
Renate A. Schmidt
Cláudia Nalon (Eds.)

 123

LN
AI

 1
05

01

26th International Conference, TABLEAUX 2017
Brasília, Brazil, September 25–28, 2017
Proceedings

Automated Reasoning
with Analytic Tableaux
and Related Methods

Lecture Notes in Artificial Intelligence 10501

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Renate A. Schmidt • Cláudia Nalon (Eds.)

Automated Reasoning
with Analytic Tableaux
and Related Methods
26th International Conference, TABLEAUX 2017
Brasília, Brazil, September 25–28, 2017
Proceedings

123

Editors
Renate A. Schmidt
University of Manchester
Manchester
UK

Cláudia Nalon
University of Brasília
Brasília D.F.
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-66901-4 ISBN 978-3-319-66902-1 (eBook)
DOI 10.1007/978-3-319-66902-1

Library of Congress Control Number: 2017951311

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2017
The chapter ‘Rule Refinement for Semantic Tableau Calculi’ is licensed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further
details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 26th International Conference on Auto-
mated Reasoning with Analytic Tableaux and Related Methods, held at the Univer-
sidade de Brasília (UnB) in Brasília, Brazil, during September 25–28, 2017.
TABLEAUX is the main international conference at which research on all aspects –

theoretical foundations, implementation techniques, systems development, and appli-
cations – of the mechanization of tableaux-based reasoning and related methods is
presented.

TABLEAUX 2017 was co-located with the 11th International Symposium on
Frontiers of Combining Systems (FroCoS 2017) and the 8th International Conference
on Interactive Theorem Proving (ITP 2017), whose proceedings also appeared in the
Lecture Notes in Artificial Intelligence Series of Springer (Volumes 10483 and 10499).

We received 27 submissions (35 abstracts) out of which 19 papers were accepted
(including one system description). Four of these papers were accepted under condi-
tions from the reviewers and the Program Committee. After an accelerated
re-evaluation, all four papers were accepted and are included in the program. All
submissions were subject to academic peer review by at least three reviewers. The
selection criteria included accuracy and originality of ideas, clarity and significance of
results, possible implementability, and quality of presentation. The reviewing and
selection of the papers was the responsibility of the TABLEAUX 2017 Program
Committee, which consisted of 35 members from 18 countries in America, Asia,
Europe, and Oceania. In addition, 18 external reviewers were consulted.

TABLEAUX 2017 offered an interesting and diverse program, which, in addition to
the technical papers, included six invited talks by leading experts: Carlos Areces on
Tableau Calculus for Hybrid Xpath with Data, Wolfgang Bibel on A Vision for
Automated Deduction Rooted in the Connection Method, Reiner Hähnle on Locally
Abstract, Globally Concrete Semantics of Concurrent Programming Languages,
Katalin Bimbó on The Perimeter of Decidability (with Sequent Calculi on the Inside),
Jasmin Blanchette on Foundational (Co)Datatypes and (Co)Recursion for Higher-Order
Logic, and Cezary Kaliszyk on Automating Formalization by Statistical and Semantic
Parsing of Mathematics. The invited talks of Katalin Bimbó, Jasmin Blanchette, and
Cezary Kaliszyk were joint with FroCoS and ITP. FroCoS contributed with two invited
talks given by Cesare Tinelli and Renata Wassermann. Moa Johansson and Leonardo
de Moura gave the invited talks for ITP. There was a shared poster session with
FroCoS and ITP for the presentation of work in progress. Fifteen abstracts were
accepted for presentation as short talks and posters.

This year marks the 25th anniversary of the TABLEAUX conference, a series of
meetings which started with a workshop on Theorem Proving with Analytic Tableaux
and Related Methods held in Lautenbach, Germany, in March 1992. Since then it has
been organized on an annual basis; in 2001, 2004, 2006, 2008, 2010, 2012, 2014, 2016
as a constituent of IJCAR. The invited talks of Wolfgang Bibel and Reiner Hähnle

were part of a special session celebrating the achievements of TABLEAUX. Posters,
proceedings, pictures, and memorabilia of past editions, together with testimonies of
several of chairs of previous TABLEAUX conferences, were displayed in an exhibition
held during TABLEAUX 2017.

This year’s Best Paper Award was presented to Ori Lahav and Yoni Zohar for their
paper Cut-Admissibility as a Corollary of the Subformula Property. All three reviews
highlighted the novelty and fundamental importance of the results, and the Program
Committee voted unanimously to give the award to this paper. The TABLEAUX Best
Paper Award was established as a permanent initiative of TABLEAUX in 2015.

There are a lot of people we need to thank. We thank all authors who submitted
papers and all participants of the conference for their contributions and presentations.
We are grateful to the invited speakers for their participation and invited lectures as
well as for contributing papers to the proceedings, and we thank the tutorial presenters
and workshop organizers. We thank everyone who contributed to the celebration and
exhibition commemorating 25 years of TABLEAUX. We are extremely grateful to the
Program Committee and the additional reviewers for their assistance and hard work in
ensuring a high-quality program. For advice and support, we thank the members of the
TABLEAUX Steering Committee. Special thanks must go to the program chairs of
FroCoS, Clare Dixon and Marcelo Finger, and the program chairs of ITP, César Muñoz
and Mauricio Ayala-Rincón, for the friendly cooperation in coordinating the programs
and joint sessions.

It is our pleasure to acknowledge and thank a number of organizations for sup-
porting the conference. The Association for Automated Reasoning (AAR), the Euro-
pean Association for Computer Science Logic (EACSL), and the Association for
Symbolic Logic (ASL) provided scientific support. We received financial support from
CNPq (ARC 03/2016), CAPES (PAEP 03/2017), and FAP-DF (02/2017). We are also
very grateful to the European Association for Artificial Intelligence (EurAI) for
sponsoring the talks of Wolfgang Bibel and Reiner Hähnle. Special thanks go to
everyone in the Departments of Computer Science (CIC) and Mathematics (MAT) at
the Universidade de Brasília (UnB) and the Departments of Informatics and Applied
Mathematics (DIMAp) and Mathematics (DMAT) at the Universidade Federal do Rio
Grande do Norte (UFRN), who contributed to the organization of the conference. Also,
we greatly appreciate Springer’s continuing support in publishing the proceedings.

Last but not least, we are indebted to Daniele Nantes, Elaine Pimentel, and João
Marcos for their tremendous effort in organizing TABLEAUX, FroCoS, ITP, and all
co-located events. Their support was essential for the success of the conferences, and
making our lives as chairs much easier.

July 2017 Cláudia Nalon
Renate A. Schmidt

VI Preface

Organization

TABLEAUX 2017 was organized by the Departments of Computer Science (CIC) and
Mathematics (MAT) at the Universidade de Brasília (UnB) and by the Departments of
Informatics and Applied Mathematics (DIMAp) and Mathematics (DMAT) at the
Universidade Federal do Rio Grande do Norte (UFRN).

Conference Chair

Cláudia Nalon Universidade de Brasília, Brazil

Program Chairs

Renate A. Schmidt The University of Manchester, UK
Cláudia Nalon Universidade de Brasília, Brazil

Poster Session Chairs

Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
Daniele Nantes Sobrinho Universidade de Brasília, Brazil

Organizing Committee

Cláudia Nalon Universidade de Brasília, Brazil
Daniele Nantes Sobrinho Universidade de Brasília, Brazil
Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
João Marcos Universidade Federal do Rio Grande do Norte, Brazil

Steering Committee

Agata Ciabattoni Technische Universität Wien, Austria
Martin Giese Universitetet i Oslo, Norway
Neil V. Murray State University of NY at Albany, USA
Cláudia Nalon (Ex-officio) University of Brasília, Brazil
Hans de Nivelle University of Wrocław, Poland
Nicola Olivetti (Ex-officio) Aix-Marseille Université, LSIS, France
Jens Otten (President) Universitetet i Oslo, Norway
Renate A. Schmidt The University of Manchester, UK

Program Committee

Peter Baumgartner Data61/CSIRO, Australia
Maria Paola Bonacina Università degli Studi di Verona, Italy

Laura Bozzelli Universidad Politécnica de Madrid, Spain
Torben Braüner Roskilde University, Denmark
Serenella Cerrito Ibisc, Université d’Evry Val d’Essonne, France
Agata Ciabattoni Technische Universität Wien, Austria
Clare Dixon University of Liverpool, UK
Pascal Fontaine LORIA, Inria, Université de Lorraine, France
Didier Galmiche LORIA, Université de Lorraine, France
Martin Giese Universitetet i Oslo, Norway
Laura Giordano DISIT, Università del Piemonte Orientale, Italy
Rajeev Goré The Australian National University, Australia
Volker Haarslev Concordia University, Canada
George Metcalfe Universität Bern, Switzerland
Angelo Montanari Università degli Studi di Udine, Italy
Barbara Morawska Ahmedabad University, India
Boris Motik University of Oxford, UK
Leonardo de Moura Microsoft Research, USA
Neil V. Murray State University of NY at Albany, USA
Linh Anh Nguyen Uniwersytet Warszawski, Poland
Hans de Nivelle Uniwersytet Wrocławski, Poland
Nicola Olivetti LSIS, Aix-Marseille Université, France
Jens Otten Universitetet i Oslo, Norway
Valeria de Paiva Nuance Communications, USA
Nicolas Peltier CNRS, Laboratoire d’Informatique de Grenoble,

France
Elaine Pimentel Universidade Federal do Rio Grande do Norte, Brazil
Giselle Reis Carnegie Mellon University in Qatar
Philipp Rümmer Uppsala Universitet, Sweden
Katsuhiko Sano Hokkaido University, Japan
Cesare Tinelli The University of Iowa, USA
Alwen Tiu Nanyang Technological University, Singapore
David Toman University of Waterloo, Canada
Josef Urban Czech Technical University in Prague, Czech Republic

Additional Reviewers

James Brotherston
Chad Brown
Harley Eades III
Nicola Gigante
Ullrich Hustadt
Nikoo Karahroodi
Dominique

Larchey-Wendling

Daniel Méry
Marianna

Nicolosi-Asmundo
Carlos Olarte
Zixi Quan
Revantha Ramanayake
Pietro Sala
Loredana Sorrentino

Dmitriy Traytel
Irene Lobo Valbuena
Laurent Vigneron
Aleksandar Zeljić

VIII Organization

Sponsors of the 25th Anniversary Exhibition

Peter Baumgartner
David Basin
Krysia Broda
Kai Brünnler
Marta Cialdea Mayer
Roy Dyckhoff
Uwe Egly
Christian Fermüller
Bertram Fronhöfer
Ullrich Furbach
Didier Galmiche
Martin Giese
Reiner Hähnle

Dominique Larchey-Wendling
George Metcalfe
Ugo Moscato
Daniele Mundici
Neil V. Murray
Mario Ornaghi
Fiora Pirri
Joachim Posegga
Steve Reeves
Peter H. Schmitt
Harrie de Swart
Arild Waaler

Sponsoring Institutions

Association for Automated Reasoning (AAR)
European Association for Computer Science Logic (EACSL)
Association for Symbolic Logic (ASL)
European Association for Artificial Intelligence (EurAI)
National Council for Scientific and Technological Development (CNPq)
Coordination for the Improvement of Higher Education Personnel (CAPES)
Federal District Research Foundation (FAP-DF)

Organization IX

Contents

Invited Papers

A Vision for Automated Deduction Rooted in the Connection Method 3
Wolfgang Bibel

Locally Abstract, Globally Concrete Semantics of Concurrent
Programming Languages . 22

Crystal Chang Din, Reiner Hähnle, Einar Broch Johnsen,
Ka I. Pun, and Silvia Lizeth Tapia Tarifa

On the Decidability of Certain Semi-Lattice Based Modal Logics 44
Katalin Bimbó

Sequent Systems

Cut-Admissibility as a Corollary of the Subformula Property 65
Ori Lahav and Yoni Zohar

Proof Theory for Indexed Nested Sequents. 81
Sonia Marin and Lutz Straßburger

Interpreting Sequent Calculi as Client-Server Games 98
Christian G. Fermüller and Timo Lang

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 114
Camillo Fiorentini and Mauro Ferrari

Hypersequent Calculi for Lewis’ Conditional Logics with Uniformity
and Reflexivity . 131

Marianna Girlando, Björn Lellmann, Nicola Olivetti,
and Gian Luca Pozzato

VINTE: An Implementation of Internal Calculi for Lewis’ Logics
of Counterfactual Reasoning. 149

Marianna Girlando, Björn Lellmann, Nicola Olivetti,
Gian Luca Pozzato, and Quentin Vitalis

Tableaux

Goal-Sensitive Reasoning with Disconnection Tableaux 163
Lee A. Barnett

http://dx.doi.org/10.1007/978-3-319-66902-1_1
http://dx.doi.org/10.1007/978-3-319-66902-1_2
http://dx.doi.org/10.1007/978-3-319-66902-1_2
http://dx.doi.org/10.1007/978-3-319-66902-1_3
http://dx.doi.org/10.1007/978-3-319-66902-1_4
http://dx.doi.org/10.1007/978-3-319-66902-1_5
http://dx.doi.org/10.1007/978-3-319-66902-1_6
http://dx.doi.org/10.1007/978-3-319-66902-1_7
http://dx.doi.org/10.1007/978-3-319-66902-1_8
http://dx.doi.org/10.1007/978-3-319-66902-1_8
http://dx.doi.org/10.1007/978-3-319-66902-1_9
http://dx.doi.org/10.1007/978-3-319-66902-1_9
http://dx.doi.org/10.1007/978-3-319-66902-1_10

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 175
Peter Baumgartner, Sylvie Thiébaux, and Felipe Trevizan

Minimisation of ATL� Models . 193
Serenella Cerrito and Amélie David

Non-clausal Connection Calculi for Non-classical Logics 209
Jens Otten

Rule Refinement for Semantic Tableau Calculi . 228
Dmitry Tishkovsky and Renate A. Schmidt

Transitive Closure and Cyclic Proofs

Completeness for Ancestral Logic
via a Computationally-Meaningful Semantics . 247

Liron Cohen

A Cut-Free Cyclic Proof System for Kleene Algebra 261
Anupam Das and Damien Pous

Integrating a Global Induction Mechanism into a Sequent Calculus 278
David M. Cerna and Michael Lettmann

Realizability in Cyclic Proof: Extracting Ordering Information
for Infinite Descent . 295

Reuben N.S. Rowe and James Brotherston

Cyclic Proofs with Ordering Constraints . 311
Sorin Stratulat

Formalization and Complexity

A Mechanizable First-Order Theory of Ordinals . 331
Peter H. Schmitt

Issues in Machine-Checking the Decidability of Implicational
Ticket Entailment . 347

Jeremy E. Dawson and Rajeev Goré

Parameterized Provability in Equational Logic . 364
Mateus de Oliveira Oliveira

Author Index . 381

XII Contents

http://dx.doi.org/10.1007/978-3-319-66902-1_11
http://dx.doi.org/10.1007/978-3-319-66902-1_12
http://dx.doi.org/10.1007/978-3-319-66902-1_12
http://dx.doi.org/10.1007/978-3-319-66902-1_13
http://dx.doi.org/10.1007/978-3-319-66902-1_14
http://dx.doi.org/10.1007/978-3-319-66902-1_15
http://dx.doi.org/10.1007/978-3-319-66902-1_15
http://dx.doi.org/10.1007/978-3-319-66902-1_16
http://dx.doi.org/10.1007/978-3-319-66902-1_17
http://dx.doi.org/10.1007/978-3-319-66902-1_18
http://dx.doi.org/10.1007/978-3-319-66902-1_18
http://dx.doi.org/10.1007/978-3-319-66902-1_19
http://dx.doi.org/10.1007/978-3-319-66902-1_20
http://dx.doi.org/10.1007/978-3-319-66902-1_21
http://dx.doi.org/10.1007/978-3-319-66902-1_21
http://dx.doi.org/10.1007/978-3-319-66902-1_22

Invited Papers

A Vision for Automated Deduction Rooted
in the Connection Method

Wolfgang Bibel(B)

Darmstadt University of Technology, Darmstadt, Germany
bibel@gmx.net

Abstract. The paper presents an informal overview of the Connec-
tion Method in Automated Deduction. In particular, it points out its
unique advantage over competing methods which consists in its formula-
orientedness. Among the consequences of this unique feature are three
striking advantages, viz. uniformity (over many logics), performance (due
to its extreme compactness and goal-orientedness, evidenced by the lean-
CoP family of provers), and a global view over the proof process (enabling
a higher-level guidance of the proof search). These aspects are discussed
on the basis of the extensive work accumulated in the literature about
this proof method. Along this line of research we envisage a bright future
for the field and point out promising directions for future research.

Keywords: Automated deduction · Automated theorem proving ·
Connection method · leanCoP · Logic · Learning

1 Introduction

This year we are celebrating a quarter of a century enriched by TABLEAUX
conferences. It is a great honour for the author to be invited for the present
contribution to this anniversary.

This conference series was born in Germany a year after the Deutsche
Forschungsgemeinschaft (German Research Council) agreed to fund a major
national research programme on Automated Deduction (AD) for a period of
six years, initiated and coordinated by the present author. My pertinent activi-
ties might well have furthered the birth of this new conference series, although I
was not directly and personally involved in the TABLEAUX initiative. In conse-
quence, the history of this series will play merely a marginal role in the following
(see [30,35]).

Rather I would like for the TABLEAUX community to bring to bear my
expertise in AD and Logic which by now has been accumulated in more than
half a century. In particular, I want to share my views of our field taken from
some distance, both looking back and forth, and thereby envision a promising
future development of our field.

In the mid-seventies of the last century Peter Andrews and the author inde-
pendently developed a new approach to AD (see eg. [2,3],[12, Formula 6.5, p. 24,
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-66902-1 1

4 W. Bibel

and Appendix], [18,19],[10, eg. p. 325, 353]). He characterized it by the term mat-
ing while I eventually introduced the termConnectionMethod (CM) for it. It took
quite a long time until the community began to take a closer notice of the advan-
tages of this approach, which to Peter and me have seemed so obvious. I understood
this invitation also as an opportunity to remind us of the virtues of this method
deserving a more prominent role in a prospering future AD.

As this conference series has derived its name from a different AD method,
viz. tableaux, it is a natural question how the CM actually fits under its umbrella.
Let us answer this question by looking somewhat deeper into the history of our
field.

Among the logicians in the early twentieth century Jacques Herbrand was
undoubtedly the first who focussed on ways for finding proofs of formulas in
first-order logic (fol) [37]. His work therefore became the theoretical basis for AD
systems which I would therefore term Herbrand-systems, or simply H-systems.
Resolution systems are of this category. The initial successes of resolution in the
mid-sixties of the last century provided this approach with a big push towards
its popularity, supported further by the simplicity of acquiring a basic under-
standing of resolution.

Shortly after Herbrand it was Gerhard Gentzen who published his formal fol
systems which up to this day are judged to be the most adequate systems for
modeling human mathematical reasoning [32]. On this theoretical basis a number
of researchers in AD took an alternative route towards developing AD systems
which I therefore would term Gentzen-systems, or simply G-systems. Tableaux
systems are G-systems in this sense as is the first proof system developed by
the author in 1970 [11]. In fact, it turns out that the CM is just an extremely
compressed form of the tableaux method [23], thus answering our question.

In terms of popularity H-systems despite their known disadvantages contin-
ued to dominate G-systems for several decades. This can be seen in an analysis
of the contributions to the leading AD conference series CADE. Frustrated by
the bias in acceptance rates in CADE in favor of H-systems papers, G-systems
researchers around 1991 started to think about a workshop specialized on the
most popular G-systems, viz. tableaux. This might be taken as a crude historic
outline of how and why the TABLEAUX series got started in 1992. By now our
field has become so rich that there is room enough for several AD conferences.
While they all continue to preserve their specific characteristics, they in these
days are all open for either G-systems or H-systems among others and indeed
are collocated within IJCAR every second year.

Among all approaches to AD the CM is unique in that it performs the proof
search in terms of the structural features of the very formula which is to be
proved rather than destroying this original structure in one way or another. This
formula-orientedness involves on the one hand connections, ie. unordered pairs of
certain literal occurrences in the formula, which provide the basis for the propo-
sitional part of the search. On the other hand the selection of a connection for
a possible proof depends upon a unificational part applied to connections which
takes into account the structural occurrences of the logical junctors making up

A Vision for Automated Deduction Rooted in the Connection Method 5

the formula. While the basic propositional part based on connections is iden-
tical for a wide variety of logics, it is the unificational part which differs from
one logic to the other. While the unificational part can be solved by fast algo-
rithms for many logics, it is the propositional part which, in dependence of the
unificational part of course, still requires intensive efforts for achieving further
progress, and any such progress can be applied to all logics. Due to the strict goal-
orientedness during the connection-driven proof search, both suggested by the
formula-orientedness, systems based on the CM exhibit a comparatively strong
performance.

It is the uniformity of the proof search covering many logics and the resulting
impressive performance which eventually raised the interest of the AD commu-
nity in the CM, because there is no competing method covering many logics
with the same powerful proof technique in a uniform way. Both, the uniformity
and the performance of CM-based proof systems are consequences of the unique
formula-orientedness as just indicated. There is a third, yet hardly exploited
major advantage of the CM over the competitive AD methods. Namely, the
formula-orientedness enables the proof process to take a global view over the
object of analysis, an aspect which still offers a great potential for being tapped
and exploited in our future research. It is the main purpose of the present paper
to outline some of the possibilities in this direction.

In detail the paper is organized in the following way. The subsequent Sect. 2
introduces in an illustrative way the CM. There are by now so many excellent
sources for the formal details of the CM that here we may prefer a high-level view
of the features and virtues of this particular approach to AD. This is followed by
Sect. 3 briefly reviewing CM-based connection calculi and their implementations.
They impressively demonstrate the CM’s unique features of uniformity and per-
formance through a large family of uniformly and powerful provers. Section 4
demonstrates the great potential of taking advantage of meta-level features in
proof search which could be realized on top of the CM due to its global view
of the search for proofs. Thereby we distinguish between recursive, intrinsically
and extrinsically complex features in the connection structure of problem classes
and suggest high-level approaches for each of these. In particular, we favor in
this context the use of learning techniques (such as deep learning which recently
led to spectacular successes in other applications). In Sect. 5 we outline in more
detail the relationship between the CM and tableaux, and in consequence point
out CM’s striking advantage. Similarly, we argue why the CM is more adequate
for achieving further progress than H-systems like resolution. The final Sect. 6
draws some conclusions out of these expositions envisioning a bright future for
AD on their basis.

2 Recollection of the Connection Method

Before entering into any discussion on future research lines for Automated
Deduction (AD) we want to make sure that the reader has an understanding
of the Connection Method (CM) and its basic features. This is important since

6 W. Bibel

the views on AD may differ considerably depending on which basic proof method
one bears in mind. The present section thus introduces in an illustrative way the
approach to AD taken by the CM. For the underlying theoretical basis, ie. pre-
cise definitions, theorems and algorithms, the reader is referred to the literature
(eg. [19,20,23]).

At this point of the paper we take it as understood that, firstly, the usual
language of logic is useful for representing in a formal way a variety of prob-
lems. Secondly, we take it for granted here that many problems may suitably be
formulated in such a way that their solutions consist in proving the validity of
the representing logical formulas. We will briefly discuss these assumptions in
Sect. 6.

So assume we are given – to begin with say – a simple formula in first-order
logic (fol), viz. ∃a(Pa ∨ ¬∃x Qx) → ∃y Py ∨ ∀b ¬Qfb, or shortly F1. In order
to determine whether or not the formula is valid we may think of a connection
calculus which tries to find a proof by locating in the formula a spanning and
unifiable set of connections. Since the formula is simple enough it turns out that
the two obvious connections are both spanning and unifiable establishing the
connection proof as displayed in Fig. 1.

Fig. 1. The connection proof for F1.

In order for the reader to grasp the gist of what is going on in the search for
such a proof let us add a few comments. First of all, our formulas are written in
a standard fol language. In order to minimize parentheses we follow the widely
used order of precedence among the logical operators (defined eg. in the literature
cited above) and in addition we write eg. Qfb instead of the cumbersome Q(f(b)).
The connection prover in some algorithmic way analyzes the structure of the
formula in exactly the form as presented focusing on connections in it. Once it
has found a spanning and unifiable set of such connections it reports success.

It is exclusively for our human understanding that usually the details of the
underlying algorithmic search are explained by way of a simplified and more intu-
itive representation of the information coded in such a formula. This so-called
matrix representation is obtained by dispensing of quantifiers altogether in a
standard way, transforming the resulting formula into one containing only lit-
erals, conjunctions, and disjunctions (by applying basic laws from propositional
logic), and displaying disjunctions horizontally and conjunctions vertically. Our
formula in the resulting representation along with its connection proof in matrix
representation looks as displayed in Fig. 2.

In the matrix representation the notion of connections and the spanning prop-
erty can nicely be illustrated. A path through such a matrix can be regarded as
a walk through it strictly from left to right, thereby collecting exactly one literal

A Vision for Automated Deduction Rooted in the Connection Method 7

Fig. 2. The connection proof from Fig. 1 in matrix representation.

from each column. If this is done for our example matrix, we see that it has
exactly two different paths, {¬Pa, Py,¬Qfb} and {Qx,Py,¬Qfb}. (Formally,
a path may be defined as an unordered set of occurrences in the formula or in
the matrix.) An unordered pair of elements in a path through such a matrix
with identical predicate symbols, one negated the other unnegated, is called a
connection. (If paths are defined as occurrences the same applies to connections.)
Connections are depicted the way illustrated in our examples in either represen-
tation. As already mentioned, our matrix features exactly two connections, viz.
{¬Pa, Py} and {Qx,¬Qfb}. If each path through a matrix contains at least one
connection from a set U of connections, U is called spanning for the matrix,
which thus is the case for the set consisting of the two displayed connections in
each of the two figures. A connection is called complementary if its literals are
identical up to the negation sign. If the displayed substitution is applied to our
two connections they turn out to become complementary. It is exactly these two
properties, spanning and complementary, which establish the validity of a con-
nection proof. Thus the matrix and with it the formula from which it is derived
both turn out to be valid.

Obviously, these explanations of the basic CM features are understood much
more easily with the matrix representation than with the linear formula repre-
sentation in mind. This psychological aspect is however completely irrelevant for
a realization in the machine. The notions of paths through a formula and of con-
nections can of course be defined also directly for formulas such as F1 (as done
eg. in [23]), so that the search for a spanning and unifiable set of connections
can be carried out as well and as efficiently by the machine directly in such a
formula and without any reference to matrices and such, as illustrated in Fig. 1.
In the following we will therefore restrict ourselves to exactly this view on the
CM as a method able to analyze a given formula in its standard representation
and without any preparatory manipulation to it.

This lack of any manipulation to the given formula applies to the proof
process as well. This process accumulates additional information about the for-
mula’s structure but leaves the formula itself as the object of the analysis com-
pletely intact during the entire process. It is this formula-orientedness, already
mentioned in the Introduction, which makes the CM unique among all its com-
petitors. As we will discuss in Sect. 5 this allows a much more focussed search
than in competitive methods.

Due to the very nature of logic, connection proofs may require multi-
ple instances of connections. Let us illustrate this feature with the formula
N0 ∧ ∀x(Nx → Nfx) → Nff0, shortly F2, for which Fig. 3 shows a connection
proof. As is indicated with the indices 1 and 2 attached to the ends of the three

8 W. Bibel

connections, two instances of the universally quantified rule are required to estab-
lish the proof. But note that despite this requirement the object of the analysis,
ie. the given formula, is still not changed in any way since these instances are
simply coded as indices attached to the connections in the additional informa-
tion accumulated by the proof search. For the formal details the reader again is
referred to the literature (eg. [23]).

Fig. 3. The connection proof for formula F2.

This example also illustrates the reason why we have attached indices to the
variables occurring in the substitutions of all three figures. In the first two the
index was just 1 since only a single instance was needed for the proofs therein. We
further remark that logically the instances are generated by the quantifiers, more
precisely by existential quantifiers with polarity 0 or by universal quantifiers with
polarity 1. In the notational convention used in this paper (as in the author’s
earlier publications) the variables bound by these types of quantifiers are denoted
by x, y, . . . while those bound by the remaining types of quantifiers are denoted
by a, b,

Already this simple example opens an initially disquieting perspective for
the proof search requirements. This is because in principle there is no limit
on the number of instances of the occurring rule which might be required to
achieve the proof thus opening up an unlimited search space already for this
simple example. Note that this is an intrinsic feature of fol, not one of the CM.
One strategy for coping with this challenge consists in iteratively increasing the
number of instances taken into account in the proof search. Another one consists
in taking global structures of sets of connections into account and it is this one
which serves particularly well in the present case.

Namely assume that the conclusion of the formula reads Nfn0 (or Nf . . . f0
or Nn for that matter) with n ≥ 1 then n instances of the rule and n−1 instances
of the lower connection would be needed for the proof of the formula, named
F2(n), as illustrated in Fig. 4. The n − 1 lower connections in this proof may
be regarded as a connection scheme, say S(n), rather than a set of independent
connections. The scheme inherently goes along with the underlying universally
quantified premise. This view suggested by the rule in the premise reduces the
search space drastically in general. In the example it eliminates search completely
since the two upper connections along with S(n), which can be regarded as a
single macro connection, establish the proof for all n. In order to appreciate
the drastic reduction note that the n instances of the rule without the scheme
view would require considering some n2 unifiable connections in the proof search
rather than just three.

A Vision for Automated Deduction Rooted in the Connection Method 9

Fig. 4. The connection proof for formula F2(n).

This example teaches us a first important lesson for AD. In contrast to Math-
ematics where the ellipsis notation “. . .” plays a fundamental role as a meta-
language feature, AD so far has failed completely to integrate into proofs such
meta-language features for describing crucial meaning from a global perspec-
tive. The language describing connection proofs naturally suggests such meta-
language constructs like the one just illustrated with F2(n) leading to drastic
reductions of the search space.

How can our principle of avoiding any preparatory manipulation to the given
formula cope with quantifiers in the context of unification in general? Consider
the formula ∃x∀a(Qax → Qxa) which for arbitrary Q of course is not valid,
although the obvious connection is spanning. Usually, the formula is transformed
into Skolem normal form which introduces a Skolem function fx replacing a, so
that unification obviously fails. The same can be achieved by introducing an
ordering relation <· on the quantified variables, x <· a in the case of the present
example, reflecting the relative occurrence of the quantifiers within the formula,
ie. quantifier ∃x dominates quantifier ∀a in the formula. This by now well-known
technique has been introduced in [19, Sect. 4.8]. Unification {x\a} implies a <· x,
reflecting the well-known Eigenvariable condition in tableaux or Gentzen-type
formal systems, and succeeds if it does not lead to cycles. Hence unification does
not succeed in this example since the attempted unification obviously leads to
the cycle x <· a <· x.

This ordering approach to unification as an alternative to skolemization has
recently become attractive in the context of combining deduction with learning.
Namely, “techniques like skolemization can destroy some explicit similarities use-
ful for learning” [59], a topic further discussed in Sect. 4.

The ordering approach may involve also occurrences of junctors like ∧. One
may think of attaching to such an occurrence sort of a variable in analogy with
those attached to quantifiers (or to modal operators as mentioned below). Tradi-
tionally, these variables are denoted by attaching indices to the junctor like in ∧1.

Fig. 5. The connection proof for F3.

10 W. Bibel

With this additional feature we may realize a form of splitting by need as illus-
trated with formula F3 in Fig. 5 (presented first in [12, Appendix, p.16]). Namely,
each of its four variables, due to the displayed occurrence relation generated by
need, may adopt two different values resulting in a non-cyclic unification and thus
in a remarkably straightforward proof of the formula. Unfortunately, the details
of this generalization are somewhat involved (see [19, Sect. 4.10] and [8,36]).

The CM has proved to provide an adequate approach to proving formulas
in many logics other than fol. For example, the following proof illustrates its
application to modal logic.

Again the proof is established by a spanning and unifiable set of connec-
tions. The unificational part in modal logic involves, in addition to that of the
occurring quantified variables (none in the simple example), the unification of
so-called prefixes. These code the occurrences of the modal operators in rela-
tion to all other junctors (propositional, quantifiers, modal operators) within
the formula. In building these prefixes the modal operators are formally treated
like quantifiers and artificially generated prefix variables and prefix constants
are attached to them (like those attached to the junctors above). The resulting
prefixes (ie. strings of prefix variables and prefix constants) attached to the con-
nected literals need to be unified similarly as the terms in the literals. Otherwise
everything works as in fol. Different modal logics just differ in the specifics of
the prefix unification (see [51,52,54] for details and [56] for an overview of the
different calculi and systems).

This prefix unification technique, as realized in current systems like Mlean-

CoP, ileanCoP, nanoCoP-M and nanoCoP-i, involves a kind of skolemization similar
to that in classical fol. Alternatively, this could be realized by the ordering app-
roach to unification through an appropriate extension of the ordering relation <·
introduced above to include the occurrences of the modal operators in addition
to those of the classical logical junctors. This way the unificational part of proofs
would be handled in a completely uniform process. But no one sofar has worked
out this more elegant approach in detail.

Further logics which have been studied under the CM include intuitionistic,
linear, transition, description, paraconsistent, and even higher-order logic (see
[7,22,29,31,43–45,47] and [19, Sect. 5.6] as well as further literature on higher-
order logic listed further below). In order to illustrate a connection proof in
higher-order logic (hol), assume that equality is defined by way of the Leib-
niz characterization. The commutativity of equality can then be stated as the
following formula.

The picture at the same time shows part of the formula’s connection proof
which, in addition, requires the underlying substitution σ = {X\λz¬Pz}. This

A Vision for Automated Deduction Rooted in the Connection Method 11

shows that the substitution affects even the connection structure which compli-
cates matters substantially, due to the inherent nature of hol.

So we see that the CM spans a wide variety of logics in a completely uniform
way. What is needed for a proof in any of these logics is a spanning set of connec-
tions along with some unification rendering the connection set complementary
whereby the specifics of the latter differs from one logic to the other.

3 Connection Calculi and Their Implementations

In the previous section we have illustrated the basic features of the connection
method (CM) for proving formulas in various logics. These illustrations did not
yet indicate how proofs are actually found. In the present section we therefore
briefly discuss connection calculi, the adequate tools for proof search.

As we have demonstrated connection proofs consist of two components, viz.
a set of connections and a unificational part. As is well-known the latter enjoys
fast solutions and will more or less be taken for granted in what follows. There
are exceptions to this statement because, for instance, higher-order unification
is highly complex. Therefore we exclude higher-order logic (hol) from our dis-
cussions and refer to the pertinent literature in this regard [4–7,24,25,42]. So,
we are left with the main task of identifying spanning sets of connections in
formulas (along with the necessary substitutions).

This task is a truly hard and challenging one since in more complex problems
the spanning set might be a rather small subset picked out of a sea of connections,
so that we are in a situation like searching for the needle in a haystack. Decades
of AD research have accumulated insights into the features of this task which
have led to a number of quite powerful connection calculi. These guarantee the
success of the search in case of valid formulas, unless the time-limit cuts off the
search, ie. they are sound and complete.

Since the area of connection calculi is a rather wide one, we restrict ourselves
here to a few comments. First of all, if a problem is coded into a logical formula,
this formula may naturally be separated into the core problem description D and
the prerequisites or assumptions A from which D logically follows. Therefore any
connection-driven search should start with connections involving literals in D in
order to focus it on the given problem. Second, if at any stage the search has
selected a number of connections, say U , then for any clause C connected by
one of these connections, say c ∈ U , involving some literal L ∈ C, it holds that
each other literal in C needs to be contained in some connection in the final
connection set, if this is to involve c for establishing the proof.

Already these two principles lead to the goal-orientedness mentioned in the
Introduction and give rise to a reasonably performing connection calculus. One
of its basic operations, called extension, may be illustrated with formula F2(n)
and its proof shown in Fig. 3. There the core problem D is Nff0 so that a proof
attempt would look for a connection involving this literal and would identify the
single possible one shown in the picture. The connected literal Nfx shares the
clause with literal Nx so that the second principle would bring us to look for

12 W. Bibel

a connection involving this literal and would identify two possible ones shown
in the picture, of which only the lower one turns out to be unifiable, thereby
activating a second instance of the clause. Note that by generating the proof in
a recursive way as we do here, the sequence of indices needs to be reversed in
comparison with the inductive way shown in the picture, so that 1 and 2 in the
picture would have to be exchanged. The second instance of the clause would,
again due to the second principle, lead us to look for a connection involving the
literal Nx. Among the again two alternatives the one with N0 would complete
the proof.

As this simple example already demonstrates, backtracking may be required
if the wrong choice among alternatives had been taken. The basic algorithm,
additionally involving an operation called reduction, can be enhanced consider-
ably by the technique of restricted backtracking [49]. The resulting connection
calculus for fol was developed and implemented in high-level PROLOG by Jens
Otten. The program, called leanCoP, although comprising only a few PROLOG
clauses, shows a performance comparable to competitive theorem provers con-
sisting of hundreds of thousands of lines of code (loc) [48,55]. Due to its high-level
code its correctness in contrast to the large systems can be and has been verified
which we regard as an important issue for proof systems [56]. leanCoP, in contrast
to our examples shown in the previous section, operates on formulas in clause
form. A variant of leanCoP has been realized as an OCaml version [41].

A crucial step towards a connection calculus envisioned in the previous
section, namely one operating on standard fol formulas, has been made again
by Otten. He developed a connection calculus for skolemized, but non-clausal
fol formulas and implemented it in the style of leanCoP as a system called
nanoCoP [50,53] showing again a comparatively impressive performance. There is
only a relatively small step left from nanoCoP to a system envisaged in the previ-
ous section. The step consists of allowing all standard logical operators including,
for instance, “→” as well as replacing the standard unification by that described
in the previous section, both amounting to relatively simple changes to the sys-
tem. From a scientific point of view these changes are of a cosmetic nature and
of minor urgency to be worked out. Under this view the illustration of the CM
as done in the previous section therefore reflects the state of the art as achieved
by now — up to the minor extra feature just described.

In the Introduction we pointed out the two major consequences of the
formula-orientedness of the CM which are uniformity and performance. The
CM’s unique uniformity bears its fruits in porting the proof-search technol-
ogy developed in one logic into other logics. This way Jens Otten has ported
the fol technologies built into leanCoP and nanoCoP to many other logics result-
ing in systems such as ileanCoP, MleanCoP, nanoCoP-i and nanoCoP-M for a vari-
ety of logics, thus forming a large family of uniformly designed and powerful
provers [48,51,52,54]. The CM is the unique and unrivalled proof-method in AD
which features such a wide variety of systems, many of which are outperforming
any of its competitors.

A Vision for Automated Deduction Rooted in the Connection Method 13

4 The Unexploited Potential of the CM

Except for a few attempts most AD systems operate on the lowest logical level,
executing some logical rules in a relatively blind way. In contrast, mathematical
reasoning is done on a much higher conceptual level. I am convinced that AD
systems will not be able to compete with human mathematical reasoning unless
they incorporate such higher-level features. It is the CM’s formula-orientedness
explained in Sect. 2 which lends itself to such a form of higher-level reasoning in
a natural way. Some of the possibilities in this direction will be discussed in the
present section.

Recall the connection proof for formula F2(n) in Fig. 4. Its antecedent part
will structurally be the same for any n in the conclusion. Hence we could abbre-
viate the entire antecedent part simply by Nfz0 so that for a given conclusion
Nfn0 just a single connection along with sort of a meta-unification between
z and n would be required thus reducing the search space for a spanning set
of connections drastically. Note that inductive (or recursive) features abound
in reasoning so that the same abbreviation technique would apply to numerous
other examples and thus, if integrated, would enhance existing provers. Although
this technique has already been introduced in the book [19, Sect. 5.5] and for-
mally worked out in [26] and [15, Sect. 2.10] under the term connection structure
calculi I am not aware of any system which would take advantage of such an
obvious structural feature on the meta-level of proof search although it would
result in a straightforward improvement.

The recursive connection structure in F2(n) is what in [13] was called a
recursive cycle whereby cycles are sets of connections which taken as a sequence
start with a literal in one clause and end up in the same clause, as do the
n − 1 connections in the middle of Fig. 4. In general cycles may be much more
complicated than the one in F2(n). For example, consider the following formula
originally studied by �Lukasiewicz.

Pi(i(ixy, z), i(izx, iux)) ∧ (Pv ∧ Pivw → Pw) → Pi(iab, i(ibc, iac))

The function symbol i represents logical implication, ie. iab codes a → b, so
that the rule in the antecedent expresses modus ponens. The formula has five
connections each of which may be required in several instances for the proof.
Although there is a known 29-step proof for the formula involving a few dozens
of instances of those five connections, a system like OTTER, operating on the
lowest proof search level determined by resolution, needed to generate a gigantic
number of 6.5 million clauses in order to eventually discover some proof.1 Only a
more intelligent analysis of the connection structure made up by the five original
connections would lead us more directly to a proof as proposed already in [14]
and further pursued in [16].

1 Josef Urban was so kind to run the formula with several state-of-the-art provers.
E processes still 1.2 million clauses which can be reduced to 36.1 thousand by auto-
matically learned strategies (with BliStr [39]), while Prover9 succeeds already with
3.3 thousand clauses.

14 W. Bibel

For the present formula such an analysis would have to take into account
the effect of each of these connections thereby measuring the change in the
difference between the axiom literal and the goal literal. For instance, one could
in a breadth-first iteratively deepening search, starting from the goal literal,
calculate all different initial fragments of an attempted connection proof and,
before deepening the search limit, strategically select out of all combinations
those for further exploration which came closest to the axiom literal according
to such a difference measure. Given that we know of a 29-step proof we could
even limit the index to 29 and would be guaranteed to find a proof. But even
if we would not know in advance such a limit, an iterative deepening of such a
limit on the index would guarantee success, as already proposed in 1970 [11].
Instead of the index one could use the size of the generated terms in the resulting
substitution for the same purpose and again apply iterative deepening. None
of these alternatives, which in the context of the CM are obvious ones, have
been used, to the best of the author’s knowledge. Rather all existing provers
continue to blindly search for a proof of this and similar formulas without any
such considerations at a higher mathematical level above the level of clauses,
resolvents, extensions or whatever.

AD practitioners typically argue that these high-level strategies are too time-
consuming in comparison with the straightforward execution of brute-force oper-
ations. They overlook that the proofs of many hard theorems may never be found
automatically except with such sophisticated high-level approaches. An example
like the present one by �Lukasiewicz may guide the search for such sophisticated
strategies.

This �Lukasiewicz formula is an extreme example of an intrinsically complex
theorem. At the other extreme there are formulas which are extrinsically complex
because they involve large theories and hence are huge in terms of size and
number of connections. Think, for example, of a theorem F4 to be proved in the
context of a mathematical theory like linear algebra. This means that we are
actually faced with the task of proving F5 → F4 where F5 combines the body of
knowledge consisting of axioms, theorems and lemmas known for linear algebra.
This might be a very large formula indeed since there are many theorems in
linear algebra. A mathematician would immediately have a feeling for what kind
of known theorems might apply in the proof, given F4. Translated into CM-
terms this means that some connections would rate much higher than others as
to their usefulness for the required proof. In other words, the set of available
connections in F5 → F4 bears with it a logical/mathematical semantics that is
tapped by mathematicians in their work. In AD the underlying task has been
termed premise selection (or relevance filtering) but should rather be considered
as connection selection in order to account for the finer grain of this task. So as in
the case of intrinsically complex examples strategies at the higher mathematical
level seem highly needed.

These are just some examples illustrating the need for an analysis of the
structures on the higher mathematical level of proof search to be integrated in
advanced systems. Many other aspects of this kind have been studied by the
author and his collaborators as well as by other AD researchers. Thereby a

A Vision for Automated Deduction Rooted in the Connection Method 15

wealth of detailed enhancements with great potential for more powerful calculi
and high-level strategies has been accumulated in the last three decades. In
addition to the references mentioned sofar, some out of the many sources for
such information are the books [17,19,38] and the chapter [21]. Integrating an
appropriate selection of these improvements in detail into a single system of
the kind like leanCoP amounts to an intellectual challenge still waiting to be
attacked in a major scientific project and investment. A prerequisite for such an
attack would be the growing conviction within the AD community with regard
to the advantages of the CM. While the interest fortunately is growing, it has
deplorably not yet reached the deserved degree of enthusiasm.

The recent spectacular successes in Artificial Intelligence in game-playing
like GO and Poker have been made possible through the use of deep learning
techniques. It is therefore a natural idea to engage such techniques also in the
context of AD. However, it is a non-trivial question what kind of unlabeled
data would be appropriate to learn feature representations for supporting proof
search. In any rate it seems much more promising to apply learning techniques
at the mathematical level, ie. to the formulas to be proved rather than to data
such as clause sets in which crucial features are deeply buried.

The recent papers [1,28,40,46] along with earlier and similar work refer-
enced in the ones just cited are first and encouraging steps into the application
of learning techniques to AD. However, with two very recent exceptions most of
these approaches are using standard learning techniques like näıve Bayes learn-
ing, kernel methods, various versions of distance-weighted k-nearest neighbor,
random forests, some basic ensemble or clustering methods, hand-engineered
learning features and similarity functions, etc. rather than deep learning. One
of the exceptions uses convolutional neural networks (CNN) but only up to a
shallow depth of three layers rather than the full power currently possible. Only
some of them use leading frameworks like Caffe, CNTK, Tensorflow or Torch.

Probably even more important is the choice of the level where the learning
applies which in most approaches so far is the low operational level of proof
systems rather than the mathematical level, characterized by the formulas to
be proved, at which human mathematicians excel in their learning. If we wish
to enrich our systems with the meta-knowledge of the kind used by mathe-
maticians the focus of deep learning algorithms should be on learning feature
representations of this unstructured meta-knowledge on the mathematical level
which would then guide the search for spanning sets of connections.

As a historical note I mention that connectionist approaches to deduction
were initiated already around 1990 in the two major research groups founded by
the author. In the group at the Technical University Munich which persisted
there for nearly two decades after the author’s move to UBC, Wolfgang Ertel,
Christoph Goller, Johann Schumann and Christian Suttner engaged to develop
connectionist learning techniques for deduction systems and and applied them
to the prover SETHEO [27,34]. Goller for good reasons can be regarded as one of
the early pioneers in deep learning. In my group at Darmstadt University of Tech-
nology it was Steffen Hölldobler whose Habilitation thesis, completed in 1993,
was entitled “Automated Inferencing and Connectionist Models” (see eg. [9]).

16 W. Bibel

Besides extracting meta-knowledge out of data by learning, our systems
should as well lend themselves to interactive guidance provided by the expert
which can only be done at the level familiar to the expert, hence again the
mathematical level. “Ease of use is the ‘license to operate’” [57]. Exactly for
this reason mathematicians in their daily work will not take advantage of AD
systems to a considerable extent unless these cooperate at the mathematical
level familiar to them.

Thus we are still facing the great, but promising challenge to apply deep
learning in its full power to AD as well as to enable human interaction at this
mathematical level. Only the CM among the various proof methods offers the
possibility to realize learning and interaction at this higher level of formalization
in a direct way, hence opening extremely promising perspectives.

5 The CM in Relation with Other AD Methods

In [23, Sect. 2] the evolution of the CM out of Gentzen’s fol system has been
demonstrated in a rather compact form based on the results contained in [19].
This evolution consists in a stepwise extraction of all redundancy from the formal
systems which leads to a radical compression to their very essence. Tableaux
occur in this line of evolution at a rather early stage which is evidence for two
important facts.

First, tableaux and CM share the same heritage for which reason they are
both termed G-systems in Sect. 1. Any connection proof can be transformed
into a tableaux proof in a straightforward way, and vice versa. The same applies
to strategies and other features in proof search. So at first sight it seems that
both are equally adequate for research in AD. But there is this second fact which
definitely favors the CM over tableaux. Namely, tableaux carry with them a bur-
den which is completely redundant and slows down performance substantially.
It is exactly this redundancy which has been extracted in the evolution of the
CM resulting in the strict formula-orientedness already pointed out in Sect. 1
and further explained in Sect. 2. Its consequence is an enhanced performance of
CM systems over comparable tableaux systems which has been demonstrated
in competitions in a spectacular way. Since we all aim at high performance, in
comparison with tableaux without any doubt the CM is the technique of choice
in AD.

Herbrand’s great achievement was the reduction of fol proof search to the
ground level modulo term unification. This reduction is not without a price,
especially if it is exploited further by destroying even the propositional structure
of the original formula as is done in any H-system like those based on resolution.
The technical simplification resulting from this reduction helped a lot in getting
experiments in AD running during AD’s initial years. But these initial years
are long gone. Eventually, the price for the simplification had to be payed which
happened for instance when logics other than classical fol were taken into consid-
eration for automation. For this purpose the relative occurrences of all junctors
in the formulas became crucial for appropriate proof methods while resolution

A Vision for Automated Deduction Rooted in the Connection Method 17

was built on the idea of their elimination. Hence the rebirth of G-systems which
excel in this respect due to the uniformity pointed out in Sects. 1 through 3. But
the price to be payed included also disadvantages like the comparatively huge
search space resulting in excessive storage and operations requirements and thus
impairing performance.

As already mentioned in Sect. 1 there is another aspect favoring G-systems,
notably the CM, which is its global view. Recall the �Lukasiewicz formula of
the previous section with its five basic connections along with our meta-level
and global considerations for finding a short proof. Contrast this strict focus
on the formula’s very structure, ie. the formula-orientedness, with the sea of
6.5 million clauses, which resulted in a run of Otter, in order to see the obvious
weakness of resolution in comparison with the CM. This weakness is highlighted
further by the fact that none of the high-level options discussed in the previous
section in the context of the �Lukasiewicz formula come to mind in the context
of resolution. Further, the use of simplified formula representations like CNF,
being a standard in H-systems, “significantly influences also the performance of
high-level heuristic guidance methods in large theories” [59].

But do not competitions like CASC continue to demonstrate that resolu-
tion systems are superior in performance in comparison with CM systems? In
fact, these competitions while stimulating research a lot, do not say much about
the potential of the different underlying proof methods. If system S1 featuring
several hundreds of thousands lines of code (loc) written in a low-level program-
ming language and optimized towards CASC competitions proves some theorems
not proved by system S2 consisting of a dozen of loc written in high-level pro-
gramming language PROLOG, what lesson does this teach about the different
methods used, especially if S2 inversely proves some theorems not proved by S1?
The only lesson I can draw from such a comparison is that the method used for
S2 seems to be so powerful that it is able to compensate for the exorbitant, sev-
eral orders of magnitude higher investment put into S1. The theoretical insights
into the competing methods available in the literature including the present
paper are reveiling much more about their relative potentials than superficially
interpreted CASC competition results.

Of course, there is plenty of room for speeding-up the systems from the
leanCoP or nanoCoP family by compiling these high-level programs into much
faster low-level and optimized code. Once such codes are produced also for CM
systems then the CASC results will reflect the comparative performance of the
different methods used in the competing systems in a fairer way than done at
present where apples are compared with pears in a blind way. Unfortunately, so
far there is not yet a more general and adequate performance measure available
in AD like, for instance, the one based on g-factors or IQs in psychology.

6 Conclusions

Logic has widely been agreed to provide a formal basis for much of Computer
Science (CS) and Artificial Intelligence (AI). In applications like correctness of

18 W. Bibel

hardware and software, for instance, it has become indispensible [56]. Often it is
used thereby in such a way as to prove the validity of a formula representing some
problem, be it a mathematical or other problem. These observations justify the
two assumptions stated at the beginning of Sect. 2. As a consequence Automated
Deduction (AD) is considered to be of fundamental importance for CS and AI.

The last decades have witnessed remarkable progress in AD and in the per-
formance of its proof systems. However, if compared with the progress in other
AI subfields (like eg. learning) AD might be rated as not quite as successful. In
the present paper the author has pointed to possible reasons for the absence of
a more startling progress.

Perhaps the most important reason is that the work in AD is still diverted to
a number of different proof methods, although some of these are evidently less
promising than others. In particular, we have reminded the community of the
fact that the Connection Method (CM) enjoys unique advantages in comparison
with its competitors. While the acceptance of this fact obviously is growing, too
many researchers seem still to be stuck in working on less promising approaches.
In order to speed up this change of mind in the community, we have summarized
the features of the CM in Sects. 2 and 3. In particular we have demonstrated
that the unique feature of the CM, viz. the formula-orientedness, provide it with
three striking advantages which are uniformity (over many logics), performance
(due to the extreme compactness), and a global view over the proof process.
Especially the last point was illustrated in Sect. 4 and the CM’s approach was
compared with its competitors wrt. all three points in Sect. 5.

In this comparison it becomes clear that our field needs to take a major step
towards a higher-level guidance of the search for proofs which could and should
be supported by deep learning techniques. While competing methods are hardly
suited for such higher-level guidance, the CM lends itself to supporting it as
illustrated in the paper. We thus envision a new revival and rising profile of AD
with spectacular breakthroughs in the near future.

Acknowledgement. I greatly appreciate a very careful reading and many suggestions
by Peter Andrews, Cezary Kaliszyk, Jens Otten and Renate Schmidt as well as help-
ful comments and generous information on system run-times by Josef Urban. David
Plaisted independently suggested in a private communication the use of deep learning
techniques in AD.

References

1. Alemi, A.A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: Deepmath -
Deep sequence models for premise selection. In: Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems 29 (NIPS 2016), pp. 2235–2243 (2016)

2. Andrews, P.B.: Refutations by matings. IEEE Trans. Comput. C–25, 193–214
(1976)

3. Andrews, P.B.: Theorem proving via general matings. J. ACM 28, 193–214 (1981)
4. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth

through Proof. Academic Press, Orlando (1986)

A Vision for Automated Deduction Rooted in the Connection Method 19

5. Andrews, P.B.: On connections and higher-order logic. J. Autom. Reas. 5, 257–291
(1989)

6. Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, vol. 2, pp. 965–1007. Elsevier Science, Amsterdam
(2001). Chap. 15

7. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., Xi, H.: TPS: a
theorem proving system for classical type theory. J. Autom. Reas. 16, 321–353
(1996)

8. Antonsen, R., Waaler, A.: Liberalized variable splitting. J. Autom. Reas. 38, 3–30
(2007)

9. Beringer, A., Hölldobler, S., Kurfeß, F.: Spatial reasoning and connectionist infer-
ence. In: Bajcsy, R. (ed.) Proceedings of the International Joint Conference on
Artificial Intelligence, IJCAI-95, pp. 1352–1357. IJCAII. Morgan Kaufmann, San
Mateo (1995)

10. Bibel, L.W.: Reflexionen vor Reflexen - Memoiren eines Forschers. Cuvillier Verlag,
Göttingen (2017)

11. Bibel, W.: An approach to a systematic theorem proving procedure in first-order
logic. Computing 12, 43–55 (1974). First presented to the GI Annual Confer-
ence in 1971; also available as Bericht Nr. 7207. Technische Universität Mänchen,
Abteilung Mathematik (1972)

12. Bibel, W.: Programmieren in der Sprache der Prädikatenlogik. (Rejected) thesis
for “Habilitation” presented to the Faculty of Mathematics. Technische Universität
München, January 1975

13. Bibel, W.: Advanced topics in automated deduction. In: Nossum, R.T. (ed.)
ACAI 1987. LNCS, vol. 345, pp. 41–59. Springer, Heidelberg (1988). doi:10.1007/
3-540-50676-4 9

14. Bibel, W.: Perspectives on automated deduction. In: Boyer, R.S. (ed.) Automated
Reasoning: Essays in Honor of Woody Bledsoe, pp. 77–104. Kluwer Academic,
Utrecht (1991)

15. Bibel, W., Eder, E.: Methods and calculi for deduction. In: Gabbay, D.M., Hogger,
C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic
Programming, vol. 1, pp. 71–193. Oxford University Press, Oxford (1993). Chap.
3

16. Bibel, W., Hölldobler, S., Würtz, J.: Cycle unification. In: Kapur, D. (ed.) CADE
1992. LNCS, vol. 607, pp. 94–108. Springer, Heidelberg (1992). doi:10.1007/
3-540-55602-8 158

17. Bibel, W., Schmitt, P.H. (eds.): Automated Deduction - A Basis for Applications.
Volume I: Foundations - Calculi and Methods. Applied Logic Series. Kluwer, Dor-
drecht (1998)

18. Bibel, W.: Matings in matrices. Comm. ACM 26, 844–852 (1983)
19. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg Verlag, Braunschweig

(1987). First edition 1982
20. Bibel, W.: Deduction: Automated Logic. Academic Press, London (1993)
21. Bibel, W.: Research perspectives for logic and deduction. In: Stock, O., Schaerf,

M. (eds.) Reasoning, Action and Interaction in AI Theories and Systems. LNCS,
vol. 4155, pp. 25–43. Springer, Heidelberg (2006). doi:10.1007/11829263 2

22. Bibel, W.: Transition logic revisited. Logic J. IGPL (Interest Group Pure Appl.
Logic) 16(4), 317–334 (2008)

23. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-
tion. In: Kahle, R., Rathjen, M. (eds.) The Legacy of Kurt Schütte. Springer (2017,
to appear)

http://dx.doi.org/10.1007/3-540-50676-4_9
http://dx.doi.org/10.1007/3-540-50676-4_9
http://dx.doi.org/10.1007/3-540-55602-8_158
http://dx.doi.org/10.1007/3-540-55602-8_158
http://dx.doi.org/10.1007/11829263_2

20 W. Bibel

24. Bishop, M.: A breadth-first strategy for mating search. CADE 1999. LNCS, vol.
1632, pp. 359–373. Springer, Heidelberg (1999). doi:10.1007/3-540-48660-7 32

25. Brown, C.E.: Automated Reasoning in Higher-Order Logic: Set Comprehension
and Extensionality in Church’s Type Theory. Studies in Logic: Logic and Cognitive
Systems, vol. 10. College Publications, London (2007)

26. Eder, E.: Relative Complexities of First Order Calculi. Vieweg, Braunschweig
(1992)

27. Ertel, W., Schumann, J.M.P., Suttner, C.B.: Learning heuristics for a theorem
prover using back propagation. In: Retti, J., Leidlmair, K. (eds.) 5. Österreichische
Artificial-Intelligence-Tagung, vol. 208, pp. 87–95. Springer, Heidelberg (1989).
doi:10.1007/978-3-642-74688-8 10

28. Färber, M., Kaliszyk, C., Urban, J.: Monte carlo tableau proof search. In: de Moura,
L. (ed.) Automated Deduction - CADE 26. CADE 2017. LNCS, vol. 10395, pp.
563–579. Springer, Cham (2017). doi:10.1007/978-3-319-63046-5 34

29. Freitas, F., Otten, J.: A connection calculus for the description logic ALC. In:
Khoury, R., Drummond, C. (eds.) AI 2016. LNCS, vol. 9673, pp. 243–256. Springer,
Cham (2016). doi:10.1007/978-3-319-34111-8 30

30. Fronhöfer, B.: Memories of the tableaux workshop 1992. Personal communication,
January 2017

31. Galmiche, D.: Connection methods in linear logic and proof nets construction.
Theoret. Comput. Sci. 232, 231–272 (2000)

32. Gentzen, G.: Untersuchungen über das logische Schließen. Math. Z. 39, 176–210
and 405–431 (1935). English transl. in [58]

33. Herbrand, J.J.: In: Goldfarb, W.D. (ed.) Logical Writings. Reidel, Dordrecht (1971)
34. Goller, C.: A Connectionist Approach for Learning Search-Control Heuristics

for Automated Deduction Systems. Akademische Verlagsgesellschaft AKA, Berlin
(1999)

35. Hähnle, R.: Early Tableaux, presented to the Conference TABLEAUX 2017 (2017)
36. Hansen, C.M.: A Variable Splitting Theorem Prover. Ph.D. thesis. University of

Oslo (2012)
37. Herbrand, J.: Recherches sur la théorie de la démonstration. Travaux Soc. Sciences

et Lettres Varsovie, Cl. 3 (Mathem. Phys.) (1930). English transl. in [33]
38. Hölldobler, S. (ed.): Intellectics and Computational Logic - Papers in Honor of

Wolfgang Bibel. Applied Logic Series. Kluwer Academic Publishers, Dordrecht
(2000)

39. Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving
strategies. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, pp. 43–52. ACM (2017)

40. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connec-
tion prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR
2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 7

41. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL
light and TPTP. In: CPP 2015 Proceedings of the 2015 Conference on Certified
Programs and Proofs, pp. 59–66. ACM (2015)

42. Kohlhase, M.: Automated Deduction - A Basis for Applications, Vol. I: Foundations
- Calculi and Methods, Applied Logic Series. In: Higher-Order Automated Theorem
Proving, vol. 8, pp. 431–462. Kluwer, Dordrecht (1998). Chap. 13

43. Krause, D., Nobre, E., Musicante, M.: Bibel’s matrix connection method in para
consistent logic: general concepts and implementation. In: 21st International Con-

http://dx.doi.org/10.1007/3-540-48660-7_32
http://dx.doi.org/10.1007/978-3-642-74688-8_10
http://dx.doi.org/10.1007/978-3-319-63046-5_34
http://dx.doi.org/10.1007/978-3-319-34111-8_30
http://dx.doi.org/10.1007/978-3-662-48899-7_7
http://dx.doi.org/10.1007/978-3-662-48899-7_7

A Vision for Automated Deduction Rooted in the Connection Method 21

ference of the Chilean Computer Science Society, SCCC 2001, pp. 161–167. IEEE
(2001)

44. Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-
classical logics. J. Univ. Comput. Sci. 5(3), 88–112 (1999)

45. Kreitz, C., Otten, J., Schmitt, S., Pientka, B.: Matrix-based constructive the-
orem proving. In: Hölldobler, S. (ed.) Intellectics and Computational Logic.
Applied Logic Series. Kluwer Academic Publishers, Dordrecht (2000). doi:10.1007/
978-94-015-9383-0 12

46. Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21. 21st International Conference on Logic
for Programming, Artificial Intelligence and Reasoning. EPiC Series in Computing,
vol. 46, pp. 85–105, EasyChair (2017). https://easychair.org/publications/paper/
340345

47. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order
logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–
261. Springer, Heidelberg (2005). doi:10.1007/11554554 19

48. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (System Descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 283–291. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71070-7 23

49. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23, 159–182
(2010)

50. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22119-4 18

51. Otten, J.: Implementing connection calculi for first-order modal logics. In: Ter-
novska, E., Korovin, K., Schulz, S. (eds) 9th International Workshop on the Imple-
mentation of Logics (IWIL 2012), Merida, Venezuela (2012)

52. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
269–276. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 20

53. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016).
doi:10.1007/978-3-319-40229-1 21

54. Otten, J.: Non-clausal connection calculi for non-classical logics. In: Schmidt, R.,
Nalon, C. (eds.) TABLEAUX 2017. LNAI, vol. 10501, pp. 209–227. Springer, Cham
(2017)

55. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36, 139–161 (2003)

56. Otten, J., Bibel, W.: Advances in connection-based automated theorem proving.
In: Bowen, J., Hinchey, M., Olderog, E.R. (eds.) Provably Correct Systems, pp.
211–241. Springer, London (2016). doi:10.1007/978-3-319-48628-4 9

57. Smith, R.G., Eckroth, J.: Building AI applications: yesterday, today, and tomorow.
AImagazine 38(1), 6–22 (2017)

58. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland, Ams-
terdam (1969)

59. Urban, J., Vyskočil, J.: Theorem proving in large formal mathematics as an emerg-
ing AI field. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and
Mathematics. LNCS, vol. 7788, pp. 240–257. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36675-8 13

http://dx.doi.org/10.1007/978-94-015-9383-0_12
http://dx.doi.org/10.1007/978-94-015-9383-0_12
https://easychair.org/publications/paper/340345
https://easychair.org/publications/paper/340345
http://dx.doi.org/10.1007/11554554_19
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.1007/978-3-642-22119-4_18
http://dx.doi.org/10.1007/978-3-319-08587-6_20
http://dx.doi.org/10.1007/978-3-319-40229-1_21
http://dx.doi.org/10.1007/978-3-319-48628-4_9
http://dx.doi.org/10.1007/978-3-642-36675-8_13
http://dx.doi.org/10.1007/978-3-642-36675-8_13

Locally Abstract, Globally Concrete Semantics
of Concurrent Programming Languages

Crystal Chang Din2, Reiner Hähnle1(B), Einar Broch Johnsen2, Ka I Pun2,
and Silvia Lizeth Tapia Tarifa2

1 Department of Computer Science, Technische Universität Darmstadt,
Darmstadt, Germany

haehnle@cs.tu-darmstadt.de
2 Department of Informatics, University of Oslo, Oslo, Norway

{crystald,einarj,violet,sltarifa}@ifi.uio.no

Abstract. Language semantics that is formal and mathematically pre-
cise, is the essential prerequisite for the design of logics and calculi
that permit automated reasoning about programs. The most popular
approach to programming language semantics—small step operational
semantics (SOS)—is not modular in the sense that it does not sepa-
rate conceptual layers in the target language. SOS is also hard to relate
formally to program logics and calculi. Minimalist semantic formalisms,
such as automata, Petri nets, or π-calculus are inadequate for rich pro-
gramming languages. We propose a new formal trace semantics for a
concurrent, active objects language. It is designed with the explicit aim
of being compatible with a sequent calculus for a program logic and
has a strong model theoretic flavor. Our semantics separates sequential
and object-local from concurrent computation: the former yields abstract
traces which in a second stage are combined into global system behavior.

1 Introduction

Our goal in this paper is a new kind of trace semantics for concurrent OO pro-
gramming languages with cooperative scheduling, no more, no less. It is designed
with the explicit aim of being compatible with a sequent calculus for a program
logic and has a strong model theoretic flavor. The semantics separates sequen-
tial and object-local from concurrent computations. This is achieved by keeping
traces of local computations inside an abstract context. Only in a second stage
these abstract traces are combined into global system behavior.

Motivation. Conspicuously, semantics is mostly absent in program logics, start-
ing with the early work of Hoare [1] and Dijkstra [2] and extending to contempo-
rary approaches, such as the program logic of the KeY system [3]. Generally, the
rules of a calculus of a program logic are taken to be the (axiomatic) semantics
and this is considered to be a major advantage: “axioms enable the language
designer to express his general intentions quite simply and directly, without the
mass of detail which usually accompanies algorithmic descriptions” [1, p. 583].
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 22–43, 2017.
DOI: 10.1007/978-3-319-66902-1 2

Locally Abstract, Globally Concrete Semantics 23

Ample work on formalizing the semantics of programming languages has been
performed. Many recent accounts are based on Plotkin’s structural operational
semantics (SOS).1 In SOS the behavior of a program is formalized as transition
rules that transform a given state of execution and a given program statement
into a result state (which might be an abort state). The traces, i.e. the state
sequences resulting from all possible sequences of rule applications from a given
initial configuration, constitute a program’s semantics.

Local SOS configurations contain runtime infrastructure, such as frame
stacks, etc. The rules are schematic and need to cover all well-formed programs,
in particular, the composition mechanisms of the target programming language,
such as sequential composition, method calls, and synchronization. In essence,
the SOS rules represent an interpreter.

Large fragments of industrial programming languages have been formalized
in this style, including Java [5], C [6], but also the ABS language targeted here [7].

Yet, semantics based on transition systems tends not to be very modular.
Often, there are dozens, if not hundreds of rules, and it is hard to judge the
consequences if some of them are changed. It is also very difficult to relate SOS
rules to modern verification calculi based on symbolic execution [3] or verification
condition generation [8,9]. As noted above, the consequence is that the calculi
of verification tools for mainstream languages generally lack a corresponding
formal semantics relative to which soundness can be proven. Minimalist semantic
formalisms, such as automata, Petri nets, or the π-calculus are frequently used in
theoretical investigations, but they are inadequate for mainstream programming
languages.

Contribution. A main contribution of our work is a new trace semantics for con-
current programs that exhibits a denotational, compositional flavor and strictly
separates local from interleaving and parallel computations. It has a number of
important advantages: 1. The semantics is concise: it has exactly one rule per
statement. 2. Consequences of changes are local and easy to analyze. 3. It is
denotational: Semantic objects (i.e. traces) directly result from application of
semantic rules and not indirectly from their interpretation. 4. One can easily
map semantic rules to rules of the program logic.

Below we introduce several new mechanisms into our trace semantics: Local
computations cannot know their parallel execution context, therefore, we exe-
cute them in an abstract environment and we work with continuations to handle
local suspension and blocking. This enables us to completely separate sequen-
tial from interleaving and parallel computations by means of synchronization
events whose well-formedness is ensured when local, sequential behavior is com-
posed into global, concurrent behavior. This can be viewed as a generalization
of Brookes’ action traces [10].

Specifically, our work targets the active object language ABS [7], but we
expect that the principle is applicable to languages based on asynchronous com-
munication in general and probably to other concurrent languages as well.

1 The official citation is [4], but the approach goes back to the early 1980s.

24 C.C. Din et al.

Fig. 1. ABS Program Syntax.

2 ABS: The Abstract Behavioral Specification Language

The Abstract Behavioral Specification language (ABS) [7] is an object-oriented
modeling language for concurrent and distributed systems, which has been
designed with a focus on analyzability. Its syntax and semantics are similar
to Java to maximize usability. The grammar is given in Fig. 1. Expressions and
imperative statements are standard. We slightly deviate from official ABS syn-
tax and assume that local variables are introduced inside blocks before any
other statement. This can be easily achieved by adding suitably scoped block
statements. For simplicity, we only include integer and Boolean typed expres-
sions, and we assume that all methods have a return value. The declaration of
interfaces, classes, and methods is completely straightforward and omitted. We
briefly discuss the main language features that are non-standard and the state-
ments associated with them (for a full account, see [7]). The features considered
here are explained by an example below.

Rigorous Encapsulation. Communication between different objects is only
possible via method calls. The fields of an object are strictly private and inac-
cessible even to other instances of the same class and there are no static fields.
There is no code inheritance and only interfaces constitute valid object types.
This enforces the programming to interfaces discipline [11] and ensures that the
heap of an object is only accessed by its own processes.

Asynchronous Communication with Futures. Asynchronous calls are dis-
patched with the statement Fut<T> f = o!m(e), where method m is called on
the object o with parameters e. Upon making this call, a future is bound to f

and the caller continues its execution uninterrupted. A future is a handle to the
called process and may be passed around; in particular, a process may refer to
its own associated future using the keyword destiny. Upon process termination,
its return value may be accessed via the associated future. To read a value from
a future, the statement T i = f.get; is used.

Cooperative Scheduling. In ABS at most one process is active per object.
Active processes cannot be preempted, but give up control when they suspend

Locally Abstract, Globally Concrete Semantics 25

Fig. 2. An example in ABS.

or terminate. Hence the ABS modeler has explicit control over interleaving.
The active process suspends itself either by a suspend statement or by waiting
for a guard. A guard can be a future—then the suspension statement has the
form await f?; and the process may become active again once f has been resolved
(i.e. its process terminated). Otherwise, a guard can be a side-effect-free Boolean
expression—then the suspension statement has the form await e; and the process
may become active again if e evaluates to true. If a future is accessed with f.get

before it has been resolved, then the whole object blocks until f is resolved. When
blocked, an object may still receive method calls, but it will not execute them.

The code between the start and the end of a method, as well as between
suspension statements, can be reasoned about as if it were executed sequen-
tially, because of cooperative scheduling: the active process is guaranteed to
have exclusive access to the local heap of its object.

Given in Fig. 2 is an ABS example covering most ABS syntax categories. It
declares an interface IC with a single public method, implemented in class C and
called in the program’s Main block. After declaring a future l and variables v,
o, a new C object is created and stored in o. As o is new, it runs on a separate
processor from Main. The asynchronous call to n returns a future that is stored
in l and the following get is immediately executed. If the call to n is not yet
completed, the main process blocks until it is. As there is no other process
waiting on o, the call to n will be scheduled provided the scheduler is fair.

26 C.C. Din et al.

Local variable declarations of y and l1 are followed by an asynchronous self
call to m. This cannot start yet, because the execution of n continues with the
conditional, where the second branch is taken. At this point, the execution of n
suspends, and the execution of m can commence. In m the field i is set to the call
parameter, hence this.i == 3 holds when n resumes. Consequently, n returns the
value 13, which will also be assigned to v.

3 Abstract Traces

Our goal is a denotational trace semantics for ABS that, given a piece of ABS
code, yields all possible traces for any local context, where a trace is a finite or
infinite sequence of computation states. By local we mean an arbitrary initial
state, an object this (including the heap), and a future destiny. Since ABS is
non-deterministic, it is clear that we require a collecting semantics, i.e. a set of
traces. More importantly, we want the semantics to be local in the sense that
the evaluation of a given piece of ABS code is independent of the evaluation
of other pieces. In a second stage, the local evaluations will be composed into
well-formed traces that constitute the global system behavior. At first glance,
this seems completely impossible. Look at the following code snippet (closely
related to the example in Fig. 2):

v = f.get; if (v == 0) then o.m() else await f ′? (1)

Behavior of this code depends, for example, on whether the futures f and
f ′ have been resolved or not. Moreover, we need to know on which object o the
method m is called. The branch taken in the conditional depends on the value
of v, which is in turn the result of a previous asynchronous computation. So how
can we achieve locality? The central idea is to abstract away from the unknowns
during the evaluation of local statements:

1. As we cannot know which execution branch is taken, we simply generate
traces for all of them. Hence, the evaluation of a statement yields a set of
traces. This is standard in cumulative semantics [12].

2. Likewise, we don’t know the values of parameters and attributes and, in
particular, of the initial state, so the semantic evaluation will be symbolic.

3. Likewise, as we don’t know the identity of this object, nor that of the future
destiny, evaluation is parametric in them.

Yielding from these ideas is a formalization where we define, for any ABS
statement s, a valuation function valO,F

σ (s) that returns the set of possible traces
resulting from s when started in (a symbolic) initial state σ on object O with
destiny F . Throughout the paper we assume a fixed domain D of semantic
values and drop it from the valuation function to improve readability. We further
assume that all expressions are well-typed and that their evaluation on D is fixed
in a standard manner (e.g., + is addition on the integers, etc.). As indicated
above, we need to be able to evaluate the semantics in symbolic states:

Locally Abstract, Globally Concrete Semantics 27

Definition 1 (Memory location, symbolic/concrete state). Consider the
set of all objects O, all futures F , the set of local variables and parameters
V, the set of attributes (fields) A, and let C be an infinite supply of symbolic
constants. Denote by L = {O.a | O ∈ O, a ∈ A}∪V∪C∪F the set of all memory
locations and by Exp(L) the ABS expressions over � ∈ L. A symbolic state σ is
a function σ : L → Exp(L). Without loss of generality we assume that σ(�) is
fully evaluated whenever σ(�) contains no symbol from L, i.e. σ(�) ∈ D. A state
is called a concrete state if its range is in D and a trace is called a concrete trace
if all its states are concrete.

Our evaluation of (1) starts in a state where σ(v) = v0 and v0 ∈ C is a
fresh constant. Semantic evaluation of a statement returns a set of traces τ over
symbolic states. Allowing symbolic constants in states amounts to a restricted
form of symbolic execution. In order to decide which traces are feasible and which
are not, it is necessary to record path conditions whenever a trace splits, such
as for the conditional statement in the example above. Therefore, we work with
conditioned, symbolic traces of the form pc � τ , where pc is a path condition
that must be satisfiable for the trace τ to be feasible. Path conditions are sets
of quantifier-free Boolean expressions over L. For (1) we would obtain path
conditions of the form {v0 = 0} and {v0 �= 0}.

Now, during the semantic evaluation, we ensure that the value σ(�) of each
symbol � in the path condition and in the symbolic states of a trace τ is correctly
maintained relative to the initial state in τ [13]. Consequently, the symbolic
traces can be easily concretized:

Definition 2 (Concretization of symbolic trace). Conditioned, symbolic
traces are denoted by pc � τ and concrete states by σ. The concretization τσ of
τ is obtained by replacing each σ′ in τ with σ ◦ σ′ and pc with σ(pc). We can
assume that path conditions are automatically evaluated, so that σ(pc) is either
true or false (where empty path conditions are considered to be true).

Notation for Traces. Represent symbolic traces in the sequel by variables τ ,
ω, where τ is typically finite and ω infinite. We use sh for concrete traces, i.e.
traces in the usual sense (the letters stand for “shining trace”). Path conditions,
if present, are explicitly given, but we identify true �sh with sh. The constructors
for traces (symbolic or concrete) are as follows: The empty trace is written ε.
Given a (possibly empty) trace τ , we extend it with a single state σ by writing
τ � σ. A singleton trace consisting of the state σ is written 〈σ〉 = ε � σ.
Concatenation of two traces τ , ω is written as τ · ω and only defined when τ is
finite. The final state of a non-empty, finite trace τ is obtained as last(τ).

Extend sequential composition of programs to traces as follows: Assume that
τ is a trace of statement r and ω a trace of s. To obtain the trace corresponding
to the sequential composition of r and s, the last state of τ and the first state of
ω must be identical, but the resulting trace should not contain a doubled state.
Hence, we define the semantic chop ∗∗ (inspired by [14]):

28 C.C. Din et al.

(pcτ � τ) ∗∗ (pcω � ω) =

{
pcτ � τ if τ is infinite or τ = τ ′ · starve(O)
(pcτ ∪ pcω) � τ · ω′ if last(τ) = σ, ω = 〈σ〉 · ω′

(2)

This definition takes into account a possibly non-terminating first trace,
either because it is infinite or it represents a starving process (starve(O) is a
starvation marker defined below). The definition can be specialized to traces
without path conditions in the obvious way: τ ∗∗ ω is (∅ � τ) ∗∗ (∅ � ω).

4 The Local Semantics of ABS Programs

Execution of ABS will now be formalized using denotational and compositional
local semantics; the main challenge here is the suspension of local control flow.
To meet this challenge, we introduce continuations. We first consider statements
which do not need continuations, before we discuss the continuation mechanism.

4.1 Statements Without Continuations

Syntactic structure of programs guides the definition of the valuation function
valO,F

σ (s). As explained above, given a symbolic state σ, valO,F
σ (s) yields the

set of all possible symbolic traces when s is executed from the initial state σ on
object O with destiny F . We explain it case by case, beginning with the valuation
of scopes that start with local variable declarations; here, bs may contain further
variable declarations, followed by a statement, see Fig. 1:

valO,F
σ ({T � = e; bs}) = {pc � 〈σ〉 · ω | σ′ = σ[�′ �→ valO,F

σ (e)], (3)

pc � ω ∈ valO,F
σ′ ({bs[�′/�]}), isFresh(�′)}.

Evading name clashes between variable names is achieved by replacing �
with a fresh name �′ throughout the scope and evaluate the resulting scope in
the state σ′, where �′ has been initialized with the evaluation of e. The evaluation
function for side effect-free expressions valO,F

σ : Exp(L) → Exp(L) is completely
standard, except valO,F

σ (this) = O and valO,F
σ (destiny) = F . The traces of the

form pc � ω resulting from evaluation of the renamed scope start with σ′, so we
need to prepend σ. The next rule evaluates scopes without leading local vari-
able declarations. These become simply statements after stripping the delimiting
braces:

valO,F
σ ({s}) = valO,F

σ (s)

Meanwhile, the skip statement yields a trace of length one with empty path
condition:

valO,F
σ (skip) = {∅ � 〈σ〉} (4)

Assignment of expressions results in a single trace of length two: from the
initial state σ to the state where � has been updated with the value of e:

valO,F
σ (� = e) = {∅ � 〈σ〉 � σ[� �→ valO,F

σ (e)]} (5)

Locally Abstract, Globally Concrete Semantics 29

Notation for Events in Traces. To model concurrency in our semantics we use
event markers in traces. For example, an object must have been created before
its methods can be called. With event markers it is easy to ensure such properties
via well-formedness conditions over events. For example, each invocation event
on an object o in a given trace must be preceded by a creation event for o. Let
ev(v) be an event marker with arguments v. To insert ev(v) into a trace that
continues with σ, we define an event trace evσ(v) of length three as follows:

evσ(v) = 〈σ〉 � ev(v) � σ.

This notation has the advantage that it is “choppable” with preceding or trail-
ing traces and it ensures that no trace begins or ends with an event marker.
Evaluation of the assignment of new objects is now straightforward:

valO,F
σ (� = new C (e)) = {pc � newEvσ(O, o, valO,F

σ (e)) · τ |
isFresh(o), class(o) = C, σ′ = C.ε(o) ◦ σ,

pc � τ ∈ valO, F
σ′ (� = o)} (6)

Insertion of the event marker newEv happens at the initial state σ. This
creation event is attached to the current object O and represents the creation of
a new object o whose class must be C. To initialize o, define an abstract initial
state C.ε(o) such that (C.ε(o))(a) = a0 for each attribute a of C, where a0 is
a fresh symbol of the same type as a, and let σ′ extend σ with those initial
assignments. The assignment of the newly created object can then be evaluated
by rule (5). The construction is deterministic and results in a single trace of
length five. Asynchronous method calls follow a similar schema:

valO,F
σ (� = e′!m(e)) = {pc � invEvσ(O, valO,F

σ (e′), f,m, valO,F
σ (e)) ∗∗ τ |

isFresh(f), method(f)=m, pc � τ ∈ valO,F
σ (�=f)} (7)

An event marker invEv from the caller O to the evaluated callee valO,F
σ (e′)

is inserted at state σ. The invocation event is associated with a fresh future f ,
the name m of the called method, and the evaluated call arguments valO,F

σ (e).
The call does not change the state and does not suspend, so we can assign the
future to � and proceed. Here the local semantics shows its strength: the called
method is evaluated separately; only later will we take care of synchronization.
Synchronous method calls are not handled using futures, but by inlining:

valO,F
σ (�=e′.m(e))={pc � 〈σ〉 · ω | O′ =valO,F

σ (e′),
lookup(m, class(O′))=T m(T �′){s; return e},

pc � ω∈valO
′, F

σ′ ({T �′ =valO,F
σ (e); s; �′′ =e}; �=�′′),

σ′ =σ[�′′ �→ v0], isFresh(�′′, v0)} (8)

We get all traces pc � ω of the called method, whose implementation is
obtained from a class table lookup of the callee O′. Observe that even when
O′ is a symbolic value, we can still determine its type statically. We initialize

30 C.C. Din et al.

the formal parameters with the call parameters and put the resulting code into
a scope. Consequently, the formal parameters are treated as local variables and
automatically renamed. A fresh variable �′′ will hold the return value and assign
it to �. This causes the only slight complication, because �′′ needs to be initialized
with a fresh value in the state σ′ from where the inlined code is executed. Here,
the predicate isFresh expresses that one or more variable names are (globally)
fresh.

For the evaluation of conditionals, we take the union of the sets of behaviors
of the branches and add appropriate path conditions for each branch:

valO,F
σ (if e then s1 else s2 fi) =

{{valO,F
σ (e) = tt} ∪ pc1 � ω1 | pc1 � ω1 ∈ valO,F

σ (s1)} ∪ (9)
{{valO,F

σ (e) = ff} ∪ pc2 � ω2 | pc2 � ω2 ∈ valO,F
σ (s2)}

We discuss two further cases for sequential statements, before we turn to
rules with continuations. The return statement emits an event marker compEv
for completion, given the current object and future to contain the returned value.

valO,F
σ (return e) = {∅ � compEvσ(O,F, valO,F

σ (e))} (10)

Finally, consider execution of a method m declared in class C, running on
object O with future F : it starts with an event marker invREv representing the
reaction to an asynchronous invocation from an unknown caller O′ and with
unknown argument values v0. This is followed by any of the possible traces
for the method’s implementation. The formal parameters are handled as local
variables initialized with v0 that are put into a scope over the method body s.

valO,F
σ (C.m) = {pc � invREvσ(O′, O, F,m, v0) ∗∗ ω |

pc � ω ∈ valO,F
σ ({T �′ = v0; s}), (11)

lookup(m,C) = T m(T �′){s}, isFresh(O′, v0)}

4.2 Statements with Continuations

All remaining statements may involve suspension, the intermittent scheduling
of other processes, and resumed execution of the suspended statement. Two
problems must be addressed: first, we cannot know the computation state upon
resumption. Second, when we later combine local into global traces, we require
interleaving points. Both are addressed by continuations. We start with the
simplest case, the unconditional suspend statement:

valO,F
σ (suspend) = {∅ � relEvσ(O) · starve(O)} ∪

{∅ � relEvσ(O) · relCont(O,F, skip)} (12)

Release of control of the currently executing process is captured by an event
marker relEv. It has the current object as argument to identify which object

Locally Abstract, Globally Concrete Semantics 31

was released, when global system behavior is composed. Execution after sus-
pension has two cases. First, the current object may suffer from starvation and
never regain control. This situation is captured by the marker starve(O), which
can only occur as the final element of a trace. Second, control is regained but
we do not know what happened “in between” while other processes were exe-
cuting on O. Without knowing the state in which execution will continue, it is
not meaningful to evaluate the rest of the process. This is only achieved later,
when we combine the local, sequential evaluation into the global one. Techni-
cally, we address this problem by ending the trace with a continuation marker
relCont, which captures the return of control after suspension. The arguments of
a continuation marker are the currently executing object, the future associated
with the computation, and the code to be executed after control is regained.
For unconditional suspension this is just a skip statement. The get statement,
which retrieves the value of an asynchronous computation, can also introduce a
continuation marker. There are two branches:

valO,F
σ (� = �′.get) = {pc � compREvσ(O, valO,F

σ (�′), v0) ∗∗ τ |
isFresh(v0), pc � τ ∈ valO,F

σ (� = v0)} ∪ (13)
{∅ � blkEvσ(O, valO,F

σ (�′)) · blkCont(O,F, �=�′.get)}

In the first branch, the future bound to �′ has been resolved. We introduce an
event marker compREv to capture a completion reaction in the current object O.
The actual result is unknown at this point, so we assign a fresh, symbolic value
to �, to represent it. This causes no problem in a symbolic setting, and the
value will be later resolved during composition of global behavior. In the second
branch, the process is scheduled to retrieve the value of an unresolved future. The
process is blocked until the future is resolved, i.e. local control is not released.
This is captured by an event marker blkEv, associated to the current object O
and the future. Similar to unconditional suspension, we do not know how the
state evolves while the process is blocked and put a continuation marker blkCont
at the end of the local trace to enable the correct composition of global traces.

In the sequel we use the convention that traces denoted with τ do not contain
any continuation marker. To fully understand the continuation mechanism it is
useful to look at last branches of the evaluation of sequential composition:

valO,F
σ (r; s)=

{(pcr�τr) ∗∗ (pcs�ωs) |pcr�τr ∈valO,F
σ (r), pcs�ωs ∈valO,F

σ′ (s),
where σ′ = last(τr) if τr is finite, arbitrary otherwise} ∪ (14)

{pcr�τr · relCont(O,F, r′; s) |pcr�τr · relCont(O,F, r′)∈valO,F
σ (r)} ∪

{pcr�τr · blkCont(O,F, r′; s) | pcr�τr · blkCont(O,F, r′)∈valO,F
σ (r)}

Let us evaluate suspend; s. By (12) we obtain a set of traces for suspend

that end with relCont(O,F, skip). By (14) the evaluation of suspend; s is a set
of traces that end with relCont(O,F, skip; s). All evaluations accumulate the
remaining commands in this way, so the top-level continuation contains all code

32 C.C. Din et al.

remaining to be executed. For � = �′.get we similarly obtain from (13) a set of
traces that end with blkCont(O,F, � = �′.get), which can be sequenced with s
to blkCont(O,F, � = �′.get; s). This shows that the get statement is re-evaluated
before the process can proceed with the remaining statements. The first branch
of sequential composition covers the sequential case: r runs without suspension
or blocking. This includes the case when r starves or does not terminate (2).

valO,F
σ (await �?) = {∅ � compREvσ(O, valO,F

σ (�), v0) | isFresh(v0)} ∪
{∅ � relEvσ(O, valO,F

σ (�)) · starve(O)} ∪ (15)
{∅ � relEvσ(O, valO,F

σ (�)) · relCont(O,F, await �?)}

Awaiting a future is similar to suspension (12). Its second and third branch
are almost the same, but in addition to the executing object we need to record
the identity of the future � in the release event marker relEv, to ensure well-
formedness of traces in the global semantics. In the third branch, the await

statement is re-evaluated in the continuation. This models await as a loop that
repeatedly suspends and checks whether the future is available. The latter is
treated in the first branch: to capture the completion reaction, we insert an
event marker compREv, for the future in � and record its value. This value is yet
unknown and set to a symbolic term v0. But how do we know that the future
was actually completed in the first branch? In the local evaluation we cannot
know and we might create ill-formed traces at this point; such traces will be
removed later when we compose the global behavior. Await on fields can be
defined as: valO,F

σ (await e) = valO,F
σ (if e then skip else suspend; await e fi).

An inductive version of loop evaluation can be defined similarly, using the rules
above: valO,F

σ (while e {s}) = valO,F
σ (if e then s; while e {s} else skip fi).

4.3 Local Traces by Example

Figure 3 summarizes the local, abstract traces of the example from Fig. 2. Denote
the empty state by ε and a state σ such that σ(�) = v by [� �→ v]; i.e. states are
unnamed and only relevant parts of their domain are listed. The evaluation of
method m in valO, F

C.ε(O)(C.m) gives a set with one symbolic trace (note that parame-

ter x was renamed to x′), while the evaluation of method n in valO, F
C.ε(O)(C.n) gives

a set with four symbolic traces due to the if−then−else and await statements.
We discuss the traces for method n in detail. The first trace occurs when

the condition of the if−then−else statement is true, and we proceed with the
execution of the synchronous call to method m, which has no release points.
The next three cases occur when the condition of the if−then−else statement
is false, and we evaluate the await statement. In the second trace the future
has been resolved; we do not have a release point and the trace contains a
completion event. The third trace occurs when the future is unresolved. After
release, the process never regains control, i.e. the scheduler is unfair, so the
trace ends with a starvation marker. The fourth trace happens when the process
regains control with a release continuation relCont(O,F, . . .). The evaluation of

Locally Abstract, Globally Concrete Semantics 33

Fig. 3. Examples of local traces. The filled triangle � identifies those traces that
become part of the global trace in Sect. 5.4.

valO, F
[O.i �→vj′ ,y′ �→vy′ ,l′1 �→v2]

(O,F, await l′1?; . . .) results in three traces due to the
await statement, following a similar pattern as the three last traces of n.

The evaluation of the main block in valMain, f0
ε ({Fut〈Unit〉 l = null; . . .})

produces two traces due to the get statement. In the first trace, the future
is resolved and the main block finishes execution. In the second trace, the
future is not resolved and we get a blocking continuation blkCont(Main, f0, . . .),
marking the object as blocked until the future is resolved. The evaluation of
valMain, f0

[l′ �→v3,v′ �→v4,o′ �→o′′,o′′.i �→v5]
({v = l.get; }) again produces two traces, similar as

above. Note that some of these symbolic traces will never result in a concrete
trace of the global system, because they will be eliminated by well-formedness
requirements at the global level or due to inconsistencies in their path conditions.

5 The Global Semantics of ABS Programs

The local semantics of ABS yields for each object O ∈ O, future F ∈ F , and
statement s a set of conditioned, symbolic traces ω ∈ valO,F

σ (s) that describe all
possible behaviors of s when started in state σ. We now construct, for a given
ABS program P , a set of concrete traces sh without path conditions describing

34 C.C. Din et al.

the possible global behaviors of the system; i.e. these traces consist of global
states that fix the value of each variable and each attribute of each object.

5.1 From Locally Abstract to Globally Concrete Behavior

An ABS execution starts from an executable main block {T � = v; s} of an
ABS program P in a concrete global state ε, where each attribute and variable
is initialized with the concrete default value of its type. We assume that the
main block is executed on object Main that is associated with a future f0.2 Our
semantics works as follows: we start to evaluate the main block by picking a
trace from M = valMain, f0

ε ({T � = v; s}). As long as we don’t suspend execution,
this results in a concrete trace with path condition either true or false, because
s is executable and fresh values are only introduced upon suspension. We only
produce traces with feasible path condition, i.e. true, which can be discarded.
Hence, the result is an initial trace sh of P .

Two technical issues need to be addressed. The first is suspension, given by
continuation markers in the symbolic traces. When we encounter a continuation
in a symbolic trace, other traces on O and on other objects should have a chance
to be inserted in the global trace. Where do these other traces come from? In
addition to M we have the following symbolic traces at our disposal:

G = {valO, F
C.ε(O)(C.m) | class(O) = C, m ∈ mtd(C), O ∈ O, F ∈ F , C ∈ P}(16)

Symbolic traces represent possible executions on different objects, started in
abstract states (6) for all objects, all futures, and for each method of each class
in P . Assume that our initial concrete trace sh contains an invocation event
invEvσ(O, v, F,m, v) and that we have suspended trace generation. Note that v

and v are concrete values in D. We select a symbolic trace in valO, F
C.ε(O)(C.m) =

Ω ∈ G and instantiate it with v and v. In addition, we start it with the concrete
state last(sh) instead of C.ε(O). Well-formedness conditions over event sequences
will ensure that only valid ABS traces can be generated in this way.

We formalize this idea in global trace composition rules. These define a rela-
tion → that takes a concrete initial trace sh and a queue q of sets of local symbolic
traces, extends sh by concretizing one such trace, and modifies q accordingly.
Exhaustive, non-deterministic application of these rules yields one of the possible
global system traces of P . The initial state of that global execution is given by:

ε, {M} ∪ G
The second technical issue is non-termination. Starvation is straightforward,

due to the event markers in the local semantics. When we encounter a starving
object, we can simply discard all traces associated with it, and let other objects
continue execution. However, non-terminating statements, such as loops or syn-
chronous recursive calls, contain neither continuation nor starvation markers.
2 This future is never retrieved by any completion reaction event and can be thought

of as the client who started P ’s execution.

Locally Abstract, Globally Concrete Semantics 35

To produce a global system trace, we need to interrupt the generation of such
infinite traces “from time to time” so that other objects in the global system
(except the diverging object) can proceed. Our solution to this problem is to let
the generation of concrete traces be preempted after some finite number of steps,
but we need to exclude arbitrary interleaving of traces, which is not permitted
by the cooperative concurrency model of ABS. Technically, this can be done
by means of interleaving events and interleaving reaction events that contain
enough information to exclude unwanted traces. It has previously been shown
that local scheduling information of this kind is needed to obtain a complete
proof system for cooperative concurrency [15].

5.2 The Rules of the Global Semantics

The correct global composition of traces is governed by events over futures and
objects, which are related by a well-formedness predicate over global traces.
While the correct interaction with futures depends on the communication events
introduced in Sect. 4, the interleaving of different executions is captured by two
kinds of scheduling events, related to internal and external interleaving of execu-
tion. Internal interleaving reflects the cooperative concurrency of ABS objects,
with suspend and await. We let the event schEvσ(O) express that O has sched-
uled a process in state σ. External interleaving reflects how the execution in
different objects may be interleaved in the global trace. This is captured in the
semantics by a pair of interleaving events, ilEvσ(O) and ilREvσ(O), expressing
that object O permits the execution of other objects to be observed in state σ
and that object O continues its execution after such an observation, respectively.

We define the execution relation → for global execution by five composi-
tion rules. The first rule captures external interleaving in the global trace by
preempting the local execution:

pc � τ · ω ∈ Ω Ω ∈ q object(Ω) = O last(sh) = σ
τ �= ε ω �∈ {ε, blkCont(O, ,), relCont(O, ,), starve(O)}

pcσ = true wf (sh ∗∗ τσ) q′ = q \ Ω ∪ {∅ � ilREvlast(τ)(O) · ω}
sh, q → sh ∗∗ τσ ∗∗ ilEvlast(τσ)(O), q′

(17)

Select a candidate set Ω of symbolic traces representing the abstract behav-
iors of a method in object O with a given associated future F , and a specific local
candidate trace pc � τ · ω from that set. From this trace, we select a non-empty
prefix τ which we concretize with the last state σ of sh and require that the con-
cretized path condition pcσ holds. This rule captures interleaving, so we require
that the rest ω of the trace does not introduce an internal scheduling point or
diverges. This is expressed by the condition ω �∈ {. . .}; these cases are handled
by other rules below. If the extension of sh by the concrete candidate trace τσ is
well-formed, expressed by the predicate wf (sh ∗∗ τσ), the interleaving step suc-
ceeds, and the rule produces a new concrete trace sh∗∗τσ ∗∗ ilEvlast(τσ)(O) and a
new queue q′ of behaviors. The new trace ends in an interleaving event to record
that τσ only represents a prefix of the full execution τ · ω. In the new queue q′,

36 C.C. Din et al.

the other possible behaviors of the current method execution in Ω are replaced
by the continuation ω of the selected behavior, prefixed by the dual interleaving
reaction event ilREvlast(τ)(O). This prefixing ensures that other behaviors of O
cannot be selected for execution before this method has completed its execution.

Now consider the case where the selected behavior is a blocking continuation
marker blkCont(O,F, s), which expresses that a get statement is blocked while
waiting for a future to be resolved.

pc � τ · blkCont(O,F, s) ∈ Ω Ω ∈ q object(Ω) = O
τ �= ε pcσ = true wf (sh ∗∗ τσ) last(sh) = σ

q′ = q \ Ω ∪ {pc′ � ilREvlast(τ)(O) ∗∗ ω | pc′ � ω ∈ valO,F
last(τ)(s)}

sh, q → sh ∗∗ τσ ∗∗ ilEvlast(τσ)(O), q′

(18)

In contrast to rule (17), the set Ω of behaviors is here replaced by the behaviors
obtained by expanding the marker to exclude local interleaving at the blocked get

statement. Note that trace sh ∗∗ τσ ends with an event trace blkEvlast(τσ)(O,F).
Next consider the case when the continuation of the selected behavior has

an internal scheduling point, as expressed by the requirement ω ∈ {. . .}:

pc � τ · ω ∈ Ω Ω ∈ q object(Ω) = O
τ �= ε pcσ = true wf (sh ∗∗ τσ) last(sh) = σ

ω ∈ {ε, relCont(O, ,), starve(O)} q′ = q \ Ω ∪ {∅ � ω}
sh, q → sh ∗∗ τσ, q′

(19)

Interleaving events are not required, as the local semantics ensures that τ ends
with a release or completion event that allows internal scheduling to happen.

Now consider the case where the selected behavior is a release continua-
tion marker relCont(O,F, s). In the following rule, the set Ω of behaviors is
replaced by the behaviors obtained by expanding the marker at the concrete
state last(sh). After scheduling the trace we add an interleaving event, which
allows the previous rules to concretize and decompose ω.

relCont(O,F, s) ∈ Ω Ω ∈ q last(sh) = σ

pcσ = true q′ = q \ Ω ∪ {∅ � ilREvσ(O) ∗∗ ω | pc � ω ∈ valO,F
σ (s)}

sh, q → sh ∗∗ schEvσ(O) ∗∗ ilEvσ(O), q′
(20)

Finally, consider the case where the selected behavior is starvation, the starv-
ing process can never be re-scheduled. This is captured by the final rule:

starve(O) ∈ Ω Ω ∈ q wf (sh ∗∗ schEvlast(sh)(O)) q′ = q \ Ω
sh, q → sh, q′ (21)

In this case the concrete trace sh ends with an interleaving event trace, i.e.
object O is in the middle of a sequential execution, a scheduling event for object
O is technically added to sh for well-formedness checking. In addition, the set
of abstract traces Ω associated to the starving method is removed from q to
capture that the process never gets rescheduled.

Locally Abstract, Globally Concrete Semantics 37

5.3 Well-Formed Global Traces

Events in traces must obey certain ordering restrictions to ensure that only valid
traces of a given program can be obtained. This is captured in the composition
rules by a well-formedness predicate. Only the well-formedness of finite, concrete
traces sh needs to be checked and only the information relating to events is of
relevance. We use auxiliary functions filter(sh, f) and filter(sh, o) to filter the
events related to a specific future f and to a specific object o in a finite trace sh,
respectively. The output of these functions is a finite sequence η of events in
which the ordering is the same as in sh. Their definition is obvious and omitted
here. Well-formedness is defined inductively over the length of event sequences
of a trace sh, using auxiliary predicates wff (η, f) and wfo(η, o):

wf (sh) � ∀o∈obj (sh), f ∈ fut(sh).wfo(filter(sh, o), o)∧wff (filter(sh, f), f) (22)

Here, obj (sh) and fut(sh) return the set of all object and future identities
found in trace sh, respectively. Thus, a global trace is well-formed if and only if
the projection of its event trace on any object and any future is well-formed. We
use ew(η, o) and ew(η, f) to return the last event in a non-empty event sequence η
related to o and f , respectively. For example, ew(η · schEv(o), o) = schEv(o). We
define the most interesting cases of wff (η, f) and wfo(η, o).

In a well-formed trace, a release event related to a future f can never be
preceded by a completion event for f , indicating that the future is resolved.
Obviously, the same holds for blocking events.

wff (η � relEv(o, f), f) � wff (η, f) ∧ compEv(o, f,) �∈ η (23)

wff (η � blkEv(o, f), f) � wff (η, f) ∧ compEv(o, f,) �∈ η (24)

We use the symbol “ ” for “don’t care” (implicitly universally quantified)
values. To ensure cooperative scheduling (no local preemption), an interleaving
event related to object o must be immediately followed by the corresponding
interleaving reaction event:

wfo(η � ilREv(o), o) � wff (η, o) ∧ ew(η, o) = ilEv(o) (25)

To prevent scheduling a different process after an interleaving event relating
to an object o, an invocation reaction event or a scheduling event for o should
not directly succeed an interleaving event.

wfo(η � invREv(, o, , ,), o) � wff (η, o) ∧ (ew(η, o) �= ilEv(o)) (26)

wfo(η � schEv(o), o) � wff (η, o) ∧ (ew(η, o) �= ilEv(o)) (27)

The remaining cases are similar and express that, e.g., an invocation reaction
happens after an invocation, scheduling only after a release or a completion, etc.

38 C.C. Din et al.

Fig. 4. A summary of a global trace for the example.

5.4 Global Traces by Example

Figure 4 shows a possible global trace for the example in Fig. 2, by composing
the local traces from Fig. 3. Note that the trace renames all declared variables
and fields. The trace starts with an empty state ε in the main block, then object
o is created and an asynchronous method call to method n in o is invoked. The
Main object is blocked while waiting for the termination of the invoked method n

(i.e. until future l is resolved). There is no local interleaving in object Main.
Interleaving events are used to enable global interleaving at the blocking get

statement. The global trace continues with the execution of method n while
Main is blocked. Since the trace for method n contains a release event relating
to its await statement, method m in object o can be selected for execution.
After completion of m the remaining code of n is scheduled and once that is
completed, the Main process resumes, fetches the value from future l and the
program terminates when the get statement retrieves the value 13. Other possible
global traces can be generated by varying the global interleaving at the get

statement in the Main block and the await statement in method n.

6 Calculus

The main point of a modular, denotational semantics for ABS is to drive the
development of program logics for deductive reasoning. Although this will largely
be the topic of future work, we sketch some opportunities. Starting points are (i)
the dynamic logic for sequential Java implemented in KeY [3], (ii) the dynamic
logic for the ABS version of KeY [16] that permits object-local reasoning about
class invariants, and (iii) a dynamic logic for a sequential language that uses
symbolic trace formulas to specify program behavior [17]. Trace formulas are the

Locally Abstract, Globally Concrete Semantics 39

syntactic counterpart to symbolic traces. All three logics implement a symbolic
interpreter for the sequential language fragments in their calculus. Therefore,
they are an excellent match for the semantics developed here—in fact, program
logics were the motivation for the work presented in this paper. We will merge
these program logics into a single one that is sufficient for invariant reasoning
on local objects with symbolic traces. The logic outlined here is relatively weak,
because global behavior or pre- and postconditions (specifically, return values)
are not addressed, but it is designed with suitable extensions in mind.

6.1 Symbolic Trace Formulas

Our semantics uses symbolic traces to specify the behaviors of local computations
of ABS programs. It is, therefore, natural to have a syntactic representation of
them in the logic. Symbolic trace formulas are due to Nakata & Uustalu [14],
and were intended for an abstract Hoare calculus with co-inductive reasoning
about non-terminating programs. Trace formulas were generalized to dynamic
logic over trace modality formulas in [17]. For our purposes, it is sufficient to
leave trace formulas completely abstract, i.e., a trace formula is an expression Θ
that describes a possibly infinite set of (concrete) traces. There is a semantic
evaluation function such that valO, F

τ (Θ) is true iff τ is one of the traces on O,
F described by Θ. We give an informal example of a typical trace formula:

invREv(, this, f,m, v) � invEv(this, , , n, w) ∗∗ �φ(v, w)� � compEv(this, f,m)

Here, � represents a “happens after” relation (i.e. an arbitrary, finite trace
between the events), ∗∗ is the syntactic equivalent of ∗∗, and �φ� denotes the
occurrence of a state in which φ holds. The trace formula above might be para-
phrased as: “whenever the current object ‘this’ completes method m, then dur-
ing the execution of m there was a call to n such that the arguments v of m and
w of n were in relation φ.” This is a typical example of a class invariant that
can be succinctly expressed via symbolic trace formulas.

Trace modality formulas Ψ are defined on top of trace formulas by taking
them as atomic building blocks that are syntactically closed with respect to the
usual propositional/first-order connectives and the following modalities:

1. If s is an ABS statement and Ψ a trace modality formula, then [[s]]Ψ is a trace
modality formula.

2. If {u} is a trace update and Ψ a trace modality formula, then {u}Ψ is a trace
modality formula.

Trace updates [17] are expressions {� := exp} or {ev(e)} recording state change
effected by assignments (with semantics 〈σ〉 � σ[� �→ valσ(exp)]) or the occur-
rence of communication events. Let U denote a finite sequence of trace updates.

The semantics valτ ([[s]]Ψ) of a trace modality formula [[s]]Ψ and a trace τ

is formally defined as: if τ is finite, O ∈ O, F ∈ F , and τ ′ ∈ valO, F
last(τ)(s), then

τ ∗∗τ ′, if well-formed, is in valO, F
τ (Ψ). In words, any valid trace of s that extends

40 C.C. Din et al.

τ must be a trace of Ψ . If τ is infinite, s is never reached, and τ must be a trace
of Ψ . The semantics of {u}Ψ is similar, by first extending τ according to the
trace update u.

6.2 Selected Reasoning Rules

We define a sequent calculus where antecedents and succedents range over multi-
sets of trace modality formulas. For trace modality formulas Γ and [[s]]Ψ , and
trace updates U , the sequent Γ ⇒ U [[s]]Ψ expresses: if the execution of s on this

with future destiny begins in the last state of a finite trace τ described by Γ
and after applying U , then Ψ must contain any trace generated by the execution
of s and the effect of the updates U that extends τ . For an infinite trace τ in Γ ,
s is not executed, but Ψ must contain τ .

We now discuss four proof rules in more detail. In the rule for assignments,

assign
Γ ⇒ U{� := e}[[r]]Ψ
Γ ⇒ U [[�= e; r]]Ψ

� is a program variable and e a pure (side effect-free) expression. This rule
rewrites the formula by moving the assignment from the program into an update
to capture the state change, here {� := e}. Symbolic execution continues with
the remaining program r. Updates can be viewed as explicit substitutions accu-
mulated in front of the modality during symbolic program execution. Once the
program has been completely executed and the modality is empty, the accu-
mulated updates are applied to the formula after the modality, resulting in an
update- and program-free trace modality formula. In the rule for asynchronous
method calls

asyncCall
Γ, isFresh(f) ⇒ U{invEv(O, this, f,m, e′)}{� := f}[[r]]Ψ

Γ ⇒ U [[�= e!m(e′); r]]Ψ

the premise introduces a constant f representing the future associated with this
method invocation. The left side of the implication ensures that f is fresh. The
right side adds two trace updates, an invocation event generated by this call and
a binding of � to the fresh future f . In the rule for the await statement

await

Γ, class(this) = C ⇒ U IC

Γ,U Ua IC ⇒ U Ua {compREv(this, �, v0)}[[r]]Ψ
Γ ⇒ U [[await �?; r]]Ψ

IC denotes a trace modality formula that serves as the invariant of class C. This
rule has two premises: the first expresses that IC should hold at the process
release point and the second expresses the situation where future � has been
resolved. This is captured by the completion reaction event. Update Ua represents
the unknown trace updates from other processes on the same object. This is
achieved by initializing any location that might be changed by another process

Locally Abstract, Globally Concrete Semantics 41

with a fresh constant. Since class invariant IC is guaranteed by the latest released
process, IC is true by assumption. The rule for the get statement is

get
Γ, isFresh(v0) ⇒ U{compREv(this, �′, v0)}{� := v0}[[r]]Ψ

Γ ⇒ U [[�= �′.get; r]]Ψ

For partial correctness, we can assume that future �′ has been resolved. The
right side of the implication adds two trace updates, a completion reaction event
for �′ with some value v0 and a binding of � to v0. Note that v0 is a fresh
variable because �′ might be resolved on a different object, which makes the
value of v0 invisible. Any information about the value of � must be put into
the class invariant. However, support from pre- and postcondition reasoning in
future work may provide more information about the return value v0.

7 Related Work

This paper is motivated by our aim to devise compositional proof systems to
verify protocol-like behaviors for asynchronously communicating objects. The
general field of trace semantics is too vast to cover here. For languages with
ABS-like features, Din et al. [16,18,19] introduced 4-event trace semantics for
asynchronous method calls and shared futures, which, together with the trace
modality formulas of Nakata et al. [14,17], underlies our work. Recent work [20]
on similar communication structures for ASP/ProActive, using parametrized
labelled transition systems with queues, models interaction with futures in a
very detailed, operational way. In contrast, our work with traces allows futures
to be abstracted into communication events and well-formedness conditions.

Brookes’ action traces [10] bear some similarity to our work. He aims at
denotational semantics using collecting semantics, explicitly represents diver-
gence, and synchronizes communication using events. Action traces have been
used as a semantics for concurrent separation logic [21], where scheduling is
based on access to shared resources with associated invariants (so-called “mutex
fairmerge”). In contrast, we use conditioned traces and continuations, cover pro-
cedure calls by abstract traces, and extend the use of dual events from commu-
nication to different scheduling situations, resulting in a compositional denota-
tional semantics for asynchronous method calls and cooperative concurrency.

8 Conclusion and Future Work

We presented a denotational semantics for an OO concurrent language with
cooperative scheduling that is streamlined for the development of program logics
with trace formulas. The main advantages of the semantics are its composition-
ality and the separation of local and global computations. Technical innovations
include abstract, conditioned traces permitting symbolic evaluation as well as
event pairs to keep track of schedulability. We sketched a simple program logic
with trace formulas that is sufficient for local invariant reasoning. In future work

42 C.C. Din et al.

we will extend it to a calculus that allows to reason about global properties,
including liveness, and that supports method-local specification with contracts.

Acknowledgement. We are grateful to Dave Sands for useful hints and feedback and
to Georges P. for inspiring our use of constraints.

References

1. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). (583)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle (1976)
3. Beckert, B., Klebanov, V., Weiß, B.: Dynamic logic for Java. In: Ahrendt, W.,

Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M. (eds.) Deductive Soft-
ware Verification–The KeY Book: From Theory to Practice. LNCS, vol. 10001, pp.
49–106. Springer, Heidelberg (2016). doi:10.1007/978-3-319-49812-6

4. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebraic
Program. 60–61, 17–139 (2004)

5. Drossopoulou, S., Eisenbach, S.: Describing the semantics of Java and proving type
soundness. In: Alves-Foss, J. (ed.) Formal Syntax and Semantics of Java. LNCS,
vol. 1523, pp. 41–82. Springer, Heidelberg (1999)

6. Krebbers, R., Wiedijk, F.: A typed C11 semantics for interactive theorem proving.
In: Conference on Certified Programs and Proofs, 15–27. ACM (2015)

7. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S., Bon-
sangue, M.M. (eds.) 9th International Symposium on Formal Methods for Compo-
nents and Objects (FMCO 2010), vol. 6957, pp. 142–164. Springer, Berlin (2011).
doi:10.1007/978-3-642-25271-6 8

8. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) 19th International Con-
ference on Computer Aided Verification, CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Berlin (2007). doi:10.1007/978-3-540-73368-3 21

9. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6355, pp. 348–370.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20

10. Brookes, S.: Traces, pomsets, fairness and full abstraction for communicating
processes. In: Brim, L., Křet́ınský, M., Kučera, A., Jančar, P. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 466–482. Springer, Heidelberg (2002). doi:10.1007/
3-540-45694-5 31

11. Meyer, B.: Applying ”design by contract”. IEEE Comput. 25(10), 40–51 (1992)
12. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer,

Heidelberg (1999). doi:10.1007/978-3-662-03811-6
13. Hentschel, M., Hähnle, R., Bubel, R.: Visualizing unbounded symbolic execution.

In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 82–98. Springer,
Cham (2014). doi:10.1007/978-3-319-09099-3 7

14. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. Log. Methods Comput. Sci. 11(1), 1–32 (2015)

15. Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007).
doi:10.1007/978-3-540-71316-6 22

http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-642-25271-6_8
http://dx.doi.org/10.1007/978-3-540-73368-3_21
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/3-540-45694-5_31
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1007/978-3-319-09099-3_7
http://dx.doi.org/10.1007/978-3-540-71316-6_22

Locally Abstract, Globally Concrete Semantics 43

16. Din, C.C., Bubel, R., Hähnle, R.: KeY-ABS: a deductive verification tool for
the concurrent modelling language ABS. In: Felty, A.P., Middeldorp, A. (eds.)
CADE 2015. LNCS, vol. 9195, pp. 517–526. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 35

17. Bubel, R., Din, C.C., Hähnle, R., Nakata, K.: A dynamic logic with traces and
coinduction. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 307–
322. Springer, Cham (2015). doi:10.1007/978-3-319-24312-2 21

18. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behavior of distributed
systems: component reasoning for concurrent objects. J. Logic Algebraic Program.
81(3), 227–256 (2012)

19. Din, C.C., Owe, O.: Compositional reasoning about active objects with shared
futures. Formal Asp. Comput. 27(3), 551–572 (2015)

20. Ameur-Boulifa, R., Henrio, L., Kulankhina, O., Madelaine, E., Savu, A.: Behav-
ioural semantics for asynchronous components. J. Logical Algebraic Methods Pro-
gram. 89, 1–40 (2017)

21. Brookes, S.: A semantics for concurrent separation logic. Theor. Comput. Sci.
375(1–3), 227–270 (2007)

http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-21401-6_35
http://dx.doi.org/10.1007/978-3-319-24312-2_21

On the Decidability of Certain Semi-Lattice
Based Modal Logics

Katalin Bimbó(B)

Department of Philosophy, University of Alberta, Edmonton, AB T6G 2E7, Canada
bimbo@ualberta.ca

http://www.ualberta.ca/~bimbo

Abstract. Sequent calculi are proof systems that are exceptionally suit-
able for proving the decidability of a logic. Several relevance logics were
proved decidable using a technique attributable to Curry and Kripke.
Further enhancements led to a proof of the decidability of implicational
ticket entailment by Bimbó and Dunn in [12,13]. This paper uses a dif-
ferent adaptation of the same core proof technique to prove a group of
positive modal logics (with disjunction but no conjunction) decidable.

Keywords: Sequent calculi ⋅ Modal logic ⋅ Decidability ⋅ Relevance
logic ⋅ Heap number ⋅ Semi-lattice based logic

1 Modal Logics

The well-known modal logic S4 is arguably one of the most successful modal
systems ever invented. It is a system that grew out of Lewis’s original system of
strict implication defined in [29] by the addition of the axiom ¬◊¬p � ¬◊¬¬◊¬p,
where � is strict implication (see [15]). S4 was given the nowadays standard
formulation of a normal modal logic as an explicit extension of classical propo-
sitional logic by Gödel in [24]. S4 has a close connection to intuitionistic logic
and topology, and it has a straightforward relational semantics over pre-ordered
(or partially ordered) frames. The list of remarkable features goes on and on.

S4 can be formulated by adding two rules, namely, (◻�) and (�◻) to the
propositional part of LK from [23].

Γ◻ � ϕ

Γ◻ � ◻ϕ
(�◻)

ϕ,Γ �Δ

◻ϕ,Γ �Δ
(◻�) (1)

This formulation assumes that the other modality, which is often denoted by
◊ is defined (i.e., ◊ϕ is simply an abbreviation for ¬◻¬ϕ). This is unproblematic
in the case of classical logic, however, we do not always want to have a negation
in a logic or we simply want to have both these modalities as primitives.1

The sequent calculus formulation of S4 with both modalities amends (�◻)
to permit multiple formulas in the succedent. The new (�◻) rule and the rules
for ◊ were introduced in Kripke [27], and they are as follows.
1 See for example Dunn [20] and Kripke [27].

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 44–61, 2017.
DOI: 10.1007/978-3-319-66902-1_3

http://orcid.org/0000-0002-6769-9704

On the Decidability of Certain Semi-Lattice Based Modal Logics 45

Γ◻ �Δ◊, ϕ

Γ◻ �Δ◊,◻ϕ
(�◻)

Γ �Δ,ϕ

Γ �Δ,◊ϕ
(�◊)

ϕ,Γ◻ �Δ◊

◊ϕ,Γ◻ �Δ◊
(◊�)

Our goal in this paper is to investigate the problem of decidability for logics
that contain a pair of modalities that have introduction rules analogous to the
ones above, but they lack much of what an underlying 2-valued calculus gives.
We are not concerned with interpretations here, however, we note that it is clear
that once we start to drop rules from LK, the “meanings” of the connectives
change. In order to preclude confusions stemming from connotations, we will
use a pair of neutral symbols—⪧ and ⪦—for the two unary connectives we take
to be modalities. Another effect of omitting rules from LK is that space opens
up for new versions of connectives—even without the introduction of multiple
structural connectives. We will take advantage of this opportunity by including
both ∨ and + in all our logics.

Our strategy is to fix a common set of connective rules for a group of logics.
The choice of the connectives and of the rules for them is motivated by relevance
logic (see, for example, [1,2]). We will vary the structural rules and we will select
9 logics to scrutinize. We will refer to the whole group of these logics or to an
arbitrary element of the group as LX*.

Definition 1. The signature for LX* is ⟨○2,→2,+2,∨2,⪧1,⪦1
⟩ (with the arities

indicated in the superscripts). The set of formulas is generated by the following
context-free grammar (cfg) in Backus–Naur form (bnf).

ϕ� Prop ∣ (ϕ ○ϕ) ∣ (ϕ→ ϕ) ∣ (ϕ +ϕ) ∣ (ϕ ∨ϕ) ∣ ⪧ϕ ∣ ⪦ϕ,

where Prop is a non-terminal symbol that can be rewritten as any of the denu-
merably many propositional letters.2

Remark 1. Occasionally, it is convenient to be able to refer to the connectives
by names, which are somewhat mnemonic. We call ○ fusion, → implication, +
fission, ∨ disjunction, ⪧ solid modality and ⪦ fluid modality. The latter two terms
are chosen to keep the usual modal connotations at bay.

