
VINTE: An Implementation of Internal Calculi
for Lewis’ Logics of Counterfactual Reasoning

Marianna Girlando1(B), Björn Lellmann2, Nicola Olivetti1,
Gian Luca Pozzato3, and Quentin Vitalis4

1 Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397 Marseille, France

{marianna.girlando,nicola.olivetti}@univ-amu.fr
2 Technische Universität Wien, Vienna, Austria

lellmann@logic.at
3 Dipartimento di Informatica, Universitá di Torino, Turin, Italy

gianluca.pozzato@unito.it
4 Département Informatique, École Spéciale Militaire de Saint-Cyr, Guer, France

quentin.vitalis@protonmail.com

Abstract. We present VINTE, a theorem prover for conditional logics
for counterfactual reasoning introduced by Lewis in the seventies. VINTE
implements some internal calculi recently introduced for the basic system
V and some of its significant extensions with axioms N, T, C, W and A.

VINTE is inspired by the methodology of leanTAP and it is implemented
in Prolog. The paper shows some experimental results, witnessing that
the performances of VINTE are promising.

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator
�. They have a long history [11], and recently they have found an interest in
several fields of AI and knowledge representation. Just to mention a few (see [1]
for a complete bibliography), they have been used to reason about prototypical
properties, to model belief change [8], to reason about access control policies [5],
to formalize epistemic change in a multi-agent setting [2,4]. Conditional logics
can also provide an axiomatic foundation of nonmonotonic reasoning [9]: here a
conditional A� B is read “normally, if A then B”.

In early seventies, Lewis proposed a formalization of conditional logics in
order to represent a kind of hypothetical reasoning that cannot be captured by
the material implication of classical logic [10]. His original motivation was to
formalize counterfactuals, that is to say, conditionals of the form “if A were the
case then B would be the case”, where A is false. The family of logics studied
by Lewis is semantically characterized by sphere models, a particular kind of

Supported by the Project TICAMORE ANR-16-CE91-0002-01, by the EU under
Marie Sk�lodowska-Curie Grant Agreement No. [660047], and by the Project “Excep-
tionOWL”, Università di Torino and Compagnia di San Paolo, call 2014.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 149–159, 2017.
DOI: 10.1007/978-3-319-66902-1 9

150 M. Girlando et al.

neighbourhood models introduced by Lewis himself. In Lewis’ terminology, a
sphere denotes a set of worlds; in sphere models, each world is equipped with
a nested system of such spheres. From the viewpoint of the given world, inner
sets represent the “most plausible worlds”, while worlds belonging only to outer
sets are considered as less plausible. In order to treat the conditional operator,
Lewis takes as primitive the comparative plausibility connective �: a formula
A � B means “A is at least as plausible as B”. The conditional A � B can
be then defined as “A is impossible” or “A ∧ ¬B is less plausible than A ∧ B”.
However, the latter assertion is equivalent to the simpler one “A ∧ ¬B is less
plausible than A”1.

In previous works [6,16] we have introduced internal, standard, cut-free cal-
culi for most logics of the Lewis family, namely logics V, VN, VT, VW, VC, VA
and VNA. Here we describe a Prolog implementation of the invertible calculi
I i

L introduced in [6]. The program, called VINTE, gives a decision procedure for
the respective logics, and it is inspired by the methodology of leanTAP [3]. The
idea is that each axiom or rule of the sequent calculi is implemented by a Prolog
clause of the program. The resulting code is therefore simple and compact: the
implementation of VINTE for V consists of only 3 predicates, 21 clauses and 57
lines of code. We provide experimental results by comparing VINTE with the
following theorem provers for conditional logics: CondLean [12], GoalDUCK
[13] and NESCOND [14,15], and we show that the performances of VINTE are
quite promising. The program VINTE, as well as all the Prolog source files, are
available for free usage and download at http://193.51.60.97:8000/vinte/.

2 Lewis’ Conditional Logics

We consider the conditional logics defined by Lewis in [10]. The set of conditional
formulae is given by F :: = p | ⊥ | F → F | F � F , where p ∈ V is a propositional
variable. The other boolean connectives are defined in terms of ⊥,→ as usual.
Intuitively, a formula A � B is interpreted as “A is at least as plausible as B”.

