
Code Modernization Tools for Assisting Users
in Migrating to Future Generations
of Supercomputers

Ritu Arora and Lars Koesterke

Abstract Usually, scientific applications outlive the lifespan of the High Perfor-
mance Computing (HPC) systems for which they are initially developed. The
innovations in the HPC systems’ hardware and parallel programming standards
drive the modernization of HPC applications so that they continue being performant.
While such code modernization efforts may not be challenging for HPC experts
and well-funded research groups, many domain-experts and students may find it
challenging to adapt their applications for the latest HPC systems due to lack of
expertise, time, and funds. The challenges of such domain-experts and students
can be mitigated by providing them high-level tools for code modernization and
migration. A brief overview of two such high-level tools is presented in this chapter.
These tools support the code modernization and migration efforts by assisting
users in parallelizing their applications and porting them to HPC systems with
high-bandwidth memory. The tools are named as: Interactive Parallelization Tool
(IPT) and Interactive Code Adaptation Tool (ICAT). Such high-level tools not only
improve the productivity of their users and the performance of the applications but
they also improve the utilization of HPC resources.

1 Introduction

High Performance Computing (HPC) systems are constantly evolving to support
computational workloads at low cost and power consumption. While the computing
density per processor has increased in the last several years, the clock speed of
the processors has stopped increasing to prevent unmanageable increase in the
temperature of the processor, and to limit the gap between the speed of the processor
and the memory. This trend has resulted in HPC systems that are equipped with
manycore processors and deep memory hierarchies. To achieve high-performance
on such HPC systems, appropriate level of parallelization, vectorization, and
memory optimization are critical.

R. Arora (�) • L. Koesterke
Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
e-mail: rauta@tacc.utexas.edu; lars@tacc.utexas.edu

© Springer International Publishing AG 2017
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_4

55

mailto:rauta@tacc.utexas.edu
mailto:lars@tacc.utexas.edu


56 R. Arora and L. Koesterke

As a sample of evolution in the HPC landscape, consider the three flagship
HPC systems provisioned by the Texas Advanced Computing Center (TACC)
in the last 10 years: Ranger, Stampede, and Stampede2. Ranger debuted in the
year 2008. It was equipped with AMD Opteron quad core processors, delivered
approximately 579 TFLOPs of peak performance, and was in production for
about 5 years. Stampede debuted in the year 2013 and is still in production. It
can deliver approximately 10 PFLOPs of theoretical peak performance, and is
equipped with Intel Sandy Bridge processors, Intel Knight’s Corner coprocessors,
and Nvidia K20 GPUs. The Stampede2 system, that is currently under development,
will be equipped with the Intel Haswell processors, future generation Intel Xeon
processors, and Intel Knight’s Landing (KNL) processors. The estimated theoretical
peak performance of Stampede2 is about 18 PFLOPs. Figure 1 depicts the rate of
evolution in the HPC landscape considering the aforementioned systems deployed
by TACC as examples.

For migrating applications from a system like Ranger to Stampede, and from
Stampede to Stampede2, some level of software reengineering may be required
to enhance the performance of the applications. The required reengineering may
be in the form of increasing the level of parallelization in the applications by
incorporating both OpenMP and MPI programming paradigms, or improving code
vectorization to effectively take advantage of the Intel Sandy Bridge and Knight’s
Corner coprocessors, or optimizing the memory access pattern of the applications
to benefit from the High-Bandwidth Memory (HBM) on the KNL processors.

As evident from the example of TACC resources, even though the current
and future generation HPC systems may be equipped with high-end hardware
components, they may not offer the same range of diversity in processing elements
as compared to the previous generation systems. For example, unlike the Stampede
system, the Stampede2 system does not include GPUs and Intel Knight’s Corner

20

18

16

14

12

10

8

6

4

2

0

P
F

LO
P

s

2008 2013 2017
Years

Ranger
4 cores in main processor

(AMD Opteron)

0.56

Stampede
8 cores in main processor

(Intel Sandy Bridge)

10

18

Stampede2
68 cores on main processor (Intel KNL)

Performance

Evolving HPC Landscape - HPC Systems at TACC

Fig. 1 Evolution in the HPC landscape



Code Modernization Tools for Assisting Users in Migrating to Future. . . 57

(KNC) coprocessors. Thus, the applications written using CUDA to take advantage
of the GPUs, or offload programming model for KNC coprocessors will not be able
to run on Stampede2. This implies that the HPC applicationsmay need to be updated
or reengineered at the same frequency as the systems on which they are supposed to
run (typically, 4 years on an average).

