A Mechanizable First-Order Theory of Ordinals

Peter H. Schmitt®)

Department of Informatics, Karlsruhe Institute of Technology (KIT),
Am Fasanengarten 5, 76131 Karlsruhe, Germany
pschmitt@ira.uka.de

Abstract. We present a first-order theory of ordinals without resorting
to set theory. The theory is implemented in the KeY program verification
system which is in turn used to prove termination of a Java program
computing the Goodstein sequences.

1 Introduction

A number of automated reasoning systems have been put to the task to prove
theorems about ordinal numbers. Here is a fair selection of pertinent papers:
[4,5,9,15] for the Isabelle proof assistent, [6,8] for Coq, [3] for OTTER. All these
efforts have in common that they start with a semantic definition of ordinals as
sets with special properties. Of a different flavor are the papers [13,14], that
present algorithms implemented in the ACL2 system for solving problems in
ordinal arithmetic working on a normal form representation.

In this paper, we will present a first-order theory Tho,q of ordinals. The
models of Tho,q are of the form M = (U, 0, &, +1, <) with universe U, constants
0, and @, the unary successor function +1 and the order relation <. The logic
itself contains the binary operator sup,«,m binding variable x. Its interpretation
in M is the supremum of {m™(a) | @ € U and a<n™}. Typically, the term
m will contain the free variable x and #+*(a) stands for the evaluation of m
in M with x instantiated to the element o € U. The operator sup,,m is the
only construct in our axiomatization with a set theoretic flavor. This operator
is, however, definable in the standard first-order logic; a proof of this result for
variable-binders in general is available in Ulbrich’s PhD thesis [22].

Already in 1965 Gaisi Takeuti presented in [20] a first-order theory O of
ordinal numbers. His interest were in proof theoretic properties. The theory O
allows to define an inner model of Zermelo-Fraenkel (ZF) set theory. Thus, a
formula ¢ is derivable from O iff a canoncial translation of ¢ is derivable in ZF
set theory. The vocabulary of O is much richer than ours: it contains e.g., already
in its axiomatic basis coding and decoding functions for pairs of ordinals. As a
consequence the theory O is not very well suited as the basis for automated
reasoning on ordinals.

It is well-known that the Peano axioms, PA, for the natural numbers are
incomplete. This did and does not cause much alarm since the examples of true
statements not derivable in PA were consider too arcane to be of any pratical

© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 331-346, 2017.
DOI: 10.1007/978-3-319-66902-1_20

332 P.H. Schmitt

relevance. This is beginning to change as these examples get more and more
accessible. We present, based on [10], a Java program with less than 20 lines of
code, computing the Goodstein sequences, such that termination of one of its
two methods cannot be proved in PA. Still, there is no reason to be alarmed
since termination can be proved in T'ho,q, which is a simple, plausible extension
of PA as can be seen by scrutinizing the axioms in Fig. 1 below.

1. Vo,y,2(e <yANy<z—x<2) transitivity
2. Vz(—z < z) strict order
3. Ve,y(r<yVax=yVy<uz) total order
4. Vz(0 < z) 0 is smallest element
5. 0 < wA-Jzx(w=x+1) w is a limit ordinal
6. VY0 <yAVz(z<w—o2+1<y)—>w<y) w is the least limit ordinal
T Ve(x <z+1)AVz,y(r<y—z+1<y) successor function
8. Vz(z <n — mlz/z] < supz<nm) def of supremum, part 1
9. Vu(Vz(z < n — ml[z/z] < u) = supz<cnm < u) def of supremum, part 2
10. Va(Vy(y < = — ¢(y/x)) — ¢) — Yao transfinite induction scheme

Fig. 1. The axioms of the core theory

The first automatic termination proof for Goodstein sequences was recorded
in [23]. In that paper a finite rewrite system is presented whose termination
encodes the termination of these sequences and termination of the rewrite sys-
tem is proved. A termination proof using the higher-order logic proof assistant
Coq can be downloaded from [7] as part of the Coq project on ordinal notation
[6]. Hereditary multisets, a variant of nested multisets, offer a convenient rep-
resentation of ordinals below €. A formalization of hereditary multisets in the
Isabelle/HOL proof assistant is available from the Archive of Formal Proofs [5]
also containing a termination proof for Goodstein sequences. A corresponding
publication is pending [4]. The theory Tho,q has been implemented in KeY, a
first-order theorem proving and program verification system based on the sequent
calculus [1]. This implementation has been put to use to obtain a machine
assisted termination proof of the Java program mentioned above. This seems
to be the first termination proof for Goodstein sequences using a first-order
reasoning system.

2 A Theory of Ordinals

In the first subsection, we start out with a very simple core theory Th2, ;. This
plays the same role here as Peano’s theory for the arithmetic of natural num-
ber. In the next subsection, the final theory Tho.q is obtained as a definitional
extension of ThY, .

A Mechanizable First-Order Theory of Ordinals 333

2.1 The Core Theory

The vocabulary Egrd of the core theory contains the following symbols
predicate < binary
functions +1 unary
0,w constants
Terms and formulas are defined as usual in first-order logic with the exception
that we include a term building operator sup:
if n,m are terms and x is a variable that does not occur free in n, then

SUPz<nM

is a term.