In the LX* logics, we want ○ and + to be connectives that are commuta-
tive and associative. Then, it is felicitous to formulate the notion of sequents
using multisets. In order to make this paper more or less self-contained (and to
minimize the chance of terminological confusions), we include the definition of
a multiset as well as an illustration of the concept.

Definition 2. A multiset is the set of finite sequences comprising the same
elements that is closed under permutation.3

2 We may use other letters than ϕ, from the latter part of the Greek alphabet, as
variables for formulas.

3 In this paper, we only have use for finite multisets; thus, we use the term in a
narrower sense than it is used elsewhere in the literature.

46 K. Bimbó

An essentially equivalent definition of multisets can be given as certain
functions—see, for example, the definition of multisets in [10]. We are not inter-
ested in the reconstruction of sequences or multisets as sets here, and we take
sets, multisets and sequences to be different ways of collecting objects together.
Thus, informally speaking, a multiset is a finite set, in which the elements may
appear more than once, hence, the number of listings matters.

Example 2. If the multiset A has two a’s and b’s as its elements, then we could
list the elements of A as a, a, b, b, or equivalently, as b, a, a, b, etc. Of course,
⟨a, a, b, b⟩ may be a different 4-tuple than ⟨b, a, a, b⟩ is, but a permutation trans-
forms one into the other. On the other hand, {a, b} = {a, a, b, b}. The latter
specification of a set is not only informal, but unnecessarily repetitive.

Notation 3. Obviously, we can describe a multiset by listing its elements. To
distinguish an array from a multiset, we may enclose the latter into [], and we
use ; as the separator, because our multisets of formulas are associated to fusions
or fissions of formulas. The letters α,β, γ, . . . range over multisets of formulas of
the LX* logics. If ϕ is an element of α thrice, then we may say that the type ϕ
is in α, and the tokens ϕ,ϕ and ϕ are in α.

Definition 3. If α and β are multisets, then α∩β (the intersection of α and β)
and α⋓ β (the union of α and β) are multisets. α ∩ β has all the types that are
in both α and β, and the number of tokens for each type is the lesser number
of tokens of that type in the two. α⋓ β has all the types that are either in α or
in β, and the number of tokens for a type is the sum of the number of tokens of
that type in α and that in β.

We defined both ∩ and ⋓ to stress the lack of (informal) duality between
them. ∩ is min on the number of tokens, whereas ⋓ is not max, rather +. For
our purposes, ⋓ is the important operation.

Definition 4. A sequent is an ordered pair of multisets of formulas. We write
α � β instead of ⟨α,β⟩. α is the antecedent and β is the succedent of the sequent.

Notation 4. The empty set is unique and so is the empty multiset, which we
denote by ∅. However, when ∅ appears in a sequent, we replace it with space.
To formulate the rules of our calculi, we will use α;ϕ (or ϕ;α) instead of α⋓[ϕ].
Similarly, α;β is a shorthand for α⋓ β.

Definition 5. The LX* logics comprise axiom (I) and rules from among the
following.

ϕ � ϕ (I)

α � ϕ;β
α � ϕ ∨ ψ;β

(�∨1)
α � ψ;β

α � ϕ ∨ψ;β
(�∨2)

α;ψ � β α;ϕ � β

α;ϕ ∨ψ � β
(∨�)

α � ϕ;β γ � ψ; δ
α;γ � ψ ○ ϕ;β; δ

(�○)
α;ψ;ϕ � β

α;ϕ ○ ψ � β
(○�)

On the Decidability of Certain Semi-Lattice Based Modal Logics 47

α;ψ � ϕ;β
α � ψ → ϕ;β

(�→)
α � ψ;β γ;ϕ � δ

α;γ;ψ → ϕ � β; δ
(→�)

α � ψ;ϕ;β
α � ϕ +ψ;β

(�+)
α;ψ � β γ;ϕ � δ

α;γ;ϕ + ψ � β; δ
(+�)

α⪧ � ϕ;β⪦

α⪧ � ⪧ϕ;β⪦
(�⪧)

α;ϕ � β

α;⪧ϕ � β
(⪧�)

α � ϕ;β
α � ⪦ϕ;β

(�⪦)
α⪧;ϕ � β⪦

α⪧;⪦ϕ � β⪦
(⪦�)

α � ψ;ψ;β
α � ψ;β

(�w)
α;ϕ;ϕ � β

α;ϕ � β
(w�)

α � ⪦ϕ;⪦ϕ;β
α � ⪦ϕ;β

(�⪦w)
α;⪧ψ;⪧ψ � β

α;⪧ψ � β
(⪧w�)

α � β

α � ⪦ϕ;β
(�⪦k)

α � β

α;⪧ψ � β
(⪧k�)

α � β

α � ψ;β
(�k)

α � β

α;ϕ � β
(k�)

Superscript modalities such as α⪦ and β⪧ indicate that for each token ψ in
the multiset there is a formula ϕ such that ψ is ⪦ϕ or ⪧ϕ, respectively.

Remark 5. The axiom is labeled with the identity combinator I. The con-
traction rules are labeled with w after the binary regular duplicator W, and
the thinning rules are labeled with k after the binary regular cancellator K.
Although these rules are not combinatory rules in the sense of [21], the analogy
between structural rules and combinatory effects is profound. This correlation
was observed and noted long ago (see, for example, Curry [17]).

If we keep all the operational rules fixed, then there are still plenty of logics
that could be defined.4 However, the vast majority of those logics would be less
than well motivated. We deem a handful of them worthy of interest.

Definition 6. The LX* logics that we consider are defined by axiom (I) and the
connective rules together with the structural rules with checkmarks as indicated
in Table 1.5

4 A quick approximation suggests that there are 89 logics that can be expected to be
distinct.

5
× excludes a pair of rules; � shows that the rules are easily derivable, hence, it is
better to omit them—for the sake of economy in proofs.

48 K. Bimbó

Table 1. Structural rules in nine logics

Notation 6. The labels for the logics are intended to be somewhat reminiscent
of but not identical to common abbreviations for certain logics. For example, the
principal simple types of the combinators B,C and I are provable in bci. However,
we included not only →, but also ○, +, ∨ and the modalities ⪧ and ⪦ (which are
not in BCI). Likewise, s4 differs from the logic S4.

Definition 7. A proof is a tree, in which the vertices are occurrences of
sequents; the leaves are instances of (I), and a parent node is justified when
that node and its children constitute an instance of a rule. The root of the proof
tree is the sequent proved.

A formula ϕ is a theorem of an LX* logic iff � ϕ has a proof.

Lemma 8. The logic s4 is the negation-free fragment of the normal modal
logic S4.

Proof (sketch). From Sect. 2, we (will) know that the cut rule is admissible in s4,
that is, s4 is a well-formulated sequent calculus. We also assume that we know
that S4 can be formalized as an extension of the propositional part of LK from
[23]. Namely, the two rules for ◻ in (1) have to be added, and if ◊ is a primitive
too, then two more rules are included for ◊ and the (�◻) rule is modified by
permitting a parametric set Δ◊ on the right-had side of the �.

The signature of s4 differs from that of usual formulations of S4. In other
words, we have to explain how to “translate” our formulas. In the presence of
(k�), (�k), (w�) and (�w),� (ϕ ∨ ψ) → (ϕ + ψ) and � (ψ + ϕ) → (ψ ∨ ϕ) are
provable. This means that + is a notational variant of ∨. Also, ○ is idempotent and
the following three sequents are provable: � (ϕ○(ψ∨ϕ)) → ϕ,� ψ → ((ψ∨ϕ)○ψ),�
(ϕ ○ (ψ ∨ χ)) → ((ϕ ○ψ) ∨ (ϕ ○ χ)). Implication is the residual of fusion, that is,
→ behaves as ⊃ does in LK. This means that →, ○ and ∨/+ are exactly like the
positive fragment of classical propositional logic. Setting ⪧ to ◻ and ⪦ to ◊, the
(⪧�), (�⪧), (⪦�) and (�⪦) rules are the rules for ◻ and ◊. There are no other
connectives unaccounted for in s4. �

2 Cut Theorems

We formulated our nine LX* logics without the cut rule. However, this does
not mean that we would want to neglect the cut rule, rather, the opposite. The

On the Decidability of Certain Semi-Lattice Based Modal Logics 49

cut rule is extremely important for a proof that a sequent calculus defines an
algebraizable logic, and that it is equivalent to an axiomatic system.

Definition 9. The cut rule is the following.

α � ψ;β γ;ψ � δ

α;γ � β; δ
(cut)

Later we may refer to this cut rule as the single cut—to distinguish this rule
from some other versions of cut. It is easy to see that the cut rule is not a derived
rule in any LX* logic. However, anything provable with cut is provable without
the cut. This is the essence of Theorem 15.

Definition 10. The multiset of formulas in each rule is divided into three cat-
egories: principal, subaltern and parametric formulas. The parametric formulas
are those in α,α⪧, β, β⪦, γ and δ. In a proof (where the rules are instantiated
with concrete sequents), any of these may be ∅. The principal formulas are the
newly introduced formulas in the lower sequent of a rule, as well as, the displayed
formulas in the lower sequent in the contraction rules. The subalterns are the
formulas from which the principal formulas result—save in the thinning rules,
where there are none. There is a 1–1 correspondence between the elements of
multisets of parametric formulas bearing the same letter in a premise and in the
conclusion, and we assume that a particular such bijection is fixed when needed.6

There is a range of terms and definitions used in the literature in proofs of
cut theorems; hence, we briefly state the notions used in the proof of the next
theorem.

Definition 11. A formula ϕ is an ancestor of ψ when it is in the transitive
closure of the relation emerging from the above analysis through (i) and (ii).

(i) A subaltern is an ancestor of the principal formula in a rule.
(ii) A parametric formula in an upper sequent is an ancestor of its matching

token in a lower sequent.7

For the next two definitions, we assume that we are given a proof, which may
contain applications of the cut rule. We focus on a cut that has no cuts above it
in that given proof.

Definition 12. The left rank of the cut is the maximal number of consecutive
sequents above the left premise of the cut in which ancestors of the cut formula
that are the same type as the cut formula occur in the succedent increased by 1.
The right rank is the number calculated dually. The rank of the cut is the sum
of the left and right ranks of the cut.

6 This analysis is fairly usual. For the ideas behind it and examples of it, we refer to
[17] (and also to [9]).

7 This notion is an adaptation of a similar notion from Curry [17].

50 K. Bimbó

Definition 13. The contraction measure of the cut is the number of applica-
tions of contraction rules to ancestors of the cut formula that are the same type
as the cut formula in the subproof rooted in the lower sequent of the application
of the cut rule.

Remark 7. The previous two definitions depend on the notion of ancestors,
and they reflect Curry’s insight that the subformula property allows tracking a
formula to its origins within a proof. Then, the trace yields a tighter control over
the proof itself.

Definition 14. The degree of a formula ϕ is denoted by d(ϕ).

(i) If ϕ ∈ Prop, then d(ϕ) = 0.
(ii) If ϕ is ⊙ψ (where ⊙ is a unary connective), then d(ϕ) = d(ψ) + 1.
(iii) If ϕ is ψ�ς (where � is a binary connective), then d(ϕ) = d(ψ) + d(ς) + 1.

Theorem 15 (Cut theorem). In any LX* logic, the cut rule is admissible.

Proof. The structure of the proof is fairly usual. A proof contains finitely many
applications of the cut rule. If there is an application of the cut rule, then there
is one that is at the top, in the sense that the subtree of the proof tree rooted
in the lower sequent of the cut contains no other applications of the cut rule.
We show that this subtree can be transformed into a proof tree with the same
root but with no applications of the cut rule. Then, finitely many iterations of
the argument replace the original proof tree with finitely many cuts with a proof
tree (of the same sequent) with no applications of the cut rule.

The main part of the proof is by triple induction on the degree of the cut
formula, on the contraction measure of the cut and on the rank of the cut. We
cannot provide an exhaustive list of cases here; rather, we include two sample
steps, and omit the remaining details.8

1. If modalities are introduced in the premises of the cut, then one of the cases
goes as follows (and it is justified by d(ψ)+1 = d(⪦ψ)). (We omit ⋮ everywhere;
that is, the top sequents are not assumed to be axioms. The symbol “�”
indicates the transformation on the proof tree.)

(cut)

(�⪦)
α � ψ;β

α � ⪦ψ;β
γ⪧;ψ � δ⪦

γ⪧;⪦ψ � δ⪦
(⪦�)

α;γ⪧ � β; δ⪦
�

α � ψ;β γ⪧;ψ � δ⪦

α;γ⪧ � β; δ⪦
(cut)

2. The next sample step illustrates a reduction in the rank of the cut.

(cut)
ε � χ;η

α � ϕ;β γ;χ;ψ � δ

α;γ;ϕ→ ψ;χ � β; δ
(→�)

α;γ; ε;ϕ→ ψ � β; δ;η
�

8 More details of a triple-inductive proof of the admissibility of the cut rule for a logic
with no lattice operators may be found in [8]. Various enhancements of a more usual
double-inductive proof of the cut theorem were introduced in [6,7], where a goal was
to accommodate constants like Y, y and t.

On the Decidability of Certain Semi-Lattice Based Modal Logics 51

α � ϕ;β

ε � χ;η γ;ψ;χ � δ

γ; ε;ψ � δ;η
(cut)

α;γ; ε;ϕ→ ψ � β; δ;η
(→�)

�

The upshot of the theorem is that the LX* logics are reasonable logics (i.e.,
they are structural, in algebraic terminology). Also, we may focus on cut-free
proofs without a loss of provable sequents.

Lemma 16. Cut-free proofs in the LX* logics possess the subformula property.
That is, if ϕ occurs (as a type) anywhere in a proof of α � β, then ϕ is a
subformula of a formula in α or in β.

Proof. The LX* logics have no special zeroary connectives, hence, the claim
follows by a simple inspection of the rules. (Cf. LEt

→
in [7] for a more complicated

situation.) We note that the contraction rules may reduce the number of tokens,
but they do not omit types. �

3 Decidability

The decidability of a logic may be proved in various ways. This is especially
true for propositional modal logics, for which semantic methods have been used
widely. Probably, the best-known semantic technique is filtration that relies on
the relational semantics of normal modal logics, but algebraic methods have been
successfully applied in some cases. It is not completely straightforward (or easy)
to define set-theoretic semantics for the LX* logics. We cannot go into a detailed
explanation of the reasons beyond mentioning that in the absence of conjunction,
the usual set-theoretic objects—“theories” of some kind or another (or various
sorts of filters, algebraically speaking)—are not available. In any case, we are
interested here in the sequent calculus formulations of the LX* logics and the
properties that we can discover using the sequent calculi.

Sequent calculi are preeminently suitable for proofs of decidability (starting
with the proof of the decidability of propositional intuitionistic logic). Curry
[16] came up with the idea of discarding the (explicit) contraction rules in lieu
of repeating the principal formulas of the connective rules in the premises—
together with a more relaxed form of the axiom p � p (or ϕ � ϕ) by allowing other
formulas in the axiom as in Γ,ψ � ψ,Δ. Curry proved that the modifications
(for the logics he considered) resulted in sequent calculi that proved the same
sequents, moreover, the height of the proof tree did not increase. A lemma with
a similar claim for a particular logic is often referred to as Curry’s lemma or as
height-preserving admissibility of contraction. A decidability proof then proceeds
in a bottom-up fashion, so to speak. In order to determine whether a sequent is
provable, a complete proof-search tree is constructed, which is in fact explores all
the possibilities as to how the sequent could have been proved. While the search
is exhaustive (perhaps, in more than one sense :), its finiteness is guaranteed by
the limitations that the cut theorem and Curry’s lemma impose (together with

52 K. Bimbó

an easy use of Kőnig’s lemma). It is sufficient to look for cut-free proofs, and
there is no need to seek proofs that are redundant in a sense stemming from
Curry’s lemma.

Taking Γ,ψ � ψ,Δ as an axiom has the effect of turning thinning into an
admissible rule too. This is not acceptable from the point of view of many logics—
from the Lambek calculi to relevance logics.9 Kripke [26] introduced another
idea, namely, instead of requiring the principal formulas to be parametric in the
premises, he permits them to be parametric. Of course, this idea is compatible
with thinning as a rule, but what is really intriguing about it is that, when
thinning is excluded, it still renders contraction admissible.

If thinning is not a rule, then Kripke’s invention is an indispensable compo-
nent of the bottom-up proof search. It reflects the insight that a formula has to
be introduced in order to be contracted, hence, a limited amount of contraction
in the operational rules is sufficient in place of an explicit contraction rule.

To guarantee the finiteness of the proof-search tree, Kripke introduced a
lemma, which, nowadays, is called Kripke’s lemma. Originally, this lemma is
about cognate sequents, and an excellent presentation is in Dunn [19, Sect. 3.6].
In the LX* logics, a pair of sequents are cognate if their antecedent and succedent
multisets comprise the same types. However, later on, it was discovered that
Kripke’s lemma is equivalent to various other lemmas (see [19,31]). For example,
a lemma concerning vectors is stated and proved by induction in Kopylov [25,
Lemma 2.2], which also appears to be equipotent to Kripke’s lemma.

Remark 8. Here is a number-theoretic analog of Kripke’s lemma that is easy
to state; the claim itself is self-evident.10 Let us consider the positive integers.
If we fix P , a finite set of primes, then there are finitely many numbers such
that they have no other prime factors (than those in P), and they pairwise do
not divide each other. For instance, if we start with {3}, then we could pick
27, but then 1, 3 and 9 are excluded (because 3 ∣ 27 and 9 ∣ 27). We can add to
our collection 81 and 243, but 729 is excluded (because 27 ∣ 729), and so is any
higher power of 3. The example is intended to be simple, but the case of one
prime factor generalizes to the case of n prime factors without any difficulty.

Note 9. Before we embark on proofs of decidability for our LX* logics, it seems
prudent to point out that some of our logics (possibly, in a slightly different
formulation) and some closely related logics are already known to be decidable.
For instance, Meyer [30] proved LR◻ decidable, which is in close proximity to
bciw. Linear affine logic was proved decidable in Kopylov [25], which implies
the decidability of bck
. The logic that was proved decidable in Bimbó [8] is
orthogonal to bci

�
, because it has ¬ but lacks ∨. For further relevant results, see

[14,31].

9 See, in chronological order, [28], [1], [22], [11], as well as [7] for motivations and logics
that leave out the thinning rules from their sequent calculus formulations.

10 See Meyer [31] for a discussion of conceptual links that can be created between
Dickson’s lemma and Kripke’s lemma.

On the Decidability of Certain Semi-Lattice Based Modal Logics 53

Definition 17. We partition the LX* group into three subgroups: LX*
1 = {bci,

bci�,bck}, LX*
2 = {bciw,bciw�, s4} and LX*

3 = {bci

,bci

�
,bck
 }.

Remark 10. The rationale behind the division is that we approach the question
of decidability similarly for the members of the subgroups, but with some differ-
ences between the subgroups. In LX*

1, there is no contraction, which means that
Curry’s bottom-up proof search suffices. The LX*

2 logics contain the (w�) and
(�w) rules, and we follow Kripke’s approach. For the LX*

3 logics, we enhance
the Curry–Kripke technique with a new proof search bounded by heap numbers.

We will deal with LX*
2 first, where the Curry–Kripke technique is applicable.

Definition 18. The logics (∣bciw∣), (∣bciw�∣) and (∣s4∣) are defined by the axiom
(I) and the following connective rules together with the thinning rules from
the matching unbracketed logics. (The (k�), (�k), (⪧k�) and (�⪦k) rules are
unchanged, that is, they are exactly as in Definition 5. We do not repeat those
rules here, though (∣bciw�∣) and (∣s4∣) contain some of them.)

α � ϕ;β
α � (∣ϕ ∨ ψ;β∣)

(∣�∨1∣)
α � ψ;β

α � (∣ϕ ∨ψ;β∣)
(∣�∨2∣)

α;ψ � β α;ϕ � β

(∣α;ϕ ∨ ψ∣) � β
(∣∨�∣)

α � ϕ;β γ � ψ; δ
(∣α;γ∣) � (∣ψ ○ ϕ;β; δ∣)

(∣�○∣)
α;ψ;ϕ � β

(∣α;ϕ ○ ψ∣) � β
(∣○�∣)

α;ψ � ϕ;β
α � (∣ψ → ϕ;β∣)

(∣�→∣)
α � ψ;β γ;ϕ � δ

(∣α;γ;ψ → ϕ∣) � (∣β; δ∣)
(∣→�∣)

α � ψ;ϕ;β
α � (∣ϕ + ψ;β∣)

(∣�+∣)
α;ψ � β γ;ϕ � δ

(∣α;γ;ϕ + ψ∣) � (∣β; δ∣)
(∣+�∣)

α⪧ � ϕ;β⪦

α⪧ � ⪧ϕ;β⪦
(�⪧)

α;ϕ � β

(∣α;⪧ϕ∣) � β
(∣⪧�∣)

α � ϕ;β
α � (∣⪦ϕ;β∣)

(∣�⪦∣)
α⪧;ϕ � β⪦

α⪧;⪦ϕ � β⪦
(⪦�)

The (∣ ∣) notation indicates potential contractions to the following extent.

(1) The principal formula ψ occurs in a multiset of parametric formulas α.
Then: (∣ψ;α∣) is either ψ;α or α.

(2) A formula ψ occurs is both multisets of parametric formulas α and β.
Then: (∣α;β∣) is either α;β or α;β with an occurrence of ψ omitted.

(3) The principal formula ψ occurs in both multisets of parametric formulas α
and β.
Then: (∣ψ;α;β∣) is ψ;α;β or ψ;α;β with one or two occurrences of ψ omitted;
in each case the parametric formulas are dealt with as in (2).

54 K. Bimbó

Remark 11. We should emphasize that no contractions are mandatory within
(∣ ∣), and whatever contractions are performed, they never lead to a loss of a type
from a multiset. Sequents are finite, hence, each application of an operational rule
involves finitely many contractions. However, the number of possible contractions
depends on the size and shape of the premises to which a rule is applied, not
simply on what the rule is.

The operational rules above do not introduce vagueness or indeterminacy into
the concept of a proof, because in any proof, which comprises concrete sequents,
the number of contractions can be determined simply by counting formulas.

Remark 12. There are no structural rules listed in the previous definition. Con-
tractions are omitted, because the goal is to limit the number of contractions,
so that only useful contractions are considered. Thinnings are omitted from
the listing, because if the application of a thinning rule would create a sequent
where contraction is applicable, then the applications of that thinning rule can
be retracted. But we reiterate that if some sort of thinning was in an LX*

2 logic
(as per Definition 6), then the same rule is in the (∣ ∣)’d version of the logic.

Note also that in the operational rules (�⪧) and (⪦�), no contractions are
permitted (or possible). The principal formulas of those rules are always distinct
from all the types in the multiset of parametric formulas with which they are
joined.

We defined three new sequent calculi; therefore, we have to provide a cut
theorem for them. (Of course, the labels for the logics express our aim of defining
the same logics as before. However, we will know that we have reached that goal
after the next two theorems.)

Definition 19. The left rung of the cut is the length of the longest path in
the proof tree starting with the left premise of the cut in which the cut formula
occurs in the succedent of each sequent on the path. The right rung of the cut is
the length of the longest path in the proof tree starting with the right premise
of the cut in which the cut formula occurs in the antecedent of each sequent on
the path. The rung of the cut is the sum of the left and right rungs of the cut.

The notion of a rung (if not the term itself) is a parameter that is often used
in proofs of cut theorems.

Remark 13. In the proof of Theorem 15, we used the single cut rule.11 However,
the admissibility of the single cut is typically proved via a detour through other
forms of the cut in calculi that include contraction in some form. This is so
in the calculi that are designed to prove decidability using the Curry–Kripke
technique.12

11 The cut theorem is proved using the single cut in Lambek [28] and in display logics
in Belnap [3] and Anderson et al. [2].

12 The so-called mix rule in [23] and the multicut rule explicitly stated, for example,
in Dunn [18] are versions of the cut that were introduced specifically to facilitate
the inductive proof of the cut theorem for the single cut. An early publication that
exhibits a suitable version of cut in connection to a decidability proof using the
Curry–Kripke method is [4], which is a precursor of the more readily available [5].

On the Decidability of Certain Semi-Lattice Based Modal Logics 55

The cut rule used in the proof of the next theorem builds in contraction, and
it is formulated as

α � ψ;β γ;ψ � δ

(∣α;γ∣) � (∣β; δ∣)
(∣cut∣).

It is obvious that the single cut rule is a special instance of this rule.

Theorem 20 (Cut theorem). The single cut rule is admissible in the three
logics (∣bciw∣), (∣bciw�∣) and (∣s4∣).

Proof. The strategy is once again to eliminate a cut with no cut above it. The
proof is by double induction on the degree of the cut formula and on the rung
of the application of the cut rule. Once again, we can only include here a couple
of steps as illustrations to convey the flavor of the proof.

1. Let us consider a case for ∨. The degree of a disjunction is strictly greater
than the degree of the disjuncts, that is, d(ψ ∨ϕ) = 1 + d(ψ) + d(ϕ).

(∣cut∣)

(∣�∨∣)
α � ϕ;β

α � (∣ψ ∨ϕ;β∣)
γ;ψ � δ γ;ϕ � δ

(∣γ;ψ ∨ϕ∣) � δ
(∣∨�∣)

(∣α;γ∣) � (∣β; δ∣)
�

α � ϕ;β γ;ϕ � δ

(∣α;γ∣) � (∣β; δ∣)
(∣cut∣)

2. If the cut formula is parametric in the left premise, then that premise might
have resulted by (∣+�∣).

(∣cut∣)

(∣+�∣)
α;ψ � β γ;ϕ � χ; δ
(∣α;γ;ϕ + ψ∣) � (∣χ;β; δ∣) ε;χ � η

(∣α;γ; ε;ϕ + ψ∣) � (∣β; δ;η∣)
�

α;ψ � β

γ;ϕ � χ; δ ε;χ � η

(∣γ; ε;ϕ∣) � (∣δ;η∣)
(∣cut∣)

(∣α;γ; ε;ϕ +ψ∣) � (∣β; δ;η∣)
(∣+�∣)

�

Theorem 21 (Curry’s lemma). Let α′ � β′ be a sequent that results in bciw
from α � β by finitely many applications of the (w�) and (�w) rules. If T is a
proof tree with height h of a sequent α � β in (∣bciw∣), then there is proof tree
T′ of the sequent α′ � β′ with height h′ such that h′ ≤ h. Similarly, for the two
other pairs of logics: bciw� and (∣bciw�∣), s4 and (∣s4∣).

Proof. Both parts of the claim will be important for the decidability proofs
later on. The admissibility of the two contraction rules ensures that no provable
sequents are lost in moving to the (∣ ∣)’d logics. Both in the inductive proof of
this claim and in the proof search it is crucial that sequents that would result
by the (w�) and (�w) rules have shorter proofs than the longer sequents (from
which they are obtained) have. The proof is by induction on h, the height of the
given proof tree. (Once again, we omit almost all cases due to lack of space.)

56 K. Bimbó

1. If α � β is an instance of (I), then α′ � β′ is α � β; hence, the claim is
obviously true.

2. We will abbreviate n tokens of ϕ in a multiset by ϕn (assuming n ≥ 1). Given
n, n′ ≤ n and n′ ≥ 1. Let us consider the (∣�○∣) rule.

α;χn � ϕ; (ϕ ○ ψ)m; ςi;β γ;χj � ψ; (ϕ ○ ψ)k; ς l; δ
α;γ;χ(n+j)′ � (ϕ ○ ψ)(m+k)′ ; ς(i+l)′ ;β; δ

i.h.
�

α;χn′ � ϕ; (ϕ ○ ψ)m
′

; ςi
′

;β γ;χj′ � ψ; (ϕ ○ ψ)k
′

; ς l
′

; δ
α;γ;χ(n′+j′)′ � (ϕ ○ ψ)(m′+k′)′ ; ς(i′+l′)′ ;β; δ

It is easy to see that if we want each of χ and ς to have at least 2 occurrences
in the lower sequent, then n′+j′ and i′+ l′ (i.e., applications of the hypothesis
of the induction) suffice. Similarly, for 3 occurrences for ϕ ○ ψ. However, if
(n+ j)′ = 1, (m+ k)′ = 1 or 2, or (i+ l)′ = 1, then we have the upper sequents
by the hypothesis of the induction, and the contractions that are part of
the (∣�○∣) rule yield the desired lower sequent. Here is the most contracted
situation, in which the premises are available to us by inductive hypothesis.

α;χ � ϕ;ϕ ○ ψ; ς;β γ;χ � ψ;ϕ ○ ψ; ς; δ
α;γ;χ � ϕ ○ ψ; ς;β; δ

(∣�○∣)

3. Let us consider an extensional rule too, namely, (∣∨�∣).

α;χn; (ψ ∨ϕ)m;ϕ � ςi;β α;χn; (ψ ∨ϕ)m;ψ � ςi;β
α;χn′ ; (ψ ∨ϕ)m′ � ςi′ ;β

i.h.
�

α;χn′ ; (ψ ∨ϕ)m
′

;ϕ � ςi
′

;β α;χn′ ; (ψ ∨ϕ)m
′

;ψ � ςi
′

;β
α;χn′ ; (ψ ∨ϕ)m′ � ςi′ ;β

�

Definition 22. A sequence of sequents is irredundant when an earlier element
of the sequence is not obtainable from a latter one by finitely many applications
of the contraction rules. We expand the use of the term “irredundant” to proofs.
An irredundant proof contains no redundant sequences of sequents.

Remark 14. The notion of irredundant sequences of sequents is in harmony
with Curry’s lemma. Looking at a proof tree from its root upward, an irredun-
dant sequence of sequents on a path in the proof tree signals an unnecessary
detour in the proof.

Lemma 23 (Kripke’s lemma). An irredundant sequence of cognate sequents
is finite.

As we already mentioned, this lemma is equivalent to various other lemmas
in discrete mathematics. For a direct proof, we refer to Anderson and Belnap [1,
Sect. 13, p. 139].

Lemma 24 (Kőnig’s lemma). A finitely branching tree, in which all branches
are finite, is finite.

On the Decidability of Certain Semi-Lattice Based Modal Logics 57

This is also a well-known lemma. For a direct proof, we refer to Smullyan [32].

Theorem 25. The logics (∣bciw∣), (∣bciw�∣) and (∣s4∣) are decidable.

Proof. The decision procedure builds a proof-search tree for the given sequent,
with the property that if the sequent has a proof, then a subtree of the proof-
search tree is a proof. The usual way to do this is to build the tree from its root,
which is the sequent that is allegedly provable. A branch may be terminated
when it would become redundant. The finiteness of the tree guarantees that an
unsuccessful search will not run on indefinitely long.

The finiteness of the tree follows from several factors. Formulas and sequents
are finite, with each formula having finitely many subformulas. Each rule has one
or two premises, and no sequent can result from infinitely many different poten-
tial premises. These features combined with the previous two lemmas exclude
infinite trees from consideration. �

Corollary 26. The logics bciw, bciw� and s4 are decidable.

Proof. The truth of the claim is a consequence of the equivalence of the logics
with and without (∣ ∣). �

Note 15. The decidability of s4 is also a consequence of the decidability of S4
(which is widely known) in view of Lemma8.

Now we turn to the question of the decidability in the subgroup LX*
3.

Definition 27. The logics in LX*
2 and LX*

3 are paired up with each other as
follows: ⟨bciw,bci
⟩, ⟨bciw�,bci

�
⟩ and ⟨s4,bck
⟩.

Lemma 28. If α � β is provable in an LX*
3 logic, then α � β is provable in its

LX*
2 pair.

Lemma 29. If α � β is provable in bci
, bci

�
or bck
, then it is provable in

(∣bciw∣), (∣bciw�∣) or (∣s4∣), respectively, by irredundant proofs.

Proof (of Lemmas 28 and 29). It is sufficient to scrutinize the definitions of the
logics together with the proof of Theorem25. �

Remark 16. In all the calculi that we consider, the cut rule is admissible. Then,
it is enough to look for cut-free proofs, for which the subformula property holds.
For a formula to be contracted, it must be introduced by an axiom or rule into
the proof. Compound subformulas have more than one subformula, hence, a
contraction applied to a compound formula decreases the number of subformulas
more than a contraction applied to one of their proper subformulas. Furthermore,
a formula to which no contraction is applied remains in the sequent (possibly,
as a subformula of a formula), because the subformula property holds. These
observations motivate the introduction of the notion of a heap number, which is
a cumulation of contractions on subformulas of a formula in a proof.

58 K. Bimbó

Definition 30. Let α � β be provable in an LX*
2 logic. For any subformula ϕ of

a formula in α⋓β, we define the heap number of ϕ, denoted by h#
(ϕ) as follows.

(1) If ϕ is not of the form ⪧ψ or ⪦ψ for some ψ, then h#
(ϕ) = 0;

(2) otherwise, h#
(ϕ) is the maximal number of contractions on ϕ and the ances-

tors of ϕ in any irredundant proof of α � β in the (∣ ∣)’d LX*
2 logic in

question.

Remark 17. Given a provable sequent of an LX*
2 logic, we may think of all the

subformulas having a number attached to them. We know that all the sequents
that are provable in their �LX*

3 pair are among those. However, it is easy to prove
that not all sequents provable in an LX*

2 logic are provable in their LX*
3 pair.

Since contractions in the LX*
2 logics are possible only on modalized formulas,

we transfer all the contractions that might have happened on ancestors of a
modalized formula in any irredundant proof to the formula itself.

Remark 18. We want to emphasize that the definition of a heap number is
not recursive. We simply zeroed the heap number for all non-modal formulas,
whether they are or are not a subformula of a formula in the provable sequent.

For any provable sequent, there are finitely many irredundant proofs each of
which is finite. Hence, the heap number requires the inspection of finitely many
finite objects. As we mentioned in Remark 11, in a proof involving applications of
the (∣ ∣) rules, the number of contractions can be simply counted, and there is no
ambiguity with respect to which formulas and how many times were contracted.
In sum, the notion of a heap number is well defined.

Theorem 31. The logics bci
, bci

�
and bck
 are decidable.

Proof. Let α � β be a given sequent. For any of the LX*
3 logics, we can decide,

by appeal to Lemma 29, whether the sequent is provable in the LX*
2 pair of our

LX*
3 logic. If the sequent is not provable, then we may conclude that it is not

provable in the LX*
3 logic either.

If the sequent is provable in the LX*
2 pair of our logic, then we start a new

proof search using the LX*
3 logic itself. The only contraction rules are (⪧w�) and

(�⪦w). We start to build a proof-search tree as usual, and for each modalized
formula we limit the number of the applications of the previous two rules by the
heap number for the principal formula of the rule.13

The proof-search tree is finite. The connective rules—looked at from the
lower sequent upward—reduce the number of connectives in the sequent. So do

13 We defined heap numbers in a very liberal manner in order to make sure that all
the necessary contractions are permitted. However, even if h#

(⪦ϕ) > 1, for example,
it may happen that in the LX*

3 logic no contraction will be applied to the formula,
because it occurs on the left-hand side of the �. (Similarly, but dually for ⪧ϕ.) This
does not cause any problem in the proof search, because the heap number (like the
(∣ ∣) notation) does not force contractions, rather, it places a limit on the number of
potential applications of the contraction rules.

On the Decidability of Certain Semi-Lattice Based Modal Logics 59

typically the thinning rules. The number of applications of the (⪧w�) and the
(�⪦w) rules is bounded, and there are finitely many modal formulas to start
with.

The proof-search tree will contain a proof if there is one. As usual, we assume
that the proof-search tree is comprehensive, that is, all the possible upper
sequents are added to the tree. This guarantees—as usual—that no potential
proof step is missed. We only have to scrutinize whether we have permitted all
the needed applications of the (⪧w�) and (�⪦w) rules. Let us assume that more
than heap number-many contractions (i.e., some extra contractions) are required
to prove a sequent. The principal formula cannot be by thinning, because the lat-
ter could be simply omitted (contradicting the necessity for extra contractions).
If the principal formula is by the axiom (I) or a connective rule, then all the
atomic subformulas have another occurrence introduced (possibly, on the other
side of the �). If those occurrences are contracted, then the extra contractions
are not necessary. If they remain in the provable sequent, then the extra con-
tractions must have been applied in some irredundant proof; hence, they must
have been counted in the heap number contradicting the starting assumption.�

Lastly, we deal with the subgroup LX*
1.

Theorem 32. The logics bci, bci� and bck are decidable.

Proof. The proof is a simple proof-search. None of the calculi contains a con-
traction rule, hence, the finiteness of the sequents, of the set of subformulas of
a formula and Kőnig’s lemma together guarantee the finiteness of the proof-
search tree. �

4 Conclusions

We have selected 9 modal logics, each of which is definable as an extension of
a core logic bci that includes disjunction and an implication (with two more
intensional connectives), and a pair of modalities ⪧ and ⪦. We gave a systematic
presentation of these logics as sequent calculi. From the point of view of prov-
ing their decidability, the LX* logics fall into three groups. Curry’s bottom-up
approach is applicable to the LX*

1 group. Kripke’s refinement delivers decid-
ability for the LX*

2 group. Finally, the concept of a heap number together with
the decidability of the LX*

2 logics yields the decidability of the LX*
3 logics. To

summarize, each of our 9 modal logics turns out to be decidable.

Acknowledgments. I am grateful to the organizers of the TABLEAUX, FroCoS and
ITP conferences for their invitation for me to speak at those conferences, which trig-
gered the writing of this paper.

I would also like to thank the program committee for helpful comments on the first
version of this paper.

60 K. Bimbó

References

1. Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity,
vol. I. Princeton University Press, Princeton (1975)

2. Anderson, A.R., Belnap, N.D., Dunn, J.M.: Entailment: The Logic of Relevance
and Necessity, vol. II. Princeton University Press, Princeton (1992)

3. Belnap, N.D.: Display logic. J. Philos. Logic 11, 375–417 (1982)
4. Belnap, N.D., Wallace, J.R.: A decision procedure for the system EI of entailment

with negation. Technical report 11, Contract No. SAR/609 (16), Office of Naval
Research, New Haven (1961)

5. Belnap, N.D., Wallace, J.R.: A decision procedure for the system EI of entailment
with negation. Zeitschrift für mathematische Logik und Grundlagen der Mathe-
matik 11, 277–289 (1965)

6. Bimbó, K.: Admissibility of cut in LC with fixed point combinator. Stud. Logica
81, 399–423 (2005). doi:10.1007/s11225-005-4651-y

7. Bimbó, K.: LE t
→, LR

○

∧
∼

, LK and cutfree proofs. J. Philos. Logic 36, 557–570 (2007).

doi:10.1007/s10992-007-9048-0
8. Bimbó, K.: The decidability of the intensional fragment of classical linear logic.

Theoret. Comput. Sci. 597, 1–17 (2015). doi:10.1016/j.tcs.2015.06.019
9. Bimbó, K.: Proof Theory: Sequent Calculi and Related Formalisms. Discrete Math-

ematics and Its Applications. CRC Press, Boca Raton (2015). doi:10.1201/b17294
10. Bimbó, K., Dunn, J.M.: Generalized Galois Logics: Relational Semantics of Non-

classical Logical Calculi. CSLI Lecture Notes, vol. 188. CSLI Publications, Stanford
(2008)

11. Bimbó, K., Dunn, J.M.: Calculi for symmetric generalized Galois logics. In: van
Benthem, J., Moortgat, M. (eds.) Festschrift for Joachim Lambek. Linguistic
Analysis, vol. 36, pp. 307–343. Linguistic Analysis, Vashon (2010)

12. Bimbó, K., Dunn, J.M.: New consecution calculi for R t
→. Notre Dame J. Formal

Logic 53(4), 491–509 (2012). doi:10.1215/00294527-1722719
13. Bimbó, K., Dunn, J.M.: On the decidability of implicational ticket entailment. J.

Symb. Logic 78(1), 214–236 (2013). doi:10.2178/jsl.7801150
14. Bimbó, K., Dunn, J.M.: Modalities in lattice-R (2015). (manuscript, 34 pages)
15. Cresswell, M., Mares, E., Rini, A. (eds.): Logical Modalities from Aristotle to

Carnap. The Story of Necessity. Cambridge University Press, Cambridge (2016)
16. Curry, H.B.: A Theory of Formal Deducibility. No. 6 in Notre Dame Mathematical

Lectures. University of Notre Dame Press, Notre Dame (1950)
17. Curry, H.B.: Foundations of Mathematical Logic. McGraw-Hill Book Company,

New York (1963). (Dover, New York, 1977)
18. Dunn, J.M.: A ‘Gentzen system’ for positive relevant implication (abstract). J.

Symb. Logic 38, 356–357 (1973)
19. Dunn, J.M.: Relevance logic and entailment. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. 3, 1st edn, pp. 117–224. D. Reidel, Dordrecht
(1986)

20. Dunn, J.M.: Positive modal logic. Stud. Logica. 55, 301–317 (1995)
21. Dunn, J.M., Meyer, R.K.: Combinators and structurally free logic. Logic J. IGPL

5, 505–537 (1997)
22. Dunn, J.M., Restall, G.: Relevance logic. In: Gabbay, D., Guenthner, F. (eds.)

Handbook of Philosophical Logic, vol. 6, 2nd edn, pp. 1–128. Kluwer, Amsterdam
(2002)

http://dx.doi.org/10.1007/s11225-005-4651-y
http://dx.doi.org/10.1007/s10992-007-9048-0
http://dx.doi.org/10.1016/j.tcs.2015.06.019
http://dx.doi.org/10.1201/b17294
http://dx.doi.org/10.1215/00294527-1722719
http://dx.doi.org/10.2178/jsl.7801150

On the Decidability of Certain Semi-Lattice Based Modal Logics 61

23. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische
Zeitschrift 39, 176–210 (1935)

24. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalküls. In: Fefer-
man, S. (ed.) Collected Works, vol. I, pp. 300–303. Oxford University Press and
Clarendon Press, New York and Oxford (1986)

25. Kopylov, A.P.: Decidability of linear affine logic. In: Meyer, A.R. (ed.) Special issue:
LICS 1995, Information and Computation, vol. 164, pp. 173–198. IEEE (2001)

26. Kripke, S.A.: The problem of entailment (abstract). J. Symb. Logic 24, 324 (1959)
27. Kripke, S.A.: Semantical analysis of modal logic I. Normal modal propositional

calculi. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, pp.
67–96 (1963)

28. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–169
(1958)

29. Lewis, C.I.: A Survey of Symbolic Logic. University of California Press, Berkeley
(1918). (Dover Publications, Mineola, 1960)

30. Meyer, R.K.: Topics in modal and many-valued logic. Ph.D. thesis, University of
Pittsburgh, Ann Arbor (UMI) (1966)

31. Meyer, R.K.: Improved decision procedures for pure relevant logic. In: Anderson,
C.A., Zelëny, M. (eds.) Logic, Meaning and Computation: Essays in Memory of
Alonzo Church, pp. 191–217. Kluwer Academic Publishers, Dordrecht (2001)

32. Smullyan, R.M.: First-Order Logic. Springer, New York (1968). doi:10.1007/
978-3-642-86718-7. (Dover, New York 1995)

http://dx.doi.org/10.1007/978-3-642-86718-7
http://dx.doi.org/10.1007/978-3-642-86718-7

Sequent Systems

Cut-Admissibility as a Corollary
of the Subformula Property

Ori Lahav1 and Yoni Zohar2(B)

1 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
orilahav@mpi-sws.org

2 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
yoni.zohar@cs.tau.ac.il

Abstract. We identify two wide families of propositional sequent calculi
for which cut-admissibility is a corollary of the subformula property.
While the subformula property is often a simple consequence of cut-
admissibility, our results shed light on the converse direction, and may be
used to simplify cut-admissibility proofs in various propositional sequent
calculi. In particular, the results of this paper may be used in conjunction
with existing methods that establish the subformula property, to obtain
that cut-admissibility holds as well.

1 Introduction

One of the major consequences of Gentzen’s cut-elimination theorem for LK
and LJ [16] is the subformula property: when deriving a sequent s from a set
S of sequents, it suffices to consider the subformulas that occur in S ∪ {s}.
Other formulas may sometimes shorten derivations, but can be safely ignored
when checking whether a derivation exists. Since the introduction of LK and LJ,
various cut-free sequent calculi were found for important non-classical logics –
e.g., modal logics [25,30], many-valued and fuzzy logics [6,22], and paraconsistent
logics [9]. In all these cases, the subformula property (or some generalization of
it) trivially follows from the admissibility of the cut rule.

In this paper we are interested in the converse direction: can cut-admissibility
be obtained as a corollary of the subformula property?

Clearly, one cannot expect an affirmative answer to this question in the gen-
eral case, as there are well-known calculi admitting the subformula property
but not cut-admissibility. These include, e.g., calculi for the modal logics S5
and B [25,30], bi-intuitionistic logic [24], and several calculi for paraconsistent
logics [8].

The main contribution of this paper is an affirmative answer to the question
above for two wide families of sequent calculi. The first is a family of pure
calculi [4] whose derivation rules, like those of LK, do not impose any restrictions
on context formulas. The second is a family of calculi, which we call intuitionistic
calculi, in which premises of the form Γ ⇒ Δ with Γ �= ∅ in right introduction
rules forbid context formulas on the right-hand side. This family includes, for
example, the well-known multiple-conclusion calculus for intuitionistic logic [28],
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 65–80, 2017.
DOI: 10.1007/978-3-319-66902-1 4

66 O. Lahav and Y. Zohar

as well as the calculi for Nelson’s logics N3 and N4 [29]. In both families, we
further require a certain “directed” structure from their rules (precisely defined
below), and show that it suffices to ensure that cut-admissibility follows from
the subformula property.

Our result is obtained by providing two different semantics for each given
calculus: one for derivations that include only subformulas of the premises and
the end sequent, and another for cut-free derivations. The latter provides a suf-
ficient semantic criterion for cut-admissibility. Then, we show that this criterion
is met when the calculus enjoys the subformula property.

In order to utilize the full strength of sequent calculi, the subformula property
is not enough. For example, various sequent calculi for paraconsistent logics [9]
do not enjoy the subformula property, but do admit a simple generalization of it,
namely: if a sequent s is derivable, then there exists a derivation of s that uses
only subformulas of s and their negations. For this reason, we do not restrict
ourselves to the strict subformula property, but consider a more general notion,
which is based on an arbitrary “well-behaved” (precisely defined below) ordering
of propositional formulas.

Besides its theoretical interest, we believe that our result can be useful in
future investigation and development of sequent calculi. Proving the subformula
property tends to be an easier task than proving full cut-admissibility, as it
typically follows from the admissibility of non-analytic cuts (cuts on formulas
that are not subformulas of the end sequent). In addition, our recent paper [20]
provides a sufficient criterion for the subformula property for a wide family of
pure calculi for sub-classical logics, without relying on cut-admissibility. Using
the results of the current paper, we obtain the admissibility of cut in all these
calculi.

The rest of this paper is organized as follows. After the definitions of pure
calculi and their associated cut-admissibility property in Sect. 2, we introduce
our generalized notion of the subformula property in Sect. 3. In Sect. 4, semantic
characterizations of the different kinds of derivability in pure sequent calculi are
given, and are used in Sect. 5 where our theorem for pure calculi is described.
Finally, Sect. 6 provides our result for intuitionistic calculi.

Related Work

Avron and Lev [10] introduced the family of canonical calculi, a very restricted
sub-family of pure calculi, and proved the equivalence of the subformula prop-
erty and cut-admissibility in them. The proof was based on the framework of
Nmatrices (see also [11]), a simple generalization of usual logical matrices. The
present paper goes beyond canonical calculi, and Nmatrices do not suffice. Thus,
our proof utilizes a more general semantic framework of Lahav and Avron [19].
In this framework, which can be seen as a generalization of Béziau’s bivaluation
semantics [13], sufficient semantic criteria for cut-admissibility and the subfor-
mula property were given. The former amounts to the ability to refine three-
valued valuations into two-valued ones, while the latter amounts to the ability
to extend partial two-valued valuations into full valuations. Later, [21] showed

Cut-Admissibility as a Corollary of the Subformula Property 67

that for pure calculi, the criterion for the subformula property is also necessary.
For the present paper, however, the mere ability to extend partial two-valued
valuations is not enough, and a constructive extension method is introduced.
Finally, in a previous work [20], we studied general conditions for the subfor-
mula property in pure calculi, while cut-admissibility was not considered at all.

2 Pure Sequent Calculi

In this section, we define the family of pure sequent calculi [4] and the notion
of cut-admissibility. Several examples of well-known calculi that belong to this
family are provided as well.

2.1 Preliminaries

Let At = {p1, p2, . . .} denote a fixed infinite set of propositional variables.
A propositional language L is given by a set ♦L of connectives. L-formulas are
defined as usual, where atomic L-formulas are the elements of At. We usually
identify a propositional language with its set of formulas (e.g., when writing
expressions like ϕ ∈ L). For a set F ⊆ L, by F-formula we mean a formula ϕ
satisfying ϕ ∈ F .

An L-substitution is a function σ:At → L, naturally extended to apply on
all L-formulas and on sets of L-formulas.

An L-sequent is a pair of finite sets Γ and Δ of L-formulas, denoted Γ ⇒ Δ.
We employ the standard sequent notations, e.g., when writing expressions like
Γ, ϕ ⇒ Δ or ⇒ ϕ. The union of two sequents (Γ1 ⇒ Δ1) ∪ (Γ2 ⇒ Δ2) is the
sequent Γ1, Γ2 ⇒ Δ1,Δ2. We denote by frm[Γ ⇒ Δ] the set Γ ∪Δ, and naturally
extend this notation to sets of sequents. L-substitutions are extended to apply
on L-sequents and sets of L-sequents (by setting σ(Γ ⇒ Δ) = σ(Γ) ⇒ σ(Δ)
and σ(S) = {σ(Γ ⇒ Δ) | Γ ⇒ Δ ∈ S}).

In what follows, L denotes an arbitrary propositional language. When L can
be inferred from the context, we omit the prefix “L−” from the notions above
(as well as from the ones introduced below).

2.2 Pure Sequent Calculi

Following [10], we find it technically convenient to use the object propositional
language for specifying derivation rules. (One could use meta-variables and rule
schemes instead.)

Definition 1. A pure L-rule is a pair 〈S, s〉, denoted S/s, where S is a finite set
of L-sequents and s is an L-sequent. The elements of S are called the premises
of the rule and s is called the conclusion of the rule. We sometimes omit set
braces around the premises, and separate them by semi-colons (e.g., when writing
expressions like ⇒ p1; ⇒ p2 / ⇒ p1 ∧ p2).

An L-application of a pure L-rule {s1, . . . , sn}/s is a pair of the form
〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn}, σ(s) ∪ c1 ∪ . . . ∪ cn〉 where σ is an L-substitution,

68 O. Lahav and Y. Zohar

and c1, . . . , cn are L-sequents (called the context sequents of the application). The
sequents σ(si) ∪ ci are called the premises of the application, and the sequent
σ(s) ∪ c1 ∪ . . . cn is called the conclusion of the application.

For example, the pure rules for introducing implication in classical logic are:

p1 ⇒ p2 / ⇒ p1 ⊃ p2 ⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒
Their applications take the form (respectively):

Γ, ϕ ⇒ ψ,Δ

Γ ⇒ ϕ ⊃ ψ,Δ

Γ1 ⇒ ϕ,Δ1 Γ2, ψ ⇒ Δ2

Γ1, Γ2, ϕ ⊃ ψ ⇒ Δ1,Δ2

Examples for derivation rules that cannot be formulated as pure rules include
the following rule schemes, that are employed in intuitionistic and modal logic:

Γ, ϕ ⇒ ψ

Γ ⇒ ϕ ⊃ ψ

Γ ⇒ ϕ

�Γ ⇒ �ϕ

In turn, pure calculi are simply finite sets of pure rules.

Definition 2. A pure L-calculus is a finite set of pure L-rules. A derivation of a
sequent s from a set S of sequents (a.k.a. “assumptions” or “non-logical axioms”)
in a pure L-calculus G is a finite sequence of sequents, where each sequent in the
sequence is either one of the following: (i) an element of S; (ii) the conclusion
of an application of a rule of G, all premises of which are preceding elements
of the sequence; (iii) the conclusion of one of the following standard structural
rules,1 again where all premises are preceding elements of the sequence:

(id)

ϕ ⇒ ϕ

(cut)

Γ1 ⇒ ϕ,Δ1 Γ2, ϕ ⇒ Δ2

Γ1, Γ2 ⇒ Δ1,Δ2

(weak)

Γ ⇒ Δ

Γ ′, Γ ⇒ Δ,Δ′

In (cut), ϕ is called the cut formula. We write S G s if there is a derivation
of a sequent s from a set S of sequents in G.

In what follows, unless stated otherwise, we may refer to pure rules and pure
calculi simply as rules and calculi.

The most well-studied property of sequent calculi is the admissibility of
the cut rule. When cut is admissible the calculus is generally considered well-
behaved, and reasoning about the calculus becomes much easier. Moreover,
proof-search algorithms have no need to “guess” the cut formulas. Next, we
precisely define cut-admissibility.
1 Note that by defining sequents to be pairs of sets we implicitly include other standard

structural rules, such as exchange and contraction.

Cut-Admissibility as a Corollary of the Subformula Property 69

Definition 3. A derivation of s from S in a calculus G is called cut-limited if
in every application of (cut), the cut formula is in frm[S]. We write Scf

Gs if
such a derivation exists. A calculus G enjoys cut-admissibility if G= cf

G.

What we call here cut-admissibility is actually known as strong cut-
admissibility, in which cuts are allowed, but they are confined to apply only
on formulas that appear in the set of assumptions [5]. Usual cut-admissibility
only requires that G s iff cf

Gs for every sequent s. For pure calculi, however,
the two notions are equivalent [5]. Note that this is not the case for intuitionistic
calculi, studied in Sect. 6.

Next, we present several examples of pure calculi (they all enjoy cut-
admissibility).

Example 1 (Classical Logic). The propositional language CL consists of three
binary connectives ∧, ∨, ⊃, and one unary connective ¬. The propositional
fragment of Gentzen’s fundamental sequent calculus for classical logic [16] can
be directly presented as a pure CL-calculus, denoted LK, that consists of the
following CL-rules:

⇒ p1 / ¬p1 ⇒ p1 ⇒ / ⇒ ¬p1

p1, p2 ⇒ / p1 ∧ p2 ⇒ ⇒ p1; ⇒ p2 / ⇒ p1 ∧ p2

p1 ⇒ ; p2 ⇒ / p1 ∨ p2 ⇒ ⇒ p1, p2 / ⇒ p1 ∨ p2

⇒ p1; p2 ⇒ / p1 ⊃ p2 ⇒ p1 ⇒ p2 / ⇒ p1 ⊃ p2

Example 2 (Paraconsistent Logics). The paper [9] provides sequent calculi for
many paraconsistent logics. For example, a pure calculus for da Costa’s historical
paraconsistent logic C1, which we call GC1 , consists of the rules of LK except
for the left-introduction rule of negation, that is replaced by the following pure
CL-rules:

p1 ⇒ / ¬¬p1 ⇒
⇒ p1; ⇒ ¬p1 / ¬(p1 ∧ ¬p1) ⇒ ¬p1 ⇒ ;¬p2 ⇒ / ¬(p1 ∧ p2) ⇒

¬p1 ⇒ ; p2,¬p2 ⇒ / ¬(p1 ∨ p2) ⇒ p1,¬p1 ⇒ ;¬p2 ⇒ / ¬(p1 ∨ p2) ⇒
p1 ⇒ ; p2,¬p2 ⇒ / ¬(p1 ⊃ p2) ⇒ p1,¬p1 ⇒ ;¬p2 ⇒ / ¬(p1 ⊃ p2) ⇒

Similarly, a pure calculus GP1 for the atomic paraconsistent logic P1 was
given in [3]. It is obtained by replacing the left-introduction rule of negation in
LK with the following alternative rules:

⇒ p1; ⇒ p2 / ¬(p1 ∧ p2) ⇒ ⇒ p1, p2 / ¬(p1 ∨ p2) ⇒
p1 ⇒ p2 / ¬(p1 ⊃ p2) ⇒ ⇒ ¬p1 / ¬¬p1 ⇒

Example 3 (Many-valued Logics). The paper [6] provides pure sequent calculi
for well-known many-valued logics. For example, a calculus for �Lukasiewicz three-
valued logic, which we call G3, has the following rules for implication:

¬p1 ⇒ ; p2 ⇒ ; ⇒ p1,¬p2 / p1 ⊃ p2 ⇒ p1 ⇒ p2; ¬p2 ⇒ ¬p1 / ⇒ p1 ⊃ p2

p1,¬p2 ⇒ /¬(p1 ⊃ p2) ⇒ ⇒ p1; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)

70 O. Lahav and Y. Zohar

A pure calculus for the CL-fragment of the logic of bilattices [2] (whose
implication-free fragment coincides with the logic of first-degree entailments [1]),
which we call G4, is obtained in a similar manner, by augmenting the positive
fragment of LK with the following rules:

p1,¬p2 ⇒ / ¬(p1 ⊃ p2) ⇒ ⇒ p1; ⇒ ¬p2 / ⇒ ¬(p1 ⊃ p2)
¬p1 ⇒ ;¬p2 ⇒ / ¬(p1 ∧ p2) ⇒ ⇒ ¬p1,¬p2 / ⇒ ¬(p1 ∧ p2)

¬p1,¬p2 ⇒ / ¬(p1 ∨ p2) ⇒ ⇒ ¬p1; ⇒ ¬p2 / ⇒ ¬(p1 ∨ p2)
p1 ⇒ / ¬¬p1 ⇒ ⇒ p1 / ⇒ ¬¬p1

Example 4 (Logics for access control). Primal infon logic [15] was designed to
efficiently reason about access control policies. The quotations-free fragment of
its sequent calculus [12] can be presented as a pure calculus, which we denote
by P. It is obtained from the positive fragment of LK by adding the axiomatic
rules ⇒ � and ⊥ ⇒ , dismissing the left introduction rule of disjunction, and
replacing the right introduction rule of implication with the following weaker
rule:

⇒ p2 / ⇒ p1 ⊃ p2

Another security-oriented formalism that can be described as a pure calculus
is the Dolev-Yao intruder deductions model from [14], where it was given as a
natural deduction calculus. It is equivalent to the following pure calculus, which
we denote by DY. Its language consists of two binary connectives: pairing and
encryption. The intended meaning of 〈p1, p2〉 is the ordered pair of p1 and p2.
The intended meaning of [p1]p2

is the encryption of the message p1 using the key
p2. Accordingly, the following rules correspond to pairing, unpairing, encryption
and decryption:

⇒ p1; ⇒ p2 / ⇒ 〈p1, p2〉 p1 ⇒ / 〈p1, p2〉 ⇒ p2 ⇒ / 〈p1, p2〉 ⇒
⇒ p1; ⇒ p2 / ⇒ [p1]p2

⇒ p2; p1 ⇒ / [p1]p2
⇒

3 Analyticity: A Generalized Subformula Property

Roughly speaking, analyticity of a propositional calculus provides a computable
bound on the formulas that may appear in derivations of a sequent s from a set
S of sequents. The special case of the subformula property is obtained when the
set of subformulas of formulas of S ∪ {s} provides such a bound. Many useful
calculi, however, do not admit this strict property, while still allowing some other
effective bound. Here, we generalize the subformula property, by assuming a
given ordering of L-formulas, denoted ≺, which has to satisfy certain properties,
as defined next.

Notation 1. Given a binary relation R on L, we denote by R [ϕ] the set
{ψ ∈ L | 〈ψ,ϕ〉 ∈ R}. This notation is naturally extended to sets (R [Γ] =⋃

ϕ∈Γ R [ϕ]), sequents (R [Γ ⇒ Δ] = R [Γ]∪R [Δ]), and sets of sequents (R [S] =⋃
s∈S R [s]).

Cut-Admissibility as a Corollary of the Subformula Property 71

Definition 4. An order relation (i.e., irreflexive and transitive relation) ≺ is
called:

– safe if it is prefinite (≺ [ϕ] is finite for every ϕ ∈ L), and the function λϕ ∈
L.≺ [ϕ] is computable.

– structural if ϕ ≺ ψ implies σ(ϕ) ≺ σ(ψ) for every substitution σ.

Example 5. The usual subformula relation over CL, which we denote by ≺0, is a
structural safe order relation. Another useful structural and safe order relation
on CL, denoted ≺1, is given by ϕ ≺1 ψ iff ϕ ≺0 ψ or ϕ �= ψ and ϕ = ¬ψ′ for
some ψ′ ≺0 ψ.

In what follows, ≺ denotes an arbitrary safe and structural order relation
over L.

The above definition allows us to present a generalization of the subformula
property, which we call ≺-analyticity.

Definition 5. We call a derivation of a sequent s from a set S of sequents in a
calculus G ≺-analytic if it consists solely of � [S ∪ {s}]-formulas (� denotes the
reflexive closure of ≺), and write S≺

Gs if there exists a ≺-analytic derivation of
s from S in G. A calculus G is called ≺-analytic if G= ≺

G.

This generalization of the subformula property inherits its most important
consequence, which is decidability. Clearly, if ≺ is safe and S is finite, it is
decidable whether S≺

Gs. When G is ≺-analytic, the same holds for G.
Considering the examples above, LK, GP1 , P, and DY are ≺0-analytic;

while GC1 , G3 and G4 are not ≺0-analytic, but are ≺1-analytic. These facts
can be derived from cut-admissibility, and also directly by the method of [20].
The infinite family of calculi for weak double negations from [17], presented in
the next example, goes beyond ≺0 and ≺1.

Example 6. In [17], Kamide provides a way of constructing sequent calculi for
paraconsistent logics that admit the double negation principle as well as its
weaker forms (e.g. ¬¬¬ψ ↔ ¬ψ). For this purpose, the paper investigates a hier-
archy of weak double negations, by presenting an infinite set

{
L2n+2 | n ∈ N

}
of

pure calculi, all of which admit cut-admissibility. For example, L4 is the calculus
G4 from Example 3, which is ≺1-analytic. Furthermore, for every n, let ≺n be
the transitive closure of the relation �n, defined by: ϕ �n ψ iff either ψ = ¬ϕ,
or ψ = ϕ1	ϕ2 and ϕ = ¬mϕi for some ϕ1, ϕ2, 	 ∈ {∧,∨,⊃}, 0 ≤ m ≤ n, and
i ∈ {1, 2}. Each L2n+2 is ≺n+1-analytic. Clearly, the previous definitions of ≺0

and ≺1 coincide with the new ones.

4 Semantics of Pure Sequent Calculi

Cut-admissibility is traditionally proved syntactically, by some form of induction
on derivations. In this case, what is actually shown is cut-elimination: a method
to eliminate cuts from derivations. However, going back at least to [26], semantic

72 O. Lahav and Y. Zohar

methods have also shown to be useful to prove cut-admissibility. We follow the
semantic approach, and generalize the framework of bivaluations [13] to obtain
semantic counterparts of ≺-analytic derivations and cut-limited derivations. The
latter allows us to define a semantic sufficient condition for cut-admissibility,
that is essential for our result. The soundness and completeness theorems of this
section follow from the general result of [19].

We start by defining trivaluations – functions that employ three truth values:
1, −1, and 0, that intuitively correspond to “true”, “false” and “undetermined”,
respectively.

Definition 6. An L-trivaluation is a function v from L to {−1, 0, 1}. We say
that v satisfies a sequent Γ ⇒ Δ, denoted v |= Γ ⇒ Δ, if either v(ϕ) < 1 for
some ϕ ∈ Γ or v(ψ) > −1 for some ψ ∈ Δ. We say that v satisfies a set S of
sequents, denoted v |= S, if v |= s for every s ∈ S.

In order to associate a set of trivaluations to a given calculus, the following
semantic reading of derivation rules is employed:

Definition 7. A trivaluation v respects a rule S/s if v |= σ(s) whenever v |=
σ(S) for every substitution σ. v is called G-legal for a calculus G if it respects
all rules of G.

Depending on G, this semantics may not be truth-functional, that is, the
value of a compound formula is not always uniquely determined by the values
of its immediate subformulas. For this reason trivaluations are defined over the
entire language rather than only over atomic formulas.

If one is interested in all possible derivations in a pure calculus (without any
restrictions on formulas that may appear in the derivation or serve as cut formu-
las), the third value 0 is redundant, and an equivalent semantics could be defined
using only {1,−1}. For the cases of ≺-analytic and cut-limited derivations, some
restrictions apply for when this value can and cannot be used. These restrictions
are defined using the following notion of the support of trivaluations.

Definition 8. The support of a trivaluation v, denoted supp(v), is the set
{ϕ ∈ L | v(ϕ) �= 0}. v is called:

– F-determined (for F ⊆ L) if F ⊆ supp(v); and
– fully determined if it is L-determined.

The semantic reading of rules as constraints on trivaluations, together with
different restrictions on the usage of 0 as a truth value, provide an equivalent
semantic view of derivations:

Theorem 1 (Soundness and Completeness)

1. S G s iff v |= S implies v |= s for every fully determined G-legal
trivaluation v.

Cut-Admissibility as a Corollary of the Subformula Property 73

2. S≺
Gs iff v |= S implies v |= s for every � [S ∪ {s}]-determined G-legal

trivaluation v.
3. Scf

Gs iff v |= S implies v |= s for every frm[S]-determined G-legal
trivaluation v.

Roughly speaking, in the case of ≺-analytic derivations, the values −1 and
1 are associated with the formulas that are allowed to be used in derivations.
Thus, when semantically describing the existence of a ≺-analytic derivation of a
sequent s from a set S of sequents in a calculus G, all formulas that are allowed
to appear in such a derivation must be assigned either 1 or −1. These are exactly
the formulas in � [S ∪ {s}]. Similarly, in the case of cut-limited derivations, cut
formulas must be assigned either 1 or −1, and thus cut-limited derivations of
s from S are tied to trivaluations in which frm[S]-formulas are never assigned
0. Intuitively, if ϕ cannot serve as a cut formula, we may need a trivaluation v
that satisfies ⇒ ϕ and ϕ ⇒ , which is possible iff v(ϕ) = 0. Obviously, when
allowing all formulas to serve as cut formulas, or when there is no restriction
on the formulas that may be used in derivations, all formulas must be assigned
either 1 or −1.

Example 7 (Semantics of Classical Logic). It is easy to see that a fully deter-
mined CL-trivaluation v is LK-legal iff it respects the classical truth tables. For
example, the first line of the truth table for conjunction is obtained as follows:
Suppose v(p1) = v(p2) = 1. Then v |= { ⇒ p1, ⇒ p2}, and since v is LK-legal,
v |= ⇒ p1∧p2, and so v(p1∧p2) = 1. In addition, the three valued semantics for
the cut-limited fragment of LK that is obtained from Theorem1 is equivalent
to the Nmatrix semantics in [18].

Example 8 (Alternative Semantics of �Lukasiewicz three-valued logic). G3-legal
fully determined trivaluations provide an alternative semantics to �Lukasiewicz
three-valued logic (Example 3). This semantics is two-valued (as only fully deter-
mined trivaluations are considered), but not truth-functional. Another two-
valued semantics for this logic was presented in [27], and was then used to
construct a different calculus for it in [13].

Theorem 1 gives rise to a sufficient semantic criterion for cut-admissibility,
which is based on the following notion of determination:

Definition 9. We say that a trivaluation v′ is a determination of a trivaluation v
(alternatively, we say that v′ determines v) if v(ϕ) = v′(ϕ) for every ϕ ∈ supp(v).
v′ is called an F-determination of v if, in addition, it is F-determined. If v′ is
fully determined we call it a full determination of v.

It immediately follows from our definitions that:

Proposition 1. Suppose that v′ determines v. Then for every sequent s, if v′ |=
s then v |= s. The converse holds as well when v is frm[s]-determined.

A sufficient semantic criterion for cut-admissibility is given in the following
corollary:

74 O. Lahav and Y. Zohar

Corollary 1. If every G-legal trivaluation has a G-legal full determination,
then G enjoys cut-admissibility.

Proof. Suppose S�
cf
Gs. By Theorem 1, there exists some frm[S]-determined G-

legal trivaluation v such that v |= S and v �|= s. Let v′ be a G-legal full deter-
mination of v. By Proposition 1, v′ |= S and v′ �|= s, and by Theorem1, we have
S �G s. ��
Remark 1. We note that [19] connects ≺-analytic derivations to partial two-
valued valuations, that are defined over a subset of the language. This sub-
set corresponds to the support of the trivaluations that are used here. For the
characterization of cut-limited derivations in [19], three-valued valuations were
employed. In the current paper, where the connection between ≺-analyticity
and cut-admissibility is the main subject, we find it more natural to use a three-
valued semantics both for ≺-analytic and cut-limited derivations.

5 From Analyticity to Cut-Admissibility

For many calculi, including all calculi presented above, all rules except (cut) are
“≺-ordered”: in every application of the rule, every formula ϕ that appears in
the premises satisfies ϕ � ψ for some formula ψ that appears in the conclusion.
For such calculi, cut-admissibility immediately entails ≺-analyticity, as every
cut-limited derivation is ≺-analytic. Whether or not the converse holds is the
subject of this section.

First, note that (even for “≺-ordered” calculi), ≺-analyticity may not imply
cut-admissibility:

Example 9. Consider the calculus LKAX , that consists of the following
axiomatic rules:

∅ / p1, p2 ⇒ p1 ∧ p2 ∅ / p1 ∧ p2 ⇒ p1 ∅ / p1 ∧ p2 ⇒ p2

∅ / p1 ∨ p2 ⇒ p1, p2 ∅ / p1 ⇒ p1 ∨ p2 ∅ / p2 ⇒ p1 ∨ p2

∅ / p2 ⇒ p1 ⊃ p2 ∅ / ⇒ p1, p1 ⊃ p2 ∅ / p1, p1 ⊃ p2 ⇒ p2

∅ / ⇒ p1,¬p1 ∅ / p1,¬p1 ⇒

It can be easily shown that LKAX is ≺0-analytic (since LK is ≺0-analytic).
However, it does not admit cut-admissibility (for instance, the sequent p1∧p2 ⇒
p1 ∨ p2 has no derivation without cut).

Next, we identify a family of calculi in which analyticity does imply cut-
admissibility.

Definition 10. A rule S/s is called ≺-directed if frm[S] ⊆ ≺ [s], and s has the
form ⇒ ϕ or ϕ ⇒ for some formula ϕ. A calculus G is called ≺-directed if all
its rules are ≺-directed.

Cut-Admissibility as a Corollary of the Subformula Property 75

The calculi LK, GP1 , P, and DY are ≺0-directed, GC1 , G3 and G4 are ≺1-
directed, and for every n, L2n+2 is ≺n+1-directed. In contrast, LKAX (Exam-
ple 9) is not ≺-directed for any ≺, as its conclusions include several formulas.

Our first main result is that ≺-analyticity guarantees cut-admissibility in the
family of ≺-directed pure calculi.

Theorem 2. Every ≺-analytic ≺-directed pure calculus enjoys cut-admissibility.

The proof of Theorem2 goes through Corollary 1: given a pure calculus G
that is ≺-analytic and ≺-directed, we show that every G-legal trivaluation has
a G-legal full determination. This is done by iteratively extending the support
of a given G-legal trivaluation v by a single formula ϕ that is not in supp(v),
but ≺ [ϕ] ⊆ supp(v). The value of ϕ is determined as follows:

v′(ϕ) =

{
1 �G Γv, ϕ ⇒ Δv

−1 otherwise

where Γv = {ψ ∈ ≺ [ϕ] | v(ψ) = 1} and Δv = {ψ ∈ ≺ [ϕ] | v(ψ) = −1}. The
correctness of this construction follows from the fact that G is ≺-directed and
≺-analytic. By enumerating the formulas while respecting ≺, we inductively
determine all the formulas that are assigned 0 by v.

For all the calculi mentioned above (except LKAX), this theorem allows one
to obtain cut-admissibility as a consequence of ≺-analyticity for some (structural
and safe) order ≺.

6 Intuitionistic Calculi

For various important non-classical logics, there is no known cut-free pure cal-
culus. In particular, Gentzen’s original calculus for intuitionistic logic, LJ, is not
pure, as it manipulates single-conclusion sequents, in which the right-hand side
includes at most one formula. An equivalent cut-free sequent calculus, which
we call LJ′, was presented in [28]. This calculus employs multiple-conclusion
sequents, and restricts only the right introduction rules of implication and nega-
tion to apply on single-conclusion sequents. In other words, LJ′ is obtained from
LK by adding the requirement that applications of p1 ⇒ p2 / ⇒ p1 ⊃ p2 and
p1 ⇒ / ⇒ ¬p1 have the forms:

Γ, ϕ ⇒ ψ

Γ ⇒ ϕ ⊃ ψ

Γ,ϕ ⇒
Γ ⇒ ¬ϕ

Put differently, LJ′ is obtained from LK by forbidding right context formulas
in all premises of the form Γ ⇒ Δ with Γ �= ∅ of right-introduction rules (rules
that introduce some formula on the right-hand side).

76 O. Lahav and Y. Zohar

Another well-known calculus that follows this pattern, which we call G′
4, is

obtained by extending the positive fragment of LJ′ with the rules for negation
of G4 (see Example 3). G′

4, investigated in [7,29], is sound and complete for
Nelson’s paraconsistent constructive logic N4 [23].

Next, we define a general family of calculi, which we call intuitionistic calculi,
of which LJ′ and G′

4 are particular examples. For them, we show that cut-
admissibility is a consequence of ≺-analyticity.

Definition 11. A pure rule is called positive if its conclusion has the form Γ ⇒
Δ for some Δ �= ∅. A derivation in a pure calculus G is called intuitionistic
if in every application 〈{σ(s1) ∪ c1, . . . , σ(sn) ∪ cn} , σ(s0) ∪ c1 ∪ . . . ∪ cn〉 of a
positive rule s1, . . . , sn / s0, for every 1 ≤ i ≤ n we have that if si has the form
Γi ⇒ Δi with Γi �= ∅, then ci has the form Γ ′

i ⇒ .

Derivability, cut-admissibility and ≺-analyticity are adopted to intuitionistic
derivations in the obvious way:

Definition 12. For a pure calculus G, we write S GInt
s if there is an intuition-

istic derivation of a sequent s from a set S of sequents in G. We write Scf
GInt

s if
there is such a derivation which is also cut-limited, and S≺

GInt
s if there is such

a derivation which is ≺-analytic (see Definitions 3 and 5). We say that G enjoys
Int-cut-admissibility if GInt

= cf
GInt

, and is Int-≺-analytic if GInt
= ≺

GInt
.

The difference between pure and intuitionistic calculi is not in the rules, but
rather in applications that are allowed to appear in derivations. Thus, any pure
calculus has an intuitionistic counterpart, obtained by considering only intu-
itionistic derivations. In particular, derivations in LJ′ are exactly intuitionistic
derivations of LK. Indeed, for a finite set Γ of formulas and a formula ϕ, ϕ
follows from Γ in intuitionistic logic iff LKInt

Γ ⇒ ϕ. In contrast, ϕ follows
from Γ in classical logic iff LK Γ ⇒ ϕ.

Theorem 3. Every Int-≺-analytic ≺-directed pure calculus enjoys Int-cut-
admissibility.

The proof of Theorem 3 has a similar general structure to the proof for pure
calculi, but is more challenging, because simple valuation functions do not suf-
fice to characterize the calculi of this family. Instead, a more complex semantic
interpretation is employed, which is based on Kripke models. The description of
this extended semantics, as well as its role in the proof of Theorem 3, are left for
an extended version of this paper.

Theorem 3 allows one to derive the fact that cut is admissible in LJ′ from
the fact that LJ′ enjoys the subformula property. More precisely, Int-cut-
admissibility of LK follows from its Int-≺0-analyticity. Such entailment also
holds for the pure calculi presented in the examples above, as well as for the
calculi of the next example.

Example 10 (Constructive Negations). The paper [7] includes sequent calculi
for logics that replace classical negation with several non-classical negations.

Cut-Admissibility as a Corollary of the Subformula Property 77

One of the families investigated there consists of calculi that are obtained from
the positive fragment of LJ′ by augmenting it with pure rules for negation. All
calculi of this family, except those described in Example 11 below, allow only
intuitionistic derivations, and are ≺1-directed and Int-≺1-analytic. From these
facts, Theorem 3 allows us to conclude that cut is admissible in them. These
calculi include a calculus for Nelson’s constructive logic N3 [23], as well as the
calculus G′

4 presented above for its paraconsistent variant N4.

Intuitionistic derivations disallow right context formulas in premises of pos-
itive rules (Definition 11), in which the left-hand side is not empty. A natural
question that arises regarding Theorem3 is: Does it still hold if we allow right
context formulas for certain premises of a right introduction rule with a non-
empty left-hand side, and forbid them in others? The answer is negative as the
next example demonstrates.

Example 11 (Beyond Intuitionistic Derivations). Following Example 10, we
note that [7,8] investigate also several calculi that include both the single-
conclusion right-introduction rule of implication and the multiple-conclusion
right-introduction rule of negation. The former conforms with the restriction
to intuitionistic derivations, as right context formulas are forbidden. The latter
allows for non-intuitionistic derivations, as it allows right context formulas in a
premise that has a non-empty left side. Such calculi are therefore left out from
the scope of Theorems 2 and 3. And indeed, as was shown in [8], all of them are
≺1-analytic, but none of them enjoys cut-admissibility.

7 Conclusion

We identified two general families of propositional sequent calculi, in which
a generalized subformula property is equivalent to cut-admissibility. The first
is the family of pure calculi that are ≺-directed for some safe and structural
order ≺. The second is the family of “≺-directed intuitionistic calculi”, obtained
by considering intuitionistic derivations in ≺-directed pure calculi.

This result sheds light on the relation between these two fundamental prop-
erties. Furthermore, we believe that it may be useful in obtaining simpler cut-
admissibility proofs:

1. Theorems 2 and 3 reduce the burden in proving cut-admissibility to establish-
ing only analytic cut-admissibility. An application of (cut) in a derivation
of s from S is called a ≺-analytic cut if the cut formula is in ≺ [S ∪ {s}].
In turn, ≺-analytic cut-admissibility concerns only the admissibility of non-
≺-analytic cuts. Proving this property is often easier than showing full cut-
admissibility. For example, when ≺0-analytic cuts are allowed, it is straight-
forward to prove that LK is complete for the classical truth tables. Indeed,
assuming S �LK Γ ⇒ Δ, one extends Γ ⇒ Δ to a maximal underivable
sequent Γ ∗ ⇒ Δ∗ that consists solely of ≺0 [S ∪ {Γ ⇒ Δ}]-formulas. Then, a
countermodel v can be defined simply by setting v(ϕ) = 1 for every ϕ ∈ Γ ∗

78 O. Lahav and Y. Zohar

and v(ψ) = −1 for every ψ ∈ Δ∗. Using ≺0-analytic cuts, it immediately
follows that Γ ∗ ∪ Δ∗ = ≺0 [S ∪ {Γ ∪ Δ}], which makes it easy to prove that
v respects the classical truth tables, and can therefore be extended to a full
classical assignment. By Theorem 2, we may conclude that LK enjoys (full)
cut-admissibility.

2. The results of this paper are useful in combination with our recent paper [20],
where we provided a general method for proving ≺n-analyticity (see Exam-
ple 6 for the definition of ≺n) in a wide family of pure calculi. Concretely, we
showed that the ≺n-analyticity of a ≺n-directed calculus G is guaranteed if
the following property holds:

For every two rules of G of the forms S1 / ⇒ ϕ1 and S2 / ϕ2 ⇒ , and
substitutions σ1, σ2 such that σ1(ϕ1) = σ2(ϕ2), the empty sequent is
derivable from σ(S1) ∪ σ(S2) using only (cut).

Then, Theorem 2 ensures that these calculi are not only ≺n-analytic, but they
also admit cut-admissibility.

We propose two particular directions for future research. First, our app-
roach should be further developed for more expressible languages, which include
quantifiers and modalities. For the former, the three-valued semantics should be
elevated to three-valued first-order structures. For the latter, we prospect that
the Kripke semantics used here for intuitionistic calculi could be adapted for
calculi with modalities. We note, however, that such an approach is expected to
have certain limitations, as some analytic calculi for modal logics (e.g., S5 and
B [25,30]) do not admit cut-admissibility.

Second, the following questions regarding the relations between derivations
and intuitionistic derivations are currently left open: Does ≺-analyticity imply
Int-≺-analyticity? Does cut-admissibility imply Int-cut-admissibility? Do either
of the converses hold?

Acknowledgments. This research was supported by The Israel Science Foundation
(grant no. 817-15). We thank Arnon Avron, João Marcos and the TABLEAUX’17
reviewers for their helpful feedback.

References

1. Anderson, A.R., Belnap, N.D.: Entailment: The Logic of Relevance and Necessity,
vol. I. Princeton University Press, Princeton (1975)

2. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97–141
(1998)

3. Arieli, O., Avron, A.: Three-valued paraconsistent propositional logics. In: Beziau,
J.-Y., Chakraborty, M., Dutta, S. (eds.) New Directions in Paraconsistent Logic:
5th WCP. Kolkata, India, pp. 91–129. Springer, New Delhi (2015). doi:10.1007/
978-81-322-2719-9 4

4. Avron, A.: Simple consequence relations. Inf. Comput. 92(1), 105–139 (1991)
5. Avron, A.: Gentzen-type systems, resolution and tableaux. J. Autom. Reason.

10(2), 265–281 (1993)

http://dx.doi.org/10.1007/978-81-322-2719-9_4
http://dx.doi.org/10.1007/978-81-322-2719-9_4

Cut-Admissibility as a Corollary of the Subformula Property 79

6. Avron, A.: Classical Gentzen-type methods in propositional many-valued logics.
In: Fitting, M., Or�lowska, E. (eds.) Beyond Two: Theory and Applications of
Multiple-Valued Logic. STUDFUZZ, vol. 114, pp. 117–155. Physica, Heidelberg
(2003). doi:10.1007/978-3-7908-1769-0 5

7. Avron, A.: A non-deterministic view on non-classical negations. Stud. Log.: Int. J.
Symb. Log. 80(2/3), 159–194 (2005)

8. Avron, A.: Non-deterministic semantics for families of paraconsistent logics.
Handb. Paraconsist. 9, 285–320 (2007)

9. Avron, A., Konikowska, B., Zamansky, A.: Modular construction of cut-free
sequent calculi for paraconsistent logics. In: Proceedings of the 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, LICS 2012, pp. 85–94.
IEEE Computer Society (2012)

10. Avron, A., Lev, I.: Non-deterministic multi-valued structures. J. Log. Comput.
15, 241–261 (2005). Conference version: Avron, A., Lev, I.: Canonical proposi-
tional Gentzen-type systems. In: Proceedings of the International Joint Conference
on Automated Reasoning, IJCAR 2001. LNAI, vol. 2083, pp. 529–544. Springer,
Heidelberg (2001)

11. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems. In:
Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic. HALO, vol. 16,
pp. 227–304. Springer, Dordrecht (2011). doi:10.1007/978-94-007-0479-4 4

12. Beklemishev, L., Gurevich, Y.: Propositional primal logic with disjunction. J. Log.
Comput. 24(1), 257–282 (2014)

13. Béziau, J.-Y.: Sequents and bivaluations. Logique Anal. 44(176), 373–394 (2001)
14. Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and inse-

curity decision in presence of exclusive or. In: 2003 Proceedings of 18th Annual
IEEE Symposium on Logic in Computer Science, pp. 271–280, June 2003

15. Cotrini, C., Gurevich, Y.: Basic primal infon logic. J. Log. Comput. 26(1), 117–141
(2016)

16. Gentzen, G.: Investigations Into Logical Deduction (1934). (in German). An Eng-
lish translation appears in ‘The Collected Works of Gerhard Gentzen’, edited by
Szabo, M.E., North-Holland (1969)

17. Kamide, N.: A hierarchy of weak double negations. Stud. Log. 101(6), 1277–1297
(2013)

18. Lahav, O.: Studying sequent systems via non-deterministic multiple-valued matri-
ces. Mult.-Valued Log. Soft Comput. 21(5–6), 575–595 (2013)

19. Lahav, O., Avron, A.: A unified semantic framework for fully structural proposi-
tional sequent systems. ACM Trans. Comput. Log. 14(4), 271–273 (2013)

20. Lahav, O., Zohar, Y.: On the construction of analytic sequent calculi for sub-
classical logics. In: Kohlenbach, U., Barceló, P., Queiroz, R. (eds.) WoLLIC
2014. LNCS, vol. 8652, pp. 206–220. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44145-9 15

21. Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent
calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 76–90. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 6

22. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Applied
Logic Series, vol. 36. Springer, Netherlands (2009). doi:10.1007/978-1-4020-9409-5

23. Nelson, D.: Constructible falsity. J. Symb. Log. 14(1), 16–26 (1949)
24. Pinto, L., Uustalu, T.: Proof search and counter-model construction for bi-

intuitionistic propositional logic with labelled sequents. In: Giese, M., Waaler,
A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp. 295–309. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02716-1 22

http://dx.doi.org/10.1007/978-3-7908-1769-0_5
http://dx.doi.org/10.1007/978-94-007-0479-4_4
http://dx.doi.org/10.1007/978-3-662-44145-9_15
http://dx.doi.org/10.1007/978-3-662-44145-9_15
http://dx.doi.org/10.1007/978-3-319-08587-6_6
http://dx.doi.org/10.1007/978-1-4020-9409-5
http://dx.doi.org/10.1007/978-3-642-02716-1_22

80 O. Lahav and Y. Zohar

25. Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic,
vol. 32. Springer, Netherlands (2011). doi:10.1007/978-90-481-9670-8

26. Schütte, K.: Beweistheorie. Springer, Berlin (1960)
27. Suszko, R.: Remarks on �Lukasiewicz’s three-valued logic. Bull. Sect. Log. 4(3),

87–90 (1975)
28. Takeuti, G.: Proof Theory. Studies in Logic and the Foundations of Mathematics.

North-Holland Publishing Company, Amsterdam (1975)
29. Wansing, H.: The Logic of Information Structures. LNCS, vol. 681. Springer,

Heidelberg (1993). doi:10.1007/3-540-56734-8
30. Wansing, H.: Sequent systems for modal logics. In: Gabbay, D.M., Guenthner, F.

(eds.) Handbook of Philosophical Logic. HALO, vol. 8, 2nd edn, pp. 61–145.
Springer, Dordrecht (2002). doi:10.1007/978-94-010-0387-2 2

http://dx.doi.org/10.1007/978-90-481-9670-8
http://dx.doi.org/10.1007/3-540-56734-8
http://dx.doi.org/10.1007/978-94-010-0387-2_2

Proof Theory for Indexed Nested Sequents

Sonia Marin(B) and Lutz Straßburger

Inria, Saclay, France
sonia.marin@inria.fr

Abstract. Fitting’s indexed nested sequents can be used to give deduc-
tive systems to modal logics which cannot be captured by pure nested
sequents. In this paper we show how the standard cut-elimination pro-
cedure for nested sequents can be extended to indexed nested sequents,
and we discuss how indexed nested sequents can be used for intuitionistic
modal logics.

1 Introduction

Modal logics were originally defined in terms of axioms in a Hilbert system,
and later in terms of their semantics in relational structures. Structural proof
theory for modal logics, however, was considered a difficult topic as traditional
(Gentzen) sequents did not provide fully satisfactory (i.e. analytic and modular)
proof systems even for some common modal logics. Nonetheless, the proof theory
of modal logics has received more attention in the last decades, and some exten-
sions of traditional sequents were successfully proposed to handle modalities.
Two approaches can be distinguished: (1) systems that incorporate relational
semantics in the formalism itself like labelled sequent systems (e.g., [18,24,27])
which use sequents that explicitly refer to the relational semantics: formulas
are labelled with states and relational atoms describe the accessibility relation,
and (2) systems that use syntactical devices to handle the modalities like nested
sequents, which are an extension of ordinary sequents to a structure of tree, first
introduced by Kashima [12], and then independently rediscovered by Brünnler [3]
and Poggiolesi [21]. They can be translated into a subclass of labelled sequents
called in [11] labelled tree sequents, if the relational structure is made explicit.
However, compared to labelled deductive systems, the tree structure restricts the
expressivity of nested sequents. In particular, it seems that nested sequents can-
not give cut-free deductive systems for logics obeying the Scott-Lemmon axioms,
which correspond to a “confluence” condition on the relational structure [14].

Fitting recently introduced indexed nested sequents [7], an extension of nested
sequents which goes beyond the tree structure to give a cut-free system for the
classical modal logic K extended with an arbitrary set of Scott-Lemmon axioms.
In some sense indexed nested sequents are more similar to labelled systems
than pure nested sequents—in fact, the translation between nested sequents
and labelled tree sequents mentioned above is naturally extended in [23] to a

S. Marin—Supported by ERC Advanced Grant “ProofCert”.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 81–97, 2017.
DOI: 10.1007/978-3-319-66902-1 5

82 S. Marin and L. Straßburger

translation between indexed nested sequents and labelled tree sequents with
equality, where some nodes of the underlying tree can be identified.

In this paper we investigate some proof-theoretical properties of indexed
nested sequents. The first and foremost one is the cut-elimination theorem. As
Fitting’s original system does not use a cut rule, this result is actually entailed by
his (semantical) completeness theorem. Using the translation mentioned above,
one could also use the cut-elimination result for labelled tree sequents with equal-
ity, yielding an indirect proof [23]. However, only an internal cut-elimination
proof makes a proof formalism a first-class citizen for structural proof theory.
For this reason we give in this paper a syntactic proof of cut-elimination car-
ried out within indexed nested sequents. We achieve this by making some subtle
but crucial adjustments to the standard cut-elimination proof for pure nested
sequents.

One of the main advantages is that this proof can be exported to the intuition-
istic framework with basically no effort. We achieve this by using the techniques
that had already been successfully used for ordinary nested sequents [8,15,26].
This allows us to present the cut-free indexed nested sequents systems in a uni-
form manner for classical and intuitionistic modal logic. The deductive systems
are almost identical, the main difference being that an intuitionistic sequent has
only one “output” formula, in the same way as in ordinary sequent calculus an
intuitionistic sequent has only one formula on the right.

As there is no straightforward definition of the extension of intuitionistic
modal logic with Scott-Lemmon axioms, the indexed nested sequents system
can be seen as one way to define it. This point is examined in the last section
with a discussion on the various alternatives that exist in the literature and how
they relate to the proposed system.

2 Indexed Nested Sequents and the Scott-Lemmon
Axioms

We start by working with formulas in negation normal form, generated by the
following grammar, which extends the language of propositional classical logic
with the two modalities � and �

A ::= a | ā | A ∧ A | A ∨ A | �A | �A (1)

where a is taken from a countable set of propositional atoms, ā is its negation,
and ¯̄a is equivalent to a. For every formula A, its negation Ā, is defined as usual
via the De Morgan laws. For now, we use A ⊃ B as abbreviation for Ā ∨ B.

Classical modal logic K is obtained from classical propositional logic by
adding the axiom k : �(A ⊃ B) ⊃ (�A ⊃ �B) and the necessitation rule that
allows to derive the formula �A from any theorem A.

Stronger modal logics can be obtained by adding to K other axioms. We are
interested here specifically in the family of Scott-Lemmon axioms of the form

gk,l,m,n : �k�lA ⊃ �m�nA (2)

Proof Theory for Indexed Nested Sequents 83

for a tuple 〈k, l,m, n〉 of natural numbers, where �m stands for m boxes and �n

for n diamonds. Fitting [7] introduced indexed nested sequents exactly to provide
a structural proof system for classical modal logic K, that could be extended with
rules for the Scott-Lemmon axioms.

A (pure) nested sequent is a multiset of formulas and boxed sequents, accord-
ing to the following grammar Γ ::= ∅ | A,Γ | [Γ], Γ where A is a modal formula.
We understand such a nested sequent through its interpretation as a modal for-
mula, written fm(·), given inductively by fm(∅) = ⊥; fm(A,Γ) = A ∨ fm(Γ);
and fm([Γ1], Γ2) = �fm(Γ1) ∨ fm(Γ2). A nested sequent can therefore be seen
as a tree of ordinary one-sided sequents, with each node representing the scope
of a modal �. It therefore is of the general form

A1, . . . , Ak, [Γ1], . . . , [Γn] (3)

An indexed nested sequent, as defined in [7], is a nested sequent where each
sequent node (either the root or any interior node) carries an index, denoted
by lowercase letters like u, v, w, x, . . ., and taken from a countable set (e.g., for
simplicity, the set of natural numbers), so we write an indexed sequent by extend-
ing (3) in the following way

A1, . . . , Ak, [w1Γ1], . . . , [
wnΓn] (4)

where Γ1, . . . , Γn are now indexed sequents, and where the index of the root is
not explicitly shown (e.g., we can assume that it is 0). For an indexed nested
sequent Σ, we write IΣ to denote the set of indexes occurring in Σ.

Intuitively, indexed nested sequents are no longer trees, but any kind of rooted
directed graphs, by identifying nodes carrying the same index.

In nested sequent calculi, a rule can be applied at any depth in the structure,
that is, inside a certain nested sequent context. We write Γ

i1{ } · · · in{ } for an
n-ary context (i.e. one with n occurrences of the { }) where i1, . . . , in are the
indexes of the sequent nodes that contain the { }, in the order of their appearance
in the sequent. A hole in a context can be replaced by a formula or sequent.
More precisely, we write Γ

i1{Δ1} · · · in{Δn} for the sequent that is obtained
from Γ

i1{ } · · · in{ } by replacing the k-th hole by Δk, for each k ∈ {1, . . . , n}
(if Δk = ∅ it simply amounts to removing the { }). We might omit the index at
the context-braces when this information is clear or not relevant.

Example 2.1. For example, A, [1B, [2C, { }]], [3D, [1{ }, A]], [2D, { }] is a
ternary context that we can write as Γ

2{ } 1{ } 2{ }. If we substitute the
sequents Δ1 = D, [4E]; Δ2 = F ; and Δ3 = [5G] into its holes, we get:
Γ

2{Δ1} 1{Δ2} 2{Δ3} = A, [1B, [2C,D, [4E]]], [3D, [1F,A]], [2D, [5G]].

In Fig. 1, the classical system that we call iNK is an adaptation of the system
described by Fitting in [7] to our notations and to the one-sided setting. It can
also be seen as Brünnler’s system [3] extended with indexes.

What is different from the pure nested sequent system is the addition of the
two structural rules tp and bc, called teleportation and bracket-copy, respectively,

84 S. Marin and L. Straßburger

which are variants of the formula-contraction FC and the sequent-contraction SC
of [7]. We need two versions of bc to take care of every possible context where the
rule may be applied. Another peculiarity is that in the rules for � we demand
that the index of the new bracket in the premiss does not occur in the conclusion.

id −−−−−−−−−
Γ{a, ā}

Γ{A, B}∨ −−−−−−−−−−−−
Γ{A ∨ B}

Γ{A} Γ{B}∧ −−−−−−−−−−−−−−−−−
Γ{A ∧ B}

Γ{�A, [
u
A, Δ]}

� −−−−−−−−−−−−−−−−−−−
Γ{�A, [

u
Δ]}

Γ{[
v
A]}

� −−−−−−−−−− v is fresh
Γ{�A}

Γ
w{∅} w{A}

tp −−−−−−−−−−−−−−−
Γ

w{A} w{∅}
Γ

w{[
u
Δ]} w{[

u∅]}
bc1 −−−−−−−−−−−−−−−−−−−−−

Γ
w{[

u
Δ]} w{∅}

Γ
w{[

u
Δ

w{[
u∅]}]}

bc2 −−−−−−−−−−−−−−−−−−−−−
Γ

w{[
u
Δ

w{∅}]}

Fig. 1. System iNK

Γ
u0{[

u1Δ1, . . . [
ukΔk, [

v1 . . . [
vl] . . .]] . . .], [

w1Σ1, . . . [
wmΣm, [

x1 . . . [
xn] . . .]] . . .]}

gk,l,m,n −−
Γ

u0{[
u1Δ1, . . . [

ukΔk] . . .], [
w1Σ1, . . . [

wmΣm] . . .]}

Fig. 2. Inference rule gk,l,m,n (where l + n �= 0, v1 . . . vk and x1 . . . xn are fresh, and vl = xn)

σΓ
u0{[

u1Δ1, . . . [
σ(uk)Δk], . . .], [

w1Σ1, . . . [
σ(wm)

Σm], . . .]}
gk,0,m,0 −−−

Γ
u0{[

u1Δ1, . . . [
ukΔk], . . .], [

w1Σ1, . . . [
wmΣm], . . .]}

Fig. 3. Special case for gk,0,m,0

Finally, for a tuple 〈k, l,m, n〉 with l + n
= 0, the rule gk,l,m,n in Fig. 2 is
defined as in [7]. It must satisfy that v1 . . . vk and x1 . . . xn are fresh indexes
which are pairwise distinct, except for the confluence condition: we always have
vl = xn. When one or more elements of the tuple 〈k, l,m, n〉 are equal to 0, then
we have the following special cases:

– if k = 0 (or m = 0) then u1 to uk (resp. w1 to wm) all collapse to u0.
– if l = 0 then w1 to wl all collapse to uk, and similarly, if n = 0 then x1 to xn

all collapse to vm. In particular, if k = 0 and l = 0, we must have xn = u0,
and similarly, if m = 0 and n = 0, we demand that vl = u0.

An example of how this rule can be used to derive an instance of the Scott-
Lemmon axioms can be found in the proof of Theorem 4.2.

The case where l = 0 and n = 0 was not handled by Fitting in [7]; we give
a corresponding rule in Fig. 3. In that case, not only do we identify uk and wm,
but it is also necessary to apply a substitution σ : IΓ → IΓ to the indexes in the
context Γ

u0{ }, giving the new context σΓ
u0{ }, such that σ(uk) = σ(wm) in

the whole sequent (and σ(y) = y for any other y ∈ IΓ).

Proof Theory for Indexed Nested Sequents 85

For a given set G ⊆ N
4, write iNK + G for the system obtained from iNK

by adding the corresponding rules given in Figs. 2 and 3. System iNK + G is
sound and complete wrt. the logic corresponding K+G (which is obtained from
K by adding the corresponding axioms (2)). Soundness is proven by Fitting [7]
wrt. relational frames; and completeness via a translation to set-prefixed tableaux
system for which in turn he gives a semantic completeness proof.

3 Cut-Elimination

In this section, we present a cut-elimination proof for the indexed nested sequent
system iNK + G that relies on a standard double-induction on the height of the
derivation above a given cut-rule (left of Fig. 4), and the cut rank.

Γ{A} Γ{Ā}
cut −−−−−−−−−−−−−−−−−

Γ{∅}
Γ{∅}

w −−−−−−−
Γ{Δ}

Γ{Δ, Δ}
c −−−−−−−−−−−

Γ{Δ}
Γ

nec −−−
[Γ]

Γ
isub −−−

σΓ

Fig. 4. Left: the one-sided cut-rule – Right: additional structural rules

Definition 3.1. The height of a derivation tree π, denoted by ht(π), is the
length of the longest path in the tree from its root to one of its leaves. The rank
of an instance of cut is the depth of the formula introduced by the cut. We also
write cutr to denote an instance of cut with rank at most r. The cut-rank of a
derivation π, denoted by rk(π), is the maximal rank of a cut in π.

To facilitate the overall argument, we consider a variant of system iNK, that
we call system iN̈K, that is obtained from iNK by removing the teleportation
rule tp (but keeping the bc-rules), and by replacing the id- and �-rules by

ı̈d
Γ

u{a} u{ā} and
Γ

u{�A} u{[A, Δ]}
�̈

Γ
u{�A} u{[Δ]} (5)

respectively. The reason behind this is that iNK and iN̈K are equivalent (with and
without cut, as shown below in Lemma 3.4), but the tp-rule is admissible in the
new system. We will also need some additional structural rules called weakening,
contraction, necessitation, and index substitution respectively, which are shown
on the right in Fig. 4. The rules for weakening and contraction are similar to the
standard sequent rules except that they can apply deeply inside a context. The
rules nec and isub on the other hand cannot be applied deep inside a context;
they always work on the whole sequent. In isub, the sequent σΓ is obtained from
Γ by applying the substitution σ : IΓ → IΓ on the indexes occurring in Γ , where
σ can be an arbitrary renaming.

86 S. Marin and L. Straßburger

Lemma 3.2. The rules nec, w, isub and c are cut-rank and height preserving
admissible for iN̈K + G, and all rules of iN̈K + G (except for the axiom ı̈d) are
cut-rank and height-preserving invertible.

Proof. This proof is analogous to that for the pure nested sequent systems in
[3]. For bc and gk,l,m,n, note that their inverses are just weakenings. �

Lemma 3.3. The rule tp is admissible for iN̈K + G (and for iN̈K + G + cut).

Proof. The proof uses an induction on the number of instances of tp in a proof,
eliminating topmost instances first, by an induction on the height of the proof
above it and a case analysis of the rule r applied just before tp. The only nontrivial
case is when r = �:

we transform the derivation as follows and then use the admissibility of weak-
ening (Lemma 3.2) and the induction hypothesis to conclude. �
Lemma 3.4. A sequent Δ is provable in iNK + G (or in iNK + G + cut) if and
only if it is provable in iN̈K + G (resp. in iN̈K + G + cut).

Proof. Given a proof of Δ in iNK + G, we can observe that the rules id and �

are just special cases of the rules ı̈d and �̈, respectively. Thus, we obtain a proof
of Δ in iN̈K + G from admissibility of tp (Lemma 3.3). Conversely, if we have a
proof of Δ in iN̈K + G, we can obtain a proof of Δ in iNK + G by replacing all
instance of ı̈d and �̈ by the following derivations:

respectively. The same proof goes for the system with cut. �
Finally we can prove the reduction lemma.

Lemma 3.5 (Reduction Lemma). If there is a proof π of shape

in iN̈K + G such that rk(π1) ≤ r and rk(π2) ≤ r, then there is proof π′ of Γ{∅}
in iN̈K + G such that rk(π′) ≤ r.

Proof Theory for Indexed Nested Sequents 87

Proof. We proceed by induction on ht(π1) + ht(π2), making a case analysis on
the bottommost rules in π1 and π2. The cases are almost identical to [3]; we
only show the ones that are new or different. Details can be found in [16]. As
an example of commutative case, we consider when the bottommost rule r of π1

(or π2) is gk,0,m,0. Then we have

which can be replaced by

where Γk−1{ } and Γm−1{ } correspond to contexts which are of the form
[u1Δ1, . . . [

uk−1Δk−1, { }]] and [w1Σ1, . . . [
wmΣm, { }]] respectively, and we can

proceed by induction hypothesis.
The most interesting key case is when the cut-formula A = �B, that is, when

when the bottommost rule r of π1 is �̈:

which can be reduced to

where on the left branch we use height-preserving admissibility of weakening and
proceed by induction hypothesis, and on the right branch we use admissibility
of the isub- and tp-rules (Lemmas 3.2 and 3.3). �

88 S. Marin and L. Straßburger

Theorem 3.6. If a sequent Γ is derivable in iN̈K + G + cut then it is also
derivable in iN̈K + G.

Proof. The proof goes by induction on the cut rank of π; the induction step uses
also an induction on the number of occurrences of cut with the maximal rank
and Lemma 3.5 to eliminate each time the topmost occurrence in the proof. �
Theorem 3.7. If a sequent Γ is derivable in iNK + G + cut then it is also
derivable in iNK + G.

Proof. Following Theorem 3.6 and Lemma 3.4. �

4 From Classical to Intuitionistic

Starting from the proof system for classical modal logic discussed in the previous
section, we will show now how to obtain an intuitionistic variant. This will be
done in a similar way as Gentzen did in his original work for the ordinary sequent
calculus [9].

The first step is to enrich the language of formulas with implication and
disallow negation on atoms, i.e., we no longer restrict formulas to negative normal
form:

A ::= a | ⊥ | A ∧ A | A ∨ A | A ⊃ A | �A | �A (6)

We can define ¬A = A ⊃ ⊥ and � = ¬⊥. Intuitionistic modal logic IK is
obtained from intuitionistic propositional logic by adding the axioms

k1 : �(A ⊃ B) ⊃ (�A ⊃ �B)
k2 : �(A ⊃ B) ⊃ (�A ⊃ �B)

k3 : �(A ∨ B) ⊃ (�A ∨ �B)
k4 : (�A ⊃ �B) ⊃ �(A ⊃ B)
k5 : �⊥ ⊃ ⊥

(7)

and the rule nec, similarly to Sect. 2. The axioms in (7) are logical consequences
of k in the classical case but not in the intuitionistic case.1

We will consider the following schema as the intuitionistic equivalent to Scott-
Lemmon axioms:

gk,l,m,n : (�k�lA ⊃ �m�nA) ∧ (�m�nA ⊃ �k�lA) (8)

The two conjuncts correspond to the classical gk,l,m,n and gm,n,k,l which are equiv-
alent via De Morgan in classical logic, but not in intuitionistic modal logic.

In the following, we will first present a two-sided version of the classical one-
sided system iNK that was given in Fig. 1. For this, the first step is to include
the distinction between input and output formulas into the data structure.
1 This is the variant of IK first mentioned in [5] and [20] and studied in detail in [25].

There are many more variants of intuitionistic modal logic, e.g. [2,6,19,22]. Another
popular variant is constructive modal logic (e.g. [17]), which rejects axioms k3-k5
in (7) and only allows k1 and k2. It has a different cut-elimination proof in nested
sequents [1]. For this reason we work in this paper with IK which allows all of k1–k5.

Proof Theory for Indexed Nested Sequents 89

To that purpose we use here the notion of polarity, as studied by Lamarche
in [13]. We assign to every formula in the nested sequent a unique polarity:
either input, denoted by a •-superscript, or output, denoted by a ◦-superscript.
A two-sided indexed nested sequent therefore is of the following form, denoted
by Γ ◦ if it contains at least one input formula and by Λ• otherwise:

Γ ◦ ::= Λ• | Γ ◦, A◦ | Γ ◦, [wΓ ◦]
Λ• ::= ∅ | Λ•, B• | Λ•, [uΛ•]

(9)

We are now ready to see the inference rules. The two-sided version of iNK2

is shown in Fig. 5. As expected, the rules for output formulas are the same as in
the one-sided case, and the rules for input formulas show dual behavior.

⊥• −−−−−−−−
Γ{⊥•} id −−−−−−−−−−−−

Γ{a•, a◦}
Γ{A◦} Γ{B•}⊃•

c −−−−−−−−−−−−−−−−−−−−
Γ{A ⊃ B•}

Γ{A•, B◦}⊃◦ −−−−−−−−−−−−−−
Γ{A ⊃ B◦}

Γ{A•, B•}∧• −−−−−−−−−−−−−−
Γ{A ∧ B•}

Γ{A◦} Γ{B◦}∧◦ −−−−−−−−−−−−−−−−−−−−
Γ{A ∧ B◦}

Γ{A•} Γ{B•}∨• −−−−−−−−−−−−−−−−−−−−
Γ{A ∨ B•}

Γ{A◦, B◦}∨◦
c −−−−−−−−−−−−−−

Γ{A ∨ B◦}

Γ{�A•, [
w

A•, Δ]}
�• −−−−−−−−−−−−−−−−−−−−−−

Γ{�A•, [
w

Δ]}
Γ{[

v
A◦]}

�◦ −−−−−−−−−−−
Γ{�A◦}

Γ{[
v
A•]}

�• −−−−−−−−−−−
Γ{�A•}

Γ{�A◦, [
w

A◦, Δ]}
�◦

c −−−−−−−−−−−−−−−−−−−−−−
Γ{�A◦, [

w
Δ]}

Γ
w{∅} w{A}

tp −−−−−−−−−−−−−−−
Γ

w{A} w{∅}
Γ

w{[
u
Δ]} w{[

u∅]}
bc1 −−−−−−−−−−−−−−−−−−−−−

Γ
w{[

u
Δ]} w{∅}

Γ
w{[

u
Δ

w{[
u∅]}]}

bc2 −−−−−−−−−−−−−−−−−−−−−
Γ

w{[
u
Δ

w{∅}]}

Fig. 5. Two-sided classical system iNK2

Finally, the step from classical to intuitionistic simply consists in restricting
the number of output formulas in the sequent to one, but it is crucial to observe
that we count the whole sequent, and not every bracket separately [26]. So an
intuitionistic indexed nested sequent is of the form:

Γ ◦ ::= Λ•, A◦ | Λ•, [vΓ ◦] (10)

where Λ• is defined as in (9). Moreover, since we do not have an explicit contrac-
tion rule, but have it incorporated into inference rules (e.g., �•), the inference
rules ∨◦, ⊃• and �◦ have to adapted, as shown on Fig. 6, in order to maintain
the property that each sequent in a proof contains exactly one output formula.
In particular, to ensure that both premisses of the ⊃•-rule are intuitionistic
sequents, the notation Γ ↓{ } stands for the context obtained from Γ{ } by
removing the output formula. We define iNIK = iNK2 \ {⊃•,∨◦

c ,�
◦
c} ∪ {⊃•

i ,
∨◦
1,∨◦

2,�
◦
i }. Observe that the structural rules tp, bc1, and bc2 are identical

for all three systems (one-sided classical, two-sided classical, and two-sided
intuitionistic).

90 S. Marin and L. Straßburger

Γ ↓{A ⊃ B•, A◦} Γ{B•}⊃•
i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{A ⊃ B•}
Γ{A◦}∨◦

1 −−−−−−−−−−−−−−
Γ{A ∨ B◦}

Γ{B◦}∨◦
2 −−−−−−−−−−−−−−

Γ{A ∨ B◦}
Γ{[

w
A◦, Δ]}

�◦
i −−−−−−−−−−−−−−−−−

Γ{�A◦, [
w

Δ]}

Fig. 6. Intuitionistic variants of some rules for system iNIK

It is also the case that each system can be extended with the rules presented
in Figs. 2 and 3. In the classical case, it will give the system iNK2 +G equivalent
to iNK + G and basically identical to Fitting’s system [7]. In the intuitionistic
case, it gives us a system iNIK + G, and the rest of the paper is dedicated
to the study of this system. This modular way of adding structural rules for
the Scott-Lemmon axioms to the basic deductive system corresponding to K
or IK is similar to the way labelled sequent systems handle the Scott-Lemmon
axioms.2

Finally, the cut-elimination proof conducted in iNK + G can be reproduced
in a similar fashion in iNK2 + G and iNIK + G, the two-sided cut-rule being of

the form
Γ{A◦} Γ{A•}

cutc
Γ{∅} in the classical case, and

Γ ↓{A◦} Γ{A•}
cuti

Γ{∅} in

the intuitionistic case, where a unique output needs to be maintained in the left
branch.

Theorem 4.1. If a sequent Γ is derivable in iNK2 +G+ cutc (resp. iNIK+G+
cuti) then it is also derivable in iNK2 + G (resp. iNIK + G).

Proof. The proof works similarly to the one of Theorem 3.7. For the intuitionistic
system, the cases are similar to [26], except for the specific indexed ones. Details
can be found in [16]. �

The cut-elimination theorem can be used to show completeness: every theo-
rem of K + G (resp. IK + G) is a theorem of iNK2 + G (resp. iNIK + G).

Theorem 4.2. If a formula A is provable in the Hilbert system IK+G, then the
sequent A◦ is provable in the indexed nested sequent system iNIK + G.

Proof. The axioms of intuitionistic propositional logic as well as the axioms k1-k5
can be derived in iNIK, in the same way as in [26]. The inference rule nec can be
simulated by the structural rule nec, which is admissible in iNIK+G (Lemma 3.2),
and modus ponens mp can be simulated by the cut-rule, which is also admissible

2 Indeed, like iNK2 and iNIK, Negri’s [18] system for classical logic K can be seen as
the classical variant of Simpson’s system [25] for intuitionistic logic IK. Then the
same structural rules can be added to each system to extend it to geometric axioms,
so in particular to Scott-Lemmon axioms.

Proof Theory for Indexed Nested Sequents 91

(Theorem 4.1). Thus, it remains to show that any gk,l,m,n axiom can be derived,
using the corresponding gk,l,m,n-rule (which is the same as gm,n,k,l):

And similarly for the other conjunct. �
The same proof can be done in the classical case, and provides an alternative

to the completeness of indexed nested sequents wrt. set prefixed tableaux in [7].
However, there are examples of theorems of iNIK+G that are not theorems of

IK+G, that is, the indexed nested sequent system is not sound with respect to the
Hilbert axiomatisation using what we gave above as the intuitionistic alternative
to Scott-Lemmon axioms. There is already a simple counter-example when one
considers G to be composed with only the axiom g1,1,1,1 : ��A ⊃ ��A. Then

F = (�(�(a ∨ b) ∧ �a) ∧ �(�(a ∨ b) ∧ �b)) ⊃ �(�a ∧ �b) (11)

is derivable in iNIK + g1,1,1,1, but is not a theorem of IK + g1,1,1,1 (as mentioned
in [25]). Thus, the logic given by the Hilbert axiomatisation IK + G and the
one given by the indexed nested sequent system iNIK + G actually differ in the
intuitionistic case. We will address this issue in more detail in the next section.

5 Semantics of the Scott-Lemmon Axioms

In the classical case, the indexed nested sequent system is not only equivalent to
the Hilbert axiomatisation using Scott-Lemmon axioms, it is actually sound and
complete wrt. the corresponding Kripke semantics. In this section, we investigate
the behavior of the indexed nested sequents system iNIK + G with respect to
Kripke semantics. For this, we briefly recall the standard Kripke semantics of
classical and intuitionistic modal logics. The classical semantics is standard, but
the intuitionistic might be less well-known. We use here the birelational models,
as they are discussed in [4,20,25].

A classical frame 〈W,R〉 is a non-empty set W of worlds and a binary relation
R ⊆ W × W , called the accessibility relation. An intuitionistic frame 〈W,R,≤〉
is additionally equipped with a preorder ≤ on W , such that:

(F1) For all u, v, v′ ∈ W , if uRv and v ≤ v′, there exists u′ ∈ W such that
u ≤ u′ and u′Rv′.

(F2) For all u′, u, v ∈ W , if u ≤ u′ and uRv, there exists v′ ∈ W such that
u′Rv′ and v ≤ v′.

92 S. Marin and L. Straßburger

A classical model M = 〈W,R, V 〉 is a classical frame together with a valu-
ation function V : W → 2A mapping each world w to the set of propositional
variables which are true in w. In an intuitionistic model 〈W,R,≤, V 〉, the func-
tion V must be monotone with respect to ≤, i.e. w ≤ v implies V (w) ⊆ V (v).

We write w � a if a ∈ V (w). From there, the relation � is extended to
all formulas in a parallel way in the classical and intuitionistic case, that is,
considering a classical model to be a special case of an intuitionistic model,
where w ≤ v iff w = v, we give below the definition for both at the same time:

w � A ∧ B iff w � A and w � B
w � A ∨ B iff w � A or w � B
w � A ⊃ B iff for all w′ with w ≤ w′, if w′ � A then also w′ � B
w � �A iff for all w′ and u with w ≤ w′ and w′Ru, we have u � A
w � �A iff there is a u ∈ W such that wRu and u � A

If w � A we say that w forces A. We write w � A if w does not force A, i.e.
it is not the case that w � A. It follows that � also satisfies monotonicity, i.e.
if w ≤ v and w � A then v � A. (In the classical case we also have w � ¬A
iff w � A which implies the de Morgan dualities, in particular, w � �(¬A) iff
w � ¬(�A).) We say that a formula A is valid in a model M, if for all w ∈ W
we have w � A. Finally, we say a formula is classically (or intuitionistically)
valid, if it is valid in all classical (resp. intuitionistic) models.

The Hilbert systems for K and IK, introduced in Sects. 2 and 4 respectively,
are sound and complete with respect to arbitrary classical and intuitionistic
models respectively. We are now going to adapt the method of Fitting [7] for
proving the soundness of the classical system iNK2 + G to study the soundness
of our proposed intuitionistic system iNIK + G with respect to a subclass of
intuitionistic models. The first step is to put intuitionistic indexed nested sequent
in correspondence with intuitionistic models in order to define the validity of a
sequent in a model.

Definition 5.1. Let Σ be an indexed nested sequent. We write IΣ to denote
the set of indexes occurring in Σ, and we write RΣ for the accessibility relation
induced by Σ, that is, the binary relation RΣ ⊆ IΣ × IΣ defined as: wRΣv iff
Σ = Γ

w{[vΔ]} for some Γ{ } and Δ, i.e. v is the index of a child of w.

Example 5.2. If we consider the sequent Σ obtained in the Example 2.1, we
have that IΣ = {0, 1, 2, 3, 4, 5} with 0 being the index of the root, so RΣ =
{(0, 1), (0, 2), (0, 3), (1, 2), (2, 4), (2, 5), (3, 1)}.

Definition 5.3. Let Σ be an indexed nested sequent and let M = 〈W,R,≤, V 〉
be an intuitionistic Kripke model. A homomorphism h : Σ → M is a mapping
h : IΣ → W , such that wRΣv implies h(w)Rh(v) for all w, v ∈ IΣ .

A preorder relation between homomorphisms can be obtained from the pre-
order in an intuitionistic model: For h, h′ : Σ → M two homomorphisms, we
write h ≤ h′ if h(w) ≤ h′(w) in M for all w ∈ IΣ . The notion of validity can
then be defined by induction on the subsequents of a given sequent.

Proof Theory for Indexed Nested Sequents 93

Definition 5.4. Let Σ and Δ be indexed nested sequents, and w ∈ IΣ . We say
that 〈Δ,w〉 is an exhaustive subsequent of Σ if either Δ = Σ and w = 0, or
Σ = Γ{[wΔ]} for some context Γ{ }.

Note that for a given index v of Σ, there might be more than one Δ such
that 〈Δ, v〉 is an exhaustive subsequent of Σ, simply because v occurs more than
once in Σ. For this reason we will write v̇ to denote a particular occurrence of v
in Σ and Σ|v̇ for the subsequent of Σ rooted at the node v̇. 〈Σ|v̇, v〉 stands then
for a uniquely defined exhaustive subsequent of Σ.

Definition 5.5. Let h : Σ → M be a homomorphism from a sequent Σ to a
model M. Let w ∈ IΣ and let 〈Δ,w〉 be an exhaustive subsequent of Σ. From (9)
and (10), Δ has one of the following forms:

– Δ = B•
1 , . . . , B•

l , [v1Λ•
1], . . . , [

vnΛ•
n]. Then we define 〈h,w〉 �i Δ if h(w) � Bi

for some i ≤ l or 〈h, vj〉 �i Λ•
j for some j ≤ n.

