
Realizability in Cyclic Proof: Extracting
Ordering Information for Infinite Descent

Reuben N.S. Rowe1(B) and James Brotherston2

1 School of Computing, University of Kent, Canterbury, UK
r.n.s.rowe@kent.ac.uk

2 Department of Computer Science, University College London, London, UK
J.Brotherston@ucl.ac.uk

Abstract. In program verification, measures for proving the termina-
tion of programs are typically constructed using (notions of size for)
the data manipulated by the program. Such data are often described by
means of logical formulas. For example, the cyclic proof technique makes
use of semantic approximations of inductively defined predicates to con-
struct Fermat-style infinite descent arguments. However, logical formulas
must often incorporate explicit size information (e.g. a list length para-
meter) in order to support inter-procedural analysis.

In this paper, we show that information relating the sizes of induc-
tively defined data can be automatically extracted from cyclic proofs
of logical entailments. We characterise this information in terms of a
graph-theoretic condition on proofs, and show that this condition can
be encoded as a containment between weighted automata. We also show
that under certain conditions this containment falls within known decid-
ability results. Our results can be viewed as a form of realizability for
cyclic proof theory.

Keywords: Approximation semantics · Cyclic proof · Entailment ·
Inductive predicates · Infinite descent · Realizability · Sequent
calculus · Weighted automata

1 Introduction

In program verification, it is well known that proving termination of a par-
ticular program depends on identifying a well-founded measure that decreases
monotonically during the program’s execution. Thus, since the measure cannot
decrease infinitely often, no execution of the program can be infinite. In practice,
termination measures are typically derived from the data manipulated by the
program itself (cf. size-change termination [14]), and in particular from notions
of the size of its data structures.

For example, consider the following code, which “shuffles” a linked list with
head pointer x, using an auxiliary list reversal procedure rev:

proc shuffle(*x) { if (x != nil) { y := [x]; rev(y); shuffle(y); } }

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 295–310, 2017.
DOI: 10.1007/978-3-319-66902-1 18

296 R.N.S. Rowe and J. Brotherston

where the syntax [x] denotes pointer dereferencing. The termination of the
shuffle(x) procedure can be deduced by taking as termination measure the
length of the list from x. The call to rev and the recursive call to shuffle both
take place on the pointer y to the tail of the list. However, we also crucially rely
upon the fact that the reversal procedure rev does not increase the size of the
list. In a Hoare-style verification, this information is needed when we employ the
sequential composition rule:

{P} rev(y) {Q} {Q} shuffle(y) {R}
{P} rev(y);shuffle(y) {R}

Here, the information that rev maintains the size of the list must be reflected in
the relationship between its pre- and postconditions P and Q (which are logical
formulas). Typically, this must be done by endowing these formulas with explicit
size information; e.g., we could write an inductive predicate list(y, n) representing
linked lists in memory, with an explicit length parameter (cf. [3]).

In this paper, we show that this kind of information, relating the sizes of
inductively defined data, can often be extracted automatically from cyclic proofs
of logical entailments. Cyclic proofs can be seen as formalising proof by regu-
lar infinite descent [7]; they are derivation trees with “backlinks” from (some)
leaves to interior nodes, subject to a global soundness condition ensuring that
all infinite paths correspond to sound infinite descent arguments. Cyclic proof
systems have been developed for a wide variety of settings ranging from pure
logic [4,5] to Hoare-style logics for program termination [6,17] and other tem-
poral properties [9]; the common denominator is the presence of logical data
defined using fixed points. The soundness of cyclic proofs relies on infinite descent
over the semantic approximations of these fixed points, which can be seen as
capturing a notion of size for the corresponding data. Suitable entailments for
which to construct these cyclic proofs may be formulated by procedures for
verifying the correctness of (fragments of) programs. For example, a procedure
to verify the Hoare triple {list(y)} rev(y) {list(y)} might result in the entail-
ment y �→ x ∗ list(x) � list(y) of separation logic [11,16]. Such entailments are
commonly referred to as verification conditions, since they must be discharged
independently.

Relationships between the sizes of inductive data are reflected by inclusions
between the approximations of the fixed point semantics. To infer these inclu-
sions, we formulate a novel condition on the structure of cyclic entailment proofs
(Definition 8) which is sufficient to extract this information (Theorem 2). This
condition is equivalent to an inclusion between weighted automata that can
be constructed from the cyclic proofs (Theorem 3), and, when the cyclic proof
is suitably structurally well-behaved, this inclusion becomes decidable (Theo-
rem 4). For simplicity, we present our results for the well-known cyclic proof
system CLKIDω for first order logic with inductive definitions [4,7]. However,
we stress that our results are not limited to this setting: in a separate techni-
cal report we formulate and prove our results for a general, abstract notion of

Realizability in Cyclic Proof: Extracting Ordering Information 297

⇒ N0

Nx ⇒ N sx

⇒ E0

Ox ⇒ E sx

Ex ⇒ O sx

(NR1)� N0
(=L)

x = 0 � Nx

Ex � Nx
(Subst)

E z � N z
(NR2)

E z � N sz
(=L)

y = sz,E z � N y
(Case O)

O y � N y
(NR2)

O y � N sy
(=L)

x = sy,O y � Nx
(Case E)

Ex � Nx

Fig. 1. Inductive definitions of N, E, and O, and cyclic proof of E x � Nx.

cyclic proof [18]. Consequently our results also hold, e.g. for separation logic with
inductive predicates [5,6], and so can be deployed in our cyclic proof framework
for proving program termination based on this logic [17].

