently distributed to the query processors and
the ordering itself is performed at individual query processors by themselves.

Acknowledgements. This work was supported by the Czech national research
project GA16-18889S.

References

1. Antol, M., Dohnal, V.: Optimizing query performance with inverted cache in
metric spaces. In: Pokorný, J., Ivanović, M., Thalheim, B., Šaloun, P. (eds.)
ADBIS 2016. LNCS, vol. 9809, pp. 60–73. Springer, Cham (2016). doi:10.1007/
978-3-319-44039-2 5

2. Barrios, J.M., Bustos, B., Skopal, T.: Analyzing and dynamically indexing the
query set. Inf. Syst. 45, 37–47 (2014)

3. Batko, M., Novak, D., Falchi, F., Zezula, P.: Scalability comparison of peer-to-peer
similarity search structures. Future Gener. Comput. Syst. 24(8), 834–848 (2008)

4. Brisaboa, N.R., Cerdeira-Pena, A., Gil-Costa, V., Marin, M., Pedreira, O.: Effi-
cient similarity search by combining indexing and caching strategies. In: Italiano,
G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.)
SOFSEM 2015. LNCS, vol. 8939, pp. 486–497. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46078-8 40

5. Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image
retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.)
TPDL 2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-24469-8 15

6. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Similarity caching in
large-scale image retrieval. Inf. Process. Manag. 48(5), 803–818 (2012)

7. Gedik, B.: Partitioning functions for stateful data parallelism in stream processing.
VLDB J. Int. J. Very Large Data Bases 23(4), 517–539 (2014)

8. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream
processing. IEEE Trans. Parallel Distrib. Syst. 25(6), 1447–1463 (2014)

9. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature
embedding. In: Proceedings of the ACM International Conference on Multimedia,
pp. 675–678. ACM (2014)

10. Lakshmanan, G.T., Li, Y., Strom, R.: Placement strategies for internet-scale data
stream systems. Int. Comput. IEEE 12(6), 50–60 (2008)

11. Lakshmanan, G.T., Li, Y., Strom, R.: Placement of replicated tasks for distrib-
uted stream processing systems. In: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, pp. 128–139. ACM (2010)

12. Mera, D., Batko, M., Zezula, P.: Towards fast multimedia feature extraction:
Hadoop or storm. In: 2014 IEEE International Symposium on Multimedia (ISM),
pp. 106–109. IEEE (2014)

13. Nalepa, F., Batko, M., Zezula, P.: Performance analysis of distributed stream
processing applications through colored petri nets. In: Kofroň, J., Vojnar, T. (eds.)
MEMICS 2015. LNCS, vol. 9548, pp. 93–106. Springer, Cham (2016). doi:10.1007/
978-3-319-29817-7 9

http://dx.doi.org/10.1007/978-3-319-44039-2_5
http://dx.doi.org/10.1007/978-3-319-44039-2_5
http://dx.doi.org/10.1007/978-3-662-46078-8_40
http://dx.doi.org/10.1007/978-3-662-46078-8_40
http://dx.doi.org/10.1007/978-3-642-24469-8_15
http://dx.doi.org/10.1007/978-3-642-24469-8_15
http://dx.doi.org/10.1007/978-3-319-29817-7_9
http://dx.doi.org/10.1007/978-3-319-29817-7_9

Dynamic Query Reordering and Parallel Processing 277

14. Nalepa, F., Batko, M., Zezula, P.: Enhancing similarity search throughput by
dynamic query reordering. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS,
vol. 9828, pp. 185–200. Springer, Cham (2016). doi:10.1007/978-3-319-44406-2 14

15. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

16. Pandey, S., Broder, A., Chierichetti, F., Josifovski, V., Kumar, R., Vassilvitskii,
S.: Nearest-neighbor caching for content-match applications. In: Proceedings of the
18th International Conference on World Wide Web, pp. 441–450. ACM (2009)

17. Shao, J., Huang, Z., Shen, H.T., Zhou, X., Lim, E.P., Li, Y.: Batch nearest neighbor
search for video retrieval. IEEE Trans. Multimedia 10(3), 409–420 (2008)

18. Skopal, T., Lokoc, J., Bustos, B.: D-Cache: universal distance cache for metric
access methods. IEEE Trans. Knowl. Data Eng. 24(5), 868–881 (2012)

19. Solar, R., Gil-Costa, V., Maŕın, M.: Evaluation of static/dynamic cache for simi-
larity search engines. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM
2016. LNCS, vol. 9587, pp. 615–627. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49192-8 50

20. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach, vol. 32. Springer, Berlin (2006)

http://dx.doi.org/10.1007/978-3-319-44406-2_14
http://dx.doi.org/10.1007/978-3-662-49192-8_50
http://dx.doi.org/10.1007/978-3-662-49192-8_50

Comparative Evaluation of Distributed
Clustering Schemes for Multi-source

Entity Resolution

Alieh Saeedi(B), Eric Peukert, and Erhard Rahm

Database Group, Department of Computer Science,
University of Leipzig, Leipzig, Germany

{saeedi,peukert,rahm}@informatik.uni-leipzig.de

Abstract. Entity resolution identifies semantically equivalent entities,
e.g., describing the same product or customer. It is especially challenging
for big data applications where large volumes of data from many sources
have to be matched and integrated. Entity resolution for multiple data
sources is best addressed by clustering schemes that group all match-
ing entities within clusters. While there are many possible clustering
schemes for entity resolution, their relative suitability and scalability is
still unclear. We therefore implemented and comparatively evaluate dis-
tributed versions of six clustering schemes based on Apache Flink within
a new entity resolution framework called Famer. Our evaluation for dif-
ferent real-life and synthetically generated datasets considers both the
match quality as well as the scalability for different number of machines
and data sizes.

1 Introduction

Entity resolution (ER) – also called deduplication, record linkage or object
matching - is the task of identifying records that refer to the same real-world
entity, such as specific costumers, products or publications. This problem is of
key importance for improving data quality and for integrating data from multi-
ple sources. Numerous approaches for entity resolution have been developed and
investigated [4,13]. They derive match decisions typically based on the combined
similarity of several attribute values and possibly on the contextual similarity of
entities (for example, two publications may match if they have both highly sim-
ilar titles and co-authors). To achieve high efficiency for large datasets, one has
to avoid comparing each entity to all other entities. This is achieved by so-called
blocking strategies [4] where only records within the same block (partition) need
to be compared with each other, e.g., only publications from the same year.
Entity resolution can also be performed in parallel on multiple processors and
computing nodes to achieve additional performance improvements [12].

Most previous ER approaches compare pairs of entities and determine binary
match mappings consisting of all correspondences or links between two matching
entities. This is a natural approach when one has to integrate only a few data
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 278–293, 2017.
DOI: 10.1007/978-3-319-66917-5 19

Comparative Evaluation of Distributed Clustering Schemes 279

sources but it does not scale well since the number of binary mappings grows
quadratically with the number of sources. As a result, integrating data from 200
sources would require the determination (and maintenance) of 19.900 mappings
which is not practically feasible with today’s ER tools. Grouping all matching
entities within single clusters is a better approach for integrating data from
multiple data sources as it allows a more compact match representation than
with binary links [15,17]. It also simplifies the fusion of the matching entities
for data integration by combining and consolidating the attributes values of the
different cluster members. Furthermore, it allows an incremental integration of
additional entities and data sources by comparing them with the set of previously
determined clusters.

In our research, we aim at scalable ER approaches for Big Data that are
able to deal with large data volumes and multiple data sources. We therefore
need ER approaches that support clustering matching entities and exploit both
blocking and distributed (parallel) processing. For this study, we implemented
distributed versions of six previously proposed clustering techniques to analyze
their quality and scalability. The considered clustering schemes require as input
a so-called similarity graph containing all links between matching entities and
try to find additional links by considering indirect matches and to eliminate
weaker links in favor of more plausible ones. The clustering schemes are part of
a new framework called FAMER (FAst Multi-source Entity Resolution system)
for distributed multi-source entity resolution. Famer is implemented on top of
the distributed dataflow framework Apache Flink to achieve a high scalability
to large amounts of data and many machines.

In the next section, we briefly discuss related work. In Sect. 3, we provide
an overview about our ER framework Famer. Section 4 describes the considered
clustering algorithms and their distributed implementation. In Sect. 5, we eval-
uate the match quality and scalability of the approaches for different datasets.
Section 6 concludes.

2 Related Work

There is a huge literature about ER and there are several books and surveys to
provide an overview about the main methods and tools, e.g., [4,13]. The parallel
implementation of ER methods has also been studied but mainly for MapRe-
duce (e.g., [12]). Only few studies considered more recent Big Data frameworks
such as Apache Flink or Apache Spark [14] but not yet for clustering-based
ER schemes. Our distributed ER framework will build on known blocking and
matching techniques (see next section) and their parallel implementation using
Apache Flink.

Previous clustering approaches for ER [2,3,7,8,16] first determine a pairwise
matching between entities and apply clustering within a post-processing step.
The most straight-forward clustering approach is computing connected compo-
nents based on the transitive closure of binary match links. This approach can
often improve recall by identifying indirectly matching entities but may lead to

280 A. Saeedi et al.

poor precision since indirect matches may not be similar enough to really repre-
sent the same real-word object. For our evaluation, we use connected components
as the base strategy and consider five additional clustering schemes that have
proven to be effective in previous studies. In particular, we study parallel ver-
sions of correlation clustering [3], Center [8], Merge Center [8], and two versions
of Star [1] clustering. Previous evaluations such as in [7] did not consider parallel
clustering schemes and focused on clustering within single datasets rather than
across multiple data sources.

3 Famer Framework for Multi-source Entity Resolution

Figure 1 illustrates the main components and processing steps of the Famer
framework for distributed multi-source entity resolution. The components are
similar to the ones in previous entity resolution tools but support more than two
sources and are implemented in Apache Flink to achieve a parallel execution
for high scalability. The input of Famer are thus multiple data sources with
the entities to be matched and clustered. The output is a collection of clusters
where all entities within a cluster match with each other and different clusters
refer to different real-world objects. In this paper, we assume that all sources are
duplicate-free1 so that we only have to find matching entities between sources.
The final match clusters should thus only contain entities from different sources
so that the maximal cluster size is limited by the number of sources. All entities
of a cluster are assumed to match with each other, so that a cluster of m entities
represents m·(m−1)

2 match pairs.
Famer consists of two main parts (Fig. 1): generation of a similarity graph

based on pairwise matches and clustering. The first component has several steps
(blocking, pairwise comparison, match classification), which can be customized
according to a configuration input. We provide more details on the different steps
below. We also illustrate the workflow of our framework for the person records in
Table 1 that originate from four sources and contain erroneous attribute values
as typical for real-world data. The table groups already the duplicate records
referring to the same person.

In the first phase, we start with a blocking step to reduce the number of
comparisons compared to a näıve approach where each entity of a data source
has to be compared against all entities of any other source. We support different
blocking techniques such as Standard Blocking (SB) and Sorted Neighborhood
as well as single- and multi-pass blocking [4]. For SB, which we will use in our
evaluation, entities are partitioned into blocks by a predefined blocking key (to
be provided in the configuration input) on attribute values such that only entities
with the same blocking key need to be compared with each other. For the person
records in Table 1, we assume that the two initial letters of the surnames form
the blocking key. Table 2 shows the resulting blocking key values and blocks
sharing the same key value. For this example, blocking reduces the number
1 This is not a main restriction since we could first deduplicate the individual data

sources before applying the workflow.

Comparative Evaluation of Distributed Clustering Schemes 281

Fig. 1. Overview of the famer approach for multi-source entity resolution

of comparisons from 55 to only 16. On the other hand, we may now miss some
matches if similar entities are assigned to different blocks (e.g., entity with id 1 is
not paired with entities 0, 2, and 3). Multi-pass blocking can reduce this problem
(at the expense of more comparisons) by partitioning the entities according to
multiple blocking keys.

After blocking, all entities of a block from any of the input data sources are
pairwise compared with each other. For each entity pair we compute the similar-
ity of their attribute values for the attributes and similarity functions specified in
the configuration input. These similarity values are used in the following match
classification step to decide about whether or not a pair of entities is assumed to
match. The classification approach is also specified in the configuration input,
e.g., by match rules specifying the required minimal similarity for the consid-
ered attributes. The output of this step is the set of matching entity pairs (links)
together with a combined similarity value per link. This output is stored as a
similarity graph where entities are represented as vertices and match links as
edges.

The clustering step of Famer aims at grouping together all matching vertices
of the similarity graph based on the link structure of the graph and possibly the
similarity values. Clustering algorithms typically try to group entities such that
the similarity between entities within a cluster is maximized while the similarity
between entities of different clusters is minimized. Compared to the similarity
graph, the clustering algorithm can ideally add all missing matches (links) and
remove all wrong links. The clustering algorithms we implemented and evaluated
are described in Sect. 4.

Figure 2 illustrates the results of the described workflow for the sample enti-
ties of Table 1 and the blocking using SB as shown in Table 2. The entities are
pairwise compared within the blocks and a rule-based match classification is
applied resulting in the similarity graph shown in the middle of Fig. 2. Com-
pared to the matches assumed in Table 1, the graph misses some links between
matching entities, e.g., between 0 and 2. The final clustering determines five
fully connected graphs (clusters) which are meant to represent different enti-
ties. For the example, the clusters include links missing in the similarity graph.

282 A. Saeedi et al.

Table 1. Sample person entities from evaluation dataset DS3.

Id Name Surname Suburb Post code SourceId

0 ge0rge Walker winston salem 271o6 Src1

1 George Alker winstom salem 27106 Src2

2 George Walker Winstons 27106 Src3

3 Geoahge Waker Winston 271oo Src4

4 Bernie Davis pink hill 28572 Src1

5 Bernie Daviis Pinkeba 2787z Src2

6 Bernii Davs pink hill 28571 Src3

7 Bertha Summercille Charlotte 28282 Src1

8 Bertha Summeahville Charlotte 2822 Src2

9 Brtha Summerville Charlotte 28222 Src4

10 Bereni dan’lel Pinkeba 27840 Src3

11 Bereni Dasniel Pinkeba 2788o Src4

Table 2. Keys

Id Key

0 wa

2 wa

3 wa

1 al

4 da

5 da

6 da

10 da

11 da

7 su

8 su

9 su

Fig. 2. Applying famer to the data of Table 1.

Compared to Table 1, all clusters are correctly found except for the singleton
cluster with entity 1 that was not matched with matching entities 0, 2 and 3 due
to the assumed blocking approach.

Famer is implemented using Apache Flink and a new extension for graph
analytics called Gradoop [11]. Hence, all match and clustering approaches can be
executed in parallel on clusters of variable size. Gradoop supports an extended
property graph model so that we store the attribute values of entities as key
value properties. Analogously, the similarity values of matching entity pairs are
represented as edge properties. For the implementation of the parallel clustering
schemes we also use the Gelly library of Flink supporting a so-called vertix-
centric programming of graph algorithms (see next section).

4 Clustering Approaches

In this section, we present the considered clustering approaches for entity reso-
lution and their parallel implementation. As described in the previous section,
all algorithms use as input a similarity graph with entities from multiple
data sources and similarity edges indicating the computed degree of similar-
ity. In addition to the computation of connected components, Famer supports

Comparative Evaluation of Distributed Clustering Schemes 283

parallel versions of the Center clustering, Merge Center clustering, two versions
of Star clustering, and correlation clustering.

The parallel implementations are based on a vertex-centric programming
model, also known as ‘think like a vertex’, to iteratively execute a user-defined
program in parallel over all vertices of a graph. In particular, we use the two-
step Scatter-Gather model of Gelly that breaks up vertex programming into
two functions. In the Scatter step, a value is distributed to all vertex neighbors,
and in the Gather step the inputs from the neighbors are collected to update
the state of a vertex. The computation proceeds in synchronized iteration steps,
called supersteps. Each scatter and each gather execution is performed in a
different superstep. Supersteps are executed synchronously, so that messages
sent during one superstep are guaranteed to be delivered in the beginning of the
next superstep [10]. The vertex functions are executed by a configurable number
of worker nodes among which the graph data is partitioned, e.g., according to a
hash or range partitioning on the vertex ids. We will explain the vertex-centric
implementation in detail for one of the clustering schemes (Center); the other
implementations follow similar approaches.

4.1 Connected Components

The subgraphs of a graph that are not connected to each other are called con-
nected components. Having the input similarity graph, the connected compo-
nents are easy to determine in a vertix-centric way by letting every vertex itera-
tively add all its direct neighbors to its cluster. The approach is therefore easy to
implement with Scatter-Gather (as shown in [10]). In the evaluation, we use this
approach as a baseline for the comparison with the other clustering schemes.

4.2 Center Clustering

In contrast to connected components, the Center clustering algorithm [8] uti-
lizes the similarity values (weights) of the edges in the similarity graph. In the
sequential algorithm, edges are first sorted based on these weights in descending
order and put in a queue. Edges are then removed from the queue and processed
one by one. For each edge e(vi,vj), if both vi and vj are unassigned to any cluster,
one of them will be center and the other will belong to the cluster of that center.
If one of them is center and the other is unassigned, the unassigned vertex will
belong to the cluster of the center vertex. If both vertices are centers or both of
them are non-centers, or one of them is non-center and the other is unassigned,
that edge is ignored.

We propose and implemented a parallel version of the Center algorithm (see
Algorithm 1). In each round of the algorithm for all unassigned vertices, the
outgoing edge with the highest weight must be found. The vertices on both sides
of this edge are then processed. If one of them is center, the other will belong to
the cluster of that vertex (lines 6–8). If one of them is assigned to another cluster
(line 9), i.e., both vertices belong to different clusters, the edge between these
two vertices is removed (line 10). If both vertices are unassigned and the edge

284 A. Saeedi et al.

Algorithm 1. Parallel Center
Data: G = (V, E)

1 assignVertexPriorities(V)
/* priority according to a random permutation of vertices */

2 Center ← {}
3 for vi ∈ V in Parallel do
4 repeat
5 vnn ← argmax

j
(e(vi,vj))

6 if (vnn ∈ Center) then
7 vi.SetClusterId(nn)
8 V ← V − {vi}
9 else if (vnn /∈ V) then

10 E ← E − {e(vi,vnn)}
11 else
12 vk ← argmax

j
(e(vnn,vj))

13 if ((i = k ∧ i > nn) ∨ (vnn = Null)) then
14 Center ← Center ∪ {vi}
15 vi.SetClusterId(i)
16 V ← V − {vi}

17 until (vi ∈ V)

between them is for both the outgoing edge with the highest weight (line 13,
i = k), then one of them is assumed as center (line 14) and the other will belong
to the same cluster in the next round. For selecting the center in this case we
make use of initially assigned (line 1) vertex priorities as done in the sequential
algorithm. Hence, the vertex with higher priority is considered as center (line 16,
i > nn). If a vertex is not connected to any other vertex (line 13, vnn = Null),
it is a singleton. The algorithm iterates until all vertices are assigned to a cluster
(line 17).

We implemented parallel Center using the Scatter-Gather model (see Algo-
rithm 2). The algorithm applies two phases that are iteratively executed for all
vertices. Phase 1 (Scatter1, Gather1) finds for each vertex vi its neighboring
vertex with the currently highest edge weight, and phase 2 (Scatter2, Gather2)
processes the status of the found vertex and assigns vi to an existing cluster or
considers it as a center. Again, we initially assign a priority per vertex (line 3). In
phase 1, for each vertex vi the neighbor with the K-highest edge weight (nearest
neighbor NN) is found (lines 13–21). K is a helper variable. It helps to prevent
that already assigned vertices are chosen again as neighbor. It is attached to
each vertex and initialized with 1 (lines 5–7). It will be incremented in phase 2
when a vertex neighbor has been assigned to a cluster (lines 39–41). In phase 2,
all neighbors of a vertex vi are sorted and processed in descending order of the

Comparative Evaluation of Distributed Clustering Schemes 285

Algorithm 2. Parallel Center with
Scatter-Gather
Data: G = (V, E)

1 Algorithm Center

2 assignVertexPriorities(V)
/* set priority according to a

random permutation of vertices /*

3 for (vi ∈ V) do
4 vi.K ← 1
5 end
6 repeat
7 Phase1: Scatter1 (Vertex)
8 Gather1 (Vertex, MessageIterator)

Phase2: Scatter2 (Vertex)
9 Gather2 (Vertex, MessageIterator)

10 until (V �= {})

11 Procedure Scatter1 (Vertex v)
12 for (e ∈ getOutEdges()) do
13 msg.Src ← v.getId()
14 msg.Weight ← e.getWeight()
15 sendMessageTo(edge.target(),msg)
16 end

17 Procedure Gather1 (Vertex v, MessageIterator messages)
18 Array ← messages.Sort()

/* Messages are sorted based on

their weights descendingly */

19 v.NN ← Array[v.K].getSrc()

20 Procedure Scatter2 (Vertex v)
21 msg.Src ← v.getId()
22 msg.NN ← v.getNN()
23 msg.Priority ← v.getPriority()
24 for (e ∈ getOutEdges()) do
25 msg.Weight ← e.getWeight()
26 sendMessageTo(edge.target(),msg)
27 end

28 Procedure Gather2 (Vertex v, MessageIterator messages)
29 Array ← messages.Sort()

/* sorted based on weights

descendingly */

30 for (i : v.K → Array.Size()) do
31 m ← Array[i]
32 if (m.getSrc().isCenter()) then
33 v.ClustereId ← m.getId()
34 v.assigned ← true
35 break

36 end
37 else if (m.getSrc().isAssigned()) then
38 v.K + +
39 end
40 else if (v.NN= Null ∨ (v.NN = m.getSrc() ∧

v.Priority > m.getPriority())) then
41 v.ClustereId ← m.getSrc()
42 v.center ← true
43 v.assigned ← true
44 break

45 end

46 end

edge weights (for the edge to vi) (lines 32–38). Then vertex vi is set as center
similar to Algorithm 1 (lines 42–47).

4.3 Merge Center

The Merge Center clustering algorithm [8] is a modified version of Center. In
contrast to Center, it merges two clusters if a vertex in one cluster is similar to
the center of another cluster. Our parallel implementation for Merge Center is
very similar to parallel Center but applies an extra iteration for merging clusters.
This iteration is initiated right after all vertices are assigned to a cluster. The
merge processing is repeated until there are no further cluster changes.

4.4 Star Clustering

The Star clustering algorithm [1] initially computes the degree for each vertex
of the similarity graph. Then in each iteration, the unassigned vertex with the
highest degree becomes center and all its direct neighbors are assigned to its
cluster. The algorithm terminates when all vertices are assigned to a cluster. In
contrast to all other clustering approaches, Star clustering can result in overlap-
ping clusters. As a consequence, it introduces the need of a post-processing to
select the best cluster for entities that have been assigned to several clusters.

Our parallel version of the Star algorithm is described in Algorithm 3. Ini-
tially, the degree of all vertices is computed and if the degree of a vertex is greater
than the degree of all its neighbors, that vertex becomes a center (lines 4–7).
If the degree of two adjacent vertices is equal, the one with higher priority is

286 A. Saeedi et al.

Algorithm 3. Parallel Star
Data: G = (V, E)

1 V ← {v1, ..., vn}
/* A random permutation of vertices */

2 Center ← {}
3 repeat
4 for (vi ∈ V) in Parallel do
5 vmax ← argmax

vj∈{vj |e(vi,vj)∈E}∪{vi}
(ComputeDegree(vj)))

6 if (vi = vmax) then
7 Center ← Center ∪ {v}
8 for (vi ∈ V) in Parallel do
9 for (e(vi, vj) ∈ E) do

10 if (vj ∈ Center) then
11 vi.addClusterId(vj .getId())
12 V ← V − {vi}

13 until (V �= {})

assumed as center. Similar to the previous parallel algorithms, vertex priority
is initially determined by generating a random permutation of vertices (line 1).
Then each center and all its neighbors are considered as a cluster. (lines 8–12).
The Scatter-Gather version of Algorithm 3 uses three phases. In the first phase
the degree of each vertex is computed. In the second phase, centers are selected,
and in the final phase, clusters are grown around centers.

We use two methods for computing the degree of vertices resulting into algo-
rithms Star-1 and Star-2. For Star-1, we count the number of outgoing edges of
a vertex, while Star-2 is based on the average similarity degrees of the outgoing
edges of a vertex.

4.5 Correlation Clustering

The original correlation clustering approach [2] uses a graph with positive and
negative edge weights to indicate whether two vertices are similar (positive edge
weight) or dissimilar (negative edge weight). The goal is to find a clustering that
either maximizes agreements (sum of positive edge weights within a cluster plus
the absolute value of the sum of negative edge weights between clusters) or min-
imizes disagreements (absolute value of the sum of negative edge weights within
a cluster plus the sum of positive edge weights across clusters). Gionis et al.
propose an approximate and iterative solution for this optimization problem [6]
that randomly selects an unassigned vertex as a cluster center in each round.
Then all unassigned neighbors of the selected center are added to the cluster
and marked as assigned. The algorithm terminates when there is no unassigned
vertex left.

Comparative Evaluation of Distributed Clustering Schemes 287

This simple algorithm suffers from too many rounds making it unsuitable for
very large graphs. Some studies therefore proposed parallel solutions [3,16] that
select multiple centers in each round. They also address the newly introduced
concurrency problem to avoid that a vertex is assigned to more than one center
at a time. We implemented the parallel pivot approach of [3], called CCPivot,
since it fits well the Scatter-Gather paradigm. In each round of this algorithm,
several vertices are considered as active nodes, i.e., as candidates for becoming a
cluster center (or pivot). In the next step, active nodes that are adjacent to each
other are removed from the set of active nodes; the remaining vertices become
centers. Then adjacent vertices of each center are assigned to that center and
form a cluster. If one vertex is adjacent of more than one center at the same
time, it will belong to the one with higher priority. As in the other algorithms,
the vertex priorities are determined in a preprocessing phase.

Our Scatter-Gather implementation of this algorithm uses three Scatter-
Gather phases: one for computing the current maximum degree of the graph,
one for selecting active nodes and applying the concurrency-aware rule to select
final centers, and one for growing clusters around centers.

5 Evaluation

The goal of our evaluation is to comparatively evaluate the effectiveness and
efficiency of the considered clustering approaches and their distributed imple-
mentations for different datasets and configurations. We first describe the used
datasets from three domains and the considered configurations. We then analyze
the relative match and clustering effectiveness of the clustering schemes. Finally
we evaluate the runtime performance and scalability of the approaches.

5.1 Datasets and Configuration Setup

For our evaluation we use datasets from three domains for different numbers of
duplicate-free sources. Table 3 shows the main characteristics of the datasets in
particular the number of clusters and match pairs of the perfect ER result. The
smallest dataset DS1 contains geographical real-world entities from four different
data sources (DBpedia, Geonames, Freebase, NYTimes) and has already been
used in the OAEI competition2. For our evaluation we focused on a subset of
settlement entities as we had to manually determine the perfect clusters and
thus the perfect match pairs.

For the two larger evaluation datasets DS2 and DS3 we applied advanced
data generation and corruption tools [9] to be able to evaluate the ER quality
and scalability for larger datasets and a controlled degree of corruption. DS2
is based on real records about songs from the MusicBrainz database but uses
the DAPO data generator to create duplicates with modified attribute values
[9]. The generated dataset consists of five sources and contains duplicates for

2 OAEI 2011 IM: http://oaei.ontologymatching.org/2011/instance/.

http://oaei.ontologymatching.org/2011/instance/

288 A. Saeedi et al.

Table 3. The specifications of datasets.

Domain Attributes #entities #sources #perfect
match pairs

#clusters

Geographical
(DS1)

label, longitude,
latitude

3,054 4 4,391 820

Music (DS2) title, length, artist,
album, year,
language

20,000 5 16,250 10,000

Persons
(DS3)

name, surname,
suburb, postcode

5,000,000
10,000,000

5
10

3,331,384
14,995,973

3,500,840
6,625,848

50% of the original records in two to five sources. All duplicates are generated
with a high degree of corruption to stress-test the ER and clustering approaches.
DS3 is based on real person records from the North-Carolina voter registry and
synthetically generated duplicates using the tool GeCo [5]. We consider two
configurations with either 5 or 10 sources each having 1 million entities; i.e. we
process up to 10 million person records. Each source is duplicate free, but 50% of
the entities are replicated in all sources without any corruption. Moreover, 25%
of entities are corrupted and replicated in all sources, and the remaining 25%
are corrupted but present in only some sources. For the generation of corrupted
records we applied a moderate corruption rate of 20%, i.e., most attribute values
remained unchanged.

Table 4. Default blocking and match configuration for different datasets.

Dataset Blocking key Similarity functions Match rule

DS1 prefixLength1(label) sim1: Jarowinkler (name) sim1 ≥ θ &

sim2: geographical distance sim2 ≤ 1358 km

DS2 prefixLength1(album) sim1: 3Gram (title) sim1 ≥ θ

DS3 prefixLength3(surname) sim1: Jarowinkler (name) sim1≥ 0.9 &

sim2: Jarowinkler (surname) sim2 ≥ 0.9 &

sim3: Jarowinkler (suburb) sim3 ≥ θ &

sim4: Jarowinkler (postcode) sim4 ≥ θ

To generate the similarity graphs for the different datasets as the input of
the clustering schemes we experimented with a large spectrum of blocking and
match configurations. Due to space restrictions, we will mostly report results only
for the default configurations specified in Table 4 that resulted already in good
match quality even without clustering. All configurations apply standard block-
ing with different blocking keys. The match rules compute different attribute
similarities using either string similarity functions (Jarowinkler, 3gram) or geo-
graphical distance as well as variable similarity thresholds θ.

Comparative Evaluation of Distributed Clustering Schemes 289

5.2 Match Quality of Clustering Approaches

To evaluate the ER quality of our clustering results we use the standard metrics
precision, recall and their harmonic mean, F-Measure. These metrics are deter-
mined by comparing the computed match pairs (derived from the computed
clusters assuming that all entities in a cluster match) with the perfect match
results.

Input Graph Precision Recall F-Measure

D
S1

D
S2

D
S3

-1
0
Pa
rt
ie
s

Fig. 3. Match quality of clustering-based ER approaches.

In Fig. 3, we compare the obtained precision, recall and F-measure results
for the six clustering schemes, different similarity thresholds θ and our three
datasets using the default configurations from Table 4 to determine the initial
similarity graphs. On the left, we also show the precision, recall and F-measure
values obtained already with the similarity graphs. We observe that for DS1 and
DS3 we achieve a relatively high F-measure of more than 0.9 and 0.8 for the
considered θ range between 0.75 and 0.9. By contrast, for the noisy data records
of DS2 we had to lower the similarity thresholds to values between 0.35 and 0.45
and still could not exceed a maximal F-measure of 0.73 underlining that DS2
represents a more difficult match problem than DS1 or DS3.

Comparing the clustering schemes, we observe that there are substantial
differences in their relative match quality. Connected components reaches the

290 A. Saeedi et al.

lowest F-measure for all datasets and almost all threshold values because it
suffers from very poor precision values. Merge Center (MCenter) shows a similar
behavior in terms of poor precision and F-measure, indicating that the merging of
clusters can often lead to wrong cluster decisions. From the four better clustering
schemes, Star-1 has the lowest F-measure (especially for lower values of the
similarity threshold values) while the other three are close together and relatively
robust against changes in the threshold value. These approaches, Center, Star-
2 and CCPivot, achieve not only a high recall but also a good precision for
lower thresholds. For higher thresholds they can further improve precision by
smartly eliminating only wrong matches while keeping almost all correct ones.
The high quality of Center comes from its initial focus on edges with high weights
thereby ignoring edges with lower similarity. Star-2 is better than Star-1 since its
degree-based selection of cluster centers is based on a high degree of similarity
to neighbors rather than only the number of neighbors. CCPivot is apparently
also able to select high quality clusters.

3SD2SD1SD

Fig. 4. Average F-measure results with range between minimal and maximal values

These observations are confirmed by Fig. 4 showing the average F-measure
results of the clustering schemes over all threshold configurations. The vertical
lines also show the F-measure spread between the minimal and maximal value.
We again observe the low and highly variable match quality of connected com-
ponents and MergeCenter. By contrast, the algorithms CCPivot, Center, and
Star-2 are more robust and achieve the highest F-measure values.

5.3 Runtimes and Speedup

We determined the runtimes of the clustering algorithms on a cluster with 16
worker nodes. Each worker consists of an E5-2430 6(12) 2.5 GHz CPU, 48 GB
RAM, two 4 TB SATA disks and runs openSUSE 13.2. The nodes are connected
via 1 Gigabit Ethernet. Our evaluation is based on Hadoop 2.6.0 and Flink 1.1.2.
We run Apache Flink standalone with 6 threads and 40 GB memory per worker.
In our experiments, we vary the number of workers by setting the parallelism

Comparative Evaluation of Distributed Clustering Schemes 291

parameter to the respective number of threads (e.g., 4 workers correspond to 24
threads). The runtime of all algorithms is measured for the largest dataset DS3
with 5 and 10 parties applying the configuration from Table 4 with θ = 0.80.
The DS3 input datasize is thus doubled for 10 parties compared to 5 parties.
We only evaluate the runtimes for the clustering algorithms since the time to
determine the similarity graphs is the same for all clustering approaches. Some
clustering approaches could not be executed for 1 or 2 workers only due to high
memory requirements. We thus evaluate the runtimes for configurations between
4 and 16 workers. Table 5 shows that the runtimes for the two DS3 datasets. The
increased dataset size for 10 parties leads to higher runtimes for all algorithms
although to different degrees. As expected, the fastest runtimes are achieved by
the simple connected components approach. By contrast, CCPivot has the worst
runtimes due to large memory requirements and a high message overhead. For
the bigger dataset (10 parties) the approach suffered from out-of-memory errors
and could only be executed for 16 workers. From the three clustering schemes
achieving the best matching quality (Star-2, Center, CCPivot), Star-2 achieves
by far the fastest runtimes in all configurations making it a good default strategy
for clustering.

Except for connected components, all algorithms can reduce their runtimes by
applying more workers, especially for the larger dataset with 10 parties. Figure 5
shows the resulting speedup values. For DS3 with 5 parties, all algorithms except
the slow CCPivot achieve an almost linear speedup. For the bigger dataset with
10 parties, speedup values are even better and partly super-linear. The lat-
ter, however, is an artifact for the slower algorithms like MCenter that perform
poorly for 4 workers because of memory bottlenecks (its runtime for 4 workers
is almost 6 times higher for 10 parties than for 5 parties). The substantially
increased aggregate memory capacity for 8 and 16 workers thus enabled super-
linear runtime improvements but without reaching the absolute runtimes of fast
algorithms like Star-2.

Table 5. Runtimes (seconds)

dataset DS3 - 5 parties DS3 - 10 parties

#workers 4 8 16 4 8 16

ConCom 51 57 55 101 79 79

CCPivot 1530 1008 688 – – 1303

Center 390 208 117 1986 864 423

MCenter 640 349 194 3767 1592 695

Star-1 288 149 85 783 367 197

Star-2 214 124 67 720 317 173

292 A. Saeedi et al.

a. Speedup (DS3-5 parties) b. Speedup (DS3-10 parties)

Fig. 5. Runtimes and speedup

6 Conclusions and Outlook

We presented a new framework called Famer enabling the parallel execution
of ER workflows using the Big Data framework Apache Flink. Famer supports
entity resolution for multiple data sources and groups all matching entities within
clusters. For parallel clustering we currently support six approaches that have
been evaluated for datasets from three domains. The evaluation showed that
three clustering approaches (Center, Star-2 and CCPivot correlation cluster-
ing) achieve a similarly high match quality that is clearly superior to a simple
connected components scheme. The parallel implementations of the clustering
approaches mostly achieve good speedups, especially for larger datasets thereby
supporting high scalability. Star-2 achieves lower runtimes than Center and espe-
cially CCPivot so that it is a good default approach for clustering-based ER.

In future work, we will further extend and improve Famer, e.g., by post-
processing cluster results to find additional matches or resolve overlapping clus-
ters for Star clustering. We also aim at developing incremental ER strategies that
can incorporate new entities and data sources into already existing clusters.

Acknowledgement. This work was partly funded by the German Federal Ministry of
Education and Research within the project Competence Center for Scalable Data Ser-
vices and Solutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B). Also, evaluations
partly performed on the Galaxy-Infrastructure at Leipzig University.

References

1. Aslam, J., Pelekhov, E., Rus, D.: The star clustering algorithm for static and
dynamic information organization. J. Graph Algorithms Appl. 8, 95–129 (2004)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proceedings of the
Foundations of Computer Science, pp. 238–247. IEEE (2002)

3. Chierichetti, F., Dalvi, N., Kumar, R.: Correlation clustering in MapReduce. In:
Proceedings of the ACM SIGKDD Conference, pp. 641–650 (2014)

Comparative Evaluation of Distributed Clustering Schemes 293

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012)

5. Christen, P., Vatsalan, D.: Flexible and extensible generation and corruption of
personal data. In: Proceedings of CIKM, pp. 1165–1168 (2013)

6. Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl.
Discov. Data (TKDD) 1(1), 4 (2007)

7. Hassanzadeh, O., Chiang, F., Lee, H., Miller, R.: Framework for evaluating clus-
tering algorithms in duplicate detection. PVLDB 2(1), 1282–1293 (2009)

8. Hassanzadeh, O., Miller, R.: Creating probabilistic databases from duplicated data.
VLDB J. 18(5), 1141–1166 (2009)

9. Hildebrandt, K., Panse, F., Wilcke, N., Ritter, N.: Large-scale data pollution with
Apache Spark. IEEE Trans. Big Data (2017)

10. Junghanns, M., Petermann, A., Neumann, M., Rahm, E.: Management and analy-
sis of big graph data: current systems and open challenges. In: Zomaya, A.Y., Sakr,
S. (eds.) Handbook of Big Data Technologies, pp. 457–505. Springer, Cham (2017).
doi:10.1007/978-3-319-49340-4 14

11. Junghanns, M., Petermann, A., Teichmann, N., Gómez, K., Rahm, E.: Analyz-
ing extended property graphs with Apache Flink. In: Proceedings of the ACM
SIGMOD Workshop on Network Data Analytics (2016)

12. Kolb, L., Thor, A., Rahm, E.: Dedoop: efficient deduplication with Hadoop.
PVLDB 5(12), 1878–1881 (2012)

13. Köpcke, H., Rahm, E.: Frameworks for entity matching: a comparison. Data Knowl.
Eng. 69(2), 197–210 (2010)

14. Mestre, D., Pires, C., Nascimento, D., de Queriroz, A., Santos, V., Araujo, T.: An
efficient Spark-based adaptive windowing for entity matching. J. Syst. Softw. 128,
1–10 (2017)

15. Nentwig, M., Groß, A., Rahm, E.: Holistic entity clustering for linked data. In:
IEEE ICDMW (2016)

16. Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchandran, K., Jordan, M.:
Parallel correlation clustering on big graphs. In: Advances in Neural Information
Processing Systems, pp. 82–90 (2015)

17. Rahm, E.: The case for holistic data integration. In: Pokorný, J., Ivanović, M.,
Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 11–27. Springer,
Cham (2016). doi:10.1007/978-3-319-44039-2 2

http://dx.doi.org/10.1007/978-3-319-49340-4_14
http://dx.doi.org/10.1007/978-3-319-44039-2_2

Query Optimization, Recovery, and
Databases on Modern Hardware

Cost-Function Complexity Matters:
When Does Parallel Dynamic Programming

Pay Off for Join-Order Optimization

Andreas Meister(B) and Gunter Saake

University of Magdeburg, Magdeburg, Germany
{andreas.meister,gunter.saake}@ovgu.de

Abstract. The execution time of queries can vary by several orders
of magnitude depending on the join order. Hence, an efficient query
execution can be ensured by determining optimal join orders. Dynamic
programming determines optimal join orders efficiently. Unfortunately,
the runtime of dynamic programming depends on the characteristics of
the query, limiting the applicability to simple optimization problems.
To extend the applicability, different parallelization strategies were pro-
posed. Although existing parallelization strategies showed benefits for
complex cost functions, the effects of the cost-function complexity was
not evaluated.

Therefore, in this paper, we compare different sequential and parallel
dynamic programming variants with respect to different query charac-
teristics and cost-function complexities. We show that the parallelization
of a parallel dynamic programming variant is most often only useful for
complex cost functions. For simple cost functions, we show that most
often sequential variants are superior to their parallel counterparts.

1 Introduction

Relational Database Management Systems (DBMSs) provide a high usability by
using declarative query languages, such as the SQL. In declarative query lan-
guages, users only need to provide what result is needed, but not how the result
is determined. Hence, DBMSs need to transform queries into efficient query exe-
cution plans, defining the way to execute queries. Hereby, not only one but plenty
of equivalent query execution plans exist. Since the execution time of equivalent
query execution plans can vary by several orders of magnitude depending on
the join order, one of the most important challenges for determining an efficient
query execution plan is join-order optimization [5]. For example, for Query 5
of the TPC-H benchmark, the execution time varies from few milliseconds to
several minutes based on the chosen join order [8]. Hence, determining an opti-
mal join order ensures an efficient query execution. Unfortunately, finding an
optimal join order is in general NP-complete [7]. Furthermore, DBMSs apply
time limits for query optimization, because otherwise the optimization might
take longer than executing an inefficient query execution plan. Therefore, two

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 297–310, 2017.
DOI: 10.1007/978-3-319-66917-5 20

298 A. Meister and G. Saake

aspects have to be considered to determine optimal join orders within the time
limit of query optimization: efficient execution strategies and resource utilization.
Dynamic Programming (DP) guarantees an optimal join order while ensuring
an efficient execution strategy for the optimization. In the past, three different
sequential variants of DP were proposed DPSIZE [9], DPSUB [11], DPCCP [6].
While DPSIZE and DPSUB suffer from additional overhead based on invalid
computations, DPCCP ensures an efficient execution based on an enumeration
of valid computations only.