– Δ = B•
1 , . . . , B•

l , [v1Λ•
1], . . . , [

vnΛ•
n], A◦. Then we define 〈h,w〉 �i Δ if either

h(w) � Bi for some i ≤ l or 〈h, vj〉 �i Λ•
j for some j ≤ n or h(w) � A.

– Δ = B•
1 , . . . , B•

l , [v1Λ•
1], . . . , [

vnΛ•
n], [uΠ◦]. Then we define 〈h,w〉 �i Δ if either

h(w) � Bi for some i ≤ l or 〈h, vj〉 �i Λ•
j for some j ≤ n or for all homomor-

phisms h′ ≥ h, we have that 〈h′, u〉 �i Π◦.

If, for all h′ ≥ h, 〈h′, w〉 �i Δ, we say that 〈Δ,w〉 is intuitionistically valid
in M under h. Then, a sequent Σ is valid in a model M, if 〈Σ, 0〉 is valid in M
under every h : Σ → M.

Informally, an indexed nested sequent is valid if it contains anywhere in the
sequent tree a valid output formula or an invalid input formula. More formally:

Lemma 5.6. Let Σ be an indexed nested sequent. Let 〈Δ, v〉 be a exhaustive
subsequent of Σ. Suppose Δ = Γ

w{A} for some context Γ
w{ } and some for-

mula A. Let M be a Kripke model and h : Σ → M a homomorphism.

– If A = A◦ and h(w) � A, then 〈h, v〉 �i Δ.
– If A = A• and h(w) � A, then 〈h, v〉 �i Δ.

Proof. By induction on the height of the tree rooted at the considered occurrence
of v. The base case occurs when A◦ (or A•) is at the root of that tree. �

We now make explicit the class of model that we are going to consider in
order to interpret system iNIK + G. We adapt the notion of graph-consistency
introduced by Simpson [25] to the indexed nested sequents framework.

Definition 5.7. A intuitionistic model M is called graph-consistent if for any
indexed nested sequent Γ , given any homomorphism h : Γ → M, any w ∈ IΓ ,
and any w′ ≥ h(w), there exists h′ ≥ h such that h′(w) = w′.3

3 One might consider this definition unsatisfactory as it is not a pure frame condition,
but we have to leave a detailed study of this issue to future research.

94 S. Marin and L. Straßburger

Definition 5.8. Let M = 〈W,R,≤, V 〉 be a be an intuitionistic model and let
〈k, l,m, n〉 ∈ N

4. We say that M is a g(k, l,m, n)-model if for all w, u, v ∈ W
with wRku and wRmv there is a z ∈ W such that uRlz and vRnz.4 For a set G
of N

4-tuples, we say that M is a G-model, if for all 〈k, l,m, n〉 ∈ G we have that
M is a g(k, l,m, n)-model.

We finally prove that any theorem of iNIK + G is valid in every graph-
consistent G-model by showing that each rule of iNIK + G is sound when inter-
preted in these models.

Lemma 5.9. Let G ⊆ N
4, and let

Σ1 · · · Σn
r

Σ
be an instance of an inference

rule in iNIK + G for n = 0, 1, 2. If all of Σ1, . . . , Σn are valid in every graph-
consistent G-model, then so is Σ.

Proof. First, assume that r is
Φ

gk,l,m,n
Ψ

, for some 〈k, l,m, n〉 ∈ G such that

k, l, m, n > 0 (similar proof when one parameter is 0). By way of contradiction,
suppose that Φ is valid in every graph-consistent G-model and that there is a
G-model M = 〈W,R,≤, V 〉, a homomorphism h : Ψ → M such that 〈Ψ, 0〉 is not
valid in M under h. Recall that Ψ is of form

Ψ = Γ
u0{[u1Δ1, . . . [

ukΔk] . . .], [w1Σ1, . . . [
wmΣm] . . .]}

Therefore, there exist u0, uk, wm in W such that u0 = h(u0), uk = h(uk), wm =
h(wm), and u0Rkuk, and u0Rmwm (Definitions 5.1 and 5.3). Hence, as M is
in particular a g(k, l,m, n)-model, there exists y ∈ W with ukRly and wmRny
(Definition 5.8). Namely, there are worlds v1, . . . , vl, x1, . . . , xn in W such that
ukRv1 . . . vl−1Rvl, wmRx1 . . . xn−1Rxn, and vl = y = xn. By noting that

Φ = Γ
u0{[u1Δ1, ...[

ukΔk, [v1 ...[vl]...]]...], [w1Σ1, ...[
wmΣm, [x1 ...[xn]...]]...]}

we can define a homomorphism h′ : Φ → M with h′(z) = h(z) for all z ∈ IΨ ,
h′(vi) = vi for 1 ≤ i ≤ l and h′(xj) = xj for 1 ≤ j ≤ n.

We are now going to show that for every h : Ψ → M, and every occurrence
ż of an index z ∈ IΨ , we have 〈h, z〉 �i Ψ |ż iff 〈h′, z〉 �i Φ|ż. We proceed by
induction on the height of the tree rooted at ż.

1. The node of ż is a leaf node of Ψ , and z
= uk and z
= wm. Then we have
Ψ |ż = Φ|ż and the claim holds trivially.

2. The node of ż is an inner node of Ψ , and z
= uk and z
= wm. By the induction
hypothesis, for every t ∈ IΨ with zRΨ t, every occurrence ṫ of t in Ψ |ż, and
every h : Ψ → M, 〈h, t〉 �i Ψ |ṫ iff 〈h′, t〉 �i Φ|ṫ. The statement follows then by
unravelling the definition of �i (Definition 5.5).

4 We define the composition of two relations R, S on a set W as usual: R◦S = {(w, v) |
∃u. (wRu ∧ uSv)}. Rn stands for R composed n times with itself.

Proof Theory for Indexed Nested Sequents 95

3. z = uk. For any occurrence ż in the context Γ
z0{ }, the proof is similar to

one of the previous cases. Otherwise, we know that Ψ |ż = Δk and Φ|ż =
Δk, [v1 ...[vl]...]. Furthermore, for all i ≤ l and h′′ ≥ h we have 〈h′′, vi〉 �i

[vi+1 ...[vl]...], and therefore 〈h, z〉 �i Ψ |ż iff 〈h′, z〉 �i Φ|ż.
4. v = wm. This case is similar to the previous one.

Since we assumed that 〈Ψ, 0〉 is not valid in M under h, we can conclude that
〈Φ, 0〉 is not valid in M under h′, contradicting the validity of Φ.

The proof for bc, tp, and the other cases of gk,l,m,n is similar.
For the logical rules, we will only consider in detail the case for �◦, the others

being similar. Suppose that Φ = Γ
w{[vA◦]} is valid in every graph-consistent

G-model. For Ψ = Γ
w{�A◦}, suppose that there exists a graph-consistent G-

model M = 〈W,R,≤, V 〉 and a homomorphism h : Ψ �→ M such that 〈Ψ, 0〉 is
not valid in M under h. Therefore, there exists h′ ≥ h such that 〈h′, 0〉 �i Ψ ,
in particular by Lemma 5.6, h′(w) � �A. So there exists w and v such that
wRv, h′(w) ≤ w and v � A. As M is graph-consistent, there exists h′′ such
that w = h′′(w). Thus, we can extend h′′ by setting h′′(v) = v to obtain a
homomorphism h′′ : Φ �→ M, indeed Φ and Ψ have the same set of indexes
related by the same underlying structure, but for the fresh index v that does
not appear in Ψ . Finally, as h′′(v) � A, we have by Lemma 5.6 that 〈Φ, 0〉 is not
valid in M under h′′ which contradicts the assumption of validity of Φ. �
Theorem 5.10. Let G be given. If a sequent Σ is provable in iNIK + G then it
is valid in every graph-consistent intuitionistic G-model.

Proof. By induction on the height of the derivation, using Lemma 5.9. �
The soundness result in [7] can be obtained as a corollary of this theorem, as

our proof method extends Fitting’s technique to the intuitionistic framework.

Corollary 5.11. Let G be given. If a sequent Σ is provable in iNK2 + G then it
is valid in every classical G-model.

6 Discussion

It has long been known that there is a close correspondence between the logic
K + G and the Kripke semantics:

Theorem 6.1 (Lemmon and Scott [14]). Let G ⊆ N
4. A formula is derivable

in K + G, iff it is valid in all classical G-models.

This means that in the classical case, we have a complete triangle
between Kripke models, Hilbert axiomatisation and nested sequents systems via
Theorems 4.2, 5.11 and 6.1.

In the intuitionistic case, the correspondence is less clear, and a lot of ques-
tions are still open. We do have Theorem 4.2 giving that every theorem of IK+G
is a theorem of iNIK+G, and Theorem 5.10 giving that every theorem of iNIK+G

96 S. Marin and L. Straßburger

is valid in all graph-consistent G-models, but there is no proper equivalent to
Theorem 6.1 to “link” the two theorems into an actual soundness and complete-
ness result for iNIK + G. As we have seen in Sect. 4, the first inclusion is strict,
since the formula in (11) is provable in iNIK + G, but not in IK + G. However,
the strictness of the second inclusion is open. The question is: Is there a cer-
tain set G ⊆ N

4, such that there exists a formula that is valid in every directed
graph-consistent G-models, but that is not a theorem of iNIK + G?

On the other hand, Theorems 6.2.1 and 8.1.4 of [25] entail a parallel result to
Theorem 6.1 for a restricted family of the intuitionistic Scott-Lemmon axioms,
those for which l = 1 and n = 0 (or equivalently l = 0 and n = 1), that is,
of the form: (�k�A ⊃ �mA) ∧ (�kA ⊃ �m�A). Therefore, in this restricted
case, the inclusions collapse too. The reason why this result holds seems to be
that in a derivation of a theorem of such a logic, the steps referring to non-
tree graphs can be eliminated via appealing to the closure of the accessibility
relation (see [25]). This is similar to what happens when going from indexed to
pure nested sequents calculi, and suggests that a pure nested sequent calculus
could be provided for these logics in the intuitionistic case too. Indeed, these
axioms are the intuitionistic variants of some of the path axioms of [10], for
which a pure nested sequent calculus is given; but for the general case, [10] only
provides a display calculus.

To conclude, we can say that for intuitionistic modal logics the accurate defi-
nition might actually come from structural proof-theoretical studies rather than
Hilbert axiomatisations or semantical considerations. For Simpson [25] there are
two different (but equivalent) ways to define intuitionistic modal logics, either the
natural deduction systems he proposes, or the extension of the standard trans-
lation for intuitionistic modal logics into first-order intuitionistic logic. Equiva-
lence between the natural deduction systems and the Hilbert axiomatisations,
or direct interpretation of the natural deduction systems in intuitionistic (bire-
lational) structures are just side-results. He therefore sees their failure for the
majority of logics not as a problem, but rather as another justification of the
validity of the proof-theoretic approach.

References

1. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal
logic. LMCS 11(3:7), 1–33 (2015)

2. Bierman, G., de Paiva, V.: On an intuitionistic modal logic. Stud. Log. 65(3),
383–416 (2000)

3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Log. 48(6), 551–
577 (2009)

4. Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. In: Dalla
Chiara, M.L. (ed.) Italian Studies in the Philosophy of Science. Boston Studies in
the Philosophy of Science, vol. 47, pp. 59–72. Springer, Dordrecht (1980). doi:10.
1007/978-94-009-8937-5 5

5. Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rend. Sem.
Mat. Univers. Politecn. Torino 42(3) (1984)

http://dx.doi.org/10.1007/978-94-009-8937-5_5
http://dx.doi.org/10.1007/978-94-009-8937-5_5

Proof Theory for Indexed Nested Sequents 97

6. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2), 113–118
(1948)

7. Fitting, M.: Cut-free proof systems for Geach logics. IfCoLog J. Log. Their Appl.
2(2), 17–64 (2015)

8. Galmiche, D., Salhi, Y.: Label-free natural deduction systems for intuitionistic and
classical modal logics. J. Appl. Non-Class. Log. 20(4), 373–421 (2010)

9. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift 39 (1934)

10. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates
and deep inference in nested sequent calculi for tense logics. LMCS 7(2:8), 1–38
(2011)

11. Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested
(deep) sequents. AIML 9, 279–299 (2012)

12. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Log. 53(1), 119–
135 (1994)

13. Lamarche, F.: On the algebra of structural contexts. Math. Struct. Comput. Sci.
(2001, accepted)

14. Lemmon, E.J., Scott, D.S.: An Introduction to Modal Logic. Blackwell, Oxford
(1977)

15. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuition-
istic modal logics. AIML 10, 387–406 (2014)

16. Marin, S., Straßburger, L.: On the proof theory of indexed nested sequents for
classical and intuitionistic modal logics. Research Report RR-9061, Inria Saclay
(2017). https://hal.inria.fr/hal-01515797

17. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Com-
put. 209(12), 1465–1490 (2011)

18. Negri, S.: Proof analysis in modal logics. J. Phil. Log. 34, 507–544 (2005)
19. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.

Comput. Sci. 11(4), 511–540 (2001)
20. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logic. In: Theoretical

Aspects of Reasoning About Knowledge (1986)
21. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic.

In: Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical
Philosophy. Trends in Logic, vol. 28. Springer, Dordrecht (2009). doi:10.1007/
978-1-4020-9084-4 3

22. Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almqvist & Wiksell,
Stockholm (1965)

23. Ramanayake, R.: Inducing syntactic cut-elimination for indexed nested sequents.
In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 416–
432. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 29

24. Russo, A.: Generalising propositional modal logic using labelled deductive systems.
In: Baader, F., Schulz, K.U. (eds.) Frontiers of Combining Systems. Applied Logic
Series, vol. 3. Springer, Dordrecht (1996). doi:10.1007/978-94-009-0349-4 2

25. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh (1994)

26. Straßburger, L.: Cut elimination in nested sequents for intuitionistic modal logics.
In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 209–224. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37075-5 14

27. Viganò, L.: Labelled Non-classical Logic. Kluwer Academic Publisher, Dordrecht
(2000)

https://hal.inria.fr/hal-01515797
http://dx.doi.org/10.1007/978-1-4020-9084-4_3
http://dx.doi.org/10.1007/978-1-4020-9084-4_3
http://dx.doi.org/10.1007/978-3-319-40229-1_29
http://dx.doi.org/10.1007/978-94-009-0349-4_2
http://dx.doi.org/10.1007/978-3-642-37075-5_14

Interpreting Sequent Calculi as Client-Server
Games

Christian G. Fermüller(B) and Timo Lang(B)

TU Vienna, Vienna, Austria
{chrisf,timo}@logic.at

Abstract. Motivated by the interpretation of substructural logics as
resource-conscious reasoning, we introduce a client-server game charac-
terizing provability in single-conclusion sequent calculi. The set up is
modular and allows to capture multiple logics, including intuitionistic
and (affine) linear intuitionistic logic. We also provide a straightforward
interpretation of subexponentials, and moreover introduce a game where
the information provided by the server is organized as a stack, rather
than as a multiset or list.

Keywords: Game semantics · Resource interpretation · Linear logic

1 Introduction

Resource consciousness is routinely cited as a motivation for considering sub-
structural logics (see, e.g., [10]). But usually the reference to resources is kept
informal, like in Girard’s well-known example of being able to buy a pack of
Camels and/or a pack of Marlboros [5] with a single dollar, illustrating lin-
ear implication as well as the ambiguity of conjunction between the “multi-
plicative” and “additive” reading. The invitation to distinguish, e.g., between
a “causal”, action-oriented interpretation of implication and a more traditional
understanding of implication as a timeless, abstract relation between propo-
sitions is certainly inspiring and motivating. However, the specific shape and
properties of proof systems for usual substructural logics owe more to a deep
analysis of Gentzen’s sequent system than to action-oriented models of handling
scarce resources of a specific kind.

Various semantics, in particular so-called game semantics for (fragments of)
linear logics [1,3] offer additional leverage points for a logical analysis of resource
consciousness. But these semantics hardly support a straightforward reading of
sequent derivations as action plans devised by resource conscious agents. More-
over, the inherent level of abstraction often does not match the appeal of (e.g.)
Girard’s very concrete and simple picture of action-oriented inference.

We introduce a two-player game based on the idea that a proof is an action-
plan, i.e. a strategy for one of the players (the “Client”) to reduce particular struc-
tured information to information provided by the other player (the “Server”). As
we will show, the interpretation of game states as single conclusion sequents leads

Funded by FWF projects W1255-N23 and FWF P25417-G15 LOGFRADIG.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 98–113, 2017.
DOI: 10.1007/978-3-319-66902-1 6

Interpreting Sequent Calculi as Client-Server Games 99

to variations of the basic game, that match (affine) intuitionistic linear logic, but
also other substructural logics. To emphasize the indicated shift of perspective,
relative to traditional interpretations of formulas as sentences, propositions, or
types, we introduce the notion of an information package, which emphasizes the
interpretation of formulas as (in general) compound information, that is built
up from atomic pieces of information using constructors that indicate possible
ways of accessing the information.

Obviously our Client-Server games constitute a variant of game semantics;
therefore a few words on the relation to other forms of game semantics are
appropriate. Already in the late 1950s Lorenzen [9] proposed to justify intuition-
istic logic in terms of a dialogue game, where a proponent defends a statement
against systematic attacks by an opponent. Logical validity is identified with
the existence of a winning strategy for the proponent. This setup has later been
generalized to other logics; see, e.g., [7,11]. While there are some obvious similar-
ities between Lorenzen-style dialogue games and our Client-Server games there
are differences at the structural level. In particular, Lorenzen and his followers
argue that the two players should have ‘equal rights’: both the specific rules for
the logical connectives and the so-called frame rules, that regulate the overall
progression of a dialogue, should be as symmetric as possible. In contrast, we
deliberately break this symmetry and view the Client as the active ‘scheduler’
of the interaction with a largely passive or at least dis-interested Server. Similar
remarks hold for game semantics developed for (fragments of) linear logic in the
wake of [1,3,8]. The idea there is to view propositions as games and connec-
tives as operators on games. Again, the symmetry between the two players is
important, as witnessed by the prominence of the copy-cat strategy, which has
no counterpart in our Client-Server games. Finally, Japaridze’s Computability
Logic [6] deserves to be mentioned, where formulas are interpreted as compu-
tational problems. The underlying model of interactive computation is a game
between a machine and the environment. While somewhat related in spirit to
our (much simpler and more specific) game model, the corresponding logics and
inference mechanisms are again quite different. Probably the most important
feature of our approach is that we aim at a direct interpretation of sequent rules
as rules for systematically reducing information packages to its components.

The paper is structured as follows: in Sect. 2, we introduce our client-server
game in its basic form. In Sect. 3, we show that this game captures provability
in intuitionistic logic. Section 4 describes a resource-aware version of the game,
which is shown to capture affine logic, and, with a small modification, intu-
itionistic linear logic. In Sect. 5, we make some remarks on the interpretation
of (sub)exponentials. The final Sect. 6 discusses a variant of the game where
information packages are arranged in a stack.

2 A Client-Server Game for Intuitionistic Logic

In our C/S(I)-game, a client C maintains that the information packaged as G
can be obtained from the information represented by the packages F1, . . . , Fn,
provided by a server S, via stepwise reduction of complex information packages

100 C.G. Fermüller and T. Lang

(henceforth short ips, singular ip) into simpler ones. At any state of the game,
the bunch of information provided by S is a (possibly empty) multiset of ips.
The ip G which C currently claims to be obtainable from that information is
called C’s current ip. The corresponding state is denoted by

F1, . . . , Fn � G.

The game proceeds in rounds that are always initiated by C and, in general,
solicit some action from S. We look at the game from the client’s point of view.1

There are two different types of requests that C may submit to S: (1) Unpack
an ip provided by the server, and (2) Check my (i.e. the clients) current ip. We
call the ip chosen by C for either the Unpack- or Check-request the active ip.
Thus in a Check-request the active ip is always C’s current ip. Both Unpack-
and Check-requests depend on the structure of the active ip. For now, we will
consider the following types of ips:

– atomic ips, which admit no further reduction
– among those, a special ip ⊥, denoting an elementary inconsistency
– complex ips which are build from simpler ips by means of the constructors ∧,

∨, and → (called any of, some of and given respectively).

We use lowercase letters a, b, c for atomic ips and uppercase letters F,G,H,K
for ips which may be either complex or atomic. Multisets of ips are denoted by
Γ or Δ. The rules for reducing complex ips are given in Table 1. One may easily
introduce other constructors for complex ips into the game by specifying their
Unpack- and Check-rules, and we will see some examples of that later.

At the beginning of each round of the game C is free to choose whether she
wants to continue with a request of type Unpack (if possible) or of type Check;
moreover in the first case C can freely choose any occurrence of a non-atomic
ip or an occurrence of ⊥ in the bunch of information provided by S. Formally,
each initial state F1, . . . , Fn � G induces an extensive two-players win/lose (zero
sum) game of perfect information in the usual game theoretic sense.

The corresponding game tree is finitely branching, but may be infinite since
C may request to unpack the same ip repeatedly. Intuitively, a strategy for C
is a function telling C how to move in (some initial part of) the game when it
is her turn. We require strategies to be finite objects. A strategy τ for C can
therefore be identified with a finite subtree of the game tree satisfying

1. the root of τ is the initial state of the relevant instance of the C/S(I)-game
in question

2. at each state S, if the strategy τ tells C to continue with a round of type
(Unpack F1 ∨ F2), (Unpack F1 → F2) or (Check F1 ∧ F2), then τ branches
at S into two successor states according to the possible choices available to
S as specified by the rules. On the other hand, no branching occurs at states
where τ tells C to continue according to any other rule, since those rules do
not involve a choice of S.

1 Since we only care about winning strategies for C, the server S may be viewed as
acting nondeterministically or probabilistically, if preferred.

Interpreting Sequent Calculi as Client-Server Games 101

Table 1. Atoms, constructors and rules for C/S(I)

a Atomic ip

Unpack: Not possible unless a = ⊥. In the latter case, the
game ends and C wins

Check: The game ends and C wins iff a is contained in the
bunch of information provided by S

F1 ∧ F2 Any of F1, F2

Unpack: C chooses an ip out of {F1, F2} which S then has
to add to the bunch of provided information

Check: S chooses an ip out of {F1, F2} and sets it as C’s
new current ip

F1 ∨ F2 Some of F1, F2

Unpack: S chooses an ip out of {F1, F2} and adds it to the
bunch of provided information

Check: C chooses an ip out of {F1, F2} and sets it as the
new current ip

(F1 → F2) F2 given F1

Unpack: S chooses whether to add F2 to the bunch of
provided information, or to force C to replace its current
ip by F1

Check: F1 is added to the bunch of provided information
and C’s current ip is replaced by F2

A strategy τ is called a winning strategy if additionally all leaves are winning
states for C according to either rule (Check a) or (Unpack ⊥).

The game rules are local : the validity of a move of C only depends on the
presence of a certain ip in the current game state, but not on the complete bunch
of provided information. Furthermore, S’s moves are restricted to ips previously
chosen by C, and ips different from the active one are never touched at all in a
move. It follows that we can regard a strategy τ for C in a game state Γ � F
also as a strategy in Δ,Γ � F for any multiset of ips Δ. Indeed, viewed as a
subtree of the full game tree for Γ � F , τ is isomorphic to a subtree τΔ of the
full game tree for Δ,Γ � F obtained by adding the multiset Δ to all the nodes
in τ . By abuse of notation, we will not distinguish between τ and τΔ.

The following proposition sums up these observations and some easy conse-
quences for further reference:

Proposition 1. Let Γ � F be a game state and Δ a multiset of ips.

1. If τ is a strategy for C in Γ � F , then τ is also a strategy for C in Δ,Γ � F .
2. Furthermore, if a sequence of moves in the game Γ � F according to τ

leads to a state Γ ′ � F ′, then the same sequence of moves leads to the state
Δ,Γ ′ � F ′ in the game Δ,Γ � F .

102 C.G. Fermüller and T. Lang

3. If τ is winning strategy for C in Γ � F , then τ is also a winning strategy for
C in Δ,Γ � F .

Proof. (1) and (2) are immediate from the discussion preceeding the proposition.
For (3), let τ be a winning strategy for C in Γ � F . Then by (2), moving
according to τ in Δ,Γ � F leads to states of the form Δ,Γ ′ � F ′ where Γ ′ � F ′

is a winning state. But if Γ ′ � F ′ is a winning state for C, then so is Δ,Γ ′ � F ′,
since the winning conditions for C are local. Hence τ is also a winning strategy
for C in Δ,Γ � F . ��

3 The Adequateness of C/S(I) for Intuitionistic Logic

Let us now identify atomic ips with propositional variables and complex ips with
their corresponding propositional formulas. It is well-known that we may read
winning strategies for C as proofs in a sequent calculus, where the turnstile ⇒
stands for � and the initial sequents correspond to winning states. In our case,
the initial sequents are thus

Γ, a ⇒ a and Γ,⊥ ⇒ F

corresponding to the states Γ, a � a (where C wins by sending a (Check a)-
request) and Γ,⊥ � F (where C wins by sending an (Unpack ⊥)-request). The
Unpack-rule for ∨ translates to the sequent rule

Γ, F1 ∨ F2, F1 ⇒ H Γ,F1 ∨ F2, F2 ⇒ H

Γ,F1 ∨ F2 ⇒ H

where the two premises correspond to the two possible choices of S. The Check-
rule for ∨ translates to the pair of rules

Γ ⇒ F1

Γ ⇒ F1 ∨ F2
and Γ ⇒ F2

Γ ⇒ F1 ∨ F2

corresponding to the two possible choices of C. Similarly, one writes down the
sequent rules for the remaining connectives ∧,→. Using this translation, the rules
and initial sequents exactly match the sequent calculus LIk for intuitionistic logic
(cf. [12]). We obtain:

Theorem 2. The following are equivalent:

1. C has a winning strategy in the C/S(I)-game (Γ � H)
2. (LIk 	 Γ ⇒ H)
3. (

∧
Γ ⇒ H) is intuitionistically valid.2

2 ∧Γ denotes the conjunction of all formulas in Γ .

Interpreting Sequent Calculi as Client-Server Games 103

Proof. The equivalence of (2) and (3) are the soundness and completeness the-
orem for LIk. For the equivalence of (1) and (2), recall that we can view a
winning strategy in a C/S(I)-game Γ � F as subtrees of the full game tree,
where a branching occurs iff S choses the next move. Using the translation given
above, such a subtree can be read as a proof in LIk of the sequent Γ ⇒ F , and
conversely, every LIk-proof with end-sequent Γ ⇒ F can be read as a winning
strategy in the C/S(I)-game Γ � F . ��
Example: Consider the LIk-proof

F, Γ ⇒ F H, F, Γ ⇒ H
(F → H)

F, Γ ⇒ H

G, Γ ⇒ G H, G, Γ ⇒ H
(G → H)

G, Γ ⇒ H
(F ∨ G)

F ∨ G, F → H, G → H
︸ ︷︷ ︸

=:Γ

⇒ H

where we have labelled the inference steps with the principal formula of
the applied LIk-rule. The corresponding winning strategy for the game state
F ∨ G,F → H,G → H � H can be described as follows: First, C sends an
(Unpack F ∨ G)-request, forcing S to add either F or G to the bunch of pro-
vided information. Then C sends either an (Unpack F → H) or an (Unpack
G → H)-request, depending on which ip out of F,G has been chosen by S in the
previous move. S can now either add H to the bunch of provided information;
in this case C wins with a subsequent Check-request, since H is her current
ip. Otherwise, S can replace C’s current ip by F or G respectively, but this
is exactly the ip that S has added to the bunch of provided information in a
previous move. Hence, C wins also in this situation by sending a Check-request.

LIk arises from the traditional sequent calculus LI for intuitionistic logic
by eliminating contraction by building into the logical rules and eliminating
weakening by generalizing the initial sequents (axioms) correspondingly.3

We get a game directly matching the rules for LI by making the following
modifications to the C/S(I)-game: First, we change the Unpack-rules such that
the active ip is removed from the bunch of provided information after use; second,
we add two types of request called Dismiss and Copy, which allow C to either
remove or duplicate ips from the bunch of provided information: and finally we
allow only

a � a and ⊥ � F

as winning states for C. Let us call the modified game C/S(I)∗.
Via Theorem 2, results from the structural proof theory of LIk or LI turn

into statements about winning strategies in C/S(I) or C/S(I)∗. As a simple
example (which works for either variant of the calculus/game), the soundness of
the rule

Γ ⇒ F Γ ⇒ G (∧R)
Γ ⇒ F ∧ G

3 We assume that LI is already formulated using multisets - otherwise, this would be
another difference between the calculi.

104 C.G. Fermüller and T. Lang

says that if C has a winning strategy τ for Γ � F and σ for Γ � G, then she
has a winning strategy in Γ � F ∧ G. The winning strategy, of course, is this:
In her first move, C sends a (Check F ∧ G) request. If now S chooses F , the
game is in a state Γ � F where she can move according to τ to win; otherwise,
if S picks G, she moves according to σ.

More interestingly, the invertibility of the (∧R) rule – the fact that the valid-
ity of its conclusion implies the validity of its premises – says that if C has a
winning strategy in Γ � F ∧ G, then she has such a winning strategy where her
first move is (Check F ∧ G).

The correspondence of Theorem 2 goes both ways; for example, Proposition 1
is nothing but a game theoretic proof of the admissibility of the weakening rule in
LIk. As yet another example, The cut-elimination theorem for the calculus LIk
tells us that if C has winning strategies in Γ � G and G,Δ � H then she has
also a winning strategy in Γ,Δ � H. Below, we give a proof of cut-admissibility
for the →-free fragment of LI by using the game semantics of C/S(I)∗. In this
fragment, we can give a particularly simple and intuitive description of the win-
ning strategy obtained from combining the winning strategies for Γ � G and
G,Δ � H.

Proposition 3. Assume that → does not appear in Γ,Δ,G,H. If C has winning
strategies in the C/S(I)∗-games Γ � G and G,Δ � H then she also has a
winning strategy in Γ,Δ � H.

Proof. Let τ be a winning strategy for Γ � G and σ a winning strategy for
G,Δ � H. We prove by induction on the structure of G that C wins in Γ,Δ � H.

1. G ≡ a for atomic a: Since the game ends when atomic ips are checked, all
but the last move in τ must be Unpack-requests. Since τ is winning, a play
on Γ � a according to τ always ends in a state of the form ⊥ � a or a � a.
C can thus move according to τ in the game Γ,Δ � H to arrive at a state
⊥,Δ � H or a,Δ � H. In the first case she wins by sending Dismiss-requests
repeatedly until she is in the winning state ⊥ � H. In the second case, she
can move according to σ to win.

2. G ≡ F1 ∧ F2: C starts moving according to τ in the game Γ,Δ � H until a
(Check F1 ∧ F2)-request appears (if that does not happen, the game must
arrive eventually at a state Γ ′,⊥,Δ � H where C can easily win). The game
is now in a state Γ ′,Δ � H. Note that C must have winning strategies in
Γ ′ � F1 and Γ ′ � F2, since by moving according to τ in the game Γ � F1∧F2

she ends up in a state Γ ′ � F1∧F2 and now, since the next step in τ is (Check
F1 ∧ F2), C must be prepared for any choice of F1, F2 by S.
Back to the game state Γ ′,Δ � H. Here, C now switches to the strategy σ
and moves until an (Unpack F1 ∧ F2)-request appears (again, if this does
not happen, the game must arrive at a state where C obviously wins). The
game is then in a state Γ ′,Δ′ � H ′. Without loss of generality, let us assume
that σ tells C to pick F1 in the rule for ∧. Then C has a winning strategy

Interpreting Sequent Calculi as Client-Server Games 105

Δ′, F1 � H ′, because this state arises by starting in F1 ∧ F2,Δ � H and
moving according to the winning strategy σ.
Applying the induction hypothesis to the states Γ ′ � F1 and Δ′, F1 � H ′

(and their respective winning strategies), we thus know that C has a winning
strategy in Γ ′,Δ′ � H ′, which is exactly the current game state.

3. G = F1 ∨ F2: similar to the previous case. ��
Remark 4. Note that the number of moves in the winning strategy constructed
in the above proof is polynomially bounded in the number of moves in the winning
strategies for Γ � G and G,Δ � H. This cannot be the case if we include →,
since it is known that cut reduction in the full fragment of intuitionistic logic
increases proof size exponentially.

4 Resource Consciousness

Probably the most important step in turning the C/S(I)-game into a ‘resource
conscious’ one, regards rules that entail a choice by S and thus require C to be
prepared to act in more than just one possible successor state to the current
state. The C/S(I)-rules allow C to use all the information provided by S in each
of the possible successor states. If, instead, we require C to declare which ips
she intends to use for which of those options – taking care that she is using
each occurrence of an ip exactly once – then we arrive at rules that match
multiplicative instead of additive connectives.

Following the tradition of linear logic, we do not discard the previously
defined rules, but rather extend the game by new ip constructors and their
corresponding resource concious rules. We also introduce a unary ‘safety’ con-
structor ! (called exponential in the literature on linear logic). Ips prefixed by
! are meant to be exempt from resource consciousness and thus behave like ips
in the C/S(I)-game. Ips not prefixed by ! are called unsecured. Table 2 lists all
new constructors and their corresponding rules.4 Let us denote by C/S(IAL)
the following modification of game C/S(I):

1. Constructors and rules for ⊗,� and ! are added as in Table 2
2. The Unpack-rules for ∧,∨ and → are changed so that the active ip is removed

at the end of the request.

We claim that the logic captured by C/S(IAL) is intuitionistic affine logic
IAL, i.e. intuitionistic linear logic with weakening [5]. A standard sequent cal-
culus for IAL is presented in Table 3. We need the following preliminary result
analogous to Proposition 1:

Proposition 5. If C has a winning strategy in the C/S(IAL)-game Γ � F and
Δ is any multiset of ips, then C also has a winning strategy in Δ,Γ � F .
4 In these rules, the operations of replacing and removing an ip in a multiset are meant

to affect only the active instance of the ip, rather than all instances of the ip in the
multiset.

106 C.G. Fermüller and T. Lang

Table 2. Resource conscious rules in C/S(IAL)

⊗(F1, . . . , Fn) Each of F1, . . . , Fn

Unpack: ⊗(F1, . . . , Fn) is replaced by F1, . . . , Fn

Check: C marks every unsecured ip in the bunch of
provided information with one of F1, . . . Fn. Next, S
chooses one Fi out of F1, . . . Fn. Then C’s current ip is
changed to Fi and all unsecured ips not marked with Fi

are removed

(F1 � F2) F2 from F1

Unpack: C marks every unsecured ip in the bunch of
provided information (except the instance of (F1 � F2))
with either F1 or F2. S then chooses between the premise
F1 and the conclusion F2. If S’s choice was F1, C’s current
ip is changed to F1 and all ips marked with F2 are
removed. If S’s choice was F2, F2 is added to the bunch of
provided ips and all ips marked with F1 are removed. In
any case, the instance of F1 � F2 is removed as well

Check: F1 is added to the bunch of provided information
and C’s current ip is replaced by F2

!F Safe F

Unpack: A copy of F is added to the bunch of provided
information, and then an Unpack-request is performed on
this copy

Check: All unsecured ips are removed, and C’s current ip
is changed to F

Proof. By induction on the number of steps in a winning strategy for Γ � F . We
only consider the case that F ≡ !G and the first step in the winning strategy is
to send a (Check !G)-request. Let us write the state as !Γ1, Γ2 �!G, where we
assume that all ips in Γ2 are unsecured (!Γ denotes {!F | F ∈ Γ}). The request
results in the state !Γ1 � G, for which C therefore has a winning strategy. It
follows that C wins in Δ, !Γ1, Γ2 �!G: She starts by sending a (Check !G)-
request, resulting in the state Δ1, !Γ1 � G, where Δ1 denotes the set of all
safe formulas in Δ. Since C has a winning strategy for !Γ1 � G, the induction
hypothesis implies that she also wins in Δ1, !Γ1 � G. ��

Theorem 6. The following are equivalent:

1. C has a winning strategy in the C/S(IAL)-game Γ � H
2. IAL 	 Γ ⇒ H

Proof (Sketch). Again, we use the correspondence between winning strategies
and proofs described in Sect. 3. However, the game rules do not directly match
the rules of IAL in all cases, thus we have to provide some further arguments.

Interpreting Sequent Calculi as Client-Server Games 107

Table 3. The sequent calculus IAL

(id)a ⇒ a
(⊥)⊥ ⇒ A

Γ ⇒ A (W)
B, Γ ⇒ A

Γ, Ai ⇒ C
(∧Li) i = 1, 2

Γ, A1 ∧ A2 ⇒ C

Γ ⇒ A Γ ⇒ B (∧R)
Γ ⇒ A ∧ B

Γ, A ⇒ C Γ, B ⇒ C
(∨L)

Γ, A ∨ B ⇒ C

Γ ⇒ Ai (∨Ri) i = 1, 2
Γ ⇒ A1 ∨ A2

Γ, A, B ⇒ C
(⊗L)

Γ, A ⊗ B ⇒ C

Γ ⇒ A Δ ⇒ B (⊗R)
Γ, Δ ⇒ A ⊗ B

Γ ⇒ A Δ, B ⇒ C
(�L)

Γ, Δ, A � B ⇒ C

Γ, A ⇒ B
(�R)

Γ ⇒ A � B

Γ, !A, !A ⇒ B
(!C)

Γ, !A ⇒ B

Γ, A ⇒ B
(!dR)

Γ, !A ⇒ B

!Γ ⇒ A (!R)
!Γ ⇒ !A

First, there is no game rule corresponding to weakening (W). This is not a
problem, because weakening is admissible in the game theoretic version of the
rules by Proposition 5.5

Second, there is no game rule corresponding to (!C). Rather, the splitting
in multiplicative rules is changed so that safe formulas never need to be split,
making the duplication of safe formulas obsolete. The equivalence of the thus
obtained calculus is known in the literature (see for example the dyadic calculus
of [2]).

Finally, the (Unpack !F)-rule in our game semantics forces us to immediately
unpack the copy of F after it has been created. There is no such requirement
in IAL: here we may create a copy of a safe formula by a combination of (!C)
and (!dR), which might be used only later in a proof (if at all). It is however not
hard to check that such a detour is never necessary. This can also be seen as a
special case of Andreoli’s results on Focusing [2]. ��
Before closing this section, let us remark that we also obtain a game adequate
for ILL (full intuitionistic linear logic) by allowing only

a � a and ⊥ � F

5 We remark that (W) is not admissible in IAL, even if one relaxes the axioms,
because of the (!R)-rule. Our corresponding (Check !F)-rule is different: It could be
written as

!Γ ⇒ F
Δ, !Γ ⇒ !F

which has a built-in weakening.

108 C.G. Fermüller and T. Lang

as winning states for C and introducing atomic ips 0, 1, with their correspond-
ing rules. This amounts to an interpretation of sequents as C/S-game states,
where C announces that she needs precisely the information provided by S to
obtain her current ip.

5 Interpreting Exponentials and Subexponentials

The Unpack-rule for ! (together with the Check-rule for ⊗ and the Unpack-rule
for �) shows that safe ips are exempt from resource consciousness: operations
are performed on copies of the safe ip rather than on the ip itself. The Unpack-
rule for ! says that the safety predicate is hereditary : If F can be demonstrated
from a bunch of safe ips, then F is also safe.

C can send (Unpack !F)-requests to the same ip !F as often as she wishes.
Furthermore, if C has a winning strategy for Γ �!F then she also has winning
strategies for Γ � F⊗n for any n, where F⊗n denotes F ⊗ . . . ⊗ F

︸ ︷︷ ︸
n

. This is most

easily seen by first checking that C has a winning strategy in !F � F⊗n and
then using the fact that the cut rule is admissible in IAL.

The meaning of !F is often paraphrased as ‘arbitrarily many F ’. But this
intuition is not without pitfalls, as the observation demonstrates.

Lemma 7. Assume a, b �= ⊥. C has a winning strategy in a, !(a � a⊗ b) � b⊗n

for any n, but she has no winning strategy in a, !(a � a ⊗ b) �!b.

Formulated proof-theoretically, Lemma 7 entails that the infinitary rule

Γ ⇒ F⊗n for all n (!Rω)
Γ ⇒ !F

is not admissible in IAL. The interpretation of ! is improved by thinking of !F
not as arbitrarily many F ’s, but as a single container containing (potentially)
arbitrarily many F ’s. The problem is that this does not tell us much about what
we should require from a proof of !F .

Instead, we invite the reader to think of the rules for the safety predicate
as (partially) specifying a concept of safety, where being exempt from consump-
tion through unpacking (i.e., resource consciousness) is the essential minimal
requirement. This also aligns with the observation that when adding another
unary constructor !′ with the same rules as ! to IAL, one cannot6 prove the
equivalence of ! and !′. Variants of the standard exponential introduced in this
way are usually called subexponentials. In the ‘arbitrarily many’-interpretation
of the exponential, the existence of subexponentials seems to be mysterious –
how can there be two different concepts of ‘arbitrarily many’?

6 We remark that the combination of the rules (!C), (!dR) and (!Rω) does define an
exponential ! uniquely. However, cut is not admissible in the resulting system.

Interpreting Sequent Calculi as Client-Server Games 109

In the safety interpretation, we may think of different subexponentials !’s
as corresponding to different levels of safety. In fact, we can add construc-
tors !1, !2, . . . , !n, where greater indices denote greater safety. A natural gen-
eralization of the !-rule is then the following:

!iF safety level i for F
Unpack: A copy of F is added to the bunch of provided
information, and then an Unpack request on this copy
is invoked
Check: All ips of safety level less thani (including the
unsecured ones) are removed, and C’s current ip is
changed to F .

One may go further and arrange the safety levels in a partial order rather
than a linear order, with the obvious modification of the (Check)-rule. At some
point, one loses cut-admissibility of the logic – we refer the reader to [4, Chap. 5].

6 The Server as Stack

In the games considered so far, C’s choice of the active ip at the beginning of
each round was completely free. We now consider a variant of the game where
the bunch of provided information is a list rather than a multiset, and C can
only access the last element in the list. In other words, we think of the server as
a stack. We include this new game in the discussion as an example of a variant
which arises naturally in the context of Client/Server-interactions, but not in
the proof-theoretic context.

The game rules are as given in Table 4. Note that in Unpack-requests, the
active ip is now always the topmost element of the stack.

Let us call the resulting game C/S(STACK). Again, we translate game
states to sequents (which are now lists of ips) and game rules to sequent rules.
We write stacks from left to right, so that the rightmost element of a list of ips
corresponds to the topmost element of the stack. Let us call the resulting system
LSTACK. The initial sequents are thus

Γ, a ⇒ a and Γ,⊥ ⇒ F .

Of the rules, we only mention those for → and (;) explicitly. They are

Γ,G ⇒ H Γ ⇒ F
(→L)

Γ, F → G ⇒ H

Γ1, F, Γ2 ⇒ G
(→R)

Γ1, Γ2 ⇒ F → G

and

Γ,G, F ⇒ H
(;L)

Γ, (F ;G) ⇒ H

Γ2 ⇒ F Γ1 ⇒ G
(;R)

Γ1, Γ2 ⇒ (F ;G)

where Γ1 and Γ2 correspond to the lower and the upper part of the stack in the
rule (Check (F ;G)) respectively.

110 C.G. Fermüller and T. Lang

Table 4. Constructors and rules for C/S(STACK)

a Atomic ip

Unpack: Not possible unless a = ⊥. In the latter case, the
game ends and C wins

Check: The game ends and C wins iff a is the topmost
item on the stack.

F1 ∧ F2 Any of F1, F2

Unpack: C chooses an ip Fi out of {F1, F2}. S then has to
replace F1 ∧ F2 by Fi

Check: S chooses an ip out of {F1, F2} and sets it as C’s
new current ip.

F1 ∨ F2 some of F1, F2

Unpack: S replaces F1 ∨ F2 by one ip out of {F1, F2}
Check: C chooses an ip out of {F1, F2} and sets it as the
new current ip.

(F1 → F2) F2 given F1

Unpack: S removes (F1 → F2) and chooses whether to add
F2 on top of the stack, or to force C to replace its current
ip by F1

Check: C choses a position in the stack at which S has to
insert F1, and changes her current ip to F2

(F1; F2) F2 after F1

Unpack: S replaces (F1; F2) by the two ips F2, F1 (so that
F1 becomes the topmost element of the stack)

Check: C chooses a splitting of the stack into an upper
and a lower part (both parts may be empty). S then
decides whether to change C’s current ip to F1 and
continue the game with the upper part of the stack, or to
change C’s current ip to F2 and continue the game with
the lower part of the stack

Analogously to Theorems 2 and 6, we have

Theorem 8. The following are equivalent:

1. C has a winning strategy in the C/S(STACK)-game Γ � H.
2. LSTACK 	 Γ ⇒ H.

The rules for the connective (;) resemble those of the ⊗ of linear logic, only that in
the right rule, the premises are split in an ordered way. (;) internalizes the linear
order of the stack. It has the following properties, which are straightforward to
check:

Interpreting Sequent Calculi as Client-Server Games 111

Proposition 9

1. (non-commutativity) C has no winning strategy in (F ;G) � (G;F).
2. (associativity 1) C has a winning strategy in (F ; (G;H)) � ((F ;G);H).
3. (associativity 2) C has a winning strategy in ((F ;G);H) � (F ; (G;H)).

Proposition 10

1. C has a winning strategy in Γ, F � F .
2. C has a winning strategy in Γ, F, F → G � G.

Proof. The proof of (1) proceeds by induction on F . If F is atomic, Γ, F � F is
already a winning state for C. If F ≡ G → H, the LSTACK-derivation

Γ,G,H ⇒ H Γ,G ⇒ G
(→L)

Γ,G,G → H ⇒ H
(→R)

Γ,G → H ⇒ G → H

demonstrates that C can always move to a state Γ,G,H � H or Γ,G � G,
for both of which she has winning strategies by the induction hypothesis. If
F ≡ (G;H), the LSTACK-derivation

G ⇒ G Γ,H ⇒ H
(;R)

Γ,H,G ⇒ (G;H)
(;L)

Γ, (G;H) ⇒ (G;H)

demonstrates that C can always move to a state G � G or Γ,H � C, and again
she has winning strategies for both states by the induction hypothesis. The other
cases are similar.

For (2), C starts the game Γ, F, F → G � G by sending an (Unpack F → G)-
request. Depending on the subsequent choice of S, the game is then either in
the state Γ, F,G � G or Γ, F � F . For both of these states, C has a winning
strategy by (1). ��
Proposition 11. If C has a winning strategy in Γ, (F ;G),Δ ⇒ H, then she
also has a winning strategy in Γ,G, F,Δ ⇒ H.

Proof. Let τ be a winning strategy for C in Γ, (F ;G),Δ ⇒ H. C can use essen-
tially the same strategy τ in Γ,G, F,Δ ⇒ H. If during the game, the indicated
occurence of G,F is on top of the stack and τ tells her to (Check (F ;G)), C
simply skips this step. ��
The converse to Proposition 11 fails: For example, C has a winning strategy in

K,F → G,G → H � F → H

as the following LSTACK-derivation shows:

K,F, F → G,H ⇒ H

K,F,G ⇒ G K,F ⇒ F
(→L)

K,F, F → G ⇒ G
(→L)

K,F, F → G,G → H ⇒ H
(→R)

K,F → G,G → H ⇒ F → H

112 C.G. Fermüller and T. Lang

In contrast, C has no winning strategy in ((F → G);K), G → H � F → H.
This is because (;) prevents C from inserting the premise F below F → G in the
stack as her first step in the winning strategy. One easily checks that no other
proof exists, assuming that F,G,H,K are pairwise distinct atoms.

The discussed properties allow one to wrap up whole game states in single
information packages: For any game state S ≡ F1, . . . , Fn � G let IP(S) :=
((. . . (Fn;Fn−1);Fn−2); . . .);F1) → G.

Proposition 12. C has a winning strategy in a game state S iff C has a win-
ning strategy in the state � IP(S).

Proof. For the direction from left to right, C starts the game for � IP(S) by
sending a (Check →)-request, followed by (n − 1)-many Unpack(;)-requests.
The game is then in the state S, for which C has a winning strategy by assump-
tion. For the other direction, it is clear (by lack of other choices) that a winning
strategy for IP(S) must start with a (Check →)-request, and hence C has a
winning strategy for the subsequent state ((. . . (Fn;Fn−1);Fn−2); . . .);F1) � G.
By applying Proposition 11 (n − 1)-times, we see that C has a winning strategy
in F1, . . . , Fn � G. ��
Formulated proof-theoretically, Proposition 12 says that LSTACK is an internal
calculus: There is a uniform way of mapping sequents S to formulas IP(S) such
that S is provable iff its formula interpretation IP(S) is provable.

Finally observe that combining winning strategies for different game states in
C/S(STACK) would require to merge stacks. Hence the following observation
should not come as a surprise.

Proposition 13. The cut rule is not admissible in LSTACK.

Proof. Let a, b, c be pairwise distinct atoms and a �= ⊥. The sequents a, b → c ⇒
b → c and b, b → c ⇒ c are provable. Applying the cut rule (with cut formula
b → c) yields the sequent b, a, b → c ⇒ c, which is not provable:

b, a, c ⇒ c
??

b, a ⇒ b
(→L)

b, a, b → c ⇒ c

��

7 Conclusion

We have introduced an interpretation of single-conclusioned sequent calculi as
means of information extraction: formulas are seen as information packages and
a derivation of Γ ⇒ F corresponds to a winning strategy of a Client C that seeks
to reduce the information F to the information Γ provided by the Server S. In
this manner we obtain an interpretation of a standard sequent calculus for intu-
itionistic logic that naturally extends to (affine) intuitionistic linear logic IAL.
In particular exponentials and subexponentials receive a robust interpretation in

Interpreting Sequent Calculi as Client-Server Games 113

terms of safeness from destruction through consumption. To demonstrate that
our game semantics does not only fit already known calculi, we also applied it
to a new concept: sequents where the left hand side represents a stack, rather
than a set, multiset, or list of information packages.

We view the presented ideas and results as just a starting point for a more
thorough analysis of deduction in analytic calculi in terms of reducing struc-
tured information to atomic information and plan to address, e.g., the following
questions in future research: Which further operators for packaging information
should be considered? Which alternative forms of storing information on a server
lead to sequent calculi? Can the approach be lifted to quantifiers? Does the new
interpretation of rule-admissibility lead to further insights into the underlying
logics? How can the Client/Server view assist in organizing efficient proof search?

References

1. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative lin-
ear logic. J. Symb. Log. 59(02), 543–574 (1994)

2. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

3. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Log. 56(1), 183–220
(1992)

4. Danos, V., Joinet, J.-B., Schellinx, H.: The structure of exponentials: uncovering
the dynamics of linear logic proofs. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.)
KGC 1993. LNCS, vol. 713, pp. 159–171. Springer, Heidelberg (1993). doi:10.1007/
BFb0022564

5. Girard, J.-Y.: Linear logic: its syntax and semantics. In: Advances in linear logic
(Ithaca, NY, 1993). London Mathematical Society Lecture Note Series, vol. 222,
pp. 1–42. Cambridge University Press, Cambridge (1995)

6. Japaridze, G.: The intuitionistic fragment of computability logic at the proposi-
tional level. Ann. Pure Appl. Log. 147(3), 187–227 (2007)

7. Keiff, L.: Dialogical logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Metaphysics Research Lab, Stanford University, summer 2011 edition (2011)

8. Lafont,Y., Streicher, T.: Games semantics for linear logic. In: Proceedings of Sixth
Annual IEEE Symposium on Logic in Computer Science, LICS 1991, pp. 43–50.
IEEE (1991)

9. Lorenzen, P.: Logik und Agon. In: Atti del XII Congresso Internazionale di
Filosofia, vol. 4, pp. 187–194 (1960)

10. Paoli, F.: Substructural Logics: A Primer. Springer, Heidelberg (2013)
11. Rahman, S., Rückert, H.: Dialogical connexive logic. Synthese 127(1), 105–139

(2001)
12. Troelstra, A.S., Schwichtenberg, H.: Basic proof theory. Cambridge Tracts in Theo-

retical Computer Science, vol. 43, 2nd edn. Cambridge University Press, Cambridge
(2000)

http://dx.doi.org/10.1007/BFb0022564
http://dx.doi.org/10.1007/BFb0022564

A Forward Unprovability Calculus
for Intuitionistic Propositional Logic

Camillo Fiorentini1(B) and Mauro Ferrari2

1 DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy
fiorentini@di.unimi.it

2 DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100 Varese, Italy

Abstract. The inverse method is a saturation based theorem proving
technique; it relies on a forward proof-search strategy and can be applied
to cut-free calculi enjoying the subformula property. This method has
been successfully applied to a variety of logics. Here we apply this method
to derive the unprovability of a goal formula G in Intuitionistic Propo-
sitional Logic. To this aim we design a forward calculus FRJ(G) for
Intuitionistic unprovability. From a derivation of G in FRJ(G) we can
extract a Kripke countermodel for G. Since in forward methods sequents
are not duplicated, the generated countermodels do not contain redun-
dant worlds and are in general very concise.

1 Introduction

The inverse method, introduced by Maslov [15], is a saturation based theorem
proving technique closely related to (hyper)resolution [6]; it relies on a forward
proof-search strategy and can be applied to cut-free calculi enjoying the subfor-
mula property. Given a goal, a set of instances of the rules of the calculus at hand
is selected; such specialized rules are repeatedly applied in the forward direction,
starting from the axioms (i.e., the rules without premises). Proof-search termi-
nates if either the goal is obtained or the database of proved facts saturates
(no new fact can be added). The inverse method has been originally applied
to Classical Logic and successively extended to some non-classical logics, see,
e.g., [2,6,7,14]. A significant investigation is presented in [4,5], where focused
calculi and polarization of formulas are exploited to reduce the search spaces
in forward proof-search. These techniques are at the heart of the design of the
prover Imogen [16].

In all the mentioned papers, the inverse method has been exploited to prove
the validity of a goal in a specific logic. Here we follow the dual approach, namely:
we design a forward calculus to derive the unprovability of a goal formula in
Intuitionistic Propositional Logic (IPL). This different perspectives requires a
deep adjustment of the method itself. Sequents Γ � A of standard forward calculi
encode the fact that the rhs (right-hand side) formula A is provable from the set
of lhs (left-hand side) formulas Γ in the understood logic. In our viewpoint, a
sequent Γ ⇒ A signifies the unprovability of A from Γ in IPL. From a semantic
viewpoint, this means that, in some world of a Kripke model, all the formulas
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 114–130, 2017.
DOI: 10.1007/978-3-319-66902-1 7

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 115

in Γ are forced and A is not forced. In standard forward reasoning, axioms
have the form p � p, where p is a proper atomic subformula of the goal. In
our approach, axioms have the form ΓAt ⇒ p, where p is an atomic subformula
of the goal formula G and ΓAt is a “maximal” subset of atomic subformulas
of G such that p �∈ ΓAt. A tricky task is how to cope with rules having more
than one premise. In standard calculi, the lhs formulas must be gathered; e.g.,
a forward application of the rule R∧ to the sequents Γ1 � A1 and Γ2 � A2

yields the sequent Γ1 ∪Γ2 � A1 ∧A2. In our approach, since we have to preserve
unprovability, we must intersect the lhs formulas. Apparently, the rule for R∨
applied to Γ1 ⇒ A1 and Γ2 ⇒ A2 should generate Γ1 ∩ Γ2 ⇒ A1 ∨ A2, but
such a rule is not sound. For instance, let H = p ⊃ q1 ∨ q2, and let us take the
unprovable sequents q2, p,H ⇒ q1 and q1, p,H ⇒ q2; the alleged R∨ rule yields
p,H ⇒ q1 ∨ q2, which is provable. The drawback is that we cannot retain both p
and H in the conclusion; thus, we need a more clever strategy to join sequents.
To formalize this, beside sequents Γ ⇒ A, we call regular, we introduce sequents
Σ ; Θ → A, we call irregular, where the formulas in the lhs are partitioned in two
sets Σ and Θ; in forward proof-search, formulas in the sets Σ must be kept as
much as possible. We can only join irregular sequents, provided that some side
conditions are matched, and the outcome is a regular sequent. The rules of the
calculus (see Fig. 1) depend on the goal formula G, hence we call the obtained
calculus FRJ(G) (Forward Refutation calculus parametrized by G). Differently
from standard sequent calculi, lhs of sequents only host propositional variables
and implicative formulas A ⊃ B; moreover FRJ(G) only supplies right rules.

The rules of FRJ(G) are inspired by Kripke semantics. In Sect. 4 we show
that, from a derivation of G, we can extract a countermodel for G, namely a
Kripke model such that, at its root, the formula G is not forced, hence G is not
valid in IPL [3]. Actually, there is a close correspondence between a derivation
and the related Kripke model. Thus, our forward proof-search procedure can be
understood as a top-down method to build a countermodel for G, starting from
the final worlds down to the root. Our approach is dual to the standard one,
where countermodels are built bottom-up, mimicking the backward application
of rules, see [1,8,9,11,17,18]. This different viewpoint has a significant impact in
the outcome. Indeed, the countermodels generated by a backward procedure are
always trees, which might contain some redundancies. Instead, forward methods
are prone to re-use sequents and to not replicate them; thus the generated models
do not contain duplications and are in general very concise (see the models in
Figs. 5 and 8). In Sect. 4 we also show that, given a countermodel for G, we
can build a derivation of G; this proves the completeness of FRJ(G). We point
out that FRJ(G) can be viewed as a forward presentation of the calculus Rbu
presented in [10].

As remarked in [16], the saturated database generated as a consequence of
a failed proof-search in forward calculi for IPL “may be considered a kind of
countermodel for the goal sequent”. However, as far as we know, no method has
been proposed to effectively extract it. Actually, the main problem comes from
the high level of non-determinism involved in the construction of countermodels.

116 C. Fiorentini and M. Ferrari

Here we study the dual problem of intuitionistic unprovability and we conjecture
that the saturated database generated by a failed proof-search can be considered
as a kind of derivation of the goal.

To evaluate the potential of our approach we have implemented frj, a Java
prototype of our proof-search procedure based on the JTabWb framework [12]1.
frj implements term-indexing, forward and backward subsumption and it allows
the user to generate the rendering of proofs and of the extracted countermodels.

2 Preliminaries

We consider the propositional language L based on a denumerable set of propo-
sitional variables V, the connectives ∧, ∨, ⊃ (as usual, ∧ and ∨ bind stronger
than ⊃) and the logical constant ⊥; ¬A is a shorthand for A ⊃ ⊥. By V⊥ we
denote the set V ∪ {⊥} and by L⊃ the set of the implicative formulas A ⊃ B of
L. Capital Greek letters Γ , Σ, . . . denote sets of formulas; we use notations like
ΓAt and Γ⊃ to mean that ΓAt ⊆ V and Γ⊃ ⊆ L⊃. Given a formula G, Sf(G) is
the set of all subformulas of G (including G itself) and Sf−(G) = Sf(G)\{G}. By
Sl(G) and Sr(G) we denote the smallest subsets of Sf(G) such that G ∈ Sr(G)
and, given Sx ∈ {Sl,Sr} (Sl = Sr and Sr = Sl):

– A � B ∈ Sx(G) implies {A,B} ⊆ Sx(G), where � ∈ {∧,∨};
– A ⊃ B ∈ Sx(G) implies B ∈ Sx(G) and A ∈ Sx(G)

(see the examples in Figs. 2, 4 and 6). By |A| we denote the size of A, namely
the number of symbols in A. A Kripke model is a structure K = 〈P,≤, ρ, V 〉,
where 〈P,≤〉 is a finite poset with minimum ρ and V : P → 2V is a function
such that α ≤ β implies V (α) ⊆ V (β). The forcing relation �⊆ P ×L is defined
as follows:

– K, α � ⊥ and, for every p ∈ V, K, α � p iff p ∈ V (α);
– K, α � A ∧ B iff K, α � A and K, α � B;
– K, α � A ∨ B iff K, α � A or K, α � B;
– K, α � A ⊃ B iff, for every β ∈ P such that α ≤ β, K, β � A or K, β � B.

Monotonicity property holds for arbitrary formulas, i.e.: K, α � A and α ≤ β
imply K, β � A. A formula A is valid in K iff K, ρ � A. Intuitionistic Propo-
sitional Logic IPL coincides with the set of the formulas valid in all Kripke
models [3]. If K, ρ � A, we say that K is a countermodel for A and that A is
refutable. A final world γ of K is a maximal world in 〈P,≤〉; for every classically
valid formula A, we have K, γ � A. Let Γ be a set of formulas. By K, α � Γ
we mean that K, α � A for every A ∈ Γ . Using the above notation we avoid to
mention the model K whenever it is understood (e.g., we write α � A instead
of K, α � A). The closure of Γ , denoted by Cl(Γ), is the smallest set containing
the formulas X defined by the following grammar:

X ::= C | X ∧ X | A ∨ X |X ∨ A | A ⊃ X C ∈ Γ, A any formula

1 frj is available at http://github.com/ferram/jtabwb provers/.

http://github.com/ferram/jtabwb_provers/

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 117

The following properties of closures can be easily proved:

(Cl1) K, α � Γ implies K, α � Cl(Γ).
(Cl2) A ∈ Cl(Γ) implies A ∈ Cl(Γ ∩ Sf(A)).
(Cl3) Γ ⊆ Cl(Γ) and Cl(Cl(Γ)) = Cl(Γ).
(Cl4) Γ1 ⊆ Γ2 implies Cl(Γ1) ⊆ Cl(Γ2).
(Cl5) Cl(Γ) ∩ V = Γ ∩ V.
(Cl6) Γ1 ⊆ Cl(Γ2) implies Cl(Γ1) ⊆ Cl(Γ2) (this follows from (Cl3) and (Cl4)).

3 The Calculus FRJ(G)

The Forward Refutation calculus FRJ(G) is a forward calculus to infer the
unprovability of a goal formula G in IPL. We design FRJ(G) so that it enjoys
the finite rule property [6]. To deal with multi-premise rules, we use two types of
sequents. Let Γ

At
= Sl(G) ∩ V, Γ

⊃
= Sl(G) ∩ L⊃ and Γ = Γ

At ∪ Γ
⊃

; sequents
σ of FRJ(G) have the form:

– Γ ⇒ C, where Γ ⊆ Γ and C ∈ Sr(G) (regular sequents);
– Σ ; Θ → C, where Σ ∪ Θ ⊆ Γ and C ∈ Sr(G) (irregular sequents).

We set Lhs(σ) = Γ if σ is regular and Lhs(σ) = Σ ∪Θ if σ is irregular; Rhs(σ) =
C. Left formulas of irregular sequents σ are partitioned in the sets Σ, the stable
set of σ, and Θ. In forward proof-search, formulas in Σ are preserved as much
as possible, while some of the formulas in Θ can be lost. We give the reader an
insight into FRJ(G) rules, focusing on the semantic aspects. The crucial point
(see Sect. 4) is that FRJ(G) satisfies the following soundness property:

(S1) if σ = Γ ⇒ C is provable in FRJ(G), then there exists a world α of a
model K such that α � Γ and α � C.

(S2) if σ = Σ ; Θ → C is provable in FRJ(G) and σ can be used to (directly or
indirectly) prove a regular sequent in FRJ(G), then there exist a world α
of a model K and a set Γ such that Σ ⊆ Γ ⊆ Σ ∪Θ and α � Γ and α � C.

In both cases, it follows that C is not provable from Γ in IPL.
Rules of FRJ(G) are displayed in Fig. 1; below σ refers to the conclusion of

a rule and σ1, σ2, . . . to its premises. In forward calculi, proof-search starts from
axiom sequents. We have two rules to introduce axioms: Ax⇒ (regular axioms)
and Ax→ (irregular axioms). In irregular axioms the set Σ is empty; moreover,
irregular axioms are the only irregular sequents σ′ such that Rhs(σ′) ∈ V⊥.

There are no left rules, but only rules to introduce the connectives ∧, ∨, ⊃
in the right and the rules ��

At and ��
∨ to join sequents. In rule ∨, the stable sets

Σ1 and Σ2 of the premises are maintained in the conclusion, while the sets Θ1

and Θ2 are intersected; by the side conditions, Lhs(σ) ⊆ Lhs(σ1) ∩ Lhs(σ2). We
have two rules to introduce a formula A ⊃ B in the right: ⊃∈ and ⊃
∈. In both
rules, in the premise σ1 we have Rhs(σ1) = B. In standard refutation calculi,
to make A ⊃ B unprovable it is assumed that A ∈ Lhs(σ1). Here we relax this

118 C. Fiorentini and M. Ferrari

Γ
At

= Sl(G) ∩ V, Γ
⊃

= Sl(G) ∩ L⊃, Γ = Γ
At ∪ Γ

⊃
.

In the conclusion σ of each rule, Rhs(σ) ∈ Sr(G)

Ax⇒
Γ

At \ {F} ⇒ F
Ax→

· ; Γ
At \ {F}, Γ

⊃ → F F ∈ V⊥

Γ ⇒ Ak ∧
Γ ⇒ A1 ∧ A2

Σ ; Θ → Ak ∧
Σ ; Θ → A1 ∧ A2

k ∈ {1, 2}

Σ1 ; Θ1 → C1 Σ2 ; Θ2 → C2 ∨
Σ1, Σ2 ; Θ1 ∩ Θ2 → C1 ∨ C2

Σ1 ⊆ Σ2 ∪ Θ2

Σ2 ⊆ Σ1 ∪ Θ1

Γ ⇒ B ⊃∈
Γ ⇒ A ⊃ B

A ∈ Cl(Γ)
Σ ; Θ, Λ → B ⊃∈

Σ, Λ ; Θ → A ⊃ B
A ∈ Cl(Σ ∪ Λ)

Γ ⇒ B ⊃ �∈· ; Θ → A ⊃ B

Θ ⊆ Cl(Γ) ∩ Γ

A ∈ Cl(Γ) \ Cl(Θ)

Let Υ = {A1, . . . , An} and σj = ΣAt
j , Σ⊃

j︸ ︷︷ ︸
Σj

; ΘAt
j , Θ⊃

j︸ ︷︷ ︸
Θj

→ Aj for every 1 ≤ j ≤ n

ΣAt =
⋃

1≤j≤n ΣAt
j ΘAt =

⋂
1≤j≤n ΘAt

j Σ⊃ =
⋃

1≤j≤n Σ⊃
j Θ⊃ = (

⋂
1≤j≤n Θ⊃

j)/Υ

σ1 · · · σn
�

At

ΣAt, ΘAt \ {F}, Σ⊃, Θ⊃ ⇒ F

Σi ⊆ Σj ∪ Θj , for every i �= j
Y ⊃ Z ∈ Σ⊃ implies Y ∈ Υ
F ∈ V⊥ \ ΣAt

σ1 · · · σn
�

∨
ΣAt, ΘAt, Σ⊃, Θ⊃ ⇒ C1 ∨ C2

Σi ⊆ Σj ∪ Θj , for every i �= j
Y ⊃ Z ∈ Σ⊃ implies Y ∈ Υ
{C1, C2} ⊆ Υ

Fig. 1. The calculus FRJ(G).

condition and we require that A ∈ Cl(Lhs(σ1)); this compensates the lack of left
rules. In rule ⊃∈ the conclusion σ satisfies A ∈ Cl(Lhs(σ)), while in ⊃
∈ we have
A �∈ Cl(Lhs(σ)) (whence the subscripts ∈ and �∈ in the rule names). In ⊃∈, σ1

and σ have the same type. If σ1 = Σ ; Θ1 → B, we have to partition Θ1 as Θ∪Λ
so that A ∈ Cl(Σ ∪ Λ); since A ∈ Cl(Lhs(σ1)), at least a set Λ can be selected.
Formulas in Λ are shifted to the left of semicolon since they must be preserved
as much as possible. Instead, ⊃
∈ is the only rule that turns a regular sequent
σ1 = Γ ⇒ B into an irregular one. In the conclusion, the set Σ is empty and
Θ is any (possibly empty) subset of Cl(Γ) ∩ Γ such that A �∈ Cl(Θ); the latter
condition allows us to introduce a decreasing weight function on sequents.

The join rules ��
At and ��

∨ apply to n ≥ 1 irregular sequents σ1, . . . , σn and
yield a regular sequent σ; these are the only rules that convert irregular sequents
to a regular one (note that rule ��

∨ is similar to the rule rn presented in [19]).
These two rules have a similar structure and only differ in Rhs(σ). The first side
condition is a generalization of the conditions in rule ∨. In the construction of
the countermodel, we use join rules to downward expand it by a new world α.

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 119

We wish that, for every A ⊃ B in Lhs(σ), A is not forced in α and, to guarantee
this, we need a premise σj such that Rhs(σj) = A; if this happens, we say that
A ⊃ B is supported (by σj). For every premise σj , the stable set Σ⊃

j must be
kept in the conclusion; accordingly, the premises σ1, . . . , σn must be chosen so
that every A ⊃ B occurring in some Σ⊃

j is supported; this is formalized by the
second side condition. In the conclusion, Θ⊃ only keeps the implications A ⊃ B
in the intersection of the Θ⊃

j which are supported. In the definition of Θ⊃, the
notation Γ⊃/Υ defines the set of Y ⊃ Z ∈ Γ⊃ such that Y ∈ Υ (the restriction
of Γ⊃ to Υ). We point out the following special case of application of ��

At having
only one premise:

ΣAt, Σ⊃ ; ΘAt, Θ⊃ → A
��

At

ΣAt, Σ⊃, ΘAt \ {F}, Θ⊃/{A} ⇒ F

Y ⊃ Z ∈ Σ⊃ implies Y = A
F ∈ V⊥ \ ΣAt

Note that the unsound application of R∨ mentioned in the Introduction is
prevented. Indeed, let σ1 = · ; q2, p,H → q1 and σ2 = · ; q1, p,H → q2, with
H = p ⊃ q1∨q2. If we apply rule ��

∨ to σ1 and σ2 we get the unprovable sequent
p ⇒ q1 ∨ q2; the formula H is lost since it is not supported (no premise has
p in the right). We stress that provable irregular sequents might have a valid
formula C in the right. For instance, let C = ¬(p ∧ ¬p) and Δ = {p,¬p}. Then
σ1 = · ; Δ → ⊥ is an axiom of FRJ(C). Since p ∧ ¬p ∈ Cl(Δ), we can apply ⊃∈
to σ1 and get σ = Δ ; · → C. Note that α � C, for every world α; by (S2) it
follows that σ cannot be used to derive a regular sequent.

We say that D is an FRJ(G)-derivation of G if the root sequent of D has the
form Γ ⇒ G; G is provable in FRJ(G) iff there exists an FRJ(G)-derivation of
G. Soundness and completeness of FRJ(G) are stated as follows:

Theorem 1. G is refutable iff G is provable in FRJ(G). ��
Soundness (if side) immediately follows by (S1). Note that completeness (only

if side) hides subsumption, which is typical of forward reasoning. Indeed, an
FRJ(G)-derivation D of G has root Γ ⇒ G, thus D actually shows that the
formula (∧Γ) ⊃ G is refutable (equivalently, G is not provable from assumptions
Γ). By the proof of completeness (Lemma 4 of Sect. 4), we can introduce the
following proof-search restrictions:

(PS1) In rule ⊃∈, Λ is a minimal set satisfying the side condition, namely:
Λ′

� Λ implies A �∈ Cl(Σ ∪ Λ′).
(PS2) In rule ⊃
∈, Θ is a maximal set satisfying the side condition, namely:

Θ � Θ′ ⊆ Cl(Γ) ∩ Γ implies A ∈ Cl(Θ′).
(PS3) In ��

At, for every Y ∈ Υ there is Y ⊃ Z ∈ Sl(G).
(PS4) In ��

∨, for every Y ∈ Υ, either there is Y ⊃ Z ∈ Sl(G) or there is
Y ∨ Z ∈ Sr(G) or there is Z ∨ Y ∈ Sr(G).

For instance, let σ = · ; p, q → B be an FRJ(G)-sequent and p∨ q ∈ Sl(G). The
application of ⊃∈ to σ admits three conclusions, which differ in the choice of Λ:

σ1 = p ; q → C σ2 = q ; p → C σ3 = p, q ; · → C C = p ∨ q ⊃ B

120 C. Fiorentini and M. Ferrari

In the first two applications the shifted set Λ is minimal. In the latter application
the chosen Λ is not minimal, hence this application is ruled out. Henceforth, we
assume that FRJ(G)-derivations comply with (PS1)–(PS4).

Fig. 2. FRJ(S)-derivation DS of S.

Example 1. Let us consider the following instances S and T of Scott and Anti-
Scott principles, which are equivalent to Nishimura formulas N10 and N9 respec-
tively [3] (the schema generating Ni is given in Sect. 5):

S = ((¬¬p ⊃ p) ⊃ ¬p ∨ p) ⊃ ¬¬p ∨ ¬p T = S ⊃ (¬¬p ⊃ p) ∨ ¬¬p

Both formulas are valid in Classical Logic but not in IPL. Figures 2 and 4 show
an FRJ(S)-derivation DS of S and an FRJ(T)-derivation DT of T respectively,
in linear representation. We populate the database of proved sequents according
with the näıve recipe of [6]: we start by inserting the axioms; then we enter a
loop where, at each iteration, we apply the rules to the sequents collected in
previous steps. We only show the sequents needed to get the goal. The tree-like
structure of the derivations is displayed in Figs. 3 and 5. ♦

Given two sequents σ1 and σ2 of FRJ(G), σ1 �→0 σ2 iff σ2 is the conclusion of
a rule of FRJ(G) having σ1 among the premises; thus, in forward computation,
σ2 is obtained from σ1. By �→ we denote the transitive closure of �→0, while �→∗
is the reflexive closure of �→. By inspecting the rules of the calculus and using
the properties of closures, one can easily prove that2:

Lemma 1. σ′ �→ σ implies Lhs(σ) ⊆ Cl(Lhs(σ′)). ��

2 An appendix with some of the omitted proofs is available at authors’ homepage.

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 121

Fig. 3. The model Mod(DS) (see Fig. 2).

Fig. 4. FRJ(T)-derivation DT of T .

122 C. Fiorentini and M. Ferrari

Fig. 5. The model Mod(DT) (see Fig. 4).

Let D be an FRJ(G)-derivation of G. We show that we can extract from D
a countermodel Mod(D) for G. We call p-sequent (prime sequent) any regular
sequent occurring in D which is either an axiom or the conclusion of a join rule.
Let P(D) be the set of p-sequents occurring in D. Then, Mod(D) is the model
〈P(D),≤, ρ, V 〉 where:

σ1 ≤ σ2 iff σ2 �→∗ σ1 ρ is the minimum of P(D) V (σ) = Lhs(σ) ∩ V

We remark that ρ is well-defined. Indeed, since the root sequent of D is regular,
there is ρ ∈ P(D) such that σp �→∗ ρ, for every σp ∈ P(D), hence ρ is the
minimum. Moreover, by Lemma 1 and (Cl5), σ1 ≤ σ2 implies V (σ1) ⊆ V (σ2),
hence the definition of V is sound. For every regular sequent σ occurring in D,
let φ(σ) be the p-sequent immediately above σ, namely:

φ(σ) = σp iff σp ∈ P(D) and σp �→∗ σ and
for every σ′

p ∈ P(D), σp �→∗ σ′
p �→∗ σ implies σ′

p = σp.

Note that, for σp ∈ P(D), we have φ(σp) = σp. One can easily check that φ is
a surjective map from the set of regular sequents of D onto Mod(D); moreover,
if σ1 and σ2 are regular and σ1 �→∗ σ2, then φ(σ2) ≤ φ(σ1). In the next section
we show that φ(σ) � Lhs(σ) and φ(σ) � Rhs(σ), and this proves the above
property (S1).

Example 2. The models Mod(DS) and Mod(DT) and the related maps φ are
shown in Figs. 3 and 5 respectively. The bottom world is the root and σ < σ′ iff
the world σ is drawn below σ′. For each σ, we display the set V (σ). As another
example, in Fig. 6 we show the FRJ(K)-derivation and the related countermodel
of the Kreisel-Putnam principle K = (¬a ⊃ b ∨ c) ⊃ (¬a ⊃ b) ∨ (¬a ⊃ c) [3]. ♦

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 123

By the above examples, it is clear that, whenever we search for an FRJ(G)-
derivation of G, we are also trying to build a countermodel for G in a backward
style, starting from the final worlds down to the root.

We conclude the section by exhibiting a weight function wg on sequents of
FRJ(G) such that, after a rule application, the weight of sequents decreases;
accordingly, the näıve proof-search procedure always terminates, even if we do
not implement any redundancy check. Let σ1 �→0 σ2 and, for k ∈ {1, 2}, let

Γk = Lhs(σk) Ck = Rhs(σk) Cl(Γk) = Cl(Γk) ∩ Sl(G)

Let R be the rule applied to get σ2 from σ1. If R is not a join, then |C2| > |C1|,
which implies |G| − |C2| < |G| − |C1|. By Lemma 1 and (Cl6), Cl(Γ2) ⊆ Cl(Γ1)
hence ||Cl(Γ2)|| ≤ ||Cl(Γ1)||, where || || is the cardinality function. If R =⊃
∈
and C2 = A ⊃ B, then A ∈ Sl(G) and A ∈ Cl(Γ1) \ Cl(Γ2), hence ||Cl(Γ2)|| <
||Cl(Γ1)||. This suggests that we can define wg(σ) as the triple of non-negative
integers:

wg(σ) = 〈|| Cl(Γ) ∩ Sl(G) ||, tp(σ), |G| − |C|〉
where tp(σ) = 0 if σ is a regular sequent, 1 otherwise. The component tp(σ)
accommodates the case where σ is the conclusion of a join rule. By the previous
remarks we get (≺ is the standard lexicographic order on triples of integers):

Lemma 2. σ1 �→ σ2 implies 〈0, 0, 0〉 � wg(σ2) ≺ wg(σ1). ��
We can exploit wg to show that the depth of Mod(D) is N = ||Sl(G)|| at

most. Indeed, let σ1 and σ2 be two p-sequents such that σ1 �→ σ2. Then, there is
an irregular sequent σ′ such that σ1 �→ σ′ �→ σ2 and σ′ is the conclusion of ⊃
∈.
Accordingly, if wg(σ1) = 〈k1, 0, 〉 and wg(σ2) = 〈k2, 0, 〉, we have k2 < k1 ≤ N .
Thus, at most N distinct p-sequents can occur along a branch of D, and this
settles a bound on the depth of Mod(D).

4 Soundness and Completeness

We prove that, given an FRJ(G)-derivation D of G, Mod(D) is a countermodel
for G. The height of a sequent σ in D, denoted by h(σ), is the maximum length
of a path from σ to an axiom sequent of D.

Lemma 3. Let D be an FRJ(G)-derivation and σ a sequent occurring in D.

(i) If σ = Γ ⇒ C, then φ(σ) � Γ and φ(σ) � C.
(ii) If σ = Σ ; Θ → C, let σp ∈ P(D) such that σ �→ σp and σp � Σ ∩ Sf−(C);

then σp � C.

Proof. We prove the assertions by a main induction (IH1) on the height h(σ) of
σ in D. Let R be the rule applied to get σ; we proceed by a case analysis on R,
only detailing some representative cases.

124 C. Fiorentini and M. Ferrari

Fig. 6. The FRJ(K)-derivation DK of K and the model Mod(DK).

Let R = Ax→. Then (see Fig. 1) σ = · ; Γ
At \ {C}, Γ

⊃ → C and C ∈ V⊥.
Let ΓAt = V (σp). Since σ �→ σp, by Lemma 1 and (Cl5) we get ΓAt ⊆ Lhs(σ).
This implies C �∈ ΓAt, hence σp � C, and this proves (ii).

Let R = ∨:

σ1 = Σ1 ; Θ1 → C1 σ2 = Σ2 ; Θ2 → C2 ∨
σ = Σ1, Σ2 ; Θ1 ∩ Θ2 → C1 ∨ C2

Σ1 ⊆ Σ2 ∪ Θ2

Σ2 ⊆ Σ1 ∪ Θ1

By hypothesis σp � (Σ1 ∪ Σ2) ∩ Sf−(C1 ∨ C2). Let k ∈ {1, 2}. Since σk �→ σp

(indeed, σk �→0 σ and σ �→ σp) and σp � Σk ∩ Sf−(Ck), by (IH1) applied to σk

we get σp � Ck. Thus, σp � C1 ∨ C2, which proves (ii).
Let R be the rule ��

At (ΣAt, Σ⊃, ΘAt, Θ⊃ are defined as in Fig. 1):

. . . σj = ΣAt
j , Σ⊃

j ; ΘAt
j , Θ⊃

j → Aj . . .
��

At

σ = ΣAt, ΘAt \ {C}, Σ⊃, Θ⊃ ⇒ C

j = 1 . . . n
C ∈ V⊥ \ ΣAt

ΓAt = ΣAt ∪ (ΘAt \ {C}) Γ⊃ = Σ⊃ ∪ Θ⊃ Γ = ΓAt ∪ Γ⊃

Note that σ ∈ P(D), φ(σ) = σ and V (σ) = ΓAt. Since C �∈ ΓAt, we get:

(P1) σ � ΓAt and σ � C.

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 125

To complete the proof of (i), it remains to show that σ � Γ⊃. To this aim, by a
secondary induction hypothesis (IH2) on |H| and |Aj | we prove that:

(P2) H ∈ Γ⊃ implies σ � H.
(P3) σ � Aj , for every 1 ≤ j ≤ n.

Let H ∈ Γ⊃. Then, there is k ∈ {1, . . . , n} such that H = Ak ⊃ B. Let σp ∈ P(D)
be such that σ ≤ σp and σp � Ak; we show that σp � B. Let Γp = Lhs(σp);
since σp �→∗ σ, by Lemma 1, H ∈ Cl(Γp). Since |Ak| < |H|, we can apply (IH2)
on (P3) and claim that σ � Ak, hence σp �= σ and h(σp) < h(σ). By (IH1)
applied to σp, we have σp � Γp and, by (Cl1), σp � H, namely σp � Ak ⊃ B.
Since σp � Ak, we conclude σp � B, and this proves (P2). Let j ∈ {1, . . . , n}.
Note that h(σj) < h(σ), σj �→ σ and σ ∈ P(D); thus, we can prove σ � Aj

by applying (IH1) on σj , provided that (†) σ � (ΣAt
j ∪ Σ⊃

j) ∩ Sf−(Aj). Since
ΣAt

j ⊆ V (σ), we get σ � ΣAt
j . Let H ∈ Σ⊃

j ∩ Sf−(Aj). Since H ∈ Γ⊃ and
|H| < |Aj |, by (IH2) on (P2) we get σ � H. Thus (†) holds and this concludes
the proof of (P3). By (P1) and (P2), Point (i) follows ��
Let D be an FRJ(G)-derivation of σ = Γ ⇒ G. By Lemma 3 (i), φ(σ) � Γ
and φ(σ) � G; this proves property (S1) (Sect. 3), from which the soundness of
FRJ(G) follows. We prove Property (S2). If σ matches the hypothesis of (S2),
then σ occurs in an FRJ(G)-derivation D of a regular sequent. Let σp ∈ P(D)
such that σ �→ σp and, for every σ′

p ∈ P(D), σ �→ σ′
p �→∗ σp implies σ′

p = σp;
let Γp = Lhs(σp). By definition of FRJ(G), one can easily check that Σ ⊆ Γp ⊆
Σ ∪ Θ. By Lemma 3 (i) σp � Γp, which implies σp � Σ, hence σp � Σ ∩ Sf−(C);
by Lemma 3 (ii), it follows that σp � C.

To conclude this section, we sketch a semantic proof of completeness, which
allows us to devise a complete proof-search strategy where redundancies are cut
by exploiting subsumption. Let K be a countermodel for G. We write:

– K, α �∗ H iff K, α � H and either H ∈ V or H = A ⊃ B and K, α � A.
– K, α �∗ Γ iff K, α �∗ H for every H ∈ Γ .
– Λα = {A ∈ Sl(G)s.t. K, α � A } and Λ∗

α = {A ∈ Sl(G)s.t. K, α �∗ A }.
– Ωα = {C ∈ Sr(G)s.t. K, α � C }.

Note that Λ∗
α ⊆ V ∪ L⊃; moreover, α ≤ β implies Λ∗

α ⊆ Λβ , whereas Λ∗
α ⊆ Λ∗

β

might not hold. One can easily prove that Λα = Cl(Λ∗
α). We state the main

lemma to prove the completeness of FRJ(G); by �FRJ(G) σ we mean that there
exists an FRJ(G)-derivation of σ.

Lemma 4. Let K = 〈P,≤, ρ, V 〉 be a countermodel for G and α ∈ P . For every
C ∈ Ωα, we can choose Γ , Σ and Θ such that:

(i) �FRJ(G) σ, where σ = Γ ⇒ C.
(ii) there is β ∈ P such that α ≤ β and Λ∗

β ⊆ Γ .
(iii) �FRJ(G) σ, where σ = Σ ; Θ → C.
(iv) Σ ⊆ Λ∗

α ⊆ Σ ∪ Θ.

126 C. Fiorentini and M. Ferrari

Let Sα be the set of sequents selected in (i) and (iii) and S∗
α the union of Sβ

such that α ≤ β. Then, to prove σ ∈ Sα we only need to use sequents in S∗
α. ��

The proof of the lemma hints the strategy one can follow to prove the goal
G. For every α ∈ P and C ∈ Ωα, let σ⇒

α (C) = Γ ⇒ C and σ→
α (C) = Σ ; Θ → C

be the sequents of Sα matching Lemma 4. The derivations of σ⇒
α (C) and σ→

α (C)
can be built by visiting the model K downward. For each world α, we firstly
consider the sequents σ→

α (C) and then the sequents σ⇒
α (C), ordering the right

formulas C in increasing order w.r.t. |C|. When we reach the root ρ, we get a
derivation of σ⇒

ρ (G), and this proves the goal.

Example 3. In Fig. 7 we show a countermodel K for S (see Example 1) and an
FRJ(S)-derivation of S built from K. We start from the final worlds α and β of K
and then we move downward. Since γ < α, we can choose σ⇒

γ (⊥) = σ⇒
α (⊥) and

σ⇒
γ (¬p) = σ⇒

α (¬p); however, since p �∈ Λ∗
γ , we cannot set σ→

γ (¬p) = σ→
α (¬p),

but we have to provide a different definition. ♦

The plain proof-search procedure outlined in Example 1 suffers from the plethora
of redundant sequents generated at each step. To reduce the size of the database
DB of proved sequents, we introduce the following notions of subsumption:

Γ, Γ ′ ⇒ C subsumes Γ ⇒ C Σ ; Θ,Θ′ → C subsumes Σ ; Θ → C

Let us assume that DB contains two distinct sequents σ1 and σ2 such that σ1

subsumes σ2. If σ2 matches point (ii) of Lemma 4, then σ1 matches (ii) as well.
Thus, if σ2 corresponds to some σ⇒

α (C), we can replace σ2 with σ1 and set
σ⇒

α (C) = σ1. By Lemma 4, there is no use in keeping both σ1 and σ2 in DB,
but we can safely remove σ2. A similar argument applies if σ2 satisfies (iv).
Accordingly, whenever in proof-search we derive a new sequent σ:

– If σ is subsumed by a sequent in DB, then σ is discarded (forward subsump-
tion).

– We add σ to DB and we delete from DB all the sequents σ′ which are subsumed
by σ and all the sequents σ′′ such that σ′ �→ σ′′ (backward subsumption).

Note that the DB’s in Figs. 2, 4, 6 and 7 do not contain redundancies of this kind.
We ascertained that, even with the formulas S and T of Example 1, subsumption
tests considerably shrink the size of the corresponding DB’s.

To evaluate the potential of our approach, we are developing frj, a Java
implementation of our proof-search procedure based on the JTabWb frame-
work [12]. So far we have implemented the plain forward strategy and the redun-
dancy checks based on forward and backward subsumption. At each iteration of
the main loop, frj applies all the possible instances of rules ∧, ∨, ⊃∈ and ⊃
∈
involving at least a premise proved in the last step. To manage jump rules, frj
maintains a list of j-compatible (jump-compatible) sets Jk, namely Jk is a set of
irregular sequents matching the first two side conditions of jump rules. At each
iteration the list is updated resting on the set I of irregular sequents proved in
the last iteration. In particular, each j-compatible set Jk is possibly extended

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 127

Fig. 7. FRJ(S)-derivation of S built from a contermodel for S.

with elements of I and the new j-compatible sets issued from I are added. For
every j-compatible set Jk, every possible jump rule having premises Jk is applied.
We also exploit backward subsumption to optimize the implementation of jump
rules: whenever backward subsumption is detected, every subsumed irregular
sequent occurring in a j-compatible set is replaced by the subsuming one (one
can easily check that such a replacement does not affect completeness).

128 C. Fiorentini and M. Ferrari

5 Related and Future Work

We have introduced a forward calculus to derive the unprovability of a goal
formula G in IPL. As discussed in Sect. 3, whenever we search for an FRJ(G)-
derivation of G, we are also trying to build a countermodel for G top-down,
starting from the final worlds down to the root. One of the advantages of forward
vs. backward reasoning is that, provided one implements suitable redundancy
checks, derivations are more concise since sequents are reused and not duplicated.
As a consequence, the obtained models are in general compact and do not contain
redundant worlds. For instance, the models in Figs. 3, 5 and 6 are the minimal
countermodels for the formulas S, T and K respectively. The model in Fig. 5
is particularly significant since it is not a tree, hence it cannot be obtained by
the standard proof-search procedures (see, e.g., [1,8,9,11,13,17,18]), which only
generate tree-shaped models. We can prove that, as in the case of the calculus
LSJ [9], the generated models have minimal depth. Moreover, a comparison
between frj and the prover lsj for LSJ, performed on 1000 random generated
formulas, shows that the former generates smaller countermodels than the latter.
As a significant example, let us consider the one-variable formulas Ni of the
Nishimura family [3], which are not valid in IPL:

N1 = p N2n+3 = N2n+1 ∨ N2n+2

N2 = ¬p N2n+4 = N2n+3 ⊃ N2n+1

Fig. 8. Countermodel
for N17

For such formulas frj generates the standard “tower-like”
minimum countermodel [3] (for N17 see the outcome in
Fig. 8) while lsj generates tree-like models with several
redundancies.

While a success in proof-search in FRJ(G) yields a
countermodel for G, when proof-search fails we get a sat-
urated database DB, which can be understood as a “proof-
certificate” of the validity of G in IPL (a dual remark
for a forward calculus for IPL has been issued in [16]).
An interesting matter is the analysis of the information
content of such a DB; in particular, we are investigating
how to exploit the information in DB to build a derivation
of G.

As for frj, the main source of inefficiency is the appli-
cation of join rules. Indeed, the prover must exhaustively
check the side conditions of join rules application for
every subset of the set of proved irregular sequents. So
far, to reduce the search-space we have exploited condi-
tions (PS3) and (PS4) of Sect. 3. We aim at devising more
clever strategies to cut down the sets of premises. Finally, we plan to investigate
the applicability of the method to other logics.

A Forward Unprovability Calculus for Intuitionistic Propositional Logic 129

References

1. Avellone, A., Fiorentini, C., Momigliano, A.: A semantical analysis of focusing and
contraction in intuitionistic logic. Fundam. Inform. 140(3–4), 247–262 (2015)

2. Brock-Nannestad, T., Chaudhuri, K.: Disproving using the inverse method by
iterative refinement of finite approximations. In: Nivelle, H. (ed.) TABLEAUX
2015. LNCS, vol. 9323, pp. 153–168. Springer, Cham (2015). doi:10.1007/
978-3-319-24312-2 11

3. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford
(1997)

4. Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-
order linear logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp.
69–83. Springer, Heidelberg (2005). doi:10.1007/11532231 6

5. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and
backward chaining in the inverse method. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS, vol. 4130, pp. 97–111. Springer, Heidelberg (2006). doi:10.
1007/11814771 9

6. Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, J.A., et al. (eds.)
Handbook of Automated Reasoning, pp. 179–272. Elsevier and MIT Press (2001)

7. Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.: The inverse
method for the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-32275-7 31

8. Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: an efficient prover for intu-
itionistic propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR
2010. LNCS, vol. 6397, pp. 294–301. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-16242-8 21

9. Ferrari, M., Fiorentini, C., Fiorino, G.: Contraction-free linear depth sequent calculi
for intuitionistic propositional logic with the subformula property and minimal
depth counter-models. J. Autom. Reason. 51(2), 129–149 (2013)

10. Ferrari, M., Fiorentini, C., Fiorino, G.: A terminating evaluation-driven vari-
ant of G3i. In: Galmiche, D., Larchey-Wendling, D. (eds.) TABLEAUX 2013.
LNCS (LNAI), vol. 8123, pp. 104–118. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40537-2 11

11. Ferrari, M., Fiorentini, C., Fiorino, G.: An evaluation-driven decision procedure
for G3i. ACM Trans. Comput. Log. (TOCL) 16(1), 8:1–8:37 (2015)

12. Ferrari, M., Fiorentini, C., Fiorino, G.: JTabWb: a Java framework for implement-
ing terminating sequent and tableau calculi. Fundam. Inform. 150, 119–142 (2017)

13. Goré, R., Postniece, L.: Combining derivations and refutations for cut-free com-
pleteness in bi-intuitionistic logic. J. Log. Comput. 20(1), 233–260 (2010)

14. Kovács, L., Mantsivoda, A., Voronkov, A.: The inverse method for many-valued
logics. In: Castro, F., Gelbukh, A., González, M. (eds.) MICAI 2013. LNCS, vol.
8265, pp. 12–23. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45114-0 2

15. Maslov, S.J.: An invertible sequential version of the constructive predicate calculus.
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 4, 96–111 (1967)

16. McLaughlin, S., Pfenning, F.: Imogen: focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-89439-1 12

http://dx.doi.org/10.1007/978-3-319-24312-2_11
http://dx.doi.org/10.1007/978-3-319-24312-2_11
http://dx.doi.org/10.1007/11532231_6
http://dx.doi.org/10.1007/11814771_9
http://dx.doi.org/10.1007/11814771_9
http://dx.doi.org/10.1007/978-3-540-32275-7_31
http://dx.doi.org/10.1007/978-3-642-16242-8_21
http://dx.doi.org/10.1007/978-3-642-16242-8_21
http://dx.doi.org/10.1007/978-3-642-40537-2_11
http://dx.doi.org/10.1007/978-3-642-40537-2_11
http://dx.doi.org/10.1007/978-3-642-45114-0_2
http://dx.doi.org/10.1007/978-3-540-89439-1_12

130 C. Fiorentini and M. Ferrari

17. Negri, S.: Proofs and countermodels in non-classical logics. Log. Univers. 8(1),
25–60 (2014)

18. Pinto, L., Dyckhoff, R.: Loop-free construction of counter-models for intuitionistic
propositional logic. In: Behara, et al. (eds.) Symposia Gaussiana, Conference A,
pp. 225–232. Walter de Gruyter, Berlin (1995)

19. Skura, T.: A complete syntactical characterization of the intuitionistic logic.
Reports Math. Log. 75(8), 75–80 (1989)

Hypersequent Calculi for Lewis’ Conditional
Logics with Uniformity and Reflexivity

Marianna Girlando1, Björn Lellmann2(B), Nicola Olivetti1,
and Gian Luca Pozzato3

1 Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397 Marseille, France

{marianna.girlando,nicola.olivetti}@univ-amu.fr
2 Technische Universität Wien, Vienna, Austria

lellmann@logic.at
3 Dip. di Informatica, Universitá di Torino, Turin, Italy

gianluca.pozzato@unito.it

Abstract. We present the first internal calculi for Lewis’ conditional
logics characterized by uniformity and reflexivity, including non-standard
internal hypersequent calculi for a number of extensions of the logic VTU.
These calculi allow for syntactic proofs of cut elimination and known
connections to S5. We then introduce standard internal hypersequent
calculi for all these logics, in which sequents are enriched by additional
structures to encode plausibility formulas as well as diamond formulas.
These calculi provide both a decision procedure for the respective log-
ics and constructive countermodel extraction from a failed proof search
attempt.

1 Introduction

Conditional logics have a long history going back, e.g., to the works of Stalnaker,
Lewis, Nute, Chellas, Burgess, Pollock in the 60’s–70’s [3,4,13,14,18]. In his
seminal works Lewis proposed a formalization of conditional logics to capture
counterfactual and other hypothetical conditionals that cannot be accommo-
dated by the material implication of classical logic [13]. Conditional logics have
since found an interest in several fields of knowledge representation, from reason-
ing about prototypical properties and nonmonotonic reasoning [9] to modeling
belief change. A successful attempt to relate conditional logic and belief update
(as opposite to belief revision) was carried out by Grahne [8], who established
a precise mapping between belief update operators and Lewis’ logic VCU. The
relation is expressed by the so-called Ramsey’s Rule:

A ◦ B → C holds if and only if A → (B� C) holds

Supported by the Project TICAMORE ANR-16-CE91-0002-01, by the EU under
Marie Sk�lodowska-Curie Grant Agreement No. [660047], and by the project “Excep-
tionOWL”, Università di Torino and Compagnia di San Paolo, call 2014 “Excellent
(young) PI”.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 131–148, 2017.
DOI: 10.1007/978-3-319-66902-1 8

132 M. Girlando et al.

where the operator ◦ is any update operator satisfying Katsuno and Mendelzon’s
postulates. The relation means that C is entailed by “A updated by B” if and
only if the conditional B � C is entailed by A. In this sense it can be said
that the conditional B � C expresses an hypothetical update of a piece of
information A.

The family of logics studied by Lewis in [13] is semantically characterized by
sphere models, where each world x is equipped with a set of nested sets of worlds
SP(x). Each set in SP(x) is called a sphere: the intuition is that concerning x,
worlds in inner spheres are more plausible than worlds belonging only to outer
spheres. Lewis takes as primitive the comparative plausibility connective �, with
a formula A � B meaning “A is at least as plausible as B”. The conditional
A� B is then defined as “A is impossible or A ∧ ¬B is less plausible than A”.
Vice versa, � can be defined in terms of�.

In this paper we continue our proof-theoretic investigation of the family of
Lewis’ logics, concentrating on the logics characterized by two properties: (i)
Uniformity : all worlds have the same set of accessible worlds, where the worlds
accessible from a world x are those belonging to any sphere α ∈ SP(x); (ii) Total
reflexivity : every world x belongs to some sphere α ∈ SP(x). The basic logic is
VTU; we will then consider some of its extensions, including the above mentioned
VCU. It is worth mentioning that equivalent logics are those of Comparative
Concept Similarity studied in the context of ontologies [17]. These logics contain
a connective ⇔, which allows to express, e.g.,

PicassoPainting � BraquePainting ⇔ GiottoPainting

asserting that “Picasso’s paintings are more similar to Braque’s paintings than
to Giotto’s ones”. The semantics is provided in terms of Distance Space Models,
defined as a set of worlds equipped with a distance function. It turns out that the
basic logic of Comparative Concept Similarity coincides with Lewis’ logic VWU

and the one defined by “minspace” Distance Models coincides with VCU, so that
Distance Space Models provide an alternative simple and natural semantics for
conditional logics with uniformity [1,17].

Here we investigate internal calculi for logics extending VTU, i.e., calculi
where each configuration of a derivation corresponds to a formula of the corre-
sponding logic, in contrast to external calculi which make use of extra-logical
elements (such as labels, terms and relations on them). Ideally, we seek calculi
with the following features: (i) they should be standard, i.e., each connective is
handled by a finite set of rules with a finte and fixed set of premises; (ii) they
should be modular, i.e., it should be possible to obtain calculi for stronger logics
by adding independent rules to a base calculus; (iii) they should have good proof-
theoretical properties, such as a syntactic proof of cut admissibility; finally (iv)
they should provide a decision procedure for the respective logics. In our opinion
requirement (i) is particularly important: a standard calculus provides a self-
explanatory presentation of the logic, thus a kind of proof-theoretic semantics.

In previous work [7], we defined calculi with many of these properties for
weaker logics of the Lewis’ family. For the logics with uniformity to the best of
our knowledge no internal calculi are known; the only known external calculi for
these adopt a hybrid language and a relational semantics [6]. We also consider

Hypersequent Calculi for Lewis’ Conditional Logics 133

logics with absoluteness, a property stronger than uniformity stating that all
worlds have the same system of spheres. It is unlikely that sequents, even
extended as in [7], are sufficient to capture logics with uniformity: Since modal
logic S5 can be embedded into VTU, a sequent calculus for the latter would
most probably also yield a sequent calculus for S5. The existence of such a cal-
culus, however, would be very surprising. We therefore adopt the framework of
hypersequents [2], where the basic objects are multisets of sequents.

We first provide a non-standard hypersequent calculus for VTU and its exten-
sions and syntactically prove cut-elimination and hence completeness. We then
show that by translating �A as ⊥ � ¬A the calculi - restricted to such for-
mulas - correspond to known hypersequent calculi for S5. Further, we construct
standard calculi for all the logics by enriching the hypersequents with additional
structural connectives encoding plausibility and “possible” formulas respectively.
The obtained standard calculi provide decision procedures for the respective log-
ics. Finally, we give a direct semantic completeness proof for the logics without
absoluteness, by considering the invertible version of the rules and constructing
a countermodel from a failed attempt at proof search. Thus, the calculi can also
be used for countermodel generation, a task of independent interest.

2 Preliminaries

We consider the conditional logics of [13]. The set of conditional formulae is given
by A:: = p | ⊥ | A → A | A � A, where p ∈ V is a propositional variable. We
define the boolean connectives ∧,∨,	 in terms of ⊥ and → as usual. Intuitively,
a formula A � B is interpreted as “A is at least as plausible as B”. Lewis’
counterfactual implication � is defined by A� B ≡ (⊥ � A)∨¬((A∧¬B) �
A), whereas the outer modality � is defined by �A ≡ (⊥ � ¬A). The logics we
consider are defined as follows:

Definition 1. A universal sphere model (or model) is a triple 〈W,SP, [[.]]〉,
consisting of a non-empty set W of elements, called worlds, a mapping SP :
W → 22

W

, and a propositional valuation [[.]] : V → 2W . Elements of SP(x) are
called spheres. We assume the following conditions:

– for every α ∈ SP(w) we have α = ∅ (non-emptiness)
– for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α (sphere nesting)
– for all w ∈ W we have SP(w) = ∅ (normality)
– for all w ∈ W we have w ∈ ⋃

SP(w) (total reflexivity)
– for all w, v ∈ W we have

⋃
SP(w) =

⋃
SP(v) (uniformity)

The valuation [[.]] is extended to all formulae by: [[⊥]] = ∅; [[A → B]] = (W−[[A]])∪
[[B]]; [[A � B]] = {w ∈ W | for all α ∈ SP(w). if [[B]] ∩ α = ∅, then [[A]] ∩ α = ∅}.
We also write w � A instead of w ∈ [[A]] as well as α �∀ A for ∀x ∈ α. x � A
and α �∃ A for ∃x ∈ α. x � A1. Validity and satisfiability of formulae in a class
of models are defined as usual. Conditional logic VTU is the set of formulae valid
in all universal sphere models.

1 Using this notation we thus have: x � A � B iff for all α ∈ SP(x). α �∀ ¬B or
α �∃ A.

134 M. Girlando et al.

Table 1. Lewis’ logics and axioms.

Extensions of VTU are defined by additional conditions on the class of models,
namely:

– weak centering : for all α ∈ SP(w) we have w ∈ α;
– centering : for all w ∈ W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈ W we have SP(w) = SP(v).

Extensions of VTU are denoted by concatenating letters for these properties:
W for weak centering, C for centering, and A for absoluteness. We consider the
following systems2:

VTU VTA: VTU + absoluteness
VWU: VTU + weak centering VWA: VTA + weak centering
VCU: VTU + centering VCA: VTA + centering

These logics can be characterized by axioms in a Hilbert-style system [13, Chap. 6].
The modal axioms in the language with only the comparative plausibility operator
are given in Table 1 (∨ and ∧ bind stronger than�). Propositional axioms and rules
are standard.

3 Hypersequent Calculi

In this section we introduce calculi for VTU and extensions. We call a calculus
standard if (a) it has a finite number of rules and (b) each rule has a finite and
fixed number of premisses. With respect to this definition, the calculi introduced
in this section are non-standard, whereas the calculi we introduce in Sect. 6 are
standard.

Our calculi are based on hypersequents, where as usual a sequent is a pair
consisting of two multisets of formulae, written as Γ ⇒ Δ.
2 Observe that VTA+weak centering collapses to S5, since in any model over a set of

worlds W it must be for all w ∈ W , SP(w) = {W}. Furthermore, VTA + centering
collapses to Classical Logic, as in any model the set of worlds must be a singleton
{w} and SP(w) = {{w}}, so that A � B is equivalent to the material implication
B → A. See also Proposition 16 below..

Hypersequent Calculi for Lewis’ Conditional Logics 135

Fig. 1. The hypersequent calculi for VTU and extensions.

Definition 2. A hypersequent is a non-empty multiset of sequents, written
Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn, where n ≥ 1 is the cardinality of the multiset.
The conditional formula interpretation of a hypersequent is

ι�(Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn) := � (
∧

Γ1 → ∨
Δ1) ∨ . . . ∨ � (

∧
Γn → ∨

Δn)

where � is the outer modality defined by �A ≡ (⊥ � ¬A).

The rules of the calculi HL extend the calculi from [12] to the hypersequent
setting and are given in Fig. 1. These calculi are non-standard, meaning that
the rules have an unbounded number of premisses. We abbreviate multisets of
formulae Ak, . . . , An to [A]nk , and Ck � Dk, . . . , Cn � Dn to [C � D]nk with
the convention that [A]nk is empty if k > n. The crucial rule for uniformity
is the rule trfm. Intuitively it unpacks a number of comparative plausibility
formulae behaving like boxed formulae on the left hand side of a component
in the conclusion into a different component in the rightmost premiss, most
clearly seen in the case of n = 1. The leftmost set of premisses ensures that the
comparative plausibility formulae indeed behave like boxed formulae. The rule
Tm is the local version of trfm, and essentially captures total reflexivity.

136 M. Girlando et al.

Lemma 3. For L any of the considered logics, the calculus HL is sound for L.

Proof. This follows from validity of �A → A in all the logics and the fact that
the rules preserve soundness with respect to ι. The latter is shown for each rule
by constructing a countermodel for one of the premisses from a countermodel
for the conclusion, using that the sphere system is universal. For all the rules
apart from trf, absL, absR, spl this follows as in [12], using that �A → ��A is
valid. For absL, absR this follows straightforwardly from absoluteness, and for
spl this follows from the fact that frames for VCA are degenerate in the sense
that SP(w) = {{w}} for every world w (see footnote 2).

For the rule trf, let M = 〈W,SP, [[.]]〉 be a VTU model, let w ∈ W , and
suppose that

M, w |= ¬ι(G) ∧ ♦ (
∧

Σ ∧ ∧m
i=1(Ci � Di) ∧ ¬∨

Δ) ∧ ♦ (
∧

Ω ∧ ¬∨
Θ) . (1)

Then in particular M, w |= ¬ (ι(G) ∨ � (
∧

Σ → Π) ∨ � (∧Ω → Θ)). Further-
more, suppose that for every k ≤ m we have

M, w |= ι(G) ∨ � (
∧

Σ → ∨
Π) ∨ � (

∧
Ω → ∨

Θ) ∨ �
(
Ck → ∨k−1

i=1 Di

)
. (2)

Then from the case k = 1 of (2) we obtain M, w |= �¬C1. From this together
with (1) and the fact that for every v ∈ ⋃

SP(w) we have
⋃
SP(v) =

⋃
SP(w)

we then obtain M, w |= �¬D1. Similarly, using the case k = 2 of (2) we
get M, w |= �¬D2 and continuing like this we get M, w |= �¬D1 ∧ . . . ∧
�¬Dm. Together with (1) this gives M, w |= ¬ι(G) ∧ ♦ (

∧
Σ ∧ ¬∨

Π) ∧
♦ (∧Ω ∧ ¬ (D1 ∨ . . . ∨ Dm ∨ ∨

Θ)) and hence we have a countermodel for the
remaining premiss. ��

By induction on the formula complexity we straightforwardly obtain:

Lemma 4. For every formula A we have HL � G | Γ,A ⇒ A,Δ.

As usual, a rule is admissible in HL if whenever the premisses are derivable
in HL, then so is its conclusion. It is depth-preserving admissible, if the depth of
the derivation of its conclusion is at most the maximal depth of the derivations
of its premisses.

Lemma 5. The rules IW,EW,mrg from Fig. 2 are depth-preserving admissible
in HL.

Proof. By induction on the depth of the derivation in all cases. For mrg, if the
last applied rule was trfm, we might need to replace it with Tm. ��

Fig. 2. The structural rules of internal and external weakening and merge.

Hypersequent Calculi for Lewis’ Conditional Logics 137

Observe that from admissibility of mrg using the internal contraction rules
we also immediately obtain admissibility of the external contraction rules, i.e.,
contraction on hypersequent components. We first show completeness of the
systems with the cut rule:

G | Γ ⇒ Δ,A H | A,Σ ⇒ Π

G | H | Γ,Σ ⇒ Δ,Π
cut

Cut-free completeness then will follow from cut elimination. In the following we
write HLcut for the system HL with the cut rule.

Lemma 6 (Completeness with cut). For L one of the considered logics the
calculus HLcut is complete for L, i.e., whenever A ∈ L, then HLcut � ⇒ A.

Proof. By deriving the axioms and using cut to simulate modus ponens and the
rule (CPR). The interesting cases are the axioms (U1), (U2) for uniformity and
(A1), (A2) for absoluteness. The derivation for (U1) is as follows:

⇒ | A ⇒ ⊥ | ⇒ ⊥ | ⊥ ⇒ ⊥L ⇒ | A ⇒ A, ⊥ | ⇒ ⊥ Lem. 4

⇒ | A ⇒ ⊥ | ⊥ � A ⇒ ⊥ trf1

⇒ ⊥ � A | ⊥ � A ⇒ ⊥ R0,1

⇒ ⊥ � A, ⊥ � (⊥ � A)
R0,1

⇒ ¬(⊥ � A) → (⊥ � (⊥ � A))
¬L, →R

The derivations of the remaining axioms are similar, using the rules absL, absR
in the case of absoluteness. ��

4 Cut Elimination

To obtain cut-free completeness for all systems we now give a syntactic proof of
cut elimination. For this, in the presence of absoluteness we consider slightly
extended calculi containing also versions of the rules Wm,n, RC , RW where
absoluteness is built in:

{ G | Σ ⇒ Π | Ω ⇒ Θ | Ck ⇒ [D]k−1
1 , [A]n1 : k ≤ m }

∪ { G | Σ ⇒ Π | Ω ⇒ [D]m1 , [A]n1 , Θ }
G | Σ, [C � D]m1 ⇒ [A � B]n1 , Π | Ω ⇒ Θ

W abs
m,n

G | Σ ⇒ Π | Ω, C ⇒ Θ G | Σ ⇒ Π | Ω ⇒ D, Θ

G | Σ, C � D ⇒ Π | Ω ⇒ Θ
Rabs

C

G | Σ ⇒ Π | Ω ⇒ A, Θ

G | Σ ⇒ A � B, Π | Ω ⇒ Θ
Rabs

W

Since these are derivable using the original version of the rule followed by applica-
tions of absL, absR, cut elimination in the extended system entails cut elimination
in the original system. As can be expected, due to the presence of contraction
cut elimination in a hypersequent system is rather more involved than in the
sequent case of [12]. Moreover, due to the form of the absoluteness rules we can-
not simply apply the general results of [11], although the strategy for the cut
elimination proof is the same: Intuitively, an application of the cut rule (shown

138 M. Girlando et al.

before Lemma 6) with cut formula of maximal complexity is permuted up in the
derivation of the left premiss, where applications of contraction are swallowed up
in a more general induction hypothesis, until an occurrence of the cut formula
is principal (Lemma 10). Then essentially the fact that contractions can be per-
muted above logical rules is used to obtain a single occurrence of the cut formula
in the left premiss of the cut, and the cut is permuted up in the right premiss.
Again, contractions are swallowed up by a generalised induction hypothesis, and
once the cut formula becomes principal in the last applied rule, its complexity
is reduced (Lemma 9). For technical reasons we also include the rule mrg in the
calculus when proving cut elimination. By Lemma5 it is clear that all applica-
tions of this rule can then be eliminated in the cut-free system. In the following
we write H∗

L for the system HL with cut,mrg and with the rules W abs
m,n, Rabs

C , Rabs
W

where applicable, and abbreviate A, . . . , A
︸ ︷︷ ︸

n-times

to An.

Definition 7. The cut rank of a H∗
L-derivation D is the maximal complexity

of a cut formula occurring in D, written ρ(D). A rule is cut-rank preserving
admissible in H∗

L if whenever its premiss(es) are derivable in H∗
L with cut-rank

n, then so is its conclusion.

Lemma 8. The rulesEW, IW are depth- and cut-rank preserving admissible inH∗
L.

Proof. Standard induction on the depth of the derivation. ��
Lemma 9 (Shift Right). Suppose that for k > 0 and n1, . . . , nk > 0 there
are H∗

L-derivations D1 and D2 of G | Ω ⇒ Θ,A and H | An1 , Ξ1 ⇒ Υ1 | . . . |
Ank , Ξk ⇒ Υk with ρ(D1) < |A| > ρ(D2) and such that the displayed occurrence
of A is principal in the last rule application in D1. Then there is a H∗

L-derivation
D with endhypersequent G | H | Ω,Ξ1 ⇒ Θ, Υ1 | . . . | Ω,Ξk ⇒ Θ, Υk and
ρ(D) < |A|.
Proof. By induction on the depth of D2. If none of the displayed occurrences
of A is principal in the last rule in D2, we apply the induction hypothesis on
the premiss(es) of that rule, followed by the same rule (and possibly structural
rules). If at least one of the displayed occurrences is principal in the last rule in
D2, we distinguish cases according to the last applied rule in D1, with subcases
according to the last rule in D2. For space reasons we only consider an exemplary
case, the remaining cases are similar. Suppose the last rules in D1 and D2 are
Rm,n+1 and trfs respectively, that A is the formula E � F and that D1 ends in:
{

G | Ω ⇒ Θ | Cj ⇒ [D]j−1
1 , [A]n1 , E : 1 ≤ j ≤ m

}

∪ {G | Ω ⇒ Θ | Bj ⇒ [D]m1 , [A]n1 , E : 1 ≤ j ≤ n
} ∪ {G | Ω ⇒ Θ | F ⇒ [D]m1 , [A]n1 , E

}

G | Ω, [C � D]m1 ⇒ [A � B]n1 , E � F, Θ
Rm,n+1

First we apply the induction hypothesis to the conclusion of this and the
premisses of trfs to eliminate all the occurrences of E � F from the context.

Hypersequent Calculi for Lewis’ Conditional Logics 139

Hence we assume that the only occurrences of E � F in the conclusion of trfs
are principal and that D2 ends in:
{

H | Ξ ⇒ Υ | Σ ⇒ Π | Gj ⇒ [H]j−1
1 : 1 ≤ j ≤ r

}
∪ {H | Ξ ⇒ Υ | Σ ⇒ Π | E ⇒ [H]r1

}

∪
{

H | Ξ ⇒ Υ | Σ ⇒ Π | Gj ⇒ [H]j−1
1 , F : r < j ≤ s

}
∪ {H | Ξ ⇒ Υ | Σ ⇒ Π, [H]s1, F

}

H | Ξ, [G � H]r1, E � F, [G � H]sr+1 ⇒ Υ | Σ ⇒ Π
trfs

with E � F not occurring in [G � H]r1. Cuts on the formulae E and F then
yield:
{

H | Ξ ⇒ Υ | Σ ⇒ Π | Gj ⇒ [H]j−1
1 : 1 ≤ j ≤ r

}

∪
{

G | H | Ω ⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | Cj ⇒ [D]j−1
1 , [A]n1 , [H]r1 : 1 ≤ j ≤ m

}

∪ {G | H | Ω ⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | Bj ⇒ [D]m1 , [A]n1 , [H]r1 : 1 ≤ j ≤ n
}

∪
{

G | H | Ω ⇒ Θ | Ξ ⇒ Υ | Σ ⇒ Π | Gj ⇒ [H]j−1
1 , [D]m1 , [A]n1 , [H]r1 : r < j ≤ s

}

Admissibility of internal weakening (Lemma 8) and an application of Rm+s,n+t

then gives:

G | H | Ω, [G � H]r1, [C � D]m1 , [G � H]sr+1 ⇒ [A � B]n1 , [I � J]t1, Θ | Ξ ⇒ Υ

Iterating this process to eliminate the remaining occurrences of E � F from
[G � H]sr+1, followed by mrg and applications of contraction then yields the
desired sequent. ��
Lemma 10 (Shift Left). Suppose that for k > 0 and n1, . . . , nk > 0 there are
H∗

L-derivations D1 and D2 of the hypersequents G | Ω1 ⇒ Θ1, A
n1 | . . . | Ωk ⇒

Θk, Ank and H | A,Ξ ⇒ Υ with ρ(D1) < |A| > ρ(D2). Then there is a H∗
L-

derivation D with endsequent G | H | Ω1, Ξ ⇒ Θ1, Υ | . . . | Ωk, Ξ ⇒ Θk, Υ and
ρ(D) < |A|.
Proof. By induction on the depth of D1. If none of the displayed occurrences
of A is principal in the last rule in D1 or the active formula of absR, we apply
the induction hypothesis on the premiss(es) of the last rule in D1 followed by
the same rule and possibly admissibility of weakening and contraction. If one of
the occurrences of A is active in absR, we use admissibility of EW (Lemma 8)
and absL on D2 to obtain H | Ξ ⇒ Υ | A ⇒ . Then the induction hypothesis
on this and the premiss of absR followed by mrg and IW yields the result. If an
occurrence of A is principal in the last rule in D1, we use the induction hypothesis
to remove all the occurrences of A in the context of that rule. Then, in case this
rule is Rm,n,Wm,n,W abs

m,n, we apply contraction in the premisses and apply the
same rule, so that only one occurrence of A is principal. Now Lemma9 yields
the result. ��
Theorem 11 (Cut Elimination). Let L ∈ {VTU,VWU,VCU,VTA,VWA,
VCA}. If a hypersequent is derivable in H∗

L, then it is derivable in HL.

Proof. First we eliminate all applications of cut by induction on the tuples
〈ρ(D), �(D)〉 under the lexicographic ordering, where �(D) is the number of appli-
cations of cut in D with cut formula of complexity ρ(D). Then applications of

140 M. Girlando et al.

W abs
m,n, Rabs

C , Rabs
W are replaced with the Wm,n, RC , RW and absL, absR, and mrg

is eliminated using Lemma 5. It is straightforward to check that applications
of W abs

m,n, Rabs
C , Rabs

W are only introduced in systems including the absoluteness
rules. ��
Corollary 12 (Cut-free completeness). If A ∈ L, then HL � ⇒ A.