Two operations, (1) start with 0 and (2) add one, suffice to generate all
finite ordinals. We use = 4+ 1 to denote the immediate successor of = to avoid
the introduction of an additional symbol. In set theory, a third operation is
added to generate all transfinite ordinals: (3) for any set X of ordinals, there is
a least ordinal not less than all & € X. Here we avoid set theory and restrict
this operation to sets X that can be obtained as instances of one term m, where
furthermore only instantiations up to a bound n are allowed. This motivates the
term constructor sup,<,m. The term m will typically contain the variable x.

In most presentations of Peano arithmetic, the order relation < is not part
of the core theory, but it is later added as a definitional extension. It would
have been extremely cumbersome to do so in our setting. So, we sacrificed on
minimality and included < from the outset.

The intended meaning of symbols in X3, is fixed by the axioms in Fig. 1.

We thus see that < is to be interpreted as a strict, total, order relation.
We use z < y as a shorthand for z = y V& < y. From the axioms, we see
that 0 is the least element with respect to < and w is the first infinite ordinal.
Without the two axioms 5 and 6 for w, the natural numbers with strict order
and successor would be a model of the remaining axioms and nothing would
have been gained over Peano’s theory. Axioms 8 and 9 establish the intended
meaning of the supremum operator as explained in the introduction. We use
the notation m[z/x] to denote the term that arises from m by replacing x by 2z
everywhere. Note that the way we defined sup, the formulas sup,<qm = 0 and
supz<1m = m[0/x] can be derived.

The last and most powerful axiom is the axiom scheme of transfinite induction
that is an extension the course-of-value induction scheme in finite arithmetic. Let
¢ be a formula that typically would contain x as a free variable and let ¢(y) stand
for the formula obtained from ¢ by replacing = by y (assuming of course that
y does not occur in ¢, neither free nor bound). If we can prove for every x the
transfinite induction step Vy(y < = — ¢(y)) — ¢, then we conclude that ¢ is
true for all x.

One could ask whether the sup operator should have been omitted from
the core vocabulary and added later as a definitional extension. The answer is
no! Since we follow the usual set-up of first-order logic all functions are total.
Consequently, inclusion of a function symbol in the vocabulary already implies

334 P.H. Schmitt

an implicit existence axiom: the function values exist for all arguments. Adding
sup is not a definitional extension since the associated existence claim could not
be proved in the theory without sup.

An alternative would have been to include the following axiom scheme instead
of the two parts of the definition of sup

Vy(Fz(Va(z <y — t < 2)))

A possible instantiation could be Vy(3z(Vz(x < y — w® < 2))). Then, it would
have been possible to show, using transfinite induction, that adding the sup
operator is a definitional extension of this version of the core theory. The adopted
approach is more straightforward.

2.2 The Full Theory

The full vocabulary Xo,q of the theory Tho.q is shown in Fig. 2.

predicates >, < binary
lim unary

functions 0,1 constant
max binary
+,*,” binary

Fig. 2. The full vocabulary Xo,q

The axioms of Tho,q are Thoord plus the definitions of the new symbols in
Figs. 3 and 5.

Ve,yle <y x=yVe<y) (less or equal relation)
Vz(lim(z) <> 0 <z A—-Jy(y + 1 =x)) (limit ordinal)
Va,y(maz(xz,y) =if <y then y else x) (maximum operator)

Fig. 3. Definitional extension: axioms for auxiliary predicates

The three axioms in Fig. 3 define the auxiliary symbols < and max plus the
important concept of a limit ordinal. In contrast to other presentations, 0 is not
a limit ordinal in our set-up.

Figure 4 shows a sample of lemmas that can already be derived at this point
from the axioms considered so far. The lemmas are grouped together according
to the syntactical symbols involved. This does not reflect the order in which the
lemmas can or need to be proved.

Lemmal in Fig. 4 is the least number principle, a well known equivalent to
the induction axiom scheme. It is instructive to figure out why this lemma is
true even if does not occur as a free variable in ¢. Lemma?2 in Fig.4 is the

A Mechanizable First-Order Theory of Ordinals 335

1. Jz¢p — z(p AVy(y < — —o[y/x]))

2. ¢[0/z] A

V(¢ — ¢z + 1/z]) A

Va(lim(z) AVy(y <z — ¢ly/z]) =)

— Vao

Va(lim(z) = supy<e y =)

Va(supz<at1 t = mam(supz<z t, tlx/z]))

Ve(Vy(y < x — t1y/z] = t2[y/z]) = supz<a t1 = Sup.<z t2)

Vo, z2(Vo(z < 1 — Jy(y < xz2 Ati[z/z] < t2ly/z]))A
Vy(y < ze — Jz(z < z1 A taly/z] < ti[z/z]))
4 SUPz<ay t1 = SUPz<ay T2)

7. lim(z) <z #0AVy(y <z — (y+1) < x)

