Michael M. Resch - Wolfgang Bez
Erich Focht - Michael Gienger
Hiroaki Kobayashi Editors

Sustained Simulation
2 DFMaANCE

2017

H LR[S

@ Springer

Sustained Simulation Performance 2017

Michael M. Resch « Wolfgang Bez ¢ Erich Focht e
Michael Gienger Hiroaki Kobayashi

Editors

Sustained Simulation
Performance 2017

Proceedings of the Joint Workshop

on Sustained Simulation Performance,
University of Stuttgart (HLRS)

and Tohoku University, 2017

@ Springer

Editors

Michael M. Resch

High Performance Computing
Center (HLRS)

University of Stuttgart

Stuttgart, Germany

Erich Focht

NEC High Performance Computing
Europe GmbH

Stuttgart, Germany

Wolfgang Bez

NEC High Performance Computing
Europe GmbH

Diisseldorf, Germany

Michael Gienger

High Performance Computing
Center (HLRS)

University of Stuttgart

Stuttgart, Germany

Hiroaki Kobayashi
Cyberscience Center
Tohoku University
Sendai, Japan

Figure on Front Cover: Streamline and slice visualisation of the velocity field at peak systole in an aortic
arc with aneurysm. The vortex structures in the ascending aortic arc as well as the aneurysm are visualised
by the grey-coloured, transparent isosurface. The data provided by Fraunhofer MEVIS are recorded by
phase contrast magnet resonance imaging and serve as the calibration and test data for the two paper
contributions of Uwe Kiister, Andreas Ruopp and Ralf Schneider.

ISBN 978-3-319-66895-6
DOI 10.1007/978-3-319-66896-3

ISBN 978-3-319-66896-3 (eBook)

Library of Congress Control Number: 2017955381

Mathematics Subject Classification (2010): 65-XX, 65Exx, 65Fxx, 65Kxx, 68-XX, 68Mxx, 68Uxx,
68Wxx, 70-XX, 70Fxx, 70Gxx, 76-XX, 76Fxx, 76Mxx, 92-XX, 92Cxx

© Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The field of High Performance Computing is currently undergoing a major paradigm
shift. Firstly, large-scale supercomputing systems with massively improved number
crunching capabilities are now available to computational scientists all over the
world. At the same time, our knowledge of how to most efficiently exploit modern
processors and performance achievements is growing by leaps and bounds.

However, many domains of computational science have reached a saturation
point with regard to their problem size: many scientists no longer wish to solve
larger problems. Instead, they aim to solve smaller problems in a shorter amount of
time, so as to quickly gain knowledge and recognise potential issues early on. Yet
the current architectures are much better suited to addressing large problems than
they are for the more relevant smaller problem sizes.

This particular series of workshops focuses on Sustained Simulation Perfor-
mance, i.e. High Performance Computing for state-of-the-art application use cases,
rather than on peak performance, which is the scope of artificial problem sizes.
The series of workshops was first established in 2004 under the name Teraflop
Workshop and was renamed Workshop for Sustained Simulation Performance in
2012. In general, the scope of the workshop series has expanded from optimisation
for vector computers only to future challenges, productivity, and exploitation of
current and future High Performance Computing systems.

This book presents the combined outcomes of the 24th and 25th workshops
in the series. The 24th workshop was held at the High Performance Computing
Center, Stuttgart, Germany, in December 2016. The subsequent 25th workshop
was held in March 2017 at the Cyberscience Center, Tohoku University, Japan.
The topics studied by the contributed papers include developing novel system
management concepts (Part I), leveraging innovative mathematical methods and
approaches (Part II), applying optimisation as well as vectorisation techniques
(Part ITI), implementing Computational Fluid Dynamics applications (Part IV), and
finally, exploiting High Performance Data Analytics (Part V).

vi Preface

We would like to thank all the contributors and organisers of this book and
the Sustained Simulation Performance project. We especially thank Prof. Hiroaki
Kobayashi for the close collaboration over the past years and look forward to
intensifying our cooperation in the future.

Stuttgart, Germany Michael M. Resch
July 2017 Michael Gienger

Contents

PartI System Management

Theory and Practice of Efficient Supercomputer Management 3
Vadim Voevodin

Towards A Software Defined Secure Data Staging Mechanism............. 15
Susumu Date, Takashi Yoshikawa, Kazunori Nozaki, Yasuhiro

Watashiba, Yoshiyuki Kido, Masahiko Takahashi, Masaya Muraki,

and Shinji Shimojo

Part I Mathematical Methods and Approaches

The Numerical Approximation of Koopman Modes of a Nonlinear
Operator Along a Trajectoryccooiiiiiiiiiiiiiiiiiii i, 27
Uwe Kiister, Ralf Schneider, and Andreas Ruopp

Part III Optimisation and Vectorisation

Code Modernization Tools for Assisting Users in Migrating

to Future Generations of Supercomputers 55
Ritu Arora and Lars Koesterke
Vectorization of High-Order DG in Ateles for the NEC SX-ACE 75

Harald Klimach, Jiaxing Qi, Stephan Walter, and Sabine Roller

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary
Latticesoooit 89
Peter Zinterhof

Part IV Computational Fluid Dynamics

Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar 113
Shinya Okino and Hideshi Hanazaki

vii

viii

Wavelet-Based Compression of Volumetric CFD Data Sets.............

Patrick Vogler and Ulrich Rist
Validation of Particle-Laden Large-Eddy Simulation

Using HPC Systemsoooiiiiiiiiiiii e

Konstantin Frohlich, Lennart Schneiders, Matthias Meinke,
and Wolfgang Schroder

Coupled Simulation with Two Coupling Approaches

on Parallel Systems

Neda Ebrahimi Pour, Verena Krupp, Harald Klimach, and Sabine Roller

MRI-Based Computational Hemodynamics in Patients

Andreas Ruopp and Ralf Schneider

Part V High Performance Data Analytics

A Data Analytics Pipeline for Smart Healthcare Applications..........

Chonho Lee, Seiya Murata, Kobo Ishigaki, and Susumu Date

Contents

Part I
System Management

Theory and Practice of Efficient Supercomputer
Management

Vadim Voevodin

Abstract The efficiency of using modern supercomputer systems is very low due
to their high complexity. It is getting harder to control the state of supercomputer,
but the cost of low efficiency can be very significant. In order to solve this issue,
software for efficient supercomputer management is needed. This paper describes
a set of tools being developed in Research Computing Center of Lomonosov
Moscow State University (RCC MSU) that is intended to provide a holistic
approach to efficiency analysis from different points of view. Efficiency of particular
user applications and whole supercomputer job flow, efficiency of computational
resources utilization, supercomputer reliability, HPC facility management—all
these questions are being studied by the described tools.

1 Introduction

Modern supercomputing system consists of a huge amount of different software
and hardware components: compute nodes, network, storage, system software tools,
software packages, etc. If we want to achieve efficient supercomputer management,
we need to think about all behavior aspects of these components. How efficiently
users of supercomputer center consume computational resources, what jobs they
run, what projects they form, how efficiently partitions and quotas are organized,
is system software configured properly—all of these (and not only these) questions
need to be taken into account, otherwise the efficiency of the supercomputer usage
can be significantly decreased. This means that we need to control everything
happening in the supercomputer.

As the supercomputers are getting bigger and more complex, this task is getting
harder and harder. This explains the fact that the efficiency of most supercomputing
systems is very low. For example, the average Flops performance of one core on
old MSU system called Chebyshev for 3 days is just above 3% [17]. The situation
is quite the same on many other current supercomputer systems.

V. Voevodin (B<)
Research Computing Center of Lomonosov Moscow State University, Moscow, Russia
e-mail: vadim@parallel.ru

© Springer International Publishing AG 2017 3
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_1

mailto:vadim@parallel.ru

4 V. Voevodin

The analysis of supercomputer efficiency is further complicated by the fact that
different user groups consider efficiency in different ways. Common supercomputer
users are primarily interested in solving their tasks, so they mostly think about
the efficiency of their particular applications. System administrators are concerned
about general usage of computational resources, so they think about the efficiency
of supercomputers. In turn, the management people think more globally, so their
area of interest is the efficiency of the whole supercomputer center.

The task of efficient supercomputer management is really hard to solve, but the
cost of low efficiency can be very high. Here is one example. One day of Lomonosov
supercomputer [18] (1.7 PFlops in peak, currently #2 in Russia) maintenance costs
~$25,000. If the job scheduler hangs, a half of the supercomputer will be idle in
just 2-3 h. This means that the cost of delay with a proper reaction is very high, so
we need to keep control over supercomputers.

All this explains why we need efficient supercomputer management. The next
question is: what is needed to achieve it? In our opinion, there are five major
directions needed to be studied. Firstly, it is necessary the collect detailed infor-
mation about the current state of the supercomputer and all its components. So,
a monitoring system is needed. Monitoring system provides a huge amount of
raw data that need to be filtered out to get the valuable information about the
efficiency. Intellectual analysis and convenient visualization systems are needed for
that purpose. Furthermore, the efficiency of supercomputer usage directly depends
on the reliability of supercomputer components. This means that all-round control
of the correctness of system functioning is required. Also, efficient supercomputer
management can be very hard without easy-to-use work management system for
helpdesk, resource project management, hardware maintenance control, etc.

There are different existing tools that help to analyze and improve efficiency
of supercomputer functioning, but they are intended to solve only one or several
tasks described above. Currently there is no unified approach that allows to perform
holistic analysis of the supercomputer efficiency from different points of view. In
Moscow State University, we are developing a toolkit aimed to solve all of these
tasks. Further in this paper, six components that form this toolkit will be described
in detail.

2 Moscow State University HPC Toolkit for Efficiency
Analysis

Figure 1 shows main components of HPC toolkit for efficiency analysis being
developed in Research Computing Center of Lomonosov Moscow State University.
They are interconnected and complement each other to develop a holistic approach
for solving the posed task.

Theory and Practice of Efficient Supercomputer Management 5

e ™
OctoShell
HPC Facility Management System: Accounting, Research Project Management, Helpdesk, etc.
" 5
@ OctoTron S OctoStat) /(_)ctoScreer?\ fJobDigest\
Reliability of HPC Periodical Show Everything Detailed Analysis
Center Functioning: Statisticson User We Need to See of Application
Rules/Reactionson Activity, HPC and Know in Behavior, Resource
Occurring Events System Load, Various Ways of Utilization
Based on Formal Queue Structures, Presentation Dynamicsand Job
Supercomputer etc. Categorization
___Model J_ A A 4
' ™y
DiMMon
L On-the-Fly Reconfigurable Distributed Modular Monitoring system)

() pataSource () shell / Access for RegularUsers [Analytics

Fig. 1 Main components of HPC toolkit for efficiency analysis developed in MSU

2.1 DiMMon Monitoring System

There are many different monitoring systems that are successfully applied in
practice in many supercomputer centers nowadays (Collectd [15], Nagios [4],
Zenoss [20], Zabbix, Cacti, etc.). But in our opinion it will be hard to efficiently use
such systems in future due to several reasons dictated by the supposed architecture
of new supercomputers. Firstly, future monitoring systems need to be very scalable,
up to millions of nodes. Also, they need to be easily reconfigurable, expandable and
portable. And as current systems, they need to produce low overheads, but dealing
with really huge amount of raw monitoring data.

Having all this in mind, Research Center in MSU started to develop DiM-
Mon [14], new system focused mostly on performance monitoring. There are three
main features that form the basis for this DiMMon approach:

1. On-the-fly analysis: all relevant information should be extracted from the raw
data before storing to the database. This helps to greatly reduce the amount of
data needed to be stored and ease further data processing.

2. In-situ analysis: basic processing of the monitoring data should be performed
where it was collected (e.g., on a compute node), only after that it will be sent to
the server side. This helps to significantly reduce the amount of data needed to be
sent via communication network. Due to the fact that only simple data processing
is performed locally (such as simple aggregation or speed calculation), overheads
that can affect user job execution on the node are very low.

3. Dynamic reconfiguration: Monitoring system must be able to change its configu-
ration (data transmission routes, collection parameters, processing rules) without

6 V. Voevodin

restarting. Future supercomputers will have much more dynamic nature, so in
our opinion this feature of a monitoring system will be highly valuable.

Monitoring system with such features provides useful capabilities. For example,
first two features enable DiMMon to calculate integral performance metrics for
individual jobs while collecting the data. In this case it is unnecessary to scan
through the whole database to find information relevant to the particular job run
after is has finished; integral characteristics like minimum, maximum and average
can be calculated on-the-fly. This helps to perform prompt analysis of job execution
and significantly reduce the amount of computation needed for this purpose.

Dynamic reconfiguration of the DiMMon monitoring system enables such useful
feature as automatic poll frequency change during the job run. When the data is
collected on a particular job, the poll frequency (how often we collect data from
sensors) can be dynamically changed depending on the duration of the job. This
helps to keep the reasonable amount of data collected for each job, no matter it runs
for several minutes or days.

Currently the DiMMon system is being tested in MSU Supercomputer Center.

2.2 JobDigest System for Application Behavior Analysis

JobDigest system [8] developed in MSU is intended to help users to analyze
behavior dynamics of a particular job run. It processes system monitoring data on
application execution such as CPU user load, number of misses in different levels
of cache memory per second, number of load/store operations per second, amount
of data sent/received on the node via communication network per second. All the
relevant information gathered on a job run by JobDigest system is represented in
form of a report that can be viewed in a web browser.

JobDigest report consists of three main blocks. First block contains some basic
information received from the resource manager—job ID, user name, command
used to run this job, start and finish time, number of allocated cores and nodes,
etc. Second block provides integral characteristics on the job behavior. For each
characteristic collected from the system monitoring data, it shows maximum,
minimum and average values across all used nodes during the whole job run. This
information helps to get some basic view of the general job behavior, which can
be quite useful. For example, if a job runs on hundreds of nodes but does not use
communication network at all (which is usually considered as undesired behavior),
this will be seen in this block from the integral characteristics describing Infiniband
usage intensity.

The third block contains the main information used for job behavior analysis—
time series with the values of each characteristic during the application execution.
An example of graphs showing these time series is presented on Fig. 2. Here CPU
user load and load average (average number of processes using or waiting for CPU
resources) is shown. Axis X is time; axis Y—values of corresponding characteristic.

Theory and Practice of Efficient Supercomputer Management 7

CPU user load in %
100

75
50
25 e,

0

00:00 03:00 06:00 09:00
—min —max —avg — avg_min - avg_max
heatmap

LoadAVG
16

12 ==

00:00 03:00 06:00 09:00
— min max avg — avg_min avg_max

Fig. 2 Example of JobDigest graphs with time series of two characteristics—CPU user load and
load average

Different color lines represent different aggregated values—minimum, maximum
and average.

These graphs show that over the time activity of this program started to slow
down—both CPU user load and load average values decrease. Program activity
during the last part of execution is very low meaning that a significant part of
computational resources being idle. Also, the stepped nature of load average is of
interest—is this behavior intentional or there is an error occurred? This behavior
features cannot be detected by integral characteristics, but they can be easily found
using such graphs. It should be noted that JobDigest is mainly intended to help to
detect and localize performance issues in the job execution. Root cause analysis
should be performed using other tools, such as profilers or trace analyzers [3, 5].

The JobDigest system is actively used in MSU Supercomputer Center on a
daily basis, mostly by system administrators. The current versions of JobDigest
components are freely available at Github [6].

2.3 Statistics Analysis Using OctoStat

Systems like JobDigest can be very helpful for efficiency analysis of a particular job.
But such systems can be used only if we know what job run we need to analyze. And
the problem is that in many cases users (sometimes even system administrators) do

8 V. Voevodin

not know that there are some performance issues with running programs. In order to
find inefficient jobs or unusual user behavior that need to be studied, the overall job
flow should to be constantly analyzed. RCC MSU is developing the OctoStat suite
for this purpose.

This suite currently consists of three tools enabling the overall job flow analysis
from different aspects. First tool provides daily statistics on the resource utilization
of the supercomputer resources. It collects the data from the resource manager (no
performance monitoring data used) and allows to analyze overall supercomputer
load and evaluate the optimality of queue scheduling strategies, policies and quotas.
Obtained results are presented in form of a report with various graphs and charts
available in web browser. Examples of statistics this report provides are: top users by
consumed processor hours within specified time period; distribution of a number of
running or queued jobs by weekdays, weeks or months; distribution of a number of
jobs depending on their runtime; distribution of different activity between partitions;
etc.

This daily statistics tool is constantly used in MSU Supercomputer Center to
detect imbalance or other inefficiency in overall usage of supercomputer resources.
Example showing distribution of daily job queue time in different partitions on
Lomonosov supercomputer is shown on Fig. 3.

Second tool is used for job tagging. It analyzes integral dynamic characteristics
(same as in JobDigest, see Sect.2.2) of every job and automatically puts corre-
sponding tags on it. This helps to divide jobs into different categories and easily
detect suspicious or abnormal behavior. For example, tag “suspicious” is assigned
to a job if average CPU user load is less than 10% and load average is less than
0.9; tag “short” is assigned to a job with execution time less than 1 h. These tags
are automatically assigned not only to finished but also to running jobs, which

2,000,000 . gpuest
B test
1
Il smp
I gpu
1,500,000 - ap!
= O I hdd4
I regaprio
I regulard
1,000,000 i 1 ! regular
. . e

2016-05-24 2016-05-26 2016-05-28 2016-05-30
2016-05-25 2016-05-27 2016-05-29

Fig. 3 Statistics on job waiting time in different partitions on Lomonosov supercomputer

Theory and Practice of Efficient Supercomputer Management 9

helps to promptly notify users about potential issues with current execution of their
programs.

The goal of other tool in the OctoStat suite is to detect unusual behavior
(anomalies) in the job flow by analyzing job efficiency [19]. This tool analyzes
time series of dynamic characteristics describing the behavior of the program, using
the same performance monitoring data as in JobDigest system. This tool is based
on machine learning methods for detecting abnormal program execution, due to
two reasons: (1) the criteria of unusual job behavior are unclear and currently
cannot be precisely determined; (2) these criteria can differ significantly for different
supercomputers.

The time series for a particular job is divided into a set of intervals identifying
different logical parts of its execution. Each interval can belong to one of three
classes: normal, abnormal or suspicious. After each interval is classified, the final
classification of the entire application is performed based on the results of interval
classification. An approach based on Random Forest algorithm is used for interval
classification; final classification is defined by a number of criteria mostly based on
a total number of processor hours consumed by intervals of each class.

Random Forest based classifier was trained on 270 normal, 70 abnormal
and 180 suspicious intervals from 115 real-life applications from Lomonosov-2
supercomputer. This resulted in the accuracy of ~0.94 on the test set. Currently
this classifier provides daily digest with a list of found abnormal and suspicious
jobs.

2.4 OctoTron: Autonomous Life of Supercomputers

Efficient usage of a supercomputer is impossible without reliable functioning of its
components. Talking about the reliability of the supercomputer, we have to deal
with the following problem: in most cases nowadays we can only hope that some
hardware or software component is working correctly, until there is an evidence
that it has failed. But what we really need is a guarantee—if something goes
wrong inside a supercomputer, we shall be notified about it immediately. We want
supercomputer to behave in a way we expect it should behave. In other words, we
want our expectations to match the reality.

Modern supercomputer is huge, so it is nearly impossible to manually control its
state to a full extent. But supercomputer can do it itself; we only need to precisely
define what “our expectations” means. This can be done the following way. The
reality can be described the way it is usually done nowadays—by the means of
a monitoring system. And expectations can be determined using the model of a
supercomputer. This model describes all the HW/SW components in the system and
their interconnections. If our expectations (model of a supercomputer) do not match
the reality (system monitoring data), an emergency situation is detected.

This idea was implemented in the OctoTron system [1] developed in RCC
MSU. The model used in this system is a graph; vertices are the components of

10 V. Voevodin

the supercomputer (nodes, fans, switches, racks, network cards, HDD disks, etc.),
edges—different types of connections between components. For example, an edge
can be type of “contain”, “chill”, “power”, “infiniband”, etc. The more complete this
graph, the more precise the functionality of the OctoTron system. The size of the
model of Lomonosov supercomputer (12K CPUs, 2K GPUs, 5.8K nodes, 1.7 PFlops
peak) is 116K vertices, 332K edges and 2.4M attributes. Each attribute describes one
component characteristic we want to control. This could be temperature on a node,
number of ECC memory errors, status of a UPS and so on.

The verification of matching reality and expectations is done by a set of
formal rules. Each rule describes one particular emergency situation (i.e., mismatch
between the model and monitoring data) that needs to be detected. Here are some
examples of emergency situations that can be detected by the OctoTron system:

* Easy to detect emergencies:

— hardware failures (disks, memory, ports);

software failures (required services are not working);
network failures (servers or equipment are not visible);

— bad equipment condition (overheating, running out of space).

* More complex cases (checking a set of conditions):

— certain ratio between the number of failed and working sensors exceeded
(example: checking temperature in a hot aisle);

— component operating modes mismatch (example: different modes on two ports
of one Ethernet cable);

— errors that depend on a composite state of components occurred (example:
checking total job count in all queues).

When the emergency situation is detected and the rule is triggered, OctoTron
needs to react. The most common types of reactions available are logging or
notification (SMS or email sent to system administrators). Some more complex
reactions can also be applied: equipment shutdown (e.g., in case of fire), bad nodes
isolation (making them unavailable for users’ jobs), monitoring agents restart, or
execution of a custom script developed by the administrator.

It should be noted that the OctoTron system is not a replacement but rather a
complement for the existing monitoring systems. The primary goal of latter ones is
to collect all necessary information about the current state of the supercomputer.
OctoTron uses this information to perform fine analysis of possible abnormal
or incorrect behavior. Currently there are no solutions or researches similar to
OctoTron approach to be found. The close one is Iaso [7] system by NUDT
University—this system can automatically detect complex emergency situations and
find root causes, but it is not publicly available at the moment.

OctoTron system is actively used on Lomonosov system and is being
implemented on Lomonosov-2 supercomputer. It is available under open MIT
license [12].

Theory and Practice of Efficient Supercomputer Management 11
2.5 OctoScreen Visualization System

Collecting data using monitoring systems and studying this data using different
analysis tools is a very important step to achieve efficient supercomputer manage-
ment. But in many cases it is difficult to perceive obtained results without their
proper representation. That is the reason RCC MSU is developing the OctoScreen
visualization suite [10]. This system is intended to provide handy visualization of
supercomputer-related data for every need. It is aimed to help all supercomputer
groups (common users, system administrators and management) and can be used
for many different purposes—short digest with the most important data about
supercomputer center functioning, monitoring data representation helping to control
current supercomputer state, lecture screen, etc.

Figure 4 shows one of such examples for Lomonosov supercomputer—a screen
that can be used in lectures or excursions to show the main interesting information
about the supercomputer. In the left part, each graph is a timeline showing the
dynamics of different characteristics change within last several days. For example, it
can be seen that the number of available and used CPU cores almost does not change
as well as the average temperature in both cold and hot aisles. But the number of
queued and running tasks varies significantly. There are two graphs in the right part;
one shows the map with geographical distribution of supercomputer users, the other
shows the current temperature distribution in the computer room.

OctoScreen is used in practice for other purposes as well. A mobile web-site is
developed to provide the most important basic information on the current state of

Number of running and queued tasks

Supercomputer users - distribution by city

Tuksinqueve . Running tasks
Number of CPU cores e il y L]

20000

[A F
Jese 01 00:00 June 03 D000 June 06 00:00 ; % %? ALY &
¥ s 4 =9

P Temperature in the computer room
Jume 01 0000 June 03 00:00 June 06 00:00
Blocked Froe o Used

Cold aisle temperature
45

- -
[2
) s i T . T - 3t
Jume 01 00:00 June 03 00:00 June 06 00:00 tE:B:E:ETEEE

AveragesValue range

. Hot aisle temperature
4

e e b i L bt i =

o
Jume 0100:00 June 03 00:00 June 06 00:00
Averages Value range

Fig. 4 Example of visualization screen available in the OctoScreen system

12 V. Voevodin

supercomputer that helps management to quickly determine if the jobs are running
normally. Another useful example—hardware state monitoring screen available
online for system administrators that tells when the hardware error occurred and
how long it took to fix this error.

2.6 OctoShell System for Work Organization

System administrators of many big supercomputer centers have to deal with a
difficult task of maintaining a huge stack of support software. User management
tools (LDAP, NIS, batch systems like Slurm [13] or Torque [16], etc.), hardware
monitoring systems and services, user support software like ticket management
systems—all this usually independent software need to be in a working and
consistent state. Most of this work is poorly automated, which results in various
issues: big number of consistency errors, significant processing time and poor
portability. There are few existing systems (e.g. Bright Cluster Manager [2]) that
provide needed solutions, but all of them are not open source.

The OctoShell system [9] is intended to help solving these issues. It provides
single entry point for many aforementioned services, which ease the automation
process and helps to make the solution easily portable and extendable. This system
is used as a front-end by all supercomputer groups and is intended to solve the
following tasks:

* project management, which includes resource allocation as well as user account
creation and control;

* providing and managing access;

* user support;

* equipment service;

* inventory tracking of all hardware equipment;

» gathering statistics on projects, organizations, etc.

OctoShell system is actively used in MSU Supercomputer Center as primary
software for work organization. The first four tasks mentioned earlier are already
being solved in practice; solutions for last two tasks will be implemented in the near
future. OctoShell used in MSU has 600+ active projects, ~2700 registered users and
helps to solve ~1000 user requests and issues yearly.

It is important to mention that OctoShell system is planned to be the integration
point of all other efficiency analysis tools mentioned earlier. Serving as a single
entry point, OctoShell makes the perfect platform to present joint results achieved
by collecting, merging and analyzing information obtained by other components of
the toolkit. This would help all user groups to form a unified vision of the behavior
of the whole supercomputer and its separate parts.

OctoShell system is freely available at Github [11].

Theory and Practice of Efficient Supercomputer Management 13

3 Conclusion

This paper describes the toolkit for efficient supercomputer management being
developed in Research Computing Center of Lomonosov Moscow State University.
This toolkit consists of six components aimed at analyzing different aspects of
supercomputer behavior, which helps to get a deep understanding of supercomputer
functioning efficiency. DiMMon is a dynamically reconfigurable monitoring system
that is capable of on-the-fly and in-situ data processing. JobDigest system provides
detailed reports on the dynamic behavior of particular applications based on
performance monitoring data. OctoStat analyzes the overall job flow to discover
imbalance in computational resource utilization and detect jobs with unusual and
inefficient behavior, which can be analyzed in more detail using tools like JobDigest.
OctoTron is a system for ensuring supercomputer reliability which is based on
formal model of a supercomputer. It allows to automatically detect different types
of emergency situations and promptly perform corresponding reactions. OctoScreen
is aimed at handy visualization of any kind of information about the current state
of supercomputer and its components for every need. Finally, OctoShell is used
as a single point for work organization within supercomputer center that helps
to ease and automate such tasks as user support, project management, equipment
service, etc. All these tools complement each other to develop a unified approach
for efficiency analysis that helps to achieve the goal of efficient supercomputer
management.

These systems being developed are open source and planned to be fully portable
and available to the supercomputer community.

Acknowledgements This material is based upon work supported in part by the Russian Found for
Basic Research (grant No. 16-07-00972) and Russian Presidential study grant (SP-1981.2016.5).

References

1. Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Stefanov, K., Voevodin, V., Voevodin,
V., Zhumatiy, S.: An approach for ensuring reliable functioning of a supercomputer based
on a formal model. In: Parallel Processing and Applied Mathematics: 11th International
Conference, PPAM 2015, Krakow, September 6-9, 2015. Revised Selected Papers, Part I, pp.
12-22. Springer, Cham (2016). doi:10.1007/978-3-319-32149-3_2. http://link.springer.com/
10.1007/978-3-319-32149-3_2

2. Bright Cluster Manager home page. http://www.brightcomputing.com/product-offerings/
bright-cluster-manager-for-hpc. Cited 15-06-2017

3. Geimer, M., Wolf, E, Wylie, B.J.N., Ibrahim, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. Concurr. Comput. Pract. Experience 22(6), 702-719 (2010).
doi:10.1002/cpe.1556. http://doi.wiley.com/10.1002/cpe.1556

4. Infrastructure Monitoring System Nagios. https://www.nagios.org/. Cited 15 Jun 2017

5. Jagode, H., Dongarra, J., Alam, S., Vetter, J., Spear, W., Malony, A.D.: A holistic approach for
performance measurement and analysis for petascale applications. In: Computational Science —
ICCS 2009, pp. 686—695. Springer, Berlin (2009). doi:10.1007/978-3-642-01973-9_77. http://
link.springer.com/10.1007/978-3-642-01973-9_77

http://dx.doi.org/10.1007/978-3-319-32149-3{_}2
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-32149-3{_}2
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-319-32149-3{_}2
http://www.brightcomputing.com/product-offerings/bright-cluster-manager-for-hpc
http://www.brightcomputing.com/product-offerings/bright-cluster-manager-for-hpc
http://dx.doi.org/10.1002/cpe.1556
http://doi.wiley.com/10.1002/cpe.1556
https://www.nagios.org/
http://dx.doi.org/10.1007/978-3-642-01973-9{_}77
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-01973-9{_}77
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-01973-9{_}77

14

=)}

10.

11.
12.
13.
14.

15.
16.

17.

18.

19.

20.

V. Voevodin

. JobDigest Components. https://github.com/srcc-msu/job_statistics. Cited 15 Jun 2017

. Lu, K., Wang, X., Li, G., Wang, R., Chi, W,, Liu, Y., Tang, H., Feng, H., Gao, Y.: laso: an
autonomous fault-tolerant management system for supercomputers. Front. Comp. Sci. 8(3),
378-390 (2014). doi:10.1007/s11704-014-3503-1. http://link.springer.com/10.1007/s11704-
014-3503-1

. Mohr, B., Voevodin, V., Gimenez, J., Hagersten, E., Knupfer, A., Nikitenko, D.A., Nilsson,
M., Servat, H., Shah, A., Winkler, F., Wolf, F., Zhukov, I.: The HOPSA workflow and tools.
In: Tools for High Performance Computing 2012, pp. 127-146. Springer, Berlin (2013).
doi:10.1007/978-3-642-37349-7_9. http://link.springer.com/10.1007/978-3-642-37349-7_9

. Nikitenko, D.A., Voevodin, V.V., Zhumatiy, S.A.: Octoshell: large supercomputer complex

administration system. Bull. South Ural State Univ. Ser. Comput. Math. Softw. Eng. 5(3),

76-95 (2016). doi:10.14529/cmse160306. http://vestnik.susu.ru/cmi/article/view/3998

Nikitenko, D.A., Zhumatiy, S.A., Shvets, P.A.: Making large-scale systems observable -

another inescapable step towards exascale. Supercomput. Front. Innov. 3(2), 72-79 (2016).

doi:10.14529/js£i160205. http://superfri.org/superfri/article/view/96

OctoShell Source Code. https://github.com/%5Cshell/%5Cshell-v2. Cited 15 Jun 2017

OctoTron Framework Source Code. https://github.com/srcc-msu/OctoTron. Cited 15 Jun 2017

Slurm Workload Manager. https://slurm.schedmd.com/. Cited 15 Jun 2017

Stefanov, K., Voevodin, V., Zhumatiy, S., Voevodin, V.: Dynamically reconfigurable distributed

modular monitoring system for supercomputers (DiMMon). Proc. Comput. Sci. 66, 625—

634 (2015). doi:10.1016/j.procs.2015.11.071. http://linkinghub.elsevier.com/retrieve/pii/

S1877050915034201

System Statistics Collection Daemon Collectd. https://collectd.org/. Cited 15 Jun 2017

TORQUE Resource Manager. http://www.adaptivecomputing.com/products/open-source/

torque/. Cited 15 Jun 2017

Voevodin, V., Voevodin, V.: Software system stack for efficiency of exascale supercomputer

centers. Technical Report (2015)

Voevodin, V., Zhumatiy, S., Sobolev, S., Antonov, A., Bryzgalov, P., Nikitenko, D., Stefanov,

K., Voevodin, V.: The practice of “Lomonosov” supercomputer. Open Syst. DBMS 7, 36-39

(2012)

Voevodin, V., Voevodin, V., Shaikhislamov, D., Nikitenko, D.: Data mining method for

anomaly detection in the supercomputer task flow. In: Numerical Computations: Theory and

Algorithms, The 2nd International Conference and Summer School, pp. 090015-1-090015-

4. Pizzo Calabro (2016). doi:10.1063/1.4965379. http://aip.scitation.org/doi/abs/10.1063/1.

4965379

Zenoss — Monitoring and Analytics Software. https://community.zenoss.com/home. Cited 15

Jun 2017

https://github.com/srcc-msu/job{_}statistics
http://dx.doi.org/10.1007/s11704-014-3503-1
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11704-014-3503-1
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11704-014-3503-1
http://dx.doi.org/10.1007/978-3-642-37349-7{_}9
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-642-37349-7{_}9
http://dx.doi.org/10.14529/cmse160306
http://vestnik.susu.ru/cmi/article/view/3998
http://dx.doi.org/10.14529/jsfi160205
http://superfri.org/superfri/article/view/96
https://github.com/{%}5Cshell/{%}5Cshell-v2
https://github.com/srcc-msu/OctoTron
https://slurm.schedmd.com/
http://dx.doi.org/10.1016/j.procs.2015.11.071
http://linkinghub.elsevier.com/retrieve/pii/S1877050915034201
http://linkinghub.elsevier.com/retrieve/pii/S1877050915034201
https://collectd.org/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://dx.doi.org/10.1063/1.4965379
http://aip.scitation.org/doi/abs/10.1063/1.4965379
http://aip.scitation.org/doi/abs/10.1063/1.4965379
https://community.zenoss.com/home

Towards A Software Defined Secure Data
Staging Mechanism

Susumu Date, Takashi Yoshikawa, Kazunori Nozaki, Yasuhiro Watashiba,
Yoshiyuki Kido, Masahiko Takahashi, Masaya Muraki, and Shinji Shimojo

Abstract Recently, the necessity and importance of supercomputing has been
rapidly increasing in all scientific fields. Supercomputing centers in universities
are assumed to satisfy scientists’ diverse demands and needs for supercomputing.
In reality, however, medical and dental scientists who treat security-sensitive data
have difficulties using any supercomputing system at a supercomputing center due
to data security. In this paper, we report on our on-going research work towards
the realization of a supercomputing environment where separation and isolation of
our supercomputing environment is flexibly accomplished with Express Ethernet
technology. Specifically, in this paper, we focus on an on-demand secure data

S. Date (<) » Y. Kido ¢ S. Shimojo
Cybermedia Center, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
e-mail: date @cmc.osaka-u.ac.jp; kido@cmc.osaka-u.ac.jp; shimojo@cmc.osaka-u.ac.jp

T. Yoshikawa
System Platform Research Laboratories, NEC Corporation, 1753 Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8666, Japan

Cybermedia Center, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
e-mail: yoshikawa@cd.jp.nec.com; tyoshikawa@cmc.osaka-u.ac.jp

K. Nozaki

Division of Medical Informatics, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka
565-0871, Japan

e-mail: knozaki@dent.osaka-u.ac.jp

Y. Watashiba

Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5
Takayama, Ikoma, Nara 630-0192, Japan

e-mail: watashiba@is.naist.jp

M. Takahashi

System Platform Research Laboratories, NEC Corporation, 1753 Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8666, Japan

e-mail: m-takahashi @ex.jp.nec.com

M. Muraki

Strategic Technology Center, TIS Inc., 17-1, Nishishinjuku 8-chome, Shinjuku-ku, Tokyo
160-0023, Japan

e-mail: muraki.masaya@tis.co.jp

© Springer International Publishing AG 2017 15
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_2

mailto:date@cmc.osaka-u.ac.jp
mailto:kido@cmc.osaka-u.ac.jp
mailto:shimojo@cmc.osaka-u.ac.jp
mailto:yoshikawa@cd.jp.nec.com; tyoshikawa@cmc.osaka-u.ac.jp
mailto:knozaki@dent.osaka-u.ac.jp
mailto:watashiba@is.naist.jp
mailto:m-takahashi@ex.jp.nec.com
mailto:muraki.masaya@tis.co.jp

16 S. Date et al.

staging mechanism that interacts with a job management system and a software
defined networking technology, thus enabling minimum data exposure to third
parties.

1 Introduction

The necessity and importance of supercomputing has been rapidly rising in all
scientific fields. This rising necessity and importance can be explained from the
following four factors. First, the recent advance in scientific data measurement
devices has allowed scientists to obtain high resolution scientific data in both
temporally and spatially, and this has resulted in an increasing amount of data
obtained with such devices. For example, according to [16], the Large Synoptic
Survey Telescope (LSST) is expected to generate 15 TB a day. Also, approximately
15 PB of experimental data is annually generated and processed at the Large Hadron
Collider (LHC), an experimental facility for high energy physics [2]. Second, the
development of current processors and accelerators has advanced dramatically.
Although discussions about ‘Post Moore’s era’ are more and more frequent
these days, new-generation processors and accelerators have been continuously
researched and released. The Intel Xeon Phi (Knight Landing) processor and the
NVIDIA GPU accelerator (Pascal and Volta) are representative examples of such
processors and accelerators. NEC’s future vector processor is another example
of a cutting-edge processor [11]. These cutting-edge processors and accelerators
have allowed researchers to perform an in-depth and careful analysis of scientific
data observed and measured through the use of scientific measurement devices on
supercomputing systems with such processors and accelerators. Third, networking
technologies have advanced greatly. Today, 10 Gbps, and even 100 Gbps-class
networks are available as world-scale testbeds for scientific research [4, 14, 15].
This advancement means that scientists and researchers can move scientific data
more quickly in a research collaboration environment where research institutions,
universities, and industries are connected. Furthermore, the potential and feasibility
of data movement using advanced networking technology benefits the aggregation
and sharing of scientific knowledge and expertise for problem solving. Finally,
the needs and demands of high-performance data analysis (HPDA) have led to
increased demands on supercomputing. Scientists from every field are enthusiastic
about applying computationally intensive artificial intelligence (Al) technologies
that exemplify deep learning in their own scientific domains.

Despite the increasing demand on supercomputing, however, the Cybermedia
Center (CMC) [9], a supercomputing center at Osaka University in Japan, is facing
two serious problems because of the recent diversification of users’ requests and
requirements from their high-performance computing environments, in addition to
the strong user requests and demands for larger computational power. The first
problem is the low utilization of supercomputing systems due to an inflexibility
in resource configuration, and the second problem is the loss of supercomputing

Towards A Software Defined Secure Data Staging Mechanism 17

opportunities due to data security. These two problems hinder the efficient and
effective use of supercomputing systems for scientific research.

The first problem can be explained from the many choices scientists have today
in terms of the hardware and software for acceleration of their programs and thus,
each scientist tends to have his/her own favorite supercomputing environment. For
example, some scientists may want to use OpenMP to achieve a high degree of
thread-level parallelism on a single computing node equipped with two 18-core
processors, while others may want to use MPI to achieve inter-node parallelism
on 16 computing nodes. Also, a scientist may want to perform GROMACS [1]
on a single computing node with four GPUs, while others may want to perform
LAMMPS [8] on a single computing node with two GPUs. Taking these users’
diverse requests and requirements into consideration, supercomputing centers like
the CMC should have a flexibility in resources to accommodate the diversity and
heterogeneity of user requests pertaining to supercomputing systems. Based on this
observation and insight described above, our research team has been working on
the research and development of a more flexible supercomputing system. We have
published the results and achievements obtained so far in [3, 10] and therefore do
not present how we have approached this problem in this paper.

The second problem for scientists is how to treat a large amount of privacy-
rich and confidential data, especially in the medical and dental sciences, such as
is the case at Osaka University. Medical and dental scientists acquire a lot of such
privacy-rich and confidential data which they want to analyze with a supercomputer
system for the prediction of patients’ future disease risks, for assessment of the
severity of the patient’s case, and for the understanding of brain function, etc. All of
these situation require deep learning techniques on a high-performance simulation.
Unfortunately, in reality, medical and dental scientists have great difficulties using
the supercomputing systems at the CMC because of privacy issues. To assist
scientific researches treating this type of security-sensitive scientific data, a technical
solution that enables security-sensitive data to be treated is essential from the point
of a supercomputing service provider.

In this paper, we present and report the research work in progress for the
second problem. More specifically, an on-demand secure data staging mechanism
that enables minimum exposure of security-sensitive scientific data, which we
have envisaged and been prototyping, is overviewed. Technically, the mechanism
leverages Software Defined Networking in cooperation with a job management
system for the mechanism. The organization of this paper is as follows. Section 2
briefly overviews the challenge and issues in this early stage of our research. Next,
we describe our basic idea to approach this challenge and then we explain the
key technologies composing the mechanism in Sect. 3. Subsequently, in Sect. 4, the
overview of the mechanism is shown. Section 5 concludes this paper.

18 S. Date et al.
2 Challenges and Issues

To tackle data security, we have started a discussion about data security issues with
the Division of Medical Informatics at the Osaka University Dental Hospital so that
dental scientists can utilize supercomputing systems for their own research. The
biggest hurdle and problems to overcome so far are the regulations and guidelines
set forth by the Ministry of Health, Labour and Welfare, Japan, which has strictly
required organizations and/or scientists that treat privacy-rich data in adherence
with the government’s regulations and Ministry guidelines. The Division of Medical
Informatics at the Osaka University Dental Hospital has set up their own security
policy and rules based on their regulations and guidelines for managing controlling
their security-sensitive data.

The second hurdle and problem is how we can make a supercomputing environ-
ment to include the network between at the Division of Medical Informatics at the
Osaka University Dental Hospital and the CMC dedicated only to dental scientists
who are willing to use supercomputing systems at the CMC. As described above,
the CMC is in charge of delivering a supercomputing environment to researchers
in universities and research institutions. Thus, the supercomputing systems are
inherently expected to be shared by many scientists and researchers at the same
time. Dental and medical scientists, however, do not want to share data and need to
securely move data from the hospital to the CMC’s supercomputing environment,
perform their computation on a supercomputing environment dedicated to them, and
move their data and computational results back to their departments. In other words,
we, at the CMC, need to find a way to service the privacy of data from the dental
hospital.

3 Key Technologies

Our approach to the second problem described in the previous section synergically
makes use of three key technologies: Software Defined Networking (SDN), Express
Ethernet (ExpEther) technology, and Job Management System to realize a secure
and isolated supercomputing environment where dental scientists can perform their
own computations. The following subsections explain these three key technologies.