The remainder of this paper is structured as follows. First, Sect. 2 gives an
introductory example motivating our new structural condition for extracting size
relationships from cyclic proofs. Section 3 then reprises the basics of first-order
logic with inductive predicates and its cyclic proof system CLKIDω from [4,7].
In Sect. 4 we formulate our structural condition on cyclic proofs and prove its
soundness. In Sect. 5 we show how this condition can be encoded as an inclusion
between weighted automata and formulate further graph-theoretic conditions on
cyclic proofs under which this is decidable. Section 6 concludes.

For space reasons, we elide the detailed proofs of the results in this paper,
but they can be found in our longer technical report [18].

2 Motivating Example

Figure 1 gives inductive definitions of predicates N, E and O (intended to cap-
ture the properties of being a natural number, even number and odd number
respectively) and a cyclic proof of the sequent Ex � N x. Note that E and O are
mutually defined. The (N Ri) rules indicate a right-unfolding of the N predicate,
and the (Case E) and (Case O) rules a left unfolding (or case analysis) on the
predicates E and O respectively. This cyclic proof is sound since its only infinite
path contains an infinite, unbroken “trace” of the E and O predicates in the
antecedent of each sequent that “progresses” infinitely often as these predicates
are unfolded.

This condition ensures that the proof is valid because it can be related to
approximations of the semantics [[·]] of the predicates, which form an ordinal-
indexed chain [[·]]0 ≤ [[·]]1 ≤ . . . ≤ [[·]]α ≤ . . . ≤ [[·]]. If Ex � N x is invalid then, by
local soundness of the rules, so is every sequent on the infinite path in the proof.

298 R.N.S. Rowe and J. Brotherston

The trace along this path then corresponds to a non-increasing subsequence of
the ordinals in this chain, which strictly decreases when the trace progresses.
Since the trace progresses infinitely often, we obtain an infinitely decreasing
chain of ordinals, which is a contradiction.

Interestingly, it turns out that, by examining the structure of this cyclic proof
more closely and also considering the (right) unfoldings of N, we can deduce that
the αth approximation of E is also included in the αth approximation of N, i.e.,
[[Ex]]α ⊆ [[N x]]α. Intuitively, this is because on every maximally finite path in
the proof along which N is unfolded, the mutually defined E and O are together
unfolded at least as often as N. Thus when x is included in some approximation
of E, it is already included in the corresponding approximation of N. Later,
in Sect. 4, we will formalise this intuition as an additional syntactic, trace-based
condition on cyclic proofs. The upshot is that we may form “traces”, as described
above, between instances of E t and N t (for any term t) in the antecedent of
sequents, even though they are not related by their inductive definitions.

3 Cyclic Proofs for First Order Logic

In this section we summarise a variant of CLKIDω, a cyclic proof system for first
order logic with inductive predicates [4,7].

3.1 First Order Logic with Inductive Definitions

We assume the standard syntax and semantics of first order logic. For simplicity,
we take models to be valuations of term variables to objects in the semantic
domain. A sequent Γ � Δ comprises two sequences of formulas: an antecedent
Γ and a consequent Δ. For a sequent S = Γ � Δ, we write m |= S to mean that
the model m satisfies at least one formula in Δ whenever it satisfies all fomulas
in Γ . Conversely, we write m �|= S to mean that m satisfies all fomulas in Γ and
no formula in Δ. A sequent S is valid when m |=S for all models m.

We give the semantics of predicate symbols in the signature by means of sets
of inductive productions, in the style of Martin-Löf [15].

Definition 1 (Inductive Definition Set). An inductive definition set Φ is a
finite set of productions, each of the form P1 t1, . . . ,Pj tj ⇒ P0 t0, consisting of
a finite set of predicate formulas called premises and a predicate formula called
the conclusion. We say that P1 t1, . . . ,Pj tj ⇒ P0 t0 is a production for P0.

Predicate interpretations X are functions from predicate formulas to sets of
models. We write [[P t]]X to denote X(P t). An inductive definition set Φ induces
a characteristic operator ϕΦ on predicate interpretations, which applies (substi-
tution instances of) the productions in Φ, as follows (where θ is a substition of
terms for variables):

ϕΦ(X)(Pt θ) = {m | P1t1, . . . ,Pjt j ⇒ P t ∈ Φ

and m ∈ [[Pit iθ]]X for all i ∈ {1, . . . , j}}

Realizability in Cyclic Proof: Extracting Ordering Information 299

We define a partial ordering ≤ on the set of predicate interpretations I by
X ≤ X ′ ⇔ ∀F. X(F) ⊆ X ′(F). One can note that (I,≤) is a complete lat-
tice and the least element, denoted by X⊥, maps all predicate formulas to the
empty set. Moreover, characteristic operators are monotone with respect to ≤,
thus admitting the following (standard) construction that builds a canonical
interpretation via a process of approximation [1,7]:

Definition 2 (Interpretation of Inductive Definitions). We interpret an
inductive definition set Φ as the least prefixed point of its characteristic oper-
ator, μX.ϕΦ(X). This least prefixed point, denoted by [[·]]Φ, can be approached
iteratively being the supremum of the (ordinal-indexed) chain X⊥ ≤ ϕΦ(X⊥) ≤
ϕΦ(ϕΦ(X⊥)) ≤ . . . ≤ ϕα

Φ(X⊥) ≤ . . .; each ϕα
Φ(X⊥) is an approximation of [[·]]Φ

and is denoted by [[·]]Φα. When the specific inductive rule set is not of immediate
relevance we leave it implicit, writing [[·]] and [[·]]α.