As mentioned above, Lewis’ counterfactual implication� can be defined in
terms of comparative plausibility � as

A� B ≡ (⊥ � A) ∨ ¬((A ∧ ¬B) � A).

The semantics of this logic is defined by Lewis in terms of sphere semantics:

Definition 1. A sphere model (or model) is a triple 〈W,SP, �. �〉, consisting of
a non-empty set W of elements, called worlds, a mapping SP : W → P(P(W)),
and a propositional valuation �. � : V → P(W). Elements of SP(x) are called
spheres. We assume the following conditions: for every α ∈ SP(w) we have
α
= ∅, and for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α. The latter
condition is called sphere nesting.

1 It is worth noticing that in turn the connective � can be defined in terms of �.

http://193.51.60.97:8000/vinte/

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 151

Table 1. Lewis’ logics and axioms.

CPR
� B → A
� A � B

CPA (A � A ∨ B) ∨ (B � A ∨ B)

TR (A � B) ∧ (B � C) → (A � C) CO (A � B) ∨ (B � A)
N ¬(⊥ � �) W A → (A � �)
T (⊥ � ¬A) → A A1 (A � B) → ⊥ � ¬(A � B)

)

C (A � �) → A A2 ¬(A � B) → ⊥ � (A � B)
)

AV := {CPR,CPA,TR,CO}
AVN := AV ∪ {N} AVT := AV ∪ {N,T} AVW := AV ∪ {N,T,W}
AVC := AV ∪ {N,T,W,C} AVA := AV ∪ {A1,A2} AVNA := AV ∪ {N,A1,A2}

The valuation �. � is extended to all formulae by: �⊥� = ∅; �A → B� = (W −
�A�) ∪ �B�; �A � B� = {w ∈ W | for all α ∈ SP(w). if �B� ∩ α
= ∅, then �A� ∩
α
= ∅}. For w ∈ W we also write w � A instead of w ∈ �A�. As for spheres,
we write α �∀ A meaning ∀x ∈ α.x � A and α �∃ A meaning ∃x ∈ α.x � A2.
Validity and satisfiability of formulae in a class of models are defined as usual.
Conditional logic V is the set of formulae valid in all sphere models.

Extensions of V are semantically given by specifying additional conditions on
the class of sphere models, namely:

– normality : for all w ∈ W we have SP(w)
= ∅;
– total reflexivity : for all w ∈ W we have w ∈ ⋃

SP(w);
– weak centering : normality holds and for all α ∈ SP(w) we have w ∈ α;
– centering : for all w ∈ W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈ W we have SP(w) = SP(v)3.

Extensions of V are denoted by concatenating the letters for these properties:
N for normality, T for total reflexivity, W for weak centering, C for centering,
and A for absoluteness. All the above logics can be characterized by axioms in a
Hilbert-style system [10, Chap. 6]. The modal axioms formulated in the language
with only the comparative plausibility operator are presented in Table 1 (where
∨ and ∧ bind stronger than �). The propositional axioms and rules are the
standard ones.

3 Internal Calculi for Conditional Logics

Table 2 presents calculi I i
L, where L ranges over the logics V,VN,VT,VW,

VC,VA, VNA, introduced in [6]. The basic constituent of sequents are blocks

2 Employing this notation, satisfiability of a �-formula in a model becomes the fol-
lowing: x � A � B iff for all α ∈ SP(x). α �∀ ¬B or α �∃ A.

3 It is worth noticing that absoluteness can be equally stated as local absoluteness:
∀w ∈ W, ∀v ∈ ⋃SP(w) it holds SP(w) = SP(v).