Together with the evolution in the HPC hardware over the last several years, the
parallel programming standards have also been continuously evolving by including
new features for improved performance on modern HPC systems. For example,
the nonblocking collective calls were added to the MPI 3.0 standard [1], and the
taskloop construct was added to the OpenMP 4.5 standard [2]. Incorporation
of such new features in the existing HPC applications requires time and effort in
climbing the learning curve, and in reengineering the applications.

Given the discussion presented thus far, the questions that arise are:

• Are domain experts ready to invest time and effort in continuously modernizing
their applications?

• Do we have enough trained workforce to support HPC code modernization and
migration efforts?

During the process of pursuing the answers to the aforementioned questions,
we found that the domain experts prefer to spend time in doing science rather
than keeping up with the evolution in the HPC hardware and parallel programming
standards. We also found that there is a shortfall of trained workforce in the area
of parallel programming. Therefore, we need high-level tools for assisting users
in their HPC code modernization and migration efforts. To address this need,
we are developing high-level tools for supporting (1) the parallelization of serial
applications using MPI, OpenMP, CUDA, and hybrid programming models, and
(2) the migration of applications to the KNL processors. These tools are named as
Interactive Parallelization Tool (IPT) and Interactive Code Adaptation Tool (ICAT).
Before we present an overview of these tools, we explain the typical process
of manual code modernization and migration, and share our perspective on the
automation or semi-automation of the process. We also present a short overview of
the KNL architecture and discuss some key considerations for porting applications
to this architecture.

2 General Process for Manual Code Modernization
and Migration

The traditional process of manually upgrading the code for taking advantage of the
latest HPC systems is as follows:

1. Learn about a new hardware feature
2. Gauge the applicability of the hardware and the potential reward from the

analysis of current bottlenecks (code profiling) and theoretical considerations



58 R. Arora and L. Koesterke

Fig. 2 Using IPT and ICAT for code modernization

3. Develop a general concept of the necessary code modifications
4. Learn the syntax of the new programming model or the interface
5. Write a toy code
6. Insert pieces of the toy code into the target code for exploration and testing
7. Estimate performance gain (based on tests not on theoretical considerations)

and judge the quality of the implementation
8. Modify, test, and release production code
9. Experiment with the various runtime options and environment variables
10. Learn good coding practices

Outlined above is a typical process and not all users go through all the steps in this
process. The high-level tools that we are developing—IPT and ICAT—will assist
the users in the aforementioned process, and in doing so, will significantly speed up
many of its steps. IPT can assist the users in steps 1, 3–6, 8 and 10 mentioned above.
ICAT can assist the users in steps 1 to 6, and 9–10. Figure 2 summarizes the steps
for using IPT and ICAT together during the process of modernizing and migrating
applications written in C, C++ and Fortran base languages.

3 Using IPT for Code Modernization (Parallelization)

IPT semi-automates the parallelization of existing C/C++ applications, and by doing
so, helps in running the applications optimally on the latest HPC systems [1, 2]. It
can support the parallelization of applications using any of the following parallel
programming models: Message Passing Interface (MPI) [3], OpenMP [4], and
CUDA [5]. IPT uses the specifications for parallelization as provided by the users
(i.e., what to parallelize and where) and its knowledgebase of parallel programming



Code Modernization Tools for Assisting Users in Migrating to Future. . . 59

Fig. 3 Overview of IPT

expertise (encapsulated as design templates and rules), to generate parallel versions
of the serial programs.

A high-level overview of the process of serial to parallel code transformation
using IPT is shown in Fig. 3. As shown in Fig. 3, the user provides the serial code
as input to IPT. This serial code is parsed by IPT, and as a next step, IPT prompts
the user for additional input (or specifications). The user chooses the desired parallel
programmingmodel (MPI/OpenMP/CUDA) for their output code, applicable design
patterns (e.g., stencil and pipeline), and hotspots for parallelization. The user also
provides additional information when prompted by IPT for variable dependency
analysis of the input serial application.

