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Abstract The spectral theory of linear operators enables the analysis of their
properties on stable subspaces. The Koopman operator allows to extend these
approaches to a large class of nonlinear operators in a surprising way. This is
even applicable for numerical analysis of time dependent data of simulations and
measurements. We give here some remarks on the numerical approach, link it to
spectral analysis by the Herglotz-Bochner theorem and are doing some steps for
significance for partial differential equations.

1 Introduction

This paper is directly related to a first part [7] and a second part [8] from the author
and is to be considered as an extension of the numerical approaches.

Linear operators are used and deeply analysed as well in mathematics and
numerics as also in nearly any scientific discipline. Nevertheless most relevant
models of nature are nonlinear, so that linear theory seems to be not applicable
or in the best case only by local approximations. Here an even not new theory of
functional analysis comes into play. The nonlinear operator induces in a natural
way a linear one acting on the continuous functions defined on the space, where
if nonlinear operator is defined. This linear Koopman operator has well known
attributes as spectrum, eigenvalues, stable eigenspaces. What this means for a
specific application is task for the different communities. The approach can be
handled also in a numerical way, important for simulations, which has discussed
already in in the Dynamic Mode Decomposition theory of Peter Schmid [12]. This is
related to the Koopman operator theory, as pointed out by Igor Mesić and coworkers
in [3] and Clarence Rowley and his coworkers in [4].

In that way the Ergodic Theory investigated by Ludwig Boltzmann, John von
Neumann, George David Birkhoff, Bernard Osgood Koopman, Norbert Wiener,
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Aurel Friedrich Wintner and comprehensively described in the monograph [5]
for new developments comes to modern numerical applications. We try here to
make some steps further to general applicability and for understanding what that
implies for the analysis of the solutions of nonlinear partial differential equations.
in addition, we give also the link to spectral theory of Fourier analysis.

2 The Koopman Operator

This is a short description of the preliminaries given in [5] and recapitulating, what
has been described in [8]. Let

' W K �! K (1)

be a continuous nonlinear operator on the compact space K and assume F � C .K/

being a linear subspace of “observables” in the continuous functions on K. F shall
have the stability property

f 2 F ) f ı ' 2 F (2)

that means, that an observable coupled with the operator is again in the observable
space. This condition forces F typically to be large. Observables might be any
useful functional on the space of interest as the mean pressure of a (restricted)
fluid domain ˝ or the evaluation operators ıx at all points x 2 ˝ . It might
be also economic parameters describing the behaviour of models of national and
global economies or of models of social science. The nonlinear operator ' has no
further restrictions. It might describe non wellposed unsteady problems, the case
where trajectories are not convergent (also strange attractors), chaotic or turbulent
behaviour, mixing fluids, particle systems or ensembles of trajectories for weather
forecast. The operator could also be defined by an agent based system for the
simulation of traffic, epidemics, social dependencies, where the agents determine
their next status by the current status of some other neighbouring agents. In this
case K is the set product of the status of all agents with some topology and definitely
not a subset of a vector space in contrast to F . The operator ' might even not be
known explicitly, but its effect on the observables measured at a number of time
steps with constant difference is present. All models are described where an operator
is changing the values of the observables to a new state, as long as the iterations are
not leaving the limited region of interest.

An important numerical example is the discretization of the Navier-Stokes
equations on a finite set of grid points in a domain and time steps. It is even possible
to understandK here as the product of the status of all variables on the discretization
grid together with varying boundary conditions and geometrical parameters.
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By a simple mechanism the nonlinear operator ' acting on a set without linear
structure induces a linear operator on the space of observables F . The operator T'

on the observables defined by

T' W F �! F (3)

f 7! T' f D f ı ' (4)

is named the Koopman operator of ' on F [6]. Hence T' is linear and continuous.
As an infinite dimensional operator T' may have a (complicated) spectrum with

discrete and continuous parts. We are mainly interested in the point spectrum
with eigenvalues providing eigenfunctions which are elements of F describing
behaviour in K. The eigenvectors or eigenfunctions f are elements of the space of
observables F , not of the state space K as we know it form the linear case. They
fulfill Schröders functional equation [13]

f .'q/ D �f .q/ 8 q 2 K (5)

The compactness of the space K is forcing j�j � 1 for any eigenvalue �. For any
application the meaning of these stable observables must be discussed. This might
be a problem by itself.

It is a priori not clear, that eigenfunctions exist. The approach is addressing
approximative eigenfunctions.

3 Trajectories and Observables

We study only single trajectories, even where ergodic theory [5] would allow for
very general settings. But our target is to establish numerical procedures reflecting
the implications of the theory at a level enabling computation. Even the trajectory
might be large and dense in the space K. For numerical handling we assume that
only the trajectory is given. We are not requesting the explicit knowledge of the
operator. Also the space of observables is reduced as much as possible. We assume h
to be an observable or a finite dimensional vector of observables. In the latter case
we assume a dotproduct < � ; � >. It might be also a function of a function space.
We still avoid this setting because of the difficult questions involved. But h could be
a function in a discrete finite space, as we have this in numerical approximations of
function spaces.

