
Vectorization of High-Order DG in Ateles
for the NEC SX-ACE

Harald Klimach, Jiaxing Qi, Stephan Walter, and Sabine Roller

Abstract In this chapter, we investigate the possibilities of deploying a high-order,
modal, discontinuous Galerkin scheme on the SX-ACE. Our implementation Ateles
is written in modern Fortran and requires the new sxf03 compiler from NEC. It is
based on an unstructured mesh representation that necessitates indirect addressing,
but allows for a large flexibility in the representation of geometries. However, the
degrees of freedom within the elements are stored in a rigid, structured array. For
sufficiently high-order approximations these data structures within the elements can
be exploited for vectorization.

1 Introduction

Memory has become the limiting factor in most computing systems for most com-
putations. Both, processing speeds and memory access has exponentially increased
during the development of computing technology, albeit with different paces. This
development led to a gap between thememory and processing capabilities in modern
devices [1]. The important factor describing this relation for numerical applications
based on floating point numbers is the Byte to FLOP (floating point operation) ratio.
It can be used to judge the suitability of a system for a given algorithm. Because on
the one hand, the computing system is capable of providing a fixed Byte to FLOP
ratio, while on the other hand, the algorithm requires a certain amount of data to be
moved for each operation.

Besides the speed of the memory and the number of required transactions,
another important factor is the size of the memory. In comparison to the processing
speed the amount of available main memory in high-performance computing
systems did not increase much over the last decade. The largest amount of total
memory provided by a Top500 system is 1.5 PetaBytes on the Sequoia IBM

H. Klimach (�) • J. Qi • S. Roller
University of Siegen, Adolf-Reichwein Str. 2, 57076 Siegen, Germany
e-mail: harald.klimach@uni-siegen.de; jiaxing.qi@uni-siegen.de; sabine.roller@uni-siegen.de

S. Walter
Höchstleistungsrechenzentrum Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany
e-mail: walter@hlrs.de

© Springer International Publishing AG 2017
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_5

75

mailto:harald.klimach@uni-siegen.de
mailto:jiaxing.qi@uni-siegen.de
mailto:sabine.roller@uni-siegen.de
mailto:walter@hlrs.de

76 H. Klimach et al.

2006 2008 2010 2012 2014 2016 2018

105

106

G
ig
aB

y
te

B
y
te
/F
L
O
P
s

Fig. 1 Development of available memory in the top system of the Top500 list over time. In blue
the total available memory of the fastest system from the list at that point in time is shown. In red
the ratio between that memory and the computing power of the system is in terms of floating point
operations per second is indicated

BlueGene/Q installation at the Lawrence Livermore National Laboratory. This was
the fastest system in terms of floating point operations per second in 2012. In June
2017 it was ranked fifth in the Top500.

Figure 1 illustrates the development of the fastest system in the Top500 lists with
respect to the available memory over time. The blue trend with the dot markers
indicates the available overall memory in the fastest system on a logarithmic scale.
To put this in context to the available computing power of the system, the red line
indicates the ratio between available main memory and the number of floating point
operations per second. We can see that the overall amount of memory, which allows
us to solve larger or better resolved problems only grows slowly, and even as it
grows it does not keep pace with the computing speed of the systems. Thus, we
can observe that memory is a precious resource in modern computing systems, both
in terms of speed and of size. Furthermore, we even expect increasing importance
of the memory in the foreseeable future as with the current growth rates the gap
between processing and memory speeds will continue to grow.

Table 1 provides an overview to the memory properties of contemporary HPC
architectures in relation to their floating point operation speed. The first column
indicates the system, the second the memory bandwidth in Bytes per second divided
by the floating point operations per second. In the last column the available amount
of main memory, again divided by the number of floating point operations per
second. This is the measure for which the development over time for the fastest
system in the Top500 is given in Fig. 1. The issues we face with the big amounts of
data produced in large scale simulations only get worse when we actually want
to store results. Storage devices are even slower than main memory and when
considering time dependent data, we often need to store several snapshots of the
overall main memory used by the simulation.