3.1 Software Defined Networking

Software Defined Networking [12, 17] is a new concept of the construction and
management of computer networks. Traditional computer networking facilities have
a built-in implementation of network protocols such as Spanning Tree Protocol
(802.1D) and Tagged VLAN (802.1Q). SDN provides a systematic separation of

Towards A Software Defined Secure Data Staging Mechanism 19

two essential functionalities of such networking facilities, namely, data forwarding
and decision making. In SDN, the data forwarding part is called the Data Plane
and the other part, which decides how each data should be forwarded in a network
and conveys the decision to appropriate networking facilities, is called the Control
Plane. Control Plane is usually implemented as a software program, hence, the name
Software-Defined.

Separating the Data Plane and the Control Plane can deliver many benefits
to those who construct and manage computer networks. Most significantly, the
separation of the Control Plane from physical networking facilities such as Ethernet
switches makes replacing protocol handling modules possible. This can be done
quickly by replacing the software program installed in the Control Plane, without
updating any firmware or configurations on the actual networking facilities. This
feature is beneficial for operators who want to realize their own automated network
management suited to their particular businesses, or researchers who want to try
their new networking protocols or traffic management scheme. Other benefits
may include high-level interoperability between the Data Plane and the Control
Plane, and applicability of software engineering techniques when developing new
networking protocols.

3.2 ExpEther Technology

Express Ethernet (ExpEther) technology basically virtualizes PCI Express over the
Ethernet [5] and creates a single hop PCI Express switch even if the Ethernet
network is composed of multiple switches. A promising feature of this architecture
is that we can put as many computers and devices as necessary in a single Ethernet
network without limits to the connection distance.

Another feature of ExpEther technology is that it allows us to attach and detach
such devices to and from computers in a software-defined manner. This feature
utilizes the characteristics of PCI in that its configuration is automatically executed
among ExpEther chips that have the same group ID. In other words, by controlling
the group ID, the computer hardware can be reconfigured.

3.3 Job Management System

The Job Management System is usually deployed to a high-performance cluster
system for the purpose of load balancing and throughput improvement. This system
is in charge of receiving resource requests from users, scheduling assignments of
processor resources and then assigning an appropriate set of resources to each
resource request based on its scheduling plan. Numerous job management systems
have been proposed and implemented. Examples of such job management system
include PBS [6], NQS [7] and Open Grid Scheduler/Grid Engine (OGS/GE) [13].

20 S. Date et al.

In general, the job management systems are also known as queuing systems,
and these job management systems use multiple queues categorized by resource
limitations and requests’ priorities for resource allocation of the system. Thus, the
job management systems completely understand when and which job should start.
In this research, our job management system interacts with SDN and ExpEther
technology to realize a computing environment dedicated to the job owner.

4 Proposal

Figure 1 shows an overview of our envisioned supercomputing environment. As
illustrated in the figure, the job management system receives user’s requests in the
form of a batch script. The received job requests are stored in a queue in the job
management system and then wait to be dispatched. At this time the contents of
the job requests are parsed and understood by the job management system in terms
of what kind of devices, for ex., GPU and SSD (Solid State Drive) in a resource
pool connected to a ExpEther network are required. Based on the information on
resources requested by jobs in the queue and the usage information of computing
nodes, the job management system attempts to coordinate an optimal allocation plan
of resources to each job request, taking into account the availability of processors
and devices in the resource pool. When a certain job request’s turn comes, the
job management system interacts with the ExpEther manager to prepare for a set
of computing nodes reconfigured with user-requested devices in a resource pool
through the use of OpenStack Ironic, which is the module for bare metal machine
management functionality. Figure 2 diagrams the inside interaction of the resource
management software. The above-mentioned interaction mechanism between the
job management system and ExpEther technology allows users to specifically
request their own desired computing environment. For example, two computing
nodes, each of which has four GPU nodes, can be specified through the batch script
file to the job management system. The details of this mechanism have already been
reported in [10].

For the security issue described in Sect.2, our envisioned supercomputing
environment plans to take advantage of network programmability brought by
SDN in cooperation with the job management system. As described in the above
paragraph, the job management system can learn when a certain job is run on which
computing nodes. In our envisioned computing environment, we design the data
stage-in and stage-out functionality so that the connectivity of a network between
data storage where security-sensitive data is located and SSD to be connected to
computing nodes via the ExpEther network is guaranteed only before and after the
job treating the security-sensitive data is executed. As explained in Sect. 3.1, SDN
enables the control of packet flows in a software programming manner. This means
that the on-demand control of network connectivity can be achieved in response
to the necessity of data movement. This prominent feature of SDN is considered
promising in lowering the risk of data exposure to third parties. In our envisioned

21

Towards A Software Defined Secure Data Staging Mechanism

apoudwo)
apou o/l apou ‘dwo)
ylomiau
o\ J3y13dx3 !
apou 0o/ apou "dwo)

1
apou 0/ apou ‘dwo)

|00d 221n0s3y

Rpnpays 3|Npow |00
Juawadeuew yaeyap/ysene
mE:owuﬂ ainag

Jasied i1sanbay pue
4/1 1sanbay

-

——— o —————— pno|) [e3ewaleg

JjJomiaN
Sunndwooiadng

M3TAIoA0 Tesodold T 81

jJomiau
sndwe)

22 S. Date et al.

Auto-Scale , Fault Monitoring/Recovery

Daemon
——————————
Performance Resource
Monitor Monitor
Device
Control Information Configuration Information
Command | Acquisition Command Acquisition
¥ R ¥ L J :
0s | OpenStack Ironic
Local B
Devices || PV EF

Recognition, I/0 T

ExpEther (PCle over Ethernet)

Device | T Device| Havics
Monitori
Control Control it
¥ |Heartbeat + | Heartbeat
Disaggregated Disaggregated
Resources Resources

Fig. 2 Architecture of the resource management scheduler

computing environment, we synergistically have the job management system and
SDN interlocked so that exclusive and secure data movement from and to computing
nodes can be achieved.

In our plan, the envisioned computing environment is expected to work as
follows. A dental scientist submits a job request to our supercomputing systems at
the CMC. At this time security-sensitive data are still located on a secure storage in
the dental hospital. Before the job request is dispatched to a set of computing nodes,
the envisioned supercomputing environment isolates the target computing nodes by
preparing a bare metal environment on OpenStack Ironic and then preventing other
users from logging into it. Next, the environment establishes the connectivity and
reachability of the network between the storage and SSD in the resource pool to
be connected to a computing node used for secure computation. Simultaneously,
the environment also reconfigures computing nodes with the user-specified devices
including the SSD in the resource pool of our computer system using the ExpEther
technology. Currently, security-sensitive data can be moved from the storage to SSD
on a software-defined network established only for data movement. Immediately
after data stage-in is completed, our envisioned environment disconnects the
network so that no one can access both the storage and SSD.

On the other hand, when the computation is completed, data staging-out is
performed. When the computation is finished, the job management system estab-
lishes the network between the storage and the SSD again and then move the

Towards A Software Defined Secure Data Staging Mechanism 23

computational results back to the storage. After finishing the data movement, the
staged-in data and computational results are completely removed and then SSD is
detached from the computing node so that no one can access SSD.

In this research we aim to reduce the risk of data exposure to third parties by
realizing the above-mentioned computing environment. At the time of writing this
paper, we have been working on the prototype of the data stage-in and stage-out
mechanism interlocked with the job management system and SDN. Furthermore,
FlowSieve [18], a network access control mechanism leveraging SDN, which we
have prototyped, can be applied in the future for enhancement of data security.

5 Conclusion

This paper has reported the research in progress towards the realization of an
on-demand secure data staging mechanism that enables minimum exposure of
security-sensitive data to third parties. Currently, we have been working on the
prototype of the mechanism and the integration of it with SDN into JMS, in
the hope that the achievement of this research will enable scientists to analyze
such data on supercomputing systems at the CMC. At the same time, through
continuing collaboration with scientists who need to treat security-sensitive data,
we have recognized that there are still many unsolved security issues related to the
regulations and guidelines mentioned in Sect. 2.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number JP16H02802
and JP26330145. This research achievement is partly brought through the use of the supercomputer
PC cluster for large-scale visualization (VCC).

References

—

. Abraham, M.J., Murtola, T., Schulz, R., Pall, S., Smith, J.C., Hess, B., Lindahl, E.. GROMACS:
high performance molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1-2, 19-25 (2015)
2. Bird, I.: Computing for the Large Hadron Collider. Annu. Rev. Nucl. Part. Sci. 61(1), 99-118
(2011). doi:10.1146/annurevnucl-102010-130059

3. Date, S., Kido, Y., Khureltulga, D., Takahashi, K., Shimojo, S.: Toward flexible supercomput-
ing and visualization system. Sustained Simulation Performance 2015, pp. 77-93. Springer,
Cham (2015). doi:10.1007/978-3-319-20340-9_7

4. ESnet. https://www.es.net/

5. ExpEther (Express Ethernet) Consortium. http://www.expether.org/

6. Henderson, R.L.: Job scheduling under the portable batch system. In: Job Scheduling Strategies

for Parallel Processing, vol. 949, pp. 279-294. Springer, Cham (1995)

7. Kingsbury, B.A.: The network queuing system. Technical Report, Sterling Software (1992)

8. LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/

9. Large-Scale Computer System, The Cybermedia Center at Osaka University. http://www.hpc.

cmc.osaka-u.ac.jp/en/

https://www.es.net/
http://www.expether.org/
http://lammps.sandia.gov/
http://www.hpc.cmc.osaka-u.ac.jp/en/
http://www.hpc.cmc.osaka-u.ac.jp/en/

24

10.

11.

12.

13.

14.
15.

16.
17.

18.

S. Date et al.

Misawa, A., Date, S., Takahashi, K., Yoshikawa, T., Takahashi, M., Kan, M., Watashiba, Y.,
Kido, Y., Lee, C., Shimojo, S.: Highly reconfigurable computing platform for high perfor-
mance computing infrastructure as a service: Hi-laaS. In: The 7th International Conference
on Cloud Computing and Services Science (CLOSER 2017), April 2017, pp. 135-146.
doi:10.5220/0006302501630174

Momose, S.: NEC supercomputer: its present and future. In: Sustained Simulation Performance
2015, pp. 95-105. Springer, Cham (2015). doi:10.1007/978-3-319-20340-9_8

Nunes, B.A., Mendonca, M., Nguyen, X.N., Obraczka, K., Turletti, T.: A survey of software-
defined networking: past, present, and future of programmable networks. [IEEE Commun. Surv.
Tutorials 16(3), 1617-1634 (2014)

Open Grid Scheduler: The Official Open Source Grid Engine. http://gridscheduler.sourceforge.
net/.

Science Information Network 5 (SINETS). http://www.sinet.ad.jp/en/top-en/

Singapore Advanced Research and Education Network (SingAREN). https://www.singaren.
net.sg/

The Large Synoptic Survey Telescope. http://www.Isst.org/

Xia, W., Wen, Y., Foh, C.H., Niyato, D., Xie, H.: A survey on software-defined networking.
IEEE Commun. Surv. Tutorials 17(1), 27-51 (2015)

Yamada, T., Takahashi, K., Muraki, M., Date, S., Shimojo, S.: Network access control
towards fully-controlled cloud infrastructure. Ph.D. Consortium. In: 8th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom2016), December 2016.
doi:10.1109/CloudCom.2016.0076

http://gridscheduler.sourceforge.net/
http://gridscheduler.sourceforge.net/
http://www.sinet.ad.jp/en/top-en/
https://www.singaren.net.sg/
https://www.singaren.net.sg/
http://www.lsst.org/

Part I1
Mathematical Methods and Approaches

The Numerical Approximation of Koopman
Modes of a Nonlinear Operator Along
a Trajectory

Uwe Kiister, Ralf Schneider, and Andreas Ruopp

Abstract The spectral theory of linear operators enables the analysis of their
properties on stable subspaces. The Koopman operator allows to extend these
approaches to a large class of nonlinear operators in a surprising way. This is
even applicable for numerical analysis of time dependent data of simulations and
measurements. We give here some remarks on the numerical approach, link it to
spectral analysis by the Herglotz-Bochner theorem and are doing some steps for
significance for partial differential equations.

1 Introduction

This paper is directly related to a first part [7] and a second part [8] from the author
and is to be considered as an extension of the numerical approaches.

Linear operators are used and deeply analysed as well in mathematics and
numerics as also in nearly any scientific discipline. Nevertheless most relevant
models of nature are nonlinear, so that linear theory seems to be not applicable
or in the best case only by local approximations. Here an even not new theory of
functional analysis comes into play. The nonlinear operator induces in a natural
way a linear one acting on the continuous functions defined on the space, where
if nonlinear operator is defined. This linear Koopman operator has well known
attributes as spectrum, eigenvalues, stable eigenspaces. What this means for a
specific application is task for the different communities. The approach can be
handled also in a numerical way, important for simulations, which has discussed
already in in the Dynamic Mode Decomposition theory of Peter Schmid [12]. This is
related to the Koopman operator theory, as pointed out by Igor Mesi¢ and coworkers
in [3] and Clarence Rowley and his coworkers in [4].

In that way the Ergodic Theory investigated by Ludwig Boltzmann, John von
Neumann, George David Birkhoff, Bernard Osgood Koopman, Norbert Wiener,

U. Kiister (0<0) * R. Schneider * A. Ruopp

High Performance Computing Center Stuttgart (HLRS), Nobelstra3e 19, 70569 Stuttgart,
Germany

e-mail: kuester @hlrs.de

© Springer International Publishing AG 2017 27
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_3

mailto:kuester@hlrs.de

28 U. Kiister et al.

Aurel Friedrich Wintner and comprehensively described in the monograph [5]
for new developments comes to modern numerical applications. We try here to
make some steps further to general applicability and for understanding what that
implies for the analysis of the solutions of nonlinear partial differential equations.
in addition, we give also the link to spectral theory of Fourier analysis.

2 The Koopman Operator

This is a short description of the preliminaries given in [5] and recapitulating, what
has been described in [8]. Let

p:K—K @8

be a continuous nonlinear operator on the compact space K and assume .% C C (K)
being a linear subspace of “observables” in the continuous functions on K. .% shall
have the stability property

feF =>fopeF (2

that means, that an observable coupled with the operator is again in the observable
space. This condition forces .# typically to be large. Observables might be any
useful functional on the space of interest as the mean pressure of a (restricted)
fluid domain £2 or the evaluation operators §, at all points x € £2. It might
be also economic parameters describing the behaviour of models of national and
global economies or of models of social science. The nonlinear operator ¢ has no
further restrictions. It might describe non wellposed unsteady problems, the case
where trajectories are not convergent (also strange attractors), chaotic or turbulent
behaviour, mixing fluids, particle systems or ensembles of trajectories for weather
forecast. The operator could also be defined by an agent based system for the
simulation of traffic, epidemics, social dependencies, where the agents determine
their next status by the current status of some other neighbouring agents. In this
case K is the set product of the status of all agents with some topology and definitely
not a subset of a vector space in contrast to .%. The operator ¢ might even not be
known explicitly, but its effect on the observables measured at a number of time
steps with constant difference is present. All models are described where an operator
is changing the values of the observables to a new state, as long as the iterations are
not leaving the limited region of interest.

An important numerical example is the discretization of the Navier-Stokes
equations on a finite set of grid points in a domain and time steps. It is even possible
to understand K here as the product of the status of all variables on the discretization
grid together with varying boundary conditions and geometrical parameters.

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 29

By a simple mechanism the nonlinear operator ¢ acting on a set without linear
structure induces a linear operator on the space of observables .7 . The operator T,
on the observables defined by

T,: F — F 3
[Tf =fog “

is named the Koopman operator of ¢ on .% [6]. Hence T, is linear and continuous.

As an infinite dimensional operator T, may have a (complicated) spectrum with
discrete and continuous parts. We are mainly interested in the point spectrum
with eigenvalues providing eigenfunctions which are elements of .%# describing
behaviour in K. The eigenvectors or eigenfunctions f are elements of the space of
observables .%, not of the state space K as we know it form the linear case. They
fulfill Schroders functional equation [13]

flpq) =Af (@) YqeKkK %)

The compactness of the space K is forcing |[A| < 1 for any eigenvalue A. For any
application the meaning of these stable observables must be discussed. This might
be a problem by itself.

It is a priori not clear, that eigenfunctions exist. The approach is addressing
approximative eigenfunctions.

3 Trajectories and Observables

We study only single trajectories, even where ergodic theory [5] would allow for
very general settings. But our target is to establish numerical procedures reflecting
the implications of the theory at a level enabling computation. Even the trajectory
might be large and dense in the space K. For numerical handling we assume that
only the trajectory is given. We are not requesting the explicit knowledge of the
operator. Also the space of observables is reduced as much as possible. We assume &
to be an observable or a finite dimensional vector of observables. In the latter case
we assume a dotproduct < -, - >. It might be also a function of a function space.
We still avoid this setting because of the difficult questions involved. But 4 could be
a function in a discrete finite space, as we have this in numerical approximations of
function spaces.
Let go € K be the starting point of the iteration or trajectory

No> k> g =¢'q €K 6)
Define g as the sequence

gr=nh(q) VkeNp (7)

30 U. Kiister et al.

These gy are given by measurements or resulting iterations from a simulation.
Because K is compact and £ is continuous there norm has a common bound Kj,
with || gk|| < KV k € Ny. They determine a matrix G by (n finite or infinite)

G =808 - 8] ®)
The matrix H = G G is symmetric positive semidefinite.
Hyj = {gji-8p) Vita=0.---.n ©)
Defining the sequence of vectors (h,)] by overlapping the trajectory
hj = (h (‘/’j‘Jk))keNo = (h ((pj+kq0))keNo = (g/+k)keN0 (10)
we can define the space of observables .% by
F = LH {hj|j € No} (1)

The space .% has the stability property, necessary to define the Koopman operator
on .F

geEF =>gopeF (12)

We define p arbitrary, but fixed. Leta = Y7 _yo; by, € F andb =37 _ Bjhj, €

. The Koopman operator T, acts on the space .# via shifting on 4;,j € N.

14 14
T(p (a) = Z(X/‘T(p (hj) = Zajhj-l-l (13)
j=0 J=0

or for the coefficient vector o

[aoal...ap]H[anal...ap] (14)

4 The Relation to Time Series Analysis

For m € N the semi-sesquilinear form can be defined by

P P p.r
Lab>p=< Y aily, Y Bphy Su= Y @B, Kby hy > (15)
J1=0 J2=0 J1:72=0

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 31

using
1 m—1
Kby by =Y (1 (@7 q0) b (97 o))
" =0
1 m—1
= > (ghtkgprk) YO<ji=p0<jy=p (16)
M=o
For all ji,j» we have | <« hj,h, >, | < K7 The resulting matrix
(<< hj,, hj, >>m)j1 h is the arithmetic mean H™~! of the first m shifted submatrices
L3 Hj of the matrix H = G'G

Hj = Hpjtp, jj+p (17
with the size [0 : p] x [0 : p]. We have
Lab>»,=<H" ', > (18)
We assume, that the limit lim,,— o0 <K hj;, by, >, exist for all ji, j» > 0.

This preassumption is not clear in case of applications.
Because forj; > j,

1 m—1 1 m—14ja
m—1 __ —

2 T J1tks &) = J1—j2+ks
H m (gj1+4- 8jr k) " (FIR—
k=0 k=j>

1 m—1+min (0,—j1+j2)

= Z (8j1—j»+k- 8k) (Toeplitz matrix)
k=max (0,—j1+Jj2)

(19)
1 Jja—1
T m > {71—o-+4- 84)
k=max (0,—j1 +j2)
1 m—1+j>
T o > (1=t 8) (20)

k=m-~+min (0,—j1 +j2)

we get a decomposition in a Toeplitz matrix (the elements depend only on the
difference j; — j») and initial and final matrices (https://en.wikipedia.org/wiki/
Toeplitz_matrix), which are converging to zero as m — oo for fixed ji,j,. For
m > ji,j» we end up with the relation

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://en.wikipedia.org/wiki/Toeplitz_matrix

32 U. Kiister et al.

3
R

1 .
y (j1 —j2) = lim (h ((p/1—12+kq0) h ((Pk!ZO))

mee m k=0
= lim : m_l(h (0" q0) . b (97 q0)) 21
mee m k=0
1 m—1 1 m—1
= Jim 2 (81—p+r &) = lim ;(g/wk’gmk) = H,

(22)

for the symmetric positive semidefinite Toeplitz matrix H*° related to the autocorre-
lation coefficient y (j; — j»), with a modulus bounded by K7 (https://en.wikipedia.
org/wiki/Autocorrelation). For such y the theorem of Herglotz-Bochner (see [5]
Theorem 18.6) assures the existence of a positive finite measure p on the unit circle
T depending on / and go with the property (see also [1])

HS =y G =) = A Gr=o) = [370 dp) @3)
T

so that the function y on Z is the Fourier-transform of the measure p identical to the
entries of the Toeplitz matrix H°°. All of this is well known in time series analysis.
In terms of the generating elements of the observables .# we get

p P P P
I _ .
LT,y il Y Biuhyy >oo= /Tk Yo ATy BpAdp () (24)
Jj1=0 J2=0 Jj1=0 j2=0

showing how T, is acting on .# and with respect to u for large m. The behaviour of
small m, say the transition is not described.

Applied to coefficient vectors «, §, the related elements , b € .% and the related
polynoms A — a (1), B (1)

L a,b>o= (H®x p) = / a (A) B (A) du (L) (25)
T
Following [1] Theorem 2.1 we see that the measure ©(23) is the weak limit of

the sequence of measures [, given by the density for the Lebesgue measure dA on
the unit circle

2
/ r(A)dr = / r(expi ¢) d¢ for all integrable r (26)
T 0
so that

1
Um (E) = 5 / dpy (A)dA Y measurable sets E C T 27
T JE

https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 33

with the density function

2

T3 At dy (L) = (28)

m—1 f
D@
k=0

which approximates the spectral density of the eigenvalues of modulus 1 and can be
calculated on a computer. The function is not bounded with respect to m even for
constant g = go.

Furthermore we have the relation (using, that [Ad\l = 0forl # 0 and
JpAldA = 27 for I = 0).

1
m

1 o 12 N
/ A0 g (A) dr = Z (gkl,gkz)/ AUtk gy
2 J 2r m -
k1,ky=0
29)
1 m—1—min (0,—j; +j2)
T m Z (gjl—jz+k,gk) forj; > j»
k=max (0,—j1 +j2)
(30)

m—1-4min (0,j; —j2)

1 . .
= > s forizi 6D
k=max (0.j1—2)

The last two identities reproduce the Toeplitz matrix appearing in Eq. (19). The
elements are bounded by

1

<K; VO<ji,p=<p (32)
2

/ A~ Ui=n) dp (A) dA
T

The density function (28) divided by m is the square of the norm of the
discrete Fourier backtransform of the finite sequence [go g1 gm_l] which again
is bounded by K,f Additionally we recognize that

- 1 o & . m—>00
<H"'a,p >—2ﬂ/T Z%M Y BuA? dy(Q) dh—= 0 (33)

J1=0 J2=0

Definition 1 For a polynom c define the norm ||¢||co,r = maxjer |c (A) | . This is
the H°® Hardy norm of the polynom ||c||zee on the unit circle (https://en.wikipedia.
org/wiki/Hardy_space).

Proposition 1 Assume, the finite measure (1 (23) is discrete and that € > 0
is given.

https://en.wikipedia.org/wiki/Hardy_space
https://en.wikipedia.org/wiki/Hardy_space

34 U. Kiister et al.

1. @ must be the sum of at most countable number of point measures
o0
=y prSuy with |\ =1 V1 (34)
I=1

with decreasing weights p; > 0.
It exists I, so that the last part of the sum is small Z?izéﬂ pr < €.

2. Let ¢ = ¢ be a polynom coefficient vector c, so that c (Al) =0forli=1,---,l.
Then
P g)
(H®c,c) 1 / _ 1 5
- | dp () = prle(M)]
lelZor — llelor Jo ; ' lelZe r ;
1 o0
=, 2 Ple(M)F = o
||C||oo"]1’ 1=l +1

3. By definition of H* there exists an my so that

m—1
oS Hie.c)
<2

) e Ym>myg (36)
lell5or

4. Multiplying c by any other non zero polynom b would maintain the roots of c and
therefore also this estimate for ¢ * b.

5. Because the l,-norm of the polynom coefficient vector c is identical to the H?
Hardy space norm of the polynom c which itself is lower or equal to the H
Hardy space norm of the polynom

2
1 1 ’

2 a2 — k < 200 el < (elf2
et = elFy, = ., . Ve dsy | maxfe (1) dh = el r < el
(37)

the Rayleigh quotient of c is an upper estimate of (35)

H%c, H%c,

(H®c,c) - (H®c, c) (38)

leleer = llel3

Hc,c)

el < €, we have also
2

meaning, that for a polynom coefficient vector ¢ with {
an estimate for (35).

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 35

It is not clear , that ||c.||co. 7 remains limited for € — 0. In numerical tests we got
the impression, that this is the case if the roots are nearly uniformly distributed near
the unit circle.

For a measure p (23) with continuous parts, the existence of a polynomial
approximation of nullfunctions of H*° is not yet clear.

The analysis as far shows the relation to a Fourier analysis by the Herglotz-
Bochner theorem. That means it shows the behaviour of a long running sequence
neglecting the damped parts of the sequence. Only the spectral part on the unit
circle T is relevant in this context and not the inner part of the unit circle describing
the part, which will vanish during the iteration. Nevertheless a numerical scheme
must show the correct results in the terms described in the previous section.

The following examples will give insight into typical situations for given
sequences (gi)=o.1.2...- All these can be part of a single sequence.

Example I (Converging Sequences) 1f the iteration h (¢) 220 (g+) converges,
the measure p in (23) is the single point measure at 1.

To see this
1 m—1+ko ‘ ‘
}:(Mwﬁﬁdw@ﬂ“%»—mwnw@94
k=ko
1 m—l"rk()) .
<| >0 (" a0) = h(g) h (9P q0) — h (g0))
k=ko
1 m—l"rk())
Y (h (e q0) = h(gs) B (gw)
n k=ko
1 m—1+ko .
Y) (o) () (39)
k=ko

so that for given € > 0 and appropriate ko , that ||h (97T go) — 1 (g+) || < € for all
k,j = 0 with k > ko we find

m—1-+ko
. 1 . .
Jim k=§k0 (h (9" q0) .1 (97 % q0)) — (A (qx) . h(q2))| = € + €[l (gs) |

(40)

and therefore lim,,—s oo ,L Z:é (h (97 qo) . 1 (97 gp)) = Timyseo ril Z,Z";kljk"
(h (07 g0) . h (92 *g0)) = || (¢«) | That means

ummwzﬁrwmwm Vjia = 0 @1)

which is possible only for the point measure 1t = ||A (gx) ||* 813-

36 U. Kiister et al.

This example shows the measure p (23) for a practically relevant case, but which
is of less interest in our context.

Example 2 (Besicovitch Sequences) Assume, that the values gy = Y/, v)L/‘
V k € Ny are given by decomposition in modes with all A; pairwise different and
|4l < 1. If for all |A;| = 1, the decomposition is a so called Besicovitch sequence
[2]. Then
1 m—1 1 m—1 ik
m— 1+kq J2
HleZI = m Z(gil+k’gj2+k> = m ZZ<U11’UZZ) Nli AZZ
k=0 k=0 11l
. 1 m—1 ‘
= Z (Ull , UZz) Ajliklzjz N Zkﬁklz (42)
I.b k=0
o1 1= (Ra)”
. 1 AL
= > "o o) A" (43)

i 1 —AuA

The last term converges to zero for m — oo if A, A;, 7# 1 because |A;,A;,| < 1. The

convergence is relatively slow. For A;;A;, = 1 we simply have | D A;‘l Alzk =1
Therefore

m—1

1 .
H{?, = lim Z(gj1+k,gjz+k) = Z (v, o) A7 (44)
k=0 1

Thus the measure u (23) is discrete and given by

p=_ Il by, (45)
1

meaning, that the values A; of the Besicovitch sequence determine the measure .
Because the measure is finite, the sum Y, ||v;||> must be bounded. The assumption
|A;| < 1is essential for the construction. Modes with |A;| < 1 are disappearing for
k — oco. The measure p (23) cannot represent these.

Let ¢ be an polynom coefficient vector and define the linear combination
ZZ=0 Ck8k+j = D vl/Vlc (A;). We assume, that a finite number of A; are roots of
the polynom A > ¢ (1). Estimating the linear combination by

p
1 cegesill = D ToilllAflle () | (46)
k=0 1
< > lulle@y] (47
Le(A)#0
A 4
<y forl max e (4)] (48)

Le(A)#0

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 37

so that for finite), || < oo it is possible to define the roots of ¢ in way,
that the remaining part is arbitrary small independent on the index j as long as
max|y= |c (A) | remains bounded.

Example 3 (Impact of Continuous Segments) Assume, that the values g; for k € Ny
have a linear decomposition containing also continuous parts of the following kind
as summands.

gk:Z/[M) r VkeNy (49)

For simplicity we consider one element of the sum.

The function A — f (1) should be continuously differentiable. [p, o] is a segment
on the unit circle. Because of the definition of (26) (remark the difference to the
usual product rule)

/ 2 () dx=[.1 AkfmT— / LA 9, £ () da (50)
o] ik o Jipol k

these terms converge to 0 for k — oo with ,i and not exponentially as in the case
of a discrete atomic measure for a point A with |A| < 1. Even a constant f will be
interesting.

By these contiguous segments continuous parts of the spectrum can be formu-
lated for numerical purposes. Used as density for the Lebesgue measure on the unit
circle they are special examples for so called Rajchman measures, which nth Fourier
Transform vanish for n — oo (https://en.wikipedia.org/wiki/Rajchman_measure).

5 Approximation of an A-Eigenmode Along a Trajectory

As before we assume here ¢ as an operator and a sequence f = (fj)izo -

with f; = f ((pj qo) of scalars or vectors as in (10) or even functions as elements
of a function space C (§2,RR’), f; are the elements of an iteration observed by a
vector of observables f. s might be any natural number given by a number of
components in the analysed process defined by the operator ¢. s = 4 in case of
the incompressible Navier-Stokes equations with three velocity components and the
pressure. To simplify the problem we handle only discretized versions with a finite
set of discretization points §2 which makes the function space finite dimensional.
j is the time step number of the time discretization given by the operator ¢ in this
case. We define finite complex linear combinations of values along the trajectory
starting at each step j. The coefficients are given by the vector & = ()y—o.... p—1
and do not dependent on j. The coefficients are understood also as coefficients of a

https://en.wikipedia.org/wiki/Rajchman_measure

38 U. Kiister et al.

Fig. 1 Moving linear combination of values along a trajectory

polynom A — « () = ﬁ;é oy j1¥. We fix here a value A which must not be a root
of this polynom and define the sequence

p—1
?J.IJb Zk 0 akf]+k V] = 0’ 1’2,'“ (51)
Zk —o A

Figure 1 shows the linear combinations on the trajectory for p — 1 = 8 elements
moving along 7 starting points j. This approach is motivated by the fact, that for
a sequence (]j-)j, already fulfilling the rule f; = A/ fy, we conserve this property

fj“ = M fy. That means we conserve Schroders equation f (¢q) = Af (¢) Vg, orin
other words have a Koopman eigenvector.

The error €% of the pair (A,f“’*) of being a Koopman eigenvalue-eigenvector
pair is given by

E;M = —/\;‘?’A +fﬁll @ () (Zﬁ+k Aoy + Zﬁ+1+k Olk) (52)

k=0

1 p-l
= a (b (_fj‘ Aoy + Zﬁ-ﬁ-k (—Aok + o—1) + fitp ap—l) (53)
k=1

1 p
= E : vVj=0,1,--- 54
a(}) k:0ﬁ+k Ck J 54

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 39

with the polynom coefficient vector

Cop = —/\O[o
Ck = —Aag + ap_q Vk=1,---,p—1 (55)
Cp = Qp—1

Example 4 (Wiener-Wintner) An example are the sums in the Wiener-Wintner
theorem [5]

p—1

~ 1 .
fola) ~ Y f(¢hg) et VjeNy (56)

k=0

where o = /2" “* for all k, the eigenvalue A = ¢~**"® and & (1) = p. Forp — oo
they approximate the eigenmode f,, for A.

cis given by ¢ = [—e7127® (0 ... 0 ¢/2* P~V] and the approximation error by
vt = 5 (779 + fiype!> (=) which is small for bounded f, if p is large.

J
As apolynom, c is the product of polynom « and the linear divisor given by p

u—A. Understood as polynom coefficient vector c is the convolution ¢ = « * [_11}
By definition, A is a root of the polynom p +— ¢ (1t).

For a matrix 2,(c) build by the repeatedly shifted vector ¢ we request
equivalently

_C() -
C1 Qo
Cy (1 Co
) 1 . O (& 1)
o= o (A) [ﬁ)vflszv i] = o (A)f Q1.17(6) ~ O (57)
Cp Cp—1 Cp—2 *
Cp Cp—1
‘p

The existence of a polynom coefficient vector ¢ with this property is a necessary
condition for the existence of approximative eigenvectors. Using the same notation
we have f%* = a(lk) f 2A,—1(a) for the approximative eigenmode (51) .

The sequence]?‘“ will be an approximative eigenmode of the underlying
iteration operator if and only if | f**|| > [|e%*|| and ||€**| ~ 0. In the following
we assume that €%* is small.

If a vector ¢ with the property (57) has been found, it provides A as root of
the polynom c. Furthermore, all roots A; of ¢ together with the related polynom
coefficient vectors «; for [= 1,--- , p are candidates for approximating Koopman

40 U. Kiister et al.

modes, as long they are not multiple roots and as long |A;| < 1. These pairs all share
the same approximation quality , (IA,) f 2A,(c) depending solely on the fraction (11,)'
By providing a single coefficient vector o, we get many other coefficient vectors ¢
by dividing the polynom c by the linear divisors of the different roots. If |o; (/) | is
large, we expect a good approximation quality. The degree p has to be as small as
possible.

5.1 Determining the Polynom Coefficient Vector c

Given are a finite sequence of vectors G = [go g1 ... gn] . To find a polynom
coefficient vector ¢ with small approximation error

* = G Ay(c) ~ 0,

we apply the following procedure. For any given ¢ determine the minimal number
Pe > 0o that

A(e)"H A(c) < pe A(e)"A(c) (58)

pc 1s the largest eigenvalue of the generalized eigenvalue problem. Determine ¢ with
fixed degree p so that p = p, is minimal and that the roots of the polynom defined
by ¢ have modulus not more than 1. This can be reached by an iterative process
following the theorem of Rellich [10], that for a real symmetric parametrized matrix
eigenvalues and eigenvectors depend analytically on the parameter. During the
iteration the roots of ¢ are tested and changed, if there modulus exceeds 1.

The value of p determines the error of the approximation.

Projecting to the jth row and column of both sides of the matrix inequality we find

(Hc.c) < p c]? (59)

for the jth submatrix H; (17).
Taking the mean over the m = n — p + 1 first submatrices H; we find for H"!
as in (18)

(H" " e.c) < pllell? (60)
So we get by (38) and (35) the estimate for m which is sufficiently large

(H®c, ¢) (H’"_lc, c) (H’"_lc, c)

~ < =p (61)
lelZo lel3o lell3

P H")
Minimizing (|2 <) directly with respect to ¢ might result in a better c.

oo, T

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 41

There are other alternatives to calculate the vector c¢. The whole procedure is
related to DMD of Peter Schmid [12].

5.2 Roots and Pseudo-Eigenvectors

The roots A; forall / = 1, --- , p of the polynom ¢ are determined by the solution of
the eigenvalues of the c-companion matrix.

For each A; with |4;] < 1 a “pseudo-eigenvector” ¢; is determined by factorizing
the linear divisor of root A; out of ¢

M) A=A)=c(l) YAieC (62)

We assume, that there are no multiple roots of ¢, so that «; (A) # 0. The vectors o;
with degree p — 1 define the linear combinations (51) along the trajectory delivering
approximate Koopman eigenvectors for the eigenvalues A;.

The matrix consisting on the vectors af‘i]) is the inverse of the Vandermonde
matrix (https://en.wikipedia.org/wiki/Vandermonde_matrix) defined by the eigen-
values A;.

The approximative eigenvectors are given by

o

=G (63)
e
The vectors with complex elements are also named Koopman modes [3].
For small p (61) we get the following approximation
g~ Z wAf Yk (64)

=1

which is Besicovitch like sequence including potentially some A; with |A;] < 1.

5.3 Handling Intermediate Data Steps

If the number of data steps is large, or if the data from step to step are very slowly
changing, or if the data size per step is large (e.g. 100,000 steps of a weather
simulation), it is reasonable to analyse only intermediate steps, e.g. every mth out of
n steps. There is basically no difference to the given approach. How to analyse the

https://en.wikipedia.org/wiki/Vandermonde_matrix

42 U. Kiister et al.

influence of the intermediate data on the eigenvalues? This can be done by enlarging
the matrix G in the following way:

Go+o Guto Garmt+o -+ Gym+to
Go+1 Gutr1 Gam+1r -+ Gymt1
G=1| Gor2 Gui2 Grmyr -+ Gymi2 (65)

Got+m—1 Gutm—1 Gamtm—1 *** Ggm+m—1

q is defined so that gm + m — 1 < n. Every line out of m consists on
intermediate steps with distance m. The next line is shifted by 1. Be aware, that
the matrix size is essentially the same as before. The degree gm vector ¢ =
[co 0pm—1 Cm Ot C2m Opp—y =<+ 0y cqm] where 0,,—; represents a vector of m — 1
zeros. After suppressing these zeros G ¢ ~ 0 is handled as before. ¢ leads to a
polynom

q
A Y e (M (66)
k=0
The g m roots of this polynom are Aj* = A}"; where

A=A exp(iZn J) Vj=01,.m—1andl=1,-.q (67
m

If Aj; # Aj); for Iy # L than all the m roots belonging to both values are
different. These roots are related to pseudoeigenvectors w; ; which are calculated
in the following way. Similar to ¢ let w; be the polynom coefficient vector of
degree (q - 1) mwp = [WZ,O Om—l Wim Om—l Wi2m Om—l e Wl,qm] defined by the
factorization w; = ¢/ [—A;” 0p—1 1]. The complete pseudoeigenvectors are then
given by the convolution

1 1 i k
wz,j:m(kk exp(—i27{]m)) xw, Vj=0,---,m—1 (68)
L0 k=0, .m—1

The eigenmodes v; ; are calculated by

1 j k 1 ~
w,; = . (exp (—i 27]m)) diag (Ak) G wi/wy ()L;”) (69)
k=0, .m—1 10/,

The first part is a discrete Fouriertransform and is identical for all different [=
1,---,q. The second part G w;/wy (/\}") is constant with respect to j and represents
the whole space belonging to the eigenvalues given by A}*. The modes u; ; for

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 43

fixed [are not related to each other. Some of them might be nearly vanishing. The
calculation requires the special definition of G with replicated shifted lines.

6 The A-Eigenmode Mapping Operator

For a given pair (A,a) we denominate the map @ defined by approximative
eigenmode (51)

S fef = (70)

the A-eigenmode mapping operator. This linear operator can be applied to a
sequence of scalars or vectors or functions or vector fields in the appropriate spaces.

Under reasonable conditions we found in our simulations (no proof) empirically
for the pairs («, A), that

p—1
lleells

1
= =0(1 71
@) 2% = gy =00 a

This helps in analysing the behaviour in combination with diverse operators. This
property together with an uniformly bounded approximation-error €** (57) shows
the following properties.

In the case of continuous or differentiable or integrable functions f the operator
* is linear and commutes with limits and (discrete) differentiable and integration
operators, substantial for the definition of partial differential equations, e.g.

af +bg* =af* + b3
lim £, = Tim f,*
n—>oo n—>oo

gEld\fA = grad fk

K‘\fl:A}\/\
D v* =D ¥

div v* = div %

rot v* = rot ?*

/ V/f(x\)dxl = /V }a (x) dx

A

¢ <v(x).df(x) > :_(ﬁ <P (x) df (x) >
v v

44 U. Kiister et al.

all these elements are approximative eigenmodes for the eigenvalue A as long as
approximation-error €% (57) is small. The approximation error will surely changed
by these operations. If the finite sums by coefficients would be changed to infinite
sums, additional restrictions have to be expected.

Assume a time dependent solution of a partial differential equation with bound-
ary conditions given. The A-eigenmode mapping operator ®* can be applied to the
trajectory of boundary conditions as well. A timewise constant boundary condition
b is an eigenvector for A = 1.

6.1 Incompressible Navier-Stokes Equations as Example

The Navier-Stokes equations can be defined in integral or differential form. The
difference is not important here. In differentiable form

divv =0 (72)

1
d,v=—divi®uv— gradp+ vAv (73)
P

divv ® v is the sole nonlinear term using the local tensor product of the velocity
field. The density is here simply 1. v is the kinematic viscosity.

We discretize the time derivative in a simple way, which is here not relevant, and
getfork=0,---,p—1landj=0,1,2,---

div Vjtk = 0 (74)

. 1
Vjt+k+1 = Vjtk + At (— div (U &® U)H'k - 0 gradpj+k + VAUj+k) (75)

The operators in 3D-space are to be understood as differentiable operators or their
discretization.

Applying the A-eigenmode mapping operator " with respect to eigenvalue A to
this equation system

.o~
divy" =0
1 ~)L AL . A 1 ~A ~ .
At(kvj —Uj)=—d1V V; ® V) —pgradpj +vAY" Vji=0,1,2,---

(76)

After dividing by A/ this gives an approximate decomposition into time independent
complex components.

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 45

Remark, that the equation reflects the actual spacial discretizations of
grad, div, A as long as these are linear. E.g. the approximate eigenvector of the
velocity field is divergence free.

Remark further, that

G £ (@ @) Vim0l w

This is the nonlinear term and couples eigenmodes of different eigenvalues (but
not all).

To get all of this with a small approximation-error €** (57) we assume that the
relevant entities are small after multiplication by 2,(c) from the right

v
!
vV | A(c) =GA(c) =0 (78)
p
The operator G consists on the sequences of all iterations v = [vj]i’ Vv =

[vj ® vj]j andp = [pj]j. Remark that we are using (discrete) functions. Practically
it turns out, that the term v @ v involving many variables, is not necessary. We still
don’t know, why and under what circumstances.