S Gk

Fig. 4. Some lemmas derivable from the axioms considered so far

Ve(x 4+ 0 = x)

Vo,y(z + (y+1) = (z+y) +1)

vV, y(lim(y) = & + sup.<yz = sup.<y(x + 2))
Va(z*0 = 0)

Vo, y(z+ (y +1) = (z xy) + z)

Vo, y(lim(y) = x *y = sup.<y(x * 2))

Vx(:ro =1)

Va,y(a¥*) = (2¥) * 2)

Vo, y(lim(y) Az # 0 — z¥ = sup.<y(z®))
Yy(lim(y) — 0¥ =0)

Fig. 5. Definitional extension: axioms for arithmetic operations

equivalent rephrasing of the transfinite induction scheme 10 in Fig. 1 that is most
frequently employed: If a formula ¢ with free variable z is true for z = 0 (base
case), if for all z we can prove that ¢[z + 1] follow from ¢[z] (successor induction
step), and if we can prove for every limit ordinal A, when ¢[z/z) is true for all
z < A then ¢[A/z] follows (limit induction step), then we have proved Vz¢.

Lemma3 could be rephrased as: if is a limit ordinal then x is the least
ordinal that is greater or equal than all ordinals that are strictly less than x.
This is not true for successor ordinals z. In this case, we have supy<z+1 y =
instead. Lemma4 is useful in proving statements involving the sup operator via
induction. Lemma5 helps to show that two suprema are equal especially in the
case when equality between t; and ts is not obvious.

For the purpose of this paragraph we look at a term ¢ that contains z as a
sequence t,. We say that a sequence t,«,, is confinal in s,,, if for every x < x;
there is y < zg with t[z/z] < s[y/z]. If two sequences are mutually confinal in
one another, then they share the same supremum. This is Lemma6 in Fig. 4.
Note, that we get equality of two suprema with different bounds x;, and xs.
Lemma 7 gives an alternative definition of a limit ordinal.

336 P.H. Schmitt

The second installment of the axioms extending Th%r 4 to Thoprg is listed in
Fig. 5. They give the usual recursive definitions of ordinal addition, multiplication
and exponentiation.

2.3 Derived Lemmas

In this subsection, we will in Figs.6, 7, 8 and 9 list and comment on a selection
of lemmas derivable from Thogq.

Ve, yly 20 — x <z +y)
Vr,y(z <z +y)

Vo, y(y <z +y)
Ve,y,z(x <y —z+x<z+y)
Ve, y,z(x <y —z+2z<y+z)
Ve, y,z(c+ty<zxz+z—y<z)

S o W=

Fig. 6. Lemmas involving addition and order relations

Figure 6 lists lemmas that are needed as intermediate stepping stones in the
proofs of the properties of ordinal arithmetic.

Lemma1 in Fig. 6 extends the axiom Vz(r < x+1) from Fig. 1 where we now
add on the right side an arbitrary number greater than or equal to 1 instead
of just 1. This is, of course, proved via transfinite induction. Lemma2 is an
easy variant of Lemma 1. Addition of ordinals is not commutative, so we cannot
conclude from Lemma 1 that Vz,y(z # 0 — y < x + y). Indeed, y = w,z =1
is a counterexample. But the version for < instead of < is provable. This is
Lemma3. Lemma4 is also proved using transfinite induction. We remark that
Ve, y,z2(x <y — x+ 2z < y+ z) is not true, as can be seen by the instantiation
0 for x,1 for y, and w for z. But the relaxed version with < instead of < is
derivable. This is Lemma 5. Lemma 6 is the reverse of Lemma 4.

Figure 7 gives lemmas on ordinal addition. Since ordinal addition is in general
not commutative Lemma 1 in Fig. 7 may not be immediately obvious, but it can
be easily proved using ordinal induction. Lemma 3 is a fact on ordinal addition
that we have referred to already above. Lemma4 is a useful lemma formalizing
the intuition that the property of being a limit ordinal is determined by the right
end part of the ordinal regardless of what comes before. Lemmab gives a first
general representation theorem for ordinals. In [21, Theorem 8.13] it is proved
using set comprehension. This is not available in our setting. Fortunately, it
turned out that there is a much simpler proof using ordinal induction. Lemma 6
required the most complex proof so far. The basic idea, however, is quite simple.
As a witness for z take b, the least ordinal such that y < x 4 b. It can easily
be seen that such a number exists by the least number principle (Lemma 1 in
Fig.4). Then, a case distinction b = 0,b = by + 1 for some by, or lim(b) leads to
success. Lemma 7 is the wellknown associative law. Lemmas 8 and 9 correspond
to the Peano axioms for the natural numbers, which say that 0 is not a successor

A Mechanizable First-Order Theory of Ordinals 337

1. V2(0 + = = x)

2. Vr,y(x+y=0<2=0Ay=0)

3 Vz(zr <w—=zr+w=w)

4. Vavy(lim(y) — lim(z + v))

5. Vz(w <z — Jy,n(lim(y) A\n<wAz=y+n))
6. Vz,y(x <y — Jz(z =y + 2))

7. Vz,y,2(z+ (y+2) = (2 +y) +2)

8 —Jz(x+1=0)