5 Connections to Modal Logic

The constructed hypersequent calculi provide purely syntactical proofs of results
from [13] connecting the conditional logics to, e.g., modal logic S5. We write
L� for the modal fragment of a conditional logic L, i.e., the fragment where
comparative plausibility formulae are restricted to the shape (⊥ � ¬A), and we
write A� for the result of replacing every subformula ⊥ � ¬B of A with �B.
The proofs use the fact that the hypersequent calculus HS5 with the propositional
rules of Fig. 1, the structural rules and the rules

G | Γ ⇒ �A, Δ | ⇒ A

G | Γ ⇒ �A, Δ
�R

G | Γ, �A ⇒ Δ | Σ, A ⇒ Π

G | Γ, �A ⇒ Δ | Σ ⇒ Π
�L

G | Γ, �A, A ⇒ Δ

G | Γ, �A ⇒ Δ
T

is cut-free complete for S5 [16], see also [11].

Lemma 13. If A� ∈ S5, then A ∈ L� for each of the logics L considered here.

Proof. By translating HS5-derivations into HL-derivations. E.g., �L is translated
into:

G | Γ, ⊥ � ¬A ⇒ Δ | Σ ⇒ Π | ¬ ⇒ ⊥L

G | Γ, ⊥ � ¬A ⇒ Δ | Σ, A ⇒ Π

G | Γ, ⊥ � ¬A ⇒ Δ | Σ ⇒ ¬A, Π
¬L

G | Γ, ⊥ � ¬A, ⊥ � ¬A ⇒ Δ | Σ ⇒ Π
trf1

G | Γ, ⊥ � ¬A ⇒ Δ | Σ ⇒ Π
ICL

The translations of �R,T are similar, using R0,1 and T1 respectively. ��
The backwards direction is similar, but translates into the calculus HS5 above

with a form of Avron’s modal splitting rule from [2]:

G | Γ ⇒ Δ | Σ, �Ω ⇒ �Θ, Π

G | Γ, �Ω ⇒ �Θ, Δ | Σ ⇒ Π
MS

It is straightforward to check that the resulting calculus is sound for S5.

Lemma 14. If L = VCA and A ∈ L�, then A� ∈ S5.

Proof. By translating derivations in HL into derivations in HS5cut and applying
cut elimination. In particular, an application of the rule Rm,n

{G | Γ ⇒ Δ | ⊥ ⇒ ¬D1, . . . , ¬Dj−1, ⊥n : 1 ≤ j ≤ m}
∪ {G | Γ ⇒ Δ | ¬Bj ⇒ ¬D1, . . . , ¬Dm, ⊥n : 1 ≤ j ≤ n}

G | Γ, ⊥ � ¬D1, . . . , ⊥ � ¬Dm ⇒ ⊥ � ¬B1, . . . , ⊥ � ¬Bn, Δ
Rm,n

Hypersequent Calculi for Lewis’ Conditional Logics 141

is translated into
G | Γ ⇒ Δ | ¬B1 ⇒ ¬D1, . . . , ¬Dm, ⊥n

G | Γ, �D1, . . . , �Dm ⇒ �B1, Δ | ¬B1 ⇒ ¬D1, . . . , ¬Dm, ⊥n IW

G | Γ, �D1, . . . , �Dm ⇒ �B1, Δ | D1, . . . , Dm ⇒ B1

prop

G | Γ, �D1, . . . , �Dm ⇒ �B1, Δ
�L, �R

G | Γ, �D1, . . . , �Dm ⇒ �B1, . . . , �Bn, Δ
IW

Here prop uses derivability of the inversions of the propositional rules using cut.
Similarly, applications of Tm and trfm are translated using m applications of �L

and T respectively. Applications of Wm,n and RC are translated by T, and RW

is replaced with weakening, using that whenever G | Γ ⇒ Δ,⊥ is derivable in
the system for S5, then so is G | Γ ⇒ Δ. Finally, absL, absR are replaced with
the modalised splitting rule MS. ��
Theorem 15 [13, Sect. 6.3]. Let L = VCA. Then A ∈ L� iff A� ∈ S5.

The proof of the previous theorem is immediate from the preceeding lemmas.
It is then also straightforward to derive the known collapses of the counterfactual
implication � in VWA and VCA. Recall that A � B ≡ (⊥ � A) ∨ ¬((A ∧
¬B) � A).

Proposition 16. 1. HVWA � ⇒ (A� B) ↔ �(A → B)
2. HVCA � ⇒ A ↔ �A
3. HVCA � ⇒ (A� B) ↔ (A → B) and HVCA � ⇒ (A � B) ↔ (B → A).

6 Standard Calculi

To convert the non-standard calculi HL into standard calculi, we consider an
extended notion of sequents, where the succedent contains additional structural
connectives. These sequents extend those of [7,15] with a connective 〈.〉 inter-
preting possible formulae.

Definition 17. A conditional block is a tuple [Σ � C] containing a multiset Σ
of formulae and a single formula C. A transfer block is a multiset of formulae,
written 〈Θ〉. An extended sequent is a tuple Γ ⇒ Δ consisting of a multiset Γ of
formulae and a multiset Δ containing formulae, conditional blocks, and transfer
blocks. An extended hypersequent is a multiset containing extended sequents,
written Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn.

The formula interpretation of an extended sequent is (all blocks shown
explicitly):

ιe(Γ ⇒ Δ, [Σ1 � C1] , . . . , [Σn � Cn] , 〈Θ1〉 , . . . , 〈Θm〉)
:=

∧
Γ → ∨

Δ ∨ ∨n
i=1

∨
B∈Σi

(B � Ci) ∨ ∨m
j=1 ♦(

∨
Θj)

The formula interpretation of an extended hypersequent is given by

ιe(Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn) := � ιe(Γ1 ⇒ Δ1) ∨ . . . ∨ � ιe(Γn ⇒ Δn)

The rules of the non-invertible calculi for VTU and extensions are given in Fig. 3.

142 M. Girlando et al.

Fig. 3. The non-invertible standard calculi for extensions of VTU

Theorem 18 (Soundness). If SHL � G, then �L ιe(G), and if SHL � ⇒ A,
then A ∈ L.

Proof. As for Lemma 3, by showing that the rules preserve validity under ιe and
using validity of �A → A. For the rules �L,�R, , , jump,W,C this is similar as
in [7]. For rule T, if the interpretation of the conclusion is falsified in M, w, then
there is a world v ∈ SP(w) with M, v �

∧
Γ ∧ (A � B) ∧ ¬∨

Δ ∧ �¬∨
Θ. If

[[B]] = ∅, then in particular M, v � �¬(
∨

Θ∨B), and the formula interpretation
of the second premiss is falsified in M, w. Otherwise, from M, v � A � B we
obtain a world x ∈ ⋃

SP(v) =
⋃
SP(w) with M, x � A, and from M, v � �¬∨

Θ
we also get that M, x � ¬∨

Θ. Hence the formula interpretation of the first
premiss is falsified at M, w. The remaining cases are similar. ��
Theorem 19 (Completeness). If A ∈ L then SHL � ⇒ A.

Proof. By simulating derivations in HL. Most of the rules are simulated as in [7],
except for the rules trfm,Tm. For Tm the derivation is given in Fig. 4. The
derivation of trfm only replaces jumpT with jumpU . ��

Hypersequent Calculi for Lewis’ Conditional Logics 143

Fig. 4. The derivation of Tm in SHVTU.

7 Semantic Completeness via Invertible Calculi

An alternative completeness proof for the logics without absoluteness is given
semantically by constructing a countermodel from a failed proof search. For
this we consider the invertible versions SHi

L of the calculi from Sect. 6, given in
Fig. 5. Equivalence with the non-invertible calculi follows from admissibility of
the structural rules, including the ones below, the proofs of which are standard
by induction on the depth of the derivation:

G | Γ ⇒ Δ

G | Γ ⇒ Δ, [Σ � C]
CW

G | Γ ⇒ Δ, [Σ � C]

G | Γ ⇒ Δ, [Σ, A � C]
CIW

G | Γ ⇒ Δ

G | Γ ⇒ Δ, 〈Θ〉 TW

Lemma 20. The rules IW,EW,CW,CIW,TW are admissible in SHL.

Lemma 21. The rules ICL, ICR,ConB ,ConS ,mrg are admissible in SHi
L.

From Lemmas 20 and 21 it immediately follows that:

Proposition 22. The invertible and non-invertible calculi are equivalent.

Definition 23. An extended hypersequent G is VTU-saturated if it satisfies all
of the following conditions:

1. (�R) if Γ ⇒ Δ,A � B ∈ G, then [Σ,A � B] ∈ Δ for some Σ;
2. (�L) if Γ,C � D ⇒ Δ, [Σ � A] ∈ G, then D ∈ Σ or [Σ � C] ∈ Δ;
3. (com) if Γ ⇒ Δ, [Σ � A] , [Π � B] ∈ G, then Σ ⊆ Π or Π ⊆ Σ;
4. (jump) if Γ ⇒ Δ, [Σ � A] ∈ G, then A,Θ ⇒ Σ,Π ∈ G for some Θ,Π;
5. (T) if Γ,C � D ⇒ Δ, 〈Θ〉 ∈ G, then D ∈ Θ or C,Σ ⇒ Θ,Π ∈ G for some

Σ,Π;
6. (intrf) if Γ ⇒ Δ ∈ G, then 〈Θ〉 ∈ Δ for some Θ;
7. (jumpU , jumpT) if Γ ⇒ Δ, 〈Θ〉 ∈ G and Σ ⇒ Π ∈ G, then Θ ⊆ Π;
8. (→L) if Γ,A → B ⇒ Δ ∈ G, then B ∈ Γ or A ∈ Δ;
9. (→R) if Γ ⇒ A → B,Δ ∈ G, then A ∈ Γ and B ∈ Δ;

144 M. Girlando et al.

Fig. 5. The invertible standard calculi for extensions of VTU

It is VWU-saturated (resp. VCU-saturated) if it also satisfies (W) (resp. (C))
below:

1. (W) if Γ ⇒ Δ, [Σ � A] ∈ G, then Σ ⊆ Δ;
2. (C) if Γ,C � D ⇒ Δ ∈ G, then C ∈ Γ or D ∈ Δ;

A VTU-saturated extended hypersequent G is called unprovable if it is not an
instance of (init) or (⊥L). We construct a countermodel from an unprovable
VTU-saturated extended hypersequent G = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn as follows:

– W := {1, . . . , n}
– [[p]] := {i ≤ n : p ∈ Γi}
The sphere systems SP(i) for i ≤ n are then defined as follows: Assume that
Γi ⇒ Δi is

Γi ⇒ Δ′
i, [Σ1 � A1] , . . . , [Σk � Ak]

where Δ′
i contains no conditional blocks. First observe that due to saturation

condition 3 we may assume w.l.o.g. that Σ1 ⊆ Σ2 ⊆ . . . ⊆ Σk. Moreover, by
condition 4 for every j ≤ k there is a component Γmj

⇒ Δmj
∈ G with Aj ∈ Γmj

and Σj ⊆ Δmj
. Hence we set

SP(i) := {{mk}, {mk,mk−1}, . . . , {mk, . . . ,m1},W}
Call the resulting structure MG .

Hypersequent Calculi for Lewis’ Conditional Logics 145

Lemma 24. For a VTU-saturated hypersequent G the structure MG is a VTU-
model.

Proof. Nesting of spheres is obvious from the fact that {mk} ⊆ {mk,mk−1} ⊆
. . . ⊆ {mk, . . . ,m1} ⊆ W ; reflexivity and uniformity follow from the fact that
W ∈ SP(i). ��
Lemma 25. Let G = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn be a VTU-saturated hyper-
sequent and let MG be define as above with world i associated to component
Γi ⇒ Δi. Then:

1. given a formula A, if A ∈ Γi then MG , i � A
2. given a formula A, if A ∈ Δi then MG , i � A
3. given a block [Σ � C], if [Σ � C] ∈ Δi, then MG , i � ∨

B∈Σ(B � C)
4. given a formula B, if 〈Θ,B〉 ∈ Δi for some Θ, then MG , i � ♦B

Proof. We prove statements 1 and 2 by mutual induction on the complex-
ity of A. The base case and the propositional case are straightforward, hence
we consider A = E � F . Let i ∈ W be associated to Γi ⇒ Δi with
Δi = Δ′

i, [Σ1 � D1] , . . . , [Σk � Dk] , 〈Θ〉, where Δ′
i contains no conditional block

and Σ1 ⊆ Σ2 ⊆ . . . ⊆ Σk.

– Suppose E � F ∈ Γi. For α ∈ SP(i), we have to show that α �∀ ¬F or
α �∃ E.
In case α = W we have α = {mk, . . . ,mj} for some j ≤ k and each m� ∈ α
comes from a block [Σ� � D�] and is associated to a component D�,Λ� ⇒
Π�, Σ� of G. By saturation condition (�L), either F ∈ Σj or E = Dj . In the
former case with Σj ⊆ Σj+1 ⊆ . . . Σk and the induction hypothesis we have
MG ,m� � F , for � = j, . . . , k, showing that α �∀ ¬F . If E = Dj , by induction
hypothesis on the component E,Λj ⇒ Πj , Σj , we get MG ,mj � E, showing
α �∃ E.
In case α = W , by saturation condition (T) either F ∈ 〈Θ〉, or E,Λ ⇒
Π,Θ ∈ G for some Λ,Π. In the latter case for the world j associated to the
component E,Λ ⇒ Π,Θ by induction hypothesis on E we get MG , j � E,
whence W �∃ E. In the former case we have F ∈ 〈Θ〉. Any k ∈ W (including
k=i) is associated to a component Γk ⇒ Δk, but by saturation condition
(jumpT , jumpU) we have Θ ⊆ Δk, whence F ∈ Δk; by induction hypothesis
on F we have MG , k � F , showing W �∀ ¬F .

– Suppose E � F ∈ Δi. Recall that SP(i) = {{mk}, {mk,mk−1}, . . . ,
{mk, . . . ,m1},W} with each m� associated to a sequent D�,Λ� ⇒ Π�, Σ� ∈ G
coming from a block [Σ� � D�] ∈ Δi, for � = j, . . . , k. By saturation, there
is j ≤ k with Dj = F and E ∈ Σj . Consider mj associated to the com-
ponent F,Λj ⇒ Σj ,Π. By induction hypothesis we get MG ,mj � F . Since
Σj ⊆ Σj+1 ⊆ . . . ⊆ Σk, we also get MG ,m� � E, for � = j, . . . , k. Thus
for α = {mk, . . . ,mj} ∈ SP(i) we get α �∀ ¬F and α �∃ E, showing
MG , i � E � F .

146 M. Girlando et al.

The proof of 3 uses 2, recalling that a block is a disjunction of �-formulas. The
proof of 4 uses 2 with an argument as in the proof of 1 for the case of α = W
with B ∈ 〈Θ〉. ��

The countermodel construction described above can be extended to VWU

and VCU by modifying the definition of the model as follows. For VWU, let
SP(i) := {{mk, i}, {mk,mk−1, i}, . . . , {mk, . . . ,m1, i},W}. For VCU, we add {i}
to SP(i) for any i. The proof of Lemma 25 can be easily extended to both cases
(statements 1 and 2), using the specific saturation conditions for these systems.
We leave the details to the reader; the case of Absoluteness will be handled in
future work. From Lemma 25 we obtain:

Lemma 26. For L ∈ {VTU,VWU,VCU} let G = Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn be
a L-saturated hypersequent and let MG be defined as above, then

– for any i ∈ W associated to sequent Γi ⇒ Δi we have MG , i � ιe(Γi ⇒ Δi)
– for any i ∈ W we have MG , i � ιe(G)

To use these results in a decision procedure, we consider local loop checking :
rules are not applied if there is a premiss from which the conclusion is deriv-
able using structural rules. Since these are all admissible in SHi

L, this does not
jeopardise completeness.

Proposition 27. Backwards proof search with local loop checking terminates
and every leaf of the resulting derivation is an axiom or a saturated sequent.

Proof. By Lemmas 20 and 21, we may assume that the proof search only con-
siders duplication-free sequents, i.e., sequents containing duplicates neither of
formulae nor of blocks. By the subformula property, the number of duplication-
free sequents possibly relevant to a derivation of a sequent is bounded in the
number of subformulae of that sequent, and hence backwards proof search for G
terminates. Furthermore, every leaf is either an axiom or a saturated sequent,
since otherwise another rule could be applied. ��
Theorem 28 (Completeness). If ιe(G) ∈ L, then SHL � G for L ∈
{VTU,VWU,VCU}.
Proof. By Proposition 27 backwards proof search with root G terminates and
every leaf of it is an axiom or a saturated sequent. By invertibility of the rules
each sequent G′ occurring as a leaf is valid. But then G′ must an axiom, since
otherwise, by Lemma 26 we can bulid a countermodel MG′ falsifying ιe(G′) and
hence by monotonicity also ιe(G). ��

We note that Proposition 27 gives rise to a (non-optimal) co-NEXPTIME-
decision procedure for validity: Since applying backwards proof search with local
loop checking to an input sequent ⇒ G terminates and every leaf of the result-
ing derivation is an instance of init or ⊥L or a saturated sequent, in order to
check whether ⇒ G is derivable is suffices to non-determinstically choose a

Hypersequent Calculi for Lewis’ Conditional Logics 147

duplication-free L-saturated extended hypersequent containing only subformu-
las of G and containing a component Γ ⇒ Δ,G. If this is not possible, then
backwards proof search will produce a proof of ⇒ G. But if it is possible, then
by Lemma 26 this hypersequent gives rise to a countermodel for G. Since the
size of duplication-free extended hypersequents consisting of subformulae of G
is bounded exponentially in the number of subformulae of G, this gives the co-
NEXPTIME complexity bound. Of course it is known that the logics of this
section are EXPTIME-complete [5].

8 Conclusion

In this work we have introduced to our knowledge the first internal hypersequent
calculi for Lewis’ conditional logics with uniformity and reflexivity, both in non-
standard and in standard form. While the former lend themselves to syntactic
cut elimination, the latter are amenable to a semantic completeness proof via
countermodel construction from a failed proof search and give rise to decision
procedures for the considered logics.

While the treatment of these logics is an important step towards a com-
prehensive proof-theoretic treatment of the whole family of Lewis’ logics, many
interesting questions are still open. In particular, we plan to extend the seman-
tic completeness proof also to the logics with absoluteness. Further, by moving
to the framework of grafted hypersequents [10] we expect to be able to extend
our results to the logics VU and VNU. Concerning Lewis’ conditional logics, this
would leave only the logics satisfying Stalnaker’s assumption [13] lacking a satis-
factory internal proof system. Their proof-theoretic investigation will be subject
of future research. Finally, we aim at providing complexity-optimal proof meth-
ods for the logics under consideration. In particular, for logics with absoluteness,
one could make the blocks “global” to the whole hypersequent. We conjecture
that such calculi could yield complexity-optimal decision procedures.

References

1. Alenda, R., Olivetti, N.: Preferential semantics for the logic of comparative sim-
ilarity over triangular and metric models. In: Cerro, L.F., Herzig, A., Mengin, J.
(eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 1–13. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33353-8 1

2. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
From Foundations to Applications. Clarendon Press, New York (1996)

3. Burgess, J.P.: Quick completeness proofs for some logics of conditionals. Notre
Dame J. Formal Log. 22, 76–84 (1981)

4. Chellas, B.F.: Basic conditional logics. J. Philos. Log. 4, 133–153 (1975)
5. Friedman, N., Halpern, J.Y.: On the complexity of conditional logics. In: Doyle, J.,

Sandewall, E., Torasso, P. (eds.) KR 1994, pp. 202–213. Morgan Kaufmann (1994)
6. Giordano, L., Gliozzi, V., Olivetti, N., Schwind, C.: Tableau calculus for preference-

based conditional logics: PCL and its extensions. ACM TOCL 10(3), 21:1–21:50
(2009)

http://dx.doi.org/10.1007/978-3-642-33353-8_1

148 M. Girlando et al.

7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent cal-
culi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA
2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi:10.1007/
978-3-319-48758-8 18

8. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)
9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
10. Kuznets, R., Lellmann, B.: Grafting hypersequents onto nested sequents. Log. J.

IGPL 24, 375–423 (2016)
11. Lellmann, B.: Hypersequent rules with restricted contexts for propositional modal

logics. Theoret. Comput. Sci. 656, 76–105 (2016)
12. Lellmann, B., Pattinson, D.: Sequent systems for Lewis’ conditional logics. In:

Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 320–
332. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33353-8 25

13. Lewis, D.: Counterfactuals. Blackwell, London (1973)
14. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
15. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfac-

tual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286.
Springer, Cham (2015). doi:10.1007/978-3-319-24312-2 19

16. Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Logic Col-
loquium 2005. Lecture Notes in Logic, vol. 28, pp. 151–172. Cambridge University
Press (2007)

17. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts
and similarity. J. Log. Comput. 17(3), 415–452 (2007)

18. Stalnaker, R.: A theory of conditionals. In: Rescher, N. (ed.) Studies in Logical
Theory, pp. 98–112. Blackwell (1968)

http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/978-3-642-33353-8_25
http://dx.doi.org/10.1007/978-3-319-24312-2_19

VINTE: An Implementation of Internal Calculi
for Lewis’ Logics of Counterfactual Reasoning

Marianna Girlando1(B), Björn Lellmann2, Nicola Olivetti1,
Gian Luca Pozzato3, and Quentin Vitalis4

1 Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397 Marseille, France

{marianna.girlando,nicola.olivetti}@univ-amu.fr
2 Technische Universität Wien, Vienna, Austria

lellmann@logic.at
3 Dipartimento di Informatica, Universitá di Torino, Turin, Italy

gianluca.pozzato@unito.it
4 Département Informatique, École Spéciale Militaire de Saint-Cyr, Guer, France

quentin.vitalis@protonmail.com

Abstract. We present VINTE, a theorem prover for conditional logics
for counterfactual reasoning introduced by Lewis in the seventies. VINTE
implements some internal calculi recently introduced for the basic system
V and some of its significant extensions with axioms N, T, C, W and A.

VINTE is inspired by the methodology of leanTAP and it is implemented
in Prolog. The paper shows some experimental results, witnessing that
the performances of VINTE are promising.

1 Introduction

Conditional logics are extensions of classical logic by a conditional operator
�. They have a long history [11], and recently they have found an interest in
several fields of AI and knowledge representation. Just to mention a few (see [1]
for a complete bibliography), they have been used to reason about prototypical
properties, to model belief change [8], to reason about access control policies [5],
to formalize epistemic change in a multi-agent setting [2,4]. Conditional logics
can also provide an axiomatic foundation of nonmonotonic reasoning [9]: here a
conditional A� B is read “normally, if A then B”.

In early seventies, Lewis proposed a formalization of conditional logics in
order to represent a kind of hypothetical reasoning that cannot be captured by
the material implication of classical logic [10]. His original motivation was to
formalize counterfactuals, that is to say, conditionals of the form “if A were the
case then B would be the case”, where A is false. The family of logics studied
by Lewis is semantically characterized by sphere models, a particular kind of

Supported by the Project TICAMORE ANR-16-CE91-0002-01, by the EU under
Marie Sk�lodowska-Curie Grant Agreement No. [660047], and by the Project “Excep-
tionOWL”, Università di Torino and Compagnia di San Paolo, call 2014.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 149–159, 2017.
DOI: 10.1007/978-3-319-66902-1 9

150 M. Girlando et al.

neighbourhood models introduced by Lewis himself. In Lewis’ terminology, a
sphere denotes a set of worlds; in sphere models, each world is equipped with
a nested system of such spheres. From the viewpoint of the given world, inner
sets represent the “most plausible worlds”, while worlds belonging only to outer
sets are considered as less plausible. In order to treat the conditional operator,
Lewis takes as primitive the comparative plausibility connective �: a formula
A � B means “A is at least as plausible as B”. The conditional A � B can
be then defined as “A is impossible” or “A ∧ ¬B is less plausible than A ∧ B”.
However, the latter assertion is equivalent to the simpler one “A ∧ ¬B is less
plausible than A”1.

In previous works [6,16] we have introduced internal, standard, cut-free cal-
culi for most logics of the Lewis family, namely logics V, VN, VT, VW, VC, VA
and VNA. Here we describe a Prolog implementation of the invertible calculi
I i

L introduced in [6]. The program, called VINTE, gives a decision procedure for
the respective logics, and it is inspired by the methodology of leanTAP [3]. The
idea is that each axiom or rule of the sequent calculi is implemented by a Prolog
clause of the program. The resulting code is therefore simple and compact: the
implementation of VINTE for V consists of only 3 predicates, 21 clauses and 57
lines of code. We provide experimental results by comparing VINTE with the
following theorem provers for conditional logics: CondLean [12], GoalDUCK
[13] and NESCOND [14,15], and we show that the performances of VINTE are
quite promising. The program VINTE, as well as all the Prolog source files, are
available for free usage and download at http://193.51.60.97:8000/vinte/.

2 Lewis’ Conditional Logics

We consider the conditional logics defined by Lewis in [10]. The set of conditional
formulae is given by F :: = p | ⊥ | F → F | F � F , where p ∈ V is a propositional
variable. The other boolean connectives are defined in terms of ⊥,→ as usual.
Intuitively, a formula A � B is interpreted as “A is at least as plausible as B”.

As mentioned above, Lewis’ counterfactual implication� can be defined in
terms of comparative plausibility � as

A� B ≡ (⊥ � A) ∨ ¬((A ∧ ¬B) � A).

The semantics of this logic is defined by Lewis in terms of sphere semantics:

Definition 1. A sphere model (or model) is a triple 〈W,SP, �. �〉, consisting of
a non-empty set W of elements, called worlds, a mapping SP : W → P(P(W)),
and a propositional valuation �. � : V → P(W). Elements of SP(x) are called
spheres. We assume the following conditions: for every α ∈ SP(w) we have
α
= ∅, and for every α, β ∈ SP(w) we have α ⊆ β or β ⊆ α. The latter
condition is called sphere nesting.

1 It is worth noticing that in turn the connective � can be defined in terms of �.

http://193.51.60.97:8000/vinte/

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 151

Table 1. Lewis’ logics and axioms.

CPR
� B → A
� A � B

CPA (A � A ∨ B) ∨ (B � A ∨ B)

TR (A � B) ∧ (B � C) → (A � C) CO (A � B) ∨ (B � A)
N ¬(⊥ � �) W A → (A � �)
T (⊥ � ¬A) → A A1 (A � B) → ⊥ � ¬(A � B)

)

C (A � �) → A A2 ¬(A � B) → ⊥ � (A � B)
)

AV := {CPR,CPA,TR,CO}
AVN := AV ∪ {N} AVT := AV ∪ {N,T} AVW := AV ∪ {N,T,W}
AVC := AV ∪ {N,T,W,C} AVA := AV ∪ {A1,A2} AVNA := AV ∪ {N,A1,A2}

The valuation �. � is extended to all formulae by: �⊥� = ∅; �A → B� = (W −
�A�) ∪ �B�; �A � B� = {w ∈ W | for all α ∈ SP(w). if �B� ∩ α
= ∅, then �A� ∩
α
= ∅}. For w ∈ W we also write w � A instead of w ∈ �A�. As for spheres,
we write α �∀ A meaning ∀x ∈ α.x � A and α �∃ A meaning ∃x ∈ α.x � A2.
Validity and satisfiability of formulae in a class of models are defined as usual.
Conditional logic V is the set of formulae valid in all sphere models.

Extensions of V are semantically given by specifying additional conditions on
the class of sphere models, namely:

– normality : for all w ∈ W we have SP(w)
= ∅;
– total reflexivity : for all w ∈ W we have w ∈ ⋃

SP(w);
– weak centering : normality holds and for all α ∈ SP(w) we have w ∈ α;
– centering : for all w ∈ W we have {w} ∈ SP(w);
– absoluteness: for all w, v ∈ W we have SP(w) = SP(v)3.

Extensions of V are denoted by concatenating the letters for these properties:
N for normality, T for total reflexivity, W for weak centering, C for centering,
and A for absoluteness. All the above logics can be characterized by axioms in a
Hilbert-style system [10, Chap. 6]. The modal axioms formulated in the language
with only the comparative plausibility operator are presented in Table 1 (where
∨ and ∧ bind stronger than �). The propositional axioms and rules are the
standard ones.

3 Internal Calculi for Conditional Logics

Table 2 presents calculi I i
L, where L ranges over the logics V,VN,VT,VW,

VC,VA, VNA, introduced in [6]. The basic constituent of sequents are blocks

2 Employing this notation, satisfiability of a �-formula in a model becomes the fol-
lowing: x � A � B iff for all α ∈ SP(x). α �∀ ¬B or α �∃ A.

3 It is worth noticing that absoluteness can be equally stated as local absoluteness:
∀w ∈ W, ∀v ∈ ⋃SP(w) it holds SP(w) = SP(v).

152 M. Girlando et al.

Table 2. The calculus I i
V and its extensions.

of the form [A1, . . . , Am � A], with A1, . . . , Am, A formulas, representing dis-
junctions of �-formulas. A sequent is a tuple Γ ⇒ Δ, where Γ is a multiset of
conditional formulae, and Δ is a multiset of conditional formulae and blocks.
The formula interpretation of a sequent is given by:

ι(Γ ⇒ Δ′, [Σ1 � A1] , . . . , [Σn � An]) :=
∧

Γ →
∨

Δ′ ∨
∨

1≤i≤n

∨

B∈Σi

(B � Ai)

As usual, given a formula G ∈ L, in order to check whether G is valid we look
for a derivation of ⇒ G. Given a sequent Γ ⇒ Δ, we say that it is derivable
if it admits a derivation, namely a tree whose root is Γ ⇒ Δ, every leaf is an
instance of init or ⊥L or �R, and every non-leaf node is (an instance of) the
conclusion of a rule having (an instance of) the premises of the rule as children.

In [6] it is shown that:

Theorem 1. The calculi I i
L are sound and complete for the respective logics.

In [6] it has been also shown that the calculi I i
L can be used in a decision pro-

cedure for the logic L as follows. Since contractions and weakenings are admis-
sible we may assume that a derivation of a duplication-free sequent (contain-
ing duplicates neither of formulae nor of blocks) only contains duplication-free

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 153

sequents: whenever a (backwards) application of a rule introduces a duplicate of
a formula already in the sequent, it is immediately deleted in the next step using
a backwards application of weakening. While officially our calculi do not contain
the weakening rules, the proof of admissibility of weakening yields a procedure to
transform a derivation with these rules into one without. Since all rules have the
subformula property, the number of duplication-free sequents possibly relevant
to a derivation of a sequent is bounded in the number of subformulae of that
sequent, and hence enumerating all possible loop-free derivations of the above
form yields a decision procedure for the logic.

Theorem 2. Proof search with the blocking technique above for a sequent Γ ⇒
Δ in calculus I i

L always comes to an end in a finite number of steps.

As usual, in order to implement such a decision procedure, we have to control the
application of the rules to avoid the introduction of duplicated sequents. Con-
cerning the rule �i

L, the principal formula A � B is copied into the premisses,
then we have to avoid that, in a backward application of the rule, such formula
is redundantly applied by using the same block [Σ � C]. Since no rule, with the
exception of jump, remove formulas from blocks, we allow a backward application
of �i

L to a sequent Γ,A � B ⇒ Δ, [Σ � C] if neither [B,Σ � C] nor [Σ′ � C],
where B,Σ ⊂ Σ′ belong to Δ, and neither [Σ � A] nor [Σ′ � A], where Σ ⊂ Σ′

belong to Δ. Similarly for the comi rule, which can be applied backward to blocks
[Σ1 � A] and [Σ2 � B] if neither [Σ1, Σ2 � A] nor [Σ1, Σ2 � B] are introduced
redundantly in the premisses. For rules like Wi, whose premisses contain the
principal formula, we just need to check whether the formulas introduced in the
premisses by a backward application of the rule already belong to such premisses
or not. In the first case, the application of the rule is blocked. As an example, if
Wi is applied to ⇒ [A ∨ B � C], then the premiss is ⇒ [A ∨ B � C] , A∨B, that
becomes (∗) ⇒ [A ∨ B � C] , A,B after an application of the rule ∨R. The rule
Wi can be further applied to (∗), since A ∨ B does not belong to the right-hand
side of the sequent, then obtaining the premiss ⇒ [A ∨ B � C] , A,B,A∨B, and
at this point neither Wi nor ∨R can be further applied.

4 Design of VINTE

In this section we present a Prolog implementation of the internal calculi I i
L

recalled in Sect. 3. The program, called VINTE (V: INTernal calculi and Exten-
sions), is inspired by the “lean” methodology of leanTAP, even if it does not
follow its style in a rigorous manner. The program comprises a set of clauses,
each one of them implements a sequent rule or axiom of I i

L. The proof search is
provided for free by the mere depth-first search mechanism of Prolog, without
any additional ad hoc mechanism.

VINTE represents a sequent with a pair of Prolog lists [Gamma,Delta], where
Gamma and Delta represent the left-hand side and the right-hand side of the
sequent, respectively. Elements of Gamma are formulas, whereas elements of Delta

154 M. Girlando et al.

can be either formulas or pairs [Sigma,A], where Sigma is a Prolog list, repre-
senting a block [Σ � A]. Symbols � and ⊥ are represented by constants true
and false, respectively, whereas connectives ¬, ∧, ∨, →, �, and � are repre-
sented by -, ,̂ ?, ->, <, and =>. Propositional variables are represented by Prolog
atoms. As an example, the Prolog pair

[[-(p?q), p, p -> q, p < r], [q, p => (q^r), [[true, p, q], r]]]

is used to represent the sequent

¬(P ∨ Q), P, P → Q,P � R ⇒ Q,P � (Q ∧ R), [�, P,Q � R] .

The calculi I i
L are implemented by the predicate

prove([Gamma,Delta],ProofTree).

This predicate succeeds if and only if the sequent Γ ⇒ Δ represented by the
pair of lists [Gamma,Delta] is derivable. When it succeeds, the output term
ProofTree matches with a representation of the derivation found by the prover.
For instance, in order to prove that the formula (A � B) ∨ (B � A) is valid in
V, one queries VINTE with the goal: prove([[],[(a<b)?(b<a)]],ProofTree).
Each clause of prove implements an axiom or rule of I i

L. To search a derivation
of a sequent Γ ⇒ Δ, VINTE proceeds as follows. First of all, if Γ ⇒ Δ is an
instance of either ⊥L or �R or init, the goal will succeed immediately by using
one of the following clauses for the axioms:

prove([Gamma,Delta],tree(axb):-member(false,Gamma),!.

prove([Gamma,Delta],tree(axt)):-member(true,Delta),!.

prove([Gamma,Delta],tree(init)):-member(P,Gamma),member(P,Delta),!.

If Γ ⇒ Δ is not an instance of the ending rules, then the first applicable rule
will be chosen, e.g. if Δ contains a formula A < B, then the clause implementing
the �R rule will be chosen, and VINTE will be recursively invoked on the unique
premise of such a rule. VINTE proceeds in a similar way for the other rules.
The ordering of the clauses is such that the application of the branching rules is
postponed as much as possible, with the exception of the rule jump which is the
last rule to be applied. As an example, the clause implementing �i

L is as follows:

1. prove([Gamma,Delta],tree(precL,Sub1,Sub2)):-

2. member(A < B,Gamma),

3. select([Sigma,C],Delta,NewDelta),

4. remove_duplicates([B|Sigma],NewSigma),

5. \+memberOrdSet([NewSigma,C],Delta),

6. \+memberOrdSet([Sigma,A],Delta), !,

7. prove([Gamma,[[NewSigma,C]|NewDelta]],Sub1),

8. prove([Gamma,[[Sigma,A]|Delta]],Sub2).

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 155

In line 4, the auxiliary predicate remove duplicates is invoked in order to
remove duplicated formulas in the multiset of formulas B,Σ. This is equivalent
to apply weakening if the formula B already belongs to Γ . Another auxiliary
predicate, memberOrdSet, is then invoked in lines 5 and 6 in order to implement
the decision procedure described at the end of Sect. 3: Prolog ordsets are used
in order to deal with the equivalence of lists where formulas occur in different
orders. Since the rule is invertibile, Prolog cut ! is used in line 6 to eventually
block backtracking. The jump rule is implemented as follows:

1. prove([Gamma,Delta],tree(jump,SubTree)):-

2. member([Sigma,A],Delta),

3. prove([[A],Sigma],SubTree).

This is the only non invertible rule, and a backtracking point is introduced
by the choice of the block [Σ � A] in Δ to which apply the rule.

The implementation of the calculi for extensions of V is very similar. The
only significant difference is in the more sophisticated mechanism needed to
ensure termination. As an example, in system implementing the calculus for
VC, the predicate prove is equipped by a further parameter, called AppliedC,
containing the list of formulas of the form A � B to which the rule Ci has been
already applied in the current branch. The code implementing the rule Ci is as
follows:

1. prove([Gamma,Delta],tree(c,Sub1,Sub2),AppliedC):-

2. member(A < B,Gamma),

3. \+member(A < B,AppliedC),

4. (\+member(B,Delta);\+member(A,Gamma)), !,

5. prove([Gamma,[B|Delta]],Sub1,[A<B|AppliedC]),

6. prove([[A|Gamma],Delta],Sub2,[A<B|AppliedC]).

Line 3 shows how this parameter is used in order to avoid multiple application of
Ci to the same formula A � B in a given branch, then the consequent loop in the
proof search: if A � B belongs to AppliedC, then the rule Ci has been already
applied to it in the current branch and it is no longer applied; otherwise, the
predicate prove is recursively invoked on the premisses of the rule, and A � B
is added to the list of formulas already employed for applications of Ci.

VINTE can be used by means of a simple web interface, implemented in
php and allowing the user to check whether a conditional formula is valid by
using his computer as well as his mobile device. The web interface also allows
the user to choose the conditional system to adopt, namely V or one of the
extensions mentioned in Sect. 2. When a formula is valid, VINTE builds a pdf
file showing a derivation in the invertible calculi recalled in Sect. 3 as well as
the LATEX source file. Prolog source codes and experimental results are also
available. Some pictures of VINTE are shown in Figs. 1 and 2.

156 M. Girlando et al.

Fig. 1. Home page of VINTE.

Fig. 2. When the user wants to check whether a formula F is valid, then (i) he selects
the conditional logic to use, (ii) he types F in the form and (iii) clicks the button in
order to execute the calculi presented in Sect. 3.

5 Performance of VINTE

The performance of VINTE seems to be promising. We have tested it by running
SICStus Prolog 4.0.2 on an Apple MacBook Pro, 2.7 GHz Intel Core i7, 8 GB
RAM machine. In absence of theorem provers specifically tailored for Lewis’
logics, we have compared the performances of VINTE with those of the following
theorem provers for conditional logics:

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 157

– CondLean 3.1, implementing labelled sequent calculi [12];
– GoalDUCK, implemented a goal-directed proof procedure [13];
– NESCOND, implementing nested sequent calculi [14,15].

All the above mentioned theorem provers take into account conditional logics
based on the selection function semantics [11], namely conditional logic CK
and extensions with axioms ID, MP, CEM, CSO, that are weaker than the ones
considered by VINTE, then the experimental results are only partially significant
and only aim at conjecturing that the performance of VINTE is promising.

We have performed two kinds of experiments: 1. we have tested the four
provers on randomly generated formulas, fixing different time limits; 2. we have
tested VINTE for system VN and NESCOND over a set of valid formulas in the
logic CK, therefore also valid in VN [10].

Concerning 1 (Table 3), we have tested the four provers over 2000 random
sequents with 20 formulas built from 7 different atomic variables and with a high
level of nesting (10): both VINTE and NESCOND are able to answer in all cases
within 1 s, whereas CondLean 3.1 is not able to conclude anything in 55 cases
over 1000. Performance of GoalDUCK is even worse, since it fails to answer in
174 cases. The differences seem much more significant when considering sequents
with more formulas (100) and with a higher level of nesting (20): with a time
limit of 5 ms, GoalDUCK is faster than CondLean 3.1 and NESCOND, since
it is not able to answer only in 136 cases over 1000, against 173 timeouts of
CondLean 3.1 and 479 timeouts of NESCOND. VINTE is able to answer again
in all cases, and only NESCOND is also able to complete all the tests, when
the time limit is extended to 1 s. We have repeated the above experiments by
considering implementations of VINTE for extensions of V, obtaining the results
summarized in Table 4.

As mentioned, since the four provers take into account different logics, in gen-
eral they give a different answer over the same - randomly generated - sequent.
Then, this kind of tests over CK formulas could be considered not very sig-
nificant. Instead, we should test VINTE over a set of significant formulas for
the specific Lewis’ logics that it is designed for: to this aim, we are currently
developing a set of benchmarks for VINTE drawn by valid instances of Lewis’
axioms.

Table 3. Number of timeouts over 1000 random sequents using VINTE for V.

Seq. with 20 formulas (nesting lev.10)

Prover Limit 5 ms Limit 1 s

VINTE 3 0
CondLean 3.1 55 14
GoalDUCK 249 174
NESCOND 35 0

Seq. with 100 formulas (nesting lev.20)

Prover Limit 5 ms Limit 1 s

VINTE 45 0
CondLean 3.1 173 141
GoalDUCK 136 133
NESCOND 479 0

158 M. Girlando et al.

Table 4. Number of timeouts of VINTE for extensions of V (average of different sys-
tems) over 1000 random sequents.

Seq. with 20 formulas (nesting lev.10)

Prover Limit 5 ms Limit 1 s

VINTE 8 2
CondLean 3.1 65 17
GoalDUCK 276 198
NESCOND 46 5

Seq. with 100 formulas (nesting lev.20)

Prover Limit 5 ms Limit 1 s

VINTE 1 0
CondLean 3.1 180 80
GoalDUCK 327 18
NESCOND 19 6

Concerning 2, we have considered 76 valid formulas obtained by translating
K valid formulas provided by Heuerding in conditional formulas: �A is replaced
by � � A4, whereas �A is replaced by ¬(� � ¬A). We have compared the
performance of VINTE, implementation for VN, with those of NESCOND, the
best prover among those taken into account for conditional logics based on the
selection function semantics [15]. As expected, the performance of NESCOND
is still significantly better than those of VINTE: fixing a time limit of 1ms,
NESCOND is able to check the validity of the considered formula in the 86 %
of cases, whereas VINTE is able to answer only in the 11 % of cases. However,
VINTE is able to reach a percentage of successes of 37 % by extending the time
limit to 1 s, and over 60% in 3 s (even if, in this last case, NESCOND is not
able to answer only in 2 cases over 76). Obviously, this result is justified by the
fact that VINTE supports stronger systems of conditional logics with respect to
NESCOND, which is specifically tailored for CK and all the proposed results are
restricted to such weaker system supported by both provers.

6 Conclusions and Future Issues

We have presented VINTE, a theorem prover implementing internal calculi for
Lewis’ conditional logics introduced in [6]. Our long term project is to develop
both calculi and theorem provers for the whole family of Lewis’ logics. One
further step in this direction is represented by the hypersequent calculi for con-
taining both uniformity (all worlds have the same set of accessible worlds) and
total reflexivity presented in [7]. Notice that an implementation of hypersequent
calculi is an interesting task in itself.

We also aim at improving the performances of VINTE by implementing stan-
dard refinements and heuristics. We also intend to extend VINTE to handle coun-
termodel generation for unprovable formulas. Last, as mentioned in the previous
section, we are currently developing a set of benchmarks for VINTE for a more
detailed analysis of the performances of the theorem prover.

4 It is worth noticing that this translation introduces an exponential blowup.

VINTE: An Implementation of Internal Calculi for Lewis’ Logics 159

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Nested sequent calculi for normal condi-
tional logics. J. Log. Comput. 26(1), 7–50 (2016)

2. Baltag, A., Smets, S.: The logic of conditional doxastic actions. Texts Log. Games
4, 9–31 (2008). Special Issue on New Perspectives on Games and Interaction

3. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Rea-
son. 15(3), 339–358 (1995)

4. Board, O.: Dynamic interactive epistemology. Games Econ. Behav. 49(1), 49–80
(2004)

5. Genovese, V., Giordano, L., Gliozzi, V., Pozzato, G.L.: Logics in access control: a
conditional approach. J. Log. Comput. 24(4), 705–762 (2014)

6. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Standard sequent cal-
culi for Lewis’ logics of counterfactuals. In: Michael, L., Kakas, A. (eds.) JELIA
2016. LNCS, vol. 10021, pp. 272–287. Springer, Cham (2016). doi:10.1007/
978-3-319-48758-8 18

7. Girlando, M., Lellmann, B., Olivetti, N., Pozzato, G.L.: Hypersequent calculi for
Lewis’ conditional logics with uniformity and reflexivity. In: Nalon, C., Schmidt,
R.A. (eds.) TABLEAUX 2017. LNCS (LNAI), vol. 10501, pp. 131–148. Springer,
Cham (2017)

8. Grahne, G.: Updates and counterfactuals. J. Log. Comput. 8(1), 87–117 (1998)
9. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-

els and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)
10. Lewis, D.: Counterfactuals. Blackwell, Hoboken (1973)
11. Nute, D.: Topics in Conditional Logic. Reidel, Dordrecht (1980)
12. Olivetti, N., Pozzato, G.L.: CondLean 3.0: improving condlean for stronger con-

ditional logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702,
pp. 328–332. Springer, Heidelberg (2005). doi:10.1007/11554554 27

13. Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: condlean and
goalduck. J. Appl. Non-Class. Log. 18(4), 427–473 (2008)

14. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent cal-
culi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 511–518. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 39

15. Olivetti, N., Pozzato, G.L.: Nested sequent calculi and theorem proving for normal
conditional logics: the theorem prover NESCOND. Intelligenza Artificiale 9(2),
109–125 (2015)

16. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfac-
tual logics. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 270–286.
Springer, Cham (2015). doi:10.1007/978-3-319-24312-2 19

http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/978-3-319-48758-8_18
http://dx.doi.org/10.1007/11554554_27
http://dx.doi.org/10.1007/978-3-319-08587-6_39
http://dx.doi.org/10.1007/978-3-319-08587-6_39
http://dx.doi.org/10.1007/978-3-319-24312-2_19

Tableaux

Goal-Sensitive Reasoning with Disconnection
Tableaux

Lee A. Barnett(B)

The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
lbarnett@cs.unc.edu

Abstract. One of the challenges that has been outlined for
instantiation-based theorem proving methods is their application in rea-
soning over theories with many axioms, as in tasks involving large ontolo-
gies or mathematical libraries. Goal-sensitive methods, which restrict
inferences to those related to the goal to be refuted, tend to outperform
other methods on large axiom sets especially. This paper presents a goal-
sensitive adaptation of the disconnection tableau calculus, leveraging the
advantages of goal-sensitivity in an instantiation-based, tableau-guided
proof method. A proof of the method’s completeness follows its descrip-
tion, as well as a discussion of planned future work in this area.

Keywords: Theorem proving · Instance-based methods · Goal-
sensitivity

1 Introduction

Instantiation-based automated reasoning methods combine the expressive power
of first-order logic with existing propositional theorem-proving technology to
solve difficult problems efficiently. These methods apply Herbrand’s theorem to
show the unsatisfiability of a set of first-order clauses by reducing to ground
instances of clauses. One of the application domains of such methods is reason-
ing over very large axiom sets, in which their performance is promising [5,11].
Growing interest in this area suggests that more work should be done to improve
the strength and efficiency of these methods.

Goal-sensitive methods, which restrict inferences to those related to a par-
ticular goal to be refuted, tend to perform better especially over large theories
because of their ability to ignore potentially very large parts of the axiom set
known to be satisfiable [14]. In methods without goal-sensitivity, to prove a theo-
rem ϕ from an axiom set T , it is possible that most inferences do not involve ϕ at
all. It is desirable to have methods which are first-order and goal-sensitive [12].

The disconnection calculus was developed in [2], and its tableau format was
elaborated on and presented more rigorously in [8] as the disconnection tableau
calculus. Instead of interleaving instance generation with a separate propositional
procedure, the disconnection tableau calculus uses a tableau as a data structure
for guiding its search so that unsatisfiability detection is integrated into the
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 163–174, 2017.
DOI: 10.1007/978-3-319-66902-1 10

164 L.A. Barnett

instance generation procedure. In this paper, the disconnection tableau calculus
is shown to be incapable of goal-sensitive reasoning as-is, and an adapted form
of the calculus, referred to as the goal-sensitive disconnection tableau calculus
or GSDC, is introduced which makes this kind of reasoning possible.

In Sect. 2 an explanation of terminology and background information is pro-
vided, along with an overview of the disconnection tableau calculus. In Sect. 3
the goal-sensitive adaptation to the calculus is presented, and Sect. 4 provides
a proof of this adaptation’s completeness. Section 5 concludes and provides a
description of future work.

2 Preliminaries and Background

Definitions of terms and basic notions used in this paper are explained here for
clarification. An overview of the basic disconnection tableau method follows.

2.1 Terminology

A first-order language L with function symbols is assumed. As usual, a literal is
an atom or a negated atom. Literals L and ¬L are complementary. The set of
ground atoms over L is the Herbrand base of L; the set of ground terms over L
is its Herbrand universe. A Herbrand interpretation is a set of literals containing
exactly one of A or ¬A, for each atom A in the Herbrand base.

A clause is a disjunction of literals, often written as a set containing those
literals. In this paper, the clauses in a clause set S are assumed to be pairwise
variable-disjoint.

A substitution σ is a finite set {t1/x1, t2/x2, . . . , tn/xn}, where the xi are
distinct variables and the ti are terms such that ti �= xi for any i = 1, . . . , n.
Applying σ to an expression E means to simultaneously replace each occurrence
of xi in E with the corresponding ti for each i = 1, . . . , n. The expression result-
ing from applying σ to E is written as Eσ and is called an instance of E. Given
a clause set S, its Herbrand set S∗ consists of all ground instances of clauses in
S with terms from the Herbrand universe.

For substitutions σ and τ , their composition στ is a substitution which, when
applied to an expression E, has the same result as first applying σ to E, and
then applying τ . This is expressed by the identity E(στ) = (Eσ)τ . If there exists
a substitution τ ′ such that τ = στ ′, then σ is said to be more general than τ .
The substitution σ is a unifier of expressions E1 and E2 if E1σ = E2σ. If such
a substitution exists, E1 and E2 are said to be unifiable. A most general unifier
or mgu is a unifier which is more general than any other unifier.

The definitions and notions more specific to the disconnection tableau cal-
culus itself are provided below. A description of the method follows these
definitions.

A literal occurrence is a pair 〈L,C〉 such that L is a literal and C is a clause
in which it appears. When convenient, 〈L,C〉 may be written as LC . For a
substitution σ, let 〈L,C〉σ (and LCσ) denote the literal occurrence 〈Lσ,Cσ〉.

Goal-Sensitive Reasoning with Disconnection Tableaux 165

A connection or link is a pair of literal occurrences � = {LC ,KD} such that
C and D are variable-disjoint and there exists a mgu σ of L and ¬K. A clause
Cσ is called a linking instance of C with respect to �.

A path through a clause set S is a function π mapping each clause C ∈ S to a
single literal L ∈ C. A path may be represented by the set of literal occurrences
P = {LC | L = π(C)}. The set of clauses of P , written Cl(P), is the domain of
the function π; the set of literals of P , written Lit(P), is the image of π. A path
is complementary if there exist literal occurrences LC ,¬LD ∈ P . A path which
is not complementary is open or consistent. The following proposition from [9]
emphasizes the use of this notion of path.

Proposition 1. If S is a clause set and P is an open path through the Herbrand
set S∗, then the set of literals of P is a model for S.

A tableau is a downward tree in which every non-root node N is labeled with a
literal occurrence. Specifically, for a clause set S, a tableau for S is a tree in which
the children N1, . . . , Nm of each node N are labeled with 〈L1, C〉, 〈L2, C〉, . . . ,
〈Lm, C〉, respectively, for C = L1 ∨ L2 ∨ · · · ∨ Lm an instance of a clause in S.
A branch of a tableau is a maximal sequence {N1, N2, . . .} of nodes in T such
that N1 is a child of the root node, and Ni+1 is a child of Ni for all i ≥ 1. A
branch B has an associated path PB , which can be represented by the set of
literal occurrences labeling the nodes on B.

2.2 Disconnection Tableau Calculus

Here the basic calculus of the disconnection tableau method is described. Con-
struction of a tableau for a clause set S begins with respect to an input path
PS through S called the initial path. The initial path remains fixed during con-
struction of the tableau for S. The calculus consists of the following linking rule:
given PS and a tableau branch B such that PS ∪ PB contains a pair of literal
occurrences LC and KD forming a link � with mgu σ,

1. expand B with a variable-disjoint renaming of a linking instance of one of the
clauses with respect to �, say Cσ, and

2. below the node labeled Lσ, expand the branch with a variable-disjoint renam-
ing of a linking instance of Dσ with respect to �.

That is, a clause linking step is performed and the coupled linking instances are
attached below the leaf node N of the current tableau branch B. For each branch
B, the links which can be used to expand B by the linking rule are those belong-
ing to PS ∪PB ; in this way the initial path acts as a prefix shared by all branches
in the tableau. Requiring that the attached linking instances be variable-disjoint
maintains that all clauses on the tableau are pairwise variable-disjoint. After
being used to expand B, a link need not be used any more on B below the node
N , “disconnecting” the connected literals. Additionally, disconnection tableaux
are generally required to be variant-free; that is, links which would expand the

166 L.A. Barnett

tableau with a clause which could be obtained by a renaming of a clause already
on the tableau are not considered. A branch is saturated if there exist no links
to expand it in a variant-free manner.

The normal tableau closure condition of requiring two complementary literals
on the same branch is not sufficient, so a modified notion of closure is typically
used. A branch B is closed with respect to a term t, or t-closed, if its associated
path PB becomes complementary when all variables occurring in the literals on
B are replaced with t. A branch is ∀-closed if it is t-closed for any term t. In
other words, a branch is ∀-closed if it contains literals L,¬K such that Lθ = Kθ
for a substitution θ identifying all variables. Both closure conditions can be used
for disconnection tableaux, but as in [8] the weaker notion of ∀-closure is used
here, since then the results in this paper will hold automatically for t-closure as
well. As a result a tableau is said to be closed if all its branches are ∀-closed;
a tableau is saturated if it is closed or if it contains a saturated branch. An
example closed disconnection tableau is shown in Fig. 1.

¬P (x) ∨ Q(x)

¬Q(y) ∨ R(y)

P (a)

¬R(a)

�1

¬P (a)

P (a)
*

Q(a)

�2

¬Q(a)

Q(a)
*

R(a)
*

�1

�2

Fig. 1. Example closed disconnection tableau. The literals contained in the initial path
are underlined.

Disconnection tableaux for a clause set S, with chosen initial path PS , are
defined as the elements of any sequence T0, T1, . . ., where T0 is the tableau con-
sisting of only the root node, and any Ti, for i > 0, can be obtained from Ti−1 by
an application of the linking rule. The disconnection tableau calculus is sound
and complete for any choice of initial path: a clause set S is unsatisfiable if and
only if for any initial path PS , there is a finite closed disconnection tableau for
S with PS .

As described, the disconnection tableau calculus is non-deterministic and
requires an inference strategy for guiding tableau construction by making choices

Goal-Sensitive Reasoning with Disconnection Tableaux 167

concerning the initial path, the next branch chosen for expansion, and the next
linking step to be performed on that branch. An inference strategy which always
results in a saturated tableau is called systematic or fair. A more thorough
description of the disconnection tableau calculus and inference strategies can be
found in [9].

3 Goal-Sensitivity

The notion of goal-sensitivity in theorem proving originated from resolution with
set of support [15], a strategy appearing as a feature of contemporary theorem
provers which use the given-clause loop [10]. Goal-sensitivity has been used in the
context of equational reasoning [3] and as part of a set of criteria for analyzing
theorem proving methods [13]. A recent formulation of goal-sensitivity was given
in [4], which is used here and summarized below.

The clause set S is assumed to comprise a collection of assumptions, known
to be consistent among themselves, and a collection of clauses generated from
the negation ¬ϕ of a conjectured formula ϕ. As such the clause set is taken to
be S = T ∪ G, where T ∩ G = ∅. The set G consists of clauses generated from
¬ϕ, referred to as goal clauses, while the set T is the collection of assumptions.

The central notion of goal-sensitivity is relevance. Initially, only clauses in
G are considered relevant. An inference is considered relevant if at least one of
its hypotheses is relevant; clauses that result from the application of a relevant
inference are relevant as well. A theorem proving strategy is goal-sensitive if it
only performs relevant inferences. In other words, a method is goal-sensitive if
all inferences involve clauses in, or deduced from, the clauses generated from the
negated conjecture ¬ϕ.

Define a literal to be relevant if it belongs to a relevant clause, a literal
occurrence to be relevant if its clause is relevant, and a link to be relevant if it
contains a relevant literal occurrence.

3.1 Disconnection Tableau Calculus Is Not Goal-Sensitive

Even inference strategies for the disconnection tableau calculus that prioritize
the selection of relevant links will require in some cases non-relevant links to
be expanded. As an immediate example, if the initial path does not include any
literals complementary to the specified goal literal, there will be no relevant links
for selection. However, making sure that relevant links exist on the initial path
is not enough to ensure goal-sensitivity.

Example 1. Consider the input clause set given in Fig. 2, with the single goal
clause G = {¬R(a)}. Let the initial path P be the one selecting the leftmost
literal in each clause, indicated by the underlined literals. Then there are two
links on this path: �1 = {R(x)∨¬Q(x),¬R(a)}, and �2 = {¬P (x)∨Q(x), P (a)}.

Again, the goal clause here is ¬R(a), indicated by the boxed clause. Only �1
is relevant initially, so we select it to expand the tableau. After this step, the left

168 L.A. Barnett

branch is closed, leaving only the right branch open. The only link on PS ∪ PB

is �2, which is not relevant. However, expansion of �2 closes the tableau, showing
the unsatisfiability of the clause set.

¬P (x) ∨ Q(x)

P (a)

R(y) ∨ ¬Q(y)

¬R(a)

�1

R(a)

¬R(a)
*

¬Q(a)

�2

¬P (a)
*

Q(a)
*

�1

�2

Fig. 2. Example in which non-relevant links must be expanded to close the tableau.
The goal clause is indicated by the box.

Notice that in Example 1 above, had the initial path included Q(x) then a
relevant link �3 = {¬P (x) ∨ Q(x),¬Q(a)} would have been present on B, and
goal-sensitive construction of the tableau would have been possible. To reason
with disconnection tableaux in a goal-sensitive manner, particular literal occur-
rences in T = S \ G must be available for linking. The next section describes a
method for finding these literal occurrences during tableau construction.

4 Goal-Sensitive Disconnection Tableau Calculus

The typical input to the disconnection tableau calculus is a clause set S and an
initial path PS through S. In the previous section it is shown that PS can be
chosen so that non-relevant linking steps must be performed to close the tableau.
As a result, the goal-sensitive disconnection tableau calculus or GSDC requires
a new notion of path.

Definition 1 (Multipath). A multipath over a clause set S is a relation π ⊆
S ×

⋃
S such that π(C,L) implies L ∈ C.

Here,
⋃

S refers to the set of all literals occurring in clauses in S; that is,
⋃

S :=
⋃

C∈S

{L | L ∈ C}.

Similar to paths, a multipath π over S may be represented by a set of literal
occurrences P = {LC | π(C,L)}. The terms set of literals and set of clauses

Goal-Sensitive Reasoning with Disconnection Tableaux 169

for paths are defined similarly for multipaths. Whereas a path is defined as a
function from S to

⋃
S, a multipath is simply a relation. As a result, multipaths

differ from paths in two ways: first, there may be multiple literal occurrences
from the same clause on a multipath, and second, not every clause in S need
have a specified literal occurrence.

The GSDC takes as input a clause set S = T ∪ G, where T is known to be
consistent and G is the set of goal clauses as before. Instead of starting with
an input, fixed initial path, a multipath is dynamically constructed over the
consistent set of assumptions during tableau construction. The GSDC consists
of two rules, the first of which is usual linking rule from the disconnection tableau
calculus, where the initial path PS over S has been replaced with a multipath
P over T . The second is the following rule to add new literal occurrences to the
multipath P over T to expand a branch B:

Definition 2 (Multipath-add rule). If no relevant links exist on P ∪ PB,
then for each LC ∈ PB, do the following:

– for each D ∈ T , if there exists K ∈ D such that {LC ,KD} is a link which
has not been used on B, add KD to P .

The multipath P over T takes the place of the initial path in the usual discon-
nection calculus in that it acts as a common prefix of all branches. Each open
branch B is expanded by application of the linking rule to a relevant link. If
none exist for an open branch B, the multipath-add rule is applied to find links
which have not yet been used on B, if they exist.

At the beginning of tableau construction, P consists of only the literal occur-
rences in T which form a link with some clause in G; this is referred to as the
initial multipath. As a result, the literal occurrences added to P by the multipath-
add rule for a branch B are those which form new relevant links, making these
available for expanding B by applying the linking rule.

Tableaux for the GSDC are defined in a similar manner to disconnection
tableaux, except that the fixed initial path PS over S has been replaced with a
dynamically constructed multipath.

Definition 3 (Goal-sensitive disconnection tableau sequence). A goal-
sensitive disconnection tableau sequence is defined as any sequence

(T0, P0), (T1, P1), (T2, P2), . . .

such that T0 is the tableau which consists of only the root node, P0 is the initial
multipath, and for i > 0, either

– Ti is obtained from (Ti−1, Pi−1) by an application of the linking rule and
Pi = Pi−1, or

– Ti = Ti−1 and Pi is obtained from Pi−1 by an application of the multipath-add
rule.

Any tableau Ti in the sequence above is called a goal-sensitive disconnection
tableau for S.

170 L.A. Barnett

The branch and tableau closure condition used here for the GSDC is ∀-
closure, as for the usual disconnection tableau calculus. However, an altered
definition of saturation is used. The GSDC expand a branches in a tableau until
it closes, or until there are no links to expand it further, even after applying the
multipath-add rule.

Definition 4 (Relevance-saturation). A branch B is relevance-saturated if
it cannot be expanded in a variant-free manner by an application of the multipath-
add rule followed by an application of the linking rule. A tableau is relevance-
saturated if it is closed, or if one of its branches is relevance-saturated.

Like the usual disconnection tableau calculus, an inference strategy is needed
for branch and link selection.

Definition 5 (Revelance-fairness). An inference strategy is relevance-fair if
it always results in a relevance-saturated tableau.

This method is sound and complete when guided by a relevance-fair inference
strategy. Its soundness follows from the soundness of the usual disconnection
tableau calculus, as any closed tableau constructed by the GSDC is simply a
closed disconnection tableau. Its completeness is shown in the following section.
The remainder of this section provides examples of tableaux constructed with
the GSDC.

Example 2. Consider the clause set from Example 1, with initial satisfiable set
T = {¬P (x) ∨ Q(x), R(y) ∨ ¬Q(y), P (a)} and goal clause G = ¬R(a). There are
two links �1 and �2 as defined in Example 1. The multipath P initially contains
just the literal occurrence 〈R(y), R(y) ∨ ¬Q(y)〉.

The linking rule expands the tableau with �1, the only relevant link. As
before, the left branch closes, leaving the right branch B open. Since there are
no relevant links on P ∪ PB , and B is open, the multipath-add rule is applied,
setting P = {R(y)∨¬Q(y),¬P (x)∨Q(x)}. The updated branch B now contains
the unused, relevant link � = {¬P (x) ∨ Q(x),¬Q(a)}. Expanding � closes the
tableau.

The following example illustrates the importance of the multipath definition
allowing multiple literals from a single clause to be present on P .

Example 3. Let the S = T ∪ G be given as in Fig. 2. Since two links are pos-
sible between the top clause and the goal, but only one will lead to a tableau
closure, it is important to include multiple literal occurrences for this clause in
the multipath.

The following example shows the advantage of goal-sensitivity; that links
between clauses not related to the goal need not be considered.

Example 4. Let S = T ∪ G be given as in Fig. 3. After expanding the only rele-
vant link, the multipath-add rule searches for other literals to link with ¬Q(a).
However, since none are present in T , the branch becomes relevance-saturated,
and tableau construction ends, showing satisfiability of the clause set S (Fig. 4).

Goal-Sensitive Reasoning with Disconnection Tableaux 171

¬P (x, y) ∨ Q(y, x) ∨ Q(x, y)

P (a, b)

¬Q(b, a)

¬Q(a, b)

�2

¬P (b,a)

�1

¬P (a,b)
*

Q(b,a)
*

Q(a, b)

¬Q(a,b)
*

Q(a, b)

¬Q(a,b)
*

Q(b,a)

*

�1
�2

Fig. 3. Example tableau in which multiple literals from a single clause must be added
to the multipath.

¬P1(x) ∨ P2(x)

¬P2(y) ∨ P3(y)

¬Q(z) ∨ R(z)

P1(a)

P1(b)

Q(b)

¬R(a)

�1

¬Q(a)

Saturation
State

R(a)

¬R(a)
*

�1

Fig. 4. Example in which tableau construction terminates early on a satisfiable clause
set S because no relevant links can be made.

4.1 Completeness

The aim of this section is to show the completeness of the GSDC; that is, that
whenever S = T ∪G is unsatisfiable, for a consistent clause set T , the GSDC con-
structs a closed tableau. The main idea is that when a branch in a goal-sensitive
disconnection tableau for S is relevance-saturated, an instance-preserving enu-
meration [8] of that branch can be combined with a model for T to construct a
model for S.

172 L.A. Barnett

Given a set P of literal occurrences, an instance-preserving enumeration of
P is a sequence �1, �2, �3, . . . in which exactly the elements of P appear in a
particular order. Specifically, for �i = LC and �j = KD, whenever C is a proper
instance of D it holds that i > j. To any instance-preserving enumeration E of
P is associated its Herbrand path P ∗ through S∗, the Herbrand set of Cl(P), as
follows: LC ∈ P ∗ if and only if there exists �m = KD in E such that C is an
instance of D, and there does not exist �n = K ′

D′ in E, with n > m, such that
C is an instance of D′.

The main conclusion of this section will follow from the lemma below.

Lemma 1. Let B be a relevance-saturated branch in a tableau for S = T ∪ G,
where T is a satisfiable clause set. Let P ′ be a consistent Herbrand path for T ,
and PB the path associated with B. Then the set of literals I of

P = P ∗
B ∪ {LC ∈ P ′ | C ∈ (Cl(S) \ Cl(PB))}

is a partial Herbrand model for S.

Proof. We show that P is a consistent Herbrand path through S∗. Suppose not;
that is, that there exist complementary literal occurrences LC and ¬LD in P .
Because B is open, the path PB is consistent, so it must be that not both LC

and ¬LD belong to P ∗
B. Because P ′ is consistent and (P \ P ∗

B) ⊆ P ′, it must be
that not both LC and ¬LD belong to P \ P ∗

B either. Without loss of generality,
then, assume LC ∈ P ∗

B and ¬LD ∈ P \ P ∗
B . Then in the tableau LC is a node

on branch B, so LC is relevant. Since B is open, the multipath-add rule would
have added ¬LD to the multipath over T , and then � = {LC ,¬LD} would have
been a relevant link on B. This contradicts the assumption that ¬LD ∈ P \ P ∗

B ;
that is, that D �∈ Cl(PB).

Since P is a consistent Herbrand path through S∗, then by proposition 1, P
is a partial Herbrand model for S.

The main result of this section follows as a result of this lemma.

Proposition 2. If S = T ∪ G is an unsatisfiable clause set, T is a satisfiable
clause set, and f is a relevance-fair strategy, then the tableau for S and f is a
∀-closed disconnection tableau for S.

Proof. Let T be the tableau for S and f and suppose that T had an open branch
B. Since f is a fair strategy, then B would be relevance-saturated. Therefore by
Lemma 1, S would be satisfiable.

5 Discussion and Conclusion

In this paper the GSDC was presented, an adaptation of the disconnection
tableau calculus that allows for goal-sensitive reasoning. A proof of completeness
was given along with examples of the method in use. The GSDC is an automated

Goal-Sensitive Reasoning with Disconnection Tableaux 173

reasoning method that is both instantiation-based and goal-sensitive, a combina-
tion which could have practical use in areas such as formal software verification
that handle very large axiom sets.

The usual disconnection tableau calculus benefits from well-chosen initial
paths in that they can lead to significantly shorter proofs, but the GSDC as
presented simply initializes the multipath using the set of literal occurrences
which form links with the goal. However, the multipath-add rule ensures that
relevant links are found, and the method is complete, regardless of the way
the initial multipath is specified. In other words, a well-chosen multipath for
initializing tableau construction can lead to shorter proofs in the GSDC as well,
while remaining goal-sensitive.

The mechanics and notions employed by the GSDC as described are similar
to those of previous methods, including hyper tableaux [1], and as such the first
planned follow-up to this work is a detailed qualitative comparison. In addi-
tion, an experimental evaluation of the GSDC is needed. An implementation of
the disconnection tableau calculus was developed as the disconnection calculus
theorem prover or DCTP [7], and so an initial planned follow-up to this work
is to implement the GSDC as an extension of the DCTP and evaluate its per-
formance. As a future research direction, we are interested in adapting other
instantiation-based methods to be goal-sensitive as well, including the Inst-Gen
method [6].

References

1. Baumgartner, P.: Hyper tableau — the next generation. In: Swart, H. (ed.)
TABLEAUX 1998. LNCS, vol. 1397, pp. 60–76. Springer, Heidelberg (1998). doi:10.
1007/3-540-69778-0 14

2. Billon, J.-P.: The disconnection method. In: Miglioli, P., Moscato, U., Mundici,
D., Ornaghi, M. (eds.) TABLEAUX 1996. LNCS, vol. 1071, pp. 110–126. Springer,
Heidelberg (1996). doi:10.1007/3-540-61208-4 8

3. Bonacina, M.P., Hsiang, J.: On fairness of completion-based theorem proving
strategies. In: Book, R.V. (ed.) RTA 1991. LNCS, vol. 488, pp. 348–360. Springer,
Heidelberg (1991). doi:10.1007/3-540-53904-2 109

4. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: infer-
ence system and completeness. J. Autom. Reason. 1–54 (2017, in press). Published
online 6 August 2016 with doi:10.1007/s10817-016-9384-2

5. Korovin, K.: Instantiation-based automated reasoning: from theory to practice.
In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 163–166. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02959-2 14

6. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated rea-
soning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol.
7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1 10

7. Letz, R., Stenz, G.: DCTP - a disconnection calculus theorem prover - system
abstract. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol.
2083, pp. 381–385. Springer, Heidelberg (2001). doi:10.1007/3-540-45744-5 30

8. Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In:
Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 142–156.
Springer, Heidelberg (2001). doi:10.1007/3-540-45653-8 10

http://dx.doi.org/10.1007/3-540-69778-0_14
http://dx.doi.org/10.1007/3-540-69778-0_14
http://dx.doi.org/10.1007/3-540-61208-4_8
http://dx.doi.org/10.1007/3-540-53904-2_109
http://dx.doi.org/10.1007/s10817-016-9384-2
http://dx.doi.org/10.1007/978-3-642-02959-2_14
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://dx.doi.org/10.1007/3-540-45744-5_30
http://dx.doi.org/10.1007/3-540-45653-8_10

174 L.A. Barnett

9. Letz, R., Stenz, G.: The disconnection tableau calculus. J. Autom. Reason. 38(1),
79–126 (2007)

10. McCune, W.: Otter 3.3 reference manual. Technical report ANL/MCS-TM-263,
MCS Division, Argonne National Laboratory, Argonne, IL (2003)

11. Pease, A., Sutcliffe, G., Siegel, N., Trac, S.: The annual SUMO reasoning prizes at
CASC. In: Proceedings of the IJCAR Workshop on Practical Aspects of Automated
Reasoning. CEUR Workshop Proceedings, vol. 373, pp. 66–70 (2008)

12. Plaisted, D.A.: History and prospects for first-order automated deduction. In: Felty,
A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 3–28. Springer,
Cham (2015). doi:10.1007/978-3-319-21401-6 1

13. Plaisted, D.A., Zhu, Y.: The Efficiency of Theorem Proving Strategies. Vieweg,
Berlin (1997)

14. Reif, W., Schellhorn, G.: Theorem proving in large theories. In: Bibel, W., Schmitt,
P.H. (eds.) Automated Deduction- A Basis for Applications: Volume III Applica-
tions. Applied Logic Series, pp. 225–241. Springer, Dordrecht (1998). doi:10.1007/
978-94-017-0437-3 9

15. Wos, L., Robinson, G.A., Carson, D.F.: Efficiency and completeness of the set of
support strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

http://dx.doi.org/10.1007/978-3-319-21401-6_1
http://dx.doi.org/10.1007/978-94-017-0437-3_9
http://dx.doi.org/10.1007/978-94-017-0437-3_9

Tableaux for Policy Synthesis for MDPs
with PCTL* Constraints

Peter Baumgartner(B), Sylvie Thiébaux, and Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU,
Canberra, Australia

{peter.baumgartner,sylvie.thiebaux,felipe.trevizan}@anu.edu.au

Abstract. Markov decision processes (MDPs) are the standard formal-
ism for modelling sequential decision making in stochastic environments.
Policy synthesis addresses the problem of how to control or limit the
decisions an agent makes so that a given specification is met. In this
paper we consider PCTL*, the probabilistic counterpart of CTL*, as the
specification language. Because in general the policy synthesis problem
for PCTL* is undecidable, we restrict to policies whose execution history
memory is finitely bounded a priori. Surprisingly, no algorithm for policy
synthesis for this natural and expressive framework has been developed
so far. We close this gap and describe a tableau-based algorithm that,
given an MDP and a PCTL* specification, derives in a non-deterministic
way a system of (possibly nonlinear) equalities and inequalities. The solu-
tions of this system, if any, describe the desired (stochastic) policies. Our
main result in this paper is the correctness of our method, i.e., soundness,
completeness and termination.

1 Introduction

Markov decision processes (MDPs) are the standard formalism for modelling
sequential decision making in stochastic environments, where the effects of an
agent’s actions are only probabilistically known. The core problem is to synthe-
size a policy prescribing or restricting the actions that the agent may undertake,
so as to guarantee that a given specification is met. Popular specification lan-
guages for this purpose include CTL, LTL, and their probabilistic counterparts
PCTL and probabilistic LTL (pLTL). Traditional algorithms for policy synthesis
and probabilistic temporal logic model-checking [9,17] are based on bottom-up
formula analysis [15,16] or Rabin automata [2,11,21].

We deviate from this mainstream research in two ways. The first significant
deviation is that we consider PCTL* as a specification language, whereas pre-
vious synthesis approaches have been limited to pLTL and PCTL. PCTL* is
the probabilistic counterpart of CTL* and subsumes both PCTL and pLTL.
For example, the PCTL* formula P≥0.8 G ((T > 30◦) → P≥0.5 FG (T < 24◦))
says “with probability at least 0.8, whenever the temperature exceeds 30◦ it will
eventually stay below 24◦ with probability at least 0.5”. Because of the nested

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 175–192, 2017.
DOI: 10.1007/978-3-319-66902-1 11

176 P. Baumgartner et al.

probability operator P the formula is not in pLTL, and because of the nested
temporal operators FG it is not in PCTL either.

Because in its full generality the policy synthesis problem for PCTL* is highly
undecidable [5], one has to make concessions to obtain a decidable fragment. In
this paper we chose to restrict to policies whose execution history memory is
finitely bounded a priori. (For example, policies that choose actions in the cur-
rent state dependent on the last ten preceding states.) However, we do target
synthesizing stochastic policies, i.e., the actions are chosen according to a prob-
ability distribution (which generalizes the deterministic case and is known to
be needed to satisfy certain formulas [2]). Surprisingly, no algorithm for policy
synthesis in this somewhat restricted yet natural and expressive framework has
been developed so far, and this paper closes this gap.

The second significant deviation from the mainstream is that we pursue a
different approach based on analytic tableau and mathematical programming.
Our tableau calculus is goal-oriented by focusing on the given PCTL* formula,
which leads to analysing runs only on a by-need basis. This restricts the search
space to partial policies that only cover the states reachable from the initial
state under the policy and for which the formula imposes constraints on the
actions that can be selected. In contrast, traditional automata based approaches
require a full-blown state space exploration. (However, we do not have an imple-
mentation yet that allows us to evaluate the practical impact of this.) We also
believe that our approach, although using somewhat non-standard tableau fea-
tures, is conceptually simpler and easier to comprehend. Of course, this is rather
subjective.

On a high level, the algorithm works as follows. The input is an MDP, the
finite-history component of the policy to be synthesized, and a PCTL* for-
mula to be satisfied. Starting from the MDP’s initial state, the tableau calculus
symbolically executes the transition system given by the MDP by analysing
the syntactic structure of the given PCTL* formula, as usual with tableau cal-
culi. Temporal formulas (e.g., FG-formulas) are expanded repeatedly using usual
expansion laws and trigger state transitions. The process stops at trivial cases
or when a certain loop condition is met. The underlying loop checking technique
was developed only recently, by Mark Reynolds, in the context of tableau for
satisfiability checking of LTL formulas [18]. It is an essential ingredient of our
approach and we adapted it to our probabilistic setting.

Our tableaux have two kinds of branching. One kind is traditional or-
branching, which represents non-deterministic choice by going down exactly one
child node. It is used, e.g., in conjunction with recursively calling the tableau
procedure itself. Such calls are necessary to deal with nested P-operators, since
at the time of analyzing a P-formula it is, roughly speaking, unknown if the
formula will hold true under the policy computed only later, as a result of the
algorithm. The other kind of branching represents a union of alternatives. It is
used for disjunctive formulas and for branching out from a state into successor
states. Intuitively, computing the probability of a disjunctive formula φ1 ∨ φ2 is
a function of the probabilities of both φ1 and φ2, so both need to be computed.

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 177

Also, the probability of an X-formula Xφ at a given state is a function of the
probability of φ at all successor states, and so, again, all successor states need
to be considered.

The tableau construction always terminates and derives a system of (possibly
nonlinear) equalities and inequalities over the reals. The solutions of this system,
if any, describe the desired stochastic, finite-history policies. The idea of repre-
senting policies as the solutions of a set of mathematical constraints is inspired
by the abundant work in operations research, artificial intelligence, and robotics
that optimally solves MDPs with simpler constraints using linear programming
[1,10,12,22].

Our main result in this paper is the correctness of our algorithm, i.e., sound-
ness, completeness and termination. To our knowledge, it is the first and only
policy synthesis algorithm for PCTL* that doesn’t restrict the language (but
only slightly the policies).

Related Work. Methods for solving the PCTL* model checking problem over
Markov Chains are well established. The (general) policy synthesis however is
harder than the model checking problem; it is known to be undecidable for even
PCTL. The main procedure works bottom-up from the syntax tree of the given
formula, akin to the standard CTL/CTL* model checking procedure. Embedded
P-formulas are recursively abstracted into boolean variables representing the sets
of states satisfying these formulas, which are computed by LTL model checking
techniques using Rabin automata. Our synthesis approach is rather different.
While there is a rough correspondence in terms of recursive calls to treat P
formulas, we do not need Rabin (or any other) automata; they are supplanted
by the loop-check technique mentioned above.

The work the most closely related to ours is that of Brázdil et al. [6–8]. Using
Büchi automata, they obtain complexity results depending on the variant of the
synthesis problem studied. However, they consider only qualitative fragments.
For the case of interest in this paper, PCTL*, they obtain results for the fragment
qPCTL*. The logic qPCTL* limits the use of the path quantifier P to formulas
of the form P=1 ψ or P=0 ψ, where ψ is a path formula. On the other hand, we
cover the full logic PCTL* which has arbitrary formulas of the form P∼z ψ where
∼ ∈ {<,≤, >,≥} and z ∈ [0, 1]. In contrast to the works mentioned, we have to
restrict to memory-dependent policies with an a priori limited finite memory.
Otherwise the logic becomes highly undecidable [5].

2 Preliminaries

We assume the reader is familiar with basic concepts of Markov Decision
Processes (MDPs), probabilistic model checking, and policy synthesis. See
[3,13,17] for introductions and overviews. In the following we summarize the
notions relevant to us and we introduce our notation.

Given a fixed finite vocabulary AP of atomic propositions a, b, c, . . . , a (propo-
sitional) interpretation I is any subset of AP . It represents the assignment

178 P. Baumgartner et al.

of each element in I to true and each other atomic proposition in AP \ I to
false. A distribution on a countable set X is a function μ : X �→ [0, 1] such that∑

x∈X μ(x) = 1, and Dist(X) is the set of all distributions on X.
A Markov Decision Process (MDP) is a tuple M = (S, sinit, A, P, L) where:

S is a finite set of states; sinit ∈ S is the initial state; A is a finite set of actions
and we denote by A(s) ⊆ A the set of actions enabled in s ∈ S; P (t|s, α) is
the probability of transitioning to t ∈ S after applying α ∈ A(s) in state s; and
L : S �→ 2AP labels each state in S with an interpretation. We assume that every
state has at least one enabled action, i.e., A(s)
= ∅ for all s ∈ S, and that P is
a distribution on enabled actions, i.e., P (·|s, α) ∈ Dist(S) iff α ∈ A(s). For any
s and α ∈ A(s) let Succ(s, α) = {t | P (t|s, α) > 0} be the states reachable from
s with non-zero probability after applying α.

Given a state s ∈ S of M, a run from s (of M) is an infinite sequence
r = (s = s1)

α1−→ s2
α2−→ s3 · · · of states si ∈ S and actions αi ∈ A(si) such that

P (si+1|si, αi) > 0, for all i ≥ 1. We denote by Runs(s) the set of all runs from
s ∈ S and Runs = ∪s∈SRuns(s). A path from s ∈ S (of M) is a finite prefix of a
run from s and we define Paths(s) and Paths in analogy to Runs(s) and Runs.
We often write runs and paths in abbreviated form as state sequences s1s2 · · ·
and leave the actions implicit. Given a path p = s1s2 · · · sn let first(p) = s1 and
last(p) = sn. Similarly, for a run r = s1s2 · · · , first(r) = s1.

A policy π represents a decision rule on how to choose an action given some
information about the environment. In its most general form, a history-dependent
(stochastic) policy (for M) is a function π : Paths �→ Dist(A) such that, for
all p ∈ Paths, π(p)(α) > 0 only if α ∈ A(last(p)). Technically, the MDP M
together with π induces an infinite-state Markov chain Mπ over Paths and this
way provides a probability measure for runs of M under π [3,14]. However, since
Paths is an infinite set, a history-dependent policy might not be representable;
moreover, the problem of finding such a policy that satisfies PCTL* constraints
is undecidable [5]. To address these issues we limit ourselves to finite-memory
policies. Such policies provide a distribution on actions for a current state from
S and a current mode, and are more expressive than Markovian policies.

Formally, a finite-memory policy (for M) is a DFA πfin = (M, start,Δ, act)
where M is a finite set of modes, start : S �→ M returns an initial mode to
pair with a state s ∈ S, Δ: M × S �→ M is the (mode) transition function,
and act : M × S �→ Dist(A) is a function such that, for all 〈m, s〉 ∈ M × S,
act(m, s)(α) > 0 only if α ∈ A(s). We abbreviate act(m, s)(α) as act(m, s, α).

Any finite-memory policy can be identified with a history-dependent pol-
icy, see again [3] for details. Essentially, an MDP M together with πfin

again induces a Markov chain Mπfin , this time over the finite state space
M × S, labelling function Lπfin(〈m, s〉) := L(s), and transition proba-
bility function PMπfin (〈m′, s′〉|〈m, s〉) := Σα∈A(s) act(m, s, α) · P (s′|s, α) if
m′ = Δ(m, s) and 0 otherwise. A path from 〈m1, s1〉 (of Mπfin) is a
sequence of the form 〈m1, s1〉 · · · 〈mn, sn〉 such that mi+1 = Δ(mi, si) and
PMπfin (〈mi+1, si+1〉|〈mi, si〉) > 0, for all 1 ≤ i < n. If m1 = start(s1) we get
a path from s1 (of Mπfin), similarly for runs. The definition of the satisfaction

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 179

relation “|=” below applies to such runs 〈start(s1), s1〉 · · · from s1 of Mπfin if π
is a finite-memory policy πfin.

The definition of finite-memory policies πfin can be made more sophisticated,
e.g., by letting Δ depend also on actions, or by making modes dependent on a
given PCTL* specification. In its current form, the Δ-component of πfin can be
setup already, e.g., to encode in 〈m, s〉 “the last ten states preceding s”.

Policy Synthesis for PCTL*. (PCTL*) formulas follow the following grammar:

φ := true | a ∈ AP | φ ∧ φ | ¬φ | P∼z ψ (State formula)
ψ := φ | ψ ∧ ψ | ¬ψ | Xψ | ψUψ (Path formula)

In the definition of state formulas, ∼ ∈ {<,≤, >,≥} and 0 ≤ z ≤ 1. A proper
path formula is a path formula that is not a state formula. A formula is classical
iff it is made from atomic propositions and the Boolean connectives ¬ and ∧
only (no occurrences of P, X or U). We write false as a shorthand for ¬true.

Given an MDP M, a history-dependent policy π, state s ∈ S and state
formula φ, define a satisfaction relation M, π, s |= φ, briefly s |= φ, as follows:

s |= true s |= φ1 ∧ φ2 iff s |= φ1 and s |= φ2

s |= a iff a ∈ L(s) s |= ¬φ iff s
|= φ

s |= P∼z ψ iff PrMπ ({r ∈ Runs Mπ (s) | M, π, r |= ψ}) ∼ z

In the preceding line, RunsMπ (s) denotes the set of all runs from s of Mπ, and
PrMπ (R) denotes the probability of a (measurable) set R ⊆ RunsMπ . That is,
the probability measure for M and π is defined via the probability measure of
the Markov chain Mπ.

We need to define the satisfaction relation M, π, r |= ψ, briefly r |= ψ, for
path formulas ψ. Let r = s1s2 · · · be a run of M and r[n] := snsn+1 · · · , for any
n ≥ 1. Then:

r |= φ iff first(r) |= φ r |= ψ1 ∧ ψ2 iff r |= ψ1 and r |= ψ2

r |= ¬ψ iff r
|= ψ r |= Xψ iff r[2] |= ψ

r |= ψ1Uψ2 iff exists n ≥ 1s.t. r[n] |= ψ2 and r[m] |= ψ1 for all 1 ≤ m < n

In this paper we focus on the problem of synthesizing only the act-component
of an otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). Let M = (S, sinit, A, P, L) be
an MDP, and πfin = (M, start,Δ, ·) be a partially specified finite-memory policy
with act unspecified. Given state formula φ, find act s.th. M, πfin, sinit |= φ if it
exists, otherwise report failure.

Useful Facts About PCTL* Operators. Next we summarize some well-known
or easy-to-prove facts about PCTL* operators. By the expansion laws for the
U-operator we mean the following equivalences:

180 P. Baumgartner et al.

ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1Uψ2)) ¬(ψ1Uψ2) ≡ ¬ψ2 ∧ (¬ψ1 ∨ X¬(ψ1Uψ2)) (E)

For ∼ ∈ {<,≤, >,≥} define the operators ∼ and [∼] as follows:

< = ≥ ≤ = > > = ≤ ≥ = < [<] = > [≤] = ≥ [>] = < [≥] = ≤

Some of the following equivalences cannot be used for “model checking”
PCTL* (the left (P1) equivalence, to be specific) which involves reasoning over
all policies. In the context of Markov Chains, which we implicitly have, there is
no problem:

¬P∼z ψ ≡ P∼z ψ P∼z ¬ψ ≡ P[∼] 1−z ψ (P1)

P≥0 ψ ≡ true P>1 ψ ≡ false (P2)

P≤1 ψ ≡ true P<0 ψ ≡ false (P3)

P≥u P∼z ψ ≡ P∼z ψ if u
= 0 P>u P∼z ψ ≡ P∼z ψ if u
= 1 (P4)

P≤u P∼z ψ ≡ P≥1−u P∼z ψ P<u P∼z ψ ≡ P>1−u P∼z ψ (P5)

Nonlinear Programs. Finally, a (nonlinear) program is a set Γ of constraints of
the form e1 �� e2 where �� ∈ {<,≤, >,≥,

.=} and e1 and e2 are arithmetic expres-
sions comprised of numeric real constants and variables. The numeric operators
are {+,−, ·, /}, all with their expected meaning (the symbol .= is equality). All
variables are implicitly bounded over the range [0, 1]. A solver (for nonlinear
programs) is a decision procedure that returns a satisfying variable assignment
(a solution) for a given Γ, and reports unsatisfiability if no solution exists. We
do not further discuss solvers in the rest of this paper, we just assume one as
given. Examples of open source solvers include Ipopt and Couenne.1

3 Tableau Calculus

Introduction and Overview. We describe a tableau based algorithm for the
policy synthesis problem in Definition 2.1. Hence assume as given an MDP
M = (S, sinit, A, P, L) and a partially specified finite-memory policy πfin =
(M, start,Δ, ·) with act unspecified.

A labelled formula F is of the form 〈m, s〉 : Ψ where 〈m, s〉 ∈ M × S and
Ψ is a possibly empty set of path formulas, interpreted conjunctively. When
we speak of the probability of 〈m, s〉 : Ψ we mean the value of PrMπfin ({r ∈
Runs(〈m, s〉) | M, πfin, r |= ∧

Ψ}) for the completed πfin. For simplicity we also
call Ψ a “formula” and call 〈m, s〉 a policy state. A sequent is an expression of
the form Γ � F where Γ is a program.

Our algorithm consists of three steps, the first one of which is a tableau
construction. A tableau for Γ � F is a finite tree whose root is labelled with
Γ � F and such that every inner node is labelled with the premise of an inference
1 http://projects.coin-or.org/.

http://projects.coin-or.org/

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 181

rule and its children are labelled with the conclusions, in order. If Γ � F is the
label of an inner node we call F the pivot of the node/sequent/inference. By a
derivation from Γ � F , denoted by Tableau(Γ � F), we mean any tableau for
Γ � F obtained by stepwise construction, starting from a root-node only tree
and applying an inference rule to (the leaf of) every branch as long as possible.
There is one inference rule, the P -rule, which recursively calls the algorithm itself.
A branch is terminated when no inference rule is applicable, which is exactly the
case when its leaf is labelled by a pseudo-sequent, detailed below. The inference
rules can be applied in any way, subject to only preference constraints.

Given a state formula φ, the algorithm starts with a derivation from Γinit �
Finit := {x

{φ}
〈start(sinit),sinit〉

.= 1} � 〈start(sinit), sinit〉 : {φ}. (The constraint
Γinit forces φ to be “true”.) The derivation represents the obligation to derive
a satisfiable extension Γfinal ⊇ Γinit. A (any) solution σ then determines the
act-component actσ of πfin such that M, πfin, sinit |= φ. In more detail, Γfinal

will contain constraints of the form xα
〈m,s〉

.= 0 or xα
〈m,s〉 > 0 for the probability

of applying action α in policy state 〈m, s〉. Let the policy domain of a program
Γ be the set of all policy states 〈m, s〉 ∈ M × S such that xα

〈m,s〉 occurs in Γ, for
some α. This lets us initially define actσ(m, s, α) := σ(xα

〈m,s〉) for every 〈m, s〉 in
the policy domain of Γfinal. Only for the purpose of satisfying the definition of
finite memory policies, we then make actσ trivially total by choosing an arbitrary
distribution for actσ(m, s) for all remaining 〈m, s〉 ∈ M × S. (The latter are not
reachable and hence do not matter.) We call πfin(σ) := (M, start,Δ, actσ) the
policy completed by σ.

Similarly, Γfinal contains variables of the form xΨ
〈m,s〉, and σ(xΨ

〈m,s〉) is the
probability of 〈m, s〉 : Ψ under the policy πfin(σ). (We actually need these vari-
able indexed by tableau nodes, see below.) If Ψ is a state formula its value will
be 0 or 1, encoding truth values.

Contrary to traditional tableau calculi, the result of the computation – the
extension Γfinal – cannot always be obtained in a branch-local way. To explain,
there are two kinds of branching in our tableaux: don’t-know (non-deterministic)
branching and union branching. The former is always used for exhaustive case
analysis, e.g., whether xα

〈m,s〉
.= 0 or xα

〈m,s〉 > 0, and the algorithm guesses which
alternative to take (cf. step 2 below). The latter analyzes the Boolean structure of
the pivot. Unlike as with traditional tableaux, all children need to be expanded,
and each fully expanded branch contributes to Γfinal.

More precisely, we formalize the synthesis algorithm as a three-step proce-
dure. Step one consists in deriving Tableau(Γinit � Finit). Step two consists in
removing from the step one tableau every don’t-know branching by retaining
exactly one child of the parent node of the don’t-know branching, and delet-
ing all other children and the subtrees below them. This itself is a don’t-know
non-deterministic process; it corresponds to going down one branch in tradi-
tional tableau. The result is denoted by Choose(T1), where T1 is the step one
tableau. Step three consists in first building a combined program by taking the
union of the Γ’s in the leaves of the branches of the step two tableau. This
program then is extended with a set of constraints by the Force operator.

182 P. Baumgartner et al.

More precisely, Forceing captures the situation when a run reaches a bottom
strongly connected component (BSCC). Any formula is satisfied in a BSCC
with probability 0 or 1, which can be determined solely by qualitative for-
mula evaluation in the BSCC. Details are below. For now let us just define
Gamma(T2) =

⋃ {Γ | Γ � ·is the leaf of a branch in T2} ∪ Force(T2) where
T2 = Choose(T1).

We can formulate our main results now. Proofs are in the long version [4].

Theorem 3.1 (Soundness). Let M = (S, sinit, A, P, L) be an MDP,
πfin = (M, start,Δ, ·) be a partially specified finite-memory policy with act
unspecified, and φ a state formula. Suppose there is a program Γfinal :=
Gamma(Choose(Tableau({x

{φ}
〈start(sinit),sinit〉

.= 1} � 〈start(sinit), sinit〉 : {φ})))
such that Γfinal is satisfiable. Let σ be any solution of Γfinal and πfin(σ) be the
policy completed by σ. Then it holds M, πfin(σ), sinit |= φ.

Theorem 3.2 (Completeness). Let M = (S, sinit, A, P, L) be an MDP,
πfin = (M, start,Δ, act) a finite-memory policy, and φ a state formula.
Suppose M, πfin, sinit |= φ. Then there is a satisfiable program Γfinal :=
Gamma(Choose(Tableau({x

{φ}
〈start(sinit),sinit〉

.= 1} � 〈start(sinit), sinit〉 : {φ})))
and a solution σ of Γfinal such that actσ(m, s, α) = act(m, s, α) for every pair
〈m, s〉 in the policy domain of Γfinal. Moreover M, πfin(σ), sinit |= φ.

Inference Rules. There are two kinds of inference rules, giving two kinds of
branching:

Name
Γ � 〈m, s〉 : Ψ

Γleft � 〈m, s〉 : Ψ Γright � 〈m, s〉 : Ψ
if condition

(Don’t-know branching)

The pivot in the premise is always carried over into both conclusions. Only the
constraint Γ is modified into Γleft ⊇ Γ and Γright ⊇ Γ, respectively, for an
exhaustive case analysis.

Name
Γ � 〈m, s〉 : Ψ

Γ1 � 〈m1, s1〉 : Ψ1 ∪ · · · ∪ Γn � 〈mn, sn〉 : Ψn
if condition (n ≥ 1)

(Union branching)

All union branching rules satisfy Γi ⊇ Γ, and 〈mi, si〉 = 〈m, s〉 or 〈mi, si〉 =
〈Δ(m, s), t〉 for some state t. The ∪-symbol is decoration for distinguishing the
two kinds of branching but has no meaning beyond that. Union branching stands
for the union of the runs from 〈mi, si〉 satisfying Ψi, and computing its proba-
bility requires developing all n children.

We need to clarify a technical add-on. Let u be the tableau node with the
premise pivot 〈m, s〉 : Ψ. A union branching inference extends u with children
nodes, say, u1, . . . , un, with conclusion pivots 〈mi, si〉 : Ψi. The program Γn will
contain a constraint that makes a variable (xu)Ψ〈m,s〉 for the premise dependent

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 183

on all variables (xui
)Ψi

〈mi,si〉 for the respective conclusions. This is a key invariant
and is preserved by all inference rules. In order to lighten the notation, however,
we usually drop the variable’s index, leaving the node implicit. For instance, we
write xΨ

〈m,s〉 instead of (xu)Ψ〈m,s〉. The index u is needed for not inadvertently
identifying the same pivot at different points in the symbolic execution of a run.
Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise Γ � 〈m, s〉 : {ψ} � Ψ and
the conclusion is Γ, γone � 〈m, s〉 : Ψ′, for some Ψ′. The pivot is specified by
pattern matching, where � is disjoint union, and γone is a macro that expands
to x

{ψ}�Ψ
〈m,s〉

.= xΨ′
〈m,s〉.

Other inference rules derive pseudo-sequents of the form Γ � ✗, Γ � ✓, Γ �
Yes-Loop and Γ � No-Loop. They indicate that the probability of the pivot is 0,
1, or that a loop situation arises that may need further analysis. Pseudo-sequents
are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of
preference.

�
Γ � 〈m, s〉 : {ψ} � Ψ

Γ, γone � 〈m, s〉 : Ψ

⎧
⎨

⎩

if ψ is clas-
sical and
L(s) |= ψ

✗
Γ � 〈m, s〉 : {ψ} � Ψ

Γ, x
{ψ}�Ψ
〈m,s〉

.
= 0 � ✗

⎧
⎨

⎩

if ψ is clas-
sical and
L(s) �|= ψ

✓
Γ � 〈m, s〉 : ∅

Γ, x∅
〈m,s〉

.
= 1 � ✓

¬¬
Γ � 〈m, s〉 : {¬¬ψ} � Ψ

Γ, γone � 〈m, s〉 : {ψ} ∪ Ψ

¬P
Γ � 〈m, s〉 : {¬P∼z ψ} � Ψ

Γ, γone � 〈m, s〉 : {P∼z ψ} ∪ Ψ
P¬

Γ � 〈m, s〉 : {P∼z ¬ψ} � Ψ

Γ, γone � 〈m, s〉 : {P[∼] 1−z ψ} ∪ Ψ

These are rules for evaluating classical formulas and for negation. The ✗ rule
terminates the branch and assigns a probability of 0 to the premise pivot, as no
run from 〈m, s〉 satisfies (the conjunction of) {ψ}�Ψ, as ψ is false in s. A similar
reasoning applies to the � and ✓ rules. The ¬P and P¬ rules are justified by
law (P1). The P¬ rule is needed for removing negation between P-formulas as
in P∼z ¬P∼v ψ.

∧ Γ � 〈m, s〉 : {ψ1 ∧ ψ2} � Ψ

Γ, γone � 〈m, s〉 : {ψ1, ψ2} ∪ Ψ

¬∧ Γ � 〈m, s〉 : {¬(ψ1 ∧ ψ2)} � Ψ

Γ � 〈m, s〉 : {¬ψ1} ∪ Ψ ∪ Γ, γ � 〈m, s〉 : {ψ1,¬ψ2} ∪ Ψ

where γ = x
{¬(ψ1∧ψ2)}�Ψ
〈m,s〉

.= x
{¬ψ1}∪Ψ
〈m,s〉 + x

{ψ1,¬ψ2}∪Ψ
〈m,s〉

These are rules for conjunction. Not both ψ1 and ψ2 can be classical by
preference of the � and ✗ rules. The ∧ rule is obvious with the conjunctive
reading of formula sets. The ¬∧ rule deals, essentially, with the disjunction
¬ψ1 ∨ ¬ψ2, which requires splitting. However, unlike to the classical logic case,
¬ψ1 ∨ ¬ψ2 represents the union of the runs from s satisfying ¬ψ1 and the runs

184 P. Baumgartner et al.

from s satisfying ¬ψ2. As these sets may overlap the rule works with a disjoint
union by taking ¬ψ1 on the one side, and ψ1 ∧ ¬ψ2 on the other side so that it
is correct to add their probabilities up in γ.

P1
Γ � 〈m, s〉 : {P∼z ψ} � Ψ

Γ, γone � 〈m, s〉 : {ψ′} ∪ Ψ

{
if P∼z ψ is the left hand side of an equivalence

(P2)-(P5) and ψ′ is its right hand side

P2
Γ � 〈m, s〉 : {P∼z ψ} � Ψ

Γ, γone � 〈m, s〉 : {ψ} ∪ Ψ
if see text P3

Γ � 〈m, s〉 : {P∼z ψ} � Ψ

Γ, γone � 〈m, s〉 : {¬ψ} ∪ Ψ
if see text

These are rules for simplifying P-formulas. The condition in P2 is “∼ ∈
{>,≥} and ψ is a state formula”, and in P3 it is “∼ ∈ {<,≤} and ψ is a state
formula”. In the rules P2 and P3 trivial cases for z are excluded by preference
of P1. Indeed, this preference is even needed for soundness. The rule P2 can be
explained as follows: suppose we want to know if M, π, 〈m, s〉 |= P∼z ψ. For
that we need the probability of the set of runs from 〈m, s〉 that satisfy ψ and
compare it with z. Because ψ is a state formula this set is comprised of all runs
from s if M, π, 〈m, s〉 |= ψ, or the empty set otherwise, giving it probability 1
or 0, respectively. With ∼ ∈ {>,≥} conclude M, π, s |= P∼z ψ, or its negation,
respectively. The rule P3 is justified analogously. The only difference is that
∼ ∈ {<,≤} and so the P∼z quantifier acts as a negation operator instead of
idempotency.

At this stage, when all rules above have been applied exhaustively to a
given branch, the leaf of that branch must be of the form Γ � 〈m, s〉 :
{P∼z1 ψ1, . . . ,P∼zn

ψn}, for some n ≥ 0, where each ψi is a non-negated proper
path formula.

P
Γ � 〈m, s〉 : Ψ

Γ, Γ′, γleft � 〈m, s〉 : Ψ Γ, Γ′, γright � 〈m, s〉 : Ψ

{
if P∼z ψ ∈ Ψ, and
γleft /∈ Γ and γright /∈ Γ

P� Γ � 〈m, s〉 : {P∼z ψ} � Ψ

Γ, γone � 〈m, s〉 : Ψ
if γleft ∈ Γ

P✗
Γ � 〈m, s〉 : {P∼z ψ} � Ψ

Γ, x
{P∼z ψ}�Ψ

〈m,s〉
.
= 0 � ✗

if γright ∈ Γ

where Γ′ = Gamma(Choose(Tableau(∅ � 〈start(s), s〉 : {ψ}))),

γleft = x
{ψ}
〈start(s),s〉 ∼ z, and γright = x

{ψ}
〈start(s),s〉 ∼ z

These are rules for P-formulas. Unlike classical formulas, P-formulas cannot
be evaluated in a state, because their truth value depends on the solution of
the program Γfinal. The P rule analyzes P∼z ψ in a deferred way by first get-
ting a constraint x

{ψ}
〈start(s),s〉

.= e, for some expression e, for the probability of
〈start(s), s〉 : {ψ} by a recursive call.2 This call is not needed if Γ already deter-
mines a truth value for P∼z ψ because of γleft ∈ Γ or γright ∈ Γ. These tests are
done modulo node labels of variables, i.e., (xu){ψ}

〈start(s),s〉 and (xv){ψ}
〈start(s),s〉 are

2 By the semantics of the P-operator, the sub-derivation has to start from 〈start(s), s〉,
not 〈m, s〉.

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 185

considered equal for any u, v. Because the value of e is not known at the time
of the inference, the P rule don’t-know non-deterministically branches out into
whether x

{ψ}
〈start(s),s〉 ∼ z holds or not, as per the constraints γleft and γright. The

P� and P✗ rules then lift the corresponding case to the evaluation of P∼z ψ,
which is possible now thanks to γleft or γright.

Observe the analogy between these rules and their counterparts � and ✗ for
classical formulas. Note that the rules P, P� and P✗ cannot be combined into
one, because γleft or γright could have been added earlier, further above in the
branch, or in a recursive call. In this case only P�/P✗ can applied.

At this stage, in a leaf Γ � 〈m, s〉 : Ψ the set Ψ cannot contain any state for-
mulas, as they would all be eliminated by the inference rules above; all formulas
in Ψ now are possibly negated X-formulas or U-formulas.

U
Γ � 〈m, s〉 : {ψ1Uψ2} � Ψ

Γ � 〈m, s〉 : {ψ2} ∪ Ψ ∪ Γ, γ � 〈m, s〉 : {ψ1, ¬ψ2, X (ψ1Uψ2)} ∪ Ψ

where γ = x
{ψ1Uψ2}�Ψ
〈m,s〉

.
= x

{ψ2}∪Ψ
〈m,s〉 + x

{ψ1,¬ψ2,X (ψ1Uψ2)}∪Ψ
〈m,s〉

¬U
Γ � 〈m, s〉 : {¬(ψ1Uψ2)} � Ψ

Γ � 〈m, s〉 : {¬ψ1, ¬ψ2} ∪ Ψ ∪ Γ, γ � 〈m, s〉 : {ψ1, ¬ψ2,X¬(ψ1Uψ2)} ∪ Ψ

where γ = x
{¬(ψ1Uψ2)}�Ψ
〈m,s〉

.
= x

{¬ψ1,¬ψ2}∪Ψ
〈m,s〉 + x

{ψ1,¬ψ2,X ¬(ψ1Uψ2)}∪Ψ
〈m,s〉

These are expansion rules for U-formulas. The standard expansion law is
ψ1Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1Uψ2)). As with the ¬∧ rule, the disjunction in the
expanded formula needs to be disjoint by taking ψ2 ∨ (ψ1 ∧ ¬ψ2 ∧ X (ψ1Uψ2))
instead. Similarly for ¬U.

¬X Γ � 〈m, s〉 : {¬Xψ} � Ψ

Γ, γone � 〈m, s〉 : {X¬ψ} ∪ Ψ

The ¬X rule is obvious.
At this stage, if Γ � 〈m, s〉 : Ψ is a leaf sequent then Ψ is of the

form {Xψ1, . . . ,Xψn}, for some n ≥ 1. This is an important configuration
that justifies a name: we say that a labelled formula 〈m, s〉 : Ψ, a sequent
Γ � 〈m, s〉 : Ψ or a node labelled with Γ � 〈m, s〉 : Ψ is poised if Ψ is of the
form {Xψ1, . . . ,Xψn} where n ≥ 1. (The notion “poised” is taken from [18].)
A poised 〈m, s〉 : {Xψ1, . . . ,Xψn} will be expanded by transition into the suc-
cessor states of s by using enabled actions α ∈ A(s). That some α is enabled
does not, however, preclude a policy with actσ(m, s, α) = 0. The rule A makes a
guess whether this is the case or not:

A
Γ � 〈m, s〉 : Ψ

Γ, γleft � 〈m, s〉 : Ψ Γ, γright � 〈m, s〉 : Ψ

{
if Γ � 〈m, s〉 : Ψ is poised,
α ∈ A(s), γleft /∈ Γ and γright /∈ Γ

where γleft = xα
〈m,s〉

.
= 0 and γright = xα

〈m,s〉 > 0

With a minor modification we get a calculus for deterministic policies. It only
requires to re-define γright as γright = xα

〈m,s〉
.= 1. As a benefit the program Γfinal

will be linear.

186 P. Baumgartner et al.

After the A rule has been applied exhaustively, for each α ∈ A(s) either
xα

〈m,s〉 > 0 ∈ Γ or xα
〈m,s〉

.= 0 ∈ Γ. If xα
〈m,s〉 > 0 ∈ Γ we say that α is prescribed

in 〈m, s〉 by Γ and define Prescribed(〈m, s〉,Γ) = {α | xα
〈m,s〉 > 0 ∈ Γ}.

The set of prescribed actions in a policy state determines the Succ-relation
of the Markov chain under construction. To get the required distribution over
enabled actions, it suffices to enforce a distribution over prescribed actions, with
this inference rule:

Prescribed
Γ � 〈m, s〉 : Ψ

Γ, γα
〈m,s〉 � 〈m, s〉 : Ψ

{
if Γ � 〈m, s〉 : Ψ is poised,
α ∈ A(s) and γα

〈m,s〉 /∈ Γ

where γα
〈m,s〉 = Σα∈Prescribed(〈m,s〉,Γ) xα

〈m,s〉
.= 1

If the Choose operator in step two selects the leftmost branch among the
A-inferences then Γfinal contains xα

〈m,s〉
.= 0, for all α ∈ A(s). This is inconsistent

with the constraint introduced by the Prescribed -inference, corresponding to the
fact that runs containing 〈m, s〉 in this case do not exist.

We are now turning to a “loop check” which is essential for termination, by,
essentially, blocking the expansion of certain states into successor states that do
not mark progress. For that, we need some more concepts. For two nodes u and
v in a branch we say that u is an ancestor of v and write u ≤ v if u = v or u
is closer to the root than v. An ancestor is proper, written as u < v, if u ≤ v
but u
= v. We say that two sequents Γ1 � F1 and Γ2 � F2 are indistinguishable
iff F1 = F2, i.e., they differ only in their Γ-components. Two nodes u and v
are indistinguishable iff their sequents are. We write Ψu to denote the formula
component of u’s label, i.e., to say that the label is of the form Γ � 〈m, s〉 : Ψu;
similarly for Fu to denote u’s labelled formula.

Definition 3.3 (Blocking). Let w be a poised leaf and v < w an ancestor node.
If (i) v and w are indistinguishable, and (ii) for every X-eventuality X (ψ1Uψ2)
in Ψv there is a node x with v < x ≤ w such that ψ2 ∈ Ψx then w is yes-blocked
by v. If there is an ancestor node u < v such that (i) u is indistinguishable
from v and v is indistinguishable from w (and hence u is indistinguishable from
w), and (ii) for every X-eventuality X (ψ1Uψ2) in Ψu, if there is a node x with
ψ2 ∈ Ψx and v < x ≤ w then there is a node y with ψ2 ∈ Ψy and u < y ≤ v,
then w is no-blocked by u.

When we say that a sequent is yes/no-blocked we mean that its node is yes/no-
blocked.

In the yes-blocking case all X-eventualities in Ψv become satisfied along the way
from v to w. This is why w represents a success case. In the no-blocking case
some X-eventualities in Ψv may have been satisfied along the way from u to v,
but not all, as this would be a yes-blocking instead. Moreover, no progress has
been made along the way from v to w for satisfying the missing X-eventualities.
This is why w represents a failure case. The blocking scheme is adapted from [18]
for LTL satisfiability to our probabilistic case. See [18,19] for more explanations
and examples, which are instructive also for its usage in our framework.

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 187

Blocking is used in the following inference rules, collectively called the Loop
rules. In these rules, the node v is an ancestor node of the leaf the rule is
applied to.

Yes-Loop
Γ � 〈m, s〉 : Ψ

Γ, xΨ
〈m,s〉

.
= (xv)Ψ〈m,s〉 � Yes-Loop

if Γ � 〈m, s〉 : Ψ is yes-blocked by v

No-Loop
Γ � 〈m, s〉 : Ψ

Γ, xΨ
〈m,s〉

.
= (xv)Ψ〈m,s〉 � No-Loop

if Γ � 〈m, s〉 : Ψ is no-blocked by v

In either case, if v is indistinguishable from w then the probability of Fv and
Fw are exactly the same, just because Fv = Fw. This justifies adding xΨ

〈m,s〉
.=

(xv)Ψ〈m,s〉.
The Loop rules have a side-effect that we do not formalize: they add a link

from the conclusion node (the new leaf node) to the blocking node v, called the
backlink. It turns the tableau into a graph that is no longer a tree. The backlinks
are used only for reachability analysis in step three of the algorithm. Figure 1
has a graphical depiction.

By preference of inference rules, the X rule introduced next can be applied
only if a Loop rule does not apply. The Loop rules are at the core of the termi-
nation argument.3

For economy of notation, when Ψ = {ψ1, . . . , ψn}, for some ψ1, . . . , ψn and
n > 0, let XΨ denote the set {Xψ1, . . . ,Xψn}.

X
Γ � 〈m, s〉 : XΨ

Γ � 〈m′, t1〉 : Ψ ∪ · · · ∪ Γ � 〈m′, tk−1〉 : Ψ ∪ Γ, γ1 � 〈m′, tk〉 : Ψ

where m′ = Δ(m, s)

{t1, ..., tk} =
⋃

α∈Prescribed(〈m,s〉,Γ) Succ(s, α) , for some k ≥ 0

γ1 = xXΨ
〈m,s〉

.
= Σα∈Prescribed(〈m,s〉,Γ) [xα

〈m,s〉 · (Σt∈Succ(s,α) P (t|s, α) · xΨ
〈m′,t〉)]

This is the (only) rule for expansion into successor states. If u is the node the
X rule is applied to and u1, . . . , uk are its children then each ui is called an
X-successor (of u).

The X rule follows the set of actions prescribed in 〈m, s〉 by Γ through to
successor states. This requires summing up the probabilities of carrying out
α, as represented by xα

〈m,s〉, multiplied by the sums of the successor probabil-
ities weighted by the respective transition probabilities. This is expressed in
the constraint γ1. Only these k successors need to be summed up, as all other,
non-prescribed successors, have probability 0.

3 The argument is standard for calculi based on formula expansion, as embodied in
the U and ¬U rules: the sets of formulas obtainable by these rules is a subset of an
a priori determined finite set of formulas. This set consists of all subformulas of the
given formula closed under negation and other operators. Any infinite branch hence
would have to repeat one of these sets infinitely often, which is impossible with the
loop rules. Moreover, the state set S and the mode set M are finite and so the other
rules do not cause problems either.

188 P. Baumgartner et al.

Forcing Probabilities. We are now turning to the Force operator which we left
open in step three of the algorithm. It forces a probability 0 or 1 for certain
labelled formulas occurring in a bottom strongly connected component in a tree
from step two. The tree in the figure to the right helps to illustrate the concepts
introduced in the following.

Fig. 1. An example tableau T from step
2. The subgraph below u2 is a strongly
connected component if u10 is ✗-ed.

We need some basic notions from
graph theory. A subset M of the nodes
N of a given graph is strongly connected
if, for each pair of nodes u and v in M , v
is reachable from u passing only through
states in M . A strongly connected compo-
nent (SCC) is a maximally strongly con-
nected set of nodes (i.e., no superset of
it is also strongly connected). A bottom
strongly connected component (BSCC) is
a SCC M from which no state outside M
is reachable from M .

Let T = Choose(Tableau(Γ � F)) be a tree without don’t-know branching
obtained in step 2. We wish to take T together with its backlinks as the graph
under consideration and analyse its BSCCs. However, for doing so we cannot take
T as it is. On the one hand, our tableaux describe state transitions introduced
by X rule applications. Intuitively, these are amenable to BSCC analysis as one
would do for state transition systems. On the other hand, T has interspersed rule
applications for analysing Boolean structure, which distort the state transition
structure. These rule applications have to be taken into account prior to the
BSCC analysis proper.

For this, we distinguish between X-links and +-links in T . An X-link is an
edge between a node and its child if the X rule was applied to the node, making
its child an X-successor, otherwise it is a +-link. (“+-link” because probabilities
are summed up.)

Let u be a node in T and SubtreeT (u), or just Subtree(u), the subtree of
T rooted at u without the backlinks. We say that u is a 0-deadend (in T) if
SubtreeT (u) has no X-links and every leaf in SubtreeT (u) is ✗-ed. In a 0-deadend
the probabilities all add up to a zero probability for the pivot of u. This is shown
by an easy inductive argument.

Definition 3.4 (Ambiguous node). Let u be a node in T . We say that u is
ambiguous (in T) iff (i) SubtreeT (u) contains no ✓-ed leaf, and (ii) SubtreeT (u)
contains no X-successor 0-deadend node. We say that u is unambiguous iff u is
not ambiguous.

The main application of Definition 3.4 is when the node u is the root of a BSCCs,
defined below. The probability of u’s pivot 〈m, s〉 : Ψ then is not uniquely deter-
mined. This is because expanding u always leads to a cycle, a node with the

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 189

same pivot, and there is no escape from that according to conditions (i) or (ii)
in Definition 3.4. In other words, the probability of 〈m, s〉 : Ψ is defined only in
terms of itself.4

In the figure above, the node u1 is unambiguous because of case (i) in
Definition 3.4. Assuming u10 is ✓-ed, the node u2 is unambiguous by case (i).
The pivot in u10, then, has probability 1 which is propagated upwards to u4 (and
enforces probability 0 for the pivot of u7). It contributes a non-zero probability
to the transition from u2 to u4 and this way escapes a cycle. If u10 is ✗-ed, the
node u2 is ambiguous.

If case (ii) in Definition 3.4 is violated there is an X-successor node whose
pivot has probability 0. Because every X-link has a non-zero transition proba-
bility, the probabilities obtained through the other X-successor nodes add up to
a value strictly less than 1. This also escapes the cycle leading to underspecified
programs (not illustrated above).

Let 0(T) = {w |w is a node in some 0-deadend of T} be all nodes in all
0-deadends in T . In the example, 0(T) = {u6, u10, u8} if u10 is ✗-ed and
0(T)={u8} if u10 is ✓-ed.

Let u be a node in T and M(u) = {w | w is anode in sSubtree(u)} \
0(T). That is, M(u) consists of the nodes in the subtree rooted at u after
ignoring the nodes from the 0-deadend subtrees. In the example M(u2) =
{u2, u4, u5, u7, u9, u12, u13, u14} if u10 is ✗-ed. If u10 is ✓-ed then u6 and u10

have to be added.
We say that u is the root of a BSCC (in T) iff u is poised, ambiguous and

M(u) is a BSCC in T (together with the backlinks). In the example, assume
that u10 is ✗-ed. Then u2 is poised, ambiguous and the root of a BSCC. In the
example, that M(u2) is a BSCC in T is easy to verify.

Now suppose that u is the root of a BSCC with pivot 〈m, s〉 : XΨ. This means
that the probability of 〈m, s〉 : XΨ is not uniquely determined. This situation
then is fixed by means of the Force operation, generally defined as follows:

Bscc(T) := {u | u is the root of a BSCC inT}
Force(T) := {(xu)XΨ

〈m,s〉
.
= χ | u ∈ Bscc(T), and

if some leaf of the subtree rooted at u is a Yes-Loop
then χ = 1 else χ = 0}

That is, Forceing removes the ambiguity for the probability of the pivot
〈m, s〉 : XΨ at the root u of a BSCC by setting it to 1 or to 0. If Forceing
adds (xu)XΨ

〈m,s〉
.= 1 then there is a run that satisfies every X-eventuality in XΨ,

by following the branch to a Yes-Loop. Because we are looking at a BSCC, for
fairness reasons, every run will do this, and infinitely often so, this way giving
XΨ probability 1. Otherwise, if there is no Yes-Loop, there is some X-eventuality
in XΨ that cannot be satisfied, forcing probability 0.

4 In terms of the resulting program, (xu)ψ
〈m,s〉 is not constrained to any specific value

in [0..1]. This can be shown by “substituting in” the equalities in Γfinal for the
probabilities of the pivots in the subtree below u and arithmetic simplifications.