In the case of a small approximation-error €** (57) we then have for Vj =

0,1,2,--
U/j.-f—\lk %/\UAJ-A

(Dt @ vV ~ A (0 @ v

(Vi1 ® V1) = A (v, ® V)

——) ~A
pi+1" ~ A pj

(719)
7 Remarks
Having a decomposition of the real iterated values g as
P
Nosk>g=Y vAf (80)
=1

with |A;] < 1 then with (,, v;) appear also the conjugated elements (/\1, vl). So

the decomposition can be written as sum of terms 2 Re v; A,X. These terms could be
understood as vectors in a two dimensional subspace moving with the time step k.
They can be animated in this form.

46 U. Kiister et al.

Eigenvalues with modulus lower than 1 belong to eigenmodes, which disappear
during ongoing iterations. Even for eigenvalues with modulus near to 1, e.g. |A;| =
0.999 the term v; A,* is reduced by a factor of 0.37 for k = 1000.

Changing the degree p of the polynom coefficient vector ¢ has influence on
some eigenvalues but not on all. The latter might be candidates for determining
the continuous part of the spectrum. On the one hand the degree p of ¢ should be
small to limit the number of modes; on the other hand a small degree enlarges the
approximation error p. There must be a balance between the degree p of ¢, this
is the number of eigenvalues, and m as number to take the mean of submatrices.
The sum m + p is the number of given measurements. The continuous part of the
spectrum is not addressed by this approach. It might be that it numerically shows up
by the eigenvalues with eigenvectors with a small norm which are locally uniformly
distributed. Our example gives an impression.

For the largest possible p = n, we have 2(c) = c¢ and (c, p) can be an
eigenpair for smallest eigenvalue of H. This is the setting for the Dynamic Mode
Decomposition (DMD) of [12].

8 Computational Costs and Performance Aspects

An essential part of the computational effort is the calculation of the product G'G
in (8) resp. G’ G in (65).

The number of columns of the matrix G is the number of used time steps. The
number of rows of G is typically very large. In case of a discretized PDE this number
is #(variables per node)*#(discretization nodes) *# (repetitions of the sequence).
The effort for reading might be large. Assume a discretization grid with 10° nodes
with 4 variables per node with 8 B and n = 1000 time steps. The stored data are
10° % 4 % 1000 * 8 B =29.1 TB. A system with a effective read bandwidth of 100
GB/sec would need 298 s to read the data.

The number of operations for the calculation of GT G is 2 x4 x 10° x 1000* Flop=
8 * 10" Flop= 8 * 10° TFlop. On a system running with an effective performance
of 10 TFlops we need 800s computing time which is comparable with the read
time. The computing time increases with second order of the number of time steps
whereas the reading the input data with the first order. That means, that the process
is computationally limited. The second compute intensive part is the multiplication
of the matrix G with the matrix consisting on the pseudoeigenvectors (wy);—; ... ,-
The needed effort is comparable to the effort for the calculation of G’ G.

Opposite to the size of G the matrix G’ G typically has a relatively small size
given by the number of intermediate time steps.

A generalized eigenproblem of size n — p has to be solved iteratively for
determining ¢ with degree p. This takes relevant time, if p is relatively small and
many iterations have to be made.

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 47
9 Application Example

As example we show the simulation of the flow in an artery near the heart aortic-
valve with OpenFOAM. The geometry was taken from MRI-data of Fraunhofer
Mevis [9] (https://www.mevis.fraunhofer.de/) as well as the estimations of inflow
and outflow conditions. The simulation has been done by [11]. Figures 2 and 3 show
the square root of the norm of the eigenmodes over the phase of their eigenvalues
for time step O and time step 2457. The second figure shows disappearing modes
with modulus smaller 1 . The distribution also shows prominent eigenvalues which
are nearly multiples of a smallest. This property is expected, because A being a
Koopman eigenvalue, also A for m € N is an Koopman eigenvalue.

Figures 4, 5, 6, and 7 show the the vector field 2Rev; A ,k of the eigenmode
I with the second largest norm in the upper part of the aorta for the time steps

45 T T T T T T T T T T T T T T T T T T

time step 0/2729

.0000<|A|<=.9991]
.9991<|A|<=.9992

g 9992<|A[<=.9994 1
9994<|A|<=.9995
.9995<|A|<=.9996 C—)
9996<|A|<=.9997 C——1
35 .9997<|A|<=.9999 .
.9999<|A|<=1.0000 T
1.0000<|A|<=1.0001
1.0001<JA[<=1.0002 C—
3t J

25 —

[IVI] * [AF¢

1.5 =

05 -

il |

-0 9 8 -7 6 5 4 -3 2 1 0 1
phase of A (*)

il

L
I |||V il il ol

4 5 6 7 8 9 10

Fig. 2 |lv,A¥|| over phase for time step k = 0 in [—10° : 4+10°]

https://www.mevis.fraunhofer.de/

48 U. Kiister et al.

4.5 T T T T | B — PR R, R
time step 2457/2729
.0000<[A|<=.9991 1
9991<|A|<=.9992 ©

4+ 19992<|A|<=.9994 -

9994<|A|<=.9095]

.9995<|A|<=.9996

19996<|A[<=.9997

35 - 9997<|A|<=.9999 |
.9999<|A|<=1.0000

1.0000<|A[<=1.0001 ——

1.0001<[A|<=1.0002 —
3k _

[IvI1 * N

10 9 -8 -7 6 -5 4 -3 2 1 0 1 2 3 4 5 6 7 8 9 10
phase of A (°)

Fig. 3 |lv;Af|| over phase for time step k = 2457 in [—10° : +10°]

Fig. 4 Time step 661

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 49

L

Fig. 5 Time step 841

i

Fig. 6 Time step 1021

i

Fig. 7 Time step 1201

50 U. Kiister et al.

k = 661,841,1021,1201. It can be seen, that the direction of the vector field is
reversed going from time step 841 (5) to time step 1201 (7) and that the vector field
disappears in some regions at time step 1021 (6).

The simulated nearly periodic flow is nearly stagnating at a certain time.
Interesting is, that the eigenvalues A; of the dominant eigenmodes all nearly satisfy
A} =1 where AT = g At is the time difference of two flow stagnation events. This
is expected because if

14 P
vaf=> v (81)
=1 =1

it is clear that))_, v (A ST l") = 0 and for linearly independent v; that also

AT — A} = 0 implying for A; # 0 that AY = 1 for all . This remains true even
for linearly dependent v if the identity is given for several steps k. We see here the
peculiarity of periodic sequences k — gj.

10 Conclusions

It is possible to determine numerically approximative Koopman eigenvectors for
nonlinear operators by linear combinations of iterated values on a trajectory. This is
in line with the Wiener-Wintners theorem. These approximative eigenvectors have a
direct relation to the partial differential equation defining the operator. The physical
meaning is not clear.

We have shown the relationship of variants of the Dynamic Mode Decomposition
to Fourier analysis using the theorem of Herglotz-Bochner for the eigenvalues with
modulus 1. Whereas this theory handles on spectral parts on the unit circle for an
infinite sequence, the proposed methods deliver also eigenvalues with modulus less
than 1. We found empirically, that with an eigenvalue A with a large eigenvector also
A2, A3, .- are appearing. It remains open, how continuous parts of the spectrum can
be handled, if they are not yet visible by the proposed procedures.

The approach allows for handling ensembles by integrating all members in
the matrix G. The algorithms deliver common eigenvalues and by the described
procedures eigenvectors, which are related to each other.

References

1. Bellow, A., Losert, V.: The weighted pointwise ergodic theorem and the individual ergodic
theorem along subsequences. Trans. Am. Math. Soc. 288(1), 307-345 (1985). https://doi.org/
10.1090/S0002-9947-1985-0773063-8

https://doi.org/10.1090/S0002-9947-1985-0773063-8
https://doi.org/10.1090/S0002-9947-1985-0773063-8

The Numerical Approximation of Koopman Modes of a Nonlinear Operator. . . 51

10.

11.

12.

13.

. Besicovitch, A.S.: On generalized almost periodic functions. Proc. Lond. Math. Soc. s2-25,

495-512 (1926). doi:10.1112/plms/s2-25.1.495

. Budisié, M., Mohr, R., Mezi¢, 1.: Applied Koopmanism. Chaos 22, 047510 (2012).

doi:10.1063/1.4772195. http://dx.doi.org/10.1063/1.4772195

. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary

condition, Koopman, and Fourier analyse. J. Nonlinear Sci. 22(6), 887-915 (2012)

. Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory.

Graduate Texts in Mathematics. Springer, Cham (2015)

. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad.

Sci. U. S. A. 17(5), 315-318 (1931)

. Kiister, U.: The spectral structure of a nonlinear operator and its approximation. In: Sustained

Simulation Performance 2015: Proceedings of the Joint Workshop on Sustained Simulation
Performance, University of Stuttgart (HLRS) and Tohoku University, pp. 109-123. Springer,
Cham (2015) ISBN:978-3-319-20340-9. doi:10.1007/978-3-319-20340-9_9

. Kiister, U.: The spectral structure of a nonlinear operator and its approximation II. In: Sustained

Simulation Performance 2016: Proceedings of the Joint Workshop on Sustained Simulation
Performance, University of Stuttgart (HLRS) and Tohoku University (2016). ISBN:978-3-319-
46735-1

. Mirzaee, H., Henn, T., Krause, M. J., Goubergrits, L., Schumann, C., Neugebauer, M., Kuehne,

T., Preusser, T., Hennemuth, A.: MRI-based computational hemodynamics in patients with
aortic coarctation using the lattice Boltzmann methods: clinical validation study. J. Magn.
Reson. Imaging 45(1), 139-146 (2016). doi:10.1002/jmri.25366

Rellich, F.: Storungstheorie der Spektralzerlegung I., Analytische Storung der isolierten
Punkteigenwerte eines beschriankten Operators. Math. Ann. 113, 600-619 (1937)

Ruopp, A., Schneider, R., MRI-based computational hemodynamics in patients. In: Resch,
M.M., Bez, W., Focht, E. (eds.) Sustained Simulation Performance 2017 (abbrev. WSSP 2017).
Springer, Cham (2017). doi:10.1007/978-3-319-66896-3

Schmid, PJ.: Dynamic mode decomposition of numerical and experimental data. J. Fluid
Mech. 656, 24 (2010)

Schroder, E.: Ueber iterirte Functionen. Math. Ann. 3(2), 296-322 (1870).
doi:10.1007/BF01443992

http://dx.doi.org/10.1063/1.4772195

Part I11
Optimisation and Vectorisation

Code Modernization Tools for Assisting Users
in Migrating to Future Generations
of Supercomputers

Ritu Arora and Lars Koesterke

Abstract Usually, scientific applications outlive the lifespan of the High Perfor-
mance Computing (HPC) systems for which they are initially developed. The
innovations in the HPC systems’ hardware and parallel programming standards
drive the modernization of HPC applications so that they continue being performant.
While such code modernization efforts may not be challenging for HPC experts
and well-funded research groups, many domain-experts and students may find it
challenging to adapt their applications for the latest HPC systems due to lack of
expertise, time, and funds. The challenges of such domain-experts and students
can be mitigated by providing them high-level tools for code modernization and
migration. A brief overview of two such high-level tools is presented in this chapter.
These tools support the code modernization and migration efforts by assisting
users in parallelizing their applications and porting them to HPC systems with
high-bandwidth memory. The tools are named as: Interactive Parallelization Tool
(IPT) and Interactive Code Adaptation Tool (ICAT). Such high-level tools not only
improve the productivity of their users and the performance of the applications but
they also improve the utilization of HPC resources.

1 Introduction

High Performance Computing (HPC) systems are constantly evolving to support
computational workloads at low cost and power consumption. While the computing
density per processor has increased in the last several years, the clock speed of
the processors has stopped increasing to prevent unmanageable increase in the
temperature of the processor, and to limit the gap between the speed of the processor
and the memory. This trend has resulted in HPC systems that are equipped with
manycore processors and deep memory hierarchies. To achieve high-performance
on such HPC systems, appropriate level of parallelization, vectorization, and
memory optimization are critical.

R. Arora () » L. Koesterke
Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX, USA
e-mail: rauta@tacc.utexas.edu; lars @tacc.utexas.edu

© Springer International Publishing AG 2017 55
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_4

mailto:rauta@tacc.utexas.edu
mailto:lars@tacc.utexas.edu

56 R. Arora and L. Koesterke

As a sample of evolution in the HPC landscape, consider the three flagship
HPC systems provisioned by the Texas Advanced Computing Center (TACC)
in the last 10 years: Ranger, Stampede, and Stampede2. Ranger debuted in the
year 2008. It was equipped with AMD Opteron quad core processors, delivered
approximately 579 TFLOPs of peak performance, and was in production for
about 5 years. Stampede debuted in the year 2013 and is still in production. It
can deliver approximately 10 PFLOPs of theoretical peak performance, and is
equipped with Intel Sandy Bridge processors, Intel Knight’s Corner coprocessors,
and Nvidia K20 GPUs. The Stampede?2 system, that is currently under development,
will be equipped with the Intel Haswell processors, future generation Intel Xeon
processors, and Intel Knight’s Landing (KNL) processors. The estimated theoretical
peak performance of Stampede?2 is about 18 PFLOPs. Figure 1 depicts the rate of
evolution in the HPC landscape considering the aforementioned systems deployed
by TACC as examples.

For migrating applications from a system like Ranger to Stampede, and from
Stampede to Stampede2, some level of software reengineering may be required
to enhance the performance of the applications. The required reengineering may
be in the form of increasing the level of parallelization in the applications by
incorporating both OpenMP and MPI programming paradigms, or improving code
vectorization to effectively take advantage of the Intel Sandy Bridge and Knight’s
Corner coprocessors, or optimizing the memory access pattern of the applications
to benefit from the High-Bandwidth Memory (HBM) on the KNL processors.

As evident from the example of TACC resources, even though the current
and future generation HPC systems may be equipped with high-end hardware
components, they may not offer the same range of diversity in processing elements
as compared to the previous generation systems. For example, unlike the Stampede
system, the Stampede2 system does not include GPUs and Intel Knight’s Corner

Evolving HPC Landscape - HPC Systems at TACC

20 Stampede2
18 68 cores on main processor (Intel KNL)
18
16
14
Stampede
@ 12 8 cores in main processor
Intel Sandy Bridge,
S 10 (y Bridge)
'5.': 8 10 « Performance
6
Ranger
4 4 cores in main processor
2 (AMD Opteron)
0.56
0 —
2008 2013 2017
Years

Fig. 1 Evolution in the HPC landscape

Code Modernization Tools for Assisting Users in Migrating to Future. . . 57

(KNC) coprocessors. Thus, the applications written using CUDA to take advantage
of the GPUs, or offload programming model for KNC coprocessors will not be able
to run on Stampede?2. This implies that the HPC applications may need to be updated
or reengineered at the same frequency as the systems on which they are supposed to
run (typically, 4 years on an average).

Together with the evolution in the HPC hardware over the last several years, the
parallel programming standards have also been continuously evolving by including
new features for improved performance on modern HPC systems. For example,
the nonblocking collective calls were added to the MPI 3.0 standard [1], and the
taskloop construct was added to the OpenMP 4.5 standard [2]. Incorporation
of such new features in the existing HPC applications requires time and effort in
climbing the learning curve, and in reengineering the applications.

Given the discussion presented thus far, the questions that arise are:

* Are domain experts ready to invest time and effort in continuously modernizing
their applications?

* Do we have enough trained workforce to support HPC code modernization and
migration efforts?

During the process of pursuing the answers to the aforementioned questions,
we found that the domain experts prefer to spend time in doing science rather
than keeping up with the evolution in the HPC hardware and parallel programming
standards. We also found that there is a shortfall of trained workforce in the area
of parallel programming. Therefore, we need high-level tools for assisting users
in their HPC code modernization and migration efforts. To address this need,
we are developing high-level tools for supporting (1) the parallelization of serial
applications using MPI, OpenMP, CUDA, and hybrid programming models, and
(2) the migration of applications to the KNL processors. These tools are named as
Interactive Parallelization Tool (IPT) and Interactive Code Adaptation Tool (ICAT).
Before we present an overview of these tools, we explain the typical process
of manual code modernization and migration, and share our perspective on the
automation or semi-automation of the process. We also present a short overview of
the KNL architecture and discuss some key considerations for porting applications
to this architecture.

2 General Process for Manual Code Modernization
and Migration

The traditional process of manually upgrading the code for taking advantage of the
latest HPC systems is as follows:

1. Learn about a new hardware feature
2. Gauge the applicability of the hardware and the potential reward from the
analysis of current bottlenecks (code profiling) and theoretical considerations

58 R. Arora and L. Koesterke

Profile the existing serial code

Identify hotspots for parallelization
Use IPT to parallelize the code
(Code Modernization)

Use ICAT to learn about further opportunities for code
improvement (Code Modernization)

Use ICAT to find the best mode in which an application
can run on KNL processors (Code Migration)

Fi

[

g. 2 Using IPT and ICAT for code modernization

Develop a general concept of the necessary code modifications
Learn the syntax of the new programming model or the interface
Write a toy code
Insert pieces of the toy code into the target code for exploration and testing
Estimate performance gain (based on tests not on theoretical considerations)
and judge the quality of the implementation
8. Modify, test, and release production code
9. Experiment with the various runtime options and environment variables
10. Learn good coding practices

N kW

Outlined above is a typical process and not all users go through all the steps in this
process. The high-level tools that we are developing—IPT and ICAT—will assist
the users in the aforementioned process, and in doing so, will significantly speed up
many of its steps. IPT can assist the users in steps 1, 3—6, 8 and 10 mentioned above.
ICAT can assist the users in steps 1 to 6, and 9-10. Figure 2 summarizes the steps
for using IPT and ICAT together during the process of modernizing and migrating
applications written in C, C++ and Fortran base languages.

3 Using IPT for Code Modernization (Parallelization)

IPT semi-automates the parallelization of existing C/C++ applications, and by doing
so, helps in running the applications optimally on the latest HPC systems [1, 2]. It
can support the parallelization of applications using any of the following parallel
programming models: Message Passing Interface (MPI) [3], OpenMP [4], and
CUDA [5]. IPT uses the specifications for parallelization as provided by the users
(i.e., what to parallelize and where) and its knowledgebase of parallel programming

Code Modernization Tools for Assisting Users in Migrating to Future. . . 59

. .'/ N
) (h 6 | || c/C++/Fortran
‘ L e WDSLI Serial Program
4 \
(Input)
IPT Interfaces for Specifications | | — /
) v v]
VT Y - S
Parser Parallelization | Patterns (Design '
Rules Templates)
v v
Program Transformation Engine ‘

\ /ll
. 4 ;
f/ "\.I
‘ MPI ‘ OpenMP CUDA | | Hybrid ‘

A / r A\
Parallel Program (Output)

4

Fig. 3 Overview of IPT

expertise (encapsulated as design templates and rules), to generate parallel versions
of the serial programs.

A high-level overview of the process of serial to parallel code transformation
using IPT is shown in Fig. 3. As shown in Fig. 3, the user provides the serial code
as input to IPT. This serial code is parsed by IPT, and as a next step, IPT prompts
the user for additional input (or specifications). The user chooses the desired parallel
programming model (MPI/OpenMP/CUDA) for their output code, applicable design
patterns (e.g., stencil and pipeline), and hotspots for parallelization. The user also
provides additional information when prompted by IPT for variable dependency
analysis of the input serial application.

Using the infrastructure provided by a Program Transformation Engine (PTE)
named ROSE [6], and user input, IPT analyzes and transforms the serial code into
a parallel one. As required, it inserts, deletes and updates the program statements
in the serial code for generating the parallel code. The generated parallel code is
accessible to the user and is well annotated to give insights into the parallelization
process. The design templates in IPT contain rules for parallelization and patterns
for supporting data movement (e.g., data distribution, data collection, and data
exchange) in MPI programs. During parallelization, IPT weaves these design
templates into the serial code by the means of appropriate function calls.

We are currently working on (1) extending the capabilities of IPT for par-
allelizing additional categories of C/C++ applications (e.g., divide-and-conquer),
(2) prototyping support for parallelizing Fortran applications, (3) adding support

60 R. Arora and L. Koesterke

for parallelization using the hybrid programming model, and (4) making IPT
accessible through a web-portal for convenient code generation and testing on
computational resources of the national CyberInfrastructure (CI). In future, we will
support a Graphical User Interface (GUI) and a Wizard-driven Domain-Specific
Language Interface (WDSLI) to supplement the currently available Command-
Line Interface (CLI) of IPT. The CLI and GUI are intended for parallelizing
small applications interactively. However, working in these modes to provide
parallelization requirements for large applications (over a couple of thousands of
lines of code) can become tedious, and hence, WDSLI will be provided for capturing
the parallelization requirements.

IPT can be used for self-paced learning of parallel programming, and in
understanding the differences in the structure and performance of the parallel code
generated for different specifications while using the same serial application.

4 Overview of KNL Processors

Before we discuss ICAT, we present a short overview of the Intel KNL processors.
Intel KNL processors are equipped with 72 cores and have an extended memory
architecture. The cores on these processors are organized in 36 pairs and each
pair is known as a tile. These processors have a 16 GB High-Bandwidth Memory
(HBM) called Multi-Channel DRAM (MCDRAM), alongside the traditional DDR4
memory that is approximately 400 GB [7].

4.1 Multiple Memory Modes

The MCDRAM can be configured for use in three different memory modes:

1. Cache mode: As a third-level cache that is under the control of the run-time
system,

2. Flat mode: As an addressable memory like DDR4 that is under user control, or

3. Hybrid mode: Part of MCDRAM is configured in cache mode and part of it is
configured in flat mode.

The cache mode is more convenient to use because it does not require any code
modification or user interaction and ensures high performance for applications that
have a small memory footprint. The applications having large memory footprints
are likely to see a drop in their performance if they are run in cache mode due to
frequent cache misses. It may be advantageous for such applications to manage the
cache from within the code and to store only specific arrays in the MCDRAM—that
is, using flat mode is recommended for such applications.

For selectively allocating arrays on MCDRAM, the existing code for dynamic
memory allocation is modified to use special library calls or directives that are

Code Modernization Tools for Assisting Users in Migrating to Future. . . 61

available through the HBWMALLOC interface [8]. In the case of C/C++ appli-
cations, the function calls for dynamic memory allocation—calloc, malloc,
realloc, and free functions—are replaced with the analogous functions in the
HBWMALLOC interface—hbw_calloc, hbw malloc, hbw_realloc, and
hbw_free functions. A header file for HBWMALLOC interface is also included.
For allocating memory from MCDRAM in Fortran applications, a directive with the
FASTMEM attribute is added after the declaration of the allocatable data structure
of interest.

Understanding the concept of two memories (MCDRAM and DDR4), and
doing the required code modifications for using MCDRAM effectively may not
be difficult by itself. However, it takes time to understand the syntax of the code
required for memory allocation on MCDRAM, to learn about the additional tools
for understanding the application characteristics (cache miss or hit rate, sizes of
memory objects etc.), and more importantly to derive the logic of the decision tree
for allocating memory on MCDRAM or DDRA4. In order to develop a portable code,
it is also important to implement appropriate logic for handling situations that can
give rise to runtime errors. For example, the code should handle situations where the
user attempts to dynamically allocate more than 16 GB of memory on MCDRAM
or tries to run the code on processors that do not support MCDRAM.

4.2 Multiple Cluster Modes

The tiles on a KNL processor are connected to each other with a mesh interconnect.
Each core in a tile has its own L1 cache and a 1 MB L2 cache shared with the other
core. The L2 cache on all the tiles are kept coherent with the help of a Distributed
Tag Directory (DTD), organized as a set of per-tile Tag Directories (TDs). The TDs
help in identifying the location and the state of cache lines on-die. When a memory
request originates from a core, an appropriate TD handles it, and if needed passes
the request to the right memory controller. All on-die communication for handling
such memory requests happens over the mesh interconnect. To achieve low latency
and high bandwidth of communication with caches, it is important that the on-die
communication is kept as local as possible. For handling this on-die communication
optimally, KNL processors can be configured in different cluster modes:

1. All-to-All: The memory addresses are uniformly distributed across all TDs,
and this mode is used mainly for troubleshooting purposes or when other
modes cannot be used because it can result in high latency for various on-die
communication scenarios.

2. Quadrant or Hemisphere: The tiles on a processor are virtually divided into four
parts called quadrants, and each quadrant is in proximity to a memory controller.
The memory addresses controlled by the memory controller in a quadrant are
mapped locally to the TD in that quadrant. This arrangement reduces the latency
of a cache miss as compared to the all-to-all mode because the memory controller

62 R. Arora and L. Koesterke

and TD’s are in the same locality. However, the TD servicing the memory
request may not be local to the tile whose core initiated the memory request.
The hemisphere mode is similar to the quadrant mode with the difference that
the tiles on the chip are divided into two parts instead of four.

3. Sub-NUMA (SNC-4/SNC-2): Similar to the quadrant mode, the tiles are divided
into four (SNC-4) or two (SNC-2) parts in this mode too. However, unlike in the
quadrant mode, in the sub-NUMA mode, each part acts as a separate NUMA
node. This means that, the core requesting memory access, the TD, and the
memory channel for servicing the memory access request, are all in the same
part.

While the quadrant mode could work well for majority of the applications, the
sub-NUMA mode can result in better performance for multi-threaded NUMA-
aware applications by pinning the threads and memory to the specific quadrants
or hemispheres on each NUMA node. However, the users may have to do their
own testing to find out the best cluster mode and the runtime options for their
applications.

5 Using ICAT for Code Modernization and Migration
(Porting Code to KNL Processors)

ICAT can assist users in porting their applications to KNL processors by helping
them select the best memory mode and cluster mode and suggesting runtime
options. It can reengineer their application code also to optimally take advantage
of the MCDRAM while keeping it portable enough to run on other systems that do
not support MCDRAM.

By using ICAT, a user can very quickly understand source code modifications,
potential performance gains, and learn good coding practices for porting their
applications to the KNL nodes. They can then move on to modifying their real
application code using ICAT itself, or may cut-and-paste boilerplate code generated
by ICAT. Thus, ICAT offers three key benefits to the users: (a) enables users to
make a decision quickly regarding the best memory mode and cluster mode for
their applications, (b) teaches good coding practices, and (c) assists in changing
production code.

Figure 4 shows an overview of the functioning of ICAT, which is invoked from
the command-line. ICAT prompts the user for input, such as, the name of an
application’s executable, path to the executable, and path to the application’s source
code. The user selects an appropriate advisor mode in which ICAT can run. The
available advisor modes are: memory mode advisor, code adaptation advisor, cluster
mode advisor, advanced vectorization advisor, and memory optimization advisor.
ICAT performs memory usage and performance analyses by running the executable
provided by the user with perf [9], and then if needed, with Vtune [10]. Metrics
are also collected from the processes associated with the executable while it is

Code Modernization Tools for Assisting Users in Migrating to Future. . .

ICAT Launch Script

User Input:

Name and path of the executable, command-
line arguments, selection of program type
(MP1/OpenMP/serial), selection of advisor

mode

'

Memory Usage and Performance Analyses
(Using application process status, Perf tool)

No Is memory Yes
usage < 16
GB?
Memory Object ' Evaluation of

Analysis with =3 Heap Memory

) / Application
Viune Object Information

Characteristics

Recommendation Reports on Memory
Mode and Cluster Mode Usage

4

If source code transformation is required, —
user selects appropriate option (Yes/No)

I

\ Modified Source Code

Fig. 4 Overview of functioning of ICAT

64 R. Arora and L. Koesterke

running. On the basis of the collected metrics and its analyses, ICAT generates
recommendation reports for the user, and if needed, reengineers the application
code.

ICAT can also be used for teaching and training activities related to the KNL
processors. Following is how we envision using ICAT during a training session:

1. Explain the premise: HBM alongside the traditional memory; some raw perfor-
mance comparisons (HBM v. DDR4); applicability for the 80-90% of cases that
are neither I/O bound nor compute bound.

2. Start with a toy code from the sample code repository. Alternatively a small user
code may be used in the future.

3. Run the toy code with the tool. The user will be guided through the modifications
and will decide which arrays should be allocated on the HBM. These are the same
decisions that the user will later make during the modification of the real-world
applications.

4. Measure performance gain. Get a feel for the benefits of HBM, its limitations,
and potential drawbacks.

5. Inspect the modified code and the syntax. Also understand how internally, i.e., in
the code at runtime, decisions are being made and how a fallback is implemented
for arrays that are too big for the HBM.

As part of the ongoing work, we are extending ICAT to support advanced
vectorization and memory optimization. With these two features supported, ICAT
will be able to help the users with tasks such as: reorganizing the data layout by
changing array-of-structures to structures-of-arrays, converting scalars to vectors,
and improving memory alignment of data structures.

6 Using IPT and ICAT with a Sample Application

To demonstrate the functionality of IPT and ICAT, let us consider a Molecular
Dynamics (MD) simulation code. The code helps in following the path of particles
that exert force on each other and are not constrained by any walls [11]. This
MD code uses the velocity Verlet time integration scheme and the particles in the
simulation interact with a central pair potential [11]. The compute-intensive steps in
this test case are related to calculating force and energies in each time-step, as well
as updating the values of the positions, velocities, and accelerations of the particles
in the simulation.

A code snippet of the serial version of the MD simulation application is shown in
Fig. 5 and the complete code can be accessed at [12]. In order to parallelize this code,
the computations in the for-loop beginning at line # 3 of Fig. 5 should be distributed
across multiple threads or processes. The values of the kinetic energy (ke) and
potential energy (pe) are augmented in every iteration of this for-loop. Therefore,
with the distribution of the iterations of the for-loop, only the partial values of ke
and pe will be computed by each thread or process. Hence, all the partial values of

Code Modernization Tools for Assisting Users in Migrating to Future. . . 65

sdouble f(],double *“pot,double *Xxin){

; k < np; k++)|
mpute the potential energy and forces.

code

= 0; § < np; j++) {
k != 4§

8. d = di (nd, pos+k*nd, pos+j*nc

dist d, rij);
9. //other code
10 : £
12 0 * di)/q;
13.
14.
16
i8.
19
20.
21
22

Fig. 5 Code snippet—MD simulation, serial version

ke and pe computed using the multiple independent threads and processes should
be combined meaningfully to obtain accurate results. For combining the partial
values of ke and pe, a reduction operation is needed.

6.1 Using IPT to Parallelize the MD Application

In this section, we will demonstrate the usage of IPT by generating an OpenMP
version of the serial MD simulation application. As shown in Fig. 6, IPT is invoked
from the command-line, and the path to the file containing the serial code is
provided. Next, a parallel programming model is selected, here OpenMP. This is
followed by selecting the function that contains the hotspot for parallelization from
the list of functions presented by IPT.

IPT analyzes the code in the function selected by the user (see Fig.6), and
presents a list of the for-loops that can be parallelized (because, in this example, the
user chose to parallelize for-loops). As shown in Fig. 7, users can accept or decline
to parallelize the for-loops presented by IPT for parallelization.

For constructing the clauses of the OpenMP directives, IPT can detect the vari-
ables that should be part of the shared, private, and firstprivate clauses.
However, IPT relies on the user-guidance for constructing the reduction clause of
the relevant OpenMP directives (#pragma omp parallel,or #pragma omp
parallel for,or#pragma omp for).Reduction variables are the variables

66 R. Arora and L. Koesterke

$./IPT md.c

Please select a parallel programming model from the following available
options:

MPI

OpenMP

CUDA

N W h e

Would you like to parallelize a for-locp?(¥Y/N)

Yy

Please choose the function that you want to parallelize from the list

[+]
8 %

: initialize

: rBmat_uniform_ab
: timestamp

: update

Nw-.lr:\m.hwl\:-l—-g'

Fig. 6 Invoking IPT for parallelizing MD simulation application

that should be updated by the OpenMP threads by creating a private copy for each
reduction variable and initializing them for each thread. The values of the variables
from each thread are combined according to a mathematical operation like sum,
multiplication, etc. and the final result is written to a global shared variable. IPT
generates a list of potential variables that can be part of a reduction clause, and
prompts the user to select the relevant variables and appropriate reduction operation.

In some cases, IPT is unable to analyze the pattern related to updating the array
elements at the hotspot for parallelization. This typically happens when multiple
levels of indirection are involved during the process of updating the values of the
array elements. In such situations, as shown in Fig. 8, IPT relies on the user to
provide additional information on the nature of the update operation on their array
elements.

IPT also prompts the user to confirm if the I/O in their application should be
happening from a single thread (or process) or using all the threads (or processes
involved in the computation). If there is any region of code that should not be
executed in parallel, then, the user can inform IPT about this as well.

A snippet of the parallelized version of the MD simulation application is shown
in Fig.9. In addition to updating the code at the hotspot for parallelization by
inserting OpenMP directives (lines 3-5 of Fig.9), IPT inserts appropriate library
header files as well.

Code Modernization Tools for Assisting Users in Migrating to Future. . . 67

for (k= 0; k < np; k#t) {
i pute the potential energy and forces.
//other code
for (] = 0;] < np; j++){
if (k I= 3)¢

// Compute the kinetic energy
for (1 = 0; 1 < nd; i++) |
ke = ke + vel[i+k*nd) * vel(i+k*nd);

Is this the for loop you are looking for?(y/n)

Reduction variables are the variables that should be updated by the
OpenMP threads by _ Below is the list of potential reduction variables
in the region of code selected for parallelization:

nd type is int
k type is int

PO et

1. pe type is double
8. ke type is double

How many variables in the listed above should be selected as reduction
variables? If there are no reduction variables, please enter 0.
2

Please enter a number corresponding to the reduction wvariable in the
list above.
7

Please select the type of reduction coperation for the selected
variable:
. Addition

[

- MAD
Max

s L MO

L

Fig. 7 User guiding IPT in selecting the reduction variables

6.2 Using ICAT to Adapt the MD Application for KNL
Processors

As described in Sect. 3, before running an application on KNL processors, it is
important to understand the application’s characteristics so that the best memory
mode and the cluster mode configuration of the KNL processors can be selected for
it. Depending upon the memory needs of the application, some reengineering may
also be required for selectively allocating memory for specific arrays on MCDRAM.

68 R. Arora and L. Koesterke

IPT is unable to perform the dependency analysis of the array named
rij) in the region of code that you wish to parallelize. Please enter
1 if the entire array is being updated in a single iteration of the
loop that you selected for parallelization, or, enter 2 otherwise.

1

Are there any lines of code that you would like to run either using a
single thread at a time (hence, one thread after another), or using
only one thread? (Y/N)

n

would you like to parallelize another loop? (¥/N)
n

Are you writing/printing anything from the parallelized region of the
code? (Y/N)

-]

Running Consistency Tests

Fig. 8 User guiding IPT in analyzing the nature of the updates made to the array values

i. void compute (—,double r(),double *pot,double °*kin){

2. //other code

3. #pragma omp parallel default(none) shared(pe, ke, np,f,pos,vel nd, PI2)
private(k,i,3,d,d2) firastprivate(rij)

4. |

5. #pragma omp for reduction (+ :pe,ke)

6. for (k = 0; k < np; Kkt+t)

7. // Compute the potential energy and forces.

8. //other code

9 for (] =0; J < np; j++) {

10. if (k != 9){
11. //other code
14% 1}

13. // Compute the kinetic energ

14. for (1 =0; 1 < nd; 1++) {

15. ke = ke + vel[i+k*nd] * vel[ivk*nd);
16. 1)

17. ke = ke * 0.5 * mass;

18. *pot = pe;

19. *kin = ke;
20. return
21 }

Fig. 9 Snippet of OpenMP code generated by IPT—MD Simulation application

We demonstrate the usage of ICAT as a decision-support system by using it for
porting the OpenMP version of the MD simulation application to KNL processors.
Before invoking ICAT, we compiled the OpenMP version of the MD simulation
application with the -g flag. After invoking ICAT from the command-line, as shown
in Fig. 10, we provide the path to the application executable and the arguments
required to run it. We also select the advisor mode in which ICAT should run.
Using this information, ICAT first profiles the application by running it in real-time

Code Modernization Tools for Assisting Users in Migrating to Future. . . 69

c455-022.stampede2(6)$ bash -i ./src/icat.sh

—===—--- Welcome to ICAT :: Interactive Code Adaptation Teol --——————-

hello
/scratch/@1698/ rauta/testICAT
/scratch/@1698/ rauta/testICAT/src/

bye

Purpose : Acknowledge usage of compiler option '-h'

Question : Please acknowledge that you have compiled the code with the '-g' option
Answer with y/n (y is the default) :: y
You have answered with st y

Step 2

Purpose + Provide the name of the executable, the path, and optionally the program arguments

Question : Name of the executable? rose_md_omp
Path to the executable? You may use . (dot) /scratch/@1698/ rauta/testICAT/example/
Command line arguments, separated by commas? 2,2000,2000,0.01

Step 3

Purpose : Select advice topic

Question : Please select from one of these options

Option : Advice Description

1 : Memory mode Exploit memory hierarchies

2 : Cluster mode Exploit clustering of cores

3 : Vectorization mode Enable vector instructions

4 : Code adaptation Assign individual arrays to different memory types

5 : Memory optimization Is this the AeS to SoA transformation?

6 : AlL Get all available advice at once

] : Quit ICAT

Answer with a number between ® and 6 (@ is the default) 12 6
You have selected option +

Option 6: ALl advice available

Fig. 10 Invoking ICAT from the command-line

and gathers the application’s characteristics. It then generates a recommendation
report regarding the appropriate memory mode for the application and instructions
for compiling the code.

Using the memory mode report that it generated and the input regarding the
programming model of the application, ICAT also generates a report with the
recommendation for the cluster mode to use. Then, as shown in Fig. 11, ICAT
informs that the entire MD simulation application fits in the MCDRAM. Hence,
no code adaptation is required. However, if the user still wants to see how the code
would be adapted to selectively use the MCDRAM, they may choose to do so by
selecting the appropriate option while ICAT is running.

The reports generated by the memory mode advisor and the cluster mode
advisor are shown in Figs.12 and 13. For the OpenMP version of the MD
simulation application, ICAT recommends running the application on the KNL
node which has the MCDRAM configured in flat-mode if numactl is available.
If numactl is not available, it recommends running the application on the KNL
node which has the MCDRAM configured in cache-mode. For the cluster mode,
ICAT recommends using the SNC-4 configuration. In the case of Stampede?2 system,

70 R. Arora and L. Koesterke

Does your code use MPI programming model? (Enter 1 or 2.)
1. Yes

2. No

2

You chose 2

Profiling program...

Running perf command ...

Running the program again...

Report generated.

Determining the clustering mode...

What is the programming model used in your application?
1. OpenMP

2. MPI

3. OpenMP + MPI

4. None of the above/serial

1

Report generated.

Either the source code modification is not needed or the Memory advisor report for
rose md omp does not exist in the subdirectory named reports. However, if you would
like to test how our source code modification script works, press 2, glsg press 3.
3

Please note:
If your code was modified by ICAT to take advantage of MCDRAM, then please compile it
with the -lmemkind flag.

You can run the code in the queue that is configured with MCDRAM in Flat mode or in
hybrid mode (e.g., Flat-Quadrant queue on Stampede).

Fig. 11 ICAT running in different advisor modes

§ cat rose_md_omp_memory_advisor_report.tXt
----- rose_md omp Characteristics =--=---

Memory usage: 0.0216904Cache Miss Rate: 0.726984
===== Recommendations ==-==-=-

Application fits into HBM.

Mode to use: If numactl is available, use the Flat-Mode with all allocations to HBM.

If numactl is not available, then use the Cache-Mode. However, note that the cache misses
in the Cache-Mode are more expensive than reading data from DDR4 in Flat-Mode.

Memory Allocation: HBM
To execute the application in Flat-Mode: Use command < numactl =--membind=l ./run-app> if
it is serial, or < ibrun --membind=l ./run-app > if it is parallel.

To execute the application in Cache-mode: Use the command that you normally use, that is,
< ./run-app > if it is serial or < ibrun ./run-app > if it is parallel.

In general, to determine the <NUMA_NODE> in the command < numactl --mexbind=NUMA NODE > ,
run the command < numactl -H > and look for the node without any core

Fig. 12 Memory mode advisor report

Code Modernization Tools for Assisting Users in Migrating to Future. . . 71

Fig. 13 Cluster mode advisor report

#include <hbwmalloc.h>
#include <omp.h>

include <atdlib.h>
//other code

int main(int argec,char *argv[]);

void compute (int np,int nd,double pos([],double wvel(],double mass,double £[],double
*pot,double *kin
//other code

int main(int azge,char *azgv(]){

//other code

int checkHEBMAvailability=hbw_check_available():

if (checkHBMAvailability == 0){ acc = ((double *) (hbw_malloc(((nd * np) * sizeof (double
1)))):) else{ acc = ((double *) (malloc(((nd * np) * sizeof(double))))}; }

//other code

if (checkHBMAvailability == 0){ hbw_free(acc); } else{ free(acec): |
//other code

}

Fig. 14 Code modifications done using ICAT

the aforementioned recommendations imply that the OpenMP version of the MD
simulation application should be run on the KNL node in the “Flat-SNC4” queue.

As can be noticed from Fig. 11, ICAT recommended against modifying the
OpenMP version of the MD simulation application to use the HBWMALLOC
interface. However, if a user still wishes to modify the application code to use
the HBWMALLOC interface, they may do so using ICAT. A snippet of the
modified version of the MD simulation application produced using ICAT is shown
in Fig. 14. The modifications made by ICAT include: inserting code for including
the hbwmalloc.h file, checking the availability of MCDRAM in the underlying
architecture, replacing the call/s to the malloc function with the hbw malloc
function, and replacing the call/s to the £ ree function with the hbw_free function
call/s.

72 R. Arora and L. Koesterke
7 Conclusion

HPC system hardware and the programming models are constantly evolving.
Sometimes the changes are big, but often the changes are incremental. Even if
most users are not aiming for peak performance, they need to spend some effort
in modernizing their applications to keep up with the major developments. Not
modernizing their code base to keep up with the technology is not viable because
with inefficient code, the researchers will neither be competitive (a) in the scientific
arena to handle larger problem sizes and calculations than what they are doing now,
nor (b) when HPC resources are allocated at open-science data centers [13]. Often,
users attempt to strike a balance between effort and reward and they cannot afford
to explore all possible avenues for code modernization at a given point in time.
Therefore, high-level tools — like IPT and ICAT — that are geared towards assisting
the users in code modernization and migration efforts on the latest HPC platforms
are needed.