Let q0 2 K be the starting point of the iteration or trajectory

N0 3 k 7! qk D 'kq0 2 K (6)

Define gk as the sequence

gk D h .qk/ 8 k 2 N0 (7)
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These gk are given by measurements or resulting iterations from a simulation.
Because K is compact and h is continuous there norm has a common bound Kh

with kgkk � Kh 8 k 2 N0. They determine a matrix G by (n finite or infinite)

G D �
g0 g1 � � � gn

�
(8)

The matrix H D GTG is symmetric positive semidefinite.

Hj1; j2 D ˝
gj1 ; gj2

˛ 8 j1; j2 D 0; � � � ; n (9)

Defining the sequence of vectors
�
hj
�
j
by overlapping the trajectory

hj D �
h
�
' jqk

��
k2N0

D �
h
�
' jCkq0

��
k2N0

D �
gjCk

�
k2N0

(10)

we can define the space of observables F by

F D LH
˚
hjj j 2 N0

�
(11)

The space F has the stability property, necessary to define the Koopman operator
on F

g 2 F ) g ı ' 2 F (12)

We define p arbitrary, but fixed. Let a D Pp
j1D0 ˛j1hj1 2 F and b D Pp

j2D0 ˇj2hj2 2
F . The Koopman operator T' acts on the space F via shifting on hj; j 2 N0.

T' .a/ D
pX

jD0

˛jT'

�
hj
� D

pX

jD0

˛jhjC1 (13)

or for the coefficient vector ˛

�
˛0 ˛1 : : : ˛p

� 7! �
0 ˛0 ˛1 : : : ˛p

�
(14)

4 The Relation to Time Series Analysis

For m 2 N the semi-sesquilinear form can be defined by

� a; b �mD�
pX

j1D0

˛j1hj1 ;
pX

j2D0

ˇj2hj2 �mD
p;pX

j1; j2D0

˛j1ˇj2 � hj1 ; hj2 �m (15)
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using

� hj1 ; hj2 �m WD 1

m

m�1X

kD0

˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛

D 1

m

m�1X

kD0

˝
gj1Ck; gj2Ck

˛ 8 0 � j1 � p; 0 � j2 � p (16)

For all j1; j2 we have j � hj1 ; hj2 �m j � K2
h . The resulting matrix�� hj1 ; hj2 �m

�
j1; j2

is the arithmetic mean Hm�1 of the first m shifted submatrices
1
m

Pm�1
jD0 Hj of the matrix H D GTG

Hj D HjWjCp; jWjCp (17)

with the size Œ0 W p� � Œ0 W p�. We have

� a; b �mD< Hm�1˛; ˇ > (18)

We assume, that the limit limm!1 � hj1 ; hj2 �m exist for all j1; j2 	 0.
This preassumption is not clear in case of applications.
Because for j1 	 j2

Hm�1
j1; j2 D 1

m

m�1X

kD0

˝
gj1Ck; gj2Ck

˛ D 1

m

m�1Cj2X

kDj2

˝
gj1�j2Ck; gk

˛

D 1

m

m�1Cmin .0;�j1Cj2/X

kDmax .0;�j1Cj2/

˝
gj1�j2Ck; gk

˛
(Toeplitz matrix)

(19)

� 1

m

j2�1X

kDmax .0;�j1Cj2/

˝
gj1�j2Ck; gk

˛

C 1

m

m�1Cj2X

kDmCmin .0;�j1Cj2/

˝
gj1�j2Ck; gk

˛
(20)

we get a decomposition in a Toeplitz matrix (the elements depend only on the
difference j1 � j2) and initial and final matrices (https://en.wikipedia.org/wiki/
Toeplitz_matrix), which are converging to zero as m ! 1 for fixed j1; j2. For
m � j1; j2 we end up with the relation

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://en.wikipedia.org/wiki/Toeplitz_matrix
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� . j1 � j2/ D lim
m!1

1

m

m�1X

kD0

˝
h
�
' j1�j2Ckq0

�
; h
�
'kq0

�˛

D lim
m!1

1

m

m�1X

kD0

˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛
(21)

D lim
m!1

1

m

m�1X

kD0

˝
gj1�j2Ck; gk

˛ D lim
m!1

1

m

m�1X

kD0

˝
gj1Ck; gj2Ck

˛ D H1
j1; j2

(22)

for the symmetric positive semidefinite Toeplitz matrix H1 related to the autocorre-
lation coefficient � . j1 � j2/, with a modulus bounded by K2

h (https://en.wikipedia.
org/wiki/Autocorrelation). For such � the theorem of Herglotz-Bochner (see [5]
Theorem 18.6) assures the existence of a positive finite measure � on the unit circle
T depending on h and q0 with the property (see also [1])

H1
j1; j2 D � . j1 � j2/ D O� . j1 � j2/ D

Z

T

��. j1�j2/ d� .�/ (23)

so that the function � on Z is the Fourier-transform of the measure � identical to the
entries of the Toeplitz matrix H1. All of this is well known in time series analysis.

In terms of the generating elements of the observables F we get

� Tl
'

pX

j1D0

˛j1hj1 ;
pX

j2D0

ˇj2hj2 �1D
Z

T

�
l

pX

j1D0

˛j1�
�j1

pX

j2D0

ˇj2�
�j2 d� .�/ (24)

showing how T' is acting on F and with respect to � for large m. The behaviour of
small m, say the transition is not described.

