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Abstract The reduction of noise is one of the challenging tasks in the field of
engineering. The interaction between flow, structure, and an acoustic field involves
multiple scales. Simulating the whole domain with one solver is not feasible and out
of range on todays supercomputer. Since the involving physics appear on different
scales, the effects can be spatially separated into different domains. The interaction
between the domains is realised with coupling approaches via boundaries. Different
interpolation methods at the coupling interfaces are reviewed in this paper. The
methods include the Nearest-Neighbor Interpolation (first order), the Radial-Basis
Function (second order) as well as the direct evaluation of the state representation at
the requested points (arbitrary order).We showwhich interpolationmethod provides
less error, when compared to the monolithic solution of the result. We present how
the two coupling approaches preCICE and APESmate can be used. The coupling
tool preCICE is based on a black box coupling, where just the point values at the
surface of the coupling domains are known. In contrast APESmate has knowledge
about the numerical schemes within the domain. Thus, preCICE needs to interpolate
values, while APESmate can evaluate the high order polynomials of the underlying
Discontinous Galerkin scheme. Hence, the preCICE approach is more generally
applicable, while the APESmate approach is more efficient, especially in the context
of high order schemes.

1 Introduction

With increasing computational resources also the idea of simulating more complex
and larger simulations gets more and more important, since they allow a better
understanding of physical phenomena and the optimisation in product design. In
the recent years the energy turnaround in renewable resources gained more and
more popularity, which lead to an increasing number of e.g. wind turbines. Wind
turbines emit noise, which is caused by the rotor-wind interaction, where turbulent
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flow appears. With the increasing number and size of the turbines, the reduction
of noise becomes important, due to the noise emission in the range of hundreds of
meters or up to a few kilometres. The interaction of flow, structure and acoustic field
(FSA) has to be studied in more detail, to improve the understanding of these factors,
that can help to reduce the noise propagation. Solving the whole domain with a
single equation (monolithic) up to the smallest scales is not feasible and still out of
reach on todays supercomputers. Therefore we use partitioned coupling, where the
physical space is divided into smaller domains and each of the subdomains covers a
dedicated physical setup, as the different physical effects appear on different scales.
Hence the separation of the domains allows different numerical treatments of the
large and complex problem, which is than feasible as different equations as well as
mesh resolutions can be used for each of them.

For the communication and the data exchange between the subdomains coupling
approaches are used. They are based on a heterogeneous domain decomposition,
where the different domains are connected to each other via boundary conditions.
Considering compressible flows, we make use of explicit time stepping schemes that
enable a straightforward data exchange at the coupling interfaces. Applying a proper
data exchange at the coupling boundaries allows the deployment of various schemes
and equations in each domain. Thus the numerical approximation can be adapted to
the requirements of each domain. Especially for the acoustic far field, where no or
few obstacles are present and only the wave propagation has to be considered, high
order methods with low dissipation and dispersion are beneficial. Therefore the high
order modal Discontinuous Galerkin Method (DGM) [5] is considered.

In this paper we investigate the two different coupling approaches. One coupling
approach is a black-box tool, which allows the coupling of different solvers without
any knowledge of each discretisation, while the other one is an integrated approach,
which has knowledge about the underlying scheme and makes use of that. At first
two interpolation methods: Nearest-Neighbor (NN) and Radial-Basis Functions
(RBF) with and without providing equidistant points, provided by the coupling
tool preCICE [1, 2] are presented. Afterwards the direct evaluation of the state
representation at requested points, provided by the coupling approachAPESmate [6]
is introduced.

The final section is devoted to simulation results with a small academic testcase,
in order to compare the different interpolation methods and the resulting error.
Finally we come to an end, by concluding our results.

2 Data Mapping Methods

This section describes the different interpolation methods as well as the evaluation
of the state variables, in order to exchange point values at the coupling interfaces.
Therefore first the interpolation methods in the coupling approach preCICE are
introduced, afterwards the integrated coupling approach APESmate is presented.
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2.1 Interpolation

preCICE is an multi-solver, which allows the coupling of different solvers, consid-
ering them as a black-box. Thus it has no information about the discretisation of
each solver, while exchanging input and output values via the coupling interfaces
using coupling points. For the exchange of values at requested points, the coupling
tool provides different interpolation methods, in this paper, we are going to review
three of them. More information about preCICE can be found in [1] and [9]. Since
the domains, which are involved in the coupling, request point values located at
arbitrary positions at the coupling interface, hence providing values has to be done
on those requested point positions. Therefore interpolation methods are necessary
to compute values from one domain to the other.