3.2 The Cyclic Proof System

The proof system is essentially Gentzen’s sequent calculus, LK, in which deriva-
tions are permitted to contain cycles. To the standard proof rules of LK with
equality and substitution we add introduction rules for the inductive predicate
symbols, derived from their productions. Each predicate P has a single left intro-
duction rule, (Case P), which performs a case split over the full set of produc-
tions for P, and every ith production for P induces a distinct right introduction
rule (P Ri). Furthermore, we remove the right introduction rules for implication
and negation since they invalidate the soundness of our realizability condition
(specifically, not all instances of these rules satisfy Property 1, in Sect. 4 below).
Although this system is actually quite weak, we believe these particular rules do
not play a crucial role in deriving entailments between inductive predicates in
general. Note we do not need them in our examples.

We view a cyclic derivation (or pre-proof) as a directed graph; each sequent is
a node of the graph, and edges go from conclusion to premise. To track sequences
of decreasing approximations, we use the notion of a trace in a pre-proof P.

Definition 3 (Traces).

(i) A trace value is a predicate formula (e.g. Ex).
(ii) A left-hand (resp. right-hand) trace is a possibly infinite sequence τ of

trace values in which those of each successive pair, (τi, τi+1), occur in the
antecedents (resp. consequents) of successive nodes in P, and either:

(a) τi = τi+1;
(b) τi and τi+1 occur as part of the conclusion and premise of a substitution

rule and τi is the result of applying the rule’s substitution to τi+1; or
(c) τi and τi+1 occur as part of the conclusion and premise of a (Case P)

or (PRi) rule, with τi of the form P t and τi+1 derived from the body of
the production for P associated with the premise of the rule (i.e. τi+1 is
derived from the unfolding of τi).

300 R.N.S. Rowe and J. Brotherston

(ER1)
(5) � E0,¬E0

(ER1)
(8) � E0

(¬L)
(7) ¬E0 �

(WR)
(6) ¬E0 � O0

(Cut)
(4) � E0,O0

(=L)
(2) x = 0 � Ex,Ox

(1) Nx � Ex,Ox
(Subst)

(12) N y � E y,O y
(PR)

(11) N y � O y,E y
(OR)

(10) N y � O y,O sy
(ER2)

(9) N y � E sy,O sy
(=L)

(3) x = sy,N y � Ex,Ox
(Case N)

(1) Nx � Ex,Ox

Fig. 2. A cyclic proof of the entailment Nx � Ex,Ox; each node is numbered uniquely,
and the consequent trace pairs are indicated using under- and overlines.

We call each pair (τi, τi+1) a trace pair. In the case that (c) holds, we say
the trace progresses at point i and call (τi, τi+1) a progressing trace pair.

(iii) For finite traces τ , we write | τ | for the length of the trace and denote by
prog(τ) the number of progression points in τ , which we call the sum of τ .

(iv) For an inference rule r = 〈S0, (S1, . . . , Sn)〉 with trace values τ and τ ′

occurring in the conclusion S0 and jth premise Sj, respectively, we write
δA
(r,j)(τ, τ

′) (resp. δC
(r,j)(τ, τ

′)) if (τ, τ ′) forms a left-hand (resp. right-hand)
trace. We call δ the trace pair relation.

When the meaning is clear from the context, we may sometimes simply write
δr(τ, τ ′). In an abuse of notation we write δr(τ, τ ′) = 1 to indicate that (τ, τ ′)
is a progressing trace pair, and δr(τ, τ ′) = 0 otherwise. When τ occurs in the
conclusion of rule r, but there are no j and τ ′ such that δ(r,j)(τ, τ ′) is defined,
then we say τ is terminal for r.

Example 1. In Fig. 2 we show a cyclic proof of N x � E x,O x, i.e. that every
natural number is either even or odd. Each N t in an antecedent is related to the
N t′ in its premise(s); the trace pair relation for the consequent trace values is
more complex, and we indicate it visually using under- and overlines.

A pre-proof is valid if it satisfies the following condition on traces.

Definition 4 (Global Soundness). A pre-proof is globally sound when every
infinite path has some tail that is followed by a left-hand trace which progresses
infinitely often; when this holds we say that it is a (cyclic) proof.

The global soundness of a pre-proof can be checked using Büchi automata.

Proposition 1 ([7, Proposition 7.4]). It is decidable if a pre-proof is globally
sound.

Realizability in Cyclic Proof: Extracting Ordering Information 301

Example 2. The pre-proof in Fig. 1 has only one infinite path (along the cycle),
and there is a left-hand trace along this path formed by the alternating occur-
rences of the E and O predicates in the antecedent of each sequent. This pro-
gresses at two points around each cycle on traversing the (Case) rules and there-
fore the pre-proof is globally sound. A similar argument shows the pre-proof in
Fig. 2 is also globally sound: the (unique) infinite left-hand trace progresses once
each time around the loop.