Applied to coefficient vectors ˛; ˇ, the related elements ; b 2 F and the related
polynoms � 7! ˛ .�/ ; ˇ .�/

� a; b �1D hH1˛; ˇi D
Z

T

˛
�
�
�

ˇ
�
�
�
d� .�/ (25)

Following [1] Theorem 2.1 we see that the measure �(23) is the weak limit of
the sequence of measures �m given by the density for the Lebesgue measure d� on
the unit circle

Z

T

r .�/ d� D
Z 2�

0

r .exp i �/ d� for all integrable r (26)

so that

�m .E/ D 1

2�

Z

E
dm .�/ d� 8 measurable sets E � T (27)

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation
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with the density function

T 3 � 7! dm .�/ D 1

m

		
	
	
	

m�1X

kD0

gk �
k

		
	
	
	

2

(28)

which approximates the spectral density of the eigenvalues of modulus 1 and can be
calculated on a computer. The function is not bounded with respect to m even for
constant gk D g0.

Furthermore we have the relation (using, that
R
T

�l d� D 0 for l ¤ 0 andR
T

�l d� D 2� for l D 0).

1

2�

Z

T

��. j1�j2/ dm .�/ d� D 1

2�

1

m

pX

k1;k2D0

hgk1 ; gk2i
Z

T

��. j1�j2/Ck1�k2 d�

(29)

D 1

m

m�1�min .0;�j1Cj2/X

kDmax .0;�j1Cj2/

˝
gj1�j2Ck; gk

˛
for j1 	 j2

(30)

D 1

m

m�1Cmin .0;j1�j2/X

kDmax .0; j1�j2/

˝
gk; gj2�j1Ck

˛
for j2 	 j1 (31)

The last two identities reproduce the Toeplitz matrix appearing in Eq. (19). The
elements are bounded by

ˇ̌
ˇ
ˇ

1

2�

Z

T

��. j1�j2/ dm .�/ d�

ˇ̌
ˇ
ˇ � K2

h 8 0 � j1; j2 � p (32)

The density function (28) divided by m is the square of the norm of the
discrete Fourier backtransform of the finite sequence

�
g0 g1 � � � gm�1

�
which again

is bounded by K2
h . Additionally we recognize that

< Hm�1˛; ˇ > � 1

2�

Z

T

pX

j1D0

˛j1 �
j1

pX

j2D0

ˇj2 �
j2 dm .�/ d�

m!1�! 0 (33)

Definition 1 For a polynom c define the norm kck1;T D max�2T jc .�/ j . This is
the H1 Hardy norm of the polynom kckH1 on the unit circle (https://en.wikipedia.
org/wiki/Hardy_space).

Proposition 1 Assume, the finite measure � (23) is discrete and that � > 0

is given.

https://en.wikipedia.org/wiki/Hardy_space
https://en.wikipedia.org/wiki/Hardy_space
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1. � must be the sum of at most countable number of point measures

� D
1X

lD1

	l ıf�lg with j�lj D 1 8 l (34)

with decreasing weights 	l > 0.
It exists l� , so that the last part of the sum is small

P1
lDl�C1 	l < �.

2. Let c D c� be a polynom coefficient vector c , so that c
�
�l

�
D 0 for l D 1; � � � ; l� .

Then

hH1c; ci
kck21;T

D 1

kck21;T

Z

T

ˇ
ˇ
ˇ̌
ˇ
ˇ

pX

jD0

cj�
�j

ˇ
ˇ
ˇ̌
ˇ
ˇ

2

d� .�/ D 1

kck21;T

1X

lD1

	l jc
�
�l

�
j2

D 1

kck21;T

1X

lDl�C1

	l jc
�
�l

�
j2 � � (35)

3. By definition of H1 there exists an m0 so that

1
m

DPm�1
jD0 Hjc; c

E

kck21;T

� 2� 8 m 	 m0 (36)

4. Multiplying c by any other non zero polynom b would maintain the roots of c and
therefore also this estimate for c 
 b.

5. Because the l2-norm of the polynom coefficient vector c is identical to the H2

Hardy space norm of the polynom c which itself is lower or equal to the H1
Hardy space norm of the polynom

kck2
2 D kck2

H2
D 1

2�

Z

T

ˇ̌
ˇ
ˇ
ˇ

X

k

ck�
k

ˇ̌
ˇ
ˇ
ˇ

2

d� � 1

2�

Z

T

max
�

0 2T
jc
�
�

0

�
j2 d� D kck21;T � kck2

1

(37)

the Rayleigh quotient of c is an upper estimate of (35)

hH1c; ci
kck21;T

� hH1c; ci
kck2

2

(38)

meaning, that for a polynom coefficient vector c with hH1c;ci
kck2

2

� �, we have also

an estimate for (35).
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It is not clear , that kc�k1;T remains limited for � ! 0. In numerical tests we got
the impression, that this is the case if the roots are nearly uniformly distributed near
the unit circle.

For a measure � (23) with continuous parts, the existence of a polynomial
approximation of nullfunctions of H1 is not yet clear.

The analysis as far shows the relation to a Fourier analysis by the Herglotz-
Bochner theorem. That means it shows the behaviour of a long running sequence
neglecting the damped parts of the sequence. Only the spectral part on the unit
circle T is relevant in this context and not the inner part of the unit circle describing
the part, which will vanish during the iteration. Nevertheless a numerical scheme
must show the correct results in the terms described in the previous section.

The following examples will give insight into typical situations for given
sequences .gk/kD0;1;2;:::. All these can be part of a single sequence.