9. Vz,y((z+1)=(y+1) »z=vy)

10. Va,y,z((z+2) = (z+y) —z=1y)

11. sups<z (i +1t) =i+ sup.<g t if z does not occur in ¢ and x > 0

12. i+j=j fw<jandi<w

Fig. 7. Lemmas on addition

and the successor function is injective. Lemma 10 shows that addition on the
right, with fixed left summand, is injective. Lemma 11 resisted for a while all my
attempts to prove it. Since I could also not find it in [21], T was, at some point,
even in doubt wether it is true at all. The inequality, sup,<, (i+t) < i+sup <, t
is simple. For the reverse inequality a proof by contradiction turned out to be
the right way of attack. So assume sup,<, (i+t) < i+ sup.<, t and try to find a
contradiction. The key to the solution was the case distinction sup,<, (i+t) < i
or i < sup,<, (i+t). Notice that in the first case, we arrive at the contradiction
i <i+t[0/z] < sup, <z (i+t) < i. Here also the assumption z > 0 comes in. In the
second case, there is by Lemma 5 an ordinal k& such that i+k = sup,<, (i+t). By
the proof-by-contradiction assumption, this yields i+k < i+ sup,, t and further
by Lemma 7 in Fig. 6 k < sup,<, t. By the definition of sup there, is A < x with
k < t[A\/z]. This leads to the contradiction i+k < i+¢[A/z] < sup,<s (i+t). The
commuted version of Lemmall, i.e., sup,<, (t +1) = (Sup.<z t) + ¢, provided
z does not occur in ¢ and z > 0, is — as you would have expected —not true:
W= sup.<y, (2+1) = (Sup<w 2) + 1 = w + 1. Lemma 12 shows a dramatic
failure of commutativity for ordinal addition: A left finite ordinal summand is
simply absorbed if the right summand is infinite. We found it helpful to split the
proof of Lemma 12 in the cases w = j and w < j.

Figure 8 shows derivable properties of ordinal multiplication. Lemma 1 shows
that the strict order relation is preserved by multiplication on the left, provided
that the left multiplyer is not 0. Multiplication on the right only preserves <,
as Lemma4 shows. Lemma 2 is the reverse implication from Lemma 1. Lemma 3
states that multiplication on the right, with a fixed multiplicand on the left, is an
injective function. Lemma 7 is crucial for the proof of distributivity (Lemma &)
and multiplicative associativity (Lemma9).

After all the preparations the proof of multiplicative associativity is now
straightforward. Let us for once give a detailed proof sketch in this exemplary
case. We use ordinal induction (Lemma?2 in Fig. 4) on the variable k. The base
case is trivial. The successor induction step is proved as follows:

338 P.H. Schmitt

Ve,y,2(0<zAz<y) = zxx < z2%y)
Va,y,z(zxz < zxy) = (0< z Az <y))
Vr,y,2(0 < zAzxx =z2xy >z =1y)
Va,y,z(x <y —xxz <yx*z)

Ve, y(x #0 >y <z x*y

V(0 <z <w—=T*w=w)

SUPzcz (P%1) =i % SUprcq t

Vi, g, k(ix(j+k)=ixj+ixk)

9. Vi, g, k((i*j)xk=ix(jxk)

10. Vz,z((lim(2) N0 < z < w) = T %2 = 2)
11 Vi, j(1<iAl<j—i+j<ikj)

12. Vi, 2(0 < i Alim(z) — lim(i x 2))

13. Vi, 2(0 < i Alim(z) — lim(z * 1))

PN DO W

Fig. 8. Lemmas on multiplication

ix(Jx(k+1)=ix(xk+]) definition of
=ix(jxk)+ixj distributivity (Lemma 8)
=(ixj)xk+ixj induction hypothesis
=(i*j)*(k+1) definition of *

The induction step in the limit case is shown next. We us X instead of k to signal
that £ is a limit ordinal:

i (J*A) =dxsupyrj*w definition of *
= Supp<xi* (j % x) Lemma 7
= supr<x(i*j) *x induction hypothesis
= (i*xj)*A definition of *

Lemma 10 (we are still talking about Fig. 8) is a strengthening of Lemma 6: mul-
tiplicative absorbtion on the left of finite ordinals not only holds for w, but for
any limit ordinal. Lemma 11 states when addition of two ordinals is less than
their product. The restrictions are necessary as can be seen by the following
simple examples:

j=0+4j20%xj=0
1+jL1lxj=3j

i=i+0Z£ix0=0
i+1gixl=3i

Finally, we turn to the lemmas on exponentiation in Figure 9. Note that the
restriction on x in Lemma 1 is necessary since by definition 0° = 1. Also the
restrictions in Lemma 2, which says that exponentiation is strictly increasing
in the left argument, are necessary as can be seen by the following examples
2 £ 20 21,2 £ 21 =20 £ 02 =0,and 1 £ 12 = 1. It is only weakly
increasing on the right, Lemma 3. The strict inequality is far from being true,
as Lemma 4 shows. Exponentiation is also strictly monotone in the second argu-
ment, as Lemma) shows. The reverse implication is also true, as stated by

A Mechanizable First-Order Theory of Ordinals 339

Vz(0 <z — 0 =0)

Ve,y(l <z Al <y —xz<zY)

Vo, y(l <z —y < z¥)

Ve, yl<z Az <w— z¥ =w)

Ve, y1,y2(1 < z Ayr < yo2 — ¥ < z¥?)