152 M. Girlando et al.

Table 2. The calculus I i
V and its extensions.

of the form [A1, . . . , Am � A], with A1, . . . , Am, A formulas, representing dis-
junctions of �-formulas. A sequent is a tuple Γ ⇒ Δ, where Γ is a multiset of
conditional formulae, and Δ is a multiset of conditional formulae and blocks.
The formula interpretation of a sequent is given by:

ι(Γ ⇒ Δ′, [Σ1 � A1] , . . . , [Σn � An]) :=
∧

Γ →
∨

Δ′ ∨
∨

1≤i≤n

∨

B∈Σi

(B � Ai)

As usual, given a formula G ∈ L, in order to check whether G is valid we look
for a derivation of ⇒ G. Given a sequent Γ ⇒ Δ, we say that it is derivable
if it admits a derivation, namely a tree whose root is Γ ⇒ Δ, every leaf is an
instance of init or ⊥L or �R, and every non-leaf node is (an instance of) the
conclusion of a rule having (an instance of) the premises of the rule as children.

In [6] it is shown that:

Theorem 1. The calculi I i
L are sound and complete for the respective logics.

In [6] it has been also shown that the calculi I i
L can be used in a decision pro-

cedure for the logic L as follows. Since contractions and weakenings are admis-
sible we may assume that a derivation of a duplication-free sequent (contain-
ing duplicates neither of formulae nor of blocks) only contains duplication-free

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 153

sequents: whenever a (backwards) application of a rule introduces a duplicate of
a formula already in the sequent, it is immediately deleted in the next step using
a backwards application of weakening. While officially our calculi do not contain
the weakening rules, the proof of admissibility of weakening yields a procedure to
transform a derivation with these rules into one without. Since all rules have the
subformula property, the number of duplication-free sequents possibly relevant
to a derivation of a sequent is bounded in the number of subformulae of that
sequent, and hence enumerating all possible loop-free derivations of the above
form yields a decision procedure for the logic.

Theorem 2. Proof search with the blocking technique above for a sequent Γ ⇒
Δ in calculus I i

L always comes to an end in a finite number of steps.

As usual, in order to implement such a decision procedure, we have to control the
application of the rules to avoid the introduction of duplicated sequents. Con-
cerning the rule �i

L, the principal formula A � B is copied into the premisses,
then we have to avoid that, in a backward application of the rule, such formula
is redundantly applied by using the same block [Σ � C]. Since no rule, with the
exception of jump, remove formulas from blocks, we allow a backward application
of �i

L to a sequent Γ,A � B ⇒ Δ, [Σ � C] if neither [B,Σ � C] nor [Σ′ � C],
where B,Σ ⊂ Σ′ belong to Δ, and neither [Σ � A] nor [Σ′ � A], where Σ ⊂ Σ′

belong to Δ. Similarly for the comi rule, which can be applied backward to blocks
[Σ1 � A] and [Σ2 � B] if neither [Σ1, Σ2 � A] nor [Σ1, Σ2 � B] are introduced
redundantly in the premisses. For rules like Wi, whose premisses contain the
principal formula, we just need to check whether the formulas introduced in the
premisses by a backward application of the rule already belong to such premisses
or not. In the first case, the application of the rule is blocked. As an example, if
Wi is applied to ⇒ [A ∨ B � C], then the premiss is ⇒ [A ∨ B � C] , A∨B, that
becomes (∗) ⇒ [A ∨ B � C] , A,B after an application of the rule ∨R. The rule
Wi can be further applied to (∗), since A ∨ B does not belong to the right-hand
side of the sequent, then obtaining the premiss ⇒ [A ∨ B � C] , A,B,A∨B, and
at this point neither Wi nor ∨R can be further applied.

4 Design of VINTE

In this section we present a Prolog implementation of the internal calculi I i
L

recalled in Sect. 3. The program, called VINTE (V: INTernal calculi and Exten-
sions), is inspired by the “lean” methodology of leanTAP, even if it does not
follow its style in a rigorous manner. The program comprises a set of clauses,
each one of them implements a sequent rule or axiom of I i

L. The proof search is
provided for free by the mere depth-first search mechanism of Prolog, without
any additional ad hoc mechanism.