Example 1 (Converging Sequences) If the iteration h
�
'k
� k!1! h .q�/ converges,

the measure � in (23) is the single point measure at 1.
To see this

ˇ
ˇ
ˇ
ˇ
ˇ
1

m

m�1Ck0X

kDk0

˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛ � hh .q�/ ; h .q�/i
ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ̌
ˇ
ˇ
ˇ
1

m

m�1Ck0X

kDk0

˝
h
�
' j1Ckq0

� � h .q�/ ; h
�
' j2Ckq0

� � h .q�/
˛
ˇ̌
ˇ
ˇ
ˇ

C
ˇ
ˇ̌
ˇ
ˇ
1

m

m�1Ck0X

kDk0

˝
h
�
' j1Ckq0

� � h .q�/ ; h .q�/
˛
ˇ
ˇ̌
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ̌
1

m

m�1Ck0X

kDk0

˝
h .q�/ ; h

�
' j2Ckq0

� � h .q�/
˛
ˇ
ˇ
ˇ
ˇ̌ (39)

so that for given � > 0 and appropriate k0 , that kh �' jCkq0

� � h .q�/ k < � for all
k; j 	 0 with k 	 k0 we find

ˇ̌
ˇ
ˇ
ˇ

lim
m!1

1

m

m�1Ck0X

kDk0

˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛ � hh .q�/ ; h .q�/i
ˇ̌
ˇ
ˇ
ˇ

� �2 C �kh .q�/ k

(40)

and therefore limm!1 1
m

Pm�1
kD0

˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛ D limm!1 1
m

Pm�1Ck0

kDk0˝
h
�
' j1Ckq0

�
; h
�
' j2Ckq0

�˛ D kh .q�/ k2. That means

kh .q�/ k2 D
Z

T

��. j1�j2/ d� .�/ 8 j1; j2 	 0 (41)

which is possible only for the point measure � D kh .q�/ k2 ıf1g.
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This example shows the measure � (23) for a practically relevant case, but which
is of less interest in our context.

Example 2 (Besicovitch Sequences) Assume, that the values gk D Pp
lD1 vl � k

l
8 k 2 N0 are given by decomposition in modes with all �l pairwise different and
j�lj � 1. If for all j�lj D 1, the decomposition is a so called Besicovitch sequence
[2]. Then

Hm�1
j1; j2 D 1

m

m�1X

kD0

˝
gj1Ck; gj2Ck

˛ D 1

m

m�1X

kD0

X

l1;l2

hvl1 ; vl2i �
j1Ck
l1

�l2
j2Ck

D
X

l1;l2

hvl1 ; vl2 i �
j1
l1

�l2
j2 1

m

m�1X

kD0

�k
l1�l2

k
(42)

D
X

l1;l2

hvl1 ; vl2 i �
j1
l1

�l2
j2 1

m

1 �
�
�l1 �l2

�m

1 � �l1�l2

(43)

The last term converges to zero for m ! 1 if �l1�l2 ¤ 1 because j�l1�l2 j � 1. The

convergence is relatively slow. For �l1�l2 D 1 we simply have 1
m

Pm�1
kD0 �k

l1
�l2

k D 1.
Therefore

H1
j1; j2 D lim

m!1
1

m

m�1X

kD0

˝
gj1Ck; gj2Ck

˛ D
X

l

hvl; vli �
j1�j2
l (44)

Thus the measure � (23) is discrete and given by

� D
X

l

kvlk2 ıf�lg (45)

meaning, that the values �l of the Besicovitch sequence determine the measure �.
Because the measure � is finite, the sum

P
l kvlk2 must be bounded. The assumption

j�lj � 1 is essential for the construction. Modes with j�lj < 1 are disappearing for
k ! 1. The measure � (23) cannot represent these.

Let c be an polynom coefficient vector and define the linear combinationPp
kD0 ckgkCj D P

l vl�
j
lc .�l/. We assume, that a finite number of �l are roots of

the polynom � 7! c .�/. Estimating the linear combination by

k
pX

kD0

ckgkCjk �
X

l

kvlkj�j
ljjc .�l/ j (46)

�
X

l;c.�l/¤0

kvlkjc .�l/ j (47)

�
X

l;c.�l/¤0

kvlk max
j�jD1

jc .�/ j (48)
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so that for finite
P

l kvlk < 1 it is possible to define the roots of c in way,
that the remaining part is arbitrary small independent on the index j as long as
maxj�jD1 jc .�/ j remains bounded.

Example 3 (Impact of Continuous Segments) Assume, that the values gk for k 2 N0

have a linear decomposition containing also continuous parts of the following kind
as summands.

gk D
X

m

Z

Œ	m;
m �

�kfm .�/ d� 8 k 2 N0 (49)

For simplicity we consider one element of the sum.
The function � 7! f .�/ should be continuously differentiable. Œ	; 
� is a segment

on the unit circle. Because of the definition of (26) (remark the difference to the
usual product rule)

Z

Œ	;
�

�kf .�/ d� D



1

i k
�k f .�/

�


	

�
Z

Œ	;
�

1

k
�kC1 @� f .�/ d� (50)

these terms converge to 0 for k ! 1 with 1
k and not exponentially as in the case

of a discrete atomic measure for a point � with j�j < 1 . Even a constant f will be
interesting.