Although the sequential DP variants provide efficient execution strategies,
the sequential DP variants share the same drawback: the resource utilization.
Current hardware architectures provide their computational power not through
a fast Central Processing Unit (CPU) core, but by providing multiple CPU cores.
Unfortunately, sequential approaches use only one CPU core and, hence, do not
use available resources efficiently given a single query. Sequential approaches
can only be used efficiently on multiple CPU cores, when multiple queries are
available and each CPU core optimizes a single query independent of the other
CPU cores. PDPSV A [2] and DPEGENERIC [3] enable the parallel evaluation of
the sequential DP variants, utilizing multiple CPU cores. By using all available
CPU cores, the applicability of dynamic programming approaches is extended
from queries containing 12 tables to queries containing upto 25 tables [2] with
respect to the time limit of query optimization.

Independent of the used DP variant, cost functions are needed to compare
different and to select optimal join orders. For each considered join pair, the
cost function need to be called. Hence, the complexity and the runtime of cost
functions has also a direct impact on the different DP variant. Although in
different DBMSs different cost functions are used, to the best of our knowledge,
the impact of different complexities of cost functions on the different DP variants
was not evaluated yet.

Therefore, in this paper, we will make the following contributions:

– We evaluate sequential and parallel DP variants with respect to different
query topologies, different complexities of cost functions, and an increasing
number of tables.

– We show that not only the characteristic of queries but also the complexity
of cost functions has significant impact on the parallel DP variants. Hereby,
existing parallel DP variants mainly provide an advantage only with com-
plex cost functions. For simple cost functions, the sequential DP variants are
mostly superior to their parallel counterparts.

The remainder of this paper is structured as follows. In Sect. 2, we will pro-
vide background information about DP for join-order optimization in general
and specifics about the sequential and parallel DP variants. In Sect. 3, we will
evaluate the different sequential and parallel DP variants with respect to differ-
ent complexity of the cost function, query toplogies, and table number. In the
last section, we conclude our work.

Cost-Function Complexity Matters 299

2 Dynamic Programming for Join-Order Optimization

DP for join-order optimization is a deterministic exhaustive search approach [10].
Hence, DP guarantees an optimal join order with respect to the cost function. In
contrast to the brute-force approach, DP skips unneeded evaluations by applying
a bottom-up construction of (intermediate) solutions. First, the optimization
problems is split into subproblems. These subproblems are solved in an optimal
way. Optimal intermediate solutions are combined to provide solutions for more
complex (sub-)problems until an optimal solution for the overall optimization
problem can be provided.

r1 rnr3r2 ...

linear

r1 rnr3r2 ...

cyclic

r3r2 rn

r1

r3 ...

r2

rn

r1

star clique

...

Fig. 1. Query topologies. From left to right the complexity of join-order optimization
increases based on the increasing number of join pairs.

2.1 Complexity

In general, join-order optimization is an NP-complete problem [7]. Hence, the
runtime of DP depends on the query characteristics, such as topology and num-
ber of contained tables. In the field of join-order optimization, four relevant
categories of query topologies exist: linear, cyclic, star, and clique, see Fig. 1.

In linear and cyclic queries, a table is joined with a maximum of two other
tables, leading to a limited number of possible join pairs. In contrast, star and
clique queries have a higher number of possible join pairs. Hence, star and clique
queries are more complex to optimize than linear and cyclic queries. Hereby, star
queries are representative for analytical workloads, while clique queries represent
an optimization with cross joins.

2.2 Sequential Dynamic Programming Approaches

For the general concept of DP not only one but three different sequential DP
variants were proposed in the past: DPSIZE [9], DPSUB [11], and DPCCP [6].

In 1979, Selinger et al. proposed the first DP variant for join-order optimiza-
tion, DPSIZE [9], see Algorithm 1. For DPSIZE , the different subproblems are
related to the number of contained tables. This means for a given query, first,
efficient options for accessing each table are evaluated, see Lines 1–2. Afterwards,
these given solutions are combined with each other to provide solutions for the
next (sub-)problem containing an additional table, see Lines 3–14. For each iter-
ation, first, the number of tables for each join partner needs to be determined,
see Lines 4–5. Afterwards, all available solutions containing the number of tables

300 A. Meister and G. Saake

Algorithm 1. DPSIZE [9]
Input : Join query Q with n tables T = {T1, . . . , Tn}
Output: an optimal bushy join tree

1 foreach Ti ∈ T do
2 optimalPlan(Ti) = Ti ;
3 for s = 2 to n do
4 for sl = 1 to s − 1 do
5 sr = s − sl ;
6 foreach Sl ⊂ T : |Sl| = sl do
7 foreach Sr ⊂ T : |Sr| = sr do
8 if Sl ∩ Sr �= ∅ then continue;
9 if Sl not connected to Sr then continue;

10 optimal-left-plan = optimalPlan(Sl);
11 optimal-right-plan = optimalPlan(Sr);
12 current-plan = createJoinTree(optimal-left-plan,

optimal-right-plan);
13 if cost(optimalPlan(Sl ∪ Sr)) > cost(current-plan) then
14 optimalPlan(Sl ∪ Sr) = current-plan ;

15 return optimalPlan(T) ;

for each join partner are combined, see Lines 6–12. Since each pair of solutions
containing a specific number of tables is evaluated, first, each join pair need to
be checked whether the join pair is valid, see Lines 8–9, before the join pair
can be evaluated, see Line 12. Since multiple equivalent plans exist, equivalent
solutions need to be pruned, see Lines 13–14. At the end, an optimal join order
is returned, see Line 15.

One problem of DPSIZE is that within each iteration, intermediate solutions
are combined naively. A join pair is only selected by the number of contained
tables, but not by the actual available tables, see Lines 6–7. Hence, also invalid
join pairs need to be evaluated, see Line 9. Based on the evaluation of these
invalid join pairs, the efficiency of optimization is reduced. To avoid this ineffi-
ciency, Vance et al. proposed DPSUB [11], see Algorithm 2. DPSUB uses integer
representations to enumerate all possible subsets in order to construct all valid
join pairs. If the i-th bit is set, it means that the i-th table is available, e.g.,
1 = {T1}, 2 = {T2}, 3 = {T1, T2}, 4 = {T3}. Similar to DPSIZE , in DPSUB, first,
different options for accessing each table are evaluated, see Lines 1–2. After-
wards, the solution that should be evaluated next, is determined by the integer
representation, see Lines 3–4. Based on the solution, all valid join pairs are
determined, see Lines 6–11, and a new solution is constructed, see Line 12. Since
equivalent solutions exist, the evaluated solution has to be pruned, see Lines 13–
14. After evaluating all valid join pairs, the optimal join order is returned, see
Line 15.

Although DPSUB avoids inefficiencies based on invalid join pairs of interme-
diate solutions, new inefficiencies are introduced based on different query topolo-
gies, see Line 7 and Lines 10–11. DPSUB was proposed for optimizing queries,

Cost-Function Complexity Matters 301

Algorithm 2. DPSUB [11]
Input : Join query Q with n tables T = {T1, . . . , Tn}
Output: an optimal bushy join tree

1 foreach Ti ∈ T do
2 optimalPlan(Ti) = Ti ;
3 for k = 2 to n do

4 for S = 2k−1 + 1 to 2k − 1 do
5 foreach Sl � S do
6 optimal-left-plan = optimalPlan(Sl);
7 if optimal-left-plan = ∅ then continue;
8 Sr = S − Sl;
9 optimal-right-plan = optimalPlan(Sr);

10 if optimal-right-plan = ∅ then continue;
11 if optimal-left-plan not connected to optimal-right-plan �= ∅

then continue;
12 current-plan = createJoinTree(optimal-left-plan,

optimal-right-plan);
13 if cost(optimalPlan(S)) > cost(current-plan) then
14 optimalPlan(S) = current-plan ;

15 return optimalPlan(2n − 1) ;

considering cross-joins similar to clique queries. When other query topologies,
such as linear, cyclic or star query topologies, are considered, not every subset is
valid. Hence, depending on the query topology, unneeded join pairs need to be
evaluated leading to inefficiencies. To consider the query topology, Moerkotte and
Neumann proposed DPCCP [6], see Algorithm 3. Within DPCCP , only required
join pairs for (intermediate) solutions are evaluated based on the topology of
queries. Hereby, all join pairs are enumerated based on pairs of connected-sub-
graphs and complements. For the evaluation, first, equivalent table accesses are
evaluated for each table, see Lines 1–2. Afterwards, all connected-sub-graphs
are determined, see Line 3. For each determined subgraph, all complements
are determined, see Lines 4–5. The evaluation of connected-sub-graphs, as well
as, complements are based on a breadth-first node enumeration and a recur-
sive evaluation of neighboring nodes [6]. Afterwards, each pair of subgraph and
complement is evaluated, see Lines 6–14. Since each pair is only created once,
within DPCCP , both commutative options need to be evaluated and pruned
respectively, see Lines 9–14. Afterwards, the optimal join order is returned, see
Line 15.

2.3 Parallel Approaches

Since join-order optimization is a NP-complete problem [7], enough computa-
tional resources need to be provided in order to determine an optimal join order
within the time limit of query optimization. So far, all discussed approaches are
sequential algorithms. Hence, these algorithms only use the computational power

302 A. Meister and G. Saake

Algorithm 3. DPCCP [6]
Input : Join query Q with n tables T = {T1, . . . , Tn}
Output: an optimal bushy join tree

1 foreach Ti ∈ T do
2 optimalPlan(Ti) = i ;
3 csgs = enumerateCSG(Q);
4 foreach Sl ∈ csgs do
5 cmps = enumerateCMP(Q,Sl);
6 foreach Sr ∈ cmps do
7 optimal-left-plan = optimalPlan(Sl);
8 optimal-right-plan = optimalPlan(Sr);
9 current-plan = createJoinTree(optimal-left-plan, optimal-right-plan);

10 if cost(optimalPlan(Sl ∪ Sr)) > cost(current-plan) then
11 optimalPlan(Sl ∪ Sr) = current-plan ;
12 current-plan = createJoinTree(optimal-right-plan, optimal-left-plan);
13 if cost(optimalPlan(Sl ∪ Sr)) > cost(current-plan) then
14 optimalPlan(Sl ∪ Sr) = current-plan ;

15 return optimalPlan(R) ;

of a single CPU core. Current systems provide most computational power not by
the speed of one single CPU core, but by parallel processors, such as multi-core
CPUs, or specialized co-processors, such as GPUs. Hence, to further extend the
applicability of DP to more complex optimization problems, parallelization is
necessary. Han et al. proposed two different parallel DP variants: PDPSV A [2]
and DPEGENERIC [3].

Basically, PDPSV A follows the execution strategy of DPSIZE , see Algo-
rithm 4. Therefore, at the beginning, an efficient access method for each table is
determined, see Lines 1–2. Although this step can easily be parallelized, the little
number of available access methods and tables do not provide much benefit for
a parallel evaluation, and, hence, is neglected. Afterwards the parallel optimiza-
tion of the join order is performed, see Lines 3–11. Because PDPSV A is similar
to DPSIZE , new solutions containing a specific number of tables are created in
each iteration, see Line 3. One thread enumerates and assigns join pairs to all
available threads using Search Space Description Vectors (SSDVs) [2], see Line 4.
After the assignment is finished, join pairs are submitted to threads and each
thread evaluates all assigned join pairs completely independent of other threads,
see Lines 5–7. Since equivalent plans can be created by different threads, a final
pruning step needs to be performed, combining the intermediate solutions of
each thread, see Line 8. Since PDPSV A uses the execution strategy of DPSIZE ,
PDPSV A also need to evaluate invalid join pairs, see Lines 8–9 of Algorithm 1.
To skip not only a single invalid join pair but all following, PDPSV A uses Skip
Vector Arrays (SVAs). Hence, for new intermediate solutions, SVAs are created
in parallel, see Lines 9–11. After all join pairs are evaluated, the optimal join
order is returned, see Line 12.

Cost-Function Complexity Matters 303

Algorithm 4. PDPSV A [2]
Input : Join query Q with n tables T = {T1, . . . , Tn}
Output: an optimal bushy join tree

1 foreach Ti ∈ T do
2 optimalPlan(Ti) = Ti ;
3 for s = 2 to n do
4 SSDVs = AllocateSearchSpace(S,m);
5 for i = 1 to MAX THREAD ID do
6 threadPool.SubmitJob(MutiplePlanJoin(SSDVs[i],S));
7 threadPool.sync();
8 MergeAndPrunePlanPartitions(S);
9 for i = 1 to MAX THREAD ID do

10 threadPool.SubmitJob(BuildSkipVectorArray(i));
11 threadPool.sync();

12 return optimalPlan(R) ;

Although PDPSV A enables a parallel execution of DP based on the execution
strategy of DPSIZE , the other more efficient sequential DP variants cannot be
parallelized given the execution strategy of PDPSV A. Hence, Han et al. intro-
duced DPEGENERIC to provide a general applicable parallelization strategy,
parallelizing all existing sequential DP variants [3], see Algorithm 5. The idea
of DPEGENERIC is to use the producer-consumer model instead of explicitly
assigning join pairs to specific threads. The producer needs to create a partial
order following the sequential DP variants to determine dependent join pairs,
see Line 3, whereas consumers evaluate independent join pairs in parallel. After
creating the partial order, the producer parses a specific amount of join pairs
and stores them into a concurrent buffer for consumers, see Line 4. Hereby, in
order to reduce synchronization conflicts a Double Buffer is used, one buffer for
consumers and one for the producer. Furthermore, in order to avoid conflicting
memory accesses, join pairs are grouped into equivalence classes and memory
accesses of solution and inputs are determined [3]. By this, no concurrent eval-
uation of the data structure storing intermediate solutions is needed during the
parallel evaluation and the synchronization overhead is reduced. Join pairs are
evaluated in parallel until no more join pairs are available, see Line 5. Before
the parallel evaluation starts, the buffers must be switched to make the parsed
join pairs available for all consumers, see Line 6. After switching the buffers, the
parsed join pairs are evaluated by all consumers, see Lines 7–8. While the con-
sumers are evaluating the parsed join pairs, the producer parses the join pairs
for the next iteration, see Line 9. To utilize all available threads, the producer
also starts to consume and evaluate join pairs of the current iteration, after all
join pairs for the next iteration are determined, see Line 10. At the end of each
iteration, consumers are synchronized, see Line 11. In contrast to PDPSV A, the
consumers directly perform the pruning of equivalent solutions. Hence, the pro-

304 A. Meister and G. Saake

Algorithm 5. DPEGENERIC [3]
Input : Join query Q with n tables T = {T1, . . . , Tn}
Output: an optimal bushy join tree

1 EnumerationBuffer Bc, Bp;
2 Hash-Table Memo;
3 partial order = buildPartialOrder(R);
4 e = parseCalculations(partial order, Memo, Bp, MAX ENUM CNT);
5 while e �= NO MORE PAIR do
6 switchBuffers() // Bc = Bp and Bp = Bc;
7 for i = 0 to MAX THREAD ID − 1 do
8 threadPool.SubmitJob(GenerateQEPs(Bc,Memo));
9 e = parseCalculations(partial order, Memo, Bp, MAX ENUM CNT);

10 GenerateQEPs(Bc,Memo));
11 threadPool.sync();

12 return Memo(R) ;

ducer does not need to perform a final pruning step. When all iterations are
finished, the optimal join order is returned, see Line 12.

2.4 Cost Estimation

Independent of the used variant of DP for join-order optimization, a cost func-
tion is needed to determine optimal solutions. In the related work, a variety
of different cost functions were proposed. Sometimes simple cost functions are
used, which only consider operator cardinality [11], whereas sometimes more
complex cost functions are used, considering resource consumption, such as disk
access and CPUs utilization [1]. Depending on the system requirements dif-
ferent aspects can be considered, such as execution time, energy consumption,
main memory utilization, transfer costs, disk or page accesses, cache utilization,
CPU utilization, or a combination of multiple aspects. Depending on the aspects
themselves and the number of considered aspects, the complexity and, hence, the
runtime of cost functions increases. The goal of using complex cost functions is
more accurate and robust cost estimations. Unfortunately, this goal is often not
accomplished [4]. Hence, complex cost functions are not necessarily superior.

3 Impact of Cost-Function Complexity

The considered aspects and, hence, the complexity of the cost function deter-
mines the runtime of the cost function. Since the cost function is called several
times during the join-order optimization, differences in the runtime of cost func-
tions, will also affect the runtime of the different DP variants. In this section, we
will evaluate the effects of different complexities of cost functions on the different
variants of DP.

Cost-Function Complexity Matters 305

3.1 Evaluation Setup

In our evaluation, we will consider the runtime of each sequential and parallel
DP variant, DPSIZE , DPSUB, DPCCP , PDPSV A, and DPEGENERIC , with
respect to the different query topologies, different number of tables, and different
complexities of the cost function. Therefore, we randomly create queries based
on the specified topology and number of tables. Other parameters of the query,
such as size of the tables or selectivity of join operators, were assigned randomly.
For our evaluation, we used a different maximal number of tables for different
topologies. Since clique queries are complex to optimize, we only used maximal
15 tables to achieve reasonable execution times. For the other topologies, we used
maximal 20 tables. For each combination of DP variant, topology, and number
of tables, and complexity of the cost function, we ran the optimization process
30 times and aggregated the measures using the average.

As cost function, we used a simple cost function, estimating the cost only
based on operator cardinality [6]. In order to achieve different runtimes of the
cost function, we simulated complex cost functions by adding additional overhead
to the used simple cost function. The use of additional overhead instead of a
different cost function, ensures that in both setups the same calculations are
performed and, hence, the optimization is not altered. Hereby, the runtimes of
the different DP variants are comparable to the reported runtimes of previous
publications for both types of cost functions, simple [6] and complex [2,3].

As evaluation system, we used a system with the operating system CentOS 7,
Intel Xeon CPU E5–2630v3 (8 cores each with 2,4 GHz) and 1 TB main memory.

Furthermore. since the used CPU provides 8 cores, we evaluated the parallel
DP variants PDPSV A and DPEGENERIC with a varying number of threads
(1–8 threads). For the PDPSV A, we used the allocation scheme round-robin inner
and SVAs as it provided the best results in the initial evaluation [2]. For similar
reasons, we used the grouping strategy SLQS combined with the enumeration of
DPCCP for DPEGENERIC [3].

3.2 Results

Linear and Cyclic Queries. In Fig. 2, we show the evaluation results for linear
queries using complex (left) and simple (right) cost functions.

For few tables (complex: 12, simple: 8), the sequential DP variants, DPSIZE ,
DPSUB , and DPCCP , show a similar performance. Only for a larger number
of tables, the execution time of DPSUB increases significantly, based on the
enumeration of all possible not only the needed join pairs, see Lines 3–4 of
Algorithm 2.

The parallel DP variants PDPSV A and DPEGENERIC have an initialization
overhead and provide no significant benefit. Only in case of a large number tables
and a complex cost function PDPSV A is superior to the sequential DP variants.
In this case, PDPSV A reduces the execution time by 52% for 20 tables. Although
a speedup is achieved, PDPSV A uses 8 threads in contrast to 1 by the best
sequential variant DPCCP . Hence, the parallelism of PDPSV A is still limited.

306 A. Meister and G. Saake

2 4 6 8 10 12 14 16 18 20

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Complex

2 4 6 8 10 12 14 16 18 20

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Simple

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

DPSIZE DPSUB DPCCP PDPSV A DPEGENERIC

Fig. 2. Runtime and speedup of parallel dynamic programming variants for linear
queries. A simple cost function leads to a reduced parallelism compared to a complex
cost function.

Hereby, the main problem is that within linear queries, only few possible join
pairs need to be evaluated, but each thread needs to be initialized. Complex
cost functions can partially hide this initialization overhead, but simple cost
functions show that the initialization overhead of an increased number of threads
can reduce the efficiency of the optimization.

The limitation regarding the parallelism becomes even more obvious consid-
ering DPEGENERIC . In the DPEGENERIC approach another problem arises
besides the few number of join pairs: Resource contention. DPEGENERIC uses
only a single buffer to pass join pairs to the consumers, see Line 8 of Algorithm 2.
Hereby, not only a single join pair but a group of join pairs for an equivalent
solution is stored in one entry of the buffer. Based on the few number of join
pairs, less entries are available within the groups. Therefore, consumers finish
the evaluation of an equivalence class faster and need to access the consumer
buffer more frequently. The access to the consumer buffer needs to be serialized
to ensure the correctness of the optimization. Hence, consumers need to wait to
pull new equivalence classes from the buffer. The overhead of synchronizing the
buffer reduces the efficiency of the evaluation and even leads to a slowdown for

Cost-Function Complexity Matters 307

2 4 6 8 10 12 14 16 18 20

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Complex

2 4 6 8 10 12 14 16 18 20

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Simple

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

DPSIZE DPSUB DPCCP PDPSV A DPEGENERIC

Fig. 3. Runtime and speedup of parallel dynamic programming variants for star
queries. A simple cost function leads to a reduced parallelism compared to a complex
cost function only for DPEGENERIC .

simple cost functions. Similar to PDPSV A, a complex cost function can partially
hide the overhead of synchronization.

All DP variants show a similar performance for cyclic queries. Hence, we will
not report the evaluation results for cyclic queries.

Star Queries. In Fig. 3, we show the evaluation results for star queries using
complex (left) and simple (right) cost functions. Considering star queries, the
behavior of all DP variants is more homogeneous, although the runtimes of
approaches still differ. For a larger number of tables (complex: >12, simple: >8),
DPSIZE performs worse compared to the other sequential DP variants. The
reason is the additional overhead introduced by the evaluation of combining all
solutions containing a specific number of tables, see Lines 6–7 of Algorithm 1.
Hence, not only valid join pairs need to be evaluated, but also invalid join pairs.
DPSUB and DPCCP provide similar performance. Based on the enumeration
overhead of DPCCP , see Lines 3–6 of Algorithm 3, DPSUB performs better
for queries containing less queries. Using simple cost functions, the overhead of

308 A. Meister and G. Saake

2 4 6 8 10 12 14

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Complex

2 4 6 8 10 12 14

102

104

106

108

1010

10121012

#Tables

R
u
n
ti

m
e

(n
s)

Simple

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

#Threads

S
p
ee

d
u
p

DPSIZE DPSUB DPCCP PDPSV A DPEGENERIC

Fig. 4. Runtime and speedup of parallel dynamic programming variants for clique
queries. A simple cost function leads to a reduced parallelism compared to a complex
cost function.

evaluating invalid join pairs, see Lines 7–8 of Algorithm 2, introduces a significant
overhead. Therefore, DPCCP is superior to DPSUB with more than 9 tables.
Considering complex cost functions, the impact of this overhead is reduced,
because the ratio between overhead and runtime of the cost function is less.
Hence, considering complex cost functions, DPCCP is only superior for queries
with more than 18 tables.

The parallel variant PDPSV A shows a good parallel evaluation of join pairs.
Unfortunately, PDPSV A suffers from the same drawback as DPSIZE , the eval-
uation of invalid join pairs. Although the parallel evaluation can compensate
the additional overhead upto 17 queries. Afterwards the number of invalid join
pairs dominate, making the approach slower compared to the sequential app-
roach DPCCP . Since only valid join pairs need to be evaluated considering
DPEGENERIC , DPEGENERIC can ensure an efficient optimization with com-
plex cost functions, leading to a speedup of upto 5.7 for 20 tables.

Considering simple cost functions, the execution of the parallel DP variants
PDPSV A and DPEGENERIC differ compared to complex cost functions. Based
on the overhead of initialization and parallelism, and the evaluation of invalid

Cost-Function Complexity Matters 309

join pairs, PDPSV A provide no benefit to a sequential evaluation. Similar to
linear queries, DPEGENERIC suffers from the synchronization overhead of the
buffer, limiting the parallelism of this approach considering simple cost functions.
Therefore, the sequential approach DPCCP is faster than the parallel variant
DPEGENERIC with 8 threads.

Clique Queries. In Fig. 4, we show the evaluation results for clique queries
using complex (left) and simple (right) cost functions. In contrast to the other
topologies, the main bottleneck for clique queries is the evaluation of valid join
pairs. The additional overhead of enumerating valid join pairs (DPCCP), enumer-
ating all possible join pairs (DPSUB), or evaluating invalid join pairs (DPSIZE)
is negligible. Hence, all sequential DP variants perform similar.

The parallel DP variants PDPSV A and DPEGENERIC show a similar behav-
ior. In contrast to the other topologies, in clique queries, enough computa-
tions are available for a parallel evaluation. Hence, for both complex and
simple cost functions the parallel DP variants provide a benefit compared to
the sequential DP variants (Speedup of upto 6 for 20 tables). Nevertheless,
considering simple cost functions, both parallel DP variants PDPSV A and
DPEGENERIC show a reduced parallelism, based on the already discussed
issues, overhead of parallelism and resource contention. Hereby, the reduction
of parallelism of DPEGENERIC is greater compared to PDPSV A. Nevertheless,
since DPEGENERIC only needs to evaluate valid join pairs, DPEGENERIC pro-
vides a better performance compared to PDPSV A.

3.3 Discussion

In our evaluation, we showed that existing parallelization strategies of DP
highly depends on the runtime of the cost functions. For complex cost func-
tions, in most of the cases, parallelism provides an advantage compared to
the sequential evaluation. In contrast to previous evaluations, we could even
observe a small advantage for simple optimization problems, such as linear or
cyclic queries. However, this changes with simple cost functions. Using simple
cost functions, in most of the cases, existing parallel DP variants cannot pro-
vide any benefits for many optimization problems. Only for clique queries with
a larger number of tables, the parallel optimization provide an advantage.

Although the presented evaluation results are comparable to the results of
previous evaluations with respect to the used cost function, we show that the
applicability of the parallelization highly depends on the used cost function.
Hence, for join-order optimization, there is neither an optimal sequential nor
optimal parallel variant of DP. To select a suitable variant several factors need
to be considered: complexity of cost functions, query topologies, and number
of tables contained in queries. Depending on these factors different DP variants
provide advantages and disadvantages. The parallel DP variants ensure an effi-
cient join-order optimization for queries with a larger number of tables using
complex cost functions or complex topologies, such as clique queries. For the
optimization of queries with few tables or simple cost functions, sequential DP
variants are superior to their parallel counterparts.

310 A. Meister and G. Saake

4 Conclusion

For DP for join-order optimization several sequential and parallel variants exist.
We showed that the benefit of the parallel DP variants not only depends on
the characteristics of queries, such as query topology and number of tables, but
also highly depends on the complexity of the used cost function. For simple
optimization problems, such as few tables, simple cost function, or simple query
topologies, existing parallel DP variants provide no benefit compared to suitable
sequential DP variants. Only for complex optimization problems, such as a larger
number of tables, complex cost functions, or complex query topologies, existing
parallel DP variants provide an advantage.

Acknowledgments. This work was partially funded by the DFG (grant no.: SA
465/50-1).

References

1. Fong, Z.: The design and implementation of the POSTGRES query optimizer.
Technical report, University of California, Berkeley, August 1986

2. Han, W.S., Kwak, W., Lee, J., Lohman, G.M., Markl, V.: Parallelizing query opti-
mization. PVLDB 1(1), 188–200 (2008)

3. Han, W.S., Lee, J.: Dependency-aware reordering for parallelizing query optimiza-
tion in multi-core CPUs. In: SIGMOD, pp. 45–58. ACM (2009)

4. Leis, V., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann, T.: How
good are query optimizers, really? PVLDB 9(3), 204–215 (2015)

5. Moerkotte, G., Fender, P., Eich, M.: On the correct and complete enumeration of
the core search space. In: SIGMOD, pp. 493–504. ACM (2013)

6. Moerkotte, G., Neumann, T.: Analysis of two existing and one new dynamic pro-
gramming algorithm for the generation of optimal bushy join trees without cross
products. In: VLDB, pp. 930–941. VLDB Endowment (2006)

7. Moerkotte, G., Scheufele, W.: Constructing optimal bushy processing trees for join
queries is NP-hard. Technical report Informatik-11/1996 (1996)

8. Neumann, T.: Engineering high-performance database engines. PVLDB 7(13),
1734–1741 (2014)

9. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
path selection in a relational database management system. In: SIGMOD, pp. 23–
34. ACM (1979)

10. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimiza-
tion for the join ordering problem. VLDB J. 6(3), 191–208 (1997)

11. Vance, B., Maier, D.: Rapid bushy join-order optimization with cartesian products.
In: SIGMOD, pp. 35–46. ACM (1996)

Instant Restore After a Media Failure

Caetano Sauer1(B), Goetz Graefe2, and Theo Härder1

1 TU Kaiserslautern, Kaiserslautern, Germany
{csauer,haerder}@cs.uni-kl.de

2 Google, Madison, WI, USA
goetzg@google.com

Abstract. Media failures usually leave database systems unavailable for
several hours until recovery is complete, especially in applications with
large devices and high transaction volume. Previous work introduced a
technique called single-pass restore, which increases restore bandwidth
and thus substantially decreases time to repair. Instant restore goes fur-
ther as it permits read/write access to any data on a device undergoing
restore—even data not yet restored—by restoring individual data seg-
ments on demand. Thus, the restore process is guided primarily by the
needs of applications, and the observed mean time to repair is effectively
reduced from several hours to a few seconds.

This paper presents an implementation and evaluation of instant
restore. The technique is incrementally implemented on a system starting
with the traditional ARIES design for logging and recovery. Experiments
show that the transaction latency perceived after a media failure can be
cut down to less than a second. The net effect is that a few “nines”
of availability are added to the system using simple and low-overhead
software techniques.

1 Introduction

Advancements in hardware technology have significantly improved the perfor-
mance of database systems over the last decade, allowing for throughput in the
order of thousands of transactions per second and data volumes in the order of
petabytes. Availability, on the other hand, has not seen drastic improvements,
and the research goal postulated by Jim Gray in his ACM Turing Award Lecture
of a system “unavailable for less than one second per hundred years” [12] remains
an open challenge. Improvements in reliable hardware and data center technol-
ogy have contributed significantly to the availability goal, but proper software
techniques are required to not only avoid failures but also repair failed systems
as quickly as possible. This is especially relevant given that a significant share
of failures is caused by human errors and unpredictable defects in software and
firmware, which are immune to hardware improvements [11]. In the context of
database logging and recovery, the state of the art has unfortunately not changed
much since the early 90’s, and no significant advancements were achieved in the
software front towards the availability goal.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 311–325, 2017.
DOI: 10.1007/978-3-319-66917-5 21

312 C. Sauer et al.

Instant restore is a technique for media recovery that drastically reduces
mean time to repair by means of simple software techniques. It works by extend-
ing the write-ahead logging mechanism of ARIES [19] and, as such, can be
incrementally implemented on the vast majority of existing database systems.
The key idea is to introduce a different organization of the log archive to enable
efficient on-demand, incremental recovery of individual data pages. This allows
transactions to access recovered data from a failed device orders of magnitude
faster than state-of-the-art techniques, all of which require complete restoration
of the entire device before access to the application’s working set is allowed.

0

4

8

12

16

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t
(k
tp

s)

Time (minutes)

erotser-tsoperuliaf-erp

↓Media failure

Single-pass restore
Instant restore (small buffer)
Instant restore (large buffer)

Fig. 1. Effect of instant restore (Color figure online)

The problem of inef-
ficient media recovery
in state-of-the-art tech-
niques, including ARIES
and its optimizations,
can be attributed to
two major deficiencies.
First, the media recovery
process has a very ineffi-
cient random access pat-
tern, which in practice
encourages excessive redundancy and frequent incremental backups—solutions
that only alleviate the problem instead of eliminating it. The second deficiency
is that the recovery process is not incremental and requires full recovery before
any data can be accessed—on-demand schedules are not possible and there is
no prioritization scheme to make most needed data available earlier. Previous
work addressed the first problem with a technique called single-pass restore [24],
while this paper focuses on the second one.

The effect of instant restore is illustrated in Fig. 1, where transaction through-
put is plotted over time and a media failure occurs after 10 min. In single-
pass restore, as in ARIES, transaction processing halts until the device is fully
restored (the red line in the chart), while instant restore continues processing
transactions, using them to guide the restore process (blue and green lines). In
a scenario where the application working set fits in the buffer pool (blue line),
there is actually no visible effect on transaction throughput.

In the remainder of this paper, Sect. 2 describes related work, both previous
work leading to the current design as well as competing approaches. Then, Sect. 3
describes the instant restore technique. Finally, Sect. 4 presents an empirical
evaluation, while Sect. 5 concludes this paper.

A high-level description of instant restore was previously published in a book
chapter [6] among other instant recovery techniques. The additional contribution
here is a more detailed discussion of the design and implementation aspects as
well as an empirical evaluation of the technique with an open-source prototype.

Instant Restore After a Media Failure 313

2 Related Work

2.1 Failure Classes and Assumptions

Database literature traditionally considers three classes of database failures [14],
which are summarized in Table 1 (along with single-page failures, a fourth class to
be discussed in Sect. 2.5). In the scope of this paper, it is important to distinguish
between system and media failures, which are conceptually quite different in their
causes, effects, and recovery measures. System failures are usually caused by a
software fault or power loss, and what is lost—hence what must be recovered—is
the state of the server process in main memory; this typically entails recovering
page images in the buffer pool (i.e., “repeating history” [19]) as well as lists
of active transactions and their acquired locks, so that they can be properly
aborted. The process of recovery from system failures is called restart.

Table 1. Failure classes, their causes, and effects

Failure class Loss Typical cause Response

Transaction Single-transaction progress Deadlock Rollback

System Server process (in-memory state) Software fault, power loss Restart

Media Stored data Hardware fault Restore

Single page Local integrity Partial writes, wear-out Repair

Instant restart [6] is an orthogonal technique that provides on-demand, incre-
mental data access following a system failure. While the goals are similar, the
design and implementation of instant restore require quite different techniques.

In a media failure, which is the focus here, a persistent storage device fails but
the system might continue running, serving transactions that only touch data
in the buffer pool or on other healthy devices. If a system and media failures
happen simultaneously, or perhaps one as a cause of the other, their recovery
processes are executed independently, and, by recovering pages in the buffer
pool, the processes coordinate transparently.

The present work makes the same assumptions as most prior research on
database recovery. The log and its archive copy reside on “stable storage”, i.e.,
they are assumed to never fail. We consider failures on the database device only,
i.e., the permanent storage location of data pages. Recovery from such failures
requires a backup copy (possibly days or weeks old) of the lost device and all
log records since the backup was taken; these may reside either in the active
transaction log or in the log archive. The process of recovery from media failures
is called restore. The following sections briefly describe previous restore methods.

2.2 ARIES Restore

Techniques to recover databases from media failures were initially presented in
the seminal work of Gray [10] and later incorporated into the ARIES family

314 C. Sauer et al.

of recovery algorithms [19]. In ARIES, restore after a media failure first loads a
backup image and then applies a redo log scan, similar to the redo scan of restart
after a system failure. Figure 2 illustrates the process, which we now briefly
describe. After loading full and incremental backups into the replacement device,
a sequential scan is performed on the log archive and each update is replayed on
its corresponding page in the buffer pool. A global minLSN value (called “media
recovery redo point” by Mohan et al. [19]) is maintained on backup devices to
determine the begin point of the log scan.

Fig. 2. Random access pattern of ARIES restore

Because log records are
ordered strictly by LSN, pages
are read into the buffer pool in
random order, as illustrated
in the restoration of pages A
and B in Fig. 2. Furthermore,
as the buffer pool fills up,
they are also written in ran-
dom order into the replace-
ment device, except perhaps
for some minor degree of clus-
tering. As the log scan pro-
gresses, evicted pages might
be read again multiple times,
also randomly. This mecha-
nism is quite inefficient, espe-
cially for magnetic drives with high access latencies. Thus, it is no surprise that
multiple hours of downtime are required in systems with high-capacity drives
and high transaction rates [24].

Another fundamental limitation of the ARIES restore algorithm is that it is
not incremental, i.e., pages cannot be restored to their most up-to-date version
one-by-one and made available to running transactions incrementally. As shown
in the example of Fig. 2, the last update to page A may be at the very end
of the log; thus, page A remains out-of-date until almost the end of the log
scan. Some optimizations may alleviate this situation (e.g., reusing checkpoint
information), but there is no general mechanism for incremental restoration.
Furthermore, even if pages could somehow be released incrementally when their
last update is replayed, the hottest pages of the application working set are most
likely to be released only at the very end of the log scan, and probably not even
then, because they might contain updates of uncommitted transactions and thus
require subsequent undo. This leads to yet another limitation of this approach:
even if pages could be restored incrementally, there is no effective way to provide
on-demand restoration, i.e., to restore most important pages first.

Despite a variety of optimizations proposed to the basic ARIES algorithm
[19–21], none of them solves these problems in a general and effective manner.
In summary, all proposed techniques that enable earlier access to recovered data
items suffer from the same problem: early access is only provided for data for

Instant Restore After a Media Failure 315

which early access is not really needed—hot data in the application working set
is not prioritized and most accesses must wait for complete recovery.

Finally, industrial database systems that implement ARIES recovery suffer
from the same problems. IBM’s DB2 speeds up log replay by sorting log records
after restoring the backup and before applying the log records to the replace-
ment database [13]. While a sorted log enables a more efficient access pattern,
incremental and on-demand restoration is not provided. Furthermore, the delay
imposed by the offline sort may be as high as the total downtime incurred by the
traditional method. As another example, Oracle attempts to eliminate the over-
head of reading incremental backups by incrementally maintaining a full backup
image [22]. While this makes recovery slightly more efficient, it does not address
the deficiencies discussed earlier.

2.3 Replication

Given the extremely high cost of media recovery in existing systems, replication
solutions such as disk mirroring or RAID [2,3] are usually employed in practice
to increase mean time to failure. However, it is important to emphasize that,
from the database system’s perspective, a failed disk in a redundant array does
not constitute a media failure as long as it can be repaired automatically. Restore
techniques aim to improve mean time to repair whenever a failure occurs that
cannot be masked by lower levels of the system. Therefore, replication techniques
can be seen largely as orthogonal to media restore techniques as implemented in
database recovery mechanisms.

Nevertheless, a substantial reduction in mean time to repair, especially if done
solely with simple software techniques, opens many opportunities to manage the
trade-off between operational costs and availability. One option can be to main-
tain a highly-available infrastructure (with whatever costs it already requires)
while availability is increased by deploying software with more efficient recov-
ery. Alternatively, replication costs can be reduced (e.g., downgrading RAID-10
into RAID-5) while maintaining the same availability. Such level of flexibility,
with solutions tackling both mean time to failure and mean time to repair, are
essential in the pursuit of Gray’s availability goal [12].

2.4 In-Memory Databases

Early work on in-memory databases focused mainly on restart after a system
failure, employing traditional backup and log-replay techniques for media recov-
ery [4,16]. The work of Levi and Silberschatz [17] was among the first to consider
the challenge of incremental restart after a system failure. While an extension
of their work for media recovery is conceivable, it would not address the effi-
ciency problem discussed in Sect. 1. Thus, it would, in the best case and with a
more complex algorithm, perform no better than the algorithm discussed later
in Sect. 2.5.

Recent proposals for recovery on both volatile and non-volatile in-memory
systems usually ignore the problem of media failures, employing the unspecific

316 C. Sauer et al.

term “recovery” to describe system restart only [1,18,23]. Therefore, recovery
from media failures in modern systems either relies on the traditional tech-
niques or is simply not supported, employing replication as the only means
to maintain service upon storage hardware faults. As discussed above, while
relying on replication is a valid solution to increase mean time to failure, a
highly available system must also provide efficient repair facilities. In this aspect,
traditional database system designs—using ARIES physiological logging and
buffer management—provide more reliable behavior. Therefore, we believe that
improving traditional techniques for more efficient recovery with low overhead
on memory-optimized workloads is an important open research challenge.

2.5 Single-Page Repair

Single-page failures are considered a fourth class of database failures [8], along
with the other classes summarized in Table 1. It covers failures restricted to
a small set of individual pages of a storage device and applies online local-
ized recovery to that individual page instead of invoking media recovery on the
whole device. The single-page repair algorithm, illustrated in Fig. 3 (with backup
and replacement devices omitted for simplification), has two basic requirements:
first, the LSN of the most recent update of each page is known (i.e., the cur-
rent PageLSN value) without having to access the page; second, starting from
the most recent log record, the complete history of updates to a page can be
retrieved. The former requirement can be provided with a page recovery index—
a data structure mapping page identifiers to their most recent PageLSN value.
Alternatively, the current PageLSN can be stored together with the parent-
to-child node pointer in a B-tree data structure [9]. The latter requirement is
provided by per-page log record chains, which are straight-forward to maintain
using the PageLSN fields in the buffer pool.

Fig. 3. Single-page repair

In principle, single-page
repair could be used to
recover from a media failure,
by simply repairing each page
of the failed device individ-
ually. One advantage of this
technique is that it yields
incremental and on-demand
restore, addressing the sec-
ond deficiency of traditional
media recovery algorithms mentioned in Sect. 1. To illustrate how this would
work in practice, consider the example of Fig. 3. If the first page to be accessed
after the failure is A, it would be the first to be restored. Using information from
the page recovery index (which can be maintained in main memory or fetched
directly from backups), the last red log record on the right side of the diagram
would be fetched first. Then, following the per-page chain, all red log records
until minLSN would be retrieved and replayed in the backup image of page A,
thus yielding its most recent version to running transactions.