The easiest applicable interpolation method is the Nearest-Neighbor (NN)
interpolation (see Fig. 1a) [3]. In order to use this method, the solver does not have to
provide any information beside the variable values at its exchange points. Coupling
from domain B to A, this method searches for the closest point on B and copies the
value to the requested point on A. If more than one point of domain A is in the near
of one point in domain B, than all those points get the same value. Therefore this
interpolation method is just first order accurate and useful, when having a matching
coupling.

The Nearest-Projection (NP) method (see Fig. 1b) looks for the closest neigh-
boring point of domain A among domain B, while computing the projection point
of the point in B on the point in domain A. Thus a linear equation has to be solved,
which leads to a second order accuracy. In order to make use of this method, the
solver has to provide neighborhood information, in form of triangles or edges [3].

A second order accurate method, where no neighborhood information is neces-
sary, is the Radial-Basis-Functionmethod (RBF).
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Fig. 1 (a) Nearest-Neighbor, (b) Nearest-Projection interpolation [3]
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For the mapping from domain B to A, the radial-basis-function creates a global
interpolant on B, which is evaluated on A. The basis are radially symmetric basis
functions, which are centred at the coupling points of domain B. Equation (1)
presents the equation, which has to be solved internally by preCICE for the RBF.
To make sure, that constant and linear functions are interpolated exactly, the basis
has an additional first order global polynomial q.x/. The variable � is the basis
function, chosen by the user. In this paper we use the Gaussian function as basis
function for the interpolation [3]. Using this basis function requires to predefine a
shape-parameter s (see Eq. (2)), which defines the width of the Gaussian function.

s D
p� ln.10�9/

m � h (2)

Where m is the number of points which has to be covered by the Gaussian function
and h the average distance between the points. It has to be mentioned, that the
distribution of the coupling points has a major influence on the quality of the
simulation results as well as on the convergence of the linear equation system, which
has to be solved. Different situations can be thought of, where the sampling points
on a domain interface are non-equidistant. One is the use of high order Discontinous
Galerkin (DG) schemes, where the sampling points are the Gaussian integration
points which are not equally distributed. While at the corners of the cells the points
are more concentrated, in the middle of the cell the distance is much larger. The
size of the shape-parameter has an great impact on the convergence of the system,
while selecting a high m leads to an increase in the quality of the simulation, it
also influences the condition number, which also increases [7]. In the DG context,
the variable h is set to the maximum distance between the points, to also cover the
points in the middle of the cell, which have a larger distance to each other. The
distance is calculated by considering the distance between the Chebysheve nodes.
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The value nO represents the scheme order, nh the half value of the scheme
order and dx the cell size. Providing non-equidistant sampling points for the RBF
reconstruction leads to instability of the convergence of the matrix, while equidistant
points lead to its stabilisation. Keeping that in mind, the need of a method, which
overcomes these challenges becomes more important. Thus evaluating polynomials
for each domain directly, instead of using an additional interpolation method for the
reconstruction, allows to overcome the convergence challenge as well as increasing
the quality of the simulation results.
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2.2 Data Mapping by Evaluation

The integrated coupling approachAPESmate [6] is implemented in our APES frame-
work [8, 10], thus it has access to solver specific data. Therefore exchanging data
at arbitrary number of exchange points with our DGM solver Ateles at the coupling
interface can be realised by the direct evaluation of the polynomial representations at
the requested points. Hence no additional interpolation is necessary. One of the main
beneficial of our coupling approach is, that with a higher order a higher accuracy in
the context of simulation errors can be obtained [6].