Using the infrastructure provided by a Program Transformation Engine (PTE)
named ROSE [6], and user input, IPT analyzes and transforms the serial code into
a parallel one. As required, it inserts, deletes and updates the program statements
in the serial code for generating the parallel code. The generated parallel code is
accessible to the user and is well annotated to give insights into the parallelization
process. The design templates in IPT contain rules for parallelization and patterns
for supporting data movement (e.g., data distribution, data collection, and data
exchange) in MPI programs. During parallelization, IPT weaves these design
templates into the serial code by the means of appropriate function calls.

We are currently working on (1) extending the capabilities of IPT for par-
allelizing additional categories of C/C++ applications (e.g., divide-and-conquer),
(2) prototyping support for parallelizing Fortran applications, (3) adding support



60 R. Arora and L. Koesterke

for parallelization using the hybrid programming model, and (4) making IPT
accessible through a web-portal for convenient code generation and testing on
computational resources of the national CyberInfrastructure (CI). In future, we will
support a Graphical User Interface (GUI) and a Wizard-driven Domain-Specific
Language Interface (WDSLI) to supplement the currently available Command-
Line Interface (CLI) of IPT. The CLI and GUI are intended for parallelizing
small applications interactively. However, working in these modes to provide
parallelization requirements for large applications (over a couple of thousands of
lines of code) can become tedious, and hence,WDSLI will be provided for capturing
the parallelization requirements.

IPT can be used for self-paced learning of parallel programming, and in
understanding the differences in the structure and performance of the parallel code
generated for different specifications while using the same serial application.

4 Overview of KNL Processors

Before we discuss ICAT, we present a short overview of the Intel KNL processors.
Intel KNL processors are equipped with 72 cores and have an extended memory
architecture. The cores on these processors are organized in 36 pairs and each
pair is known as a tile. These processors have a 16GB High-Bandwidth Memory
(HBM) called Multi-Channel DRAM (MCDRAM), alongside the traditional DDR4
memory that is approximately 400GB [7].

4.1 Multiple Memory Modes

The MCDRAM can be configured for use in three different memory modes:

1. Cache mode: As a third-level cache that is under the control of the run-time
system,

2. Flat mode: As an addressable memory like DDR4 that is under user control, or
3. Hybrid mode: Part of MCDRAM is configured in cache mode and part of it is

configured in flat mode.

The cache mode is more convenient to use because it does not require any code
modification or user interaction and ensures high performance for applications that
have a small memory footprint. The applications having large memory footprints
are likely to see a drop in their performance if they are run in cache mode due to
frequent cache misses. It may be advantageous for such applications to manage the
cache from within the code and to store only specific arrays in the MCDRAM—that
is, using flat mode is recommended for such applications.

For selectively allocating arrays on MCDRAM, the existing code for dynamic
memory allocation is modified to use special library calls or directives that are



Code Modernization Tools for Assisting Users in Migrating to Future. . . 61

available through the HBWMALLOC interface [8]. In the case of C/C++ appli-
cations, the function calls for dynamic memory allocation—calloc, malloc,
realloc, and free functions—are replaced with the analogous functions in the
HBWMALLOC interface—hbw_calloc, hbw_malloc, hbw_realloc, and
hbw_free functions. A header file for HBWMALLOC interface is also included.
For allocating memory fromMCDRAM in Fortran applications, a directive with the
FASTMEM attribute is added after the declaration of the allocatable data structure
of interest.

Understanding the concept of two memories (MCDRAM and DDR4), and
doing the required code modifications for using MCDRAM effectively may not
be difficult by itself. However, it takes time to understand the syntax of the code
required for memory allocation on MCDRAM, to learn about the additional tools
for understanding the application characteristics (cache miss or hit rate, sizes of
memory objects etc.), and more importantly to derive the logic of the decision tree
for allocating memory on MCDRAM or DDR4. In order to develop a portable code,
it is also important to implement appropriate logic for handling situations that can
give rise to runtime errors. For example, the code should handle situations where the
user attempts to dynamically allocate more than 16GB of memory on MCDRAM
or tries to run the code on processors that do not support MCDRAM.