VINTE represents a sequent with a pair of Prolog lists [Gamma,Delta], where
Gamma and Delta represent the left-hand side and the right-hand side of the
sequent, respectively. Elements of Gamma are formulas, whereas elements of Delta

154 M. Girlando et al.

can be either formulas or pairs [Sigma,A], where Sigma is a Prolog list, repre-
senting a block [Σ � A]. Symbols � and ⊥ are represented by constants true
and false, respectively, whereas connectives ¬, ∧, ∨, →, �, and � are repre-
sented by -, ,̂ ?, ->, <, and =>. Propositional variables are represented by Prolog
atoms. As an example, the Prolog pair

[[-(p?q), p, p -> q, p < r], [q, p => (q^r), [[true, p, q], r]]]

is used to represent the sequent

¬(P ∨ Q), P, P → Q,P � R ⇒ Q,P � (Q ∧ R), [�, P,Q � R] .

The calculi I i
L are implemented by the predicate

prove([Gamma,Delta],ProofTree).

This predicate succeeds if and only if the sequent Γ ⇒ Δ represented by the
pair of lists [Gamma,Delta] is derivable. When it succeeds, the output term
ProofTree matches with a representation of the derivation found by the prover.
For instance, in order to prove that the formula (A � B) ∨ (B � A) is valid in
V, one queries VINTE with the goal: prove([[],[(a<b)?(b<a)]],ProofTree).
Each clause of prove implements an axiom or rule of I i

L. To search a derivation
of a sequent Γ ⇒ Δ, VINTE proceeds as follows. First of all, if Γ ⇒ Δ is an
instance of either ⊥L or �R or init, the goal will succeed immediately by using
one of the following clauses for the axioms:

prove([Gamma,Delta],tree(axb):-member(false,Gamma),!.

prove([Gamma,Delta],tree(axt)):-member(true,Delta),!.

prove([Gamma,Delta],tree(init)):-member(P,Gamma),member(P,Delta),!.

If Γ ⇒ Δ is not an instance of the ending rules, then the first applicable rule
will be chosen, e.g. if Δ contains a formula A < B, then the clause implementing
the �R rule will be chosen, and VINTE will be recursively invoked on the unique
premise of such a rule. VINTE proceeds in a similar way for the other rules.
The ordering of the clauses is such that the application of the branching rules is
postponed as much as possible, with the exception of the rule jump which is the
last rule to be applied. As an example, the clause implementing �i

L is as follows:

1. prove([Gamma,Delta],tree(precL,Sub1,Sub2)):-

2. member(A < B,Gamma),

3. select([Sigma,C],Delta,NewDelta),

4. remove_duplicates([B|Sigma],NewSigma),

5. \+memberOrdSet([NewSigma,C],Delta),

6. \+memberOrdSet([Sigma,A],Delta), !,

7. prove([Gamma,[[NewSigma,C]|NewDelta]],Sub1),

8. prove([Gamma,[[Sigma,A]|Delta]],Sub2).

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 155

In line 4, the auxiliary predicate remove duplicates is invoked in order to
remove duplicated formulas in the multiset of formulas B,Σ. This is equivalent
to apply weakening if the formula B already belongs to Γ . Another auxiliary
predicate, memberOrdSet, is then invoked in lines 5 and 6 in order to implement
the decision procedure described at the end of Sect. 3: Prolog ordsets are used
in order to deal with the equivalence of lists where formulas occur in different
orders. Since the rule is invertibile, Prolog cut ! is used in line 6 to eventually
block backtracking. The jump rule is implemented as follows:

1. prove([Gamma,Delta],tree(jump,SubTree)):-

2. member([Sigma,A],Delta),

3. prove([[A],Sigma],SubTree).

This is the only non invertible rule, and a backtracking point is introduced
by the choice of the block [Σ � A] in Δ to which apply the rule.

The implementation of the calculi for extensions of V is very similar. The
only significant difference is in the more sophisticated mechanism needed to
ensure termination. As an example, in system implementing the calculus for
VC, the predicate prove is equipped by a further parameter, called AppliedC,
containing the list of formulas of the form A � B to which the rule Ci has been
already applied in the current branch. The code implementing the rule Ci is as
follows:

1. prove([Gamma,Delta],tree(c,Sub1,Sub2),AppliedC):-

2. member(A < B,Gamma),

3. \+member(A < B,AppliedC),

4. (\+member(B,Delta);\+member(A,Gamma)), !,

5. prove([Gamma,[B|Delta]],Sub1,[A<B|AppliedC]),

6. prove([[A|Gamma],Delta],Sub2,[A<B|AppliedC]).