Vectorization of High-Order DG 77

Table 1 Contemporary
HPC-systems with respect to
their memory size and speed
compared to their floating
point operations per second

Per FLOPS memory-

System Bandwidth Size

NEC SX-ACE 1:000 0:250

K Computer (SPARC64 VIIIfx) 0:500 0:032

Sequoia (IBM BlueGene Q) 0:208 0:078

Sunway TaihuLight (SW26010) 0:178 0:010

nVidia Tesla P100 0:138 0:003

Hazel Hen (Intel Xeon E5-2680 v3) 0:141 0:133

We see that the memory is slow and small when compared to the computing
power in terms of performed operations. Therefore, an important criterion for
numerical schemes to be deployed on such modern large-scale computing systems
is their ability to provide good approximations with as little amount of memory as
possible.

The discontinuous Galerkin (DG) scheme is a promising numerical method that
enables us to move into the desired direction of reduced memory consumption
for solutions of partial differential equations. It employs a discretization of the
simulation domain by a mesh, where the solution within each element of the mesh
is approximated by a local function. A typical choice for the functions to use in
this approximation are polynomial series. The usage of functions to represent the
solution allows for high-order representations, as the scheme works for arbitrary
numbers of terms in the deployed functions. High-order approximations have the
advantage that they can approximate smooth functions with few degrees of freedom,
due to the exponential convergence with increasing number of modes. Thus, the
scheme requires only a minimal amount of data to represent the solution in the
elements. Interaction between elements is realized by fluxes like in finite volume
schemes. The discontinuous Galerkin scheme, thereby, offers a combination of
aspects from the finite volume method and spectral discretizations. It provides to
some extend the efficiency of spectral methods and at the same time some of the
flexibility offered by finite volume methods.

From the numerical side the discontinuous Galerkin scheme appears to provide
suitable characteristics to address the growing imbalance between memory and
processing power of modern computing systems. On the side of computing archi-
tectures, the NEC SX-ACE is a vector system that offers some nice capabilities for
numerical schemes with a focus on good memory performance. It offers a high Byte
per FLOP ratio of 1 (256 GFLOP and 256GB per second) with access to 16GB of
main memory per core with this speed when using all 4 cores of the processor. If
this Byte to FLOP ratio is insufficient for an algorithm, it can be increased up to 4
Bytes per FLOP by employing fewer cores of the processor in the computation. As
can be seen in Table 1 this is at the high end of this ratio for contemporary HPC
architectures.

78 H. Klimach et al.

Because of these properties, we believe the discontinuous Galerkin method and
the NEC SX-ACE architecture are a good match for large-scale simulations. The
one provides an option to reduce the memory usage and the other attempts to
provide a high data rate to allow a wider set of applications to achieve a high
sustained performance. However, an obstacle we face in typical applications is the
need for a great deal of flexibility and dynamic behavior during the runtime of
the simulation. This often does not fit too well with the more rigid requirements
for efficient computations on vector systems. Here we want to lay out, how the
discontinuous Galerkin scheme with a sufficiently high order may be used to
combine the flexibility required by the application with the vectorized computation
on the NEC SX-ACE. This possibility is opened by the two levels of computation
present in the discontinuous Galerkin scheme, where we can find high flexibility on
the level of the mesh, but a highly structured and rigid layout within the elements.
We believe, that it is a feasible option to use vectorization within elements of
high-order discontinuous Galerkin schemes, while maintaining the large flexibility,
offered by the method on the mesh level. Such a strategy opens the possibility to
combine dynamic and adaptive simulations with the requirements of vectorized
computing,which is increasingly important also on other architectures than the NEC
SX-ACE.

In the following we briefly introduce the high-order discontinuous Galerkin
scheme implemented in our solver Ateles. Then we go on with the presentation
of the vectorization approach of the scheme on the NEC SX-ACE in Sect. 3 and
conclude this chapter with some measurements and observations in Sect. 4.

2 High-Order Discontinuous Galerkin in Ateles

The discontinuous Galerkin method is especially well suited for conservation laws
of the form:

@u

@t
C rf .u/ D g (1)

To find a solution to (1), the overall domain to be investigated is split into finite
elements ˝i and the solution is approximated by a function uh within each of these
elements. The equation is then multiplied with test functions � to create a system
that can be solved and after integration by parts we obtain:

@

@t

Z
˝i

uh�dV �
Z
˝i

f .uh/r�dV C
Z
@˝i

f ��dS D
Z
˝i

g�dV (2)

From the integration by parts we get the surface integral where the new term f � is
introduced. This is a numerical flux that ties together adjacent elements as it requires
the state from both sides of the surface. In a numerical discretization the employed