3 Results

This section deals with the simulation results, when using the two different coupling
methods, interpolation and evaluation. Therefore we use a Gaussian density pulse,
which travels from the left domain to the right domain, to compare the different
methods. We created three different testcases, (a) matching, (b) non-matching with
same number of coupling points and (c) non-matching with different number of
coupling points. For the simulation we change the cell size and the scheme order.
The matching testcase (a) has on both domains the same number of cells as well as
the same scheme order, thus the number of coupling points are also the same. For
non-matching testcase (b) the left domain is kept same as for (a), while on the right
domain a two times greater cell size and scheme order has been chosen, which still
results in the same number of coupling points as for the left domain. Testcase (c) is
also a non-matching testcase, here the left domain is again the same as in (a) and
(b), while the right domain has a four times bigger cell size and the scheme order is
equal to the right domain in testcase (b).

3.1 Configuration of the Simulation

For our testcases we provide a 4 � 4 plane, which is divided into two domains. We
solve both domains with the nonlinear Euler equation and choose a Gaussian density
pulse, which travels from the left domain to the right, due to the advection of the
flow in x-direction. The amplitude of the pulse is set to 1.0 and a halfwidth of 0.316.
The pressure p is set to 8.0 and the density � to 1.0. The velocity has a constant
value of v D Œ12:5; 0:0; 0:0�. Figure 2 presents the point distribution in the cells for
all investigated testcases, when using DG. Table 1 provides a short overview of the
investigated testcases with the different configurations.
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(a) (b) (c)

Fig. 2 Point distribution in cells, when using DGM: (a) matching testcase a, (b) non-matching
testcase b and (c) non-matching testcase c

Table 1 Three testcases for the investigation of the interpolation methods

Testcase a Testcase b Testcase c

matching non-matching non-matching

Left Right Left Right Left Right

Number of cells 512 512 512 256 512 128

Number of coupling points 128 128 128 128 128 64

Scheme order 8 8 8 16 8 16

3.2 Coupled Simulation Results

As the investigated testcase is small enough, we can obtain a monolithic simulation,
running the entire testcase in one single non-split domain, and use this as the
reference solution without coupling error (Fig. 3). Then we split the domain into
halves, while keeping the same cell size and order. I.e. all differences between
splitted and monolithic simulation results are due to the coupling error. In the
following, we then change the settings in the right domain, such as to adopt the
scheme order and cell size to the needs of the domain. Thus, additional errors are
introduced now, due to the non-matching conditions. For the monolithic simulation,
where we consider the settings as for testcase a, the error is computed from the
difference between the result of the simulation and the analytical solution [6]. The
error in the middle area of the domain is due to the shape of the pulse and its location
at the beginning of the simulation. Since the pulse was located in the striking
distance of the left boundary, oscillations appear, which traveled with the pulse
through the entire domain. Which does not have any influence for the comparison
of the different methods. Figure 4 shows the pulse after passing the interface for
all three testcases using the RBF interpolation. As can be recognise no significant
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Fig. 3 (a) Monolithic solution of the simulation and (b) Error of the simulation

Fig. 4 Solution of the Gaussian density pulse, which has traveled from the left domain to the right:
(a) Testcase a, (b) Testcase b and (c) Testcase c

change of the pulse can be observed. To clarify which method shows the lowest
error, we investigate the simulations in more detail. The error for the following
coupled simulations are calculated from the difference between the coupled solution
and the monolithic solution Fig. 3a. Thus this should just provide the error, which is
due to the coupling of the domains, using interpolation or the evaluation of the
polynomials respectively. In Fig. 5, a stronger impact of the matching and non-
matching setup is visible. For the NN interpolation, it becomes apparent, that
the error has an increasing behaviour, when having an increasing non-matching
coupling interface (see Fig. 5b, c). For the matching coupling interface Fig. 5a,
the error is similar to the monolithic solution, which is due to the fact, that the
points on both sides coincide. Thus, the NN interpolation is a pure injection, no
interpolation error is introduced. For the RBF interpolation we have to compute
the shape-parameter (Sect. 2) for each domain before running the simulation. Thus