Vo, y1,y2(1 < z Az¥' < 2¥2 — y1 < y2)

Vi, x2,y(z1 < 22 — x¥ <)

Va,y(0 < z Alim(y) — lim(y®))

Va,y(1 < z Alim(y) — lim(zV)

Vz,y, z(x¥T* = 2V x 27)

. Vo, y, z((x¥) = 2¥*%)

V(0 < bAVz(z < b— 0 <)) — supy<p(i?) = i*Pa<o())
for all terms 4, j such that x does not occur in 1.

S

— ==
N O ©

Fig. 9. Lemmas on exponentiation

Lemma 7. In the first argument exponention is only weakly monotone, as stated
by Lemma7. A counterexample to strict monotonicity is given by the instan-
tiations 1 = 2,29 = 3, and y = w. Lemmas 8 and 9 show how the property
of being a limit ordinal is propagated by exponentiation. Lemmas 10 and 11
are laws of exponentiation familiar from finite arithmetic. Lemma 12 is in fact
a lemma scheme. Note that in typical applications x is a free variable in j. It
states an indispensable continuity property for exponentiation.

The theory Thoprq has been implemented in the KeY system. Interactive
proof for over 170 lemmas found in the set theory textbooks [2,11,12,21] have
been obtained documenting the strength of Tho,q.

3 Termination of Goodstein Sequences

The sequences under investigation were first introduce by Goodstein in [18].
In fact, Goodstein considered in his paper more general sequences involving a
non-decreasing function f : N — N as a parameter. The Goodstein sequences
considered here, these are the same as the ones considered by Kirby and Paris,
are obtained by the choice f(i) = i + 2. Kirby and Paris showed in their
highly acclaimed paper [10] that termination of Goodstein sequences cannot
be proved in Peano arithmetic, stronger principles, like e.g., ordinal induction,
are needed. We will use ordinal induction, as provided by the theory Tho.q
presented in Sect.2, to prove termination of a Java program computing the
Goodstein sequences in Subsect. 3.3.

3.1 Injecting Natural Numbers

The termination proof in Subsect. 3.3 will be done using the program verification
system KeY. KeY employs a many-sorted first-order logic. For ease of presenta-
tion the theory Tho,q was formulated in Sect.2 as a one-sorted theory. In the

340 P.H. Schmitt

implementation of Tho,q within the KeY prover, Ord is used to name the sort
of ordinals. Among the other sorts present in the KeY prover, there are mathe-
matical integers int. It is essential for the intended proof to relate non-negative
integers to the finite ordinals. To this end, we add a function onat : int — Ord.

Figure 10 shows an axiomatisation of the function onat : int — Ord that
maps the non-negative integers into corresponding ordinals less than w. Obvi-
ously, onat is a partial function. The KeY system deals with partial function by
underspecification. That means that onat is a total function, but the axioms do
not include any commitment on the values for negative arguments.

Definitional Extension
1. onat(0) =0
2. Vn(0 < n — onat(n+ 1) = onat(n) + 1)

Derived Lemmas

onat(1) =1

. ¥n,m(0 < n A0 < m— onat(n+m) = onat(n) + onat(m)
. ¥n,m((0 <nA0<m)— (onat(n) = onat(m) — n =m))
. Vn,m((0 <nA0<m)— (onat(n) < onat(m) <> n < m))
. ¥n(0 < n — onat(n) < w)

w

- O U

Fig. 10. Positive integers as ordinals

Figure 10 also shows useful derived lemmas. We use in this figure and also
later on overloaded syntax. Thus, whether 0 denotes an integer or an ordinal,
whether + is ordinal addition or addition of non-negative integers can be found
out by looking at the type information.

3.2 Definition of Goodstein Sequences

We start with an informal explanation. First, the auxiliary concept of a heredi-
tary base-n notation is needed. This makes only sense for n > 2. The hereditary
base-n notation for a natural number m is obtained from its ordinary base-n
notation

k—1

m=my-n"+me_1-n*14+ . mi-n+my, 0<m; <n,my#0

by also writing the exponents k, k — 1, ...in base-n notation and again the thus
arising exponents, and so on.

Ezample 1. base-2 35 =25 421420
hereditary base-2 35 = 2241 1 941
base-3 100 =3*42-3243°

hereditary base-3 100 = 33+1 4232 + 1.