We may think of models as realizers of trace values. We define a trace real-
ization function to specify which models realize trace values and how quickly
they realize them.

Definition 5 (Trace Realization Function). The trace realization function
Θ maps models to the least approximations of trace values in which they appear:

Θ(τ,m)
def
= min ({α | m ∈ [[τ]]α})

The value assigned by Θ corresponds to the ordinal position of this approximation
in the chain constructed in Definition 2. Notice that a model may not necessar-
ily satisfy a given predicate formula, so Θ is partial and we write Θ(τ,m)↓ to
indicate that Θ is defined on (τ,m).

The global soundness condition ensures the validity of cyclic proofs because
the trace realization function enables us to relate traces to descending chains
of approximations. If a cyclic proof were to contain invalid sequents then the
trace realization function could be used to derive an infinite descending chain of
ordinals and hence a contradiction.

Theorem 1 ([7, Proposition 5.8]). If Γ � Δ has a cyclic proof then it is valid.

4 Extracting Semantic Inclusions from Cyclic Proofs

We are aiming to deduce inclusions between the semantic approximations of
predicates (viz. trace values), e.g. that whenever there is a model m ∈ [[Ex]]α
then also m ∈ [[N x]]α (cf. Fig. 1). We can express this using the trace realiza-
tion function as Θ(N x,m) ≤ Θ(E x,m), since predicate approximations increase
monotonically. We will deduce such relationships from sequents Γ [τ] � Δ[τ ′] in
cyclic proofs (where Γ [τ] indicates that the trace value τ occurs in Γ), and so
in general we deduce such orderings within a context, Γ . Thus we will write
Γ : τ ′ ≤ τ to mean:

for all models m, if m |= Γ and Θ(τ ′,m)↓ then Θ(τ ′,m) ≤ Θ(τ,m),

where m |= Γ denotes that m satisfies all the formulas in Γ . We formulate an
additional trace condition for cyclic proofs (Definition 8, below) and show that
the existence of a proof satisfying this extra condition is sufficient to guarantee
this ordering. We say that such a proof realizes the ordering, and so refer to the
new trace condition as the realizability condition.

302 R.N.S. Rowe and J. Brotherston

This realizability condition will express that for every right-hand trace of a
certain kind, we can find a left-hand trace which ‘matches’ it in a sense that we
will make precise below. We specify the kinds of right-hand traces of interest
using the following concepts.

Definition 6 (Maximal Right-Hand Traces). A finite right-hand trace τ
(| τ | = n) following a path in a cyclic proof is called maximal when it cannot be
extended any further, i.e. there is no trace value τ ′ and premise of the final node
in the trace for which δr(τn, τ ′) is defined (where r is the rule used to derive the
final node). If the final node in the trace is derived using an axiom, then we say
the trace is partially maximal; otherwise it is called fully maximal.

Fully maximal traces are ones whose final trace value is introduced by an
inference rule, e.g. weakening, as in node (6) of the proof in Fig. 2.

Definition 7 (Groundedness and Polarity). We call a trace value derivable
using a base production (i.e. a production without premises) ground, e.g. N 0
or E 0. A grounded trace is one whose final trace value is ground. When the
antecedent of a sequent contains the negation of a ground predicate instance, we
say that it is negative. A positive sequent is one with no such negated predicate.
A negative (resp. positive) trace is one whose final sequent is negative (resp.
positive).

For example, in Fig. 2 the right-hand trace (1,E x), (2,E x), (4,E 0), (5,E 0)
is grounded, but (1,O x), (2,O x), (4,O 0), (6,O 0) is not. Moreover, the latter
trace is negative. Note that, by definition, all models m must satisfy ground pred-
icate instances τ and Θ(τ,m) = 1. Thus no models may satisfy the antecedent
of a negative sequent. This means that we can exclude negative traces when
considering the realizability of trace value orderings. We can now formulate the
realizability condition itself.

Definition 8 (The Realizability Condition). We write P : τ ≤ Γ [τ ′] when
P is a cyclic proof containing a node Γ [τ ′] � Δ[τ] satisfying the following: for
every positive maximal right-hand trace τ starting at τ , there exists a left-hand
trace τ ′ starting with τ ′ and following some prefix of the same path in the proof
such that:

1. prog(τ) ≤ prog(τ ′) and
2. either a) τ is grounded; or b) τ is partially maximal, | τ ′ | = | τ |, and the

final trace values in τ and τ ′ match.

Consider the proof P1 in Fig. 2.

Example 3 (P1 : Ex ≤ N x). The right-hand trace from Ex following the path
(1) (2) (4) (5) is positive, maximal and grounded. The left-hand trace (1) follows
this path and the sum of both traces is 0. The next longest maximal right-hand
trace traverses the cycle once, following the path (1) (3) (9) . . . (12) (1) (2) (4) (6)
along the right-hand side of the (Cut) rule. However, this trace is negative and

Realizability in Cyclic Proof: Extracting Ordering Information 303

so we need not consider it. The other positive maximal traces are obtained
by following the cycle an even number of times before ending at node (5); the
progression points occur at (E R2) on the odd-numbered traversals and (O R2) on
the even-numbered ones, which is matched by progressions in the corresponding
left-hand trace at the (Case) rule. These traces also suffice to demonstrate that
P1 : Ox ≤ N x holds.