158 N. Ebrahimi Pour et al.

Fig. 5 Error of the traveled Gaussian density pulse when using RBF interpolation with non-
equidistant point distribution: (a) Testcase a with NN, (b) Testcase b with NN, (c) Testcase c
with NN, (d) Testcase a with RBF non-equidistant Points, (e) Testcase b with RBF non-equidistant
Points, (f) Testcase c with RBF non-equidistant Points, (g) Testcase a with RBF equidistant Points,
(h) Testcase b with RBF equidistant Points and (i) Testcase c with RBF equidistant Points

for each testcase the maximal distance between the non-equidistant points has to
be determined. Considering the results in Fig. 5d–f, the error, when using the RBF
interpolation also increases with stronger non-matching coupling interfaces (Fig. 5e,
f), while for the matching testcase Fig. 5d the error is similar to the monolithic
solution. Taking Table 2 into account, we can recognise, that stronger non-matching
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Table 2 Computed
shape-parameter for
non-equidistant point
distribution

hmax m s

Testcase Left Right Left Right Left Right

a 0:0244 0:0244 4 4 46:642 46:642

b 0:0244 0:0245 4 3 46:642 61:936

c 0:0244 0:0245 4 2 46:642 46:452

Table 3 Computed
shape-parameter for
equidistant point distribution

hmax m s

Testcase Left Right Left Right Left Right

a 0:0156 0:0156 7 7 41:621 41:621

b 0:0156 0:0156 7 7 41:621 41:621

c 0:0156 0:0313 7 7 41:621 20:810

interfaces lead to a decreasing number of points m, which can be covered by
the Gaussian function. Additional in [7] a more detailed study pointed out, that
non-equidistant point distribution leads to instability of the system, thus to the
not convergence of the matrix. Therefore it was suggested to consider equidistant
points, to stabilise the system, hence aiming for a faster convergence. Thus in our
next simulations, we provide equidistant points to preCICE, while asking for point
values, which are non-equidistant distributed. Since we make use of the modal DG,
providing and asking preCICE for equidistant point values would lead to higher
computational effort, due to additional transformation from points to polynomials.
Again we calculated according to Eq. (2) the shape-parameter for the new setup.
As in Table 3 pointed, the variable m, can be chosen much higher. Furthermore
the system converged much faster, which leads to the decreasing of computational
effort. The simulation results for the equidistant point distribution illustrate for
all testcases oscillations near the upper and lower boundaries, which increase
with stronger non-matching coupling interfaces (see Fig. 5h, i). The oscillations
did not appear, using the NN and the RBF method with non-equidistant points.
This behaviour is due to the Runge’s phenomenon [4], which appears, when
using high order polynomials over equidistant interpolation points. Thus providing
equidistant points for the interpolation leads to the stabilisation of the system, but
decreases the quality of the simulation results. In Fig. 6 as well as in Fig. 7 the
solution for all testcases show the same behaviour, thus even for the strongest non-
matching testcase Fig. 7c, the error is comparable to the matching testcase Fig. 7a.
Besides the visualisation of the simulation results, we also consider the L2error for
the simulations to have a better comparison between the different methods. The
presented Table 4 gives an overview, which method allows the lowest error, when
running coupled simulations. Thereforewe just consider the right domain, where the
pulse reaches its final position, after passing the coupling interface. From Table 4 it
can be pointed out, that for the RFB with non-equidistant points as well as for the
NN interpolation with stronger non-matching coupling interfaces (c) also the error
increases, while for NN this increase is distinguished. The RBF with equidistant
points show already a high error for testcase (a), while a significant trend as for RBF
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Fig. 6 Solution of the Gaussian density pulse, which has traveled from the left domain to the right
using APESmate: (a) Testcase a, (b) Testcase b and (c) Testcase c

Fig. 7 Error of the traveled Gaussian density pulse when using APESmate: (a) Testcase a, (b)
Testcase b and (c) Testcase c

Table 4 Comparison of the L2error for the different methods

�10�3 a b c

Nearest-Neighbor 1:606 27:774 52:344

Radial-Basis-Function: non-equidistant points 1:606 1:986 2:326

Radial-Basis-Function: equidistant points 1:606 5:101 3:485

APESmate 1:606 1:593 1:599

Monolithic 1.05870
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with non-equidistant points and for the NN can not be observed. The increase of
error values in testcase (b) and the decrease for testcase (c) are due to the changes of
order and cell size in testcase (b), where the number of non-equidistant points in the
corners of a cell is more dominant for a 16th order than for a 8th order simulation.
The error decreases for the testcase (c), since the cell size on the right domain is two
times larger than in testcase b), thus less cells are involved in the coupling, which
also decreases the error. The results of APESmate are noticeable, even for testcase
(c), where all interpolation methods provided by preCICE show a high error, the
simulation results of our coupling approach shows the smallest and the most stabile
error over all simulations.