4.2 Multiple Cluster Modes

The tiles on a KNL processor are connected to each other with a mesh interconnect.
Each core in a tile has its own L1 cache and a 1MB L2 cache shared with the other
core. The L2 cache on all the tiles are kept coherent with the help of a Distributed
Tag Directory (DTD), organized as a set of per-tile Tag Directories (TDs). The TDs
help in identifying the location and the state of cache lines on-die. When a memory
request originates from a core, an appropriate TD handles it, and if needed passes
the request to the right memory controller. All on-die communication for handling
such memory requests happens over the mesh interconnect. To achieve low latency
and high bandwidth of communication with caches, it is important that the on-die
communication is kept as local as possible. For handling this on-die communication
optimally, KNL processors can be configured in different cluster modes:

1. All-to-All: The memory addresses are uniformly distributed across all TDs,
and this mode is used mainly for troubleshooting purposes or when other
modes cannot be used because it can result in high latency for various on-die
communication scenarios.

2. Quadrant or Hemisphere: The tiles on a processor are virtually divided into four
parts called quadrants, and each quadrant is in proximity to a memory controller.
The memory addresses controlled by the memory controller in a quadrant are
mapped locally to the TD in that quadrant. This arrangement reduces the latency
of a cache miss as compared to the all-to-all mode because the memory controller



62 R. Arora and L. Koesterke

and TD’s are in the same locality. However, the TD servicing the memory
request may not be local to the tile whose core initiated the memory request.
The hemisphere mode is similar to the quadrant mode with the difference that
the tiles on the chip are divided into two parts instead of four.

3. Sub-NUMA (SNC-4/SNC-2): Similar to the quadrant mode, the tiles are divided
into four (SNC-4) or two (SNC-2) parts in this mode too. However, unlike in the
quadrant mode, in the sub-NUMA mode, each part acts as a separate NUMA
node. This means that, the core requesting memory access, the TD, and the
memory channel for servicing the memory access request, are all in the same
part.

While the quadrant mode could work well for majority of the applications, the
sub-NUMA mode can result in better performance for multi-threaded NUMA-
aware applications by pinning the threads and memory to the specific quadrants
or hemispheres on each NUMA node. However, the users may have to do their
own testing to find out the best cluster mode and the runtime options for their
applications.

5 Using ICAT for Code Modernization and Migration
(Porting Code to KNL Processors)

ICAT can assist users in porting their applications to KNL processors by helping
them select the best memory mode and cluster mode and suggesting runtime
options. It can reengineer their application code also to optimally take advantage
of the MCDRAM while keeping it portable enough to run on other systems that do
not support MCDRAM.

By using ICAT, a user can very quickly understand source code modifications,
potential performance gains, and learn good coding practices for porting their
applications to the KNL nodes. They can then move on to modifying their real
application code using ICAT itself, or may cut-and-paste boilerplate code generated
by ICAT. Thus, ICAT offers three key benefits to the users: (a) enables users to
make a decision quickly regarding the best memory mode and cluster mode for
their applications, (b) teaches good coding practices, and (c) assists in changing
production code.

Figure 4 shows an overview of the functioning of ICAT, which is invoked from
the command-line. ICAT prompts the user for input, such as, the name of an
application’s executable, path to the executable, and path to the application’s source
code. The user selects an appropriate advisor mode in which ICAT can run. The
available advisor modes are: memorymode advisor, code adaptation advisor, cluster
mode advisor, advanced vectorization advisor, and memory optimization advisor.
ICAT performs memory usage and performance analyses by running the executable
provided by the user with perf [9], and then if needed, with Vtune [10]. Metrics
are also collected from the processes associated with the executable while it is



Code Modernization Tools for Assisting Users in Migrating to Future. . . 63

ICAT Launch Script

User Input:
Name and path of the executable, command-

line arguments, selection of program type
(MPI/OpenMP/serial), selection of advisor

mode

Memory Usage and Performance Analyses
(Using application process status, Perf tool)

Is memory
usage < 16

GB?

No Yes

Memory Object
Analysis with

Vtune

Heap Memory
Object Information

Evaluation of
Application

Characteristics

Recommendation Reports on Memory
Mode and Cluster Mode Usage

Modified Source Code

If source code transformation is required,
user selects appropriate option (Yes/No)

Fig. 4 Overview of functioning of ICAT



64 R. Arora and L. Koesterke

running. On the basis of the collected metrics and its analyses, ICAT generates
recommendation reports for the user, and if needed, reengineers the application
code.