Notice that we can obtain a globally sound cyclic proof of Nx � E x,O x
without using (Cut), by immediately closing node (4) with (E R1). In this case
the now (partially) maximal right-hand trace from Ox in node (1) to O 0 in
node (4) is positive and so would have to be considered. Unfortunately this trace
is not grounded, nor does there exist a matching left-hand trace of equal length
ending with O 0, and so this simpler (and arguably more natural) proof does not
satisfy the realizability condition.

It may seem odd that we cannot use the simpler proof to realize the ordering.
We must discount the right-hand traces ending with O 0 since they have no
models; yet it is not possible in general to determine syntactically when predicate
instances do not have models. Our approximation, using negative traces, works
at the level of entire sequents and thus the traces ending with E 0 (which we do
consider) must be separated from those ending in O 0 (which we must not). This
highlights the syntactic nature of our results.

Now consider the proof P2 of Ex � N x in Fig. 3, which is a modified version
of the proof in Fig. 1 that accommodates an additional production for O.

Example 4 (P2 : Nx ≤ E x). The right-hand trace following (1) (2) (4) is max-
imal, positive and grounded and the left-hand trace (1,E x) follows (a prefix
of) the same path; the sum of both of these traces is 0. Similarly, the positive
right-hand trace following (1) (3) (5) (6) (7) (9) (10) is not grounded, but is
partially maximal and there is a left-hand trace of equal length following this
same path with a matching final trace value. The sum of both traces in this
case is 2: the right-hand trace progresses once at each instance of the (N R2)
rule; the left-hand one at the (Case) rules. Other maximal right-hand traces are
obtained by prefixing the cycle (1) . . . (12) to the two already considered; notice
the left-hand trace following the cycle progresses an equal number of times.

Soundness of Realizability. To show that the realizability condition is suf-
ficient to realize trace value orderings, we extend the concept that models
realize trace values and use sequences of models to realize traces. We say
that a sequence of models m realizes a left-hand trace τ when for every
sequent Γi[τi] � Δi in the corresponding path we have that mi |=Γi and
Θ(τi+1,mi+1) + δ(τi, τi+1) ≤ Θ(τi,mi). Dually, m realizes a right-hand trace
τ when mi |=Δi and Θ(τi+1,mi+1) + δ(τi, τi+1) ≥ Θ(τi,mi) for every sequent
Γi � Δi[τi] in the path. Trace realizers guarantee the following.

Lemma 1. If m realizes a trace τ of length n then Θ(τn,mn) + prog(τ) ≤
Θ(τ1,m1) holds if τ is a left-hand trace, and Θ(τn,mn) + prog(τ) ≥ Θ(τ1,m1)
if τ is a right-hand trace.

304 R.N.S. Rowe and J. Brotherston

(NR1)
(4) � N0

(=L)
(2) x = 0 � Nx

(Ax)
(10) N ss0 � N ss0

(NR2)
(9) N ss0 � N sss0

(=L)
(7) y = sss0,N ss0 � N y

(1) Ex � Nx
(Subst)

(12) E z � N z
(NR2)

(11) E z � N sz
(=L)

(8) y = sz,E z � N y
(Case O)

(6) O y � N y
(NR2)

(5) O y � N sy
(=L)

(3) x = sy,O y � Nx
(Case E)

(1) Ex � Nx

Fig. 3. A cyclic proof of the entailment Ex � Nx, accommodating the extra production
N ss0 ⇒ O sss0 for O.

We say a rule instance is valid when its conclusion and premises are all valid
sequents.1 We note the following property of the trace realization function.

Property 1 (Descending Model Property). For all valid, non-axiomatic rule
instances r = 〈Γ [τ] � Δ[τ ′], (S1, . . . , Sn)〉 and models m |= Γ , there exists some
Sj = Σ � Π and a model m′ |= Σ such that: either τ ′ is terminal for r, or there
exists τ ′′ with δ(r,j)(τ ′, τ ′′) defined; furthermore, for all trace values τ ′′:

1. if δA
(r,j)(τ, τ

′′) = α and Θ(τ,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≤
Θ(τ,m)

2. if δC
(r,j)(τ, τ

′′) = α and Θ(τ ′,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≥
Θ(τ ′,m)

This property asserts that the trace pair relation soundly bounds the dif-
ference in how quickly models realize trace pairs. In the case of antecedents
this difference is bounded from above, and for consequents from below. The
descending model property guarantees every model of a consequent trace value
in a globally sound cyclic proof corresponds to a realizer of a positive maximal
right-hand trace.

Lemma 2 (Trace Realization). If P is a globally sound cyclic proof con-
taining a node Γ [τ ′] � Δ[τ] and m is a model such that m |= Γ and Θ(τ,m)↓,
then there exists a positive, maximal right-hand trace τ starting from τ and a
sequence of models m with m1 = m that realizes it; moreover, m realizes all
left-hand traces following the same path starting from τ ′.

As a result, the realizability condition is sufficient to guarantee trace value
orderings (see the technical report for a detailed proof [18, Theorem 22]).