190 P. Baumgartner et al.

4 Example

The following is only a brief summary of an example spelled out in detail in
the long version [4] of this paper. Consider the MDP on the right. The initial

s1

s2

s3

β

0.5

0.5

α1 α2

α3

{a}state is s1. Action β leads non-deterministically to states
s2 and s3, each with probability 0.5. The actions αi

for i ∈ {1, 2, 3} are self-loops with probability one (not
shown). The label set of s2 is {a} in all other states
it is empty. The partially specified finite-memory policy
πfin = ({m}, start,Δ, ·) has a single mode m, making πfin

Markovian. The functions start and Δ hence always return m, allowing us to
abbreviate 〈m, si〉 as just si. Let the state formula of interest be φ = P≥0.3 FG a.
We wish to obtain a Γfinal such that any solution σ synthesizes a suitable actσ,
i.e., the policy πfin(σ) completed by σ satisfies M, πfin(σ), s1 |= φ.

The BSCCs depend on whether actσ(m, s1, β) > 0 holds, i.e., if β can be
executed at s1. (This is why the calculus needs to make a corresponding guess,
with its A-rule.) If not, then s2 and s3 are unreachable, and the self-loop at s1

is the only BSCC, which does not satisfy G a. If yes, then there are two BSCCs,
the self-loop at s2 and the self-loop at s3, and the BSCC at s2 satisfies G a. By
fairness of execution, with probability one some BSCC will be reached, and the
BSCC at s2 is reached with probability 0.5, hence, if actσ(m, s1, β) > 0. In other
words, devising any policy that reaches s2 will hence suffice to satisfy φ. The
expected result thus is just a constraint on σ saying actσ(m, s1, β) > 0. Indeed,
the derivation will show that.

In brief, the derivation starts with the initial sequent {xφ
s1

.= 1} � s1 : {φ}.
The first inference is a P-inference, branching out on xFG a

s1
≥ 0.3 and its negation.

(The latter case quickly leads to an unsatisfiable program.) The P-inference
triggers a recursive call with the start sequent ∅ � xFG a

s1
. This tableau leads to

an open branch with sequent ∅ � xXFG a
s1

and all other branches ✗-ed, inducing a
constraint xFG a

s1

.= xXFG a
s1

. This is plausible, as s1 falsifies G a, and hence exactly
the successor states of s1 need to be considered.

As said, the interesting case is if β can be executed at s1, so let us assume
that. The tableau derivation continues the open branch and arrives at s3. Further
expansion leads to No-Loop leaves only. This gives a trivial constraint xFG a

s3

.=
xFG a

s3
only, but Forceing adds xFG a

s3

.= 0. The tableau derivation also arrives at
s2, this time with a BSCC with a Yes-Loop leaf, contributing xFG a

s2

.= 1.
If desired, the resulting program Γfinal can be simplified so that it becomes

obvious that only the constraint xβ
s1

> 0 is essential for satisfiability.

5 Conclusions and Future Work

In this paper we presented a first-of-its kind algorithm for the controller synthesis
problem for Markov Decision Processes whose intended behavior is described by
PCTL* formulas. The only restriction we had to make – to get decidability – is
to require policies with finite history. We like to propose that the description of
the algorithm is material enough for one paper, and so we leave many interesting
questions for future work.

Tableaux for Policy Synthesis for MDPs with PCTL* Constraints 191

The most pressing theoretical question concerns the exact worst-case com-
plexity of the algorithm. Related to that, it will be interesting to specialize
and analyze our framework for fragments of PCTL*, such as probabilistic LTL
and CTL or simpler fragments and restricted classes of policies that might lead
to linear programs (and ideally to solving only a polynomial number of such
programs). For instance, we already mentioned that computing deterministic
policies leads to linear programs in our tableau (see the description of the A
inference rule how this is done.) Moreover, it is well-known that cost-optimal
stochastic policies for classes of MDPs with simple constraints bounding the
probability of reaching a goal state can be synthesized in linear time in the size
of the MDP by solving a single linear program [1,12]. An interesting question
is how far these simple constraints can be generalised towards PCTL* whilst
remaining in the linear programming framework (see e.g. [20]).

On implementation, a näıve implementation of the algorithm as presented
above would perform poorly in practice. However, it is easy to exploit some
straightforward observations for better performance. For instance, steps one
(tableau construction) and two (committing to a don’t-know non-deterministic
choice) should be combined into one. Then, if a don’t know non-deterministic
inference rule is carried out the first time, every subsequent inference with the
same rule and pivot can be forced to the same conclusion, at the time the rule
is applied. Otherwise an inconsistent program would result, which never needs
to be searched for. Regarding space, although all children of a union branch-
ing inference rule need to be expanded, this does not imply they always all
need to be kept in memory simultaneously. Nodes can be expanded in a one-
branch-at-a-time fashion and using a global variable for Γfinal for collecting the
programs in the leaves of the branches if they do not belong to a bottom strongly
connected component. Otherwise, the situation is less obvious and we leave it
to future work. Another good source of efficiency improvements comes from
more traditional tableau. It will be mandatory to exploit techniques such as
dependency-directed backtracking, lemma learning, and early failure checking
for search space pruning.

Acknowledgements. This research was funded by AFOSR grant FA2386-15-1-4015.
We would also like to thank the anonymous reviewers for their constructive and helpful
comments.

References

1. Altman, E.: Constrained Markov Decision Processes, vol. 7. CRC Press, Boca
Raton (1999)

2. Baier, C., Größer, M., Leucker, M., Bollig, B., Ciesinski, F.: Controller synthesis
for probabilistic systems. In: TCS 2004 (2004)

3. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
4. Baumgartner, P., Thiébaux, S., Trevizan, F.: Tableaux for policy synthesis for

MDPS with PCTL* constraints. CoRR, abs/1706.10102 (2017)

192 P. Baumgartner et al.

5. Brázdil, T., Brozek, V., Forejt, V., Kucera, A.: Stochastic games with branching-
time winning objectives. In: 21th IEEE Symposium on Logic in Computer Science
LICS (2006)

6. Brázdil, T., Forejt, V.: Strategy synthesis for Markov decision processes
and branching-time logics. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 428–444. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74407-8 29

7. Brázdil, T., Forejt, V., Kučera, A.: Controller synthesis and verification for
Markov decision processes with qualitative branching time objectives. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 148–159. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-70583-3 13

8. Brázdil, T., Kučera, A., Stražovský, O.: On the decidability of temporal properties
of probabilistic pushdown automata. In: Diekert, V., Durand, B. (eds.) STACS
2005. LNCS, vol. 3404, pp. 145–157. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31856-9 12

9. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J.
ACM 42(4), 857–907 (1995)

10. Ding, X.C., Pinto, A., Surana, A.: Strategic planning under uncertainties via con-
strained Markov decision processes. In: IEEE International Conference on Robotics
and Automation ICRA (2013)

11. Ding, X.C., Smith, S., Belta, C., Rus, D.: Optimal control of Markov decision
processes with linear temporal logic constraints. IEEE Trans. Automat. Contr.
59(5), 1244–1257 (2014)

12. Dolgov, D., Durfee, E.: Stationary deterministic policies for constrained MDPs
with multiple rewards, costs, and discount factors. In: IJCAI (2005)

13. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM
2011. LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-21455-4 3

14. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains: With a Chapter of
Markov Random Fields by David Griffeath, vol. 40. Springer, Heidelberg (2012)

15. Kučera, A., Stražovský, O.: On the controller synthesis for finite-state Markov
decision processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821,
pp. 541–552. Springer, Heidelberg (2005). doi:10.1007/11590156 44

16. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-72522-0 6

17. Kwiatkowska, M., Parker, D.: Automated verification and strategy synthesis for
probabilistic systems. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol.
8172, pp. 5–22. Springer, Cham (2013). doi:10.1007/978-3-319-02444-8 2

18. Reynolds, M.: A new rule for LTL tableaux. In: GandALF (2016)
19. Reynolds, M.: A traditional tree-style tableau for LTL. CoRR, abs/1604.03962

(2016)
20. Sprauel, J., Kolobov, A., Teichteil-Königsbuch, F.: Saturated path-constrained

MDP: planning under uncertainty and deterministic model-checking constraints.
In: AAAI (2014)

21. Svorenová, M., Cerna, I., Belta, C.: Optimal control of MDPs with temporal logic
constraints. In: CDC (2013)

22. Trevizan, F., Thiébaux, S., Santana, P., Williams, B.: Heuristic search in dual
space for constrained stochastic shortest path problems. In: ICAPS (2016)

http://dx.doi.org/10.1007/978-3-540-74407-8_29
http://dx.doi.org/10.1007/978-3-540-74407-8_29
http://dx.doi.org/10.1007/978-3-540-70583-3_13
http://dx.doi.org/10.1007/978-3-540-31856-9_12
http://dx.doi.org/10.1007/978-3-540-31856-9_12
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/978-3-642-21455-4_3
http://dx.doi.org/10.1007/11590156_44
http://dx.doi.org/10.1007/978-3-540-72522-0_6
http://dx.doi.org/10.1007/978-3-319-02444-8_2

Minimisation of ATL∗ Models

Serenella Cerrito1(B) and Amélie David2

1 IBISC, Université Evry Val d’Essonne, Évry, France
serena.cerrito@ibisc.univ-evry.fr

2 Université Paris-Descartes, Paris, France
amelie.david@parisdescartes.fr

Abstract. The aim of this work is to provide a general method to min-
imize the size (number of states) of a model M of an ATL∗ formula. Our
approach is founded on the notion of alternating bisimulation: given a
model M, it is transformed in a stepwise manner into a new model M’
minimal with respect to bisimulation. The method has been implemented
and will be integrated into the prover TATL, that constructively decides
satifiability of an ATL∗ formula by building a tableau from which, when
open, models of the input formula can be extracted.

Keywords: Alternating-time temporal logic · Bisimulation · Model
minimization · Tableaux

1 Introduction

The Alternating-time temporal logic ATL∗ has been introduced in [AHK02] and
proposed as a logical framework for the specification and the verification of prop-
erties of open systems, that is systems interacting with an environment whose
behaviour is unknown or only partially known. The logic ATL∗ can be seen as a
multi-agent extension of the branching time temporal logic CTL∗ where the path
quantifiers are generalized to “strategic quantifiers”, indexed with coalitions of
agents A, ranging existentially over collective strategies of A and then univer-
sally over all paths (computations) coherent with the selected collective strategy.
The language of ATL∗ allows the expression of statements of the type “Coalition
A has a collective strategy to guarantee the satisfaction of the objective Ψ no
matter what its opponents do”, and can therefore model the interaction of an
open system with an environment by setting the environment to be the system
opponent.

The semantics of ATL∗ is based on the notion of concurrent game mod-
els (CGMs), a generalisation of labelled transition systems to the multi-agent
framework where an edge connecting two states is labelled by a vector describing
the synchronous actions of all the agents, rather than by the action of a single
agent. The aim of this work is to provide a general method to minimize the size
(number of states) of a model M of an ATL∗ formula.

Independently from the specific logic of interest, to get minimal models is
useful for several tasks: hardware and software verification, fault analysis, and
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 193–208, 2017.
DOI: 10.1007/978-3-319-66902-1 12

194 S. Cerrito and A. David

common sense reasoning. Several different criteria of minimality have been stud-
ied in the literature. In the case of first order classical logic, some works minimize
the domain (see for instance [Hin88,Lor94]), while others minimize the interpre-
tation either of a certain set of predicates (see for instance [McC87]) or of all
the predicates (see for instance [BY00,Nie96,GHS01,HFK00]).

These minimality criteria can be applied to modal logics, too. Minimal model
generation where certain predicates are minimal has been mostly studied in
the context of non-monotonic operators and non-monotonic semantics (see for
instance [GGOP08,GH09,BLW09]). In the case of modal logics, however, it is
quite natural to adopt minimality criteria founded on the notion of bisimulation.
The work [PS14] presents terminating procedures for the generation of models
that are minimal for a given notion of subset-simulation for the propositional
modal logic K and all combinations of its extensions with the axioms T, B, D,
4 and 5. Roughly, what is minimized there is not the number of worlds, but the
number of propositions holding at worlds.

In the specific case of temporal logics the emphasis is rather on the reduction
of the size of the state space. This is crucial if the considered temporal logic
has to be used to model systems whose properties need to be model-checked.
In the case of CTL and CTL∗, having as semantics (labelled) transition systems
((L)TS), models are minimized with respect to bisimulation by using coarsest
partition algorithms refining step by step an initial partition of the set of states
of a given LTS [LIS12,KS90,PT87].

Our work is inspired by the above mentioned partition-refinement approach
for LTS but treats the more complex case of ATL∗ models, namely CGMs. We
rewrite a CGM M into a bisimilar smaller model by using the definition of
alternating bisimulation, that is specific to ATL∗ [DGL16,ÅGJ07].

The intended application is the synthesis of ATL∗ models from formal spec-
ifications by means of the software TATL, available on line via a dynamic web
page [Dav]. Up to our knowledge, TATL is the only existing running system that
decides the satisfiability of an ATL∗ formula (and by means of a trivial prelimi-
nary rewriting also of CTL∗ formulae). TATL constructively decides the satisfi-
ability of a given ATL∗ formula φ by exhibiting a tableau for φ [CDG14,Dav15].
A tableau for φ is built by analysing the formula and producing states of the
candidate models, so as to obtain a finite graph. When the final tableau is open,
it is a non-empty labelled graph representing a graph of CGMs satisfying φ at
some initial state. The completeness proof (with respect to unsatifiability), being
constructive, provides a procedure to build a model of φ from an open tableau
[CDG14,Dav15]. Such a procedure, however, can generate a model that has
an unnecessarily large number of states, because eventualities are sequentially
treated to assure their realizability: eventualities that might be simultaneously
realized are systematically realized one after the other. To reduce the size of such
a model is important, for instance, for the purpose of model synthesis from a
formal specification written in ATL∗: CGMs that contain an unnecessary great
number of states are difficult to grasp and expensive to treat (for instance to
model check additional properties).

Minimisation of ATL∗ Models 195

The aim of this work is to provide a procedure that, when applied to a (finite)
ATL∗ model M of a formula φ, outputs a model M′ of φ that is bisimilar to M,
and that is minimal with respect to alternating bisimulation. It is worthwhile
observing that this does not mean that M′ will be a model of φ having the
minimum number of states necessary to satisfy φ. We will illustrate this point
in Sect. 3 by means of Example 1.

The outline of our presentation is the following. In Sect. 2 we recall some
background definitions. Section 3 is the core of the paper and provides our min-
imisation algorithm and its foundations. Section 4 briefly discusses the imple-
mentation (ongoing work). Finally, we conclude and we sketch some lines of
future work.

2 Preliminaries

We recall here some standard definitions about ATL∗.

Definition 1 (Concurrent Game Model). Given a set of satomic proposi-
tions P , a CGM (Concurrent Game Model) is a 5-tuple

M = 〈A,S, {Acta}a∈A, {acta}a∈A, out, L〉
such that:
• A = {1, . . . , k} is a finite non-empty set of agents;
• S is a non-empty set of states;
• For each a ∈ A, Acta is a non-empty set of actions. If A ⊆ A, then A is a
coalition of agents. Given a coalition A, an A-move is a k-ple 〈α1, . . . , αk〉 where,
for any i, 1 ≤ i ≤ k, if i ∈ A then αi ∈ Acta, else αi = ∗ (∗ being a place-holder
symbol distinct from each action). A move of the coalition A will also be called
global move. The set of all the A-moves is denoted by ActA. The notation σA

denotes an element of ActA, and if a ∈ A, σA(a) means the action of the agent
a in the A-move σA;
• acta is a function mapping a state s to a non-empty subset of Acta; acta(s)
denotes the set of actions of the agent a that are available at state s. Given a
coalition A, a mapping actA associating to a state a set of A-moves is naturally
induced by the function acta; actA(s) is the set of all the A-moves available to
coalition A at state s;
• out is a transition function, associating to each s ∈ S and each σA ∈ actA(s) a
state out(s, σA) ∈ S: the state reached when each a ∈ A does the action σa at s;
• L is a labelling function L : S → P(P), associating to each state s the set of
propositions holding at s.

It is worthwhile observing that the above definition does not require the set S

to be finite. In our intended application, however, where models are constructed
out of open finite tableaux, it will always be finite.1

1 Indeed, the existence of sound, complete and terminating tableaux for ATL * is a
proof of the finite model property for ATL∗.

196 S. Cerrito and A. David

Below, p ∈ P and A is a coalition of agents.

Definition 2 (ATL∗syntax).

State formulae: ψ := p | (¬ψ) | (ψ ∧ ψ) | (〈〈A〉〉Φ)
Path formulae: Φ := ψ | (¬Φ) | (Φ ∧ Φ) | (©Φ) | (�Φ) | (ΦUΦ)

It is worthwhile observing that any ATL∗ state formula is also an ATL∗ path
formula, while the converse is false. State formulae will always be noted by
lower case Greek letters, and path formulae by upper case Greek letters. Unless
explicitly stated otherwise, in the sequel by ATL∗ formula we mean an ATL∗

state formula.
ATL is the syntactical fragment of ATL∗ obeying to the constraint that any

temporal operator in a formula is prefixed by a quantifier 〈〈A〉〉 and that no
quantifier can have a boolean operator in its immediate scope, analogously to
CTL w.r.t. CTL∗. Hence any ATL formula is a state formula.

The semantics for ATL∗ is based on the notions of concurrent game model,
play and strategy.

A play λ in a CGM M is an infinite sequence of elements of S: s0, s1, s2, . . .
such that for every i ≥ 0, there is a global move σA ∈ actA(si) such that
out(si, σA) = si+1. Given a play λ, we denote by λ0 its initial state, by λi

its (i+1)th state, by λ≤i the prefix λ0 . . . λi of λ and by λ≥i the suffix λiλi+1 . . .
of λ. Given a prefix λ≤i : λ0 . . . λi, we say that it has length i + 1 and write
|λ≤i| = i + 1. An empty prefix has length 0. A (non-empty) history at state
s is a finite prefix of a play ending with s. We denote by PlaysM and HistM
respectively the set of plays and set of histories in a CGM M.

Given a coalition A ⊆ A of agents, a perfect recall strategy FA is a function
which maps each element λ = λ0 . . . λ� of HistM to an A-move σA belonging to
actA(λ�) (the set of actions available to A at state λ�). Whenever FA depends
only on the state λ� the strategy is said to be positional. In the rest of the paper
we always consider perfect recall strategies.

For any coalition A, a global move σA extends an A-move σA whenever for
each agent a ∈ A, σA(a) = σA(a). Let σA be an A-move; the notation Out(s, σA)
denotes the set of states out(s, σA) where σA is any global move extending σA.
Intuitively, Out(s, σA) denotes the set of the states that are successors of s when
the coalitions A plays at s the A-move σA and the other agents play no matter
which move.

A play λ = λ0, λ1, . . . is said to be coherent with a strategy FA if and only
if for each j ≥ 0, λj+1 ∈ Out(λj , σA), where σA is the A-move chosen by FA at
state λi.

The notion M satisfies the formula Φ at state s, noted M, s |= Φ, is defined
by induction on φ as follows (omitting the obvious boolean cases):

– M, s |= p iff p ∈ L(s), for any proposition p ∈ P;
– M, s |= 〈〈A〉〉Φ iff there exists an A-strategy FA such that, for all plays λ start-

ing at s and coherent with the strategy FA, M, λ |= Φ;
– M, λ |= ϕ iff M, λ0 |= ϕ;

Minimisation of ATL∗ Models 197

– M, λ |= ©Φ iff M, λ≥1 |= Φ;
– M, λ |= �Φ iff M, λ≥i |= Φ for all i ≥ 0;
– M, λ |= ΦUΨ iff there exists an i ≥ 0 where M, λ≥i |= Ψ and for all 0 ≤ j < i,

M, λ≥j |= Φ.

Given a CGM M and a formula φ, we say that M satisfies φ whenever there
is a state s such that M, s |= φ; then we also say that M satisfies φ at s and
that M is a model of φ.

The works [ÅGJ07,DGL16] define a notion of bisimulation appropriate to
CGMs and analogous to the notion of bisimulation for transition systems (see,
for instance, [LIS12]).

Definition 3 (Alternating Bisimulation [ÅGJ07,DGL16]). Let M1 =
〈A,S, {Acta}a∈A, out, L〉 and M2 = 〈A,S′, {Act′a}a∈A, out′, L′〉 be two CGMs
over the same set of atomic propositions and over the same set of agents.

– Let A be a coalition. A relation β ⊆ S × S
′ is an alternating A-bisimulation

between M1 and M2 iff for all s1 ∈ S and s2 ∈ S
′, s1βs2 implies that the

following hold:
1. Local Harmony. L(s1) = L′(s2);
2. Forth. For any αA ∈ actA(s1) there is an α′

A ∈ act′A(s2) such that for
any t2 ∈ Out(s2, α′

A) there exists t1 ∈ Out(s1, αA) such that t1βt2;
3. Back. For any αA ∈ actA(s2) there is an α′

A ∈ act′A(s1) such that for
any t3 ∈ Out(s1, α′

A) there exists t4 ∈ Out(s2, αA) such that t3βt4.
– When β is an alternating A-bisimulation between M1 and M2, we note

M1

β

�A M2;
– If β is an alternating A-bisimulation between M1 and M2 for every coalition

A ⊆ A, then β is a full alternating bisimulation and we note: M1

β

� M2;
– When β is a full bisimulation between M1 and M2, β is total on S and

its inverse is total on S
′, then it is a global alternating bisimulation between

M1 and M2. The models M1 and M2 are said to be bisimilar when such a
relation β exists.

Figure 1, borrowed from [DGL16], illustrates the above definition.

Remark 1. A full alternating bisimulation β is a fixpoint solution of the equation
X = E(X) where a value of X is a subset of S× S

′ such that if 〈q, q′
2〉 ∈ X then

L(q) = L′(q′) and, for any relation r ⊆ S × S
′, 〈s1, s2〉 ∈ E(r) if and only

if: 〈s1, s2〉 ∈ r, L(s1) = L′(s2), and for every coalition A, the following two
conditions hold: (i) for any αA ∈ actA(s1) there is an α′

A ∈ act′A(s2) such that
for any t2 ∈ Out(s2, α′

A) there exists t1 ∈ Out(s1, αA) such that t1rt2, and (ii) for
any αA ∈ actA(s2) there is an α′

A ∈ act′A(s1) such that for any t3 ∈ Out(s1, α′
A)

there exists t4 ∈ Out(s2, αA) such that t3rt4.
Observe also that, given a CGM having set of states S, X may be a subset

of S × S (i.e we can have S = S
′).

198 S. Cerrito and A. David

Fig. 1. An alternating bisimulation between two CGMs

Remark 1 will be useful in the following, to understand how our approach to
minimization of a model constructs a maximal fixed point of the above equation
in a stepwise manner.

It is also worthwhile observing that bisimilarity between CGMs is reflexive,
symmetric and transitive, i.e. is an equivalence relation.

The following theorem extends to the case of ATL∗ and perfect recall strate-
gies a result presented in [ÅGJ07,DGL16] for ATL and positional strategies.

Theorem 1. Let M and M′ be two CGMs.

1. If M
β

�A M′ and s1βs2, then, for any ATL∗ (state) formula φ such that A
is the only coalition occurring in φ, M, s1 |= φ iff M′, s2 |= φ.

2. If M
β

� M′ and s1βs2, then, for any ATL∗ formula φ, M, s1 |= φ iff M′,
s2 |= φ.

The detailed proof of Theorem1 is given in the last section of [CD], the long
draft of this work available on line. The key idea is that if β is a full alternating
bisimulation between M and M′ and FA is a strategy for a coalition A in M then
FA can be simulated in M′ by exploiting the existence of β. As a consequence
of Theorem 1, if M and M′ are bisimilar then, for any (state) formula φ, M is
a model of φ if and only if M′ is a model of φ.

3 Model Minimization

Before describing our approach to model minimization, let us consider a simple
intuitive example showing that to rewrite a given model M of a formula φ into
a model M’ that is minimal with respect to alternating bisimulation does not
necessarily mean to get a model of φ having the minimum number of states.

Example 1. Let φ be 〈〈1〉〉 © p, stating that agent 1 can assure that p holds at
a successor state. Let’s assume that this agent can perform only one action at

Minimisation of ATL∗ Models 199

each state. Take M1 to have two states, 1 and 2, where 2 is the only successor
of 1, 1 is the only successor of 2, and p is false at 1 but true at 2. Clearly M1

satisfies φ at state 1. Now, take M2 to be a model having 3 states, A, B and C,
where B is the only successor of A, C is the only successor of B, A is the only
successor of C and the only state not satisfying p is A. Obviously φ keeps true
at state A. The application of our minimisation procedure to M2 will output
M2 itself, not M1. The reason is that, by Theorem 1, any state s′ of the output
model must satisfy exactly the same formulae as s, where s is a bisimilar state
of the input model. In M1, state 1 satisfies ¬p∧〈〈1〉〉(©p∧©©¬p) while in M2

state A satisfies ¬p ∧ 〈〈1〉〉(©p ∧ © © p), thus 1 and A cannot be bisimilar. It is
worthwhile noticing, however, that such an unnatural model of φ as M2 would
not be generated by the tableau procedure for ATL∗ having input φ = 〈〈1〉〉 © p.
In general, tableau construction analyses the input formula and produces tableau
states (states of a candidate model) only when they are needed.

Our approach to the minimization of a model M satisfying a given formula
Φ consists in rewriting it into the smallest bisimilar model in a stepwise manner.
The definitions and results that follow are the foundations of our procedure.

3.1 Quotient Models

Given a partition P = {C1, . . . , Ck} of the set of the states of a CGM, we will
say that each set Ci is a cluster of the partition P .

Definition 4 (Harmonious partition). A harmonious partition P of a CGM
M is a partition of the set of states of M such that for each cluster C of P , if
s, s′ ∈ C then L(s) = L(s′).

Given a CGM, a state s, a coalition A and a move σA available for A at s,
we say that a state t is reachable from s via σA if t ∈ Out(s, σA), i.e. there is a
global move σA extending σA such that t = out(s, σA).

Definition 5 (Behavioural equivalence of states w.r.t. a partition). Let
P be a harmonious partition of a CGM and let s and t be two states such that
L(s) = L(t).

– Let A be a coalition. We say that s and t are (behaviourally) A-equivalent
w.r.t. P , and we note s ≡PA t, when:

• Given any action σA ∈ actA(s), there is an action σ′
A ∈ actA(t) such that

the set of clusters of states that are reachable from t via σ′
A is a subset of

the set of clusters of states that are reachable from s via σA.
• Given any action σA ∈ actA(t), there is an action σ′

A ∈ actA(s) such that
the set of clusters of states that are reachable from s via σ′

A is a subset of
the set of clusters of states that are reachable from t via σA.

– We say that s and t are (behaviourally) equivalent w.r.t. P , and we note
s ≡P t, when s ≡PA t for each coalition A.

It is worthwhile observing that ≡PA (resp. ≡P) is an equivalence relation.

200 S. Cerrito and A. David

Remark 2. It is important to observe that given a harmonious partition P of the
set of states of a CGM, the behavioural equivalence w.r.t. P of two states for a
coalition does not imply their behavioural equivalence for another coalition. To
see this, let us consider Example 2.

Example 2. Let M1 be a CGM having four states: s1, s2, s3 and s4, and three
agents, 1, 2 and 3. Let p be the only boolean variable and let: L(s1) = L(s2) =
{p}, L(s3) = L(s4) = ∅. Each agent can play either action 0 or action 1 at states
s1 and s2, and only action 3 at s3 and s4. The transitions are: out(s1, 〈0, 0, 0〉) =
out(s1, 〈1, 1, 1〉) = s3, out(s1, α1〉) = s1 for any other global move α1 available
at s1, out(s2, 〈0, 0, 0〉) = out(s2, 〈0, 0, 1〉) = s4, out(s2, α2〉) = s2 for any other
global move α2 available at s2, out(s3, 〈3, 3, 3〉) = s3 and out(s4, 〈3, 3, 3〉) = s4.

Let P be the harmonious partition of the set of states where s1 and s2 are
in the cluster C1, while s3 and s4 are in the cluster C2. For A = {1} it is easy
to see that s1 ≡PA s2. In fact, action 0 available at s1 is simulated by action 0
available at s2 and also action 1 available at s1 is simulated by action 0 available
at s2. Conversely, action 0 at s2 is simulated by action 0 (or 1) at s1. However,
for A′ = {1, 2}, s1 �≡PA′ s2. Indeed, at state s1 the formula 〈〈1, 2〉〉 © ¬p is
false, while at state s2 it is true (it suffices to play 〈0, 0, ∗〉). This shows that the
equivalence of states for a coalition A does not imply the equivalence for each
coalition A′ such that A ⊂ A′.

The same example shows that the equivalence of states for a coalition A′′

does not imply the equivalence for each coalition A′′′ such that A′′′ ⊂ A′′. In
fact, take A′′ = {1, 2, 3}. If the coalition plays the global move 〈0, 0, 0〉 at s1,
which leads to the cluster C2, then it can play the same move at s2 to get the
same effect; if it plays 〈1, 1, 1〉 at s1 then it can play either 〈0, 0, 0〉 or 〈0, 0, 1〉 at
s2 to get the same effect; finally, if it plays any move different form 〈0, 0, 0〉 and
〈1, 1, 1〉 at s1, then it can play any move different form 〈0, 0, 0〉 and 〈0, 0, 1〉 at s2
to get the same effect. A symmetrical reasoning on the actions that the coalition
A′′ can play at s2 allow us to conclude that s1 ≡PA′′ s2. However taking the
subset coalition A′′′ to be {1, 2} we get, as already seen, that s1 �≡PA′′′ s2.

Below we always assume that S is finite.

Definition 6 (Stability). Given a partition P = {C1, . . . , Cn} of the set of
states S of a CGM and a relation r ⊆ S × S, P is stable w.r.t. r when, for any
1 ≤ i ≤ n, s, t ∈ Ci implies s r t.

If P is stable w.r.t. ≡P , then obviously it is stable w.r.t. ≡PA for each
coalition A.

Our minimization procedure builds step by step the coarsest harmonious
partition P of the set of states of the model M to be minimized that is stable
w.r.t. ≡P . Then it builds out of P a minimal model bisimilar to M as a quotient
of S with respect the equivalence ≡P .

Definition 7 (Quotient model). Let M be a CGM

〈A,S, {Acta}a∈A, {acta}a∈A, out, L〉

Minimisation of ATL∗ Models 201

Let P = {C1, . . . , Cn} be a harmonious partition of S that is stable w.r.t. ≡P .
Let ρ be a function associating to each cluster Ci of P an element of Ci as
representative element of Ci.

A quotient-model M′ of M w.r.t. ≡P and ρ is defined as a

M′ = 〈A,S′, {Acta}a∈A, {act′a}a∈A, out′, L′〉

where:

– S
′ is the set of clusters in P : S′ = {C1, . . . , Cn};

– For any C ∈ S
′, a ∈ A, α ∈ Acta, we set α ∈ act′a(C) if and only if

α ∈ acta(ρ(C));
– The set {Act′a}a∈A is constructed accordingly;
– Ci is connected to Cj via σA if and only if in the model M we have

out(ρ(Ci), σA) ∈ Cj. This defines the transition function out′.
More precisely:
for any Ci, Cj ∈ S

′, for any global move σA such that, for any a ∈ A, σA(a) ∈
act′a(Ci), we set: out′(Ci, σA) = Cj if and only if there is some t ∈ Cj such
that t ∈ out(ρ(Ci), σA);

– For any Ci, L′(Ci) = L(s), for any s ∈ Ci.

Let us observe that, formally, the construction of a quotient model M′ of M
depends not only on the partition P , but also on the choice ρ of a representative
state ri of Ci. However, given a partition P that is stable with respect to the
relation ≡P , the choice of ρ can have an effect only on labels of connecting edges
in M′ but not on the existence of a connection between two states of M′ (that is,
clusters of P). In fact, let Ci be a cluster, ri be a state in M such that ρ(Ci) = ri

and s be any other element of Ci. Then s ≡P ri by construction, therefore:

– If σA leads from ri to a t ∈ Cj in M then by definition there is some global
action leading from s to some state (possibly another than t) that belongs to
the same cluster Cj ;

– If no global action leads from ri to Cj in M then no global action leads from
s to Cj in M. In fact if some global action σA leads from s to some state in Cj

then some global action σ′
A

leads from ri to some state in Cj , since s ≡P ri.

Therefore a quotient model of M w.r.t. a harmonious partition P of M’s
states is unique modulo renaming of edge labels.

The following result states that a quotient model of M, as defined above, is
indeed bisimilar to M.

Theorem 2. Let M be a CGM 〈A,S, {Acta}a∈A, {acta}a∈A, out, L〉. Let P =
{C1, . . . , Cn} be a harmonious partition of its states that is stable w.r.t. ≡P and
let ρ be a function choosing representative elements from clusters. Let M′ =
M′ = 〈A,S′, {Acta}a∈A, {act′a}a∈A, out′, L′〉 be a quotient-model of M w.r.t. ≡P

and ρ. Then the relation β ⊆ S × S
′ defined by: sβCi iff s ∈ Ci is a global

alternating bisimulation between M and M′.

202 S. Cerrito and A. David

The proof of Theorem2 is given in the last section of [CD].
As a consequence of Theorem 2 and Theorem 1 we get that if M is a model,

P a partition of its states that is stable w.r.t. ≡P , M′ a corresponding quotient
model, and finally, φ is any ATL* formula (over the given sets of propositions
and agents), then M is a model of φ if and only if M′ is a model of φ.

3.2 Minimization Algorithm

When the model M to be minimized has a finite number of states, as it is in our
intended application to model minimization in TATL, a maximal bisimulation
relation β ⊆ S× S, hence a corresponding minimal partition P of S stable w.r.t.
≡P inducing a minimal quotient model of a CGM M, can be given a stepwise
characterization and effectively constructed, analogously to the case of labelled
partition systems. More precisely:

Definition 8 (Stratified bisimilarity relations). Given a CGM 〈A,S,
{Acta}a∈A, {acta}a∈A, out, L〉, the stratified alternating bisimulation relations
βk ⊆ S × S for k ∈ N are defined as follows:

– s1β0s2 iff s1, s2 ∈ S and L(s1) = L′(s2);
– s1βk+1s2 iff s1βks2, L(s1) = L′(s2) and for each coalition A ⊆ A:

1. Forth. For any αA ∈ actA(s1) there is an α′
A ∈ act′A(s2) such that for

any t2 ∈ Out(s2, α′
A) there exists t1 ∈ Out(s1, αA) such that t1βkt2.

2. Back. For any αA ∈ actA(s2) there is an α′
A ∈ act′A(s1) such that for

any t3 ∈ Out(s1, α′
A) there exists t4 ∈ Out(s2, αA) such that t3βkt4.

– By construction, for any k we have βk+1 ⊆ βk. Set the relation β∗ to be⋂
k∈N

βk.

When | S | is finite, the relation β∗ can be obviously be computed in finite
time since there is a j, 0 ≤ j ≤| S | such that β∗ = βj . By Remark 1 any full
alternating bisimulation relation that is a subset of S × S is a fixpoint solution
of the equation X = E(X), where X is a subset of S × S having the property
that if 〈q, q′〉 ∈ X then L(q) = L′(q′). We have:

Theorem 3. The relation β∗ is the maximal fixpoint solution of the equation
X = E(X).

This can be shown by arguments similar to those proving an analogous claim
for labelled transition systems [HM85]. The detailed proof can be found in the
last section of the longer version of this work [CD].

Remark 3. We can observe that if Pk is the harmonious partition of S corre-
sponding to a given stratified alternating bisimulation relation βk then s1 ≡Pk

s2
(as in Definition 5) if and only if s1βk+1s2. The two formalizations capture the
same concept, but behavioural equivalence directly corresponds to the implemen-
tation of our minimization algorithm (see Sect. 4). Moreover, any harmonious
partition P of the set of states of a model M is stable w.r.t. the relation ≡P

Minimisation of ATL∗ Models 203

(as in Definition 6) if and only if ≡P is a solution of the equation X = E(X),
although not necessarily the maximal one, corresponding to the minimal, i.e
coarsest, partition. The partition of S induced by β∗ is the minimal partition
that is stable with respect ≡P .

Let P ∗ be the partition of the states S of a CGM M induced by β∗. The quo-
tient model of M with respect to ≡P ∗ is the minimization of M with respect to
alternating bisimilarity. This yields an algorithm that minimizes M by comput-
ing, step by step, the partition P ∗ starting from an initial partition; its under-
lying general principle is:

Let P0, the initial partition, be such that s1, s2 ∈ S belong to the same cluster
if and only if L(s1) = L′(s2). For each i > 0, refine the partition Pi−1 until
Pi−1 = Pi.Output Pi as the value of P ∗.

4 Implementation and Application to TATL

We have implemented (in OCaml, the same language used for TATL) our min-
imization algorithm in order to add to TATL a new functionality: the mini-
mization of the model extracted from an open tableau for an input formula φ
by executing the procedure given by the completeness proof for ATL∗ tableaux
in [Dav15]. So far, TATL does not show any model, but only the tableau. The
forthcoming version of TATL will allow the user to visualize the model generated
by the completeness proof procedure and also its minimization. In this section
we give the pseudo-code of our implementation.

Obviously the algorithm terminates, because the number of iterations of the
main loop is upper bounded by the size of the set of states, which is finite.

The core function is SPLIT that splits a cluster of the current partition Pi in
two clusters whenever two states s and t in it are not behaviourally equivalent
with respect to Pi; to do so it calls the function EQUIVALENCE. In the pseudo-
code of this function, clusterS is the set of all the clusters of the current partition
containing some successor of the state s, according to the transition function;
the meaning of clusterT is analogous. EQUIVALENCE checks the behavioural
equivalence of states w.r.t. the current partition for each coalition A (as in
Definition 5), by means of the function EQUIVALENCE BY COALITIONS. For
space reason, the pseudo code of this last function is not given here. This function
checks if two states in a given cluster of the current partition P are behaviourally
equivalent with respect to P for all coalitions or not, which inevitably makes the
program to have an exponential complexity. It is necessary to check each coali-
tion because behavioural equivalence of two states w.r.t. the current partition for
a given coalition does not imply equivalence for another coalition (see Remark 2
and Example 2).

The following result states the correction of our procedure with respect to the
specification of minimizing the input model relatively to alternating bisimulation.
Below, by “application of REFINE to M” we mean the execution of REFINE
where the initial partition is such that two states of M are in the same cluster
if and only if they have the same labels.

204 S. Cerrito and A. David

Algorithm 1. REFINE
Function Main()

P ← initial partition
change ← true
while change do

change ← false
for all cluster B ∈ P do

if SPLIT(B,P) = {B1, B2} �= {B} then
Refine P by replacing B by B1 and B2

change ← true
end if

end for
end while

Function SPLIT(B,P)
choose a state s ∈ B
B1, B2 ← ∅
for all t ∈ B do

if EQUIVALENCE(s, t, P) then
B1 ← B1 ∪ {t}

else
B2 ← B2 ∪ {t}

end if
end for
if B2 = ∅ then

return {B1}
else

return {B1, B2}
end if

Function EQUIVALENCE(s, t, P)
if s = t then

true
else

if L(s) = L(t) then
clusterS ← set of successor clusters of s
clusterT ← set of successor clusters of t
if clusterS = clusterT then

EQUIVALENCE BY COALITIONS(s, t, P)
else

false
end if

else
false

end if
end if

Minimisation of ATL∗ Models 205

Theorem 4. Let M be an ATL∗ model. The procedure that applies REFINE to
M, computing the partition P ∗ of M’s states, and outputs the model M’ that is
the quotient model of M with respect to P ∗, is such that M’ is minimal among
the models that are bisimilar to M.

Proof of Theorem 4. First, we show that the output of REFINE is the partition
P ∗ associated to β∗, where β∗ is as in Definition 8. Let P0 denote the initial
partition of the procedure, P1, P2. . .Pm the partitions computed in the main
loop until stability, r0, r1, r2 . . . rm the corresponding equivalence relations, and
r = rm the relation corresponding to the final result P . An easy induction on
i ∈ N proves that β∗ ⊆ βi ⊆ ri. Hence β∗ ⊆ r. For the converse inclusion, let
us observe that if P is the result of the main procedure, then P is stable w.r.t.
≡P (see the definition of the function SPLIT). By Remark 3, r is a solution of
the fixed point equation X = E(X). Hence r ⊆ β∗, because, by Theorem 3, β∗

is the maximal solution of such an equation. Thus β∗ = r.
Then, the result follows as a consequence of the previous theorems. ��

Also the model extraction function from a tableau (via the procedure of the com-
pleteness proof) has been implemented and partial tests of our implementation
of the minimization algorithm applied to the model extracted by the tableau
have been done, but a complete and representative set of test cases still needs
to be constructed.

The last figure illustrates the minimization procedure via a simple example,
with one agent, chosen among the tests so far done. The input formula φ of
the tableau, as provided to the software TATL, is exhibited on the top: it is
〈〈1〉〉((〈〈1〉〉�〈〈∅〉〉©♦�a)∧ (©(¬b∧¬a))), where a and b are propositional letters
and ∅ is the empty coalition. The graph on the left, having eight states, is the
model of the formula produced by the completeness procedure: it satisfies φ at
state n1. At the right, the minimized model, having three states and satisfying
φ at state n1. The literals holding at each state are indicated inside each state
ellipse (Fig. 2).

5 Conclusions

Up to our knowledge, the algorithm proposed in this work is the first procedure
that minimizes ATL∗ models with respect to alternating bisimulation.

This algorithm has a time complexity that is exponential in the size of A,
since, as observed, all the coalitions – that is all the subsets of A– need to be
checked in order to conclude that a given cluster of the current partition does
not need to be split. It is interesting to compare it with the classical partition-
refinement minimization algorithms for labelled transition systems, whose com-
plexity depend only on the number n of states of the system and the number
m of transitions: the algorithm in [KS90] has time complexity O(nm) while the
optimized algorithm in [PT87] has time complexity m log n.

In [KS90,LIS12], that have inspired our work, the minimization procedure
acts on structures that are independent of any syntax and any logic: labelled
transition systems where only edges are labelled; these structure are not Kripke

206 S. Cerrito and A. David

Fig. 2. Input (left) and output (right) of the minimization algorithm

models of any logic. However, it is immediate to extend that approach to min-
imize CTL∗ models with respect to bisimulation.2 The global structure of that
procedure is the same as for REFINE. The crucial difference is at the level of
the very notion of bisimulation (alternating bisimulation, for ATL∗), which is
both conceptually and algorithmically more complex for ATL∗ than for CTL∗.
This is obviously tied to the different semantics: labelled transition systems can
be seen as concurrent game structures with exactly one agent. This difference is
reflected by the different behaviour of the function SPLIT for the two logics.

Although the problem of minimizing an ATL∗ model is intrinsically exponen-
tial, it would be interesting to face issues of optimisation of our algorithm with
the view of making it more efficient for practical use.

As we said, we implemented and tested our algorithm, but a large, complete
and representative set of test cases is still ongoing work. When this will be
finished we will add to the prover TATL the functionality of exhibiting minimized
models of the input formula.

In this work we have considered only ATL∗ with perfect information. Recently
a definition of bisimilarity of models coping with imperfect information has
been proposed [BCD+17] and it might be interesting to explore the possibil-
ity of extending our study to the minimization of models of ATL∗ with imperfect
information.

2 A similar approach might be used also for models of the µ-calculus.

Minimisation of ATL∗ Models 207

Aknowledgements. The authors would like to thank Damien Regnault and Marta
Cialdea Mayer for their careful reading of first drafts of this work and for their useful
remarks. The very first ideas underlying this work rose in the context of the direction of
a project of two fourth year university students at the university of Evry Val d’Essonne:
Lylia Bellabiod and Théo Chelim.

References

[ÅGJ07] Ågotnes, T., Goranko, V., Jamroga, W.: Alternating-time temporal log-
ics with irrevocable strategies. In: Proceedings of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK-2007), Brussels,
Belgium 25–27 June 2007, pp. 15–24 (2007)

[AHK02] Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic.
J. ACM 49(5), 672–713 (2002)

[BCD+17] Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., Jones, A.V.:
Bisimulations for verifying strategic abilities applied to voting protocols.
In: Proceedings of AAMAS 2017. IFAAMAS (2017)

[BLW09] Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in
DLs. J. Artif. Intell. Res. 35, 717–773 (2009)

[BY00] Bry, F., Yahya, A.: Positive unit hyperresolution tableaux and their appli-
cation to minimal model generation. J. Autom. Reason. 25(1), 35–82 (2000)

[CD] Cerrito, S., David, A.: Minimisation of ATL* models: extended draft.
https://www.ibisc.univ-evry.fr/∼serena/MiniDraft.pdf

[CDG14] Cerrito, S., David, A., Goranko, V.: Optimal tableaux-based decision
procedure for testing satisfiability in the alternating-time temporal logic
ATL+. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS, vol. 8562, pp. 277–291. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 21

[Dav] David, A.: TATL: tableaux for ATL*. http://atila.ibisc.univ-evry.fr/
tableau ATL star/index.php

[Dav15] David, A.: Deciding ATL∗ satisfiability by tableaux. In: Felty, A.P.,
Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 214–228. Springer,
Cham (2015). doi:10.1007/978-3-319-21401-6 14

[DGL16] Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science.
Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge (2016)

[GGOP08] Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning about
typicality in preferential description logics. In: Hölldobler, S., Lutz, C.,
Wansing, H. (eds.) JELIA 2008. LNCS, vol. 5293, pp. 192–205. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87803-2 17

[GH09] Grimm, S., Hitzler, P.: A preferential tableaux calculus for circumscriptive
ALCO. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp.
40–54. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05082-4 4

[GHS01] Georgieva, L., Hustadt, U., Schmidt, R.A.: Computational space efficiency
and minimal model generation for guarded formulae. In: Nieuwenhuis, R.,
Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 85–99.
Springer, Heidelberg (2001). doi:10.1007/3-540-45653-8 6

[HFK00] Hasegawa, R., Fujita, H., Koshimura, M.: Efficient minimal model gen-
eration using branching lemmas. In: McAllester, D. (ed.) CADE 2000.
LNCS, vol. 1831, pp. 184–199. Springer, Heidelberg (2000). doi:10.1007/
10721959 15

https://www.ibisc.univ-evry.fr/~serena/MiniDraft.pdf
http://dx.doi.org/10.1007/978-3-319-08587-6_21
http://dx.doi.org/10.1007/978-3-319-08587-6_21
http://atila.ibisc.univ-evry.fr/tableau_ATL_star/index.php
http://atila.ibisc.univ-evry.fr/tableau_ATL_star/index.php
http://dx.doi.org/10.1007/978-3-319-21401-6_14
http://dx.doi.org/10.1007/978-3-540-87803-2_17
http://dx.doi.org/10.1007/978-3-642-05082-4_4
http://dx.doi.org/10.1007/3-540-45653-8_6
http://dx.doi.org/10.1007/10721959_15
http://dx.doi.org/10.1007/10721959_15

208 S. Cerrito and A. David

[Hin88] Hintikka, J.: Model minimization - an alternative to circumscription. J.
Autom. Reason. 4(1), 1–13 (1988)

[HM85] Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concur-
rency. J. ACM 32(1), 137–161 (1985)

[KS90] Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and
three problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

[LIS12] Aceto, L., Ingolfsdottir, A., Jiri, S.: The algorithmics of bisimilarity. In:
Sangiorgi, D., Rutten, J. (eds.) Advanced Topics in Bisimulation and Coin-
duction, pp. 100–171. Cambridge University Press, Cambridge (2012)

[Lor94] Lorenz, S.: A tableau prover for domain minimization. J. Autom. Reason.
13(3), 375–390 (1994)

[McC87] McCarthy, J.: Circumscription: a form of non-monotonic reasoning. In:
Ginsberg, M.L. (ed.) Readings in Nonmonotonic Reasoning, pp. 145–151.
Kaufmann, Los Altos (1987)

[Nie96] Niemelä, I.: A tableau calculus for minimal model reasoning. In:
Miglioli, P., Moscato, U., Mundici, D., Ornaghi, M. (eds.) TABLEAUX
1996. LNCS, vol. 1071, pp. 278–294. Springer, Heidelberg (1996). doi:10.
1007/3-540-61208-4 18

[PS14] Papacchini, F., Schmidt, R.A.: Terminating minimal model generation
procedures for propositional modal logics. In: Demri, S., Kapur, D.,
Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 381–395.
Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 30

[PT87] Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J.
Comput. 16(6), 973–989 (1987)

http://dx.doi.org/10.1007/3-540-61208-4_18
http://dx.doi.org/10.1007/3-540-61208-4_18
http://dx.doi.org/10.1007/978-3-319-08587-6_30

Non-clausal Connection Calculi
for Non-classical Logics

Jens Otten(B)

Department of Informatics, University of Oslo,
PO Box 1080, Blindern, 0316 Oslo, Norway

jeotten@ifi.uio.no

Abstract. The paper introduces non-clausal connection calculi for first-
order intuitionistic and several first-order modal logics. The notion of
a non-clausal matrix together with the non-clausal connection calcu-
lus for classical logic are extended to intuitionistic and modal logics by
adding prefixes that encode the Kripke semantics of these logics. Details
of the required prefix unification and some optimization techniques are
described. Furthermore, compact Prolog implementations of the intro-
duced non-classical calculi are presented. An experimental evaluation
shows that non-clausal connection calculi are a solid basis for proof search
in these logics, in terms of time complexity and proof size.

1 Introduction

Intuitionistic and modal logics are among the most popular non-classical log-
ics. Intuitionistic logic is used, e.g., within interactive proof assistants, such as
NuPRL [4] and Coq [2]. Modal logics have applications in, e.g., planning, natural
language processing, and program verification. Hence, (fully) automated reason-
ing in these logics is an important task and many applications would benefit
from more powerful reasoning tools. Unfortunately, automated theorem proving
(ATP), i.e., deciding whether a formula is valid in these non-classical logics is
even harder than for classical logic. For the propositional fragment, intuitionistic
and (most) modal logics are PSPACE-complete whereas classical logic is “only”
NP-complete. Adapting complex ATP systems for classical first-order logic to
these non-classical logics is in general not easily possible.

A popular approach for dealing with intuitionistic and modal logics is to
encode their Kripke semantics with so-called labels or prefixes [22,23]. Two of
the most powerful ATP systems for these logics, ileanCoP [11] and MleanCoP [14],
use prefixes and are based on clausal connection calculi [10]. While the use of
a clausal form technically simplifies the proof calculus, the standard translation
as well as the definitional translation into clausal form introduce a significant
overhead into the proof search [12]. Furthermore, both translations modify the
original structure of the formula.

This paper introduces prefixed non-clausal connection calculi for first-order
intuitionistic and several first-order modal logics. Syntax, semantics, prefixes

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 209–227, 2017.
DOI: 10.1007/978-3-319-66902-1 13

210 J. Otten

and the underlying matrix characterizations are described (Sect. 2). Afterwards,
non-clausal calculi are presented together with prefixed non-clausal matrices
and the required prefix unifications for intuitionistic logic (Sect. 3) and modal
logic (Sect. 4). After the description of some optimization techniques (Sect. 5),
compact implementations of these non-clausal calculi are presented (Sect. 6) and
evaluated (Sect. 7). The paper concludes with a short summary and an outlook
on future work (Sect. 8).

2 Preliminaries

The standard notation for first-order formulae is used. Terms (denoted by t) are
built up from functions (denoted by f), constants and (term) variables (denoted
by x). An atomic formula (denoted by A) is built up from predicate symbols
and terms. A (first-order) formula (denoted by F,G,H) is built up from atomic
formulae, the connectives ¬,∧,∨,⇒, and the standard first-order quantifiers ∀
and ∃. A literal L has the form A or ¬A. Its complement L is A if L is of the
form ¬A; otherwise L is ¬L. A connection is a set {A,¬A} of literals with the
same predicate symbol but different polarity. A quantifier or term substitution
σQ is a mapping from the set of term variables to the set of terms. In σQ(L) all
term variables x in L are substituted by their image σQ(x).

2.1 Intuitionistic Logic

Intuitionistic logic and classical logic share the same syntax, but their semantics
is different. For example, the formula A∨¬A is valid in classical logic but not in
intuitionistic logic. The semantics of intuitionistic logic requires a proof for A or
for ¬A. As this property neither holds for A nor for ¬A, the formula is not valid
in intuitionistic logic. Formally, the semantics of intuitionistic logic is specified
by a Kripke semantics [23].

Hence, the following three rules of the (multi-succedent) sequent calculus for
intuitionistic logic [6,23] differ from the ones for classical logic:

Γ, G �
Γ � ¬G, Δ

¬-right ,
Γ, G � H

Γ � G ⇒ H, Δ
⇒-right ,

Γ � G[x\a]

Γ � ∀x G, Δ
∀-right .

In all three rules the set of formulae Δ does not occur in the sequent of the
premises anymore. As these formulae might be necessary within a bottom-up
search in order to complete a proof, the application of these rules need to be
controlled. To this end, a prefix is assigned to each subformula G of a given
formula F .

Definition 1 (Intuitionistic prefix). A prefix (denoted by p, q) is a string
(sequence of characters) over an alphabet Φ ∪ Ψ , in which Φ is a set of prefix
variables (V1, . . .) and Ψ is a set of prefix constants (a1, . . .). For every ¬/⇒/ ∀
or atomic formula A preceding a subformula G of a formula F , an element of
Φ or Ψ is added to the prefix p of G depending on the “polarity” of ¬/⇒/ ∀/A
(see [23] or Sect. 3 for details).

Non-clausal Connection Calculi for Non-classical Logics 211

Semantically, a prefix encodes a sequence of worlds in a Kripke model. Proof-
theoretically, prefix constants and variables represent applications of the rules
¬-right,⇒-right,∀-right, and ¬-left , ⇒-left , ∀-left in the sequent calculus, in the
sequent calculus, respectively. The prefix p of a subformula G, denoted by pre(G)
or G : p, specifies the sequence of these rules that have to be applied (bottom-up)
to obtain G in the sequent. In order to preserve the atomic formulae that form
an axiom in the intuitionistic sequent calculus, their prefixes need to unify under
an intuitionistic substitution σJ . An additional domain condition ensures that
σQ and σJ are mutually consistent [23].

Definition 2 (Intuitionistic substitution; σ-complementary). An intu-
itionistic substitution σJ : Φ → (Φ ∪ Ψ)∗ maps elements of Φ to strings over
Φ ∪ Ψ . In σJ(p) prefix variables are replaced according to σJ . A connection
{L1 : p1, L2 : p2} is σ-complementary for a combined substitution σ=(σQ, σJ) iff
σQ(L1)= σQ(L2) and σJ(p1)= σJ(p2). σ is admissible iff the cumulative domain
condition holds (see Sect. 2.2).

2.2 Modal Logics

Modal logics extend the syntax of classical logic with the unary modal operators
� and ♦. They are used to represent the modalities “it is necessarily true that”
and “it is possibly true that”, respectively. The Kripke semantics of the standard
modal logics are defined by a set of worlds W and a binary accessibility relation
Ri ⊆ W × W between these worlds. In each single world w ∈ W the classical
semantics applies to the standard connectives and quantifiers, whereas the modal
operators are interpreted with respect to accessible worlds: �F or ♦F are true
in a world w, if F is true in all worlds w′ or some world w′ with (w,w′)∈R,
respectively. The properties of the accessibility relation R determine the specific
modal logic. In this paper the modal logics D, T, S4, and S5 are considered.
Their accessibility relation is serial (D)1, reflexive (T), reflexive and transitive
(S4), or an equivalence relation (S5). The standard semantics is considered with
rigid term designation, i.e. every term denotes the same object in every world,
and terms are local, i.e. any ground term denotes an existing object in every
world.

The sequent calculus for the (cumulative) modal logics D, T, and S4 consists
of the axiom and rules of the classical sequent calculus and four additional modal
rules:

Γ+, F � Δ+

Γ, �F � Δ
�-left

Γ+ � F, Δ+

Γ � ♦F, Δ
♦-right

Γ ∗ � F, Δ∗

Γ � �F, Δ
�-right

Γ ∗, F � Δ∗

Γ, ♦F � Δ
♦-left

logic Γ+ Δ+ Γ ∗ Δ∗

D Γ(�) Δ(♦) Γ(�) Δ(♦)

T Γ Δ Γ(�) Δ(♦)

S4 Γ Δ Γ� Δ♦

1 A relation R ⊆ W × W is serial iff for all w1 ∈ W there is some w2 ∈ W with
(w1, w2) ∈ R.

212 J. Otten

with Γ� := {�G |�G ∈ Γ}, Δ♦ := {♦G |♦G ∈ Δ}, Γ(�) := {G |�G ∈ Γ}, and
Δ(♦) := {G |♦G ∈ Δ}. To avoid deleting formulae in the sets Γ ∗, Δ∗, Γ+ and
Δ+ that are required for a proof, the (bottom-up) application of the modal rules
need to be controlled. Again, a prefix is used to name sequences of accessible
worlds and assigned to each subformula G of a given formula F .

Definition 3 (Modal prefix). A prefix (denoted by p, q) is a string (sequence
of characters) over an alphabet ν ∪ Π, in which ν is a set of prefix variables
(V1, . . .) and Π is a set of prefix constants (a1, . . .). For every � /♦ preceding
a subformula G of a formula F , an element of ν or Π is added to the prefix p
of G depending on the “polarity” of � /♦ (see [23] or Sect. 4 for details).

Semantically, a prefix denotes a sequence of worlds in a model. Proof-
theoretically, prefix variables and constants represent applications of the rules
�-left/♦-right and �-right/♦-left, respectively. A prefix of a formula F captures
the modal context of F and specifies the sequence of modal rules that have to
be applied (bottom-up) in order to obtain F in the sequent. In order to preserve
the atomic formulae that form an axiom in the modal sequent calculus, their
prefixes need to unify under a modal substitution σM .

Definition 4 (Modal substitution). A modal substitution σM : ν → (ν ∪
Π)∗ maps elements of ν to strings over ν ∪ Π. In σM (p) prefix variables are
replaced according to σM . A connection {L1 : p1, L2 : p2} is σ-complementary
for a substitution σ=(σQ, σM) iff σQ(L1)= σQ(L2) and σM (p1)= σM (p2). σ is
admissible iff the accessibility condition and the domain condition hold. For S5
only the last prefix character is considered.

The accessibility and the domain condition ensure that the modal substitution
respects the accessibility relation and domain variant of the considered modal
logic.

Definition 5 (Accessibility condition; domain condition). For the modal
logics D and T the accessibility condition |σM (V)|=1 or |σM (V)|≤1, respec-
tively, has to hold for all V ∈ν. The domain condition ensures that all “eigen-
variables” x̄ in a term t assigned to a variable x exist in the same world as
x. In case of the varying domain variants, objects may only exist in the world
in which they are introduced, hence, σM (pre(x̄)) = σM (pre(x)) has to hold.2

For the cumulative domain variants, x̄ has to be introduced before x, hence,
σM (pre(x̄)) � σM (pre(x)).3 For the constant domain variants there is no restric-
tion on the substitutions as every object exists in every world. Furthermore, the
reduction ordering induced by σ has to be irreflexive (see [23] for details).

2 pre(x) for a variable x is the prefix pre(QxG) of the corresponding subformula QxG,
Q∈{∀, ∃}.

3 u � w holds iff u is an initial substring of w or u = w. This condition, as well as the
fact that there is no accessibility condition for S5, are slightly corrected conditions
of [23].

Non-clausal Connection Calculi for Non-classical Logics 213

2.3 Matrix Characterizations

For the matrix characterization of validity in non-classical logics, the notion
of matrices is generalized to arbitrary first-order formulae as already done for
classical logic [13].

Definition 6 (Matrix). A (non-clausal) matrix M(F), representing a formula
F , is a set of clauses, in which a clause is a set of literals and matrices (see [13]
for details).

Whereas the definition of paths needs to be generalized to non-clausal
matrices4, all other concepts used for clausal matrices, e.g. the definitions of
connections and term substitutions remain unchanged.

Definition 7 (Path). A path through a matrix M (or a clause C) is induc-
tively defined as follows. The (only) path through a literal L is {L}. If p1, . . . , pn
are paths through the clauses C1, . . . , Cn, respectively, then p1 ∪ . . . ∪ pn is a
path through the matrix M = {C1, . . . , Cn}. If p1, . . . , pn are paths through the
matrices/literals M1, . . . ,Mn, respectively, then p1, . . . , pn are also paths through
the clause C = {M1, . . . ,Mn}.

The notion of multiplicity is used to encode the number of clause copies used
in a proof. It is a function μ : MC → IN from the set of clauses MC in M that
assigns a natural number to each clause in M specifying how many copies of
this clause are considered in a proof. In the copy of a clause C every (term and
prefix) variable in C is replaced by a unique new variable. Mµ denotes the matrix
that includes these clause copies. Clause copies correspond to applications of the
contraction rule in the sequent calculus.

Theorem 1 (Matrix characterization for non-classical logic [23]). A
formula F is valid in intuitionistic /modal logic iff there is (1) a multiplicity
μ, (2) an admissible substitution σ = (σQ, σJ) /σ = (σQ, σM), and (3) a set of
σ-complementary connections, such that every path through Mµ(F) contains a
connection from this set.

Any proof method that is based on the matrix characterization and operates
in a connection-oriented way is called a connection method [3,17]. The specific
calculus of a connection method is called a connection calculus.

3 Intuitionistic Logic

The connection calculus for intuitionistic logic to be introduced now is based
on the matrix characterization of logical validity presented in Sect. 2.3. It uses
a connection-driven search strategy in order to calculate an appropriate set of
connections. The prefixed non-clausal matrix is the main concept used in the
intuitionistic connection calculus. Furthermore, the use of prefixes requires an
additional prefix unification algorithm.
4 The original characterization [23] uses a “tableau-like” definition and not non-clausal

matrices.

214 J. Otten

3.1 Prefixed Non-clausal Matrices

An intuitionistic non-clausal matrix is a set of prefixed clauses, which consist
of prefixed literals and prefixed (sub)matrices. The polarity 0 or 1 is used to
represent negation in a matrix, i.e. literals of the form A and ¬A are represented
by A0 and A1, respectively.

The irreflexivity test of the reduction ordering is realized by the occurs check
during the term and prefix unifications. To this end, the skolemization technique,
originally used to eliminate eigenvariables in classical logic, is extended and also
used for prefix constants, a technique that is already used in the intuitionistic
clausal calculus [10].

In the following, ε denotes the empty string, u ◦ w (shortly uw) denotes the
concatenation of the strings u and w, and G[x\t] denotes the formula G in which
all free occurrences of the variable x are replaced by the term t.

Definition 8 (Intuitionistic non-clausal matrix). Let F be a formula, pol
be a polarity, and p be a prefix. The intuitionistic (non-clausal) matrix M(F pol:p)
of a prefixed formula F pol:p is a set of prefixed clauses, in which a prefixed
clause is a set of prefixed literals and prefixed (non-clausal) matrices, and defined
inductively according to Table 1. x∗ is a new term variable, t∗ is the Skolem term
f∗(x1, . . . , xn) in which f∗ is a new function symbol and x1, . . . , xn are all free
term and prefix variables in (∀xG)0 : p or (∃xG)1 : p. V ∗ is a new prefix variable,
a∗ is a prefix constant of the form f∗(x1, . . . , xn) in which f∗ is a new function
symbol and x1, . . . , xn are all free term and prefix variables in A0 : p, (¬G)0 : p,
(G⇒H)0 : p, or (∀xG)0 : p. The intuitionistic (non-clausal) matrix M(F) of F is
the intuitionistic matrix M(F 0 : ε).

In the graphical representation of a non-clausal matrix, its clauses are
arranged horizontally, while the literals and (sub-)matrices of each clause are
arranged vertically.

For example, the formula (P (a) ∧ ∀x(P (x)⇒P (f(x))) ⇒ P (f(f(a)))) ∧
(Q⇒Q) has the simplified (redundant brackets are omitted) intuitionistic non-
clausal matrix

{{ {{P (a)1: a1V1}, {P (x)0: a1V2V3a2(V2, x, V3), P (f(x))1: a1V2V3V4},
{P (f(f(a)))0: a1a3}}, {{Q1: a4V5}, {Q0: a4a5}} }}

Table 1. The definition of the prefixed non-clausal matrix for intuitionistic logic

Non-clausal Connection Calculi for Non-classical Logics 215

and the graphical representation (where a2(V2, x, V3) is a (skolemized) prefix
constant):

⎡
⎢⎣

⎡
⎢⎣

[[
P (a)1:a1V1

] [P (x)0:a1V2V3a2(V2, x, V3)
P (f(x))1:a1V2V3V4

] [
P (f(f(a)))0:a1a3

]]

[[
Q1:a4V5

] [
Q0:a4a5

]]

⎤
⎥⎦

⎤
⎥⎦ .

3.2 Prefix Unification

The intuitionistic substitution σJ is calculated by a prefix unification algo-
rithm [10]. For a given set of prefix equations Ē = {p1 = q1, . . . , pn = qn}, an
appropriate substitution σJ is a unifier such that σJ(pi)= σJ(qi) for all 1≤ i≤ n.
A set of unifiers Σ is a set of most general unifiers (mgu) for Ē if and only if every
unifier τ is an instance of some σ ∈ Σ (completeness) and no unifier σ ∈ Σ is
an instance of another unifier τ ∈ Σ (minimality). General algorithms for string
unification5 exist, but the number of most general unifiers might not be finite.
The following unification algorithm is more efficient, as it takes the prefix prop-
erty into account: for prefixes pi =u1Xw1 and pj =u2Xw2 (also in case i = j)
with X ∈Φ ∪ Ψ the property u1 = u2 holds. This reflects the fact that prefixes
correspond to sequences of connectives and quantifiers within the same formula.

Definition 9 (Intuitionistic prefix unification). The unification for the pre-
fix equation {p = q} is carried out by applying the rewriting rules R1 to R10
in Fig. 1. It is V, V̄ , V ′ ∈Φ with V �= V̄ , V ′ is a new prefix variable, a, b∈ Ψ ,
X ∈ Φ∪ Ψ , and u,w, z ∈ (Φ∪ Ψ)∗. For rule 10 the restriction (∗) u = ε or w �= ε
or X ∈ Ψ applies. σJ(V)= u is written {V \u}. The unification starts with the
tuple ({p = ε|q}, {}). The application of a rewriting rule E → E′, τ replaces the
tuple (E, σJ) by the tuple (E′, τ(σJ)). E and E′ are prefix equations, σJ and
τ are (intuitionistic) substitutions. The unification terminates when the tuple
({}, σJ) is derived. In this case, σJ represents a most general unifier. Rules can
be applied non-deterministically and lead to a set of mgu [10].

In the worst-case, the number of mgu grows exponentially with respect
to the length of the prefixes p and q. To solve a set of prefix equations

R1. {ε=ε|ε} → {},{}
R2. {ε=ε|Xu} → {Xu=|ε},{}
R3. {Xu=ε|Xw} → {u=|w},{}
R4. {au=ε|Vw} → {Vw=|au},{}
R5. {Vu=z|ε} → {u=|ε},{V\z}

R6. {Vu=ε|aw} → {u=ε|aw},{V\ε}
R7. {Vu=z|abw} → {u=ε|bw},{V\za}
R8. {Vau=ε|V̄w} → {V̄w=V |au},{}
R9. {Vau=Xz|V̄w} → {V̄w=V ′|au},{V\XzV ′}
R10. {Vu=z|Xw} → {Vu=zX |w},{} (∗)

Fig. 1. The prefix unification for intuitionistic logic and modal logic S4

5 This is also called the monoid problem; it is the equation theory in which there is a
neutral element ε and the associativity of the string concatenation operator ◦ holds.

216 J. Otten

Ē = {p1 = p1, . . . , qn = tq}, the equations in Ē are solved one after the other
and each calculated unifier is applied to the remaining prefix equations in Ē.

For example, for the prefix equation {a1V2V3 = a1a3} there are the two
derivations:

{a1V2V3 = ε|a1a3}, {} R3−→ {V2V3 = ε|a3}, {} R6−→ {V3 = ε|a3}, {V2\ε} R10−→
{V3 = a3|ε}, {V2\ε} R5−→ {ε = ε|ε}, {V2\ε, V3\a3} and {a1V2V3 = ε|a1a3}, {} R3−→
{V2V3 = ε|a3}, {} R10−→ {V2V3 = a3|ε},{} R5−→ {V3 = ε|ε},{V2\a3} R5−→ {ε = ε|ε},

{V2\a3, V3\ε},
which yield the most general unifiers σ1

J = {V2\ε, V3\a3} and σ2
J = {V2\a3, V3\ε}.

3.3 An Intuitionistic Non-clausal Connection Calculus

The non-clausal connection calculus for intuitionistic logic is an extension of
the non-clausal connection calculus for classical logic [13], in which a prefix
is added to each literal and an additional prefix unification is used to iden-
tify σ-complementary connections. According to the matrix characterization in
Sect. 2.3, a formula F is valid, iff all paths through its matrix Mµ(F) (with
added clause copies) contain a σ-complementary connection. The calculus uses
a connection-driven search strategy in order check this property. In each (reduc-
tion and extension) step of a derivation in the calculus, a σ-complementary
connection is identified and only paths that do not contain this connection are
investigated afterwards. If every path contains a σ-complementary connection,
the proof search succeeds and the given formula is valid. A non-clausal connec-
tion proof can be illustrated within the graphical matrix representation.

For example, the proof of the matrix from Sect. 3.1 consists of
four connections, marked by an arc in the graphical matrix represen-
tation, that are σ-complementary with σQ = {x\a, x′\fa}, σJ =
{V1\a2(ε, a, ε), V2\ε, V3\ε, V4\a2(ε, fa, ε), V ′

2\ε, V ′
3\ε, V ′

4\a3}:

But, e.g., for the formula P∨¬P there is no intuitionistic connection proof
of its matrix {{P 0: a1}, {P 1: a2A1}}, as the two prefixes of the only connection
cannot be unified.

A few additional concepts are required as follows in order to specify which
clauses can be used within the generalized non-clausal extension rule. The term
α-related is used to express that a clause occurs besides a literal in a matrix.
The definitions of free variables and clause copies have to be generalized to cover
non-clausal matrices.

Definition 10 (α-related; parent clause; clause copy). A clause C is α-
related to a literal L iff it occurs besides L in the graphical matrix representation;

Non-clausal Connection Calculi for Non-classical Logics 217

more precisely, C is α-related to a literal L iff {C ′, C ′′}⊆ M ′ for some matrix
M ′, such that C ′ contains L and C ′′ contains C (or C=C ′′). C ′ is a parent
clause of C iff M ′ ∈ C ′ and C ∈M ′ for some M ′. In the copy of a clause C all
free variables in C are replaced by fresh variables. M [C1\C2] denotes the matrix
M , in which the clause C1 is replaced by the clause C2.

Definition 11 (Extension clause; β-clause). C is an extension clause (e-
clause) of the matrix M with respect to a set of literals Path iff either (a) C
contains a literal of Path, or (b) C is α-related to all literals of Path occurring
in M and if C has a parent clause, it contains a literal of Path. In the β-clause
of C2 with respect to L2, denoted by β-clauseL2(C2), L2 and all clauses that are
α-related to L2 are deleted from C2.

In the example, the literal Q1:a4V5 is only α-related to the literal Q0:a4a5.
The parent clause of {Q1:a4V5} is the clause C ′ in the whole matrix {C ′} of the
example. Furthermore, the clause {Q0:a4a5} is an extension clause with respect
to {Q1:a4V5}.

The non-clausal connection calculus for intuitionistic logic adds prefixes and
an intuitionistic substitution σJ to the non-clausal connection calculus for clas-
sical logic.

Definition 12 (Intuitionistic non-clausal connection calculus). The
axiom and the rules of the intuitionistic (non-clausal) connection calculus are
given in Fig. 2. It works on tuples “C,M,Path”, where M is a prefixed non-
clausal matrix, C is a prefixed (subgoal) clause or ε and (the active) Path is a
set of prefixed literals or ε. σ = (σQ, σJ) is a combined term and intuitionistic
substitution. An intuitionistic (non-clausal) connection proof of a prefixed matrix
M is an intuitionistic connection proof of ε,M, ε.

Proof search in the non-clausal connection calculus is carried out by apply-
ing the rules of the calculus in an analytic way (i.e. bottom-up) starting with

Axiom (A) {},M,Path
Start (S)

C2,M,{}
ε,M, ε

andC2 is copy ofC1∈M

Reduction (R)
C,M,Path∪{L2 : p2}

C∪{L1 : p1},M,Path∪{L2 : p2} and {L1:p1,L2:p2} is σ -complementary

Extension (E)
C3,M[C1\C2],Path∪{L1 : p1} C,M,Path

C∪{L1: p1},M,Path

and C3:=β -clauseL2(C2), C2 is copy of C1, C1 is e-clause of M wrt.
Path∪{L1 : p1},C2 contains L2 : p2, {L1:p1,L2:p2} is σ -complementary

Decomposition (D)
C∪C1,M,Path

C∪{M1},M,Path
and C1∈M1

Fig. 2. The non-clausal connection calculus for intuitionistic and modal logic

218 J. Otten

ε,M, ε, in which M is the matrix of the given formula. At first, a start clause is
selected. Afterwards, connections are successively identified by applying reduc-
tion and extension rules. This process is guided by the active path, a subset of a
path through M . During the proof search, backtracking might be required, i.e.
alternative rules or rule instances have to be considered if the chosen rule or rule
instance does not lead to a proof. This might happen when choosing the clause
C1 in the start and extension rules, the literal L2 in the reduction and extension
rules or the clause C1 in the decomposition rule. The multiplicity μ is increased
dynamically whenever an extension rule is applied.

The substitutions σQ and σJ are rigid, i.e. applied to the whole derivation,
and calculated whenever a reduction or extension rule is applied. The term sub-
stitution σQ is calculated by one of the well-known algorithms for term unifica-
tion. The intuitionistic substitution is calculated by a prefix unification algorithm
(Sect. 3.2).

Theorem 2 (Correctness and completeness). A first-order formula F is
valid in intuitionistic logic iff there is a proof in the non-clausal connection
calculus for M(F).

The proof is based on the matrix characterization for modal logic
(Theorem 1), the correctness and completeness of the non-clausal connection
calculus for classical logic [13] and the correctness of the prefix unification [7].
It is crucial to use a “general” non-clausal approach [13] without optimizations
that work only for classical logic.

4 Modal Logic

The non-clausal connection calculus for modal logic is similar to the one for
intuitionistic logic; only the prefixed non-clausal matrix and the prefix unification
is adapted.

4.1 Prefixed Non-clausal Matrices

In the modal non-clausal matrix, prefixes are determined by the modal operators.
All other concepts, including the extended skolemization technique, are used in
the same way as for the non-clausal matrix for intuitionistic logic (see Sect. 3.1).
See [14] and the references therein for a motivation and examples for the usage
of modal prefixes.

Definition 13 (Modal non-clausal matrix). Let F be a formula, pol be a
polarity, and p be a prefix. The modal (non-clausal) matrix M(F pol:p) of a pre-
fixed formula F pol:p is defined inductively according to Table 2. x∗ is a new
term variable, t∗ is the Skolem term f∗(x1, . . . , xn) in which f∗ is a new func-
tion symbol and x1, . . . , xn are all free term and prefix variables in (∀xG)0 : p
or (∃xG)1 : p. V ∗ is a new prefix variable, a∗ is a prefix constant of the form
f∗(x1, . . . , xn) in which f∗ is a new function symbol and x1, . . . , xn are all free
term and prefix variables in (�G)0 : p or (♦G)1 : p. The modal (non-clausal)
matrix M(F) of F is the modal matrix M(F 0 : ε).

Non-clausal Connection Calculi for Non-classical Logics 219

Table 2. The definition of the prefixed non-clausal matrix for modal logic

4.2 Prefix Unification

Again, a prefix unification algorithm is used to calculate the modal substitution
σM . Depending on the modal logic, the accessibility condition (see Sect. 2.2) has
to be respected when calculating this substitution, i.e. for all V ∈ ν: |σM (V)|= 1
for the modal logic D and |σM (V)| ≤ 1 for the modal logic T; there is no
restriction for the modal logics S4 and S5. The prefix unification for D is a
simple pattern matching, i.e. the standard term unification can be used. For S4
the (general) prefix unification for intuitionistic logic can be used (see Sect. 3.2).
For S5 only the last character of each prefix (or ε if the prefix is ε) has to be
unified. By structural induction it can be shown that the following procedure
computes a set of mgu for the modal logic T (that contains fewer mgu than the
unification procedure presented in [7]).

Definition 14 (Modal T prefix unification). The unification for the prefix
equation {p = q} is carried out by applying the rewriting rules in Fig. 3. It is
V, V̄ ∈ν with V �= V̄ , a∈ Π, X ∈ν ∪Π, u,w ∈ (ν ∪Π)∗. The rules are applied
in the same way as those for intuitionistic logic (see Sect. 3.2), but the tuple
has the form (E, σM) and terminates with the tuple ({}, σM), in which case σM

represents a most general unifier.

Fig. 3. The prefix unification for the modal logic T

4.3 A Modal Non-clausal Connection Calculus

The non-clausal connection calculus for modal logic uses the same concepts as
the one for intuitionistic logic. The intuitionistic substitution σJ is replaced by

220 J. Otten

the one for modal logic σM , and the definition of σ-complementary is adapted
(see Sect. 2.2). Proof search is carried out in the same way as for intuitionistic
logic (see Sect. 3.3).

Definition 15 (Modal non-clausal connection calculus). The axiom and
the rules of the modal (non-clausal) connection calculus are given in Fig. 2. It
works on tuples “C,M,Path”, where M is a prefixed non-clausal matrix, C is
a prefixed (subgoal) clause or ε and (the active) Path is a set of prefixed literals
or ε. σ = (σQ, σM) is a combined (rigid) term and modal substitution. A modal
(non-clausal) connection proof of a prefixed matrix M is a modal connection
proof of ε,M, ε.

Theorem 3 (Correctness and completeness). A modal first-order formula
F is valid in modal logic iff there is a proof in the non-clausal connection calculus
for M(F).

The proof is based on the matrix characterization for modal logic
(Theorem 1), the correctness and completeness of the non-clausal connection cal-
culus for classical logic [13] and the correctness of the prefix unifications. Again,
the “general” non-clausal calculus [13] without any optimizations for classical
logic has to be used.

5 Optimizations

Optimization techniques, such as positive start clauses, regularity, lemmata and
restricted backtracking, can be employed in a similar way as in the non-clausal
connection calculus for classical logic [13] if the prefixes are additionally taken
into account.

Positive Start Clause. Like for the clausal connection calculus, the start
clause of the non-clausal connection calculus can be restricted to positive clauses.
A clause is positive iff all of its elements (matrices and literals) are positive; a
matrix is positive iff it contains at least one positive clause; a literal is positive
iff its polarity is 0. If there is no positive clause in a matrix M of F , then there
exists a path through M that contains no positive literal, hence, according to
the matrix characterization F cannot be valid. The positive clause C1 of a clause
C, consists only of the clauses of C that are positive.

Regularity. Regularity is an effective technique for pruning the search space
in clausal connection calculi [8]. The regularity condition ensures that no literal
occurs more than once in the active path. It is integrated into the non-classical
non-clausal connection calculus in Fig. 2 by adding the following restriction to the
reduction and the extension rule: ∀ L′: p′ ∈ C ∪{L1: p1} : σ(L′: p′) �∈ σ(Path), in
which the combined substitution σ is applied to term/prefix variables. Additional
backtracking can be avoided if the combined substitution σ is not modified in
order to satisfy the regularity condition.

Non-clausal Connection Calculi for Non-classical Logics 221

Lemmata. The idea of lemmata (or factorization) is to reuse subproofs during
the proof search [8]. To this end an additional set of lemmata (i.e. literals) and a
lemma rule [12] is added to the non-clausal connection calculus. Again, a lemma
literal L : p has to unify under a combined substitution σ, in order to apply the
lemma rule.

Restricted Backtracking. Proof search in the non-clausal connection calculus
is not confluent. In order to achieve completeness, backtracking (see remarks
in Sect. 3.3) is necessary. The idea of restricted backtracking is to cut off any
alternative connections once a literal from the subgoal clause has been solved [12].
A literal L is called solved if it is the literal L1 of a reduction or extension rule
application (see Fig. 2) and in the case of the extension rule, there is also a proof
for the left premise. Restricted backtracking is correct (as the search space is
only pruned), but incomplete [12]. It can be applied in the intuitionistic or modal
non-clausal connection calculus as well.

6 Implementation

The implementations of the intuitionistic and modal non-clausal connection cal-
culi of Fig. 2 follow the lean methodology [1], which is already used for the clausal
connection provers leanCoP [11,16], ileanCoP [11] and MleanCoP [14]. It uses very
compact Prolog code to implement the basic calculus and adds a few essential
optimization techniques in order to prune the search space. The resulting natural
nonclausal connection provers for intuitionistic logic nanoCoP-i and modal log-
ics nanoCoP-M are available at http://www.leancop.de/nanocop-i/ and http://
www.leancop.de/nanocop-m/.

Modal and Intuitionistic Non-clausal Matrices. In the first step the
input formula F is translated into its intuitionistic/modal non-clausal matrix
M := M(F) according to Tables 1 or 2; redundant brackets of the form “{{. . .}}”
are removed. Additionally, every (sub-)clause (I, V, FV) : C and (sub-)matrix
J : M are marked with unique indices I and J ; clauses C are also marked with
a set V of (free) term and prefix variables and a set FV of (free) term vari-
ables of the form x : pre(x) that are newly introduced in C. Atomic formulae and
term/prefix constants are represented by Prolog atoms, term/prefix variables by
Prolog variables; literals with polarity 1 are marked with “-”. Sets, e.g. clauses
and matrices, are represented by Prolog lists (representing multisets); prefixes
are represented by Prolog lists and marked with the polarity of the correspond-
ing literal. For example, the non-clausal matrix from Sect. 3.1 is represented by
the Prolog term

[(2^K)^[]^[]: [16^K:[(17^K)^[]^[]: [-(q): -([15^[]])], (19^K)^[]^[]:[q:[15^[]]]],
5^K: [(6^K)^[]^[]: [-(p(a)): -([3^[]])],

(8^K)^[W,X,V]^[X:[3^[],V]]: [p(X):[3^[],V,W], -(p(f(X))): -([3^[],V,W])],
(14^K)^[]^[]: [p(f(f(a))):[3^[]]]]]]

http://www.leancop.de/nanocop-i/
http://www.leancop.de/nanocop-m/
http://www.leancop.de/nanocop-m/

222 J. Otten

in which the Prolog variable K is instantiated later on in order to enumerate
clause copies (as an optimization for intuitionistic logic, prefix characters intro-
duced by atomic formulae are only considered during the unification). In a sec-
ond step, the matrix M is written into Prolog’s database. For every literal Lit
in M the fact lit(Lit,ClaB,ClaC,Grnd) is asserted into the database where
ClaC∈ M is the (largest) clause in which Lit occurs and ClaB is the β-clause
of ClaC with respect to Lit. Grnd is set either to g or n depending if the small-
est clause in which Lit occurs is ground or not. No other modifications of the
original formula (structure) are done during these two preprocessing steps.

Non-classical Non-clausal Proof Search. The nanoCoP-i/M source code
is shown in Fig. 4. The underlined text was added to the nanoCoP code for
classical logic [15]: (1) prefixes are added to all literals, (2) the sets PreS and
VarS are added, which contain prefix equations and free (prefixed) term variables,
respectively, and (3) a prefix unification is added. First, nanoCoP-i/M performs
a classical proof search, in which the prefixes of each connection are stored in
PreS. If the search succeeds, the domain condition is checked and the prefixes in
PreS are unified (line 4), using the predicates domain cond and prefix unify
(which need 18 and between 7 to 22 lines of code).

The predicate prove(Mat,PathLim,Set,Proof) implements the start rule
(lines 1–4) and iterative deepening on the size of the active path (lines 5–9).
Mat is the matrix generated in the preprocessing step, PathLim is the size
limit for Path, and Proof contains the returned (non-clausal) connection proof.
Set ⊆{cut, comp(I)}, for I ∈ IN , is used to control restricted backtracking [12].
The predicate positiveC(Cla,Cla1) returns the positive clause Cla1 of Cla
(needs 7 additional lines of code). The predicate prove(Cla,Mat,Path,PathI,
PathLim,Lem,PreS,VarS,Set,Proof) implements the axiom (line 10), the
decomposition rule (lines 11–16), the reduction rule (lines 17–20, 24–26, 37–
38), and the extension rule (lines 17–20, 28–49) of the calculus in Fig. 2. Cla,
Mat, and Path represent the subgoal clause C, the prefixed matrix M and
the (active) Path. The indexed path PathI contains the indices of all clauses
and matrices that contain literals of Path; it is used for calculating exten-
sion clauses. The substitution σ is stored implicitly by Prolog. The predicate
prove ec(ClaB, Cla1, Mat, ClaB1, Mat1) calculates extension clauses (lines 39–
49). Additional optimization techniques (see Sect. 5) are regularity (line 19),
lemmata (line 21), and restricted backtracking (line 36).

7 Evaluation

The following tests were conducted on a Xeon system with 4 GB of RAM running
Linux and ECLiPSe Prolog 5.10. The CPU time limit was set to 100 s.

ILTP Library. Table 3 shows the number of solutions on all 2550 first-order
problems of the ILTP library v1.1.2 [19] for the intuitionistic theorem provers

Non-clausal Connection Calculi for Non-classical Logics 223

Fig. 4. Source code of the nanoCoP-i and nanoCoP-M core provers

224 J. Otten

JProver, ileanTAP, ft, ileanCoP, and nanoCoP-i. JProver [21] is based on a simple
prefixed non-clausal connection calculus [7]; ileanTAP [9] uses a prefixed free-
variable tableau calculus; ft [20] is a C implementation of an analytic tableau
calculus; ileanCoP [10,11] implements a prefixed clausal connection calculus. In
order to make the results comparable, the core prover of ileanCoP was used
with the standard (“[nodef]”) and the definitional (“[def]”) translation into
clausal form. nanoCoP-i was tested without and with restricted backtracking,
i.e. Set=[] and Set=[cut,comp(6)], respectively. The “full” version of
ileanCoP 1.2, which additionally uses a fixed strategy scheduling, proves 787
problems. Compared to ileanCoP “[nodef]”, 39% of the proofs of nanoCoP-i “[]”
are on average 36% shorter (in terms of number of connections); 60% have the
same size. Compared to ileanCoP “[def]”, 51% of the proofs are on average 38%
shorter; 48% have the same size. There is a significant performance improvement
of nanoCoP-i compared to ileanCoP, even though most of the tested problems
have a “clausal-like” structure, which also explains that about half of the proofs
have the same size.

Table 3. Results on the first-order problems of the ILTP library

JProver ileanTAP ft (C) ileanCoP 1.2 nanoCoP-i 1.0

11-2005 1.17 1.23 [nodef] [def] [] [cut,comp(6)]

Proved 258 308 334 601 640 704 764

Refuted 4 4 30 82 78 89 89

QMLTP Library. Table 4 shows the number of solutions on all 580 unimodal
problems of the QMLTP library v1.1 [18] (for the varying, cumulative, and con-
stant domain variants) for the modal theorem provers MleanTAP, MleanCoP, and
nanoCoP-M. MleanTAP implements a prefixed tableau calculus; MleanCoP [14]
uses a prefixed clausal connection calculus. Again, the core prover of MleanCoP
was tested with the (better performing) definitional translation (“[def]”) into
clausal form. nanoCoP-M was tested without and with restricted backtracking,
i.e. Set=[] and Set=[cut,comp(6)], respectively; both versions refute the same
number of (invalid) formulae. Compared to MleanCoP “[def]”, between 33% and
48% of the proofs of nanoCoP-M “[]” are on average between 38% and 41%
shorter (in terms of number of connections) depending on the specific modal
logic; at most 3% of the proofs are larger (due to a different proof search order
of MleanCoP and nanoCoP-M). There is a significant performance improvement;
nanoCoP-M proves or refutes up to 10% more problems than MleanCoP. Again,
most of the tested problems have a “clausal-like” structure, hence, for about half
of the proved problems, the proofs of MleanCoP and nanoCoP-M have the same
size.

Non-clausal Connection Calculi for Non-classical Logics 225

Table 4. Results on the unimodal problems (varying/cumul./constant) of the QMLTP
library

Logic MleanTAP 1.3 MleanCoP 1.3 nanoCoP-M 1.0

[def] [def] [] [] [cut,comp(6)]

(proved) (proved) (refuted) (proved) (refuted) (proved)

D 100/120/135 152/170/187 246/226/209 158/177/194 266/246/230 167/187/204

T 138/162/175 188/212/229 148/126/112 211/231/248 153/133/119 222/244/263

S4 169/205/220 236/282/296 121/95/82 261/306/320 124/98/85 271/321/336

S5 219/272/272 313/372/372 90/41/41 329/392/392 92/44/44 343/414/414

8 Conclusion

This paper introduced non-clausal connection calculi for some popular non-
classical logics. Combining the notion of prefixes with an efficient non-clausal
calculus provides the foundation for an efficient proof search in these logics. The
resulting prefixed non-clausal connection calculi can either be seen as non-clausal
versions of prefixed clausal connection calculi for non-classical logics [10,14], or
as extensions of the non-clausal connection calculus for classical logic [13], to
which prefixes have been added.

classical logic: clausal connection calculus −→ non-clausal connection calculus
|
↓ + prefixes |

↓ + prefixes

non-classical
logics:

prefixed clausal
connection calculi

−→ prefixed non-clausal
connection calculi

Using prefixed non-clausal matrices, the proof search works directly on the
original structure of the input formula; no translation steps to any clausal or
normal form are required. Hence, the presented calculi for intuitionistic and
several modal logics combine the advantages of more natural non-clausal tableau
or sequent calculi with the goal-oriented efficiency of a connection-based proof
search.

An experimental evaluation of two compact implementations of the intro-
duced calculi shows that the non-clausal approach does not only speed up the
proof search, but that the resulting non-clausal proofs are also significantly
shorter. nanoCoP-i also has a significantly higher performance than JProver [21],
which uses a non-clausal connection calculus [7] that does not add clause copies
dynamically during the proof search.

Future work includes the adaption of the non-clausal calculus to other non-
classical logics, e.g. to those modal logics for which a (prefixed) matrix charac-
terization exists [23] and to description logics [5], as well as the integration of
additional proof search techniques, e.g. strategy scheduling and learning.

Acknowledgements. The author would like to thank Arild Waaler for his support
through the Sirius Center at the University of Oslo funded by the Research Council of
Norway. Furthermore, he would like to thank Wolfgang Bibel for his comments.

226 J. Otten

References

1. Beckert, B., Posegga, J.: leanTAP: lean tableau-based deduction. J. Autom. Rea-
son. 15(3), 339–358 (1995)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment Coq’Art: The Calculus of Inductive Constructions. EATCS Series. Springer,
Heidelberg (2004). doi:10.1007/978-3-662-07964-5

3. Bibel, W.: Automated Theorem Proving Artificial Intelligence, 2nd edn. F. Vieweg
und Sohn, Wiesbaden (1987). doi:10.1007/978-3-322-90102-6

4. Constable, R.L., et al.: Implementing Mathematics with the NuPRL Proof Devel-
opment System. Prentice-Hall, Englewood Cliffs (1986)

5. Freitas, F., Otten, J.: A connection calculus for the description logic ALC. In:
Khoury, R., Drummond, C. (eds.) AI 2016. LNCS, vol. 9673, pp. 243–256. Springer,
Cham (2016). doi:10.1007/978-3-319-34111-8 30

6. Gentzen, G.: Untersuchungen über das Logische Schließen. Mathematische
Zeitschrift 39(176–210), 405–431 (1935)

7. Kreitz, C., Otten, J.: Connection-based theorem proving in classical and non-
classical logics. J. Univ. Comput. Sci. 5(3), 88–112 (1999)

8. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 2015–
2112. Elsevier Science, Amsterdam (2001)

9. Otten, J.: ileanTAP: an intuitionistic theorem prover. In: Galmiche, D. (ed.)
TABLEAUX 1997. LNCS, vol. 1227, pp. 307–312. Springer, Heidelberg (1997).
doi:10.1007/BFb0027422

10. Otten, J.: Clausal connection-based theorem proving in intuitionistic first-order
logic. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 245–
261. Springer, Heidelberg (2005). doi:10.1007/11554554 19

11. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem proving
in classical and intuitionistic logic (system descriptions). In: Armando, A., Baum-
gartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 283–291. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71070-7 23

12. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

13. Otten, J.: A non-clausal connection calculus. In: Brünnler, K., Metcalfe, G. (eds.)
TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 226–241. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-22119-4 18

14. Otten, J.: MleanCoP: a connection prover for first-order modal logic. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
269–276. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 20

15. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti, N., Tiwari, A.
(eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 302–312. Springer, Cham (2016).
doi:10.1007/978-3-319-40229-1 21

16. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003)

17. Otten, J., Bibel, W.: Advances in connection-based automated theorem proving.
In: Hinchey, M.G., Bowen, J.P., Olderog, E.-R. (eds.) Provably Correct Systems.
NMSSE, pp. 211–241. Springer, Cham (2017). doi:10.1007/978-3-319-48628-4 9

18. Raths, T., Otten, J.: The QMLTP problem library for first-order modal logics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 454–461. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 35

http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1007/978-3-322-90102-6
http://dx.doi.org/10.1007/978-3-319-34111-8_30
http://dx.doi.org/10.1007/BFb0027422
http://dx.doi.org/10.1007/11554554_19
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.1007/978-3-642-22119-4_18
http://dx.doi.org/10.1007/978-3-319-08587-6_20
http://dx.doi.org/10.1007/978-3-319-40229-1_21
http://dx.doi.org/10.1007/978-3-319-48628-4_9
http://dx.doi.org/10.1007/978-3-642-31365-3_35

Non-clausal Connection Calculi for Non-classical Logics 227

19. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
J. Autom. Reason. 38, 261–271 (2007)

20. Sahlin, D., Franzen, T., Haridi, S.: An intuitionistic predicate logic theorem prover.
J. Logic Comput. 2(5), 619–656 (1992)

21. Schmitt, S., Lorigo, L., Kreitz, C., Nogin, A.: JProver: integrating connection-based
theorem proving into interactive proof assistants. In: Goré, R., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 421–426. Springer, Heidelberg (2001).
doi:10.1007/3-540-45744-5 34

22. Waaler, A.: Connections in nonclassical logics. In: Robinson, A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, pp. 1487–1578. Elsevier Science,
Amsterdam (2001)

23. Wallen, L.A.: Automated Deduction in Non-Classical Logics. MIT Press,
Cambridge (1990)

http://dx.doi.org/10.1007/3-540-45744-5_34

Rule Refinement for Semantic Tableau Calculi

Dmitry Tishkovsky and Renate A. Schmidt(B)

School of Computer Science, The University of Manchester, Manchester, UK
Renate.Schmidt@manchester.ac.uk

Abstract. This paper investigates refinement techniques for semantic
tableau calculi. The focus is on techniques to reduce branching in infer-
ence rules and thus allow more effective ways of carrying out deductions.
We introduce an easy to apply, general principle of atomic rule refine-
ment, which depends on a purely syntactic condition that can be easily
verified. The refinement has a wide scope, for example, it is immediately
applicable to inference rules associated with frame conditions of modal
logics, or declarations of role properties in description logics, and it allows
for routine development of hypertableau-like calculi for logics with dis-
junction and negation. The techniques are illustrated on Humberstone’s
modal logic Km(¬) with modal operators defined with respect to both
accessibility and inaccessibility, for which two refined calculi are given.

1 Introduction

The tableau method is a popular deduction method in automated reasoning.
Tableau methods in various forms are successfully used and applied for many
non-classical logics and are especially apt for new application domains to develop
new deduction systems. Of all the different forms, semantic tableau calculi in the
styles of Smullyan and Fitting [8,22] are widely used and widely taught in logic
courses, because the rules of inference are easily explained and understood, and
deductions are carried out in a completely goal-directed way. In explicit seman-
tic tableau approaches the application of the inference rules is order indepen-
dent (because these approaches are proof confluent), which avoids the overhead
and complication associated with handling don’t know non-determinism of non-
invertible rules in direct methods [1] (see also the discussion in [13]). Because
semantic tableau approaches construct and return models, they are suitable for
fault diagnosis and debugging, which is useful in areas such as ontology devel-
opment, theory creation and multi-agent systems.

We are interested in refinements of semantic tableau calculi that lead to
improvements in carrying out deductions. When carrying out deductions by
hand a natural inclination is to delay the application of branching rules as much
as possible because these are cumbersome. When it can no longer be delayed,
we tend to apply rules creating fewer branches earlier than those creating more
branches, unless looking ahead allows us to see that several branches created

This research was supported by UK EPSRC research grant EP/H043748/1.

c© The Author(s) 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 228–244, 2017.
DOI: 10.1007/978-3-319-66902-1 14

Rule Refinement for Semantic Tableau Calculi 229

by an inference step can be closed quickly. In a prover, where everything is
automated, the overhead of branching is high as well, so that similar strategies
are useful and have been shown to give significant speed-ups, as we found for
example in the evaluations undertaken in [14,23]. Similar considerations and
better performance have motivated the development and use of hypertableau,
hyperresolution or selection-based resolution methods [3,4,7,16].

It is therefore natural to ask whether there are general principles, which
achieve these kinds of refinements in semantic tableau calculi. In [19] we
described a general condition for reducing the branching in inference rules with-
out loosing completeness of calculi devised in the tableau synthesis framework.
Because this condition is inductive, at present it needs to be checked manually
and it is open whether it can be checked automatically.

In this paper we extend the possibilities of refining inference rules, thereby
making progress toward the aim of automating rule refinement in the tableau
synthesis framework. We describe two new approaches to satisfy the general rule
refinement condition of the tableau synthesis framework. For the first approach
we introduce atomic rule refinement as a specialisation of the general rule refine-
ment technique with the advantage that it is syntactic and therefore automatic.
This guarantees that atomic rule refinement preserves constructive completeness
of a tableau calculus. In the second approach we show how to extend a set of
non-refinable rules by altering the semantic specification of the logic and obtain
a modified set of rules which can be refined. The approaches are illustrated on
first-order frame conditions of modal logics, and a tableau calculus for the modal
logic Km(¬) of ‘some’, ‘all’ and ‘only’ [12]. This logic is an extension of basic
multi-modal logic Km allowing negation on accessibility relations.

The paper is structured as follows. In the next two sections we sketch the
main ideas of the tableau synthesis framework [19] and two existing refinements:
general rule refinement and internalisation refinement. In Sect. 4 we introduce
and investigate atomic rule refinement, which we show preserves constructive
completeness and illustrate its usefulness in several examples. In Sect. 5 we show
how atomic rule refinement can be used to construct hypertableau-like calculi.
In the final section we apply the presented techniques to the extended modal
logic Km(¬). The proofs may be found in the long version [24].

2 The Tableau Synthesis Framework

The tableau synthesis framework provides a method for systematically deriving
a tableau calculus for a propositional logic L [19]. In the following we give a
minimal description of the main ingredients, the tableau language and tableau
formulae in the calculi obtained using the method.

As the generated calculi are designed to construct models, the formulae in
them are expressed in a meta-language FO(L) that extends the object language L
of the logic with extra symbols sufficient to define models and truth valuations
of formulas. Consider, for example, the basic modal logic Km with multiple
modalities. The object language is a two-sorted language in which the formulae

230 D. Tishkovsky and R.A. Schmidt

νf(¬p, x)

¬νf(p, x)

¬νf(¬p, x)

νf(p, x)

νf(p ∨ q, x)

νf(p, x) | νf(q, x)

¬νf(p ∨ q, x)

¬νf(p, x), ¬νf(q, x)

νf([r]p, x)

¬νr(r, x, y) | νf(p, y)

¬νf([r]p, x)

νr(r, x, f(r, p, x)), ¬νf(p, f(r, p, x))

νf(p, x), ¬νf(p, x)

⊥
νr(r, x, y), ¬νr(r, x, y)

⊥

Fig. 1. Generated tableau calculus TKm for Km

are defined by the BNF φ
def= p | ¬φ | φ∨φ | [r]φ in sort f, where r is a variable or

constant over the second sort r. The meta-language extends the object language
with a domain sort D (for the domain of interpretation), and two designated
predicate symbols νf and νr (the holds predicates) plus the connectives of first-
order logic and the equality predicate ≈. The language is expressive enough to
define the semantics of basic modal logic Km as follows.

∀x (νf(¬p, x) ↔ ¬νf(p, x)) ∀x (νf(p ∨ q, x) ↔ νf(p, x) ∨ νf(q, x))
∀x (νf([r]p, x) ↔ ∀y (νr(r, x, y) → νf(p, y)))(1)

Intuitively, νf(p, x) can be read as ‘p is true in the world x’ (or formally x ∈ pI),
and νr(r, x, y) as ‘y is an r-successor of x’ (or (x, y) ∈ rI). Thus we can read (1)
as saying: [r]p is true in x iff for any r-successor y of x, p is true in y.

The stages in the tableau synthesis method are synthesis, refinement and
blocking. The synthesis stage will transform the semantic specification of a logic
such as the above into a tableau calculus TL. The tableau calculus TKm

produced
for modal logic Km is given in Fig. 1. This calculus allows reasoning in the
semantics of the logic and we can use it for testing the (un)satisfiability of Km-
formulae, and for model building.

The actual creation of the tableau calculus is not important for this paper,
only that we have a sound and complete semantic tableau calculus at hand. When
certain well-definedness conditions are true for the semantic definition of a logic
the generated tableau calculus TL is sound and constructively complete [19]. A
tableau calculus is sound when for a satisfiable set of tableau formulae any fully
expanded tableau derivation has an open branch. A tableau calculus is construc-
tively complete, if from every open fully expanded branch an interpretation can
be constructed that validates all formulae on the branch. This interpretation is
the canonical interpretation denoted by I(B).

Because the rule language and the initial calculus is heavily laden with meta-
language notation, a crucial second stage in the method is the refinement stage.
This is described in the next section. The paper is a contribution to this stage.

The third stage involves adding some form of blocking or loop checking mech-
anism to ensure termination or find models for finitely satisfiable input. For
different modal and description logics various standard blocking mechanisms
have been developed. In the tableau synthesis framework, blocking is realised
by the use of equality-based blocking, which can be incorporated through addi-
tional inference rules, and is independent of the tableau calculus or the logic.

Rule Refinement for Semantic Tableau Calculi 231

Refinements of equality reasoning and equality-based blocking in semantic
tableau-like approaches have been studied in [4,14,18,21].

3 Refinement Techniques

The refinement stage of the tableau synthesis method involves two refinements:
rule refinement and internalisation.

Rule refinement addresses the problem of reducing branching in inference
rules by turning conclusions into premises [19]. Suppose TL is a sound and con-
structively complete tableau calculus for a logic L and suppose ρ is a tableau
rule in TL. Suppose ρ has the form ρ

def= X0/X1 | · · · | Xm, where each Xi is a
set {ψ1, . . . , ψk} of formulae. For simplicity and without loss of generality, we
assume the aim is to refine away the first denominator X1.

Let the rules ρj with j = 1, . . . , k be defined by

ρj
def=

X0 ∪ {∼ψj}
X2 | · · · | Xm

,

where ∼ denotes complementation, i.e., ∼φ = ψ, if φ = ¬ψ, and ∼φ = ¬ψ,
otherwise. Each rule ρj is obtained from the rule ρ by removing the first denom-
inator X1 and adding the complement of one of the formulae in X1 as a premise.
Intuitively, we may think of the refined rules as incorporating a look-ahead and
branch closure, since when ∼ψj is on the branch then the branch X1 can be
immediately closed. Note that there is however no guarantee that the formu-
lae ∼ψj are actually on the branch, even though there may be enough informa-
tion so that I(B)
|= ψj and thus I(B)
|= X1 for particular instances, where I(B)
is the canonical interpretation associated with the current (partial) branch B.
We say a branch B is reflected in the canonical interpretation I(B), if I(B)
validates all formulae occurring on the branch B.

Let Ref(ρ, TL) denote the refined tableau calculus obtained from TL by replac-
ing the rule ρ with the rules ρ1, . . . , ρk. We say that Ref(ρ, TL) is the (ρ-)rule
refinement of TL. One can show that each rule ρj is derivable [10] in TL and
this implies that the calculus Ref(ρ, TL) is sound. In general, Ref(ρ, TL) is nei-
ther constructively complete nor complete. Nevertheless, the following theorem
holds [19].

Theorem 1. Let TL be a tableau calculus which is sound and constructively
complete for the logic L. Let ρ be the rule X0/X1 | · · · | Xm in TL and suppose
Ref(ρ, TL) is the rule refinement of TL. Further, suppose B is an open branch
in a Ref(ρ, TL)-tableau derivation and for every set Y of L-formulae from B the
following holds. Then, B is reflected in the interpretation I(B) induced by B.

General Rule Refinement Condition: If all formulae in Y are reflected in
I(B) then for any E1, . . . , El ∈ Y and any domain terms t1, . . . , tn

if X0(E, t1, . . . , tn) ⊆ B and I(B)
|= X1(E, ‖t1‖, . . . , ‖tn‖)

then Xi(E, t1, . . . , tn) ⊆ B for some i = 2, . . . , m.

232 D. Tishkovsky and R.A. Schmidt

Xi(E, t1, . . . , tn) denotes the set of instances of the formulae in Xi under uniform
substitution of E1, . . . , El and t1, . . . , tn for p1, . . . , pl and x1, . . . , xn, respec-
tively, where p1, . . . , pl and x1, . . . , xn are respectively all the L-variables and
all the domain variables occurring in the rule ρ. The notation ‖ti‖ denotes the
equivalence classes of terms modulo the equational theory defined by the term
equalities encountered on the branch.

The general rule refinement condition states that if there is information in
the branch B to exclude X1(E, t1, . . . , tn) from holding in the model I(B) con-
structed from B then all the formulae of at least one of the other denominators
of the rule are on the branch B. In [19] a weaker condition for rule refinement is
given,1 but the condition of Theorem1 is sufficient for the results of this paper.
A consequence of the theorem is the following.

Corollary 1. If the general rule refinement condition of Theorem1 holds for
every open branch B of any fully expanded Ref(ρ, TL)-tableau then the refined
calculus Ref(ρ, TL) is constructively complete for the logic L.

The generalisation of this refinement which turns more than one denominator
of a rule into premises is not difficult.

As an example of rule refinement let us consider the (box) rule obtained
from (1) in the tableau synthesis framework. Rule refinement gives (something
close to) the usual box rule (�).

(box)
νf([r]p, x)

¬νr(r, x, y) | νf(p, y)
(�)

νf([r]p, x), νr(r, x, y)
νf(p, y)

It can be proved directly that the general rule refinement condition is true in any
branch of the refined calculus Ref((box), TKm

) of the generated calculus TKm
of

basic modal logic Km. By Corollary 1 the refined calculus is therefore construc-
tively complete.

Theorem 2. The tableau calculus Ref((box), TKm
) is sound and constructively

complete for basic multi-modal logic Km.

In Sect. 6 we give an example where this rule refinement is not possible in
an extension of the logic Km. In fact, the general rule refinement condition is
too strong to hold generally, because tableau calculi do not include introduction
rules (just elimination rules), but we give examples in Sects. 4 and 6 where the
refinement condition does hold.

Internalisation refinement in the tableau synthesis process involves elimi-
nating some of the extra-logical notation, by expressing the rules in a tableau
language as close as possible to the language of the logic. In particular, the
internalisation involves reduction of the calculus to one where the holds pred-
icates νs have been eliminated and the domain sort symbols are expressed in
the language of the logic, provided this is possible. The idea is that each atomic
1 The general rule refinement condition given here corresponds to condition (‡) in [19].

Rule Refinement for Semantic Tableau Calculi 233

@ip, @i¬p

⊥
@i¬¬p

@ip

@i(p ∨ q)

@ip | @iq

@i¬(p ∨ q)

@i¬p, @i¬q

@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

Fig. 2. Refined tableau calculus T ref
Km

.

formula νs(E, a) in the tableau calculus is replaced by a suitable formula of the
logic, and all syntactically redundant rules are removed from the calculus.

For example, if the logic L contains nominals and the @ connective of hybrid
logic [5] then the elements of the domain sort D can be identified with nominals
and the formulae νf(φ, v) and νr(α, v, w) can be internalised as the formulae @vφ
and @v¬[α]¬w respectively, where v and w have become nominals. The refined
and internalised calculus for basic modal logic Km is given in Fig. 2.

If the logic is not expressive enough then an option is to simplify the nota-
tion of the rules by reformulating them using labels and the ‘:’ connective (of
varying arity), to rephrase the rules in notation more familiar from the literature
(alternative notations also exist).

The internalisation refinement simplifies the tableau language and, in many
cases, reduces the number of the rules in the tableau calculus. In our experience
it is easiest and produces better results, if rule refinement is performed first,
followed by the internalisation refinement.

4 Atomic Rule Refinement

In this section we introduce the technique of atomic rule refinement. Under
this refinement, formulae in the conclusions are only moved upwards to premise
positions if the formulae are negated L -atomic formulae in the language FO(L).

By definition, a FO(L)-formula φ is L-atomic if it is an atomic formula of
FO(L) and all occurrences of L-formulae in φ are also atomic. Thus, νs(E, t) is L-
atomic only if E is an atomic formula of Ls. For example, the formulae νf(p, x)
and νr(r, f(r, p, x), x) are L(Km)-atomic, but the formulae ¬νf(p, x), νf(¬p, x)
and νf(p ∨ q, x) are not. The respective reasons are that ¬νf (p, x) is a negated
L(Km)-atomic formula and νf(¬p, x) and νf(p∨q, x) are not L-atomic in FO(Km).

Using the notation and assumptions of Theorem1, we can prove:

Theorem 3. Assume that for an open branch B of the refined tableau calcu-
lus Ref(ρ, TL) and for every set Y of L-formulae from B the following holds.
Then, B is reflected in I(B).

Atomic Rule Refinement Condition: If all formulae in Y are reflected in
I(B) then for any E1, . . . , El ∈ Y and any domain terms t1, . . . , tn,

X0(E, t1, . . . , tn) ⊆ B implies that

X1(E, t1, . . . , tn) = {¬ξ1, . . . ,¬ξk} and all ξ1, . . . , ξk are L-atomic.

234 D. Tishkovsky and R.A. Schmidt

Unlike the general rule refinement condition, the atomic rule refinement con-
dition is purely syntactic and, thus, can be automatically checked against each
given open branch B. However, even if all the formulae from X1 are negated
L-atomic formulae, their instantiation within a branch of a tableau derivation
can, in general, produce a formula which is not a negated L-atom. Therefore,
similar to Corollary 1, by Theorem 3, in order to preserve constructive complete-
ness we need to make sure that the atomic rule refinement condition holds for
every branch of any derivation in the refined calculus.

Corollary 2. If the assumptions and condition of Theorem3 holds for every
open branch B of any fully expanded Ref(ρ, TL)-tableau then the refined calculus
Ref(ρ, TL) is constructively complete for the logic L.

In the following we give several examples of atomic rule refinement.

Example 1. The refinement (�) of the rule (box) mentioned in the previous
section is an example of an atomic rule refinement. Because any instantiation
of νr(r, x, y) in the language of Km is an L(Km)-atomic formula, constructive
completeness of the refined calculus Ref((box), TKm

) follows from Corollary 2.

Example 2. Suppose we wish to impose that one accessibility relation r of our
modal logic is irreflexive, i.e., we specify that ∀x¬νr(r, x, x). This generates the
rule /¬νr(r, x, x).2 Using atomic rule refinement the rule can be refined to the
following closure rule

(irr)
νr(r, x, x)

⊥ , or in internalised form the rule
@i¬[r]¬i

⊥ .

Example 3. If we wish to specify that all relations are irreflexive, atomic
rule refinement allows us to use the rule νr(r, x, x)/⊥. Because the language
of Km contains only atomic relations r1, . . . , rm and no relational connectives,
any instantiation of r and variable x in νr(r, x, x) produces only L(Km)-atomic
formulae of the form νr(ri, t, t) (where t is a term of the domain sort). There-
fore, the atomic rule refinement condition is true for any branch of any tableau
derivation in the calculus Ref((box), TKm

) extended with the (irr) rule. Thus, by
Corollary 2, the calculus Ref((box), TKm

) extended with the (irr) rule is sound
and constructively complete for the logic Km with irreflexive relations.

Applying the internalisation refinement we obtain the following theorem for
the labelled tableau calculus.

Theorem 4. T ref
Km

extended with the rule @i¬[r]¬i/⊥ for each irreflexive rela-
tion r in Km is sound and constructively complete (or, where r denotes a vari-
able, for the case that each relation in the logic is irreflexive).

2 In the framework the rule would have a premise involving domain predication, but
in this paper we silently assume domain predication without making it explicit in
the interest of simplicity of presentation, see [19] for details.

Rule Refinement for Semantic Tableau Calculi 235

Example 4. The following frame condition from [2] states the existence of an
immediate predecessor for every element in a model.

∀x∃y∀z
(
νr(r, y, x) ∧ x
≈ y ∧ (

(νr(r, y, z) ∧ νr(r, z, x)) → (z ≈ x ∨ z ≈ y)
))

We first reduce the formula to a form acceptable in the tableau synthesis frame-
work. Let g be a new Skolem function which depends on two arguments, one of
the sort r and one from the domain sort. The existential quantifier is eliminated
from the frame conditions and decomposed to give three formulae (see [19]):

∀x νr(r, g(r, x), x), ∀x (x
≈ g(r, x)),

∀x∀z
(
(νr(r, g(r, x), z) ∧ νr(r, z, x)) → (g(r, x) ≈ z ∨ z ≈ x)

)
.

From these formulae three rules are generated:

νr(r, g(r, x), x)
,

x
≈ g(r, x)
,

¬νr(r, g(r, x), z) | ¬νr(r, z, x) | g(r, x) ≈ z | z ≈ x
.

Atomic rule refinement is not applicable to the first rule since the conclusion is
not negated. Consider the second and third rules. Applying the same argument as
in Example 3 above we find that no instantiation of x ≈ g(r, x), νr(r, g(r, x), z),
and νr(r, z, x) within the language FO(Km) produces a formula which is not
L(Km)-atomic. This means the atomic rule refinement condition holds for these
rules. Refining the second rule once and the third rule twice, the rules

x ≈ g(r, x)
⊥ and

νr(r, g(r, x), z), νr(r, z, x)
g(r, x) ≈ z | z ≈ x

are obtained. By Corollary 2, constructive completeness of any tableau calcu-
lus in the language FO(Km) is preserved under these refinements. Internalising
FO(Km) in the hybrid logic extension of Km we obtain the following theorem.

Theorem 5. T ref
Km

extended with the rules

@g(r,i)¬[r]¬i
,

@ig(r, i)
⊥ and

@g(r,i)¬[r]¬j, @j¬[r]¬i

@g(r,i)j | @ji

is sound and constructively complete for Km over the class of models satisfying
the frame condition of existence of an immediate predecessor.

The use of Skolem terms is not in agreement with common, present prac-
tice in the area, but they provide a useful technical device to enhance the
scope of semantic tableau approaches by accommodating properties and speci-
fications with negative occurrences of existential quantification, which produce
rules where these occurrences appear in premise positions, cf. Example 4. This
easily accommodates non-geometric theories. Skolem terms also allow for effec-
tive implementation of blocking and equality reasoning, since, e.g., no inference
steps need to be recomputed when blocking occurs (cf. the comments in [14]).

236 D. Tishkovsky and R.A. Schmidt

Examples 3 and 4 are important because they show that atomic rule refine-
ment allows automatic refinement of tableau rules generated from frame condi-
tions of modal logics. Furthermore, the case of the last rule in Example 4 is a
particularly clear illustration of the benefits of rule refinement. In that case the
unrefined rule is applicable for every pair of domain elements and creates four
branches on application, whereas the refined rule replacing it, is only applied
to formulae matching two premises, and then creates only two branches. This
constraining effect on the search space is an important benefit of rule refinement.
In general, using the fairness requirements for tableau derivations, it is possi-
ble to map each refined derivation to its unrefined counterpart where each rule
application is either mapped to itself or to the application of the corresponding
unrefined rule. Since more premises need to be satisfied, the refined rule will be
applied less often and each of its applications produces fewer branches than the
corresponding point of the unrefined tableau. Thus, each refined derivation (in
other words, the search space) is smaller than its unrefined counterpart.

Another important point is the incrementality of the technique: the rules
can be refined one by one without affecting the refinability of other rules. It is
therefore more flexible, robust and useful than general rule refinement, of which
it is a special case.

Because of these attractive features we have used atomic rule refinement
in other recent work. In [23] we applied the tableau synthesis framework and
atomic rule refinement in the creation of terminating tableau calculi for a bi-
intuitionistic logic with interacting modal operators, called BISKT. This logic
can be equivalently embedded into a tense logic Kt(H,R) with several interact-
ing modalities [18] via an extension of the standard embedding of intuitionistic
propositional logic into modal logic S4. Kt(H,R) was subject to an investiga-
tion of the numerous possibilities of defining tableau calculi for modal logics,
and their relative efficiency [18]. Interestingly, we found that the tableau calculi
of BISKT [23] exhibited better performance than those of Kt(H,R) [18], which
we attribute to the greater constraining power of atomic rule refinement in the
style of calculus used for BISKT.

In [14] we used atomic rule refinement to obtain a tableau calculus with
dynamically generated hypertableau-like inference rules for description logic
ontologies. In particular, the standard inference rule /@iα for TBox state-
ments α, which hold universally, is replaced by a set of refined rules for each
statement in the TBox. E.g., for the statement A1 � A2 � B the specifically
generated rule is @iA1,@iA2/@iB, where A1, A2, B are atomic concepts. For
satisfiable and unsatisfiable inputs, the evaluation results showed improved per-
formance for this refinement. The speed-up was particularly marked for unsatis-
fiable inputs (2.5–6 times faster on average), which was found to be mainly due
to the presence of additional closure rules such as @iA,@iB/⊥ generated from
the disjointness statement A�B � ⊥, where A and B are atomic concepts. The
results also showed a 22% (and 74%) drop in memory use for satisfiable (and
unsatisfiable) inputs when using refined rules. The essential idea in this work is
generalised in the next section.

Rule Refinement for Semantic Tableau Calculi 237

5 Hypertableau

Let the given logic L have disjunction-like connectives ∨ and negation-like con-
nectives ¬ for some sort s of the logic. Assume TL is a tableau calculus sound
and constructively complete for L and contains the rules

νs(p ∨ q, x)
νs(p, x) | νs(q, x)

and
νs(¬p, x)
¬νs(p, x)

,

which are the usual rules for disjunction and negation. We transform the syn-
thesised calculus TL into a new calculus T hyp

L in three steps. For simplicity we
assume that disjunction in L is associative and commutative with respect to
satisfiability, that is, the following statements are entailed by the semantic spec-
ification of L.