Acknowledgements We are very grateful to the National Science Foundation for grant # 1642396,
ICERT REU program (National Science Foundation grant # 1359304), XSEDE (National Science
Foundation grant # ACI-1053575), and TACC for providing resources required for this project. We
are grateful to our students (Madhav Gupta, Trung Nguyen Ba, Alex Suryapranata, Julio Olaya,
Tiffany Connors, Ejenio Capetillo, and Shweta Gulati) for their contributions to the IPT, ITALC,
and ICAT codebase. We are also grateful to Dr. Purushotham Bangalore for providing guidance
and code templates for developing FraSPA, which was the precursor of IPT.

References

1. Arora, R., Olaya, J., Gupta, M.: A tool for interactive parallelization. In: Proceedings of
the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment
(XSEDE’14), Article 51, p. 8. ACM, New York (2014). http://dx.doi.org/10.1145/2616498.
2616558

2. Arora, R., Koesterke, L.: Interactive code adaptation tool for modernizing applications for
Intel Knights Landing processors. In: Proceedings of the 2017 Conference on the Practice
& Experience in Advanced Research Computing (PEARC17). ACM, New York (2017) http://
dx.doi.org/10.1145/3093338.3093352

3. MPI: A Message Passing Interface Standard. Message Passing Interface Forum (2015). http://
mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf. Cited 16 June 2017

4. OpenMP Application Programming Interface (2015). http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf. Cited 16 June 2017

5. CUDA Toolkit Documentation (2017). http://docs.nvidia.com/cuda/#axzz4lGuUKK2x. Cited
16 June 2017

6. ROSE User Manual (2017). http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.
pdf. Cited 16 June 2017

7. Sodani, A.: Knights landing (KNL): 2nd generation Intel® Xeon Phi processor. In: 2015 IEEE
Hot Chips 27 Symposium (HCS) (2015). doi:10.1109/HOTCHIPS.2015.7477467

8. Intel Corporation HBWMALLOC (2015). https://www.mankier.com/3/hbwmalloc. Cited 16
June 2017

http://dx.doi.org/10.1145/2616498.2616558
http://dx.doi.org/10.1145/2616498.2616558
http://dx.doi.org/10.1145/3093338.3093352
http://dx.doi.org/10.1145/3093338.3093352
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://docs.nvidia.com/cuda/#axzz4lGuUKK2x
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
http://rosecompiler.org/ROSE_UserManual/ROSE-UserManual.pdf
https://www.mankier.com/3/hbwmalloc

Code Modernization Tools for Assisting Users in Migrating to Future. . . 73

9. perf: Linux Profiling with Performance Counters. https://perf.wiki.kernel.org/index.php/Main_

Page. Cited 16 June 2017

10. Vtune Performance Profiler (2017). https://software.intel.com/en-us/intel-vtune-amplifier-xe.
Cited 16 June 2017

11. Rapaport, D.: An introduction to interactive molecular-dynamics simulation. Comput. Phys.
11(4), 337-347 (1997)

12. Molecular Dynamics Code. http://people.sc.fsu.edu/~jburkardt/c_src/md/md.c. Cited 16 June
2017

13. XSEDE Allocations Overview. https://www.xsede.org/allocations. Cited 16 June 2017

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://people.sc.fsu.edu/~jburkardt/c_src/md/md.c
https://www.xsede.org/allocations

Vectorization of High-Order DG in Ateles
for the NEC SX-ACE

Harald Klimach, Jiaxing Qi, Stephan Walter, and Sabine Roller

Abstract In this chapter, we investigate the possibilities of deploying a high-order,
modal, discontinuous Galerkin scheme on the SX-ACE. Our implementation Ateles
is written in modern Fortran and requires the new sxf03 compiler from NEC. It is
based on an unstructured mesh representation that necessitates indirect addressing,
but allows for a large flexibility in the representation of geometries. However, the
degrees of freedom within the elements are stored in a rigid, structured array. For
sufficiently high-order approximations these data structures within the elements can
be exploited for vectorization.

1 Introduction

Memory has become the limiting factor in most computing systems for most com-
putations. Both, processing speeds and memory access has exponentially increased
during the development of computing technology, albeit with different paces. This
developmentled to a gap between the memory and processing capabilities in modern
devices [1]. The important factor describing this relation for numerical applications
based on floating point numbers is the Byte to FLOP (floating point operation) ratio.
It can be used to judge the suitability of a system for a given algorithm. Because on
the one hand, the computing system is capable of providing a fixed Byte to FLOP
ratio, while on the other hand, the algorithm requires a certain amount of data to be
moved for each operation.

Besides the speed of the memory and the number of required transactions,
another important factor is the size of the memory. In comparison to the processing
speed the amount of available main memory in high-performance computing
systems did not increase much over the last decade. The largest amount of total
memory provided by a Top500 system is 1.5 PetaBytes on the Sequoia IBM

H. Klimach (<) ¢ J. Qi * S. Roller
University of Siegen, Adolf-Reichwein Str. 2, 57076 Siegen, Germany
e-mail: harald klimach@uni-siegen.de; jiaxing.qi @uni-siegen.de; sabine.roller@uni-siegen.de

S. Walter
Hochstleistungsrechenzentrum Stuttgart, Nobelstr. 19, 70569 Stuttgart, Germany
e-mail: walter@hlrs.de

© Springer International Publishing AG 2017 75
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_5

mailto:harald.klimach@uni-siegen.de
mailto:jiaxing.qi@uni-siegen.de
mailto:sabine.roller@uni-siegen.de
mailto:walter@hlrs.de

76 H. Klimach et al.

100 |- =402
o r -1 0.15 L
20 3
m
G —=0.1 C%
10° -
r —45-1072
i -0

2006 2008 2010 2012 2014 2016 2018

Fig. 1 Development of available memory in the top system of the Top500 list over time. In blue
the total available memory of the fastest system from the list at that point in time is shown. In red
the ratio between that memory and the computing power of the system is in terms of floating point
operations per second is indicated

BlueGene/Q installation at the Lawrence Livermore National Laboratory. This was
the fastest system in terms of floating point operations per second in 2012. In June
2017 it was ranked fifth in the Top500.

Figure 1 illustrates the development of the fastest system in the Top500 lists with
respect to the available memory over time. The blue trend with the dot markers
indicates the available overall memory in the fastest system on a logarithmic scale.
To put this in context to the available computing power of the system, the red line
indicates the ratio between available main memory and the number of floating point
operations per second. We can see that the overall amount of memory, which allows
us to solve larger or better resolved problems only grows slowly, and even as it
grows it does not keep pace with the computing speed of the systems. Thus, we
can observe that memory is a precious resource in modern computing systems, both
in terms of speed and of size. Furthermore, we even expect increasing importance
of the memory in the foreseeable future as with the current growth rates the gap
between processing and memory speeds will continue to grow.

Table 1 provides an overview to the memory properties of contemporary HPC
architectures in relation to their floating point operation speed. The first column
indicates the system, the second the memory bandwidth in Bytes per second divided
by the floating point operations per second. In the last column the available amount
of main memory, again divided by the number of floating point operations per
second. This is the measure for which the development over time for the fastest
system in the Top500 is given in Fig. 1. The issues we face with the big amounts of
data produced in large scale simulations only get worse when we actually want
to store results. Storage devices are even slower than main memory and when
considering time dependent data, we often need to store several snapshots of the
overall main memory used by the simulation.

Vectorization of High-Order DG 77

Table 1 Contemporary Per FLOPS memory-
HPC-systems with respect to

their memory size and speed System Bandwidth Size

compared to their floating NEC SX-ACE 1.000 0.250

point operations per second K Computer (SPARC64 VIIIfx) 0.500 0.032
Sequoia (IBM BlueGene Q) 0.208 0.078
Sunway TaihuLight (SW26010) 0.178 0.010
nVidia Tesla P100 0.138 0.003
Hazel Hen (Intel Xeon E5-2680 v3) 0.141 0.133

We see that the memory is slow and small when compared to the computing
power in terms of performed operations. Therefore, an important criterion for
numerical schemes to be deployed on such modern large-scale computing systems
is their ability to provide good approximations with as little amount of memory as
possible.

The discontinuous Galerkin (DG) scheme is a promising numerical method that
enables us to move into the desired direction of reduced memory consumption
for solutions of partial differential equations. It employs a discretization of the
simulation domain by a mesh, where the solution within each element of the mesh
is approximated by a local function. A typical choice for the functions to use in
this approximation are polynomial series. The usage of functions to represent the
solution allows for high-order representations, as the scheme works for arbitrary
numbers of terms in the deployed functions. High-order approximations have the
advantage that they can approximate smooth functions with few degrees of freedom,
due to the exponential convergence with increasing number of modes. Thus, the
scheme requires only a minimal amount of data to represent the solution in the
elements. Interaction between elements is realized by fluxes like in finite volume
schemes. The discontinuous Galerkin scheme, thereby, offers a combination of
aspects from the finite volume method and spectral discretizations. It provides to
some extend the efficiency of spectral methods and at the same time some of the
flexibility offered by finite volume methods.

From the numerical side the discontinuous Galerkin scheme appears to provide
suitable characteristics to address the growing imbalance between memory and
processing power of modern computing systems. On the side of computing archi-
tectures, the NEC SX-ACE is a vector system that offers some nice capabilities for
numerical schemes with a focus on good memory performance. It offers a high Byte
per FLOP ratio of 1 (256 GFLOP and 256 GB per second) with access to 16 GB of
main memory per core with this speed when using all 4 cores of the processor. If
this Byte to FLOP ratio is insufficient for an algorithm, it can be increased up to 4
Bytes per FLOP by employing fewer cores of the processor in the computation. As
can be seen in Table 1 this is at the high end of this ratio for contemporary HPC
architectures.

78 H. Klimach et al.

Because of these properties, we believe the discontinuous Galerkin method and
the NEC SX-ACE architecture are a good match for large-scale simulations. The
one provides an option to reduce the memory usage and the other attempts to
provide a high data rate to allow a wider set of applications to achieve a high
sustained performance. However, an obstacle we face in typical applications is the
need for a great deal of flexibility and dynamic behavior during the runtime of
the simulation. This often does not fit too well with the more rigid requirements
for efficient computations on vector systems. Here we want to lay out, how the
discontinuous Galerkin scheme with a sufficiently high order may be used to
combine the flexibility required by the application with the vectorized computation
on the NEC SX-ACE. This possibility is opened by the two levels of computation
present in the discontinuous Galerkin scheme, where we can find high flexibility on
the level of the mesh, but a highly structured and rigid layout within the elements.
We believe, that it is a feasible option to use vectorization within elements of
high-order discontinuous Galerkin schemes, while maintaining the large flexibility,
offered by the method on the mesh level. Such a strategy opens the possibility to
combine dynamic and adaptive simulations with the requirements of vectorized
computing, which is increasingly important also on other architectures than the NEC
SX-ACE.

In the following we briefly introduce the high-order discontinuous Galerkin
scheme implemented in our solver Afeles. Then we go on with the presentation
of the vectorization approach of the scheme on the NEC SX-ACE in Sect.3 and
conclude this chapter with some measurements and observations in Sect. 4.

2 High-Order Discontinuous Galerkin in Ateles

The discontinuous Galerkin method is especially well suited for conservation laws
of the form:

0
)+ VW =g M

To find a solution to (1), the overall domain to be investigated is split into finite
elements £2; and the solution is approximated by a function u;, within each of these
elements. The equation is then multiplied with test functions ¢ to create a system
that can be solved and after integration by parts we obtain:

gt /9,- Mh¢dV—/Qif(uh)V¢dV+/milf*qde: /:2,- gpdV)

From the integration by parts we get the surface integral where the new term f* is
introduced. This is a numerical flux that ties together adjacent elements as it requires
the state from both sides of the surface. In a numerical discretization the employed

Vectorization of High-Order DG 79

function spaces for the solution and the test functions need to be finite and Eq. (2)
then provides an algebraic system in space, where the products of the functions can
be written in matrices. Especially we get the mass matrix:

M= / vpdv 3)
and the stiffness matrix:

S= / YVepdV “4)

2.1 The Modal Basis

Ateles implements the discontinuous Galerkin scheme with Legendre polynomials
as a basis to represent the solution « in cubical elements. The Legendre polynomials
can be defined recursively by:

Lo(x) =1, Li(x) =x

— —)
Lk(x) = 2k ! X Lk—l (x) — k lLk_z(x)

k k

They are defined on the reference interval [—1,1] and have some favorable
properties. Most importantly they build an orthogonal basis with respect to the
inner product with a weight of 1 over this interval. Another nice property is that all
Legendre polynomials except for Ly(x) are integral mean-free. Our solution within
the elements of the discontinuous Galerkin scheme are obtained in the form of a
series of Legendre polynomials:

m

u(x) =Y celi(x) 6)

k=0

Here, the coefficients ¢, are the (Legendre) modes that describe the actual shape
of the solution. The maximal polynomial degree in this series is denoted by m.
Its choice determines the spatial convergence order of the scheme and the degrees
of freedom (modes) required to represent the solution in the element (m + 1). To
represent the solution in three-dimensional space, we build a tensor product of the
one-dimensional polynomials. By introducing the multi-index « = (i, , k), we can
denote the three-dimensional solution by:

(m,m,m)

ur,y,2) = Y i) (7)

«=(0,0,0)

80 H. Klimach et al.

With this definition for the solution in d dimensions, we get (m + 1)¢ degrees of
freedom. The layout of this data is highly structured, as we need a simple array with
(m+1) x (m+ 1) x (m+ 1) entries to store the ¢, in three dimensions for example.

The orthogonality of the Legendre polynomials enables a fast computation of the
mass matrix and its inverse, and their recursive nature enables a fast application of
the stiffness matrix.

2.2 The Mesh Structure

The local discretization by polynomial series as described above is done locally in
elements that are then combined in a mesh to cover the complete computational
domain. Ateles employs an octree topology to construct this mesh of cubical
elements with an unstructured layout. The unstructured organization requires an
explicit description of elements to be considered but allows for a greater flexibility
in describing arbitrary geometrical setups. By relying on an octree structure, large
parts of the topological information is implicitly known and does not have to be
explicitly stored or referred to. This is especially of an advantage for distributed
parallel computations, as most neighbor information can be computed locally with
a minimal amount of data exchange. With the choice of cubical elements, we
can employ an efficient dimension by dimension approach and avoid the need for
complex transformations. Boundaries are then implemented by penalizing terms
inside the elements, very similar to approaches found in spectral discretizations.
These allow for the approximation of the geometry with the same order as the one
used for the representation of the scheme.

3 Vectorization on the NEC SX-ACE

Vector instructions mean that we perform the same instruction to many data
concurrently. This single instruction, multiple data (SIMD) concept is becoming
more and more important also on traditional scalar systems, as can be seen in
the increasing register lengths of the AVX instructions in Intels x86 architecture.
The NEC SX-ACE as a traditional vector computing system offers long vector
data registers that hold 256 double precision real numbers and can perform one
instruction on all of them simultaneously. From the algorithmic point we need long
loops with independent iterations to utilize this mechanism.

In simulations that involve meshes, we usually need to perform the same
operations for each mesh element, and we have many mesh elements for detailed
simulations. Thus, an obvious choice for vectorization is here the loop over elements
of the mesh. However, for high-order schemes this is not so straight forward
anymore. For one, there are fewer elements used in the discretization, and maybe
even more important, the computation for each element gets more involved. The

Vectorization of High-Order DG 81

greatest problem for an efficient vectorization over the elements, however, is the
desire for flexibility on the level of the mesh. As described above, we use an
unstructured mesh description to enable an efficient approximation of arbitrary
geometries. This introduces an indirection, which is in turn hurting the performance,
as the vector data needs to be gathered and scattered when moved between memory
and registers. Even more flexibility is required on the mesh level, when we allow
hp-adaptivity, that is dynamic mesh adaptation to the solution and a variation in the
polynomial degree from element to element. These features are desirable, because
they minimize the computational effort in terms of memory and operations.

With this large degree of flexibility and unstructured data access across the
elements of the mesh, a vectorized computation appears hard to achieve. Instead
we look here into the vectorization within elements. As described in Sect. 2 the data
within elements is highly structured and the operations we need to perform on it
also nicely fits into SIMD schemes for a large part. One of the main computational
tasks is the application of the stiffness- and mass-matrices. Such matrix-vector
multiplications can be perfectly performed in vector operations. Other numerical
tasks within the elements often follow a similar scheme and require the application
of one operation to all degrees of freedom. The main limitation we face with an
approach of vectorization within elements is the limited vector length. However,
the vector length grows with the polynomial degree, opening the possibility to fully
exploit even long vector registers, if the polynomial degree is only sufficiently high.

Most operations in Ateles need to be done on the polynomials in one direction,
leaving the other dimensions open for concurrent execution. Thus, when the solution
in a three-dimensional element is approximated by a maximal polynomial of degree
m, there are (m + 1)* degrees of freedom in total, and in most operations (m + 1)?
independent computations with the same instruction need to be performed. With
this quadratic growth over the polynomial degree, m = 15 is already sufficient to
fill the vector data registers with a length of 256 for the most important parts of the
implementation. For the high-order discretization in Afeles we aim for polynomial
degrees greater than 10, and for linear equations even for polynomial degrees in
the range of 100. With this range of scheme orders, a vectorization within elements
appears suitable and meaningful, even for such long vectors as found in the NEC
SX-ACE.

The use of polynomials of high degree to represent the solution, thereby enables
us to combine the flexibility of mesh adaptivity and unstructured meshes with
efficient vector computations.

3.1 Porting of Ateles

Ateles is implemented in modern Fortran and utilizes some features from the
Fortran 2003 standard. Unfortunately, the existing Fortran compiler from older SX
systems did not provide all the required features and was unable to compile Ateles.
But NEC has implemented a new compiler for the SX-ACE, which supports the

82 H. Klimach et al.

complete Fortran 2003 standard. This new compiler sxf03 was able to compile
Ateles and create a working executable for the SX-ACE, with surprisingly little
effort. Yet, as this is a new compiler, not all optimizations from the old compilers
where initially available and after the first porting, we ran into a vectorization issue
with one of the loops, that was nicely vectorized by the old compiler, but not by the
new sxf03. Because compiled files from the old and the new compiler could not be
combined, the work on further optimization stalled at that point. A little more on
these first porting issues can be found in [2] from last year, where also some more
explanations on the porting of the APES suite in general are provided. After this
issue was fixed in the compiler by NEC, we were now able to further look into the
vectorization of Afeles and how the vectorization strategy within elements works
out. In the following we report on the progress of this effort.

4 Measurements and Observations

To compile Ateles for the NEC SX-ACE in this report, we make use of the
sxf03 compiler in version “Rev.050 2017/01/06”. As explained in Sect.3, we are
concerned with the operations within elements, and most of those resemble matrix-
vector operations or are quite similar to them. One major distinction can be drawn
depending on the kind of equation system that we need to solve. For linear equations
we can perform all numerics in modal space, directly using the terms from the
polynomial series, as introduced in Eq. (6). When dealing with nonlinear equations
this is not so easily possible anymore. Instead, we transform the representation into
physical space to obtain values at specific points, perform the nonlinear operation
in each point and then transform the new values back into modal representation
again. These transformations need to be done additionally and are quite expensive.
The performance characteristics of the two cases are accordingly largely different
in these two cases.

4.1 Linear Equations

Let us first look at linear equations, as their building blocks are also relevant for
the nonlinear equations. As a representative for linear equations we look into the
Maxwell equations for electrodynamics. We use a simple case without boundary
conditions and polynomials of degree 11. All computations are done on a single
core of the SX-ACE. In our first setup we used 64 elements, and found a really
poor performance of only 26 MFLOPS in the most expensive routine according
to the ftrace analysis. The crucial loop of that routine is shown in Listing 1 and we
would expect this to nicely vectorize the inner, collapsed loop. Indeed, the extremely
poor performance was due to the number of elements, as this is the first index here,
and we end up with a strided access, according to the number of elements. When

Vectorization of High-Order DG 83

Listing 1 Main loop of the volume to face projection

do iAnsZ=1,m+1,2
!l'collapsed loop
do iVEF=1,6*nElems*(m+1)%*%2
! indices actually computed from iVEF
facestate (iElem , facepos ,iVar,side) &

& = facestate (iElem, facepos ,iVar,side) &
& + volstate (ielem ,pos,iVar)
end do
end do

Table 2 Excerpt from the tracing of Ateles for Maxwell equations and a discretization with
polynomials of degree 11

Bank Conf.
Procedure % MFLOPS V.OP % V.LEN CPU Net ADB %
VolToFace 28.7 929.5 99.12 204.6 0.137 0.531 86.07
PrjFlux2 10.3 1475.0 99.53 83.6 0.802 1.742 79.04
PrjFlux1 10.3 1479.4 99.53 83.2 0.685 1.294 71.65
PrjFlux3 10.2 1490.8 99.57 83.4 0.381 1.752 76.73
MaxFlux 9.9 513.3 79.88 38.7 0.057 0.321 63.90
MassMat 9.3 1906.7 87.69 63.0 0.503 18.491 45.46
PhysFlux 5.5 0.2 94.54 241.3 0.941 7.973 0.00

The first column states the measured routine, the second the running time percentage of the routine,
the third the observed MFLOPS, the fourth is the vector operation ratio as a percentage (time spent
on vector instructions to the time spent in total on that routine) and the fifth column provides the
average vector length used in the vector instructions. The next two columns (6 and 7) provide the
time spent on conflicts when accessing memory banks. In the eighth and last column, the ADB hit
rate is given. Shown are the main procedures contributing to the overall compute time

changing to the element count to 63, the performance indeed increases from 26 to
more than 900 MFLOPS. It appears that strides at multiples of 64 result in extremely
bad performance, due to conflicts in the memory bank accesses.

Table 2 shows the most important routines for a run with polynomials of degree
11 and 63 elements. The main routines that contribute more than 84% to the overall
compute time are the projection of the polynomials in the volume to the faces of the
elements (VolToFace), the projection of the fluxes onto the testfunctions (PrjFluxI,
PrjFlux2 and PrjFlux3), the actual computation of the Maxwell flux (MaxFlux),
multiplication with the inverse of the mass matrix (MassMat) and computation of
the physical flux for the Maxwell equations (PhysFlux). Here, the projection of the
flux onto testfunctions is actually the same operation that needs to be performed,
albeit in three different directions and there is an individual implementation for
each direction. Their only distinction is a different striding in the access to the three
dimensional data.

84 H. Klimach et al.

As can be seen in Table 2, the volume to face projection (VolToFace) and the
projection of the physical flux on the testfunctions are the main consumers of the
computing time in this run with polynomials of degree 11. Both contribute about
30% to the overall running time. It also can be seen that already this run without
tuning, provides relatively good vectorization properties with vectorization rates
above 99%. Nevertheless, the computational efficiency is not quite high and we
see for the VolToFace routine less than one GFLOPS. But this may also be due to
the relatively low computational density in this operation. What needs to be done
is just the summation of the degrees of freedom in one space direction. This single
addition for each real number does not allow us to fully exploit the functional units
of the processor.

One improvement that can be done in this routine is the simultaneous computa-
tion of the left and right faces in the given direction of the element. This improves
the computational density as the volume data only needs to be loaded once for both
sides, and we obtain between 1262 and 1462 MFLOPS (depending on the striding
for the different directions). After this change, the projection of the physical fluxes
becomes the most time consuming part. When we double the degrees of freedom
and use polynomials of degree 23, this changes again and the multiplication with
the inverse of the mass-matrix becomes the most important routine. Computing the
multiplication with the inverse of the mass-matrix makes use of a short recursion,
as with the recursive definition of the polynomial basis, already computed values
can be reused. While this is computational efficient in terms of saving operations, it
makes it harder to achieve good vectorization and a high sustained performance. Yet,
for high orders and when avoiding bad striding we are capable to achieve already
reasonable performance and before looking into this common part in more detail we
now looked into other equations.

Unsurprisingly the acoustic and linearized Euler equations showed a very similar
behavior. However, we found an excessive use of flux functions there to be an issue.
This is already a little bit visible in Table 2 for the PhysFlux routine. The problem
with that routine is that it is very small and used to compute the flux for just a single
mode. Similarly this was found for the other linear equations, but there it the flux
computation consumed a larger fraction of the overall compute time, and the effect
was more pronounced. The remedy is fairly simple, though, as the loop over the
modes can be pulled into this routine quite easily.

Another linear equation we have implemented in Ateles are locally linearized
Euler equations. These use a linearization within elements, but nonlinear fluxes
on the element faces for the exchange between elements. With those we ran again
into the striding issue with the number of elements. Further investigation revealed
that this striding indeed is the most important factor inhibiting better sustained
performance on the SX-ACE. Our findings for the linear equations reinforced the
idea that we need to do the vectorization within the elements, and we now need
to change the data structure to reflect this, as the element index is often the fastest
running index in our arrays. This will be a larger effort and instead we now turn
to the nonlinear equations and have a brief look at the performance of the inviscid
Euler equations for compressible flows.

Vectorization of High-Order DG 85
4.2 Nonlinear Equations

To investigate nonlinear terms, we look here into the Euler equations for compress-
ible fluid flows. As mentioned, we need to perform polynomial transformations
between modal and nodal space in this case. There are several methods for this task
implemented in Ateles, see [3] for more details and a comparison of the methods.
For now we will only consider the L, projection of the Legendre modes to their
nodes (L2P transformation in Afeles). This method is the most straight-forward one
and can simply be written as a matrix-vector multiplication.

We look at the Euler equations for inviscid, compressible flows here. The original
code showed no performance, due to the fluxes being called for each integration
point and ending up to be the most time-consuming parts with only little to none
FLOPS achieved. By pulling the loops over the points into the flux computation,
this can be avoided and the contribution of these routines to the total computational
time becomes negligible for now. Instead the VolToFace and the L2P are the most
important contributors.

As the L, projection basically is a matrix-vector product, we also see a relatively
high performance for this routine of more than 13 GFLOPS. However, we actually
need to perform many of these matrix-vector products and it can be interpreted as a
matrix-matrix product. If we rewrite our code such that the compiler recognizes this
construct, it replaces it with a highly optimized implementation for the architecture
and we gain close to 48 GFLOPS or 75% sustained performance for this operation
when using polynomials of degree 29. To allow the compiler to recognize the
construct, a two-dimensional array has to be used, which was previously not the
case, as a collapsed index was used.

Table 3 shows the most relevant routines for Euler equations with a 30th
order spatial discretization. The most efficient routine, the L, projection with the
recognized matrix-matrix operation is also the most time consuming one, leading to
arelatively good overall sustained performance. Further we recognize the volume to
face projection, that was also relevant for the linear equations, but in its optimization
has been split into three routines, one for each direction. Also the projection of
the fluxes to the testfunctions are again contributing visibly to the overall compute
time. The only other routine with more than 5% in the overall compute time is
the FromOver routine, which implements the copying of the modal state to an
oversampled space.

Thus, we see that further optimizations of the general routines that are important
in the linear equations also will be beneficial for the nonlinear equations. We expect
to achieve the next larger performance increment with the change of the index
ordering for our state arrays.

Finally, we want to compare the serial performance of the current implementation
status for varying orders to the observed performance on a scalar system. The scalar
system we compare against is the Cray XC 40 Hornet at HLRS that is equipped with
Intel Xeon E5-2680 v3 processors. To allow the comparison of runs on different
machines and between different orders we use thousand degree of freedom updates

86 H. Klimach et al.

Table 3 Excerpt from the tracing of Atreles for Euler equations and a discretization with
polynomials of degree 29

Bank Conf.
Procedure % MFLOPS V.OP % V.LEN CPU Net ADB %
L2project 343 47916.4 99.21 174.5 1.680 6.543 75.38
VolToFaceY 6.9 1459.4 99.89 256.0 0.001 0.000 4.02
FromOver 6.5 2841.2 99.86 254.7 0.013 0.096 3.80
PrjFlux3 6.5 2544 .4 99.90 186.9 0.781 1.237 68.88
VolToFaceX 6.1 1312.0 99.87 256.0 0.001 0.000 1.51
VolToFaceZ 6.1 1316.1 99.88 256.0 0.012 0.000 2.44
PrjFlux2 5.6 2943.7 99.89 187.0 0.511 0.504 70.55
PrjFlux1 5.5 2992.5 99.89 186.8 0.470 0.366 26.54

The first column states the measured routine, the second the running time percentage of the routine,
the third the observed MFLOPS, the fourth is the vector operation ratio as a percentage (time spent
on vector instructions to the time spent in total on that routine) and the fifth column provides the
average vector length used in the vector instructions. The next two columns (6 and 7) provide the
time spent on conflicts when accessing memory banks. In the eighth and last column, the ADB hit
rate is given. Shown are the main procedures contributing to the overall compute time

—e— Hornet
—m— Kabuki
5000
4000
%]
5
=) 3000
M
[]
2000
1000
0
0 20 40 60 80 100 120 140

Order (m+1)

Fig. 2 Performance for the Euler 3D equation, 1 process, 20 million degrees of freedom in total

per second (KDUPS). The performance for the Euler equation and a total of 20
million degrees of freedom is shown in Fig. 2 over varying polynomial degrees for
a fixed overall problem size of a total of 20 million degrees of freedom. Note that
the computational effort per degree of freedom grows with order of the scheme

Vectorization of High-Order DG 87

for nonlinear equations, and we expect a degradation of the degree of freedom
update rate. This expected degradation is indicated by the black continuous line
without marks. It does not imply a decrease in computational efficiency but rather
the opposite, as we need to perform ever more operations without an increase in
the data rate. As can be seen, a good performance is achieved when polynomials of
degree 20 or higher are used for the nonlinear equations. We also notice several
breakdowns of performance at some even order schemes. Most prominently for
schemes of order 64, where we find the bad striding access described above, this
time due to strided access over the modes of the polynomials within elements.

Of course there is not much of an benefit from the vectorization for scheme
orders below 10 with a vectorization over within the elements, but already for 10
order schemes the vector computing capabilities can be used quite visibly. For very
high orders beyond 100, the advantage seems to diminish again somewhat, but this
seems to be more a point of the scalar system gaining efficiency due to the reduced
bandwidth requirements in this range.

5 Summary and Outlook

High-order schemes are an attractive tool from the computational point of view, due
to there reduced memory requirements. We presented a concept for the vectorization
of the high-order discontinuous Galerkin scheme in Afeles with a focus on the
structured data within elements to represent the three-dimensional polynomials.
This approach enables a flexible computation on the mesh side with adaptivity and
unstructured meshes, while at the same time allows for vectorized computations on
highly structured data within the elements. Even with the long vectors of the NEC
SX-ACE this concept works quite nicely already for relatively low order schemes
with polynomials of degree 10 and higher.

Our current implementation is not yet tuned a lot for the vector system, and
there are some legacy parts that need to changed, like the ordering of indices
in the state representation. Nevertheless, the performance achieved on the SX-
ACE already provides a quite good basis for further improvements. A particular
positive surprise was the compiler optimization with the detected matrix-matrix
multiplication construct and its optimized replacement by the compiler. Though, the
nonlinear and linear equations have different routines that contribute to the overall
computational effort, there is still a large overlap, and most further improvements
are expected to affect all supported equations.

Acknowledgements We would like to thank Holger Berger from NEC for his kind support, the
Tohoku University and HLRS for the opportunity to use their NEC SX-ACE installation.

88 H. Klimach et al.

References

1. Hennessy, J., Patterson D.: Computer Architecture, A Quantitative Approach. 5th edn. Morgan
Kaufmann, Burlington (2012)

2. Klimach, H., Qi, J., Roller, S.: APES on SX-ACE. In: Resch, M., Bez, W., Focht, E., Patel, N.,
Kobayashi, H. (eds.) Sustained Simulation Performance 2016. Springer, Heidelberg (2016)

3. Anand, N., Klimach, H., Roller, S.: Dealing with non-linear terms in the modal high-order
discontinuous Galerkin method. In: Resch, M., Bez, W., Focht, E., Patel, N., Kobayashi, H.
(eds.) Sustained Simulation Performance 2016. Springer, Heidelberg (2016)

Vectorization of Cellular Automaton-Based
Labeling of 3-D Binary Lattices

Peter Zinterhof

Abstract Labeling connected components in binary lattices is a basic function in
image processing with applications in a range of fields, such as robotic vision,
machine learning, and even computational fluid dynamics (CFD, percolation the-
ory). While standard algorithms often employ recursive designs that seem ill-suited
for parallel execution as well as being prone to excessive memory consumption and
even stack-overflows, the described new algorithm is based on a cellular automaton
(CA) that is immune against these drawbacks. Furthermore, being an inherently
parallel system in itself, the CA also promises speedup and scalability on vector
supercomputers as well as on current accelerators, such as GPGPU and Xeon PHI.

1 Introduction

Labeling connected components in binary lattices is a basic function in image
processing with applications in a range of fields, such as robotic vision, machine
learning, and even computational fluid dynamics (CFD, percolation theory). While
standard algorithms often employ recursive designs that seem ill-suited for parallel
execution as well as being prone to excessive memory consumption and even stack-
overflows, the described new algorithm is based on a cellular automaton (CA) that is
immune against these drawbacks. Furthermore, being an inherently parallel system
in itself, the CA also promises speedup and scalability on vector supercomputers as
well as on current accelerators, such as GPGPU and Xeon PHI.

The discussed algorithm for finding connected components within 3-dimensional
lattices is based on a Cellular Automaton (CA) [1] which is a classic and well-
studied tool in computer science.

In general, Cellular Automata operate on a set of cells (e.g. pixels or data items)
which are manipulated according to a set of transition rules, which can be applied
to all cells sequentially or in parallel. The manipulation is repeated iteratively until

P. Zinterhof (<)

Department of Computer Science, University of Salzburg, Jakob-Haringer-Str. 5, 5020 Salzburg,
Austria

e-mail: peter@zinterhof.com

© Springer International Publishing AG 2017 89
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_6

mailto:peter@zinterhof.com

90 P. Zinterhof

Table 1 Execution times (ms) of dense CA of varying dimensions

CA dim GTX680 NEC ACE-SX Tesla P100 Xeon E1620 Xeon Phi 5110

128 0.25 0.57 0.26 11.37 n/a
256 1.86 3.71 0.69 68.85 n/a
384 6.53 13.37 5.8 189.88 n/a
512 15.55 31.81 5.8 399.86 n/a
704 49.55 79.03 13.98 772.18 42.44

some stopping criterion has been reached, for instance an equilibrium condition in
which no further changes do occur or some runtime constraint has been met.

Among a series of convenient characteristics of Cellular Automata we want to
emphasize their decent memory requirements which in most cases will be fixed
during runtime and proportional to the number of cells while being agnostic to cell
states. Also, updating cells in a CA is an operation that shows very high degrees
of data-locality, which by itself can be regarded as an important prerequisite in the
context of implementations for massively parallel and even distributed systems.

We consider these properties to be quite an advantage over recursive algorithms
for finding connected components, which display patterns of memory consumption
that are related both to the number and states of lattice cells. This makes CA-
based computation of connected components an attractive choice for tightly memory
restricted computer systems, in some cases probably even the only viable choice.
Additionally, two very important advantages of the proposed algorithm can be
named by the homogeneity of computational intensity within the lattice of cells, and
the high regularity of memory access patterns during the iterations of the algorithm.
Both specifics lend themselves well to high performance implementations on
parallel systems.

As the set of transition rules can be applied to all cells of the lattice in parallel,
the computational core of the algorithm is inherently parallel, too.

Our main contribution is given by the definition and discussion of vectorized and
parallel implementations of the basic CA-algorithm on a variety of recent vector-
and parallel compute architectures (Table 1).

2 Related Work

This work is based on the important paper by Stamatovic and Trobec [4] which
introduces a new method of computing connected components in binary lattices by
application of the well-known theory of cellular automata' in a new way. Compared
to [6] we concentrate on the 3-D case instead of the 2-D case of input data.

' A comprehensive introduction to CA theory can be found in [2].

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 91

Table 2 Typical memory CA dim Matlab Cellular automaton
requirements (GB) for Matlab

function ‘bwconncomp’ and 256 1.83 0.13
reported CA-based 512 11 1.0
implementations 768 29 3.6

The considerably = higher = RAM-
requirements for Matlab’s ‘bwconncomp’
function may also lead to swapping on
some systems and CA dimensions, which
will not occur in the CA-based counterpart

Stamatovic and Trobec [4] also covers the 3-D case but puts more emphasis on
the discussion of algorithmic details and the general proof-of-concept by display-
ing implementations in Matlab and NetLogo while this contribution is focused
on various aspects of high-performance implementations on parallel hardware.
The well-known Matlab software environment also offers some built-in function
‘bwconncomp’ which is capable of computing connected components within multi-
dimensional arrays. Despite being convenient to use, Matlab’s implementation falls
short with regards to performance, memory requirements (Table 2) and potential use
of accelerators, such as GPUs.

Other related work includes the class of stencil-based algorithms, which are not
widely regarded as siblings of CA theory but the field of numerical analysis. To
name just a few, stencil-based algorithms are applied in areas such as computational
fluid dynamics (CFD), Lattice-Boltzmann computations, Jacobi solvers, Simulation
of heat-transfer (e.g. convection) and image processing. Due to the importance
of stencils in computer science’ there have been many approaches to improve
computational performance of the core algorithm by means of vectorization and
parallelization [3]. Initially, these approaches were mostly based on optimization of
some given algorithm on some specific target system. This exhibited limitations both
to portability and usability, as forthcoming developments in parallel and distributed
systems technology or additional requirements on the algorithmic level implied deep
changes to the initially optimum code bases and implementation details.

Various forms of code generators and definition languages (for more information
also see the interesting work on the pochoir stencil compiler [5]) for stencil compu-
tations have been described, which essentially introduce some kind of abstraction
layer between actual compute hardware and the mathematical definition of stencils.
Due to ever increasing complexity in compute hardware, namely increasing number
of memory levels that operate at different speeds and latencies, and increasing
numbers of cores per system, the generation of high performance code is now a task
that seems to overwhelm not only most human software developers but also many
standard code generators. To alleviate this rather undesirable situation, special auto-
tuning frameworks have been proposed. These frameworks aim to sift through the

2The large-scale research project ‘Exastencils’ (http://www.exastencils.org/) is also to be men-
tioned in this context.

http://www.exastencils.org/

92 P. Zinterhof

enormous number parameters found in the implementation of some stencil code
and find optimal settings automatically without requiring much domain-specific
expertise by the user.

Despite this intriguing corpus of related work, we found very little support for
the kind of mathematical operations that the proposed CA-based algorithm is based
on. Also, most work on stencil-based algorithms are based on regular and dense
datasets, while our approach complements computation of dense datasets by some
sparse formulation of the CA update routines. To the best of our knowledge, we will
give the first report on the application of this CA-based algorithm in the context of
sparse lattices on parallel hardware.

3 Algorithm

The basic algorithm for computing a 3-dimensional Cellular Automaton for finding
connected components in a lattice follows [6]. The main algorithmic steps show
great similarity to a stencil computation, in which floating point data is exchanged
by integer data and the numerical summation of stencil pixels is replaced by the
computation of the maximum value within the stencil pattern.

Also, we restrict the ‘observed neighborhood’ of each cell to the Von-Neumann
neighborhood, which is defined as a center- or ‘host’-cell and two directly adjacent
neighbor-cells for each dimension. Following Trobec and Stamatovic [6] the lattice
boundary cells are fixed during cell updates. By employing this fixed boundary
condition the resulting code complexity can be reduced, which is an advantage on
most of the projected target platforms that we will consider in the following section.

On entry, the binary lattice describes a distribution of ‘background’ and ‘fore-
ground’ values only. The task of finding connected components is accomplished by
a short initialization phase, along with the actual Cellular Automaton update phase,
which by itself is an iterative process.

3.1 Initialization

During initialization the binary lattice data will be transformed into an initial
configuration or ‘coloring’ in which each foreground pixel will be given a unique
index value or ‘color’ that will enable a clear distinction of pixels inside the lattice.
For performance reasons we refrain from the initial coloring scheme described by
Trobec and Stamatovic [6], which takes into account so-called ‘corner pixels’ for
setting up the initial lattice values. Instead we choose a strictly monotonous series of
cardinal values that are attached distinctively to any binary foreground pixel. Albeit
this approach is inherently sequential (Algorithm 1), we found it of sufficient speed.
Alternatively, initial coloring can also be achieved by choosing the positional data of

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 93

each lattice point, which is given by the distinct tuple of (x, y, z)-values from which
some distinct cardinal value can readily be derived in parallel execution mode.? It
is essential to have boundary cells being initialized to ‘background’ states. This can
be accomplished either in the initial binary lattice data or in initialization step.

3.2 Cellular Automaton Update

The update rule for the lattice (CA1) is applied to each cell that has neither been
labeled as ‘background’ nor is a member of the boundary of the lattice. Each
iteration of the Cellular Automaton takes CA1, the current state of the CA, and
yields a new lattice CA2 in which the states of non-background and non-boundary
cells have been updated. The update rule is given by the maximum function, applied
to the current host cell C and its 6-neighborhood of surrounding cells. As each to
be updated host cell C might also be a neighbor cell, this newly computed cell state
must not be stored at the current lattice position but in a disjoint memory location
in state array CA2, hence the transform CA1— > CA2. Algorithm 3 gives an outline
of the update process in pseudo code.

Algorithm 1 CAinitialize
1: procedure CA_INITIALIZE(input: binary_lattice, output: CA)

2: color < 0

3: for all cells in binary_lattice do
4 if cell then

5: color <— color + 1

6 CA.cell.color < color
7 return(CA)

1: procedure MAXIMUM_NEIGHBOR(input: cell, output: color)
2: color < cell.color

3 color <— max (color, cell.up)

4. color <— max (color, cell.down)

5: color <— max (color, cell.left)

6: color <— max (color; cell.right)

7 color <— max (color, cell.before)

8 color <— max (color; cell.after)

3Let’s consider a cubic lattice of dimension N. For any lattice element at some position (x, y, z) the
unique positional information can be used to derive an initial coloring Color = (((z * N) + y) *
N + x.

94 P. Zinterhof

Algorithm 2 Termination check

1: procedure TERMINATION(input: CA1, input: CA2, output: bool)
2: for all cells in CA1 do

3: if (Cal.cell.color NOT CAZ2.cell.color) then return False
return True

Algorithm 3 Cellular automaton update

1: procedure CA_UPDATE(input: CAl, output: CA2)

2: for all cells in CA1 do

3: if cell NOT (background OR boundary) then

4: CA2.cell.color <— maximum_neighbor (CAl.cell)

3.2.1 Maximum Operator

Despite being a very basic operation, computing the maximum pixel values of the
surrounding neighborhood of each cell constitutes the main part of the Cellular
Automaton which usually will take most of the total runtime of the proposed
algorithm on any given hardware platform. Hence, we aim to support high levels
of performance not only by applying proper platform-specific code optimizations
(see Sect. 4), but also by choosing hardware-friendly operations in this most crucial
algorithmic core operation.