Theorem 2 (Soundness of Realizability). If P : τ ≤ Γ [τ ′] then Γ : τ ≤ τ ′.
1 Note this is a stronger property than local soundness, which only requires the con-
clusion to be valid whenever all of the premises are.

Realizability in Cyclic Proof: Extracting Ordering Information 305

5 Computing Realizable Orderings Using Weighted
Automata

In this section, we demonstrate a close connection between cyclic proofs and
weighted automata. Under this correspondence, the realizability condition can
be seen to be equivalent to an inclusion between particular weighted automata,
allowing us to make use of known decision procedures in the world of weighted
automata for deciding the realizability condition.

Weighted automata generalise standard finite state automata, assigning to
words over alphabet Σ values from a semiring (V,⊕,⊗) of weights (see [8]).

Definition 9 (Weighted Automata). A weighted automaton A is a tuple
(Q, qI , F, γ) consisting of a set Q of states containing an initial state qI ∈ Q, a
set F ⊆ Q of final states, and a weighting function γ : (Q × Σ × Q) → V .

A run of A over a (finite) word σ1 . . . σn ∈ Σ∗ is a sequence of states q0 . . . qn

such that (qj−1, σj , qj) ∈ dom(γ) for each σj . We write ρ : q0
w−→ qn to denote

that ρ is a run over w. The value V(ρ) of the run is the (left-to-right) semiring
product of the weight γ(qj−1, σj , qj) of each transition. If q0 = qI and qn ∈ F
then ρ is called an accepting run. The value of a word is the semiring sum of
the values of all the accepting runs of that word, and is undefined if there are
no such runs. Sum automata are weighted automata over the max-plus semiring
(N,max,+), which is also referred to as the arctic semiring.

The (quantitative) language LA of an automaton A is the (partial) function
over Σ∗ computed by the automaton. The standard notion of inclusion between
regular languages extends naturally to quantitative languages:

Definition 10 (Weighted Inclusion). L1 ≤ L2 if and only if for every word
w such that L1(w) is defined, L2(w) is also defined and L1(w) ≤ L2(w).

The inclusion problem for sum automata is known to be undecidable [2,13],
but has recently been shown to be decidable for finite-valued sum automata, for
which a finite bound can be given on the number of distinct values for runs over
a given word [10].

5.1 Cyclic Proofs as Sum Automata

Given a node n = Γ [τ] � Δ[τ ′] in a cyclic proof P we construct two sum
automata A τ

P and C τ ′
P called left-hand and right-hand trace automata, respec-

tively. Each state (n, τ) of a trace automaton corresponds to a particular trace
value τ in some node n of P, and the transitions are given by the trace pair rela-
tion. That is, there is a transition from (n, τ) to (n′, τ ′) with weight k ∈ {0, 1}
precisely when n and n′ are the conclusion and jth premise, respectively, of a
rule instance r with δ(r,j)(τ, τ ′) = k. The letter accepted on the transition is the
node n′. Thus, a run of one of these automata corresponds to a trace in P, and
the word accepted by the run is the path followed by the trace.

306 R.N.S. Rowe and J. Brotherston

qAstart

(1,Ex) (12,E z) (11,E z) (8,E z) (6,O y)

(5,O y)(3,O y)

(7,N ss0) (9,N ss0)

(10,N ss0)⊥

�

(1),[0]

(2), [0]

(3), [0]

(3),[1]
(5),[0]

(6),[0]

(7),[1](8),[1](11),[0](12),[0](1),[0] (9),[0]

(10),[0]

(N ss0),[0]

(10),[0]

(9),[0](7), [0]
(8), [0](11),[0](12),[0](1),[0]

(6),[0]

(5),[0]

(1), [0]
...

(12), [0]

Fig. 4. The left-hand trace automaton A E x
P for the proof of Ex � Nx in Fig. 3.

qCstart (1,Nx)

(2,Nx)

(3,Nx)

(4,N0)

(5,N sy) (6,N y) (7,N y)

(8,N y)

(9,N sss0) (10,N ss0)

(11,N sz)(12,N z) ⊥

(1),[0]

(2),[0]

(3),[0]

(4),[0]

(5),[0] (6),[1] (7),[0]

(8),[0]

(9),[0]

(11),[0]

(10),[1]

(12),[1]

(N ss0),[0]

(1),[0]

Fig. 5. The right-hand trace automaton CN x
P for the proof of Ex � Nx in Fig. 3.

For lack of space, we elide the formal definition of the automata construc-
tion (see [18, Definition 23]), but in Figs. 4 and 5 we show the trace automata
corresponding to the proof in Fig. 3. Accepting states are indicated by a double
circle, and for each transition we show the node accepted in parentheses and the
weight of the transition in brackets. We draw attention to the following:

– The left-hand trace automaton also includes (zero-weight) transitions to a
state � with a self-transition accepting any node. Thus, the weight it com-
putes for a path is the maximum value of prog(τ) over all traces τ following
a prefix of that path. In contrast, the right-hand automaton considers only
traces following the full path.

– Each automaton also includes a state ⊥, the transitions to which accept
a trace value rather than a node. The effect of this is that any word
w = n1 . . . nkτ accepted by the right-hand automaton corresponds to a par-
tially maximal right-hand trace ending in τ . If the left-hand automaton also
accepts w, then we know there is a matching left-hand trace of equal length
(cf. Definition 8).