ICAT can also be used for teaching and training activities related to the KNL
processors. Following is how we envision using ICAT during a training session:

1. Explain the premise: HBM alongside the traditional memory; some raw perfor-
mance comparisons (HBM v. DDR4); applicability for the 80–90% of cases that
are neither I/O bound nor compute bound.

2. Start with a toy code from the sample code repository. Alternatively a small user
code may be used in the future.

3. Run the toy code with the tool. The user will be guided through the modifications
and will decide which arrays should be allocated on the HBM. These are the same
decisions that the user will later make during the modification of the real-world
applications.

4. Measure performance gain. Get a feel for the benefits of HBM, its limitations,
and potential drawbacks.

5. Inspect the modified code and the syntax. Also understand how internally, i.e., in
the code at runtime, decisions are being made and how a fallback is implemented
for arrays that are too big for the HBM.

As part of the ongoing work, we are extending ICAT to support advanced
vectorization and memory optimization. With these two features supported, ICAT
will be able to help the users with tasks such as: reorganizing the data layout by
changing array-of-structures to structures-of-arrays, converting scalars to vectors,
and improving memory alignment of data structures.

6 Using IPT and ICAT with a Sample Application

To demonstrate the functionality of IPT and ICAT, let us consider a Molecular
Dynamics (MD) simulation code. The code helps in following the path of particles
that exert force on each other and are not constrained by any walls [11]. This
MD code uses the velocity Verlet time integration scheme and the particles in the
simulation interact with a central pair potential [11]. The compute-intensive steps in
this test case are related to calculating force and energies in each time-step, as well
as updating the values of the positions, velocities, and accelerations of the particles
in the simulation.

A code snippet of the serial version of the MD simulation application is shown in
Fig. 5 and the complete code can be accessed at [12]. In order to parallelize this code,
the computations in the for-loop beginning at line # 3 of Fig. 5 should be distributed
across multiple threads or processes. The values of the kinetic energy (ke) and
potential energy (pe) are augmented in every iteration of this for-loop. Therefore,
with the distribution of the iterations of the for-loop, only the partial values of ke
and pe will be computed by each thread or process. Hence, all the partial values of



Code Modernization Tools for Assisting Users in Migrating to Future. . . 65

Fig. 5 Code snippet—MD simulation, serial version

ke and pe computed using the multiple independent threads and processes should
be combined meaningfully to obtain accurate results. For combining the partial
values of ke and pe, a reduction operation is needed.

6.1 Using IPT to Parallelize the MD Application

In this section, we will demonstrate the usage of IPT by generating an OpenMP
version of the serial MD simulation application. As shown in Fig. 6, IPT is invoked
from the command-line, and the path to the file containing the serial code is
provided. Next, a parallel programming model is selected, here OpenMP. This is
followed by selecting the function that contains the hotspot for parallelization from
the list of functions presented by IPT.

IPT analyzes the code in the function selected by the user (see Fig. 6), and
presents a list of the for-loops that can be parallelized (because, in this example, the
user chose to parallelize for-loops). As shown in Fig. 7, users can accept or decline
to parallelize the for-loops presented by IPT for parallelization.

For constructing the clauses of the OpenMP directives, IPT can detect the vari-
ables that should be part of the shared, private, and firstprivate clauses.
However, IPT relies on the user-guidance for constructing the reduction clause of
the relevant OpenMP directives (#pragma omp parallel, or #pragma omp
parallel for, or #pragma omp for ). Reduction variables are the variables



66 R. Arora and L. Koesterke

Fig. 6 Invoking IPT for parallelizing MD simulation application

that should be updated by the OpenMP threads by creating a private copy for each
reduction variable and initializing them for each thread. The values of the variables
from each thread are combined according to a mathematical operation like sum,
multiplication, etc. and the final result is written to a global shared variable. IPT
generates a list of potential variables that can be part of a reduction clause, and
prompts the user to select the relevant variables and appropriate reduction operation.

In some cases, IPT is unable to analyze the pattern related to updating the array
elements at the hotspot for parallelization. This typically happens when multiple
levels of indirection are involved during the process of updating the values of the
array elements. In such situations, as shown in Fig. 8, IPT relies on the user to
provide additional information on the nature of the update operation on their array
elements.