Instant Restore After a Media Failure 317

While the benefit of on-demand and incremental restore is a major advantage
over traditional ARIES recovery, this algorithm still suffers from the first defi-
ciency discussed in Sect. 1—namely the inefficient access pattern. The authors of
the original publication even foresee the application to media failures [8], argu-
ing that while a page is the unit of recovery, multiple pages can be repaired in
bulk in a coordinated fashion. However, the access pattern with larger restora-
tion granules would approach that of traditional ARIES restore—i.e., random
access during log replay. Thus, while the technique introduces a useful degree of
flexibility, it does not provide a unified solution for the two deficiencies discussed.

2.6 Single-Pass Restore

Our previous work introduced a technique called single-pass restore, which aims
to perform media recovery in a single sequential pass over both backup and log
archive devices [24]. Eliminating random access effectively addresses the first
deficiency discussed in Sect. 1. This is achieved by partially sorting the log on
page identifiers, using a stable sort to maintain LSN order within log records of
the same page. The access pattern is essentially the same as that of a sort-merge
join: external sort with run generation and merge followed by another merge
between the two inputs—log and backup in the media recovery case.

Fig. 4. Single-pass restore

The idea itself is as old
as the first recovery algo-
rithms (see Sect. 5.8.5.1 of
Gray’s paper [10]) and is
even employed in DB2’s “fast
log apply” [13]. However,
the key advantage of single-
pass restore is that the
two phases of the sorting
process—run generation and
merge—are performed inde-
pendently: runs are gener-
ated during the log archiving
process (i.e., moving log records from the latency-optimized transaction log
device into high-capacity, bandwidth-optimized secondary storage) with negligi-
ble overhead; the merge phase, on the other hand, happens both asynchronously
as a maintenance service and also during media recovery, in order to obtain a sin-
gle sorted log stream for recovery. Importantly, merging runs of the log archive
and applying the log records to backed-up pages can be done in a sequential
pass, similar to a merge join. The process is illustrated in Fig. 4. We refer to the
original publication for further details [24].

Having addressed the access pattern deficiency of media recovery algorithms,
single-pass restore still leaves open the problem of incremental and on-demand
restoration. Nevertheless, given its superiority over traditional ARIES restore (see
[6,24] for an in-depth discussion), it is a promising approach to use as starting

318 C. Sauer et al.

point in addressing the two deficiencies in a unified way. Therefore, as mentioned
in Sect. 1, single-pass restore is taken as the baseline for the present work.

3 Instant Restore

The main goal of instant restore is to preserve the efficiency of single-pass restore
while allowing more fine-granular restoration units (i.e., smaller than the whole
device) that can be recovered incrementally and on demand. We propose a gen-
eralized approach based on segments, which consist of contiguous sets of data
pages. If a segment is chosen to be as large as a whole device, our algorithm
behaves exactly like single-pass restore; on the other extreme, if a segment is
chosen to be a single page, the algorithm behaves like single-page repair.

This section starts by introducing the log data structure employed to provide
efficient access to log records belonging to a given segment or page; after that,
we present the restore algorithm based on this data structure.

3.1 Indexed Log Archive

In order to restore a given segment incrementally, instant restore requires efficient
access to log records pertaining to pages in that segment. In single-page repair,
such access is provided for individual pages, using the per-page chain among
log records [8]. As already discussed, this is not efficient for restoration units
much larger than a single page. Therefore, we build upon the partially sorted
log archive organization introduced in single-pass restore [24].

In instant restore, the partially sorted log archive is extended with an index.
The log archiving process sorts log records in an in-memory workspace and saves
them into runs on persistent storage. These runs must then be indexed, so that
log records of a given page or segment identifier can be fetched directly. Sorting
and indexing of log records is done online and without any interference on trans-
action processing, in addition to standard archiving tasks such as compression.

In an index lookup for instant restore, the set of runs to consider would be
restricted by the given minLSN (see Sect. 2.2) of the backup image, since runs
older than that LSN are not needed. Furthermore, Bloom filters can be appended
to each run to restrict this set even further. The result of the lookup in each
indexed run is then fed into a merge process that delivers a single stream of log
records sorted primarily by page identifier and secondarily by LSN. This stream
is then used by the restore algorithm to replay updates on backup segments.

Multiple choices exist for the physical data structure of the indexed log
archive. Ideally, the B-tree component of the indexing subsystem can be reused,
but there is an important caveat in terms of providing atomicity and durability
to this structure. A typical index relies on write-ahead logging, but that is not
an option for the indexed log archive because it would introduce a kind of self-
reference loop—updates to the log data structure itself would have to be logged
and used later on for recovery. This self-reference loop could be dealt with by
introducing special logging and recovery modes (e.g., a separate “meta”-log for

Instant Restore After a Media Failure 319

the indexed log archive), but the resulting algorithm would be too cumbersome.
In our prototype, we chose a simpler solution: each partition of the log archive
is maintained in its own read-only file; temporary shadow files are then used for
merges and appends. In this scheme, atomicity is provided by the file rename
operation, which is atomic in standard filesystems [5].

3.2 Restore Algorithm

When a media failure is detected, a restore manager component is initialized
and all page read and write requests from the buffer pool are intercepted by
this component. The diagram in Fig. 5 illustrates the interaction of the restore
manager with the buffer pool and all persistent devices involved in the restore
process: failed and replacement devices, log archive, and backup. For reasons
discussed in previous work [24], incremental backups are made obsolete by the
partially sorted log archive; thus, the algorithm performs just as well with full
backups only. Nevertheless, incremental backups can be easily incorporated, and
the description below considers a single full backup without loss of generality.

Failed device Replacement device

Segments

Buffer
pool Bitmap

Scheduler

Restore

Backup

Log archive

1. Segment
request

2b. (Bit = 0)
Enqueue

2a. (Bit = 1)
Read page

3. Next
segment

5. Probe

4. Fetch6. Write

7. Set bit

Restore manager

Fig. 5. Instant restore flow chart

In the following discus-
sion, the numbers in paren-
theses refer to the num-
bered steps in Fig. 5. The
restore manager keeps track
of which segments were
already restored using a
segment recovery bitmap,
which is initialized with
zeros. When a page access
occurs, the restore manager
first looks up its segment in
the bitmap (1). If set to one,
it indicates that the segment
was already restored and can be accessed directly on the replacement device (2a).
If set to zero, a segment restore request is placed into a restore scheduler (2b),
which coordinates the restoration of individual segments (3).

To restore a given segment, an older version is first fetched from the backup
directly (4). This is in contrast to ARIES restore, which first loads entire backups
into the replacement device and then reads pages from there [19]. This has the
implication that backups must reside on random-access devices (i.e., not on tape)
and allow direct access to individual segments, which might require an index if
backup images are compressed. These requirements, which are also present in
single-page repair [8], seem quite reasonable given the very low cost per byte
of current high-capacity hard disks. For moderately-sized databases, it is even
advisable to maintain log archive and backups on flash storage.

While the backed-up image of a segment is loaded, the indexed log archive
data structure is probed for the log records pertaining to that segment (5);
the results of each probe are merged to form a single sorted log stream.

320 C. Sauer et al.

Then, log replay is performed to bring the segment to its most recent state,
after which it can be written back into a replacement device (6).

Finally, once a segment is restored, the bitmap is updated (7) and all pending
read and write requests can proceed. Typically, a requested page will remain in
the buffer pool after its containing segment is restored, so that no additional
I/O access is required on the replacement device.

Fig. 6. Instant restore

All read and write oper-
ations described above—log
archive index probe, segment
fetch, and segment write after
restoration—happen asynchro-
nously with minimal coordi-
nation. The read operations
are essentially merged index
scans—a very common pattern
in query processing. The write
of a restored segment is also
easily made asynchronous, whereby the only requirement is that marking a seg-
ment as restored on the bitmap, and consequently enabling access by waiting
threads, be done by a callback function after completion of the write.

To illustrate the access pattern of instant restore, similarly to the diagrams
in Sect. 2, Fig. 6 shows an example scenario with three log archive runs and
two pages, A and B, belonging to the same segment. The main difference to
the previous diagrams is the segment-wise, incremental access pattern, which
delivers the efficiency of pure sequential access with the responsiveness of on-
demand random reads.

Using this mechanism, user transactions accessing data either in the buffer
pool or on segments already restored can execute without any additional delay,
whereby the media failure goes completely unnoticed. Access to segments not
yet restored are used to guide the restore process, triggering the restoration
of individual segments on demand. As such, the time to repair observed by
transactions accessing data not yet restored is multiple orders of magnitude
lower than the time to repair the whole device. Furthermore, time to repair
observed by an individual transaction is independent of the total capacity of
the failed device. This is in contrast to previous methods, which require longer
downtime for larger devices.

4 Experiments

Our experimental evaluation covers three main measures of interest during recov-
ery from a media failure: restore latency, restore bandwidth, and transaction
throughput. Before presenting the empirical analysis, a brief summary of our
experimental environment is provided.

Instant Restore After a Media Failure 321

4.1 Environment

We implemented instant restore in a fork of the Shore-MT storage manager [15]
called Zero. The code is available as open source1. The workload consists of the
TPC-C benchmark as implemented in Shore-MT, but adapted to use the Foster
B-tree [7] data structure for both table and index data.

All experiments were performed on dual six-core CPUs with HyperThread-
ing. The system has 100 GB of high-speed RAM and several Samsung 840 Pro
250 GB SSDs. The operating system is Ubuntu Linux 14.04 with Kernel 3.13.0-68
and all code is compiled with gcc 4.8 and -O3 optimization.

The experiments all use the same workload, with media failure and recovery
set up as follows. Initial database size is 100 GB, with full backup and log archive
of the same size—i.e., recovery starts from a full backup of 100 GB and must
replay roughly the same amount of log records. Log archive runs are a little over
1.5 GB in size, resulting in 64 inputs in the restore merge logic. All persistent
data is stored on SSDs and 24 worker threads are used at all times.

4.2 Restore Latency and Bandwidth

Our first experiment evaluates restore latency by analyzing the total latency of
individual transactions before and after a media failure. The hypothesis under
test is that average transaction latency immediately following a media failure is
in the order of a few seconds or less, after which is gradually decreases to the
pre-failure latency. Furthermore, with larger memory, i.e., where a larger portion
of the working set fits in the buffer pool, average latency should remain at the
pre-failure level throughout the recovery process.

The results are shown in Fig. 7a. After ten minutes of normal processing,
during which the average latency is 1–2 ms, a media failure occurs. The imme-
diate effect is that average transaction latency spikes up (to about 100 ms in the
buffer pool size of 30 GB) but then decreases linearly until pre-failure latency is
reestablished. For the largest buffer pool size of 45 GB, there is a small pertur-
bation in the observed latency, but the average value seems to remain between 1
and 2 ms. From this, we can conclude that for any buffer pool size above 45 GB,
a media failure goes completely unnoticed.

These results successfully confirm our hypothesis: average latency of a trans-
action accessing failed media is reduced from several minutes to 100 ms, which
corresponds to three orders of magnitude or three additional 9’s of availability.
Note that the average restore latency is independent of total device capacity,
and thus of total recovery time. Therefore, the availability improvement could
be in the order of four or five orders of magnitude in certain cases. This would
be expected, for instance, for very large databases (in the order of terabytes)
stored on relatively low-latency devices. In these cases, the gap between a full
sequential read and a single random read—hence, between mean time to repair
with single-pass restore and with instant restore—is very pronounced.

1 http://github.com/caetanosauer/zero.

http://github.com/caetanosauer/zero

322 C. Sauer et al.

(a) Average txn. latency

1

2

4

8

16

32

64

128

0 5 10 15 20 25 30 35

L
a
te

n
cy

(m
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

(b) Restore bandwidth

0

50

100

150

200

250

0 5 10 15 20

B
a
n
d
w

id
th

(M
B

/
s)

Time (min)

45 GB
40 GB
35 GB
30 GB

Fig. 7. Transaction latency and restore bandwidth observed with instant restore

Next, we evaluate restore bandwidth for the same experiment. The hypoth-
esis here is that, in general, restore bandwidth gradually increases throughout
the recovery process until it reaches the bandwidth of single-pass restore. From
these two general behaviors, two special cases are, again, the small and large
buffer pools. In the former, bandwidth may not reach single-pass speeds due to
prioritization of low latency for the many incoming requests (recall that each
buffer pool miss incurs a read on the replacement device, which, in turn, incurs
a restore request). In the latter case, restore bandwidth should be as large as
single-pass restore.

Figure 7b shows the results of this experiment for four buffer pool sizes. For
the smallest buffer pool of 30 GB, restore bandwidth remains roughly constant in
the first 15 min. This indicates that during this initial period, most segments are
restored individually in response to an on-demand request resulting from a buffer
pool miss. As the buffer size increases, the rate of on-demand requests decreases
as restore progresses, resulting in more opportunities for multiple segments being
restored at once. In all cases, restore bandwidth gradually increases throughout
the recovery process, reaching the maximum speed of 240 MB/s towards the end
in the larger buffer pool sizes.

4.3 Transaction Throughput

The next experiments evaluate how media failure and recovery impact transac-
tion throughput with instant restore. We take the same experiment performed
in the previous section and look at transaction throughput for each buffer pool
size individually. As instant restore progresses, transactions continue to access
data in the buffer pool, triggering restore requests for each page miss. Therefore,
we expect that the larger the buffer pool is (i.e., more of the working set fits into
main memory), the less impact a media failure has on transaction throughput.
This effect was already presented in the diagram of Fig. 1—the present section
analyzes that in more detail.

Figure 8 presents the results. In the four plots shown, transaction throughput is
measured with the red line on the left y-axis. At minute 10, a media failure occurs,
after which a green straight line shows the pre-failure average throughput. The
number of page reads per second is shown with the blue line on the right y-axis.

Instant Restore After a Media Failure 323

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s

(×
1
0
0
)

Time (min)

Buffer size = 20 GB

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50 55

1

2

3

4

5

6

7

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 25 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45 50
100

101

102

103

104

105
T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 35 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45
100

101

102

103

104

105

T
ra

n
sa

ct
io

n
th

ro
u
g
h
p
u
t

(k
tp

s)

P
a
g
e

re
a
d
s/

se
c

Time (min)

Buffer size = 50 GB

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40
100

101

102

103

104

105

Throughput Page reads Pre-failure throughput

Fig. 8. Impact of instant restore on txn. Throughput at varying buffer pool sizes.

Moreover, total recovery time, which also varies depending on the buffer pool size,
is also shown as the shaded interval on the x-axis.

The goal of instant restore in this experiment is to re-establish the pre-failure
transaction throughput (i.e., the dotted green line) as soon as possible. Similar
to the evaluation on previous experiments, our hypothesis is that this occurs
sooner the larger the buffer pool is. The results show that for a small buffer
pool of 20 GB, transaction throughput drops substantially, and it only regains
the pre-failure level at the very end of the recovery process. As the buffer size
is increased to 25 and then 35 GB, pre-failure throughput is re-established at
around minute 7, i.e., 1/3 of the total recovery time. Lastly, for the largest buffer
pool of 50 GB, the media failure does not produce any noticeable slowdown, as
predicted in our hypothesis.

5 Conclusions

Instant restore improves perceived mean time to repair and thus database avail-
ability in the presence of media failures. We identified two main deficiencies
with traditional recovery techniques, such as the ARIES design [19]: (i) media
recovery is very inefficient due to its random access pattern on database pages,
which means that time to repair is unacceptably long; and (ii) data on a failed
device cannot be accessed before recovery is completed. The first deficiency was
addressed with single-pass restore [24], which introduces a partial sort order on
the log archive, eliminating the random access pattern of log replay.

324 C. Sauer et al.

The second deficiency is addressed with the instant restore technique, which
was first described in earlier work [6] and discussed in more detail, implemented,
and evaluated in this paper. By generalizing single-pass restore and other recov-
ery methods such as single-page repair, instant restore is the first media recovery
method to effectively eliminate the two deficiencies discussed. In comparison with
traditional ARIES media restore, instant restore delivers not only the benefits
of single-pass restore (i.e., substantially higher bandwidth and therefore shorter
recovery time), but also much quicker access (e.g., seconds instead of hours) to
the application working set after a failure.

References

1. Arulraj, J., Pavlo, A., Dulloor, S.: Let’s talk about storage & recovery methods for
non-volatile memory database systems. In: Proceedings of SIGMOD, pp. 707–722
(2015)

2. Bitton, D., Gray, J.: Disk shadowing. In: Proceedings of VLDB, pp. 331–338 (1988)
3. Chen, P.M., et al.: RAID: high-performance, reliable secondary storage. ACM Com-

put. Surv. 26(2), 145–185 (1994)
4. Eich, M.H.: A classification and comparison of main memory database recovery

techniques. In: Proceedings of ICDE, pp. 332–339 (1987)
5. GLIBC: The GNU C Library Reference Manual (2014), http://www.gnu.org/

software/libc/manual/html node/Renaming-Files.html. Accessed 06 Oct 2014
6. Graefe, G., Guy, W., Sauer, C.: Instant Recovery with Write-Ahead Logging: Page

Repair, System Restart, Media Restore, and System Failover, 2nd edn. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers (2016)

7. Graefe, G., Kimura, H., Kuno, H.A.: Foster B-trees. ACM Trans. Database Syst.
37(3), 17 (2012)

8. Graefe, G., Kuno, H.A.: Definition, detection, and recovery of single-page failures,
a fourth class of database failures. PVLDB 5(7), 646–655 (2012)

9. Graefe, G., Kuno, H.A., Seeger, B.: Self-diagnosing and self-healing indexes. In:
Proceedings of DBTest, p. 8 (2012)

10. Gray, J.N.: Notes on data base operating systems. In: Bayer, R., Graham, R.M.,
Seegmüller, G. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer,
Heidelberg (1978). doi:10.1007/3-540-08755-9 9

11. Gray, J.: Why do computers stop and what can be done about it? In: Symposium
on Reliability in Distributed Software and Database Systems, pp. 3–12 (1986)

12. Gray, J.: What next?: a dozen information-technology research goals. J. ACM
50(1), 41–57 (2003)

13. Haderle, D.J., Majithia, T.: Fast log apply, US Patent 6,289,355, 11 September
2001

14. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4), 287–317 (1983)

15. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.: Shore-MT: a
scalable storage manager for the multicore era. In: Proceedings of EDBT, pp. 24–
35 (2009)

16. Lehman, T.J., Carey, M.J.: A recovery algorithm for a high-performance memory-
resident database system. In: Proceedings of SIGMOD, pp. 104–117 (1987)

17. Levy, E., Silberschatz, A.: Incremental recovery in main memory database systems.
IEEE Trans. Knowl. Data Eng. 4(6), 529–540 (1992)

http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html
http://www.gnu.org/software/libc/manual/html_node/Renaming-Files.html
http://dx.doi.org/10.1007/3-540-08755-9_9

Instant Restore After a Media Failure 325

18. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory
OLTP recovery. In: Proceedings of ICDE, pp. 604–615 (2014)

19. Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: ARIES: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Trans. Database Syst. 17(1), 94–162 (1992)

20. Mohan, C., Narang, I.: An efficient and flexible method for archiving a data base.
SIGMOD Rec. 22(2), 139–146 (1993)

21. Mohan, C., Treiber, K., Obermarck, R.: Algorithms for the management of remote
backup data bases for disaster recovery. In: Proceedings of ICDE, pp. 511–518
(1993)

22. Oracle Corporation: RMAN Incremental Backups, Oracle Database Documenta-
tion 10g, Sect. 4.4 (2015)

23. Oukid, I., et al.: SOFORT: a hybrid SCM-DRAM storage engine for fast data
recovery. In: Proceedings of DaMoN, pp. 8:1–8:7 (2014)

24. Sauer, C., Graefe, G., Härder, T.: Single-pass restore after a media failure. In:
Proceedings of BTW. LNI, vol. 241, pp. 217–236 (2015)

Rethinking DRAM Caching for LSMs
in an NVRAM Environment

Lucas Lersch1,2(B), Ismail Oukid1,2, Ivan Schreter2, and Wolfgang Lehner1

1 TU Dresden, Dresden, Germany
{lucas.lersch,i.oukid}@sap.com, wolfgang.lehner@tu-dresden.de

2 SAP SE, Walldorf, Germany
ivan.schreter@sap.com

Abstract. The rise of NVRAM technologies promises to change the way
we think about system architectures. In order to fully exploit its advan-
tages, it is required to develop systems specially tailored for NVRAM
devices. Not only this imposes great challenges, but also developing full
system architectures from scratch is undesirable in many scenarios due
to prohibitive development costs. Instead, we analyze in this paper the
behavior of an existing log-structured persistent key-value store, namely
LevelDB, when run on top of an emulated NVRAM device. We investi-
gate initial opportunities for improvement when adapting a system tai-
lored for HDD/SSDs to run on top of an NVRAM environment. Fur-
thermore, we analyze the behavior of the DRAM caching components of
LevelDB and whether more suitable caching policies are required.

Keywords: Log-structured merge-tree · Persistent memory · Caching ·
Storage

1 Introduction

For some years already, NVRAM technologies have been announced as the next
evolution step for persistent storage. These devices are expected to offer laten-
cies much closer to those of DRAM, while providing higher storage capacity.
Furthermore, even if accessible as a block device through the file system layer,
these non-volatile memories are byte-addressable and can be directly accessed
by the processor through its caches. While more convenient, the persistence
aspect makes it non-trivial to develop systems that directly access NVRAM
the same way as DRAM while leveraging its non-volatility; data consistency,
persistent memory leaks, and partial writes are some of the challenges to be
considered. The focus of this work is to analyze caching trade-offs involved in
a hybrid DRAM-NVRAM environment. We take a log-structured merge-tree
system (LSM) [14] as a case of study and investigate its behavior running on
NVRAM. Not only LSMs are in the core of many modern systems, but their
architecture handle reads and writes separately. This separation is particularly
interesting, as it enables an analysis of the impact of caching in read and write
operations in isolation.
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 326–340, 2017.
DOI: 10.1007/978-3-319-66917-5 22

Rethinking DRAM Caching for LSMs 327

In this work, we put LevelDB as an example of an LSM system on top
of an emulated NVRAM device. LevelDB is designed to make efficient use of
HDDs/SSDs. While a block device driver can be easily wrapped around NVRAM
to make it look like an HDD/SSD, this does not exploit its full potential. There-
fore, the first contribution of this work is the design of a persistent memory
environment for LevelDB, named pmemenv, to enable a more efficient manage-
ment of persistent storage at a cache-line granularity. We consider that this app-
roach offers a good compromise, as we are adapting an existing system instead
of proposing a completely new architectural design or relaying all storage man-
agement to general purpose file systems originally designed for block devices.

While many file systems support Direct Access (DAX) [3,19] to bypass the
page cache when accessing NVRAM, most database systems implement their
own cache at the application level. Since DRAM will still have a lower latency
than NVRAM, the second contribution of this work is to investigate if better
performance can be achieved by using DRAM for caching in LevelDB.

The remaining of the paper is organized as follows: Sect. 2 presents the
required background. Section 3 covers related works. Section 4 describes archi-
tectural details of LSMs and LevelDB. Section 5 introduces the implementa-
tion of pmemenv. Section 6 discusses caching policies better suited for NVRAM.
Section 7 presents an experimental analysis. Finally, Sect. 8 concludes the paper.

2 Background

The Storage Networking Industry Association (SNIA) [18] defines that NVRAM
devices should be managed by an NVRAM-aware file system which supports
direct access. In order to acquire direct access via load/store semantics, the user
application has to create a file and memory-map it to its virtual memory space,
creating a persistent memory pool. The direct access provided by the file system
guarantees that operations are done in the persistent memory pool without any
sort of DRAM caching.

However, when dealing with load/store operations, one must consider any
instruction re-ordering that might be introduced by the compiler or the proces-
sor. The non-volatility of NVRAM makes instruction re-ordering critical, as, in
case of a system failure, it might result in problems such as loss of data consis-
tency, partial writes, and persistent memory leaks. To avoid that, applications
have to be carefully designed to enforce a proper durability order of store instruc-
tions. This can be currently achieved with the help of hardware instructions such
as SFENCE, CLFLUSH, and non-temporal stores. SFENCE guarantees that all
preceding store-to-memory instructions have been executed. CLFLUSH evicts a
cache line and writes its content to memory. Non-temporal stores ensure that
data is written directly to memory, bypassing the processor cache. Intel has also
announced the CLFLUSHOPT and CLWB instructions to enhance performance
over CLFLUSH: CLFLUSHOPT is ordered with a smaller set of memory traf-
fic, allowing multiple cache lines to be flushed in parallel within a single logical
processor’s instruction stream, and CLWB writes back a cache line to memory,
without invalidating it, making future reads and writes much faster.

328 L. Lersch et al.

Furthermore, a persistent memory pool might be memory mapped to a dif-
ferent virtual memory space at restart time. Therefore, an application accessing
NVRAM through this interface must support persistent pointers [15] to keep
track of its persistent allocated memory regions. Finally, in order to avoid partial
writes, the application should consider that, while the unit of transfer between
the processor and NVRAM is a cache line, durable atomicity of writes is only
guaranteed at a smaller granularity (8 Bytes on Intel x86 architectures).

In order to guarantee a certain level of consistency, database systems require
careful control of when data is written to persistent storage. In an NVRAM sce-
nario, even if this level of control can be achieved with the aid of the aforemen-
tioned hardware instructions, these introduce additional overhead and complex-
ity. In this context, even if NVRAM provides fast random access, log-structured
systems are still interesting for the following reasons: First, in contrast to update-
in-place systems, maintaining consistency and atomicity of a log-structured write
is simpler, as only the tail of the log is updated to reflect the operation, thus
avoiding partial writes. Second, it is possible to employ non-temporal stores to
bypass the CPU cache and write directly to NVRAM, avoiding operations such
as CLFLUSH. Third, persistent log-structured key-value stores, such as LevelDB
and RocksDB, aim at reducing the amount of data written to persistent stor-
age (write amplification). This is even more appealing considering that NVRAM
supports a limited number of writes.

We take the LSM as an example of a log-structured system to analyze its
behavior on NVRAM. The LSM was initially proposed to improve write perfor-
mance of update-in-place data structures (e.g., B+Tree) in HDDs. The write-
optimized nature of LSMs makes them appealing to cloud systems that expe-
rience high write and data injection rates. Systems that must ingest an event
log and query the ingested data with acceptable response time are common
examples. The popularity of LSMs increased following the trend of Google’s
Bigtable [9]. Other systems that implement a similar LSM-based architecture
at the storage layer are: HBase [2], Cassandra [1], Riak [6], LevelDB [4], and
RocksDB [7]. We use LevelDB since it is a smaller, simpler, and easier-to-modify
system.

3 Related Work

A significant amount of research has been conducted in the past years on
NVRAM technologies. It is still unclear which role such devices will to play
in the storage hierarchy [8]. Nevertheless, an assumption considered by the vast
majority of research is that DRAM will keep co-existing with NVRAM in hybrid
environments. In the following, we highlight approaches closely related to this
paper.

Pelley et al. [16] analyze the behavior of Shore-MT, an update-in-place stor-
age manager developed for HDDs, when running on an NVRAM device. The
authors investigate the buffering components and the overhead of re-ordering
writes in different recovery algorithms. Dulloor et al. [10] presented PMFS, a

Rethinking DRAM Caching for LSMs 329

lightweight file system to manage files at the user-space level, avoiding going
through the block layer and the page cache of the operating system. Also, the
ext4 file system was extended with Direct Access (DAX) capabilities to bypass
the operating system cache to better support NVRAM devices. Xu et al. [20]
present a log-structured file system adapted to make efficient use of hybrid envi-
ronments and exploit the fast random access of NVRAM.

More recently, Li et al. [13] investigated adapting RocksDB to NVRAM.
They aim at improving the recovery time of RocksDB by replacing the votatile
MemTable by a persistent one, thus avoiding any logging for durability. Further-
more, they also analyze the caching behavior when having NVRAM in between
DRAM and SSDs in the storage hierarchy. RocksDB originated as a fork of Lev-
elDB and provides currently many improvements over LevelDB. Nevertheless,
while RocksDB shows better numbers performance-wise, both systems imple-
ment a log-structured merge-tree (LSM) at their core.

4 LSM and LevelDB Architecture

Figure 1 illustrates the general architecture of an LSM. Updates in an LSM are
made in a separate in-memory data structure (C0) which is made durable by
logging. When C0 reaches a certain threshold size, it is migrated to a lower level
persistent component C1, which can be, for instance, a tree structure. This can
be generalized to a hierarchy of multiple persistent components C1..Cn, in such a
way that the size of components grows exponentially in relation to the preceding
component in the hierarchy. All components store records in a sorted order.

C0 C1 C2 Cn
...

Updates

Merge Merge Merge

Fig. 1. General architecture of a log-structured merge-tree (LSM).

A lookup operation has to consider the multiple components. A rolling-merge
process between components usually runs in the background. This is required
to reclaim space and keep a predictable performance by alleviating the read
penalty introduced by multiple components. Indeed, components are sorted by
recency and a lookup has to inspect from the most recent to the oldest com-
ponent until the key is found. The improved write performance is achieved by
two different characteristics: converting random writes into sequential ones and
reducing the amount of data written to persistent storage (i.e., decreasing write-
amplification).

330 L. Lersch et al.

4.1 LevelDB

LevelDB is an open-source, embeddable, persistent key-value store originally
developed by Google. It treats keys and values as arbitrary byte arrays and stores
data sorted by key. The user can interact with the system through a basic inter-
face including Put(key,value), Get(key), and Delete(key). In the following, we
detail some relevant implementation details required to understand the remain-
ing of this paper. The architecture of LevelDB is summarized in Fig. 3. LevelDB
uses a skip-list [17] as its in-memory data structure, called MemTable. The per-
sistent components are organized as levels L0 to Ln. Each level is composed of
a certain number of Sorted String Tables (SST).

An SST has a fixed size (around 2 MB) and consists of four types of blocks. A
data block, usually 4 KB, contains keys and values in sorted order (possibly com-
pressed). Additionally, an SST has a single index block used to locate the data
block of a given key. Optionally, there can be meta blocks that store information
such as bloom filters, in which case there will also be a meta index block to locate
them. The layout of an SST is represented in Fig. 2. Whenever the MemTable
reaches a threshold size (4 MB by default), it is compressed and converted into
an SST of L0. With the exception of L0, SSTs of the same level do not have
overlapping key ranges, meaning that at most one SST per level has to be read.
When the number of SSTs in Ln reaches its threshold, they are merged with the
SSTs of Ln+1 that have overlapping key ranges to generate new SSTs. LevelDB
has 7 levels by default, with L0 containing a maximum of 4 SSTs, L1 10 SSTs,
and each level after contains a maximum of factor 10 the amount of SSTs in the
level above. Finally, a system catalog keeps track of information on all levels,
e.g., current SSTs and their key ranges.

 footer

data block 1

data block n

meta block 1

meta block n

meta-index block

index block

...

...

Fig. 2. Sorted String
Table layout.

Caching. By default, LevelDB uses memory-mapped files
and the page cache of the operating system for improved
performance. These features are orthogonal and we have
disabled them in our experiments to isolate the behavior
of LevelDB’s own caching component.

In addition to the MemTable, LevelDB implements two
DRAM read-only caches: table cache and block cache. The
table cache is used to hold entries containing metadata
about SSTs and index blocks (possibly meta blocks) of
SSTs recently accessed. The block cache holds exclusively
the data blocks from SSTs. In order to improve concur-
rency, both caches are composed of 32 shards (default),
and each shard implements least recently used (LRU)
as the default block replacement policy. A read opera-
tion must first check if the given key is present in the
MemTable. If not, then it will locate the candidate SST
in the next level based on the SST key ranges contained
in the catalog. Once the relevant SST is found, the table

Rethinking DRAM Caching for LSMs 331

Mem-
Table

Log
SST

block cache

Updates

SST

SST

SST

SST

SST

SST

SST

SST

SST SST SST SST

SST SST

Level 0 Level 1 Level 2

table cache

Merge Merge

Reads

Merge

Main Memory

Persistent Storage

Fig. 3. LevelDB architecture represented with the first three levels for simplicity.

cache and block cache are searched for the corresponding index block and data
block, respectively.

5 Pmemenv : Persistent Memory Environment

We have implemented a lightweight persistent memory environment, denoted
pmemenv, using Intel’s NVML library [5]. Pmemenv is tailored specifically for
accessing and managing LevelDB’s components in NVRAM directly in the user-
space. This contrasts with the usual interface, where the application has to go
through the file system layer to access the persistent storage. Pmemenv has two
main advantages: First, it enables zero-copy reads, meaning that data can be
read directly from NVRAM without loading it to DRAM. Second, it enables
read and write operations to NVRAM at a cache-line granularity.

LevelDB manages SSTs through a virtual interface, enabling users to cus-
tomize the required behavior. NVML enables the user to create a persistent
memory pool and manage objects in it through a persistent allocator interface,
hiding from the user the complexity required to properly enforce the order of
write operations. The library uses a lightweight logging scheme to guarantee the
fail-safe atomicity of these persistent allocations. A persistent pointer for each
allocated block is stored in a collection located in a fixed memory region of the
pool. The user is able to iterate over this collection and retrieve every allocated
object in the persistent memory pool, thus preventing persistent memory leaks.
As a side note, NVML also offers transactional support to enable more complex
atomic memory operations than allocation/deallocation of blocks of memory.
These memory transactions, however, are not explicitly used in this work.

Through NVML, pmemenv implements the following atomic operations on
SSTs required by LevelDB: create/allocate, write bytes (append-only), read
bytes, delete/deallocate, rename. Figure 4 illustrates the general architecture of
pmemenv. It comprises two main parts: an in-memory hash table and a persis-
tent memory pool. Every SST is composed of a transient part and a persistent
part. The hash table is used to map the unique identifier of an SST to its tran-
sient part. The transient part of an SST includes non-critical metadata that is

332 L. Lersch et al.

HashTable < id , Transient_SST >

Persistent_SST

int sst_id;
int write_offset;
…
(other persistent metadata)
…
(data blocks)
(meta blocks)
(metaindex block)
(index block)
(footer)

SST

C
O
L
L
E
C
T
I
O
N

DRAM
PMEM POOL

SST

SST SST

SST SST

Transient_SST

int references;
Lock mutex;
…
(other runtime metadata)
…
void* persistent_sst;

Fig. 4. pmemenv architecture.

only required during normal execution, such as reference counters, mutexes, and
status flags. The transient part also contains a pointer indicating the location of
the persistent part in the persistent memory pool. The persistent part contains
critical data required by basic operations and to recover the hash table after a
system failure. In our implementation, the persistent part of an SST is composed
of the unique identifier, the current append offset, and the remaining data and
index blocks shown in Fig. 2. The NVML library already stores the size of allo-
cated persistent memory blocks, therefore, even if this is critical data, we do not
store it and rely on the library to provide this information. In case of a system
failure, the hash table can be rebuilt by iterating over the collection of pointers
pointing to the allocated SSTs and retrieving the SST identifiers. The metadata
in the transient SST part is set to default values and the pointer is set to the
corresponding address in the persistent memory pool.

The separation of SSTs into transient and persistent parts allows metadata to
be moved between them, enabling the system to possibly slide a persistence bar
to choose which parts to make persistent [15]. In one extreme scenario, all data,
metadata, and data structures are allocated in the persistent memory pool. This
would reduce the recovery time to a minimum at a possible performance cost
and additional complexity. Nevertheless, this is out of the scope of this paper.

Finally, since all writes to SSTs are log-structured (i.e., append-only), they
can use non-temporal stores to bypass the processor cache. Writes of an arbitrary
number of bytes to an SST are protected from partial writes by updating the
current write offset of the SST (8 Bytes), which is guaranteed to be an atomic

Rethinking DRAM Caching for LSMs 333

operation. The MemTable log and other auxiliary files, such as the catalog of
SSTs, are also managed by pmemenv the same way as SSTs.

6 2Q Cache Policy for NVRAM

LevelDB implements the LRU as its default replacement policy, meaning that
whenever the cache is full and a miss occurs, the least recently accessed block
is evicted to make space for the requested one. However, when the SSTs are in
NVRAM, the processor is able to directly read these blocks without bringing
them to DRAM. On one hand, DRAM has a lower latency and enables faster
access to data blocks. On the other hand, not only a cache policy introduces
additional complexity, but there is also an overhead for transferring data from
NVRAM to DRAM when a miss occurs. This overhead might not be worthwhile
when compared to the cost of simply accessing the data directly from NVRAM.

Ideally, we would like the cache replacement policy to keep track of accesses
not only to cached blocks, but also to un-cached ones. This would enable the
policy to make a better decision whether it is advantageous to transfer a given
block to DRAM, avoiding a hotter block to be evicted following a miss to a
colder one. As an example, this behavior would avoid that a table scan trashes
the cache by evicting all of its contents.

The 2Q replacement policy [12] considers similar goals. While the original 2Q
was proposed in the context of main memory and hard disks, we have adapted
the concept to NVRAM by enabling zero-copy reads from the persistent storage.
Similar to the original, our 2Q policy has two components: AM and A1. AM holds
cached blocks and is managed by some replacement policy (LRU in our case). A1
does not hold any blocks, but only keeps track of accesses to un-cached blocks
(blocks read directly from NVRAM). Since only references to blocks are kept,
the space consumption of A1 is minimal. The size of A1 is tunable and references
are kept in a FIFO queue.

0

1

2

3

4

5

6

DRAM NVRAM LRU Miss

R
un

ti
m

e
(µ
se
c)

Fix/Lookup
Insert/Evict
Transfer
Binary Search
Unfix

Fig. 5. Average runtime of binary search
over 4KB of integers.

Algorithm 1 shows the pseudo-code
for the two main functions of the
replacement policy. The function FIX
is called to request access to a block.
If the block is already cached, it is
directly returned (line 3). Otherwise,
if it is not going to cause another
block to be evicted or if there was
another reference to it in the recent
past (line 5), the block is transferred
to DRAM (line 6). If the block was
accessed recently, it means that it is
probably hot and is a good candidate
to be transferred to DRAM. If both

conditions are false, the block is read directly from NVRAM and a reference to
it is added to A1 (line 9–10). A hash table is used for efficient containment test

334 L. Lersch et al.

of both AM and A1. The VICTIM function is called when the cache is full and
we need to pick a block for eviction. The block picked is the least recently used
one (line 16), but a reference to it is additionally added to A1 (line 17). Since
A1 is a FIFO with a limited size, it discards its oldest reference when a new one
is inserted.

Algorithm 1. 2Q policy pseudo-code
1: function Fix(blk id)
2: if AM.contains(blk id) then
3: return AM.get(blk id)
4: else
5: if !AM.full() OR A1.contains(blk id) then
6: AM.load(blk id)
7: return AM.get(blk id)
8: else
9: A1.add(blk id)

10: return NVRAM.get(blk id)
11: end if
12: end if
13: end function
14:
15: function Victim()
16: blk id ← AM.remove lru()
17: A1.add(blk id)
18: end function

Figure 5 shows the runtime of a binary search over 4 KB of integers in DRAM,
NVRAM (latency set to 4x that of DRAM), and simulating a miss of LRU in a
DRAM cache. In the breakdown of the cost of a LRU miss it is possible to see
the constant overhead introduced by the cache component (fix, unfix, eviction,
etc.), as well as the huge cost of transferring data from NVRAM to DRAM. The
binary search represented in the breakdown is faster than the one in DRAM,
because the data was already cached by the CPU caches during the transfer.
The cache miss in the LRU policy has a constant cost comprised of lookup,
eviction, and move of a block to DRAM. The additional cost required by the
policy exceeds by far the cost of simply doing the binary search in NVRAM. The
2Q policy introduces two different scenarios for a cache miss: the first scenario
simply adds a reference to the FIFO and reads directly from NVRAM, while the
second scenario is similar to LRU. In an NVRAM context, a well-tuned 2Q policy
should prefer to pay the lower miss cost for data not frequently accessed and the
higher miss cost for data expected to be frequently accessed in the near future.
While most proposed replacement strategies (LRU, LFU, CLOCK, etc.) focus
on improving the hit ratio, the idea of being able to choose between two different
miss costs adds a new dimension. Assuming that the hit ratio is determined by
the replacement strategy and the cache size, a smaller 2Q cache is likely to have

Rethinking DRAM Caching for LSMs 335

more misses than a larger LRU cache. However, if most of the 2Q misses pay
the lower cost, similar or even better performance than LRU can be achieved
with a lower memory consumption. This introduces the non-intuitive idea that
a higher hit ratio does not necessarily translate to better performance, as the
costs for misses might differ.

7 Evaluation

We use the Intel NVM Emulation platform that emulates an NVRAM device by
accessing a dedicated area of DRAM with higher, tunable latency. The higher
access latency to DRAM is achieved thanks to a special BIOS. A full description
of this system can be found in [11]. The system is equipped with two Intel Xeon
E5 processors. Each one has 8 cores, running at 2.6GHz, and featuring 32 KB L1
data and 32 KB L1 instruction cache as well as 256 KB L2 cache. The 8 cores of
one processor share a 20 MB last-level cache. The system has 64 GB of DRAM
and 192 GB of emulated NVRAM. The emulated NVRAM device is mounted
with the ext4 file system with DAX support. In the experiments, we set the
latency of NVRAM to 360 ns, approximately 4x the latency of DRAM (90 ns).
Considering HDD/SSD is out of the scope of this work, since all experiments
are based on the assumption that the storage device can be directly accessed
through the CPU caches. The system runs Linux with kernel version 4.4.21.