Vectorization of High-Order DG 79

function spaces for the solution and the test functions need to be finite and Eq. (2)
then provides an algebraic system in space, where the products of the functions can
be written in matrices. Especially we get the mass matrix:

M D
Z
 �dV (3)

and the stiffness matrix:

S D
Z
 r�dV (4)

2.1 The Modal Basis

Ateles implements the discontinuous Galerkin scheme with Legendre polynomials
as a basis to represent the solution u in cubical elements. The Legendre polynomials
can be defined recursively by:

L0.x/ D 1; L1.x/ D x

Lk.x/ D 2k � 1

k
� x � Lk�1.x/� k � 1

k
Lk�2.x/

(5)

They are defined on the reference interval Œ�1; 1� and have some favorable
properties. Most importantly they build an orthogonal basis with respect to the
inner product with a weight of 1 over this interval. Another nice property is that all
Legendre polynomials except for L0.x/ are integral mean-free. Our solution within
the elements of the discontinuous Galerkin scheme are obtained in the form of a
series of Legendre polynomials:

u.x/ D
mX

kD0
ckLk.x/ (6)

Here, the coefficients ck are the (Legendre) modes that describe the actual shape
of the solution. The maximal polynomial degree in this series is denoted by m.
Its choice determines the spatial convergence order of the scheme and the degrees
of freedom (modes) required to represent the solution in the element (m C 1). To
represent the solution in three-dimensional space, we build a tensor product of the
one-dimensional polynomials. By introducing the multi-index ˛ D .i; j; k/, we can
denote the three-dimensional solution by:

u.x; y; z/ D
.m;m;m/X
˛D.0;0;0/

c˛Li.x/Lj.y/Lk.z/ (7)

80 H. Klimach et al.

With this definition for the solution in d dimensions, we get .m C 1/d degrees of
freedom. The layout of this data is highly structured, as we need a simple array with
.mC 1/� .mC 1/� .mC 1/ entries to store the c˛ in three dimensions for example.

The orthogonality of the Legendre polynomials enables a fast computation of the
mass matrix and its inverse, and their recursive nature enables a fast application of
the stiffness matrix.

2.2 The Mesh Structure

The local discretization by polynomial series as described above is done locally in
elements that are then combined in a mesh to cover the complete computational
domain. Ateles employs an octree topology to construct this mesh of cubical
elements with an unstructured layout. The unstructured organization requires an
explicit description of elements to be considered but allows for a greater flexibility
in describing arbitrary geometrical setups. By relying on an octree structure, large
parts of the topological information is implicitly known and does not have to be
explicitly stored or referred to. This is especially of an advantage for distributed
parallel computations, as most neighbor information can be computed locally with
a minimal amount of data exchange. With the choice of cubical elements, we
can employ an efficient dimension by dimension approach and avoid the need for
complex transformations. Boundaries are then implemented by penalizing terms
inside the elements, very similar to approaches found in spectral discretizations.
These allow for the approximation of the geometry with the same order as the one
used for the representation of the scheme.

3 Vectorization on the NEC SX-ACE

Vector instructions mean that we perform the same instruction to many data
concurrently. This single instruction, multiple data (SIMD) concept is becoming
more and more important also on traditional scalar systems, as can be seen in
the increasing register lengths of the AVX instructions in Intels x86 architecture.
The NEC SX-ACE as a traditional vector computing system offers long vector
data registers that hold 256 double precision real numbers and can perform one
instruction on all of them simultaneously. From the algorithmic point we need long
loops with independent iterations to utilize this mechanism.

In simulations that involve meshes, we usually need to perform the same
operations for each mesh element, and we have many mesh elements for detailed
simulations. Thus, an obvious choice for vectorization is here the loop over elements
of the mesh. However, for high-order schemes this is not so straight forward
anymore. For one, there are fewer elements used in the discretization, and maybe
even more important, the computation for each element gets more involved. The

Vectorization of High-Order DG 81

greatest problem for an efficient vectorization over the elements, however, is the
desire for flexibility on the level of the mesh. As described above, we use an
unstructured mesh description to enable an efficient approximation of arbitrary
geometries. This introduces an indirection, which is in turn hurting the performance,
as the vector data needs to be gathered and scattered when moved between memory
and registers. Even more flexibility is required on the mesh level, when we allow
hp-adaptivity, that is dynamic mesh adaptation to the solution and a variation in the
polynomial degree from element to element. These features are desirable, because
they minimize the computational effort in terms of memory and operations.