The Goodstein sequence Gy (m

Gi(m) =m
Gz(m)

A Mechanizable First-Order Theory of Ordinals

) with initial value m is computed as follows

= in the hereditary base-2 representation of m

replace every occurence of 2 by 3 and subtract 1

Gr(m)

= in the hereditary base-k representation of Gj_1(m)

replace every occurence of k by k£ + 1 and subtract 1

Ezxample 2. The Goodstein sequence for m = 3

G1(3)|By definition 3
G(3)|Write 3 in her. base 2 notation [2! + 1

Replace 2 by 3 minus 1 3'4+1-13
G'3(3)[Write 3 in her. base 3 notation |3'

Replace 3 by 4 minus 1 4t —1 3
G4(3)|Write 3 in her. base 4 notation |3

Replace 4 by 5 minus 1 3—1 2
G5(3)|Write 2 in her. base 5 notation |2

Replace 5 by 6 minus 1 2—-1 1
G(3)|Write 1 in her. base 6 notation |1

Replace 6 by 7 minus 1 1-1 0

Example 3. Initial part of the Goodstein sequence for m =4

4
22" 33 1 26 |wv
3P x24+3"%x24+2 [42%x2+4+47%x24+2—-1 |41 |w?*24+w=*x2+2
2%24+47%24+1 [52%x24+51%«24+1—-1 [60 |w?*24+wx2+1
52 %2+ 51 %2 62%x2+61x2—1 83 |w?x2+w=x2
62%2+6%x1+5 [7?*x2+7 «x1+5—1 [109 [w?*x24+w+5
T2x2+ T %144 [82x2+8+1+4—1 [139 [w?*x24+w+4
2%x2+8%x1+3 [92%x2+9'%x1+3—-1 [173 [w?*x2+w+3
025x2+91x1+2 [102x2+10Tx1+2—1[211 |2 %24 w+2
1022+ 10T« 1 +1[112%24+ 117 %1+ 1 —1|253 [w?*2+w +1
11252+ 11 %1 122x2+12 %1 -1 299 |w?2 %2+ w
122 %2+ 11 13242410 348 [w?Z*2+ 11

1058

232 %2 24252 —1 1151|w? % 2
242 +24 %23 +23 [2524+25%23+23 —1 |[1222|w? +w %23 + 23

Example 3 shows the Goodstein sequence with initial value 4 upto its 25-th
term. The last column should be ignored on first reading. We will come back to

it in the next subsection. Also G (4) will eventually reach 0, but for k in the
(121210700

order of magnitude of 1

342 P.H. Schmitt

The following mathematical formalization of these informal explanations dif-
fer in detail greatly from those in the paper [10]. Intuitively the value of the
function oHNf(n,m) is obtained by computing the hereditary base-n represen-
tation of m and replacing all occurences of n by n + 1. This is turned into the
following recursive definition:

Definition 1 (oHNf(n.m)). Forn>2,m >0

m if m<n
oHNf(n,m) = { (n + 1)°HN(E) 4 g 4 0HNf(n,¢) if m = n” xa + c with
1<kAO0O<a<nAc<nF

This is a complete definition since we can easily prove:
Vm,n2<nAn<m-—3Ir,a,c(m=n"xa+c A
1<rAl0<aha<nAc<n A0<c)

Definition 2 (G, (m)). Forn>2 and m >0
Gi(m) =m
Gk(m) = O}INf(k7 kal(m)) -1

3.3 Termination Proof

Close inspection showed that the original termination proof of Goodstein
sequences in [10] is more complicated than necessary. We follow instead the idea
of a short proof of the termination of general Goodstein sequences from [16,17].
Figure 11 shows the Java program to be verified. Since in the default setting the
KeY system treats Java integers as mathematical integers this is what we need.
Running this program, however, would yield wrong results as soon as maxInt is
reached. Since exponention is not part of the Java language, the method intPow
had to be implemented. Since this is a standard task, the code is not shown here.

We do not assume that every reader is familiar with program verification
and will complement the code with explaining comments. Figure 11 contains the
Java code plus annotations in the Java Modeling Language (JML). A lucid intro-
duction to JML can be found in [1, Chap.7]. The following comments should,
we hope, be sufficient to provide the reader with a clear understanding of the
central points. JML annotations needed to guide the system but not essential
for the casual human reader have been omitted, i.e., replaced by

JML allows to add specifications enclosed between special comments
/*@...0x/ to a Java program. Formal verification then provides a mathemat-
ical proof that the code meets its JML specifications.

JML provides method contracts. These are placed immediately before the
method code. The crucial method in Listing 11 is GoodsteinSequence in lines
5-14. Its method contract spans lines 2-4. The requires clause states a precon-
dition that must be met to guarantee the postcondition. Here the precondition
requires the initial value for the Goodstein sequence to be strictly positive. The
postcondition is - in this case - hidden in the keyword normal_behaviour. This
says that the method GoodsteinSequence terminates and no uncaught exceptions

A Mechanizable First-Order Theory of Ordinals 343

1 public class Goodstein{

2 /*@ normal_behavior

3 @ requires startM > O0;

4 ex/

5 public void GoodsteinSequence (int startM){
6 int base = 2; int m = startM;

7 /%@ loop_invariant

8 @ m > 0 & base >= 2;