By these contiguous segments continuous parts of the spectrum can be formu-
lated for numerical purposes. Used as density for the Lebesgue measure on the unit
circle they are special examples for so called Rajchman measures, which nth Fourier
Transform vanish for n ! 1 (https://en.wikipedia.org/wiki/Rajchman_measure).

5 Approximation of an �-Eigenmode Along a Trajectory

As before we assume here ' as an operator and a sequence f D �
fj
�
jD0;1;���

with fj D f
�
' jq0

�
of scalars or vectors as in (10) or even functions as elements

of a function space C .˝;Rs/, fj are the elements of an iteration observed by a
vector of observables f . s might be any natural number given by a number of
components in the analysed process defined by the operator '. s D 4 in case of
the incompressible Navier-Stokes equations with three velocity components and the
pressure. To simplify the problem we handle only discretized versions with a finite
set of discretization points ˝ which makes the function space finite dimensional.
j is the time step number of the time discretization given by the operator ' in this
case. We define finite complex linear combinations of values along the trajectory
starting at each step j. The coefficients are given by the vector ˛ D .˛k/kD0;��� ;p�1

and do not dependent on j. The coefficients are understood also as coefficients of a

https://en.wikipedia.org/wiki/Rajchman_measure
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Fig. 1 Moving linear combination of values along a trajectory

polynom � 7! ˛ .�/ D Pp�1
kD0 ˛k�

k. We fix here a value � which must not be a root
of this polynom and define the sequence

bf ˛;�
j D

Pp�1
kD0 ˛k fjCk

Pp�1
kD0 ˛k �k

8 j D 0; 1; 2; � � � (51)

Figure 1 shows the linear combinations on the trajectory for p � 1 D 8 elements
moving along 7 starting points j. This approach is motivated by the fact, that for
a sequence

�
fj
�
j
, already fulfilling the rule fj D �j f0, we conserve this property

bf ˛;�
j D �j f0. That means we conserve Schröders equation f .'q/ D �f .q/ 8q, or in

other words have a Koopman eigenvector.

The error �˛;� of the pair
�
�;bf ˛;�

�
of being a Koopman eigenvalue-eigenvector

pair is given by

�
˛;�
j D ��bf ˛;�

j Cbf ˛;�
jC1 D 1

˛ .�/

 

�
p�1X

kD0

fjCk �˛k C
p�1X

kD0

fjC1Ck ˛k

!

(52)

D 1

˛ .�/

 

�fj �˛0 C
p�1X

kD1

fjCk .��˛k C ˛k�1/ C fjCp ˛p�1

!

(53)

D 1

˛ .�/

pX

kD0

fjCk ck 8 j D 0; 1; � � � (54)
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with the polynom coefficient vector

c0 D ��˛0

ck D ��˛k C ˛k�1 8 k D 1; � � � ; p � 1 (55)

cp D ˛p�1

Example 4 (Wiener-Wintner) An example are the sums in the Wiener-Wintner
theorem [5]

Qf!
�
qj
� � 1

p

p�1X

kD0

f
�
'kqj

�
ei 2� !k 8 j 2 N0 (56)

where ˛k D ei 2� !k for all k, the eigenvalue � D e�i 2� ! and ˛ .�/ D p. For p ! 1
they approximate the eigenmode Qf! for �.

c is given by c D ��e�i 2� ! 0 � � � 0 ei 2� !. p�1/
�

and the approximation error by

�
˛;�
j D 1

p

��fje�i 2� ! C fjCpei 2� !. p�1/
�

which is small for bounded f , if p is large.
As a polynom, c is the product of polynom ˛ and the linear divisor given by � 7!

���. Understood as polynom coefficient vector c is the convolution c D ˛


��

1

�
.

By definition, � is a root of the polynom � 7! c .�/.
For a matrix Ap.c/ build by the repeatedly shifted vector c we request

equivalently

�˛;� D 1

˛ .�/

�
f0; f1; f2; � � ��

2

6
6
6
6
66
6
6
6
66
6
6
4

c0

c1 c0

c2 c1 c0

: c2 c1 �
: : � �
cp cp�1 cp�2 �

cp cp�1 �
cp �

�

3

7
7
7
7
77
7
7
7
77
7
7
5

D 1

˛ .�/
f Ap.c/

Š� 0 (57)

The existence of a polynom coefficient vector c with this property is a necessary
condition for the existence of approximative eigenvectors. Using the same notation
we havebf ˛;� D 1

˛.�/
f Ap�1.˛/ for the approximative eigenmode (51) .

The sequence bf ˛;� will be an approximative eigenmode of the underlying
iteration operator if and only if kbf ˛;�k � k�˛;�k and k�˛;�k � 0. In the following
we assume that �˛;� is small.

If a vector c with the property (57) has been found, it provides � as root of
the polynom c. Furthermore, all roots �l of c together with the related polynom
coefficient vectors ˛l for l D 1; � � � ; p are candidates for approximating Koopman
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modes, as long they are not multiple roots and as long j�lj � 1 . These pairs all share
the same approximation quality 1

˛.�l/
f Ap.c/ depending solely on the fraction 1

˛.�l/
.

By providing a single coefficient vector ˛, we get many other coefficient vectors ˛l

by dividing the polynom c by the linear divisors of the different roots. If j˛l .�l/ j is
large, we expect a good approximation quality. The degree p has to be as small as
possible.