νs(p ∨ q, x) ↔ νs(q ∨ p, x) νs((p ∨ q) ∨ r, x) ↔ νs(p ∨ (q ∨ r), x)

This assumption is not essential for the transformation but allows us to flatten
disjunctions and avoid a combinatorial blow-up.

In the first step of the transformation, the usual disjunction rule
νs(p ∨ q, x)/νs(p, x) | νs(q, x) is replaced by the set of the rules (for k > 1):

(splitk)
νs(p1 ∨ · · · ∨ pk, x)

νs(p1, x) | · · · | νs(pk, x)
.

We denote by T sp
L a tableau calculus obtained from TL by replacing the usual

disjunction rule by the rules (splitk). The (splitk) rules and the usual disjunction
rule are derivable from each other. Therefore, the transformed calculus T sp

L is
sound and constructively complete.

For the second step consider the following rules (for m + n > 1)

(split+mn)
νs(¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, x)

¬νs(p1, x) | · · · | ¬νs(pm, x) | νs(q1, x) | · · · | νs(qn, x)

with the side-condition that only atomic substitutions are allowed for p1, . . . , pm.
Note, m is the maximal number of negated atoms in the disjunction which match
the premise. That is, the rules are applicable only to formulae of the shape
νs(¬E1 ∨ · · ·∨¬Em ∨F1 ∨ · · ·∨Fn, x), where all E1, . . . , Em are atomic formulae
of the logic L and no F1, . . . , Fn is a negated atomic formula of L.

Let T sp+
L be a tableau calculus obtained from T sp

L by replacing the rules
(splitk) by the rules (split+mn). The rules (splitk) and (split+mn) are derivable from
each other and, thus, the following theorem holds.

Theorem 6. T sp+
L is sound and constructively complete for the logic L.

Now we are in a position to use atomic rule refinement to refine the rules
(split+mn) to the rules (m + n > 1)

238 D. Tishkovsky and R.A. Schmidt

(hypmn)
νs(¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, x), νs(p1, x), · · · , νs(pm, x)

νs(q1, x) | · · · | νs(qn, x)

with the restriction that only atomic substitutions are allowed for p1, . . . , pm.
These are hypertableau-like rules. Similarly to the rules in the previous step,
an application of the rule (hypmn) is allowed only to formulae of the shape
νs(¬E1 ∨ · · · ∨ ¬Em ∨ F1 ∨ · · · ∨ Fn), where all E1, . . . , Em are atomic formulae
and no F1, . . . , Fn are negated atomic formulae of the logic L. Notice that in the
case of n = 0 the rules (hypmn) are atomic closure rules.

Let T hyp
L be the calculus obtained from T sp

L by adding the (hypmn) rules. By
Corollary 2 and Theorem 6 we obtain constructive completeness of T hyp

L .

Theorem 7. T hyp
L is sound and constructively complete for the logic L.

Thus, for any (propositional) logic L with disjunction and negation connectives
and any sound and constructive complete calculus for L with the usual disjunc-
tion and negation rules, it is possible to devise a hypertableau-like calculus that
is sound and constructively complete for the logic L.

Derivations in T hyp
L can be done more efficiently if the logic L has additional

properties. We already assume associativity and commutativity of disjunction.
Suppose now that the satisfiability of formulae in a subset of the language L is
reducible to the satisfiability of formulae in conjunctive normal form:

νs(E, x) ↔
I∧

i=1

νsij (
Ji∨
j=1

Eij , x) where s and sij are sorts of the logic.

Thus, every formula E has an equi-satisfiable clausal representation as a set
of clauses C1, . . . , CI , where Ci = Ei1 ∨ · · · ∨ EiJi

for each i = 1, . . . , I. Since
disjunction is associative and commutative, we can assume that, in every clause,
all negated atomic formulae (negative literals) of the logic appear before all other
formulae. Let A be a reduction algorithm which transforms any formula E into
such equi-satisfiable clausal normal form.

Cases of logics become interesting when there are many clauses with negated
atomic formulae, because then the (hypmn) rules with m > 0 are applied more
frequently in derivations in T hyp

L . Since the (hypmn) rules with m > 0 create fewer
branching points in derivations than the (hypmn) rules with m = 0, derivations
in T hyp

L will have fewer branches and therefore performance is enhanced.
The conclusions of the (hypmn) rules are allowed to contain non-atomic L-

formulae which have to be decomposed further by other rules of the calculus.
For the conclusions of other rules, we have two alternatives. One is to use the
rules of the tableau calculus to decompose their formulae up to atomic compo-
nents. The other alternative is to apply the reduction algorithm A to every new
conclusion of any rule different from the (hypmn) rules. The first alternative uses
the decomposition rules of the tableau calculus (assuming it includes rules for
conjunction and disjunction) and the second one uses the algorithm A. In the
implementation of a prover these two alternatives have to be carefully balanced,

Rule Refinement for Semantic Tableau Calculi 239

depending on the complexity of the algorithm A and how efficiently it is imple-
mented. There is an efficient clausification algorithm for Boolean parts which
runs in polynomial time on the length of the input [17]. Thus, we can assume
that every conclusion of a rule is immediately transformed into a set of clauses.
This allows to omit all the rules for Boolean connectives except the hypertableau
rules. We give an example of a hypertableau-style calculus in the next section.

6 Case Study: The Modal Logic of ‘Some’, ‘All’
and ‘Only’

As an illustration of the usefulness and generality of the refinement techniques
investigated in this paper, we apply them to the modal logic Km(¬) of ‘some’,
‘all’ and ‘only’ [12]. Km(¬) is the extension of the basic multi-modal logic Km

with the relational negation.
Following the tableau synthesis framework [19] the language L has two sorts:

a sort f for formulae and a sort r for relations. Assuming the sort r is formed
over a set of relational constants {a1, . . . , am}, in L every relation α is defined
by the BNF α

def= a1 | · · · | am | ¬α, where ¬ is a relational connective. The sort f
is formed over a set of propositional variables {p, q, . . .} and every formula φ is
defined by the BNF φ

def= p | ¬φ | φ ∨ φ | [α]φ, where α ranges over all relations
in the language.

The semantic specification language FO(Km(¬)) for Km(¬) is a first-order
language over the sorts f and r and an additional domain sort D. Formu-
lae of L are encoded in the obvious way as terms of the appropriate sorts in
FO(Km(¬)). That is, every logical connective of L is represented by a function
in FO(Km(¬)). Every propositional variable of L is an individual variable of the
sort f in FO(Km(¬)). Besides the individual constants a1, . . . , am for relations,
the language FO(Km(¬)) has a countable set of relation variables r, r′, The
additional sort D has a countable set of individual variables x, y, z, Further-
more, the semantic specification language has two predicate symbols νf and νr
of sort (f,D) and (r,D,D), respectively, to encode satisfiability. The meaning of
these symbols can be understood from the definitions given next. The seman-
tic specification consists of the following formulae, one for each of the logical
connectives of Km(¬).

∀x (νf(¬p, x) ↔ ¬νf(p, x)) ∀x (νf(p ∨ q, x) ↔ νf(p, x) ∨ νf(q, x))
∀x∀y (νr(¬r, x, y) ↔ ¬νr(r, x, y)) ∀x (νf([r]p, x) ↔ ∀y (νr(r, x, y) → νf(p, y)))

Compared to the specification of Km, the specification of Km(¬) is extended
with the second clause in the left column, which defines relational negation.

The logic Km(¬) is interesting because of the presence of three quantifier
operators. These are the necessity operator [α], the possibility operator ¬[α]¬
and a third operator, the sufficiency operator [¬α]¬, sometimes referred to as the
window operator. νf([α]φ, v) can be read as saying ‘φ is true in all α-successors’,

240 D. Tishkovsky and R.A. Schmidt

νf(¬p, x)

¬νf(p, x)

¬νf(¬p, x)

νf(p, x)

νf(p ∨ q, x)

νf(p, x) | νf(q, x)

¬νf(p ∨ q, x)

¬νf(p, x), ¬νf(q, x)

νf([r]p, x)

¬νr(r, x, y) | νf(p, y)

¬νf([r]p, x)

νr(r, x, f(r, p, x)), ¬νf(p, f(r, p, x))

νf(p, x), ¬νf(p, x)

⊥
νr(r, x, y), ¬νr(r, x, y)

⊥
νr(¬r, x, y)

¬νr(r, x, y)

¬νr(¬r, x, y)

νr(r, x, y)

Fig. 3. Generated tableau calculus TKm(¬) for Km(¬)

νf(¬[α]¬φ, v) as ‘φ is true in some α-successor’, and νf([¬α]¬φ, v) as ‘φ is true
in only α-successors of v’. Km(¬) is a sublogic of Boolean modal logic [9] and
the description logics ALBO and ALBOid [20]. Km(¬) has the finite model
property [9] but the tree model property fails for the logic (e.g. [15]). The results
of [15] imply that the satisfiability problem in Km(¬) is ExpTime-complete.

The tableau calculus TKm(¬) obtained from the semantic specification of
Km(¬) in the tableau synthesis framework is given in Fig. 3. New compared
to the generated tableau calculus for the basic modal logic Km in Fig. 1 are
the last two rules for relational negation. Because the semantic specification of
Km(¬) is well-defined in the sense of [19], from Theorems 5.1 and 5.6 in that
work, we immediately obtain the following result.

Theorem 8 (Soundness and constructive completeness). The calculus
TKm(¬) is sound and constructively complete for the logic Km(¬).

However, none of the rules of the tableau calculus for Km(¬) from Fig. 3
are refinable. In particular, the (box) rule cannot be refined to the (�) rule (as
discussed in Sect. 4) without loosing constructive completeness. Take for instance
the set of formulae {νf([¬¬r]p, a), νr(r, a, b),¬νf(p, b)}. The set is not Km(¬)-
satisfiable but none of the rules of the refined calculus Ref((box), TKm(¬)) are
applicable to the set.

A possibility for refinement is the atomic refinement of instances of rules.
Atomic rule refinement would allow us to use the rule (�) on formulae [r]φ,
where r is bound to a relational constant. We would still need to use the rule (box)
when r is bound to a complex relational formula (in this case a negated relational
formula). This kind of refinement is generally possible, and will be useful in
practice, but leads to an uneven treatment of box formulae. Better would be if
all instances of a rule can be refined.

In fact, by a small amendment of the semantic specification it is possible
to refine the (box) rule generally, for all instances. Observe that the semantic
specification of Km(¬) entails the following formula.

∀x (νf([¬r]p, x) → ∀y (¬νr(r, x, y) → νf(p, y)))

This means the formula can be added to the semantic specification of Km(¬)
without changing the class of models of the logic. We use the notation T+

Km(¬) to

Rule Refinement for Semantic Tableau Calculi 241

@ip, @i¬p

⊥
@i¬¬p

@ip

@i(p ∨ q)

@ip | @iq

@i¬(p ∨ q)

@i¬p, @i¬q

@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

@i¬[¬r]¬j

@i[r]¬j

@i[¬r]¬j

@i¬[r]¬j

@i[¬r]p

@i¬[r]¬j | @jp

Fig. 4. Refined tableau calculus T ref
Km(¬).

refer to the tableau calculus generated from the semantic specification extended
with this formula. T+

Km(¬) consists of the rules listed in Fig. 3 and the rule:

([¬])
νf([¬r]p, x)

νr(r, x, y) | νf(p, y)
.

We can check that the well-definedness conditions from [19] are satisfied for
the extended semantic specification of Km(¬). Therefore, by the results of the
tableau synthesis framework, the extended calculus T+

Km(¬) is sound and con-
structively complete for Km(¬). Note, the rule ([¬]) is a derived rule in the
calculus TKm(¬).

While the rule ([¬]) neither satisfies the atomic nor the general rule refine-
ment condition, the general rule refinement condition is now satisfied for the
(box) rule, and, thus, as a consequence of Corollary 1 we get:

Theorem 9. The tableau calculus Ref((box), T+
Km(¬)) using the (�) rule instead

of the (box) rule is sound and constructively complete for the logic Km(¬).

The internalisation refinement is possible for the new calculus if nominals
and the @ operator of hybrid logic [5] are introduced to the tableau language
of Km(¬). This significantly strengthens the tableau language and allows all
formulae νf(φ, a) and ¬νf(φ, a) to be replaced by the formulae @aφ and @a¬φ,
respectively, and the formulae νr(α, a, b) and ¬νr(α, a, b) can be replaced respec-
tively by the formulae @a¬[α]¬b and @a[α]¬b (the latter is equivalent to
@a¬〈α〉b). In this case the result of the refinement is a significantly simplified
calculus, reminiscent of standard labelled tableau calculi. The obtained rules are
listed in Fig. 4. We denote this calculus by T ref

Km(¬). By the results of this paper
and [19] it is sound and constructively complete for Km(¬).

Because disjunction and negation in Km(¬) are Boolean, it is possible to
devise a hypertableau calculus for Km(¬), see Fig. 5. By Theorem 7, this calculus
is sound and constructively complete for Km(¬). In summary, we have:

Theorem 10. The refined tableau calculi T ref
Km(¬) and T hyp

Km(¬) (of Figs. 4 and 5)
are sound and constructively complete for the logic Km(¬).

A further example of systematic rule refinement using the ideas of this paper
is the description logic ALBOid, for which we presented a tableau calculus in [20].
ALBOid is an extension of the description logic ALC with individuals, the inverse

242 D. Tishkovsky and R.A. Schmidt

@i¬p1 ∨ · · · ∨ ¬pm ∨ q1 ∨ · · · ∨ qn, @ip1, . . . , @ipm

@iq1 | · · · | @iqn

(
m + n > 1

p1, . . . , pm are atomic

)

@ip, @i¬p

⊥
@i[r]p, @i¬[r]¬j

@jp

@i¬[r]p

@i¬[r]¬f(r, p, i), @f(r,p,i)¬p

@i¬[¬r]¬j

@i[r]¬j

@i[¬r]¬j

@i¬[r]¬j

@i[¬r]p

@i¬[r]¬j | @jp

Fig. 5. Hybrid hypertableau calculus T hyp
Km(¬) for Km(¬)

role (relation) connective, Boolean connectives on roles and the identity role.
Although that work predates the work in [19] and the present work, the tableau
calculus in [20] of ALBOid can be in fact synthesised by altering the semantic
specification similar as described for Km(¬) in this section. Using the results of
the previous section a hypertableau calculus can be defined for ALBOid.

7 Concluding Remarks

The paper has investigated refinement of inference rules for semantic tableau
calculi in the setting of the tableau synthesis framework. We introduced atomic
rule refinement as a general principle to reduce branching and simplify the way
deductions are carried out with disjunctive formulae. A distinctive feature of
the refinement is that it is syntactic and can be automated. As we have shown
the approach covers two important cases: refinement of inference rules generated
from frame conditions and systematically developing hypertableau-like calculi.
In both cases, properties of the language of the logic are exploited. In the first
case, because frame conditions are properties on atomic relations, the condition
for atomic rule refinement trivially holds. In the second case, formulae of the logic
were transformed into a normal form and the hypertableau rule was defined by
constraining disjunctive splitting rules with atomic premises.

In the case study of Km(¬) we showed that even if none of the rules of the
initially generated calculus are refinable (without loss of completeness) there may
be ways to modify the semantic specification for the logic and extend the calculus
by additional rules in order to achieve refinability. In this case the addition of
derivable rule enabled the refinement of other rules in the calculus.

Adding analytic cut rules [6] to the calculus is another approach to make rule
refinement possible. This allows KE tableau calculi to be systematically derived
in the framework. Due to space limitation we do not elaborate on this case.

We have considered rule refinement in the tableau synthesis framework. Since
its rule language gives full freedom to generate sets of inference rules for any
logic, where the semantics can be expressed in a first-order language, the results
of the paper apply to all calculi that can be described in the framework. The
refinements and essential ideas are however more general and can be applied to

Rule Refinement for Semantic Tableau Calculi 243

other types of deduction calculi, which deserves to be investigated. Further work
will include the investigation of other refinements and reduction of the search
space, such as ordering restrictions [11].

References

1. Abate, P., Goré, R.: The tableau workbench. Electr. Notes Theoret. Comput. Sci.
231, 55–67 (2009)

2. Babenyshev, S., Rybakov, V., Schmidt, R.A., Tishkovsky, D.: A tableau method
for checking rule admissibility in S4. Electr. Notes Theoret. Comput. Sci. 262,
17–32 (2010)

3. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer,
Heidelberg (1996). doi:10.1007/3-540-61630-6 1

4. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods (2016). arXiv e-Print arXiv:1611.09014 [cs.AI]

5. Blackburn, P., Seligman, J.: What are hybrid languages? In: AiML-1, pp. 41–62.
CSLI Publ. (1998)

6. D’Agostino, M., Mondadori, M.: The taming of the cut. Classical refutations with
analytic cut. J. Log. Comput. 4(3), 285–319 (1994)

7. De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal
logics. Logic J. IGPL 8(3), 265–292 (2000)

8. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Kufstein
(1983)

9. Gargov, G., Passy, S., Tinchev, T.: Modal environment for Boolean speculations.
In: Proceedings of the 1986 Gödel Conference, pp. 253–263. Plenum (1987)

10. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D.M., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Springer, Dordrecht (1999). doi:10.1007/978-94-017-1754-0 6

11. Hähnle, R., Klingenbeck, S.: A-ordered tableaux. J. Log. Comput. 6(6), 819–833
(1996)

12. Humberstone, I.L.: The modal logic of ‘all and only’. Notre Dame J. Formal Log.
28(2), 177–188 (1987)

13. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In:
Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer,
Heidelberg (1998). doi:10.1007/3-540-69778-0 22

14. Khodadadi, M., Schmidt, R.A., Tishkovsky, D.: A refined tableau calculus with
controlled blocking for the description logic SHOI. In: Galmiche, D., Larchey-
Wendling, D. (eds.) TABLEAUX 2013. LNCS, vol. 8123, pp. 188–202. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40537-2 17

15. Lutz, C., Sattler, U.: The complexity of reasoning with Boolean modal logics. In:
AiML-3, pp. 329–348. CSLI Publ. (2002)

16. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
J. Artif. Intell. Res. 36, 165–228 (2009)

17. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning, pp. 335–367. Elsevier (2001)

18. Schmidt, R.A., Stell, J.G., Rydeheard, D.: Axiomatic and tableau-based reasoning
for Kt(H, R). In: AiML-10, pp. 478–497. College Publ. (2014)

http://dx.doi.org/10.1007/3-540-61630-6_1
http://arxiv.org/abs/1611.09014
http://dx.doi.org/10.1007/978-94-017-1754-0_6
http://dx.doi.org/10.1007/3-540-69778-0_22
http://dx.doi.org/10.1007/978-3-642-40537-2_17

244 D. Tishkovsky and R.A. Schmidt

19. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Meth-
ods Comput. Sci. 7(2:6), 1–32 (2011)

20. Schmidt, R.A., Tishkovsky, D.: Using tableau to decide description logics with full
role negation and identity. ACM Trans. Comput. Log. 15(1), 7:1–7:31 (2014)

21. Schmidt, R.A., Waldmann, U.: Modal tableau systems with blocking and congru-
ence closure. In: Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
38–53. Springer, Cham (2015). doi:10.1007/978-3-319-24312-2 4

22. Smullyan, R.M.: First Order Logic. Springer, Heidelberg (1971)
23. Stell, J.G., Schmidt, R.A., Rydeheard, D.: A bi-intuitionistic modal logic: founda-

tions and automation. J. Log. Algebr. Methods Program. 85(4), 500–519 (2016)
24. Tishkovsky, D., Schmidt, R.A.: Rule refinement for semantic tableau calculi (2017).

http://www.cs.man.ac.uk/∼schmidt/publications/ruleref long.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-319-24312-2_4
http://www.cs.man.ac.uk/~schmidt/publications/ruleref_long.pdf
http://creativecommons.org/licenses/by/4.0/

Transitive Closure and Cyclic Proofs

Completeness for Ancestral Logic
via a Computationally-Meaningful Semantics

Liron Cohen(B)

Cornell University, Ithaca, USA
lironcohen@cornell.edu

Abstract. First-order logic (FOL) is evidently insufficient for the many
applications of logic in computer science, mainly due to its inability to
provide inductive definitions. Therefore, only an extension of FOL which
allows finitary inductive definitions can be used as a framework for auto-
mated reasoning. The minimal logic that is suitable for this goal is Ances-
tral Logic (AL), which is an extension of FOL by a transitive closure
operator. In order for AL to be able to serve as a reasonable (and better)
substitute to the use of FOL in computer science, it is crucial to develop
adequate, user-friendly proof systems for it. While the expressiveness of
AL renders any effective proof system for it incomplete with respect to
the standard semantics, there are useful approximations. In this paper we
show that such a Gentzen-style approximation is both sound and com-
plete with respect to a natural, computationally-meaningful Henkin-style
semantics for AL.

1 Introduction

In [8] it was forcefully argued that logic plays a central role in computer science.
Evidence for this claim was provided by listing a variety of applications of logic
in different areas in computer science, such as descriptive complexity, database
query languages, program verification and more. However, when examining this
list of applications, it turns out that first-order logic (FOL), which is the logic
usually associated with ‘logic’, does not actually suffice for any of the mentioned
applications.1 Evidently, extensions of FOL are needed in almost all of the
examples given in [8]:

– The characterization of complexity classes which is done in descriptive com-
plexity always uses logics that are more expressive than FOL, such as second-
order logic (SOL), or logics which are intermediate between FOL and SOL.

– Verification of programs involve inductive arguments which are not a part of
the logical machinery of FOL.

1 Actually, at this point we are only referring to the formal languages used in the
applications, ignoring (for the time being) other essential components of the notion
of a ‘logic’, like the corresponding consequence relation.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 247–260, 2017.
DOI: 10.1007/978-3-319-66902-1 15

248 L. Cohen

– [8] only mentioned query languages which are directly based on FOL, like
SQL. However, its poor expressive power is the reason that the SQL 3 (1999)
standard added a WITH RECURSIVE construct which allows transitive clo-
sures to be computed inside the query processor, and by now such a construct
is implemented also in IBM DB2, Microsoft SQL Server, and PostgreSQL.
Datalog too implements transitive closure computations.

– Not only do type theories obviously go beyond FOL, but even their presenta-
tion and description cannot be done in FOL, since their introduction makes
a massive use of inductive definitions of typing judgments.

– Most applications of model-checking rely on the notion of reachability, which
is not first-order definable. It is noted in [18] that “In all interesting applica-
tions of model-checking, reachability properties have to be checked, which are
not expressible in the FOL-signature of labeled graphs (transition systems)”.

– A crucial notion for reasoning about knowledge is that of common knowledge.
This notion is inductively defined in terms of the basic knowledge operators.
However, this definition is not expressible in FOL and so is usually introduced
by brute force.

All these examples (as well as many others) reveal that what FOL is lacking
is the ability to provide inductive definitions. More particularly, the notion of the
transitive closure of a given binary relation seems to be the key necessary com-
ponent which is not expressible in FOL. In fact, because of this inability, FOL
cannot even serve as its own meta-logic, since all its basic syntactic categories
(such as terms, formulas, and formal derivations of formulas) are introduced via
inductive definitions. Hence, only some extension of FOL which allows finitary
inductive definitions ([5]) can be used as a framework for automated reasoning.
While SOL clearly enjoys this property, it does not seem satisfactory that deal-
ing with basic inductive definitions requires using the strong notions involved in
SOL, such as quantifying over all subsets of infinite sets. Full SOL also has many
disadvantages, among which are its doubtful semantics (as it is based on debat-
able ontological commitments), and what is more, the fact that it is difficult to
deal with from a proof-theoretical point of view.

In [1,2] it was shown that the minimal framework that can be used for
the above mentioned goal is Ancestral Logic, AL (which is also known in the
literature as TC-logic). This is the logic obtained from FOL by the addition of a
transitive closure operator. Although several other logics which are intermediate
between FOL and SOL have been suggested in the literature (such as: weak
second-order logic, ω-logic, logics with a “cardinality quantifier”, logics with
Henkin quantifiers, etc.), we strongly believe that AL should be taken as the
basic logic which underlies most applications of logic in computer science. Its
advantages include: being useful in the finite cases2, having intuitive formal

2 A great deal of attention has been given to AL in the area of finite model theory, and
in related areas of computer science, like complexity classes (see, e.g., [4]). However,
not much has been done so far about it in the context of arbitrary structures, or
from a proof theoretical point-of-view.

Completeness for Ancestral Logic 249

proof systems, and entering very naturally in computer science applications3.
Another important advantage of AL is the simplicity of the transitive closure
notion. Anyone, even with no mathematical background whatsoever, can easily
grasp the concept of the ancestor of a given person (or, in other words, the idea
of the transitive closure of a certain binary relation).

In order for AL to be used as the foundational logic in computer science
applications, its theory must first be developed to the point it can serve as a
reasonable (and in many cases, better) substitute for the use of FOL (or higher-
order logics). Since our goal is to explore the use of this logic in such applications,
the emphasis should be on the construction of adequate, user-friendly formal
systems for AL. Due to the expressiveness of AL, there can be no sound and
complete effective proof system for it (see, e.g., [15]). Instead, one should look for
useful approximations (like in the case of SOL). In [1,2] a Gentzen-style proof
system for AL was presented and its proof-theoretical properties were explored.4

It was shown to be natural and effective, as well as sound with respect to the
intended semantics. In this paper we provide further evidence for the usefulness
of the system by proving that it is both sound and complete with respect to a
generalized Henkin-style semantics.5 This semantics for AL is based on the one
used for the completeness proof for SOL given in [9].

The rest of this paper is organized as follows: In Sect. 2 the formal definition of
the reflexive transitive closure operator and ancestral logic are given. Then, some
of the most important model-theoretic properties of ancestral logic are presented.
Section 3 provides a natural Gentzen-style system which is adequate for ancestral
logic in the sense that it is sound with respect to the standard semantics, and
captures the properties that govern the transitive closure operator. Section 4
contains the main result of the paper: a completeness theorem for the proof
system for AL with respect to a natural Henkin-style semantics. Finally, in
Sect. 5 we conclude with some remarks and ideas for further research.

2 The Language and its Semantics

The essential idea in embedding the general concept of the transitive closure
operator
into a logical framework is that one may treat a formula with two (distinct)
free variables as a definition of a binary relation. Below is the formal definition
of first-order logic augmented by a transitive closure operator, and its semantics.
In this paper (following suggestions made in, e.g., [12–14]) we take the reflex-
ive form of the transitive closure operator as the primitive notion. In [2] it was
3 To demonstrate one such application of AL in computer science, in [3] a constructive

version of AL was shown to subsume Kleene algebra with tests [11] (as the reflex-
ive transitive closure operator is essentially Kleene’s star operator), while offering
much more expressive power. This demonstrates that AL can serve as a natural
programming logic for specifying, developing and reasoning about programs.

4 In fact, [2] presented several proof systems for different variations of AL, and the
connection between them was investigated.

5 To be precise, we take here an equivalent variant of a system presented in [2].

250 L. Cohen

shown that the two forms of the operator, the reflexive one and the non-reflexive
one, are equivalent in the presence of equality.

Throughout the paper we use the following standard notations:

– Fv (ϕ) for the set of free variable in the formula ϕ.
– v [x := a] for the x-variant of the assignment v which assigns a to x.
– ϕ

{
t1
x1

, . . . , tn
xn

}
for the result of simultaneously substituting ti for the free

occurrences of xi in ϕ (i = 1, . . . , n).

Definition 1. Let σ be some first-order signature, and let L be the corresponding
first-order language. The language LRTC is obtained from L by the addition of
the reflexive transitive closure operator (RTC), together with the following clause
concerning the definition of a formula:

– (RTCx,yϕ) (s, t) is a formula in LRTC for any formula ϕ in LRTC , distinct
variables x, y, and terms s, t.

The free occurrences of x and y in ϕ become bound in this formula.

Note that ϕ in the above definition can be any formula in LRTC . That is,
it may contain free variables other than x, y (treated as parameters), or it may
not contain x, y at all. Also, ϕ can have a RTC-subformula, i.e. nesting of the
RTC operator are allowed.

The intended meaning of a formula of the form (RTCx,yϕ) (s, t) is the “infi-
nite disjunction”:

s = t ∨ ϕ{ s
x , t

y} ∨ ∃w1(ϕ{ s
x , w1

y }) ∧ ϕ{w1
x , t

y}) ∨
∃w1∃w2(ϕ{ s

x , w1
y } ∧ ϕ{w1

x , w2
y } ∧ ϕ{w2

x , t
y}) ∨ . . .

where w1, w2, . . . are all fresh variables.

Definition 2. Let M be a structure for LRTC , and v an assignment in M .
Ancestral logic (AL) is semantically defined as classical first-order logic, with
the following additional clause concerning the satisfaction relation:

– The pair 〈M,v〉 is said to satisfy the formula (RTCx,yϕ) (s, t) (denoted by
M,v |= (RTCx,yϕ) (s, t)) if v (s) = v (t), or there exist a0, . . . , an ∈ D (n > 0)
such that v (s) = a0, v (t) = an, and M,v[x := ai, y := ai+1] |= ϕ for
0 ≤ i ≤ n − 1.

A simple compactness argument shows that the reflexive transitive closure
operator is in general not first-order definable. However, it is definable in second-
order logic by the formula: ∀X ((Xs ∧ ∀x∀y (ϕ (x, y) ∧ Xx → Xy)) → Xt).
Therefore, ancestral logic is intermediate between first- and second-order logics.
An important indication that the expressive power of ancestral logic captures a
very significant and natural fragment of SOL is provided by the fact that AL
is equivalent in its expressive power to several other logics between FOL and
SOL that have been suggested and investigated in the literature (such as those
mentioned in the introduction).

Completeness for Ancestral Logic 251

The natural numbers can be categorically characterized in AL using only
equality, zero and the successor function (see [2]). This implies that the upward
Löwenheim-Skolem theorem fails for AL, as well as the compactness theorem (see
[15]). Moreover, if addition is added to the language, all recursive functions and
relations are definable in AL (see [1]), and thus the set of valid formulas of AL in
this language is not even arithmetical. Hence AL is inherently incomplete, i.e.,
any formal deductive system which is sound for AL is incomplete. Nevertheless,
as we shall demonstrate, there are very natural formal approximations which are
sound, and seem to encompass all forms of reasoning for this logic that are used
in practice.

3 Formal Proof System for AL

As in the case of SOL, since there can be no sound and complete formal system
for AL, one should instead look for useful approximations. Such approximations
should be:

– natural and effective,
– sound with respect to the intended semantics,
– both sound and complete with respect to some natural generalization of the

intended semantics.

Such equivalent Hilbert-style approximations were suggested already in [12–14].
Nevertheless, the use of Hilbert-type systems is impractical, since they are not
suitable for mechanization. A better, computationally-oriented approach would
be to explore Gentzen-style systems for AL. This was done in [2], and we here
review the system and its main properties.

Definition 3. Let G be a Gentzen-style system (see, e.g., [6]).

– A sequent s is said to be provable from a set of sequents S in G, denoted by
S
G s, if there exists a derivation in G of s from S.

– A formula ϕ is said to be provable from a set of formulas T in G, denoted by
T
G ϕ, if there is a derivation in G of ⇒ ϕ from the set {⇒ ψ |ψ ∈ T}.

In what follows the letters Γ,Δ represent finite (possibly empty) multisets of
formulas, ϕ,ψ arbitrary formulas, x, y, z, u, v variables, and r, s, t terms.

Let LK be the Gentzen-style system for classical first-order logic [6,17],
including the substitution rule (though it was not a part of the original
system).

Definition 4. The system ALG for LRTC is defined by adding to LK the fol-
lowing axiom:

Γ ⇒ Δ, (RTCx,yϕ) (s, s) (1)

and the following inference rules:

Γ ⇒ Δ, (RTCx,yϕ) (s, r) Γ ⇒ Δ,ϕ
{

r
x , t

y

}

Γ ⇒ Δ, (RTCx,yϕ) (s, t) (2)

252 L. Cohen

Γ, ψ (x) , ϕ (x, y) ⇒ Δ,ψ
{

y
x

}

Γ, ψ
{

s
x

}
, (RTCx,yϕ) (s, t) ⇒ Δ,ψ

{
t
x

}
(3)

In all the rules we assume that the terms which are substituted are free for
substitution, and that no forbidden capturing occurs. In Rule (3) x should not
occur free in Γ and Δ, and y should not occur free in Γ,Δ and ψ.

For languages with equality, the system AL=
G is obtained from ALG by the

addition of standard equality axioms (see, e.g., [17]).

Rule (3) is a generalized induction principle. It states that if t is a ϕ-
descendant of s or equal to it, then if s has some hereditary property which
is passed down from one object to another if they are ϕ-related, then t also has
that property. In the case of arithmetic this rule captures the induction rule of
Peano’s Arithmetics PA (see [2]).6

The system ALG is adequate for handling the RTC operator, in the sense that
it is sound and it gives the RTC operator the intended meaning of the reflexive
transitive closure operator. Furthermore, all fundamental rules concerning the
RTC operator that have been suggested in the literature (as far as we know)
are derivable in it. The Lemma below provides some examples.

Lemma 5. The following rules are derivable in ALG:

Γ ⇒ Δ, (RTCx,yϕ) (s, r) Γ ⇒ Δ, (RTCx,yϕ) (r, t)
Γ ⇒ Δ, (RTCx,yϕ) (s, t)

(4)

Γ, ϕ ⇒ Δ,ψ

Γ, (RTCx,yϕ) (s, t) ⇒ Δ, (RTCx,yψ) (s, t)
(5)

(RTCx,yϕ) (s, t) , Γ ⇒ Δ

(RTCu,v (RTCx,yϕ) (u, v)) (s, t) , Γ ⇒ Δ
(6)

Γ ⇒ Δ, (RTCx,yϕ) (s, t)
Γ ⇒ Δ, (RTCy,xϕ) (t, s)

(RTCx,yϕ) (s, t) , Γ ⇒ Δ

(RTCy,xϕ) (t, s) , Γ ⇒ Δ
(7)

In (5) x, y should not occur free in Γ and Δ, and in (6) u, v should not occur
free in ϕ.

4 Henkin-Style Completeness

Though ALG cannot be complete for its intended semantics, it can be shown
to be complete for a more liberal yet natural semantics, in the spirit of the
Henkin semantics used for the completeness of SOL (see, e.g. [9,15]). Thus, in
this section we introduce a similar Henkin-style semantic characterizations for
LRTC , and prove the completeness of ALG with respect to it. This will establish
that ALG indeed meets also the third criterion of a useful approximation for AL
given at the beginning of Sect. 3.

6 In fact, it was shown in [2] that in the case of arithmetics the ordinal number of
ALG is ε0, like in the case of PA.

Completeness for Ancestral Logic 253

First we recall the concepts of Henkin structures. A σ-Henkin structure is a
standard structure together with a subset of the power-set of its domain (called
its set of admissible subsets) which is closed under parametric definability.

Definition 6. Let σ be a first-order signature. A σ-Henkin structure M is a
triple 〈D, I,D′〉, such that:

– 〈D, I〉 is a standard structure for σ (i.e., D is a non-empty domain and I is
an interpretation function on σ in D)

– D′ ⊆ P (D) such that for each formula ϕ in σ, and assignment v in M7:

{a ∈ D |M,v [x := a] |= ϕ} ∈ D′

In case D′ = P (D), the σ-Henkin structure is called a standard structure.

Notice that in finite structures every subset of the domain is parametrically
definable, hence non-standard σ-Henkin structures are necessarily infinite.

It should be noted that the notion of “non-standard” structures is commonly
used in mathematical logic, but in a different sense. There are two ways in
which a σ-Henkin structure can be non-standard. The “standard way” for it to
be non-standard is by having a non-standard first-order part 〈D, I〉 (in which
case D′ must necessarily be non-standard). However, a σ-Henkin structure can
be non-standard even in case its first-order part is standard, simply by having
D′ � P (D). The latter is what we here mean by a non-standard σ-Henkin
structure.

Definition 7. Let LRTC be the language based on the signature σ. LRTC for-
mulas are interpreted in σ-Henkin structures as in standard structures, except
for the following clause:

– M,v |= (RTCx,yϕ) (s, t) if for every A ∈ D′, if v (s) ∈ A and for every
a, b ∈ D: (a ∈ A ∧ M,v [x := a, y := b] |= ϕ) → b ∈ A, then v (t) ∈ A.

Example 8. To give an example of a non-standard σ-Henkin structure, consider
the relational language of arithmetic σ = {0, S,=}, where S stands for the
successor relation (note that we here use equality in the signature). Let M be the
structure whose first-order part is the standard structure of the natural numbers,
and let D′ be the collection of subsets of the natural numbers that are definable
without parameters in the language of AL (i.e. definable by a formula with only
one free variable). A set that is definable relative to definable parameters is
definable without parameters, so D′ is closed under definability. Thus, M is a
σ-Henkin structure which is clearly non-standard as D′ � P (D). Now, AL has
a categorical characterization of the natural numbers (see, e.g., [1,2,15]), and it
is straightforward to verify that M indeed satisfies all the characterizing axioms.

The next proposition shows that the generalized Henkin-style semantics coin-
cides with the standard semantics on standard structures.
7 An assignment v in M is defined as in the standard semantics.

254 L. Cohen

Proposition 9. Let M be a standard structure and v an assignment in M .
Then, the followings are equivalent:

1. v (s) = v (t) or there exist a0, . . . , an ∈ D (n > 0) such that v (s) = a0, v (t) =
an, and M,v[x := ai, y := ai+1] |= ϕ for 0 ≤ i ≤ n − 1.

2. for every A ⊆ D, if v (s) ∈ A and for every a, b ∈ D: M,v [x := a, y := b] |= ϕ
and a ∈ A implies b ∈ A, then v (t) ∈ A.

Proof. Suppose (1). Let A ⊆ D be a set that is closed under ϕ, and v an
assignment such that v (s) = a0 ∈ A. If v (s) = v (t) we are done. Otherwise, by
induction on the sequence a0, . . . , an it is straightforward to prove that v (t) =
an ∈ A. For the converse, assume by contradiction that (1) does not hold. Take
A to be that set which includes v (s) as well as all an ∈ D such that there exist
a0, . . . , an−1 ∈ D (n > 0) where v (s) = a0, and M,v[x := ai, y := ai+1] |= ϕ
for 0 ≤ i ≤ n − 1. By assumption, v (t) /∈ A, which contradicts (2), since A is
obviously ϕ-closed. ��

Before proceeding, a discussion of the value of this type of generalized Henkin
semantics for AL is in order. This semantics originated in the completeness result
for SOL [9]. There, in order to achieve completeness, the semantics of the non
first-order part of the language (the second-order variables) had to weakened.
Similarly, we here form a relaxation of the intended semantics for AL by taking
a more liberal condition for the non first-order part of the language, the RTC
operator. On standard structures, this semantics gives to an RTC-formula its
intended top-down meaning (as in Proposition 9(2)). That is, (RTCx,yϕ) (s, t)
holds when any property (represented by A) which is closed under ϕ and contains
the interpretation of s also contains the interpretation of t. This corresponds
to the standard mathematical definition of the operator as the union of the
identity relation with the intersection over all transitive binary relations that
contain the interpretation of ϕ (to see this, notice that a ∈ A → b ∈ A may
be considered as a transitive binary relation). Now, this is a strong requirement
which also renders this definition non-constructive (apart from in trivial cases).
The Henkin-style semantics given above relaxes this definition by referring not to
all A ⊆ D, but only to certain ones. The closure condition on Henkin structures
entails that those A’s on which the property should be verified are those which
are definable (with parameters) in the language. This is a definitional approach
to the transitive closure operator which is very much computationally-oriented.
The meaning of the transitive closure is what gives AL its inductive power,
which is required for many applications in computer science (as surveyed in
the Introduction). But the inductive power actually needed and used in such
applications is not over arbitrary elements, but over elements which can be
defined.

This generalization of the semantics is what entails the completeness result
for ALG in the sequel. This is because in the induction rule of the formal system
ALG there is an implicit condition that the hereditary property can be defined
by a formula, there denoted by ψ. Actually, this condition holds in any formal
system, and thus is a critical property in any computational framework. In light

Completeness for Ancestral Logic 255

of that, the completeness result also suggests that those “standard truths” of
AL which are not provable in ALG hold due to inductive reasoning on some
non-definable (non-computable) set.

Any classical structure M = 〈D, I〉 for σ induces a set of σ-Henkin structures
H (M) = {MH = 〈D, I,D′〉 | MH is a σ−Henkin structure}. Conversely, each
σ-Henkin structure M corresponds to the classical structure obtained by the
forgetfulness of D′.

Definition 10. Let T ∪ {ϕ} be a set of formulas in a language based on the
signature σ. We say that T |=H ϕ if every σ-Henkin model of T is a model of
ϕ. We say that T |=S ϕ if every standard model of T is a model of ϕ.

Proposition 11. Let T ∪ {ϕ} be a set of formulas. If T |=H ϕ then T |=S ϕ.

Proof. Follows from the fact that every standard model for T may be viewed as
a Henkin model. ��

We start by showing the completeness of ALG. Therefore in what follows,
unless mentioned otherwise, we assume LRTC does not contain equality.

Theorem 12 (Soundness). Let T ∪{ϕ} be a set of sentences in LRTC . Then,
T
ALG

ϕ implies T |=H ϕ.

Proof. It is straightforward to verify that Axiom (1) and Rule (2) of ALG are
sound with respect to the Henkin-style semantics. For Rule (3) simply take
A := {a ∈ D |M,v [x := a] |= ψ}. Now, A ∈ D′ since σ-Henkin structures are
closed under parametric definability. By the assumptions we have that A is
ϕ-closed and v (s) ∈ A, which by the semantics of the RTC formula entails
v (t) ∈ A. ��

The main result of this section is Theorem 13 below, which we shall prove
using several lemmas and definitions.

Theorem 13 (Completeness). Let T ∪ {ϕ} be a set of sentences in LRTC .
Then, T |=H ϕ implies T
ALG

ϕ.

We prove the completeness theorem using the standard method, showing
that if T �ALG

ϕ, then T �H ϕ. First, we extend the language LRTC to a
language L′

RTC by adding to it countably many new constant symbols, c1, c2, . . .,
and countably many new monadic predicates, P1, P2, It is easy to see that
T �ALG

ϕ in the extended language as well.

Definition 14. We say that a set of L′
RTC sentences Γ contains Henkin wit-

nesses if the followings hold:

1. if ∃xϕ ∈ Γ , then ϕ
{

c
x

} ∈ Γ for some constant c.
2. if ¬ (RTCx,yϕ) (s, t) ∈ Γ , then P (s), ∀x, y (P (x) ∧ ϕ (x, y) → P (y)),

¬P (t) ∈ Γ for some monadic predicate P .
3. if ϕ is a formula of L′

RTC with Fv (ϕ) = {x}, then ∀x (P (x) ↔ ϕ) ∈ Γ for
some monadic predicate P .

256 L. Cohen

The next Lemma established that the standard method of relational exten-
sion by definitions is conservative.

Lemma 15. Let T be a set of sentences in L′
RTC such that T �ALG

ϕ, and let θ
be a sentence of the form ∀x (P (x) ↔ ψ), where P is a fresh monadic predicate
(i.e. does not occur in T ∪ {ϕ,ψ}). Then, T, θ �ALG

ϕ.

Proof. Suppose by contradiction that there is a proof from T ∪{∀x (P (x) ↔ ψ)}
of ϕ in ALG, where P is a fresh monadic predicate. First rename all bound
variables in the proof (apart from x in the formula ∀x (P (x) ↔ ψ)) with new
variables not occurring in the proof or in ∀x (P (x) ↔ ψ). Now, replace all the
occurrences of formulas of the form P (t) in the proof by ψ

{
t
x

}
. Then, every

occurrence of ∀x (P (x) ↔ ψ) in the proof becomes an occurrence of ∀x (ψ ↔ ψ),
which of course is provable in ALG. It is straightforward to show that if the
replacement is done on an axiom, then the result is still an axiom of ALG. It
is also easy to verify that all the inference rules apply equally to the formulas
after the replacement. Also notice that since P does not occur in T ∪ {ϕ},
the replacement procedure applied to a formula in T ∪ {ϕ} results in the same
formula. Hence, the replacement procedure indeed produces a proof of ϕ from
T in ALG. This shows that T
ALG

ϕ, which is a contradiction. ��
Lemma 16. Let P be a monadic predicate and θ a formula of L′

RTC . Then:

P (s) ,∀x, y (P (x) ∧ θ (x, y) → P (y)) ,¬P (t)
ALG
¬ (RTCx,yθ) (s, t)

Proof. The claim immediately follows from Rule (3), taking ϕ (x, y) := θ (x, y)
and ψ (x) := P (x). ��
Lemma 17. There exists an extension of T to a set of sentences T ′ in the
language L′

RTC such that:

1. T ′ is a maximal theory in L′
RTC such that T ′ �ALG

ϕ.
2. T ′ contains Henkin witnesses.

Proof. Fix two enumerations: one of all sentences of L′
RTC : ψ1, ψ2, . . .; and one

of all the formulas of L′
RTC with one free variable x: θ1, θ2, Define a sequence

of theories T0, T1, . . . inductively in the following way: T0 = T , and for i > 0 Ti

is constructed from Ti−1 as follows:

1. If i = 2n − 1 for some n ∈ N, then:
(a) If Ti−1 ∪ {ψn}
ALG

ϕ, then Ti = Ti−1.
(b) If Ti−1 ∪ {ψn} �
ALG

ϕ, then:
i. If ψn is not of the form ∃xψ or ¬ (RTCx,yψ) (s, t), Ti = Ti−1 ∪ {ψn}.
ii. If ψn = ∃xψ, then Ti = Ti−1 ∪ {

ψn, ψ
{ cj

x

}}
, for cj a fresh constant

symbol not in Ti−1.
iii. If ψn = ¬ (RTCx,yψ) (s, t), then Ti = Ti−1 ∪ {ψn, Pj (s) ,¬Pj (t) ,

∀x, y (Pj (x) ∧ ψ (x, y) → Pj (y))}, for Pj a fresh monadic predicate
not in Ti−1.

Completeness for Ancestral Logic 257

2. If i = 2n for some n ∈ N, then Ti = Ti−1 ∪ {∀x (Pj (x) ↔ θn)}, for Pj a fresh
monadic predicate not in Ti−1.

We show by induction that for every i ∈ N, Ti �ALG
ϕ. Lemma 15 entails

that if T2n−1 �
ALG
ϕ, then T2n �
ALG

ϕ. For i = 2n − 1: Cases (a) and (b i)
are trivial, and Case (b ii) is provable just as in the standard completeness
proof for FOL. Thus, we here prove Case (b iii). Assume by contradiction that
Ti−1,¬ (RTCx,yψ) (s, t) , Pj (s) , ∀x, y.Pj (x)∧ψ (x, y) → Pj (y) ,¬Pj (t)
ALG

ϕ.
Since Pj (s) ,∀x, y.Pj (x)∧ψ (x, y) → Pj (y) ,¬Pj (t)
ALG

¬ (RTCx,yψ) (s, t), by
Lemma 16 we have Ti−1, Pj (s) ,∀x, y.Pj (x) ∧ ψ (x, y) → Pj (y) ,¬Pj (t)
ALG

ϕ.
Now, Pj is a fresh monadic predicate which does not appear in Ti−1 ∪ {ϕ}.
Therefore, it is straightforward to verify that replacing all occurrences of for-
mulas of the form Pj (r) in the above proof with (RTCx,yψ) (s, r) results in a
proof in ALG of ϕ from the set Ti−1 ∪ {(RTCx,yψ) (s, s) ,¬ (RTCx,yψ) (s, t) ,
∀x, y. (RTCx,yψ) (s, x) ∧ ψ (x, y) → (RTCx,yψ) (s, y)}. Now, (RTCx,yψ) (s, s) is
an axiom of ALG, and ∀x, y ((RTCx,yψ) (s, x) ∧ ψ (x, y) → (RTCx,yψ) (s, y)) is
provable in ALG using Rule (2). Hence, we get that Ti−1,¬ (RTCx,yψ) (s, t)

ALG

ϕ, which contradicts the original assumption that Ti−1 ∪ {ψi} �
ALG
ϕ.

Therefore, Ti �ALG
ϕ.

Now, take T ′ =
⋃∞

i=0 Ti. The construction of T ′ entails that it satisfies the
two requirements of the claim. ��
Next we construct a Henkin model for T ′, which does not satisfy ϕ.

Definition 18. Define M by:

– D = {t | t is a closed term}
– D′ = {{t |P (t) ∈ T ′} |P is amonadic predicate}
– 〈t1, . . . , tn〉 ∈ I (P) iff P (t1, . . . , tn) ∈ T ′

– I (c) = c for a constant symbol c
– I (f) (t1, . . . , tn) = f (t1, . . . , tn) for a n-ary function symbol f

Notice that D′ = {I (P) |P is amonadic predicate}.

Lemma 19. Let ψ be a formula in L′
RTC . The following holds:

– M,v |= ψ iff M |= ψ
{

v(x1)
x1

, . . . , v(xn)
xn

}
, where Fv (ψ) = {x1, . . . , xn}.

– T ′ |=H ∀xψ iff T ′ |=H ψ
{

t
x

}
for every closed term t.

Lemma 20. M is a σ-Henkin structure.

Proof. The claim follows from the fact that T ′ contains Henkin witnesses of
the third type in Definition 14, i.e., a monadic predicate was introduced for
each parametrically definable subset (using the new constant symbols instead
of the parameters). To see this, let v be an assignment in M , and let ψ be
a formula with Fv (ψ) = {x1, . . . , xn}. Then, {a ∈ D |M,v [x1 := a] |= ψ} ={

a ∈ D |M,v [x1 := a] |= ψ
{

v(x2)
x2

, . . . , v(xn)
xn

}}
. In T ′ there exists a monadic

predicate which forms a Henkin witness for ψ
{

v(x2)
x2

, . . . , v(xn)
xn

}
, denote it

258 L. Cohen

by Pk (x1). This entails that
{

a ∈ D |M,v [x1 := a] |= ψ
{

v(x2)
x2

, . . . , v(xn)
xn

}}
=

I (Pk) ∈ D′. ��
Lemma 21. For every sentence θ in L′

RTC : M |= θ iff θ ∈ T ′.

Proof. By induction on θ. The base case follows immediately from the definition
of M . For the connectives and quantifiers the proof is similar to the standard
proof for FOL (using Henkin witnesses for existential formulas). We next prove
the case for θ = (RTCx,yψ) (s, t).
(⇒) : Assume M |= (RTCx,yψ) (s, t). Hence, for every monadic predicate P ,
if for every a, b ∈ D:(a ∈ I (P) ∧ M,v [x := a, y := b] |= ψ) → b ∈ I (P) and
I (s) ∈ I (P), then I (t) ∈ I (P). Using the induction hypothesis and the base
case we get that for any monadic predicate P , if P (s) ∈ T ′ and for any two
closed terms a, b, if P (a) ∈ T ′ and ψ (a, b) ∈ T ′ then P (b) ∈ T ′, then P (t) ∈ T ′.
From this we deduce (using Lemma 19) that for any monadic predicate P , if
P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′, then P (t) ∈ T ′. Assume
by contradiction that (RTCx,yψ) (s, t) /∈ T ′. By the maximality of T ′, we get
that ¬ (RTCx,yψ) (s, t) ∈ T ′. Therefore, T ′ contains Henkin witnesses of the
type P (s), ∀x, y (P (x) ∧ ψ (x, y) → P (y)) and ¬P (t) for some monadic predi-
cate P . But this contradicts the consistency of T ′, since we showed that for any
monadic predicate P , if P (s) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′,
then P (t) ∈ T ′. Hence we conclude that (RTCx,yψ) (s, t) ∈ T ′.
(⇐) : Assume M � (RTCx,yψ) (s, t). So, M |= ¬ (RTCx,yψ) (s, t) and there
exists a monadic predicate P such that I (s) ∈ I (P), I (t) /∈ I (P), and for every
a, b ∈ D: (a ∈ I (P) ∧ M,v [x := a, y := b] |= ψ) → b ∈ I (P). By the induction
hypothesis and the base case we get that there exists a monadic predicate P such
that P (s) ∈ T ′, P (t) /∈ T ′, and for any two closed terms a, b, if P (a) ∈ T ′ and
ψ (a, b) ∈ T ′ then P (b) ∈ T ′. Therefore, by the maximality of T ′, P (s) ∈ T ′,
¬P (t) ∈ T ′ and ∀x, y (P (x) ∧ ψ (x, y) → P (y)) ∈ T ′ (the latter holds since
assuming otherwise leads to a contradiction using a Henkin witness for an
existential formulas). This entails, by Lemma16, T ′
ALG

¬ (RTCx,yψ) (s, t).
Assuming (RTCx,yψ) (s, t) ∈ T ′ contradicts the consistency of T ′, therefore
(RTCx,yψ) (s, t) /∈ T ′. ��

From the above series of definitions and lemmas we can finally prove The-
orem 13. Since the original theory T is contained in T ′ and ϕ /∈ T ′, Lemma 21
entails that the model M constructed in Definition 18 satisfies T , but not ϕ.
Hence, we get that T �|=H ϕ, which concludes the proof of the Completeness
Theorem for ALG.

The completeness of AL=
G is obtained similarly. Soundness of the additional

equality rules is straightforward. The main modification needed in the complete-
ness proof for languages with equality is in the construction of the structure M
(Definition 18). In this case M is obtained by taking the domain D to be the
quotient set on terms under the equivalence relation: t1 ≡ t2 iff t1 = t2 ∈ T ′. The
other components of the definition are then altered straightforwardly, taking the
equivalence class of closed terms instead of the terms themselves (just as in the
standard completeness proof for first-order languages with equality).

Completeness for Ancestral Logic 259

It should be noted that in [2] a Gentzen-style proof system for the non-
reflexive transitive closure operator was presented, and it was shown that there
exist provability preserving interpretations between the two logics. Using similar
methods to the ones used here, it is straightforward to provide a generalized
Henkin-style semantics for the non-reflexive transitive closure operator and to
prove that its corresponding proof system is complete with respect to it.

5 Conclusions and Further Research

In this paper we took another step in the development of the theory of AL as
a foundational logical framework for computer science applications. A Henkin-
style semantics for AL was introduced and a natural formal system for AL was
proven to be sound and complete with respect to it. This leads to various open
questions and possible research directions in the exploration of the theory of AL.

One important research task is establishing some form of cut-elimination the-
orem for ALG. A non-constructive result might be obtainable using methods sim-
ilar to the ones used for SOL in [7,16]. To achieve constructive cut-elimination
result a plausible option is to search for a suitable definition of the notion “sub-
formula” under which some form of analytical cut-elimination can be obtained.
It is clear that the usual definition of a subformula should be revised, exactly
as the straightforward notion of subformula used in propositional languages is
changed on the first-order level, where for example a formula of the form ψ{ t

x}
is considered to be a subformula of ∀xψ, even though it might be much longer
than the latter. Thus the induction rule of ALG satisfies the subformula property
only if we take a formula to be a subformula of every substitution instance of it.

The system ALG is not complete with respect to the intended semantics. It
is not difficult to express its consistency in the language {=, 0, S,+} as a logi-
cally valid (under the standard semantics) sentence ConAL=

G
of AL. By Gödel’s

theorem on consistency proofs, ConAL=
G

is not a theorem of AL=
G. It would be

interesting to find what valid principles of AL (not available in ALG) can be used
to derive it. The completeness result of this paper suggests that those principles
are connected with inductive reasoning over arbitrary (undefinable) sets.

Another interesting task is to determine and explore fragments of AL that are
more convenient to work with, but are still sufficient for at least some concrete
applications. An example of such a fragment may be the one which corresponds
to the use of the deterministic transitive closure operator (see, e.g., [10]). Another
option worth investigating is to restrict the induction rule by allowing only ϕ’s
of the form y = t, where Fv (t) = {x}. Implicitly, this is the fragment of AL
used in Peano’s Arithmetics.

In [15] it is noted that Craig interpolation theorem and Beth definability
theorem fail for logics in which the notion of finiteness can be expressed. Thus,
a future research task is to find appropriate AL counterparts (whenever such
exist) to central model-theoretic properties of FOL such as these.

260 L. Cohen

Acknowledgments. This research was supported by: Ministry of Science, Technology
and Space, Israel; Fulbright Post-doctoral Scholar program; Weizmann Institute of
Science – National Postdoctoral Award Program for Advancing Women in Science;
Eric and Wendy Schmidt Postdoctoral Award program for Women in Mathematical
and Computing Sciences; and Cornell University PRL Group.

The author is indebt to A. Avron for his invaluable comments and expertise that
greatly assisted this research.

References

1. Avron, A.: Transitive closure and the mechanization of mathematics. In:
Kamareddine, F.D. (ed.) Thirty Five Years of Automating Mathematics. Applied
Logic Series, vol. 28, pp. 149–171. Springer, Netherlands (2003). doi:10.1007/
978-94-017-0253-9 7

2. Cohen, L., Avron, A.: The middle ground-ancestral logic. Synthese, 1–23 (2015)
3. Cohen, L., Constable, R.L.: Intuitionistic ancestral logic. J. Logic Comput. (2015)
4. Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Springer Science & Business

Media, New York (2005)
5. Feferman, S.: Finitary inductively presented logics. Stud. Logic Found. Math. 127,

191–220 (1989)
6. Gentzen, G.: Investigations into Logical Deduction (1934). (in German). An

English translation appears in ‘The Collected Works of Gerhard Gentzen’, edited
by M.E. Szabo. North-Holland (1969)

7. Girard, J.Y.: Proof Theory and Logical Complexity, vol. 1. Humanities Press,
London (1987)

8. Halpern, J.Y., Harper, R., Immerman, N., Kolaitis, P.G., Vardi, M.Y., Vianu, V.:
On the unusual effectiveness of logic in computer science. Bull. Symb. Logic 7(02),
213–236 (2001)

9. Henkin, L.: Completeness in the theory of types. J. Symb. Logic 15(2), 81–91
(1950)

10. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput.
16(4), 760–778 (1987)

11. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst.
(TOPLAS) 19(3), 427–443 (1997)

12. Martin, R.M.: A homogeneous system for formal logic. J. Symb. Logic 8(1), 1–23
(1943)

13. Martin, R.M.: A note on nominalism and recursive functions. J. Symb. Logic 14(1),
27–31 (1949)

14. Myhill, J.: A derivation of number theory from ancestral theory. J. Symb. Logic
17(3), 192–197 (1952)

15. Shapiro, S.: Foundations Without Foundationalism: A Case for Second-Order
Logic. Oxford University Press, Oxford (1991)

16. Tait, W.W.: A nonconstructive proof of gentzen’s hauptsatz for second order pred-
icate logic. Bull. Am. Math. Soc. 72(6), 980–983 (1966)

17. Takeuti, G.: Proof Theory. Courier Dover Publications, Mineola (1987)
18. Wohrle, S., Thomas, W.: Model checking synchronized products of infinite transi-

tion systems. In: Logic in Computer Science, pp. 2–11 (2004)

http://dx.doi.org/10.1007/978-94-017-0253-9_7
http://dx.doi.org/10.1007/978-94-017-0253-9_7

A Cut-Free Cyclic Proof System
for Kleene Algebra

Anupam Das and Damien Pous(B)

Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
Damien.Pous@ens-lyon.fr

Abstract. We introduce a sound non-wellfounded proof system whose
regular (or ‘cyclic’) proofs are complete for (in)equations between regular
expressions. We achieve regularity by using hypersequents rather than
usual sequents, with more structure in the succedent, and relying on the
discreteness of rational languages to drive proof search. By inspection of
the proof search space we extract a PSpace bound for the system, which
is optimal for deciding such (in)equations.

1 Introduction

Kleene algebra is a finite quasi-equational theory over regular expressions [11],
which admits formal languages and binary relations as free models. Indeed, Krob
and Kozen independently proved its completeness: every equation which is uni-
versally valid in one of those models, or equivalently, whose members denote
the same rational language, is provable from the axioms of Kleene algebra
[21,28]. This theorem is important in practice since it shows that the equa-
tional theory of Kleene algebra is decidable, and actually PSpace-complete: it
reduces to the problem of comparing rational languages. Thanks to the model
of binary relations, Kleene algebra and its extensions have been used to reason
abstractly about program correctness [1,2,17,24,25]. The aforementioned decid-
ability result actually made it possible to automate reasoning steps in proof
assistants [5,26,31].

Following work in substructural logics about residuated lattices [29], Jipsen
proposed a sequent system for Kleene algebra and asked whether the cut-rule is
admissible in this system [19]—Buszkowski proved it is not [10]. Wurm recently
proposed a different sequent system [34], but his cut-admissibility theorem does
not hold [12, Appendix A]. Proofs in these two systems are finite and well-
founded.

An extended version of this abstract is available on HAL [12]. This work was sup-
ported by the European Research Council (ERC) under the Horizon 2020 programme
(CoVeCe, grant agreement No. 678157) and the LABEX MILYON (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-
11-IDEX-0007).

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 261–277, 2017.
DOI: 10.1007/978-3-319-66902-1 16

262 A. Das and D. Pous

KA � e ≤ f L(e) ⊆ L(f)

HKA �ω e → f

HKA �∞ e → f

Cor. 22

Thm. 9

[27],[21]

Fig. 1. Algebraic and proof-theoretic views on rational language equivalence.

Palka proposed a sequent system for star-continuous action lattices [30],
and thus in particular for Kleene algebra. She proved completeness and cut-
elimination. Her system is wellfounded but relies on an ‘ω-rule’ for Kleene star
with infinitely many premisses, in the traditional school of infinitary proof the-
ory [33]. Doing so has the advantage of being simple, but it does not admit any
reasonable notion of ‘finiteness’: every proof is necessarily infinite. As a conse-
quence, such a system cannot be used for proof search.

In similar lines of work, the ω-rule can often be restricted to only finitely
many cases by some finite model property of the logic [7,8]. This indeed could
be done for Palka’s system, requiring an exponential number of cases, leading
to rather large proofs and inefficient proof search. Such systems do not obey the
subformula property and are only weakly sound, preserving validity rather than
truth, making metalogical properties, such as interpolation, difficult to prove.

We introduce in this paper a calculus HKA for Kleene algebra whose non-
wellfounded proofs we prove sound and complete (Sects. 5 and 6). This calculus is
cut-free and admits the subformula property. We actually prove that its regular
fragment—those proofs with potentially cyclic but finite dependency graphs—is
complete. Our approach is related to other works on cyclic systems for logics,
e.g. [13,15], but is more fine-grained proof theoretically. We give a diagrammatic
summary of our contributions in Fig. 1, where we use the symbols �ω and �∞ to
distinguish between regular proofs and arbitrary, potentially infinite proofs resp.

Starting from Palka’s system, a natural idea when looking for a regular sys-
tem consists in replacing her infinitary rules for Kleene star by finitary ones, and
allowing non-wellfounded proofs. Doing so, we obtain the calculus LKA described
in Sect. 3: proofs that are well-founded but of infinite width in Palka’s system
become finitely branching but infinitely deep in LKA. These non-wellfounded
proofs of LKA admit an elegant proof theory, but we show that its regular frag-
ment is not complete: there are valid inequalities which require arbitrarily large
sequents to appear in their proofs. We solve this problem by allowing slightly
more structure in the succedents of sequents, moving to hypersequents to design
the calculus HKA (Sect. 4). After showing completeness, inspection of the regular
proofs of HKA yields an alternative proof that the equational theory of ratio-
nal languages is in PSpace, without relying on automata-theoretic arguments
(Sect. 7). We conclude this paper with some further comments and directions for
future work (Sect. 8).

A Cut-Free Cyclic Proof System for Kleene Algebra 263

2 Kleene Algebra

We consider regular expressions over a finite alphabet A:

e, f ::= e · e | e + e | e∗ | 1 | 0 | a ∈ A

Sometimes we simply write ef for e · f . Each expression e denotes a rational
language L(e) ⊆ A∗, defined in the usual way [20]. A Kleene algebra is a tuple
(K, 0, 1,+, ·, ∗) where (K, 0, 1,+, ·) is an idempotent semiring and:1

(a) 1 + xx∗ ≤ x∗;
(b) if xy ≤ y then x∗y ≤ y;
(c) if yx ≤ y then yx∗ ≤ y.

There are several equivalent variants of this definition [11]. Intuitively we have
that x∗y (resp. yx∗) is the least fixpoint of z �→ y + xz (resp. z �→ y + zx).

We write KA � e ≤ f if e ≤ f is provable from the axioms of Kleene Algebra,
i.e. is true in all Kleene algebras (by completeness of first-order logic). We have
the following completeness result, independently due to Kozen and Krob:

Theorem 1 [21,28]. KA � e ≤ f if and only if L(e) ⊆ L(f).

Formal languages, i.e. subsets of A∗, form a Kleene algebra, so the left-right
implication is straightforward. The converse, completeness, is much harder.

3 An Intrinsically Non-regular System: LKA

A sequent is an expression Γ → e, where Γ is a (possibly empty) list of regular
expressions and e is a regular expression. For such a sequent we refer to Γ as
the antecedent and e as the succedent. We say a sequent e1, . . . , en → e is valid
if L(e1 · · · · · en) ⊆ L(e), i.e. the comma is interpreted as sequential composition,
and the sequent arrow as inclusion. We refer to expressions as ‘formulae’ when
it is more natural proof theoretically, e.g. ‘subformula’ or ‘principal formula’.

id
e → e

0-l
Γ, 0, Δ → e

Γ, Δ → e
1-l

Γ, 1, Δ → e
1-r → 1

Γ, e, f, Δ → g
·-l

Γ, e · f, Δ → g

Γ, e, Δ → g Γ, f, Δ → g
+-l

Γ, e + f, Δ → g

Γ, Δ → f Γ, e, e∗, Δ → f
∗-l

Γ, e∗, Δ → f

Γ → e Δ → f
·-r

Γ, Δ → e · f

Γ → ei
+-ri i ∈ {1, 2}

Γ → e1 + e2
∗-r1 → e∗

Γ → e Δ → e∗
∗-r2

Γ, Δ → e∗

Fig. 2. The rules of LKA.

1 Here we write x ≤ y as a shorthand for x + y = y.

264 A. Das and D. Pous

The rules of LKA are given in Fig. 2. Aside from the ∗-rules, these form a
fragment of non-commutative intuitionistic linear logic [16],2 or alternatively
the Lambek calculus [29], restricted to the following connectives: multiplicative
conjunction (·), multiplicative truth (1), additive disjunction (+) and additive
falsity (0) (for which there is no right rule). The rules for Kleene star arise
from the characterisation of e∗ as a fixed point: e∗ = μx.(1 + ex). In contrast,
Palka [30] interprets Kleene star as an infinite sum e∗ = Σie

i, corresponding
to ∗-continuity in a Kleene algebra, whence her left rule for Kleene star with
infinitely many premisses and the infinitely many corresponding right rules.

The rules of LKA are sound : if each premiss of a rule is true in a Kleene
algebra then so is its conclusion. LKA also has the subformula property : any
expression in the premiss of a rule instance is a subformula of an expression in
its conclusion. On the other hand, the usual finite well-founded proof system
arising from these rules is not complete: there are valid sequents which conclude
no finite proof tree of LKA rules, cf. Example 4 below. To obtain completeness,
we consider non-wellfounded proofs. Intuitively, these are infinite trees built from
the rules of LKA. More formally:

Definition 2. A (binary, possibly infinite) tree is a prefix-closed subset of
{0, 1}∗. An LKA-preproof is a labelling π of a tree by sequents such that, for
every node v with children v1, . . . vn (n = 0, 1, 2), the expression π(v1) ··· π(vn)

π(v) is
an instance of an LKA rule. A preproof is regular if it has only finitely many
distinct subtrees, i.e. it can be expressed as the infinite unfolding of a finite graph.

Preproofs are not always sound (hence the terminology).
Consider, for instance, the preproof on the right deriv-
ing a non-valid sequent, where we use the symbol • to
indicate a circularity (i.e. to identify steps whose conclu-
sions root the same subtree). Fortunately, we may rule
out such behaviours by a simple fairness criterion:

1-r → 1

...
∗-r2 •

a → 1∗
∗-r2 •

a → 1∗

Definition 3. A proof is a preproof that is fair for ∗-l, i.e. where every infinite
branch contains infinitely many occurrences of ∗-l. We write LKA �∞ Γ → e if
there is an LKA proof of Γ → e.

This criterion is somewhat simpler than the ones from other works, e.g. [13,
15], which require a finer analysis of formula occurrences in infinite branches.
However, for our purposes, the condition above suffices and, indeed, leads to a
simpler correctness checking procedure for a preproof, cf. Sect. 7.

Example 4. Here is an (infinite but regular) proof of a∗(b + c)∗ ≤ a∗(c + b)∗ in
LKA. The fairness criterion is satisfied since the only circularity goes through a
∗-l rule.

2 This logic is non-commutative because there is no exchange rule, and intuitionistic
since there is exactly one formula on the right-hand side.

A Cut-Free Cyclic Proof System for Kleene Algebra 265

id

a∗ → a∗

∗-r1 → (c + b)∗

id

b → b
+-r2

b → c + b

id

c → c
+-r1

c → c + b
+-l

b + c → c + b

...
∗-l •

(b + c)∗ → (c + b)∗
∗-r2

b + c, (b + c)∗ → (c + b)∗
∗-l •

(b + c)∗ → (c + b)∗
·-r

a∗, (b + c)∗ → a∗(c + b)∗
·-l

a∗(b + c)∗ → a∗(c + b)∗

Note that this sequent has no finite wellfounded proof in LKA.

Theorem 5 (Soundness). If LKA �∞ e1, . . . , en → e thenL(e1 ·· · ··en)⊆L(e).

Proof (idea). Similar to the proof we give in Sect. 5 for the system HKA. 	

While LKA satisfies the subformula property, the size and number of sequents
occurring in a proof are not a priori bounded, due to the ∗-l rule. In fact, this
system does not admit regular proofs for all valid sequents. An example is the
inequality aa∗ ≤ a∗a, whose only proof in LKA is the following:

∗-r1 → a∗ id

a → a
·-r

a → a∗a

id

a → a
∗-r1 → a∗

∗-r2
a → a∗ id

a → a
·-r

a, a → a∗a

...
∗-l

a, a, a, a∗ → a∗a
∗-l

a, a, a∗ → a∗a
∗-l

a, a∗ → a∗a
·-l

aa∗ → a∗a

(1)

This proof necessarily contains all sequents of the form a, . . . , a, a∗ → a∗a. Even
though it could arguably be ‘described’ in a finite way, this would require an
external specification, contrary to the notion of regularity which simply allows
cycles in the dependency graph of a proof. Indeed, only finitely many sequents
occur in a regular proof, and so they are somewhat easier to reason about.

Many cases of non-regularity can be avoided by adding symmetric versions
of the ∗ rules in LKA:

Γ, Δ → f Γ, e∗, e, Δ → f
∗-l′

Γ, e∗, Δ → f

Γ → e∗ Δ → e
∗-r′

2
Γ, Δ → e∗ (2)

For instance, using these rules, it is not hard to see that the situation (1) above
can be handled by a well-founded finite proof (see [12, Appendix B]).

However, adding the rules from (2) above does not always suffice for regular-
ity. Consider the valid sequent a∗ → (aa)∗ + a(aa)∗. It is not hard to see that
any proof must contain a path of just ∗-l steps, since we are never able to apply
a +-r step while there remains an a∗ on the left. Thus it admits no regular proof
in LKA, even with the rules from (2).

Similarly, consider the valid sequent (a + b)∗ → a∗(ba∗)∗. Any proof of this
sequent, even with symmetric rules, must contain some path of sequents whose

266 A. Das and D. Pous

antecedents denote languages containing am(a+b)∗an, for sufficiently large m,n.
Along such a path a ·-r step is never valid and so one is forced to apply ∗-l and
+-l rules forever, again yielding a non-regular proof.

The next section presents a system where we can avoid these issues by reason-
ing underneath · and + in the succedent, and thus arrive at a general complete-
ness theorem for regular proofs. We come back to the problem cases discussed
above at the end of the next section, in Example 23.

4 A Calculus Whose Regular Proofs Are Complete: HKA

We denote lists of formulae by Γ,Δ etc. as before. We will use X,Y,Z to vary
over multisets of lists. A hypersequent is an expression Γ → X, where Γ is a
list and X is a multiset of lists. Henceforth we may simply say ‘sequent’ instead
of ‘hypersequent’ when it is not ambiguous. We use the comma, ‘,’, for both
delimiting lists and denoting union of multisets, using angled brackets 〈·〉 to
distinguish lists in a multiset. Here is the general form of a hypersequent:

e1, . . . , el → 〈f11, . . . , f1n1〉, · · · , 〈fm1, . . . , fmnm
〉

We extend the notion of language of a regular expression to lists of expressions
by setting L(〈e1, . . . , en〉) = L(e1 ·· · ··en), and to multisets of such lists by setting
L(〈Γ1〉, . . . , 〈Γn〉) =

⋃
i L(Γi). The hypersequent Γ → X is valid if L(Γ) ⊆ L(X).

If X = 〈Δ1〉, . . . , 〈Δn〉, we write 〈Σ〉X for the set 〈Σ,Δ1〉, . . . , 〈Σ,Δn〉. When
Σ is a singleton 〈e〉 we simply write eX instead of 〈e〉X, as an abuse of notation.

The rules of HKA are given in Fig. 3. Notice that these rules satisfy the
subformula property. The left logical rules are exactly those of LKA, lifted to
hypersequents. The right logical rules slightly differ, to take advantage of the
richer structure of the sequents. Weakening and contractions are allowed on the
right of the sequents; the identity axiom from LKA is decomposed into an axiom
for the empty lists, and a ‘modal’ rule (k).

Definition 6. Preproofs and proofs of HKA are defined analogously to LKA; in
particular proofs require fairness of ∗-l. We write HKA �ω Γ → X if Γ → X
has a regular proof in HKA, i.e. one with only finitely many distinct subtrees.

Remark 7 (Invertibility and cancellation). All rules of HKA except w and k are
strongly invertible: truth of the conclusion implies truth of all premisses in any
Kleene algebra. k is not strongly invertible, even in its atomic form, due to the
possible existence of 0-divisors. It is however weakly invertible when e is atomic:
the validity of the conclusion implies the validity of the premiss.3 On the other
hand, the non-invertibility of w turns out to be crucial for completeness, from a
complexity theoretic point of view, cf. Sect. 7.

3 Note that atomicity of e really is required for this, even in the usual rational language
model. For instance, we have L(a∗ab) ⊆ L(a∗b), but L(ab) � L(b).

A Cut-Free Cyclic Proof System for Kleene Algebra 267

Left logical rules:

0-l
Γ, 0, Δ →

Γ, Δ → X
1-l

Γ, 1, Δ → X

Γ, e, f, Δ → X
·-l

Γ, e · f, Δ → X

Γ, e, Δ → X Γ, f, Δ → X
+-l

Γ, e + f, Δ → X

Γ, Δ → X Γ, e, e∗, Δ → X
∗-l

Γ, e∗, Δ → X

Right logical rules:

Γ → X, 〈Δ, Σ〉
1-r

Γ → X, 〈Δ, 1, Σ〉
Γ → X, 〈Δ, e, f, Σ〉

·-r
Γ → X, 〈Δ, e · f, Σ〉

Γ → X, 〈Δ, e, Σ〉, 〈Δ, f, Σ〉
+-r

Γ → X, 〈Δ, e + f, Σ〉
Γ → X, 〈Δ, Σ〉, 〈Δ, e, e∗, Σ〉

∗-r
Γ → X, 〈Δ, e∗, Σ〉

Identity, modal and structural rules:

id → 〈 〉
Γ → X

k
e, Γ → eX

Γ → X
w

Γ → X, 〈Δ〉
Γ → X, 〈Δ〉, 〈Δ〉

c
Γ → X, 〈Δ〉

Fig. 3. The rules of HKA.

Example 8 (Atomic modal steps). We can reduce k steps to atomic form by
regular derivations of HKA. This is proved by structural induction on the modal
expression; the key case is for a ∗-formula, where non-wellfoundedness appears:

Γ → X
∗-r,w

Γ → e∗X

...
∗-l •

e∗, Γ → e∗X
IH

e, e∗, Γ → 〈e, e∗〉X
∗-r,w

e, e∗, Γ → e∗X
∗-l •

e∗, Γ → e∗X

The derivation marked IH is obtained from the inductive hypothesis on e.

5 Soundness

We now show that HKA proofs derive only valid sequents. Throughout this
section and later, we use standard proof theoretic terminology about ancestry
in proofs, e.g. from [9].

Theorem 9 (Soundness). If HKA �∞ Γ → X, then L(Γ) ⊆ L(X).

Before giving the proof, we need the following intermediate result.

Lemma 10. If HKA �∞ Γ, e∗,Δ → X then, for n ∈ N, HKA �∞ Γ, en,Δ → X.4

4 Strictly speaking, we should bracket en as e(e(· · · (ee))) and set e0 to 1.

268 A. Das and D. Pous

Proof. We define appropriate preproofs by induction on n. Replace every direct
ancestor of e∗ by en, adjusting origins as follows,

Γ, Δ → X Γ, e, e∗, Δ → X
∗-l

Γ, e∗, Δ → X
�→ Γ, Δ → X

1-l

Γ, 1, Δ → X
or

Γ, e, en−1, Δ → X
·-l

Γ, en, Δ → X

when n = 0 or n > 0, respectively. In the latter case we appeal to the inductive
hypothesis. Notice that, on branches where e∗ is never principal, this is simply
a global substitution of en for e∗ everywhere along the branch. The preproof
resulting from this entire construction is fair since every infinite branch will
share a tail with a branch in the proof we began with. 	

Now we define a measure with which Theorem 9 will be proved by induction.

Definition 11 (Measure of a sequent). The ∗-height of a regular expression
e, denoted h∗(e), is the maximum nesting of ∗ in its term tree. Formally:

– h∗(0) = h∗(1) = h∗(a) = 0.
– h∗(e · f) = h∗(e + f) = max(h∗(e), h∗(f)).
– h∗(e∗) = h∗(e) + 1.

The weighted ∗-height of a list Γ of expressions, denoted wh∗(Γ) is the multiset
{h(e) : e ∈ Γ}. We totally order such multisets under a well-known ordering [14]:
for two multisets5 N,M : N → N, we set N < M if for any n with N(n) > M(n)
there is a n′ > n s.t. N(n′) < M(n′).

Fact 12. For every rule of HKA except ∗-l, the antecedent of each premiss has
weighted ∗-height bounded by that of the antecedent of the conclusion.

For the ∗-l rule also notice that, bottom-up, the maximum ∗-height of an expres-
sion in the antecedent does not increase. We now prove our soundness result:

Proof (of Theorem 9). Let π be an HKA proof of Σ → X and let us proceed by
induction on the weighted ∗-height of the antecedent Σ. For each infinite branch
of π take the least ∗-l step that occurs; their conclusions form a bar B through
the infinite tree of π. Since π labels a binary tree, the prefix closure of B must
be finite by König’s Lemma and thus, if each of the sequents of B is valid then
so is the conclusion of π by the soundness of well-founded HKA derivations.

Now, consider a subproof π′ that derives a sequent in B. This sequent must
have the form Γ, f∗,Δ → Y where f∗ is principal for the concluding ∗-l-step of
π′. By construction and Fact 12 notice that wh∗(Γ, f∗,Δ) ≤ wh∗(Σ). Now, by
Lemma 10, π′ can be transformed into proofs π′

n of Γ, fn,Δ → Y for each n ∈ N.
Since wh∗(Γ, fn,Δ) < wh∗(Σ), each π′

n is sound by the inductive hypothesis.
Finally, this means that Γ, f∗,Δ → Y is valid, by definition of Kleene star for
languages, and hence Σ → X is valid after all. 	

5 Here we construe multisets as mappings from elements to their multiplicity.

A Cut-Free Cyclic Proof System for Kleene Algebra 269

6 Completeness

Infinite non-wellfounded proofs are easily seen to be complete: bottom-up, sim-
ply apply left rules forever (they are invertible); the only normal forms of this
procedure will have a finite word as the antecedent, whence we may perform the
correct finite sequence of right steps to finish proof search.

In this section we give a more sophisticated argument showing that the regu-
lar fragment of HKA is complete: each valid inclusion has a finite circular proof.

6.1 A Regular Class of Proofs

We first define a class of proofs which can be made regular in a systematic way.

Definition 13. A preproof is leftmost if the principal formula of every logical
step is at the beginning of a list, either in the antecedent or the succedent.

For regularity, the most useful property of a leftmost proof is the following:

Theorem 14. A leftmost preproof contains only lists of length linear in the size
of the end-sequent. Hence only finitely many lists occur in a leftmost preproof.6

Before we can prove this, let us recall some basic notions regarding terms. An
occurrence in e is a subformula of e together with its position in e. We often
omit this positional information when it is unambiguous.

Definition 15 (Total order on occurrences). Given a fixed term, we define
a relation � on the occurrences in it as follows: e � f if f contains e, or if e
and f are disjoint and e occurs to the left of f .

Due to the tree structure of a term, any two occurrences in a term are either
disjoint or one is contained in the other, so we have the following:

Proposition 16. � is a total order on the occurrences in a term.

In a preproof, let us identify every expression occurring as an occurrence of a
term in the end-sequent in the natural way, due to the subformula property and
via the usual notions of proof ancestry. In this way, we can meaningfully compare
any two expressions in a preproof under �. We have the following:

Lemma 17. In any leftmost preproof every list is strictly increasing under �.

Now we can prove the bound on the size of lists in leftmost preproofs:

Proof (of Theorem 14). Every term in a preproof is an ancestor of an occurrence
in a term of the end sequent, by the subformula property and usual notions
of proof ancestry. Moreover, no occurrence can appear twice in the same list,
otherwise we would contradict Lemma 17. 	

6 A priori, this could still be exponentially many in the size of the end-sequent.

270 A. Das and D. Pous

We still do not quite have regularity, since in the succedent we may have multisets
with arbitrarily many occurrences of the same list. Naturally, we appeal to the
right structural rules to ‘merge’ occurrences in such a situation:

Corollary 18. A leftmost preproof in HKA can be transformed into one of the
same end-sequent that contains only finitely many distinct sequents.

Proof. By Theorem 14 only finitely many distinct lists occur in a leftmost pre-
proof. Thanks to contraction and weakening, we can always write succedents
with at most two copies of each distinct list, of which there are only finitely
many. 	

It remains to show that we may place backpointers while preserving correctness:

Corollary 19. A leftmost proof in HKA can be transformed into a regular proof
with the same end-sequent.

Proof. Assuming only finitely many distinct sequents occur, by Corollary 18
above, in each infinite branch some sequent occurs infinitely often, by the pigeon-
hole principle. This means that, due to fairness, for each infinite branch we may
identify two instances of the same sequent with a ∗-l-step in between, whence
we may correctly place a backpointer and preserve fairness. 	

6.2 Completeness of Leftmost Proofs

Thanks to Corollary 19, for completeness of the regular fragment of HKA it now
suffices to show that any valid hypersequent admits a leftmost (possibly infinite)
proof. We do so by providing a leftmost proof search strategy for which we need
the following important result:

Lemma 20 (Productivity on the right). Suppose there is a finite HKA
derivation of right logical rules of the following format,7

Γ → X, 〈e∗, Δ〉
π

Γ → Y, 〈Δ〉, 〈e, e∗, Δ〉
∗-r

Γ → Y, 〈e∗, Δ〉

such that the list 〈e∗,Δ〉 in the initial sequent is an ancestor of that from the
end sequent. If the end sequent is valid, then so is Γ → X.

Proof. Since all right logical rules of HKA are invertible, it suffices to show that
〈e∗,Δ〉 in the initial sequent is redundant, i.e. that already L(X) ⊇ L(〈e∗,Δ〉).
For this, we appeal to soundness of fair preproofs, Theorem9, and show that HKA
proves the corresponding sequent: e∗,Δ → X.8 We construct an appropriate
7 Notice that right logical rules do not branch.
8 This argument is akin to applying a cut, which is sound since we are only applying

it once, and at the meta-level.

A Cut-Free Cyclic Proof System for Kleene Algebra 271

proof π′ bottom-up by induction on the length of π where, for each right logical
rule in π, we apply the analogous left logical rule in π′ along the appropriate
branch. Each leaf of π′ will be of the form Σ → X, where Σ is a list occurring in
the succedent of the premiss of π, by construction. Now, if Σ ∈ X then we can
conclude by weakening, k and identity; otherwise Σ is 〈e∗,Δ〉, whence we can
conclude by circularity. Notice that π′ is fair due to the fact that the bottommost
step is a ∗-l due to the analogous ∗-r beneath π. 	

We can now prove our main completeness result:

Theorem 21. Every valid hypersequent has a leftmost proof in HKA.

Proof. Construct a leftmost HKA preproof bottom-up as follows:

(i) Apply leftmost left logical rules as long as possible. After this any leaves
will be valid, by invertibility of logical rules, and of the form:

→ X or a, Γ → X

(ii) Apply leftmost right logical rules until the succedent contains only lists
beginning with a ∗-term that have already been decomposed9 or lists for
which no leftmost right logical rule applies. This terminates after finitely
many steps due to Theorem 14 and since only ∗-r can increase the length of a
list in the succedent. All resulting leaves must be valid, again by invertibility.

(iii) Now we apply w to weaken any appropriate lists in the succedent that have
already been decomposed. Leaves remain valid due to Lemma 20 and must
be of the form:

→ (〈 〉,) 〈a1,X1〉, . . . , 〈an,Xn〉 or a, Γ → (〈 〉,) 〈a1,X1〉, . . . , 〈an,Xn〉
In the former case, since we have preserved validity going upwards, we must
have that the empty list occurs in the succedent, whence we can close the
branch by several w steps and id .
In the latter case, again since we have preserved validity going upwards, we
must be able to weaken any list that begins with an ai that is not a and
preserve validity. Now any remaining leaves are of the form,

a, Γ → aX

whence we can apply k and preserve validity by Remark 7. Now go back to
(i) and repeat the entire procedure.

This procedure will produce a leftmost preproof that is fair since (ii) produces
only finite well-founded derivations, and so any infinite branch must either even-
tually remain in the (i) or (iii) case. For the former, a ∗-l must occur infinitely
often since the other left rules shorten the antecedent, and for the latter a k step
occurs infinitely often, again meaning that a ∗-l step must occur infinitely often
since k also shortens the antecedent. 	

9 Here we mean in the sense that it is identical to a descendant, as in Lemma 20.

272 A. Das and D. Pous

Corollary 22. If L(e) ⊆ L(f) then HKA �ω e → f .

Proof. By Corollary 19 and Theorem 21. 	

Example 23. Let us see how the example issues for regularity for LKA we alluded
to in Sect. 3 are resolved in HKA. In both cases we use variations of the strategy
given in the proof above of Theorem21.

id → 〈 〉
∗-r,w → 〈(aa)∗〉, 〈a, (aa)∗〉

...
∗-l •

a∗ → 〈a, (aa)∗〉, 〈(aa)∗〉
k

a, a∗ → 〈a, a, (aa)∗〉, 〈a, (aa)∗〉
2·-r

a, a∗ → 〈(aa)(aa)∗〉, 〈a, (aa)∗〉
∗-r,w

a, a∗ → 〈(aa)∗〉, 〈a, (aa)∗〉
∗-l •

a∗ → 〈(aa)∗〉, 〈a, (aa)∗〉
·-r

a∗ → 〈(aa)(aa)∗〉, 〈a(aa)∗〉
+-r

a∗ → 〈(aa)∗ + a(aa)∗〉

id → 〈 〉
∗-r,w → 〈(ba∗)∗〉

∗-r,w → 〈a∗, (ba∗)∗〉

...
∗-l •

(a + b)∗ → 〈a∗, (ba∗)∗〉
k

a, (a + b)∗ → 〈a, a∗, (ba∗)∗〉
∗-r,w

a, (a + b)∗ → 〈a∗, (ba∗)∗〉

...
∗-l •

(a + b)∗ → 〈a∗, (ba∗)∗〉
k

b, (a + b)∗ → 〈b, a∗, (ba∗)∗〉
·-r

b, (a + b)∗ → 〈ba∗, (ba∗)∗〉
∗-r,w

b, (a + b)∗ → 〈(ba∗)∗〉
∗-r,wk

b, (a + b)∗ → 〈a∗, (ba∗)∗〉
+-l

a + b, (a + b)∗ → 〈a∗, (ba∗)∗〉
∗-l •

(a + b)∗ → 〈a∗, (ba∗)∗〉
·-r

(a + b)∗ → 〈a∗(ba∗)∗〉

Remark 24. Antimirov’ partial derivatives [3] make it possible to build a non-
deterministic automaton whose states are the regular expressions, and such that
only finitely many states are reachable from a regular expression. The (finitely
many) lists appearing in a leftmost proof, seen as regular expressions, are in sharp
correspondence with the partial derivatives of the lists in its conclusion. As a
consequence, the proof search procedure of Theorem 21 expresses at a very fine
grained level the behaviour of certain coinductive algorithms for language inclu-
sion (equivalence), that explore the reachable states of an Antimirov’ automaton
and try to build a (bi)simulation [4,18].

7 Complexity Matters and Algorithms for Proof Search

We present in this section a brief overview of the complexity theoretic aspects
of proofs in our calculus HKA.

A Cut-Free Cyclic Proof System for Kleene Algebra 273

7.1 Checking Validity of a Regular Preproof

When a preproof is given as a tree with backpointers, it is not difficult to see
that checking validity is feasible (i.e. in polynomial time), since we may simply
exhaust the paths of the tree, of which there are linearly many, to exclude the
existence of a ∗-l-free loop. When the preproof is given as an arbitrary graph
the problem is a little more subtle, but remains feasible. Construing sequents as
nodes and inference steps as edges, let us delete any edge that corresponds to a
∗-l step. Notice that the original preproof was valid just if there are no infinite
paths in the resulting graph, i.e. it is acyclic. This can be decided by computing
its transitive closure, hence:

Proposition 25. Validity of a regular HKA-preproof, given as an arbitrary
directed graph, is polynomial-time decidable.

Notice that this bound is lower than those for circular proofs in other systems,
e.g. [6,15], since logics with more sophisticated fixed points and logical behaviour
require a more general correctness criterion reducing to the inclusion of Büchi
automata, a problem that is PSpace-complete.

7.2 Complexity of Proof Search

Proof search using HKA yields an optimal bound for deciding equations of Kleene
algebra via the induced loop-checking procedure:

Proposition 26. Proof search in HKA induces a PSpace decision procedure for
inequalities between regular expressions.

Proof (sketch). For a leftmost proof we give a polynomial bound on the depth
until a loop occurs. Notice that succedents only grow polynomially in depth and
∗-height, by inspection of HKA, and so this indeed yields a PSpace bound.

Each time a k step is applied, bottom-up, it is on an atom occurrence that
may not reoccur, unless we have already formed a loop, namely by unfolding the
same ∗-expression, which by construction contains a ∗-l. Every other leftmost
step decreases the size of the leftmost term in a list. Thus, any path in a leftmost
proof will hit a loop within polynomially many steps. 	

Notice that, while almost every step in HKA is invertible, it is the crucial appli-
cations of weakening in the procedure of Theorem21, justified by Lemma20,
which requires proof search to operate in PSpace rather than coNP. Indeed,
it is the number of w steps along any proof path that allows search complexity
to climb up the polynomial hierarchy. This cannot be uniformly bounded since
deciding inequalities of regular expressions is known to be PSpace-complete.

8 Conclusions and Further Work

We proposed a regular and cut-free hypersequent system HKA, which we proved
sound and complete for rational language inclusion, and thus for Kleene algebra.
We conclude with further comments and directions for future work.

274 A. Das and D. Pous

8.1 Richer Systems for Theorem Proving

Now that we have a completeness theorem for HKA, we could envisage enriching
the system with more (sound) rules that might be more natural from the point
of view of theorem proving. For instance, we might imagine alternative right
logical rules for + and ∗ as follows,

Γ → X, 〈Δ, ei, Σ〉
Γ → X, 〈Δ, e1 + e2, Σ〉

Γ → X, 〈Δ, Σ〉
Γ → X, 〈Δ, e∗, Σ〉

Γ → X, 〈Δ, e, Σ〉
Γ → X, 〈Δ, e∗, Σ〉

Γ → X, 〈Δ, e∗, e∗, Σ〉
Γ → X, 〈Δ, e∗, Σ〉

Such systems are more expressive since they can encode not only the rules of
HKA but also symmetric variants, e.g. unfolding ∗ to the right rather than the
left.10 An illustrative example is the inequality a∗a ≤ a∗, which was one source of
irregularity for LKA. Contrast the following two proofs, the left of which follows
a leftmost strategy in HKA, the right of which uses the rules above and is acyclic:

id → 〈 〉
w → 〈 〉, 〈a, a∗〉

∗-r → a∗
k

a → 〈a, a∗〉
w

a → 〈 〉, 〈a, a∗〉
∗-r

a → 〈a∗〉

...
∗-l •

a∗, a → 〈a∗〉
k

a, a∗, a → 〈a, a∗〉
w

a, a∗, a → 〈 〉, 〈a, a∗〉
∗-r

a, a∗, a → 〈a∗〉
∗-l •

a∗, a → 〈a∗〉
·-l

a∗a → 〈a∗〉

id → 〈 〉
k

a → 〈a〉
k

a∗, a → 〈a∗, a〉
a∗, a → 〈a∗, a∗〉

a∗, a → 〈a∗〉
·-l

a∗a → 〈a∗〉

8.2 Extensions of Kleene Algebra

Kleene algebra can be extended with operations such as meet [22], residuals [32],
or tests [23]. One can thus ask whether we can obtain regular sequent systems
for such extensions. Meets (∩) and residuals (�) correspond to additive con-
junction and linear implications in (non-commutative) linear logic; they could
easily be added to LKA (Palka actually includes them in her system [30]), but it
is unclear how to add them to our hypersequent system while preserving regular
cut-free completeness. An important difficulty here is that the free model for
such structures is not the obvious language model.11 In contrast, Kleene algebra
with tests, whose free model is that of guarded string languages [23], could be
handled using our approach. It would also be interesting to try adapt our sys-
tems to ω-regular expressions, which denote languages of infinite words and for
which automaton models and notions of derivative are well-defined.

10 Notice that the ∗ rules here correspond in fact to an alternative fixed point definition
of e∗: μx.(1 + e + xx).

11 Notice also that while it would be natural to enrich the antecedent structure for ∩ as
we did in succedents for +, there is a difficult asymmetry in that x(y + z) = xy +xz
but x(y ∩ z) � xy ∩ xz.

A Cut-Free Cyclic Proof System for Kleene Algebra 275

8.3 Cut-Elimination

By completeness, any reasonable ‘cut rule’ is admissible in the regular fragment
of HKA. A natural question is whether one can prove a direct cut-elimination
result, using proof theoretic methods. There are several difficulties here: first one
has to define a general enough notion of cut for the hypersequent system; second
one has to come up with an appropriate correctness criterion for preproofs with
cuts (fairness as in Definition 6 is not enough to guarantee soundness); finally,
the regular system being complete, one would certainly like to prove that cut-
elimination preserves regularity. Such a cut-elimination result would make it
possible to interpret Kleene algebra proofs directly into HKA, without going
through the free model (languages). This could be helpful to handle extensions
of Kleene algebras whose free model is unknown, for instance with meet or with
residuals.

8.4 Towards an Alternative Completeness Result for KA

Conversely to the previous comments, an interesting question is whether our
completeness result for the regular fragment of HKA can be used to obtain an
alternative proof of the completeness of Kleene algebra, Theorem 1. Namely, can
we prove directly that if HKA �ω e → f then KA � e ≤ f , in a direct manner?
We believe this is possible, by encoding cycles in a leftmost proof as specific
instances of the ‘induction’ axioms (b) and (c) from Sect. 2.12 For instance a
loop in a regular derivation might be transformed as follows:

f → g

e∗, f → g

π

e, e∗, f → g
∗-l

e∗, f → g

�

f → g

id
g → g

π[g/(e∗,f)]

e, g → g
(b)

e∗, g → g
cut

e∗, f → g

Generalising this idea into a full alternative proof of Kozen’s and Krob’s results
is the subject of ongoing work.

References

1. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.-B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: semantic foundations for networks. In: Proceedings of the
POPL, pp. 113–126. ACM (2014)

2. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical report TR2001-1844, CS Department, Cornell University, July 2001

12 Note that the broader problem of whether cyclic proofs can be simulated by ‘induc-
tive’ proofs for a certain framework has no known general solution, cf. [6].

276 A. Das and D. Pous

3. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. TCS 155(2), 291–319 (1996)

4. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings of the POPL, pp. 457-468. ACM (2013)

5. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14052-5 13

6. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011)

7. Brünnler, K., Studer, T.: Syntactic cut-elimination for common knowledge. Ann.
Pure Appl. Log. 160(1), 82–95 (2009)

8. Brünnler, K., Studer, T.: Syntactic cut-elimination for a fragment of the modal
μ-calculus. Ann. Pure Appl. Log. 163(12), 1838–1853 (2012)

9. Buss, S.R.: An introduction to proof theory. Handb. Proof Theory 137, 1–78 (1998)
10. Buszkowski, W.: On action logic: equational theories of action algebras. J. Log.

Comput. 17(1), 199–217 (2007)
11. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London

(1971)
12. Das, A., Pous, D.: A cut-free cyclic proof system for Kleene algebra (2017). Full

version of this extended abstract, with appendix https://hal.archives-ouvertes.fr/
hal-01558132/

13. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). doi:10.1007/11944836 26

14. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

15. Doumane, A., Baelde, D., Hirschi, L., Saurin, A.: Towards completeness via proof
search in the linear time μ-calculus: the case of Büchi inclusions. In: Proceedings
of the LICS, pp. 377–386. ACM (2016)

16. Girard, J.-Y.: Linear logic. TCS 50, 1–102 (1987)
17. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene alge-

bra. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp.
399–414. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04081-8 27

18. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report 114, Cornell University (1971)

19. Jipsen, P.: From semirings to residuated Kleene lattices. Studia Logica 76(2), 291–
303 (2004)

20. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press (1956)

21. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: Proceedings of the LICS, pp. 214–225. IEEE (1991)

22. Kozen, D.: On action algebras. In: van Eijck, J., Visser, A. (eds.) Logic and Infor-
mation Flow, pp. 78–88. MIT Press (1994)

23. Kozen, D.: Kleene algebra with tests. Trans. Program. Lang. Syst. 19(3), 427–443
(1997)

24. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log. 1(1), 60–76 (2000)

25. Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene
algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS, vol. 1861, pp. 568–
582. Springer, Heidelberg (2000). doi:10.1007/3-540-44957-4 38

http://dx.doi.org/10.1007/978-3-642-14052-5_13
https://hal.archives-ouvertes.fr/hal-01558132/
https://hal.archives-ouvertes.fr/hal-01558132/
http://dx.doi.org/10.1007/11944836_26
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1007/3-540-44957-4_38

A Cut-Free Cyclic Proof System for Kleene Algebra 277

26. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation
algebra. JAR 49(1), 95–106 (2012)

27. Krob, D.: A complete system of B-rational identities. In: Paterson, M.S. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990). doi:10.1007/
BFb0032022

28. Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991)
29. Lambek, J.: The mathematics of sentence structure. Am. Math. Monthly 65, 154–

170 (1958)
30. Palka, E.: An infinitary sequent system for the equational theory of *-continuous

action lattices. Fundam. Inform. 295-309 (2007)
31. Pous, D.: Kleene algebra with tests and coq tools for while programs. In: Blazy, S.,

Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 15

32. Pratt, V.: Action logic and pure induction. In: Eijck, J. (ed.) JELIA 1990. LNCS,
vol. 478, pp. 97–120. Springer, Heidelberg (1991). doi:10.1007/BFb0018436

33. Schütte, K.: Proof Theory. Grundlehren der mathematischen Wissenschaften, vol.
225. Sprigner, Heidelberg (1977). Translation of Beweistheorie, 1968

34. Wurm, C.: Kleene algebras, regular languages and substructural logics. In: Pro-
ceedings of the GandALF, EPTCS, pp. 46–59 (2014)

http://dx.doi.org/10.1007/BFb0032022
http://dx.doi.org/10.1007/BFb0032022
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1007/BFb0018436

Integrating a Global Induction Mechanism
into a Sequent Calculus

David M. Cerna1 and Michael Lettmann2(B)

1 Research Institute for Symbolic Computation,
Johannes Kepler University, Linz, Austria

david.cerna@risc.jku.at
2 Institute of Information Systems,

Technische Universität Wien, Vienna, Austria
lettmann@logic.at

Abstract. Most interesting proofs in mathematics contain an inductive
argument which requires an extension of the LK-calculus to formalize.
The most commonly used calculi contain a separate rule or axiom which
reduces the important proof theoretic properties of the calculus. In such
cases cut-elimination does not result in analytic proofs, i.e. every for-
mula occurring in the proof is a subformula of the end sequent. Proof
schemata are a generalization of LK-proofs able to simulate induction
by linking proofs, indexed by a natural number, together. Using a global
cut-elimination method a normal form can be reached which allows a
schema of Herbrand Sequents to be produced, an essential step for proof
analysis in the presence of induction. However, proof schema have only
been studied in a limited context and are currently defined for a very par-
ticular proof structure based on a slight extension of the LK-calculus.
The result is an opaque and complex formalization. In this paper, we
introduce a calculus integrating the proof schema formalization and in
the process we elucidate properties of proof schemata which can be used
to extend the formalism.

1 Introduction

The schematic construction of objects that forms the basis of proof schemata,
as described in this paper, was introduced by Aravantinos et al. [2–7]. Initially,
they considered formulas of an indexed propositional logic with a single free
numeric parameter and with two new logical connectors, i.e. ∨-iteration and
∧-iteration. They developed a tableau based decision procedure for the satisfi-
ability of a monadic1 fragment of this logic. An extension to a special case of
multiple parameters was also investigated by Cerna [13]. In a more recent work,

D.M. Cerna—Partially supported by FWF under the project P 28789-N32.
M. Lettmann—Funded by FWF project W1255-N23.

1 In this fragment the use of schematic constructors is restricted to one free parameter
per formula.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 278–294, 2017.
DOI: 10.1007/978-3-319-66902-1 17

Integrating a Global Induction Mechanism into a Sequent Calculus 279

Aravantinos et al. [6] introduced a superposition resolution calculus for a clausal
representation of indexed propositional logic. The calculus provided decidabil-
ity results for an even larger fragment of the monadic fragment. The clausal
form allows an easy extension to indexed predicate logic, though all decidability
results are lost. In either case, the refutations producible by the calculus for
unsatisfiable clause sets is quite restricted2.

Nonetheless, these results inspired investigations into the use of schemata as
an alternative formalization of induction for proof analysis and transformation.
This is not the first alternative formalization of induction with respect to Peano
arithmetic [25]. However, all existing examples [11,12,21], to the best of our
knowledge, lack a proof normal form or subformula-like property3, i.e. every
formula occurring in the proof is a subformula of a formula occurring in the end
sequent. What we mean by this is that performing cut-elimination in the presence
of induction results in a non-analytic proof: some part of the argument is not
directly connected to the theorem being proven. Two important constructions
extractable from proofs with the subformula property, Herbrand sequents [19,25]
and expansion trees [22], are not extractable from proofs within these calculi.
While Herbrand sequents allow the representation of the propositional content
of first-order proofs, expansion trees generalize Herbrand’s theorem.

Note that in [20] a finite representation of a sequence of Herbrand sequents
is produced, a Herbrand system. Of course, such objects are not derivable from
a finite set of ground instances, though instantiating the free parameter of a
Herbrand systems results in a sequent derivable from a finite set of ground
instances. Bounds on the size of these sets of ground instances, in terms of the
free parameter, exists [16]. Representing a ground derivation for the Herbrand
system as a proof schema itself is still an open problem and is a motivating factor
of this paper. In some cases, the resulting Herbrand system is not formalizable
as a proof schema in the sense of [16,20] due to the restriction placed on proof
schema construction, see [14]. Lifting these restrictions is non-trivial. Our goal
is to design a calculus which easily allows one to relax the restrictions.

The first proof analysis carried out using a rudimentary schematic formalism
was Baaz et al. [8], where proof analysis of Fürstenberg’s proof of the infinitude
of primes was successfully performed using CERES [9]. The formalism discussed
in this paper is an extension of CERES introduced by Dunchev et al. [17]. It
allows the extraction of a schema of Herbrand sequents from the resulting normal
form produced by cut-elimination in the presence of induction. Problematically,
the method of cut-elimination introduced in [17] is not known to be complete,
in terms of cut-elimination, and is very difficult to use. For an example of the
difficulties see Cerna and Leitsch’s work [15]. A much improved version of this

2 A formal analysis has not be performed but through conversations with the authors
and their collaborators a polynomial bound on the size of the produced refutations
is expected.

3 A proof fulfilling the subformula property can be referred to as analytic. By
subformula-like, we mean that the proof is non-analytic, but still allows the extrac-
tion of objects important for proof analysis which rely on analyticity.

280 D.M. Cerna and M. Lettmann

cut-elimination method has been introduced in [20]. using the superposition
resolution calculus of [6]. The method is complete and always produces a schema
of Herbrand sequents, but as mentioned earlier, it is quite weak, also in compar-
ison to the method of [17]. It relies on the superposition resolution calculus of
[6]. The method of [17] can formalize proof normal forms with a non-elementary
length with respect to the size of the end sequent4.

In both cases, the concept of proof schema is designed to encapsulate a
sequence of interacting proofs (the proofs are defined using the LKS-calculus)
[17] which can be joined in a particular way allowing the construction of a valid
LK-proof for any natural number. The LKS-calculus introduces concepts such
as links but does not place restrictions on what a sound application of the rule
is, rather an additional construction, proof schemata, provides the soundness
conditions. However, as one might expect, most sequences of proofs will result
in a invalid proof, multiple proofs when only one is desired, or proofs which
are more complex than necessary, i.e. repetition or unnecessary constructions.
These issues make extensions of proofs schemata, i.e. adding additional para-
meters and/or more complexity well-ordering conditions as well as compression
and proof optimization, increasingly difficult. However, even more pressing is
that the restrictions placed on proof schemata avoid sequences which will result
in valid LK-proof when instantiated. As an example, the schema of Herbrand
sequents extracted in [14] from the proof analysis of the infinitary Pigeonhole
Principle can not be formulated as a proof schema in the current framework.

In this work we present a novel calculus for proof schemata which provides a
better understanding of the restrictions placed on proof schema construction in
previous work. The calculus implicitly enforces the sound application of infer-
ences and in doing so it provides an easy mechanism for weakening the soundness
conditions. Moreover, we show completeness with respect to the k-induction frag-
ment of Peano arithmetic [20], thus showing that the current calculus is equiva-
lent to previous formalisms. However, one of the most interesting results is that
component collections (an abstraction of sequents used in our calculus) can be
interpreted as a sequence of inductions (similar to the fusion method introduced
by Gentzen [18]) rather than as a tree of inductions. This is unexpected given
that proof schemata enforce a very specific tree structure which is partially what
makes introduction of multiple parameters so difficult. This flattened structure
allows us to easily consider a component as separate from the parameter of the
proof schema and separately from the proof schema itself. Taking advantage of
this property in order to weaken the current restrictions built into the framework
and to formalize multiple parameter schemata is planned for future work.

The rest of this paper is as follows: In Sect. 2, we discuss the necessary back-
ground knowledge needed for the results. In Sect. 3 we discuss the evaluation
and interpretation of proof schemata. In Sect. 4, we introduce the concept of
the calculus. In Sect. 5, we show soundness and completeness of the calculus. In
Sect. 6, we conclude the paper and mention possible applications, future work,
and open problems.

4 See Orevkov’s proof [23] or Boolos’ proof [10].

Integrating a Global Induction Mechanism into a Sequent Calculus 281

2 Preliminaries

In this section, we provide a formal construction of proof schemata.

2.1 Schematic Language

We work in a two-sorted version of classical first-order logic. The first sort we
consider is ω, in which every term normalizes to a numeral, i.e. a term inductively
constructable by N ⇒ s(N) | 0, such that s(N) �= 0 and s(N) = s(N ′) →
N = N ′. We will denote numerals by lowercase greek letters, i.e. α, β, γ, etc.
Furthermore, the omega sort includes a countable set of parameter symbols N .
For this work, we will only need a single parameter symbol which in most cases
we denote by n. We use k, k′ to represent numeric expressions containing the
parameter. The parameter symbol n will be referred to as the free parameter.

The second sort ι (individuals) is a standard first-order term language
extended by defined function symbols and schematic variable symbols. To dis-
tinguish defined and uninterpreted function symbols we partition the functions
of ι into two categories, uninterpreted function symbols Fu and defined function
symbols Fd. Defined function symbols will be denoted with ·̂. Schematic variable
symbols are variables of the type ω → ι used to construct sequences of vari-
ables, essentially a generalization of the standard concept of a variable. Given
a schematic variable x instantiated by a numeral α we get a variable of the ι
sort x(α).

Formula schemata, a generalization of formulas including defined predicate
symbols, are defined inductively using the standard logical connectives from
uninterpreted and defined predicate symbols. Analogously, we label symbols as
defined predicate symbols with ·̂. A schematic sequent is a pair of two multisets of
formula schemata Δ, Π denoted by Δ � Π. We will denote multisets of formula
schemata by uppercase greek letters unless it causes confusion.

Note that we extend the LK-calculus [25] to the LKE-calculus [17] by adding
an inference rule for the construction of defined predicate and function symbols
and a set of convergent rewrite rules E (equational theory) to our interpretation.
The rules of E take the following form ̂f(t̄) = E, where t̄ contains no defined
symbols, and either ̂f is a function symbol of range ι and E is a term or ̂f is a
predicate symbol and E is a formula schema.

Definition 1 (LKE). Let E be an equational theory. LKE is an extension of
LK by the E inference rule

S(t) E
S(t′)

where the term or formula schema t in the sequent S is replaced by a term or
formula schema t′ for E |= t = t′.

282 D.M. Cerna and M. Lettmann

Example 1. Iterated version of ∨ and ∧ (the defined predicates are abbreviated
as

∨

and
∧

) can be defined using the following equational theory:

0∨

i=0
P (i) =

0∧

i=0
P (i) = P (0),

s(y)∨

i=0
P (i) =

y∨

i=0
P (i) ∨ P (s(y)),

s(y)∧

i=0
P (i) =

y∧

i=0
P (i) ∧ P (s(y)).

2.2 The LKS-Calculus and Proof Schemata

Schematic proofs are a finite ordered list of proof schema components which can
interact with each other. This interaction is defined using so-called links, a 0-ary
inference rule we add to LKE-calculus: Let S(k, x̄) be a sequent where x̄ is a
vector of schematic variables. By S(k, t̄) we denote S(k, x̄) where x̄ is replaced
by t̄, respectively, and t̄ is a vector of terms of appropriate type. Furthermore,
we assume a countably infinite set B of proof symbols denoted by ϕ,ψ, ϕi, ψj .
The expression

(ϕ, k, t̄)
S(k, t̄)

is called a link with the intended meaning that there is a proof called ϕ with
the end-sequent S(k, x̄). Let k be a numeric expression, then V(k) is the set of
parameters in k. We refer to a link as an E-link if V(k) ⊆ E. Note that in this
work E = {n} or E = ∅.

Definition 2 (LKS). LKS is an extension of LKE, where links may appear
at the leaves of a proof.

Definition 3 (Proof Schema Component). Let ψ ∈ B and n ∈ N . A proof
schema component C is a triple (ψ, π, ν(k)) where π is an LKS-proof only con-
taining ∅-links and ν(k) is an LKS-proof containing {n}-links. The end-sequents
of the proofs are S(0, x̄) and S(k, x̄), respectively. Given a proof schema compo-
nent C = (ψ, π, ν(k)) we define C.1 = ψ, C.2 = π, and C.3 = ν(k).

If ν(k) of a proof schema component (ψ, π, ν(k)) contains a link to ψ it will
be referred to as cyclic, otherwise it is acyclic.

Definition 4. Let C1 and C2 be proof schema components such that C1.1 is
distinct from C2.1 and n ∈ N . We say C1
∗ C2 if there are no links from C2

to C1 and all links that call C1 or C2 are {n}-links of the following form:

(C1.1, k, ā)
S(k, ā)

(C2.1, t, b̄)
S′(t, b̄)

where t is a numeric expression such that V(t) ⊆ {n}, k′ is a sub-term of k, and
ā and b̄ are vectors of terms from the appropriate sort. S(k, ā) and S′(t, b̄) are
the end sequents of components C1 and C2 respectively.

Let Ψ be a set of proof schema components. We say C1
 C2 if C1
∗ C2

and C1
∗ D holds for all proof schema components D of Ψ with C2
∗ D.

Integrating a Global Induction Mechanism into a Sequent Calculus 283

Definition 5 (Proof Schema [17]). Let C1, · · · ,Cm be proof schema compo-
nents such that Ci.1 is distinct for 1 ≤ i ≤ m and n ∈ N . Let the end sequents
of C1 be S(0, x̄) and S(k, x̄). We define Ψ = 〈C1, · · · ,Cm〉 as a proof schema if
C1
 . . .
 Cm.

We call S(k, x̄) the end sequent of Ψ and assume an identification between
the formula occurrences in the end sequents of the proof schema components so
that we can speak of occurrences in the end sequent of Ψ . The class of all proof
schemata will be denoted by Υ .

For any proof schema Φ ∈ Υ , such that Φ = 〈C1, · · · ,Cm〉 we define |Φ| = m
and Φ.i = Ci for 1 ≤ i ≤ m. Note that instead of using proof schema pair [17,20]
to define proof schemata we use proof schema components. The only difference
is that proof schema components make the name explicit. All results concerning
proof schemata built from proof schema pairs carry over for our above definition.

Example 2. Let us consider the proof schema Φ = 〈(ϕ, π, ν(k))〉. The proof
schema uses one defined function symbol ̂S(·) to convert terms of the ω sort
to the ι sort The equational theory E is as follows:

E =
{

̂S(k + 1) = f(̂S(k)) ; ̂S(0) = 0 ; k + f(l) = f(k + l)
}

.

We abbreviate the context as Δ = {P (α + 0),∀x.P (x) → P (f(x))}. The proofs
π and ν(k) are as follows:

π =
P (α + 0) � P (α + 0)

w : l
Δ � P (α + 0)

E
Δ � P (α + Ŝ(0))

ν(k) =

(ϕ, n, α)

Δ � P (α + Ŝ(n)) P (f(α + Ŝ(n))) � P (f(α + Ŝ(n)))
→ : l

Δ, P (α + Ŝ(n)) → P (f(α + Ŝ(n))) � P (f(α + Ŝ(n)))
∀ : l

Δ, ∀x.P (x) → P (f(x)) � P (f(α + Ŝ(n)))
E

Δ, ∀x.P (x) → P (f(x)) � P (α + f(Ŝ(n)))
E

Δ, ∀x.P (x) → P (f(x)) � P (α + Ŝ(n + 1))
c : l

Δ � P (α + Ŝ(n + 1))

Note that π contains no links, while ν(k) contains a single {n}-link.

3 Evaluation and Interpretation

Proof schemata are an alternative formulation of induction. In [20], it is shown
that proof schemata are equivalent to a particular fragment of the induction
arguments formalizable in Peano arithmetic, i.e. the so called k-simple induc-
tion. More specifically, k-simple induction limits the number of inductive eigen-
variables5 to one. In previous work [17,20], LKE was extended by the following
induction rule instead of links:
5 Inductive eigenvariables are eigenvariables occurring in the context of an induction
inference rule.

284 D.M. Cerna and M. Lettmann

F (k), Γ � Δ,F (s(k))
IND

F (0), Γ � Δ,F (t)

where t is an arbitrary term of the numeric sort. The result is the calculus LKIE.
To enforce k-simplicity we add the following constraint: let ψ be an LKIE-proof
such that for any induction inference in ψ, V (t) ⊆ {k} for some k. In [17,20],
the authors show that the following two proposition hold, and thus define the
relationship between k-simple LKIE-proofs and proof schemata. Given that our
calculus can be used to construct proof schemata, the relationship can be trivially
extended to proofs resulting from our calculus.

Proposition 1. Let Ψ be a proof schema with end-sequent S. Then there exists
a k-simple LKIE-proof of S.
Proof. See Proposition 3.13 of [20].

Proposition 2. Let π be a k-simple LKIE-proof of S. Then there exists a proof
schema with end-sequent S.
Proof. See Proposition 3.15 of [20].

Unlike the induction proofs of the LKIE-calculus, proof schemata have a
recursive structure and thus require an evaluation (“unrolling”), similar to prim-
itive recursive functions. When we instantiate the free parameter, the following
evaluation procedure suffices.

Definition 6 (Evaluation of proof schema [17]). We define the rewrite
rules for links

(ϕ, 0, t̄) ⇒ π
S(0, t̄)

(ϕ, k, t̄) ⇒ ν(k)
S(k, t̄)

for all proof schema components C = (ϕ, π, ν(k)). Furthermore, for α ∈ N , we
define C [k \ α] ↓ as a normal form of the link

(ϕ, α, t̄)

S(α, t̄)

under the above rewrite system extended by the rewrite rules for defined function
and predicate symbols, i.e. the equational theory E. Also, for a proof schema
Φ = 〈C1, . . . ,Cm〉, we define Φ [n \ α] ↓= C1 [k \ α] ↓.
Example 3. Let Φ be the proof schema of Example 2 and Δ defined equivalently.
For 1 ∈ N we can write down Φ [n \ 1] ↓ as follows:

P (f(α + Ŝ(0))) � P (f(α + Ŝ(0)))

P (α + 0) � P (α + 0)
w : l

Δ � P (α + 0)
E

Δ � P (α + Ŝ(0))
→ : l

Δ, P (α + Ŝ(0)) → P (f(α + Ŝ(0))) � P (f(α + Ŝ(0)))
∀ : l

Δ, ∀x.P (x) → P (f(x)) � P (f(α + Ŝ(0)))
c : l

Δ � P (f(α + Ŝ(0)))
E

Δ � P (α + f(Ŝ(0)))
E

Δ � P (α + Ŝ(0 + 1))
E

Δ � P (α + Ŝ(1))

Integrating a Global Induction Mechanism into a Sequent Calculus 285

The described evaluation procedure essentially defines a rewrite system for
proof schemata with the following property.

Lemma 1. The rewrite system for links is strongly normalizing, and for a proof
schema Φ and α ∈ N , Φ [n \ α] ↓ is an LK-proof.

Proof. See Lemma 3.10 of [20].