We use NVML Release Version 1.2 and LevelDB Release Version 1.19. All the
source code was compiled using GCC 4.8.5. We disabled the memory mappings
of SSTs and operating system caching in LevelDB. Compression and filtering of
SSTs (bloom filters) are also not used. The MemTable is set to its default size
of 4 MB. All requests to LevelDB are made from a single thread.

7.1 Write Performance

We first analyze runtime and latency of two approaches for writing to NVRAM:
through the ext4 file system with Direct Access (DAX) support (as a drop-in
replacement for HDDs/SSDs) and through pmemenv. As mentioned in Sect. 5,
the file system manages these operations at a block granularity (usually 4 KB),
while pmemenv allows finer control over written data. This implies that, in a
scenario where durability of single operations must be guaranteed, pmemenv is
able to write only the changed cache-lines. However, most systems implement
some sort of group commit to hide write latencies. LevelDB enables this by
batching many Put operations in a WriteBatch that is accumulated in DRAM
and is later made durable as a single Put. We consider scenarios with different
WriteBach sizes. Additionally, we investigate if batching writes in DRAM still
offers benefits for pmemenv. We run a write-only workload of YCSB with 100M
key-value records, where each key is 16 bytes and each value is 112 Bytes, giving
a total of 128 Bytes per record. The results are depicted in Fig. 6.

First, for a group size of one, the ext4+DAX configuration has to persist
data at the granularity of pages via fsync, which incurs a high cost if single

336 L. Lersch et al.

operations are to be made durable. Pmemenv is able to avoid the kernel path
and to persist data at a much smaller granularity, which reduces the overhead
related to write operations. Increasing the group size drastically improves the
performance of ext4+DAX (16 times faster when increasing group size from 1 to
100), as the cost of fsync is amortized across many insertions. For pmemenv, an
improvement of approximately 50% in runtime is observed when increasing the
group size from 1 to 10. For larger group sizes the difference is not significant.

Grouping insert operations in batches introduces a trade-off between
throughput (runtime) and latency, as the first requests to arrive in a group
are delayed. Figure 6b shows the average latency of single insert requests for
different group sizes. The standard deviation can be observed in Table 1. For
smaller group sizes (1 to 100) in ext4+DAX, the increased latency is justified
by the large gains in runtime, making the batching of operations an obvious
choice for most applications. However, for pmemenv, this trade-off is not so clear
and the decision of sacrificing latency for better runtime might become a mat-
ter of Service Level Agreements, like response time required by applications.
Finally, not only pmemenv presents lower runtime and lower average latency
than ext4+DAX, but also a lower standard deviation for group sizes 1 to 100,
which translates to a more predictable performance over time.

7.2 Read Performance

We also analyze if better performance can be achieved by dedicating a por-
tion of DRAM for caching hot data. Since writes in LevelDB are made in a

Fig. 6. Insertion of 100 million key-value records with varying WriteBatch size.

Table 1. Latency standard deviation of Fig. 6b in microseconds.

File system 1 10 100 1000 10000

ext4 + DAX 23 56 161 586 4750

pmemenv 12 39 125 517 4749

Rethinking DRAM Caching for LSMs 337

separate data structure, the remaining caching components benefit mainly read
operations. Therefore, we have considered read-only YCSB workloads to better
outline the performance impact. Each workload issues 50 million lookups over 10
million key-value pairs. Before each workload is executed, the caches are warmed
up by executing read requests until they become completely full. The warmup
time is not considered. We analyze two different scenarios: uniform and skewed
distribution (80% of requests to 20% of the records) of key requests. It is worth
noting that each Get request for a key translates into two block requests, one for
the index block and one for the data block. Hence, even a uniform distribution
of keys presents a skewed distribution of block accesses. Figure 7 illustrates the
number of accesses of each block sorted from the most to the last accessed.

Fig. 7. Distribution of accesses to blocks.

Figure 8 presents the runtime of both read-only workloads for different sys-
tem configurations. The X axis represents which portions of SSTs are cached
in DRAM. We start with a NoCache approach, where the caching components
were completely removed and all SSTs are read directly from NVRAM through
pmemenv. Later, we gradually increase the DRAM consumption by statically
placing portions of every SSTs in DRAM. The Footers scenario has the footers of
all SSTs in DRAM. The footer of an SST contains pointers to the index blocks, as
well as checksums and additional status flags. Footers are frequently accessed (it
is where each read in an SST starts) and, since they are relatively small (around
64 Bytes), keeping all of them in DRAM improves performance at a minimal cost
of memory consumption. Next, IndexBlocks considers holding the index blocks
of all SSTs in DRAM. For our workloads, every index block is approximately
18 KB and there are around 500 SSTs, giving a total of about 10 MB additional
DRAM consumption (less than 1% of the total size). The observed performance
gains are significant and justify the additional memory consumption. At this
point, we can conclude that a careful placement of frequently accessed data in
DRAM is beneficial despite the low latency of NVRAM.

338 L. Lersch et al.

150
200

250
300
350
400

450
500

N
oC

ache

+
Footers

+
IndexB

locks

+
1%

B
locks

+
10%

B
locks

A
ll

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Cached Objects

LRU

2Q(5%)

(a) Uniform

150

200

250

300

350

400

N
oC

ache

+
Footers

+
IndexB

locks

+
1%

B
locks

+
10%

B
locks

A
ll

R
u
n
ti

m
e

(s
ec

o
n
d
s)

Cached Objects

LRU

2Q(5%)

(b) Skewed

Fig. 8. Runtime of read-only workload.

However, so far we have only statically placed data in DRAM or NVRAM,
there is no caching component involved. In addition to keeping all index blocks
in DRAM we introduce a caching component for the data blocks, which enables
the system to dynamically adapt by keeping frequently accessed data blocks in
DRAM. The scenarios 1% Blocks and 10% Blocks cache the indicated amount
of data blocks. The interesting observation for LRU (default cache policy in
LevelDB) is that dedicating additional DRAM harms the system’s performance
initially. While the performance improves with more DRAM (10% Blocks), larger
amounts of DRAM would be required to achieve the same performance of caching
only index blocks. This is explained by the cost of cache misses in LRU: lookup,
eviction, and transfer of block from NVRAM to DRAM. If cached data is not
accessed enough times, this cost is high compared to the alternative of directly
accessing data in NVRAM and avoiding the overhead caching. As discussed in
Sect. 6, the cost of transferring data to DRAM is only worthwhile if the policy
can predict that this block will be accessed frequently in the near future.

To alleviate the high cost of misses, we have implemented 2Q to enable a
more lightweight policy. We have set the A1 size to 5% of the AM size. Our
initial goal with 2Q is to avoid the observed behavior where the system gets
slower when more DRAM is dedicated for caching. In contrast to LRU, there
is always some performance improvement with larger caches for data blocks.
This comes from the fact that 2Q avoids evicting a cached block and moving
a new block to DRAM when a miss occurs. Finally, the All scenario represents
the runtime with the whole dataset cached in DRAM. It is possible to see in
Fig. 8b that the 2Q cache with enough DRAM to hold 10% of the data blocks
can achieve similar performance of holding all blocks in DRAM.

7.3 Mixed Workloads

Based on the observations from the previous experiments, we analyze the over-
all behavior of the system in workloads containing both updates and lookups.
Two mixed workloads with skewed access are considered: 25% and 50% of
updates. We also run the experiments with varying NVRAM latencies to show

Rethinking DRAM Caching for LSMs 339

Fig. 9. Runtime of skewed mixed workload.

that the behavior is the same regardless of the slowdown/speedup incurred by
higher/lower latencies.

Similar to previous results, we start with a NoCache approach and gradually
dedicate more DRAM for caching purposes. The Group Size 10 has enough
DRAM for holding 10 update operations and persist them as a single WriteBatch.
Later, in addition to that, we reserve enough DRAM to hold All Indexes. Finally,
we hold up to 10% of the data blocks in a 2Q cache. Figure 9 presents the gradual
performance gains achieved in each of these steps. The biggest improvement
happens when keeping all index blocks in DRAM. Not only index blocks are
frequently accessed, but their additional DRAM consumption is minimal, making
it realistic to hold all of them in DRAM and avoiding any replacement policy
overhead. While a cache for data blocks with 2Q replacement policy offers some
benefits in terms of performance, it is up to the user to decide if the cost of
additional DRAM justify these gains. Nevertheless, we consider that enabling
the system to manage hot and cold data is important and better caching policies
can probably achieve this behavior with even better performance.

8 Conclusion

We have adapted LevelDB to run on top of an emulated NVRAM device. We
considered a hybrid DRAM-NVRAM environment and discussed relevant imple-
mentation details. We implemented pmemenv, a data accessor to enable fine-
grained management of SSTs in NVRAM. Furthermore, we analyzed the Lev-
elDB caching components for improving write and read performance. Even with
its lower latency, simply dedicating a portion of DRAM to cache data from
NVRAM is not necessarily beneficial. On one hand, we have observed that poor
caching policies might even harm performance. On the other hand, a careful
placement of data offers significant benefits. A dynamic management of hot and
cold data can be achieved through lightweight caching policies. In this context,

340 L. Lersch et al.

we have shown that 2Q never harms the system performance and enables the sys-
tem to make better decisions about caching. Future work can probably achieve
even better results with other lightweight and well-tuned policies.

References

1. Apache Cassandra. http://cassandra.apache.org/. Accessed 17 Feb 2017
2. Apache HBase. https://hbase.apache.org/. Accessed 17 Feb 2017
3. Direct Access for files. https://www.kernel.org/doc/Documentation/filesystems/

dax.txt. Accessed 17 Feb 2017
4. LevelDB. http://leveldb.org/. Accessed 17 Feb 2017
5. NVML. http://pmem.io/nvml/libpmem/. Accessed 17 Feb 2017
6. Riak. http://basho.com/products/riak-kv/. Accessed 17 Feb 2017
7. RocksDB. http://rocksdb.org/. Accessed 17 Feb 2017
8. Bonnet, P.: What’s up with the storage hierarchy? In: 8th Biennial Conference on

Innovative Data Systems Research, CIDR 2017 (Online Proceedings) (2017)
9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M.,

Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for
structured data. In: Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation (2006)

10. Dulloor, S., Kumar, S., Keshavamurthy, A., Lantz, P., Reddy, D., Sankaran, R.,
Jackson, J.: System software for persistent memory. In: Eurosys Conference (2014)

11. Dulloor, S.R.: Systems and Applications for Persistent Memory. Ph.D.
Thesis (2015). https://smartech.gatech.edu/bitstream/handle/1853/54396/
DULLOOR-DISSERTATION-2015.pdf

12. Johnson, T., Shasha, D.E.: 2Q: a low overhead high performance buffer manage-
ment replacement algorithm. In: PVLDB (1994)

13. Li, J., Pavlo, A., Dong, S.: NVMRocks: RocksDB on non-volatile memory systems.
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-
systems. Accessed 17 Feb 2017

14. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-tree
(LSM-Tree). Acta Inf. 33, 351–385 (1996)

15. Oukid, I., Booss, D., Lehner, W., Bumbulis, P., Willhalm, T.: SOFORT: a hybrid
SCM-DRAM storage engine for fast data recovery. In: International Workshop on
Data Management on New Hardware (2014)

16. Pelley, S., Wenisch, T.F., Gold, B.T., Bridge, B.: Storage management in the
NVRAM era. In: PVLDB (2013)

17. Pugh, W.: Concurrent maintenance of skip lists. Univ. of Maryland Institute for
Advanced Computer Studies Report No. UMIACS-TR-90-80 (1990)

18. SNIA: NVM Programming Model V1.1 (2015). http://www.snia.org/sites/default/
files/NVMProgrammingModel v1.1.pdf

19. Wilcox, M.: Add support for NV-DIMMs to ext4. https://lwn.net/Articles/
613384/. Accessed 17 Feb 2017

20. Xu, J., Swanson, S.: NOVA a log-structured file system for hybrid volatile/non-
volatile main memories. In: Proceedings of the 14th USENIX Conference on File
and Storage Technologies (FAST) (2016)

http://cassandra.apache.org/
https://hbase.apache.org/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
http://leveldb.org/
http://pmem.io/nvml/libpmem/
http://basho.com/products/riak-kv/
http://rocksdb.org/
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
https://smartech.gatech.edu/bitstream/handle/1853/54396/DULLOOR-DISSERTATION-2015.pdf
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems
http://istc-bigdata.org/index.php/nvmrocks-rocksdb-on-non-volatile-memory-systems
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
http://www.snia.org/sites/default/files/NVMProgrammingModel_v1.1.pdf
https://lwn.net/Articles/613384/
https://lwn.net/Articles/613384/

Semantic Data Processing

SPARQL Query Containment
with ShEx Constraints

Abdullah Abbas(B), Pierre Genevès, Cécile Roisin, and Nabil Layäıda

University Grenoble Alpes, CNRS,
Institute of Engineering University Grenoble Alpes, Inria, LIG,

38000 Grenoble, France
{abdullah.abbas,cecile.roisin,nabil.layaida}@inria.fr,

pierre.geneves@cnrs.fr

Abstract. ShEx (Shape Expressions) is a language for expressing con-
straints on RDF graphs. We consider the problem of SPARQL query con-
tainment in the presence of ShEx constraints. We first propose a sound
and complete procedure for the problem of containment with ShEx, con-
sidering several SPARQL fragments. Particularly our procedure consid-
ers OPTIONAL query patterns, that turns out to be an important frag-
ment to be studied with schemas. We then show the complexity bounds
of our problem with respect to the fragments considered. To the best of
our knowledge, this is the first work addressing SPARQL query contain-
ment in the presence of ShEx constraints.

1 Introduction

ShEx (or Shape Expressions) is intended to be an RDF constraint language [19].
It can be used to validate documents and communicate expected graph patterns.
Static analysis and query optimisation can make a considerable benefit from the
presence of schemas when used to infer satisfiability/unsatisfiabliity of queries
and relations between queries (such as containment and equivalence) by utilising
the additional information provided by the schemas.

In this work we investigate the SPARQL query containment with ShEx con-
straints. Given two SPARQL queries, and a set of ShEx constraints, our purpose
is to statically analyse such queries, namely determining the containment rela-
tion between them before being actually executed on the data.

For the fragments of SPARQL including OPTIONAL patterns, the contain-
ment of queries is normally investigated with the notion of subsumption [1]. A
solution mapping is a mapping from a set of variables to a set of values, thus des-
ignating an answer for a query. A solution mapping σ1 is subsumed by another
solution mapping σ2 written as σ1 � σ2 if all the variables of σ1 are also in σ2

and have the same mapping values. Given a set of mappings Ω1 (resembling a
SPARQL query solution), it is subsumed by another set of mappings Ω2 written
as Ω1 � Ω2 if for every σ1 ∈ Ω1 there exists σ2 ∈ Ω2 such that σ1 � σ2.

The consideration of ShEx constraints in query containment is important,
because such constraints may affect the results of containment checking. Con-
sider the following two SPARQL query graph patterns:
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 343–356, 2017.
DOI: 10.1007/978-3-319-66917-5 23

344 A. Abbas et al.

Q1: {?x :producer :p1 . ?x :feature "feature1"}
OPT {?x :feature "feature2". ?x :expiryDate ?d}

Q2: {?x :producer ?y . ?x :feature "feature1"}
Without constraints, no containment relation holds between these two

queries. However, consider the following ShEx constraints defined for a 〈Product〉
node type:
<Product> {
:name xsd:string ,
:expiryDate xsd:date ? ,
:producer @<Company> + ,
:feature xsd:string }

The previous ShEx shape definition means that a node of type “Product”
should have a name of type string, optionally have an expiry date, have at least
one producer which belongs to a another ShEx shape 〈Company〉, and have
exactly one feature of type string. Given that these ShEx constraints apply to
the data, we can deduce that a containment relation Q1 � Q2 holds between the
two queries. This is due to the constraint that a “feature” predicate is allowed to
occur only once, and thus in query Q1 the right hand side of the optional pattern
will never return results. In such case, we can deduce that the containment
relation Q1 � Q2 holds between the two queries.

There are several kinds of ShEx constraint violations that may lead to a new
conclusion about the containment of two queries. These include (1) cardinality
constraint violations, (2) basic data type constraint violations (like xsd:string,
xsd:data . . .), and (3) ShEx type definition violations (like @〈Company〉 type).

Data on the web are getting larger, and distribution of data is getting more
applicable. Different data sources are often being managed by different author-
ities. The need of schemas becomes increasingly necessary in order to manage
the big amounts of data. While different sources in the same domain may share
the same vocabulary, their constraints on data may vary. While these slight dif-
ferences in data shapes may become a hassle for users to track individually, the
use of OPT patterns in SPARQL provides a way to ask for constraints that are
not necessarily applicable, and that is why the study of the optional fragment is
particularly interesting.

In this work we define a sound and complete procedure for containment of
SPARQL query fragments in the presence of a ShEx schema, based on the usage
of ShEx validators and query containment solvers that don’t consider any schema
constraints. We also study the complexity of the problem. The results vary from
NP-c to ΠP

2 -c according to the fragment considered. We also provide a higher
NEXP complexity bound for further fragment extensions (FILTERS, MINUS,
and property path patterns).

Paper Outline. In Sect. 2 we comment on the related works. In Sect. 3 we intro-
duce some preliminaries necessary for understanding the rest of the paper. In
Sect. 4 we define a query transformation function which is necessary for the defin-
ition of the containment procedure. In Sect. 5 a sound and complete containment

SPARQL Query Containment with ShEx Constraints 345

procedure is given for different SPARQL fragments. In Sect. 6 we derive com-
plexity bounds of our problem. Finally, we conclude in Sect. 7.

2 Related Works

In [8], the authors proposed a schema language for edge-labeled data graphs
(like RDFs), and then studied the satisfiability of 3 different classes of query
languages (RPQs, NREs, and CRPQs) when such constraints are considered,
but this study did not include containment. In [10,11] the authors studied static
analysis aspects of XPath using mu-calculus and Monadic Second-order Logic
respectively, then the authors provided in [12] a tool related to their studies.
XPath is a query language on tree structures while in our work SPARQL is
a query language on graphs, yet these works inspire our work for SPARQL
fragment extensions using logical formulas.

The work in [5] studied containment of PSPARQL, an extension of SPARQL
1.0 with paths and path constraints. In [14], the authors explored the complexity
of containment and evaluation problems for fragments of SPARQL 1.1 property
paths. The study in [18] provides complexity analysis for several fragments of
SPARQL. Additionally, in [16] the containment of well-designed OPT queries is
investigated. None of these works consider schemas in the study of containment.

The works in [4,6,7] study the containment problem with ontology languages
and entailment regimes (SHI, RDFS, OWL...). Ontology languages put con-
straints on data, like schemas, but also allows for entailment of implicit data
relations. The works on containment with ontology languages focus on entail-
ment regimes employed in these languages, but not on the fragments of SPARQL
with optional patterns which we want to consider.

For the works on ShEx, in [2,20,23] the expressiveness and validation com-
plexity of ShEx was studied. The work in [9] proposes an implementation of
shape expressions to RDF graphs.

With the deep static analysis of SPARQL queries - including containment -
on one side, and the emergence of schema languages for RDF (like ShEx) on the
other side, we find a value in investigating these targets in a common framework.

3 Definitions

3.1 SPARQL

SPARQL is an RDF query language and a W3C Recommendation, where RDF
is a directed, labeled graph data format for representing information in the web
[15,21]. SPARQL contains capabilities for querying required and optional graph
patterns along with their conjunctions and disjunctions [22].

A SPARQL graph pattern is defined inductively from triple patterns. Given
disjoint infinite sets of IRIs - Internationalised Resource Identifiers - (I), blank
nodes (B), literals (L), and variables (V), we define a triple pattern as an instance

346 A. Abbas et al.

of (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V) denoted by IBV × IV × IBLV . A
SPARQL graph pattern q is defined inductively from triple patterns as follows:

q ::= t | q AND q′ | q UNION q′ | q OPT q′ | q MINUS q′ | q FILTER C
where t is a triple pattern and C is a condition or a conjunction and/or disjunc-
tion of conditions on variables.

In order to reference different SPARQL fragments later, we define them as
follows:

– BGP: This is the conjunctive fragment of SPARQL, i.e. the fragment that
only allows using the AND operator between triples.

– AND-OPT: The fragment of SPARQL allowing the AND and OPT operators
only. We particularly consider the well-designed patterns within this fragment
(defined just after this list).

– AND-OPT-(UNION): The AND-OPT fragment extended with UNION on
the top level only (external).

– AND-OPT-(UNION)-FILTER: The AND-OPT-(UNION) fragment extended
with the FILTER operator. For this fragment we only consider filters that are
decidable for query satisfiability [24], which is a necessary requirement for query
containment, namely FILTER(bound, =, �=c) and FILTER(bound, �=, �=c).
Where bound(?x) means that the variable ?x should be bound to a value in the
query results. =/�= are the equality/inequality relations between variables. �=c

is the inequality of variable with respect to a constant belonging to I ∪ L.
– AND-OPT-(UNION)-PP: The AND-OPT-(UNION) fragment extended with

property path patterns from the SPARQL 1.1 syntax. These are regular
expressions allowed in the predicate position.

– AND-OPT-(UNION)-MINUS: The AND-OPT-(UNION) fragment extended
with the MINUS operator which puts constraints on situations that must not
occur in the results.

Well-Designed OPT Patterns. Well-designed OPT patterns define a class of
OPTIONAL patterns that have several desired properties [17], such as evaluation
performance advantages.

A query q is well-designed if for every subpattern q′ = (q1 OPT q2) of q and
every variable x occurring in q, it holds that: if x occurs inside q2 and outside
q′, then x also occurs inside q1.

It is also shown in [17] that any well-designed graph pattern can be equiva-
lently rewritten in the normal form:
(. . . (t1 AND . . . AND tk) OPT O1) OPT O2) . . .) OPT On) where each ti is
a triple pattern, and each Oj has the same form (also in normal form).

These normal forms can be represented as pattern trees as described in
[16]. For example, a query of the form ((P1OPT (P11 OPT P111 OPT P112))
OPT P12) OPT P13, where each Pi is a BGP, can be represented as a pattern
tree as shown in Fig. 1.

In our work, we use pattern tree representations of the queries in order to
study their containment with ShEx.

SPARQL Query Containment with ShEx Constraints 347

P1

P11 P12 P13

P111 P112

Fig. 1. Pattern tree example

3.2 ShEx

ShEx (or Shape Expressions) is intended to be an RDF constraint language. Log-
ical operators in Shape Expressions such as grouping, conjunction, disjunction
and cardinality constraints, are defined to make as closely as possible to their
counterparts in regular expressions and grammar languages like BNF [20]. Shape
Expressions correlate an ordered pattern of pairs of predicate and object classes
(called NameClass and ValueClass) and logical operators against an unordered
set of edges in a graph. For example, 〈Shape1〉 is a definition of a shape in ShEx,
where a ShEx document contains definitions of several shapes.
<Shape1> {
ex:name xsd:string ,
ex:phone xsd:string }

In the previous example, ex:name and ex:phone are NameClasses and
xsd:string is a ValueClass. This definition means that for a node belonging to
this shape there must strictly exist the predicates ex:name and ex:phone, each
once. The objects corresponding to these predicates must be of type xsd:string.

Abstract Syntax of ShEx. Given a finite set of edge labels Σ and a finite
set of types Γ , we define a shape expression e over Σ × Γ as follows: e ::= ε |
Σ × Γ | e∗ | (e“|”e) | (e“‖”e), where “|” is a disjunction, “||” is an unordered
concatenation, and “∗” is an unordered Kleene star. This definition also allows us
to further define as macros e? (optional), e+ (positive closure), and (Σ×Γ)([m;n])

(interval from m to n), which are all parts of the ShEx syntax. In the sequel we
write (a, t) ∈ Σ × Γ simply as a :: t.

A shape expression schema (ShEx), or simply schema, is a tuple S = (Σ,Γ, δ),
where Σ is a finite set of edge labels, Γ is a finite set of types, and δ is a type
definition function that maps elements of Γ to shape expressions e over Σ × Γ .
If the δ is not defined for some type t ∈ Γ , the default definition is δ(t) = ε.

Semantics of ShEx. [20] Semantically, an RDF graph is valid against a ShEx
schema if it is possible to assign types to the nodes of the graph in a manner
that satisfies the type definitions of the schema.

We assume a fixed graph G = (V,E) which resembles an RDF graph, and a
fixed schema S = (Σ,Γ, δ). A typing of G w.r.t. S is a function λ : V → 2Γ that
associates with every node of G a set of types.

348 A. Abbas et al.

Next, the conditions that a typing needs to satisfy are identified. Given a
typing λ and a node n ∈ V we define the neighborhood-typing of n w.r.t. λ as
bag over Σ × 2Γ as neighborTypingλ

G(n) = {|a :: λ(m) | (n, a,m) ∈ E|}.
Now, λ is a valid typing of S on G if and only if every node satisfies the type

definitions of its associated type i.e., for every n ∈ V , neighborTypingλ
G(n) ∈

δ(t), for all t ∈ λ(n).

4 Query Transformation

Query transformation is a process in which we rewrite a query, where the result-
ing query is equivalent to the original query given that the ShEx constraints
hold on the data sets. Two queries are considered to be equivalent if they always
give the same execution results.

The resulting query transformations defined in this section has several utili-
sations, namely for optimisation purposes, especially that they are equivalent to
and smaller than the original queries. We use them in this work particularly for
defining containment in Sect. 5.

Before defining the transformation procedures, we give some preliminary def-
initions.

Definition 1. Given a set of triple patterns P , RDF(P) is a function that
yields a set of RDF triples by replacing each variable in P by a fresh IRI. The
replacement is unique for each variable name.

According to the previous definition, there always exists a homomorphism
from the triples graph of P to the triples graph of P ′ = RDF(P). In fact, P ′ is
an RDF data set that can be validated against a ShEx schema.

Definition 2. Given two sets of RDF triples D1 and D2 and a ShEx schema
S, we say that D2 is a complement of D1 w.r.t. S, if:

1. D1 ⊆ D2

2. D2 is valid w.r.t. S

Definition 3. Given a ShEx schema S, the minimals discarding ShEx schema
of S is given by the function MIN 0(S), and is defined by replacing all minimal
cardinality constraints of S by zeros. (i.e. all cardinality constraints [m,n], +
and 1 respectively, are replaced with [0, n], ∗ and ? (optional) respectively).

4.1 BGP Transformation

Query transformation of a BGP query is based on the RDF document validation.
RDF validation against ShEx is defined with its NP-complete complexity in [23].

Definition 4 (Query Transformation). For a BGP SPARQL query Q and
a ShEx schema S, the query transformation function TS is defined as follows:

TS(Q) =

{
Q, if RDF(Q) is valid w.r.t. MIN 0(S)
empty query, otherwise

SPARQL Query Containment with ShEx Constraints 349

The validation against MIN 0(S) is due to the fact that the query triples do
not catch the complete data structure. Indeed, queries by nature are just partial
representations of the constraints on the data that should be extracted.

4.2 AND-OPT Transformation

We extend the BGP transformation to a more interesting SPARQL fragment for
our problem, the AND-OPT fragment. The results in this case will be a modified
AND-OPT query that is equivalent to the original query, by applying two steps:
(1) Eliminating non-valid OPT patterns, and (2) replacing some OPT operators
with AND operators.

For the step (1), if we find out that some OPTIONAL pattern will never
return results due to the ShEx constraints, the new query that results from this
transformation is by omitting this OPTIONAL pattern.

Consider the following SPARQL query:
Q: {:p1 :producer ?y} OPT {:p1 :review ?z}

and the following ShEx schema (a minimals discarding ShEx schema):
<product> {
:name xsd:string ? ,
:expiryDate xsd:date ? ,
:producer @<company> * ,
:feature xsd:string ? }

We consider two RDF triple sets for validation against the ShEx schema,
{:p1 :producer :y} which is valid, and {:p1 :producer :y. :p1 :review :z} -
the optional pattern with its parent - which is not valid. As a result of this vali-
dation step, we rewrite the query by removing the optional pattern which corre-
sponds to the RDF triple set which is not valid, and thus we get:
Q′: {:p1 :producer ?y}

For step (2), we check if it is possible to replace some OPT operators with
the AND operator. Considering the pattern tree representation of a query this
operation can be described by uniting two directly connected nodes into one
node, one of which is a child node, and the other is a parent node.

To show this by example, consider the following query:
Q: {?x :name ?n} OPT {?x :phone ?p}
and the following ShEx shape:
<Person> {
:name xsd:string ,
:phone xsd:string }

According to this ShEx shape definition, we know that :name and :phone will
always occur together. Thus the right hand side of the OPT pattern will always
occur with the left hand side of it. We therefore deduce that the previous query
Q is equivalent to another query Q′ without an OPT pattern.
Q: {?x :name ?n. ?x :phone ?p}

Two nodes in a query pattern tree must be merged into one node (the parent
node), if and only if the triples of the child node will necessarily return results
whenever the parent node returns results. We apply this check on every pair of

350 A. Abbas et al.

parent-child nodes in the query pattern tree in order to get the final transfor-
mation of the query.

The transformations described in the latter examples for the AND-OPT
SPARQL fragment are given formally in Definition 6.

Definition 5. Given a pattern tree P, and a node n of P , we define RP(n) to
be the union of the set of triples of n and the set of triple of all its parent nodes
up to the root node.

Definition 6 (Query Transformation). For an AND-OPT SPARQL query
Q, its pattern tree representation P, and a ShEx schema S, the query transfor-
mation function TS is defined by the following steps:

1. For each node n of P, if RP(n) is not valid w.r.t. MIN 0(S), then eliminate
n and all its descendants from P. Let P ′ be the new pattern tree after the
validation of all the nodes of P.

2. For each pair of nodes n1 and n2 of P ′, such that n1 is the parent of n2, if
it is necessary for every complement of RDF(n1) to include the RDF triples
of RDF(n2) according to S, then merge n1 and n2 into one node. Let P ′′ be
the new pattern tree obtained.

We define TS(P) = P ′′.

4.3 AND-OPT-(UNION) Transformation

For the AND-OPT SPARQL fragment extended with UNION at the top level,
the same procedure can be applied on each UNION pattern separately.

5 Query Containment with ShEx

In this section we show how SPARQL query containment with ShEx can be done
by benefiting from the transformations of Sect. 4.

We first apply the transformation procedure on the two queries to be checked
for containment based on a given ShEx schema. The resulting transformations
are then checked for containment without considering the ShEx document using
query containment solvers as the one proposed in [18]. If the containment of the
query transformations hold, then the containment of the original queries with
the consideration of ShEx holds.

We briefly describe the containment procedure - without ShEx, displayed in
the following lemma taken from [16]. The lemma provides the necessary and suf-
ficient conditions for the deciding containment of a well-designed OPT SPARQL
queries. The conditions are formulated in terms of pattern trees.

Lemma 1 Consider two well-designed pattern trees T1 and T2 with roots r1 and
r2, respectively. Then T1 � T2 if and only if for every subtree T ′

1 of T1 rooted at
r1, there exists a subtree T ′

2 of T2 rooted at r2 such that:

SPARQL Query Containment with ShEx Constraints 351

1. vars(T ′
1) ⊆ vars(T ′

2), and
2. there exists a homomorphism from the triples in T ′

2 to the triples in T ′
1 that

is the identity over vars(T ′
1).

We notice that a pattern tree containment relation T1 � T2 also yields the
query containment corresponding to these pattern trees (lets say q1 � q2) [16].

Definition 7. Given two queries q1 and q2, we define the relation q1 �S q2 to
mean that q1 � q2 holds in the presence of a ShEx schema S.

Theorem 1. Given two queries q1 and q2, and their corresponding transforma-
tions q′

1 and q′
2 according to a ShEx schema S, the containment relation q1 �S q2

holds if and only if q′
1 � q′

2 holds.

Proof. The soundness of our procedure is evident from the fact that the trans-
formations are equivalent to the original queries in the presence of the ShEx con-
straints. We use the empty schema as a transformation, or we eliminate parts
of the queries only when we are sure that these parts will not return results
according to the given schema.

For the completeness of the procedure, we prove it according to the corre-
sponding fragment for each case.

1. For the BGP SPARQL fragment, assume we have two BGP queries q1 and
q2 and their corresponding transformations q′

1 and q′
2 according to a ShEx

schema S. For the completeness of the procedure, our purpose now is to
prove that if q′

1 �� q′
2, then q1 ��S q2. For the case where q′

1 is an empty
query, q′

1 � q′
2 always holds, since the empty query is contained in every

other query, and therefore the assumption condition can never happen. For
the case where only q′

2 is an empty query, that means that also q2 will never
return results due to a violation to the ShEx rules. No query can be contained
in a query that does not return results except the empty query, and since we
know that q1 may return results due to the absence of any ShEx violation,
then q1 ��S q2 always holds. The final case is when both q′

1 and q′
2 are kept

exactly the same as q1 and q2. In the latter case, if q′
1 �� q′

2, then there exists
no homomorphism from q′

2 to q′
1. Given that the triples of q′

1 don’t violate
the ShEx schema rules, then there exists a data set D which is a complement
of RDF(q′

1) w.r.t. S. BGP query solving is based on homomorphism from
the set of query triple patterns to the set of RDF triples ([22]). A solution
for q1 necessarily exists in the proposed data set since the homomorphism
exists by our proposal. Now we assume that the same solution also holds for
q2 and conclude a contradiction. If the same solution holds for q2, then there
exists a homomorphism from its triples patterns to D. Since all variables of
q1 are replaced with fresh IRIs, then a homomorphism is also necessary to
hold from the triple patterns of q′

2 to the triple patterns of q′
1, and thus we

conclude a contradiction because this homomorphism is a sufficient condition
for deriving that the containment q′

1 � q′
2 holds (condition from [18]).

352 A. Abbas et al.

2. For the AND-OPT SPARQL fragment, assume we have two AND-OPT
queries q1 and q2 and their corresponding transformations q′

1 and q′
2 according

to a ShEx schema S. We show that for a transformation q′ of any query q as
proposed in Sect. 4, the containment q′ � q always holds. This follows from
the fact that our transformation includes only elimination of optional parts of
the query and transformation of other optional conditions into necessary con-
ditions (transformation of OPT operators into AND operators). Both of the
transformations make the query more restrictive in the meaning that it elim-
inates some solutions but never adds solutions to the original query. Assume
q′
1 �� q′

2, our purpose is to show that q1 ��S q2. Since q′
1 �� q′

2, then for some
subtree T ′

1 of q′
1, there doesn’t exist a subtree of q′

2 with the homomorphism
condition of Lemma 1. On the other hand, there exists a data set D which is
a complement of RDF(T ′

1) w.r.t. S. A solution for q′
1 necessarily exists in D.

If this solution is also a solution for q′
2, and thus for q2, then a homomorphism

must hold from T ′
2 of q′

2 to the D, and thus there exists a homomorphism
from T ′

2 to T ′
1 , that necessarily doesn’t hold due to the fact that q′

1 �� q′
2, and

therefore a contradiction is derived.
3. For the AND-OPT-(UNION) SPARQL fragment, the same proof holds as

for the AND-OPT fragment, except that instead of proposing complement
data set that has a solution for q1, leading to a contradiction when assum-
ing it to have a solution for q2, we alternatively propose multiple data sets,
each corresponding to a top level UNION part of the query, and deriving a
contradiction for each of the proposed data sets. �

6 Complexity

In this section we study the complexity of SPARQL query containment with
ShEx with respect to different SPARQL fragments.

We show that the complexity varies from NP-complete to ΠP
2 -complete for

the SPARQL fragments BGP, AND-OPT, and AND-OPT-(UNION). We also
extend these fragments to include filter, property path patterns, and the MINUS
operator whose containment problem is in the NEXP time complexity class, yet
this is not shown to be an upper bound.

6.1 SPARQL AND-(OPT)-(UNION) Fragments

Theorem 2. Containment with ShEx for the SPARQL BGP fragment is NP-
complete.

Proof. The complexity of containment of the SPARQL BGP fragment is NP-
complete [3]. In the presence of ShEx constraints, a sufficient procedure to check
containment is to first validate the BGP of each of the considered queries against
the ShEx document. RDF validation against ShEx is NP-complete. An invalid
query will return no results, and thus is contained in any other query. Otherwise,
the normal containment procedure (without ShEx) is applied. Then the BGP
fragment containment with ShEx is also in NP.

SPARQL Query Containment with ShEx Constraints 353

To show the NP-hardness of the problem, we argue that containment with
ShEx is at least as hard as containment without ShEx which is shown to be
NP-complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. �

Theorem 3. Containment with ShEx for the well-designed OPT SPARQL frag-
ment is NP-complete.

Proof. In [18], the authors studied the problem of containment of well-designed
OPT SPARQL queries. The authors provide a procedure for solving the problem,
and show the complexity of the problem to be NP-complete for this fragment.

The procedure we follow for deciding query containment of this SPARQL
fragment with ShEx is based on both the query transformation described pre-
viously in this work, and the query containment procedures of [18]. Given two
SPARQL queries in the well designed OPT fragment, their containment with
ShEx can be decided by the two following steps:

1. Transform both queries. The results of these transformations are two new
queries equivalent to the original queries respectively.

2. The two new resulting queries from the first step are used as an input of a
general SPARQL containment solver (like the solver described in [18] for this
fragment).

Validation of an RDF document against a ShEx document is NP-complete
[23]. Step (1) of the procedure is a series of ShEx validations each of which is in
NP. The number of validation considered is polynomial since for a given query
pattern tree, the validation occurs on all possible branches, rather than subtrees.
While the number of subtrees is exponential in a pattern tree, the number of
branches is polynomial. As each branch is validated independently, so the result
of each branch validation doesn’t affect the ones of other branches. Step (2),
which is the query containment problem, is NP-complete for the well-designed
OPT fragment. Thus the complexity of containment with ShEx is in NP for this
fragment.

To show the NP-hardness of the problem, we argue that containment with
ShEx is at least as hard as containment without ShEx which is shown to be
NP-complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. �

Theorem 4. Containment with ShEx for the well-designed OPT SPARQL frag-
ment extended with top level UNION is ΠP

2 -complete.

Proof. In [18], the authors also studied the problem of containment of the AND-
OPT-(UNION) fragment. The authors provide a procedure for solving the prob-
lem, and show the complexity of the problem to be ΠP

2 -complete.
The procedure we follow to for deciding query containment of this fragment

with ShEx is similar to the one followed for the AND-OPT fragment, except

354 A. Abbas et al.

that in step (2) we use the solver designed for the corresponding fragment. The
usage of such solver will rise the complexity to ΠP

2 .
To show the ΠP

2 -hardness of the problem, we argue that containment with
ShEx is at least as hard as containment without ShEx which is shown to be
ΠP

2 -complete for the considered fragment. A reduction from the containment
problem to the containment with ShEx problem can be easily shown by assuming
an empty schema. �

6.2 SPARQL AND-OPT-(UNION)-FILTER/PP/MINUS Fragment

For extending the query containment problem with ShEx to the SPARQL frag-
ments including filters, property path patterns, and the MINUS operator, we
use an imitation of our procedures with first-order logic (FOL). The basic idea
is based on generating an FOL formula corresponding to our procedure and
checking its validity with existing FOL theorem provers.

We use a decidable fragment of FOL with only 2 variables, known as FOL2,
whose satisfiability (and thus validity) is NEXP-complete [13]. An advantage of
this method is that it allows to benefit from the highly optimised implementa-
tions of theorem provers.

A drawback of the problem solving with FOL is that the Kleene closure can
be expressed only on atomic ShEx rules, but not on compound rules, which
restricts the ShEx fragment allowed. We notice that we can avoid the Kleene
closure limitation by adopting the normal procedure and using FOL particularly
for the fragment extensions, and giving FOL validity feedback for the original
procedure which supports Kleene closure everywhere.

Table 1 summarises our complexity results for the containment problem stud-
ied for the different fragments.

Table 1. Containment complexity

SPARQL fragment No ShEx ShEx-All

BGP [Chandra, 1977] NP-c NP-c

AND-OPT [Pichler, 2014] NP-c NP-c

AND-OPT-(UNION) [Pichler, 2014] ΠP
2 -c ΠP

2 -c

AND-OPT-(UNION)-Minus [FOL2] NEXP [FOL2] NEXP

AND-OPT-(UNION)-FILTER [FOL2] NEXP [FOL2] NEXP

AND-OPT-(UNION)-PP [FOL2] NEXP [FOL2] NEXP

AND-OPT-(UNION)-FILTER-PP-MINUS [FOL2] NEXP [FOL2] NEXP

We currently have two working implementation prototypes, one directly
based on the procedures described in this paper utilising existing ShEx validators
and containment solvers, and another implementation based on the FOL imita-
tion of the problem, with the drawback and advantages of each as mentioned
previously.

SPARQL Query Containment with ShEx Constraints 355

7 Conclusion

In this paper we studied the problem of SPARQL query containment with ShEx
constraints, and the OPT patterns were shown to be particularly interesting
to this study, due to its flexibility with constraints and the absence of similar
studies in the literature. We showed how transformation of queries can be done
based on customised validation procedures. Then we proposed a procedure for
the problem of containment with ShEx, and the complexity related to the AND-
OPT SPARQL fragment was shown to be NP-complete, and that of the AND-
OPT SPARQL fragment extended with external UNION to be ΠP

2 -complete.
We finally mentioned that other fragment extensions can be adopted with FOL.

As a perspective for future work, we manage to adopt modified versions of
the same techniques provided in this work for query constructs other than the
SELECT. Other SPARQL constructs that can be adopted with further discus-
sions include INSERT, DELETE, and CONSTRUCT.