With this large degree of flexibility and unstructured data access across the
elements of the mesh, a vectorized computation appears hard to achieve. Instead
we look here into the vectorization within elements. As described in Sect. 2 the data
within elements is highly structured and the operations we need to perform on it
also nicely fits into SIMD schemes for a large part. One of the main computational
tasks is the application of the stiffness- and mass-matrices. Such matrix-vector
multiplications can be perfectly performed in vector operations. Other numerical
tasks within the elements often follow a similar scheme and require the application
of one operation to all degrees of freedom. The main limitation we face with an
approach of vectorization within elements is the limited vector length. However,
the vector length grows with the polynomial degree, opening the possibility to fully
exploit even long vector registers, if the polynomial degree is only sufficiently high.

Most operations in Ateles need to be done on the polynomials in one direction,
leaving the other dimensions open for concurrent execution. Thus, when the solution
in a three-dimensional element is approximated by a maximal polynomial of degree
m, there are .m C 1/3 degrees of freedom in total, and in most operations .m C 1/2

independent computations with the same instruction need to be performed. With
this quadratic growth over the polynomial degree, m D 15 is already sufficient to
fill the vector data registers with a length of 256 for the most important parts of the
implementation. For the high-order discretization in Ateles we aim for polynomial
degrees greater than 10, and for linear equations even for polynomial degrees in
the range of 100. With this range of scheme orders, a vectorization within elements
appears suitable and meaningful, even for such long vectors as found in the NEC
SX-ACE.

The use of polynomials of high degree to represent the solution, thereby enables
us to combine the flexibility of mesh adaptivity and unstructured meshes with
efficient vector computations.

3.1 Porting of Ateles

Ateles is implemented in modern Fortran and utilizes some features from the
Fortran 2003 standard. Unfortunately, the existing Fortran compiler from older SX
systems did not provide all the required features and was unable to compile Ateles.
But NEC has implemented a new compiler for the SX-ACE, which supports the

82 H. Klimach et al.

complete Fortran 2003 standard. This new compiler sxf03 was able to compile
Ateles and create a working executable for the SX-ACE, with surprisingly little
effort. Yet, as this is a new compiler, not all optimizations from the old compilers
where initially available and after the first porting, we ran into a vectorization issue
with one of the loops, that was nicely vectorized by the old compiler, but not by the
new sxf03. Because compiled files from the old and the new compiler could not be
combined, the work on further optimization stalled at that point. A little more on
these first porting issues can be found in [2] from last year, where also some more
explanations on the porting of the APES suite in general are provided. After this
issue was fixed in the compiler by NEC, we were now able to further look into the
vectorization of Ateles and how the vectorization strategy within elements works
out. In the following we report on the progress of this effort.

4 Measurements and Observations

To compile Ateles for the NEC SX-ACE in this report, we make use of the
sxf03 compiler in version “Rev.050 2017/01/06”. As explained in Sect. 3, we are
concerned with the operations within elements, and most of those resemble matrix-
vector operations or are quite similar to them. One major distinction can be drawn
depending on the kind of equation system that we need to solve. For linear equations
we can perform all numerics in modal space, directly using the terms from the
polynomial series, as introduced in Eq. (6). When dealing with nonlinear equations
this is not so easily possible anymore. Instead, we transform the representation into
physical space to obtain values at specific points, perform the nonlinear operation
in each point and then transform the new values back into modal representation
again. These transformations need to be done additionally and are quite expensive.
The performance characteristics of the two cases are accordingly largely different
in these two cases.

4.1 Linear Equations

Let us first look at linear equations, as their building blocks are also relevant for
the nonlinear equations. As a representative for linear equations we look into the
Maxwell equations for electrodynamics. We use a simple case without boundary
conditions and polynomials of degree 11. All computations are done on a single
core of the SX-ACE. In our first setup we used 64 elements, and found a really
poor performance of only 26 MFLOPS in the most expensive routine according
to the ftrace analysis. The crucial loop of that routine is shown in Listing 1 and we
would expect this to nicely vectorize the inner, collapsed loop. Indeed, the extremely
poor performance was due to the number of elements, as this is the first index here,
and we end up with a strided access, according to the number of elements. When

Vectorization of High-Order DG 83

Listing 1 Main loop of the volume to face projection

do iAnsZ =1 ,m+1 ,2
! c o l l a p s e d l oop
do iVEF=1 ,6� nElems�(m+1)��2

! i n d i c e s a c t u a l l y computed from iVEF
f a c e s t a t e (iElem , f acepos , iVar , s i d e) &
& = f a c e s t a t e (iElem , facepos , iVar , s i d e) &
& + v o l s t a t e (i e l em , pos , iVa r)

end do
end do

Table 2 Excerpt from the tracing of Ateles for Maxwell equations and a discretization with
polynomials of degree 11

Bank Conf.