Proposition 3 (Soundness [17]). Let Φ = 〈C1, . . . ,Cm〉 be a proof schema
with end-sequent S(n, x̄) and let α ∈ N . Then Φ [n \ α] ↓ is an LK-proof of
S(n, x̄).

Essentially, Proposition 3 states that C1 [k \ α] ↓ is an LK-proof of the end-
sequent S(n, x̄) [k \ α] ↓ where by ↓ we refer to normalization of the defined
symbols in S(n, x̄).

4 The SiLK-Calculus

The SiLK-calculus (Schematic induction LK-calculus, see Tables 1 and 2)
allows one to build a proof schema component-wise. We call the set of expres-
sions in between two | a component group. Note that, unlike proof schemata we
do not need proof symbols nor ordering because it is implied by the construc-
tion. Each component group consists of a multiset of component pairs which are
pairs of LKS-sequents. A set of component groups is referred to as a compo-
nent collection. Even though all auxiliary components (or component groups)
are shifted to the left, we do not intend any ordering, i.e. writing, for instance,
(� : A � A) to the right of Π in Ax1 : r in Table 1 does not change the rule.

Table 1. The basic inference rules of the SiLK-calculus.

286 D.M. Cerna and M. Lettmann

To enforce correct construction of proof schema components we introduce
a closure mechanism similar to focusing [1] (see the inferences clbc, clLKE , and
clsc in Table 1). Let us consider a component pair C = (Q : S) where Q is
a sequent, a sequent in square brackets, or � and S is a sequent or a sequent
in square brackets. The left side Q is the stepcase and the right side S is the
basecase. We use pairs of sequents rather than individual sequents on different
branches to enforce the dependence between the stepcase and the basecase, that
is, the both have the same end-sequent. The configuration Q = � means that we
are still allowed to apply rules to the basecase. If S is closed, i.e. S is of the form
[Δ � Π] for an arbitrary sequent Δ � Π, we have closed the basecase (using
inference rule clbc) and essentially fixed its end-sequent. Therefore, Q is always
equal to � as long as the basecase is not closed. If S is closed we are allowed to
apply rules to the stepcase. This fixing of the end-sequent essentially fixes the
sequent we are allowed to introduce using the inference rule �.

Apart from schematic proofs, simple LKE-proofs can be constructed by keep-
ing the stepcase equal to �. If we instead intend to construct a schema of proofs
we have to build a stepcase. The end sequent (Π � Δ)[n \ 0] characterizes the
stepcase sequent modulo the parameter value, i.e. (Π �α Δ)[n \ α] where α
depends on the applications of � - or � -inferences (see Table 2). The point
of this labelling α of the sequents is to indicate what value of the free parame-
ter must be produced in order to close the component. Normally α = n′, or the
successor of n. Note that f(n), g(n), and h(n) are intended to be arbitrary prim-
itive recursive functions and may be introduced as an extension of the equational
theory.

When a component group contains a single component pair and the end
sequents of the basecase and stepcase are the same modulo the substitution of
the free parameter we can close the component group using clsc (see Table 1).
Alternatively, we can close a group by applying clLKE if the stepcase is equal to
�. We refer to such a group as a closed group and any group which is not closed is
referred to as an open group. As a convention, inference rules can only be applied
to open groups. Concerning � (see Table 2), it may be the case that the closed
group whose end sequent we use to introduce a link has free variables other than
the free parameter. We assume correspondence between the free variables of the
closed group and the main component, meaning that in a call

(

(Λ �f(n) Γ) [n \ g(n)] [x̄ \ t̄] : [[[[S]]]]
)

of a component with free variables x̄ all occurrences of x̄ in the proof of

([[[[(Λ � Γ) [n \ h(n)]]]]] : [[[[R]]]])

are replaced with t̄. Essentially, this rule is inductive lemma introduction. h(n)
is used to represent a non-standard instantiation of the free parameter, i.e. other
than n′. Though, non-essentially for this work, in future work when we con-
sider more complex inductive definitions and orders, thus such concepts will be
necessary.

Integrating a Global Induction Mechanism into a Sequent Calculus 287

An SiLK-derivation is a sequence of SiLK inferences rules ending in a com-
ponent collection with at least one open component group. A SiLK-proof ends
in a component collection where all components are closed. As we shall show,
not every derivation can be extended into a proof.

Table 2. The linking rules of the SiLK-calculus.

where x̄ is the vector of all free variables of and t̄ is an
arbitrary vector of terms which has the same length as x̄.

:

where ȳ is the vector of all free variables of Γ and t̄ is an
arbitrary vector of terms which has the same length as ȳ. Also, g

and h are arbitrary primitive recursive functions.

We also consider a special case of SiLK-derivations (proofs) which we refer
to as pre-proof schema normal form. A SiLK-derivation (proof) is in pre-proof
schema normal form if for every application of Ax1 : r the context Π is a SiLK-
proof. This enforces a stricter order on the construction of components than is
already enforced by the use of the �-inference which can be used to construct
proof schemata.

Let I be the customary evaluation function of sequents, i.e. I(Δ � Γ) ≡
∧

F∈Δ F → ∨

F∈Γ F for an LKE-sequent Δ � Γ and assume an SiLK-proof
ending in the component collection

C ≡ ([[[[Q0]]]] : [[[[S0]]]])
∣

∣

∣ · · ·
∣

∣

∣ ([[[[Qm]]]] : [[[[Sm]]]])

such that ([[[[Q0]]]] : [[[[S0]]]]) is the last component group closed in the proof of C
(In the following we will refer to this component as the leading component). We
extend the evaluation function to the schematic case and define the evaluation
function of a closed component collection similar to [18] by

ISiLK(C) ≡ I(S0),

if ν0 ≡ � and ISiLK(C) ≡
m∧

i=0

I(Si) ∧ ∀.x
(m∧

i=0

(I(Qi [n \ x]) → I(Qi [n \ (x + 1)])
))→ ∀x.(I(Q0 [n \ x]),

288 D.M. Cerna and M. Lettmann

otherwise. Implicitly, the closure rules imply an order. In general, all closed
component groups are considered lower in the implied ordering than open com-
ponent groups. Essentially, the ordering comes from the �-rule which can only
be applied if the auxiliary component is closed. For example, a component may
be forced to be closed last, and thus, would be consider the top of the implied
ordering.

We use the following denotations for construction of our inference rules. Con-
text variables within schematic sequents will be denoted by uppercase greek
letters Δ,Π, etc. Context variables within component groups will be denoted
by blackboard bold uppercase greek letters ´,˝, etc. Context variables within
the component collection will be denoted by fat bold uppercase greek letters,
Δ,Π, etc. We use bold uppercase latin letters to denote schematic sequents,
R,S, etc. The inference rules ρsc

1 , ρsc
2 , ρbc

1 , ρbc
2 apply an LKE inference rule ρ

to the auxiliary sequents to get the main sequent. By the subscript we denote
the arity of the inference rule. For example, (∀ : l)sc

1 applies the universal quan-
tifier rule to the left side of the stepcase. And finally, we use the following
abbreviations:

`′ ≡ (`, (Q : [[[[S]]]])) , and

Π ′Π ′Π ′Π ′ ≡ ΔΔΔΔ, ([[[[(Λ � Γ){n ← α}]]]] : [[[[R]]]])
∣

∣

∣ ΠΠΠΠ.

The following example illustrates the construction of a simple SiLK-proof.

Example 4. For the construction of the following SiLK-proof we use the equa-
tional theory E ≡ {̂f0(x) = x; ̂fs(n)(x) = f ̂fn(x)} and the abbreviations

Δ ≡ P (0),∀x.P (x) → P (f(x)) and S ≡ Δ � P (f̂0(0)).

Ax1 : r(
� : P (0) � P (0)

) ∣∣∣
Ebc
1(

� : P (0) � P (f̂0(0))
) ∣∣∣

(w : l)bc
1(

� : P (0), ∀x.P (x) → P (f(x)) � P (f̂0(0))
) ∣∣∣

clbc(
� : [[[[Δ � P (f̂0(0))]]]]

) ∣∣∣
Ax : l(

P (ff̂n(0)) �s(n) P (ff̂n(0)) : [[[[S]]]]
) ∣∣∣

br(
� : [[[[S]]]]

)
,
(

P (ff̂n(0)) �s(n) P (ff̂n(0)) : [[[[S]]]]
) ∣∣∣

�(
Δ �s(n) P (f̂n(0)) : [[[[S]]]]

)
,
(

P (ff̂n(0)) �s(n) P (ff̂n(0)) : [[[[S]]]]
) ∣∣∣

(→: l)sc
2(

Δ, P (f̂n(0)) → P (ff̂n(0)) �s(n) P (ff̂n(0)) : [[[[S]]]]
) ∣∣∣

(∀ : l)sc
1(

Δ, ∀x.P (x) → P (f(x)) �s(n) P (
̂

fs(n)(0)) : [[[[S]]]]
) ∣∣∣

(c : l)sc
1(

Δ �s(n) P (
̂

fs(n)(0)) : [[[[S]]]]
) ∣∣∣

clsc(
[[[[Δ � P (

̂

fs(n)(0))]]]] : [[[[S]]]]
) ∣∣∣

Integrating a Global Induction Mechanism into a Sequent Calculus 289

By applying the evaluation function ISiLK we get

ISiLK

((

[[[[Δ � P (̂fs(n)(0))]]]] : [[[[S]]]]
))

≡
(

(

Δ′ → P (̂f0(0))
) ∧ ∀x.

(

(

Δ′ → P (̂fx(0))
) → (

Δ′ → P (f̂x+1(0))
)

)

)

→
(

Δ′ → ∀n.P (̂fn(0))
)

where Δ′ ≡ P (0) ∧ ∀x.P (x) → P (f(x)). Essentially, what we have proven with
this SiLK-proof is the sequent

P (0),∀x.P (x) → P (f(x)) � ∀n.P (̂fn(0)).

By extending the equational theory and by applying the �-inference we can
easily strengthen the provable sequent of Example 4.

Example 5. Let E be the equational theory of Example 4, Π the proof of
Example 4 and

Δ ≡ P (0),∀x.P (x) → P (f(x)),

` ≡
(

[[[[Δ � P (̂fs(n)(0))]]]] : [[[[Δ � P (f̂0(0))]]]]
)

,

2 ≡ s(s(0)),

S′ ≡ Δ � P (̂f20(0)),

E ′ ≡ E ∪ { ̂f20(x) = f(x), ̂f2s(n)(x) = ̂f2n
̂f2(x)}.

ΠΠΠΠ
Ax1 : r(

� : P (f(0)) � P (f(0))
) ∣∣∣ `

∣∣∣
Ebc
1(

� : P (f(0)) � P (
̂

f20 (0))
) ∣∣∣ `

∣∣∣
Ax2 : r

(
� : P (0) � P (0)

)
,

(
� : P (f(0)) � P (

̂
f20 (0))

) ∣∣∣ `
∣∣∣

(→: l)bc
2(

� : P (0), P (0) → P (f(0)) � P (
̂

f20 (0))
) ∣∣∣ `

∣∣∣
(∀ : l)bc

1(
� : P (0), ∀x(P (x) → P (f(x))) � P (

̂
f20 (0))

) ∣∣∣ `
∣∣∣

clbc(
� : [[[[Δ � P (

̂
f20 (0))]]]]

) ∣∣∣ `
∣∣∣

�(
Δ �2s(n)

P (
̂

f2s(n)
(0)) : [[[[S′]]]]

) ∣∣∣ `
∣∣∣

clsc([[[[
Δ � P (

̂

f2s(n)
(0))

]]]] : [[[[S′]]]]

) ∣∣∣ `
∣∣∣

Notice that we were able to get a much stronger theorem without significantly
extending the proof. Though, the instantiation of the second proof will be expo-
nentially larger than an instantiation of the first proof for the same value of n,
the second proof is only double the number of inferences. This is precisely the
method one can use to formalize either Orevkov’s proof [23] or Boolos’ proof [10].

290 D.M. Cerna and M. Lettmann

4.1 From SiLK-Proof to Proof Schema

It is possible to construct a proof schema from any SiLK-Proof, though it is
much easier to perform the translation from SiLK-Proof in pre-proof schema
normal form. We now show that every SiLK-Proof has a pre-proof schema
normal form.

Lemma 2. Let Φ be a SiLK-Proof of a component collection C. Then there
exists a SiLK-Proof Φ′ of C in pre-proof schema normal form.

Proof. We prove the statement by rearranging the application of the SiLK rules.
Let

C ≡ ([[[[Q0]]]] : [[[[S0]]]])
∣

∣

∣ · · ·
∣

∣

∣ ([[[[Qm]]]] : [[[[Sm]]]])

be the ending component collection of Φ. We identify each component group
CGi = ([[[[Qi]]]] : [[[[Si]]]]) with its ancestors in Φ, i.e. all component groups that
are connected via a SiLK rule, exempting the closed component groups of the
� rule, to CGi. Afterwards, we find the component group CGi which is closed
first, i.e. reading top to bottom the component group to which clst or clLKE is
applied first. Since there is no other component closed earlier there are no �

rule identified with CGi, thus we can consider all rules identified with CGi to be
independent. This implies that we can rearrange Φ such that all rules identified
with CGi are at the top6. This part of the proof will not change any more.
Now, we look again for the topmost clst or clLKE rule apart from the one we
already considered. The corresponding component group CGj and its identified
rules contain only � rules that link to components that are already rearranged
and, hence, we can shift all rules identified with CGj directly after the already
rearranged ones. If we repeat this procedure, we end up with a proof in pre-proof
schema normal form.

The important property of pre-proof schema normal form is that the con-
struction of components is organized such that between any two closure rules is
an LKS-proof.

Theorem 1. Let Φ be an SiLK-Proof of the component collection

([[[[Q0]]]] : [[[[S0]]]])
∣

∣

∣ · · ·
∣

∣

∣ ([[[[Qm]]]] : [[[[Sm]]]])

such that ν0 �= � is the leading component, then there exists a proof schema
〈C0,C1, · · · ,Ck〉, for k ≤ m, where for every 0 ≤ i ≤ k there exists 0 ≤ i ≤ j ≤
m, where the end sequents of Ci.2 and πj match as well as the end sequents of
Ci.3 and νj.

6 In general, the context is not empty. Since the rules, exempting the �, are indepen-
dent from the context, we can always adjust the context.

Integrating a Global Induction Mechanism into a Sequent Calculus 291

Proof. By Lemma 2 we know that Φ has a pre-proof schema normal form Φ′.
Note that, in a pre-proof schema normal form the leading component, i.e. ν0, is
the leftmost component. In Φ′, we delete all component groups whose stepcase
is equal to [[[[]]]] and get Ψ which contains k component groups. This is allowed
because � cannot link to component groups with stepcase [[[[]]]]. We construct the
proof schema directly from Ψ where each proof schema component corresponds
to a component group of Ψ . A proof schema component Ci is constructed from
a component proof CGj = ([[[[Qj]]]] : [[[[Sj]]]]) as follows: Ci.2 is the proof con-
taining all rules that are identified with CGj and that are applied at the top of
clbc. Ci.3 is the proof containing all rules that are identified with CGj and that
are between clbc and clsc. We translate each component group according to the
order of the pre-proof schema normal form, i.e. from right to left, to a proof
schema component and construct thereby the proof schema of the theorem.

5 Properties of the Calculus

In this section we discuss the decision problem for validity, soundness of the
calculus, and completeness with respect to k-simple proof schemata.

5.1 Decidability

Following the formalization of our calculus, we can state a semi-decidability
theorem. This follows from our choice to distinguish between component collec-
tions where the leading component is equal but there is a variation in the other
components.

Theorem 2. Let Π be a collection of closed components that has a SiLK-proof
then we find the proof in a finite number of inferences.

Proof. By Lemma 2 we can construct proofs from right to left. In general, the
basecase is an LKE-sequent that is itself semi-decidable. The rightmost com-
ponent cannot contain any �-inferences in the stepcase such that it behaves as
an LKE-proof plus an additional theory axiom for the �-rule and is, therefore,
semi-decidable. In the next component’s stepcase, we consider all �-rules again
as theory axioms, such that we end up in a semi-decidable fragment again. By
the finite number of components the semi-decidability of Π follows.

The more interesting decidability property is of course whether we are able
to extend the number of components on the right of a given component such
that the new collection of components has a SiLK-proof. To see that this is not
even semi-decidable we will formalize Robinson arithmetic [24] in our system.

Theorem 3. Let C be a closed component group. Then deciding if there exists a
closed component collection Π such that C

∣

∣

∣ Π is SiLK-provable is undecidable.

292 D.M. Cerna and M. Lettmann

Proof. The ω sort obeys the axioms of Robinson arithmetic concerning successor
and zero. We can add the addition and multiplication axioms to the equational
theory. The most important axiom of Robinson arithmetic ∀x(x = 0∨∃y(s(y) =
x)) is intrinsically part of the link mechanism. Because Robinson arithmetic
is essentially undecidable then showing that there is an extension of a given
component collection to a SiLK-provable collection must be as well.

5.2 Soundness and Completeness

We provide a proof of soundness using our translation procedure of Sect. 4.1.

Theorem 4 (Soundness of the SiLK-calculus). If a closed component col-
lection C is SiLK-provable then it is valid.

Proof. Let Φ be an SiLK-proof of C. By Sect. 4.1 we can transform Φ to a pre-
proof schema normal form Φ′ and then construct a proof schema Ψ from it. By
Proposition 3, we show the validity of the leading component and, therefore, of
the evaluation itself, i.e. the SiLK-calculus is sound.

To show completeness we technically need a conversion from proof schemata
to SiLK-proofs which can be easily derived given the procedure defined in
Sect. 4.1. One needs to construct a closed component group for each compo-
nent of the proof schema whose proofs can be read off from the proofs of the
component’s stepcase and basecase. The links are replaced by applications of
the �-rule or the �-rule. Due to space constraints we avoid formally defining
the procedure.

Theorem 5 (Completeness). If a close component collection C represents a
valid n-induction statement then it is SiLK-provable.

Proof. By the theorems and definitions of Sect. 3, we know that if C represents
a valid n-induction statement then a proof can be found in the LKIE-calculus.
Any LKIE-proof can be transformed into a proof schema Φ (Sect. 3). We have
not shown that Φ can be transformed into SiLK-proofs, but it is quite obvious
that the procedure defined in Sect. 4.1 is reversible. Thus, there is a SiLK-proof
for C.

6 Conclusion

In this paper we introduce a calculus for the construction of proof schemata the
SiLK-calculus which elucidates the restriction found in the formalism of [17]
and provides a mechanism to weaken them. Initially, proof schemata were for-
malized by first defining an extension of the calculus LK, the calculus LKS,
which adds so called links and an equational theory rule. Using this extended
calculus a formal definition for proof schemata was developed over sequences of
proofs. While interesting results followed [20], the results of proof analysis using

Integrating a Global Induction Mechanism into a Sequent Calculus 293

the method of [17] could not be formalized within the same framework as the
original proof [14]. Also, restrictions on the ordering used, the type of induc-
tion, and number of parameters are not easy to relax in the existing framework.
By flattening the tree structure of proof schema, separating the instantiation of
a proof from its definition, and removing the implicit ordering of components
which complicates construction of schema with multiple parameters or mutual
recursion, we can easily consider extensions of proof schemata and plan to do so
in future work.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Log.
Comput. 2(3), 297–347 (1992)

2. Aravantinos, V., Caferra, R., Peltier, N.: A schemata calculus for propositional
logic. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607,
pp. 32–46. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02716-1 4

3. Aravantinos, V., Caferra, R., Peltier, N.: A decidable class of nested iterated
schemata. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 293–308. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1 25

4. Aravantinos, V., Caferra, R., Peltier, N.: Decidability and undecidability results
for propositional schemata. J. Artif. Intell. Res. 40(1), 599–656 (2011)

5. Aravantinos, V., Caferra, R., Peltier, N.: Linear temporal logic and propositional
schemata, back and forth. In: Proceedings of TIME 2011, pp. 80–87. IEEE (2011)

6. Aravantinos, V., Echenim, M., Peltier, N.: A resolution calculus for first-order
schemata. Fundamenta Informaticae 125, 101–133 (2013)

7. Aravantinos, V., Peltier, N.: Schemata of SMT-problems. In: Brünnler, K., Met-
calfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 27–42. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-22119-4 5

8. Baaz, M., Hetzl, S., Leitsch, A., Richter, C., Spohr, H.: Ceres: an analysis of
Fürstenberg’s proof of the infinity of primes. Theoret. Comput. Sci. 403(2–3),
160–175 (2008)

9. Baaz, M., Leitsch, A.: Cut-elimination and redundancy-elimination by resolution.
J. Symb. Comput. 29, 149–176 (2000)

10. Boolos, G.: Don’t eliminate cut. J. Philos. Log. 13(4), 373–378 (1984)
11. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:

Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). doi:10.1007/11554554 8

12. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21, 1177–1216 (2011)

13. Cerna, D.: A tableaux-based decision procedure for multi-parameter propositional
schemata. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.)
CICM 2014. LNCS (LNAI), vol. 8543, pp. 61–75. Springer, Cham (2014). doi:10.
1007/978-3-319-08434-3 6

14. Cerna, D.M.: Advances in schematic cut elimination. Ph.D. thesis, Technical Uni-
versity of Vienna (2015). http://media.obvsg.at/p-AC12246421-2001

15. Cerna, D.M., Leitsch, A.: Schematic cut elimination and the ordered pigeonhole
principle. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp.
241–256. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 17

http://dx.doi.org/10.1007/978-3-642-02716-1_4
http://dx.doi.org/10.1007/978-3-642-14203-1_25
http://dx.doi.org/10.1007/978-3-642-22119-4_5
http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-3-319-08434-3_6
http://dx.doi.org/10.1007/978-3-319-08434-3_6
http://media.obvsg.at/p-AC12246421-2001
http://dx.doi.org/10.1007/978-3-319-40229-1_17

294 D.M. Cerna and M. Lettmann

16. Dunchev, C.: Automation of cut-elimination in proof schemata. Ph.D. thesis, Tech-
nical University of Vienna (2012)

17. Dunchev, C., Leitsch, A., Rukhaia, M., Weller, D.: Cut-elimination and proof
schemata. J. Log. Lang. Comput. 8984, 117–136 (2013)

18. Gentzen, G.: Fusion of several complete inductions. In: Szabo, M.E. (ed.) The
Collected Papers of Gerhard Gentzen, Studies in Logic and the Foundations of
Mathematics, vol. 55, pp. 309–311. Elsevier, Amsterdam (1969)

19. Hetzl, S., Leitsch, A., Weller, D., Woltzenlogel Paleo, B.: Herbrand sequent extrac-
tion. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F.
(eds.) CICM 2008. LNCS, vol. 5144, pp. 462–477. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85110-3 38

20. Leitsch, A., Peltier, N., Weller, D.: Ceres for first-order schemata. J. Log. Comput.
(2017, to appear)

21. Mcdowell, R., Miller, D.: Cut-elimination for a logic with definitions and induction.
Theoret. Comput. Sci. 232, 91–119 (2000)

22. Miller, D.A.: A compact representation of proofs. Stud. Log. 46(4), 347–370 (1987)
23. Orevkov, V.P.: Proof schemata in Hilbert-type axiomatic theories. J. Sov. Math.

55(2), 1610–1620 (1991)
24. Robinson, R.M.: An essentially undecidable axiom system. In: Proceedings of the

International Congress of Mathematics, pp. 729–730 (1950)
25. Takeuti, G.: Proof Theory, Studies in Logic and the Foundations of Mathematics,

vol. 81. American Elsevier Publisher, Amsterdam (1975)

http://dx.doi.org/10.1007/978-3-540-85110-3_38

Realizability in Cyclic Proof: Extracting
Ordering Information for Infinite Descent

Reuben N.S. Rowe1(B) and James Brotherston2

1 School of Computing, University of Kent, Canterbury, UK
r.n.s.rowe@kent.ac.uk

2 Department of Computer Science, University College London, London, UK
J.Brotherston@ucl.ac.uk

Abstract. In program verification, measures for proving the termina-
tion of programs are typically constructed using (notions of size for)
the data manipulated by the program. Such data are often described by
means of logical formulas. For example, the cyclic proof technique makes
use of semantic approximations of inductively defined predicates to con-
struct Fermat-style infinite descent arguments. However, logical formulas
must often incorporate explicit size information (e.g. a list length para-
meter) in order to support inter-procedural analysis.

In this paper, we show that information relating the sizes of induc-
tively defined data can be automatically extracted from cyclic proofs
of logical entailments. We characterise this information in terms of a
graph-theoretic condition on proofs, and show that this condition can
be encoded as a containment between weighted automata. We also show
that under certain conditions this containment falls within known decid-
ability results. Our results can be viewed as a form of realizability for
cyclic proof theory.

Keywords: Approximation semantics · Cyclic proof · Entailment ·
Inductive predicates · Infinite descent · Realizability · Sequent
calculus · Weighted automata

1 Introduction

In program verification, it is well known that proving termination of a par-
ticular program depends on identifying a well-founded measure that decreases
monotonically during the program’s execution. Thus, since the measure cannot
decrease infinitely often, no execution of the program can be infinite. In practice,
termination measures are typically derived from the data manipulated by the
program itself (cf. size-change termination [14]), and in particular from notions
of the size of its data structures.

For example, consider the following code, which “shuffles” a linked list with
head pointer x, using an auxiliary list reversal procedure rev:

proc shuffle(*x) { if (x != nil) { y := [x]; rev(y); shuffle(y); } }

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 295–310, 2017.
DOI: 10.1007/978-3-319-66902-1 18

296 R.N.S. Rowe and J. Brotherston

where the syntax [x] denotes pointer dereferencing. The termination of the
shuffle(x) procedure can be deduced by taking as termination measure the
length of the list from x. The call to rev and the recursive call to shuffle both
take place on the pointer y to the tail of the list. However, we also crucially rely
upon the fact that the reversal procedure rev does not increase the size of the
list. In a Hoare-style verification, this information is needed when we employ the
sequential composition rule:

{P} rev(y) {Q} {Q} shuffle(y) {R}
{P} rev(y);shuffle(y) {R}

Here, the information that rev maintains the size of the list must be reflected in
the relationship between its pre- and postconditions P and Q (which are logical
formulas). Typically, this must be done by endowing these formulas with explicit
size information; e.g., we could write an inductive predicate list(y, n) representing
linked lists in memory, with an explicit length parameter (cf. [3]).

In this paper, we show that this kind of information, relating the sizes of
inductively defined data, can often be extracted automatically from cyclic proofs
of logical entailments. Cyclic proofs can be seen as formalising proof by regu-
lar infinite descent [7]; they are derivation trees with “backlinks” from (some)
leaves to interior nodes, subject to a global soundness condition ensuring that
all infinite paths correspond to sound infinite descent arguments. Cyclic proof
systems have been developed for a wide variety of settings ranging from pure
logic [4,5] to Hoare-style logics for program termination [6,17] and other tem-
poral properties [9]; the common denominator is the presence of logical data
defined using fixed points. The soundness of cyclic proofs relies on infinite descent
over the semantic approximations of these fixed points, which can be seen as
capturing a notion of size for the corresponding data. Suitable entailments for
which to construct these cyclic proofs may be formulated by procedures for
verifying the correctness of (fragments of) programs. For example, a procedure
to verify the Hoare triple {list(y)} rev(y) {list(y)} might result in the entail-
ment y �→ x ∗ list(x) � list(y) of separation logic [11,16]. Such entailments are
commonly referred to as verification conditions, since they must be discharged
independently.

Relationships between the sizes of inductive data are reflected by inclusions
between the approximations of the fixed point semantics. To infer these inclu-
sions, we formulate a novel condition on the structure of cyclic entailment proofs
(Definition 8) which is sufficient to extract this information (Theorem 2). This
condition is equivalent to an inclusion between weighted automata that can
be constructed from the cyclic proofs (Theorem 3), and, when the cyclic proof
is suitably structurally well-behaved, this inclusion becomes decidable (Theo-
rem 4). For simplicity, we present our results for the well-known cyclic proof
system CLKIDω for first order logic with inductive definitions [4,7]. However,
we stress that our results are not limited to this setting: in a separate techni-
cal report we formulate and prove our results for a general, abstract notion of

Realizability in Cyclic Proof: Extracting Ordering Information 297

⇒ N0

Nx ⇒ N sx

⇒ E0

Ox ⇒ E sx

Ex ⇒ O sx

(NR1)� N0
(=L)

x = 0 � Nx

Ex � Nx
(Subst)

E z � N z
(NR2)

E z � N sz
(=L)

y = sz,E z � N y
(Case O)

O y � N y
(NR2)

O y � N sy
(=L)

x = sy,O y � Nx
(Case E)

Ex � Nx

Fig. 1. Inductive definitions of N, E, and O, and cyclic proof of E x � Nx.

cyclic proof [18]. Consequently our results also hold, e.g. for separation logic with
inductive predicates [5,6], and so can be deployed in our cyclic proof framework
for proving program termination based on this logic [17].

The remainder of this paper is structured as follows. First, Sect. 2 gives an
introductory example motivating our new structural condition for extracting size
relationships from cyclic proofs. Section 3 then reprises the basics of first-order
logic with inductive predicates and its cyclic proof system CLKIDω from [4,7].
In Sect. 4 we formulate our structural condition on cyclic proofs and prove its
soundness. In Sect. 5 we show how this condition can be encoded as an inclusion
between weighted automata and formulate further graph-theoretic conditions on
cyclic proofs under which this is decidable. Section 6 concludes.

For space reasons, we elide the detailed proofs of the results in this paper,
but they can be found in our longer technical report [18].

2 Motivating Example

Figure 1 gives inductive definitions of predicates N, E and O (intended to cap-
ture the properties of being a natural number, even number and odd number
respectively) and a cyclic proof of the sequent Ex � N x. Note that E and O are
mutually defined. The (N Ri) rules indicate a right-unfolding of the N predicate,
and the (Case E) and (Case O) rules a left unfolding (or case analysis) on the
predicates E and O respectively. This cyclic proof is sound since its only infinite
path contains an infinite, unbroken “trace” of the E and O predicates in the
antecedent of each sequent that “progresses” infinitely often as these predicates
are unfolded.

This condition ensures that the proof is valid because it can be related to
approximations of the semantics [[·]] of the predicates, which form an ordinal-
indexed chain [[·]]0 ≤ [[·]]1 ≤ . . . ≤ [[·]]α ≤ . . . ≤ [[·]]. If Ex � N x is invalid then, by
local soundness of the rules, so is every sequent on the infinite path in the proof.

298 R.N.S. Rowe and J. Brotherston

The trace along this path then corresponds to a non-increasing subsequence of
the ordinals in this chain, which strictly decreases when the trace progresses.
Since the trace progresses infinitely often, we obtain an infinitely decreasing
chain of ordinals, which is a contradiction.

Interestingly, it turns out that, by examining the structure of this cyclic proof
more closely and also considering the (right) unfoldings of N, we can deduce that
the αth approximation of E is also included in the αth approximation of N, i.e.,
[[Ex]]α ⊆ [[N x]]α. Intuitively, this is because on every maximally finite path in
the proof along which N is unfolded, the mutually defined E and O are together
unfolded at least as often as N. Thus when x is included in some approximation
of E, it is already included in the corresponding approximation of N. Later,
in Sect. 4, we will formalise this intuition as an additional syntactic, trace-based
condition on cyclic proofs. The upshot is that we may form “traces”, as described
above, between instances of E t and N t (for any term t) in the antecedent of
sequents, even though they are not related by their inductive definitions.

3 Cyclic Proofs for First Order Logic

In this section we summarise a variant of CLKIDω, a cyclic proof system for first
order logic with inductive predicates [4,7].

3.1 First Order Logic with Inductive Definitions

We assume the standard syntax and semantics of first order logic. For simplicity,
we take models to be valuations of term variables to objects in the semantic
domain. A sequent Γ � Δ comprises two sequences of formulas: an antecedent
Γ and a consequent Δ. For a sequent S = Γ � Δ, we write m |= S to mean that
the model m satisfies at least one formula in Δ whenever it satisfies all fomulas
in Γ . Conversely, we write m �|= S to mean that m satisfies all fomulas in Γ and
no formula in Δ. A sequent S is valid when m |=S for all models m.

We give the semantics of predicate symbols in the signature by means of sets
of inductive productions, in the style of Martin-Löf [15].

Definition 1 (Inductive Definition Set). An inductive definition set Φ is a
finite set of productions, each of the form P1 t1, . . . ,Pj tj ⇒ P0 t0, consisting of
a finite set of predicate formulas called premises and a predicate formula called
the conclusion. We say that P1 t1, . . . ,Pj tj ⇒ P0 t0 is a production for P0.

Predicate interpretations X are functions from predicate formulas to sets of
models. We write [[P t]]X to denote X(P t). An inductive definition set Φ induces
a characteristic operator ϕΦ on predicate interpretations, which applies (substi-
tution instances of) the productions in Φ, as follows (where θ is a substition of
terms for variables):

ϕΦ(X)(Pt θ) = {m | P1t1, . . . ,Pjt j ⇒ P t ∈ Φ

and m ∈ [[Pit iθ]]X for all i ∈ {1, . . . , j}}

Realizability in Cyclic Proof: Extracting Ordering Information 299

We define a partial ordering ≤ on the set of predicate interpretations I by
X ≤ X ′ ⇔ ∀F. X(F) ⊆ X ′(F). One can note that (I,≤) is a complete lat-
tice and the least element, denoted by X⊥, maps all predicate formulas to the
empty set. Moreover, characteristic operators are monotone with respect to ≤,
thus admitting the following (standard) construction that builds a canonical
interpretation via a process of approximation [1,7]:

Definition 2 (Interpretation of Inductive Definitions). We interpret an
inductive definition set Φ as the least prefixed point of its characteristic oper-
ator, μX.ϕΦ(X). This least prefixed point, denoted by [[·]]Φ, can be approached
iteratively being the supremum of the (ordinal-indexed) chain X⊥ ≤ ϕΦ(X⊥) ≤
ϕΦ(ϕΦ(X⊥)) ≤ . . . ≤ ϕα

Φ(X⊥) ≤ . . .; each ϕα
Φ(X⊥) is an approximation of [[·]]Φ

and is denoted by [[·]]Φα. When the specific inductive rule set is not of immediate
relevance we leave it implicit, writing [[·]] and [[·]]α.

3.2 The Cyclic Proof System

The proof system is essentially Gentzen’s sequent calculus, LK, in which deriva-
tions are permitted to contain cycles. To the standard proof rules of LK with
equality and substitution we add introduction rules for the inductive predicate
symbols, derived from their productions. Each predicate P has a single left intro-
duction rule, (Case P), which performs a case split over the full set of produc-
tions for P, and every ith production for P induces a distinct right introduction
rule (P Ri). Furthermore, we remove the right introduction rules for implication
and negation since they invalidate the soundness of our realizability condition
(specifically, not all instances of these rules satisfy Property 1, in Sect. 4 below).
Although this system is actually quite weak, we believe these particular rules do
not play a crucial role in deriving entailments between inductive predicates in
general. Note we do not need them in our examples.

We view a cyclic derivation (or pre-proof) as a directed graph; each sequent is
a node of the graph, and edges go from conclusion to premise. To track sequences
of decreasing approximations, we use the notion of a trace in a pre-proof P.

Definition 3 (Traces).

(i) A trace value is a predicate formula (e.g. Ex).
(ii) A left-hand (resp. right-hand) trace is a possibly infinite sequence τ of

trace values in which those of each successive pair, (τi, τi+1), occur in the
antecedents (resp. consequents) of successive nodes in P, and either:

(a) τi = τi+1;
(b) τi and τi+1 occur as part of the conclusion and premise of a substitution

rule and τi is the result of applying the rule’s substitution to τi+1; or
(c) τi and τi+1 occur as part of the conclusion and premise of a (Case P)

or (PRi) rule, with τi of the form P t and τi+1 derived from the body of
the production for P associated with the premise of the rule (i.e. τi+1 is
derived from the unfolding of τi).

300 R.N.S. Rowe and J. Brotherston

(ER1)
(5) � E0,¬E0

(ER1)
(8) � E0

(¬L)
(7) ¬E0 �

(WR)
(6) ¬E0 � O0

(Cut)
(4) � E0,O0

(=L)
(2) x = 0 � Ex,Ox

(1) Nx � Ex,Ox
(Subst)

(12) N y � E y,O y
(PR)

(11) N y � O y,E y
(OR)

(10) N y � O y,O sy
(ER2)

(9) N y � E sy,O sy
(=L)

(3) x = sy,N y � Ex,Ox
(Case N)

(1) Nx � Ex,Ox

Fig. 2. A cyclic proof of the entailment Nx � Ex,Ox; each node is numbered uniquely,
and the consequent trace pairs are indicated using under- and overlines.

We call each pair (τi, τi+1) a trace pair. In the case that (c) holds, we say
the trace progresses at point i and call (τi, τi+1) a progressing trace pair.

(iii) For finite traces τ , we write | τ | for the length of the trace and denote by
prog(τ) the number of progression points in τ , which we call the sum of τ .

(iv) For an inference rule r = 〈S0, (S1, . . . , Sn)〉 with trace values τ and τ ′

occurring in the conclusion S0 and jth premise Sj, respectively, we write
δA
(r,j)(τ, τ

′) (resp. δC
(r,j)(τ, τ

′)) if (τ, τ ′) forms a left-hand (resp. right-hand)
trace. We call δ the trace pair relation.

When the meaning is clear from the context, we may sometimes simply write
δr(τ, τ ′). In an abuse of notation we write δr(τ, τ ′) = 1 to indicate that (τ, τ ′)
is a progressing trace pair, and δr(τ, τ ′) = 0 otherwise. When τ occurs in the
conclusion of rule r, but there are no j and τ ′ such that δ(r,j)(τ, τ ′) is defined,
then we say τ is terminal for r.

Example 1. In Fig. 2 we show a cyclic proof of N x � E x,O x, i.e. that every
natural number is either even or odd. Each N t in an antecedent is related to the
N t′ in its premise(s); the trace pair relation for the consequent trace values is
more complex, and we indicate it visually using under- and overlines.

A pre-proof is valid if it satisfies the following condition on traces.

Definition 4 (Global Soundness). A pre-proof is globally sound when every
infinite path has some tail that is followed by a left-hand trace which progresses
infinitely often; when this holds we say that it is a (cyclic) proof.

The global soundness of a pre-proof can be checked using Büchi automata.

Proposition 1 ([7, Proposition 7.4]). It is decidable if a pre-proof is globally
sound.

Realizability in Cyclic Proof: Extracting Ordering Information 301

Example 2. The pre-proof in Fig. 1 has only one infinite path (along the cycle),
and there is a left-hand trace along this path formed by the alternating occur-
rences of the E and O predicates in the antecedent of each sequent. This pro-
gresses at two points around each cycle on traversing the (Case) rules and there-
fore the pre-proof is globally sound. A similar argument shows the pre-proof in
Fig. 2 is also globally sound: the (unique) infinite left-hand trace progresses once
each time around the loop.

We may think of models as realizers of trace values. We define a trace real-
ization function to specify which models realize trace values and how quickly
they realize them.

Definition 5 (Trace Realization Function). The trace realization function
Θ maps models to the least approximations of trace values in which they appear:

Θ(τ,m)
def
= min ({α | m ∈ [[τ]]α})

The value assigned by Θ corresponds to the ordinal position of this approximation
in the chain constructed in Definition 2. Notice that a model may not necessar-
ily satisfy a given predicate formula, so Θ is partial and we write Θ(τ,m)↓ to
indicate that Θ is defined on (τ,m).

The global soundness condition ensures the validity of cyclic proofs because
the trace realization function enables us to relate traces to descending chains
of approximations. If a cyclic proof were to contain invalid sequents then the
trace realization function could be used to derive an infinite descending chain of
ordinals and hence a contradiction.

Theorem 1 ([7, Proposition 5.8]). If Γ � Δ has a cyclic proof then it is valid.

4 Extracting Semantic Inclusions from Cyclic Proofs

We are aiming to deduce inclusions between the semantic approximations of
predicates (viz. trace values), e.g. that whenever there is a model m ∈ [[Ex]]α
then also m ∈ [[N x]]α (cf. Fig. 1). We can express this using the trace realiza-
tion function as Θ(N x,m) ≤ Θ(E x,m), since predicate approximations increase
monotonically. We will deduce such relationships from sequents Γ [τ] � Δ[τ ′] in
cyclic proofs (where Γ [τ] indicates that the trace value τ occurs in Γ), and so
in general we deduce such orderings within a context, Γ . Thus we will write
Γ : τ ′ ≤ τ to mean:

for all models m, if m |= Γ and Θ(τ ′,m)↓ then Θ(τ ′,m) ≤ Θ(τ,m),

where m |= Γ denotes that m satisfies all the formulas in Γ . We formulate an
additional trace condition for cyclic proofs (Definition 8, below) and show that
the existence of a proof satisfying this extra condition is sufficient to guarantee
this ordering. We say that such a proof realizes the ordering, and so refer to the
new trace condition as the realizability condition.

302 R.N.S. Rowe and J. Brotherston

This realizability condition will express that for every right-hand trace of a
certain kind, we can find a left-hand trace which ‘matches’ it in a sense that we
will make precise below. We specify the kinds of right-hand traces of interest
using the following concepts.

Definition 6 (Maximal Right-Hand Traces). A finite right-hand trace τ
(| τ | = n) following a path in a cyclic proof is called maximal when it cannot be
extended any further, i.e. there is no trace value τ ′ and premise of the final node
in the trace for which δr(τn, τ ′) is defined (where r is the rule used to derive the
final node). If the final node in the trace is derived using an axiom, then we say
the trace is partially maximal; otherwise it is called fully maximal.

Fully maximal traces are ones whose final trace value is introduced by an
inference rule, e.g. weakening, as in node (6) of the proof in Fig. 2.

Definition 7 (Groundedness and Polarity). We call a trace value derivable
using a base production (i.e. a production without premises) ground, e.g. N 0
or E 0. A grounded trace is one whose final trace value is ground. When the
antecedent of a sequent contains the negation of a ground predicate instance, we
say that it is negative. A positive sequent is one with no such negated predicate.
A negative (resp. positive) trace is one whose final sequent is negative (resp.
positive).

For example, in Fig. 2 the right-hand trace (1,E x), (2,E x), (4,E 0), (5,E 0)
is grounded, but (1,O x), (2,O x), (4,O 0), (6,O 0) is not. Moreover, the latter
trace is negative. Note that, by definition, all models m must satisfy ground pred-
icate instances τ and Θ(τ,m) = 1. Thus no models may satisfy the antecedent
of a negative sequent. This means that we can exclude negative traces when
considering the realizability of trace value orderings. We can now formulate the
realizability condition itself.

Definition 8 (The Realizability Condition). We write P : τ ≤ Γ [τ ′] when
P is a cyclic proof containing a node Γ [τ ′] � Δ[τ] satisfying the following: for
every positive maximal right-hand trace τ starting at τ , there exists a left-hand
trace τ ′ starting with τ ′ and following some prefix of the same path in the proof
such that:

1. prog(τ) ≤ prog(τ ′) and
2. either a) τ is grounded; or b) τ is partially maximal, | τ ′ | = | τ |, and the

final trace values in τ and τ ′ match.

Consider the proof P1 in Fig. 2.

Example 3 (P1 : Ex ≤ N x). The right-hand trace from Ex following the path
(1) (2) (4) (5) is positive, maximal and grounded. The left-hand trace (1) follows
this path and the sum of both traces is 0. The next longest maximal right-hand
trace traverses the cycle once, following the path (1) (3) (9) . . . (12) (1) (2) (4) (6)
along the right-hand side of the (Cut) rule. However, this trace is negative and

Realizability in Cyclic Proof: Extracting Ordering Information 303

so we need not consider it. The other positive maximal traces are obtained
by following the cycle an even number of times before ending at node (5); the
progression points occur at (E R2) on the odd-numbered traversals and (O R2) on
the even-numbered ones, which is matched by progressions in the corresponding
left-hand trace at the (Case) rule. These traces also suffice to demonstrate that
P1 : Ox ≤ N x holds.

Notice that we can obtain a globally sound cyclic proof of Nx � E x,O x
without using (Cut), by immediately closing node (4) with (E R1). In this case
the now (partially) maximal right-hand trace from Ox in node (1) to O 0 in
node (4) is positive and so would have to be considered. Unfortunately this trace
is not grounded, nor does there exist a matching left-hand trace of equal length
ending with O 0, and so this simpler (and arguably more natural) proof does not
satisfy the realizability condition.

It may seem odd that we cannot use the simpler proof to realize the ordering.
We must discount the right-hand traces ending with O 0 since they have no
models; yet it is not possible in general to determine syntactically when predicate
instances do not have models. Our approximation, using negative traces, works
at the level of entire sequents and thus the traces ending with E 0 (which we do
consider) must be separated from those ending in O 0 (which we must not). This
highlights the syntactic nature of our results.

Now consider the proof P2 of Ex � N x in Fig. 3, which is a modified version
of the proof in Fig. 1 that accommodates an additional production for O.

Example 4 (P2 : Nx ≤ E x). The right-hand trace following (1) (2) (4) is max-
imal, positive and grounded and the left-hand trace (1,E x) follows (a prefix
of) the same path; the sum of both of these traces is 0. Similarly, the positive
right-hand trace following (1) (3) (5) (6) (7) (9) (10) is not grounded, but is
partially maximal and there is a left-hand trace of equal length following this
same path with a matching final trace value. The sum of both traces in this
case is 2: the right-hand trace progresses once at each instance of the (N R2)
rule; the left-hand one at the (Case) rules. Other maximal right-hand traces are
obtained by prefixing the cycle (1) . . . (12) to the two already considered; notice
the left-hand trace following the cycle progresses an equal number of times.

Soundness of Realizability. To show that the realizability condition is suf-
ficient to realize trace value orderings, we extend the concept that models
realize trace values and use sequences of models to realize traces. We say
that a sequence of models m realizes a left-hand trace τ when for every
sequent Γi[τi] � Δi in the corresponding path we have that mi |=Γi and
Θ(τi+1,mi+1) + δ(τi, τi+1) ≤ Θ(τi,mi). Dually, m realizes a right-hand trace
τ when mi |=Δi and Θ(τi+1,mi+1) + δ(τi, τi+1) ≥ Θ(τi,mi) for every sequent
Γi � Δi[τi] in the path. Trace realizers guarantee the following.

Lemma 1. If m realizes a trace τ of length n then Θ(τn,mn) + prog(τ) ≤
Θ(τ1,m1) holds if τ is a left-hand trace, and Θ(τn,mn) + prog(τ) ≥ Θ(τ1,m1)
if τ is a right-hand trace.

304 R.N.S. Rowe and J. Brotherston

(NR1)
(4) � N0

(=L)
(2) x = 0 � Nx

(Ax)
(10) N ss0 � N ss0

(NR2)
(9) N ss0 � N sss0

(=L)
(7) y = sss0,N ss0 � N y

(1) Ex � Nx
(Subst)

(12) E z � N z
(NR2)

(11) E z � N sz
(=L)

(8) y = sz,E z � N y
(Case O)

(6) O y � N y
(NR2)

(5) O y � N sy
(=L)

(3) x = sy,O y � Nx
(Case E)

(1) Ex � Nx

Fig. 3. A cyclic proof of the entailment Ex � Nx, accommodating the extra production
N ss0 ⇒ O sss0 for O.

We say a rule instance is valid when its conclusion and premises are all valid
sequents.1 We note the following property of the trace realization function.

Property 1 (Descending Model Property). For all valid, non-axiomatic rule
instances r = 〈Γ [τ] � Δ[τ ′], (S1, . . . , Sn)〉 and models m |= Γ , there exists some
Sj = Σ � Π and a model m′ |= Σ such that: either τ ′ is terminal for r, or there
exists τ ′′ with δ(r,j)(τ ′, τ ′′) defined; furthermore, for all trace values τ ′′:

1. if δA
(r,j)(τ, τ

′′) = α and Θ(τ,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≤
Θ(τ,m)

2. if δC
(r,j)(τ, τ

′′) = α and Θ(τ ′,m)↓, then Θ(τ ′′,m′)↓ and Θ(τ ′′,m′) + α ≥
Θ(τ ′,m)

This property asserts that the trace pair relation soundly bounds the dif-
ference in how quickly models realize trace pairs. In the case of antecedents
this difference is bounded from above, and for consequents from below. The
descending model property guarantees every model of a consequent trace value
in a globally sound cyclic proof corresponds to a realizer of a positive maximal
right-hand trace.

Lemma 2 (Trace Realization). If P is a globally sound cyclic proof con-
taining a node Γ [τ ′] � Δ[τ] and m is a model such that m |= Γ and Θ(τ,m)↓,
then there exists a positive, maximal right-hand trace τ starting from τ and a
sequence of models m with m1 = m that realizes it; moreover, m realizes all
left-hand traces following the same path starting from τ ′.

As a result, the realizability condition is sufficient to guarantee trace value
orderings (see the technical report for a detailed proof [18, Theorem 22]).

Theorem 2 (Soundness of Realizability). If P : τ ≤ Γ [τ ′] then Γ : τ ≤ τ ′.
1 Note this is a stronger property than local soundness, which only requires the con-
clusion to be valid whenever all of the premises are.

Realizability in Cyclic Proof: Extracting Ordering Information 305

5 Computing Realizable Orderings Using Weighted
Automata

In this section, we demonstrate a close connection between cyclic proofs and
weighted automata. Under this correspondence, the realizability condition can
be seen to be equivalent to an inclusion between particular weighted automata,
allowing us to make use of known decision procedures in the world of weighted
automata for deciding the realizability condition.

Weighted automata generalise standard finite state automata, assigning to
words over alphabet Σ values from a semiring (V,⊕,⊗) of weights (see [8]).

Definition 9 (Weighted Automata). A weighted automaton A is a tuple
(Q, qI , F, γ) consisting of a set Q of states containing an initial state qI ∈ Q, a
set F ⊆ Q of final states, and a weighting function γ : (Q × Σ × Q) → V .

A run of A over a (finite) word σ1 . . . σn ∈ Σ∗ is a sequence of states q0 . . . qn

such that (qj−1, σj , qj) ∈ dom(γ) for each σj . We write ρ : q0
w−→ qn to denote

that ρ is a run over w. The value V(ρ) of the run is the (left-to-right) semiring
product of the weight γ(qj−1, σj , qj) of each transition. If q0 = qI and qn ∈ F
then ρ is called an accepting run. The value of a word is the semiring sum of
the values of all the accepting runs of that word, and is undefined if there are
no such runs. Sum automata are weighted automata over the max-plus semiring
(N,max,+), which is also referred to as the arctic semiring.

The (quantitative) language LA of an automaton A is the (partial) function
over Σ∗ computed by the automaton. The standard notion of inclusion between
regular languages extends naturally to quantitative languages:

Definition 10 (Weighted Inclusion). L1 ≤ L2 if and only if for every word
w such that L1(w) is defined, L2(w) is also defined and L1(w) ≤ L2(w).

The inclusion problem for sum automata is known to be undecidable [2,13],
but has recently been shown to be decidable for finite-valued sum automata, for
which a finite bound can be given on the number of distinct values for runs over
a given word [10].

5.1 Cyclic Proofs as Sum Automata

Given a node n = Γ [τ] � Δ[τ ′] in a cyclic proof P we construct two sum
automata A τ

P and C τ ′
P called left-hand and right-hand trace automata, respec-

tively. Each state (n, τ) of a trace automaton corresponds to a particular trace
value τ in some node n of P, and the transitions are given by the trace pair rela-
tion. That is, there is a transition from (n, τ) to (n′, τ ′) with weight k ∈ {0, 1}
precisely when n and n′ are the conclusion and jth premise, respectively, of a
rule instance r with δ(r,j)(τ, τ ′) = k. The letter accepted on the transition is the
node n′. Thus, a run of one of these automata corresponds to a trace in P, and
the word accepted by the run is the path followed by the trace.

306 R.N.S. Rowe and J. Brotherston

qAstart

(1,Ex) (12,E z) (11,E z) (8,E z) (6,O y)

(5,O y)(3,O y)

(7,N ss0) (9,N ss0)

(10,N ss0)⊥

�

(1),[0]

(2), [0]

(3), [0]

(3),[1]
(5),[0]

(6),[0]

(7),[1](8),[1](11),[0](12),[0](1),[0] (9),[0]

(10),[0]

(N ss0),[0]

(10),[0]

(9),[0](7), [0]
(8), [0](11),[0](12),[0](1),[0]

(6),[0]

(5),[0]

(1), [0]
...

(12), [0]

Fig. 4. The left-hand trace automaton A E x
P for the proof of Ex � Nx in Fig. 3.

qCstart (1,Nx)

(2,Nx)

(3,Nx)

(4,N0)

(5,N sy) (6,N y) (7,N y)

(8,N y)

(9,N sss0) (10,N ss0)

(11,N sz)(12,N z) ⊥

(1),[0]

(2),[0]

(3),[0]

(4),[0]

(5),[0] (6),[1] (7),[0]

(8),[0]

(9),[0]

(11),[0]

(10),[1]

(12),[1]

(N ss0),[0]

(1),[0]

Fig. 5. The right-hand trace automaton CN x
P for the proof of Ex � Nx in Fig. 3.

For lack of space, we elide the formal definition of the automata construc-
tion (see [18, Definition 23]), but in Figs. 4 and 5 we show the trace automata
corresponding to the proof in Fig. 3. Accepting states are indicated by a double
circle, and for each transition we show the node accepted in parentheses and the
weight of the transition in brackets. We draw attention to the following:

– The left-hand trace automaton also includes (zero-weight) transitions to a
state � with a self-transition accepting any node. Thus, the weight it com-
putes for a path is the maximum value of prog(τ) over all traces τ following
a prefix of that path. In contrast, the right-hand automaton considers only
traces following the full path.

– Each automaton also includes a state ⊥, the transitions to which accept
a trace value rather than a node. The effect of this is that any word
w = n1 . . . nkτ accepted by the right-hand automaton corresponds to a par-
tially maximal right-hand trace ending in τ . If the left-hand automaton also
accepts w, then we know there is a matching left-hand trace of equal length
(cf. Definition 8).

– The accepting states of right-hand trace automata (excluding ⊥) correspond
to terminal trace values in non-axiomatic rules instances; when each such
trace value is ground, we say the trace automaton is grounded.

This construction results in automata polynomial in the size of the proof P, and
allows the realizability condition to be encoded by the inclusion of the right-hand
trace automaton within the left-hand one.

Realizability in Cyclic Proof: Extracting Ordering Information 307

Theorem 3. P : τ ≤ Γ [τ ′] holds if and only if C τ
P ≤ A τ ′

P and C τ
P is grounded.

5.2 Decidability of the Realizability Condition

We now demonstrate that under certain conditions our trace automata become
finite-valued, and so we can decide inclusion between them in polynomial
time [10].

Remark 1. The trace pair relation δ satisfies an injectivity property2. Namely,
if both δ(r,j)(τ ′, τ) and δ(r,j)(τ ′′, τ) are defined, then τ ′ = τ ′′. This means that,
along any given path, traces may only branch and never converge. Consequently,
there is at most one trace along a given path between an initial and final trace
value. This immediately gives the following result.

Lemma 3. Every right-hand trace automaton Cτ
P is finite-valued.

Unfortunately, because left-hand trace automata include the state � and
associated transitions, they are not in general finite-valued. When a proof con-
tains a (left-hand) trace cycle (of the form (n1, τ1) . . . (nj , τj) with nodes n1 = nj

and trace values τ1 = τj), the resulting left-hand trace automaton will contain
the following configuration of states:

n1

τ1
. . .

nj−1

τj−1
� n1, . . . , nj−1

n2 nj−1

n1

n1

That is, there are runs (nj−1, τj−1)
w−→ (nj−1, τj−1), (nj−1, τj−1)

w−→ �, and
� w−→ � with w = n1 . . . nj−1. This results in the automaton being infinitely
ambiguous [19, Sect. 3] and thus when the weight of the cycle is non-zero it is
also infinite-valued.

To avoid this we modify our construction to produce a series of approximate
left-hand trace automata A [k]τP , where k > 0 is called the degree of approxima-
tion. These refine the ‘sink’ state � into a finite chain of k sink states for each
node (thus, these approximate automata are a factor of k larger than the original
automaton). Once a run enters a chain of sink states �1..k

n , only a finite number
of further occurrences of the node n are accepted. In contrast, the full automa-
ton accepts paths with any number of further occurrences. This construction
approximates the original one and results in finite-valued automata.

Lemma 4. Every approximate left-hand trace automaton A [k]τP is finite-valued.

Lemma 5 (Soundness of Approximate Automata). For each k > 0, the
inclusion A [k]τP ≤ A τ

P holds.

2 Excepting certain instances of the (=L) rule, e.g. P x,Px � Δ ⇒ Px,P y, x = y � Δ.
However, note that one can check whether any given instance of (=L) satisfies the
injectivity property, and exclude proofs containing such instances from consideration.

308 R.N.S. Rowe and J. Brotherston

The following further restrictions on proofs allow a relative completeness
result. They are expressed in terms of simple trace cycles (containing no repeated
trace values other than the first and last). A binary trace cycle is a pair of trace
cycles following the same path.

Definition 11. Let S = Γ [τ ′] � Δ[τ] be a node in a cyclic proof P. We say
P is dynamic (w.r.t. S) when prog(τ) > 0 for every simple left- and right-
hand trace cycle τ reachable from τ ′ and τ , respectively. We say P is balanced
(w.r.t. S) when prog(τ 1) = prog(τ 2) for every simple left-hand binary cycle
(τ 1, τ 2) reachable from τ ′.

Checking whether a proof is balanced and dynamic requires finding the simple
cycles, which can be done in time O((N + E)(C + 1)), where N , E, and C are
the number of nodes, edges and basic cycles in the graph, respectively [12].
The number of basic cycles in a complete graph is factorial in the number of
nodes, thus the worst case complexity is super-exponential. Notwithstanding,
cyclic proofs are by nature sparse graphs, so we expect the average runtime
complexity to be much lower. All of our example proofs are both balanced and
dynamic.

When a balanced, dynamic proof satisfies the realizability condition, its pos-
itive fully-maximal right-hand traces are always matched by left-hand traces
that can be recognised by an approximate left-hand automaton whose degree of
approximation can be bounded by the following two graph-theoretic quantities
(which are polynomially bounded in the size of P).

(a) The trace width W(P) is the maximum number of trace values occurring in
the antecedent or consequent of any node in P. Any trace visiting a given
node more than W(P) times must contain a cycle.

(b) The binary left-hand cycle threshold C(P) is the number of distinct pairs of
left-hand trace values occurring in P. Any pair of left-hand traces following
the same path of length greater than C(P) must contain a binary cycle.

Lemma 6 (Relative Completeness). If P : τ ≤ Γ [τ ′] and P is both dynamic
and balanced with respect to Γ [τ ′] � Δ[τ], then C τ

P ≤ A [N]τ
′

P and C τ
P is

grounded, where N = 2 + W(P) × (C(P) + 1).

From this, a qualified form of decidability follows. Note that when P is not
balanced and dynamic we still have a semi-decision procedure.

Theorem 4. If P is dynamic and balanced with respect to Γ [τ ′] � Δ[τ], then it
is decidable whether P : τ ≤ Γ [τ ′] holds.

6 Conclusions and Future Work

In this paper, we have demonstrated that cyclic proofs of entailments involving
inductively defined predicates implicitly contain information about the relation-
ship between the semantic approximations of these predicates. This information

Realizability in Cyclic Proof: Extracting Ordering Information 309

is useful because indexing ordinals for these approximations can be used, e.g.,
as (components of) ranking functions in a program termination proof. We have
shown that this information can be made explicit via a novel trace condition,
and furthermore we have proved this condition to be decidable via a construction
using weighted automata. Although different in form, we have drawn tacit par-
allels between our work and the (intuitionistic) concept of realizability because
we extract the semantic information directly from the proofs themselves.

Our results also increase the expressive power of the cyclic proof technique.
For example, if we can deduce from the proof of Γ,P t � Σ,Q u that Qu ≤ P t
then we can safely form a well-founded trace across the active formula in the cut
application

Γ,P t � Σ,Q u Σ,Q u � Δ

Γ,P t � Δ

from P t in the conclusion to Qu in the right-hand premise, and therefore witness
the validity of cyclic pre-proofs that do not satisfy the existing global soundness
condition for cyclic proofs.

An obvious direction for future work is to implement our decision proce-
dure and integrate it with existing cyclic proof-based program verifiers, such as
[17] which currently relies on explicit ordinal variables to track approximations.
A question of practical importance is whether entailment proofs typically
encountered in program verification fall under the conditions for decidability of
the trace condition. It is interesting to consider whether weaker conditions exist
that still guarantee decidability. There are also wider theoretical questions to
consider. Our trace condition is sound, but it is also natural to ask for complete-
ness: if Γ : τ ≤ τ ′ holds does there also exist a proof P for which P : τ ≤ Γ [τ ′]
holds?

Acknowledgements. We extend thanks to Radu Grigore, Carsten Fuhs, and the
PPLV group at UCL for useful discussions and invaluable comments. We are grate-
ful to Alexandra Silva for suggesting to investigate weighted automata. This work
was supported primarily by EPSRC grant EP/K040049/1, and also by EPSRC grant
EP/N028759/1.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, pp. 739–782. North-Holland, Amsterdam (1977)

2. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24372-1 37

3. Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic termination proofs
for programs with shape-shifting heaps. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006). doi:10.1007/
11817963 35

http://dx.doi.org/10.1007/978-3-642-24372-1_37
http://dx.doi.org/10.1007/11817963_35
http://dx.doi.org/10.1007/11817963_35

310 R.N.S. Rowe and J. Brotherston

4. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS, vol. 3702, pp. 78–92. Springer, Heidel-
berg (2005). doi:10.1007/11554554 8

5. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 6

6. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. ACM SIGPLAN Not. 43, 101–112 (2008). doi:10.1145/1328438.
1328453. POPL-35. ACM

7. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Log. Comput. 21(6), 1177–1216 (2011). doi:10.1093/logcom/exq052

8. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01492-5

9. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer
programs with cyclic proof. In: de Moura, L. (ed.) CADE 2017. LNCS, vol. 10395.
Springer, Cham (2017). doi:10.1007/978-3-319-63046-5 30

10. Filiot, E., Gentilini, R., Raskin, J.-F.: Finite-valued weighted automata. In:
FSTTCS-34. LIPICS, vol. 29, pp. 133–145 (2014). doi:10.4230/LIPIcs.FSTTCS.
2014.133

11. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: Proceedings of the POPL-28, pp. 14–26. ACM (2001). doi:10.1145/373243.
375719

12. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975). doi:10.1137/0204007

13. Krob, D.: The equality problem for rational series with multiplicities in the
tropical semiring is undecidable. IJAC 4(3), 405–426 (1994). doi:10.1142/
S0218196794000063

14. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL-28, pp. 81–92. ACM (2001). doi:10.1145/373243.360210

15. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive defini-
tions. 2nd Scandinavian Logic Symposium. Studies in Logic and the Foundations
of Mathematics, vol. 63, pp. 179–216. North-Holland, Amsterdam (1971)

16. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the LICS-17, pp. 55–74. IEEE (2002). doi:10.1109/LICS.2002.1029817

17. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: CPP-6, pp. 53–65. ACM (2017). doi:10.1145/
3018610.3018623

18. Rowe, R.N.S., Brotherston, J.: Size relationships in abstract cyclic entailment sys-
tems. Technical report (2017). https://arxiv.org/abs/1702.03981

19. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theor. Com-
put. Sci. 88(2), 325–349 (1991). doi:10.1016/0304-3975(91)90381-B

http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-3-540-74061-2_6
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1145/1328438.1328453
http://dx.doi.org/10.1093/logcom/exq052
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1007/978-3-642-01492-5
http://dx.doi.org/10.1007/978-3-319-63046-5_30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.133
http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1145/373243.375719
http://dx.doi.org/10.1137/0204007
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1142/S0218196794000063
http://dx.doi.org/10.1145/373243.360210
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/3018610.3018623
http://dx.doi.org/10.1145/3018610.3018623
https://arxiv.org/abs/1702.03981
http://dx.doi.org/10.1016/0304-3975(91)90381-B

Cyclic Proofs with Ordering Constraints

Sorin Stratulat(B)

LORIA, Department of Computer Science, Université de Lorraine,
57000 Metz, France

sorin.stratulat@univ-lorraine.fr

Abstract. CLKIDω is a sequent-based cyclic inference system able to
reason on first-order logic with inductive definitions. The current app-
roach for verifying the soundness of CLKIDω proofs is based on expen-
sive model-checking techniques leading to an explosion in the number of
states.

We propose proof strategies that guarantee the soundness of a class of
CLKIDω proofs if some ordering and derivability constraints are satisfied.
They are inspired from previous works about cyclic well-founded induc-
tion reasoning, known to provide effective sets of ordering constraints.
A derivability constraint can be checked in linear time. Under certain
conditions, one can build proofs that implicitly satisfy the ordering
constraints.

1 Introduction

CLKIDω [9] is the de facto standard sequent-based cyclic inference system
for performing lazy induction reasoning on specifications based on first-order
logic with inductive definitions (FOLID). The CLKIDω proofs are represented
as finite derivation trees with nodes labelled by sequents. A particular feature
is that cycles can be built by establishing connections between terminal and
non-terminal nodes labelled with identical sequents. The soundness of CLKIDω

proofs is entailed from some global trace condition by using Infinite Descent
induction arguments [20]. This condition requires that, for every infinite path
in the cyclic derivation of a false sequent, all successive steps starting from
some point are decreasing and certain steps occurring infinitely often are strictly
decreasing w.r.t. some semantic ordering.

CLKIDω has been implemented in the Cyclist prover [8]. Since the global
trace condition is an ω-regular property, Cyclist can check it during the proof
construction or post hoc as an inclusion between two Büchi automata by calling
an external model checker. It turns out that the inclusion test may be costly.
Indeed, for any proof P , the approach requires the construction of the automaton
complementary to that accepting strings over infinite progressing traces in P ,
based on a complementation method for Büchi automata as described in [11].
The method ensures that, for every automaton with n states, the generated
complementary automaton has at least 2O(n log n) states [12]. In case of failure
of the inclusion test, previous proof steps should be reconsidered, requiring that
c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 311–327, 2017.
DOI: 10.1007/978-3-319-66902-1 19

312 S. Stratulat

existing connections be broken, proof steps cancelled or different inference rules
applied. Hence, it may happen that the test be executed several times during the
proof construction. For the proofs of the toy examples from [8], the percentage
of time taken by the soundness check include values from 0% to 44%.

Example 1.1. The ‘P and Q’ example [20] is specified in [8] using the following
mutually dependent inductive predicates P and Q defined over naturals:

⇒ P (0) (1)
P (x) ∧ Q(x, s(x)) ⇒ P (s(x)) (2)

⇒ Q(x, 0) (3)
P (x) ∧ Q(x, y) ⇒ Q(x, s(y)) (4)

where 0 and s are the usual constructor symbols for naturals. Let N define the
set of naturals by the productions:

⇒ N(0) (5) N(x) ⇒ N(s(x)) (6)

According to Table 1 from [8], Cyclist can prove the sequent N(x), N(y) �
Q(x, y) in about half a second, by building a proof tree with only 13 nodes. The
validation process required 181 calls to the external model checker, among which
171 calls are failing. 31% of the time is spent on the soundness check.

On the other hand, a different approach based on ordering constraints has
been proposed in [15,17] for performing cyclic well-founded induction to check
inductive consequences of conditional specifications. The proofs generated by this
approach are normalized to sets of tree derivations and represented as directed
graphs (for short, digraphs) allowing some terminal nodes to be connected to
root nodes. The minimal cycles resulting by following the arrows in the digraph
are denoted as cyclic lists of paths leading a root to a terminal node in the
same tree derivation. The ordering constraints for checking the proof soundness
involve only comparisons between instances of root formulas. Their number is
given by the number of paths from the minimal cycles and does not depend
on the length of these paths. Cyclic well-founded induction proofs have been
validated in [16] by certifying environments as Coq [19].

This approach is rather general and helps to define reductive inference sys-
tems [5,15], as those based on implicit induction [4]. They can build automat-
ically proof derivations whose soundness is implicitly guaranteed by the proof
method, hence no validation steps are required. Lacking the inconvenients pre-
sented by the on-the-fly/post-hoc soundness tests or backtracking steps, they
allow for an effective proof generation and help to deal with industrial-size appli-
cations [3,14].

This paper, structured in four sections, presents an effective solution to vali-
date the global trace condition for proofs generated with CLKIDω

N , a restricted
version of CLKIDω using ordering constraints, in the same line as for cyclic well-
founded induction proofs. Section 2 is a quick presentation to the logical frame-
work based on FOLID and an introduction to CLKIDω

N . In Sect. 3, we define
proof strategies that guarantee the global trace condition for CLKIDω

N proofs
satisfying a set of ordering and derivability constraints. An ordering constraint

Cyclic Proofs with Ordering Constraints 313

consists of a comparison between two sequents, defined as a multiset extension
of an ordering <a over literals. It can be decided in polynomial time in the size
of the sequents if the <a-relations can also be decided in polynomial time. The
derivability constraints can be checked in linear time provided that the ‘history’
of some atoms from the compared sequents is preserved. We took as running
example the conjecture from Example 6 of [8], whose proof required the maxi-
mal time percentage for the soundness check. We provide a CLKIDω

N proof of it
and show that its soundness check needs only two ordering constraints. A link
with the reductive reasoning techniques is established; as a proof of concept, we
define proof strategies that can build a reductive proof of N(x), N(y) � Q(x, y)
and show that the ordering constraints are implicitly satisfied. The conclusions
and future work are given in the last section.

2 The Logical Framework

The logical setting relies on FOLID with equality, as presented, e.g., in [7,9].

Syntax. Let Σ be a (countable) language built on a finite alphabet of arity-
fixed function symbols F and predicate symbols, and V an enumerable set of
variables. Each predicate symbol is either inductive (i.e., defined by axioms as
below) or ordinary (i.e., not inductive). Terms and formulas are defined as usual.
(t1, . . . , tn) denotes a vector of terms and P (t1, . . . , tn) an inductive atom, where
P is an inductive predicate symbol and t1, . . . , tn are terms. ≡ represents the
syntactic equality. A substitution σ is a finite non-empty set of mappings of
distinct variables to terms

⋃n
i=1{xi �→ ti}, also denoted as {x �→ t}, where

x ≡ (x1, . . . , xn) and t ≡ (t1, . . . , tn). t[σ] denotes the instance of a term t built
with the substitution σ; we also say that t[σ] matches t. Similarly, we can apply
substitutions and build instances for atoms, formulas and (multi)sets of formulas.
FV (S) denotes the set of free variables from the set of formulas S.

Each inductive predicate symbol P is defined by a finite inductive definition
set of productions (axioms) consisting of implication formulas of the form

(
∧h

m=1
Qm(um) ∧

∧l

m=1
Pim(tm)) ⇒ P (t), (7)

where h, l, i1, . . . , il are naturals and Q1, . . . , Qh (resp., Pi1 , . . . , Pil) are ordi-
nary (resp., inductive) predicate symbols. (7) is an unconditional production if
h = 0 and l = 0. If not, (7) is a conditional production and

∧h
m=1 Qm(um) ∧

∧l
m=1 Pim(tm) is its condition. Φ denotes the set of productions defining each

inductive predicate symbol.

Orderings. Let (E ,≤) be a non-empty poset. The strict part of the partial
order ≤, referred to as ordering, is denoted by <. A binary relation R is stable
under substitutions if whenever sR t then (s[σ])R (t[σ]), for every substitution
σ and terms/formulas s and t. Given two finite multisets A and B of elements
from E , we say that << is the multiset extension of < and write B << A if
there are two finite multisets X and Y such that B = (A − X) 	 Y , X
= ∅ and
∀y ∈ Y,∃x ∈ X, y < x holds, where 	 (resp., −) is the union (resp., difference) on

314 S. Stratulat

multisets. In practice, X (resp., Y) is A (resp., B) after having deleted pairwisely
the common elements.

The CLKIDω
N Inference System. CLKIDω

N consists of a finite set of inference
rules that process sequents [10] of the form Γ � Δ, where Γ and Δ are finite
multisets of first-order formulas and referred to as antecedents and succedents,
respectively. An inference rule transforms a sequent, called conclusion, into a
(potentially empty) multiset of sequents, called premises; they are separated by
a horizontal line followed by the name of the rule. Most of the CLKIDω

N inference
rules transform one (principal) formula from the conclusion. In this case, it is
explicitly represented in the sequent. A more detailed presentation of the sequent
calculus can be found elsewhere, e.g., [13].

Γ ∩ Δ �= ∅ (Ax)
Γ � Δ

Γ ′ � Δ′
Γ ′ ⊆ Γ, Δ′ ⊆ Δ (Wk)

Γ � Δ

Γ � F, Δ Γ � G, Δ
(∧R)

Γ � F ∧ G, Δ

Γ � F, Δ
(¬L)

Γ, ¬F � Δ

Γ, F � Δ
(¬R)

Γ � ¬F, Δ

Γ, F � Δ Γ, G � Δ
(∨L)

Γ, F ∨ G � Δ

Γ � F, G, Δ
(∨R)

Γ � F ∨ G, Δ

Γ, F, G � Δ
(∧L)

Γ, F ∧ G � Δ

Γ � F, F, Δ
(contrR)

Γ � F, Δ

Γ � Δ
(Subst)

Γ [θ] � Δ[θ]

Γ � F, Δ Γ, G � Δ
(⇒ L)

Γ, F ⇒ G � Δ

Γ, F, F � Δ
(contrL)

Γ, F � Δ

Γ, F [{x �→ t}] � Δ
(∀L)

Γ, ∀xF � Δ

Γ � F, Δ
x ∩ FV (Γ ∪ Δ) = ∅ (∀R)

Γ � ∀xF, Δ

Γ, F � Δ
x ∩ FV (Γ ∪ Δ) = ∅ (∃L)

Γ, ∃xF � Δ

Γ � F, Δ Γ, F � Δ
(Cut)

Γ � Δ

Γ � F [{x �→ t}], Δ
(∃R)

Γ � ∃xF, Δ

Γ, F � G, Δ
(⇒ R)

Γ � F ⇒ G, Δ

Fig. 1. Sequent-based rules for classical first-order logic.

CLKIDω
N consists of the rules displayed in Fig. 1, the rules that process equal-

ities from Fig. 2, as well as the ‘unfold’ and ‘case’ rules. (= L) is an instance of
the corresponding CLKIDω rule for which x can also be a non-variable term.

(= R)
Γ � t = t, Δ

Γ [{x �→ u}] � Δ[{x �→ u}]
x u (= L)

Γ, x = u � Δ

Fig. 2. Sequent-based rules for equality reasoning.

The unfold rule unrolls the definition of the inductive symbol to transform
some succedent atom of a sequent. We denote the unfolding of P (t′) with the
production (7), when P (t′) ≡ P (t)[σ], by

Cyclic Proofs with Ordering Constraints 315

Γ � Q1(u1)[σ], Δ . . . Γ � Qh(uh)[σ], Δ Γ � Pi1 (t1)[σ], Δ . . . Γ � Pil
(tl)[σ], Δ

(R.(7))
Γ � P (t′), Δ

The case rule is a left-introduction operation for inductive predicate symbols:

case distinctions (Case P)
Γ, P (s1, . . . , sn) � Δ

Every production of the form (7) for which t ≡ (t1, . . . , tn) produces the case
distinction

Γ, s1 = t1, . . . , sn = tn, Q1(u1), . . . , Qh(uh), Pi1(t1), . . . , Pil(tl) � Δ (8)

Each variable y from (7) is fresh w.r.t. the free variables from the conclusion of
the rule (y can be renamed to a fresh variable, otherwise). Pi1(t1), . . . , Pil(tl) are
case descendants of P (s1, . . . , sn).

CLKIDω
N Pre-proof Trees. A derivation tree for some sequent S is built by

successively applying inference rules starting from S. The terminal nodes in
the tree can be either leaves or buds. A leaf is labelled by a sequent that is
the conclusion of a 0-premise inference rule. A bud is every node labelled by a
sequent that is the conclusion of no rule. For each bud, there is a companion, i.e.,
an internal node having the same sequent labelling. If a companion is annotated
by some sign (e.g., † or ∗), then the buds related to it are uniquely annotated
by that sign followed by a number.

Definition 2.1 (pre-proof tree, induction function for tree). The pair
(D,R) denotes a pre-proof tree of some sequent S, where D is a finite derivation
tree whose root is labelled by S and R is a defined induction function assigning
a companion to every bud in D.

Example 2.2. A CLKIDω
N pre-proof tree of N(x), N(y) � R(x, y) is

(R.(9))
Ny � R(0, y)

(R.(9))
� R(0, 0)

Nx′ � R(x′, 0) (†1)
(Subst)

Nx′′ � R(x′′, 0)
(R.(10))

Nx′′ � R(sx′′, 0)
(Case N)

Nx′ � R(x′, 0) (†)
(R.(10))

Nx′ � R(sx′, 0)

Nx, Ny � R(x, y) (∗1)
(Subst)

Nssx′, Ny′ � R(ssx′, y′)
(Cut)

Nx′, Ny′ � R(ssx′, y′)
(R.(11))

Nx′, Ny′ � R(sx′, sy′)
(Case N)

Nx′, Ny � R(sx′, y)
(Case N)

Nx, Ny � R(x, y) (∗)

where the inductive predicate R is defined, as in [8], by the productions

⇒ R(0, y) (9) R(x, 0) ⇒ R(sx, 0) (10) R(ssx, y) ⇒ R(sx, sy) (11)

For lack of horizontal space, we have unambiguously omitted the parentheses
and commas when denoting some natural and atom N(t), i.e., s(t) (resp., N(t))

316 S. Stratulat

becomes st (resp., Nt), where t is the notation of t without parentheses. This
alternative notation will be used in the following, when necessary.

The double line means that (= L) was applied on each premise of (Case).
The (Cut) premise Nx′ � Nssx′ is suppressed on the right-hand branch as in
Example 6 of [8]. The principal formula for each (Case) application is underlined.
Finally, the induction function R is defined such that the companion of the bud
denoted by (∗1) (resp., (†1)) is (∗) (resp., (†)).
Semantics. The semantics for FOLID with equality is defined as in [9]. Prefixed
points of a monotone operator issued from Φ [1] help to interpret inductive
predicates. A standard model for (Σ,Φ) is a first-order structure defined by the
least prefixed point, approached by an iteratively built approximant sequence.

Definition 2.3. (validity of a sequent). Let M be a standard model for
(Σ,Φ), Γ � Δ a sequent and ρ a valuation which interprets in M the free vari-
ables from the sequent. We write Γ |=M

ρ Δ if whenever G holds in M using ρ,
for all G ∈ Γ , there is some D ∈ Δ that holds in M using ρ. We say that Γ � Δ
is M -true if Γ |=M

ρ Δ, for every ρ. When M is implicit from the context, true
is used instead of M -true.

A rule is sound, or preserves the validity, if its conclusion is true whenever its
premises are true. Hence, the conclusion of every 0-premise sound rule is true.

Theorem 2.4. The CLKIDω
N inference rules are sound.

Definition 2.5 (sound pre-proof tree). A pre-proof tree of a sequent S is
sound if S is true.

3 Checking the Soundness of Pre-proofs

Not every pre-proof tree is sound. A very simple example of unsound pre-proof
tree can be built for every false sequent S by firstly adding a copy of some
antecedent formula using (contrL) then deleting it using (Wk). Since the result-
ing sequent is identical to S, its node is a bud. This finishes the pre-proof tree.

We intend to apply an approach similar to that used for building well-founded
(Noetherian) induction-based proofs [15] to check the soundness of pre-proof
trees. In this setting, a cycle is uniformly represented as a set of paths from root
companions to bud nodes. When a node of the pre-proof tree plays the role of
bud and companion, it is duplicated by some transformation operation such that
the roles are played separately by each copy. The normalization process consists
in the exhaustive application of the transformation operations that convert a
pre-proof tree to a set of pre-proof trees, for short pre-proof tree-sets.

In this section, we briefly explain the transformation operations and show
how to build digraphs from pre-proof tree-sets. Then, we prove that a pre-proof
tree is sound if the minimal cycles from the digraph of the pre-proof tree-set
resulting from its normalization satisfy certain ordering and derivability con-
straints. Finally, we present some strategies for directly building sound pre-proof
tree-sets.

Cyclic Proofs with Ordering Constraints 317

3.1 Defining the Checking Criteria

The first transformation operation applies on an internal node labeled by some
premise of (Subst):

.

.

.

Γ � Δ
(Subst)

Γ [σ] � Δ[σ]

.

.

.

produces
Γ � Δ (∗1)

(Subst)
Γ [σ] � Δ[σ]

.

.

.

.

.

.

Γ � Δ (∗)
(new tree)

The node is duplicated; one of its copies is detached together with the sub-
tree derivation rooted by the node to become a new tree derivation. The two
occurrences of the duplicated bud establish a new relation bud-companion by
extending the definition of the induction function for trees to sets of trees.

The second transformation rule is performed on a non-root companion of
n − 1 (n > 1) buds and annotated by (∗), of the form

.

.

.

Γ � Δ (∗)
.
.
.

to give Γ � Δ (∗n)

.

.

.

.

.

.

Γ � Δ (∗)
(new tree)

The companion (∗) is duplicated such that the subtree derivation rooted by
it becomes a new pre-proof tree and the copy of (∗) becomes a bud annotated
by (∗n). A new relation bud-companion is created between (∗n) and (∗).

Example 3.1. The application of the second transformation on the companion
annotated by (†) in the pre-proof tree given in Example 2.2 generates a normal-
ized pre-proof tree-set, as shown in Fig. 3.

Definition 3.2 (pre-proof tree-set, induction function for tree-set). The
pair (MD,MR) denotes a pre-proof tree-set, where MD is a multiset of pre-
proof trees and MR is a defined induction function assigning a companion to
every bud from MD.

Lemma 3.3. The normalization process terminates.

Lemma 3.4. Let (MD,MR) be the pre-proof tree-set obtained by the normal-
ization of some pre-proof tree of a sequent S. Then, MD

(i) has a pre-proof tree rooted by a node labelled by S, and
(ii) is built from pre-proof trees for which the premises of all (Subst) rules are

bud sequents.

318 S. Stratulat

(R.(9))
Ny � R(0, y)

Nx′ � R(x′, 0) (†1)
(R.(10))

Nx′ � R(sx′, 0)

Nx, Ny � R(x, y) (∗)
(Subst)

Nssx′, Ny′ � R(ssx′, y′)
(Cut)

Nx′, Ny′ � R(ssx′, y′)
(R.(11))

Nx′, Ny′ � R(sx′, sy′)
(Case N)

Nx′, Ny � R(sx′, y)
(Case N)

Nx, Ny � R(x, y) (∗)

(R.(9))� R(0, 0)

Nx′ � R(x′, 0) (†)
(Subst)

Nx′′ � R(x′′, 0)
(R.(10))

Nx′′ � R(sx′′, 0)
(Case N)

Nx′ � R(x′, 0) (†)

Fig. 3. The normalized pre-proof tree-set.

Any pre-proof tree-set can also be represented as a digraph of sequents using
nodes from its tree-set and arrows annotated with substitutions. Let S(N) denote
the sequent labelling N , for every node N . A solid arrow leads a node N1 to a
node N2 if there is a rule applied on S(N1) and S(N2) is a premise of the rule.
It is annotated with the identity substitution for S(N)(≡ Γ � Δ), denoted by
σ

S(N)
id and defined as

⋃
x∈FV (Γ∪Δ){x �→ x}, if N is not a (= L)-node. When not

ambiguous, the identity substitutions are omitted. If N is a (= L)-node whose
principal formula is x = u, the arrow leaving N is annotated by the equality
substitution {x �→ u}. On the other hand, a dashed arrow leads a bud B to its
companion and is annotated with a substitution written in boldface. If S(B)
is the premise of a (Subst) rule using the substitution θ, this substitution is θ.
Otherwise, it is σ

S(B)
id .

For convenience, the sequent Γ � Δ labelling a node N i in the digraph is
indexed by i as Γ �i Δ.

Example 3.5. Figure 4 shows the digraph of the pre-proof tree-set from Fig. 3.

A path is a (potentially infinite) list of nodes built by following the arrows in
the digraph. It is (Subst)-free if none of the sequents labelling its nodes is the
premise of some (Subst)-rule.

Definition 3.6 (cumulative substitution). A (Subst)-free path [N1, . . . , Nn]
(n > 0) is annotated by the cumulative substitution σall

id σ1 · · · σn−1, where σi is
the substitution annotating the solid arrow leading Ni to Ni+1, for each i ∈
[1 . . . n − 1], and σall

id is the overall identity substitution ∪N∈[N1,...,Nn]{x �→ x |
x ∈ FV (Γ ∪ Δ) and S(N) ≡ Γ � Δ}.
Example 3.7. The cumulative substitution for the (Subst)-free path
[N1, N3, N5, N6, N7] from Fig. 4 is {x �→ sx′; y �→ sy′}, which is the
composition of the overall identity substitution {x �→ x; y �→ y} with the
substitutions {x �→ sx′}, {y �→ sy′}, and other identity substitutions.

Cyclic Proofs with Ordering Constraints 319

The digraph P of a pre-proof tree-set (MD,MR) can be partitioned in a
set of strongly connected components (SCCs). Some of them may have only one
node. The SCCs with more than one node have at least one cycle, i.e., a path
built along its nodes where the nodes are repeated. A minimal cycle does not
contain other cycles.

Definition 3.8 (n-cycle). Every minimal cycle in P can be represented as a
n-cycle, defined as a finite circular list [N1

1 , . . . , Np1
1], . . . , [N1

n, . . . , Npn
n] of n

(> 0) paths leading root nodes to buds such that N1
next(i) = MR(Npi

i), for any
i ∈ [1 . . . n], where next(i) = 1 + (i mod n).

The standard method for checking the soundness of pre-proof trees, e.g. [9],
is based on a ‘proof by contradiction’ approach. Let us assume that the root
sequent of some pre-proof tree is false. It is sufficient to show that some global
trace condition is satisfied for every infinite path in the pre-proof tree, built
by visiting nodes labelled by false sequents if the root sequent is false. This
condition stipulates that all successive steps starting from some point in the path
are decreasing and certain steps occurring infinitely often are strictly decreasing
w.r.t. some semantic ordering underlying ordinals. The trace is a list of inductive
antecedent atoms (IAAs) of the sequents labelling the nodes from the path.
Let P (t) be one of these atoms. Since P can be generated by a sequence of
approximants (P γ)γ≥0, the measure value for P (t) used by this ordering is the
smallest ordinal γ such that P γ(t) holds for some suitable interpretation. The
well-foundedness property of the ordering contradicts the fact that the path is
infinite.

The question of whether a pre-proof tree is sound is decidable (see e.g. Propo-
sition 7.4 from [9]), by using a decision procedure based on the automata-based
complementation method. On the other hand, the computational and combinato-
rial complexity of the validation of the global trace condition can be reduced for
pre-proof trees of certain structure, e.g., for those having trace manifolds [6,7].

The trace manifold condition can be checked only on pre-proof trees in cycle
normal form, for which the companion of every bud B is also an ancestor of
B. Any pre-proof tree can be transformed in a cycle normal form. Mainly, it
is unfolded into an infinite pre-proof tree, then the infinite branches are folded
to get an equivalent normalized pre-proof tree. An improved complexity bound
can be achieved by an iterative ‘untangling’ process of the pre-proof tree. By
Theorem 6.3.6 from [7], if a derivation tree has n nodes, the equivalent normalized
derivation tree has no more than n2n/2

nodes.
In the same quest to reduce the complexity of the validation process, we

adapt the approach for building well-founded induction proofs [15] to generate
pre-proof trees that implicitly guarantee the validity of the global trace condition.
For this, we denote by ≤π a partial ordering defined over the set of instances of
every sequent labelling root nodes from some SCC π with cycles. Its strict part
is denoted by <π and its equivalence part by ∼π. Contrary to [15], <π is not
required to be well-founded. We assume that <π is built as the multiset extension
of a ‘stable under substitutions’ ordering <a defined over IAAs and used to

320 S. Stratulat

compare instances of the root sequents from π. Hence, <π is also stable under
substitutions [2]. We also assume that ∼π is stable under substitutions. Like <π,
<a does not need to be well-founded. For each node N in π and every instance
S of S(N), we denote by AS the measure value (weight) of S, represented as
a multiset of IAAs of S and used in the comparisons of S with other sequent
instances w.r.t. ≤π.

Definition 5.4 of [9] for a trace in a pre-proof tree can be adapted for a digraph
P and simplified to take into account the restricted version of (= L).

Definition 3.9 (trace). A trace following some (potentially infinite) path p in
P, denoted by [N1, N2, . . .], is a sequence (τi)(i≥0) such that:

– τi = P (t), where P (t) is an IAA of S(N i);
– if Γi � Δi is the conclusion of (Subst) then τi = τi+1[ρ], where ρ is the

substitution associated with the rule instance;
– if Γi, x = u � Δi is the conclusion of (= L), then τi+1 = τi[{x �→ u}];
– if S(N i) is the conclusion of a (Case)-rule, then either (i) τi+1 = τi, or (ii) τi

is its principal formula and τi+1 is a case descendant of τi. In this case, i is
called a progression point;

– if S(N i) is the conclusion of any other rule, then τi+1 = τi.

We say that an IAA τj derives from an IAA τi using the trace (τk)(k≥0) if
i < j. Given two arbitrary substitutions γ and δ, we also say that τj [γ] derives
from τi[δ] using (τk)(k≥0). Let π be a SCC from P and <a the ‘stable under
substitutions’ ordering defined over the set of instances of the IAAs from the
root sequents inside π. We can define <π as the multiset extension of <a that
satisfies some derivability constraints.

Definition 3.10 (<π-derivability). Let N i and N j be two nodes occurring in
some path p from an SCC π, θ and δ two substitutions, and A′

S(Ni)[θ] (resp.,
A′

S(Nj)[δ]) the multiset resulting from AS(Ni)[θ] (resp., AS(Nj)[δ]) after the pair-
wise deletion of all common IAAs from AS(Ni)[θ] and AS(Nj)[δ]. Then, S(N j)[δ]
is <π-derivable from S(N i)[θ] along p if (i) for each l ∈ A′

S(Nj)[δ], there exists
l′ ∈ A′

S(Ni)[θ] such that l′ >a l and l derives from l′ using some trace following p,
and (ii) for each l ∈ AS(Nj)[δ]\A′

S(Nj)[δ], there is some l′ ∈ AS(Ni)[θ]\A′
S(Ni)[θ]

such that l ≡ l′ and l derives from l′ using some trace following p.

Lemma 3.11. In Definition 3.10, for each IAA l from S(N j)[δ] there is an IAA
l′ from S(N i)[θ] such that l derives from l′ using some trace following p.

We give below some useful properties of the <π-derivability relation.

Lemma 3.12. S <π S′ if S is <π-derivable from S′ along some path p in π.

Lemma 3.13. The ‘<π-derivability’ relation is stable under substitutions. It is
also transitive, i.e., if S is <π-derivable from S′ along p and S′ is <π-derivable
from S′′ along p then S is <π-derivable from S′′ along p, for some path p in π.

Cyclic Proofs with Ordering Constraints 321

We are ready to introduce the ordering constraints that help to discharge
induction hypotheses by n-cycles.

Definition 3.14 (induction hypothesis (IH), IH discharged by an
n-cycle, IH-node). Let π be an SCC with cycles and C an n-cycle
[N1

1 , . . . , Np1
1], . . . , [N1

n, . . . , Npn
n] from π. The instances S(Npj

j)[δj] (j ∈ [1 . . . n])
are called induction hypotheses (IHs), where δj annotates the dashed arrow start-
ing from N

pj

j in C. For all i ∈ [1 . . . n], let θc
i be the cumulative substitution anno-

tating [N1
i , . . . , Nf

i], where the IH-node Nf
i is either (i) Npi

i if [N1
i , . . . , Npi

i] is
(Subst)-free, or (ii) Npi−1

i , otherwise. The IHs S(N1
j)[δj] (j ∈ [1 . . . n]) are dis-

charged by C if, ∀i ∈ [1 . . . n], S(Npi

i)[δi] is <π-derivable from S(N1
i)[θc

i] along
[N1

i , . . . , Npi

i].

Definition 3.14 is well-formed; the cumulative substitution can be computed
for the case (ii) because, for each i ∈ [1 . . . n], [N1

i , . . . , Npi−1
i] is a (Subst)-free

path, by following the claim (ii) of Lemma3.4. By construction, S(Nf
i) is the

IH S(N1
next(i))[δnext(i)], for all i ∈ [1 . . . n]. For every IAA l of a sequent bud

corresponding to some τi from a trace (τk)(k≥0) following a path from some
minimal cycle, we define the history of l as the subtrace (τk)(k<i). If each such
IAA stores its history during the proof construction, every derivability constraint
can be decided in linear time w.r.t. the size of the history, by visiting one by one
each element in the history.

Fig. 4. The digraph of the pre-proof tree-set from Fig. 3.

Example 3.15. The digraph from Fig. 4 has two SCCs with cycles. One of them,
denoted by π, consists of the 1-cycle [N10,N12, N13, N14]. The other, denoted by
π′, is made of the 1-cycle [N1, N3, N5, N6, N7, N8]. No cycle has the bud N9.

322 S. Stratulat

We define the measure value for any sequent instance of the form
S(N10)[{x′ �→ t; . . .}] (resp., S(N1)[{x �→ t1; y �→ t2; . . .}]) as {N(t)} (resp.,
{N(t2)}). <π and <π′ are multiset extensions of an ordering <a over the IAAs
of the form N(t) and whose measure value is {t}, for any term t. <a is the mul-
tiset extension of the ‘stable under substitutions’ rpo ordering [2], denoted by
<rpo and based on the symbol precedence establishing that 0 is smaller than s.

Every IH from these 1-cycles is discharged. The IH S(N10)[{x′ �→
x′′}] is <π-derivable from S(N10)[{x′ �→ sx′′}] along the (Subst)-free path
[N10, N12, N13, N14], by using the trace [Nx′, Nx′′, Nx′′, Nx′] for the IAA
Nx′ of S(N10). Similarly, the IH S(N1)[{x �→ ssx′; y �→ y′}] is <π′-
derivable from S(N1)[{x �→ sx′; y �→ sy′}] along the (Subst)-free path
[N1, N3, N5, N6, N7, N8], by using the trace [Ny,Ny,Ny′, Ny′, Ny′, Ny] for the
IAA Ny of S(N1). The two comparisons hold as z <rpo sz, for every variable z.

Definition 3.16 (proof). A proof is every pre-proof tree-set whose digraph has
only n-cycles that discharge their IHs.

Theorem 3.17 (soundness). The root sequents from every proof are true.

Proof (Sketch). It follows the general structure of the soundness proof for some
cyclic well-founded inference systems, e.g., see Theorem 5.11 from [17]. Mainly,
we define a partial ordering <R over the root nodes from the digraph P of a proof
such that, for every two distinct root nodes N1 and N2, we have N1 <R N2

if (i) N1 and N2 are not in the same SCC, and (ii) N1 can be joined from N2

in P.
By contradiction, we assume that there exists a root node N such that S(N)

is false. A classical induction reasoning using <R allows to explore all possibilities
for N to be considered as one of the root nodes from P. The most difficult case is
when N is part of some SCC with cycles. A contradiction yields by showing that
there exists a trace with an infinite number of progression points, using similar
arguments as in the proof of Lemma 5.7 [9] and witnessed by an infinite strictly
decreasing sequence of ordinals, thanks to the <-derivability constraints. ��

Theorem 3.17 is the key argument for proving that our approach allows indeed
to verify pre-proof trees.

Lemma 3.18. A pre-proof tree is sound if the pre-proof tree-set resulting from
its normalization operation is a proof.

Validation Costs. We analyse the worst-case time complexity for validating the
soundness of a pre-proof tree of n nodes with p (< n) buds occurring in minimal
cycles. The number of transformation operations during the normalization step
is given by the sum of non-root companions and non-terminal (Subst)-nodes,
which is smaller than 2n. The cost of a transformation operation, including the
node duplication and the creation of a bud-companion relation, is assumed to be
some constant c. Hence the cost of the transformation operations is smaller than
2nc. If c′ is the constant representing the cost for annotating a substitution, the

Cyclic Proofs with Ordering Constraints 323

cost for building the digraph of the normalized pre-proof tree-set is smaller than
nc′. The partition of a digraph in SCCs can be done in linear time [18].

If B denotes a bud occurring in a minimal cycle, the IH that instantiates
S(B) is unique because B has only one companion and at most one companion
can be the root of the tree including B. The number of <-derivability constraints
is that of their buds, i.e., p. In the worst case, p is n − 1. The validation cost of
a <-derivability constraint is the sum of the costs of derivability and ordering
constraints. The time complexity for checking whether an IAA l derives from
another IAA l′ is linear w.r.t. the size of the history of l, which is a value smaller
than n. The time complexity for checking a multiset extension relation is O(rq),
where r and q are the number of IAAs from the measure value of the compared
sequents. In the worst case, when all bud IAAs have their history of length n and
p is n−1, the time complexity for checking the derivability constraints is O(n2k2),
where k is the maximal cardinality of a sequent’s measure value. Similarly, the
worst-case validation cost of the ordering constraints is polynomial in k, the
maximal size of a literal and n, if the time complexity for comparing two IAAs
is at most polynomial, for example by using a Knuth-Bendix ordering [2].

3.2 Strategies for Directly Building Proofs

Theorem 3.17 suggests that sequents can also be proved by directly building
sound pre-proof tree-sets. For this purpose, we adapt the DRaCuLa strat-
egy [15]. Mainly, the trees from a pre-proof tree-set are developed by applying
the CLKIDω

N rules, as usual, with the following exceptions:

– when applying a (Subst)-rule, the premise becomes a bud sequent, as shown
for the first transformation of the normalization procedure. The next step is
to develop a new tree rooted by the companion of the bud;

– when a bud is about to be created, several scenarios may happen. As a pre-
liminary step, if its companion is a non-root node the second transformation
of the normalization procedure is applied. If the bud candidate is part of an
n-cycle that discharges its IHs, the bud is created (scenario 1). If it is not yet
the case, either (i) the strategy tries to build an n-cycle, by developing parts
from other trees (scenario 2), or (ii) the n-cycle does not discharge its IHs
(scenario 3); in this case, a backtracking step is required either to redefine
the ordering at the SCC level, or to redo previous steps, or to continue to
develop the proof by applying a CLKIDω

N rule on the sequent labelling the
bud candidate.
For (scenario 1), not only the current bud candidate is created, but all the
bud candidates from the n-cycle are built, hence simultaneous induction is
performed.

Example 3.19. The above strategy can build the pre-proof tree from Exam-
ple 2.2. The progression in its construction can be retraced by following the
indexes of the sequents from the digraph in Fig. 4.

This proof strategy uses heuristics based on ordering constraints, different
from the iterative depth-first search heuristics used by Cyclist.

324 S. Stratulat

Example 3.20. One could have built a new bud of (*) from the pre-proof tree
of Example 2.2, by developing (†) such that N0 is added as IAA, then (Subst)
applied conveniently. The new 1-cycle from its digraph is part of the SCC π′ of
the digraph from Example 3.15. However, it cannot discharge its IH because the
induction ordering is now <π′ instead of <π.

Sound pre-proof trees can also be directly generated to satisfy implicitly the
ordering constraints, similar to implicit induction proofs, by using a reductive
proof strategy based on a unique induction ordering <. Such strategy guaran-
tees that, for every two successive nodes N i and N i+1 from each path p, of
the form [N1, . . . , Nn] and occurring in the definition of some minimal cycle of
its digraph, and i ∈ [1 . . . f − 1], we have either AS(Ni+1)[θc

i+1]
≡ AS(Ni)[θc

i]
or

S(N i+1)[θc
i+1] is <-derivable from S(N i)[θc

i] along p, where f is the index of
the IH-node in [N1, . . . , Nn] and θc

j is the cumulative substitution for the path
[N j , . . . , Nf] (j ∈ [1 . . . f]). The derivability constraints are satisfied if the syn-
tactic equality relation is not satisfied at least once along p. Indeed, knowing
that the <-derivability relation is transitive (Lemma3.13), we have that S(Nf)
is <-derivable from S(N1)[θc

1] along p, as required. If the rule applied at step i
is different from (= L), we have that θc

i ≡ θc
i+1. In this case, it is sufficient to

ensure instead that AS(Ni+1) ≡ AS(Ni) or S(N i+1) is <-derivable from S(N i)
along p, due to the ‘stability under substitutions’ property of <-derivability
(again Lemma 3.13).

Example 3.21. As a proof of concept, we define the derived rule (DCase):

S1 . . . Sn
(DCase P)

Γ, P (x) � Δ as

S1
(= L)

case distinction . . .

Sn
(= L)

case distinction
(Case P)

Γ, P (x), P (x) � Δ
(contrL)

Γ, P (x) � Δ

where x is a vector of variables. We also define the (Bud) rule:

(bud sign)
(Bud)

Γ � Δ as

Γ ′ � Δ′ (bud sign)
(Subst)

Γ ′[σ] � Δ′[σ]
(Wk)

Γ � Δ

if Γ ′ � Δ′ subsumes Γ � Δ with substitution σ, i.e., Γ ′[σ] ⊆ Γ and Δ′[σ] ⊆ Δ.
Different variants of the subsumption operation are widely employed by the
current theorem provers, Cyclist being one of them.

By using the alternative notation without parentheses, a pre-proof of
Nx,Ny � Q(x, y) is built below by firstly trying to apply the unfold rules fol-
lowed by (Bud), then (Del) and, finally, (DCase). (Del) is a restricted version
of the (Wk) rule that deletes the IAAs of the form N(t) if none of the inductive
succedent atoms from the conclusion has t as argument. It can be noticed that
the history of every IAA occurring in each premise of any rule r from the above
rules but (Bud) has one of the IAAs from the conclusion of r.

Cyclic Proofs with Ordering Constraints 325

(R.(3))
Nx, N0 � Qx0

(R.(1))
N0 � P0

(∗1)
(Bud)

Nsz, Nz � Pz

(†2)
(Bud)

Nz, Nsz � Qzsz
(R.(2))

Nsz, Nz � Psz
(DCase N)

Nx � Px (∗)
(Del)

Nx, Nz, Nsz � Px

(†1)
(Bud)

Nx, Nz, Nsz � Qxz
(R.(4))

Nx, Nz, Nsz � Qxsz
(DCase N)

Nx, Ny � Qxy (†)

The proof strategy is reductive if the measure value for each sequent of
the form Γ,N(t) � P (t) (resp., Γ,N(t1), N(t2) � Q(t1, t2) is the multiset of
IAAs {N(t), N(t)} (resp., {N(t1), N(t1), N(t2)}) and < is defined as the multi-
set extension of the ordering <a over IAAs from Example 3.15. It can be checked
that the <-derivability constraints are satisfied, by taking into account that the
unique SCC with cycles of the digraph associated to its normalized pre-proof
tree-set is built from the union of two 1-cycles, [(∗), . . . , (∗1)] and [(†), . . . , (†1)],
and one 2-cycle [(∗), . . . , (†2)], [(†), . . . , copyof(*)].

By Theorem 3.17, our approach allows to prove several conjectures simulta-
neously. This is a feature specific to formula-based Noetherian induction rea-
soning [15] as that employed by the implicit induction inference systems. It is
particularly useful when the proofs of the conjectures are mutually dependent.

Example 3.22. The normalization step for the pre-proof tree from Example 3.21
can be avoided if the pre-proof trees of Nx � Px and Nx,Ny � Qxy are devel-
oped simultaneously.

4 Conclusions and Future Work

We have presented a new method to validate a class of CLKIDω pre-proof trees
by converting them to pre-proof tree-sets, then showing that the global trace
condition is implicitly satisfied if some ordering and derivability constraints hold.
Every infinite path p from a pre-proof tree normalized to a proof (tree-set) can
be built by concatenating path segments from the definition of the minimal
cycles of its proof. These constraints ensure that there is an infinitely progressing
trace following some tail of p. Our approach allows more flexibility; a different
induction ordering can be defined for each SCC with cycles from the digraph of
the proof. This is not the case from the unique induction ordering defined over
the buds of a pre-proof tree with trace manifolds [6,7]. Also, our approach does
not require pre-proof trees to be in cycle normal form that are, in the worst case,
exponentially bigger.

The soundness check can be done in polynomial time provided that the time
complexity for comparing two IAAs is at most polynomial. We defined proof
strategies ensuring that the number of ordering constraints equals that of the
induction hypotheses that are really required in the proof. In practice, their
number is generally small even for proofs concerning real-size applications. For

326 S. Stratulat

example, every cyclic induction proof from [15] (see Table 1) includes at most 8
induction hypotheses and 4 minimal cycles.

The ordering constraints are implicitly satisfied by reductive proof strategies.
In the future, we plan to define new (derived) rules and proof strategies that
automatically generate more compact reductive proof derivations and provide
a better control of the proof development. The main challenge of our approach
remains to find the ‘good’ induction orderings.

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Handbook
of Mathematical Logic, pp. 739–782. North Holland, Amsterdam (1977)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Barthe, G., Stratulat, S.: Validation of the JavaCard platform with implicit induc-
tion techniques. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 337–351.
Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 24

4. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. J.
Autom. Reason. 14(2), 189–235 (1995)

5. Bronsard, F., Reddy, U.S., Hasker, R.W.: Induction using term orderings. In:
Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 102–117. Springer, Heidelberg
(1994). doi:10.1007/3-540-58156-1 8

6. Brotherston, J.: Cyclic proofs for first-order logic with inductive definitions. In:
Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 78–92. Springer,
Heidelberg (2005). doi:10.1007/11554554 8

7. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D.
thesis, University of Edinburgh, November 2006

8. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

9. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Logic Comput. 21(6), 1177–1216 (2011)

10. Gentzen, G.: Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift 39, 176–210 (1935)

11. Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM
Trans. Comput. Logic (TOCL) 2(3), 408–429 (2001)

12. Michel, M.: Complementation is more difficult with automata on infinite words.
Technical report, CNET (1988)

13. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,
Cambridge (2001)

14. Rusinowitch, M., Stratulat, S., Klay, F.: Mechanical verification of an ideal incre-
mental ABR conformance algorithm. J. Autom. Reason. 30(2), 53–177 (2003)

15. Stratulat, S.: A unified view of induction reasoning for first-order logic. In:
Voronkov, A. (ed.) Turing-100 (The Alan Turing Centenary Conference). EPiC
Series, vol. 10, pp. 326–352. EasyChair (2012)

16. Stratulat, S.: Structural vs. cyclic induction: a report on some experiments with
Coq. In: SYNASC International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, pp. 27–34. IEEE Computer Society (2016)

http://dx.doi.org/10.1007/3-540-44881-0_24
http://dx.doi.org/10.1007/3-540-58156-1_8
http://dx.doi.org/10.1007/11554554_8
http://dx.doi.org/10.1007/978-3-642-35182-2_25

Cyclic Proofs with Ordering Constraints 327

17. Stratulat, S.: Mechanically certifying formula-based Noetherian induction reason-
ing. J. Symb. Comput. 80(Part 1), 209–249 (2017)

18. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2),
146–160 (1972)

19. The Coq development team: The Coq Reference Manual. INRIA (2017)
20. Wirth, C.-P.: Descente infinie + deduction. Logic J. IGPL 12(1), 1–96 (2004)

Formalization and Complexity

A Mechanizable First-Order Theory of Ordinals

Peter H. Schmitt(B)

Department of Informatics, Karlsruhe Institute of Technology (KIT),
Am Fasanengarten 5, 76131 Karlsruhe, Germany

pschmitt@ira.uka.de

Abstract. We present a first-order theory of ordinals without resorting
to set theory. The theory is implemented in the KeY program verification
system which is in turn used to prove termination of a Java program
computing the Goodstein sequences.

1 Introduction

A number of automated reasoning systems have been put to the task to prove
theorems about ordinal numbers. Here is a fair selection of pertinent papers:
[4,5,9,15] for the Isabelle proof assistent, [6,8] for Coq, [3] for OTTER. All these
efforts have in common that they start with a semantic definition of ordinals as
sets with special properties. Of a different flavor are the papers [13,14], that
present algorithms implemented in the ACL2 system for solving problems in
ordinal arithmetic working on a normal form representation.

In this paper, we will present a first-order theory ThOrd of ordinals. The
models of ThOrd are of the form M = (U, 0̇, ω̇, +̇1, <̇) with universe U , constants
0̇, and ω̇, the unary successor function +̇1 and the order relation <̇. The logic
itself contains the binary operator supx<nm binding variable x. Its interpretation
in M is the supremum of {mM(α) | α ∈ U and α<̇nM}. Typically, the term
m will contain the free variable x and tM(α) stands for the evaluation of m
in M with x instantiated to the element α ∈ U . The operator supx<nm is the
only construct in our axiomatization with a set theoretic flavor. This operator
is, however, definable in the standard first-order logic; a proof of this result for
variable-binders in general is available in Ulbrich’s PhD thesis [22].

Already in 1965 Gaisi Takeuti presented in [20] a first-order theory O of
ordinal numbers. His interest were in proof theoretic properties. The theory O
allows to define an inner model of Zermelo-Fraenkel (ZF) set theory. Thus, a
formula φ is derivable from O iff a canoncial translation of φ is derivable in ZF
set theory. The vocabulary of O is much richer than ours: it contains e.g., already
in its axiomatic basis coding and decoding functions for pairs of ordinals. As a
consequence the theory O is not very well suited as the basis for automated
reasoning on ordinals.

It is well-known that the Peano axioms, PA, for the natural numbers are
incomplete. This did and does not cause much alarm since the examples of true
statements not derivable in PA were consider too arcane to be of any pratical

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 331–346, 2017.
DOI: 10.1007/978-3-319-66902-1 20

332 P.H. Schmitt

relevance. This is beginning to change as these examples get more and more
accessible. We present, based on [10], a Java program with less than 20 lines of
code, computing the Goodstein sequences, such that termination of one of its
two methods cannot be proved in PA. Still, there is no reason to be alarmed
since termination can be proved in ThOrd, which is a simple, plausible extension
of PA as can be seen by scrutinizing the axioms in Fig. 1 below.

Fig. 1. The axioms of the core theory

The first automatic termination proof for Goodstein sequences was recorded
in [23]. In that paper a finite rewrite system is presented whose termination
encodes the termination of these sequences and termination of the rewrite sys-
tem is proved. A termination proof using the higher-order logic proof assistant
Coq can be downloaded from [7] as part of the Coq project on ordinal notation
[6]. Hereditary multisets, a variant of nested multisets, offer a convenient rep-
resentation of ordinals below ε0. A formalization of hereditary multisets in the
Isabelle/HOL proof assistant is available from the Archive of Formal Proofs [5]
also containing a termination proof for Goodstein sequences. A corresponding
publication is pending [4]. The theory ThOrd has been implemented in KeY, a
first-order theorem proving and program verification system based on the sequent
calculus [1]. This implementation has been put to use to obtain a machine
assisted termination proof of the Java program mentioned above. This seems
to be the first termination proof for Goodstein sequences using a first-order
reasoning system.

2 A Theory of Ordinals

In the first subsection, we start out with a very simple core theory Th0
Ord. This

plays the same role here as Peano’s theory for the arithmetic of natural num-
ber. In the next subsection, the final theory ThOrd is obtained as a definitional
extension of Th0

Ord.

A Mechanizable First-Order Theory of Ordinals 333

2.1 The Core Theory

The vocabulary Σ0
Ord of the core theory contains the following symbols

predicate < binary
functions +1 unary

0, ω constants
Terms and formulas are defined as usual in first-order logic with the exception

that we include a term building operator sup:
if n,m are terms and x is a variable that does not occur free in n, then

supx<nm

is a term.
Two operations, (1) start with 0 and (2) add one, suffice to generate all

finite ordinals. We use x + 1 to denote the immediate successor of x to avoid
the introduction of an additional symbol. In set theory, a third operation is
added to generate all transfinite ordinals: (3) for any set X of ordinals, there is
a least ordinal not less than all α ∈ X. Here we avoid set theory and restrict
this operation to sets X that can be obtained as instances of one term m, where
furthermore only instantiations up to a bound n are allowed. This motivates the
term constructor supx<nm. The term m will typically contain the variable x.

In most presentations of Peano arithmetic, the order relation < is not part
of the core theory, but it is later added as a definitional extension. It would
have been extremely cumbersome to do so in our setting. So, we sacrificed on
minimality and included < from the outset.

The intended meaning of symbols in Σ0
Ord is fixed by the axioms in Fig. 1.

We thus see that < is to be interpreted as a strict, total, order relation.
We use x ≤ y as a shorthand for x

.= y ∨ x < y. From the axioms, we see
that 0 is the least element with respect to < and ω is the first infinite ordinal.
Without the two axioms 5 and 6 for ω, the natural numbers with strict order
and successor would be a model of the remaining axioms and nothing would
have been gained over Peano’s theory. Axioms 8 and 9 establish the intended
meaning of the supremum operator as explained in the introduction. We use
the notation m[z/x] to denote the term that arises from m by replacing x by z
everywhere. Note that the way we defined sup, the formulas supx<0m

.= 0 and
supx<1m

.= m[0/x] can be derived.
The last and most powerful axiom is the axiom scheme of transfinite induction

that is an extension the course-of-value induction scheme in finite arithmetic. Let
φ be a formula that typically would contain x as a free variable and let φ(y) stand
for the formula obtained from φ by replacing x by y (assuming of course that
y does not occur in φ, neither free nor bound). If we can prove for every x the
transfinite induction step ∀y(y < x → φ(y)) → φ, then we conclude that φ is
true for all x.

One could ask whether the sup operator should have been omitted from
the core vocabulary and added later as a definitional extension. The answer is
no! Since we follow the usual set-up of first-order logic all functions are total.
Consequently, inclusion of a function symbol in the vocabulary already implies

334 P.H. Schmitt

an implicit existence axiom: the function values exist for all arguments. Adding
sup is not a definitional extension since the associated existence claim could not
be proved in the theory without sup.

An alternative would have been to include the following axiom scheme instead
of the two parts of the definition of sup

∀y(∃z(∀x(x < y → t ≤ z)))

A possible instantiation could be ∀y(∃z(∀x(x < y → ωx ≤ z))). Then, it would
have been possible to show, using transfinite induction, that adding the sup
operator is a definitional extension of this version of the core theory. The adopted
approach is more straightforward.

2.2 The Full Theory

The full vocabulary ΣOrd of the theory ThOrd is shown in Fig. 2.

Fig. 2. The full vocabulary ΣOrd

The axioms of ThOrd are Th0
Ord plus the definitions of the new symbols in

Figs. 3 and 5.

Fig. 3. Definitional extension: axioms for auxiliary predicates

The three axioms in Fig. 3 define the auxiliary symbols ≤ and max plus the
important concept of a limit ordinal. In contrast to other presentations, 0 is not
a limit ordinal in our set-up.

Figure 4 shows a sample of lemmas that can already be derived at this point
from the axioms considered so far. The lemmas are grouped together according
to the syntactical symbols involved. This does not reflect the order in which the
lemmas can or need to be proved.

Lemma 1 in Fig. 4 is the least number principle, a well known equivalent to
the induction axiom scheme. It is instructive to figure out why this lemma is
true even if x does not occur as a free variable in φ. Lemma 2 in Fig. 4 is the

A Mechanizable First-Order Theory of Ordinals 335

Fig. 4. Some lemmas derivable from the axioms considered so far

Fig. 5. Definitional extension: axioms for arithmetic operations

equivalent rephrasing of the transfinite induction scheme 10 in Fig. 1 that is most
frequently employed: If a formula φ with free variable x is true for x = 0 (base
case), if for all z we can prove that φ[z +1] follow from φ[z] (successor induction
step), and if we can prove for every limit ordinal λ, when φ[z/x) is true for all
z < λ then φ[λ/x] follows (limit induction step), then we have proved ∀xφ.

Lemma 3 could be rephrased as: if x is a limit ordinal then x is the least
ordinal that is greater or equal than all ordinals that are strictly less than x.
This is not true for successor ordinals x. In this case, we have supy<x+1 y

.= x
instead. Lemma 4 is useful in proving statements involving the sup operator via
induction. Lemma 5 helps to show that two suprema are equal especially in the
case when equality between t1 and t2 is not obvious.

For the purpose of this paragraph we look at a term t that contains z as a
sequence tz. We say that a sequence tz<x1 is confinal in sz<x2 if for every x < x1

there is y < x2 with t[x/z] ≤ s[y/z]. If two sequences are mutually confinal in
one another, then they share the same supremum. This is Lemma 6 in Fig. 4.
Note, that we get equality of two suprema with different bounds x1, and x2.
Lemma 7 gives an alternative definition of a limit ordinal.

336 P.H. Schmitt

The second installment of the axioms extending Th0
Ord to ThOrd is listed in

Fig. 5. They give the usual recursive definitions of ordinal addition, multiplication
and exponentiation.

2.3 Derived Lemmas

In this subsection, we will in Figs. 6, 7, 8 and 9 list and comment on a selection
of lemmas derivable from ThOrd.

Fig. 6. Lemmas involving addition and order relations

Figure 6 lists lemmas that are needed as intermediate stepping stones in the
proofs of the properties of ordinal arithmetic.

Lemma 1 in Fig. 6 extends the axiom ∀x(x < x+1) from Fig. 1 where we now
add on the right side an arbitrary number greater than or equal to 1 instead
of just 1. This is, of course, proved via transfinite induction. Lemma 2 is an
easy variant of Lemma 1. Addition of ordinals is not commutative, so we cannot
conclude from Lemma 1 that ∀x, y(x �= 0 → y < x + y). Indeed, y = ω, x = 1
is a counterexample. But the version for ≤ instead of < is provable. This is
Lemma 3. Lemma 4 is also proved using transfinite induction. We remark that
∀x, y, z(x < y → x + z < y + z) is not true, as can be seen by the instantiation
0 for x, 1 for y, and ω for z. But the relaxed version with ≤ instead of < is
derivable. This is Lemma 5. Lemma 6 is the reverse of Lemma 4.