References

1. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proceedings
of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, pp. 305–316. ACM, New York (2011)

2. Boneva, I., Gayo, J.E.L., Hym, S., Prud’hommeaux, E.G., Solbrig, H.R., Staworko,
S.: Validating RDF with shape expressions. CoRR, abs/1404.1270 (2014)

3. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in
relational data bases. In: Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, STOC 1977, pp. 77–90. ACM, New York (1977)

4. Chekol, M.W.: On the containment of SPARQL queries under entailment regimes.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI
2016, pp. 936–942. AAAI Press (2016)

5. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: PSPARQL query contain-
ment. In: DBPL (2011)

6. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
under RDFS entailment regime. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
IJCAR 2012. LNCS, vol. 7364, pp. 134–148. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31365-3 13

7. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query contain-
ment under SHI axioms. In: Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2012, pp. 10–16. AAAI Press (2012)

8. Colazzo, D., Sartiani, C.: Typing regular path query languages for data graphs. In:
Proceedings of the 15th Symposium on Database Programming Languages, DBPL
2015, pp. 69–78. ACM, New York (2015)

9. Gayo, J.E.L., Prud’hommeaux, E., Boneva, I., Staworko, S., Solbrig, H.R., Hym,
S.: Towards an RDF validation language based on regular expression derivatives,
pp. 197–204 (2015)

10. Genevès, P., Layäıda, N.: A system for the static analysis of XPath. ACM Trans.
Inf. Syst. 24(4), 475–502 (2006)

http://dx.doi.org/10.1007/978-3-642-31365-3_13
http://dx.doi.org/10.1007/978-3-642-31365-3_13

356 A. Abbas et al.

11. Genevès, P., Layäıda, N.: DecidingXPath containmentwithMSO.DataKnowl. Eng.
63(1), 108–136 (2007). Data Warehouse and Knowledge Discovery (DAWAK ?05)
7th International Congress on Data Warehouse and Knowledge Discovery
(DAWAK?05)

12. Genevès, P., Layäıda, N.: XML reasoning made practical. In: 2010 IEEE 26th
International Conference on Data Engineering (ICDE 2010), pp. 1169–1172, March
2010

13. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable
first-order logic. Bull. Symbolic Logic 3(1), 53–69 (1997)

14. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
paths. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M.,
Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S.
(eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer, Cham (2015). doi:10.
1007/978-3-319-25007-6 1

15. Lanthaler, M., Cyganiak, R., Wood, D.: RDF 1.1 concepts and abstract syn-
tax. W3C recommendation, W3C, February 2014. http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

16. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries, pp. 89–100 (2012)

17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

18. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In:
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, PODS 2014, pp. 39–50. ACM, New York (2014)

19. Prud’hommeaux, E.: Shape expressions (ShEx) primer. Technical report, W3C and
MIT, February 2017. http://shexspec.github.io/primer/

20. Prud’hommeaux, E., Gayo, J.E.L., Solbrig, H.: Shape expressions: an RDF val-
idation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems, SEM 2014, pp. 32–40. ACM, New York (2014)

21. Schreiber, G., Raimond, Y.: RDF 1.1 primer. W3C note, W3C, June 2014. http://
www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

22. Seaborne, A., Harris, S.: SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

23. Staworko, S., Boneva, I., Gayo, J.E.L., Hym, S., Prud’hommeaux, E.G., Solbrig,
H.: Complexity and expressiveness of ShEx for RDF. In: Arenas, M., Ugarte, M.
(eds.) 18th International Conference on Database Theory (ICDT 2015). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 31, pp. 195–211. Dagstuhl,
Germany (2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

24. Zhang, X., Van Den Bussche, J., Picalausa, F.: On the satisfiability problem for
sparql patterns. J. Artif. Int. Res. 56(1), 403–428 (2016)

http://dx.doi.org/10.1007/978-3-319-25007-6_1
http://dx.doi.org/10.1007/978-3-319-25007-6_1
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://shexspec.github.io/primer/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

Updating RDF/S Databases Under Constraints

Mirian Halfeld-Ferrari1(B) and Dominique Laurent2(B)

1 Université d’Orléans, INSA CVL - LIFO EA, Orléans, France
2 ETIS - Université Paris Seine - CNRS, Cergy-Pontoise, France
mirian@univ-orleans.fr, dominique.laurent@u-cergy.fr

Abstract. We address the issue of database updating in the presence
of constraints, using the first order logic formalism. Based on a chasing
technique, we propose a deterministic update strategy. While general-
izing key-foreign key constraints, our approach satisfies the consistency
and minimal change requirements, with a polynomial time complexity.
Our custom version of the chase allows improvement in updating non-null
RDF/S databases with constraints.

1 Introduction

The Resource Description Framework (RDF) is a flexible graph-based data
model now largely adopted for data publishing and sharing [21]. The increasing
number of distributed RDF datasets, together with their dynamic nature, bring
the need of providing reliable information to users worrying about data qual-
ity and validity. The maintenance of data consistency is an essential problem in
databases and constraints still are an imperative quality label. As the commonly
used key-foreign key constraints are not enough in most of the RDF applications,
we are impelled to consider tuple-generating (TGD) and denial dependencies as
constraints. However, the use of these richer constraints is restricted by our goal
of dealing with deterministic updates.

Focusing on situations where the evaluation of update impacts is required
before changes on data instances, our main goals include:

(1) A deterministic update strategy ensuring database consistency of a non-null
instance and satisfying the minimal change requirement.

(2) An update side effect computation without accessing the database instance.
(3) Dealing with a set of insertions and deletions as an update transaction.

Our approach is illustrated by a running example (borrowed from [8]) where
an RDF/S database is defined by a schema, a set of constraints C and an instance
D satisfying the schema and the constraints. We use a first-order logic formalism,
recalling that an RDF triple 〈aPb〉 is seen as the fact P (a, b).

Example 1. Figure 1 shows our instance D together with the set C of constraints.
Predicates Paper and Journal deal, respectively, with paper and journal titles.

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 357–371, 2017.
DOI: 10.1007/978-3-319-66917-5 24

358 M. Halfeld-Ferrari and D. Laurent

PubIn informs which journal publishes a paper and Cites indicates paper’s cita-
tions. Constraints impose papers to be published in journals (c1 and c2) and to
cite at least one other paper (c3, c4, c7 and c8). Each paper must be published
(c5), but a paper cannot be published in different journals (c6).

Noting that the instance D of Fig. 1 satisfies the constraints in C, we consider
the following three simple updates:

(1) Deletion of PubIn(coolP , Cool J). The removal of only this fact from D
implies the violation of c5. In [8], consistency is ensured by inserting a fact
such as PubIn(coolP , J), where the journal name J is arbitrarily chosen.
In our approach, we avoid arbitrary or non deterministic choices. Thus,
the cascading deletes of Paper(coolP), Cites(coolP, rdfP), Cites(dbP, coolP),
Paper(dbP), Cites(rdfP, dbP), Paper(rdfP), PubIn(dbP , KAIS) are required
in order to satisfy, respectively, c5, c3, c4, c7, c4, c7 and c1.

(2) Insertion of PubIn(coolP , V LDBJ). Because of c6, the deletion of all facts of
the form PubIn(coolP , J) where J �= V LDBJ is necessary to preserve con-
sistency. This insertion thus requires the deletion of PubIn(coolP , Cool J),
generating the same updates as above.

(3) Insertion of Paper(newP). Due to c5 and c7 we should also insert
PubIn(newP , J) and Cites(newP , P) where J (respectively P) stands for
an arbitrary journal (respectively an arbitrary paper, other than newP due
to c8). As this is clearly a case of non determinism, the insertion is rejected.

Consider now the following global update (i.e., several updates in a unique
transaction): delete PubIn(coolP , Cool J) and insert PubIn(coolP , V LDBJ). In
this case, the deleted fact is simply replaced by the inserted one, as expected. ��

FACTS (D): Paper(dbP), Paper(rdfP), Paper(coolP), Journal(KAIS),
Journal(V LDBJ), Journal(Cool J) PubIn(dbP,KAIS), PubIn(rdfP,KAIS),
Cites(dbP, coolP), Cites(rdfP, dbP), PubIn(coolP, Cool J), Cites(coolP, rdfP)

CONSTRAINTS (C):
c1 : (∀x, y)(PubIn(x, y) ⇒ Paper(x));
c2 : (∀x, y)(PubIn(x, y) ⇒ Journal(y)); c3 : (∀x, y)(Cites(x, y) ⇒ Paper(x))
c4 : (∀x, y)(Cites(x, y) ⇒ Paper(y)); c5 : (∀x)(Paper(x) ⇒ (∃y)(PubIn(x, y)))
c6 : (∀x, y, z)((y �= z) ∧ PubIn(x, y) ∧ PubIn(x, z) ⇒ ⊥)
c7 : (∀x)(Paper(x) ⇒ (∃y)(Cites(x, y))) c8 : (∀x, y)((x = y) ∧ Cites(x, y) ⇒ ⊥)

Fig. 1. RDF/S database: facts composing the instance D and constraints in C

From the above example, we notice that we deal with constraints as in a
traditional database viewpoint, and not as so-called ontological constraints [9],
seen as inference rules. Then, as c2 states that all papers must be published
in a journal, a database containing the only fact Paper(rdfP) is not consistent,
whereas it is consistent when constraints are seen as inference rules.

Updating RDF/S Databases Under Constraints 359

Paper organization: After giving background definitions in Sect. 2, Sect. 3 intro-
duces our update method. Section 4 focusses on implementation issues and appli-
cations to which our approach is well adapted. Related work in Sect. 5 and con-
cluding remarks in Sect. 6 close the paper. The proofs of the propositions are
omitted due to lack of space; they can be found in [12].

2 Background

Alphabet. Let A be an alphabet consisting of the following pairwise disjoint
sets: AC , a countably infinite set of constant; AN , a countably infinite set of
labelled nulls; var an infinite set of variables ranging over AC ∪AN (we use X
as an abbreviation to denote the set {X1, . . . , Xk} where k > 0); pred, a finite
set of predicates, each associated with its arity.

A term is a constant, a null or a variable. An atomic formula (or atom) has
one of the forms: (i) P (t1, ..., tn), where P is an n-ary predicate and t1, ..., tn are
terms; (ii) � (meaning true) or ⊥ (meaning false); (iii) (t1 op t2), where t1 and
t2 are terms and op is a comparison operator (=, <, >, ≤, ≥). A literal is an
atom of the form P (t1, ..., tn). An instantiated literal is an atom of the form P (u)
where u ∈ (AC ∪ AN)n, and a fact is an atom of form P (u) where u ∈ (AC)n.

Substitution. A substitution from the set of symbols E1 to the set of symbols
E2 is a function h : E1 → E2. A homomorphism from the set of atoms A1 to the
set of atoms A2, both over the same predicate P , is a substitution h from the
terms of A1 to the terms of A2 such that: (i) if t ∈ AC , then h(t) = t, and (ii) if
P (t1, ..., tn) ∈ A1, then P (h(t1), ..., h(tn)) ∈ A2. A substitution that associates
the variable x with the constant a and the variable y with the null N , is denoted
as the set {x/a, y/N}. Moreover, if h is a homomorphism, P (h(t1), ..., h(tn))
is simply denoted by h(P (t1, ..., tn)). The notion of homomorphism naturally
extends to conjunctions of atoms.

The following terminology is also used: (i) An endomorphism h on a finite
set of atoms A1 is a homomorphism such that h(A1) ⊆ A1; (ii) A valuation is a
homomorphism whose image of each symbol is a constant in AC .

Database Instance and Constraints. A database instance over alphabet A
is a pair Δ = (D, C) where D is a set of facts and C is a set of constraints such
that D satisfies C. Constraints and constraint satisfaction are defined below.

• A positive constraint is of the form: (∀X,Y)(L1(X, Y) ⇒ (∃Z)(L2(X, Z)))
where L1(X,Y) and L2(X,Z) are atoms.

• A negative constraint is either of the form (∀X)((comp(X′) ∧ L(X)) ⇒ ⊥) or
(∀X)((comp(X′)∧L1(X1)∧L2(X2)) ⇒ ⊥), where X1∩X2 �= ∅ and comp(X′)
is a (possibly empty) comparison formula with variables X′ that all occur in
X, and where L(X), L1(X1) and L2(X2) are atoms.

The left and right hand-sides of a constraint c are respectively denoted by body(c)
and head(c). When no confusion is possible, quantifiers are omitted.

360 M. Halfeld-Ferrari and D. Laurent

A set I of instantiated atoms satisfies a constraint c, denoted by I |= c, if
for every homomorphism h from the variables in body(c) into constants or nulls
in I, the following holds:

– If c is positive: if h(body(c)) is in I then there is an extension h′ of h such
that h′(head(c)) is in I.

– If c is negative: if h(comp(X′)) is true in I then depending on c, either h(L(X))
is not in I or one of the two atoms h(L1(X1)) or h(L2(X2)) is not in I.

Given a set of constraints C, I satisfies C, denoted by I |= C, if for every c in
C, I |= c holds.

Positive constraints are linear LAV (local-as-a-view) TGD (Tuple Generating
Dependency) – i.e., each body and head has a unique atom [2]. Negative con-
straints are denial dependencies with one or two atoms in their bodies. Restric-
tions on TGD and denials are exploited to ensure update determinism, but, our
constraints still generalize key-foreign key constraints.

Computing side effects of updates when only positive constraints are consid-
ered relies on the notion of trigger. Let c : L1(X,Y) ⇒ L2(X,Z) be a positive
constraint and I a set of instantiated atoms. A triple (c, h1, h2) is a trigger in I
if there exists L1(α, β) in I such that h1(L1(X,Y)) = h2(L1(α, β)) where h1 is a
homomorphism from var to AC ∪AN and h2 is an endomorphism on AC ∪AN .
When there is a trigger in I for a positive constraint c, we say that c is activated
to produce a new instantiated atom. In this case, when existential variables Z
are present in head(c), if (c, h1, h2) is a trigger in I then we define an extension
h′
1 of h1 (h′

1 ⊇ h1) such that, for every Zi in Z, h′
1(Zi) = Ni, where Ni is a fresh

labelled null in AN not introduced before.

Example 2. If I = {A(a,N1)}, and h1
1 = {x/a} and h1

2 = {N1/a}, then the
trigger (c1, h1

1, h
1
2) activates c1 : A(x, x) ⇒ B(x) to produce B(a). Clearly,

h1
1(A(x, x)) = h1

2(A(a,N1)) = A(a, a).
Similarly, if I = {E(b)}; h2

1 = {x/b} and h2
2 = ∅ then the trigger (c2, h2

1, h
2
2)

activates c2 : E(x) ⇒ D(x, y) to produce D(b,N3) by means of the extension
(h2

1)
′ of h2

1 such that (h2
1)

′ = {x/b, y/N3}, with N3 ∈ AN . ��

3 Updates

Updating Δ = (D, C) with respect to IReq and DReq (insertion and deletion
requests, respectively) means either finding that the requested updates are not
possible or building Δ′ = (D′, C) according to the following policy (P). We
remark that a negative constraint cannot be violated by a deletion.

• (P1): If c : L1(X,Y) ⇒ L2(X,Z) is not satisfied when inserting ϕ = L1(α, β)
then, if Z is empty, insert the corresponding fact L2(α), otherwise reject the
update if no instance of L2(α,Z) can be found in D or in the insertion side
effects.

• (P2): If c : L1(X,Y) ⇒ L2(X,Z) is not satisfied when deleting ϕ = L2(α, γ)
then delete the corresponding instances of L1(α,Y).

Updating RDF/S Databases Under Constraints 361

• (P3): If c : comp(X′)∧L(X) ⇒ ⊥ is not satisfied when inserting ϕ = L(α, β)
then reject the update.

• (P4): If c : comp(X′) ∧ L1(X1) ∧ L2(X2) ⇒ ⊥ is not satisfied when inserting
ϕ = L1(α, β) then delete the corresponding instances of L2(X2).

We provide algorithms implementing policy (P) in a such a way that updates
are deterministic and satisfy the minimal change requirement, in the sense that
cancelling one side effect of the given updates violates constraints.

Before considering the case of insertions and deletions under positive or neg-
ative constraints, we present separately insertions and deletions under positive
constraints as a two step processing: (1) build a tableau using the constrains and
the updates, and (2) perform the update using the tableau and the database.

3.1 Insertions Under Positive Constraints

According to policy (P1), inserting new facts may require to insert other facts
as side effects. When a side effect is an atom with a null, its insertion is accepted
only if this atom unifies with a fact being inserted or already in the database. As
we are updating a consistent non-null database, the existence of this unification
ensures consistency maintenance (because the side effects are already in the
database or being inserted). In this way, we adapt the chase to our problem.

Algorithm 1. BuildInsTab(I, C,t-ins)
Input: A set of positive constraints C and a set of facts I.
Output: The tableau t-ins = c-ins(I) ∪ n-ins(I).
1: c-ins(I) := I; n-ins(I) := ∅
2: continue := true

3: while continue do
4: continue := false

5: for all c having a trigger (c, h1, h2) in c-ins(I) do
6: For c : L1(X,Y) ⇒ L2(X,Z), let h′

1 be an extension of h1 such that for
each Zi ∈ Z, h′

1(Zi) = Ni where Ni is a fresh labelled null in AN

7: if h′
1(L2(X,Z)) contains no null then

8: if h′
1(L2(X,Z)) �∈ c-ins(I) then

9: c-ins(I) := c-ins(I) ∪ {h′
1(L2(X,Z))}

10: continue := true

11: else
12: n-ins(I) := n-ins(I) ∪ {h′

1(L2(X,Z))}
13: return t-ins = c-ins(I) ∪ n-ins(I)

Side effects are computed by Algorithm 1 as the first step of our approach
to insertions. A tableau t-ins is built as the union of two sub-tableaux: c-ins(I)
whose rows contain constants only (and no labelled null), and n-ins(I) in which
each row contains at least one labelled null. The tableaux c-ins(I) and n-ins(I)

362 M. Halfeld-Ferrari and D. Laurent

are initialized on line 1 and then, facts in c-ins(I) are used to trigger constraints
in C (line 5). While such triggers exist and facts are produced (line 7), the loop
line 3 goes on. This loop stops when only atoms containing nulls are generated
(line 12). The two tableaux are returned (line 13) as the tableau t-ins.

The tableau obtained by Algorithm 1 is used by Algorithm 2, where the
insertions are performed only when the nulls in n-ins(IReq) can be instantiated
into facts either in the database instance or in the set c-ins(IReq). It should be
clear that insertions are performed deterministically according to policy (P1).
Moreover, the following proposition holds.

Proposition 1. For every finite set of positive constraints C and every finite
set of facts IReq, Algorithm 1 applied to C and IReq always terminates.

Algorithm 2 computes Δ′ = (D′, C) from Δ = (D, C) (where D |= C) and a
set of facts IReq. Either Δ′ = Δ or the following properties hold: (1) D′ contains
IReq and D′ |= C and (2) for every ϕ in c-ins(IReq) \ IReq, D′ \ {ϕ} �|= C. ��

The first part of Proposition 1 implies that our approach applies even if the
graph of constraints is non weakly acyclic (see [6,18]). We emphasize that Algo-
rithm 1 does not require to access the database instance and that statements (1)
and (2) in Proposition 1 respectively show that, when insertions are performed,
consistency is maintained and minimal change is satisfied.

Algorithm 2. PerfIns(Δ, IReq)
Input: Δ = (D, C) where C is a set of positive constraints and IReq a set of facts.
Output: Δ′ = (D′, C) resulting from the insertion of IReq in Δ.
1: BuildInsTab(IReq, C,t-ins))
2: if there is a valuation v of the nulls in n-ins(IReq) such that

v(n-ins(IReq)) ⊆ (D ∪ c-ins(IReq)) then
3: D′ := D ∪ c-ins(IReq)
4: else
5: D′ := D // The insertion is not possible
6: return Δ′ = (D′, C)

Example 3. Let ΔP be the database instance (D, CP) where D is the set shown
in Fig. 1 and where CP contains the positive constraints c1−c5 and c7. For IReq =
{Paper(newP)}, when running Algorithm 1, triggers involving c5 and c7, produce
the atoms PubIn(newP , N1) and Cites(newP , N2). Since no other fact is gen-
erated, the algorithm stops, returning t-ins= {Paper(newP)}∪ {PubIn(newP ,
N1), Cites(newP , N2)}. As no instantiation of atoms in n-ins(IReq) is in
D ∪ c-ins(IReq), Algorithm 2 returns ΔP . ��

3.2 Deletions Under Positive Constraints

Given Δ = (D, C) and a set of facts DReq to be deleted, in a first step (Algo-
rithm 3) a tableau t-del is built, with no access to the database and in a second
step (Algorithm 4) the updated database Δ′ = (D′, C) is output.

Updating RDF/S Databases Under Constraints 363

To do so, every positive constraint c : L1(X,Y) ⇒ L2(X,Z) is associated
with its ‘backward’ or inverse form c : L2(X,Z) ⇒ L1(X,Y), which is also a
positive constraint. The intuition of our method is outlined below.

C D t-del

Del Query Ref
A(x, y) ⇒ A(b, a) B(b, a) 1 B(b, b) − −

B(x, z) A(c, a) B(b, b) 2 B(c, b) − −
A(c, c) B(c, b) 3 A(b,N1) B(b,N3) 1

4 A(c,N2) B(c,N4) 2

Fig. 2. Database and tableau of Examples 4 and 5

Example 4. Consider the database instance Δ = (D, C) shown in the left part of
Fig. 2. Clearly, D\{B(b, b)} satisfies C whereas D\{B(c, b)} does not. Therefore,
when deleting B(b, b) no further update is necessary, whereas when deleting
B(c, b), facts A(c, a) and A(c, c) have to be deleted in order to maintain constraint
satisfaction according to policy (P2). To take into account these remarks, we
build a chasing tableau t-del as shown in the right part of Fig. 2.

(1) The facts to be deleted are first put in the first column of the first two lines.
(2) Applying the constraint backwards generates line 3 with t-del[3,Del] =

A(b,N1) for B(b, b), and line 4 for B(c, b) with t-del[4,Del] = A(c,N2).
(3) The constraint, now applied forwards, produces t-del[3,Query] = B(b,N3)

and TAB[4,Query] = B(c,N4).
(4) Since line 3 has been obtained from t-del[1,Del], 1 is stored in t-del[3,Ref];

for similarly reasons 2 is stored in t-del[4,Ref].

Column 2 of t-del is a query. The cardinality of its answer allows to decide
whether further deletions are needed: for B(b,N3), the answer is {B(b, a),
B(b, b)} and no other deletion is needed, whereas for B(c,N4), the answer is
{B(c, b)}, implying that all instances of A(c,N3) must be deleted. ��

Notice that the deletion of an atom having a null value implies the deletion of
all facts unifying with this atom. Thus, deletions of isomorphic atoms have the
same effects. Algorithm 3 takes advantage of this remark and does not generate
isomorphic atoms. Once again, instead of working with a general-purpose chase
algorithm we offer a version adapted to our problem.

Let us now explain Algorithm 3 in details. After initializing t-del (line 3), the
loop on line 5 processes the rows just added. For startline ≤ i ≤ (endline − 1),
for each trigger with respect to t-del[i,Del] involving an inverse constraint c :
L2(X,Z) ⇒ L1(X,Y), lines 7–17 are performed:

• On line 8, for each trigger (c, h1, h2) such that h1(L2(X,Z)) =
h2(t-del[i,Del]) an extension of h1 is defined so as to generate the new atom
h′
1(L1(X,Y)).

364 M. Halfeld-Ferrari and D. Laurent

Algorithm 3. BuildDelTab(C, I)
Input: A set of positive constraints C and a set of facts I.
Output: The tableau t-del.
1: i := 0;
2: for all ϕ ∈ I do
3: i := i + 1; t-del[i,Del] := ϕ
4: N := i + 1; endline := N ; startline := 1;
5: while startline < endline do
6: for i := startline to (endline − 1) do
7: for all trigger (c, h1, h2) with respect to t-del[i,Del] do
8: Let h′

1 be an extension of h1 to the variables of Y built from (c, h1, h2)
9: Denoting by h′

1[XY] the restriction of h′
1 to X ∪ Y, let h′′

1 [XY] be an
extension of h′

1[XY], obtained by applying c to h′
1[XY](L1(X,Y))

10: IsoRow := Iso(h′
1[XY](L1(X,Y)), h′′

1 [XY](L2(X,Z)))
11: if IsoRow = ∅ then
12: t-del[N,Del] := h′

1[XY](L1(X,Y))
13: t-del[N,Query] := h′′

1 [XY](L2(X,Z))
14: t-del[N,Ref] := i
15: N := N + 1
16: else
17: Add i in t-del[ρ,Ref], where ρ is such that IsoRow = {ρ}
18: startline := endline; endline := N
19: return t-del

• Denoting by h′
1[XY] the restriction of h′

1 to the variables in X or in Y, we
have h′

1[XY](L1(X,Y)) = h′
1(L1(X,Y)). The trigger (c, h′

1[XY], ∅) (line 9)
generates h′′

1 [XY](L2(X,Z)) where h′′
1 [XY] is an extension of h′

1[XY].
• The new row N is expected to be 〈h′

1[XY](L1(X,Y)), h′′
1 [XY](L2(X,Z)),

i〉. Before inserting this row, we check (line 11) if the tableau contains
a row whose atoms in columns Del and Query are respectively equal to
h′
1[XY](L1(X,Y)) and h′′

1 [XY](L2(X,Z)), up to null renaming.
• Calling such rows isomorphic rows, this task is achieved by the function

IsoRow which returns either the empty set or the row number where iso-
morphic atoms have been found. If the empty set is returned, the triple is
inserted as the row N of t-del (cf. lines 12–14); otherwise the row number i
whose atom t-del[i,Del] has triggered c is added in the column Ref of row ρ
(line 17).

As for insertions, the tableau t-del, which is built without accessing the
database, is used to perform the deletion according to Algorithm 4. In this
algorithm, as well as in Algorithm 5, access to D is performed through a function
eval taking as input an atom ϕ and returning the set of all instantiations in D
of ϕ. Algorithms 4 and 5 are explained in the following example.

Example 5. Consider the database instance and deletions shown is Fig. 2 and
discussed in Example 4. The loop on line 3 of Algorithm 4 is run for each fact in

Updating RDF/S Databases Under Constraints 365

Algorithm 4. PerfDel(Δ,DReq)
Input: Δ = (D, C) where C is a set of positive constraints; DReq is a set of facts
Output: Δ′ = (D′, C) resulting from the deletion of DReq from Δ
1: t-del := BuildDelTab(C,DReq)
2: DSet := ∅
3: for all l ∈ DReq do
4: i := FindRow(t-del, l)
5: AnsQ0 := eval(t-del[i,Del], Δ) \ DSet
6: if AnsQ0 �= ∅ then
7: for all ϕ0 ∈ AnsQ0 do
8: DelSideEffects(i, ϕ0, DSet)
9: D′ := D \ DSet
10: return Δ′ := (D′, C)

Algorithm 5. DelSideEffects(λ, ϕ,DSet)
Input: A line number λ of t-del, a fact ϕ and the current set DSet.
Output: The updated set DSet.
1: DSet := DSet ∪ {ϕ}
2: S := {pos | λ occurs in t-del[pos,Ref]}
3: if S �= ∅ then
4: for all j ∈ S do
5: AnsQ1 := eval(t-del[j,Del], Δ) \ DSet
6: if AnsQ1 �= ∅ then
7: for all ϕ1 ∈ AnsQ1 do
8: Let h be a homomorphism such that h(t-del[j,Del]) = ϕ1

9: if ϕ is an instance of h(t-del[j,Query]) then
10: AnsQ2 := eval(h(t-del[j,Query]), Δ) \ DSet
11: if AnsQ2 = ∅ then
12: DelSideEffects(j, h(t-del[j,Del]), DSet)
13: return DSet

DReq for which we successively have AnsQ0 = {B(b, b)} and AnsQ0 = {B(c, b)}.
Thus, Algorithm 5 is first called with DSet = ∅, λ = 1 and ϕ = B(b, b).

After inserting B(b, b) in DSet (line 1), Algorithm 5 computes S = {3} and
the loop (line 4) is executed. Since t-del[3,Del] = A(b,N1) (Fig. 2), we have
AnsQ1 = {A(b, a)} (line 5). The homomorphism h (line 8) is h = {N1/a}. In
this case, AnsQ2 = {B(b, a)} (line 10) because B(b, b) is in DSet. Since the
current values of ϕ and ϕ1 are respectively B(b, b) and A(b, a), the test on line 9
returns true. Notice that when the returned value is false, the current values
of ϕ and ϕ1 do not correspond to the same homomorphism, and the process
stops. Since AnsQ2 �= ∅, deleting ϕ does not require deleting ϕ1. The process
continues with the loop on line 7 of Algorithm 4, for which we have λ = 2,
ϕ0 = B(c, b) and DSet = {B(b, b)} as input for Algorithm 5. Thus, we obtain
DSet = {B(b, b), B(c, b)}, S = {4} and the execution of the loop (line 4) for
j = 4 implies that AnsQ1 = {A(c, a), A(c, c)}.

366 M. Halfeld-Ferrari and D. Laurent

For ϕ1 = A(c, a), AnsQ2 = ∅ and in the call DelSideEffects(4, A(c, a),
{B(b, b), B(c, b)}) (line 12), A(c, a) is added into DSet (line 1), and S is set
to ∅. Similarly, for ϕ1 = A(c, c) and DelSideEffects(4, A(c, c), {B(b, b), B(c, b),
A(c, a)}), DSet = {B(b, b), B(c, b), A(c, a), A(c, c)} is returned (line 13 of Algo-
rithm 5). Thus, D′ = {A(b, a), B(b, a)}. ��
The following proposition shows that performing deletions according to policy
(P2) is always possible and satisfies the minimal change requirement.

Proposition 2. For every finite set of positive constraints C and every finite
set of facts DReq, Algorithms 3 and 4 applied to C and DReq always terminate.

Moreover, Δ′ = (D′, C) is such that: (1) D′ ∩ DReq = ∅; (2) D′ |= C and
(3) for every ϕ in DSet \ DReq, D′ ∪ {ϕ} �|= C. ��

3.3 Global Updates

Consider now a database instance with positive constraints (CP) and negative
constraints (CN), and update requests containing insertions and deletions. Such
updates are processed based on the previous algorithms as follows:

(1) The tableau t-ins is first built up based on CP and IReq, and then we check
whether the insertions are possible. If not, the process stops.

(2) Otherwise the consistency of the insertions is checked with respect to neg-
ative constraints in CN , according to policies (P3) and (P4). If an incon-
sistency is found, the process stops. Otherwise the deletions necessary to
restore consistency (see policy (P4)) are computed and added into DReq.

(3) Deletions are processed by computing t-del and the set DSet of all side
effects. We check whether these deletions are conflicting with the insertions
in step (1). If no conflict is detected the database instance is modified accord-
ingly. Otherwise no modification is performed.

Due to lack of space we do not give details of the corresponding algorithms
(see [12]), but we illustrate our approach in the context of our running example.

Example 6. Let Δ = (D, C) be the database of Fig. 1 and consider IReq =
{PubIn(coolP , KAIS)} and DReq = {PubIn(coolP , Cool J)}.

(1) t-ins is defined by c-ins(IReq) = {PubIn(coolP , KAIS), Paper(coolP),
Journal(KAIS)} and n-ins(IReq) = {PubIn(coolP , N1), Cites(coolP,N2)}.
The insertion is possible with respect to CP since PubIn(coolP , Cool J),
PubIn(coolP , KAIS) and Cites(coolP , rdfP) are in D ∪ c-ins(IReq).

(2) The consistency with respect to CN is checked. For c6 : (y �= z) ∧
PubIn(x, y) ∧ PubIn(x, z) ⇒ ⊥) and v = {x/coolP, y/KAIS}, the query
Q : (KAIS �= z) ∧ PubIn(coolP, z) is processed and returns PubIn(coolP ,
Cool J). As this fact belongs to DReq, this set is not modified.

Updating RDF/S Databases Under Constraints 367

(3) Algorithm 4, called with DReq as input, computes DSet = {PubIn(coolP ,
Cool J)}. As insertions and deletions are not conflicting, the algorithm out-
puts: D′ = (D ∪ {PubIn(coolP , KAIS)}) \ {PubIn(coolP , Cool J)}. ��
Clearly, global updates follow policy (P). Moreover, the following proposition

shows that when the database is modified, the updates are deterministically
performed and satisfy the minimal change requirement.

Proposition 3. Given Δ = (D, C), let Δ′ = (D′, C) be the result of the global
update processing with Δ, IReq and DReq. Either Δ′ = Δ or the following prop-
erties hold: (1) IReq ⊆ D′, DReq ∩ D′ = ∅ and D′ |= C; (2) For every ϕ in
c-ins(IReq)\IReq, D′\{ϕ} �|= C; (3) For every ϕ in DSet\DReq, D′∪{ϕ} �|= C. �

4 Application Issues

Complexity results. In [8] a general-purpose method dealing with the evolution
of a knowledge base with disjunctive embedded dependencies is shown to be NP-
complete while its special-purpose version which considers only RDF/S semantic
constraints leads to a polynomial complexity. We argue that our approach has
also a polynomial time complexity, while generalizing the work of [8], in the sense
that our approach allows both application and RDF/S constraints.

Indeed, denoting by α the maximal arity of predicates and by |E| the car-
dinality of a set E, it is shown in [12] that the complexities of insertions and
deletions are respectively O(|D| + |IReq|2.α) and O(|D|2 + |DReq|3.α). Thus, the
complexity of global updates is O(|D|2 + |IReq|2.α + |DReq|3.α), i.e., polynomial
with respect to the sizes of D, IReq and DReq.

Table 1. Chase performance

DReq t-del Chase

Size # facts # atoms time (in s)

2.1KB 30 78 0.022

20KB 290 713 0.075

206KB 2808 6646 0.169

1.5MB 19, 052 34, 685 0.923

9.1MB 100, 543 135, 908 10.406

Testing our chase algorithms. As
our custom versions of chasing are
the kernel of our approach, we ran a
preliminary JAVA implementation on
an Intel(R) Core(TM) i7-6600U CPU@
2.60 GHz; 16 GB of RAM. Considering
the benchmark described in [4], Table 1
illustrates some of our results (chosen
out of twenty different tests) using a
LUBM [1] scenario (a popular bench-
mark in the semantic web domain) with
91 positive constraints. In our tests,
t-del is computed using Algorithm 3 and the set DReq (seen as a database
instance), and the number of new generated atoms is output. These tests show
the feasibility of our proposal, regarding the computation time for generating
the tableaux. These experimental results should be seen as a first step towards
the full implementation of our approach and its assessment. Obtained results
are encouraging (apparently close to those of Graal in [4]). Performance com-
parisons with other chase versions will be conducted shortly, after implementing

368 M. Halfeld-Ferrari and D. Laurent

some optimizations and testing the systems mentioned in [4] in our hardware
configuration.

RDF/S semantics as constraints. Besides application constraints, RDF data
should be valid with respect to RDF/S semantic constraints. Using the for-
malism of [8], we classify predicates into two sets: (i) SchPred = {Cl, Pr,
CSub, PSub, Dom, Rng}, a set of schema predicates standing respectively for
classes, properties, sub-classes, sub-properties, property domain and range, and
(ii) InstPred = {CI, PI, Ind, URI}, a set of instance predicates standing
respectively for class and property instances, individuals and URIs.

The RDF/S semantic constraints listed in [8] are split into: typing constraints
(such as (∀x)(Cl(x) ⇒ URI(x))), schema constraints involving only predicates
in SchPred, and instance constraints of the form (∀X)(ϕSch(X′) ⇒ ϕInst(X))
where variables in X′ are in X, ϕSch(X′) is an atom over a predicate in SchPred,
and ϕInst(X) is a positive constraint involving instance predicates.

In this setting, an RDF/S database Δ is a pair (ΔSch,ΔInst) where ΔSch =
(DSch, CSch) and ΔInst = (DInst, CInst) are such that: (i) CSch is the set of
schema constraints and DSch is a set of facts over SchPred satisfying CSch;
(ii) CInst is the set of instance or application constraints and DInst is a set of
facts over InstPred such that DSch ∪ DInst satisfies CInst; and (iii) all typing
constraints are satisfied by DSch ∪ DInst.

Example 7. Applying the previous considerations to our running example, we
obtain the database Δ = (ΔSch,ΔInst) where

• DSch = {Cl(Journal), Cl(Paper), Pr(PubIn), Pr(Cites), Dom(PubIn, Paper),
Rng(PubIn, Journal), Dom(Cites, Paper), Rng(Cites, Paper)};

• CSch expresses the existence and uniqueness of domain and range of proper-
ties;

• DInst contains the facts in D (Fig. 1), expressed with instance predicates
(e.g., CI(dbP , Paper) or PI(dbP , KAIS, PubIn)) and the facts representing
individuals and URIs (e.g., Ind(dbP) or URI(Cites));

• CInst contains (PI(x, y, PubIn) ⇒ CI(x, Paper)), (PI(x, y, PubIn) ⇒ CI(y,
Journal)), (PI(x, y, Cites) ⇒ CI(x, Paper)), (PI(x, y, Cites) ⇒ CI(y, Paper)),
expressing c1−c4 of Example 1. Constraints c5−c8, which also belong to CInst,
are application constraints. For example, c5 and c8 are respectively written:
(CI(x, Paper) ⇒ (PI(x, y, PubIn))) and (((x = y) ∧ PI(x, y, Cites)) ⇒ ⊥).

We notice that, to fit the constraint form given earlier, every constraint
(ϕSch(X′) ⇒ ϕInst(X)) is replaced by the set of all formulas h(ϕInst(X′′)) where
X′′ = X \ X′ and h is a homomorphism of X′ such that DSch |= h(ϕSch(X′)).��
Application examples. We describe two cases for which our method is well
adapted. The first one concerns applications involving the cost or the quality
of updates. For instance, extending the database of Example 7 with the hierar-
chy defined by CSub(Journal, Publication) and CSub(DBJournal, Journal), con-
sider the insertions of CI(anyP , Publication), CI(anyP , Journal) and CI(anyP ,
DBJournal). Due to the constraints, inserting CI(anyP , DBJournal) generates

Updating RDF/S Databases Under Constraints 369

the insertion of the other two facts, while inserting CI(anyP,Publication) has no
side effects. Thus, assuming that low quality data are more likely to be deleted
and that the three facts are of low quality, the insertion of CI(anyP , Publication)
is preferred (as its deletion triggers no other deletions). Notice that this choice
can be made because side effects are computed prior to the update. Similar
methods are used for ontology revision [17].

A second case is a medical scenario inspired from [10] where an RDF database
stores information on patients and their treatments. A clone (virtual machine
in the cloud) handles collaborative tasks among users equipped with devices
storing a partial copy of the data. When a user requires updates, the clone (where
constraints are stored) computes the side effects and send them to the users, to let
them update their local database. Suppose the constraints (CI(X, Injured) ⇒
PI(X,Y , transfusion)) and (PI(X,Y , transfusion) ⇒ PI(X,Y , bloodGroup)),
along with the insertion of CI(Bob, Injured). Then, the clone informs users on the
potential insertions of PI(Bob,N1, transfusion) and PI(Bob,N1, bloodGroup). In
this case, if the null N1 can be instantiated (i.e., Bob’s blood group is known),
then the insertion is safely accepted, otherwise it is rejected. These examples
show the relevance of computing update side effects independently from instances
and forbidding null values, as we do in our work.

5 Related Work

Our update strategy is different from proposals such as [3,5,11,15]. Although
some of them discuss non determinism, all these approaches consider constraints
as inference rules (as in [9,14,16,19]), whereas we deal with constraints in a tra-
ditional database viewpoint, as in [8]. In [8] updates are deterministic thanks to
a total ordering, which potentially imposes arbitrary choices. Our proposal guar-
antees determinism by exploiting the linearity of constraints, for which updating
has a polynomial time complexity even for RDF/S and application constraints.

According to the update semantics classification in [3], our approach falls in
the category Semmat

2 (deletion/insertion of a fact imposes elimination/addition
of all its causes/consequences). Approaches in [5,11] address schema updating,
but with a more restricted set of RDF/S constraints. While a three valued logic
framework is used in [13] (which inspired the current proposal), we consider here
the standard first-order logic and allow for existential variables in the heads of the
rules. Although many works [6,7,20] used TGD and the chase procedure (see [18]
for a survey) for data exchange, few of them considered updates. An exception
is [20], which studies complexity of the TGD checking problem, including its
update variant. Our results can be related to works on repair checking (such
as [2]), because the updated database can be seen as a repair of an inconsistent
database obtained by performing only updates in DReq and IReq. However, our
minimal change conditions are not necessarily considered in those papers.

370 M. Halfeld-Ferrari and D. Laurent

6 Concluding Remarks

This paper focuses on consistent updates on a non-null database instance satis-
fying constraints that generalize the commonly used key-foreign key constraints.
By observing that update analysis with linear constraints can be done without
resorting to analysis of infinite chase, we propose a deterministic update strategy
based on specific chasing algorithms whose time complexity is polynomial.

Our approach, which satisfies minimal change requirements, deals with sets
of insertions and deletions in a two-step procedure where the first step is per-
formed independently from the database instance. The motivation comes from
RDF applications where nulls cannot be stored and where side effects should be
evaluated before effectively updating the database instance. We have shown that
the use of our approach in checking validity of RDF documents with respect to
RDF/S-semantic together with application constraints is straightforward.

Acknowledgements. The work is partially funded by APR-IA GIRAFON. We sin-
cerely thank Jacques Chabin for his work on implementation and experiments.