Obviously, the straight forward solution for computing the numeric maximum
of two pixel values involves some branch-instruction. Probably all recent high-
performance CPU-hardware offer intricate and even online performance optimiza-
tion techniques, such as instruction reordering, branch prediction, and speculative
execution. Along with hierarchical multi-level caching memory CPUs are mostly
capable of executing branching operators without suffering from significant perfor-
mance penalties. The situation is quite different on many modern accelerator-based
hardware platforms, which usually offer higher compute core counts at the cost
of reduced core complexity. Our rationale here is to avoid branching operations
to a high degree, as these operations tend to stall the stream of instructions on
GPGPU-hardware, which diminishes overall throughput. Also, on hardware that
supports true vector-processing* such as the high-performance computing platform
NEC ACE SX, a steady stream of branch-less instructions promises to be beneficial
towards our goal of high computational throughput.

4While all modern CPUs do actually support high-throughput instructions that operate on short
vectors of data elements (e.g. SSE, AVX, Altivec, etc.), we want to make the distinction against
pipelined vector processing, which is capable of processing vectors of arbitrary length while also
employing a richer set of instructions compared to standard x86-based processors.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 95

#define MAX(a,b) (((a)>(b))?(a):(b))
Fig. 1 Branch-based maximum operator
#define MAX(a,b) (a—((a—b)&(a—b)>>31))

Fig. 2 Closed-form maximum operator

3.2.2 Branch-Based Maximum Operator

The definition depicted in Fig. 1 constitutes a classic macro of the C language, which
translates into efficient code on modern CPU-hardware, such as Intel x86 or IBM
Power architectures.

3.2.3 Closed-Form Maximum Operator

Figure 2 constitutes the closed-form macro® for computing the maximum of two
signed integer values (int32 data type). It involves no branching operation, but basic
arithmetic and bit-wise operations only. Due to the absence of branch operators,
this function incurs no warp-divergence on CUDA-enabled devices and promises
benefits on any in-order execution compute platform.

Finally, a host-based driver routine (Algorithm 4) is used to orchestrate the series
of compute and termination criterion (Algorithm 2) functions that resemble the
Cellular Automaton.

Considering the GPU implementation, updates of the CA and corresponding
termination checks will exclusively be accomplished in GPU RAM.

Algorithm 4 Driver
1: procedure DRIVER(input: binary lattice, output: CA1)
2: CA1 < initial coloring (binary lattice)
3: CA2 < CAI
4: repeat
5: CA_update(CA1, CA2)
6: CA_update(CA2, CA1)
7: until termination

3 As proposed by Holger Berger of NEC Germany.

96 P. Zinterhof
4 Implementation

Our baseline implementation consists of OpenMP-enhanced x86-code (C language),
from which several code-branches for GPU (nVidia CUDA), multi-GPU, Intel Xeon
Phi, and NEC ACE code have been derived. These approaches support dense data
sets, which are stored as a standard array in C. Depending on density and distribution
of non-background pixels in a given data set, we find that an alternate, sparse
representation of Cellular Automaton data offers performance benefits, albeit at the
cost of some increase in memory usage.

For performance reasons we decided to employ a granularity of two updates per
termination check. The main advantage of this design decision is the potential for
omitting any swapping operations on input and output state arrays, such as described
in [3]. By switching input- and output parameters between two consecutive calls to
the update function, state arrays CA1 and CA2 serve both as input and output array.
The frequency of calls to the termination criterion function is also reduced as a
consequence, which is preferable for reasons of performance but in general will
also lead to one potentially superfluous update operation in the last phase of the
algorithm as it reaches the equilibrium state of the CA.

4.1 Dense Data Representation

4.2 OpenMP-Code

OpenMP is the industry-standard for task-level parallelization on multi-processor
systems. It allows for convenient development cycles, which usually start from
a sequential code base. By incrementally adding parallel constructs to the code,
the execution speed will be enhanced and the software will be enabled to utilize
all available system resources. Fortunately, NEC is offering their own high-
performance implementation of the OpenMP runtime and compiler environment
so that porting efforts starting from the x86-based code base prove to be a rather
straight-forward process. Consequently, the resulting source codes both for x86- and
NEC ACE-SX systems do look very similar and we only want to give a glimpse on
the differences.® Porting the core update function to the Xeon Phi (KNC) processor
follows Intel’s standard programming model called ‘function offloading’. In this
model the Intel C-compiler is guided by means of a few directives to generate
parallel OpenMP-based code for the Xeon Phi-accelerator as well as the necessary
staging of function data (e.g. state arrays CAl, CA2). Figure 3 displays the x86-
based update routine.

%The NEC implementation of OpenMP offers pragma based hints to the compiler which signify
independence of nested loops, such as loops ‘row’ and ‘col’ in Fig. 3. By adding ‘#pragma cdir
nodep’ to the inner loops, the compiler is set to optimize in more aggressive way.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 97

void update_CPU (int N, int xinput, int xoutput)
{

int row, col, slice;

int cell;

#pragma omp parallel for private (row, col, cell)
for (slice = 1; slice < SDIM —1; slice++)
i’or (row = 1; row < SDIM —1; row++)
ior (col = 1; col < SDIM —1; col++)
{if (input[slice * N * N + (row * N) + col] != 0)
{

cell input[slice * N * N + ((row) * N) + col];

cell = Max(cell, input[slice * N * N + ((row—1) * N) + col]);
cell = Max(cell, input[slice * N x* N + (row * N) + col —1]);
cell = Max(cell, input[slice * N *x N + (row * N) + col+1]);
cell = Max(cell, input[slice * N * N + ((row+1) * N) + col]);
cell = Max(cell, input[(slice—1) * N * N + (row *x N) + col]);
cell = Max(cell, input[(slice+1) * N * N + (row * N) + col]);
output[shce * N % N + (row *x N) + col] = cell;

}
1}

Fig. 3 OpenMP code: parallel update of CA cells

4.3 CUDA Implementation

For achieving high computational performance in the Cellular Automaton kernel
we find two very relevant design decisions. First, data decomposition has to fit the
memory subsystem of the GPU hardware. This essentially boils down to proper
memory coalescing, which is a standard technique of forcing adjacent CUDA cores
access adjacent memory locations in parallel. We aim to achieve high memory
throughput on the GPU by assigning an appropriate number of CUDA threads to the
computation of the inner-most loop (‘columns’) (4), which as a result displays the
necessary memory access patterns. In other words, the inner-most loop is squashed
altogether and being replaced by an appropriate number of CUDA threads that
operate in parallel. This limits the maximum dimension of the CA to the maximum
number of CUDA threads per CUDA block. For current generation NVIDIA-
hardware this amounts to 1024 threads, hence a maximum dimension of 10243 cell
elements’ is being supported by our current GPU-implementation.

7While this may seem to be a limiting factor in the application of the kernel for large CAs, it should
be stated that the corresponding amount of necessary GPU-memory quickly fills the available on-
chip resources of the accelerator, which might be the main limitation towards employing larger
datasets.

98 P. Zinterhof

The second design decision of the CUDA kernel involves the method of
parallelizing the two outer loops (‘rows’, ‘planes’) of the kernel. Since no memory-
coalescing issues have to be taken into account at this level, we enjoy freedom to
employ loops, a CUDA grid-based decomposition, or some mixture of both design
models. Relying on for-loops only puts high computational pressure on each CUDA
thread and—probably even more important—hampers the inherent capability of the
GPU in hiding latencies of memory accesses by employing large numbers of active
CUDA blocks and threads. Also, due to the very high core counts (e.g. 3584 cores
on recent PASCAL-cards) of modern high performance hardware some loop-only
based approach would severely limit the degree of parallelism.®

Historically, CUDA-enabled devices offered little or no L2-cache memory,
but some fast ‘shared memory’ or scratch-pad memory on-chip. By resorting to
software-controlled caching mechanisms this lack of hardware-controlled L2-cache
could in general be alleviated by clever kernel design. Recent generations of CUDA-
hardware do offer improvements both in terms of size and levels of control of
cache memory. Nevertheless, there is no easy way to decide whether to just rely
on hardware-controlled L2-caching mechanisms or to exert explicit control over
memory access by resorting to ‘old-style’ programming techniques.

In order to achieve maximum performance we apply explicit cache control by
way of memory-coalescing during column-reads (function ‘read_column’ in Fig. 4)
in conjunction with implicit, hardware-based cache control. As can also be seen in
Fig. 4, the number of column-reads can be diminished for all row iterations except
for the first one. This is accomplished by explicitly copying column data that is
already present in the shared memory segment ‘local’ following the direction of
the loop. Hence, for each new iteration in which the stencil-column is being moved
towards the last row of the current slice (z-plane of the CA), three instead of five
column-reads are sufficient, which marks a 40% reduction of memory transfers.

4.3.1 Termination Criterion

Checking the termination criterion in parallel is based on finding any discrepancy
between state arrays CA1 and CA2. Depending on the dimensions of the computed
CA, this involves transfer of data on the order of multiple GiB, which makes
repeated checks prone to becoming a major bottleneck of the algorithm. We
therefore aim for an early termination of the check routine itself, which requires fast
synchronization of collaborating GPU-threads. As outlined in code ‘termination’,
read access to both state arrays CA and CA2 is being coalesced by enabling threads
to work in lockstep on properly aligned data. Discrepancies within two given
data columns lead to immediate termination of those threads, that spotted some
discrepancy. Equally important, discrepancies will raise some global flag, which

$Employing 3584 cores to a CA-kernel of dimension 1024® would yield hardware utilization rates
below of 29%.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices

__global__ void update_GPU (const int * __restrict__ input,
int * __restrict__ output)

{

__shared__ int local[6][N]; // N = dimension of CA

int slice = blockldx.x;

int row, col = threadldx .x;

int max;

if ((slice >0) {

for (row = 1; row < (N—1); row++)

{

__syncthreads ();

if (row==1) // read full stencil
{

readcolumn (&local[0][0], &input[slice*N*N+(row—1)*N]);
readcolumn (&local[1][0], &input[slice*NxN+row*N]);
readcolumn (&local [2][0], &input[slice*NkN+(row+1)*N]);
readcolumn (&local[3][0], &input[(slice —1)*N*xN+row*N]);
readcolumn (&local[4][0], &input[(slice+1)*NxN+row*N]);
local [5][threadldx .x]=1ocal [1][threadldx .x];// output line
1

else // read partial stencil with reuse of recent data
{

readcolumn (&local [3][0], &input[(slice —1)*N*«N+row*N]);
readcolumn (&local[4][0], &input[(slice+1)*NxN+row*N]);
local [O][threadIdx .x] local [1][threadIdx .x]; // reuse
local [1][threadIdx .x] local [2][threadIdx .x]; // reuse
readcolumn (&local[2][0], &input[slice*N+N +(row+1)*N]);

99

local [5][threadIdx .x]=1ocal [1][threadldx .x];// output line

1

__syncthreads (); // wait for data to have arrived

if ((threadldx .x > 0)&&(threadldx .x < N—1)) {
if (local[1][threadldx .x] != 0)
{
max=1local [0][threadIdx .x]>1local [1][threadIdx .x] ? _

local [O][threadIdx .x] local [1][threadldx .x];

max=local [1][threadldx .x—1]>max?local [1][threadldx .x—1]:max;
max=local [1][threadldx .x+1]>max?local [1][threadldx .x+1]:max;
max=local [2][threadldx .x]>max ? local[2][threadldx .x] max ;
max=1local [3][threadIdx .x]>max ? local [3][threadldx .x] max ;
max=1local [4][threadIdx .x]>max ? local [4][threadldx .x] max ;

local [5][threadldx .x]

}

}

/]l store

resulting column in global

local [4][threadldx .x]>max ? _

local [4][threadldx .x]

output array

max ;

writecolumn (&local [5][0], &output[slice * N * N + row * NJ);

}

} /1 slice

}

Fig. 4 CUDA code: parallel evaluation of termination criterion

100 P. Zinterhof

will prevent any not-yet active CUDA block from entering the checking routines. It
has to be noted that thread termination within some active CUDA block will only
affect remaining threads of that block. This might be regarded to be sub-optimal,
but experiments with an increased level of synchronization at Warp-level exhibited
inferior overall performance.

Please also note the absence of any explicit synchronization construct in the
above implementation of non-blocking synchronization.

Interestingly enough, efficient parallelization of the termination criterion proves
to be much harder in OpenMP than in CUDA, due to the absence of premature
termination of parallel for-loops in OpenMP. As a consequence, OpenMP code
will be forced to sift through both state arrays CAl and CA2 in total, even when
differences should have been spotted during the first few comparisons. Albeit
explicit and more complex task-based implementations within OpenMP would have
been possible, we instead opt for a sequential version. Due to the simplicity of
the core operator (check for equality of two cell states) the resulting code will
operate close to the saturation level of the memory system, which can be taken
as an argument against parallelization of this code section in the first place (Fig.5).

__global__ void termination (const int N,
const int * inputA, const int * inputB,
unsigned char * __restrict__ activity)

{

__shared__ int local[2][SDIM];

int slice = blockldx .x;

int row;

int col = threadldx .x;

int max;

int p;

unsigned char flag=0;

if ((slice >0)&&(slice <SDIM—1)) {
if (activity [0]==0) {
for (row = 1; row < (N—1); row++)
{
readcolumn (&local [0][0], &inputA[slice * N * N + row * N]J);
readcolumn (&local[1][0], &inputB[slice * N * N + row * N]);

if (local[0][threadldx .x] != local[1][threadldx .x])
{
row=N; // terminate thread
activity [0]=1; // raise global termination flag

}
}
} /1 if activity==
} /1 if slice > 0
}

Fig. 5 CUDA code: parallel evaluation of termination criterion

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 101

< loop -

Fig. 6 In dual-GPU environments, state arrays are partitioned into two even portions with each
portion being stored locally on one of the participating GPUs. Both GPUs may access state arrays
of the corresponding partner GPU by means of unified virtual addressing (UVA) mode

4.4 Multi-GPU Computation

Figure 6 depicts the basic layout of CA data in dual-GPU setups. Each GPU is
enabled to access ghost-cells (cells that are read but never being written to) that
physically reside in the partner GPU’s local memory by means of unified virtual
addressing (UVA) mode. However, the CUDA kernel is repeatedly forced to decide
whether a certain column of data is available locally or whether it has to be fetched
via the UVA mechanism. This decision adds to an increase in code complexity’
and potentially also harms the overall throughput of the kernel. By introducing two
separate kernels that are specialized for operation in the areas of ghost cells that
emerge at the lower and upper borders of their data partition, we aim to alleviate
this performance bottleneck. The performance numbers reported on in the following
section are based on this improved multi-kernel model.

“While code complexity is not regarded an issue on standard CPU-based systems, it certainly can
lead to an inflation of the size of the binary executable, which in extreme cases can result in non-
executable kernels.

102 P. Zinterhof
4.5 Sparse Data Representation

For easier usage we provide a method for generating some sparse representation
of any given data set out of its initially dense, array-based representation. For the
discussed dense 3D datasets this method builds a vector V of tuples (x,y, z) with
each tuple designating the coordinates x, y, and z of a distinct pixel in the dense
data set. Hence, the size of vector V directly corresponds to the number of relevant
pixels, that is, pixels not belonging to boundaries or background. By cycling over
the z, y, and x-planes of the dense dataset in that order, we ensure the tuples of
resulting vector V to be ordered in a way that proves to be cache- and memory-page
friendly during the following cell update.

Note that vector V is merely an index of foreground-pixels, actual CA state
information will still be managed in the form of the dense systems CA1l and CA2
(Sect.4.1).

Updating the CA state arrays CA1 and CA2 can now be pinpointed to the exact
locations of foreground pixels, but comes at the cost of additional memory access
for dereferencing the corresponding tuple in V. Parallelization of cell updates is a
straight-forward process being accomplished at the level of the tuple vector V, which
is a densely packed dataset that lends itself well to OpenMP-, CUDA-, and vector
processing approaches. Nevertheless, at this point the general choice of dense versus
sparse data representation has to be grounded on heuristics.

4.5.1 OpenMP-Code

The structure of nested loops in the dense case (as shown in Fig. 3) is replaced by a
single loop (Fig. 7) that operates on the vector V of tuples.

5 Simulation Results

The simulation code for the CA has been run under benchmarking conditions on a
set of systems with the intention of giving ‘the bigger picture’ on what performance
levels are to be expected on recent high-performance compute hardware. With the
notable exception of the NEC ACE-SX system, the employed hardware belongs
to the class of so-called accelerators that—probably also due to its potential
performance and affordability—seems to be attaining more attention both in science
and engineering for quite some time now. Table 3 gives an overview of obtained
speedups of the investigated compute architectures over the baseline system
Intel Xeon 1620 (quad core). Again, we want to stress the fact that these

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 103

void update_CPU_sparse (int N, int xinput, aPixel %V,
unsigned int pixels, int *xoutput)

{

int row, col, slice;

int cell;

unsigned int nr;

#pragma omp parallel for private (slice, row, col, cell)
for (nr =0; nr < pixels; nr++)

{

slice = V[nr].z;

row = V[nr].y;

col = V[nr].x;
cell = input[slice * N * N + ((row) * N) + col];
cell = Max(cell, input[slice * N * + ((row—1) * N) + col]);
cell = Max(cell, input[slice * N + (row * N) + col —1]);
cell = Max(cell, input[slice * N + (row * N) + col+1]);
cell = Max(cell, input[slice * N + ((row+1) * N) + col]);

* N + (row * N) + col]);
* N + (row * N) + col]);
ol] = cell;

cell = Max(cell, input[(slice —1)
cell = Max(cell, input[(slice+1)
output[slice * N x* N + (row * N)

}

+ % %k ¥ X ¥
©c 2222277

}

Fig. 7 OpenMP code: evaluation of sparse state array

Table 3 Speedup overview (based on results presented in Table 1)

CA dim GTX680 NEC ACE-SX Tesla P100 Xeon E1620 Xeon Phi 5120

128 45% 19.9x 43.7x 1x n/a
256 37x 18.5% 99.7x 1x n/a
512 25.7x 12.5% 68.9% 1x n/a
704 15.5% 9.7x 55.2x 1x 18.1x

systems stem from different cycles in hardware development, so the interpretation of
reported numbers should take that into account, too. The Pascal-based Tesla P100
offers extreme levels of performance with runners-up found in the GTX680 GPU
and the Xeon Phi. In light of the high thread-counts of these three platforms which
range from several hundreds up to more than 3.500 threads the performance of the
quad core vector processor ACE-SX is quite astonishing (Fig. 8).'°

Figure 9 depicts the relation of execution times for dense and sparse codes
on two hardware platforms, one GPU and one node of the NEC ACE-SX vector

1°Even more so when we want to put this into relation with the age of the hardware concept of this
generation of the NEC processor, that apparently goes back at least 5 years from the time of this
report.

104 P. Zinterhof

__global__ void sparse_update (unsigned int number,
const aPixel* __restrict__ pixel_list,
const int * restrict input,

int *x __restrict__ output)

int max, iter, x,y,z;
unsigned int pos;

pos = (THREADS * Block_LOOPS)*blockldx .x+threadldx .x;

for (iter = 0; iter < Block_LOOPS; iter++)
{

if (pos < number)

{

z=(int) pixel_list[pos].z;
y=(int)pixel_list[pos].y;
x=(int)pixel_list[pos].x;

max=input [zxN*N+(y—1)*N+x] > input [z*xN«N+y*N+x] ? _

input [ZxNkN+(y—1)*N+x] : input [z*NkN+y*N+x];
max=input [ZxNkN+y*N+x—1]>max ? input[z*NkN+y*N+x—1]:max;
max=input [ZkN*kN+y*N+x+1]>max ? input[z*NkN+y*N+x+1]: max;
max=input [ZxN*N+(y+1)*N+x]>max ? input[z*N*N+(y+1)*N+x]: max;
max=input [(z—1)*N*N+y*N+x]>max ? input[(z—1)*NxN+y*N+x]: max;

output [zxN*xN+y*N+x] = input [(z+1)*NxN+y*N+x]>max ? _
input [(z+1)*N*N+y*N+x] : max ;

pos += (THREADS);

Y // pos < number

}
}

Fig. 8 CUDA code: evaluation of sparse state array

processor system, respectively.'! Both platforms deliver very stable execution times
for updates of the dense CA. As expected, execution times in the sparse formulation
of the CA update compare favorably to their dense counterparts for highly sparse
systems (e.g. upwards of 95% of background pixels). As can be seen, the GPU
system performs in robust way after reaching saturation at sparsity levels in the
range of 10-15%, whereas the vector processor ACE-SX seems to struggle with the
increased level of scattered memory access. It has to be noted that ACE-SX reaches
the cut-off point at which the sparse code no longer prevails over the dense code at a
later stage than the GPU platform. Hence, sparse formulation of updates is beneficial
for a wider range of densities in a given CA on ACE than it is for the GPU.

'The results that we report here have to be taken with some caution, as the ACE-SX and GTX
1080Ti belong to rather different eras of their respective development time.

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 105

70 T T T T T T T T
GTX 1080 Ti, dense
i GTX 1080 Ti, sparse
£ 60 NEC ACE-SX, dense .
a NEC ACE-SX, sparse
9} L i
g 50
("2}
Q
g 40r 1
("2}
bS]
o 30F : : ; : : 4
£
S 20 + B B . B B -
5
)
g 10+ : : : : : -
()
0 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

probability P (pixel density)

Fig. 9 Comparison of NVIDIA GTX1080 Ti GPU with NEC ACE-SX for dense and sparse
systems of dimension 512

25 T T T T T T T T
GTX 680, dim=512
2 x GTX 680, dim=512
E5-1620 v3 @ 3.50GHz
20 - B
0
(0]
£ 15 B
c
o
8 10 + : . . ; . -
(0]
x
(0]
5 J
0 i j j | —.——r—’x’/_/x//
0 5 10 15 20 25 30 35 40 45 50

probability P (pixel density)

Fig. 10 Relation of runtime and pixel probability (density of CA) for single-, dual-GPU and quad-
core CPU systems

As shown in Fig. 10, both GPU setups (single GTX 680, dual GTX 680) exhibit
performance levels that are robust against increased levels of pixel densities of
the simulated CA. On the contrary, the Xeon E5-1620-based system is able to
maintain relatively low turn-around times for low pixel densities, but falls short

106 P. Zinterhof

for densities beyond 20% when execution times do increase substantially. As both
the amount of memory and access patterns are fixed for all cases depicted in
Fig. 10 variations of execution times have to be attributed to differences of the
computational workload, which obviously is directly proportional to pixel densities
in the CA. In this particular case, the observed speedup of GPUs over the CPU
counterpart is not so much a result of some higher level in memory throughput on
the GPU system, but it is a consequence of the usually much lower core count on the
CPU. Unfortunately, speedup for the dual-GPU setup is limited to 1.4x due to UVA-
related PCI transactions that result from access to ghost cells on the corresponding
partner GPU. For the sake of completeness, we also want to report on the observed
performance on the above-mentioned CPU system both for Matlab and the discussed
CA-based algorithm. On average, Matlab’s bwconncomp function will take 12s
(wall time) in a 3-d lattice of dimension=512, while the CA-based algorithm shows
a cutoff at pixel density of some 40% beyond which execution times will mostly
exceed that of the corresponding Matlab function. In a CPU-only setting, the new
algorithm usually exhibits performance levels that are superior to Matlab for density
levels below 40%.

The optimized checking of the termination criterion yields stable and much
reduced turn-around times or single iterations up to some 70% of the total runtime
of the CA. Figure 11 depicts the expected increase of execution times towards the
end of the simulation of the CA, in which the CA states are beginning to settle and
remaining activity within the state array CA1 requires an increasing effort to detect.

&
o
T
I

4 - NVIDIA Pascal P102 === . .
AMD RYZEN 1700

average execution time (ms)

S >

9 Yo s Oy To S
)\9\9&\9(90\,)

6. 25 S G Yo o %> Yo Yo
O B B Y %y Y 7 %
iterations

Fig. 11 Execution timings of termination checks (based on code given in Fig. 5)

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 107
5.1 Maximum Operator

Our initial motivation for conducting experiments with an alternative, closed-
form maximum operator has been driven by the typical hardware characteristics
of modern GPUs, that on one hand do offer numerous numbers of powerful
CUDA cores, but on the other hand suffer from branching-incurred penalties
(e.g. warp-diversion). Unfortunately, the increased computational complexity of the
closed-form operator cannot be overcome by the sheer power of the GPU system.
As displayed in Fig. 12 an approach employing the branch-based maximum-
operator (Fig. 1) in conjunction with a loop-based computation of the row elements
of the CA state array performs best on the NVIDIA GTX 780 Ti hardware. Depend-
ing on the dimensions of the CA the next best option for dimension=256 is stated by
a CUDA grid-based parallelization of the row elements and for dimension=512 the
second best option is given by a combination of loops and closed-form maximum
operator. This difference can be attributed to the increased overhead that is
introduced by the large numbers of CUDA blocks in dimension=512 which amount
to 5122 = 262,144. Apparently, instantiation of such large numbers of CUDA-
blocks happens to be a rather expensive task in itself. Based on this observation a
second important finding follows, which can be stated as the occasional necessity

10 - -
F dim=512, loops, branch
loops, closed-form -------
CUDA grid, branch --------
CUDA grid, closed-form ———
dim=256, loops, branch
loops, closed-form ------ —
1t CUDA grid, branch
F CUDA grid, closed-form -—-—-—
e
(0]
£
- .
i) 01 =P
5 - s
o L=
(0] Lpim
x P
o) e
e
0.01 fo?
E /
0.001
0.05 0.1 0.15 0.2 0.25 0.3

probability P (pixel density)

Fig. 12 NVIDIA GTX 780Ti: various update kernels based on loops vs. CUDA grid and
branching vs. closed-form maximum operators

108 P. Zinterhof

Table 4 Performance and scalability on NEC ACE-SX

Max operator CPU core(s) Execution (ms) Speedup Global speedup
branch-based 1 107.9 1.0 1.0

closed-form 1 233.11 0.46x 0.46x
branch-based 4 (OpenMP) 81.74 1.0 1.32x
closed-form 4 (OpenMP) 79.03 1.034x 1.37x

for conventional loop-structures on GPUs, even when CUDA allows for a clean and
lean formulation of an algorithm entirely devoid of loops.

On NEC ACE-SX an ambivalent situation prevails when the closed-form maxi-
mum operator is applied. This system consists of a number of distributed cluster-
nodes, that communicate via a high-speed network and message-passing style
communication primitives. Each cluster-node comprises four distinct vector pro-
cessing cores, that allow for very convenient and tightly coupled OpenMP-based
parallelization as well as vectorization within the cores. Our experimental setup
concentrates on a single such node, hence we may apply vectorization and shared-
memory parallelization, respectively. In the single core variant the update of the state
array suffers from severe performance penalties (see Table 4, rows 1 and 2) when
the standard branch-based maximum operator (Fig. 1) is replaced by its closed-form
counterpart (Fig. 2). However, in the parallel 4-core setup a modest speedup of some
32% is gained for the branch-based code, while the closed-form operator yields 37%
overall speedup against the fastest sequential code. We do not regard this speedup
in the range of a mere 3% to be essential, but it nevertheless seems noteworthy
that the closed-form operator is moving from the position of the slowest version
(sequential case) right to the fastest version (parallel case). Unfortunately, we do
not have the resources to finally explain this result here, but it can be suspected
that the sequential code already operates close to the limit that is imposed by
the memory subsystem of the ACE-SX node. As the closed-form operator sports
higher computational complexity than the branch-based operator, it benefits very
clearly from the introduction of three additional cores in the parallel run, hence the
considerable speedup in this case.

6 Conclusions

To the best of our knowledge we have reported on the first implementations of a
Cellular Automaton-based algorithm for the computation of connected components
in 3-d binary lattices on vector-processing hardware, as the NEC ACE-SX system
and various accelerator-style hardware, such as nVidia-CUDA- and Intel Xeon Phi
equipped systems. The algorithm proves to be very suitable to all of these platforms,
and high levels of performance have been gained due to the massive amounts of
parallelism that is inherent to this class of algorithms. Even the baseline code

Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices 109

that we benchmarked on some modest mainstream Intel Xeon CPU offers certain
performance benefits in comparison to the corresponding function that is provided
with the popular Matlab environment. The reported performance numbers clearly
indicate potential benefits from experimenting with different algorithmic solutions,
even within the same general platforms (e.g. GPU).

Acknowledgements We would like to sincerely thank Professor Michael M. Resch and the whole
team of HLRS for their valuable support, continued guidance and discussions, and provision of
systems.

References

1. Datta, K., et al.: Stencil computation optimization and auto-tuning on state-of-the-art multicore
architectures. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008)

2. Hoekstra, A.G., Kroc, J., Sloot, PM.A.: Simulating Complex Systems by Cellular Automata.
Springer, Berlin (2010)

3. Holewinski, J., Pouchet, L.-N., Sadayappan, P.: High-performance Code Generation for Stencil
Computations on GPU Architectures. ACM, New York (2012). doi:10.1145/2304576.2304619

4. Stamatovic, B., Trobec, R.: Cellular automata labeling of connected components in n-
dimensional binary lattices. J. Supercomput. 72(11), 4221-4232 (2016). doi:10.1007/s11227-
016-1761-4

5. Tang, Y., Chowdhury, R.A., Kuszmaul, B.C., Luk, C.-K., Leiserson, C.E., The Pochoir Stencil
Compiler. ACM, New York (2011). doi:10.1145/1989493.1989508

6. Trobec, R., Stamatovic, B.: Analysis and classification of flow-carrying backbones in two-
dimensional lattices. Adv. Eng. Softw. 103, 38-45 (2015)

Part IV
Computational Fluid Dynamics

Turbulence in a Fluid Stratified by a High
Prandtl-Number Scalar

Shinya Okino and Hideshi Hanazaki

Abstract Turbulence in the fluid stratified by a high Prandtl-number (Pr) scalar
such as heat (Pr = 7) or salinity (Pr = 700) has been simulated by direct numerical
simulations, using 4096 grid points. Computations have been performed using
the 1024 nodes of NEC SX-ACE, which have enabled us to resolve the smallest
scale of salinity fluctuations ~/700(~26) times smaller than the smallest eddy size.
In our simulations, buoyancy initially affects only the large scale motions, and
the k~! spectrum predicted by Batchelor (J. Fluid Mech. 5:113-133, 1959) for a
passive scalar could be observed in the spectrum of potential energy, i.e. the salinity
fluctuations. However, as time proceeds, the buoyancy affects the smaller-scale
motions, and the salinity fluctuations begin to show a unique spatially localised
structure. At the same time, there appears a flat spectrum (o< k°) instead of the k™!
spectrum. The localised structure and the flat spectrum could be observed only for
the salinity (Pr = 700) and not for heat (Pr = 7).

1 Introduction

The atmosphere and the ocean, when temporally averaged, are the stably stratified
fluids with larger density at lower altitude. The oceanic flow is determined by the
distribution of temperature and salinity, but the salinity has a very small diffusion
coefficient so that the Prandtl number Pr, which is the ratio of the kinematic
viscosity of fluid to the diffusion coefficient, is very large (Pr = 700). This means
that the smallest scale of salinity fluctuations is much smaller than the smallest
eddy size in the flow. Batchelor [1] studied the variance spectrum of the passive
scalar which is simply convected by the flow without exerting the buoyancy effect
on the fluid. He showed theoretically that a high Prandtl number scalar (Pr >> 1)

S. Okino ¢ H. Hanazaki (D<)

Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto
University, Kyoto daigaku-katsura 4, Nishikyo-ku, Kyoto 615-8540, Japan

e-mail: okino@me.kyoto-u.ac.jp; hanazaki.hideshi.5w @kyoto-u.ac.jp

© Springer International Publishing AG 2017 113
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_7

mailto:okino@me.kyoto-u.ac.jp
mailto:hanazaki.hideshi.5w@kyoto-u.ac.jp

114 S. Okino and H. Hanazaki

dissipates at the wavenumber kg« = Pr'/kg. (k«: the Kolmogorov wavenumber),
which is now called the Batchelor wavenumber, and the spectrum is proportional to
k! in the viscous-convective subrange (kg« < kx < kpx).

Batchelor’s prediction has been confirmed by experiments [2], but the corre-
sponding numerical simulation of turbulence with a high Prandtl-number scalar
is difficult since the Batchelor wavenumber increases in proportion to Pr!'/2. For
example, the smallest scale of salinity fluctuation (Pr = 700) is +/700(~26) times
smaller than the Kolmogorov scale, which is the smallest scale of the fluid motion.
This indicates that the computation of salinity distribution requires 26°(~20,000)
times as many grid points as the turbulent flow itself. While this difficulty remains,
high Prandtl-number passive scalars (Pr > 1) in homogeneous fluids have been
simulated numerically to validate Batchelor’s prediction (e.g. [3]), and the turbulent
mixing of a very high Prandtl-number passive scalar (Pr = O(10%)) has been
investigated [4].

As for the stratified turbulence with a buoyant scalar (e.g. [5, 6]), there have
been many numerical studies, but almost all of them assume Pr ~ 1 to avoid
the difficulty of resolution. Therefore, behaviour of the high-Pr buoyant scalar
and its effect on the fluid motion have been largely unknown. In this study,
we perform the direct numerical simulations of decaying turbulence in the fluid
stratified by a high Prandtl-number scalar such as heat (Pr = 7) or salinity
(Pr = 700 > 1). The results for a very-high Prandtl number scalar (Pr = 700)
would be particularly useful to understand the mechanisms underlying the results
of laboratory experiments, or to consider the final period of decay of small-scale
turbulence in the real ocean.

2 Direct Numerical Simulations

We consider the motion of an incompressible fluid in a periodic cube 47w Los (Lox:
initial integral scale) on each side. The fluid is uniformly stratified in the vertical
direction by scalar T, and the Brunt-Viisild frequency N, is defined by N, =

\/ —a4g+dTy /dzx, Where o, is the contraction coefficient of the scalar, g« is the

gravitational acceleration and d7«(z«)/dz« is the constant vertical gradient of the
undisturbed scalar distribution. We investigate the decaying turbulence in a stratified
fluid. The initial velocity fluctuation is isotropic with rms velocity Uy« and integral
length L., while the initial scalar fluctuation is assumed to be absent.

The temporal variation of the velocity u;« (i = 3 denotes the vertical component)
and the scalar deviation from its background value 7, = T* — Tu(z«) are
governed by the Navier-Stokes equations under Boussinesq approximation, the

Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar 115

scalar-transport equation and the incompressibility condition:

aui 3ui ap 1 82ui 1
O — TS, 1
o "oy T Tox T Reg o T RR M
aT aT 1 T
T _ 2
o Yoy T Regprog T @
814,-
=0, 3
o, (3)

where the physical quantities without an asterisk are non-dimensionalised by the
length scale Lo«, the velocity scale Ups and the scalar scale Tox = —LoxdTs/dz«.
Non-dimensional parameters of the system are the initial Reynolds number Rey =
Uo«Lo« /v«, the initial Froude number Frg = Up«/N«Lo« and the Prandtl number
Pr = v, /k«, where v, is the kinematic viscosity coefficient and k. is the diffusion
coefficient of the scalar. In this study, the initial Reynolds number and the initial
Froude number are fixed at Rep = 50 and Fry = 1, while two Prandtl numbers
Pr = 7 and 700 are considered, corresponding to the heat and salinity diffusion in
water.

The governing equations are solved by the Fourier spectral method. The nonlin-
ear terms are evaluated pseudospectrally and the aliasing errors are removed by the
3/2-rule. As the time-stepping algorithm, the 4th-order Runge-Kutta method is used.
The initial fluctuation is developed without stratification until the enstrophy reaches
its maximum, and the stratification is switched on at that moment which is defined
as t = 0, and the computation is continued until # = 30.

Since the initial Reynolds number and the initial Froude number are fixed
(Reg = 50, Frop = 1), the initial Kolmogorov wavenumber is also a constant
(~17), and the Batchelor wavenumber for Pr = 700 is 17 x /700 ~ 450. Such
a small scale of scalar fluctuation can be resolved if we use 4096° grid points,
since the maximum wavenumber becomes 682.5 when the minimum wavenumber
is 0.5 (note that the flow is spatially periodic with the period of 4x in the non-
dimensional form). Since the high-wavenumber components decay with time, we
have reduced the number of grid points to 20483 when the Batchelor wavenumber
becomes smaller than approximately 210 (¢ = 6), in order to save the computational
resources.

The numerical simulation is executed using the 1024 nodes of NEC SX-ACE in
Tohoku University and Earth Simulator Center of JAMSTEC. Since more than 90%
of the computational time is spent for the three-dimensional real FFT to evaluate the
nonlinear terms, we have parallelised it based on the 1D-decomposition, using the
Message Passing Interface (MPI). The parallelised code showed a good scalability
up to 1024 nodes (Fig. 1).

116 S. Okino and H. Hanazaki

10*

L
Lo

T
L

10°

Real Time [s]

T

T

102 . L . L
10? 10 10*
N [node]
Fig. 1 The relation between the number of nodes (N) used for the computation and the real time

necessary for advancing 10 time steps when the number of grid point is 4096°. The line of N™!
(ideal scalability) is drawn for reference

10? e
[— kg |
: == ko
102 - T ke
« E T T e]
< [j
o) r —
= e
'\\f F /,”/ B
10" - P 4
r // -
- // B
-
-/ B
/
10000 e e e e
0 5 10 15 20 25 30

t

Fig. 2 Temporal variation of the Kolmogorov wavenumber kg, the Ozmidov wavenumber ko and
the Batchelor wavenumber kg for Pr = 700. When the Kolmogorov wavenumber agrees with the
Ozmidov wavenumber, kx = ko = (Rey/Fro)'/?* ~ 7.1

3 Results

We first show in Fig.2 the temporal variation of the characteristic wavenumbers
for Pr = 700. The (dimensional) Kolmogorov wavenumber defined by kg« =
(€x/v3)!/* (e4: kinetic energy dissipation rate) corresponds to the smallest size of
vortices, and it decreases with time because small scale fluctuations decay as time
proceeds. The Ozmidov wavenumber is defined by ko« = (N3 /€x)!/?, estimating
the wavenumber at which the inertial force and the buoyancy force balance. It is

Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar 117

initially one-order of magnitude smaller than the Kolmogorov wavenumber and
increases with time, meaning that the buoyancy effect is initially limited to the
large scale motion, and smaller scales are gradually affected by stratification. The
Ozmidov wavenumber exceeds the Kolmogorov wavenumber at ¢ ~ 7, from which
even the smallest size of velocity fluctuation is under the buoyancy effect. We will
later discuss the spatial distribution of the scalar fluctuation and the energy spectra
att = 4, at which only large scale motions are affected by the buoyancy, and r = 30,
at which a long time has passed since the buoyancy effect comes into play even for
the smallest scale of eddies.

We note that the wavenumber, at which the Kolmogorov and Ozmidov wavenum-
bers agree, does not depend on the Prandtl number. This is because equating them
leads to €4 = v4«N2, and thus kg« = kosx = (Na/V:)"/? or kg = ko = (Reo/Fry)'/?
in the non-dimensional form. Since the initial Reynolds and Froude numbers are
fixed in this study, the Kolmogorov wavenumber and the Ozmidov wavenumber
agree at ky = ko = (50/1)"/2 ~ 7.1.

The spatial distribution of the potential energy 72/2Fr3 at t = 4 is shown in
Fig. 3. It is immediately recognised that the scalar of Pr = 700 (salinity) contains
smaller scale fluctuations than Pr = 7 (heat). This is simply because a scalar
of higher Prandtl number has a smaller diffusion coefficient, so that small scale
fluctuations can persist for a longer time. The distribution is almost isotropic for
both Pr = 7 and Pr = 700 because the buoyancy effect is limited to relatively large
scales at this time and anisotropy is not clearly visualised in these figures.

The spatial distributions of kinetic energy u?/2 also exhibit isotropy and Pr-
dependence, although the figures are not shown here. The isosurfaces of the kinetic
energy for Pr = 700 have small wrinkles which are not observed in the case of
Pr = 7, suggesting that the small-scale fluctuations of velocity is enhanced by the

(a)

Fig. 3 Spatial distribution of the potential energy T?/2Fr2 at t = 4 for (a) Pr = 7 and (b)
Pr = 700. Isosurfaces of 25% of the maximum value are depicted

118 S. Okino and H. Hanazaki

(a) (b)
10° , 10° T -
4 — k! 4
1021 //___\ B 102 L //-;_\‘>\ 7
\\\ 1 \\\\\\\\ |
1074 > B 1074 Ry R
é 1070 |- \ 1 g 1076 - N
-8 | \ | -8 | \\ 4
10 \ 10 \
L \ 1 v
10710 L — Ex \ : 10710 1 Ex H
t——— Ep ko kk (ks ‘\ ——— Ep ko ki kg
107[2 Conl Lol e bt Lo |071'.’ Lol T Lol Coenl N
107! 100 10! 10% 10% 107! 10° 10! 10 10°
k k

Fig. 4 The kinetic energy spectrum Ex and the potential energy spectrum Ep at t = 4 for (a)
Pr =7 and (b) Pr = 700. The vertical lines show the Ozmidov wavenumber ko, the Kolmogorov
wavenumber kg and the Batchelor wavenumber kg

energy conversion from the potential energy through the intermediary of the vertical
scalar flux.

Figure 4 presents the kinetic and potential energy spectra at t = 4. They are
defined by

1
Ec) = [Pk @)
and
1 .
Ep(k) = Tk)|*dk, 5
»(0) /|k|=k a0 5)

respectively, where #; is the Fourier coefficient of u; and k is the wavenumber vector.
The potential energy spectrum for Pr = 700, i.e. the salinity fluctuation variance
spectrum, is found to be approximately proportional to k~! in an extensive range
(2 < k < 50). Our result is consistent with Batchelor’s k! law in the viscous-
convective subrange (kx < k < kp) [1] and suggests that the active scalar such
as salinity could initially exhibit the behaviour similar to the passive scalar which
does not have a buoyancy effect. The k~! law of the potential energy spectrum is
not clearly observed when Pr = 7 because the Prandtl number is not very large
and the Batchelor wavenumber is only +/7(~2.6) times larger than the Kolmogorov
wavenumber.