5.1 Determining the Polynom Coefficient Vector c

Given are a finite sequence of vectors G D �
g0 g1 : : : gn

�
. To find a polynom

coefficient vector c with small approximation error

�˛;� D G Ap.c/ � 0;

we apply the following procedure. For any given c determine the minimal number
	c 	 0 so that

A.c/�H A.c/ � 	c A.c/�A.c/ (58)

	c is the largest eigenvalue of the generalized eigenvalue problem. Determine c with
fixed degree p so that 	 D 	c is minimal and that the roots of the polynom defined
by c have modulus not more than 1. This can be reached by an iterative process
following the theorem of Rellich [10], that for a real symmetric parametrized matrix
eigenvalues and eigenvectors depend analytically on the parameter. During the
iteration the roots of c are tested and changed, if there modulus exceeds 1.

The value of 	 determines the error of the approximation.
Projecting to the jth row and column of both sides of the matrix inequality we find

˝
Hj c; c

˛ � 	 kck2 (59)

for the jth submatrix Hj (17).
Taking the mean over the m D n � p C 1 first submatrices Hj we find for Hm�1

as in (18)

˝
Hm�1c; c

˛ � 	kck2 (60)

So we get by (38) and (35) the estimate for m which is sufficiently large

hH1c; ci
kck21;T

�
˝
Hm�1c; c

˛

kck21;T

�
˝
Hm�1c; c

˛

kck2
2

� 	 (61)

Minimizing hHm�1c;ci
kck2

1;T

directly with respect to c might result in a better c.
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There are other alternatives to calculate the vector c. The whole procedure is
related to DMD of Peter Schmid [12].

5.2 Roots and Pseudo-Eigenvectors

The roots �l for all l D 1; � � � ; p of the polynom c are determined by the solution of
the eigenvalues of the c-companion matrix.

For each �l with j�lj � 1 a “pseudo-eigenvector” ˛l is determined by factorizing
the linear divisor of root �l out of c

˛l .�/ .� � �l/ D c .�/ 8 � 2 C (62)

We assume, that there are no multiple roots of c, so that ˛l .�/ ¤ 0. The vectors ˛l

with degree p� 1 define the linear combinations (51) along the trajectory delivering
approximate Koopman eigenvectors for the eigenvalues �l.

The matrix consisting on the vectors ˛l
˛.�l/

is the inverse of the Vandermonde
matrix (https://en.wikipedia.org/wiki/Vandermonde_matrix) defined by the eigen-
values �l.

The approximative eigenvectors are given by

vl D G
˛l

˛ .�l/
(63)

The vectors with complex elements are also named Koopman modes [3].
For small 	 (61) we get the following approximation

gk �
pX

lD1

vl � k
l 8 k (64)

which is Besicovitch like sequence including potentially some �l with j�lj < 1.

5.3 Handling Intermediate Data Steps

If the number of data steps is large, or if the data from step to step are very slowly
changing, or if the data size per step is large (e.g. 100,000 steps of a weather
simulation), it is reasonable to analyse only intermediate steps, e.g. every mth out of
n steps. There is basically no difference to the given approach. How to analyse the

https://en.wikipedia.org/wiki/Vandermonde_matrix
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influence of the intermediate data on the eigenvalues? This can be done by enlarging
the matrix G in the following way:

bG D

2

6
6
6
66
4

G0C0 GmC0 G2mC0 � � � GqmC0

G0C1 GmC1 G2mC1 � � � GqmC1

G0C2 GmC2 G2mC2 � � � GqmC2

:::
:::

::: � � � :::

G0Cm�1 GmCm�1 G2mCm�1 � � � GqmCm�1

3

7
7
7
77
5

(65)

q is defined so that qm C m � 1 � n. Every line out of m consists on
intermediate steps with distance m. The next line is shifted by 1. Be aware, that
the matrix size is essentially the same as before. The degree qm vector c D�
c0 0m�1 cm 0m�1 c2m 0m�1 � � � 0m�1 cqm

�
where 0m�1 represents a vector of m � 1

zeros. After suppressing these zeros bG c � 0 is handled as before. c leads to a
polynom

� 7!
qX

kD0

ckm .�m/k (66)

The qm roots of this polynom are �m
l D �m

l; j where

�l; j D �l;0 exp

�
i 2�

j

m



8 j D 0; 1; � � � ;m � 1; and l D 1; � � � ; q (67)

If �m
l1; j ¤ �m

l2; j for l1 ¤ l2 than all the m roots belonging to both values are
different. These roots are related to pseudoeigenvectors wl; j which are calculated
in the following way. Similar to c let wl be the polynom coefficient vector of
degree .q � 1/m wl D �

wl;0 0m�1 wl;m 0m�1 wl;2m 0m�1 � � � wl;q m

�
defined by the

factorization wl D c=
���m

l 0m�1 1
�
. The complete pseudoeigenvectors are then

given by the convolution

wl; j D 1

m

 
1

�k
l;0

exp

�
�i 2�

j k

m


!

kD0;��� ;m�1


 wl 8 j D 0; � � � ;m � 1 (68)

The eigenmodes vl; j are calculated by

ul; j D 1

m

�
exp

�
�i 2�

j k

m





kD0;��� ;m�1

diag

 
1

�k
l;0

!

k

bG wl=wl
�
�m
l

�
(69)

The first part is a discrete Fouriertransform and is identical for all different l D
1; � � � ; q. The second part bG wl=wl

�
�m
l

�
is constant with respect to j and represents

the whole space belonging to the eigenvalues given by �m
l . The modes ul; j for



The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 43

fixed l are not related to each other. Some of them might be nearly vanishing. The
calculation requires the special definition of bG with replicated shifted lines.