References

1. Lubm benchmark. http://swat.cse.lehigh.edu/projects/lubm/
2. Afrati, F.N., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms

and complexity. In: Proceedings of the 12th International Conference on Database
Theory - ICDT, Russia, pp. 31–41, 23–25 March 2009

3. Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS ABoxes and TBoxes in
SPARQL. CoRR, abs/1403.7248 (2014)

4. Benedikt, M., Konstantinidis, G., Mecca, G., et al.: Benchmarking the chase. To
appear in Principles of Database Systems (PODS 2017) (2017)

5. Chirkova, R., Fletcher, G.H.L.: Towards well-behaved schema evolution. In: 12th
International Workshop on the Web and Databases, WebDB, USA (2009)

6. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT
2003. LNCS, vol. 2572, pp. 207–224. Springer, Heidelberg (2003). doi:10.1007/
3-540-36285-1 14

7. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

8. Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal founda-
tions for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153–191 (2013)

9. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: rewriting and optimization.
In: Proceedings of the 27th International Conference on Data Engineering, ICDE,
Germany, pp. 2–13 (2011)

10. Guetmi, N.: Design Models for Mobile Collaborative Applications in the Cloud.
Ph.D. thesis, École nationale supérieure de mécanique et d’aérotechnique, France
(2016). https://tel.archives-ouvertes.fr/tel-01430151

11. Gutierrez, C., Hurtado, C., Vaisman, A.: RDFS update: from theory to practice. In:
Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer,
P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 93–107. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21064-8 7

http://swat.cse.lehigh.edu/projects/lubm/
http://dx.doi.org/10.1007/3-540-36285-1_14
http://dx.doi.org/10.1007/3-540-36285-1_14
https://tel.archives-ouvertes.fr/tel-01430151
http://dx.doi.org/10.1007/978-3-642-21064-8_7

Updating RDF/S Databases Under Constraints 371

12. Halfeld-Ferrari, M., Laurent, D.: Updating RDF/S databases under neg-
ative and tuple-generating constraints. Technical report, LIFO-Université
d’Orléans, RR-2017-05 (2017). https://www.univ-orleans.fr/lifo/rapports.php?
lang=en&sub=sub3

13. Halfeld-Ferrari, M., Laurent, D., Spyratos, N.: Update rules in datalog programs.
J. Log. Comput. 8(6), 745–775 (1998)

14. Lausen, G., Meier, M., Schmidt, M.: Sparqling constraints for RDF. In: Proceedings
of the 11th International Conference on Extending Database Technology, EDBT,
France, pp. 499–509 (2008)

15. Lösch, U., Rudolph, S., Vrandečić, D., Studer, R.: Tempus fugit. In: Aroyo, L.,
Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R.,
Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 278–292.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02121-3 23

16. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: Proceedings of the 16th International Conference on World Wide
Web, WWW, Canada, pp. 807–816 (2007)

17. Nikitina, N., Rudolph, S., Glimm, B.: Interactive ontology revision. J. Web Sem.
12, 118–130 (2012)

18. Onet, A.: The chase procedure and its applications in data exchange. In: Data
Exchange, Integration, and Streams, pp. 1–37 (2013)

19. Patel-Schneider, P.F.: Using description logics for RDF constraint checking and
closed-world recognition. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, USA, pp. 247–253 (2015)

20. Pichler, R., Skritek, S.: The complexity of evaluating tuple generating dependen-
cies. In: Proceedings of the 14th International Conference on Database Theory -
ICDT, Sweden, pp. 244–255 (2011)

21. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on spark. PVLDB 9(10), 804–815 (2016)

https://www.univ-orleans.fr/lifo/rapports.php?lang=en&sub=sub3
https://www.univ-orleans.fr/lifo/rapports.php?lang=en&sub=sub3
http://dx.doi.org/10.1007/978-3-642-02121-3_23

Additional Database
and Information Systems Topics

Migrating Web Archives from HTML4
to HTML5: A Block-Based Approach

and Its Evaluation

Andrés Sanoja1(B) and Stéphane Gançarski2

1 Escuela de Computación, Universidad Central de Venezuela, Caracas, Venezuela
andres.sanoja@ciens.ucv.ve

2 Laboratoire d’Informatique de Paris 6, Université Pierre et Marie Curie,
Paris, France

stephane.gancarski@lip6.fr

Abstract. Web archives (and the Web itself) are likely to suffer from
format obsolescence. In a few years or decades, future Web browsers will
no more be able to properly render Web pages written in HTML4 for-
mat. Thus we propose a migration tool from HTML4 to HTML5. This is
challenging, because it requires to generate HTML5 semantic elements
that do not exist in HTML4 pages. To solve this issue, we propose to
use a Web page segmenter. Indeed, blocks generated by a segmenter are
good candidates for being semantic elements as both reflect the con-
tent structure of the page. We use an evaluation framework for Web
page segmentation, that helps defining and computing relevant metrics
to measure the quality of the migration process. We ran experiments on
a sample of 40 pages. The migrated pages we produce are compared to
a ground truth. The automatic labeling of blocks is quite similar to the
ground truth, though its quality depends on the type of page we migrate.
When comparing the rendering of the original page and the rendering of
its migrated version, we note some differences, mainly due to the fact that
rendering engines do not (yet) properly render the content of semantic
elements.

Keywords: Migration · Web · Segmentation · Blocks · HTML5 · Web
archive · Format obsolescence

1 Introduction

Obsolescence, adjustment, and renewal are necessary parts of the development
cycle. Improvements usually require changes. In July 2012, the WWW Consor-
tium introduced a recommendation for HTML5, an important evolution with
respect to the preceding version of HTML and the XHTML specification. For
instance, it introduces the semantic tags allowing browsers to easily access con-
tents, audio and video among others. Laws [5] points that organizations and

c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 375–393, 2017.
DOI: 10.1007/978-3-319-66917-5 25

376 A. Sanoja and S. Gançarski

publishers need to be ready for this technological change if they want to out-
perform their competitors and stay in the technological race. This raises the
following question: once publishers switch to HTML5, what happens with the
current (on-line or archived) HTML4 content?

As mentioned by Rosenthal [12], eventually modern browsers will no longer be
able to render HTML4 (or XHTML) documents in a proper way. Thus, a strategy
for preserving HTML4 pages is required. This issue is even more crucial if one
consider Web archives such as Internet Archive1, where millions of HTML4 pages
are stored and must be preserved for subsequent (possibly long term) retrieval.
This archive consists of 2.5 billion resources, crawled between 1996 and 2010 [3].
All those resources are in HTML 2.0, 3.2, 4.0, 4.01 and XHTML 1.0 formats.
This gives an example of what is the size of the corpus to work with. To cope
with this issue, Web publishers and archivists must decide to perform either an
emulation or a migration.

Emulation is the implementation of functionalities of an obsolete system, but
on the new (hardware and software) environment in which the object is rendered
[17]. It consists in recreating the environment in which a Web page was originally
created. This implies keeping old (versions of) tools and also generates a runtime
overhead in response time, due to emulation processing.

Migration refers to transferring data to newer system environments [2]. In our
context, this consists in converting a Web page from one file format to another
so that the resource (including its functionalities) remains compliant with new
rendering engines. Migration may require heavy computing resources such as a
cloud or a PC cluster, running map-reduce parallel processing, particularly for
large Web archives. However, it has to be performed only once, and migrated
pages will be rendered by modern or future browsers as fast as (future) native
HTML5 pages. In other words, while emulation is a short-term solution, migra-
tion is more adapted to long term preservation. Thus, in this paper, we focus on
Web pages migration.

A main goal of HTML5 is to add semantics to the different components of
a Web page, called blocks, by associating labels, or semantic tags, with blocks.
An HTML5 page is composed of semantic elements which organize the content.
For instance, some blocks are labelled header and are processed accordingly by
modern rendering engines. As those labels do not exist in HTML4 pages, the
migration process must infer them from the structure/content of the existing
pages. Discovering the structure of a Web page is called Web Page Segmentation,
or segmentation for short. It consists in dividing a page into (possibly nested)
segments, or blocks. A review of the existing approaches to segmentation may
be found in [13].

In this article we present how we use Web page segmentation to perform
the migration of HTML4 pages to HTML5 format. There are two possible ways
to perform such a migration: tag-by-tag or block based. Tag-by-tag migration
means translating the source code of a Web page content, element by element.

1 web.archive.org/.

http://web.archive.org/

Migrating Web Archives from HTML4 to HTML5 377

However, for some tags the heuristic can be very complex, since the HTML5
semantic element can be dependant of the layout of the content, i.e. a graphical
representation, not deductible from the source code without rendering.

Thus, we choose a block based approach that operates on a rendered version
of the page. This rendered version is segmented into blocks, and the geometry of
the elements is stored. Blocks are automatically labeled through heuristic rules,
which define semantic elements. Then we produce a new version of the page only
with the original metadata (e.g. style sheets) and semantic elements. Then we
migrate each block content and put the result into the corresponding semantic
element.

In this work we experiment the benefits of using a block-based segmenter
like Block-o-Matic (BoM), that works on the rendered page [15]. Working inside
a rendering engine gives access to the DOM (W), the structure (W ′) result of
the segmentation, and the layout (GM) of the page (c.f. Sect. 3). This eases the
detection of the regions where the semantic elements should be added, and their
location in the DOM. Segmenters following other approaches e.g. Text-based [4],
Tag-based [6] and even Image-based [1] do not produce sufficient information to
achieve the same quality.

In theory, semantic tags have no impact in the rendering of the page, but
they help to organize the content into coherent regions. Thus, migration can be
performed by segmenting HTML4 pages and incorporating semantic tags to the
result.

The main contributions of this paper are the following. (1) We propose an
enhanced version of BoM, that not only segments an HTML4 page, but also,
thanks to a set of heuristic we defined, automatically labels the blocks to pro-
duce HTML5 semantics elements, in order to complete the migration process.
(2) We propose a framework to measure the quality of a migration and use it to
evaluate our migration method. As far as we know, there is no other evaluation
framework equivalent to our one in the literature. To measure the correctness
of a migration, we compare a set of predefined manual segmentations (ground
truth) with automatically migrated versions. The ground truth is built by human
assessors using our Manual-design-Of-Blocks tool (MoB). We compare both the
structure (blocks) and the semantics (labels) of the migrated version with the
corresponding ground truth. We also measure to which extent the rendering of
the page is affected by the migration. The results we obtained through exper-
imentation are promising. They help understanding the issues raised by the
migration and suggest improvements as future work.

This paper is organized as follow. Section 2 gives a brief summary of the
related works. In Sect. 3 we present the Web page segmentation concepts and
notations. We introduce BoM, our approach to Web page segmentation, and our
evaluation framework. Section 4 details our solution for migrating from HTML4
to HTML5. Section 5 presents the experiments we led and Sect. 6 the results of
those experiments. We conclude in Sect. 7 and give hints for future work.

378 A. Sanoja and S. Gançarski

2 Related Works

There are many online references to systems that perform tag-by-tag migration
from HTML4 to HTML52. For instance [18] proposes guidelines to manually
convert HTML4 documents to HTML5 and points the issues raised by div ele-
ments. More generally, there is a real difficulty to translate HTML4 elements to
HTML5 semantic tags from documents where such tags do not exist. As far as we
know, there is no approach that performs a block-based migration comparable
with our one.

There are very few systematic and automatic approaches that solve the prob-
lem of translating to HTML5 format documents in other formats. As an example,
Park [10], present their experience in the migration of ETD (Electronic Theses
and Dissertations) from the PDF format to HTML5 format. Most of ETDs have
linked multimedia documents and connected by hyperlinks. Storing them in PDF
requires to have the corresponding multimedia readers, libraries and plug-ins, as
well. HTML5 is a convenient migration format because in this way it is possible to
have one single file that has all of the content linked together, including all of the
multimedia information in the ETD and metadata available for Web search index-
ing and other general tasks. In this case, determining which are the semantic ele-
ments is easy because the PDF sections are well defined and delimited. This makes
possible a full tag-by-tag migration, including semantic elements in the process.

Migration is a crucial issue even for other formats than HTML5. Rosenthal
[11] describes the design and implementation of a transparent, on-access for-
mat migration capability in the LOCKSS system for preserving Web content.
Their implementation is capable of transparently presenting content collected
in one Web format to readers in another Web format, without changing the
browsers. They present an user case of this type of migration on GIF image
format migrated to PNG format.

3 Web Page Segmentation with BOM and Its Evaluation

Our segmenter BoM segments a Web page without a priori knowledge of its
content. It only uses the heuristic rules defined by the W3C Web standards. For
instance, we detect blocks using HTML5 content categories instead of using the
tag names or text features.

The segmentation process is composed of two main phases: detecting fine-
grained (as small as possible) blocks and then merging them according to a stop
condition, so that the segmentation is performed at the desired granularity. It
can be expressed by the following function Φ(W), where W is the rendered DOM
of a Web page.

Φ(W, pA, pD) −→ (W ′, GM,L)

W ′ is the block graph (a tree) of the segmentation: a block B is the child of
block C if C contains B. A flat segmentation of W is obtained by only considering
the leaf nodes in W ′. GM is the geometric model, pA and pD the stop condition.
2 Googling the term “translating html 4 tag to html5” will give these references.

Migrating Web Archives from HTML4 to HTML5 379

In few words, GM stores the size and coordinates of the blocks bounding boxes.
L is the list of (HTML5) labels produced by the segmentation. This is the main
difference with the former version of BoM [14] which was not designed to produce
HTML5 compliant segmentations.

pA is the lower bound for the proportional size of a block with respect to
the page. So, BoM creates blocks relatively bigger than pA. pD is the minimum
separation distance (in pixels) to consider two blocks for merging. More details
about the segmentation with BoM can be found in [13].

A segmentation is evaluated by computing its similarity with a reference
segmentation. The similarity is defined by using block correspondence measures
that allow knowing to what extent the generated blocks rectangles match those
of the reference segmentation. Consider two segmentations P and G. Based on
the geometry of the blocks, we compute correspondences between (sets of) blocks
of P and (sets of) blocks of G. A block in P (resp. G) corresponds to a (set of)
block(s) in G (resp. P) if they fit in the same rectangle of the page.

If the blocks in BoM segmentation P fits perfectly with the ground-truth
blocks G, then there is a perfect matching between G and P . If there are dif-
ferences between the two segmentations, blocks of P may have zero or several
corresponding blocks in G.

Consider that G is the reference segmentation. The metrics for block corre-
spondence of P are the following:

1. Correct blocks Cc. The number of one-to-one matches between P and G.
Cc is the main metric for measuring the quality of a segmentation.

2. Oversegmented blocks Co. This metric measures how much a segmentation
produced too small blocks. However, those small blocks fit inside a block of G.

3. Undersegmented blocks Cu. The same as above, but for big blocks, where
blocks of G fit in.

4. Missed blocks Cm. This metric measures how many blocks of G are not
detected by the segmentation P .

5. False alarm blocks Cf . This metric measures how many blocks in P are
“invented” by the segmentation. There are no corresponding block in G.

Cc is a positive measure, while Co and Cu count granularity-related errors:
found blocks could match with G if they were aggregated or split. Cf and Cm

are negative metrics. Formal definitions of those and other metrics can be found
in [15] and in [13].

The evaluate function returns a vector made of the computed metrics, i.e.

evaluate(G,P) = (Cc, Co, Cu, Cm, Cf) (1)

In this paper, we use this evaluation framework twice. First, we use it to test
the (visual) quality of a migration operation, by comparing the segmentations
obtained before and after the migration (cf. Sect. 4.4). In this case, the refer-
ence segmentation is the one obtained by segmenting the HTML4 page, before
migration. The underlying idea is that if the migration is correct, then the ren-
dering of the migrated version must be similar to the reference version, thus

380 A. Sanoja and S. Gançarski

they must lead to similar segmentations with BoM. Second, we use the evalua-
tion framework to compare the labeling computed by BoM with a ground truth.
The ground truth is built by human assessors who manually segment and label
pages. To ease assessors work, we develop MoB, a tool that allows manually
segmenting and labeling pages thanks to a user-friendly interface3. In this case,
the reference segmentation is the ground truth. By applying the correspondence
measures to the segmentation produced by BoM, we can better explain the dif-
ferences between the labeling obtained with BoM and the labeling of the ground
truth (cf. Sect. 4.5).

4 Migration and Evaluation

In this section we present the migration process and its evaluation. The goal is
to take a Web page in HTML4 format and produce a version of the same page
according to the HTML5 format. We evaluate the migration in two ways:

– by comparing the rendering of the migrated version with the rendering of the
original version, to measure how much the visual aspect will be preserved by
the migration (cf. Sect. 4.4);

– comparing the output of our solution with a ground truth, in order to measure
the quality of our automatic labeling (cf. Sect. 4.5).

Both evaluations help determining the causes and the possible actions to
improve the migration method. The process is illustrated on Fig. 1. At the center,
the steps necessary for producing the output. At the right side, the evaluation
and the manual segmentation (ground truth building) tasks. At the left side, the

Fig. 1. Migration and its evaluation overview

3 https://github.com/asanoja/web-segmentation-evaluation/tree/master/
chrome-extensions/MOB.

https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/MOB
https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/MOB

Migrating Web Archives from HTML4 to HTML5 381

evaluation of the rendering of the migrated page with respect to the rendering of
the original page. As mentionned before, this evaluation is made by comparing
the segmentation of the migrated version with the segmentation of the original
version. Each task is described in the rest of the section, with a focus on the
blocks labeling and the two evaluation ways above mentioned.

4.1 The Migration Process

The migration process consists of three main tasks:

1. Segmentation of the input page: A Web page in HTML4 format is seg-
mented using the BoM segmenter (c.f. Sect. 3).

2. Automatic label assignment: Based on the properties and characteris-
tics of the blocks found in the segmentation we assign a label (i.e. HTML5
semantic elements tags) to each block (c.f. Sect. 4.2).

3. Output construction: The output is a Web page in HTML5 format. Each
block found in the segmentation becomes a semantic element, named by
the corresponding block label. The elements associated with the block are
included as children of this semantic element. Besides the semantics tags and
the original content, no other extra elements are added to the migrated ver-
sion, e.g. style sheets, javascripts or metadata.

4.2 Assigning Labels

BoM creates a block tree including composite and simple blocks (simple blocks
are the leaves of the tree) [13]. In our experiments we only consider simple blocks
i.e. we work on a flat segmentation. The evaluation of labeling composite blocks
(in our approach, blocks labelled page or section) is left for future work.

Heuristics rules are defined in order to determine the label of each block.
These rules assign labels depending on the position of a block and its relationship
to the others blocks. A block is treated differently if it resides in the visible part
of the page (i.e. the part of the page visible without using scrolling). For instance,
a block is labeled as header if it resides in the visible part of the page, and the
amount of hyperlinks and content do not exceed certain quantity indicated by
a predefined constant. A block with the same characteristics but outside of the
visible area and at the bottom of the page is labeled as footer.

For the label nav, one additional condition is considered. If the proportion
of hyperlinks (i.e. <A> elements, elements with onclick event attribute) a block
contains is greater than a predefined constant, it can be considered as a nav.

Algorithm 1 describe the label assignment method (the heuristics) for all
possible cases. A full version of the algorithm (including composite blocks) can
be found at github4

4 https://github.com/asanoja/web-segmentation-evaluation/tree/master/
chrome-extensions/BOM.

https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/BOM
https://github.com/asanoja/web-segmentation-evaluation/tree/master/chrome-extensions/BOM

382 A. Sanoja and S. Gançarski

Data: Block: b

Result: b.label

1 if b.weight ¿ pA then

2 if b in the visible part of page then

3 if proportion of elements covered by b is greater than a constant then

4 b.label=ARTICLE;

5 else if proportion of hyperlinks covered by b is greater than a constant then

6 b.label=NAV;

7 else

8 b.label=HEADER;

9 end

10 else if b is in the middle/center of the page then

11 if b is at left/right of the page then

12 b.label=ASIDE;

13 else if proportion of hyperlinks covered by b is greater than a constant then

14 b.label=NAV;

15 else

16 b.label=ARTICLE;

17 end

18 else if b is at the bottom of the page then

19 if proportion of hyperlinks covered by b is greater than a constant then

20 b.label=NAV;

21 else

22 b.label=FOOTER;

23 end

24 else

25 b.label=ARTICLE;

26 end

27 end

Algorithm 1. Label Assignment Algorithm

4.3 The Evaluation Process

We measure to what extent the migration is correct, and how reliable it is. The
evaluation is divided in three tasks, as follows:

1. Measure of rendering errors: Using the Web page segmentation evalua-
tion framework (cf. Sect. 3) we measure the difference on the rendering both
of the original and migrated pages, cf. Sect. 4.4.

2. Manual segmentation and label assignment: Using the MoB tool (c.f.
Sect. 3) we produce a ideal segmentation of the input page that serves as a
ground truth. In the same process the user assigns a label to each block.

3. Measure of labeling errors: from both segmentations (i.e. the manual
-ground truth- and automatic one -BoM-) we compute some measures to
determine how different both label assignments are. The metrics are described
in detail in Sect. 4.5. In order to better explain the differences, we also compare
the structure of the segmentations, using again the measures defined in Sect. 3.

Migrating Web Archives from HTML4 to HTML5 383

4.4 Dealing with Rendering Errors

In order to measure to what extent the migration affects the rendering of the
migrated Web page, we use the correspondence measures defined in Sect. 3.

Consider two rendered DOM, W and W5, where W is the rendered DOM of a
Web page in HTML4 format and W5 is the rendered DOM of the migrated Web
page. As mentionned in Sect. 1, W and W5 cannot be directly -syntactically-
compared tag-by-tag. However, if the migration is correct, W and W5 must
be similar, i.e. they produce the same visual rendering. Thus their respective
segmentations must be equal or close. This means that we can indirectly compare
W and W5 by comparing their respective blocks trees W ′ and W5′ obtained by
the BOM segmenter.

If we find only correct blocks then the migration may be perfect. Indeed, if
both W and W5 produce the same segmentation, i.e. W ′ = W5′, there is a high
probability that their rendering is the same.

However, in the migrated version some semantic elements may not be ren-
dered correctly. When reaching a semantic element, rendering engines of current
Web browsers do not process the user defined CSS style of its content, as it
does in the original version. For semantic elements, Web browsers either use a
default style, either no style at all. In both cases, they cannot use the CCS style
defined for HTML4 elements. Thus, blocks can change their size and position
leading to a shifting of the block. Depending on the page design this can affect
either the whole page or a part of it. We can interpret the impact of this error by
observing the values of the correspondence metrics defined in Sect. 3. Missed and
false alarms blocks, corresponding to metrics Cm and Cf , quantify the amount
of blocks that are affected by the shifting. In most situations, the shifting of
a block generates one missed block and one false alarm, since the evaluation
framework do not consider anymore that the same block appears at the same
location in both versions. The shifting of a block may also generate over seg-

Fig. 2. Examples for rendering errors

384 A. Sanoja and S. Gançarski

mentations (resp. under segmentation), thus increasing the value of metric Co

(resp. Cu.): shifted blocks in W5′ are considered as part of a different blocks in
W ′, or viceversa.

Figure 2 presents examples of possible rendering errors. In Fig. 2a, block b is
shifted up, which causes a cascading shifting up of blocks c and d. Metrics Cm

and Cf are equal, then there are three blocks with rendering error. On Fig. 2b
only block b is shifted, producing one block with error. In Fig. 2c, block b reduce
its size, shifting blocks c, d and e. This lead to an oversegmentation of block
b in W ′ because blocks in b,c,d,e of W5′ fit inside. In Fig. 2d, block b in W5′

expands its size and covers blocks b and c in W’ causing an undersegmentation.
Block c in W5′ is shifted right, producing a false alarm.

4.5 Measuring Labels Similarity

The manual segmentation ΦG and the computed segmentation ΦBoM are for-
mally defined in Sect. 3. The manual segmentation, produced by assessors, takes
the rendered DOM of a Web page (W) in HTML4 format and produces the W ′

G

block tree, i.e.

ΦG(W,pA = 5, pD = 30) −→ (W ′
G, GMG, LG)

The computed segmentation takes the same rendered DOM (W) and produces
the W ′

BoM block tree, i.e.

ΦBoM (W,pA = 5, pD = 30) −→ (W ′
BoM , GMBoM , LBoM)

The order in LG and LBoM is the one in which labels appear on the screen, in
a top-down/left-right traversal.

Fig. 3. Labels for the computed (BoM) and Manual (G) Segmentation in a forum
example web page

Migrating Web Archives from HTML4 to HTML5 385

Consider the flat segmentations of a forum page shown in Fig. 3. For the
computed segmentation (left) we have a header block, the menu as a nav block,
an article block representing the first post, followed by a set of response blocks
labeled as article. At the end of the page, there is a footer block. The figure
shows the labels for the manual and computed flat segmentation.

The list of labels from the manual segmentation is: {header, nav, article,
article, footer}. The list of labels for the computed segmentation is: {header,
nav, article, article, article, article, article, footer}. For simplicity, we denote the
labels with their first letter.

Thus, the list of labels for both segmentations are LG =< H,N,A,A, F >
and LBoM =< H,N,A,A,A,A,A, F >.

The assessors who built the manual segmentation (right) considered that all
the responses in the forum should be gathered. In other words, the header, nav,
article and footer are equally labeled by BoM and the human assessors, but the
responses in BoM version are splitted, which is a granularity error, thus not so
serious.

In order to compute to what extent both segmentations are similar, we define
simD, the inverse proportion of error, based on the Damerau-Levenshtein edit
distance [7] as follows:

simD = 1 − DamerauLevenshteinDist(LG, LBoM)
|LG| + |LBoM |

where |LG| + |LBoM | is the maximum possible error value for the Edit Dis-
tance [8].

DamerauLevenshteinDist(LG, LBoM) represents the minimum number of
insertions, deletions, substitutions or transpositions needed to transform LBoM

into LG. simD represents a relative similarity between both label sequences. In
the example of Fig. 3,

simD(LG, LBoM) = 1 − 3
5 + 8

= 0.61

This means that both labelings are 61% similar. Both segmentations have
the same content, but one is more detailed than the other. If we merge the
article blocks corresponding to response in the BoM segmentation, we obtain
the same labeling as the manual segmentation. In other words, the simD met-
ric value is directly impacted by granularity issues, i.e. oversegmentation and
undersegmentation (cf. Sect. 3).

From the content point of view (without taking granularity into account)
both segmentations are totally similar, thus much more than the 61% obtained
through simD. Thus, we looked for another metric that is not impacted by
granularity issues. We use the Jaccard similarity coefficient [9], noted simJ in
this paper. Let SLG (resp. SLBoM) be the set of elements contained in LG (resp.
LBoM), then

simJ (LG, LBoM) =
|SLG ∩ SLBoM |

|SLG| + |SLBoM | − |SLG ∩ SLBoM |

386 A. Sanoja and S. Gançarski

In the example:
simJ(LG, LBoM) = 1

which means that BoM labeling and manual labeling are 100% similar.
simD metric is more affected by small variations in missing/displacement/

repeated labels in the sequence. It is important because it gives an idea on how
accurate the labeling assignment algorithm is, in absolute terms.

simJ minimize the impact of the granularity problems in the segmentation,
giving an idea of how good (or similar) the labels were assigned (even with
error), in relative terms. This is due to the fact that, when considering SLG

instead of LG, duplicates are eliminated. However, as SLG is a set, the order
in LG is lost. This may lead to consider similar couples of lists as < H,A, F >
and < F,A,H >. Even if such a discrepancy between manual and automatic
segmentations is highly unlikely, it justifies that we keep both metrics. Indeed,
the simD value would be low for such a couple of lists, thus, at the end, the two
segmentations < H,A, F > and < F,A,H > would not be considered as very
similar. We currently investigate to find a new metric that would decrease the
impact of granularity while keeping the labeling order.

To sum up, if simJ value is greater than simD it is because the similarity is
affected by the granularity. If simJ value is lesser than simD it is because the
similarity is affected either by the correctness of labels assignments or the quality
of the segmentation. Both metrics allow us to interpret the results obtained from
the experience. As the quality of the labeling may depend on the quality of the
segmentation, we also apply the correspondance measure defined in Sect. 3 in
order to better explain the labeling differences (cf. Sect. 6.2).

5 Experiments

In this section we describe the setup of experiments we led to evaluate our
migration method.

5.1 Experimentation Design

We present the Web pages we used and a brief description of the experiments
we led on those pages.

The MIG5 Collection. The dataset holds the offline version of Web pages,
together with their segmentations created manually by human assessors (ground
truth) or automatically with BoM (with a predefined stop condition), organized
in categories.

Web pages of the MIG5 collection are taken from the GOSH (GOogle SearcH)
collection that we built. Web pages in this collection are selected with respect
to their category. This selection is based in the categorization made by Brian
Solis [16], “The Conversation Prism”. It depicts the social media landscape from

Migrating Web Archives from HTML4 to HTML5 387

ethnography point of view. In this work, we considered the five most common
of these categories, namely Blog, Forum, Picture, Enterprise and Wiki. For each
category, a set of 25 sites have been selected using Google search to find the pages
with the highest PageRank. Within each of those sites, one page is crawled5. The
GOSH collection contains 125 pages.

The MIG5 collection is a subset of the GOSH collection which only contains
Web pages in HTML 4.01 format, but from the same categories (Blog, Enterprise,
Forum, Picture and Wiki).

Experiments. The first experiment aims at measuring if including the seman-
tic elements (i.e. the migration process) affects the rendering of the page. The
block correspondence method, as presented in Sect. 3, is used for evaluating the
correctness of the migration. The segmentation of the original Web page is used
as a ground truth, while the segmentation of the migrated Web page is the
evaluated segmentation.

The second experiment is devoted to measure to what extent the labels found
with the BoM segmentation algorithm match to those in a ground truth of
manually labeled blocks.

5.2 Manual-design-Of-Blocks Tool

In order to help human assessors building a Web page segmentation (ground
truth) we developed the tool MoB (Manual-design-Of-Blocks). It is designed as
a browser extension and offers functionalities to expert users for creating manual
segmentations (See footnote 3).

Users can create blocks based on Web page elements. They can merge blocks,
navigate into the element hierarchy to produce a block graph6 (c.f Sect. 3), or
produce a flat segmentation (i.e. leaves in the block tree). These segmentations
are stored in a repository7 for the evaluation.

MoB is implemented as an extension for Google Chrome. We are currently
working on producing an equivalent extension for Firefox.

5.3 Ground Truth Building

Table 1 shows the organization of the MIG5 collection. It is composed of 40 pages
organized by category.

The MoB tool (cf. Sect. 5.2) is used by human assessors to annotate the
blocks. Besides specifying the blocks, assessors assign a label to each block.
Labels correspond to a subset of the semantic elements defined in the HTML5
specification (header, footer, section, article, nav, aside). We ask them to produce
a flat segmentation. The stop condition for all the experiments are set to pA = 5
and pD = 30 (cf. Sect. 3). Indeed, through experiments, we noticed that this pA
5 https://github.com/asanoja/web-segmentation-evaluation/tree/master/dataset.
6 Usually a tree.
7 http://www-poleia.lip6.fr/∼sanojaa/BOM/inventory.

https://github.com/asanoja/web-segmentation-evaluation/tree/master/dataset
http://www-poleia.lip6.fr/~sanojaa/BOM/inventory

388 A. Sanoja and S. Gançarski

Table 1. MIG5 pages by categories

Category Pages

Blog 5

Enterprise 9

Forum 14

Picture 7

Wiki 5

Total 40

value generates blocks likely to correspond to elements in the layout of the page.
The separation is set to pD = 30 because usually these regions can be very close
one to each other.

6 Results

We present now the results of the experiments described in the previous section.
We measure the quality (rendering and labeling) of our approach to migrate
HTML4 pages to HTML5 format.

6.1 Measuring Rendering Errors

In this Section, we compare the segmentation of an HTML4 page and the seg-
mentation of its migrated HTML5 version.

Table 2 shows the average correspondence metrics (defined in Sect. 3) that
measure rendering errors as described in Sect. 4.4, by category, for the MIG5
collection. Cc represents the correct blocks, Co the oversegmentations, Cu the
undersegmentations, Cm the missed blocks and Cf the false alarms.

Table 2. Correspondence metrics for the MIG5 collection for comparing rendering
errors between W ′ and W5′

Category Cc Co Cu Cm Cf

Blog 6.50 0 0.50 0 0.50

Enterprise 4.00 0.33 0.33 1.11 2.77

Forum 3.41 0.59 0.41 2.11 1.29

Picture 2.71 1.00 0.29 2.00 0.71

Wiki 6.00 0 0 0.60 0.60

For the Blog category, on average, there are 0.5 false alarms blocks and 0.50
blocks undersegmented. In some Blog pages the main content expands horizon-
tally by the rendering of the article element of the main content. It covers the

Migrating Web Archives from HTML4 to HTML5 389

main content and the menu on the right side of the original version, producing
an undersegmentation. The menu in the migrated version shifts right so that
there is no correspondence in the original segmentation, which produces false
alarms. This situation is depicted on Fig. 2d.

Wiki pages have blocks shifting vertically, producing some missed blocks and
false alarms. No granularity issues are raised by this category of pages.

Forum pages are affected by the shifting of block at the top of the page
affecting all the blocks below. Some forum responses which size is bigger than
the rest can cover shifted blocks, producing oversegmentations. On the other
hand, responses in the migrated version can also expand, producing underseg-
mentations. Pages in categories Picture and Enterprise have a similar situation.
These pages have complex Web design making them more sensitive to size and
position changes. Pages in these three categories are the most affected by ren-
dering errors in the collection.

Blog and Wiki categories have the best results. The regions in these type of
pages are simple and the position and order of blocks are standard. The regions
are well separated, and rendering errors have little impact.

6.2 Measuring Labels

In this Section, we compare the labeling obtained with BoM with the labeling
defined by human assessor in the ground truth. As the labeling can be impacted
by the rendering of the migrated page, we also use the correspondence metrics
between the migrated version and the ground truth, in order to better explain
the results for labeling.

Table 3. Average values for simJ and simD for the MIG5 collection

Category simJ simD

Blog 0.79 0.73

Enterprise 0.58 0.59

Forum 0.87 0.74

Picture 0.55 0.60

Wiki 0.88 0.66

Table 3 shows the average values, by category, of the metrics defined in
Sect. 4.5 for the MIG5 collection. Column simJ represents the Jaccard-based
similarity measure. The simD column represents the DamerauLevenshtein-based
similarity measure.

Table 4 shows the average correspondence metrics values per category, when
comparing the manual segmentation W ′

G and the automatic segmentation
W ′

BoM . Cc represents the correct blocks, Co the oversergmentations, Cu the

390 A. Sanoja and S. Gançarski

Table 4. Correspondence metrics for the MIG5 collection for comparing labeling
between W ′

G and W ′
BoM

Category Cc Co Cu N

Blog 6,95 0,05 0 7

Enterprise 6,24 0,01 0,20 6,45

Forum 5,81 0,66 0,12 6,59

Picture 4,21 0,02 0,67 6,71

Wiki 6,45 0 0,15 6,60

undersegmentations and N is the number of blocks in the ground truth. This
table helps interpreting the results obtained in Table 3.

As seen in Table 3, Blog, Forum and Wiki categories have the best results
for labelling. The structure of those types of pages comes, in most of the cases,
from templates or CMS, which make them uniform and thus easy to segment and
label. However, if we compare the metric values, simJ value is greater than simD,
which means that the labeling is affected by the granularity. We observed in the
dataset that the common issue for the labeling method is at the top of the page,
where the header is sometimes divided in two or three blocks, because navigation
links and other aesthetic information sometimes are included in the header. The
Forum category is the one most affected by granularity (simD significantly lower
than simJ). This is explained by the fact that, in Forum pages, blocks in the
middle of the page (e.g. responses) are frequently oversegmented (cf. Fig. 3).
This is consistent with the oversegmented metric value Co = 0.66 for forum
category, which is the highest among the five categories. We consider that those
blocks in the center and middle of the page should be treated differently, with
respect to granularity. In order to improve the accuracy of BoM, we plan to
study this situation and replace the scalar pA parameter by a vector (one value
per region in the page). This is a challenge, because we must determine a set of
stop conditions for each category. Machine-Learning techniques could be used to
better estimate the components of this vector.

The Enterprise and Picture categories get the worst values. The occurrence
of undersegmentations are the main reasons of the low values for labeling in
Picture and Enterprise categories. Due to the complex design of some of these
pages, BoM usually creates a big block covering the blocks in the ground truth.
This causes the undersegmentation. Picture category is the most affected by this
problem, with correct blocks Cc = 4.21, which means that it has 2.5 blocks in
average of difference than the ground truth. This has an influence in the labeling,
that is why simD = 0.60 and simJ = 0.55.

7 Conclusion and Future Works

In this paper we presented our approach to block-based migration of Web pages
from HTML4 format to HTML5 format, and its evaluation. Thanks to Web page

Migrating Web Archives from HTML4 to HTML5 391

segmentation, we produce a migrated version that complies with the HTML5
specification. Using our evaluation framework we measure the quality of the
migration process. We analyzed how the algorithm assigned labels to blocks in
comparison to a ground truth made of manually labeled segmentations. The ren-
dering errors were measured using the block correspondence metrics defined in
Sect. 3. The results show that, in the context of digital preservation, migrating
Web pages from one format to another is possible using the BoM Web page seg-
mentation algorithm, even if the results are not perfect. This allows for avoiding
emulation in Web archives, which slows down the retrieval of pages, and requires
to keep old tools or versions of tools. In its current version, our algorithm is rather
simple, as it only takes into account the spatial features of the blocks. To get
better results, we plan to consider other features, such as the textual content
and the text properties.

The shifting of blocks is an issue that should be considered. The segmentation
is affected by the semantic tags. For instance, some browsers have no default
style for these elements, thus shifting their position. Even if they do have one, it
may not render the semantic element at the same position as the corresponding
HTML4 element which may be handled by a user defined CCS style.

Also, unexpected margins and spacing may appear. This clearly impacts
the correspondence metrics. A solution to this issue would be to include some
tolerance in the rectangles comparison during the BCG construction (c.f. Sect. 3)
and consider default styles for the semantic elements.

Our approach gives insights of the upcoming issues raised by the migration of
Web content in the context of Web preservation. Migrating the HTML source is
the main goal, but we need to assure that all its dependencies are also migrated
(i.e JavaScript, CSS and images).

We plan to add more pages to the MIG5 dataset, and also include more
categories. To this end we think that a good strategy to follow is to enhance the
functionality and usability of MoB in order to include non-experts assessors in
the annotation process.

There is also an issue with the stop condition, that impacts all phases of the
segmentation. Using only one stop condition (i.e. pA parameter, c.f. Sect. 3) may
negatively impact the quality of the segmentation in some regions of the page.
Indeed, the whole content of a page is not designed with a uniform granularity in
mind: some regions are more detailed than other ones. Thus, we need different
granularity parameters, for different regions of a Web page, one for the main
content, another for the menus and so on. In other words, we plan replace the
scalar pA parameter by a vector.

The metrics simD and simJ (c.f. Sect. 4.5) allow us to better understand
the behavior of data in the migration process. We are currently investigat-
ing a new metric that would decrease the impact of granularity while keeping
labeling order into account. Another improvement is related with the ground
truth. Human assessors produced a labeled segmentation, i.e. an HTML5 doc-
ument, used to evaluate the segmentation and the labeling at the same time,
which renders the interpretation of the results quite complex. In future exper-

392 A. Sanoja and S. Gançarski

imentation, we plan to separate both concerns (by giving already segmented
pages to assessors) so that the labeling can be evaluated independently from the
segmentation.