Figure 7 gives lemmas on ordinal addition. Since ordinal addition is in general
not commutative Lemma 1 in Fig. 7 may not be immediately obvious, but it can
be easily proved using ordinal induction. Lemma 3 is a fact on ordinal addition
that we have referred to already above. Lemma 4 is a useful lemma formalizing
the intuition that the property of being a limit ordinal is determined by the right
end part of the ordinal regardless of what comes before. Lemma 5 gives a first
general representation theorem for ordinals. In [21, Theorem 8.13] it is proved
using set comprehension. This is not available in our setting. Fortunately, it
turned out that there is a much simpler proof using ordinal induction. Lemma 6
required the most complex proof so far. The basic idea, however, is quite simple.
As a witness for z take b, the least ordinal such that y ≤ x + b. It can easily
be seen that such a number exists by the least number principle (Lemma 1 in
Fig. 4). Then, a case distinction b = 0, b

.= b0 + 1 for some b0, or lim(b) leads to
success. Lemma 7 is the wellknown associative law. Lemmas 8 and 9 correspond
to the Peano axioms for the natural numbers, which say that 0 is not a successor

A Mechanizable First-Order Theory of Ordinals 337

Fig. 7. Lemmas on addition

and the successor function is injective. Lemma 10 shows that addition on the
right, with fixed left summand, is injective. Lemma 11 resisted for a while all my
attempts to prove it. Since I could also not find it in [21], I was, at some point,
even in doubt wether it is true at all. The inequality, supz<x (i+t) ≤ i+supz<x t
is simple. For the reverse inequality a proof by contradiction turned out to be
the right way of attack. So assume supz<x (i+ t) < i+supz<x t and try to find a
contradiction. The key to the solution was the case distinction supz<x (i+ t) < i
or i ≤ supz<x (i+ t). Notice that in the first case, we arrive at the contradiction
i ≤ i+t[0/z] < supz<x (i+t) < i. Here also the assumption x > 0 comes in. In the
second case, there is by Lemma 5 an ordinal k such that i+k

.= supz<x (i+t). By
the proof-by-contradiction assumption, this yields i+k < i+supz<x t and further
by Lemma 7 in Fig. 6 k < supz<x t. By the definition of sup there, is λ < x with
k ≤ t[λ/z]. This leads to the contradiction i+k ≤ i+t[λ/z] < supz<x (i+t). The
commuted version of Lemma 11, i.e., supz<x (t + i) .= (supz<x t) + i, provided
z does not occur in i and x > 0, is – as you would have expected –not true:
ω

.= supz<ω (z + 1) .= (supz<ω z) + 1 .= ω + 1. Lemma 12 shows a dramatic
failure of commutativity for ordinal addition: A left finite ordinal summand is
simply absorbed if the right summand is infinite. We found it helpful to split the
proof of Lemma 12 in the cases ω

.= j and ω < j.
Figure 8 shows derivable properties of ordinal multiplication. Lemma 1 shows

that the strict order relation is preserved by multiplication on the left, provided
that the left multiplyer is not 0. Multiplication on the right only preserves ≤,
as Lemma 4 shows. Lemma 2 is the reverse implication from Lemma 1. Lemma 3
states that multiplication on the right, with a fixed multiplicand on the left, is an
injective function. Lemma 7 is crucial for the proof of distributivity (Lemma 8)
and multiplicative associativity (Lemma 9).

After all the preparations the proof of multiplicative associativity is now
straightforward. Let us for once give a detailed proof sketch in this exemplary
case. We use ordinal induction (Lemma 2 in Fig. 4) on the variable k. The base
case is trivial. The successor induction step is proved as follows:

338 P.H. Schmitt

Fig. 8. Lemmas on multiplication

i ∗ (j ∗ (k + 1)) .= i ∗ (j ∗ k + j) definition of ∗
.= i ∗ (j ∗ k) + i ∗ j distributivity (Lemma 8)
.= (i ∗ j) ∗ k + i ∗ j induction hypothesis
.= (i ∗ j) ∗ (k + 1) definition of ∗

The induction step in the limit case is shown next. We us λ instead of k to signal
that k is a limit ordinal:

i ∗ (j ∗ λ) .= i ∗ supx<λj ∗ x definition of ∗
.= supx<λi ∗ (j ∗ x) Lemma 7
.= supx<λ(i ∗ j) ∗ x induction hypothesis
.= (i ∗ j) ∗ λ definition of ∗

Lemma 10 (we are still talking about Fig. 8) is a strengthening of Lemma 6: mul-
tiplicative absorbtion on the left of finite ordinals not only holds for ω, but for
any limit ordinal. Lemma 11 states when addition of two ordinals is less than
their product. The restrictions are necessary as can be seen by the following
simple examples:

j = 0 + j �≤ 0 ∗ j = 0
1 + j �≤ 1 ∗ j = j

i = i + 0 �≤ i ∗ 0 = 0
i + 1 �≤ i ∗ 1 = i

Finally, we turn to the lemmas on exponentiation in Figure 9. Note that the
restriction on x in Lemma 1 is necessary since by definition 00 .= 1. Also the
restrictions in Lemma 2, which says that exponentiation is strictly increasing
in the left argument, are necessary as can be seen by the following examples
2 �< 20 .= 1, 2 �< 21 .= 2, 0 �< 02 .= 0, and 1 �< 12 .= 1. It is only weakly
increasing on the right, Lemma 3. The strict inequality is far from being true,
as Lemma 4 shows. Exponentiation is also strictly monotone in the second argu-
ment, as Lemma 5 shows. The reverse implication is also true, as stated by

A Mechanizable First-Order Theory of Ordinals 339

Fig. 9. Lemmas on exponentiation

Lemma 7. In the first argument exponention is only weakly monotone, as stated
by Lemma 7. A counterexample to strict monotonicity is given by the instan-
tiations x1 = 2, x2 = 3, and y = ω. Lemmas 8 and 9 show how the property
of being a limit ordinal is propagated by exponentiation. Lemmas 10 and 11
are laws of exponentiation familiar from finite arithmetic. Lemma 12 is in fact
a lemma scheme. Note that in typical applications x is a free variable in j. It
states an indispensable continuity property for exponentiation.

The theory ThOrd has been implemented in the KeY system. Interactive
proof for over 170 lemmas found in the set theory textbooks [2,11,12,21] have
been obtained documenting the strength of ThOrd.

3 Termination of Goodstein Sequences

The sequences under investigation were first introduce by Goodstein in [18].
In fact, Goodstein considered in his paper more general sequences involving a
non-decreasing function f : N → N as a parameter. The Goodstein sequences
considered here, these are the same as the ones considered by Kirby and Paris,
are obtained by the choice f(i) = i + 2. Kirby and Paris showed in their
highly acclaimed paper [10] that termination of Goodstein sequences cannot
be proved in Peano arithmetic, stronger principles, like e.g., ordinal induction,
are needed. We will use ordinal induction, as provided by the theory ThOrd

presented in Sect. 2, to prove termination of a Java program computing the
Goodstein sequences in Subsect. 3.3.

3.1 Injecting Natural Numbers

The termination proof in Subsect. 3.3 will be done using the program verification
system KeY. KeY employs a many-sorted first-order logic. For ease of presenta-
tion the theory ThOrd was formulated in Sect. 2 as a one-sorted theory. In the

340 P.H. Schmitt

implementation of ThOrd within the KeY prover, Ord is used to name the sort
of ordinals. Among the other sorts present in the KeY prover, there are mathe-
matical integers int. It is essential for the intended proof to relate non-negative
integers to the finite ordinals. To this end, we add a function onat : int → Ord.

Figure 10 shows an axiomatisation of the function onat : int → Ord that
maps the non-negative integers into corresponding ordinals less than ω. Obvi-
ously, onat is a partial function. The KeY system deals with partial function by
underspecification. That means that onat is a total function, but the axioms do
not include any commitment on the values for negative arguments.

Fig. 10. Positive integers as ordinals

Figure 10 also shows useful derived lemmas. We use in this figure and also
later on overloaded syntax. Thus, whether 0 denotes an integer or an ordinal,
whether + is ordinal addition or addition of non-negative integers can be found
out by looking at the type information.

3.2 Definition of Goodstein Sequences

We start with an informal explanation. First, the auxiliary concept of a heredi-
tary base-n notation is needed. This makes only sense for n ≥ 2. The hereditary
base-n notation for a natural number m is obtained from its ordinary base-n
notation

m = mk · nk + mk−1 · nk−1 + . . . m1 · n + m0, 0 ≤ mi < n,mk �= 0

by also writing the exponents k, k − 1, . . . in base-n notation and again the thus
arising exponents, and so on.

Example 1. base-2 35 = 25 + 21 + 20

hereditary base-2 35 = 22
2+1 + 2 + 1

base-3 100 = 34 + 2 · 32 + 30

hereditary base-3 100 = 33+1 + 2 · 32 + 1.

A Mechanizable First-Order Theory of Ordinals 341

The Goodstein sequence Gk(m) with initial value m is computed as follows
G1(m) = m
G2(m) = in the hereditary base-2 representation of m

replace every occurence of 2 by 3 and subtract 1
· · ·
Gk(m) = in the hereditary base-k representation of Gk−1(m)

replace every occurence of k by k + 1 and subtract 1

Example 2. The Goodstein sequence for m = 3

G1(3) By definition 3
G2(3) Write 3 in her. base 2 notation 21 + 1

Replace 2 by 3 minus 1 31 + 1 − 1 3
G3(3) Write 3 in her. base 3 notation 31

Replace 3 by 4 minus 1 41 − 1 3
G4(3) Write 3 in her. base 4 notation 3

Replace 4 by 5 minus 1 3 − 1 2
G5(3) Write 2 in her. base 5 notation 2

Replace 5 by 6 minus 1 2 − 1 1
G6(3) Write 1 in her. base 6 notation 1

Replace 6 by 7 minus 1 1 − 1 0

Example 3. Initial part of the Goodstein sequence for m = 4

4
22

1
33

1 − 1 26 ωω

32 ∗ 2 + 31 ∗ 2 + 2 42 ∗ 2 + 41 ∗ 2 + 2 − 1 41 ω2 ∗ 2 + ω ∗ 2 + 2
42 ∗ 2 + 41 ∗ 2 + 1 52 ∗ 2 + 51 ∗ 2 + 1 − 1 60 ω2 ∗ 2 + ω ∗ 2 + 1
52 ∗ 2 + 51 ∗ 2 62 ∗ 2 + 61 ∗ 2 − 1 83 ω2 ∗ 2 + ω ∗ 2
62 ∗ 2 + 61 ∗ 1 + 5 72 ∗ 2 + 71 ∗ 1 + 5 − 1 109 ω2 ∗ 2 + ω + 5
72 ∗ 2 + 71 ∗ 1 + 4 82 ∗ 2 + 81 + 1 + 4 − 1 139 ω2 ∗ 2 + ω + 4
82 ∗ 2 + 81 ∗ 1 + 3 92 ∗ 2 + 91 ∗ 1 + 3 − 1 173 ω2 ∗ 2 + ω + 3
92 ∗ 2 + 91 ∗ 1 + 2 102 ∗ 2 + 101 ∗ 1 + 2 − 1 211 ω2 ∗ 2 + ω + 2
102 ∗ 2 + 101 ∗ 1 + 1 112 ∗ 2 + 111 ∗ 1 + 1 − 1 253 ω2 ∗ 2 + ω + 1
112 ∗ 2 + 111 ∗ 1 122 ∗ 2 + 121 ∗ 1 − 1 299 ω2 ∗ 2 + ω
122 ∗ 2 + 11 132 ∗ 2 + 10 348 ω2 ∗ 2 + 11

1058
232 ∗ 2 242 ∗ 2 − 1 1151 ω2 ∗ 2
242 + 24 ∗ 23 + 23 252 + 25 ∗ 23 + 23 − 1 1222 ω2 + ω ∗ 23 + 23

Example 3 shows the Goodstein sequence with initial value 4 upto its 25-th
term. The last column should be ignored on first reading. We will come back to
it in the next subsection. Also Gk(4) will eventually reach 0, but for k in the
order of magnitude of 10121210700.

342 P.H. Schmitt

The following mathematical formalization of these informal explanations dif-
fer in detail greatly from those in the paper [10]. Intuitively the value of the
function oHNf(n,m) is obtained by computing the hereditary base-n represen-
tation of m and replacing all occurences of n by n + 1. This is turned into the
following recursive definition:

Definition 1 (oHNf(n.m)). For n ≥ 2,m ≥ 0

oHNf(n,m) =

⎧
⎨

⎩

m if m < n
(n + 1)oHNf(n,k) ∗ a + oHNf(n, c) if m = nk ∗ a + c with

1 ≤ k ∧ 0 < a < n ∧ c < nk

This is a complete definition since we can easily prove:
∀m,n(2 ≤ n ∧ n ≤ m → ∃r, a, c (m = nr ∗ a + c ∧

1 ≤ r ∧ 0 < a ∧ a < n ∧ c < nr ∧ 0 ≤ c))

Definition 2 (Gn(m)). For n ≥ 2 and m ≥ 0
G1(m) = m
Gk(m) = oHNf(k,Gk−1(m)) − 1

3.3 Termination Proof

Close inspection showed that the original termination proof of Goodstein
sequences in [10] is more complicated than necessary. We follow instead the idea
of a short proof of the termination of general Goodstein sequences from [16,17].
Figure 11 shows the Java program to be verified. Since in the default setting the
KeY system treats Java integers as mathematical integers this is what we need.
Running this program, however, would yield wrong results as soon as maxInt is
reached. Since exponention is not part of the Java language, the method intPow

had to be implemented. Since this is a standard task, the code is not shown here.
We do not assume that every reader is familiar with program verification

and will complement the code with explaining comments. Figure 11 contains the
Java code plus annotations in the Java Modeling Language (JML). A lucid intro-
duction to JML can be found in [1, Chap. 7]. The following comments should,
we hope, be sufficient to provide the reader with a clear understanding of the
central points. JML annotations needed to guide the system but not essential
for the casual human reader have been omitted, i.e., replaced by

JML allows to add specifications enclosed between special comments
/*@...@*/ to a Java program. Formal verification then provides a mathemat-
ical proof that the code meets its JML specifications.

JML provides method contracts. These are placed immediately before the
method code. The crucial method in Listing 11 is GoodsteinSequence in lines
5–14. Its method contract spans lines 2–4. The requires clause states a precon-
dition that must be met to guarantee the postcondition. Here the precondition
requires the initial value for the Goodstein sequence to be strictly positive. The
postcondition is - in this case - hidden in the keyword normal_behaviour. This
says that the method GoodsteinSequence terminates and no uncaught exceptions

A Mechanizable First-Order Theory of Ordinals 343

Fig. 11. Goodstein program for verification

are thrown. The code of the method consists of a simple while loop comput-
ing the Goodstein sequence and breaking out when 0 is reached. Now, a second
type of JML contracts comes into play namely, loop contracts. The first part
of the loop contract in lines 7–11 requires that the formula m >= 0 & base >= 2

be true before entering the loop and after each iteration of the loop body. This
is easy. The crucial part of the loop contract is the decreases clause that gives
a quantity in some well-founded ordering that is strictly decreased with every
loop iteration. Here in line 10 the function oGS(n,m) provides an ordinal for
this purpose. The KeY prover knows about the function oGS, but it is by no

344 P.H. Schmitt

means part of standard JML. The escape sequence \dl oGS triggers the JML
parser to pass oGS directly to the underlying logic. The same applies for the
functions oHNf and pow. In line 19 the JML keyword \result for the first time.
It denotes the return value of the method the annotation belong to, in this case
the return value of nextExpand.

The definition of oGS(n,m) : int × int → Ord lies at the very heart of the
termination argument. Informally, oGS(n,m) is computed by replacing in the
hereditary base-n expansion of m every occurence of n by ω.

Definition 3. For n ≥ 2, m ≥ 0

oGS(n,m) =

⎧
⎨

⎩

onat(m) if m < n
(ω)oGS(n,k) ∗ onat(a) + oGS(n, c) if m = nk ∗ a + c with

1 ≤ k ∧ 0 < a < n ∧ c < nk

Examples of oGS for an initial segment of the Goodstein sequence with initial
value 4 are displayed in the last column in Example 3. The next lemma lists the
crucial properties of oGS, that have also been interactively verified with the KeY
prover.

Lemma 1

1. ∀n,m1,m2(2 ≤ n ∧ 0 ≤ m1 < m2 → oGS(n,m1) < oGS(n,m2))
2. ∀n,m(2 ≤ n ∧ 0 ≤ m → oGS(n,m) = oGS(n + 1, oHNf(n,m)))

We conclude the subsection by revealing the plan to prove that oGS decreases.
An arbitrary loop iteration starts with oGS(base,m). After normal termination
of the loop body, the decreasing function evaluates to oGS(base+1, \result−1),
where \result is the return value of the call to method nextExpand in line 13. The
method contract for nextExpand guarantees that oGS(base,m) and oGS(base +
1, \result) are equal (line 20). By Lemma 1(1), oSG is strictly monotone in
its second argument. Thus, oGS(base + 1, \result − 1) is strictly smaller than
oGS(base + 1, \result) in the ordinal ordering. Bingo.

In this argument, we have made use of the method contract for nextExpand,
but we also need to establish it. It turns out that for this we need to know that
the return value is oHNf(oldBase,m), Line 19 and Lemma 1(2) will come into
play at this point.

4 Concluding Remarks

What are the limits of ThOrd? Let ε0 be the first epsilon ordinal, i.e., the least
ordinal ε with ωε = ε. Let Mε0 be the structure with all ordinals less than ε0 as
universe and the standard interpretation of ΣOrd. It can be easily checked that
Mε0 is a model of ThOrd. Closure under sup is the crucial part. This shows that
∃x(ωx = x) cannot be derived in ThOrd. It can furthermore be shown that for
a model M of ThOrd that does not contain nonstandard natural numbers Mε0

is a substructure of M. In a way, ThOrd is the analogon of Peano arithmetic for

A Mechanizable First-Order Theory of Ordinals 345

Mε0 . Precise formulations of these claims and complete proofs can be found in
the technical report [19].

If we had only intended to present a machine assisted proof of the mathe-
matical theorem that all Goodstein sequences terminate, this could already have
been obtained from Lemma 1. We wanted – however – to make the point that
there are simple Java programs whose termination cannot be proved in Peano
arithmetic, but ThOrd is strong enough to prove it.

Runable Java code, saved proofs and the version of the KeY system needed
can be downloaded or “webstarted” from https://www.key-project.org/papers/
ordinal-numbers/.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). doi:10.1007/978-3-319-49812-6

2. Bachmann, H.: Transfinite Zahlen. Ergebnisse der Mathematik und ihrer Grenzge-
biete, vol. 1, 2nd edn. Springer, Heidelberg (1967). doi:10.1007/978-3-642-88514-3

3. Belinfante, J.G.F.: On computer-assisted proofs in ordinal number theory. J.
Autom. Reason. 22(2), 341–378 (1999)

4. Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets,
and syntactic ordinals in isabelle/hol (under submission)

5. Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hered-
itary multisets, and syntactic ordinals. Archive of Formal Proofs, November 2016.
http://isa-afp.org/entries/Nested Multisets Ordinals.shtml. Formal proof develop-
ment

6. Castéran, P., Contejean, E.: On ordinal notations. https://github.com/coq-contr
ibs/cantor

7. Castéran, P., Contejean, E.: On ordinal notations. https://coq.inria.fr/V8.2pl1/
contribs/Cantor.epsilon0.Goodstein.html

8. Grimm, J.: Implementation of three types of ordinals in Coq. Research report
RR-8407, CRISAM - Inria Sophia Antipolis (2013)

9. Huffman, B.: Countable ordinals. Archive of Formal Proofs, November 2005.
http://afp.sf.net/entries/Ordinal.shtml. Formal proof development

10. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bull.
Lond. Math. Soc. 14(4), 285–293 (1982)

11. Klaua, D.: Kardinal- und Ordinalzahlen, Teil 1. Wissenschaftliche Taschenbücher:
Mathematik, Physik. Vieweg Braunschweig (1974)

12. Klaua, D.: Kardinal- und Ordinalzahlen, Teil 2. Wissenschaftliche Taschenbücher:
Mathematik, Physik. Vieweg Braunschweig (1974)

13. Manolios, P., Vroon, D.: Algorithms for ordinal arithmetic. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 243–257. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45085-6 19

14. Manolios, P., Vroon, D.: Ordinal arithmetic: algorithms and mechanization. J.
Autom. Reason. 34(4), 387–423 (2005)

15. Norrish,M.,Huffman,B.:Ordinals inHOL: transfinite arithmetic up to (andbeyond)
ω1. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 133–146. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 12

https://www.key-project.org/papers/ordinal-numbers/
https://www.key-project.org/papers/ordinal-numbers/
http://dx.doi.org/10.1007/978-3-319-49812-6
http://dx.doi.org/10.1007/978-3-642-88514-3
http://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
https://github.com/coq-contribs/cantor
https://github.com/coq-contribs/cantor
https://coq.inria.fr/V8.2pl1/contribs/Cantor.epsilon0.Goodstein.html
https://coq.inria.fr/V8.2pl1/contribs/Cantor.epsilon0.Goodstein.html
http://afp.sf.net/entries/Ordinal.shtml
http://dx.doi.org/10.1007/978-3-540-45085-6_19
http://dx.doi.org/10.1007/978-3-642-39634-2_12

346 P.H. Schmitt

16. Rathjen, M.: Goodstein revisited. ArXiv e-prints, May 2014
17. Rathjen, M.: Goodstein’s theorem revisited. In: Kahle, R., Rathjen, M. (eds.)

Gentzen’s Centenary, pp. 229–242. Springer, Cham (2015). doi:10.1007/
978-3-319-10103-3 9

18. Goodstein, R.L.: On the restricted ordinal theorem. JSL 9, 33–41 (1944)
19. Schmitt, P.H.: A first-order theory of ordinals. Technical report 6, Department of

Informatics, Karlsruhe Institute of Technology (2017)
20. Takeuti, G.: A formalization of the theory of ordinal numbers. J. Symb. Logic 30,

295–317 (1965)
21. Takeuti, G., Zaring, W.M.: Introduction to Axiomatic Set Theory. Graduate Texts

in Mathematics, vol. 1. Springer, New York (1971). doi:10.1007/978-1-4684-9915-5
22. Ulbrich, M.: Dynamic logic for an intermediate language: verification, interaction

and refinement. Ph.D. thesis, Karlsruhe Institute of Technology, June 2013
23. Winkler, S., Zankl, H., Middeldorp, A.: Beyond Peano arithmetic–automatically

proving termination of the goodstein sequence. In: van Raamsdonk, F. (ed.) 24th
International Conference on Rewriting Techniques and Applications (RTA 2013).
Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl, Germany, vol.
21, pp. 335–351. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2013)

http://dx.doi.org/10.1007/978-3-319-10103-3_9
http://dx.doi.org/10.1007/978-3-319-10103-3_9
http://dx.doi.org/10.1007/978-1-4684-9915-5

Issues in Machine-Checking the Decidability
of Implicational Ticket Entailment

Jeremy E. Dawson and Rajeev Goré(B)

Research School of Computer Science,
Australian National University, Canberra, Australia

rajeev.gore@anu.edu.au

Abstract. The decidability of the implicational fragment T→ of the rel-
evance logic of ticket entailment was recently claimed independently by
Bimbó and Dunn, and Padovani. We present a mechanised formalisation,
in Isabelle/HOL, of the various proof-theoretical results due to Bimbó
and Dunn that underpin their claim. We also discuss the issues that
stymied our attempt to verify their proof of decidability.

1 Introduction

Sequent calculi are useful in many areas of logic, particularly for decidability
arguments. Here, we consider the complications that arise when dealing with a
substructural logic where one or more of the rules of associativity, commutativity,
weakening and contraction are missing. We focus on the implicational fragment
T→ of the substructural logic of “ticket entailment”, recently claimed as decidable
independently by Bimbó and Dunn [BD13], and by Padovani [Pad11].

As is well-known, pen-and-paper proofs about sequent calculi are notori-
ously tedious and error-prone [GR12], particularly when the authors elide proofs
because “the proof is similar”. The proofs of Bimbóand Dunn are intricate, some
requiring a triple induction over the “grade”, “height” and “contraction degree”
of the instance of cut. They state in a footnote that these complicated inductions
appear to be necessary [BD12, Footnote 9]. Moreover, they use the “dangerous”
phrases described above, so how can we be sure that their proofs are sound?

To check, we first formulate the various sequent and “consecution” calculi
from [BD12,BD13]. We then describe how we encoded these calculi into the
interactive proof-assistant Isabelle/HOL and how we mechanised the various
proof-theoretical results of these various calculi. We then explain the issues that
stymied our attempt to verify the proof of their main theorem in Isabelle/HOL.

Previously, we have machine-checked various types of calculi: multiset-based
sequent calculi with explicit structural rules [DG10], display calculi [DG02], and
(shallow and deep) nested sequent calculi [DCGT14]. Here, we needed two nov-
elties: singletons on the right and (non-display) “consecution” calculi built from

J.E. Dawson—Supported by Australian Research Council Discovery Grant
DP120101244.

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 347–363, 2017.
DOI: 10.1007/978-3-319-66902-1 21

348 J.E. Dawson and R. Goré

“structures” (binary trees) where all internal nodes contain a non-commutative
and non-associative binary operator “ ; ” and where all leaves are formulae.

Notation: we use A,B,C for formulae, use Γ, Γ1, Γ2 for multisets, use
U, V,X, Y, Z for structures, and use X{Y } instead of A[B]. We use π and τ
for the transformations on derivations, but use δ for derivations instead of Δ.

2 Summary of Various Calculi of Bimbó and Dunn

The formulae of our logics are built from an infinite supply of atomic formulae
using the BNF grammar below where p is any atomic formula and t is a constant:

A ::= p | t | A → A

The superscript t determines whether or not the verum constant t is in the
syntax. As usual, we drop parentheses and write A → B → C for A → (B → C).
The various logics are defined in Fig. 1 [BD12].

Name Axioms Logic
T→ T t

→ R→ Rt
→

(A1) A → A � � � �
(A2) (A → B) → (C → A) → (C → B) � � � �
(A3) (A → B → C) → (B → A → C) � �
(A4) (A → A → B) → (A → B) � � � �
(A5) (A → B) → (B → C) → (A → C) � �
Name Rules of Inference

(R1) from A → B and A, deduce B � � � �
(R2) � A // � t → A � �

Fig. 1. Axiomatisations of various logics

A sequent Γ � C consists of a finite, possibly empty, multiset Γ of formulae
and a formula C. We prefer Greek letters in keeping with modern usage in
sequent calculi. The specific sequent calculi that we deal with are tabled in
Fig. 2. The “consecution” calculi of Bimbó and Dunn use structures where: every

(id) (→�) (�→) (W�) (t �) (� t) [→�]
LR→ � � � �
LRt

→ � � � � � �
[LR→] � � � �
[LRt

→] � � � � � �

Fig. 2. Various sequent rules

Issues in Machine-Checking the Decidability of Implicational Ticket 349

formula is a structure, and if X and Y are structures then so is (X ; Y). Note:
there is no empty structure [BD12]! A consecution X � C consists of a structure
X and a formula C. We write X ; Y ; Z for ((X ; Y) ; Z) [BD12].

A structure is thus a binary tree where all internal nodes contain “ ; ” and
the leaves contain formulae. Suppose X is such a structure (tree) and let Y
be the substructure that appears at some particular node in this tree: written
X{Y }. If we now replace this occurrence of Y by an occurrence of the structure
Z, we obtain the structure X{Z}. In the rules shown in Fig. 3, the premises
locate the node at which a particular substructure appears in a larger structure.
The conclusion shows the result of replacing the substructure occurrence at that
node by some structure occurrence, as just described. We use X{Y } instead of
the X[Y] used by Bimbó and Dunn since the latter can cause confusion with the
use of brackets to capture limited contraction in the [→�]-rule from Fig. 2.

Fig. 3. Various consecution rules

3 Our Isabelle Mechanisation

Our mechanisation builds on our previous work on mechanising traditional
sequent calculi [DG10]. That work is a deep embedding of rules and of the

350 J.E. Dawson and R. Goré

variables in them, which permits explicit substitution functions for the variables
in a small finite set of rules: see [DG10] for our understanding of what this
means, and for more details. Here, we have a deep embedding of rules but a
shallow embedding of variables, which means that where we set out the text of a
“rule”, Isabelle interprets this as all instances of (the variables in) that rule. We
define a rule as a data structure, a pair of a list of premises and a conclusion,
and Isabelle provides the infinitely many substitution instances of these rules.

3.1 Formalising Formulae, Sequents and Sequent Rules

We first encode the grammar for recognising formulae as below:

datatype formula = BImp formula formula ("_ -> _" [61,61] 60)
| T
| FV string (* formula variable *)
| PP string (* primitive proposition *)

Here, there are four type constructors BImp, T, FV and PP. The first two encode
the implication connective → and the verum constant t while the second two
encode formula variables such as A and primitive propositions (atomic formulae)
such as p and q. The constructor BImp takes two formulae as arguments while FV
and PP each take one string argument which is simply the string we want to use
for that variable or atomic formula. The code at the end of the first line declares
-> as an alternative symbol for BImp. For example, BImp (FV "A") (PP "q")
encodes A → q, but it can also be written as (FV "A") -> (PP "q").

Structures are encoded using a parameter ’f as a type variable:

datatype ’f structr = Sf ’f
| SemiC "’f structr" "’f structr" ("_; _" [20,21] 20)

Thus Sf f forms an atomic structure from a formula f, while SemiC s1 s2 forms
a binary structure from two substructures. A shorthand notation for SemiC allows
us to write ((FV "A" -> FV "B") ; (PP "q")) for ((A → B) ; q).

A sequent is encoded using two parameters ’l and ’r as type variables:

datatype (’l, ’r) sequent =
Sequent "’l" "’r" ("((_)/ |- (_))" [6,6] 5)

An alternative is to replace the prefix Sequent with an infix |-. So the sequent
A,B � C is represented as Sequent {A,B} C or as {A,B} |- C. The HOL
expression formula multiset captures the type of formula multisets.

A rule type psc is represented as a pair consisting of a list of premises and a
conclusion over some parametric type using the type variable ’a:

types ’a psc = "’a list *’a"

Issues in Machine-Checking the Decidability of Implicational Ticket 351

Using it, we can define the (→�) rule as below:

consts impL :: "(formula multiset, formula) sequent psc set"
inductive "impL"

intrs I "([alpha |- A, mins B beta |- C],
mins (A -> B) alpha + beta |- C) : impL"

Here, we first declare that impL accepts only sequents built from an antecedent
multiset and a single formula succedent: thus ’a must be ((formula multiset,
formula) sequent). The function mins stands for “multiset insert”. The func-
tion + returns the multiset union of its two arguments, where the number of
occurrences of each item is the sum of the number of occurrences in the two mul-
tisets. So mins B alpha + beta forces alpha and beta to be of type multiset,
and returns the result of inserting one occurrence of B into their multiset-union.
The sequents alpha |- A and mins B beta |- C are separated by a comma
and enclosed in [and] to create a list as the first component of the pair formed
using (,). The conclusion mins B alpha + beta |- C is the second compo-
nent of this pair, thus forming a rule. The word inductive declares impL as the
smallest set constructed from such pairs (using all possible values for A, B, C,
alpha and beta), which also explains the final set in its type declaration.

We now explain our encoding of the “square bracket” conditions in rule [→�]:

consts sqbr ::"’a =>’a multiset =>’a multiset set"
inductive "sqbr dist fmls"

intrs I "cms <= mins dist fmls ==>
set_of (mins dist fmls) = set_of cms ==>
ALL fml. count fmls fml <= Suc (count cms fml)

==> cms : sqbr dist fmls"

Here, sqbr accepts two arguments: dist of type ’a and fmls of multisets over
type ’a. It returns a set of multisets over type ’a. The line beginning intrs
declares that the conclusion multiset cms is a submultiset of the multiset obtained
by inserting one occurrence of the distinguished formula dist into the multiset
fmls. The next line declares that, as sets, the objects cms and mins dist fmls
are identical: they differ only in the number of occurrences of some formulae
in them, including dist. The third line declares that if n is the number of
occurrences of any formula fml in fmls and m is the number of occurrences of
fml in cms then n ≤ m + 1: in other words, n − 1 ≤ m ≤ n if fml �= dist else
n − 1 ≤ m ≤ n + 1 if fml = dist. The rule [→�] is then encodes as sbimpL:

inductive "sbimpL" intrs
I "cms : sqbr (A -> B) (alpha + beta) ==>

([alpha |- A, mins B beta |- C], cms |- C) : sbimpL"

Thus premises alpha |- A and mins B beta |- C and conclusion cms |- C
must obey the definition of sbimpL, where A -> B is dist and alpha + beta is
fmls, given that cms is some possible set in sqbr (A -> B) (alpha + beta).

We define the other rules in a similar way, giving rise to our various calculi.
Here is the definition of the calculus LR→.

352 J.E. Dawson and R. Goré

Definition 1 (LRi). The rule instance psc is in the sequent calculus LRi if it
is an instance of any of the rules iid rls, impL, impR and lctr rls:

inductive "LRi"
intrs

id "psc : iid_rls ==> psc : LRi"
impL "psc : impL ==> psc : LRi"
impR "psc : impR ==> psc : LRi"
W "psc : lctr_rls ==> psc : LRi"

Here, LRi is the smallest set of instances of premises-conclusion pairs that obeys
the four clauses id, impK, impR, and W. Each clause checks whether a premises-
conclusion pair is an instance of some rule: for example impL. If so, then it adds
that premises-conclusion pair to the set of instances in LRi.

Formalising structures, consecutions and consecution rules is similar, except
that our basic types are structures, rather than multisets, built from formulae.

3.2 Derivability Predicates derrec and derl

We also use some general functions to describe derivability. An inference rule
of type ’a psc is a list ps of premises and a conclusion c. Then derl rls is
the set of rules derivable from the rule set rls while derrec rls prems is the
set of sequents derivable using rules rls from the set prems of premises. The
special case derrec rls { } when prems is the empty set { } captures the set of
rls-derivable end-sequents. We defined these functions using Isabelle’s package
for inductively defined sets, and a more detailed expository account of these,
with many useful lemmas, is given elsewhere [Gor09].

derl :: "’a psc set =>’a psc set"
derrec :: "’a psc set =>’a set =>’a set"

3.3 Inductive Multi-cut Admissibility via gen step2

Suppose the conclusions cl and cr have respective derivations as shown below:

pl1 . . . pln ρl
cl

pr1 . . . prm ρrcr. (cut ?)
?

The bottom-most rules of the respective derivations are the rules ρl and ρr with
respective premises psl = [pl1, · · · , pln] and psr = [pr1, · · · , prm]. Since some
premises may be identical, the constructs set psl and set psr return the sets
of premises formed from the respective lists. Suppose now that we want to prove
an arbitrary property P of these derivations, such as (multi)cut-admissibility
for a cut-formula A. In previous work, we have shown how to generalise cut-
admissibility proofs using a predicate called gen step2sr [DG10]. Here we use
a slight variant of this principle which we call gen step2 as described next.

Issues in Machine-Checking the Decidability of Implicational Ticket 353

Definition 2 (gen step2). For property P, formula A, a subformula relation
sub, two sets of sequents dls and drs, inference rules (psl, cl) and (psr,

cr), the property gen step2 holds iff P A (cl, cr) holds whenever all of the
following hold: P A’ (dl, dr) holds for all subformulae A’ of A and all sequents
dl in dls and dr in drs; for each pl ∈ psl, pl ∈ dls and P A (pl, cr) holds;
for each pr ∈ psr, pr ∈ drs and P A (cl, pr) holds; cl ∈ dls and cr ∈ drs.

gen_step2 ?P ?A ?sub (dls, drs) ((psl, cl), (psr, cr)) =
(ALL A’. (A’, ?A) : ?sub -->

(ALL dl:dls. ALL dr:drs. ?P A’ (dl, dr))) -->
(ALL pl:set psl. pl : dls & ?P ?A (pl, cr)) -->
(ALL pr:set psr. pr : drs & ?P ?A (cl, pr)) -->

cl : dls --> cr : drs --> ?P ?A (cl, cr))

Given two sequents cl and cr, suppose we want P A cl cr to capture cut-
admissibility of a particular cut-formula A. By letting dls and drs be the set of
derivable sequents, the definition of gen step2 captures that we can assume:

(a) cut admissibility holds in respect of a smaller cut-formula A’
(b) cut admissibility holds between the sequent cr on the right and the preceding

sequents psl in the derivation on the left
(c) cut admissibility holds between the sequent cl on the left and the preceding

sequents psr in the derivation on the right.

The main theorem gen step2 lem below for proving an arbitrary property P
states that if seqa and seqb are derivable, and gen step2 P holds generally, then
P A holds between seqa and seqb. In this theorem, the constructions derrec
?rlsa {} and derrec ?rlsb {} are respectively the set of sequents recursively
derivable from the empty set {} of premises using the rule sets rlsa and rlsb,
which potentially could be different rule sets, but are both the same in our case.

Theorem 1 (gen step2 lem). An arbitrary property P holds of an arbitrary
formula B, and a pair of arbitrary sequents seqa and seqb if: B is in the well-
founded part of the subformula relation; sequent seqa is rlsa-derivable; sequent
seqb is rlsb-derivable; and for all formulae A, and all rlsa-rules (psl, cl)

and rlsb-rules (psr, cr), our induction step condition gen step2 ?P A ?sub

(derrec ?rlsa {}, derrec ?rlsb {}) ((psa, ca), (psb, cb)) holds:

[| ?B : wfp ?sub ;
?seqa : derrec ?rlsa {} ; ?seqb : derrec ?rlsb {} ;
ALL A. ALL (psa, ca):?rlsa. ALL (psb, cb):?rlsb.

gen_step2 ?P A ?sub (derrec ?rlsa {}, derrec ?rlsb {})
((psa, ca), (psb, cb)) |] ==> ?P ?B (?seqa, ?seqb)

Next we define the general property P to be that the sequent that results
from multi-cutting cl and cr on cut-formula A is rls-derivable.

Definition 3 (mcd rls). The predicate mcd ?rls ?A (?cl, ?cr) means that
the conclusion Xl,Xr � B of a multicut-instance is recursively derivable from
the empty set of premises using rule set rls if cl = Xl � A and cr = Xr, A

n � B,
where n > 0, are the left and right premises, respectively, of the multicut:

354 J.E. Dawson and R. Goré

mcd ?rls ?A (?cl, ?cr) = (ALL Xl Xr n B.
?cl = (Xl |- ?A) & ?cr = (Xr + times (Suc n) {#?A#} |- B)

--> (Xl + Xr |- B) : derrec ?rls {})

Multicut admissibility is mca, which requires that cl and cr are derivable.

Definition 4 (mca). For any rule set rls, any formula A, and any sequents
cl and cr, the predicate mca rls A (cl, ?cr) means: if cl and cr are rls-
derivable then mcd rls A (cl, cr) holds:

mca ?rls ?A (?cl, ?cr) = (?cl : derrec ?rls {} -->
?cr : derrec ?rls {} --> mcd ?rls ?A (?cl, ?cr))

Using multicut instead of cut avoids the difficulty caused by the contraction rule.

3.4 Modular Multicut Instances

The file LRica.ML is relevant here. Bimbó and Dunn [BD12] begin with the
sequent calculus LR→ and its slight extension LRt

→. Now when admissibility of
cut, or of any other rule, holds of a calculus, it does not necessarily hold in a
larger calculus. But each proof-step in cut-admissibility for LR→ is mimicked in
LRt

→, requiring extra steps only for the extra rules contained in LRt
→.

From Theorem 1, proving cut-admissibility requires proving gen step2 (mcd
rls) for each possibility of the last rules used to derive the premises of the pro-
posed cut. We now show how to express these results in a way which allows them
to be used for any containing logic. We refer to the diagram above Definition 2.

Lemma 1 (gsm impR R). If the rule set rls contains (�→), and the rule ρr on
the right is an instance of the (�→) rule, then gen step2 (mcd rls) holds:

impR <= ?rls
==> gen_step2 (mcd ?rls) ?A ?any (?drsl, derrec ?rls {})
((?psl, ?cl), ([mins ?G ?alpha |- ?H], ?alpha |- ?G -> ?H))

Notice that it does not matter how the left premise cl is derived, just that (as
contained in the definition of gen step2) cut-admissibility (in the sense of mcd,
not mca), holds between it and the premises psr of the final rule ρr on the right.
The term ?drsl is derrec ?rls { } in this proof: see Definition 2.

The form of the theorem indicates which part of the inductive hypothesis is
used: for example, the third argument of gen step is either ?any or ipsubfml
depending on whether or not cut-admissibility for subformulae is needed.

4 Various Machine-Checked Results

The Calculi LR→ and LRt
→

Definition 5 (LRit). A rule instance psc is in the calculus LRit (LRt
→) if it

is in the calculus LRi (LR→) or is an instance of the rule (t �)or (� t):

Issues in Machine-Checking the Decidability of Implicational Ticket 355

inductive "LRit"
intrs

LRi "psc : LRi ==> psc : LRit"
tL "psc : tL ==> psc : LRit"
tR "psc : tR ==> psc : LRit"

Theorem 2 (mca LRi). The sequent calculus LR→ enjoys multi-cut admissibil-
ity: mca LRi ?A (?cl, ?cr).

Theorem 3 (mca LRit). The calculus LRit enjoys multicut-admissibility:
mca LRit ?A (?cl, ?cr).

Corollary 1 (Theorem 2.2 of [BD12]). The single-cut rule is admissible in
LR→ and LRt

→: if Γ1 � A and Γ2, A � C are derivable then so is Γ1, Γ2 � C.

The Calculi [LR→] and [LRt
→]. The file LRisbcca.ML is relevant here.

These calculi modify LR→ and LRt
→ by deleting the contraction rule (W �),

but modifying the (→�) rule into a new rule called [→�] that allows a limited
amount of contraction. Bimbó and Dunn [BD12, Theorem 2.4] state that the cut
rule is admissible, by a proof similar to that for LRt

→ [BD12, Theorem 2.2]. We
were unable to prove the result in this way but we were able to prove contraction-
admissibility instead using a technique similar to that for cut-admissibility, but
simpler, as it is a property of one sequent, not two. Again, there are two versions.

Definition 6 (lcd). For any rule set rls, and any formula A, and any sequent
c, the predicate lcd rls A c means: for all multisets X and all formulae B, if c
is X,A,A � B then the sequent X,A � B is rls-derivable.

lcd ?rls ?A ?c == ALL X B. ?c =
(X + {#?A#} + {#?A#} |- B) --> (X + {#?A#} |- B) : derrec ?rls {}

Definition 7 (lca). For any rule set rls, and any formula A, and any sequent
c, the predicate lca rls A c means: for all multisets X and all formulae B, if c
is rls-derivable then c enjoys lcd rls A c:

lca ?rls ?A ?c == ?c : derrec ?rls {} --> lcd ?rls ?A ?c

Definition 8 (LRisb and LRitsb). The rules of the sequent calculus LRisb

(resp. LRitsb) are those of LRi, Definition 1 (resp. LRit, Definition 5) omitting
the ((W�)) rule, and changing the (→�) rule to the rule [→�] (see Fig. 2)

inductive "LRisb"
intrs id "psc : iid_rls ==> psc : LRisb"

sbimpL "psc : sbimpL ==> psc : LRisb"
impR "psc : impR ==> psc : LRisb"

inductive "LRitsb"
intrs LRisb "psc : LRisb ==> psc : LRitsb"

tL "psc : tL ==> psc : LRitsb"
tR "psc : tR ==> psc : LRitsb"

356 J.E. Dawson and R. Goré

Theorem 4 (lca LRisb and lca LRitsb). The contraction rule is admissible
in the calculi LRisb and LRitsb: lca LRisb ?A ?c and lca LRitsb ?A ?c.

Having proved contraction admissibility for LRisb and LRitsb, we prove their
equivalence to LRi and LRit respectively as follows.

Theorem 5 (LRi LRisb, LRisb LRi, LRisb eqv LRi). Each rule from LRi/
LRisb is admissible/derivable in LRisb/LRi. So LRi and LRisb are equivalent.

Theorem 6 (LRit LRitsb, LRitsb LRit). Each rule from LRit/LRitsb is
admissible/derivable in LRitsb/LRit, so LRit and LRitsb are equivalent.

These give part of [BD12, Lemma 2.5] and give [BD12, Lemma 2.4].

Theorem 7 (mca LRisb and mca LRitsb). Both LRisb and LRitsb enjoy
multicut-admissibility: mca LRisb ?A (?cl, ?cr) and mca LRitsb ?A (?cl, ?cr).

Corollary 2 (Kripke 1959). The single-cut rule is admissible in [LR→] and
[LRt

→]: if Γ1 � A and Γ2, A � C are derivable then so is Γ1, Γ2 � C.

The Calculi LT→ and LT©t
→ . The file LTitca.ML is relevant here. We now

need to encode structures with a hole and encode consecutions and rules built
from consecutions where the action happens at the hole. We have explained
how to achieve this for nested sequent calculi elsewhere [DCGT14] and so the
sequel is rather terse. The main point here is that all the action happens in the
antecedent and so we concentrate on the relation holding between such contexts.

Definition 9 (sctxt). If (a, b) ∈ r then (a, b) ∈ sctxt r. Every (a, b)

∈ sctxt r can be extended by prefixing/postfixing with an arbitrary context C.

consts sctxt :: "’f structr relation trf"
(* closure of rule structure relation under context *)
inductive "sctxt r" intrs

scid "(a, b): r ==> (a, b) : sctxt r"
scL "(a, b): sctxt r ==> (C;a, C;b) : sctxt r"
scR "(a, b): sctxt r ==> (a;C, b;C) : sctxt r"

A structure with a hole (a context) is turned into a consecution by simply
adding a turnstile and a singleton on the right as follows. The relation between
the antecedents is also retained.

Definition 10 (lctxt). The set lctxt r is the smallest set of rule instances
obtained by extending every pair (As, Bs) ∈ sctxt r into the rule instance
([As |- E], Bs |- E) with premise As |- E and conclusion Bs |- E.

consts lctxt ::
"’f structr relation => (’f structr,’f) sequent psc set"

inductive "lctxt r" intrs
I "(As, Bs) : sctxt r ==> ([As |- E], Bs |- E) : lctxt r"

Issues in Machine-Checking the Decidability of Implicational Ticket 357

We define LTit lc as the pairs (X,Y) giving us rules of the form
at right. Then lctxt LTit lc is the set of such deep structural
rules in LTit. First, LTit lcsub are the pairs (X,Y) which form
rules of the form at right where X and Y consist only of substi-
tutable structure variables (i.e. unlike the rules involving t).

U{X} � C

U{Y } � C

Definition 11. LTit lcsub is the smallest set of left-context action (pairs of
structural transformations) instances of the (combinator) permutations below.

inductive "LTit_lcsub" (* fully substitutable rules *)
intrs B "psc : lcB ==> psc : LTit_lcsub"

Bd "psc : lcBd ==> psc : LTit_lcsub"
W "psc : lcW ==> psc : LTit_lcsub"

Here, we define lcB, lcBd and lcW to give us the rules (B�;), (B′ �;) and (W�;).
Next, we define the separate relation lcC to give (C �;) similarly:

inductive "lcB" intrs I "(Bs; (Cs; Ds), Bs; Cs; Ds) : lcB"
inductive "lcBd" intrs I "(Bs; (Cs; Ds), Cs; Bs; Ds) : lcBd"
inductive "lcW" intrs I "(Bs; Cs; Cs, Bs; Cs) : lcW"
inductive "lcC" intrs I "(Bs; Cs; Ds, Bs; Ds; Cs) : lcC"

Here, we elide parentheses by associating to the left and writing (Bs; (Cs;
Ds), Bs; Cs; Ds) instead of ((Bs; (Cs; Ds)), (Bs; Cs; Ds)). So we now
have the permutations that correspond to the actions that happen at the hole.
We now need to turn these actions into rules formed from consecutions.

Definition 12 (LTit lc). LTit lc is the smallest set of rule instances psc

formed by extending hole permutation pairs into consecution rules

inductive "LTit_lc"
intrs sub "psc : LTit_lcsub ==> psc : LTit_lc"

KIt "psc : KIt T ==> psc : LTit_lc"
Mt "(Sf T; Sf T, Sf T) : LTit_lc"

inductive "KIt fml" intrs I "(Bs, Sf fml; Bs) : KIt fml"

Here, the construction Sf T casts the formula T into an atomic structure.
We now need to turn these pairs into proper rules built out of consecutions

and also add the usual logical rules.

Definition 13 (LTit). LTit is the smallest set of rule instances psc which are
instances of the logical rules lcid, lcimpR, lcimpL, and of the structural rules
corresponding to the combinator permutations B, Bd and W:

inductive "LTit" intrs
id "psc : lcid ==> psc : LTit"
impR "psc : lcimpR ==> psc : LTit"
impL "psc : lcimpL ==> psc : LTit"
lcrules "psc : lctxt LTit_lc ==> psc : LTit"

358 J.E. Dawson and R. Goré

Here, we have omitted the definitions of the consecution rules lcid, lcimpR,
lcimpL. Similar definitions to LTit allows us to compose the rule sets LRitsc,
and LTitc (omitted) corresponding to the consecution calculi LRt

→ and LT©t
→ .

4.1 A Structural Analogue of Multicut

Since these calculi contain a contraction rule we prefer to show admissibility
of multicut rather than cut. Following Dunn [Dun73], given premise sequents
X � A and Y � B, we consider the “multicut” that replaces each one of n
(rather than all) occurrences of A in Y by an X, to give Z (say):

X � A Y {A}{A} · · · {A} � B
(multicut)

Y {X}{X} · · · {X} � B

The relationship between Y and Z described above, is encoded as strrep.

Definition 14 (strrep)

consts strrep ::"’f structr pair set =>’f structr pair set"
inductive "strrep S" intrs

same "(s, s) : strrep S"
repl "p : S ==> p : strrep S"
sc "(u, v) : strrep S ==>

(x, y) : strrep S ==> (u; x, v; y) : strrep S"

This introduces the issue that where P{A} and C{A} are (say) the
antecedents of the premise and conclusion of a rule, and (P{A}, C{A}) ∈ sctxt
r for a relation (set of pairs) r, e.g. r = (B;(C;D), B;C;D) (for the (B �;)
rule), and multicutting with X � A would give C{X}, i.e. (C{A}, C{X}) ∈
strrep {(Sf A, X)}, then we need to “close the box” with P{X}, where
(P{A}, P{X}) ∈ strrep {(Sf A, X)} and (P{X}, C{X}) ∈ sctxt r. The
easiest instance is where r is a set of pairs which are entirely substitutable:
for example the pair {(B;(C;D), B;C;D)} for (B �;), rather than the pair
{A, (t;A)} for (KIt �;).

Lemma 2 (strrep sctxt lcsub)

[| (?PA, ?CA) : sctxt LTit_lcsub ;
(?CA, ?CX) : strrep {(Sf ?A, ?X)} |] ==>

EX PX. (?PA, PX) : strrep {(Sf ?A, ?X)}
& (PX, ?CX) : sctxt LTit_lcsub

Here LTit lcsub from Definition 13 is the set of pairs of the form found in
the rules (B �;), (B′ �;), (W �;) from LT t

→.
For the verum constant T, the corresponding result is (for example):

Lemma 3 (strrep sctxt KIt)

[| (?PA, ?CA) : sctxt (KIt T); ?A ~= T;
(?CA, ?CX) : strrep {(Sf ?A, ?X)} |] ==> EX PX.

(?PA, PX) : strrep {(Sf ?A, ?X)} & (PX, ?CX) : sctxt (KIt T)

Issues in Machine-Checking the Decidability of Implicational Ticket 359

So the multicut-admissibility property we prove inductively is mclcd.

Definition 15 (mclcd). The predicate mclcd means: if cl = Xl � A and cr =
Xr � B and Y is obtained from Xr by replacing some instances of A by Xl,
then Y � B is rls-derivable.

mclcd ?rls ?A (?cl, ?cr) =
(ALL Xl Xr Y B. ?cl = (Xl |- ?A) --> ?cr = (Xr |- B) -->
(Xr, Y) : strrep {(Sf ?A, Xl)} --> (Y |- B) : derrec ?rls {})

The version conditional on cl and cr being derivable is

Definition 16 (mclca). The predicate mclca says that if cl = Xl � A and
cr = Xr � B are rls-derivable, and Y is obtained from Xr by replacing some
instances of A by Xl, then Y � B is rls-derivable.

mclca ?rls ?A (?cl, ?cr) = (?cl : derrec ?rls {} -->
?cr : derrec ?rls {} --> mclcd ?rls ?A (?cl, ?cr))

4.2 Results for Consecution Calculi

The next result is an example of many results (omitted) expressed to apply to
a rule set which is a superset of a given set. Thus it and the omitted results
are useful for all of the consecution calculi LT t

→, LRt
→ and LT©t

→ . In fact we
combined all these results to get

Lemma 4 (gsmcl LTit). If rls contains LTit and rules (psl, cl) and (psr,

cr) are from LTit then gen step2 (mclcd rls) holds:

[| LTit <= ?rls ; (?psl, ?cl) : LTit ; (?psr, ?cr) : LTit |]
==> gen_step2 (mclcd ?rls) ?A ipsubfml

(derrec ?rls {}, derrec ?rls {}) ((?psl, ?cl), ?psr, ?cr)

Theorem 8 (mclca LTit). The consecution calculus LT t
→ enjoys multi-cut

admissibility: if the consecution V � A and the consecution U{A}{A} · · · {A} �
C are derivable then the consecution U{V }{V } · · · {V } � C is derivable.
mclca LTit ?A (?cl, ?cr).

We obtain the single-cut admissibility result for LT t
→ which is only asserted

by Bimbó and Dunn [BD12, line 10, p. 500] since it is proved elsewhere.

Corollary 3 (Bimbó and Dunn line 10, p. 500 [BD12]). The single-cut rule
is admissible in LT t

→: if the consecutions V � A and U{A} � C are derivable
then so is the consecution U{V } � C.

Extending the proof to the other calculi was quite easy since we only needed
to deal with the cases involving a few additional rules on either side.

Theorem 9 (mclca LTitc and mclca LRitsc). The consecution calculi LT©t
→

and LRt
→ ; enjoy multi-cut admissibility: if the consecution V � A and consecu-

tion U{A}{A} · · · {A} � C are derivable then so is U{V }{V } · · · {V } � C.

360 J.E. Dawson and R. Goré

mclca LTitc ?A (?cl, ?cr)
mclca LRitsc ?A (?cl, ?cr)

Corollary 4 (Bimbó and Dunn Theorem3.2 and Theorem5.2 [BD12]).
The single-cut rule is admissible in LRt

→ ; and LT©t
→ : if the consecutions V � A

and U{A} � C are derivable then so is the consecution U{V } � C.

5 A Proof Plan of the Crucial Lemma 11

A putative constructive proof plan of [BD13, Lemma 11] is in Fig. 4.

Fig. 4. Proof plan

Assertion 1. If there is an LT t
→-proof dt of A then there exists an [LRt

→]-proof
dtsb of A and there exists an LT t

→-proof dtt of A.

Proof Plan: We start with (1) some given LT t
→-proof dt of A. Applying π gives

us (2) there is some LRt
→-proof pi dt of A. By completeness of [LRt

→], (3) there

Issues in Machine-Checking the Decidability of Implicational Ticket 361

is an [LRt
→]-proof mk sb (pi dt) of A. Then, (4) there must be an irredundant

such [LRt
→]-proof mk lctr irred (mk sb (pi dt)) of A. Then (7) the function

dest sb transforms an [LRt
→]-proof into an LRt

→-proof by replacing the rule
[→�] with an instance of the (→�) rule followed by the appropriate number of
explicit applications of the contraction rule (W �) thereby “destroying the square
brackets”. Then (8) the function mk tRfree transforms the resulting LRt

→-proof
into a (� t)-free LRt

→-proof. Finally, tau transforms this (� t)-free LRt
→-proof

into possibly many LT©t
→ proofs, hence (11) there must exist some LT©t

→ -proof
dtt of A. But (12) why should (any such) dtt be an LT t

→-proof of A?
So, how to complete our proof plan? The first point is that the existence of

dt must lead to a dtt. There are two plausible approaches:

(a) dtt is equal, similar or somehow related to dt
(b) τ must produce enough proofs to guarantee that if there is an LT t

→-proof
for A, then τ will give us one. To guarantee this, we may have to apply τ to
all [LRt

→]-proofs of A (after applying dest sb and mk tRfree to them).

The discussion by Bimbó and Dunn regarding π mentioned in the last two
lines of the proof of their Lemma 11 seems only relevant to (a) above. The only
relevance of π can be for an argument along the lines shown in Fig. 4.

However, the proof of Lemma 11 of Bimbó and Dunn does not start with a
given LT t

→-proof dt of A, but appears to follow option (b) outlined above. That
is, it uses their Lemma 5 to deduce that A being a theorem of T t

→ implies the
existence of some [LRt

→]-proof of A. So it starts by (5) finding all irredundant
[LRt

→]-proofs of A, transforming them into LRt
→-proofs by simply making con-

tractions explicit, then transforming them to remove all applications of the (� t)
rule, and turning the resulting proofs into LT©t

→ -proofs by applying τ . Their
argument that one of these must be an LT t

→-proof requires considering “all per-
mutations” of the structures involved. But this whole procedure starts with only
those proofs which have the contractions allowed by the “square bracket” cal-
culi. Moreover, the decision procedure starts at point (5), but the proof of its
completeness starts at point (1), at the hypothesis that A is a theorem of T t

→.
Our proof plan and their proof align if at (5) we find all irredundant [LRt

→]-
proofs of A, and then (6) one of them, say δj , must be the one we are focusing
on. So (8) the result of applying both dest sb and mk tRfree to δ′

j is a (� t)-free
LRt

→-proof δ′′
j of A and (9) δ′′

j must be one of the proofs obtained by doing these
transformations to all of the proofs from (5). Finally, τ transforms any one of
these (� t)-free LRt

→-proofs into possibly many proofs and hence dtt is in τ(δ′′
j).

But again, (12), we cannot see why this final proof has to be an LT t
→-proof.

Indeed (12), and our proof plan would hold if we could prove that dt = dtt.

Assertion 2 (tau irr sb pi). If dt is an LT t
→-proof of A then

dt ∈ tau (mk tRfree (dest sb (mk lctr irred (mk sb (pi dt))))).

We cannot see why this assertion should hold. Allowing that it would be
true that dt is in τ(π(dt)), we should consider the differences between the

362 J.E. Dawson and R. Goré

proofs π(dt) and mk tRfree (dest sb (mk lctr irred (mk sb (pi dt)))).
Now mk lctr irred excises parts of a proof and uses height-preserving con-
traction admissibility, so it (probably) simplifies a proof. Also, mk tRfree makes
changes which are probably insignificant. But the dest sb (... mk sb ...)
combination moves contractions around, relative to occurrences of (→�), since
mk sb must remove contractions that are not immediately below (→�), and
then make up for their removal by inserting appropriate contractions immedi-
ately below the (→�) rules. But π alone does not do such movements by [BD13,
Lemma 6].

6 Conclusions

We have machine-checked all of the proof-theoretic claims made by Bimbó and
Dunn [BD12,BD13] including the three lemmata which are at the heart of
the decidability argument [BD13, Lemmata 8, 9, 10]. However, we were not
able to prove them in that order as our proof of Lemma 9 depends upon
our proof of Lemma 10. Moreover, we are yet to be convinced of the cor-
rectness of Lemma 11 which ensures that no LT t

→ derivation is lost in the
transformations of proofs which correspond to [LRt

→]-proofs: see Fig. 4. Our
files are at http://users.cecs.anu.edu.au/∼jeremy/isabelle/2005/bimbo-dunn/
and the URL address http://users.cecs.anu.edu.au/∼jeremy/isabelle/2005/
bimbo-dunn/ticket-instructions.html contains instructions for running them.

Acknowledgements. We are grateful to Katalin Bimbó, Michael Dunn and John
Slaney for their helpful comments. All remaining errors are our own.

References

[BD12] Bimbó, K., Dunn, J.M.: New consecution calculi for Rt
→. Notre Dame J.

Formal Logic 53(4), 491–509 (2012)
[BD13] Bimbó, K., Dunn, J.M.: On the decidability of implicational ticket entail-

ment. J. Symb. Logic 78(1), 214–236 (2013)
[DCGT14] Dawson, J.E., Clouston, R., Goré, R., Tiu, A.: From display calculi to deep

nested sequent calculi: formalised for full intuitionistic linear logic. In: Diaz,
J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 250–264.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44602-7 20

[DG02] Dawson, J.E., Goré, R.: Formalised cut admissibility for display logic.
In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002.
LNCS, vol. 2410, pp. 131–147. Springer, Heidelberg (2002). doi:10.1007/
3-540-45685-6 10

[DG10] Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi
applied to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR
2010. LNCS, vol. 6397, pp. 263–277. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-16242-8 19

[Dun73] Dunn, J.M.: (abstract only) A ‘Gentzen system’ for positive relevant impli-
cation. J. Symb. Logic 38, 356–357 (1973)

http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/bimbo-dunn/
http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/bimbo-dunn/ticket-instructions.html
http://users.cecs.anu.edu.au/~jeremy/isabelle/2005/bimbo-dunn/ticket-instructions.html
http://dx.doi.org/10.1007/978-3-662-44602-7_20
http://dx.doi.org/10.1007/3-540-45685-6_10
http://dx.doi.org/10.1007/3-540-45685-6_10
http://dx.doi.org/10.1007/978-3-642-16242-8_19
http://dx.doi.org/10.1007/978-3-642-16242-8_19

Issues in Machine-Checking the Decidability of Implicational Ticket 363

[Gor09] Goré, R.: Machine checking proof theory: an application of logic to logic.
In: Ramanujam, R., Sarukkai, S. (eds.) ICLA 2009. LNCS, vol. 5378, pp.
23–35. Springer, Heidelberg (2008). doi:10.1007/978-3-540-92701-3 2

[GR12] Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability logic
resolved. Rew. Symb. Logic 5(2), 212–238 (2012)

[Pad11] Padovani, V.: Ticket entailment is decidable. CoRR, abs/1106.1875 (2011)

http://dx.doi.org/10.1007/978-3-540-92701-3_2

Parameterized Provability in Equational Logic

Mateus de Oliveira Oliveira(B)

University of Bergen, Postboks 7803, 5020 Bergen, Norway
mateus.oliveira@uib.no

Abstract. In this work we study the validity problem in equational logic
from the perspective of parameterized complexity theory. We introduce
a variant of equational logic in which sentences are pairs of the form
(t1 = t2, ω), where t1 = t2 is an equation, and ω is an arbitrary ordering
of the positions corresponding to subterms of t1 and t2. We call such
pairs ordered equations. With each ordered equation, one may naturally
associate a notion of width, and with each proof of validity of an ordered
equation, one may naturally associate a notion of depth. We define the
width of such a proof as the maximum width of an ordered equation
occurring in it. Finally, we introduce a parameter b that restricts the
way in which variables are substituted for terms. We say that a proof is
b-bounded if all substitutions used in it satisfy such restriction.

Our main result states that the problem of determining whether an
ordered equation (t1 = t2, ω) has a b-bounded proof of depth d and width
c, from a set of axioms E, can be solved in time f(E, d, c, b) · |t1 = t2|.
In other words, this task is fixed parameter linear with respect to the
depth, width and bound of the proof. Subsequently, we show that given
a classical equation t1 = t2, one may determine whether there exists an
ordering ω such that (t1 = t2, ω) has a b-bounded proof, of depth d and
width c, in time f(E, d, c, b) · |t1 = t2|O(c). In other words this task is
fixed parameter tractable with respect to the depth and bound of the
proof, and is in polynomial time for constant values of width. This second
result is particularly interesting because the ordering ω is not given a pri-
ori, and thus, we are indeed parameterizing the provability of equations
in classical equational logic. In view of the expressiveness of equational
logic, our results give new fixed parameter tractable algorithms for a
whole spectrum of problems, such as polynomial identity testing, pro-
gram verification, automated theorem proving and the validity problem
in undecidable equational theories.

1 Introduction

Equational logic is a fragment of first order logic in which all variables are
implicitly universally quantified and in which the only relation is equality
between terms. Besides playing a central role in the meta-mathematics of alge-
bra [16], equational logic finds several applications in the verification of programs
[8,9,15,19], in the specification of abstract data types [6], in automated theo-
rem proving [3] and in proof complexity [4,11]. The success of most of these

c© Springer International Publishing AG 2017
R.A. Schmidt and C. Nalon (Eds.): TABLEAUX 2017, LNAI 10501, pp. 364–380, 2017.
DOI: 10.1007/978-3-319-66902-1 22

Parameterized Provability in Equational Logic 365

applications relies on a tight correspondence between equational logic and term
rewriting systems. Indeed, with each set of equations E, one can associate a term
rewriting system R(E) such that an equation t1 = t2 is valid in the equational
theory induced by E, if and only if there exists a term u to which both t1 and t2
can be reduced by the application of rewriting rules from R(E). In many cases
of theoretical and practical relevance, completion techniques such as the Knuth-
Bendix method [12] or unfailing completion [2] are able to produce rewriting
systems that are both Noetherian (terminating) and Church-Rosser (confluent).
In these systems each term t has a unique normal form n(t) that is guaranteed to
be found in a finite amount of time. Therefore determining whether an equation
t1 = t2 follows from a set of axioms E amounts to verifying if the normal forms
n(s) and n(t) are syntactically identical.

Completion techniques have witnessed a success in equational theorem prov-
ing [1,2,17], where for instance the EQP theorem prover was able to positively
settle Robbin’s conjecture [14,18], a problem in boolean algebra that had been
open for several decades. Another successful example is the Waldmeister theorem
prover which has won for several consecutive years the first place in equational
theorem proving competitions [10]. However, completion techniques also have
some drawbacks. The main drawback is that there exist very simple finitely pre-
sented algebraic structures for which the validity problem is undecidable [13].
Additionally, there exist even examples of finitely generated universal algebras,
such as the free modular lattice on five generators [7], which have undecidable
word problems.

In this work we study the validity problem in equational logic from the per-
spective of parameterized complexity theory. Our approach differs substantially
from techniques based in term rewriting, since our parameterization can be used
to tackle the validity problem in both decidable and undecidable theories, and
irrespectively of whether these theories can be associated with confluent and
terminating rewriting systems. On the other hand, our approach differs substan-
tially from exhaustive search since we do not impose any upper bound on the
size of the largest equation occurring in an equational logic proof. In view of the
wide applicability of equational logic, our results yield new parameterized algo-
rithms for a series of hard problems that can be reduced to the validity problem
in equational theories, such as, polynomial identity testing, program verification,
automatic theorem proving, etc.

1.1 Main Results

Our point of departure is the introduction of ordered equational logic, a syntactic
variant of classical equational logic. Instead of equations of the form t1 = t2,
sentences in ordered equational logic are ordered equations of the form (t1 =
t2, ω), where ω is an ordering of set of positions indexing subterms of t1 and
of t2. Despite such a seemingly technical definition, an ordered equation can be
represented just like a classical equation, but with a number above the leading
symbol of each of its subterms, as exemplified in Eq. 1. The number above the

366 M. de Oliveira Oliveira

leading symbol of each subterm is the order of the position corresponding to
that subterm.

6

f (
5
x,

1
g (

8
y,

2
x)) =

4

h (
7
x,

3
y) (1)

We will parameterize the provability of an ordered equation (t1 = t2, ω) with
respect to three measures: depth, width, and bound of a proof. The first parame-
ter, the depth, is simply the height of a proof tree for (t1 = t2, ω). The second
parameter, the width, is defined with basis on a graph theoretic representation
of ordered equations. With each ordered equation (t1 = t2, ω) one may naturally
associate a digraph G(t1 = t2, ω) by taking the union of the tree representations
of t1 and t2 and by adding special edges tagged as “variable edges” connecting
vertices corresponding to the same variable. The width of an equation (t1 = t2, ω)
is the cut-width of G(t1 = t2, ω) with respect to the ordering induced by ω on
its vertices. A proof of an ordered equation has width c if all ordered equations
used in the proof have width at most c. Finally, the third parameter, the bound,
is used to restrict the way in which the reflexive axiom, and the substitution
rules are applied. We say that a proof is b-bounded if all applications of the
reflexivity and substitution rules are b-bounded. Let |t1 = t2| denote the total
number of positions in t1 and t2. If E is a finite set of equations then we write
Ec,b

d � (t1 = t2, ω) to indicate that the ordered equation (t1 = t2, ω) can be
inferred from E via a b-bounded proof of depth d and width c. Our main result
is formally stated in Theorem 1.1 below.

Theorem 1.1. Let E be a finite set of equations and let d, c, b ∈ N. There is a
function f(E, d, c, b) such that for each ordered equation (t1 = t2, ω), one may
determine in time f(E, d, c, b) · |t1 = t2| whether Ec,b

d � (t1 = t2, ω).

In other words, Theorem 1.1 says that the problem of determining whether
an ordered equation has a b-bounded proof of depth d and width c, is fixed
parameter linear with respect to all three parameters. Next, in Theorem 1.2 we
will state a variant of Theorem 1.1 which can be used to address the validity
of equations in classical equational logic. Intuitively, this variant addresses the
problem of automatically determining the existence of an ordering ω such that
Ec,b

d � (t1 = t2, ω).

Theorem 1.2. Let E be a finite set of equations and d, c, b ∈ N. There is a func-
tion f(E, d, c, b) such that for each classical equation t1 = t2, one may determine
in time f(E, d, c, b) · |t1 = t2|O(c) whether there exists an ordering ω such that
Ec,b

d � (t1 = t2, ω).

In other words, for constant values of c, one can determine in polynomial
time whether a classical equation t1 = t2 admits an ordering ω such that the
ordered equation (t1 = t2, ω) has a b-bounded proof of depth d and width c. The
following proposition says that Theorem 1.2 provides a true parameterization for
the provability in classical equational logic, in the sense that such an ordering
ω is always guaranteed to exist provided the parameters c and b are sufficiently
large.

Parameterized Provability in Equational Logic 367

Proposition 1.3. Let E be a finite set of equations. An equation t1 = t2 is
derivable from E in depth d in classical equational logic if and only if there
exists an ordering ω of t1 = t2 and c, b ∈ N such that Ec,b

d � (t1 = t2, ω).

2 Ordered Equational Logic

In this section we will introduce ordered equational logic, a variant of equational
logic in which sentences are ordered equations. For clarity we will start by defin-
ing classical equational logic, and then lift it to its ordered version by making
minor adaptations.

2.1 Classical Equational Logic

Let Φ be an alphabet of function symbols and constant symbols and let X be a
set of variables with Φ ∩X = ∅. With each function symbol f ∈ Φ we associate
an arity a(f), which intuitively indicates the number of input arguments of
f . Constant symbols may be regarded as function symbols of arity 0. The set
Ter(Φ,X) of terms over Φ ∪X is inductively defined as follows: if x is a variable
in X then x is a term in Ter(Φ,X), if a is a constant symbol in Φ then a is a
term in Ter(Φ,X) and finally if f ∈ Φ is a function symbol of arity a(f) ≥ 1 and
t1, . . . , ta(f) are terms in Ter(Φ,X), then f(t1, . . . , ta(f)) is a term in Ter(Φ,X).
The positions Pos(t) of a term t are sequences of integers defined inductively
as follows: If t is a variable or a constant symbol, then Pos(t) = {ε}, where
ε denotes the empty string. If f is a function symbol of arity a(f) ≥ 1 and
t = f(t1, t2, . . . , ta(f)), then Pos(t) = {ε} ∪ ⋃a(f)

i = 1{ip | p ∈ Pos(ti)}. The
sequences in Pos(t) are used to index subterms of t. The subterm of t at position
p is denoted by t[p] and is inductively defined as follows: in the basis case we have
t[ε] = t. Now if t = f(t1, t2, . . . , ta(f)) then t[ip] = ti[p] for 1 ≤ i ≤ a(f). We
denote by var(t) the set of variables appearing as sub-terms of t. A substitution
is a function σ : X → Ter(Φ,X) assigning to each variable x ∈ X a term σ(x) in
Ter(Φ,X). The action tσ of σ on a term t ∈ Ter(Φ,X) is inductively defined as
follows: xσ = σ(x) for each variable x ∈ X; aσ = a for each constant symbol
a ∈ Φ; f(t1, . . . , ta(f))σ = f(tσ1 , . . . , tσa(f)) for each function symbol f ∈ Φ of arity
a(f) ≥ 1 and terms t1, t2, . . . , ta(f) ∈ Ter(Φ,X). The support of a substitution
σ is the set supp(σ) ⊆ X of all variables that are not mapped to themselves. In
this work we will only be concerned with substitutions with finite support. A
substitution σ is pure if var(σ(x)) ∩ var(σ(y)) = ∅ for x �= y. Additionally, we
assume that whenever a pure substitution σ is applied to an equation t1 = t2,
[var(t1) ∪ var(t2)] ∩ var(σ(x)) = ∅ for every x ∈ X, meaning that in a pure
substitution all introduced variables are new. A substitution ρ : X → X in which
each variable is mapped to another variable is called a renaming of variables.
We notice that we allow several variables to be mapped to the same variable,
and thus we do not require a renaming of variables to be injective, as it is often
assumed in other contexts. Also, as opposed to pure substitutions, when applying
a renaming of variables ρ to an equation t1 = t2, we allow ρ(x) ∈ var(t1)∪var(t2).
Any substitution α can be cast as α = ρ ◦ σ where σ is a pure substitution and

368 M. de Oliveira Oliveira

ρ a renaming of variables. Thus unless explicitly stated otherwise, whenever we
use the term substitution we will mean a pure substitution.

Let E be a finite set of equations. Then the equational theory T (E) induced
by E is the smallest set of equations containing E and which is closed under the
following rules of inference:

∀t1 = t2 ∈ E, t1 = t2
Eq t = t

Ref
t11 = t12 . . . t

a(f)
1 = t

a(f)
2

f(t11, . . . , t
a(f)
1) = f(t12, . . . , t

a(f)
2)

Cong

t1 = t2
t2 = t1

Sym
t1 = t2 t2 = t3

t1 = t3
Tr

t1 = t2
tσ1 = tσ2

Sub
t1 = t2
tρ1 = tρ2

Ren

In the rules of inference above, f is an arbitrary function symbol in Φ, σ
is any pure substitution and ρ is any renaming of variables. Observe that the
substitution rule defined above together with the renaming rule are equivalent
to the substitution rule that is usually found in the literature, and which does
not require substitutions to be pure. The only reason we consider a split version
of the substitution rule is the fact that in this way some proofs will be simplified.

2.2 Ordered Terms and Ordered Equations

An ordered term is a pair (t, ω) where t is a term in Ter(Φ,X) and ω : Pos(t) →
{1, . . . , |Pos(t)|} is a bijection associating with each position p in Pos(t) an order
ω(p). If T = {ti}i∈I is an indexed set of terms in Ter(Φ,X) for a finite set I ⊆ N

of indexes, then the set of positions of T is defined as Pos(T) =
⋃

i∈I {ip | p ∈
Pos(ti)}.

If ip ∈ Pos(T) then we set T [ip] = ti[p]. An indexed subset of T is an
indexed set T ′ = {tj}j∈J for J ⊆ I. A subterm ordering of T is a bijection
ω : Pos(T) → {1, . . . , |Pos(T)|}. If T is an indexed set of terms, T ′ is an indexed
subset of T and ω is a subterm ordering of T then we let ω|T ′ be the subterm
ordering induced by ω on Pos(T ′). In other words, ω|T ′ is the unique subterm
ordering of Pos(T ′) such that for each two positions p1, p2 in Pos(T ′), we have
that ω|T ′(p1) < ω|T ′(p2) if and only if ω(p1) < ω(p2).

If t is a term then the leading symbol ls(t) is defined as follows: If t = x for
a variable x then ls(t) = x otherwise, if t = f(t1, t2, . . . , tk) then ls(t) = f . We
say that two terms t and t′ are syntactically equal if Pos(t) = Pos(t′) and if
ls(t[p]) = ls(t′[p]) for each p ∈ Pos(t). We will write t1

Δ= t2 to denote that t1 is
syntactically equal to t2. An ordered equation is a pair (t1 = t2, ω) where t1 = t2
is an equation and ω : Pos({t1, t2}) → {1, . . . , |Pos({t1, t2})|} is a subterm
ordering of {t1, t2}. In Eq. 2 below, we show an ordered equation (f(x, g(z, x)) =
g(x, y) , ω) and the subterms orderings induced by ω on Pos(f(x, g(z, x))) and
on Pos(g(x, y)) respectively. The order of the position corresponding to each
subterm is indicated by a number over the leading symbol of such subterm.

6

f (
5
x,

1
g (

8
z,

2
x)) =

4
g (

7
x,

3
y)

4

f (
3
x,

1
g (

5
z,

2
x))

2
g (

3
x,

1
y) (2)

Parameterized Provability in Equational Logic 369

We denote by ord(t) the set of all subterm orderings of a term t; by ord(T)
the set of all subterm orderings of a set of terms T ; and by ord(t1 = t2) the
set of all subterm orderings of {t1, t2}. An ordered substitution is a pair (σ,Ω)
where σ is a substitution and Ω is a function that associates with each variable
x ∈ supp(σ) a subterm ordering Ωx of the term σ(x). In this sense, the pair
(σ(x), Ωx) is an ordered term for each x ∈ X. If T is a set of terms, and x
is a variable in X then we let Pos(T, x) be the subset of positions in Pos(T)
corresponding to the variable x. More precisely,

Pos(T, x) = {p ∈ Pos(T) | T [p] = x}.

2.3 Ordered Equational Logic

Now we are in a position to introduce ordered equational logic. In this logic
sentences are ordered equations. The rules of inference in ordered equational logic
mimic very closely the rules of inference in classical equational logic, except for
some minor adaptations to make these rules meaningful in the ordered setting.

Equation Rule:

(t1 = t2, ω)
o-Equation

for each t1 = t2 ∈ E and each ω ∈ ord({t1, t2})

Observe that the only difference with respect to the Equation rule in classical
equational logic is that, since an equation can be ordered in several ways we need
to consider all such orderings.

Reflexivity Rule:

(t1 = t2, ω)
o-Reflexivity

provided that t1
Δ= t2, ω ∈ ord(t1 = t2) and ω|{t1} = ω|{t2}

For instance, while the ordered equation
1

f (
3
x,

5
y) =

2

f (
4
x,

6
y) is an axiom

because the restriction of the ordering to both sides yields the ordered term
1

f (
2
x,

3
y), the ordered equation

1

f (
4
x,

5
y) =

3

f (
2
x,

6
y) is not an axiom because the

restriction to the left term yields
1

f (
2
x,

3
y) while the restriction to the right term

yields
2

f (
1
x,

3
y).

Symmetry Rule:
(t1 = t2, ω)
(t2 = t1, ω)

o-Symmetry

For instance if
1

f (
4
x,

5
y) =

3
g (

2
x,

6
y) then we can infer that

3
g (

2
x,

6
y) =

1

f (
4
x,

5
y).

Transitivity Rule:

(t1 = t3, ω1) (t3 = t2, ω2)
(t1 = t2, ω3)

o-Transitivity

370 M. de Oliveira Oliveira

provided ∃ ω ∈ ord({t1, t2, t3}) such that ω1 = ω|{t1,t3}, ω2 = ω|{t2,t3}, and
ω3 = ω|{t1,t2}. For instance, the following is a valid application of the transitivity
rule

5

f (
1
x,

6
y) =

3
g (

2
y,

4
z)

2
g (

1
y,

4
z) =

5

h (
6
z,

3
w)

5

f (
1
x,

6
y) =

3

h (
4
z,

2
w)

since the ordering on each equation above is induced by the following ordered
triple of terms:

{
8

f (
1
x,

9
y) ,

3
g (

2
y,

5
z) ,

6

h (
7
z,

4
w)}

Congruence Rule:

(t11 = t12, ω1) . . . (ta(f)1 = t
a(f)
2 , ωa(f))

(f(t11, . . . , t
k
1) = f(t12, . . . , t

k
2), ω)

o-Congruence

provided ω|{ti
1,ti

2} = ωi for each i ∈ {1, . . . , a(f)}.

In other words when restricting the ordering ω to the positions of each pair
of subterms {ti1, t

i
2}, this restriction should be equal to the original ordering ωi

assigned to ti1 = ti2. The following is a valid application of the congruence rule.

1
a (

3
x) =

2

b (
4
x)

2
c (

1
y) =

4

d (
3
y)

2

f (
1
a (

7
x),

5
c (

3
y)) =

8

f (
4

b (
9
x),

10

d (
6
y))

Substitution Rule:
We recall that according to the notation introduced in Sect. 2.2, {t1, t2}[p]

denotes the subterm of either t1 or t2 at position p. If p = 1p′ for some p′ then
{t1, t2}[p] denotes the subterm t1[p′] of t1. Otherwise, if p = 2p′ then {t1, t2}[p]
denotes the subterm t2[p′] of t2. We also recall that Pos({t1, t2}, x) denotes the
set of all the positions p of {t1, t2} in which instances of the variable x occur.
Therefore, if σ is a substitution, and p ∈ Pos({t1, t2}, x), then the subterm
{tσ1 , tσ2}[p] is (syntactically) equal to σ(x). Let (σ,Ω) be an ordered substitution.
The ordered substitution rule is defined as follows.

(t1 = t2, ω)
(tσ1 = tσ2 , ω′) o-Substitution

provided that

(i) ω = ω′|{t1,t2}.
(ii) For each p ∈ Pos({t1, t2}, x), ({tσ1 , tσ2}[p] , ω′|{tσ

1 ,tσ
2 }[p]) = (σ(x), Ωx)

Condition (i) says that the subterm ordering induced by ω′ on the positions
of the original equation t1 = t2 is precisely ω. In other words, ω′ is an extension
of ω to the positions of tσ1 = tσ2 . Note that since Pos({t1, t2}) ⊆ Pos({tσ1 , tσ2}),

Parameterized Provability in Equational Logic 371

Condition (i) is well defined. Condition (ii) says that if a term σ(x) = u is
substituted for a variable x, then the ordering induced by ω′ on each substituted
instance of u in tσ1 = tσ2 is equal to the ordering Ωx. For instance, if (σ,Ω) is

an ordered substitution such that supp(σ) = {x} and σ(x) =
1

h (
2
z,

3
w), then the

following is a valid inference step,

1

f (
3
x,

5
y) =

2
g (

6
y,

4
x)

1

f (
3

h (
5
z,

7
w),

9
y) =

2
g (

10
y ,

4

h (
6
z,

8
w))

Note that the ordering induced by
1

f (
3

h (
5
z,

7
w),

9
y) =

2
g (

10
y ,

4

h (
6
z,

8
w)) on each

instance of h(z, w) is equal to
1

h (
2
z,

3
w).

Renaming Rule:
(t1 = t2, ω)
(tρ1 = tρ2, ω)

o-Renaming

In other words, when renaming a variable x with a variable y in an equation
t1 = t2, the numbering assigned to each occurrence of y in the new equation is
the same as the number assigned to the corresponding occurrence of x in t1 = t2.
For instance, if ρ(x) = y then the following is a valid inference step.

1

f (
4
x,

5
y) =

3

f (
2
x,

6
y)

1

f (
4
y,

5
y) =

3

f (
2
y,

6
y)

2.4 Proof Trees and b-boundness

Let E be a finite set of equations and (t1 = t2, ω) be an ordered equation. A
proof tree for (t1 = t2, ω) is a tree T = (V,E, l) where V is the set of nodes, E is
the set of arcs, and l is a function that labels the nodes in V in such a way that
the following conditions are satisfied.

1. If v is a leaf, then l(v) is either an ordered version of an axiom in E or it is
an equation of the form (t1 = t2, ω) where t1

Δ= t2 and ω|t1 = ω|t2 .
2. If v is an internal node then the ordered equation l(v) is obtained by the

application of some rule of inference to the equations labeling v′s children.

The depth of T is defined as the size of the longest path from the root of T to
some leaf of T. We say that an ordered equation (t1 = t2, ω) can be proved in
depth d if there exists a proof tree for (t1 = t2, ω) of depth at most d.

b-boundedness
Let T = {t1, . . . , tr} be a set with r instances of a term t. In other words, for

each i ∈ {1, . . . , r} we have that ti
Δ= t. We say that a subterm ordering ω of T

is b-bounded if for each position p ∈ Pos(t) and each i ∈ {1, . . . , r − 1} we have

372 M. de Oliveira Oliveira

that |ω(ip) − ω([i + 1]p)| ≤ b. In other words, the order assigned to the position
p of the term ti is at most b apart from the order assigned to the position p of

the term ti+1. For instance, the subterm ordering {1

h (
4
z,

7
w),

2

h (
5
z,

8
w),

3

h (
6
z,

9
w)}

is 1-bounded. We say that a reflexivity axiom (t1 = t2, ω) is b-bounded if ω is
a b-bounded subterm ordering of {t1, t2}. Let (σ,Ω) be an ordered substitution.

We say that an application (t1 = t2, ω)
(σ,Ω)−→ (tσ1 = tσ2 , ω′) of the substitution

rule is b-bounded if for every variable x ∈ supp(σ), the restriction of ω′ to the
set {{tσ1 , tσ2}[p]}p∈Pos(t1=t2,x) is b-bounded. In other words, for each variable x in
supp(σ), if we restrict the ordering ω′ to all those instances of σ(x) in the new
equation tσ1 = tσ2 , then this restricted ordering is b-bounded. For instance, let
1
g (

2
x,

3
y) =

4
g (

5
y,

6
x) be an ordered equation, and let x →1

h (
2
z,

3
w) be a substitution

that replaces the variable x with the ordered term
1

h (
2
z,

3
w) then the derivation

1
g (

2
x,

3
y) =

4
g (

5
y,

6
x) −→1

g (
2

h (
7
z,

9
w),

3
y) =

4
g (

5
y,

6

h (
8
z,

10
w)) (3)

is 1-bounded because if we restrict the ordering of the resulting equation to the

two instances of h(z, w) we get the 1-bounded ordering
1

h (
3
z,

5
w) =

2

h (
4
z,

6
w).

2.5 Graphs Associated with Terms and Equations

In this section we will associate digraphs with ordered terms and equations.
This association has two motivations. The first motivation is to eliminate the
need of using variable names. Two nodes of such a digraph represent the same
variable if and only if they are connected by a path. Indeed, since variables in
equations are implicitly universally quantified, equations that differ only up to
an injective renaming of variables are deemed equivalent. Two such equivalent
equations are associated with the same digraph. The second motivation is that,
by representing ordered equations as digraphs, we will be able to define and
manipulate infinite sets of equations within the framework of slice languages
which will be introduced in Sect. 3.

Let (t, ω) be an ordered term, x be a variable occurring in t, and p be a
position in Pos({t}, x). We denote by nextx

t,ω(p) the position in Pos({t}, x) with
smallest order after p. In other words ω(nextx

t,ω(p)) > ω(p) and there is no
other position p′ ∈ Pos({t}, x) such that ω(nextx

t,ω(p)) > ω(p′) > ω(p). Analo-
gously, if (t1 = t2, ω) is an ordered equation, x a variable occurring in t1 = t2,
and p a position in Pos({t1, t2}, x), we let nextx

t1=t2,ω(p) denote the position in
Pos({t1, t2}, x) with smallest order after p.

Graph Associated with a Term: The digraph G(t, ω) = (V,E, λ, ξ) associ-
ated with an ordered term (t, ω) is defined as follows: The vertex set V has a
vertex vp for each position p ∈ Pos(t). If t[p] = f(t1, t2, . . . , ta(f)) for some func-
tion symbol f , then we let λ label vp with f and add the directed edges (vp, vpi)
to E for 1 ≤ i ≤ a(f). Each such edge (vp, vpi) is labeled by ξ with the number i,
indicating that ti is the i-th argument of f . If t[p] = x for a variable x ∈ X then

Parameterized Provability in Equational Logic 373

the vertex vp is labeled by λ with the tag “var” indicating that vp is a variable
vertex. We note however that vp is not labeled with the variable x itself. Now we
add edges connecting vertices that correspond to the same variable. More pre-
cisely, to each variable x and each two positions p, p′ ∈ Pos(t, x) we add an edge
(vp, vp′) if and only if p′ = nextx

t,ω(p). Each such edge (vp, vp′) is labeled with
the tag inner-var indicating that it is an inner variable edge. In other words,
the graph G(t, ω) is constructed by taking the tree representation of the term
t and connecting the leaves of this tree corresponding to the same variable by
a sequence of inner-variable edges. Finally, the root vertex vε is tagged by λ as
being a “root”.

Graph Associated with an Equation: The graph G(t1 = t2, ω) associated
with an ordered equation (t1 = t2, ω) is intuitively constructed by taking the
disjoint union of the graphs G(t1, ω|t1) and G(t2, ω|t2), and by adding edges
to connect vertices that represent the same variable. Formally the construc-
tion proceeds as follows: Let G(t1, ω|t1) and G(t2, ω|t2) be the graphs associated
with the ordered terms (t1, ω|t1) and (t2, ω|t2) respectively. Let L(G(t1, ω|t1)) be
the graph derived from G(t1, ω|t1) by tagging all its edges and vertices with
the left symbol L, and R(G(t2, ω|t2)) be the graph derived from G(t2, ω|t2)
by tagging all its edges and vertices with the right symbol R. Now consider
the disjoint union L(G(t1, ω|t1))∪̇R(G(t2, ω|t2)) of these two graphs. Finally, we
connect the vertices of both graphs corresponding to the same variable using
outer-variable edges. More precisely, for each variable x and each two positions
p, p′ in Pos(t1 = t2, x) we add an edge (vp, vp′) if and only if p′ = nextx

t1=t2,ω(p).
We label each such edge with the tag “outer-var”, indicating that this edge is
an outer-variable edge. Observe that while the inner variable edges connect the
vertices in increasing order with respect to ω|t1 and ω|t2 respectively, the outer-
variable edges connect the vertices in increasing order with respect to the whole
ordering ω. Observe that if ω and ω′ are two distinct orderings of an equation
t1 = t2, then the graphs G(t1 = t2, ω) and G(t1 = t2, ω

′) may differ, since the
disposition of the variable edges depends on the ordering assigned to t1 = t2. In
Fig. 1 we show the graphs associated with the equation x · (y + z) = x · y + x · z
according to two possible orderings.

Width of Equations: If G = (V,E) is a digraph, then for each two sets V1, V2 ⊆
V we let E(V1, V2) be the set of edges of G with one endpoint in V1 and another
endpoint in V2. If ω = (v1, v2, . . . , vn) is an ordering of the vertices of G then
the cut-width of G with respect to ω is defined as

cw(G,ω) = max
j

|E({v1, . . . , vj}, {vj+1, . . . , vn})|.

If (t1 = t2, ω) is an ordered equation then the ordering ω induces an ordering ωG

on the vertices of the graph G(t1 = t2, ω) by setting ωG(vp) < ωG(vp′) if and only
if ω(p) < ω(p′). The width w(t1 = t2, ω) of an ordered equation (t1 = t2, ω) is
defined as the cut-width of the graph G(t1 = t2, ω) with respect to the ordering
ωG. More precisely, w(t1 = t2, ω) = cw(G(t1 = t2, ω), ωG).

374 M. de Oliveira Oliveira

Fig. 1. Two ordered versions of the equation ⊕(x, ⊗(y, z)) = ⊕(⊗(x, y), ⊗(x, z))
expressing that the function symbol ⊕ is distributive with respect to ⊗, and their
respective associated graphs. The edges represented by full bold lines are inner-variable
edges. The edges represented by dashed lines are outer variable edges. The width of
both ordered equations is 6.

3 Equational Slice Languages

We will represent infinite families of equations using the framework of slice
languages [5]. Let Φ be a ranked alphabet. Let Γ1(Φ) = Φ ∪ {var , L,R,
root , connector} where var , L,R, root , connector are the tags defined in Sect. 2.5
to indicate that a vertex of a graph is a variable vertex, a left vertex, a
right vertex, a root vertex or a connector vertex respectively. Analogously let
Γ2(Φ) = {1, . . . , a(Φ)}∪{inner − var, outer − var, L,R} where a(Φ) denotes the
largest arity of a function symbol in Φ and inner-var, outer-var, L and R are
the tags defined in Sect. 2.5 to indicate that an edge is an inner-variable edge,
an outer-variable edge, a left edge and a right edge respectively. Let c ∈ N.

A (c, Φ)-slice is a digraph S = (V,E, λ, ξ, s, t, [C, I,O]) comprising a set of
vertices V , a set of edges E, a vertex labeling relation λ ⊆ V × Γ1(Φ), an edge
labeling relation ξ ⊆ E×Γ2(Φ), and total functions s, t : E → V associating with
each edge e ∈ E a source vertex s(e) and a target vertex t(e). Alternatively, we
say that s(e) and t(e) are the endpoints of e. The vertex set V is partitioned into
three disjoint subsets: an in-frontier I ⊆ V a center C ⊆ V and an out-frontier
O ⊆ V . A slice is subject to the following restrictions.

1. Each frontier vertex in I ∪ O is tagged by λ with a number in {1, . . . , c} in
such a way that no two vertices in the same frontier are tagged with the same
number. Additionally, no frontier vertex receives more than one tag.

Parameterized Provability in Equational Logic 375

2. Each frontier vertex in I ∪ O is the endpoint of exactly one edge.
3. No edge has both endpoints in the same frontier.

We say that S is initial if its in-frontier is empty and final if its out-frontier is
empty. We say that S is a unit slice if |C| = 1. We denote by Σ(c, Φ) the set
of all unit (c, Φ)-slices. Note that Σ(c, Φ) has at most 2O(c log c) slices where the
hidden constant in the exponent depends on the size of Φ. We denote by Σ(c, Φ)∗

the set of all finite sequences of (c, Φ)-slices.
Let S be a slice with frontiers (I,O). Let v be a vertex in I labeled with

number i. Then we denote by e(S, I, i) the unique edge which has v as endpoint.
Analogously, if v ∈ O is labeled with i, then we let e(S, O, i) be the unique edge
that has v as endpoint. A slice S1 = (V1, E2, λ1, ξ1, s1, t1, [C1, I1, O1]) with fron-
tiers (I1, O1) can be glued to a slice S2 = (V2, E2, λ2, ξ2, s2, t2, [C2, I2, O2]) with
frontiers (I2, O2) provided the following conditions are satisfied: (i) λ1(O1) =
λ2(I2); (ii) for each i ∈ λ(O1), ξ1(e(S1, O1, i)) = ξ2(e(S2, I2, i)); and (iii) for
each i ∈ λ(O1), either the target of e(S1, O1, i) lies in O1 and the source of
e(S2, I2, i)I2, or the source of e(S1, O1, i) lies in O1 and the target of e(S2, I2, i)
in I2. If S1 can be glued to S2, then we let S1 ◦ S2 be the slice obtained by
merging, for each i ∈ λ1(O1), the edge e(S1, O, i) with the edge e(S2, I, i) into a
single edge e(S1,S2, i).

A unit decomposition over Σ(c, Φ) is a sequence U = S1S2...Sn ∈ Σ(c, Φ)∗

where S1 is an initial slice, Sn is a final slice and for each i ∈ {1, ..., n − 1},
Si can be glued to Si+1. With each unit decomposition U we may associate a
graph

◦
U= S1 ◦ S2 ◦ ... ◦ Sn which is obtained by gluing each two consecutive

slices in U. We say that U is compatible with an ordered equation (t1 = t2, ω)
if

◦
U= G(t1 = t2, ω) and for each position p ∈ Pos({t1, t2}), the vertex vp of

G(t1 = t2, ω) is the center vertex of the slice Sω(p).
A slice language is a subset of L ⊆ Σ(c, Φ)∗ consisting only of unit decompo-

sitions. If all unit decompositions in L are compatible with some ordered equa-
tion, then we say that L is an equational slice language. The set of all ordered
equations derived from an equational slice language L is defined as

Leq = {(t1 = t2, ω) | ∃U ∈ L such that U is compatible with (t1 = t2, ω)}.

A slice automaton is a finite automaton A over Σ(c, Φ) whose language L(A)
is a slice language. A slice regular expression is a regular expression over Σ(c, Φ)
whose language L(E) is a slice language (Fig. 2). We let Leq(A) and Leq(E) be
the set of equations compatible with unit decompositions in L(A) and L(E)
respectively.

3.1 Equational Operators

Let L be a slice language over Σ(c, Φ) representing a set Leq of ordered equations.
Below, we will define equational slice languages Syc(L), Coc(L), Trc(L), Rec(L)
and Suc,b(L), which represent the set of all ordered equations of width c that can

376 M. de Oliveira Oliveira

Fig. 2. An example of how to represent infinite sets of equations via regular slice
languages. (i) A regular expression over slices. (ii) A unit decomposition obtained
after two iterations of the expression between parenthesis. This unit decomposition
represents the equation f(x1, h(x2, h(x3, x4))) = g(x1, h(x2, h(x3, x4))).

be obtained from Leq by an application of the symmetry rule, congruence rule,
transitivity rule, renaming rule and b-bounded substitution rule, respectively.

Syc(L) = {U ∈ L(t2 = t1, ω) | ω ∈ ord(t1 = t2, c), L(t1 = t2, ω) ∩ L �= ∅}

For each function symbol f ∈ Φ of arity a(f), let

Coc
f (L) = {U ∈ L(f(t1) = f(t2), ω) | t1 = (t11, . . . , t

a(f)
1), t2 = (t12, . . . , t

a(f)
2),

ω ∈ ord(f(t1) = f(t2), c), ∀ i ∈ {1, . . . , a(f)} L(ti
1 = ti

2, ω|{ti
1,ti

2}) ∩ L �= ∅ }.

The slice language Coc(L) is obtained by taking the union of Coc
f (L) over

all function symbols f ∈ Φ.

Coc(L) =
⋃

f∈Φ

Coc
f (L).

Trc(L) = {U ∈ L(t1 = t2, ω|{t1,t2}) | ∃ t3, such that ω ∈ ord({t1, t2, t3}), ω|{t1,t2} ∈
ord(t1 = t2, c), L(t1 = t3, ω|{t1,t3}) ∩ L �= ∅, L(t3 = t2, ω|{t2,t3}) ∩ L �= ∅}

Rec(L) = {U ∈ L(tρ1 = tρ2, ω) | ρ is a renaming of variables,
ω ∈ ord(tρ1 = tρ2, c),L(t1 = t2, ω) ∩ L �= ∅}

Below we write (t1 = t2, ω)
(σ,Ω)−−−→ (tσ1 = tσ2 , ω′) to indicate that an ordered

equation (tσ1 = tσ2 , ω′) follows from (t1 = t2, ω) by an application of the ordered
substitution rule (σ,Ω).

Suc,b(L) = {U ∈ L(tσ
1 = tσ

2 , ω′) | (σ, Ω) is a b -bounded ordered substitution,

L(t1 = t2, ω) ∩ L �= ∅, ω′ ∈ ord(tσ
1 = tσ

2 , c), (t1 = t2, ω)
(σ,Ω)−−−→ (tσ

1 = tσ
2 , ω′)}

Parameterized Provability in Equational Logic 377

Let E be a finite set of equations over an alphabet Φ of function symbols.
We denote by Lc,b

ref (E) the set of all unit decompositions over Σ(c, Φ) that are

compatible with some ordered equation (t1 = t2, ω) in which t1
Δ= t2 and in

which ω is a b-bounded ordering of t1 = t2. We let L(E, d, c, b) denote the set of
all unit decompositions in L(Σ(c, Φ)) that can be deduced from E by an ordered
equational logic proof of depth d, width c and bound b. The set L(E, d, c, b) can
be inductively defined as follows:

L(E, 0, c, b) = Lc,b
ref (Φ) ∪

⋃

t1=t2∈E

L(t1 = t2, c) (4)

L(E, d, c, b) = L(E, d − 1, c, b) ∪ Syc(L(E, d − 1, c, b))
∪ Trc(L(E, d − 1, c, b))
∪ Coc(L(E, d − 1, c, b))
∪ Rec(L(E, d − 1, c, b))
∪ Suc,b(L(E, d − 1, c, b))

(5)

Intuitively, the language L(E, 0, c, b) contains all unit decompositions of
width at most c corresponding to equations in E, together with all unit decom-
positions compatible with a b-bounded ordered versions of equations of the form
t1

Δ= t2 (i.e. reflexivity axioms). For each d ∈ N, the language L(E, d, c, b) con-
sists of all unit decompositions that are compatible with ordered equations of
width at most c which can be inferred from equations in Leq(E, d−1, c, b) by one
application of the symmetry rule, transitivity rule, congruence rule, renaming
rule or b-bounded substitution rule.

4 Proofs of Our Main Results

In this section we will prove Theorems 1.1 and 1.2. Recall that Theorem 1.1
states that one can determine in time f(E, d, c, b) · |t1 = t2| whether an ordered
equation (t1 = t2, ω) has a b-bounded proof of depth d and width c. On the
other hand, Theorem 1.2 states that one can determine in time f(E, d, c, b) ·
|t1 = t2|O(c) whether a classical equation t1 = t2 can be proved by a b-bounded
oriented proof of depth d and width c. The following Lemma, whose proof is quite
intricate, states that the equational operators Syc,Trc, Coc, Rec and Suc can
be effectively realized on slice automata.

Lemma 4.1 (Equational Operators Lemma). Let Φ be an alphabet of func-
tion symbols, a(Φ) be the largest arity of a function symbol in Φ and L be an
equational slice language over Σ(c, Φ) accepted by a slice automaton A.

1. One can construct an automaton Syc(A) on O(|A|) states accepting Syc(L).
2. One can construct an automaton Trc(A) on O(|A|2) states accepting Trc(L).
3. One can construct an automaton Coc(A) on |Φ| · 2O(c log c) · |A|a(Φ)+1 states

accepting Coc(L).

378 M. de Oliveira Oliveira

4. One can construct an automaton Rec(A) on 2O(c log c) · |A| states accepting
Rec(L).

5. One can construct an automaton Suc,b(A) on 2O(c log c) · |A| states accepting
Suc,b(L).

Lemma 4.2 below states that the set of all unit decompositions representing
b-bounded reflexivity axioms can be effectively represented by a slice automaton.

Lemma 4.2. Let Φ be an alphabet of function symbols and c, b ∈ N. Then
the b-bounded reflexive language Lc,b

ref (Φ) can be generated by a slice automaton
Aref (Φ, c, b) over Σ(c, Φ) on 2O(b·c log c) states.

Finally, we are in position to prove Theorem 1.1 using a combination of
Lemmas 4.1 and 4.2.

Proof of Theorem 1.1: As a first step, we construct an automaton A(E, d, c, b)
accepting the slice language L(E, d, c, b) defined in Eq. 5. In other words,
A(E, d, c, b) accepts a unit decomposition U if and only if it represents an ordered
equation that can be proved from E by a b-bounded proof of depth d and width
c. The construction of A(E, d, c, b) is by induction on d. In the base case, d = 0.
In this case we have that

L(E, 0, c, b) = Lc,b
ref (Φ) ∪

⋃

t1=t2∈E

L(t1 = t2, c).

Let l(E) be the maximum size of an equation in E. Since E has |E| equations, and
since each equation can be ordered in at most l(E)! = 2O(l(E) log l(E)) ways, we
have that there is a slice automaton on |E|·2O(l(E) log l(E)+c log c) states generating
the slice language

⋃
t1=t2∈E L(t1 = t2, c). Additionally, by Lemma 4.2, the b-

bounded reflexivity language Lc,b
ref (Φ) can be generated by a slice automaton on

2O(b·c log c) states. Therefore, L(E, 0, c, b) can be generated by a slice automaton
A(E, 0, c, b) on r = 2O(b·c log c) + |E| · 2O(l(E) log l(E)+c log c) states.

Now suppose that for d ≥ 1, the slice language L(E, d − 1, c, b) can be
generated by a slice automaton A(E, d − 1, c, b) on s states. Then using Eq. 5,
together with Lemma 4.1, we can construct a slice automaton A(E, d, c, b) on
2O(a(Φ)·c·log c) · sO(a(Φ)) states generating the slice language L(E, d, c, b). There-
fore, using the fact that A(E, 0, c, b) has r states, and by induction on d, we have
that A(E, d, c, b) has f(E, d, c, b) = 2O(c·log c)·a(Φ)O(d) · ra(Φ)O(d)

states.
We note that the slice language L(E, d, c, b) is vertically saturated. Thus,

for each ordered equation (t1 = t2, ω) in the equation language Leq(E, d, c, b),
we have that each unit decomposition U compatible with (t1 = t2, ω) belongs
to the slice language L(E, d, c, b). Therefore, to determine whether an ordered
equation (t1 = t2, ω) has a b-bounded proof of depth d and width c it is enough
to select in linear time an arbitrary decomposition U = S1S2 . . .Sn compatible
with (t1 = t2, ω), and then verify whether U is accepted by A(E, d, c, b). Since
A(E, d, c, b) has f(E, d, c, b) states, we can decide whether U is accepted by
A(E, d, c, b) in time f(E, d, c, b) · |U| = f(E, d, c, b) · |t1 = t2|. �

Parameterized Provability in Equational Logic 379

Theorem 1.1 concerns the provability of ordered equations. In other words, to
ask about the provability of an equation t1 = t2 we need to specify an ordering ω
a priori. On the other hand, Theorem 1.2 states that at the expense of a moderate
increase in the running time we can address the provability of classical equations,
in the sense that a suitable ordering ω that yields the provability of t1 = t2 in
depth d, width c and bound b, may be determined automatically. Before proving
Theorem 1.2, we need to state an auxiliary lemma. Lemma 4.3 below says that
for any given equation t1 = t2 one may construct in time |t1 = t2|O(c) a slice
automaton generating precisely the set of unit decompositions of width at most
c that are compatible with ordered versions of t1 = t2. Recall that ord(t1 = t2, c)
denotes the set of all orderings of t1 = t2 of width at most c.

Lemma 4.3. Let t1 = t2 be an equation and c ∈ N. Then one may construct
in time |t1 = t2|O(c) a vertically saturated slice automaton A(t1 = t2, c) over
Σ(c, Φ) generating the following slice language:

L(t1 = t2, c) =
⋃

ω∈ ord(t1=t2,c)

L(t1 = t2, ω)

Proof of Theorem 1.2: First, we construct the slice automaton A(E, d, c, b)
accepting the set L(E, d, c, b) of all unit decompositions that can be proved
from E in depth d, width c, and bound b. Subsequently, we construct the slice
automaton A(t1 = t2, ω) accepting the set of all unit decompositions of width
at most c compatible with some ordered version of the equation t1 = t2. To
verify whether t1 = t2 admits an ordering ω, such that (t1 = t2, ω) can be
proved from E in depth d, width c and bound b, it is enough to verify whether
A(E, d, c, b) ∩ A(t1 = t2, ω) accepts a non-empty language. Since A(E, d, c, b)
has f(E, d, c, b) states, and A(t1 = t2, ω) has |t1 = t2|O(c) states, this test can
be performed in time f(E, d, c, b) · |t1 = t2|O(c).

References

1. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. J. ACM (JACM) 41, 236–276 (1994)

2. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Res-
olution of Equations in Algebraic Structures, Rewriting Techniques, vol. 2, pp.
1–30. Academic Press (1989)

3. Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic paramodulation. Inf.
Comput. 121(2), 172–192 (1995)

4. Buss, S., Impagliazzo, R., Kraj́ıček, J., Pudlák, P., Razborov, A.A., Sgall, J.: Proof
complexity in algebraic systems and bounded depth frege systems with modular
counting. Comp. Complex. 6(3), 256–298 (1996)

5. de Oliveira Oliveira, M.: Reachability in graph transformation systems and slice
languages. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol.
9151, pp. 121–137. Springer, Cham (2015). doi:10.1007/978-3-319-21145-9 8

6. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1. Equations and
Initial Semantics. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (1985). doi:10.1007/978-3-642-69962-7

http://dx.doi.org/10.1007/978-3-319-21145-9_8
http://dx.doi.org/10.1007/978-3-642-69962-7

380 M. de Oliveira Oliveira

7. Freese, R.: Free modular lattices. Trans. Am. Math. Soc. 261, 81–91 (1980)
8. Goguen, J.A., Lin, K.: Specifying, programming and verifying with equational

logic. In: We Will Show Them!, vol. 2, pp. 1–38. College Publications (2005)
9. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative Programs, 1st edn.

MIT, Cambridge (1996)
10. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister-high-performance

equational deduction. J. Autom. Reas. 18(2), 265–270 (1997)
11. Hrubes, P., Tzameret, I.: The proof complexity of polynomial identities. In: 24th

Conference on Computational Complexity, pp. 41–51 (2009)
12. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech,

J. (ed) Comput. Probl. Abstr. Algebra, 263–297 (1970)
13. Matijasevic, J.V.: Simple examples of undecidable associative calculi. Sov. Math.

(Dokladi) 8(2), 555–557 (1967)
14. McCune, W.: Solution of the Robbins problem. J. Autom. Reas. 19(3), 263–276

(1997)
15. Meinke, K., Tucker, J.V.: Universal algebra. In: Handbook of Logic in Computer

Science, Vol 1, pp. 189–409. Oxford University Press (1992)
16. Pigozzi, D.: Equational logic and equational theories of algebras, Technical report.

Purdue University (1975)
17. Plaisted, D.A., Zhu, Y.: Equational reasoning using AC constraints. In: IJCAI, pp.

108–113. Morgan Kaufmann (1997)
18. Wampler-Doty, M.: A complete proof of the Robbins conjecture. Archive of Formal

Proofs (2010)
19. Wechler, W.: Universal Algebra for Computer Scientists. Springer, Berlin (1992)

Author Index

Barnett, Lee A. 163
Baumgartner, Peter 175
Bibel, Wolfgang 3
Bimbó, Katalin 44
Brotherston, James 295

Cerna, David M. 278
Cerrito, Serenella 193
Cohen, Liron 247

Das, Anupam 261
David, Amélie 193
Dawson, Jeremy E. 347
de Oliveira Oliveira, Mateus 364
Din, Crystal Chang 22

Fermüller, Christian G. 98
Ferrari, Mauro 114
Fiorentini, Camillo 114

Girlando, Marianna 131, 149
Goré, Rajeev 347

Hähnle, Reiner 22

Johnsen, Einar Broch 22

Lahav, Ori 65
Lang, Timo 98

Lellmann, Björn 131, 149
Lettmann, Michael 278

Marin, Sonia 81

Olivetti, Nicola 131, 149
Otten, Jens 209

Pous, Damien 261
Pozzato, Gian Luca 131, 149
Pun, Ka I 22

Rowe, Reuben N.S. 295

Schmidt, Renate A. 228
Schmitt, Peter H. 331
Straßburger, Lutz 81
Stratulat, Sorin 311

Tapia Tarifa, Silvia Lizeth 22
Thiébaux, Sylvie 175
Tishkovsky, Dmitry 228
Trevizan, Felipe 175

Vitalis, Quentin 149

Zohar, Yoni 65

	Preface
	Organization
	Contents
	Invited Papers
	A Vision for Automated Deduction Rooted in the Connection Method
	1 Introduction
	2 Recollection of the Connection Method
	3 Connection Calculi and Their Implementations
	4 The Unexploited Potential of the CM
	5 The CM in Relation with Other AD Methods
	6 Conclusions
	References

	Locally Abstract, Globally Concrete Semantics of Concurrent Programming Languages
	1 Introduction
	2 ABS: The Abstract Behavioral Specification Language
	3 Abstract Traces
	4 The Local Semantics of ABS Programs
	4.1 Statements Without Continuations
	4.2 Statements with Continuations
	4.3 Local Traces by Example

	5 The Global Semantics of ABS Programs
	5.1 From Locally Abstract to Globally Concrete Behavior
	5.2 The Rules of the Global Semantics
	5.3 Well-Formed Global Traces
	5.4 Global Traces by Example

	6 Calculus
	6.1 Symbolic Trace Formulas
	6.2 Selected Reasoning Rules

	7 Related Work
	8 Conclusion and Future Work
	References

	On the Decidability of Certain Semi-Lattice Based Modal Logics
	1 Modal Logics
	2 Cut Theorems
	3 Decidability
	4 Conclusions
	References

	Sequent Systems
	Cut-Admissibility as a Corollary of the Subformula Property
	1 Introduction
	2 Pure Sequent Calculi
	2.1 Preliminaries
	2.2 Pure Sequent Calculi

	3 Analyticity: A Generalized Subformula Property
	4 Semantics of Pure Sequent Calculi
	5 From Analyticity to Cut-Admissibility
	6 Intuitionistic Calculi
	7 Conclusion
	References

	Proof Theory for Indexed Nested Sequents
	1 Introduction
	2 Indexed Nested Sequents and the Scott-Lemmon Axioms
	3 Cut-Elimination
	4 From Classical to Intuitionistic
	5 Semantics of the Scott-Lemmon Axioms
	6 Discussion
	References

	Interpreting Sequent Calculi as Client-Server Games
	1 Introduction
	2 A Client-Server Game for Intuitionistic Logic
	3 The Adequateness of C/S(I) for Intuitionistic Logic
	4 Resource Consciousness
	5 Interpreting Exponentials and Subexponentials
	6 The Server as Stack
	7 Conclusion
	References

	A Forward Unprovability Calculus for Intuitionistic Propositional Logic
	1 Introduction
	2 Preliminaries
	3 The Calculus FRJ(G)
	4 Soundness and Completeness
	5 Related and Future Work
	References

	Hypersequent Calculi for Lewis' Conditional Logics with Uniformity and Reflexivity
	1 Introduction
	2 Preliminaries
	3 Hypersequent Calculi
	4 Cut Elimination
	5 Connections to Modal Logic
	6 Standard Calculi
	7 Semantic Completeness via Invertible Calculi
	8 Conclusion
	References

	VINTE: An Implementation of Internal Calculi for Lewis' Logics of Counterfactual Reasoning
	1 Introduction
	2 Lewis' Conditional Logics
	3 Internal Calculi for Conditional Logics
	4 Design of VINTE
	5 Performance of VINTE
	6 Conclusions and Future Issues
	References

	Tableaux
	Goal-Sensitive Reasoning with Disconnection Tableaux
	1 Introduction
	2 Preliminaries and Background
	2.1 Terminology
	2.2 Disconnection Tableau Calculus

	3 Goal-Sensitivity
	3.1 Disconnection Tableau Calculus Is Not Goal-Sensitive

	4 Goal-Sensitive Disconnection Tableau Calculus
	4.1 Completeness

	5 Discussion and Conclusion
	References

	Tableaux for Policy Synthesis for MDPs with PCTL* Constraints
	1 Introduction
	2 Preliminaries
	3 Tableau Calculus
	4 Example
	5 Conclusions and Future Work
	References

	Minimisation of ATL* Models
	1 Introduction
	2 Preliminaries
	3 Model Minimization
	3.1 Quotient Models
	3.2 Minimization Algorithm

	4 Implementation and Application to TATL
	5 Conclusions
	References

	Non-clausal Connection Calculi for Non-classical Logics
	1 Introduction
	2 Preliminaries
	2.1 Intuitionistic Logic
	2.2 Modal Logics
	2.3 Matrix Characterizations

	3 Intuitionistic Logic
	3.1 Prefixed Non-clausal Matrices
	3.2 Prefix Unification
	3.3 An Intuitionistic Non-clausal Connection Calculus

	4 Modal Logic
	4.1 Prefixed Non-clausal Matrices
	4.2 Prefix Unification
	4.3 A Modal Non-clausal Connection Calculus

	5 Optimizations
	6 Implementation
	7 Evaluation
	8 Conclusion
	References

	Rule Refinement for Semantic Tableau Calculi
	1 Introduction
	2 The Tableau Synthesis Framework
	3 Refinement Techniques
	4 Atomic Rule Refinement
	5 Hypertableau
	6 Case Study: The Modal Logic of `Some', `All' and `Only'
	7 Concluding Remarks
	References

	Transitive Closure and Cyclic Proofs
	Completeness for Ancestral Logic via a Computationally-Meaningful Semantics
	1 Introduction
	2 The Language and its Semantics
	3 Formal Proof System for AL
	4 Henkin-Style Completeness
	5 Conclusions and Further Research
	References

	A Cut-Free Cyclic Proof System for Kleene Algebra
	1 Introduction
	2 Kleene Algebra
	3 An Intrinsically Non-regular System: LKA
	4 A Calculus Whose Regular Proofs Are Complete: HKA
	5 Soundness
	6 Completeness
	6.1 A Regular Class of Proofs
	6.2 Completeness of Leftmost Proofs

	7 Complexity Matters and Algorithms for Proof Search
	7.1 Checking Validity of a Regular Preproof
	7.2 Complexity of Proof Search

	8 Conclusions and Further Work
	8.1 Richer Systems for Theorem Proving
	8.2 Extensions of Kleene Algebra
	8.3 Cut-Elimination
	8.4 Towards an Alternative Completeness Result for KA

	References

	Integrating a Global Induction Mechanism into a Sequent Calculus
	1 Introduction
	2 Preliminaries
	2.1 Schematic Language
	2.2 The LKS-Calculus and Proof Schemata

	3 Evaluation and Interpretation
	4 The SiLK-Calculus
	4.1 From SiLK-Proof to Proof Schema

	5 Properties of the Calculus
	5.1 Decidability
	5.2 Soundness and Completeness

	6 Conclusion
	References

	Realizability in Cyclic Proof: Extracting Ordering Information for Infinite Descent
	1 Introduction
	2 Motivating Example
	3 Cyclic Proofs for First Order Logic
	3.1 First Order Logic with Inductive Definitions
	3.2 The Cyclic Proof System

	4 Extracting Semantic Inclusions from Cyclic Proofs
	5 Computing Realizable Orderings Using Weighted Automata
	5.1 Cyclic Proofs as Sum Automata
	5.2 Decidability of the Realizability Condition

	6 Conclusions and Future Work
	References

	Cyclic Proofs with Ordering Constraints
	1 Introduction
	2 The Logical Framework
	3 Checking the Soundness of Pre-proofs
	3.1 Defining the Checking Criteria
	3.2 Strategies for Directly Building Proofs

	4 Conclusions and Future Work
	References

	Formalization and Complexity
	A Mechanizable First-Order Theory of Ordinals
	1 Introduction
	2 A Theory of Ordinals
	2.1 The Core Theory
	2.2 The Full Theory
	2.3 Derived Lemmas

	3 Termination of Goodstein Sequences
	3.1 Injecting Natural Numbers
	3.2 Definition of Goodstein Sequences
	3.3 Termination Proof

	4 Concluding Remarks
	References

	Issues in Machine-Checking the Decidability of Implicational Ticket Entailment
	1 Introduction
	2 Summary of Various Calculi of Bimbó and Dunn
	3 Our Isabelle Mechanisation
	3.1 Formalising Formulae, Sequents and Sequent Rules
	3.2 Derivability Predicates derrec and derl
	3.3 Inductive Multi-cut Admissibility via gen_step2
	3.4 Modular Multicut Instances

	4 Various Machine-Checked Results
	4.1 A Structural Analogue of Multicut
	4.2 Results for Consecution Calculi

	5 A Proof Plan of the Crucial Lemma 11
	6 Conclusions
	References

	Parameterized Provability in Equational Logic
	1 Introduction
	1.1 Main Results

	2 Ordered Equational Logic
	2.1 Classical Equational Logic
	2.2 Ordered Terms and Ordered Equations
	2.3 Ordered Equational Logic
	2.4 Proof Trees and b-boundness
	2.5 Graphs Associated with Terms and Equations

	3 Equational Slice Languages
	3.1 Equational Operators

	4 Proofs of Our Main Results
	References

	Author Index