6 The �-Eigenmode Mapping Operator

For a given pair .�; ˛/ we denominate the map b�� defined by approximative
eigenmode (51)

b�� W f 7!bf � Dbf ˛;� (70)

the �-eigenmode mapping operator. This linear operator can be applied to a
sequence of scalars or vectors or functions or vector fields in the appropriate spaces.

Under reasonable conditions we found in our simulations (no proof) empirically
for the pairs .˛; �/, that

1

j˛ .�/ j
p�1X

kD0

j˛kj D k˛k1

j˛ .�/ j D O .1/ (71)

This helps in analysing the behaviour in combination with diverse operators. This
property together with an uniformly bounded approximation-error �˛;� (57) shows
the following properties.

In the case of continuous or differentiable or integrable functions f the operator
b�� is linear and commutes with limits and (discrete) differentiable and integration
operators, substantial for the definition of partial differential equations, e.g.

2af C bg� D abf � C bbg�

lim
n!1

bfn� D 2lim
n!1 fn

�

1grad f � D grad bf �

b� f � D �bf �

bD v� D D bv�

1div v� D div bv�

1rot v� D rot bv�

̂
Z

V
f .x/dx

�

D
Z

V

bf � .x/ dx

̂
I

@V
< v .x/ ; df .x/ >

�

D
I

@V
<bv� .x/ df .x/ >
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all these elements are approximative eigenmodes for the eigenvalue � as long as
approximation-error �˛;� (57) is small. The approximation error will surely changed
by these operations. If the finite sums by coefficients would be changed to infinite
sums, additional restrictions have to be expected.

Assume a time dependent solution of a partial differential equation with bound-
ary conditions given. The �-eigenmode mapping operatorb�� can be applied to the
trajectory of boundary conditions as well. A timewise constant boundary condition
b is an eigenvector for � D 1.

6.1 Incompressible Navier-Stokes Equations as Example

The Navier-Stokes equations can be defined in integral or differential form. The
difference is not important here. In differentiable form

div v D 0 (72)

@t v D � div v ˝ v � 1

	
grad p C �
v (73)

div v ˝ v is the sole nonlinear term using the local tensor product of the velocity
field. The density is here simply 1. � is the kinematic viscosity.

We discretize the time derivative in a simple way, which is here not relevant, and
get for k D 0; � � � ; p � 1 and j D 0; 1; 2; � � �

div vjCk D 0 (74)

vjCkC1 D vjCk C 
t

�
� div .v ˝ v/jCk � 1

	
grad pjCk C �
vjCk



(75)

The operators in 3D-space are to be understood as differentiable operators or their
discretization.

Applying the �-eigenmode mapping operatorb�� with respect to eigenvalue � to
this equation system

divbvj� D 0

1


t

�
�bvj� � bvj�

� D � div

4

�

vj ˝ vj

�

� � 1

	
gradbpj� C �
bvj� 8 j D 0; 1; 2; � � �

(76)

After dividing by �j this gives an approximate decomposition into time independent
complex components.
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Remark, that the equation reflects the actual spacial discretizations of
grad; div; � as long as these are linear. E.g. the approximate eigenvector of the
velocity field is divergence free.

Remark further, that

3.vj ˝ vj/
� ¤ �

bvj� ˝ bvj�
� 8 j D 0; 1; 2; � � � (77)

This is the nonlinear term and couples eigenmodes of different eigenvalues (but
not all).

To get all of this with a small approximation-error �˛;� (57) we assume that the
relevant entities are small after multiplication by Ap.c/ from the right

2

4
v

v ˝ v

p

3

5Ap.c/ D G Ap.c/
Š� 0 (78)

The operator G consists on the sequences of all iterations v D �
vj
�
j
, v ˝ v D

�
vj ˝ vj

�
j and p D �

pj
�
j. Remark that we are using (discrete) functions. Practically

it turns out, that the term v ˝ v involving many variables, is not necessary. We still
don’t know, why and under what circumstances.

In the case of a small approximation-error �˛;� (57) we then have for 8j D
0; 1; 2; � � �

bvjC1
� � � bvj�

6.vjC1 ˝ vjC1/� � � 3.vj ˝ vj/
�

bpjC1
� � � bpj�

(79)

7 Remarks

Having a decomposition of the real iterated values gk as

N0 3 k 7! gk D
pX

lD1

vl � k
l (80)

with j�lj � 1 then with .�l; vl/ appear also the conjugated elements
�
�l; vl

�
. So

the decomposition can be written as sum of terms 2 Re vl � k
l . These terms could be

understood as vectors in a two dimensional subspace moving with the time step k.
They can be animated in this form.
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Eigenvalues with modulus lower than 1 belong to eigenmodes, which disappear
during ongoing iterations. Even for eigenvalues with modulus near to 1, e.g. j�lj D
0:999 the term vl � k

l is reduced by a factor of 0:37 for k D 1000.
Changing the degree p of the polynom coefficient vector c has influence on

some eigenvalues but not on all. The latter might be candidates for determining
the continuous part of the spectrum. On the one hand the degree p of c should be
small to limit the number of modes; on the other hand a small degree enlarges the
approximation error �. There must be a balance between the degree p of c, this
is the number of eigenvalues, and m as number to take the mean of submatrices.
The sum m C p is the number of given measurements. The continuous part of the
spectrum is not addressed by this approach. It might be that it numerically shows up
by the eigenvalues with eigenvectors with a small norm which are locally uniformly
distributed. Our example gives an impression.