References

1. Cao, J., Mao, B., Luo, J.: A segmentation method for web page analysis using
shrinking and dividing. Int. J. Parallel Emergent Distrib. Syst. 25(2), 93–104
(2010)

2. Garret, J.: Preserving digital information. Technical report, Commission on Preser-
vation and Access and the Research Libraries Group (1996)

3. Jackson, A.N.: Formats over time: exploring UK web history. CoRR, pp. 1210–1714
(2012)

4. Kohlschütter, C., Nejdl, W.: A densitometric approach to web page segmenta-
tion. In: Proceedings of the 17th ACM Conference on Information and Knowledge
Management, pp. 1173–1182, New York, NY, USA. ACM (2008)

5. Laws, B.: Seriously, another format? You must be kidding. CSE News 36(2), 41
(2013)

6. Lin, S.-H., Ho, J.-M.: Discovering informative content blocks from web documents.
In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD 2002, pp. 588–593, Edmonton, Alberta,
Canada. ACM (2002). ISBN: 1-58113-567-X. doi:10.1145/775047.775134

7. Moreau, E., Yvon, F., Cappé, O.: Robust similarity measures for named entities
matching. In: Proceedings of the 22Nd International Conference on Computational
Linguistics, vol. 1, COLING 2008, pp. 593–600, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics (2008). ISBN: 978-1-905593-44-6, http://dl.
acm.org/citation.cfm?id=1599081.1599156

8. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001). doi:10.1145/375360.375365. ISSN: 0360-0300

9. Niwattanakul, S., Singthongchai, J., Naenudorn, E., Wanapu, S.: Using of Jaccard
coefficient for keywords similarity. In: Proceedings of the International MultiCon-
ference of Engineers and Computer Scientists, vol. 1, pp. 13–15 (2013)

10. Park, S.H., Lynberg, N., Racer, J., McElmurray, P., Fox, E.A.: Html5 etds. In:
Proceedings of International Symposium on Electronic thesis and Dissertations,
Austin, TX, USA (2010)

11. Rosenthal, D.S.H., Lipkis, T., Robertson, T., Morabito, S.: Transparent for-
mat migration of preserved web content. D-Lib Mag. 11(1) (2005). http://dblp.
uni-trier.de/db/journals/dlib/dlib11.html#RosenthalLRM05

12. Rosenthal, D.S.H.: Format obsolescence: assessing the threat and the defenses.
Libr. Hi Tech 28(2), 195–210 (2010)

13. Sanoja, A.: Web page segmentation, evaluation and applications. PhD thesis, Uni-
versité Pierre et Marie Curie-Paris VI (2015). https://hal.inria.fr/tel-01128002/

14. Sanoja, A., Gançarski, S.: Block-o-matic: a web page segmentation framework. In:
International Conference on Multimedia Computing and Systems (ICMCS), pp.
595–600, Marrakesh, Moroco, April 2014

15. Sanoja, A., Gançarski, S.: Web page segmentation evaluation. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing, pp. 753–760. ACM
(2015)

16. Solis, B.: The conversation prism (2014). https://conversationprism.com

http://dx.doi.org/10.1145/775047.775134
http://dl.acm.org/citation.cfm?id=1599081.1599156
http://dl.acm.org/citation.cfm?id=1599081.1599156
http://dx.doi.org/10.1145/375360.375365
http://dblp.uni-trier.de/db/journals/dlib/dlib11.html#RosenthalLRM05
http://dblp.uni-trier.de/db/journals/dlib/dlib11.html#RosenthalLRM05
https://hal.inria.fr/tel-01128002/
https://conversationprism.com

Migrating Web Archives from HTML4 to HTML5 393

17. Van der Hoeven, J.: Emulation for digital preservation in practice: the results. Int.
J. Dig. Curation 2(2), 123–132 (2007)

18. W3Schools.com. HTML5 Migration: Migration from HTML4 to HTML5.
W3Schools (2016). http://www.w3schools.com/html/html5 migration.asp

http://www.w3schools.com/html/html5_migration.asp

A Tool for Design-Time Usability Evaluation
of Web User Interfaces

Jevgeni Marenkov(&), Tarmo Robal, and Ahto Kalja

Tallinn University of Technology, Tallinn, Estonia
jevgeni.marenkov@gmail.com, tarmo.robal@ati.ttu.ee,

ahto.kalja@ttu.ee

Abstract. The diversity of smartphones and tablet computers has become
intrinsic part of modern life. Following usability guidelines while designing web
user interface (UI) is an essential requirement for each web application. Even a
minor change in UI could lead to usability problems, e.g. changing background
or foreground colour of buttons could cause usability problems especially for
people with disabilities. Empirical evaluation methods such as questionnaires
and Card Sorting are effective in finding such problems. Nevertheless, these
methods cannot be used widely when time, money and evaluators are scarce.
The purpose of our work is to deliver a tool for design-time automatic evaluation
of UI conformance to category-specific usability guidelines. The main contri-
bution of this solution is enabling immediate cost-efficient and automatic web
UI evaluation that conforms to available and set standards. This approach is
being integrated into the Estonian eGovernment authority in order to automate
usability evaluation of web applications.

Keywords: Web usability � Usability guidelines � Web user interface

1 Introduction

The diversity of smartphones, tablet computers and smartwatches have become an
intrinsic part of modern life and culture. Therefore, web user interface (UI) compati-
bility with mobile platforms is an essential requirement for each web application.
Furthermore, UI should also be compatible with the diversity of platforms (including
Android, iOS, Windows, Linux, etc.) and different browsers (Safari, Chrome, Firefox,
etc.) regardless of their version. Notwithstanding, device and platform compatibility
covers only a minor part of UI requirements. In fact, UI should be consistent between
pages, attractive, user-friendly, easy to use and navigate. All such characteristics are
included in the definition of usability. Usability is the extent to which a product can be
used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use [1]. Usability covers many areas such as
accessibility referring to UI requirement for people experiencing disabilities, learn-
ability assuring web application functionality to be complete and correctly displayed.

A demand for usable web applications has led to a variety of approaches and
methods helping to achieve a high level of usability. Many studies provide usability
guidelines, best design practices, recommendations and patterns to follow when

© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 394–407, 2017.
DOI: 10.1007/978-3-319-66917-5_26

designing web UI [2, 3]. Usability guideline is a usability criterion advising on how
certain UI element should be designed. In a context of our research, we are focusing on
those usability guidelines that could be evaluated automatically - without the
involvement of potential users to the UI evaluation process.

A crucial responsibility of designers and UI quality assurance specialists is to verify
that designed solution satisfies all business requirements, predefined usability guide-
lines and its overall information architecture is clear for potential users. There are two
major groups of methods for evaluating usability: empirical and inspection methods.
Usability Inspection methods require the expertise of usability inspectors to detect
usability problems in user interface design. They include such methods as Heuristic
Evaluation, Formal Usability Inspection, Pluralistic and Cognitive Walkthrough [4]. In
its turn, Empirical Testing methods require the participation of real users and include
Card Sorting, Eye tracking and Questionnaires with usability tests participants [5].
Empirical Testing is efficient in discovering key issues in information architecture,
identifying the flaws and misplacements in web application design. Despite the fact that
Empirical Testing methods are commonly more efficient than inspection methods, there
are many obstacles preventing from applying these methods widely:

• Organising and conducting user tests is relatively expensive because it requires a
high demand for human and time resources [6, 7];

• Small software companies do not have the funds to pay for complete consultancy or
involving usability specialist as they are expensive to hire [8];

• Difficulty to get potential users participating in usability evaluations [7] [9];
• It is not always possible to increase the coverage of evaluated features by evaluating

every single aspect of UI [6];

Applying empirical evaluation methods is beneficial at the designing and proto-
typing stages of UI design and development. Evaluating minor changes in UI structure
is not always feasible with empirical methods due to a high demand for human and
financial resources. In fact, usability inspection methods can assess usability fast and at
a lower cost [6, 7]

There are multiple sources of guidelines for inspection methods like Web Content
Accessibility Guidelines (WCAG) [10] and Sect. 508 [11] standards, multiple design
recommendations and best practices to create a good web experience [12, 13]. The
evaluation of UI conformance to guidelines using inspection methods can be done
without involving potential users of web applications. Moreover, it is feasible to improve
the manual usability inspection via automation. There are multiple tools for UI automatic
evaluation like Ocawa1, Magenta2, Evaluera3 and the list of tools provided by World
Wide Web Consortium4. All aforementioned tools are limited by finding deviations in
the HTML code and finding certain accessibility issues; evaluating visual aspects of web
application like measuring contrast rate of UI elements, evaluating position of elements

1 http://www.ocawa.com.
2 http://giove.isti.cnr.it/accessibility/magenta.
3 http://www.evaluera.co.uk.
4 https://www.w3.org/WAI/ER/tools/.

A Tool for Design-Time Usability Evaluation 395

http://www.ocawa.com
http://giove.isti.cnr.it/accessibility/magenta
http://www.evaluera.co.uk
https://www.w3.org/WAI/ER/tools/

on the screen and many other is not possible with that approach. Their integration into
the UI development process is extremely complicated and very often not possible at all
because solutions are distributed as standalone applications without a possibility to be
extended and integrated into the process of continuous delivery.

Due to the rapidly changing business requirements, UI design and structure should
also be continuously developed to meet new requirements. Changing UI should be
done with extreme caution as every even minor change of UI or the content of page
could lead to severe usability problems [14]. For instance, according to usability
guidelines, the contrast ration between the letters and the background that is imme-
diately behind the letter should be kept above 4:5:1. Violating the guideline leads to the
lower usability for the target users including people with disabilities. Thus, usability is
extremely dependent on every modification of UI and, as a result, the immediate
evaluation of UI conformance to usability guidelines and subsequent feedback to UI
developer becomes another critical demand. That is important because finding usability
problems early in the development stage makes the fix less costly than found later.

The purpose of our study is to propose a fully-functional tool for the design-time
automatic evaluation of UI conformance to the category-specific usability guidelines
during UI design and implementation stage. The main contribution of this solution is
enabling immediate cost-efficient and automatic web UI evaluation and feedback to
developers to ensure the UI under development conforms to set guidelines. Hence, this
approach will assist developers and UI testers in finding out usability problems auto-
matically in early stages of UI development. The value of current study with respect to
the previous achievements [14] is that we are focusing on the technical implementation
of the solution for immediate usability evaluation of web UI, based on the earlier
proposed framework.

The rest of the paper is organized as follows. In Sect. 2 we discuss related works of
the research area. Section 3 provides an architecture of proposed framework, while
Sect. 4 presents the evaluation of the tool itself. In Sect. 5 we present the work in
progress, and, finally, Sect. 6 draws conclusions.

2 Related Works

Essential part of every automated usability evaluation tool (including our solution) is a
set of guidelines against what the UI is to be evaluated. Web Content Accessibility
Guidelines (WCAG) [10] and Sect. 508 Standards for Electronic and Information
Technology [11] are technical standards providing guidelines that explain how to make
web content more accessible to target users including people with disabilities. In fact,
WCAG and Sect. 508 standards contain quite similar and partly covering accessibility
guidelines. Web accessibility as an attribute through which people with disabilities can
perceive, understand, navigate, and interact with the web, and they can contribute to the
web [15]. Nevertheless, accessibility is only a certain subset of usability. Many other
categories like home page, navigation, content organization guidelines are not covered
by standards. That is the reason why many researches aim to establish usability
guidelines covering certain elements of UI [2, 3] [12, 13]

396 J. Marenkov et al.

Automated usability evaluation is very perspective area of research having multiple
advantages over approaches involving potential users in usability evaluation like
reducing the costs of usability evaluation and increasing the coverage of UI areas [16,
17]. Dingli proposed a framework that is effective in identifying usability aspects that
violate usability guidelines [16]. The main drawback of the approach is that it cannot
evaluate visual aspects of web application. Another disadvantage of the proposed
solution is the sophisticated way of adding new usability guidelines using Guideline
Definition Table.

Multiple solutions are concentrating on checking compliance of UI to accessibility
standards [18, 19]. The main disadvantage of these tools is that it is not possible to
evaluate visual aspects of a web application like measuring the contrast rate of UI
element and the positions of elements on the screen. The solutions are based on vali-
dation of HTML syntax against WCAG guidelines. In order to evaluate fully functional
UI, it is needed to apply CSS styles and Javascript scripts to the parsed HTML.

Analyzing user’s behavior and reusing the knowledge of user with the purpose of
providing more usable UI is also a promising research direction. There is a category of
tools predicting the usage of the UI based on the knowledge discovery approach [20, 21].
Boza et al. presented a heuristic approach based on data mining techniques with the
purpose to determine relationships between UI components and discover possible prob-
lems [21]. Using data mining in combination with mathematical algorithms, they gen-
erated rules based on the analysis of test reports. E.g. when “the site prevents users from
making mistakes” then “error messages are written in the user language”. Preliminary
results indicate that the approach is viable to discover patterns and relationship between
different UI components. In common, such approaches cannot guarantee high accuracy of
evaluation results, having misleading results because of the used algorithms [22].

An essential output of each evaluation tool is a report providing feedback about UI
compliance to predefined usability guidelines. There are multiple types of research
analyzing the structure of reports containing usability defects with the purpose to
improve existing format [23–25]. Yusop et al. surveyed practitioners in industrial
software organizations and in open source communities about their usability defect
reporting practices [23]. Their research showed that usability reports should contain at
least the next information: title/summary, steps to reproduce, observed result and
expected result.

In terms of our previous research in the field of UI usability, we have formulated
the problem of assessing application UI conformance to usability guidelines and
designed a framework that could be used to solve the addressed problem [14]. This
framework enables to tackle a large set of usability issues at once already during UI
development and saves cost and resources in later system development phases, espe-
cially in testing. The value of the current study with respect to the previous achieve-
ments is that we propose a fully functional tool for design-time usability evaluation of
web UI. Our purpose is to provide overview of all developed components emphasizing
technical implementation details.

A Tool for Design-Time Usability Evaluation 397

3 Tool for Immediate Usability Evaluation

3.1 Tool Overview

We designed a high-level architecture to separate different aspects of software func-
tionality into self-sufficient software modules. Figure 1 presents the high-level archi-
tecture of the tool consisting of four primary components: ontology, ontology
processing engine, UI evaluation engine and client-side application. All the compo-
nents will be described in details in next Sections.

A core element of the tool is an ontology containing descriptions of usability
guidelines that can be machine-processed on a particular web user interface. Such
approach simplifies sharing of metrics and concepts between various guidelines and
between different groups. The ontology processing engine is a mediator component
responsible for errorless communication between the ontology and user interface
evaluation engine. The UI evaluation engine is a component that assesses UI confor-
mance to usability guidelines containing reporting component responsible for gener-
ating usability evaluation report. Client side web application contains easy to use UI for
managing guidelines and triggering the evaluation process.

Initially, usability guideline is created by the mean of ontology. Then, Ontology
Processing Engine transforms the guideline to the format understandable to UI Eval-
uation Engine. Afterwards, the process of automatic evaluation is triggered checking
whether UI is accessible from the browser and whether there is a predefined set of
guidelines to be processed. Then, the evaluation of UI is performed according to the set
of guidelines. Finally, a report is provided to the developer containing the conformance
of UI to the usability guidelines.

The proposed solution supports HTML 4 and 5, CSS 3 (providing backwards
compatibility with previous versions) and Javascript based user interfaces. It does not

Fig. 1. High-level architecture of the tool

398 J. Marenkov et al.

require additional adoptions for web user interfaces allowing evaluation of any web UI
without any extra configurations. The only limitation is that UIs requiring specific
environments to run (e.g. Flash and Java Applets) are not supported by the tool.

3.2 Ontology-Based UI Guidelines Description

An ontology is a description (like a formal specification of a program) of the concepts
and relationships that can exist for an agent or a community of agents [26]. Ontologies
describe classes, attributes, relations presenting knowledge formally as a set of con-
cepts within a domain and their relations. In order to design usability domain
knowledge, it is necessary to understand, which domain concepts usability contains and
how the hierarchy between concepts could be designed.

The use of ontology provides powerful means to capture usability domain
knowledge including various sets of guidelines. In fact, ontology allows automated
reasoning over the domain knowledge allowing automatic categorization. Ontology
provides an effective way to describe and store usability domain knowledge through
various aspects, describing the types of concepts that exist in the domain, and their
properties and relations. All things considered, the application of ontology turns our
tool to be more flexible and coherent in re-using designed domain knowledge where is
needed.

An alternative approach to the ontology would be adopting custom metalanguage.
In a first prototype of the tool we used custom metalanguage, but it turned out that it is
very limited in expressing the guidelines and definition of the guidelines eventually
became very complex as there is no good way of having an overview of all defined
elements and their relations.

We used Web Ontology Language (OWL) as a knowledge representation language
and open source feature rich Protégé ontology editor 5.1.5 for creating the ontology.

Our ontology defines only those usability guidelines that can be automatically
evaluated. The ontology contains WCAG and Sect. 508 guidelines including guideli-
nes involved with people with disabilities as well as common usability guidelines.
Initially, the guideline should be expressed as thorough and detailed as possible, so the
conversion them into an ontology could be done with little effort. The guideline should
contain the element, attribute or property being tested and the acceptance condition.
The appropriate example of the guideline defined in a human readable way is: The
visual presentation of link text and background colour behind it should have a contrast
ratio of at least 4.5:1. To evaluate that guideline, the actual contrast rates of all link on
UI will be compared to the contrast rate defined by the guideline.

Presently the ontology is used only for storing usability domain knowledge. It does
not perform any kind of evaluations of UI conformance to the guidelines, however,
based on available descriptions this could be achieved. The evaluation process of UI is
carried out by the UI evaluation engine (see Sect. 3.3 for more details).

Figure 2 presents a segment of the ontology structure showing a Link class
including its subclasses and dependencies with other concepts. Link is a UIElement

5 Protégé, http://protege.stanford.edu/.

A Tool for Design-Time Usability Evaluation 399

http://protege.stanford.edu/

having attributes Title, Href, Contrast, AlternativeText and Unit. There are two possible
Link types: TextualLink and GraphicalLink. Similar connections are defined for various
elements of UI.

Usability guidelines are defined in ontology as subclasses of class Guideline. For
instance, to compose a new usability guideline for defining contrast rate of links, we
should create a new subclass of UsabilityGuideline. UsabilityGuideline has object
property hasGuidelineElement which defines the element being evaluated. Statement
‘hasGuidelineElement only Link’ shows that the defined guideline is used to evaluate
only links. Figure 2 demonstrates that Link element has object property Contrast.
Contrast in its turn is defined as ‘hasContrast some xsd:integer’ showing that we can
set a value of Contrast to an integer. Every guideline has a number of required
annotations to be filled: guideline - contains a brief name of usability guidelines;
reference - contains the URL or path to the source of the guideline; rdfs: comment –
contains the full description of guideline to be evaluated. The design of this ontology
has been described in our previous paper [27], and thereby we limit its discussion
within this paper to the above.

3.3 User Interface Evaluation Engine

The UI evaluation engine is a component that assesses UI conformance to usability
guidelines. Figure 3 shows the relation between components of the tool. The ontology
described in Sect. 3.2 is used as an input for Ontology Processing Engine. Before
evaluating UI, we should transform usability guidelines (individuals) defined in
ontology by the mean of OWL Web ontology language (in XML format) to format
understandable for the UI evaluation engine. The transformation is required because
processing guidelines in native OWL format is not trivial due to the complicated API of
OWL language changing the application structure to unclear and opaque. OWL API
[28] library has been used for serializing usability ontology into appropriate Java
classes. We used JFact for reasoning over the domain - a Java port of FaCT ++ rea-
soner [29] having full compatibility with the OWL API library.

Ontology Processing Engine provides API for retrieving usability guidelines in a
format understandable to Guideline Evaluator (see Fig. 3). Guideline Evaluator

Fig. 2. A segment of the ontology structure: excerpt from the Protégé ontology editor

400 J. Marenkov et al.

retrieves guideline to evaluate, processes guideline identifying the element being
evaluated (e.g. Link, Button) and calls the corresponding evaluation adaptor (e.g.
LinkAdapter, ButtonAdapter) providing the properties of the element as a parameter to
the adapter (e.g. contrast > = 4.5). The corresponding adapter retrieves the actual
values using Selenium Web Driver and checks if the evaluated values of properties
correspond to the value defined in guideline. In other words, if we are evaluating the
contrast rate of Link then the LinkAdapter asks Selenium Web Driver to process all
Links on the Web Page and provide their contrast rates. Afterwards, the adapter checks
if the values returned by Selenium Web Driver correspond to the value defined in
guideline. If the contrast rate of all Links corresponds to the contrast rate in the
guideline then the success response is generated, otherwise failure response is gener-
ated and added to the report.

Thereby, the core mechanism of processing the Web User Interface is Selenium
WebDriver API6. Selenium is used for automation of UI tests providing simple and
concise programming interface. Selenium has full support for most programming
languages (Java, C#, Python, Javascript and others), being compatible with most
popular browsers (Chrome, Firefox, Internet Explore and others). Selenium WebDriver
provides rich API commands and operations containing an interface for fetching a
page, locating UI elements on the screen, filling in forms and many other operations.

An essential part of the evaluation engine is the reporting component responsible
for generating usability evaluation results. Table 1 presents the structure of usability
evaluation report containing all relevant information. Figure 4 and 5 demonstrate the
screenshots of reports containing evaluation results.

3.4 Client Side Web Application

Client side web application contains easy to use UI for managing guidelines and triggering
the evaluation process. The potential users of proposed solution are technical (including
developers and quality assurance specialists) and business users (including analysts and
product owners). The primary deliverable for UI developers is a library providing theAPI for
evaluating UI conformance to the guidelines on a local or remote machine.

Fig. 3. UML Component diagram representing components of the UI Evaluation Engine and
dependencies to other components

6 http://www.seleniumhq.org/projects/webdriver.

A Tool for Design-Time Usability Evaluation 401

http://www.seleniumhq.org/projects/webdriver

Table 1. Structure of usability evaluation report

Element name Element description Sample value

elementType Type of evaluated element Link, Text field
Result Identifies if test passed or failed SUCCESS
Guideline Guideline being evaluated
guideline.code Guideline identifier 03-FluidLayout
guideline.name Brief name of the guideline Use Fluid Layout
guideline.description Detailed description of the

Guideline
Expected contrast rate is 4.5

failedElements Elements violating guideline.
failedElements.path Path for downloading screenshot. screenshot42.jpg
failedElements.description Reason of failure Actual contrast rate is 3.7

Fig. 4. Screenshot of the view containing usability evaluation results

Fig. 5. Screenshot of dialog presenting additional information about a failed guideline

402 J. Marenkov et al.

Business users commonly do not have required technical background to run UI
tests from the code. That is why a web application has been designed containing visual
functionality for managing guidelines and triggering the evaluation process. Figure 4
presents a screenshot of the view containing usability evaluation results. Violated
guidelines are highlighted in red color; passed guidelines in green color. Evaluation
results provide full information of evaluated guideline including name, code and
description. By clicking the link Open Failure Report opens dialog containing image,
text and description of elements violating the guideline (see Fig. 5).

The Client-Side Web Application has been build based on Angular7 Javascript
framework using Bootstrap8 stylesheets containing an extensive list of components for
designing client web applications.

4 Tool Evaluation

The purpose of the section is to validate the ontology design, and compare how the UI
evaluation engine we developed stands out against existing automated usability eval-
uation tools - USEFul [16] and Mauve [18]. These tools are not suitable for design-time
usability evaluation but are rather used in pre-release testing. Nevertheless, these tools
were selected for comparison as they are capable of evaluating Web UI conformance to
many usability guidelines with certain limitations discussed further. In fact, there is a
detailed description of UI evaluation approaches used in both tools.

4.1 Evaluation of Ontology Design

In order to verify the ontology design and to check that it fulfills its intended purpose
within then tool, we selected 115 automatically testable usability guidelines from
different categories. The test suite has been composed analyzing recommendations in
scientific publications [2, 3], WCAG [10] and Sect. 508 [11] standards and guidelines
provided by U.S. Department of health and human services (HHS)9. Moreover, mul-
tiple evidence-based user experience and usability researches have been inspected [12,
13]. Table 2 contains categories of combined usability guidelines with the number of
guidelines for each category. All guidelines were defined with proposed ontology
proving that proposed ontology provides enough concepts like object, object proper-
ties, data properties to define custom usability guidelines of various types. Users can
combine application-specific test suites including guidelines from different categories
and standards.

7 Angular, https://angular.io/.
8 Bootstrap, http://getbootstrap.com/.
9 HHS.gov U.S. Department of Health & Human Services, http://www.hhs.gov/.

A Tool for Design-Time Usability Evaluation 403

https://angular.io/
http://getbootstrap.com/
http://www.hhs.gov/

4.2 Comparison of UI Evaluation Engines

The UI evaluation engine is a component that assesses UI conformance to usability
guidelines. The UI evaluation components of existing similar solutions (like USEFul
[16] and Mauve [18]) are based on the parsing of HTML code of Web page verifying
that the certain value of HTML tag or element is the same as defined in a guideline.
Let’s compare, how the evaluation is performed in these tools taking a simple guideline
as an example: Images that are presented to the user have a text alternative that serves
the equivalent purpose. Technically, we should verify that every img tag contains
attribute alt. The sample image element in HTML code looks like:

Both USEFul and Mauve are parsing HTML code as a String extracting all ele-

ments with tag img and, afterwards, checking if each element has an alt attribute. We
are using Selenium Web Driver (discussed in Sect. 3.3) that has also support for
processing HTML code. For instance, in order to get all img elements we call the next
code seleniumDriver.findElements(By.tagName(“img”)). Afterwards,
we check if all img elements contain the alt attributes img.getAttribute
(“alt”). Overall, Selenium covers all possible variations of parsing HTML making
the parsing process simpler by the mean of clear API.

In common, aforementioned tools are limited by finding deviations only in HTML
code; evaluating visual aspects of a web application like measuring the contrast rate of
UI element or evaluating the positions of elements on the screen and many other
assessments are not possible with that approach. As far as our solution is based on
Selenium Web Driver, the evaluation of such aspects is also possible with our tool. For
instance, the next guideline could not be evaluated by any of aforementioned tools:
Horizontal scrolling is not allowed, as it is not possible to verify the existence of
horizontal scrolling only by processing HTML code. Our tool is capable of evaluating
the guideline using Selenium JavascriptExecutor that helps to detect if scrolling is
allowed and scroll the page horizontally if it is possible.

To sum up, the UI evaluation engine is capable of evaluating various guidelines
that require parsing of HTML code. Moreover, the guidelines evaluating the element
position, color scheme or scrolling possibility are also supported by the tool covering
more usability guidelines than other discussed usability evaluating tools.

Table 2. Categories of usability guidelines with number of guidelines defined

Category of guideline Number of guidelines

Accessibility and Compatibility 15
The home page and Search 18
Page layout and Navigation 22
Scrolling, paging and Links 14
Heading, titles and labels 4
Text appearance and Lists 14
Screen-based controls 12
Graphics, Images, and Multimedia 6
Organisation of information and Content 10

404 J. Marenkov et al.

5 Work in Progress

The proposed tool has been introduced to the Estonian Information Systems Author-
ity10 (RIA) with the purpose to integrate the solution established based on the
framework to evaluate the usability of Estonian eGovernment components. RIA
coordinates the development and administration of Estonian National Portal11. Esto-
nian National Portal contains approximately 100 pages for testing including various
components such as pages for citizens, entrepreneurs. Following usability guidelines
for public service portals is extremely important as they provide services for all
inhabitants of Estonia, but not only, having a different experience in using user
interfaces and various devices.

In cooperation with RIA quality assurance team and designers, we concluded that
integration of the framework for the evaluation of UI compliance to usability guidelines
(especially WCAG guidelines) is beneficial for RIA. Based on the feedback provided
we extended designed ontology by dividing all guidelines into subgroups like WCAG
and Sect. 508 guidelines. Such approach allows evaluating UI conformance only to the
selected group of guidelines, not to all of them.

6 Conclusions

Usability is very capricious to any modifications of UI elements because even a minor
change of UI could lead to severe usability problems. The appropriate example is that
appearance of horizontal scrolling on desktop devices is one of the few interactions
generating negative responses from users decreasing the usability of UI. Another
example could be that changing the foreground or background color of any UI element
like link or button potentially could reduce the accessibility for users with low vision or
cognitive impairments. All things considered, it is important to provide feedback to
developers concerning usability problems as soon as possible.

The paper is addressing the gap between design and assessment phases of UI
development proposing the tool for design-time automatic usability evaluation of UI
conformance to the category-specific usability guidelines during UI design and
implementation stage. Currently, there are no any other tools providing design-time
automatic usability evaluation.

Existing solutions for automated usability evaluation cannot be integrated to the
implementation stage of UI, structuring their solutions in a way that could be used only
in pre-release testing. The advantage of our solution is that it fits into the implemen-
tation stage of UI development and allows automatic validation of introduced changes
and their conformance to guidelines. Afterwards, the tool provides immediate feedback
informing UI developer, how the changes affected UI conformance to the usability
guidelines.

10 RIA, https://www.ria.ee/en/.
11 Estonian National Portal, https://www.eesti.ee/eng.

A Tool for Design-Time Usability Evaluation 405

https://www.ria.ee/en/
https://www.eesti.ee/eng

The proposed tool is capable of evaluating HTML and Javascript based web UIs
without additional configurations. Based on the analysis of WCAG, Sect. 508 stan-
dards as well as on the UI best practices and recommendations introduced in scientific
publications and various usability researches, the test suite containing 115 usability
guidelines was prepared. All guidelines were described by means of ontology. In fact,
the tool is not limited to the predefined set of guidelines, it also allows creating custom
application-specific usability guidelines.

Existing solutions for automated usability evaluation mostly include the guidelines
evaluating the structure of HTML code. Evaluating the visual aspects like color and
contrast of UI elements, position of content within the page or the use of horizontal or
vertical scrolling is not possible with these tools. We overcome these limitations by
introducing UI evaluation engine based on Selenium allowing evaluating HTML code
based guidelines as well as guidelines checking visual consistency of UI elements.

Acknowledgements. This research was supported by the Estonian Ministry of Research and
Education institutional research grant no. IUT33-13. Authors are very thankful to Estonian
Information Systems Authority team for governmental portal www.eesti.ee consulting.

References

1. International Organization for Standardization: ISO 9241-210:2010 Ergonomics of
human-system interaction Part 210: human-centred design process for interactive systems
(2010)

2. Smith, S.L., Mosier, J.N.: Guidelines for Designing User Interface Software. Bed-ford, Mitre
(1986)

3. Borges, J.A., Morales, I., Rodriguez, N.J.: Guidelines for designing usable World Wide Web
pages. In: Conference on Human Factors in Computing Systems, pp. 277–278. ACM, New
York (1996)

4. Mack, R.L., Nielsen, J.: Usability Inspection Methods. Wiley, New York (1994)
5. Kock, E., Biljon, J., Pretorius, M.: Usability evaluation methods: mind the gaps. In:

Proceedings of the 2009 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists, pp. 122–131. ACM, New York (2009)

6. Ivory, M.Y., Hearst, M.: The state of the art in automating usability evaluation of user
interfaces. ACM Comput. Surv. 33, 470–516 (2001)

7. Bak, J.O., Nguyen, K., Risgaard, P, Stage, J.: Obstacles to usability evaluation in practice: a
survey of software development organizations. In: Proceedings of the 5th Nordic conference
on Human-computer interaction, pp 23–32. ACM, New York (2008)

8. Häkli, A.: Introducing user-centered design in a small-size software development
organization. Helsinki University of Technology, Helsinki (2005)

9. Lizano, F., Sandoval, M.M., Bruun, A., Stage, J.: Is usability evaluation important: the
perspective of novice software developers. In: The 27th International BCS Human Computer
Interaction Conference, Article 31, British Computer Society, Swinton (2013)

10. Web Content Accessibility Guidelines. http://www.w3.org/WAI/intro/wcag
11. Section 508. https://www.section508.gov/
12. User Experience for Mobile Applications and Websites. https://www.nngroup.com/reports/

mobile-website-and-application-usability/

406 J. Marenkov et al.

http://www.eesti.ee
http://www.w3.org/WAI/intro/wcag
https://www.section508.gov/
https://www.nngroup.com/reports/mobile-website-and-application-usability/
https://www.nngroup.com/reports/mobile-website-and-application-usability/

13. Navigation and Page Layout. https://www.nngroup.com/reports/intranet-navigation-layout-
and-text/

14. Marenkov, J., Robal, T., Kalja, A.: A framework for improving web application user
interfaces through immediate evaluation. In: Databases and Information Systems, pp. 283–
296. IOS Press, Amsterdam (2016)

15. World Wide Web Consortium W3C, 2010b. Web Accessibility Initiative (WAI). http://
www.w3.org/WAI/intro/accessibility.php

16. Dingli, A.: USEFul: a framework to mainstream web site usability. Int. J. Hum. Comput.
Interact. 2, 10–30 (2011)

17. Dingli, A., Cassar, S.: An intelligent framework for website usability. Adv. Hum Comput
Interact. (2014). Article 5

18. Schiavone, A.G., Paterno, F.: An extensible environment for guideline-based accessibility
evaluation of dynamic Web applications. J. Univ. Access Inf. Soc. 14, 111–132 (2015)

19. Leporini, B., Paterno, F., Scorcia, A.: Flexible tool support for accessibility evaluation.
Interact. Comput. 18(5), 869–890 (2006)

20. Davis, P.A., Shipman, F.M.: Learning usability assessment models for web sites. In:
Proceedings of the 16th International Conference On Intelligent User Interfaces, pp. 195–
204. ACM, New York (2011)

21. Boza, B.C., Schiaffino S., Teyseyre A., Godoy D.: An approach for knowledge discovery in
a web usability context. In: Proceedings of the 13th Brazilian Symposium on Human Factors
in Computing Systems, pp 393–396, Porto Alegre (2014)

22. Winckler, M.A.A., Freitas, C.M.D.S., De Lima, J.V.: Usability remote evaluation for
WWW. In: CHI 2000 Extended Abstracts on Human Factors in Computing Systems (CHI
EA 2000), pp. 131–132. ACM, New York (2000)

23. Yusop, N.S.M.Y., Grundy, J., Vasa, R.:Reporting usability defects: do reporters report what
software developers need? In: Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, pp. 1–10. ACM, New York (2016)

24. Davies, S., Roper, M.: What’s in a bug report? In: Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, Article 26.
ACM, Torino (2014)

25. Yusop, N.S.M., Grundy, J., Vasa, R.: Reporting Usability Defects: Limitations of open
source defect repositories and suggestions for improvement. In: Proceedings of ASWEC
Australasian Software Engineering Conference, pp. 38–43. ACM, New York (2015)

26. OWL Web Ontology Language Guide, https://www.w3.org/TR/owl-guide/
27. Robal, T., Marenkov, J., Kalja, A.: Ontology design for automatic evaluation of web user

interface usability. In: PICMET 2017 Conference: “Technology Management for Intercon-
nected World”, Portland, USA. 9–13 July 2017 (2017, in press)

28. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semantic
Web 2, 11–21 (2011)

29. Tsarkov, D., Horrocks, I.: FaCT ++ description logic reasoner: system description. In:
Proceedings of the Third International Joint Conference, pp. 292–297. Springer, Heidelberg
(2006)

A Tool for Design-Time Usability Evaluation 407

https://www.nngroup.com/reports/intranet-navigation-layout-and-text/
https://www.nngroup.com/reports/intranet-navigation-layout-and-text/
http://www.w3.org/WAI/intro/accessibility.php
http://www.w3.org/WAI/intro/accessibility.php
https://www.w3.org/TR/owl-guide/

Genotypic Data in Relational Databases:
Efficient Storage and Rapid Retrieval

Ryan N. Lichtenwalter(B), Katerina Zorina-Lichtenwalter,
and Luda Diatchenko

McGill University, Montreal, QC H3A0G4, Canada
ryan.lichtenwalter@mcgill.ca

https://mcgill.ca

Abstract. As technologies to produce genotypic data have become less
expensive, the widths and depths of such data have sharply increased.
Relational databases have performed poorly in this domain. Data storage
and retrieval is now mostly conducted by highly coupled and specialized
software packages and file formats, but relational databases offer advan-
tages if the domain challenges can be overcome. We revisit their feasibil-
ity as a tool for efficiently storing and querying extremely large genotypic
data sets. We describe a technique for managing genotypic data in the
PostgreSQL relational database, compare it to common existing tech-
niques for storing and querying genotypic data, and demonstrate that it
can greatly reduce both query times and storage requirements.

1 Introduction

Genomics is among the fastest-growing scientific fields in terms of data pro-
duction [13]. One complete human genome represents many gigabytes of data,
and in the five years between 2007 and 2012, the cost to sequence an indi-
vidual genome decreased by a factor of one thousand [4]. Data integration is
a significant challenge [5,6,12], and while relational databases offer expressive
power, it is difficult to employ them successfully to manage genotypic data at
current scales [12,15,17]. Genotypic data sets are dense matrices, with each ele-
ment representing a small unit of information. Normalizing these matrices results
in difficult design and maintenance, an explosion in storage requirements, and
potentially long query times. Despite the limitations of relational databases in
this domain, there is significant interest in managing genotypic data in them
[1,5,8,12,14,15,17,18]. Nonetheless, when relational databases are used to man-
age genotypic data, it is very often either normalized or stored as long strings.
We are only aware of one system that uses denormalized array-based storage [15].

We propose and explore the array-based technique, show that it scales to far
greater volumes than existing techniques, and extend it to incorporate proba-
bilistic genotype data. The technique supports fast queries within hundreds of
billions of data points and scales to tens of trillions of data points with modest
hardware available to the typical research lab. It reduces storage requirements
by several orders of magnitude versus normalized representations.
c© Springer International Publishing AG 2017
M. Kirikova et al. (Eds.): ADBIS 2017, LNCS 10509, pp. 408–421, 2017.
DOI: 10.1007/978-3-319-66917-5 27

Genotypic Data in Relational Databases 409

2 Domain Background

The genetic information for an individual is biologically stored as a long sequence
with an alphabet of four nucleotide bases that combine to form two strands
of DNA. Each human has a genome of about 3 billion base pairs, but we are
typically interested in analyzing only those that differ between individuals. These
differing sequences are called variants, and approximately 100 million are known
to exist. Figure 1 illustrates two copies of the same segment of a chromosome
with 5 base pairs and a single-nucleotide variant.

Fig. 1. Two copies of the same seg-
ment of a chromosome, including 5
base pairs and one single-nucleotide
variant.

The genotypes of individuals are deter-
mined either by sequencing and variant call-
ing their complete genomes or by genotyp-
ing a selection of variants with a microarray.
The resulting information for an individual
is called a sample. The specific base pair or
sequence of base pairs that an individual pos-
sesses for a given variant is called an allele. At
most variant loci, humans carry two alleles,
one on each homologous chromosome. There-
fore, some analyses are chromosome-specific
and take into account phase, which is a property that respects the allele pair
permutation. Variant allele determination is a biochemical procedure that occa-
sionally fails, resulting in a missing call.

Accounting for missingness and phase, there are 17 possible genotype values,
and thus log2 (17) ≈ 4.08 bits are required to encode single-nucleotide alleles for
one variant in the genome of an individual. We can instead store a reference allele
and an alternate allele with other variant characteristics and store a genotype as
the count of either reference or alternate alleles. Preserving phase, log2 (5) ≈ 2.32
bits are required, and 2 bits are required without phase.

3 Existing Storage Solutions

In this work, we use domain-specific tools as a frame of reference and focus
on relational databases. We also examine design tradeoffs regarding whether
the underlying genotype storage is row-oriented (sample-major) or columnar
(variant-major).

3.1 File-Based Solutions

Many special-purpose file formats have been devised to manage genomic data.
These formats are commonly used for storage, transmission, query, and analysis.

410 R.N. Lichtenwalter et al.

gzip and Shell Scripting. Storing gzip-compressed flat files and querying with
shell utilities is a common practice and an informative baseline. We compress a
sample-major tab-delimited flat file sorted row-wise by sample and column-wise
by variant with gzip -6. We then perform sample-based filtering using head,
tail, and sed -n ‘s1p;s2p;. . . snp;’, where s is a sample vector, and variant-
based filtering with cut -f ‘v1,v2,. . .,vn’, where v is a variant vector. Indices
in s and v come from grep -w ‘. . .’ operations on dictionary files.

tabix Indexing. The tabix utility [10] is a tool for indexing and querying tab-
delimited data. The target data must first be sorted by genomic position and
then compressed with the companion bgzip utility. The resulting file is then
indexed to support variant queries, so filtering samples must be done with cut.
Although tabix supports a wide range of tab-delimited formats, including SQL
exports, we benchmark it with the VCFv4.2 file format.

PLINKData Management. The PLINK utility [16] is a staple of genetic associa-
tion studies. It does various statistical analyses, performs format conversions, and
supports basic sample and variant querying. Its primary on-disk and in-memory
format is a compact binary representation. Despite its power and efficiency,
PLINK is limited in the types of data that it is designed to store and integrate.
Each invocation reads all data into memory from disk before performing the
requested operations and writing output to one or more files.

3.2 Relational Database Solutions

Several solutions have been deployed for storing genomic data in relational data-
bases. One uses the database as a container to store bioinformatic file formats
and uses specialized functions to operate on these objects [17]. Some are mainly
used for storage and wholesale exports of data and are not suitable for analytical
queries. We are interested in a solution amenable to both efficient storage and
querying. We chose the open-source PostgreSQL 9.4 relational database manage-
ment system because it is freely accessible to researchers, possesses a powerful
and informative query planner, supports compressed storage of large, variable-
length attributes outside of primary table storage, and provides for easy exten-
sion with user-defined types and C functions. It is a common choice for users of
relational databases in this domain [5,12,14].

We avoid duplicating the sequences that correspond to reference and alter-
nate alleles in the encoding of each genotype by storing them separately. Geno-
types are stored as the count of either reference or alternate alleles and, option-
ally, information about phase. We employ the PostgreSQL TINYINT extension,
which provides 1-byte integers, to represent the count of alternate alleles com-
pactly in the coordinate list and array-based strategies below. We also tried
using the 4-byte PostgreSQL ENUM type and a 1-byte user-defined type written

Genotypic Data in Relational Databases 411

in C to store allele nucleotides instead of alternate allele counts, but these types
result in larger disk footprints (334% and 218% as large, respectively) and slower
queries.

Normalized Coordinate Lists. The pure 5NF relational method of storing
genotypic data associates each genotype with a composite key comprising the
sample and variant identifiers. In sparse matrix terms, this is called the coordi-
nate list representation, and it is the standard 5NF approach for storing matrices.
This method allows foreign key integrity checks, rapid DML write operations,
and conventional joins against both sample and variant tables. Unfortunately,
it produces long, narrow tables with row counts proportional to the Cartesian
product of samples and variants. This causes several problems. First, it incurs a
significant per-row overhead. Assuming 4-byte foreign keys for the sample and
variant, and 1 byte to represent the genotype, then overhead for this table in
PostgreSQL 9.4 is 35 bytes per row: a 4-byte pointer in the page header, 23
bytes for the heap tuple header, a 1-byte NULL bit mask or pad, and a 7-byte
row tuple alignment pad to achieve 8-byte alignment. Storing a modest data set
of just 1000 samples and 1 million variants requires 41 GB of space discounting
indices. Second, even excluding row overhead, 89% of the space is occupied with
duplicated foreign keys. Third, sample and variant locality may be lost, so even
fortuitous queries requesting subsets of the table require full table scans unless
specific clustering and partitioning is carefully maintained. Fourth, increased
data size decreases file system cache effectiveness. Fifth, indices become too
unwieldy to perform well without table partitioning. Sixth, it is more difficult
to take advantage of the trivial compressibility that exists in this domain when
the data is interspersed with key values.