IPT also prompts the user to confirm if the I/O in their application should be
happening from a single thread (or process) or using all the threads (or processes
involved in the computation). If there is any region of code that should not be
executed in parallel, then, the user can inform IPT about this as well.

A snippet of the parallelized version of the MD simulation application is shown
in Fig. 9. In addition to updating the code at the hotspot for parallelization by
inserting OpenMP directives (lines 3–5 of Fig. 9), IPT inserts appropriate library
header files as well.



Code Modernization Tools for Assisting Users in Migrating to Future. . . 67

Fig. 7 User guiding IPT in selecting the reduction variables

6.2 Using ICAT to Adapt the MD Application for KNL
Processors

As described in Sect. 3, before running an application on KNL processors, it is
important to understand the application’s characteristics so that the best memory
mode and the cluster mode configuration of the KNL processors can be selected for
it. Depending upon the memory needs of the application, some reengineering may
also be required for selectively allocating memory for specific arrays onMCDRAM.



68 R. Arora and L. Koesterke

Fig. 8 User guiding IPT in analyzing the nature of the updates made to the array values

Fig. 9 Snippet of OpenMP code generated by IPT—MD Simulation application

We demonstrate the usage of ICAT as a decision-support system by using it for
porting the OpenMP version of the MD simulation application to KNL processors.

Before invoking ICAT, we compiled the OpenMP version of the MD simulation
application with the -g flag. After invoking ICAT from the command-line, as shown
in Fig. 10, we provide the path to the application executable and the arguments
required to run it. We also select the advisor mode in which ICAT should run.
Using this information, ICAT first profiles the application by running it in real-time



Code Modernization Tools for Assisting Users in Migrating to Future. . . 69

Fig. 10 Invoking ICAT from the command-line

and gathers the application’s characteristics. It then generates a recommendation
report regarding the appropriate memory mode for the application and instructions
for compiling the code.

Using the memory mode report that it generated and the input regarding the
programming model of the application, ICAT also generates a report with the
recommendation for the cluster mode to use. Then, as shown in Fig. 11, ICAT
informs that the entire MD simulation application fits in the MCDRAM. Hence,
no code adaptation is required. However, if the user still wants to see how the code
would be adapted to selectively use the MCDRAM, they may choose to do so by
selecting the appropriate option while ICAT is running.

The reports generated by the memory mode advisor and the cluster mode
advisor are shown in Figs. 12 and 13. For the OpenMP version of the MD
simulation application, ICAT recommends running the application on the KNL
node which has the MCDRAM configured in flat-mode if numactl is available.
If numactl is not available, it recommends running the application on the KNL
node which has the MCDRAM configured in cache-mode. For the cluster mode,
ICAT recommends using the SNC-4 configuration. In the case of Stampede2 system,



70 R. Arora and L. Koesterke

Fig. 11 ICAT running in different advisor modes

Fig. 12 Memory mode advisor report



Code Modernization Tools for Assisting Users in Migrating to Future. . . 71

Fig. 13 Cluster mode advisor report

Fig. 14 Code modifications done using ICAT

the aforementioned recommendations imply that the OpenMP version of the MD
simulation application should be run on the KNL node in the “Flat-SNC4” queue.

As can be noticed from Fig. 11, ICAT recommended against modifying the
OpenMP version of the MD simulation application to use the HBWMALLOC
interface. However, if a user still wishes to modify the application code to use
the HBWMALLOC interface, they may do so using ICAT. A snippet of the
modified version of the MD simulation application produced using ICAT is shown
in Fig. 14. The modifications made by ICAT include: inserting code for including
the hbwmalloc.h file, checking the availability of MCDRAM in the underlying
architecture, replacing the call/s to the malloc function with the hbw_malloc
function, and replacing the call/s to the free functionwith the hbw_free function
call/s.



72 R. Arora and L. Koesterke

7 Conclusion

HPC system hardware and the programming models are constantly evolving.
Sometimes the changes are big, but often the changes are incremental. Even if
most users are not aiming for peak performance, they need to spend some effort
in modernizing their applications to keep up with the major developments. Not
modernizing their code base to keep up with the technology is not viable because
with inefficient code, the researchers will neither be competitive (a) in the scientific
arena to handle larger problem sizes and calculations than what they are doing now,
nor (b) when HPC resources are allocated at open-science data centers [13]. Often,
users attempt to strike a balance between effort and reward and they cannot afford
to explore all possible avenues for code modernization at a given point in time.
Therefore, high-level tools— like IPT and ICAT— that are geared towards assisting
the users in code modernization and migration efforts on the latest HPC platforms
are needed.