Line 3 shows how this parameter is used in order to avoid multiple application of
Ci to the same formula A � B in a given branch, then the consequent loop in the
proof search: if A � B belongs to AppliedC, then the rule Ci has been already
applied to it in the current branch and it is no longer applied; otherwise, the
predicate prove is recursively invoked on the premisses of the rule, and A � B
is added to the list of formulas already employed for applications of Ci.

VINTE can be used by means of a simple web interface, implemented in
php and allowing the user to check whether a conditional formula is valid by
using his computer as well as his mobile device. The web interface also allows
the user to choose the conditional system to adopt, namely V or one of the
extensions mentioned in Sect. 2. When a formula is valid, VINTE builds a pdf
file showing a derivation in the invertible calculi recalled in Sect. 3 as well as
the LATEX source file. Prolog source codes and experimental results are also
available. Some pictures of VINTE are shown in Figs. 1 and 2.

156 M. Girlando et al.

Fig. 1. Home page of VINTE.

Fig. 2. When the user wants to check whether a formula F is valid, then (i) he selects
the conditional logic to use, (ii) he types F in the form and (iii) clicks the button in
order to execute the calculi presented in Sect. 3.

5 Performance of VINTE

The performance of VINTE seems to be promising. We have tested it by running
SICStus Prolog 4.0.2 on an Apple MacBook Pro, 2.7 GHz Intel Core i7, 8 GB
RAM machine. In absence of theorem provers specifically tailored for Lewis’
logics, we have compared the performances of VINTE with those of the following
theorem provers for conditional logics:

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 157

– CondLean 3.1, implementing labelled sequent calculi [12];
– GoalDUCK, implemented a goal-directed proof procedure [13];
– NESCOND, implementing nested sequent calculi [14,15].

All the above mentioned theorem provers take into account conditional logics
based on the selection function semantics [11], namely conditional logic CK
and extensions with axioms ID, MP, CEM, CSO, that are weaker than the ones
considered by VINTE, then the experimental results are only partially significant
and only aim at conjecturing that the performance of VINTE is promising.

We have performed two kinds of experiments: 1. we have tested the four
provers on randomly generated formulas, fixing different time limits; 2. we have
tested VINTE for system VN and NESCOND over a set of valid formulas in the
logic CK, therefore also valid in VN [10].

Concerning 1 (Table 3), we have tested the four provers over 2000 random
sequents with 20 formulas built from 7 different atomic variables and with a high
level of nesting (10): both VINTE and NESCOND are able to answer in all cases
within 1 s, whereas CondLean 3.1 is not able to conclude anything in 55 cases
over 1000. Performance of GoalDUCK is even worse, since it fails to answer in
174 cases. The differences seem much more significant when considering sequents
with more formulas (100) and with a higher level of nesting (20): with a time
limit of 5 ms, GoalDUCK is faster than CondLean 3.1 and NESCOND, since
it is not able to answer only in 136 cases over 1000, against 173 timeouts of
CondLean 3.1 and 479 timeouts of NESCOND. VINTE is able to answer again
in all cases, and only NESCOND is also able to complete all the tests, when
the time limit is extended to 1 s. We have repeated the above experiments by
considering implementations of VINTE for extensions of V, obtaining the results
summarized in Table 4.

As mentioned, since the four provers take into account different logics, in gen-
eral they give a different answer over the same - randomly generated - sequent.
Then, this kind of tests over CK formulas could be considered not very sig-
nificant. Instead, we should test VINTE over a set of significant formulas for
the specific Lewis’ logics that it is designed for: to this aim, we are currently
developing a set of benchmarks for VINTE drawn by valid instances of Lewis’
axioms.

Table 3. Number of timeouts over 1000 random sequents using VINTE for V.

Seq. with 20 formulas (nesting lev.10)

Prover Limit 5 ms Limit 1 s

VINTE 3 0
CondLean 3.1 55 14
GoalDUCK 249 174
NESCOND 35 0

Seq. with 100 formulas (nesting lev.20)

Prover Limit 5 ms Limit 1 s

VINTE 45 0
CondLean 3.1 173 141
GoalDUCK 136 133
NESCOND 479 0

158 M. Girlando et al.

Table 4. Number of timeouts of VINTE for extensions of V (average of different sys-
tems) over 1000 random sequents.