– The accepting states of right-hand trace automata (excluding ⊥) correspond
to terminal trace values in non-axiomatic rules instances; when each such
trace value is ground, we say the trace automaton is grounded.

This construction results in automata polynomial in the size of the proof P, and
allows the realizability condition to be encoded by the inclusion of the right-hand
trace automaton within the left-hand one.

Realizability in Cyclic Proof: Extracting Ordering Information 307

Theorem 3. P : τ ≤ Γ [τ ′] holds if and only if C τ
P ≤ A τ ′

P and C τ
P is grounded.

5.2 Decidability of the Realizability Condition

We now demonstrate that under certain conditions our trace automata become
finite-valued, and so we can decide inclusion between them in polynomial
time [10].

Remark 1. The trace pair relation δ satisfies an injectivity property2. Namely,
if both δ(r,j)(τ ′, τ) and δ(r,j)(τ ′′, τ) are defined, then τ ′ = τ ′′. This means that,
along any given path, traces may only branch and never converge. Consequently,
there is at most one trace along a given path between an initial and final trace
value. This immediately gives the following result.

Lemma 3. Every right-hand trace automaton Cτ
P is finite-valued.

Unfortunately, because left-hand trace automata include the state � and
associated transitions, they are not in general finite-valued. When a proof con-
tains a (left-hand) trace cycle (of the form (n1, τ1) . . . (nj , τj) with nodes n1 = nj

and trace values τ1 = τj), the resulting left-hand trace automaton will contain
the following configuration of states:

n1

τ1
. . .

nj−1

τj−1
� n1, . . . , nj−1

n2 nj−1

n1

n1

That is, there are runs (nj−1, τj−1)
w−→ (nj−1, τj−1), (nj−1, τj−1)

w−→ �, and
� w−→ � with w = n1 . . . nj−1. This results in the automaton being infinitely
ambiguous [19, Sect. 3] and thus when the weight of the cycle is non-zero it is
also infinite-valued.

To avoid this we modify our construction to produce a series of approximate
left-hand trace automata A [k]τP , where k > 0 is called the degree of approxima-
tion. These refine the ‘sink’ state � into a finite chain of k sink states for each
node (thus, these approximate automata are a factor of k larger than the original
automaton). Once a run enters a chain of sink states �1..k

n , only a finite number
of further occurrences of the node n are accepted. In contrast, the full automa-
ton accepts paths with any number of further occurrences. This construction
approximates the original one and results in finite-valued automata.

Lemma 4. Every approximate left-hand trace automaton A [k]τP is finite-valued.

Lemma 5 (Soundness of Approximate Automata). For each k > 0, the
inclusion A [k]τP ≤ A τ

P holds.

2 Excepting certain instances of the (=L) rule, e.g. P x,Px � Δ ⇒ Px,P y, x = y � Δ.
However, note that one can check whether any given instance of (=L) satisfies the
injectivity property, and exclude proofs containing such instances from consideration.

308 R.N.S. Rowe and J. Brotherston

The following further restrictions on proofs allow a relative completeness
result. They are expressed in terms of simple trace cycles (containing no repeated
trace values other than the first and last). A binary trace cycle is a pair of trace
cycles following the same path.

Definition 11. Let S = Γ [τ ′] � Δ[τ] be a node in a cyclic proof P. We say
P is dynamic (w.r.t. S) when prog(τ) > 0 for every simple left- and right-
hand trace cycle τ reachable from τ ′ and τ , respectively. We say P is balanced
(w.r.t. S) when prog(τ 1) = prog(τ 2) for every simple left-hand binary cycle
(τ 1, τ 2) reachable from τ ′.

Checking whether a proof is balanced and dynamic requires finding the simple
cycles, which can be done in time O((N + E)(C + 1)), where N , E, and C are
the number of nodes, edges and basic cycles in the graph, respectively [12].
The number of basic cycles in a complete graph is factorial in the number of
nodes, thus the worst case complexity is super-exponential. Notwithstanding,
cyclic proofs are by nature sparse graphs, so we expect the average runtime
complexity to be much lower. All of our example proofs are both balanced and
dynamic.

When a balanced, dynamic proof satisfies the realizability condition, its pos-
itive fully-maximal right-hand traces are always matched by left-hand traces
that can be recognised by an approximate left-hand automaton whose degree of
approximation can be bounded by the following two graph-theoretic quantities
(which are polynomially bounded in the size of P).

(a) The trace width W(P) is the maximum number of trace values occurring in
the antecedent or consequent of any node in P. Any trace visiting a given
node more than W(P) times must contain a cycle.

(b) The binary left-hand cycle threshold C(P) is the number of distinct pairs of
left-hand trace values occurring in P. Any pair of left-hand traces following
the same path of length greater than C(P) must contain a binary cycle.

Lemma 6 (Relative Completeness). If P : τ ≤ Γ [τ ′] and P is both dynamic
and balanced with respect to Γ [τ ′] � Δ[τ], then C τ

P ≤ A [N]τ
′

P and C τ
P is

grounded, where N = 2 + W(P) × (C(P) + 1).

From this, a qualified form of decidability follows. Note that when P is not
balanced and dynamic we still have a semi-decision procedure.