Procedure % MFLOPS V.OP % V.LEN CPU Net ADB %

VolToFace 28:7 929:5 99:12 204:6 0:137 0:531 86:07

PrjFlux2 10:3 1475:0 99:53 83:6 0:802 1:742 79:04

PrjFlux1 10:3 1479:4 99:53 83:2 0:685 1:294 71:65

PrjFlux3 10:2 1490:8 99:57 83:4 0:381 1:752 76:73

MaxFlux 9:9 513:3 79:88 38:7 0:057 0:321 63:90

MassMat 9:3 1906:7 87:69 63:0 0:503 18:491 45:46

PhysFlux 5:5 0:2 94:54 241:3 0:941 7:973 0:00

The first column states the measured routine, the second the running time percentage of the routine,
the third the observed MFLOPS, the fourth is the vector operation ratio as a percentage (time spent
on vector instructions to the time spent in total on that routine) and the fifth column provides the
average vector length used in the vector instructions. The next two columns (6 and 7) provide the
time spent on conflicts when accessing memory banks. In the eighth and last column, the ADB hit
rate is given. Shown are the main procedures contributing to the overall compute time

changing to the element count to 63, the performance indeed increases from 26 to
more than 900MFLOPS. It appears that strides at multiples of 64 result in extremely
bad performance, due to conflicts in the memory bank accesses.

Table 2 shows the most important routines for a run with polynomials of degree
11 and 63 elements. The main routines that contribute more than 84% to the overall
compute time are the projection of the polynomials in the volume to the faces of the
elements (VolToFace), the projection of the fluxes onto the testfunctions (PrjFlux1,
PrjFlux2 and PrjFlux3), the actual computation of the Maxwell flux (MaxFlux),
multiplication with the inverse of the mass matrix (MassMat) and computation of
the physical flux for the Maxwell equations (PhysFlux). Here, the projection of the
flux onto testfunctions is actually the same operation that needs to be performed,
albeit in three different directions and there is an individual implementation for
each direction. Their only distinction is a different striding in the access to the three
dimensional data.

84 H. Klimach et al.

As can be seen in Table 2, the volume to face projection (VolToFace) and the
projection of the physical flux on the testfunctions are the main consumers of the
computing time in this run with polynomials of degree 11. Both contribute about
30% to the overall running time. It also can be seen that already this run without
tuning, provides relatively good vectorization properties with vectorization rates
above 99%. Nevertheless, the computational efficiency is not quite high and we
see for the VolToFace routine less than one GFLOPS. But this may also be due to
the relatively low computational density in this operation. What needs to be done
is just the summation of the degrees of freedom in one space direction. This single
addition for each real number does not allow us to fully exploit the functional units
of the processor.

One improvement that can be done in this routine is the simultaneous computa-
tion of the left and right faces in the given direction of the element. This improves
the computational density as the volume data only needs to be loaded once for both
sides, and we obtain between 1262 and 1462 MFLOPS (depending on the striding
for the different directions). After this change, the projection of the physical fluxes
becomes the most time consuming part. When we double the degrees of freedom
and use polynomials of degree 23, this changes again and the multiplication with
the inverse of the mass-matrix becomes the most important routine. Computing the
multiplication with the inverse of the mass-matrix makes use of a short recursion,
as with the recursive definition of the polynomial basis, already computed values
can be reused. While this is computational efficient in terms of saving operations, it
makes it harder to achieve good vectorization and a high sustained performance.Yet,
for high orders and when avoiding bad striding we are capable to achieve already
reasonable performance and before looking into this common part in more detail we
now looked into other equations.