9 Q

10 @ decreases \dl_oGS(base,m);
11 ex/

12 while (m > 0) {

13 m = nextExpand(m,base);

14 m = m-1;

15 base = base+1;} 1}

16 /*@ normal_behavior

17 @ requires m >= 0 & oldBase >= 2;

18 Qe ...

19 @ ensures \result == \dl_oHNf (oldBase,m);

20 @ ensures \dl_oGS(oldBase,m)==\dl_oGS(oldBase+1,\result);
21 @ measured_by m; @x/

22 public int nextExpand(int m, int oldBase){

23 if (oldBase > m) { return m;}

24 else { int exp=0; int factor=1; int base=oldBase;

25 /*@ loop_invariant

26 @ factor == intPow(oldBase,exp) & ... ;

27 @ decreases (m - factor);

28 ex/

29 while (m>=factor*oldBase){exp=exp+l; factor=factor*oldBase;};
30 int a = 1; int ¢ = 0;

31 /*@ normal_behavior

32 @ ensures m == \dl_pow(oldBase, exp) * a + c &

33 @ 2<=o0ldBase&l<=exp&0<a&a<oldBase&c<\dl_pow(oldBase,exp)&c>=0;
34 Qe ...

35 Qx/

36 {a = m/factor; ¢ = m - factor*a;};

37 int r = intPow(oldBase+1,nextExpand(exp,oldBase))x*a;

38 r = r + nextExpand(c,oldBase);

39 return r;

10 3}

Fig. 11. Goodstein program for verification

are thrown. The code of the method consists of a simple while loop comput-
ing the Goodstein sequence and breaking out when 0 is reached. Now, a second
type of JML contracts comes into play namely, loop contracts. The first part
of the loop contract in lines 7-11 requires that the formulam >= 0 & base >= 2
be true before entering the loop and after each iteration of the loop body. This
is easy. The crucial part of the loop contract is the decreases clause that gives
a quantity in some well-founded ordering that is strictly decreased with every
loop iteration. Here in line 10 the function oGS(n,m) provides an ordinal for
this purpose. The KeY prover knows about the function oGS, but it is by no

344 P.H. Schmitt

means part of standard JML. The escape sequence \dl_oGS triggers the JML
parser to pass oGS directly to the underlying logic. The same applies for the
functions oHNf and pow. In line 19 the JML keyword \result for the first time.
It denotes the return value of the method the annotation belong to, in this case
the return value of nextExpand.

The definition of 0GS(n,m) : int x int — Ord lies at the very heart of the
termination argument. Informally, oGS(n,m) is computed by replacing in the
hereditary base-n expansion of m every occurence of n by w.

Definition 3. Forn>2, m >0

onat(m) if m<n
0GS(n,m) = { (w)°SWF) x onat(a) + 0GS(n,c) if m =nF xa+ c with
1<kAO<a<nAc<nk

Examples of oGS for an initial segment of the Goodstein sequence with initial
value 4 are displayed in the last column in Example 3. The next lemma lists the
crucial properties of oGS, that have also been interactively verified with the KeY
prover.

Lemma 1

1. Yn,mi,m2(2 <n A0 <m; <ms— oGS(n,m) < oGS(n,ms))
2. ¥n,m(2 <nA0<m— oGS(n,m)=0GS(n+ 1,0HNf(n,m)))

We conclude the subsection by revealing the plan to prove that oGS decreases.
An arbitrary loop iteration starts with oGS(base, m). After normal termination
of the loop body, the decreasing function evaluates to 0GS(base+1, \result—1),
where \result is the return value of the call to method nextExpand in line 13. The
method contract for nextExpand guarantees that oGS(base,m) and oGS(base +
1,\result) are equal (line 20). By Lemmal(1l), oSG is strictly monotone in
its second argument. Thus, oGS(base + 1, \result — 1) is strictly smaller than
0GS(base + 1, \result) in the ordinal ordering. Bingo.

In this argument, we have made use of the method contract for nextExpand,
but we also need to establish it. It turns out that for this we need to know that
the return value is oHNf(oldBase,m), Line 19 and Lemma 1(2) will come into
play at this point.

4 Concluding Remarks

What are the limits of Tho.q? Let €g be the first epsilon ordinal, i.e., the least
ordinal € with w® = e. Let M., be the structure with all ordinals less than ¢y as
universe and the standard interpretation of Xo,4. It can be easily checked that
M, is a model of Tho,q. Closure under sup is the crucial part. This shows that
Jz(w® = z) cannot be derived in Tho.q. It can furthermore be shown that for
a model M of Thorq that does not contain nonstandard natural numbers M.,
is a substructure of M. In a way, Thoq is the analogon of Peano arithmetic for

A Mechanizable First-Order Theory of Ordinals 345

M, . Precise formulations of these claims and complete proofs can be found in
the technical report [19].

If we had only intended to present a machine assisted proof of the mathe-
matical theorem that all Goodstein sequences terminate, this could already have
been obtained from Lemma 1. We wanted — however — to make the point that
there are simple Java programs whose termination cannot be proved in Peano
arithmetic, but Tho,q is strong enough to prove it.