Theorem 4. If P is dynamic and balanced with respect to Γ [τ ′] � Δ[τ], then it
is decidable whether P : τ ≤ Γ [τ ′] holds.

6 Conclusions and Future Work

In this paper, we have demonstrated that cyclic proofs of entailments involving
inductively defined predicates implicitly contain information about the relation-
ship between the semantic approximations of these predicates. This information

Realizability in Cyclic Proof: Extracting Ordering Information 309

is useful because indexing ordinals for these approximations can be used, e.g.,
as (components of) ranking functions in a program termination proof. We have
shown that this information can be made explicit via a novel trace condition,
and furthermore we have proved this condition to be decidable via a construction
using weighted automata. Although different in form, we have drawn tacit par-
allels between our work and the (intuitionistic) concept of realizability because
we extract the semantic information directly from the proofs themselves.

Our results also increase the expressive power of the cyclic proof technique.
For example, if we can deduce from the proof of Γ,P t � Σ,Q u that Qu ≤ P t
then we can safely form a well-founded trace across the active formula in the cut
application

Γ,P t � Σ,Q u Σ,Q u � Δ

Γ,P t � Δ

from P t in the conclusion to Qu in the right-hand premise, and therefore witness
the validity of cyclic pre-proofs that do not satisfy the existing global soundness
condition for cyclic proofs.

An obvious direction for future work is to implement our decision proce-
dure and integrate it with existing cyclic proof-based program verifiers, such as
[17] which currently relies on explicit ordinal variables to track approximations.
A question of practical importance is whether entailment proofs typically
encountered in program verification fall under the conditions for decidability of
the trace condition. It is interesting to consider whether weaker conditions exist
that still guarantee decidability. There are also wider theoretical questions to
consider. Our trace condition is sound, but it is also natural to ask for complete-
ness: if Γ : τ ≤ τ ′ holds does there also exist a proof P for which P : τ ≤ Γ [τ ′]
holds?

Acknowledgements. We extend thanks to Radu Grigore, Carsten Fuhs, and the
PPLV group at UCL for useful discussions and invaluable comments. We are grate-
ful to Alexandra Silva for suggesting to investigate weighted automata. This work
was supported primarily by EPSRC grant EP/K040049/1, and also by EPSRC grant
EP/N028759/1.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)

2. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24372-1 37

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006). doi:10.1007/
11817963 35

http://dx.doi.org/10.1007/978-3-642-24372-1_37
http://dx.doi.org/10.1007/11817963_35
http://dx.doi.org/10.1007/11817963_35

310 R.N.S. Rowe and J. Brotherston

4. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS, vol. 3702, pp. 78–92. Springer, Heidel-
berg (2005). doi:10.1007/11554554 8

5. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 6

6. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. ACM SIGPLAN Not. 43, 101–112 (2008). doi:10.1145/1328438.
1328453. POPL-35. ACM

7. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011). doi:10.1093/logcom/exq052

8. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01492-5

9. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. In: de Moura, L. (ed.) CADE 2017. LNCS, vol. 10395.
Springer, Cham (2017). doi:10.1007/978-3-319-63046-5 30

10. Filiot, E., Gentilini, R., Raskin, J.-F.: Finite-valued weighted automata. In:
FSTTCS-34. LIPICS, vol. 29, pp. 133–145 (2014). doi:10.4230/LIPIcs.FSTTCS.
2014.133

11. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: Proceedings of the POPL-28, pp. 14–26. ACM (2001). doi:10.1145/373243.
375719

12. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975). doi:10.1137/0204007

13. Krob, D.: The equality problem for rational series with multiplicities in the
tropical semiring is undecidable. IJAC 4(3), 405–426 (1994). doi:10.1142/
S0218196794000063

14. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL-28, pp. 81–92. ACM (2001). doi:10.1145/373243.360210

15. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive defini-
tions. 2nd Scandinavian Logic Symposium. Studies in Logic and the Foundations
of Mathematics, vol. 63, pp. 179–216. North-Holland, Amsterdam (1971)

16. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the LICS-17, pp. 55–74. IEEE (2002). doi:10.1109/LICS.2002.1029817

17. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: CPP-6, pp. 53–65. ACM (2017). doi:10.1145/
3018610.3018623

18. Rowe, R.N.S., Brotherston, J.: Size relationships in abstract cyclic entailment sys-
tems. Technical report (2017). https://arxiv.org/abs/1702.03981

19. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991). doi:10.1016/0304-3975(91)90381-B

http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-3-540-74061-2_6
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1093/logcom/exq052
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1007/978-3-319-63046-5_30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1145/373243.360210
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/3018610.3018623
http://dx.doi.org/10.1145/3018610.3018623
https://arxiv.org/abs/1702.03981
http://dx.doi.org/10.1016/0304-3975(91)90381-B

	Realizability in Cyclic Proof: Extracting Ordering Information for Infinite Descent
	1 Introduction
	2 Motivating Example
	3 Cyclic Proofs for First Order Logic
	3.1 First Order Logic with Inductive Definitions
	3.2 The Cyclic Proof System

	4 Extracting Semantic Inclusions from Cyclic Proofs
	5 Computing Realizable Orderings Using Weighted Automata
	5.1 Cyclic Proofs as Sum Automata
	5.2 Decidability of the Realizability Condition

	6 Conclusions and Future Work
	References