Unsurprisingly the acoustic and linearized Euler equations showed a very similar
behavior. However, we found an excessive use of flux functions there to be an issue.
This is already a little bit visible in Table 2 for the PhysFlux routine. The problem
with that routine is that it is very small and used to compute the flux for just a single
mode. Similarly this was found for the other linear equations, but there it the flux
computation consumed a larger fraction of the overall compute time, and the effect
was more pronounced. The remedy is fairly simple, though, as the loop over the
modes can be pulled into this routine quite easily.

Another linear equation we have implemented in Ateles are locally linearized
Euler equations. These use a linearization within elements, but nonlinear fluxes
on the element faces for the exchange between elements. With those we ran again
into the striding issue with the number of elements. Further investigation revealed
that this striding indeed is the most important factor inhibiting better sustained
performance on the SX-ACE. Our findings for the linear equations reinforced the
idea that we need to do the vectorization within the elements, and we now need
to change the data structure to reflect this, as the element index is often the fastest
running index in our arrays. This will be a larger effort and instead we now turn
to the nonlinear equations and have a brief look at the performance of the inviscid
Euler equations for compressible flows.

Vectorization of High-Order DG 85

4.2 Nonlinear Equations

To investigate nonlinear terms, we look here into the Euler equations for compress-
ible fluid flows. As mentioned, we need to perform polynomial transformations
between modal and nodal space in this case. There are several methods for this task
implemented in Ateles, see [3] for more details and a comparison of the methods.
For now we will only consider the L2 projection of the Legendre modes to their
nodes (L2P transformation in Ateles). This method is the most straight-forward one
and can simply be written as a matrix-vector multiplication.

We look at the Euler equations for inviscid, compressible flows here. The original
code showed no performance, due to the fluxes being called for each integration
point and ending up to be the most time-consuming parts with only little to none
FLOPS achieved. By pulling the loops over the points into the flux computation,
this can be avoided and the contribution of these routines to the total computational
time becomes negligible for now. Instead the VolToFace and the L2P are the most
important contributors.

As the L2 projection basically is a matrix-vector product, we also see a relatively
high performance for this routine of more than 13 GFLOPS. However, we actually
need to perform many of these matrix-vector products and it can be interpreted as a
matrix-matrix product. If we rewrite our code such that the compiler recognizes this
construct, it replaces it with a highly optimized implementation for the architecture
and we gain close to 48 GFLOPS or 75% sustained performance for this operation
when using polynomials of degree 29. To allow the compiler to recognize the
construct, a two-dimensional array has to be used, which was previously not the
case, as a collapsed index was used.

Table 3 shows the most relevant routines for Euler equations with a 30th
order spatial discretization. The most efficient routine, the L2 projection with the
recognized matrix-matrix operation is also the most time consuming one, leading to
a relatively good overall sustained performance. Further we recognize the volume to
face projection, that was also relevant for the linear equations, but in its optimization
has been split into three routines, one for each direction. Also the projection of
the fluxes to the testfunctions are again contributing visibly to the overall compute
time. The only other routine with more than 5% in the overall compute time is
the FromOver routine, which implements the copying of the modal state to an
oversampled space.

Thus, we see that further optimizations of the general routines that are important
in the linear equations also will be beneficial for the nonlinear equations. We expect
to achieve the next larger performance increment with the change of the index
ordering for our state arrays.

Finally, we want to compare the serial performance of the current implementation
status for varying orders to the observed performance on a scalar system. The scalar
system we compare against is the Cray XC 40 Hornet atHLRS that is equipped with
Intel Xeon E5-2680 v3 processors. To allow the comparison of runs on different
machines and between different orders we use thousand degree of freedom updates

86 H. Klimach et al.

Table 3 Excerpt from the tracing of Ateles for Euler equations and a discretization with
polynomials of degree 29

Bank Conf.

Procedure % MFLOPS V.OP % V.LEN CPU Net ADB %

L2project 34:3 47916:4 99:21 174:5 1:680 6:543 75:38

VolToFaceY 6:9 1459:4 99:89 256:0 0:001 0:000 4:02

FromOver 6:5 2841:2 99:86 254:7 0:013 0:096 3:80

PrjFlux3 6:5 2544:4 99:90 186:9 0:781 1:237 68:88

VolToFaceX 6:1 1312:0 99:87 256:0 0:001 0:000 1:51

VolToFaceZ 6:1 1316:1 99:88 256:0 0:012 0:000 2:44

PrjFlux2 5:6 2943:7 99:89 187:0 0:511 0:504 70:55

PrjFlux1 5:5 2992:5 99:89 186:8 0:470 0:366 26:54

The first column states the measured routine, the second the running time percentage of the routine,
the third the observed MFLOPS, the fourth is the vector operation ratio as a percentage (time spent
on vector instructions to the time spent in total on that routine) and the fifth column provides the
average vector length used in the vector instructions. The next two columns (6 and 7) provide the
time spent on conflicts when accessing memory banks. In the eighth and last column, the ADB hit
rate is given. Shown are the main procedures contributing to the overall compute time