At high wavenumbers, the Prandtl-number dependence of the kinetic energy
spectrum is also found. The small-scale velocity fluctuations for Pr = 700 are more
energetic than those for Pr = 7 because of the persistent energy conversion from
the potential energy. On the other hand, at low wavenumbers (k < kx ~ 10), the
spectrum is almost independent of the Prandtl number.

We next show in Fig.5 the spatial distribution of potential energy at r =
30, i.e. when the Ozmidov wavenumber is one order of magnitude larger than

Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar 119

(@ (b)

Fig. 5 Spatial distribution of the potential energy T2/2Fr3 at t = 30 for (a) Pr = 7 and (b)
Pr = 700. Isosurfaces of 30% of the maximum value are depicted

(@) (b)
100 10°
1072 — E 1072 1 — B
1074 B 1074 4
& r a L
90 L 48 0 i
X x
8 L = L
1078 |- 1 107 -]
1010 | — Ex i 10710 | — Ex \]
r———Ep ko] F——— Ep kg ko ks \\
10-12 P I B 10712 P B IR EET! R SR AR
107! 10° 10% 103 107! 10° 10! 10? 10°

Fig. 6 The kinetic energy spectrum Ex and the potential energy spectrum Ep at + = 30 for (a)
Pr =7 and (b) Pr = 700. The vertical lines show the Ozmidov wavenumber ko, the Kolmogorov
wavenumber kg and the Batchelor wavenumber kg

the Kolmogorov wavenumber, and even the smallest eddies are strongly affected
by buoyancy. The large-scale structures containing much of the potential energy
(grey blobs) are the horizontally flat “pancake” structures typical to the stratified
turbulence (e.g. [6]). These large-scale structures are independent of Pr, and similar
in Fig. 5a, b. A significant difference between the two figures is that small scale
fluctuations exist only in the blobs of Pr = 700, and they show an intermittent
pattern. It can be viewed as a spatial localisation of scalar fluctuations.

The kinetic and potential energy spectra at the same time (¢t = 30) are presented
in Fig. 6. The potential energy spectrum for Pr = 700 (Fig. 6b) no longer shows
the k! power law observed earlier (+ = 4 in Fig.4b), and a flat spectrum or a
plateau (ox k°) appears between the Kolmogorov wavenumber and the Batchelor
wavenumber. The plateau would contain much larger energy compared to the

120 S. Okino and H. Hanazaki

Fig. 7 Spatial distribution of the kinetic energy dissipation rate (du;/dx;)*/Re at t = 30 for (a)
Pr =7 and (b) Pr = 700. Isosurfaces of 30% of the maximum value are depicted

ordinary spectrum which decreases at higher wavenumbers, and would correspond
to the small-scale fluctuations observed in Fig. 5Sb. The flat spectrum has not been
observed for the lower Prandtl number (Pr = 7) probably due to the proximity
between the Komogorov wavenumber and the Batchelor wavenumber. Since the
potential energy in the plateau observed at Pr = 700 is converted persistently to the
kinetic energy via the vertical scalar flux, there is a substantial increase of kinetic
energy in sub-Kolmogorov scales (k ~ 20) compared to the case of Pr = 7 (Fig. 6).

Since the increase of kinetic energy at high wavenumber is hardly discernible in
the spatial distribution of kinetic energy, we show in Fig.7 the spatial distribution
of kinetic energy dissipation rate (Ju;/dx;)*/Reo, which will more clearly show
the small-scale structures. Small-scale fluctuations of the kinetic-energy dissipation
rate and an intermittent pattern are found when Pr = 700 (Fig. 7b), similar to the
potential energy distribution observed in Fig. 5b. The maximum value of the local
kinetic energy dissipation rate at Pr = 700 is about 70% larger than that at Pr = 7,
because of the increase of the kinetic energy in the sub-Kolmogorov scale. We note
that the kinetic energy dissipation spectrum also has a small plateau around k ~ 20
though the figure is not shown here.

4 Conclusions

We have demonstrated a direct numerical simulation of turbulence in a fluid
stratified by a high Prandtl-number scalar such as heat (Pr = 7) or salinity
(Pr = 700), using 4096* grid points. Massive computation has been performed
using the 1024 nodes of NEC SX-ACE, which have enabled us to resolve the

Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar 121

smallest scale of salinity fluctuations about 26 times smaller than the Kolmogorov
scale. The results can be summarised as follows.

Initially, before the Ozmidov wavenumber exceeds the Kolmogorov wavenum-
ber, buoyancy effect is limited to the scales larger than the Ozmidov scale. Then, the
small-scale scalar fluctuations exist isotropically in space, and the potential energy
for Pr = 700 has a spectrum proportional to k™! at high wavenumbers between
the Kolmogorov wavenumber and the Batchelor wavenumber (viscous-convective
subrange). These results show that the initial behaviour of an active (buoyant) scalar
is very similar to the passive scalar.

Later, after the Ozmidov wavenumber exceeds the Kolmogorov wavenumber,
the buoyancy affects the fluid motion down to the Kolmogorov scale, which is the
smallest scale of the fluid motion. In that final period of decay, the scalar fluctuations
at Pr = 700 shows a spatially localised distribution, and its spectrum exhibits a
plateau (o< k°) between the Kolmogorov and Batchelor wavenumbers. The potential
energy in the wavenumber range of plateau is converted persistently to the kinetic
energy via the vertical scalar flux, leading to an increase of kinetic energy (and its
dissipation rate) at scales smaller than the Kolmogorov scale.

The localisation and the flat spectrum have not been observed at Pr = 7, possibly
because the Kolmogorov wavenumber and the Batchelor wavenumber are not well
separated. However, the reason why these two prominent features appear only at
Pr = 700 is still an open question, and the energy budget of the spectrum is now
under investigation in the hope of clarifying the mechanisms.

Acknowledgements This research used computational resources of the HPCI system provided by
Tohoku University through the HPCI System Research Project (Project ID: hp160108), and the
Earth Simulator at the Japan Agency for Marine Earth Science and Technology.

References

1. Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid.
J. Fluid Mech. §, 113-133 (1959)

2. Gibson, C.H., Schwarz, W.H.: The universal equilibrium spectra of turbulent velocity and scalar
fields. J. Fluid Mech. 16, 365-384 (1963)

3. Bogucki, D., Domaradzki, J.A., Yeung, P.K.: Direct numerical simulations of passive scalar with
Pr > 1 advected by turbulent flow. J. Fluid Mech. 343, 111-130 (1997)

4. Yeung, PK., Xu, S., Donzis, D.A., Sreenivasan, K.R.: Simulations of three-dimensional
turbulence mixing for Schmidt numbers of the order 1000. Flow Turbul. Combust. 72, 333-347
(2004)

5. Riley, J.J., Metcalfe, R.W., Weissman, M.A.: Direct numerical simulations of homogeneous
turbulence in density-stratified fluids. In: B.J. West (ed.) Proceeding of the AIP Conference on
Nonlinear Properties of Internal Waves, pp. 79-112 (1981)

6. Métais, O., Herring, J.R.: Numerical simulations of freely evolving turbulence in stably stratified
fluid. J. Fluid Mech. 202, 117-148 (1989)

Wavelet-Based Compression of Volumetric CFD
Data Sets

Patrick Vogler and Ulrich Rist

Abstract One of the major pitfalls of storing “raw” simulation results lies in the
implicit and redundant manner in which it represents the flow physics. Thus trans-
forming the large “raw” into compact feature- or structure-based data could help
overcome the I/O bottleneck. Several compression techniques have already been
proposed to tackle this problem. Yet, most of these so-called lossless compressors
either solely consist of dictionary encoders, which merely act upon the statistical
redundancies in the underlying binary data structure, or use a preceding predictor
stage to decorrelate intrinsic spatial redundancies. Efforts have already been made
to adapt image compression standards like the JPEG codec to floating-point arrays.
However, most of these algorithms rely on the discrete cosine transform which offers
inferior compression performance when compared to the discrete wavelet transform.
We therefore demonstrate the viability of a wavelet-based compression scheme for
large-scale numerical datasets.

1 Introduction

The steady increase of available computer resources has enabled engineers and
scientists to use progressively more complex models to simulate a myriad of fluid
flow problems. Yet, whereas modern high performance computers (HPC) have seen
a steady growth in computing power, the same trend has not been mirrored by a
significant gain in data transfer rates. Current systems are capable of producing
and processing high amounts of data quickly, while the overall performance is
oftentimes hampered by how fast a system can transfer and store the computed
data. Considering that CFD researchers invariably seek to study simulations with
increasingly higher temporal resolution on fine grained computational grids, the
imminent move to exascale performance will consequently only exacerbate this
problem [10].

P. Vogler (0<) « U. Rist

Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, 70569
Stuttgart, Germany

e-mail: patrick.vogler @iag.uni-stuttgart.de; rist@iag.uni-stuttgart.de

© Springer International Publishing AG 2017 123
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_8

mailto:patrick.vogler@iag.uni-stuttgart.de
mailto:rist@iag.uni-stuttgart.de

124 P. Vogler and U. Rist

Fig. 1 Stream-wise velocity field from a numerical simulation of a turbulent flat-plate boundary
layer flow at Reg o = 300

Fig. 2 Dyadic decomposition into subbands for the streamwise velocity field of Fig. 1

One way to alleviate the I/O bottleneck would be to reduce the number of time
steps which are written to the file system. While this trivial data reduction method
may be tolerable for simulations that reach a steady state solution after a minuscule
amount of time, the same approach would be fatal for highly transient physical
phenomena. Considering that most fluid flow problems are subject to diffusion,
however, we can conclude that our numerical datasets will typically be smooth and
continuous, resulting in a frequency spectrum that is dominated by lower modes
(see Figs. 1 and 2) [10]. Thus our best way forward should be to use the otherwise
wasted compute cycles by exploiting these inherent statistical redundancies to create
a more compact form of the information content. Since effective data storage is a
pervasive problem in information technology, much effort has already been spent

Wavelet-Based Compression of Volumetric CFD Data Sets 125

on developing newer and better compression algorithms. Most of the prevalent
compression techniques that are available for floating-point datasets, however, are
so-called lossless compressors that either solely consist of dictionary encoders,
which merely act upon the statistical redundancies in the underlying binary data
structure (i.e. Lempel-Ziv-Welch algorithm [13]), or use a preceding predictor stage
to decorrelate intrinsic spatial redundancies (i.e. FPZIP [6]). These compression
schemes are limited to a size reduction of only 10-30%, not allowing for a more
efficient compression by neglecting parts of the original data that contribute little to
the overall information content [7, 8].

Prominent compression standards that allow for lossy compression, however,
can be found in the world of entertainment technology. In this context, Loddoch
and Schmalzl [8] have extended the Joint Photographic Experts Group (JPEG)
standard for volumetric floating-point arrays by applying the one-dimensional real-
to-real discrete cosine transform (DCT) along the axis of each spatial dimension.
The distortion is then controlled by a frequency dependent damping of the DCT
coefficients followed by a quantization stage which maps the floating-point values
onto an integer range with adjustable size. Finally, the quantized DCT coefficients
are encoded using a variable-length code similar to that proposed by the JPEG
standard. Lindstrom [7], on the other hand, uses the fixed point number format
Q, which maps the floating point values onto the dynamic range of a specified
integer type, followed by a lifting based integer-to-integer implementation of
the discrete cosine transform. The DCT coefficients are then encoded using an
embedded coding algorithm to produce a quality-scalable codestream. While these
compression algorithms are simple and efficient in exploiting the low frequency
nature of most numerical datasets, their major disadvantage lies in the non-locality
of the basis functions of the discrete cosine transform. Thus, if a DCT coefficient is
quantized, the effect of a lossy compression stage will be felt throughout the entire
flow field [3]. To alleviate this, the numerical field is typically divided into small
blocks and the discrete cosine transform is applied to each block one at a time. While
partitioning the flow field also facilitates random-access read and write operations,
this approach gives rise to block boundary artifacts which are synonymous with the
JPEG compression standard.

In order to circumvent this problem, we propose to adapt the JPEG-2000
(JP2) compression standard for volumetric floating-point arrays. In contrast to
the baseline JPEG standard, JPEG-2000 employs a lifting-based one-dimensional
discrete wavelet transformed (DWT) that can be performed by either the reversible
LeGall-(5,3) taps filter for lossless or the non reversible Daubechies-(9,7) tabs filter
for lossy coding [1]. Due to its time-frequency representation, which identifies the
time or location at which various frequencies are present in the original signal,
the discrete wavelet transform allows for the full frame decorrelation of large
scale numerical datasets. This eliminates blocking artifacts at high compression
ratios, commonly associated with the JPEG standard. Furthermore, the dyadic
decomposition into multi-resolution subbands (see Fig. 2) enables the compression
standard to assemble a resolution-scalable codestream and the definition of so-called
Regions of Interest (ROI), which are to be coded and transmitted with better quality

126 P. Vogler and U. Rist

Fig. 3 ROI mask generation in the wavelet domain

/ LiLyH, / HiLH,

L,L,H sLoH

LLL; |HLoLe

Histisls /
LH, L [HoHo L -
=

e

LH, L, H.H, L, /

o

Fig. 4 3-Dimensional dyadic decomposition into subbands [2]

and less distortion than the rest of the flow field (see Fig.3). Similar to the ZFP
Standard by Lindstrom [7], JPEG-2000 employs an embedded coding algorithm
to produce a quality scalable codestream [12]. Finally, JPEG-2000s volumetric
extension (JP3D) translates these same capabilities to multi-dimensional datasets
by applying the one-dimensional discrete wavelet transform along the axis of each
subsequent dimension (see Fig. 4) [2].

In this paper we will assess the lossy compression stage of the JPEG-2000 codec
for volumetric floating-point arrays and how it compares to a DCT (ZFP) and
dictionary encoder (7-Zip) based compression scheme. In Sect.2 we will provide
an overview of the fundamental building blocks of the JPEG-2000 Part 1 codec
and its volumetric extension JP3D. Our focus will lie on the transformation and
quantization stage, since most of our efforts to adapt the JPEG-2000 algorithm to
floating-point numbers have been spent on this part of the codec. For a thorough

Wavelet-Based Compression of Volumetric CFD Data Sets 127

discussion of the Embedded Block Coding with Optimized Truncation (EBCOT)
algorithm the reader is referred to the treatise by Taubman and Marcellin [12].
Preliminary compression results for a numerical simulation of a turbulent flat-plate
boundary layer flow and Taylor-Green vortex decay will be shown in Sect. 3. Finally,
we conclude with some closing remarks in Sect. 4.

2 Technical Description

The JPEG-2000 standard is divided into 14 parts, with part 1 defining the core
coding system of the compression standard. Each subsequent part, such as the
volumetric extension JP3D, translates the capabilities of the baseline codec to
different fields of application [12]. Since we are, for the most part, only interested
in compressing three-dimensional numerical datasets, we will limit our discussion
to the baseline codec and its volumetric extension.

As depicted in Fig. 5, the first step in our compression stage is to generate a
time-frequency representation of the original data samples, which enables relatively
simple quantization and coding operations. It is worth noting that, given an invertible
Transform 7, this step will not introduce any distortion in the decompressed
dataset [12]. In the second step, the transformed samples are represented using a
sequence of quantization indices. This mapping operation introduces distortion in
our decompressed data, since the set of possible outcomes for each quantization
index is generally smaller than for the transformed samples [1]. Finally, the
quantization indices are losslessly entropy coded to form the final bit-stream [9]. To
adapt the JPEG-2000 codec for floating point arrays, we use the fixed point number
format Q as described in Sect. 2.1. Next, the transform (Sect. 2.2) and quantization
(Sect.2.3) components are discussed in more detail.

2.1 Fixed Point Number Format

Our approach to handle floating point values was inspired by the ZFP compression
standard [7]. Using the fixed point number format Q, we first map the floating point
values onto the dynamic range of a specified integer type (i.e. 64 bit). To this end,

Original Pre- Discrete Uniform Adaptive iCompressed
Data 5 Wavelet Quantizer Binary Bit-stream | ! Data
Proces-——— — A — - L |
sin Transform with Arithmetic Organization|
9 (DWT) Deadzone Coding
Encoder

Fig. 5 Fundamental building blocks of the JPEG-2000 compression stage [9]

128 P. Vogler and U. Rist

the conservative variables p, pu, pv, pw and E were first aligned with regards to
their largest floating point exponents, which are stored uncompressed in the header
of the codestream. We used a Q8.23 two’s compliment format that allows numbers
in the range [—255, 255) to be represented. Although the normalized floating point
values lie in a smaller range (—1, 4-1), the additional dynamic range was added to
prevent an overflow of the variables during the subsequent transform stage.

2.2 The Discrete Wavelet Transform

The transform is responsible for massaging the data samples into a more amenable
representation for compression. It should capture the statistical dependencies among
the original samples and separate relevant from irrelevant information for an optimal
quantization stage. Finally, the use of integer DWT filters allows for both lossy and
lossless compression in a single code-stream [9].

The lifting-based one-dimensional discrete wavelet transform is best understood
as a pair of low- and high-pass filters, commonly known as the analysis filter-bank.
Successive application of the analysis filter pair is followed by a down-sampling
operation by a factor of two, discarding odd indexed samples. The analysis
filter-bank is designed in such a manner that perfect reconstruction, barring any
quantization error, is still possible after the downsampling step. The low pass filter
attenuates high frequency components in a one-dimensional signal, resulting in a
blurred version of the original dataset. This low-pass output is typically highly
correlated and thus can be subjected to further stages of the analysis filter-bank.
The high-pass filter, on the other hand, preservers the high frequency components,
which usually results in a sufficiently decorrelated high-pass signal. Consequently,
most DWT decompositions only further decompose the low-pass output to produce
what is known as a dyadic decomposition [9].

The filtered samples, which are output from the transform operation, are referred
to as wavelet coefficients. To ensure the efficiency of the compression algorithm,
these coefficients are critically sampled by virtue of the downsampling operation.
This means, that the total number of wavelet coefficients needs to be equal to
the number of original signal samples. Thus, when the DWT decomposition is
applied to an odd-length signal, either the low- or high-pass sequence will have one
additional sample. This choice is dictated by the position of the odd-length signal in
relation to the global coordinate system [12].

Having described the general ideas behind the transform step, we now introduce
the specific wavelet transform described by the JPEG-2000 standard. The reversible
transform option is implemented by means of the 5-tap/3-tap filter-bank described in
Eq. (1). It is a nonlinear approximation of linear lifting steps which efficiently map
integers to integers. The 5/3 filter allows for repetitive en- and decoding without
information loss, barring any distortion that arises due to the decompressed image

Wavelet-Based Compression of Volumetric CFD Data Sets 129

Leading boundary Trailing boundary
-TTTrr- -1 - - I B B
., 95 ,128(255(|128| 95 | .. | .. | 77| 89 |122| 89 | 77 | ..
e - [[S
symmetric point symmetric point

Fig. 6 Symmetric extension at the leading and trailing boundaries of a signal segment

values being clipped, should they fall outside their full dynamic range [12].
y2n+1) =xQ2n+1)— Lx<2n>+)2r<2n+z>J ’

y(2n) = x(2n) — Lx(Zn—l)+z(2n+l)+2J _ (1)

While the 5/3 bi-orthogonal filter-bank is a prime example for a reversible
integer-to-integer transform, its energy compaction, due to its nonlinearity, usually
falls short of most floating point filter-banks. The most prominent real-to-real
transform is the irreversible 9-tap/7-tap filter-bank described in Eq. (2) [9].

y2n+1) < x(2n 4+ 1) 4+ (—1.586 x |x(2n) + x(2n + 2)|),
y(2n) < x(2n) + (—0.052 x |y2n— 1) + y(2n + 1)),
y2n+ 1) < y(2n + 1) + (0.883 x [y(2n) + y(2n + 2)|),
y(2n) < y(2n) + (0.443 x |[y(2n — 1) + y(2n + 1))),
y@2n+1) « —1.230 x y(2n + 1), 2)
y(2n) < (1/1.230) x y(2n).
To ensure the perfect reconstruction property of the wavelet transform, the undefined
samples outside of the finite-length signal segment need to be filled with values

related to the samples inside the signal segment. When using odd-tap filters, the
signal is symmetrically and periodically extended as shown in Fig. 6 [5].

2.3 Quantization

Unlike its predecessor, the JPEG-2000 algorithm employs a central deadzone
quantizer (see Fig. 7) to reduce the inherent entropy in the wavelet coefficients. This
reduction in precision is lossy, unless the quantization stepsize is set to 1 and the
subband samples are integers. Each of the wavelet coefficients y;, of the subband b

130 P. Vogler and U. Rist

yu,v) 4 Ay 24, Ay Ay
M M - ' M N
Y ¥ y y Y

qp(u,v) =2 -1 0 1 2

Fig. 7 Uniform scalar quantizer with deadzone

is mapped to the quantization value g, according to the formula [12]:

. b (0
@ = sign (3 [n)) {'y | ”J. 3
b
the stepsize Ay is calculated as follows:
—e b
ap =20 (14 10, @)
0<e <2° 0<py<2%, (3)

where €, is the exponent, (i, is the mantissa of the corresponding stepsize and
R;, represents the dynamic range of the subband b. This limits the largest possible
stepsize to twice the dynamic range of the subband. In case of a reversible coding
path, Ay is set to one by choosing u, = 0 and R, = €, [12].

3 Experimental Results

3.1 Data Sets

For testing the JPEG-2000 algorithm we used datasets from numerical simulations
of a turbulent flat-plate boundary layer flow at Mas, = 0.3 and Mas, = 2.5 (see
Fig. 8) performed by C. Wenzel at the Institute of Aerodynamics [14]. The spatial
resolution of the numerical grid was set to nx x ny x nz = 3300 x 240 x 512 nodes
in streamwise, wall-normal and spanwise directions respectively. The file size for
one time step containing the conservative variables p, pu, pv, pw, E amounted to
16.220.192.238 bytes.

To compare the JPEG-2000 algorithm with the ZFP and 7-Zip encoders, we
used a numerical simulation of a Taylor-Green vortex decay at Re = 1600, with
a spatial resolution of nx x ny x nz = 256 x 256 x 256 (see Fig.9). The compression
performance was evaluated at the non-dimensional time-steps t = 0, 2.5, 5, 7.5,
10, 12.5, 15, 17.5, 20. The file size for one time step containing the conservative
variables p, pu, pv, pw and pE amounted to 703.052.304 bytes.

To assess the overall quality of the decompressed file we used the peak signal-
to-noise ratio metric (PSNR), which is evaluated based on the mean-square-error

Wavelet-Based Compression of Volumetric CFD Data Sets 131

20 dggp

10 83,0
l
£ | i
£ x ' [1 [
) H ' Stretching and Filtering in y-direction I
[: T
e B Mai |
- £ 5 3¢ 2
=] B < %
o w | W"_Q
- —] =
i J_‘l—. - Stretching and Filtering -I-
T in r-direction '
trzzzzzz. v > , e . -
I o Tend Tmaz

Fig. 8 Numerical setup for the simulation of a turbulent flat-plate boundary layer flow at Maco =
0.3 and Maso = 2.5 [14]

(MSE):

1 i J k
MSE= o 33 Y[y ~ Iy ©

x=1y=1 z=1

(N

PSNR = 20 - log,, (max(l(x,y, z)) — min(/(x, y, z))) |

VMSE

where I(x,y,z) is the original, I’(x,y,z) the decompressed data and i,j,k the
dimensions of the volumetric dataset. The PSNR is expressed in dB (decibels).
We found that good reconstructed datasets typically have PSNR values of 90 dB
or more. We ran our experiments on a single core of an Intel Core i7-6700 processor
with 3.40 GHz and 32 GB of 2133 MHz DDR4 RAM.

3.2 Results

Figure 10 shows a close-up of the original (top) and compressed (bottom) DNS for
a turbulent flat-plate flow at Ma,, = 0.3, Fig. 11 for a turbulent flat-plate flow at
Mas, = 2.5. The compression ratio for the simulation at Mas, = 0.3 measured 18:1
with a PSNR of 171.1, while the compression ratio for the simulation at Mas, = 2.5
measured 16:1 with a PSNR of 171.0. The average compression time amounted to
936s. In comparison, the compression ratio for the lossless LZMA Algorithm (7-
Zip) measured only 1.2—-1.3:1, with an average compression time of 1743 s.

Overall the JPEG-2000 algorithm offers good compression ratios with rea-
sonably well reconstruction of the numerical datasets. Due to the floating point
arithmetic and the many-to-one mapping, however, information will be irreversibly
lost during the preprocessing of the data samples and thus true lossless compression
cannot be achieved. Furthermore, the entropy encoder is unable to take full
advantage of its optimal truncation algorithm since a large part of the quantization

132 P. Vogler and U. Rist

Vorticity (z component) Vorticity (z component)
0.8 04 0 04 08 0.8 04 0 04 08

Vorticity (z component) Vorticity (z component)
-4 -2 0 2 4 -2 0 2

Fig. 9 Visualization of the Taylor-Green vortex decay test case with a 256 grid. The non-
dimensional vorticity (z-component) is shown from fop left to bottom right for the non-dimensional
times t =0, 2.5, 10, 20 [4]

(fixed point number transformation) falls outside of its purview. Furthermore, it
is worth noting that the processor time spent for compressing the data sets is
excessively high. This, however, can be attributed to the fact that the JPEG-2000
Codec used in this paper has not yet been optimized for speed.

Table 1 compares the compression ratio, compression time and PSNR for the JP2,
ZFP and 7-Zip compressors. Several non-dimensional time-steps for the numerical
simulation of a Taylor-Green vortex decay are listed to assess the effects of different
vortex scales on the overall compression performance. We found that both the
ZFP and JP2 offer significantly larger compression ratios when compared to the

Wavelet-Based Compression of Volumetric CFD Data Sets 133

@m =<

o

|_ANEAEE |
SO s
o w

Fig. 10 Original (fop) and Compressed (bottom) DNS of a turbulent flat-plate boundary layer
flow at Maso = 0.3. Flow structures identified by the A,-criterion for A, = —0.15. Coloration of
isosurfaces according to wall normal distance y [14]

7-Zip encoder. The overall distortion of the flow field was observed to be small
for both lossy algorithms, with the JP2 compressor offering a considerably better
reconstruction of the numerical dataset at similar compression ratios. In contrast,
the compression time for our wavelet-based approach is substantially larger. It
is, however, noteworthy that most of the processing time is spent on the entropy
encoding stage of the JPEG-2000 compressor. Since both the ZFP and JPEG-
2000 Codec share a similar embedded coding algorithm we feel confident, that
this large discrepancy in compression time is due to the unoptimized nature of our
compression algorithm.

134 P. Vogler and U. Rist

wn

in

OSSN WW R
o o

I b

Fig. 11 Close-up of the Original (fop) and Compressed (bottom) DNS of a turbulent flat-plate
boundary layer flow at Mas, = 2.5. Flow structures identified by the A,-criterion for A, = —0.15.
Coloration of isosurface according the wall normal distance y [14]

4 Conclusions

We presented a wavelet-based lossy compression scheme that allows for the com-
pression of large volumetric floating-point arrays. The proposed technique is based
on the JPEG-2000 algorithm [12]. A comparison with established compression
techniques was done using three-dimensional data sets from a numerical simulation
of a turbulent flat-plate boundary layer flow and Taylor-Green vortex decay. Based
on the results of our study we found that our compression approach can significantly

Wavelet-Based Compression of Volumetric CFD Data Sets 135

Table 1 Compression ratio, compression time and peak signal to noise ratio for the JP3D, ZFP
and 7-Zip compressor

Compression ratio Compression time PSNR

Timestep JP2 ZFp 7-Zip JP2 ZFp 7-Zip JP2 ZFP 7-Zip*
0 60.90 6110 41.72 20.10 1.61 11491 18190 64.15 oo
2954 29.45 29.50 6.03 3237 243 16037 18130 86.98 oo
5909 13.58 13.60 584 6638 285 17320 18290 7598 oo
8864 8.23 8.22 5.57 9478 3.06 164.00 18270 86.23 o0
11819 653 653 507 109.19 317 17291 178.20 91.36 o0
14774 628 6.28 463 118.34 329 17280 179.20 98.42 o0
17729 6.21 6.21 421 11637 334 18638 175.60 100.3 o)
20684 636 6.36 392 11525 339 18388 17580 102.4 00
23634 6.47 6.46 372 11385 334 18145 1753 105.5 00

The best results appear in bold
2The PSNR for the 7-Zip compressor is always infinity due to its lossless nature

decrease the overall flow field distortion while maintaining a high compression ratio.
The results, however, also show the need for an optimized implementation of our
wavelet based codec. Considering our compressor shares a similar entropy encoding
stage with the ZFP codec, we anticipate that improvements to our algorithms will
lead to competitive compression and decompression times.

Looking ahead, our hope is that so-called intraband prediction methods, which
are used in the High Efficiency Video Coding standard (HEVC), could further
increase the overall efficiency [11, 15]. We will also investigate higher order signal
transforms which allow for the efficient transformation of images with smooth
regions separated by smooth boundaries.

Acknowledgements This work was supported by a European Commission Horizon 2020 project
grant entitled “ExaFLOW: Enabling Exascale Fluid Dynamics Simulations” (grant reference
671571). The authors would also like to thank Christoph Wenzel at the Institute of Aerodynamics
and Gasdynamics at the University of Stuttgart for providing labor intensive data sets of a turbulent
flat-plate boundary flow.

References

1. Acharya, T., Tsai, P.: JPEG2000 Standard for Image Compression: Concepts, Algorithms and
VLSI Architectures. Wiley, New Jersey (2005)

2. Bruylants, T., Munteanu, A., Schelkens, P.: Wavelet based volumetric medical image compres-
sion. Signal Process. Image Commun. 31, 112-133 (2015). doi:10.1016/j.image.2014.12.007

3. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding system: an
overview. IEEE Trans. Consum. Electron. 46(4), 1103-1127 (2000). doi:10.1109/30.920468

4. Jacobs, T., Jammy, S.P., Sandham, N.D.: OpenSBLI: a framework for the automated derivation
and parallel execution of finite difference solvers on a range of computer architectures. J.
Comput. Sci. 18, 12-23 (2017). doi:10.1016/j.jocs.2016.11.001

136 P. Vogler and U. Rist

5.Li, S., Li, W.: Shape-adaptive discrete wavelet transforms for arbitrarily shaped visual
object coding. IEEE Trans. Circuits Syst. Video Technol. 10(5), 725-743 (2000).
doi:10.1109/76.856450

6. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph.
20(12), 2674-2683 (2014). doi:10.1109/TVCG.2014.2346458

7. Lindstrom, P., Isenburg M.: Fast and efficient compression of floating-point data. IEEE Trans.
Vis. Comput. Graph. 12(5), 1245-1250 (2006). doi:10.1109/TVCG.2006.143

8. Loddoch, A., Schmalzl, J.: Variable quality compression of fluid dynamical data
sets using a 3-D DCT technique. Geochem. Geophys. Geosyst. 7(1), 1-13 (2006).
doi:10.1029/2005GC001017

9. Rabbani, M., Joshi, R.: An overview of the JPEG 2000 still image compression standard. Signal
Process. Image Commun. 17(1), 348 (2002). doi:10.1016/S0923-5965(01)00024-8

10. Schmalzl, J.: Using standard image compression algorithms to store data from computational
fluid dynamics. Comput. Geosci. 29, 1021-1031 (2003). doi:10.1016/S0098-3004(03)00098-0

11. Sze, V., Budagavi, M., Sullivan, G.J. (eds.): High Efficiency Video Coding (HEVC): Algo-
rithms and Architectures. Springer, Cham (2014)

12. Taubman, D., Marcellin, M.: JPEG2000: Image Compression Fundamentals, Standards and
Practice. Springer, New York (2002)

13. Welch, T.A.: A technique for high-performance data compression. Computer 17(6), 8-19
(1984). doi:10.1109/MC.1984.1659158

14. Wenzel, C., Selent, B., Kloker, M., Rist, U.: DNS of compressible turbulent boundary layers
and assessment of data-scaling-law quality. Under consideration for publication in J. Fluid
Mech.

15. Wien, M.: High Efficiency Video Coding (HEVC): Coding Tools and Specification. Springer,
Heidelberg (2014)

Validation of Particle-Laden Large-Eddy
Simulation Using HPC Systems

Konstantin Frohlich, Lennart Schneiders, Matthias Meinke,
and Wolfgang Schroder

Abstract In this contribution, results of a direct particle-fluid simulation (DPFS)
are compared with direct numerical simulations and large-eddy simulations (LES)
using a popular Euler-Lagrange method (ELM). DPFS facilitates the computation
of particulate turbulent flow with particle sizes on the order of the smallest flow
scales, which requires advanced numerical methods and parallelization strategies
accompanied by considerable computing resources. After recapitulating methods
required for DPFS, a setup is proposed where DPFES is used as a benchmark for
direct numerical simulations and LES. Therefore, a modified implicit LES scheme
is proposed, which shows convincing statistics in comparison to a direct numerical
simulation of a single phase flow. Preliminary results of particle-laden flow show
good agreement of the LES and the DPFS findings. Further benchmark cases for an
appreciable range of parameters are required to draw a rigorous conclusion of the
accuracy of the ELM.

1 Introduction

Particle-laden turbulent flow is of importance in a broad field of applications
including natural and technical environments. Examples may be found in the settling
of aerosol particles in atmospheric flows, in the transport of dust through the
human respiration system, in fuel injections of internal combustion engines, as
well as in the combustion of pulverized coal particles in a furnace. However, for
particles with diameter d, ~ 7, with 7y the Kolmogorov scale, there is no accurate
and robust model available [1]. This may be explained by the numerous scales

K. Frohlich (D<) ¢ L. Schneiders * M. Meinke

Institute of Aerodynamics, RWTH Aachen University, Aachen, Germany
e-mail: k.froehlich@aia.rwth-aachen.de; 1.schneiders @aia.rwth-aachen.de;
m.meinke @aia.rwth-aachen.de

W. Schroder
Institute of Aerodynamics, RWTH Aachen University, Aachen, Germany

Jiilich Aachen Research Alliance - High Performance Computing, RWTH Aachen University,
Aachen, Germany
e-mail: office @aia.rwth-aachen.de

© Springer International Publishing AG 2017 137
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_9

mailto:k.froehlich@aia.rwth-aachen.de
mailto:l.schneiders@aia.rwth-aachen.de
mailto:m.meinke@aia.rwth-aachen.de
mailto:office@aia.rwth-aachen.de

138 K. Frohlich et al.

involved, since an accurate computation of particle-laden flow requires the full
resolution of the flow up to the sub-Kolmogorov scale. Only recently, access has
been gained to direct particle-fluid simulations (DPFS), where all relevant scales
are fully resolved without employing any models [17]. Fundamental studies have
been performed and the modulation of isotropic turbulence by particles has been
investigated [18, 19], which provide now a sound basis for the development of
models suitable for industrial applications. A first simplification of DPFS is the
direct numerical simulation (DNS), where all turbulent scales are resolved, while the
particle-fluid interaction is modeled by an Euler-Lagrange model (ELM). However,
DNS still requires considerable computational resources. A further simplification is
provided by large-eddy simulations (LES), where large energy containing scales are
resolved while models for small subgrid scales are employed mainly responsible for
the dissipation.

In this contribution, a setup is developed for the comparison of DPFS, DNS,
and LES, offering the possibility to use the insights gained in [18] and [19] for
the development of ELM models in the framework of LES. After presenting the
governing equations in Sect. 2, the numerical methods developed for the DPFS are
briefly recapitulated, and an implicit LES model is introduced in Sect. 3. In Sect. 4
the latter is validated for single phase flow, and subsequently, statistics generated
by LES and DNS are compared with the results of DPFS. Section 5 gives a brief
conclusion emphasizing the need of further benchmark cases for a thorough analysis
of the differences between the results of LES, DNS, and DPFS.

2 Mathematical Models

In this section, mathematical models are introduced which are capable of describing
the motion of small particles suspended in a flow field. The mathematical model of
the fluid phase will be given in Sect. 2.1. Thereafter, the motion of particles will be
described by model equations for DPES fulfilling the no-slip condition at particle
surfaces as well as using a popular Lagrangian point particle approach in Sect. 2.2.

2.1 Navier-Stokes Equations

The conservation of mass, momentum, and energy in a time-dependent control
volume V with the surface dV moving with the velocity uyy may be expressed in
integral form by

/ anv+ H-ndA =0, (1)
v Ot v

where @ = [pr, pu", psE |7 is the vector of conservative Eulerian variables and
H is the flux tensor through dV in outward normal direction n. The conservative

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 139

variables are defined by the fluid density pf, the vector of velocities u, and the
total specific energy E = e + l#I’/2 containing the specific internal energy e. It is
physically meaningful as well as useful for the development of numerical schemes
to divide H into an inviscid part Han and a viscous part H;s., where

_ _ _ it | 0
H = Hinv + Hvisc = ptu (ll - uBV) + pI - Re T s (2)
peE (u — uyy) + upl Tu—gq

with the pressure p, the stress tensor 7, the vector of heat conduction ¢, the unit
tensor I, and the Reynolds number Re. The latter is determined by Re = * oakool
given the reference quantities of the density peo, the velocity U, the length Lo, and
the dynamic viscosity (to. Using Stokes’ hypothesis for a Newtonian fluid yields
an equation for the stress tensor

- 2 _
f=2MS—3M(V-u)I, 3)

bt bt u u T .
in which § holds the rate-of-strain tensor defined as § = v +;v ") . The dynamic
viscosity 1 depends on the local thermodynamic state of the fluid. However, it can
be approximately obtained by Sutherland’s law

T\’ T +S
T) = , 4
(1) uoo(Tw) i @

with S being the Sutherland temperature. Fourier’s law gives the heat conduction

n

Pr(y —1) vT, ©)

q=-

using the static temperature 7, the constant capacity ratio y = ¢/c,, the specific
heat capacities ¢, and ¢, at constant volume and at constant pressure. The Prandtl
number Pr is given by Pr = " °]:Cp containing the thermal conductivity k;. The
system of equations can be closed by the caloric state equation ¢ = ¢,T and the
state equation of an ideal gas p = pRT, with R being the specific gas constant.

2.2 Particle Dynamics

In this contribution, dilute suspensions of small, rigid, spherical particles with
statistically negligible collisions are investigated. The volume fraction @, = /v,
with the volume occupied by particles V;, and the overall volume V, is small, i.e.,
@, < 1, while the mass fraction ¥, = Mp/m;, with the overall mass of particles
M, and the mass of the fluid my, has a finite value, which yields an interaction

140 K. Frohlich et al.

between inertial particles and the smallest turbulent scales referred to as two-way
coupling [4]. The linear motion of a particle p with the velocity v, and mass n1, at
the position x;, is given by the relations

dx
dtp = VUp, (6)
dv,

my [=F. (7

The rotational movement @, of the particles may be described conveniently in a
rotating frame of reference (X, y, 7), which is aligned with the principal components
of the particles and fixed at its center of mass, with the equation

76?? +, x (Iay) =T. ®)

where I denotes the principal moments of inertia. The particle dynamics can be
fully described, provided that the hydrodynamic force F and torque T acting on the
particle are known. These are differently determined by DPFS and ELM, as pointed
out in the following.

2.2.1 Direct Particle-Fluid Simulation
The full resolution of the particles establishes the no-slip condition at particle
surface I}, i.e., the fluid velocity on the particle surface with the particle radius
rp is given by

u=v,+w,x((x,—rp.)

Therefore, the hydrodynamic force and torque is defined by the surface integrals

F, = _(ﬁ (—pn + 7 -n) dA (10)
Fp

T :¢(x—rp)x(—pn+f-n)dA. (11)
Fp

It should be noted that the impact of the particles on the fluid is naturally given
without employing any models in contrast to ELM.

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 141

2.2.2 Euler-Lagrange Model

For the ELM, the no-slip condition cannot be imposed and the hydrodynamic
force acting on the particles has to be modeled. Therefore, a popular simplification
(e.g. [1]) of the semi-empirical Maxey-Riley equation [9], with

Fyp = 3mpudy(u — v)p (Rey), (12)

is used in this contribution, which represents the quasi-steady Stokes drag with an
empirical correction function ¢ (Re,) containing the particle Reynolds number Re,,.
However, the validity of Eq. (12) is essentially limited by the constraint /p, < 1.
Specifically, with ;. ~ lpRe™"* and I as the length scale of the largest eddy, Eq. (12)
has only restricted significance for industrial and natural flow conditions which have
in general a high Re. Additionally, the coupling force Fp, has to be included in the
momentum balance of Eq. (1) to establish the interphase coupling. Equations (1)
and (12) yield a closed system of equations together with the equations of linear
motion, provided that the undisturbed fluid velocity at the particle position xp may
be estimated by interpolation of the disturbed fluid velocity at the particle position
using the Eulerian velocities of the carrier flow. However, this estimate is only valid
for d, < A [3], with A the grid width, which again limits the applicability of the
ELM. The hydrodynamic torque is negligible for small spherical particles and may
thus be safely omitted.

3 Numerical Methods

In this section, numerical methods for the solution of the system of equations given
in Sect. 2 will be presented. First, methods for DPFS presented in [13, 15], and [17]
will be briefly described. Next, an implicit LES will be introduced, which allows to
control the amount of numerical dissipation added by the numerical schemes. This
section will be closed with the solution schemes necessary for the ELM.

DPFES as well as the implicit LES rely on a cell-centered finite-volume for-
mulation employing Cartesian meshes. A highly scalable efficient parallel mesh
generator is available [7], where the domain decomposition is based on a weighted
Hilbert curve. The inviscid fluxes I_iinv are computed by a variant of the AUSM [8§]
with a modified pressure splitting proposed in [11]. Second-order accuracy is
achieved via a MUSCL extrapolation routine [23], while the extrapolation uses the
cell-centered gradients of the primitive variables obtained by a weighted second-
order least-squares approach [17]. The viscous fluxes H,. are computed by a
recentering approach proposed in [2].