Seq. with 20 formulas (nesting lev.10)

Prover Limit 5 ms Limit 1 s

VINTE 8 2
CondLean 3.1 65 17
GoalDUCK 276 198
NESCOND 46 5

Seq. with 100 formulas (nesting lev.20)

Prover Limit 5 ms Limit 1 s

VINTE 1 0
CondLean 3.1 180 80
GoalDUCK 327 18
NESCOND 19 6

Concerning 2, we have considered 76 valid formulas obtained by translating
K valid formulas provided by Heuerding in conditional formulas: �A is replaced
by � � A4, whereas �A is replaced by ¬(� � ¬A). We have compared the
performance of VINTE, implementation for VN, with those of NESCOND, the
best prover among those taken into account for conditional logics based on the
selection function semantics [15]. As expected, the performance of NESCOND
is still significantly better than those of VINTE: fixing a time limit of 1ms,
NESCOND is able to check the validity of the considered formula in the 86 %
of cases, whereas VINTE is able to answer only in the 11 % of cases. However,
VINTE is able to reach a percentage of successes of 37 % by extending the time
limit to 1 s, and over 60% in 3 s (even if, in this last case, NESCOND is not
able to answer only in 2 cases over 76). Obviously, this result is justified by the
fact that VINTE supports stronger systems of conditional logics with respect to
NESCOND, which is specifically tailored for CK and all the proposed results are
restricted to such weaker system supported by both provers.

6 Conclusions and Future Issues

We have presented VINTE, a theorem prover implementing internal calculi for
Lewis’ conditional logics introduced in [6]. Our long term project is to develop
both calculi and theorem provers for the whole family of Lewis’ logics. One
further step in this direction is represented by the hypersequent calculi for con-
taining both uniformity (all worlds have the same set of accessible worlds) and
total reflexivity presented in [7]. Notice that an implementation of hypersequent
calculi is an interesting task in itself.

We also aim at improving the performances of VINTE by implementing stan-
dard refinements and heuristics. We also intend to extend VINTE to handle coun-
termodel generation for unprovable formulas. Last, as mentioned in the previous
section, we are currently developing a set of benchmarks for VINTE for a more
detailed analysis of the performances of the theorem prover.

4 It is worth noticing that this translation introduces an exponential blowup.

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 159

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Log. Comput. 26(1), 7–50 (2016)

2. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts Log. Games
4, 9–31 (2008). Special Issue on New Perspectives on Games and Interaction

3. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Rea-
son. 15(3), 339–358 (1995)

4. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80
(2004)

5. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: Logics in access control: a
conditional approach. J. Log. Comput. 24(4), 705–762 (2014)

6. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent cal-
culi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA
2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi:10.1007/
978-3-319-48758-8 18

7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi for
Lewis’ conditional logics with uniformity and reflexivity. In: Nalon, C., Schmidt,
R.A. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 131–148. Springer,
Cham (2017)

8. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)
9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
10. Lewis, D.: Counterfactuals. Blackwell, Hoboken (1973)
11. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
12. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger con-

ditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702,
pp. 328–332. Springer, Heidelberg (2005). doi:10.1007/11554554 27

13. Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: condlean and
goalduck. J. Appl. Non-Class. Log. 18(4), 427–473 (2008)

14. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent cal-
culi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 39

15. Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal
conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9(2),
109–125 (2015)

16. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfac-
tual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286.
Springer, Cham (2015). doi:10.1007/978-3-319-24312-2 19

http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/11554554_27
http://dx.doi.org/10.1007/978-3-319-08587-6_39
http://dx.doi.org/10.1007/978-3-319-08587-6_39
http://dx.doi.org/10.1007/978-3-319-24312-2_19

	VINTE: An Implementation of Internal Calculi for Lewis' Logics of Counterfactual Reasoning
	1 Introduction
	2 Lewis' Conditional Logics
	3 Internal Calculi for Conditional Logics
	4 Design of VINTE
	5 Performance of VINTE
	6 Conclusions and Future Issues
	References