Acknowledgements We are very grateful to the National Science Foundation for grant # 1642396,
ICERT REU program (National Science Foundation grant # 1359304), XSEDE (National Science
Foundation grant # ACI-1053575), and TACC for providing resources required for this project. We
are grateful to our students (Madhav Gupta, Trung Nguyen Ba, Alex Suryapranata, Julio Olaya,
Tiffany Connors, Ejenio Capetillo, and Shweta Gulati) for their contributions to the IPT, ITALC,
and ICAT codebase. We are also grateful to Dr. Purushotham Bangalore for providing guidance
and code templates for developing FraSPA, which was the precursor of IPT.

References

1. Arora, R., Olaya, J., Gupta, M.: A tool for interactive parallelization. In: Proceedings of
the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
(XSEDE’14), Article 51, p. 8. ACM, New York (2014). http://dx.doi.org/10.1145/2616498.
2616558

2. Arora, R., Koesterke, L.: Interactive code adaptation tool for modernizing applications for
Intel Knights Landing processors. In: Proceedings of the 2017 Conference on the Practice
& Experience in Advanced Research Computing (PEARC17). ACM, New York (2017) http://
dx.doi.org/10.1145/3093338.3093352

3. MPI: A Message Passing Interface Standard. Message Passing Interface Forum (2015). http://
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf. Cited 16 June 2017

4. OpenMP Application Programming Interface (2015). http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf. Cited 16 June 2017

5. CUDA Toolkit Documentation (2017). http://docs.nvidia.com/cuda/#axzz4lGuUKK2x. Cited
16 June 2017

6. ROSE User Manual (2017). http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.
pdf. Cited 16 June 2017

7. Sodani, A.: Knights landing (KNL): 2nd generation IntelrXeon Phi processor. In: 2015 IEEE
Hot Chips 27 Symposium (HCS) (2015). doi:10.1109/HOTCHIPS.2015.7477467

8. Intel Corporation HBWMALLOC (2015). https://www.mankier.com/3/hbwmalloc. Cited 16
June 2017

http://dx.doi.org/10.1145/2616498.2616558
http://dx.doi.org/10.1145/2616498.2616558
http://dx.doi.org/10.1145/3093338.3093352
http://dx.doi.org/10.1145/3093338.3093352
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://docs.nvidia.com/cuda/#axzz4lGuUKK2x
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
https://www.mankier.com/3/hbwmalloc


Code Modernization Tools for Assisting Users in Migrating to Future. . . 73

9. perf: Linux Profiling with Performance Counters. https://perf.wiki.kernel.org/index.php/Main_
Page. Cited 16 June 2017

10. Vtune Performance Profiler (2017). https://software.intel.com/en-us/intel-vtune-amplifier-xe.
Cited 16 June 2017

11. Rapaport, D.: An introduction to interactive molecular-dynamics simulation. Comput. Phys.
11(4), 337–347 (1997)

12. Molecular Dynamics Code. http://people.sc.fsu.edu/~jburkardt/c_src/md/md.c. Cited 16 June
2017

13. XSEDE Allocations Overview. https://www.xsede.org/allocations. Cited 16 June 2017

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://people.sc.fsu.edu/~jburkardt/c_src/md/md.c
https://www.xsede.org/allocations

	Code Modernization Tools for Assisting Users in Migrating to Future Generations of Supercomputers
	1 Introduction
	2 General Process for Manual Code Modernization and Migration
	3 Using IPT for Code Modernization (Parallelization)
	4 Overview of KNL Processors
	4.1 Multiple Memory Modes
	4.2 Multiple Cluster Modes

	5 Using ICAT for Code Modernization and Migration (Porting Code to KNL Processors)
	6 Using IPT and ICAT with a Sample Application
	6.1 Using IPT to Parallelize the MD Application
	6.2 Using ICAT to Adapt the MD Application for KNL Processors

	7 Conclusion
	References