Beside the error of the simulation results, the performance of each method is
an important factor, which allows the fast computation of the simulation. Therefore
also investigate the performance of the used methods.

3.3 Performance of the Mapping Methods

For the performance runs we consider the same settings as in Sect. 3.1, while using
testcase c as a three dimensional setup. The left domain has 16,384 cells and the
right domain 256. The number of coupling points at the coupling interface is 65,536
and 16,384 respectively. Since the left domain has just 256 cells, the number of cores
is chosen according to this limitation. Figure 8 presents the time for the simulation

1022× 101 3× 101 4× 101 6× 101

nProcs

103

T
im

e 
(s
)

NN

RBFNONEQU

RBFEQU

APESmate

Fig. 8 Strong scaling of the different methods
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with the different methods, while changing the number of cores from 16 to 128. It is
clearly visible, that the interpolation method NN, is the fastest in the computation,
which is as expected, since this method just copies data from one domain to the
other. But we also have to keep in mind, that apart from the fast computation, this
method provides the highest error, when having non-matching coupling interfaces
(see Fig. 5c). A closer look at the RBF method with different point distribution
illustrates also here, that the simulation with equidistant point distribution (RBFEQU)
behaves as expected faster than the non-equidistant point distribution, since the
equidistant points reduce the condition number and thus the computational time.
In contrast the performance of the non-equidistant point distribution (RBFNONEQU)
gets flat, with increasing number of cores. Since our integrated approach APESmate
evaluates polynomials for the coupling, the computation is higher, when compared
to the interpolation methods provided by preCICE. But as was shown before the
simulation results (see Fig. 7) is outstanding and in the same magnitude range as for
the monolithic run.

4 Conclusion

The simulation of multi-scale problems is still a challenging task in the engineering
field. Solving these problems with one approach is still expensive, thus a more
feasible strategy is required. The partitioned coupling is one of the most promising
methods, which allows the decomposition of the whole problem into smaller ones,
by subdividing the whole domain. Hence each domain can be solved according to its
physics by using numerical methods, which are perfectly designed for each domain.

We presented how the two coupling approaches use different methods to
exchange point values at the coupling interface. Therefore we considered for the
external library preCICE the first order accurate Nearest-Neighbor (NN) method
and the second order accurate Radial-Basis-Function (RBF) method. Beside the
interpolation method, we are also able to do the direct evaluation of the polynomials
at requested coupling points, using our integrated coupling approach APESmate.
Thus no additional interpolation is here necessary. For our investigation we solved
our domains using the Discontinues-Galerkin Method (DGM), where the coupling
points (Gaussian integration points) are not equidistant distributed on the cell
surface.

Our investigation clarified, that the interpolation method NN is not qualified for
the usage of non-matching coupling interfaces, which is necessary, when coupling
different solvers with different numerical resolution, thus the simulation results
showed a high error, when compared to the monolithic solution. The second order
accurate interpolation method RBF illustrated a lower error, when using non-
equidistant point distribution. But the condition number of the linear equation
system, which has to be solved, as well as the selected number of points, which
have to be covered by the basis function is unsatisfactory. Thus the condition
number increases with higher scheme order and at the same time the computational
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effort. In order to decrease the condition number and stabilise the system, we
provided preCICE equidistant points at the coupling interface, while asking for
non-equidistant distributed points. By applying the equidistant points for the inter-
polation, we were able to increase the number of points, which has to be covered by
the Gaussian function (basis function). Furthermore the condition number decreases
and thus the stabilisation of the system could be archived. But taking also the quality
of the simulation results into account, we could recognise, that oscillation occur at
the lower and upper boundary, which we could not observe before, when using the
NN or the RBF method with non-equidistant point distribution. These oscillations
appear, due to the Runge’s phenomenon, when using equidistant points for the
interpolation of non-equidistant point distribution. The results of the simulations,
when using our integrated approach APESmate, depict the lowest error, when
compared to the monolithic solution. Even for the non-matching coupling interface,
where the interpolation methods in preCICE show the highest error, our approach
illustrated an outstanding behaviour, by having an almost constant L2error for all
simulations, which is in the same magnitude range as the monolithic one.
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