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

Order (m+1)

K
D

U
PS

Hornet
Kabuki

Fig. 2 Performance for the Euler 3D equation, 1 process, 20 million degrees of freedom in total

per second (KDUPS). The performance for the Euler equation and a total of 20
million degrees of freedom is shown in Fig. 2 over varying polynomial degrees for
a fixed overall problem size of a total of 20 million degrees of freedom. Note that
the computational effort per degree of freedom grows with order of the scheme

Vectorization of High-Order DG 87

for nonlinear equations, and we expect a degradation of the degree of freedom
update rate. This expected degradation is indicated by the black continuous line
without marks. It does not imply a decrease in computational efficiency but rather
the opposite, as we need to perform ever more operations without an increase in
the data rate. As can be seen, a good performance is achieved when polynomials of
degree 20 or higher are used for the nonlinear equations. We also notice several
breakdowns of performance at some even order schemes. Most prominently for
schemes of order 64, where we find the bad striding access described above, this
time due to strided access over the modes of the polynomials within elements.

Of course there is not much of an benefit from the vectorization for scheme
orders below 10 with a vectorization over within the elements, but already for 10
order schemes the vector computing capabilities can be used quite visibly. For very
high orders beyond 100, the advantage seems to diminish again somewhat, but this
seems to be more a point of the scalar system gaining efficiency due to the reduced
bandwidth requirements in this range.

5 Summary and Outlook

High-order schemes are an attractive tool from the computational point of view, due
to there reducedmemory requirements.We presented a concept for the vectorization
of the high-order discontinuous Galerkin scheme in Ateles with a focus on the
structured data within elements to represent the three-dimensional polynomials.
This approach enables a flexible computation on the mesh side with adaptivity and
unstructured meshes, while at the same time allows for vectorized computations on
highly structured data within the elements. Even with the long vectors of the NEC
SX-ACE this concept works quite nicely already for relatively low order schemes
with polynomials of degree 10 and higher.

Our current implementation is not yet tuned a lot for the vector system, and
there are some legacy parts that need to changed, like the ordering of indices
in the state representation. Nevertheless, the performance achieved on the SX-
ACE already provides a quite good basis for further improvements. A particular
positive surprise was the compiler optimization with the detected matrix-matrix
multiplication construct and its optimized replacement by the compiler. Though, the
nonlinear and linear equations have different routines that contribute to the overall
computational effort, there is still a large overlap, and most further improvements
are expected to affect all supported equations.

Acknowledgements We would like to thank Holger Berger from NEC for his kind support, the
Tohoku University and HLRS for the opportunity to use their NEC SX-ACE installation.

88 H. Klimach et al.

References

1. Hennessy, J., Patterson D.: Computer Architecture, A Quantitative Approach. 5th edn. Morgan
Kaufmann, Burlington (2012)

2. Klimach, H., Qi, J., Roller, S.: APES on SX-ACE. In: Resch, M., Bez, W., Focht, E., Patel, N.,
Kobayashi, H. (eds.) Sustained Simulation Performance 2016. Springer, Heidelberg (2016)

3. Anand, N., Klimach, H., Roller, S.: Dealing with non-linear terms in the modal high-order
discontinuous Galerkin method. In: Resch, M., Bez, W., Focht, E., Patel, N., Kobayashi, H.
(eds.) Sustained Simulation Performance 2016. Springer, Heidelberg (2016)

	Vectorization of High-Order DG in Ateles for the NEC SX-ACE
	1 Introduction
	2 High-Order Discontinuous Galerkin in Ateles
	2.1 The Modal Basis
	2.2 The Mesh Structure

	3 Vectorization on the NEC SX-ACE
	3.1 Porting of Ateles

	4 Measurements and Observations
	4.1 Linear Equations
	4.2 Nonlinear Equations

	5 Summary and Outlook
	References