142 K. Frohlich et al.
3.1 Direct Particle-Fluid Simulation

DPES relies on an accurate computation of freely moving boundaries. This is
achieved via a level-set function for the sharp representation of the boundaries and
a strictly conservative numerical discretization of the cut cells at the boundaries.
Using multiple level-set functions allows the resolution of particle collisions [16].
Instabilities due to arbitrary small cut cells are suppressed by an accurate interpo-
lation scheme and conservation is ensured by a flux-redistribution technique, which
also handles emerging and submerging cells due to the moving boundaries [17].
Several strategies are employed to mitigate the computational effort. First, a novel
predictor-corrector Runge-Kutta scheme has been developed, which substantially
reduces the overhead of remeshing and reinitialization of the solver due to the
moving boundaries [17]. Next, a solution-adaptive refinement strategy generates
automatically the mesh used during the solution of the flow field (cf. Fig. 1).
Hence, the mesh is constantly changing since the particle positions and the
flow field are different after each time step, which yields a significant load
imbalance. Therefore, a dynamic load balancing method has been developed to
allow the use of high-performance computers for the solution of particle-laden
flows. After a predefined number of time steps, a Hilbert curve is computed
on the coarsest refinement level and weighted by the number of offsprings of
each cell. This yields a unique balanced domain decomposition, which can be
used to redistribute the cells among the processes. Since the domain bound-
aries are shifted moderately, only a part of the cells in the domains have to be
exchanged. Figure 2 shows a comparison of the performance for a static and
dynamic domain decomposition, which has been measured for O(1000) parti-
cles suspended in a Taylor-Green vortex [15]. A DPFS would eventually run
out of memory on a static domain decomposition, whereas a dynamic domain
decomposition yields an almost constant mean wall time. The overhead for the
additional communication of 6% is small compared to the speed-up gained by load-
balancing.

Fig. 1 Adaptively refined
grid for an elastically
mounted sphere. Distances to
boundaries as well as sensors
for entropy gradients and
vorticity control the
refinement. For details on the
flow case, the reader is
referred to [14], while the
adaptive mesh refinement is e, !
described in [6] i R T

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 143

wall time, load balancing ——
wall time, static domains 1 300k
cell imbalance, load balancing —-
cell imbalance, static domains - PN

I
o
I

out of memory

|
[\
ot
(=]
=
/ domain

g

2 2

<

E | 200k
15 E]
g 150k %
i =
o 1 E
= =
g 100k =

0.5 | 50k
0 | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000

time step

Fig. 2 Comparison of the performance of the static and dynamic loadbalancing. Due to the
preferential concentration of the particle, the load imbalance grows, and eventually exceeds the
available memory, if a static domain decomposition is used. A dynamic domain decomposition
yields a sawtooth-curve, where the load balancing has been performed every 250th time step

3.2 Implicit Large-Eddy Simulation

An AUSM scheme with a modified pressure splitting is available and it has been
already shown that it is suited as an implicit LES scheme [11]. To reduce the
dissipative behavior of the second-order discretization in low-Mach number flows,
a modified version of the reconstruction method proposed in [22] is used. This
reconstruction method alters the extrapolated velocities uy /r at the cell faces which
are needed for the AUSM by

ur + ur ur — uR
%
= +z

T, 2

« UL+ ur UR — ug,
= , 13
Ugr 2 z 2 (13)

where u] /R are the altered surface velocities and z < 1 may be in general an arbitrary
function. It will be chosen

z=min(1, A max(M;,M}")), (14)

with the normal Mach numbers M[, at the cell surfaces and A as a grid resolution
dependent constant. A value of z = 1 recovers the original MUSCL scheme,
whereas for z tending to zero the surface velocities are obtained by central
differencing such that velocity jumps are smoothed in low Mach number flows. The
viscous fluxes are computed using a low-dissipation variation of the central scheme
proposed in [2], where the normal derivatives of the normal velocity component

144 K. Frohlich et al.

will be computed at a surface of a cell i using a mixed five- and three-point
stencil

ou ou
(8u) %KM1+1—ui +(1_K)(3x)i+(3x)i+l’ (15)
0x) i1/ dx 2

where « is again a grid resolution dependent constant, x is the grid spacing, and x
only serves as an auxiliary coordinate direction. All other derivatives are computed
via the five-point stencil as proposed by Berger and Aftosmis [2]. The implicit
LES model is validated against a DNS of a single-phase isotropic turbulent flow in
Sect.4.1.

3.3 Euler-Lagrange Model

In the ELM, the particles are tracked solving Egs. (6), (7), and (12) by a predictor-
corrector scheme described in [21]. In dilute suspensions particle collisions are
statistically irrelevant and thus neglected. In general, particle positions do not
coincide with the cell centers and the velocity of the carrier flow “seen” by the
particles has to be interpolated. Ordinary interpolation routines, however, introduce
filtering errors leading to a systematic underestimate of the turbulent kinetic energy
after interpolation. To avoid filtering effects, the nearest cell-centered velocity is
used instead of an interpolation routine.

As described in Sect. 2, the coupling of the force in Eq. (12) has to be projected
onto the grid to establish a two-way coupling. Therefore, the force is smoothly
projected using the distance based weighting function

o (B/ea?)

"5 e o) 1

Forji =

onto the nearest cells, with F,; the force projected on the cell i, df /42 the
normalized distance between the cell center of the cell i and the particle center,
and o a smoothing parameter. The quantity o is chosen sufficiently high to avoid
self-induced disturbances [10].

4 Results and Discussion

Isotropic particle-laden flow is examined using the numerical methods presented in
Sect. 3 to solve the equations introduced in Sect. 2. The flow field of a fully periodic
cube with an edge length of L is initialized randomly and divergence free while
fulfilling the realizability conditions [20]. To avoid compressibility effects, the Mach

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 145

number was set to 0.1. The initialization procedure follows the method proposed
in [12], where a prescribed energy spectrum E(k) serves as initial condition with the

model spectrum
3u\ [k2 k
Ek)y=(".° -, 17
0= ()) () @

the wave number k = |k| including the wave number vector k, the peak wave
number kj,, and the initial dimensionless root-mean square velocity (rms-velocity)
uo. The peak wave number is chosen k, = 4ko with kg = 27/L. The pressure field is
computed by solving the Poisson equation in spectral space as shown in [20] and the
density field is obtained assuming an isothermal flow field. The initial microscale
Reynolds number is set to Reyp = 79.1. For the initialization of the LES, the energy
spectrum is cut off at the highest resolvable wave number.

In the following, it will be shown that the LES is capable of predicting the single-
phase isotropic turbulence correctly. Subsequently, a particle-laden case is examined
and DNS as well as LES using the ELM are compared with DPFS.

4.1 Large-Eddy Simulation of Isotropic Turbulence

Three grid resolutions with 643, 96°, and 128> cells have been used for the LES.
The findings have been compared with the results of a DNS with 256° cells.
Figure 3 shows the temporal development of turbulent kinetic energy using an
LES with 64° cells for different parameters A in comparison to a DNS using
256, and to the original AUSM-scheme without a modification of the extrapolated
velocities. In this contribution, the turbulent kinetic energy E; is normalized
by its initial value Eyp, whereas the time ¢ is normalized by the initial eddy
turnover time, i.e., t* = rey/ u%, with the initial viscous dissipation rate €. It
can be observed that the original AUSM-scheme suffers substantially from an
enhanced numerical dissipation, which can not be used as an implicit turbulence
model for this flow regime. The modification offers a remedy and improves the

Fig. 3 Turbulent kinetic 1
energy using LES with the i - g:i e
modification according to 0.8 A=06
Eq. (3.2) in comparison to the A=07
original AUSM scheme and a 2 06 i - (1)3 —
DNS = 2nd ord. AUSM

5 0.4 DNS ---

0.2 S
0 | | |

146 K. Frohlich et al.

Fig. 4 Turbulent kinetic 1

. . Y% ~

energy using LES with the *, LllgsN S
optimal parameter 0.8 1 = LEStH- D
combination A and « for three \&K LESI::
grid resolutions < 06+ x

= =

~) E\B

LS 0.4 N\“n\

u
0.2 |- !\B”"“*Mﬁa
0 I | |
0 0.5 1 1.5 2

results significantly for any parameter A. Choosing the optimal parameters for
A and « yields results matching the DNS for all resolutions as can be seen in
Fig.4.

4.2 Turbulence Modulation by Particles

Next, the particles are induced randomly into the turbulent flow at ti* = 0.27, which
allows the turbulent flow to establish a non-linear turbulent transport (e.g. [5]).
45,000 particles with a particle density ratio p,/pr = 1000 and diameter on
the order on the initial Kolmogorov scale, i.e., dp/nx = 1.32, are initialized
with the local fluid velocity. The results of the DNS and the LES using the
ELM proposed in Sect. 3.3 are validated against the benchmark results of a DPFS
analyzed in [18]. An instantaneous snapshot of the flow field of a DPFS is shown
in Fig. 5. Note that DPFS strongly relies on high performance computing systems,
i.e., the DPFS performed in [18] required 48,000 computing cores on the Cray
XC 40 of the HLRS. Moreover, the simulations using adaptive mesh refinement
required about 2 - 10° cells, while a uniform mesh would require about 68 - 10°
cells to resolve the flow field in the vicinity of the particles with the same
accuracy.

Figures 6 and 7 show a comparison of a DNS and an LES using ELM with
the DPFS. In Fig. 6 it can be seen that the particles attenuate the turbulent kinetic
energy moderately, which is correctly predicted by the ELM independent from the
resolution. Correspondingly, Fig. 7 shows the mean kinetic energy of the particles
K(7) normalized by the initial turbulent kinetic energy. A slight difference increasing
moderately with time may be observed between the DPFS and the ELM, where
the ELM is independent from the resolution. However, these preliminary results
represent only a first validation of the ELM and further analyses are required to
verify its reliability and robustness.

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 147

Fig. 5 Instantaneous snapshot of the parallel projection of the turbulent particle-laden flow field.
The structures are contours of the A, criterion, whereas the color represents the velocity magnitude.
Large vortical structures as well as particle induced structures in the vicinity of the particles are
observed

1
\\ single Phase ---
N DPFS —
08 - DNS -
LESis ~
2 06 - LESes +
= LESg
S 04
0.2 |
| 1 1 1
0 t 05 1 1.5 2

Fig. 6 Turbulent kinetic energy of particle-laden isotropic turbulence using DPFS in comparison
to DNS and LES using the ELM

1
\\\ single Phase ---
N DPFS —
0.8 - DNS .
= LES1s x
s 06 - . LESy -
= ~ LESe4
= 04 -
<
02
0 | ! ! !
0 tr 05 1 1.5 2

Fig. 7 Mean kinetic energy of the particles in DPFS in comparison to LES and DNS using the
ELM

148 K. Frohlich et al.

5 Conclusion

A setup has been presented for the validation of LES and DNS using an ELM
model against benchmark results generated via DPFS. Therefore, an implicit LES
formulation is employed which facilitates the use of ELM for different grid
resolutions. Preliminary results show only slight deviations between the DPFS and
the ELM for all grid resolutions. However, this behavior is certainly dependent on
various parameters. Therefore, the validation of the ELM requires more benchmark
cases using DPFS. In particular, it is planned to study the turbulence modulation by
larger spherical particles, non-spherical particles, and non-isothermal particles.

Acknowledgements This work has been funded by the German Research Foundation (DFG)
within the framework of the SFB/Transregio 129 “Oxyflame” (subproject B2). The support
is gratefully acknowledged. Computing resources were provided by the High Performance
Computing Center Stuttgart and by the Jiilich Supercomputing Center (JSC) within a Large-Scale
Project of the Gauss Center for Supercomputing (GCS).

References

—

. Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42,

111-133 (2010)

2. Berger, M., Aftosmis, M.: Progress towards a Cartesian cut-cell method for viscous compress-
ible flow. AIAA Paper 2012-1301 (2012)

3. Boivin, M., Simonin, O., Squires, K.D.: Direct numerical simulation of turbulence modulation
by particles in isotropic turbulence. J. Fluid Mech. 375, 235-263 (1998)

4. Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309-329
(1994)

5. Elghobashi, S., Truesdell, G.: On the two-way interaction between homogeneous turbulence
and dispersed solid particles. I: turbulence modification. Phys. Fluids A 5, 1790-1801 (1993)

6. Hartmann, D., Meinke, M., Schroder, W.: An adaptive multilevel multigrid formulation for
Cartesian hierarchical grid methods. Comp. Fluids 37, 1103-1125 (2008)

7. Lintermann, A., Schlimpert, S., Grimmen, J., Giinther, C., Meinke, M., Schroder, W.:
Massively parallel grid generation on HPC systems. Comput. Methods Appl. Mech. Eng. 277,
131-153 (2014)

8. Liou, M.-S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107, 23-39 (1993)

9. Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow.
Phys. Fluids 26, 883-889 (1983)

10. Maxey, M., Patel, B., Chang, E., Wang, L.-P.: Simulations of dispersed turbulent multiphase
flow. Fluid Dyn. Res. 20, 143-156 (1997)

11. Meinke, M., Schroder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order
methods for large-eddy simulations. Comput. Fluids 31, 695-718 (2002)

12. Orszag, S.A.: Numerical methods for the simulation of turbulence. Phys. Fluids 12, II-250
(1969)

13. Schneiders, L., Hartmann, D., Meinke, M., Schroder, W.: An accurate moving boundary
formulation in cut-cell methods. J. Comput. Phys. 235, 786-809 (2013)

14. Schneiders, L., Meinke, M., Schroder, W.: A robust cut-cell method for fluidstructure

interaction on adaptive meshes. AIAA Paper 2013-2716 (2013)

Validation of Particle-Laden Large-Eddy Simulation Using HPC Systems 149

15.

16.

17.

18.

19.

20.

21.

22.

23.

Schneiders, L., Grimmen, J.H., Meinke, M., Schroder, W.: An efficient numerical method
for fully-resolved particle simulations on high-performance computers. PAMM 15, 495-496
(2015)

Schneiders, L., Giinther, C., Grimmen, J.H., Meinke, M.H., Schroder, W.: Sharp resolution
of complex moving geometries using a multi-cut-cell viscous flow solver. AIAA 2015-3427
(2015)

Schneiders, L., Giinther, C., Meinke, M., Schrioder, W.: An efficient conservative cut-cell
method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311,
62-86 (2016)

Schneiders, L., Meinke, M., Schroder, W.: Direct particle-fluid simulation of Kolmogorov-
length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188-227 (2017)
Schneiders, L., Meinke, M., Schroder, W.: On the accuracy of Lagrangian point-mass models
for heavy non-spherical particles in isotropic turbulence. Fuel 201, 2-14 (2017)

Schumann, U., Patterson, G.: Numerical study of pressure and velocity fluctuations in nearly
isotropic turbulence. J. Fluid Mech. 88, 685-709 (1978)

Siewert, C., Kunnen, R., Schroder, W.: Collision rates of small ellipsoids settling in turbulence.
J. Fluid Mech. 758, 686-701 (2014)

Thornber, B., Mosedale, A., Drikakis, D., Youngs, D., Williams, R.J.: An improved recon-
struction method for compressible flows with low Mach number features. J. Comput. Phys.
227, 4873-4894 (2008)

Van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel
to Godunov’s method. J. Comput. Phys. 32, 101-136 (1979)

Coupled Simulation with Two Coupling
Approaches on Parallel Systems

Neda Ebrahimi Pour, Verena Krupp, Harald Klimach, and Sabine Roller

Abstract The reduction of noise is one of the challenging tasks in the field of
engineering. The interaction between flow, structure, and an acoustic field involves
multiple scales. Simulating the whole domain with one solver is not feasible and out
of range on todays supercomputer. Since the involving physics appear on different
scales, the effects can be spatially separated into different domains. The interaction
between the domains is realised with coupling approaches via boundaries. Different
interpolation methods at the coupling interfaces are reviewed in this paper. The
methods include the Nearest-Neighbor Interpolation (first order), the Radial-Basis
Function (second order) as well as the direct evaluation of the state representation at
the requested points (arbitrary order). We show which interpolation method provides
less error, when compared to the monolithic solution of the result. We present how
the two coupling approaches preCICE and APESmate can be used. The coupling
tool preCICE is based on a black box coupling, where just the point values at the
surface of the coupling domains are known. In contrast APESmate has knowledge
about the numerical schemes within the domain. Thus, preCICE needs to interpolate
values, while APESmate can evaluate the high order polynomials of the underlying
Discontinous Galerkin scheme. Hence, the preCICE approach is more generally
applicable, while the APESmate approach is more efficient, especially in the context
of high order schemes.

1 Introduction

With increasing computational resources also the idea of simulating more complex
and larger simulations gets more and more important, since they allow a better
understanding of physical phenomena and the optimisation in product design. In
the recent years the energy turnaround in renewable resources gained more and
more popularity, which lead to an increasing number of e.g. wind turbines. Wind
turbines emit noise, which is caused by the rotor-wind interaction, where turbulent

N. Ebrahimi Pour (0<) ¢ V. Krupp ¢ H. Klimach ¢ S. Roller

University of Siegen, Adolf-Reichwein-Str. 2, Siegen, Germany

e-mail: neda.epour @uni-siegen.de; verena.krupp @uni-siegen.de; harald.klimach@uni-siegen.de;
sabine.roller @uni-siegen.de

© Springer International Publishing AG 2017 151
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_10

mailto:neda.epour@uni-siegen.de
mailto:verena.krupp@uni-siegen.de
mailto:harald.klimach@uni-siegen.de
mailto:sabine.roller@uni-siegen.de

152 N. Ebrahimi Pour et al.

flow appears. With the increasing number and size of the turbines, the reduction
of noise becomes important, due to the noise emission in the range of hundreds of
meters or up to a few kilometres. The interaction of flow, structure and acoustic field
(FSA) has to be studied in more detail, to improve the understanding of these factors,
that can help to reduce the noise propagation. Solving the whole domain with a
single equation (monolithic) up to the smallest scales is not feasible and still out of
reach on todays supercomputers. Therefore we use partitioned coupling, where the
physical space is divided into smaller domains and each of the subdomains covers a
dedicated physical setup, as the different physical effects appear on different scales.
Hence the separation of the domains allows different numerical treatments of the
large and complex problem, which is than feasible as different equations as well as
mesh resolutions can be used for each of them.

For the communication and the data exchange between the subdomains coupling
approaches are used. They are based on a heterogeneous domain decomposition,
where the different domains are connected to each other via boundary conditions.
Considering compressible flows, we make use of explicit time stepping schemes that
enable a straightforward data exchange at the coupling interfaces. Applying a proper
data exchange at the coupling boundaries allows the deployment of various schemes
and equations in each domain. Thus the numerical approximation can be adapted to
the requirements of each domain. Especially for the acoustic far field, where no or
few obstacles are present and only the wave propagation has to be considered, high
order methods with low dissipation and dispersion are beneficial. Therefore the high
order modal Discontinuous Galerkin Method (DGM) [5] is considered.

In this paper we investigate the two different coupling approaches. One coupling
approach is a black-box tool, which allows the coupling of different solvers without
any knowledge of each discretisation, while the other one is an integrated approach,
which has knowledge about the underlying scheme and makes use of that. At first
two interpolation methods: Nearest-Neighbor (NN) and Radial-Basis Functions
(RBF) with and without providing equidistant points, provided by the coupling
tool preCICE [1, 2] are presented. Afterwards the direct evaluation of the state
representation at requested points, provided by the coupling approach APESmate [6]
is introduced.

The final section is devoted to simulation results with a small academic testcase,
in order to compare the different interpolation methods and the resulting error.
Finally we come to an end, by concluding our results.

2 Data Mapping Methods

This section describes the different interpolation methods as well as the evaluation
of the state variables, in order to exchange point values at the coupling interfaces.
Therefore first the interpolation methods in the coupling approach preCICE are
introduced, afterwards the integrated coupling approach APESmate is presented.

Investigation of Data-Mapping Methods 153
2.1 Interpolation

preCICE is an multi-solver, which allows the coupling of different solvers, consid-
ering them as a black-box. Thus it has no information about the discretisation of
each solver, while exchanging input and output values via the coupling interfaces
using coupling points. For the exchange of values at requested points, the coupling
tool provides different interpolation methods, in this paper, we are going to review
three of them. More information about preCICE can be found in [1] and [9]. Since
the domains, which are involved in the coupling, request point values located at
arbitrary positions at the coupling interface, hence providing values has to be done
on those requested point positions. Therefore interpolation methods are necessary
to compute values from one domain to the other.

The easiest applicable interpolation method is the Nearest-Neighbor (NN)
interpolation (see Fig. 1a) [3]. In order to use this method, the solver does not have to
provide any information beside the variable values at its exchange points. Coupling
from domain B to A, this method searches for the closest point on B and copies the
value to the requested point on A. If more than one point of domain A is in the near
of one point in domain B, than all those points get the same value. Therefore this
interpolation method is just first order accurate and useful, when having a matching
coupling.

The Nearest-Projection (NP) method (see Fig. 1b) looks for the closest neigh-
boring point of domain A among domain B, while computing the projection point
of the point in B on the point in domain A. Thus a linear equation has to be solved,
which leads to a second order accuracy. In order to make use of this method, the
solver has to provide neighborhood information, in form of triangles or edges [3].

A second order accurate method, where no neighborhood information is neces-
sary, is the Radial-Basis-Function method (RBF).

g0 =3 v p(lle =) + ()

(@) (b)

Fig. 1 (a) Nearest-Neighbor, (b) Nearest-Projection interpolation [3]

154 N. Ebrahimi Pour et al.

For the mapping from domain B to A, the radial-basis-function creates a global
interpolant on B, which is evaluated on A. The basis are radially symmetric basis
functions, which are centred at the coupling points of domain B. Equation (1)
presents the equation, which has to be solved internally by preCICE for the RBF.
To make sure, that constant and linear functions are interpolated exactly, the basis
has an additional first order global polynomial g(x). The variable ¢ is the basis
function, chosen by the user. In this paper we use the Gaussian function as basis
function for the interpolation [3]. Using this basis function requires to predefine a
shape-parameter s (see Eq. (2)), which defines the width of the Gaussian function.

o V/—1n(10~9)

m-h

@

Where m is the number of points which has to be covered by the Gaussian function
and & the average distance between the points. It has to be mentioned, that the
distribution of the coupling points has a major influence on the quality of the
simulation results as well as on the convergence of the linear equation system, which
has to be solved. Different situations can be thought of, where the sampling points
on a domain interface are non-equidistant. One is the use of high order Discontinous
Galerkin (DG) schemes, where the sampling points are the Gaussian integration
points which are not equally distributed. While at the corners of the cells the points
are more concentrated, in the middle of the cell the distance is much larger. The
size of the shape-parameter has an great impact on the convergence of the system,
while selecting a high m leads to an increase in the quality of the simulation, it
also influences the condition number, which also increases [7]. In the DG context,
the variable 4 is set to the maximum distance between the points, to also cover the
points in the middle of the cell, which have a larger distance to each other. The
distance is calculated by considering the distance between the Chebysheve nodes.

2-(np+1)—1 2-n,—1 dx
hpax = | COS -7 | — cos) |- 3)
2-n0 2-n0 2

The value nO represents the scheme order, n;, the half value of the scheme
order and dx the cell size. Providing non-equidistant sampling points for the RBF
reconstruction leads to instability of the convergence of the matrix, while equidistant
points lead to its stabilisation. Keeping that in mind, the need of a method, which
overcomes these challenges becomes more important. Thus evaluating polynomials
for each domain directly, instead of using an additional interpolation method for the
reconstruction, allows to overcome the convergence challenge as well as increasing
the quality of the simulation results.

Investigation of Data-Mapping Methods 155
2.2 Data Mapping by Evaluation

The integrated coupling approach APESmate [6] is implemented in our APES frame-
work [8, 10], thus it has access to solver specific data. Therefore exchanging data
at arbitrary number of exchange points with our DGM solver Ateles at the coupling
interface can be realised by the direct evaluation of the polynomial representations at
the requested points. Hence no additional interpolation is necessary. One of the main
beneficial of our coupling approach is, that with a higher order a higher accuracy in
the context of simulation errors can be obtained [6].

3 Results

This section deals with the simulation results, when using the two different coupling
methods, interpolation and evaluation. Therefore we use a Gaussian density pulse,
which travels from the left domain to the right domain, to compare the different
methods. We created three different testcases, (a) matching, (b) non-matching with
same number of coupling points and (c) non-matching with different number of
coupling points. For the simulation we change the cell size and the scheme order.
The matching testcase (a) has on both domains the same number of cells as well as
the same scheme order, thus the number of coupling points are also the same. For
non-matching testcase (b) the left domain is kept same as for (a), while on the right
domain a two times greater cell size and scheme order has been chosen, which still
results in the same number of coupling points as for the left domain. Testcase (c) is
also a non-matching testcase, here the left domain is again the same as in (a) and
(b), while the right domain has a four times bigger cell size and the scheme order is
equal to the right domain in testcase (b).

3.1 Configuration of the Simulation

For our testcases we provide a 4 x 4 plane, which is divided into two domains. We
solve both domains with the nonlinear Euler equation and choose a Gaussian density
pulse, which travels from the left domain to the right, due to the advection of the
flow in x-direction. The amplitude of the pulse is set to 1.0 and a halfwidth of 0.316.
The pressure p is set to 8.0 and the density p to 1.0. The velocity has a constant
value of v = [12.5, 0.0, 0.0]. Figure 2 presents the point distribution in the cells for
all investigated testcases, when using DG. Table 1 provides a short overview of the
investigated testcases with the different configurations.

156 N. Ebrahimi Pour et al.

t 1 -

I —3 i

[] —
o ok n

(a) (b) (©)

Fig. 2 Point distribution in cells, when using DGM: (a) matching testcase a, (b) non-matching
testcase b and (¢) non-matching testcase ¢

Table 1 Three testcases for the investigation of the interpolation methods

Testcase a Testcase b Testcase ¢

matching non-matching non-matching

Left Right Left Right Left Right
Number of cells 512 512 512 256 512 128
Number of coupling points 128 128 128 128 128 64
Scheme order 8 8 8 16 8 16

3.2 Coupled Simulation Results

As the investigated testcase is small enough, we can obtain a monolithic simulation,
running the entire testcase in one single non-split domain, and use this as the
reference solution without coupling error (Fig.3). Then we split the domain into
halves, while keeping the same cell size and order. L.e. all differences between
splitted and monolithic simulation results are due to the coupling error. In the
following, we then change the settings in the right domain, such as to adopt the
scheme order and cell size to the needs of the domain. Thus, additional errors are
introduced now, due to the non-matching conditions. For the monolithic simulation,
where we consider the settings as for testcase a, the error is computed from the
difference between the result of the simulation and the analytical solution [6]. The
error in the middle area of the domain is due to the shape of the pulse and its location
at the beginning of the simulation. Since the pulse was located in the striking
distance of the left boundary, oscillations appear, which traveled with the pulse
through the entire domain. Which does not have any influence for the comparison
of the different methods. Figure 4 shows the pulse after passing the interface for
all three testcases using the RBF interpolation. As can be recognise no significant

Investigation of Data-Mapping Methods 157

enor
density 1
2 Zr2ee00

Shida-02

1Bii oore

18112 Q000

13086 00082

25901 -1l ez

(a) (b)

Fig. 3 (a) Monolithic solution of the simulation and (b) Error of the simulation

(@) (b) (©

density
9.999e-01 1.306 1.612 1.918 2.224e+00

Fig. 4 Solution of the Gaussian density pulse, which has traveled from the left domain to the right:
(a) Testcase a, (b) Testcase b and (c) Testcase ¢

change of the pulse can be observed. To clarify which method shows the lowest
error, we investigate the simulations in more detail. The error for the following
coupled simulations are calculated from the difference between the coupled solution
and the monolithic solution Fig. 3a. Thus this should just provide the error, which is
due to the coupling of the domains, using interpolation or the evaluation of the
polynomials respectively. In Fig.5, a stronger impact of the matching and non-
matching setup is visible. For the NN interpolation, it becomes apparent, that
the error has an increasing behaviour, when having an increasing non-matching
coupling interface (see Fig.5b, c). For the matching coupling interface Fig.5a,
the error is similar to the monolithic solution, which is due to the fact, that the
points on both sides coincide. Thus, the NN interpolation is a pure injection, no
interpolation error is introduced. For the RBF interpolation we have to compute
the shape-parameter (Sect. 2) for each domain before running the simulation. Thus

158 N. Ebrahimi Pour et al.

(@) (b) (©)
() (e) ®
® (h))}

ermor
1.611e-02 -0.0082 -0.00029 0.0076 1.553e-02

Fig. 5 Error of the traveled Gaussian density pulse when using RBF interpolation with non-
equidistant point distribution: (a) Testcase a with NN, (b) Testcase b with NN, (c¢) Testcase ¢
with NN, (d) Testcase a with RBF non-equidistant Points, (e) Testcase b with RBF non-equidistant

Points, (f) Testcase ¢ with RBF non-equidistant Points, (g) Testcase a with RBF equidistant Points,
(h) Testcase b with RBF equidistant Points and (i) Testcase ¢ with RBF equidistant Points

for each testcase the maximal distance between the non-equidistant points has to
be determined. Considering the results in Fig. 5d—f, the error, when using the RBF
interpolation also increases with stronger non-matching coupling interfaces (Fig. Se,
f), while for the matching testcase Fig.5d the error is similar to the monolithic
solution. Taking Table 2 into account, we can recognise, that stronger non-matching

Investigation of Data-Mapping Methods 159

Table 2 Computed

Ponax m s
shape-parameter for Testcase Left Right Left Right Left Right
non-equidistant point
distribution a 0.0244 0.0244 4 4 46.642 46.642

b 0.0244 0.0245 4 3 46.642 61.936
c 0.0244 0.0245 4 2 46.642 46.452
'l;?ble 3 Computfed P m s
shape-parameter for
equidistant point distribution Testcase Left Right Left Right Left Right
a 0.0156 0.0156 7 7 41.621 41.621
b 0.0156 0.0156 7 7 41.621 41.621
c 0.0156 0.0313 7 7 41.621 20.810

interfaces lead to a decreasing number of points m, which can be covered by
the Gaussian function. Additional in [7] a more detailed study pointed out, that
non-equidistant point distribution leads to instability of the system, thus to the
not convergence of the matrix. Therefore it was suggested to consider equidistant
points, to stabilise the system, hence aiming for a faster convergence. Thus in our
next simulations, we provide equidistant points to preCICE, while asking for point
values, which are non-equidistant distributed. Since we make use of the modal DG,
providing and asking preCICE for equidistant point values would lead to higher
computational effort, due to additional transformation from points to polynomials.
Again we calculated according to Eq. (2) the shape-parameter for the new setup.
As in Table 3 pointed, the variable m, can be chosen much higher. Furthermore
the system converged much faster, which leads to the decreasing of computational
effort. The simulation results for the equidistant point distribution illustrate for
all testcases oscillations near the upper and lower boundaries, which increase
with stronger non-matching coupling interfaces (see Fig. 5h, i). The oscillations
did not appear, using the NN and the RBF method with non-equidistant points.
This behaviour is due to the Runge’s phenomenon [4], which appears, when
using high order polynomials over equidistant interpolation points. Thus providing
equidistant points for the interpolation leads to the stabilisation of the system, but
decreases the quality of the simulation results. In Fig. 6 as well as in Fig.7 the
solution for all testcases show the same behaviour, thus even for the strongest non-
matching testcase Fig. 7c, the error is comparable to the matching testcase Fig. 7a.
Besides the visualisation of the simulation results, we also consider the L2error for
the simulations to have a better comparison between the different methods. The
presented Table 4 gives an overview, which method allows the lowest error, when
running coupled simulations. Therefore we just consider the right domain, where the
pulse reaches its final position, after passing the coupling interface. From Table 4 it
can be pointed out, that for the RFB with non-equidistant points as well as for the
NN interpolation with stronger non-matching coupling interfaces (c) also the error
increases, while for NN this increase is distinguished. The RBF with equidistant
points show already a high error for testcase (a), while a significant trend as for RBF

160 N. Ebrahimi Pour et al.

(a) (b) (©

density
9.999e-01 1.306 1.612 1.918 2.224e+00

Fig. 6 Solution of the Gaussian density pulse, which has traveled from the left domain to the right
using APESmate: (a) Testcase a, (b) Testcase b and (c) Testcase ¢

(a) (b) (©

error
1.611e-02 -0.0082 -0.00029 0.0076 1.553e-02

Fig. 7 Error of the traveled Gaussian density pulse when using APESmate: (a) Testcase a, (b)
Testcase b and (c) Testcase ¢

Table 4 Comparison of the L2error for the different methods

x1073 a b c

Nearest-Neighbor 1.606 27.774 52.344
Radial-Basis-Function: non-equidistant points 1.606 1.986 2.326
Radial-Basis-Function: equidistant points 1.606 5.101 3.485
APESmate 1.606 1.593 1.599

Monolithic 1.05870

Investigation of Data-Mapping Methods 161

with non-equidistant points and for the NN can not be observed. The increase of
error values in testcase (b) and the decrease for testcase (c) are due to the changes of
order and cell size in testcase (b), where the number of non-equidistant points in the
corners of a cell is more dominant for a 16th order than for a 8th order simulation.
The error decreases for the testcase (c), since the cell size on the right domain is two
times larger than in testcase b), thus less cells are involved in the coupling, which
also decreases the error. The results of APESmate are noticeable, even for testcase
(c), where all interpolation methods provided by preCICE show a high error, the
simulation results of our coupling approach shows the smallest and the most stabile
error over all simulations.

Beside the error of the simulation results, the performance of each method is
an important factor, which allows the fast computation of the simulation. Therefore
also investigate the performance of the used methods.

3.3 Performance of the Mapping Methods

For the performance runs we consider the same settings as in Sect. 3.1, while using
testcase c as a three dimensional setup. The left domain has 16,384 cells and the
right domain 256. The number of coupling points at the coupling interface is 65,536
and 16,384 respectively. Since the left domain has just 256 cells, the number of cores
is chosen according to this limitation. Figure 8 presents the time for the simulation

—— NN
RBFyonpqu
RBFrqu

—+— APESmate

2 x 10! 3 x 10" 4 x 10! 6 x 10! 10%

nProcs

Fig. 8 Strong scaling of the different methods

162 N. Ebrahimi Pour et al.

with the different methods, while changing the number of cores from 16 to 128. It is
clearly visible, that the interpolation method NN, is the fastest in the computation,
which is as expected, since this method just copies data from one domain to the
other. But we also have to keep in mind, that apart from the fast computation, this
method provides the highest error, when having non-matching coupling interfaces
(see Fig.5c). A closer look at the RBF method with different point distribution
illustrates also here, that the simulation with equidistant point distribution (RBFggy)
behaves as expected faster than the non-equidistant point distribution, since the
equidistant points reduce the condition number and thus the computational time.
In contrast the performance of the non-equidistant point distribution (RBFyoneQu)
gets flat, with increasing number of cores. Since our integrated approach APESmate
evaluates polynomials for the coupling, the computation is higher, when compared
to the interpolation methods provided by preCICE. But as was shown before the
simulation results (see Fig. 7) is outstanding and in the same magnitude range as for
the monolithic run.

4 Conclusion

The simulation of multi-scale problems is still a challenging task in the engineering
field. Solving these problems with one approach is still expensive, thus a more
feasible strategy is required. The partitioned coupling is one of the most promising
methods, which allows the decomposition of the whole problem into smaller ones,
by subdividing the whole domain. Hence each domain can be solved according to its
physics by using numerical methods, which are perfectly designed for each domain.

We presented how the two coupling approaches use different methods to
exchange point values at the coupling interface. Therefore we considered for the
external library preCICE the first order accurate Nearest-Neighbor (NN) method
and the second order accurate Radial-Basis-Function (RBF) method. Beside the
interpolation method, we are also able to do the direct evaluation of the polynomials
at requested coupling points, using our integrated coupling approach APESmate.
Thus no additional interpolation is here necessary. For our investigation we solved
our domains using the Discontinues-Galerkin Method (DGM), where the coupling
points (Gaussian integration points) are not equidistant distributed on the cell
surface.

Our investigation clarified, that the interpolation method NN is not qualified for
the usage of non-matching coupling interfaces, which is necessary, when coupling
different solvers with different numerical resolution, thus the simulation results
showed a high error, when compared to the monolithic solution. The second order
accurate interpolation method RBF illustrated a lower error, when using non-
equidistant point distribution. But the condition number of the linear equation
system, which has to be solved, as well as the selected number of points, which
have to be covered by the basis function is unsatisfactory. Thus the condition
number increases with higher scheme order and at the same time the computational

Investigation of Data-Mapping Methods 163

effort. In order to decrease the condition number and stabilise the system, we
provided preCICE equidistant points at the coupling interface, while asking for
non-equidistant distributed points. By applying the equidistant points for the inter-
polation, we were able to increase the number of points, which has to be covered by
the Gaussian function (basis function). Furthermore the condition number decreases
and thus the stabilisation of the system could be archived. But taking also the quality
of the simulation results into account, we could recognise, that oscillation occur at
the lower and upper boundary, which we could not observe before, when using the
NN or the RBF method with non-equidistant point distribution. These oscillations
appear, due to the Runge’s phenomenon, when using equidistant points for the
interpolation of non-equidistant point distribution. The results of the simulations,
when using our integrated approach APESmate, depict the lowest error, when
compared to the monolithic solution. Even for the non-matching coupling interface,
where the interpolation methods in preCICE show the highest error, our approach
illustrated an outstanding behaviour, by having an almost constant L2error for all
simulations, which is in the same magnitude range as the monolithic one.

Acknowledgements The financial support of the priority program 1648 - Software for Exascale
Computing 214 (www.sppexa.de) of the German Research Foundation. The performance mea-
surements were performed on the Supermuc supercomputer at Leibniz Rechenzentrum (LRZ) der
Bayerischen Akademie der Wissenschaften. The authors wish to thank for the computing time and
the technical support.

References

1. Bungartz, H.J., Lindner, F,, Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Ueker-
mann, B.: preCICE - a fully parallel library for multi-physics surface coupling. Comput. Fluids
141, 250-258 (2015)

2. Bungartz, H.J., Lindner, F.,, Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Ueker-
mann, B.: preCICE - a fully parallel library for multi-physics surface coupling. Comput. Fluids
1 (2016). http://dx.doi.org/10.1016/j.compfluid.2016.04.003

3. Bungartz, H.J., Lindner, F., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: Partitioned
fluid-structure-acoustics interaction on distributed data — coupling via preCICE. In: H.J.
Bungartz, P. Neumann, E.W. Nagel (eds.) Software for Exa-scale Computing - SPPEXA 2013—
2015. Springer, Berlin, Heidelberg (2016)

4. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in
RBF interpolation. Comput. Math. Appl. 54(3), 379-398 (2007). http://dx.doi.org/10.1016/j.
camwa.2007.01.028

5. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,
and Applications, 1st edn. Springer Publishing Company, Incorporated, New York (2007)

6. Krupp, V., Masilamani, K., Klimach, H., Roller, S.: Efficient coupling of fluid and acoustic
interaction on massive parallel systems. In: Sustained Simulation Performance 2016, pp. 61—
81 (2016). doi:10.1007/978-3-319-46735-1_6

7. Lindner, F., Mehl, M., Uekermann, B.: Radial basis function interpolation for black-box multi-
physics simulations. In: Papadrakakis, M., Schrefler, B., Onate, E. (eds.) VII International
Conference on Computational Methods for Coupled Problems in Science and Engineering, pp.
1-12 (2017, accepted)

www.sppexa.de
http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://dx.doi.org/10.1016/j.camwa.2007.01.028
http://dx.doi.org/10.1016/j.camwa.2007.01.028

164 N. Ebrahimi Pour et al.

8. Roller, S., Bernsdorf, J., Klimach, H., Hasert, M., Harlacher, D., Cakircali, M., Zimny, S.,
Masilamani, K., Didinger, L., Zudrop, J.: An adaptable simulation framework based on a
linearized octree. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S.
(eds.) High Performance Computing on Vector Systems 2011, pp. 93—105. Springer, Berlin,
Heidelberg (2012)

9. Shukaev, A.K.: A fully parallel process-to-process intercommunication technique for precice.
Master’s thesis, Institut fiir Informatik, Technische Universitidt Miinchen (2015)

10. Zudrop, J., Klimach, H., Hasert, M., Masilamani, K., Roller, S.: A fully distributed CFD
framework for massively parallel systems. In: Cray User Group 2012. Stuttgart, Germany
(2012)

MRI-Based Computational Hemodynamics
in Patients

Andreas Ruopp and Ralf Schneider

Abstract The target of this research was to develop a simulation process chain for
the analysis of arterial hemodynamics in patients with automatic calibration of all
boundary conditions for the physiological correct treatment of flow rates in transient
blood flows with multiple bifurcations. The developed methodology uses stationary
simulations at peak systolic acceleration and minimizes the error of target and
simulated outflow conditions by means of a parallel genetic optimization approach.
The target inflow and outflow conditions at peak systole are extracted from 4D
phase contrast magnetic resonance imaging (4D PC-MRI). The flow resistance of
the arterial system lying downstream of the simulation domain’s outlets is modelled
via porous media with velocity dependent loss coefficients. In the analysis of the
subsequent transient simulations, it will be shown that the proposed calibration
method shows to work suitable for three different types of patients including
one healthy patient, a patient suffering from an aneurysm as well as one with a
coarctation. Additionally the local effects of mapping the measured transient 4D
PC-MRI data onto the aortic valve inlet in comparison to the usage of block inlet
profiles will be shown.

1 Introduction

Computational fluid dynamics (CFD) can help to visualize and understand the flow
behaviour in the human arterial system. Nowadays, patient specific CFD models are
created from MRI or computer tomography (CT) in order to get realistic geometries
and to evaluate pressure gradients in regions of coarctations [6, 9]. In future, CFD
methods will help to reduce the need for diagnostic catheterization. In this context,
new studies treat both pre- and post-treatment in CFD studies to improve their
accuracy based on real patient data [5, 10]. Generally, 4D-MRI data are used
to obtain the flow rates in the ascending and descending aorta. All other outlets
in between are treated according to methods which rely on cross-sectional area
relationships [5, 8]. The simulations have in common, that outflow conditions with

A. Ruopp (<) * R. Schneider
HLRS, University of Stuttgart, Nobelstrasse 19, 70569 Stuttgart, Germany
e-mail: ruopp@hlrs.de; schneider@hlrs.de

© Springer International Publishing AG 2017 165
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_11

mailto:ruopp@hlrs.de
mailto:schneider@hlrs.de

166 A. Ruopp and R. Schneider

fixed flow rates are identical for both pre- and post-treatment setups even though the
flow resistance in the arteries under consideration might be significantly altered by
e.g. angioplasty.