For the largest possible p D n, we have A.c/ D c and .c; 	/ can be an
eigenpair for smallest eigenvalue of H. This is the setting for the Dynamic Mode
Decomposition (DMD) of [12].

8 Computational Costs and Performance Aspects

An essential part of the computational effort is the calculation of the product GTG
in (8) resp. bGTbG in (65).

The number of columns of the matrix G is the number of used time steps. The
number of rows of G is typically very large. In case of a discretized PDE this number
is #(variables per node)
#(discretization nodes) 
# (repetitions of the sequence).
The effort for reading might be large. Assume a discretization grid with 109 nodes
with 4 variables per node with 8 B and n D 1000 time steps. The stored data are
109 
 4 
 1000 
 8 B = 29.1 TB. A system with a effective read bandwidth of 100

GB/sec would need 298 s to read the data.
The number of operations for the calculation of GTG is 2
4
109 
10002 FlopD

8 
 1015 FlopD 8 
 103 TFlop. On a system running with an effective performance
of 10 TFlops we need 800 s computing time which is comparable with the read
time. The computing time increases with second order of the number of time steps
whereas the reading the input data with the first order. That means, that the process
is computationally limited. The second compute intensive part is the multiplication
of the matrix G with the matrix consisting on the pseudoeigenvectors .wl/lD1;��� ;p.
The needed effort is comparable to the effort for the calculation of GTG.

Opposite to the size of G the matrix GTG typically has a relatively small size
given by the number of intermediate time steps.

A generalized eigenproblem of size n � p has to be solved iteratively for
determining c with degree p. This takes relevant time, if p is relatively small and
many iterations have to be made.
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9 Application Example

As example we show the simulation of the flow in an artery near the heart aortic-
valve with OpenFOAM. The geometry was taken from MRI-data of Fraunhofer
Mevis [9] (https://www.mevis.fraunhofer.de/) as well as the estimations of inflow
and outflow conditions. The simulation has been done by [11]. Figures 2 and 3 show
the square root of the norm of the eigenmodes over the phase of their eigenvalues
for time step 0 and time step 2457. The second figure shows disappearing modes
with modulus smaller 1 . The distribution also shows prominent eigenvalues which
are nearly multiples of a smallest. This property is expected, because � being a
Koopman eigenvalue, also �m for m 2 N is an Koopman eigenvalue.

Figures 4, 5, 6, and 7 show the the vector field 2 Re vl � k
l of the eigenmode

l with the second largest norm in the upper part of the aorta for the time steps

Fig. 2 kvl�
k
l k over phase for time step k D 0 in Œ�10ı W C10ı�

https://www.mevis.fraunhofer.de/
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Fig. 3 kvl�
k
l k over phase for time step k D 2457 in Œ�10ı W C10ı�

Fig. 4 Time step 661
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Fig. 5 Time step 841

Fig. 6 Time step 1021

Fig. 7 Time step 1201
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k D 661; 841; 1021; 1201. It can be seen, that the direction of the vector field is
reversed going from time step 841 (5) to time step 1201 (7) and that the vector field
disappears in some regions at time step 1021 (6).

The simulated nearly periodic flow is nearly stagnating at a certain time.
Interesting is, that the eigenvalues �l of the dominant eigenmodes all nearly satisfy
�
q
l D 1 where 
T D q 
t is the time difference of two flow stagnation events. This

is expected because if

pX

lD1

vl � k
l D

pX

lD1

vl �
kCq
l (81)

it is clear that
Pp

lD1 vl

�
�

kCq
l � � k

l

�
D 0 and for linearly independent vl that also

�
kCq
l � � k

l D 0 implying for �l ¤ 0 that �
q
l D 1 for all l. This remains true even

for linearly dependent vl if the identity is given for several steps k. We see here the
peculiarity of periodic sequences k 7! gk.

10 Conclusions

It is possible to determine numerically approximative Koopman eigenvectors for
nonlinear operators by linear combinations of iterated values on a trajectory. This is
in line with the Wiener-Wintners theorem. These approximative eigenvectors have a
direct relation to the partial differential equation defining the operator. The physical
meaning is not clear.

We have shown the relationship of variants of the Dynamic Mode Decomposition
to Fourier analysis using the theorem of Herglotz-Bochner for the eigenvalues with
modulus 1. Whereas this theory handles on spectral parts on the unit circle for an
infinite sequence, the proposed methods deliver also eigenvalues with modulus less
than 1. We found empirically, that with an eigenvalue � with a large eigenvector also
�2; �3; � � � are appearing. It remains open, how continuous parts of the spectrum can
be handled, if they are not yet visible by the proposed procedures.

The approach allows for handling ensembles by integrating all members in
the matrix G. The algorithms deliver common eigenvalues and by the described
procedures eigenvectors, which are related to each other.
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