Runable Java code, saved proofs and the version of the KeY system needed
can be downloaded or “webstarted” from https://www.key-project.org/papers/
ordinal-numbers//.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). doi:10.1007/978-3-319-49812-6

2. Bachmann, H.: Transfinite Zahlen. Ergebnisse der Mathematik und ihrer Grenzge-
biete, vol. 1, 2nd edn. Springer, Heidelberg (1967). doi:10.1007/978-3-642-88514-3

3. Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory. J.
Autom. Reason. 22(2), 341-378 (1999)

4. Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets,
and syntactic ordinals in isabelle/hol (under submission)

5. Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hered-
itary multisets, and syntactic ordinals. Archive of Formal Proofs, November 2016.
http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml. Formal proof develop-
ment

6. Castéran, P., Contejean, E.: On ordinal notations. https://github.com/cog-contr
ibs/cantor

7. Castéran, P., Contejean, E.: On ordinal notations. https://coq.inria.fr/V8.2pll/
contribs/Cantor.epsilon0.Goodstein.html

8. Grimm, J.: Implementation of three types of ordinals in Coq. Research report
RR-8407, CRISAM - Inria Sophia Antipolis (2013)

9. Huffman, B.: Countable ordinals. Archive of Formal Proofs, November 2005.
http://afp.sf.net/entries/Ordinal.shtml. Formal proof development

10. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bull.
Lond. Math. Soc. 14(4), 285-293 (1982)

11. Klaua, D.: Kardinal- und Ordinalzahlen, Teil 1. Wissenschaftliche Taschenbiicher:
Mathematik, Physik. Vieweg Braunschweig (1974)

12. Klaua, D.: Kardinal- und Ordinalzahlen, Teil 2. Wissenschaftliche Taschenbiicher:
Mathematik, Physik. Vieweg Braunschweig (1974)

13. Manolios, P., Vroon, D.: Algorithms for ordinal arithmetic. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 243-257. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45085-6_19

14. Manolios, P., Vroon, D.: Ordinal arithmetic: algorithms and mechanization. J.
Autom. Reason. 34(4), 387-423 (2005)

15. Norrish, M., Huffman, B.: Ordinals in HOL: transfinite arithmetic up to (and beyond)
w1. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp- 133-146. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2_12

https://www.key-project.org/papers/ordinal-numbers/
https://www.key-project.org/papers/ordinal-numbers/
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-642-88514-3
http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
https://github.com/coq-contribs/cantor
https://github.com/coq-contribs/cantor
https://coq.inria.fr/V8.2pl1/contribs/Cantor.epsilon0.Goodstein.html
https://coq.inria.fr/V8.2pl1/contribs/Cantor.epsilon0.Goodstein.html
http://afp.sf.net/entries/Ordinal.shtml
http://dx.doi.org/10.1007/978-3-540-45085-6_19
http://dx.doi.org/10.1007/978-3-642-39634-2_12

346

16.
17.

18.

19.

20.

21.

22.

23.

P.H. Schmitt

Rathjen, M.: Goodstein revisited. ArXiv e-prints, May 2014

Rathjen, M.: Goodstein’s theorem revisited. In: Kahle, R., Rathjen, M. (eds.)
Gentzen’s Centenary, pp. 229-242. Springer, Cham (2015). doi:10.1007/
978-3-319-10103-3_9

Goodstein, R.L.: On the restricted ordinal theorem. JSL 9, 33-41 (1944)
Schmitt, P.H.: A first-order theory of ordinals. Technical report 6, Department of
Informatics, Karlsruhe Institute of Technology (2017)

Takeuti, G.: A formalization of the theory of ordinal numbers. J. Symb. Logic 30,
295-317 (1965)

Takeuti, G., Zaring, W.M.: Introduction to Axiomatic Set Theory. Graduate Texts
in Mathematics, vol. 1. Springer, New York (1971). doi:10.1007/978-1-4684-9915-5
Ulbrich, M.: Dynamic logic for an intermediate language: verification, interaction
and refinement. Ph.D. thesis, Karlsruhe Institute of Technology, June 2013
Winkler, S., Zankl, H., Middeldorp, A.: Beyond Peano arithmetic—automatically
proving termination of the goodstein sequence. In: van Raamsdonk, F. (ed.) 24th
International Conference on Rewriting Techniques and Applications (RTA 2013).
Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol.
21, pp. 335-351. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013)

http://dx.doi.org/10.1007/978-3-319-10103-3_9
http://dx.doi.org/10.1007/978-3-319-10103-3_9
http://dx.doi.org/10.1007/978-1-4684-9915-5

	A Mechanizable First-Order Theory of Ordinals
	1 Introduction
	2 A Theory of Ordinals
	2.1 The Core Theory
	2.2 The Full Theory
	2.3 Derived Lemmas

	3 Termination of Goodstein Sequences
	3.1 Injecting Natural Numbers
	3.2 Definition of Goodstein Sequences
	3.3 Termination Proof

	4 Concluding Remarks
	References