Despite these limitations, this is a common approach employed when using
relational databases to manage genotypic data, including several published meth-
ods and scientific research tools [5,12,17]. In our benchmark tests with this
storage method, we range-partitioned tables by variant, indexed with the com-
posite variant-sample primary key, and clustered on the index. This is contrary
to the sample-based partitioning used in other systems [12] but consistent with
our strategy of prioritizing rapid filtering of the variant space, which facilitates
variant-level and gene-level association studies. This decision comes at the cost
of expensive sample-based operations. Finally, although PostgreSQL does not
perform row-level or page-level compression for fixed-length inline table data,
using such compression may reduce the size requirements of the coordinate list
representation by roughly 50% [17].

PostgreSQL HSTORE Storage. In the HSTORE organizational scheme, one of the
dimensions is stored in an associative data structure. Like coordinate lists, this
is a reasonable representation for sparse matrices, and the PostgreSQL HSTORE
type conveniently supports efficient, native multiple-indexing operations via the
HSTORE->TEXT[] operator. Nonetheless, genotype data is not sparse. Although
collapsing one dimension into an HSTORE reduces the per-row overhead of a

412 R.N. Lichtenwalter et al.

coordinate list table, it suffers two serious drawbacks. First, it must store both
indices and values, so it avoids key replication in only one dimension. Second, it
stores both of these as strings, greatly inflating key footprint.

SQL VARCHAR Storage. It is fairly common in genomic data warehouses that
employ relational databases to store the data as one genotype string per sam-
ple. For instance, genotypes [AC,TG,AA] for a sample would be stored as the
string “ACTGAA”. This obviates the per-row overhead of coordinate list storage
but requires 16 bits of storage per single-nucleotide variant, which is almost 8
times the theoretical minimum requirement for storing phased genotypes. Stor-
ing genotypes as long strings also has the disadvantage of either denying the
possibility of variants involving sequences of different length or denying the use
of consistent variant addressing. Finally, although the string allows for random
access once it has been read into memory, the syntax is cumbersome and non-
contiguous selections require separate invocations of the SUBSTRING function.

4 The Array Storage Strategy

Each of the preceding representations has serious limitations, whether a lack
of relational database capabilities with file-based tools and analytical suites, or
crippling performance issues with common relational database strategies. We
explore a relational database organization similar to that of [15], which stores
and queries genomic data far more efficiently than overwhelmingly employed
relational database methods. It requires only 0.003% as much space as the often-
used coordinate list method for our benchmark data, offers superior performance
across a broad spectrum of query types, and stores and queries data as efficiently
as the best of the file-based tools while providing the full expressive power of
SQL.

4.1 Non-contiguous Multiple Indexing

PostgreSQL arrays allow organization of data into an arbitrary number of dimen-
sions and come with sophisticated primitives to manage this complexity. Given
an array A of n elements, indexing is achievable with A[i], where i is a 1-
indexed address in the array. Furthermore, it is possible to select slices of arrays
as A[i:j], where i and j specify the lower and upper bounds of the slice. Post-
greSQL provides no efficient way to access multiple non-contiguous elements in
its arrays. The standard way to access non-contiguous elements is as multiple
fields in the SELECT clause (i.e. SELECT A[i1], A[i2], A[i3], ...). Each ele-
ment selected in this manner causes the implementation to rescan the array.
For non-contiguous subsets of indices approaching the length of the array, this
results in O

(
n2

)
behavior.

Another method for selecting multiple elements is performing a set-returning
UNNEST WITH ORDINALITY operation on the array. This provides the array ele-
ments with their associated indices. We can then select an arbitrary subset of

Genotypic Data in Relational Databases 413

the elements by joining and filtering the indices with other data. Finally, we can
use the array agg function to recompose the result into an array that contains
only the elements to select. The entire procedure can be neatly wrapped in a
SQL function, and it operates in O (n) time. Despite the superior asymptotic
performance, this method is slow, and it is easily outperformed by selecting array
elements as multiple fields when the number of fields to access is small.

Fortunately, it is possible to write a C function, array multi index, to over-
come this difficulty. It accepts an array into which indexing should be performed
and a second array of indices to use. We strove to maintain consistency with
other PostgreSQL array primitives and allow as much generality as possible: the
function returns NULL for a NULL value array or index array, returns NULL
array values corresponding to NULL or out-of-bounds indices, returns repeated
values corresponding to repeated indices, and supports arbitrary index order-
ing. Since the underlying back-end implementation of PostgreSQL arrays is a
C array, once the array is read from storage and unpacked, the only penalties
involved in accessing elements are related to cache size and data locality. This
function is therefore only slightly slower than native single-indexing via A[i].

4.2 Array Organization

With array storage of genotypic data, each row contains a foreign key and one
or more arrays. Structuring the genotype table so that each row references the
sample table and contains all variant genotypes for a single sample gives sample-
major organization. Structuring it so that each row references the variant table
and contains all sample genotypes for a single variant gives variant-major orga-
nization, as in Fig. 2. The planner can take advantage of indices on whichever
dimension is supplied with a foreign key, and this dimension supports standard
SQL join syntax. Each method offers advantages and disadvantages, some of
which depend on whether there is roughly the same number of samples as vari-
ants, and some of which exist irrespective of the relative size of the dimensions.

Genetic studies often have many variants and relatively few samples. Since
PostgreSQL arrays only offer random access after the complete array is loaded
into memory, array-based organizations only allow true random access by row.
As a result, we often stand to achieve significant performance gains by choosing
variant-major storage. The genotype table is longer and the arrays are narrower,
which offers greater benefits from indices and faster operations over arrays. Fur-
ther, genetic studies are often performed as either genome-wide association stud-
ies, thus requiring all variants for analysis, or per-gene or per-variant studies,
thus requiring only a miniscule percentage of variants. Indices on the variant
table can quickly winnow the set of variants, and the join can take advantage of
the foreign key index on the genotype table so that it is only necessary to read a
tiny fraction of the genotypic data. While genetic studies also frequently analyze
a subset of samples according to demographic characteristics or phenotype avail-
ability, these subsets typically represent a significantly higher percentage along
that dimension, and it is efficient to accomplish this join virtually through ran-
dom access in the narrow arrays of samples. Finally, regardless of the sample and

414 R.N. Lichtenwalter et al.

variant table cardinalities, many variants have a low alternate allele frequency,
so many variant-major arrays contain homogeneous data, which allows for supe-
rior data compression and a smaller disk footprint. For these reasons, variant-
major organization is used by several genotypic data representations [3,9,16].

Fig. 2. Variant-major array organization.

Though making use of variant-ordering may slightly increase compressibility
[2], for most genotypic data sets, sample-major storage is not ideal, because it
results in wide arrays that are slower to access. We can minimize this penalty
by dividing the single array of genotypes into multiple arrays, or when table
column limitations are exceeded, even into multiple tables, but this undesir-
ably and vastly increases schema complexity and requires dynamic SQL or long
duplicated SQL expressions. Computing genomic statistics per sample over a
set of variants is fast but is an infrequent operation. Sample-major organization
has one significant advantage: it is better aligned with the natural and intu-
itive way of organizing and analyzing research data sets. It is convenient to join
sample-major genotypic data with its corresponding subject-major phenotypic
data to obtain one wide subject-major matrix. Fortunately it is possible to per-
form matrix transpose operations on variant-major query results efficiently with
domain-aware tools such as PLINK, generic tools such as GNU datamash, or
even inside the database.

Listing 1. Coordinate List Query

SELECT variant_ref, array_agg(genotype ORDER BY sample_ref)

FROM genotype_normalized

WHERE sample_ref IN (SELECT sample_ref FROM sample WHERE ...) AND

variant_ref IN (SELECT variant_ref FROM variant WHERE ...)

GROUP BY variant_ref

Listing 2. Variant-Major Array Query

SELECT variant_ref, array_multi_index(genotypes,

(SELECT array_agg(sample_ref) FROM sample WHERE ...))

FROM genotype_array_vm

WHERE variant_ref IN (SELECT variant_ref FROM variant WHERE ...)

4.3 Alternative Querying

The array strategy requires only minimal changes to coordinate list queries.
Listings 1 and 2 show queries that return identical results. We use the IN oper-

https://www.gnu.org/software/datamash/

Genotypic Data in Relational Databases 415

ator instead of a JOIN only to explicitly show the location of the filter con-
dition for each dimension. The difference in the array organization query is
that the result of applying the selection criteria for the dimension stored in the
array must be aggregated into an array itself and passed as a parameter to the
array multi index function. Note that we will typically want the two dimen-
sions to be projected into rows and columns, so the coordinate list query incurs
the additional cost of aggregation, which is an incidental advantage of array
organization.

The principle is the same for arbitrarily complex queries. The subsets of
samples and variants may be obtained with sub-queries, from SQL variables,
using common table expressions, or through the use of joins with no restrictions
on the broader structure of the query. The only requirement is that an implied
foreign key relationship exists between array indices and some column in the
related entity table. The queries in the listings above assume that this relation-
ship exists in terms of the primary key of the entity table, but it could just as
easily exist over a column established specifically to index into the array.

4.4 Sample and Variant Data Flexibility

Most genotypic data for genome-wide and targeted analyses are write-once [1],
so traditional UPDATE operations are usually unnecessary. Sometimes additional
samples or variants join the data set due to continued genotyping. The array-
based storage scheme supports both insertions and updates. Insertions to the
row dimension are accomplished with a SQL INSERT, but insertions and updates
in the array dimension are more complicated. PostgreSQL arrays support SQL
UPDATE and various concatenation and element assignment operations. Adding
new data in the array dimension requires performing an array concatenation,
and the indices of the new elements implicitly correspond to data within newly
added rows in the parent table. The database cannot enforce referential integrity
on the array in the traditional sense, but the indices of the array act as implicit
foreign keys into the parent table. We can choose or create a prime attribute to
act as a candidate key in the parent table and additionally specify that it should
take the form of consecutive integers starting with 1. We can enforce referential
integrity procedurally, and we can use typical SQL join and filter facilities in the
form of Listing 2 to perform all the standard DML operations.

4.5 Array Operations

We must often filter variants based on information generated from an analysis
over the sample space, such as variant call rate or alternate allele frequency. This
a primary driver of our choice of variant-major organization. Variant call rate is
the percentage of non-missing genotypes in a set of samples. As an indicator of
data quality, it is often relevant only over the entire corpus of variants and so can
be precomputed [15]. Alternate allele frequency, however, is sometimes useful to
know for sample subsets too. Precompution is infeasible, so it is desirable for the
database to perform this computation efficiently with arbitrary sample subsets.

416 R.N. Lichtenwalter et al.

Listing 3. Alternate Allele Frequency Query

SELECT SUM(unnest)/(2*COUNT(unnest))::FLOAT

FROM UNNEST(genotypes)

To do this, we can return to the UNNEST technique highlighted in Listing 2.
The necessary SQL code is simple and concise but slow. Because this is a common
operation, we offer another C function that computes call rate and alternate allele
frequency for both the complete set of samples and for the requested subset. It
returns this information in a composite user-defined type, which is conveniently
accessible by field.

We might also like to convert genotypes stored in arrays between alternate
allele count and allele nucleotide sequence representations. We can do this with
SQL, but when we must apply it over an entire array it again requires a SQL
function involving the UNNEST and array agg sequence of operations. We instead
provide another small C function that performs this operation over the array and
returns a VARCHAR[].

5 Comparative Performance

We performed all experiments on a dedicated machine running CentOS 6.7 con-
taining an Intel Xeon E5-2630v2 CPU with 2 cores enabled, 8 GB of RAM, and
an 8-disk RAID-10 array of 7200 RPM hard disks. Our benchmark data consists
of 3104 subjects with 2,567,845 variants for a total of 8.0 billion genotypic data
points. Imputation generated probability tuples for 34,985,077 variants, which
totals 108.6 billion tuples or 325.8 billion imputed genotypic data points.

Figure 3 shows the disk requirements for each storage scheme including nec-
essary indices. For relational database representations, VACUUM FULL ANALYZE
was performed after loading, and indices were generated with FILLFACTOR=100.
This aligns with the typical write-once, read-only nature of this data.

The gzip size provides a baseline for space requirements. The PLINK tex-
tual entry indicates the size of a typical uncompressed representation of the data
set. Storage requirements of the database representations vary widely. The coor-
dinate list representation suffers from row overhead, key duplication, and lack
of compression, and the index for each partition requires nearly half as much
space as the table. The array-based representations are clearly smallest among
the relational database storage options.

5.1 Query Times

We tested several queries representative of tasks necessary for downstream analy-
sis. All random values for queries are identical across storage schemes. To simu-
late a production system with a warm file system cache, we ran queries against
each representation prior to benchmarking it. For the relational database tests,
we used output from the PostgreSQL query planner (i.e. EXPLAIN ANALYZE) to

Genotypic Data in Relational Databases 417

optimize each of the SQL queries for their respective storage representations.
We note that many of the queries were CPU-bound, particularly in the case of
the compact storage representations.

All experiments were repeated 10 times to obtain the arithmetic mean. We
used the bash time shell keyword to record wall time in the same way for both
the file-based utilities and the psql invocations. A variety of psql configuration
options can greatly affect query performance as measured by the client. We
employed the following command line for our timing runs:

<<< $QUERY psql -v FETCH_COUNT=1 -P pager=off -A -t -F $'\t' -q

The baseline time for any psql call on the system was, on average, 12 ms.
Query planning times were typically around 5 ms, though query planning for the
partitioned table with constraint exclusion required roughly 200 ms. Output was
sent to the null device, /dev/null, to remove output device performance from
consideration. Since this was not possible with PLINK, we provided PLINK
with output storage on an unswapped tmpfs RAM disk. The result of these
benchmarks appears in Fig. 3.

Fig. 3. Space requirements (left, logarithmic y-axis) and query performance (right,
logarithmic y-axis) of various storage schemes.

Query 1: Atomic Lookup. The most basic query benchmark retrieves a
specific genotype given a randomly selected sample and variant. This is not
a common production query, but it is an instructive indicator of performance at
the atomic scale. Most storage methods perform well on this query. All of the
database representations effectively leverage their indices. The HSTORE performs
badly due to data structure bloat. The variant-major array representation is
fastest, minimizing the total data processing requirement to perform the query.
Its smaller index outperforms the coordinate list representation and its narrower
array outperforms the sample-major representation.

418 R.N. Lichtenwalter et al.

Query 2: Alternate Allele Frequency. Computing the alternate allele fre-
quency in a set of samples is a common operation in genetic analysis and under-
lies many larger, more complex queries. It is an interesting variant descriptor
and is useful for filtering variants that are unsuitable for downstream analysis. It
must be repeated once per variant to filter variants by alternate allele frequency
over a set of samples, so times above a fraction of a second are problematic.
This query computes alternate allele frequency for a randomly selected variant
in a random subset of 50% of samples. The result demonstrates the efficiency
of the C procedure in performing single-pass computations over the array. The
variant-major array representation performs best, with database server timing
showing that calculations require less than 0.1 ms per variant.

Query 3: A Single Variant. Researchers are often interested in considering
the quality of statistical models relating a single genetic variant with an observed
phenotype. This query extracts a randomly selected variant for all samples. The
sample-major representations must perform a table scan, but the coordinate
list representation takes advantage of its partitioning, indexing, and clustering.
While both array structures are fast due to compactness, the variant-major array
representation exploits its index to quickly access the requisite row.

Query 4: A Single Sample. This query extracts all variants for one randomly
selected sample. Our benchmark data has many more variants than samples, so
this query must assemble and return far more data than the single-variant query.
The coordinate list representation cannot use constraint exclusion to satisfy this
query, because sample data is scattered evenly throughout the partitions. Addi-
tionally, three factors induce a sequential table scan. First, the sample foreign key
is the second column in the multi-column index, so using that index requires a
sequential index scan. Second, the indices are half the size of the tables. Finally,
the tables are clustered by the index, so variants are stored contiguously at
the cost of samples being distributed evenly. Adding an additional multi-column
index with sample ref as the leftmost column allows the planner to use an index
effectively, but it must still perform a bitmap index scan over each partition, and
the time requirement is only reduced from 1471 s to 594 s at a cost of another
149.3 GB for the second index. Further improvements require altering the dimen-
sion of partitioning or clustering and decrease efficiency of variant-centric queries.
Sample major representations are ideal for this query. The VARCHAR and ARRAY
both use the same PostgreSQL varlena implementation, so we directly observe
the benefit of factoring the allele nucleotide sequences out of the genotypes.
Though the sample-major array is 348 times as fast as the variant-major array
for this query and soundly the fastest, the variant-major array is 1952 times as
fast for the single-variant query. This is an artifact of the relative cardinalities
of the dimensions but is representative of typical data.

Query 5: All Variants on a Gene. This query selects subsets of variants
that reside on the same randomly selected gene and extracts genotypes for a

Genotypic Data in Relational Databases 419

randomly generated set of 75% of samples, which represents a common task in
genetic association studies. Variant-based partitioning and clustering allow the
coordinate list representation to remain competitive, but the small index and
superior compactness of data in the variant-major array representation minimize
the total quantity of data that it must read and process.

Query 6: Complex Subsets. This query is representative of the complex set of
criteria that arise in exploratory association studies. Researchers are interested in
subsets of samples based on demographic and phenotypic qualities and in subsets
of variants based on their genomic properties, such as location and functional
effect. We randomly select between 1 and 200 variants from anywhere on the
genome for a random subset of samples. This query tests the performance of
constructing results of varying sizes across non-contiguous selections of both
sample and variant dimensions.

The VARCHAR data structure, for which we did not implement a multiple
indexing operator, demonstrates the cost of non-contiguous selection. The coor-
dinate list representation benefits from partitioning, indexing, and clustering,
because these queries filter both dimensions to require a sufficiently small per-
centage of the data. Performance deteriorates as result set size increases, and
ill-fated queries trigger sequential table scans. The variant-major array offers by
far the best performance.

6 Probabilistic Genotypes

Increasingly projects such as 1000genomes are used to impute genotypes that
are not directly measured in an individual based on the correlation of measured
genotypes with genotypes in a reference dataset [11]. While current genotyping
microarrays typically measure alleles for between 0.5 and 2.5 million variants [7],
imputation may output tens of millions of probabilistic genotypes per sample.
The output of the statistical procedures that perform this imputation is often a
tuple T : {P(AA),P(AB),P(BB)}, where P(x) ∈ [0, 1] is a probability and A
and B are potential alleles.

Native database floating point types are potential storage media for tuple
elements, but we know that P(x) ∈ [0, 1] and that

∑
P(x)∈T P (x) ≤ 1, where

the probability sum need not be unity to allow for missing genotype calls. Widely
used software for performing imputation by default emits only 3 decimal digits
in [0.000, 1.000], and the utility of precision beyond this is dubious. With three
digits of precision, each probability fits into a 10-bit unsigned integral repre-
sentation. Three such entities can be packed into a 4-byte PostgreSQL custom
data type to be queried as a unit. This increases data locality and reduces query
times versus native floating point types, and it decreases post-compression stor-
age requirements by 70%. For our data set, there is only a 58% storage penalty
per variant for maintaining the 4-byte bit-packed imputed probability tuples
versus the 1-byte TINYINT unimputed alternate allele counts. We implemented
this extension to manage 108.6 billion imputed genotype probability tuples.

420 R.N. Lichtenwalter et al.

Fig. 4. Space requirements (left, linear y-axis) and query performance (right, logarith-
mic y-axis) of various storage schemes.

Of the storage schemes previously offered, most are intractable at this scale. For
example, the coordinate list representation requires 4.3 TB of space. We pro-
vide only the best-performing methods for comparison. Figure 4 shows storage
requirements and query performance. Alternate allele frequency is not relevant,
so query 2 is absent.

7 Conclusion

We have presented a contemporary study of storing genotypic data in rela-
tional databases and proposed a scalable array-based solution in PostgreSQL
that has escaped serious consideration. We further extended it to efficiently sup-
port probabilistic data. Benchmarks using a large research data set of genotypes
demonstrate that array-based organization reduces storage requirements com-
pared to existing relational database methods by several orders of magnitude
while improving query speeds significantly. It competes well with domain-aware
tools that sacrifice many of the benefits of relational databases. This technique
is of similar utility in other domains with dense data matrices containing small,
homogeneous units of rarely written information.

User-defined types, C and SQL functions, and benchmark code are avail-
able on GitHub at https://github.com/rlichtenwalter/pgsql genomics. A pro-
duction database using this code is heavily used by multiple researchers in
the Human Pain Genetics Lab at McGill University, where it backs an ana-
lytical web portal supporting complex queries integrating genotypes, variant
annotations, genomic intervals, phenotypes, quality metrics, and other diverse
data. Researchers across disciplines have used this portal to generate many ter-
abytes worth of throughput via large, complex queries with sub-second median
completion times. Research was sponsored by the NIH/NIDCR under grants
U01DE017018 and R01DE023846.

https://github.com/rlichtenwalter/pgsql_genomics

Genotypic Data in Relational Databases 421

References

1. Bloom, T., Sharpe, T.: Managing data from high-throughput genomic processing:
a case study. In: Proceedings of the Thirtieth International Conference on Very
Large Data Bases, pp. 1198–1201. VLDB Endowment (2004)

2. Chanda, P., Elhaik, E., Bader, J.S.: HapZipper: sharing HapMap populations just
got easier. Nucleic Acids Res. 40(20), e159–e159 (2012)

3. Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,
Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.: The variant call
format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011)

4. Davies, K.: The $1,000 Genome: The Revolution in DNA Sequencing and the New
Era of Personalized Medicine. Simon and Schuster, New York (2015)

5. Fong, C., Ko, D.C., Wasnick, M., Radey, M., Miller, S.I., Brittnacher, M.: GWAS
analyzer: integrating genotype, phenotype and public annotation data for genome-
wide association study analysis. Bioinformatics 26(4), 560–564 (2010)

6. Gabetta, M., Limongelli, I., Rizzo, E., Riva, A., Segagni, D., Bellazzi, R.: BigQ:
a NoSQL based framework to handle genomic variants in i2b2. BMC Bioinform.
16(1), 1 (2015)

7. Ha, N.-T., Freytag, S., Bickeboeller, H.: Coverage and efficiency in current SNP
chips. Europ. J. Hum. Genet. 22(9), 1124–1130 (2014)

8. Jolley, K.A., Maiden, M.C.: BIGSdb: scalable analysis of bacterial genome variation
at the population level. BMC Bioinform. 11(1), 595 (2010)

9. Layer, R.M., Kindlon, N., Karczewski, K.J., Quinlan, A.R., et al.: Efficient geno-
type compression, analysis of large genetic-variation data sets. Nat. Methods 13(1),
63–65 (2016)

10. Li, H.: Tabix: fast retrieval of sequence features from generic TAB-delimited files.
Bioinformatics 27(5), 718–719 (2011)

11. Marchini, J., Howie, B.: Genotype imputation for genome-wide association studies.
Nat. Rev. Genet. 11(7), 499–511 (2010)

12. Mitha, F., Herodotou, H., Borisov, N., Jiang, C., Yoder, J., Owzar, K.: SNPpy-
database management for SNP data from Genome wide association studies. PLOS
ONE 6(10), e24982 (2011)

13. O’Driscoll, A., Daugelaite, J., Sleator, R.D.: ‘Big data’, hadoop and cloud com-
puting in genomics. J. Biomed. Inform. 46(5), 774–781 (2013)

14. Orro, A., Guffanti, G., Salvi, E., Macciardi, F., Milanesi, L.: SNPLims: a data
management system for genome wide association studies. BMC Bioinform. 9(Suppl
2), S13 (2008)

15. Paila, U., Chapman, B.A., Kirchner, R., Quinlan, A.R.: GEMINI: integrative explo-
ration of genetic variation and genome annotations. PLoS Comput. Biol. 9(7),
e1003153 (2013)

16. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender,
D., Maller, J., Sklar, P., De Bakker, P.I.W., Daly, M.J., et al.: PLINK: a tool set
for whole-genome association and population-based linkage analyses. Am. J. Hum.
Genet. 81(3), 559–575 (2007)

17. Röhm, U., Blakeley, J.: Data management for high-throughput genomics. arXiv
preprint arXiv:0909.1764 (2009)

18. Yeung, J.M.Y., Sham, P.C., Chan, A.S.W., Cherny, S.S.: OpenADAM: an open
source genome-wide association data management system for Affymetrix SNP
arrays. BMC Genomics 9(1), 1–4 (2008)

http://arxiv.org/abs/0909.1764

Author Index

Abbas, Abdullah 343
Abel, Edward 136
Abelló, Alberto 153
Arampatzis, Georgios 88
Ardagna, Claudio 3

Batko, Michal 262

Calders, Toon 153
Carniel, Anderson Chaves 229
Ceravolo, Paolo 3
Ciferri, Ricardo Rodrigues 229
Corral, Antonio 199, 214
Cortés Ríos, Julio César 136

Damiani, Ernesto 3
de Aguiar Ciferri, Cristina Dutra 229
Dervos, Dimitris A. 88
Diatchenko, Luda 408
Dignös, Anton 120
Djedaini, Mahfoud 105

Evangelidis, Georgios 88

Fernandes, Alvaro A.A. 136

Gamper, Johann 73, 120
Gançarski, Stéphane 375
García-García, Francisco 199, 214
Genevès, Pierre 343
Graefe, Goetz 311
Gudes, Ehud 247
Guizzardi, Giancarlo 28

Halfeld-Ferrari, Mirian 357
Härder, Theo 311
Helmer, Sven 73
Hirmer, Pascal 42
Hoos, Eva 42

Iribarne, Luis 214

Kalja, Ahto 394
Kandalov, Kirill 247

Keane, John A. 136
Kumar, Rohit 153

Labroche, Nicolas 105
Laurent, Dominique 357
Layaïda, Nabil 343
Lehner, Wolfgang 326
Lersch, Lucas 326
Lichtenwalter, Ryan N. 408

Marcel, Patrick 105
Marenkov, Jevgeni 394
Marton, József 182
Mavrommatis, George 199, 214
Meister, Andreas 297
Mitschang, Bernhard 42
Moutafis, Panagiotis 199

Nalepa, Filip 262

Ougiaroglou, Stefanos 88
Oukid, Ismail 326

Paton, Norman W. 136
Peralta, Verónika 105
Peukert, Eric 278
Piatov, Danila 73
Pitoura, Evaggelia 167

Rahm, Erhard 278
Robal, Tarmo 394
Roisin, Cécile 343

Saake, Gunter 297
Saeedi, Alieh 278
Sales, Tiago Prince 28
Sanoja, Andrés 375
Sauer, Caetano 311
Scarabottolo, Nello 3
Schreter, Ivan 326
Sedmidubsky, Jan 59
Semertzidis, Konstantinos 167

Shekelyan, Michael 120
Svec, Jan 59
Szárnyas, Gábor 182

Thalheim, Bernhard 13

Varró, Dániel 182
Vassilakopoulos, Michael 199, 214

Zezula, Pavel 59, 262
Zorina-Lichtenwalter, Katerina 408

424 Author Index

	Preface
	Organization
	Abstracts
	Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach
	Indoor Navigation Services from Mobile Data
	Contents
	ADBIS 2017 - Keynote Papers
	Toward Model-Based Big Data-as-a-Service: The TOREADOR Approach
	1 Introduction
	2 Big Data: Overview
	3 Big Data Analytics-as-a-Service
	4 The TOREADOR Methodology
	5 Conclusions
	References

	Conceptual Modeling and Human Factors
	General and Specific Model Notions
	1 Models in Computer Engineering and Computer Science
	1.1 The Omnipresence of Models in CE&CS
	1.2 The General Notion of the Model
	1.3 Generality versus Specificity
	1.4 The Storyline and Objectives of This Paper

	2 Specialising and Refining the Model Notion
	2.1 Stereotypes for Models and Particular Notions of Models
	2.2 Two Model Notions and Their Specific Approaches
	2.3 The Background as the Hidden Component of Models
	2.4 The Particular Notion of a Conceptual Model
	2.5 The Ladenness of Model Notions
	2.6 Lessons Learning: Towards a General Approach to Modelling

	3 Definitional Frames for Model Notions
	3.1 Priming and Orientation
	3.2 Actors
	3.3 Languages and Basics

	4 Stereotypes of Models in Utilisation Scenarios
	4.1 Starting with Completing the Definitional Frame
	4.2 Model Utilisation Scenario
	4.3 Agenda Setting
	4.4 Initial Model Setting
	4.5 A Test Case for the Approach

	5 Concluding: Stereotyping as the Spinning Principle
	References

	“Is It a Fleet or a Collection of Ships?”: Ontological Anti-patterns in the Modeling of Part-Whole Relations
	Abstract
	1 Introduction
	2 Ontological and Cognitive Aspects
	3 Methods and Materials
	4 Ontological Anti-patterns
	4.1 Heterogeneous Collective (HetColl)
	4.2 Homogeneous Functional Complex (HomoFunc)

	5 Tool Support
	6 Final Considerations
	References

	Context-Aware Decision Information Packages: An Approach to Human-Centric Smart Factories
	1 Introduction
	2 Decision Information Packages in Engineering
	2.1 Case Study: Pre-production Plant
	2.2 Decision Information Packages

	3 Context-Aware Composition of Decision Information Packages
	3.1 Context-Aware Engineering Data Model
	3.2 Operators for Decision Information Package Composition

	4 Architecture to Provide Decision Information Packages
	4.1 Context-Aware Provisioning
	4.2 Resource Access Platform

	5 Evaluation
	5.1 Proof-of-Concept Implementation
	5.2 Case-Oriented Evaluation of Information Reduction

	6 Related Work
	7 Summary
	References

	Subsequence Matching and Streaming Data
	Fast Subsequence Matching in Motion Capture Data
	1 Introduction
	2 Related Work
	3 Subsequence Matching
	3.1 Problem Definition
	3.2 Similarity of Motions
	3.3 Offline Segmentation and Indexing of Data Motion
	3.4 Query Processing

	4 Experimental Evaluation
	4.1 Dataset
	4.2 Methodology
	4.3 Analysis of Preprocessing Phase
	4.4 Analysis of Retrieval Effectiveness
	4.5 Analysis of Retrieval Efficiency
	4.6 Comparison with State-of-the-Art Approaches

	5 Conclusions
	References

	Interactive Time Series Subsequence Matching
	1 Introduction
	2 Related Work
	3 Problem Formalization
	3.1 Basic Terminology
	3.2 Computing Similarities

	4 Prefix-Sum Euclidean Distance Matrix
	4.1 Basic Distance Matrix
	4.2 Generalized Prefix-Sum Euclidean Distance Matrix

	5 Speeding up Similarity Computations
	5.1 All-Pairs Subsequence Matching
	5.2 Top-k Subsequence Matching
	5.3 Full Top-k Subsequence Matching

	6 Delta-Top-Index
	6.1 Basic Idea
	6.2 Efficient Implementation of Deltas
	6.3 Handling a Top List Row
	6.4 Putting It All Together

	7 Experimental Evaluation
	7.1 Environment
	7.2 Test Time Series
	7.3 Experiments and Results

	8 Conclusions
	References

	Generating Fixed-Size Training Sets for Large and Streaming Datasets
	1 Introduction
	2 Background Knowledge
	3 The dRHC Algorithm
	4 The Proposed dRHC2 Algorithm
	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Comparisons
	5.3 Wilcoxon Signed Rank Test

	6 Conclusions and Future Work
	References

	OLAP
	Detecting User Focus in OLAP Analyses
	1 Introduction
	2 Motivating Example
	3 Characterizing and Detecting Focus Phases
	4 Formal Framework
	5 Metrics
	6 Experiments
	6.1 Experimental Setup
	6.2 Model Training
	6.3 Model Performance
	6.4 Focus vs Analyst Skills
	6.5 Computation Efficiency

	7 Related Work
	8 Conclusion
	References

	Sparse Prefix Sums
	1 Introduction
	2 Related Work
	3 Background
	4 Sparse Prefix Sums
	4.1 Constructing Sparse Prefix Sums
	4.2 Data Structures
	4.3 Querying Sparse Prefix Sums
	4.4 Complexity Analysis

	5 Experimental Evaluation
	5.1 Setup and Datasets
	5.2 Results

	6 Conclusion and Future Work
	References

	Targeted Feedback Collection Applied to Multi-Criteria Source Selection
	1 Introduction
	2 Problem Description
	3 Technical Background
	3.1 Data Criteria
	3.2 Confidence Interval, Overlap and Sample Size
	3.3 Multi-criteria Optimisation

	4 Targeting Feedback Using Multi-dimensional Confidence Intervals
	5 Algorithm
	6 Evaluation: TFC vs. Random and Uncertainty Sampling
	6.1 Experimental Setup
	6.2 Results

	7 Conclusions
	References

	Graph Databases
	Cost Model for Pregel on GraphX
	1 Introduction
	2 Background
	2.1 Pregel Model
	2.2 Partitioning

	3 Cost Model for Pregel GraphX
	3.1 Pregel Model in GraphX
	3.2 The Cost Model Formulation

	4 Experimental Validation of the Cost Model
	4.1 Experiment Configuration and Setup
	4.2 Estimating Cluster Specific Variables
	4.3 Cost Model Validation

	5 Concluding Remarks
	References

	Historical Traversals in Native Graph Databases
	1 Introduction
	2 Traversals in Historical Graphs
	2.1 Historical Graphs
	2.2 Historical Traversal Queries

	3 Storing Historical Graphs
	4 Processing Historical Traversal Queries
	5 Experimental Evaluation
	5.1 Size and Load Time
	5.2 Query Processing
	5.3 Case Study

	6 Conclusions
	References

	Formalising openCypher Graph Queries in Relational Algebra
	1 Introduction
	2 Data Model and Running Example
	3 The openCypher Query Language
	3.1 Language Constructs
	3.2 Query Structure

	4 Mapping openCypher to Relational Graph Algebra
	4.1 An Algebra for Formalising Graph Queries
	4.2 Mapping openCypher Queries to Relational Graph Algebra
	4.3 Summary and Limitations

	5 Related Work
	6 Conclusion and Future Work
	References

	Spatial Data Management
	SliceNBound: Solving Closest Pairs and Distance Join Queries in Apache Spark
	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Distance Join and K Closest Pairs Query
	2.2 Apache Spark
	2.3 Spatial Computing in Apache Spark

	3 SliceNBound in Apache Spark
	3.1 Local Computation of the KCPQ
	3.2 Partitioning a Single Dataset
	3.3 Pair-Partitioning of Datasets
	3.4 Approximating the KCPQ
	3.5 Cross-Border Computations
	3.6 Phases of SliceNBound for the Exact KCPQ
	3.7 SliceNBound for the DJQ

	4 Experimentation
	5 Concluding Remarks
	References

	A Comparison of Distributed Spatial Data Management Systems for Processing Distance Join Queries
	1 Introduction
	2 Related Work and Motivation
	3 Preliminaries and Background
	3.1 The K Closest Pairs and Distance Join Queries
	3.2 SpatialHadoop
	3.3 LocationSpark

	4 DJQ Algorithms in SpatialHadoop and LocationSpark
	4.1 KCPQ and DJQ in SpatialHadoop
	4.2 KCPQ and DJQ in LocationSpark

	5 Experimentation
	6 Conclusions and Future Work
	References

	A Generic and Efficient Framework for Spatial Indexing on Flash-Based Solid State Drives
	1 Introduction
	2 Design Goals for Flash-Aware Spatial Indices
	3 Related Work
	4 The Efficient Framework for Spatial Indexing on SSDs
	4.1 Maintenance Operations
	4.2 Search Operations
	4.3 System Restart

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Index Construction
	5.3 Spatial Query Processing

	6 Conclusions and Future Work
	References

	Parallel and Distributed Data Processing
	Incremental Frequent Itemsets Mining with MapReduce
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Association Rules, Frequent Itemsets and Incremental Update
	2.2 MapReduce Model and Incremental Computation
	2.3 Apriori MapReduce Algorithm
	2.4 Join Operation and MapReduce

	3 Problem Definition
	4 Algorithms
	4.1 General Scheme
	4.2 Early Pruning Optimizations
	4.3 Optimizing Algorithm for MapReduce

	5 Experimental Results
	5.1 Algorithms and Datasets
	5.2 Evaluation of Algorithms
	5.3 Results and Analysis
	5.4 Comparison to Previous Work

	6 Conclusions
	References

	Towards High Similarity Search Throughput by Dynamic Query Reordering and Parallel Processing
	1 Introduction
	2 Related Work
	3 Problem Definition and Objectives
	4 Enhancing Throughput with a Single Query Processor
	4.1 Query Ordering
	4.2 Architecture

	5 Parallelization
	5.1 Parallel Architecture
	5.2 Push Technique
	5.3 Pull Technique
	5.4 Advanced Push Technique

	6 Experiments
	6.1 Setup
	6.2 Evaluation

	7 Conclusion
	References

	Comparative Evaluation of Distributed Clustering Schemes for Multi-source Entity Resolution
	1 Introduction
	2 Related Work
	3 Famer Framework for Multi-source Entity Resolution
	4 Clustering Approaches
	4.1 Connected Components
	4.2 Center Clustering
	4.3 Merge Center
	4.4 Star Clustering
	4.5 Correlation Clustering

	5 Evaluation
	5.1 Datasets and Configuration Setup
	5.2 Match Quality of Clustering Approaches
	5.3 Runtimes and Speedup

	6 Conclusions and Outlook
	References

	Query Optimization, Recovery, and Databases on Modern Hardware
	Cost-Function Complexity Matters: When Does Parallel Dynamic Programming Pay Off for Join-Order Optimization
	1 Introduction
	2 Dynamic Programming for Join-Order Optimization
	2.1 Complexity
	2.2 Sequential Dynamic Programming Approaches
	2.3 Parallel Approaches
	2.4 Cost Estimation

	3 Impact of Cost-Function Complexity
	3.1 Evaluation Setup
	3.2 Results
	3.3 Discussion

	4 Conclusion
	References

	Instant Restore After a Media Failure
	1 Introduction
	2 Related Work
	2.1 Failure Classes and Assumptions
	2.2 ARIES Restore
	2.3 Replication
	2.4 In-Memory Databases
	2.5 Single-Page Repair
	2.6 Single-Pass Restore

	3 Instant Restore
	3.1 Indexed Log Archive
	3.2 Restore Algorithm

	4 Experiments
	4.1 Environment
	4.2 Restore Latency and Bandwidth
	4.3 Transaction Throughput

	5 Conclusions
	References

	Rethinking DRAM Caching for LSMs in an NVRAM Environment
	1 Introduction
	2 Background
	3 Related Work
	4 LSM and LevelDB Architecture
	4.1 LevelDB

	5 Pmemenv: Persistent Memory Environment
	6 2Q Cache Policy for NVRAM
	7 Evaluation
	7.1 Write Performance
	7.2 Read Performance
	7.3 Mixed Workloads

	8 Conclusion
	References

	Semantic Data Processing
	SPARQL Query Containment with ShEx Constraints
	1 Introduction
	2 Related Works
	3 Definitions
	3.1 SPARQL
	3.2 ShEx

	4 Query Transformation
	4.1 BGP Transformation
	4.2 AND-OPT Transformation
	4.3 AND-OPT-(UNION) Transformation

	5 Query Containment with ShEx
	6 Complexity
	6.1 SPARQL AND-(OPT)-(UNION) Fragments
	6.2 SPARQL AND-OPT-(UNION)-FILTER/PP/MINUS Fragment

	7 Conclusion
	References

	Updating RDF/S Databases Under Constraints
	1 Introduction
	2 Background
	3 Updates
	3.1 Insertions Under Positive Constraints
	3.2 Deletions Under Positive Constraints
	3.3 Global Updates

	4 Application Issues
	5 Related Work
	6 Concluding Remarks
	References

	Additional Database and Information Systems Topics
	Migrating Web Archives from HTML4 to HTML5: A Block-Based Approach and Its Evaluation
	1 Introduction
	2 Related Works
	3 Web Page Segmentation with BOM and Its Evaluation
	4 Migration and Evaluation
	4.1 The Migration Process
	4.2 Assigning Labels
	4.3 The Evaluation Process
	4.4 Dealing with Rendering Errors
	4.5 Measuring Labels Similarity

	5 Experiments
	5.1 Experimentation Design
	5.2 Manual-design-Of-Blocks Tool
	5.3 Ground Truth Building

	6 Results
	6.1 Measuring Rendering Errors
	6.2 Measuring Labels

	7 Conclusion and Future Works
	References

	A Tool for Design-Time Usability Evaluation of Web User Interfaces
	Abstract
	1 Introduction
	2 Related Works
	3 Tool for Immediate Usability Evaluation
	3.1 Tool Overview
	3.2 Ontology-Based UI Guidelines Description
	3.3 User Interface Evaluation Engine
	3.4 Client Side Web Application

	4 Tool Evaluation
	4.1 Evaluation of Ontology Design
	4.2 Comparison of UI Evaluation Engines

	5 Work in Progress
	6 Conclusions
	Acknowledgements
	References

	Genotypic Data in Relational Databases: Efficient Storage and Rapid Retrieval
	1 Introduction
	2 Domain Background
	3 Existing Storage Solutions
	3.1 File-Based Solutions
	3.2 Relational Database Solutions

	4 The Array Storage Strategy
	4.1 Non-contiguous Multiple Indexing
	4.2 Array Organization
	4.3 Alternative Querying
	4.4 Sample and Variant Data Flexibility
	4.5 Array Operations

	5 Comparative Performance
	5.1 Query Times

	6 Probabilistic Genotypes
	7 Conclusion
	References

	Author Index