This paper deals with the correct utilization of outflow conditions, when flow
rates can be extracted from measurements via MRI. In this case, fluxes would be
patient based and outflow conditions are calibrated to each single patient in order
to use Dirichlet conditions for pressure at all outlets in conjunction with velocity
dependent loss coefficients of porous media. By this approach the flow resistance of
the arterial system lying downstream of each outlet is modelled independently from
the flow conditions in the simulation domain.

2 Methodology

The following section gives an overview about the applied CFD codes, the complete
optimization chain as well as the meshing, the domain mapping and the treatment
of stationary and transient boundary conditions. The established work flow shows
to be valid for different cases of hemodynamics in patients. Additionally, the use
of porous domains clearly stabilizes the solution procedure and suppresses pressure
reflections in the beginning of transient runs leading to higher possible Courant
numbers for implicit solvers.

2.1 Geometries

In this study, we use three different types of arterial systems originating just behind
the aortic valve with different numbers of bifurcations, see Fig.1. Case a was

Casea Caseb Casec

Fig. 1 Three hemodynamic cases. a—Healthy patient, b—patient with aneurysm and c—patient
with coarctation. All geometries in same scale except total view of a

MRI-Based Computational Hemodynamics in Patients 167

extracted from CT while b and c are both extracted using PC-MRI data. Case b
and c are inherited from Mirzaee et al. [10]. Case a consists of one inlet and thirteen
outlets while case b and ¢ have four outlets in total.

The edge resolution of the stereolithographic representation of case a and c is in
the range of 0.0001 [m] for the most curved parts. Case b uses a higher resolution
down to 107 [m]. All inlet and outlets are cut almost perpendicular with respect to
the aortic wall in order to avoid numerical errors.

2.2 Meshing

We use a cartesian based meshing process cartesianMesh from cfMesh [2] for all
three setups. One key advantage of this mesher is the fully automated workflow via
scripting. Table 1 highlights the meshing parameters for each geometry setup. At
each outlet, we introduce an additional volume mesh where the boundary mesh
is extruded perpendicular to face normal’s with ten layers each and an average
thickness of about 0.0025 [m] per layer, see Fig. 2. The extrusion is done with the
utility extrudeMesh which is included in the framework OpenF OAM®_ In addition,
each extruded mesh is marked with a cellZone being able to introduce specific
source terms for porous media treatment during the simulation run.

Table 1 Meshing parameters for cfMesh

Case
Parameter a b c
Maximum cell size [m] 0.001 0.001 0.001
Refinement size of aortic wall [m] 0.0005 0.001 0.0005
Number of layers 3 2 2
Refinement of outlets [m] 0.0005-0.00025 0.001 0.0005
Cell numbers 1,083,243 350,061 347,391

<« Extruded mesh V—»

Fig. 2 Extruded meshes at outlets for case a needed in conjunction with porous media. Grey color
show mesh creation with cfMesh, red color indicates the extruded mesh afterwards

168 A. Ruopp and R. Schneider
2.3 CFD Setup

Two CFD setups are performed including a steady state simulation setup for the
optimization process followed by a transient case study. We assume, that the blood
flow can be treated as in-compressible fluid behaviour. Therefore, we solve the
steady and the unsteady Navier-Stokes equations in the following form

U
at+(U-V)U—vV2U=— Vp+S (1)

—

V-U=0 @

with V the Nabla operator, velocity U, viscosity v, time ¢, pressure p, density p and
a source term S, using the solvers simpleFoam and pimpleFoam from OpenF OAM®
Version 2.4.x respectively.

The porous media is introduced as a source term S, where we use an explicit
porosity source explicitPorositySource with Darcy-Forchheimer model and the
following relation

§ = —pCo[U|“7NU 3)
Co = Model linear coefficient
C; = Model Exponent coefficient
with a fixed value of C; = 2 and a variable value of Cy which has to be determined
by optimization.

The boundary conditions are listed in Table 2 where v, denotes the turbulent
viscosity of the fluid. We apply the kOmegaSST-model for all runs with a fixed

Table 2 Boundary conditions for steady state and transient runs for all three cases

Inlet aortic valve Outlet Aortic wall

Steady state

vy calculated calculated nutkWallFunction

k fixedValue zeroGradient kqRWallFunction

p zeroGradient fixedValue zeroGradient

w fixedValue zeroGradient omegaWallFunction
U fixedValue zeroGradient fixedValue
Transient

vy calculated calculated nutkWallFunction

k groovyBC groovyBC kqRWallFunction

p zeroGradient fixedValue zeroGradient

w groovyBC groovyBC omegaWallFunction
U groovyBC (case a) zeroGradient fixedValue

timeVaryingMappedFixedValue (case b,c)

MRI-Based Computational Hemodynamics in Patients 169

kinematic viscosity of 0.004 - 107% m?/s and impose a fixed value for k and @ at
the aortic inlet with the following relations

k=15-(U|-I)? “)
I=1 %) 5)
k
0=009. V (6)
Thydraulic
Aple
Thydraulic = \/ ;Tlt @)

and a regular block profile for the velocity. For the transient cases, we apply
a variable boundary condition that can switch between Dirichlet and Neumann
dependent on the sign of the flux @, at every boundary face. For & < 0 the
following values are set for k and w at each face

k=15-(Ug-1)? 8)
Ve
w = max | 0.09- ©)]
Yhydraulic

where the subscript f denotes the position of the considered face’s centre. For @ >
0 we impose a zero gradient condition for k and w at each face.

The flow rate over time, given in Fig. 3, results in 5.1 [mlm] for case a (inlet
condition is similar to [11]), 5.35 [] for case b and case c leads to 4.51 [!].
For case b and c the measured velocity profiles, extracted from the according PC-
MRI data were used at the inlet. The velocity vectors were interpolated in space and

time onto the CFD mesh resulting in a more realistic inlet condition compared to

0.6 0.8 1
Time [s]
casea, T 1.0 [s] —8— casec, T 1.0 [s] —o—
case b, TO.8 [s] —&—

Fig. 3 Given flow rate over time at inlet for case a, b and ¢

170 A. Ruopp and R. Schneider

case a, see Fig. 4. Due to the turbulent velocity profile the flux dependent boundary
condition at each cell face via groovyBC was needed.

No patient specific flow rates over time were available for case a at each outlet
which is crucial for a correct calibration of entire hydrodynamic system. This also
stands true for case b and c, since the evaluation of the 4D PC-MRI measurement
data at each outlet violates the continuity equation with peak errors above 100 [%].
For this reason, we assume specific flow rates, derived from literature, which are
summarized in Table 3. The target flow rates of all outlets for case a are given in
Table 4 as well as for case b and ¢ (Table 5) in terms of percentage of flow rate at
inlet. We assume, that the given fractions stay constant during one heart beat.

Front view
H - 1.2e+00
I 1
w
~
-0.8 3
[}
F 0.6 B
‘c
-0.4 3
=
-0.2 >

I— —1.0e-01

Fig. 4 Velocity vectors at aortic inlet for case b in front view (upper row) and isometric view
(lower row), color indicating magnitude of velocity. Aneurysm section colored red in geometry
(left picture)

t=0.1 [s] 1=0.2 [s] t=0.3 [s]

Table 3 Division of volumetric flux at different bifurcations for case a, based on [13] (MiZ)
and [7] (BWP)

Weight Fraction BWP Fraction MiZ Fraction Average
Classification [kg] [%] [mlin] (%] [mlin] (%] [mlin] [%]
Abdomen 2.8 4.0 1.4 241 - 21 - 22.6
Kidneys 0.3 0.4 1.1 19.0 - 23 - 21.0
Brain 1.5 2.1 075 129 - 15 - 14.0
Heart 0.3 0.4 025 43 - 5 - 4.7
Skeleton muscles 30.0 429 1.2 20.7 - 17 - 18.8
Skin 5.0 7.1 0.5 8.6 - 8 - 8.3
Other organs 30.1 43.0 0.6 10.3 - 4 - 10.7
Liver - - - - - 7 - -
Sum 70.0 100.0 5.8 100.0 4.9 100 535 100.0

Missing data marked with —

MRI-Based Computational Hemodynamics in Patients 171

Table 4 Division of volumetric flux at different bifurcations for case a, based on [13] (MiZ)
and [7] (BWP)

Flow rate Fraction of inlet

[o] -]
Inlet 5.101 1.000
Truncus Brachiocephalicus 03 0.549 0.108
Arteria Carotis Communis 02 0.072 0.014
Arteria Subclavia 01 0.331 0.065
Truncus Coeliacus 04 1.202 0.236
Arteria Mesentrica Superior 05 1.202 0.236
Arteria Renalis Sinistra 06 0.561 0.110
Arteria Renalis Dextra 07 0.561 0.110
Arteria Iliaca Interna L 08 0.105 0.021
Arteria Iliaca Interna R 09 0.105 0.021
Arteria Profunda Femoris L 10 0.105 0.021
Arteria Profunda Femoris R 11 0.105 0.021
Arteria Femoralis L 12 0.102 0.020
Arteria Femoralis R 13 0.102 0.020

Table 5 Division of volumetric flux at different bifurcations for case b and ¢, based on [13] (MiZ)
and [7] (BWP)

Flow rate Frac. of inlet Flow rate Frac. of inlet

[mlin] [_] [mlin] [_]

Inlet 5.350 1.000 4.510 1.000
Arteria Subclavia 01 0.327 0.061 0.275 0.061
Arteria Carotis Communis 02 0.245 0.046 0.207 0.046
Truncus Brachiocephalicus 03 0.381 0.071 0.321 0.071
Outlet 04 4.397 0.822 3.707 0.822

2.4 Optimization Workflow

We apply an optimization workflow according to [12] for the steady state simulation
runs in order to obtain the correct loss coefficient Cy at each outlet. The optimization
algorithm is identical to [4] which uses an evolutionary approach.

Case a uses in total 52 individuals per generation, case b and ¢ 16 individuals.
All loss coefficients were allowed to vary between 0.01-9 - 10%. The optimization
run strives for the minimum of the sum of each error between target flow rates and
simulated flow rates

Noutlets
Si - 8 arget,i
e= Y rorset (10)

b)) .
i=1 target,i

172 A. Ruopp and R. Schneider

3 Results

The following chapter shows the optimization results and the computational effort
to calibrate systems with 13 or four unknowns respectively. Specific flow rates over
time for different outlet sections and velocity distributions at different positions
compared to the measured velocity field are presented for case b.

3.1 Optimization Results

In total, 10,000 designs had to be evaluated for case a, see Fig. 5, which takes 72 [h]
using 1248 cores simultaneously on the HLRS Hazel Hen [3] system. Case b and
case c, Fig. 6, with four outlets each need at least 300 and 1400 design evaluations
respectively using 384 cores with a total time of at least 4 and 16 [h].

100

0.1

Objective value € [-]

all designs

best designs
| | | |

0.01

0 2000 4000 6000 8000 10000 12000
No. of design evaluations [-]

Fig. 5 Objective value € over number of simulation runs (individuals) for case a

(a) 10 (b) 100
= % - 10
w 1 w
O o« ”'} ©
3 = 5 1
5 01 * >
o 5] F
2 s >
= K = 0.1
3 *xX * S [
g ool ¥ 3 ook L
all designs * F all designs
best designs — 3 F best designs —
0.001 1 1 1 1 1 1 0.001 1 1 1 1
0 50 100150200250300350 300 600 900 1200
No. of design evaluations [-] No. of design evaluations [-]

Fig. 6 Objective value € over number of simulation runs (individuals) for (a) case b and (b) case ¢

MRI-Based Computational Hemodynamics in Patients 173
3.2 Global Target Values

The difference of volumetric fluxes over time for the calibrated and uncalibrated
transient run for one heart beat is shown in Fig. 7. A calibration phase is necessary to
obtain sensible fluxes over time. In addition, the presented porous media technique
along with the shown calibration enables the simulation of one heart beat from rest.
Without calibration and transient pressure boundary conditions at the outlets, one
needs to simulate at least four heart beats to obtain a periodic transient state. This
holds also true for case a and case b with a smaller number of outlets.

3.3 Local Variations

The local variations in magnitude of velocity are shown in Figs. 8, 9, and 10. The
simulation run with calibrated outlets and correct mapped velocity field at the aortic
inlet gives a relative good quantitative result. The uncalibrated run fails to capture

(a) 0.00016 (b) 3.5x107
0.00014 calibrated — 5 calibrated —
. : uncalibrated _ X107 | uncalibrated
Z 000012 | Z 5000 |
“g 0.0001 g T
< 8x10™ F < 2)(105 r
= 6x107 | £ 1.5x107
2 4x10'§ - 2 1x107 b
2 2x107 o) 6 |
E NV - E 5x100 \
o [=) =4 — e~
> 2x10” ¢ > .
4x107 F -5x107°
—6X1075 1 1 1 1 —1X1075 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1
Time [s] Time [s]
(¢) 5x107 . (d) 0.0003 -
4X10_5 | calibrated — calibrated —
= 3 10_5 uncalibrated — 0.00025 uncalibrated
<z 3x107 ¢ Q
g 2x107 S 0.0002
= 1x107 ®
= 0 |\ = 0.00015
£ ax10” 20,0001
2 2x10” 2 S
2 3x1070 F 2 5x10°
> 4x10” | e 0
-5x107 |
—6X10_5 1 1 1 1 —5X10_5 1 1 1 1
0 02 04 06 08 1 0 02 04 06 08 1
Time [s] Time [s]

Fig. 7 Volumetric fluxes over time at all four outlets for case c for first heart beat. (a) Outlet O1.
(b) Outlet 02. (c) Outlet 03. (d) Outlet 04

174 A. Ruopp and R. Schneider

IA 1.1e+00
08

N 06

L4 -0.4
I- 0.2
-0.0e+00

Measurement Calibrated Uncalibrated Calibrated
Correct inlet profile Correct inlet profile Block profile at inlet

U Magnitude (m/s)

Fig. 8 Magnitude of velocity on slice through middle of aneurysm section of case b. From left to
right: PC-MRI measurement, the calibrated run with correct inlet condition (from measurement),
the uncalibrated run with correct inlet condition and calibrated run with a block profile at inlet at
t = 0.12 [s]. Lines (L1-L4) indicate probing position for quantitative comparison, see Appendix
with Figs. 11 and 12

l- 1.16+00
-0.8

-06
I-o.4 !
I-o.z
-0.0e+00

Measurement Calibrated Uncalibrated Calibrated
Correct inlet profile Correct inlet profile Block profile at inlet

U Magnitude (m/s)

Fig. 9 Magnitude of velocity on slice through middle of aneurysm section of case b. From left to
right: PC-MRI measurement, the calibrated run with correct inlet condition (from measurement),
the uncalibrated run with correct inlet condition and calibrated run with a block profile at inlet at
t=0.16 [s]

l- .
0.8
06
|-0.4 '
I-o.z
0.0e+00

Measurement Calibrated Uncalibrated Calibrated
Correct inlet profile Correct inlet profile Block profile at inlet

N
o
)
+
=}
o

U Magnitude (m/s)

Fig. 10 Magnitude of velocity on slice through middle of aneurysm section of case b. From left to
right: PC-MRI measurement, the calibrated run with correct inlet condition (from measurement),
the uncalibrated run with correct inlet condition and calibrated run with a block profile at inlet at
+=0.20 [s]

MRI-Based Computational Hemodynamics in Patients 175

correctly the swirling flow field in the aneurysm section due to an unphysiological
high volumetric flux in the region of the Arteria Subclavia. The calibrated run with
the wrong inlet condition produces valid results behind the arch but the region next
to the inlet is not captured correctly. In addition, the velocity distribution along four
lines in the aneurysm section is shown in Figs. 11 and 12 again for the identical
time steps. This quantitative comparison clearly shows a mismatch between the
measurements and the simulation because the PC-MRI data (MRT) does have some
inaccuracy according to each velocity component in dependency of the position.
In addition, the simulation neglects fluid-structure interactions as well as detailed
roughness estimations of aortic walls.

0.9 |
0.8
_ 0.7 4
H’; 0.6
£ 0.5 |
% 04 o
03 | /
02 ril
01 =%
0 1 1 1 1 1 1
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
Sample [m]
(a) Line 1
B\S\&_ —A Sy .
KN
5,
N
— 'S '\&\
S :\
- : \W/ “‘
1 1 1 I1

0.035 0.04 0.045 0.05 0.055 0.06
Sample [m]
(a) Line 2
t, CFD = t, CFD - t3CFD -« t; MRT t, MRT t; MRT

Fig. 11 Quantitative comparison of magnitude of velocity along sampling lines (line definition
see Fig. 8) (a) for line 1 (L1) and (b) for line 2 (L2)

176 A. Ruopp and R. Schneider

@ 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

U[Umax [-]

0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
Sample [m]

®) 1
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2
0.1 ‘l
O Il Il Il Il Il Il
0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06

Sample [m]

U[Umax [-]

t;CFD & t,CFD - t;CFD = t; MRT = t, MRT + t; MRT

Fig. 12 Quantitative comparison of magnitude of velocity along sampling lines (line definition
see Fig. 8) (a) for line 3 (L3) and (b) for line 4 (L4)

3.4 Performance Issues

In order to get reasonable insights into the flow patterns of such types of hemo-
dynamics as represented by case b and c, one has to utilize at least 1560 [Coreh].
The pre-treatment of patient specific data such as the extraction of geometry as
STL representation is not included. All twelve cases from [10] with pre and post
treatment of patients would need at least ~19,065 [Coreh]| with the introduced
scheme including optimization and transient run.

To estimate case counts that could be expected if the methodologies described
above should be applied to indications found in typical cohort sizes, which
are regarded as reasonable in classical clinical studies, we consider the cases
described above. In average cohort sizes, we consider ~5500 individuals (extracted

MRI-Based Computational Hemodynamics in Patients 177

from [1, 14]) with an average prevalence of 7.3 [%] of the regarded indication. This
as a basis for further resource estimations of virtual clinical trials (see also [15])
leads to /400 individuals to which the simulation process has to be applied. If one
takes into account one optimization to the preoperative state in conjunction with
one preoperative and at least three postoperative transient evaluations in total, at
least 656,000 [Coreh] are needed. This number of core-hours is the equivalent of
1 [day] facilitation of 1140 nodes on the HLRS Hazel Hen system [3].

4 Conclusion

Three patient specific geometries are simulated in a fully automated simulation
process chain. The boundary conditions are treated with porous media with velocity
dependent loss coefficients that are calibrated to physiological flow rates. By means
of a parallel optimization process, aortic systems with up to 13 outlets can be
calibrated in an adequate time. The transient simulation results clearly show the
need of fully transient boundary conditions at the inlet, which have to be mapped
from measurements in space and time. This enables a qualitative correct flow field
in the complete domain in contrast to other assumptions such as block or parabolic
profiles. At the moment, the lack of correct extraction of volumetric fluxes over
time at each outlet for the target criteria is overcome by use of physical sensible
estimations. Fixed pressure values at outlets in conjunction with the porous media
model, even in varying conditions over time, can reproduce the correct flux balance.
In the sense of virtual clinical trials, an adequate number of individuals need to
be investigated leading to a not insignificant usage of HPC systems. The presented
estimation does not include fluid-structure interactions and non-Newtonian fluids.

Appendix

See Figs. 11 and 12.

References

1. Alcorn, H.G., Wolfson, S.K., Sutton- H., O’Leary, D.: Risk factors for abdominal aortic
aneurysms in older adults enrolled in the cardiovascular health study. Arterioscler. Thromb.
Vasc. Biol. 16, 963-970 (1996)

2. cfMesh, http://cfmesh.com/, 14 Sept 2015

3. Cray XC40 (Hazel Hen). http://www.hlrs.de/systems/cray-xc40-hazel-hen/, May 2017

4. Deb, K., Tiwari, S.: Omni-optimizer: a generic evolutionary algorithm for single and multi-
objective optimization. Eur. J. Oper. Res. 185, 1062—-1087 (2008)

http://cfmesh.com/
http://www.hlrs.de/systems/cray-xc40-hazel-hen/

178 A. Ruopp and R. Schneider

5. Goubergrits, L., Riesenkampff, E., Yevtushenko, P., Schaller, J., Kertzscher, U., Hennemuth,
A., Berger, F,, Schubert, S., Kuehne, T.: MRI-based computational fluid dynamics for diagnosis
and treatment prediction: clinical validation study in patients with coarctation of aorta. J. Magn.
Reson. Imaging 41, 909-916 (2015)

6. LaDisa, J.F., Alberto Figueroa, C., Vignon-Clementel, L.LE., Jin Kim, H., Xiao, N., Ell-
wein, L.M., Chan, FP, Feinstein, J.A., Taylor, C.A.: Computational simulations for aortic
coarctation: representative results from a sampling of patients. J. Biomech. Eng. 133, 091008—
091008-9 (2011)

7. Lang, F., Lang, P.: Basiswissen Physiologie. 2nd edn. Springer, Berlin, Heidelberg (2007).
http://dx.doi.org/10.1007/978-3-540-71402-6. ISBN:978-3-540-71402-6

8. Lantz, J., Karlsson, M.: Large eddy simulation of LDL surface concentration in a subject
specific human aorta. J. Biomech. 45, 537-542 (2012)

9. Menon, P.G., Pekkan, K., Madan, S.: Quantitative hemodynamic evaluation in children with
coarctation of aorta: phase contrast cardiovascular MRI versus computational fluid dynamics.
In: Statistical Atlases and Computational Models of the Heart. Imaging and Modelling Chal-
lenges: Third International Workshop, STACOM 2012, Held in Conjunction with MICCAI
2012, Nice, October 5 (2012). Revised Selected Papers. Camara, O., Mansi, T., Pop, M., Rhode,
K., Sermesant, M. Young, A. (eds.), pp. 9-16. Springer, Berlin, Heidelberg (2013)

10. Mirzaee, H., Henn, T., Krause, M.J., Goubergrits, L., Schumann, C., Neugebauer, M., Kuehne,
T., Preusser, T., Hennemuth, A.: MRI-based computational hemodynamics in patients with
aortic coarctation using the lattice Boltzmann methods: clinical validation study. J. Magn.
Reson. Imaging 45, 139-146 (2017)

11. Patel, N., Kiister, U.: Geometry dependent computational study of patient specific abdominal
aortic aneurysm. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Patel, N. (eds.) Sustained
Simulation Performance 2014. Proceedings of the Joint Workshop on Sustained Simulation
Performance, University of Stuttgart (HLRS) and Tohoku University, pp. 221-238. Springer
International Publishing, New York (2015)

12. Ruopp, A., Ruprecht, A., Riedelbauch, S.: Automatic blade optimisation of tidal current
turbines using OpenFOAM®. In: 9th European Wave and Tidal Energy Conference (EWTEC),
Southampton (2011)

13. Schaal, S., Steffen, K., Konrad, K.S.: Der Mensch in Zahlen: Eine Datensammlung in Tabellen
mit iiber 20000 Einzelwerten, 4th edn. Springer Spektrum, Berlin (2016). http://dx.doi.org/10.
1007/978-3-642-55399-8. ISBN:978-3-642-55399-8

14. Singh, K., Bgnaa, K.H., Jacobsen, B.K., Bjgrk, L., Solberg, S.: Prevalence of and risk
factors for abdominal aortic aneurysms in a population-based study the Tromsg study. Am.
J. Epidemiol. 154, 236 (2001)

15. Viceconti, M., Henney, A., Morley-Fletcher, E.: In silico clinical trials: how computer
simulation will transform the biomedical industry. Research and Technological Development
Roadmap, Technical Report, 26 Mar 2017. http://dx.doi.org/10.13140/RG.2.1.2756.6164

http://dx.doi.org/10.1007/978-3-540-71402-6
http://dx.doi.org/10.1007/978-3-642-55399-8
http://dx.doi.org/10.1007/978-3-642-55399-8
http://dx.doi.org/10.13140/RG.2.1.2756.6164

Part V
High Performance Data Analytics

A Data Analytics Pipeline for Smart Healthcare
Applications

Chonho Lee, Seiya Murata, Kobo Ishigaki, and Susumu Date

Abstract The rapidly increasing availability of healthcare data is becoming the
driving force for the adoption of data-driven approaches. However, due to a large
amount of heterogeneous dataset including images (MRI, X-ray), texts (doctor’s
note) and sounds, doctors still struggle against temporal and accuracy limitations
when processing and analyzing such big data using conventional machines and
approaches. Employing advanced machine learning techniques on big healthcare
data anlaytics supported by Petascale high performance computing resources is
expected to remove those limitations and help find unseen healthcare insights. This
paper introduces a data analytics pipeline consisting of data curation (including
cleansing, annotation, and integration) and data analytics processes, necessary to
develop smart healthcare applications. In order to show its practical use, we present
sample applications such as diagnostic imaging, landmark extraction and casenote
generation using deep learning models, for orthodontic treatments in dentistry.
Eventually, we will build smart healthcare infrastructure and system that fully
automate the set of the curation and analytics processes. The developed system will
dramatically reduce doctor’s workload and is smoothly expanded to other fields.

1 Introduction

Increasing demand and costs for healthcare, exacerbated by ageing populations, are
serious concerns worldwide. A relative shortage of doctors or clinical manpower is
also a big problem that causes their workload to increase and brings a challenge
for them to provide immediate and accurate diagnoses and treatments for patients.
Most of the medical practices are completed by medical experts backed by their own
experiences, and clinical researches are conducted by researchers via painstaking

C. Lee (?X) « S. Date
Cybermedia Center, Osaka University, 5-1 Mihogaoka, Ibaraki, Osaka, Japan
e-mail: leech@cmc.osaka-u.ac.jp; date @cmc.osaka-u.ac.jp

S. Murata * K. Ishigaki

Graduate School of Information Science and Technology, Osaka University, 5-1 Mihogaoka,
Ibaraki, Osaka, Japan

e-mail: murata.seiya@ais.cmc.osaka-u.ac.jp

© Springer International Publishing AG 2017 181
M.M. Resch et al. (eds.), Sustained Simulation Performance 2017,
DOI 10.1007/978-3-319-66896-3_12

mailto:leech@cmc.osaka-u.ac.jp
mailto:date@cmc.osaka-u.ac.jp
mailto:murata.seiya@ais.cmc.osaka-u.ac.jp

182 C.Leeetal.

designed and costly experiments. Consequently, this has generated a great amount
of interests and motivation in providing better healthcare through smarter healthcare
systems.

Nowadays, a huge amount of healthcare data, called Electronic Health Records
(EHR), has become available in various healthcare organizations, which are the
fundamental resource to support medical practices or help derive healthcare insights.
The increasing availability of EHR is becoming the driving force for the adoption
of data-driven approaches. Efficient big healthcare data analytics supported by
advanced machine learning (ML) and high performance computing (HPC) technolo-
gies brings the opportunities to automate healthcare related tasks. The benefits may
include earlier disease detection, more accurate prognosis, faster clinical research
advance and the best fit for patient management.

While the promise of big healthcare data analytics is materializing, there is still
a non-negligible gap between its potential and usability in practice due to various
factors that are inherent in the data itself such as high-dimensionality, heterogeneity,
irregularity, sparsity and privacy. To make the best analytics, all the information
must be collected, cleaned, integrated, stored, analyzed and interpreted in a suitable
manner. The whole process is a data analytics pipeline where different algorithms
or systems focus on different specific targets and are coupled together to deliver
an end-to-end solution. It can also be viewed as a software stack where at each
phase there are multiple solutions and the actual choice depends on the data type
(e.g. image, sound, text, or sensor data) or application requirements (e.g. predictive
analysis or cohort analysis).

In this paper, we describe the data analytics pipeline consisting of data curation
phase with cleansing, annotation and integration, and data analytics phase with
analytics methods and visualization tools, which are necessary processes to develop
healthcare applications. In order to show its practical use, we present three example
applications using deep learning methods for orthodontic treatments in dentistry.
The applications try to automate the following tasks such as (1) computing Index of
Orthodontic Treatment Needs (IOTN)' from facial and oral photos; (2) extracting
facial morphological landmarks or features from X-rays called Cephalograms; and
(3) generating casenote where the first doctor’s observation is written based on the
diagnostic imaging such as (1) and (2).

The remainder of this paper is organized as follows. Section 2 introduces some
requirements in handling healthcare data and describes the proposed data analytics
pipeline consisting of data curation and analytics processes. Section 3 presents
example applications using deep learning models, such as diagnostic imaging,
landmark extraction and casenote generation for orthodontic treatments in dentistry,
followed by conclusion.

'TOTN [1] is one of the severity measures for malocclusion and jaw abnormality, which determines
whether orthodontic treatment is necessary.

A Data Analytics Pipeline for Smart Healthcare Applications 183
2 Healthcare Data Analytics Pipeline

This section describes the proposed healthcare data analytics pipeline. As illustrated
in Fig. 1, it consists of two phases, data curation phase (Sect. 2.1) and data analytics
phase (Sect.2.2). Processing big data is supported by high performance computing
resources.

2.1 Data Curation Phase

Before available data is directly processed for analysis, data needs to go through
several steps to refine it according to application requirements. Data curation phase
prepares necessary data in a suitable format for further analysis. Firstly, data needs
to be acquired and extracted from various data sources. Secondly, obtained raw
data is probably heterogeneous, composed of structured, unstructured and sensor
data, and also typically noisy due to inaccuracies, missing, biased evaluations, etc.

———

Data Analytics Goals and Methods
Cohort Predictive Image
Analysis Analysis Recognition
= s etical
Unsupervised Statistica Deep Learning

‘ Learning Learning
k _______________ S |

High Performance L3
Computing Resources =
- pe - r 1
- - - : !
g Ej g I e |
- R - i T= 22 |
|
| |
! I

Data Analytics

)

H Raw Curated Knowledge Medical Knowledge/Ontology

S Data Data base b i
©

S

=

o

o]

]

©

a

Data Data Data Data
Extraction Cleansing Annotation Integration

Fig. 1 An illustration of the proposed data analytics pipeline consisting of data curation and
analytics, necessary processes to develop healthcare applications

184 C.Leeetal.

Hence, data cleansing is required to remove data inconsistencies and errors. Thirdly,
data annotation with medical experts’ assistance contributes to the effectiveness and
efficiency of this whole process. Fourthly, data integration combines various sources
of data to enrich information for further analysis. Finally, the processed data is
modelled and analyzed, and then analytics results are visualized and interpreted.

2.1.1 Data Type

Healthcare data, e.g., electric healthcare records (EHR), mainly includes three
types of data, namely structured, unstructured and sensor data. Structured data
includes socio-demographic information and medical features such as diagnoses,
lab test results, medications and procedures. Those elements are typically coded
in pre-defined forms by a hierarchical medical classification system or IDC-9
and currently IDC-10,> and drug databases like First Databank and SNOMED
(Systematic Nomenclature of Medicine). Unstructured data does not have a specific
data model, which includes medical status in a free-text form (e.g., doctors’ notes
and medical certificates) and non-textual form such as images (e.g., MRI, X-rays)
and sounds. Sensor signals or data streams are also common in healthcare data
with the wide use of sensor devices for monitoring and better response to the
situational needs. With the advancement in sensor technology and miniaturization
of devices, various types of tiny, energy-efficient and low-cost sensors are expected
to be widely used for improving healthcare [2, 3]. Monitoring and analyzing such
multi-modal data streams are useful for understanding the physical, psychological
and physiological health conditions of patients.

2.1.2 Data Cleansing

Available raw data is typically noisy due to several reasons such as inaccuracies,
missing data, erroneous inputs, biased evaluations, etc. Sensor data is also inherently
uncertain due to lack of precisions, failure of transmission and instability of battery
life, etc. Thus, data cleansing is expected to improve data quality assessed by
its accuracy, validity and integrity, which leads to reliable analysis results. It is
essentially required to (1) identify and remove inaccurate, redundant, incomplete
and irrelevant records from collected data and (2) replace or interpolate incorrect
and missing records with reasonably assigned values. This requires us to understand
the healthcare background and work with domain experts to achieve better cleansing
performance.

2International Statistical Classification of Diseases and Related Health Problems.

A Data Analytics Pipeline for Smart Healthcare Applications 185

2.1.3 Data Annotation

Incompleteness is a common issue in terms of data quality. Although the uncertainty
of data can be resolved by model inference using various learning techniques, most
healthcare data is inherently too complex to be inferred by machines using limited
information. In such cases, enriching and annotating data by medical experts are the
only choice to help the machine to correctly interpret data. However, the acquisition
of supervised, annotated information results in an expensive exploitation of data.

Active learning is one of the approaches to reduce the annotation cost while
learning algorithms achieve higher accuracy with few labelled training data. It
aims to only annotate the important, informative data instances while inferring
others, and thereby the total number of annotated data is significantly reduced.
The general solutions may include reducing the uncertainty of training models by
uncertainty sampling [4], Query-By-Committee [5], maximizing the information
density among the whole query space [6]. Another approach may be to borrow
knowledge from related domain(s) such as transfer learning [7]. However, the
aforementioned methods have limitations in real healthcare applications due to
healthcare data volume, complexity and heterogeneity. The automation of data
annotation is still a challenging problem.

2.1.4 Data Integration

Data integration is the process of combining heterogeneous data from multiple
sources to provide users with a unified view of these data. Gomez et al. [8] explores
the progress made by the data integration community, and Doan [9] introduces some
principles as well as theoretical issues in data integration.

Typically, EHR integrates heterogeneous data from different sources including
structured data such as diagnoses, lab tests, medications, unstructured free-text
data like discharge summary, image data like MRI, etc. Healthcare sensor data is
generated by various types of sensor/mobile devices at different sampling rates.
The heterogeneity of abundant data types brings another challenge when integrating
data streams due to a tradeoff between the data processing speed and the quality
of data analytics. The high degree of multi-modality increases the reliability of
analytics results, but it requires longer data processing time. The lower degree of
multi-modality will improve data processing speed but degrade the interpretability
of data analytics results. The efficient data integration helps reduce the size of data
to be analyzed without dropping the analysis performance (e.g., accuracy).

2.2 Data Analytics Phase

Data anlaytics phase (the upper box of Fig. 1) applies different analytics methods
into the curated data to retrieve medical knowledge. Visualization techniques may
also be used to get better understanding of the data. Utilizing high performance

186 C.Leeetal.

computing resources, we can improve the efficiency of data analysis especially
when dealing with a large scale of data. For data privacy, on-demand secure network
connection will be established, in which data is located or transferred to compute
nodes when only needed. Right after the computation, the connection will be
disconnected, and the data will be deleted.

2.2.1 Analytics Methods

Among a variety of anlaytics methods, the actual choice of algorithms or solutions
depends on the data type (e.g. image, sound, text, sensor data) and/or application
requirements (e.g. cohort analysis, predictive analysis, image recognition). In this
section, we shall introduce a few basic methods to solve some healthcare problems
as shown in Fig. 1.

* Cohort Analysis: Cohort analysis is a technique to find risk factors in a particular
group of people, who have certain attributes or conditions such as birth, living
area, life style, medical records, etc. The group is compared with another
group who are not affected by the conditions. Long term statistical investigation
will assess the significant differences between them. For the cohort analysis,
clustering or unsupervised learning is the most popular method to divide people
into particular groups under the certain conditions. For example, Sewitch [10]
identifies multivariate patterns of perceptions using clustering method. Five
different patient clusters are finally identified and statistically significant inter-
cluster differences are found in psychological distress, social support satisfaction
and medication non-adherence.

* Predictive Analysis: Disease progression modeling (DPM) is one of the predic-
tive analysis, which employs computational methods to model the progression
of a specific disease [11]. Reasonable prediction using DPM can effectively
delay patients’ deterioration and improve their healthcare outcomes. Typically,
statistical learning methods are applied to find a predictive function based on
historical data, i.e., the correlation between medical features and condition
indicators. For example, Schulze [12] uses a multivariate Cox regression model
that computes the probability of developing diabetes within 5 years based on
anthropometric, dietary, and lifestyle factors.

* [Image Recognition: Analyzing medical images such as X-ray, MRI, etc. are
beneficial for many medical diagnosis and a wide range of the studies focus on
classification or segmentation tasks. The recent breakthrough in image recog-
nition technology using deep convolutional neural network (CNN) model [13]
brings further improvement in diagnostic imaging that can diagnose the presence
of tuberculosis in chest X-ray images [14], detect diabetic retinopathy from
retinal photographs [15], as well as locate breast cancer in pathology images [16].
A model that combines deep learning algorithms and deformable models is
developed in [17] for fully automatic segmentation of the left ventricle from
cardiac MRI datasets.

A Data Analytics Pipeline for Smart Healthcare Applications 187

Although a variety of data analytics and machine learning (ML) tools are
available, there still exists an obstacle for doctors to fully utilize the tools due
to the lack of the usability. Besides, it is difficult for them to manage compute
resources suitable for executing the analytics methods. Hence, in near future, high
performance infrastructure and system that operate fully or semi-fully automated big
healthcare data curation and analytics, are eagerly desired in medical environment
so that any doctors and/or researchers efficiently conduct their own data analytics.

3 Smart Orthodontic Treatment in Dentistry

The recent breakthrough in image recognition using deep learning techniques brings
further improvement in diagnostic imaging. The diagnostic imaging is eagerly
desired in the field of orthodontics as well, along with increasing demands for
dental healthcare, becoming one of the regular life health factors. For example, the
remote diagnostic imaging can evaluate malocclusion and jaw abnormality that are
the causes of masticatory dysfunction, apnea syndrome and pyorrhea, etc.

In orthodontic clinic, a patient is generally taken his/her facial and oral images
from all directions (as shown in Fig.2) and given the first observation. Looking at
the images, doctors spend time discussing the observation and create the medical

(a) Oral photo (b) Facial photo

[14 7) BACATIARTAL,
FHEITIAEARITR,

e G Fasvaes], marssmesll &

Fig. 2 Sample dataset collected for orthodontic treatments. (a) Oral images taken from five
directions, (b) facial images taken from five directions, (¢) Cephalogram [18], Morphological
landmarks [19] and example patch images (red boxes) (d) casenote or the first doctor’s observation

188 C.Leeetal.

records including diagnosis, treatment plan and progress checkup, etc. This process
is certainly necessary for providing objective diagnosis that is important for both
doctors and patients because the diagnosis directly affects to the treatment plan,
treatment priority, and insurance coverage; but, it takes a great deal of time. In
Osaka University Dental Hospital, over thousands of patient visits are counted
including about 100 new patients per year. It is overburdened for doctors to properly
manage a sequence of tasks such as diagnosis, treatment, progress checkup and
counselling for all patients. Especially, doctors spend a lot of time and effort to
diagnose by manually looking at massive number of images; for instance, it takes
about 2-3h for just one patient’s case. The automation of diagnostic imaging is
highly expected to assist doctors reducing their workload and providing objective
diagnosis.

We try to develop a high performance infrastructure that operates big
healthcare data analytics systems, especially for orthodontic treatments in dentistry,
which automate medical tasks such as diagnostic imaging, landmark extraction
and casenote generation. Due to a large amount of heterogeneous dataset
including images (facial/oral photo, X-rays) and texts (casenote), doctors struggle
against temporal and accuracy limitations when processing and analyzing those
data using conventional machines and approaches. We believe that advanced
machine learning techniques supported by Petascale high performance computing
infrastructure remove those limitations and help find unseen healthcare insights.
We evaluate the practical use of DL models in medical front and show its
effectiveness.

In this paper, we consider three example applications dealing with medical
images and casenotes (text), as illustrated in Fig. 3. Section 3.1 (App1) explains how
to compute the score of orthodontic treatment needs from facial and oral images.
Section 3.2 (App2) shows how to retrieve facial morphological landmarks from X-
rays called Cephalograms. Section 3.3 (App3) describes how to generate casenotes
where the first doctor’s observation is written.

3.1 Assessment of Treatment Need (App 1)

This application tries to automate the assessment of Index of Orthodontic Treatment
Needs (IOTN) [1], one of the severity measures for malocclusion and jaw abnor-
mality, which determines whether orthodontic treatment is necessary. Providing
orthodontic treatments at appropriate timing is very important for patients to prevent
a masticatory dysfunction. Generally, a primary care doctor or general dentist
assesses the IOTN of his/her patient, and if the severity is high, he/she refers the
patient to the other specialist for further treatments. However, there is a problem
that many patients tends to miss the appropriate treatment timing due to an incorrect
assessment by an inexperienced doctor. The automation of the IOTN assessment
helps provide an objective assessment and train such inexperienced doctors.

A Data Analytics Pipeline for Smart Healthcare Applications 189

Input Data Convolution & Pooling operations Multi-layer Perceptron
B;

5 » \f/%

&

Lookup Table
4 Word. Word1)
Embedding Phrasel

Word2/
- Phrase2
Knowledge base
(doctor’s note
text documents)

\. / . @Koseki Orthodo.nt'c Office
Text Generating Recurrent Network ' i

g

Fig. 3 An illustration of deep learning models that perform diagnostic imaging (App1), landmark
extraction (App2) and casenote generation (App3) for orthodontic treatments

We collect oral and facial images of over a thousand patients, taken from five
different directions, as shown in Fig.2a, b. Unlike typical image classification
problems where each image is paired with one class or label, one class, i.e., a
severity value, is paired with a set of images of a patient. We design a parallel
convolutional neural network (CNN) model that independently runs multiple
CNNs, each of which deals with images taken from each direction, and then
concatenates feature vectors (i.e., outputs of the multiple CNNs). The concatenated
feature vector is input to a multi-layer perceptron whose output is one of IOTN
levels.

3.2 Morphological Landmarking (App 2)

Cephalometric analysis is also a significant diagnosis necessary for further
orthodontic treatments. It helps in classification of skeletal and dental abnormalities,
planning treatment of an individual, and predicting growth related changes.
This application tries to automate facial morphological landmark detection in
Cephalometric X-ray images (Fig. 2c).

190 C.Leeetal.

We consider a landmark as an image patch, i.e., a sub-image of the whole
cephalometric image, which includes the landmark. Collecting a bunch of patches
for several landmarks from different patients, we train a CNN-based model to
recognize whether given sub-images (i.e., regions) include the landmarks. The
model outputs an N dimensional vector at the last layer, and each vector element
represents the probability that given patch includes a corresponding landmark.
Compared to image patches, the whole cephalometric image resolution (or the
number of pixels) is normally high. In order to speed up the recognition speed,
we distribute the sub-images over multiple nodes and run the model independently.
Candidate regions of landmarks will be selected from each of the nodes. Then, based
on the probability associated to the candidates, we determine the most likely region
as the target landmark.

3.3 Casenote Generation (App 3)

In general, generating casenote is a time consuming work for doctors. For instance,
doctors regularly gather together to discuss the results of diagnostic imaging such as
Appl and App2, and prepares casenotes including the diagnosis, treatment plan and
priority, etc. It often takes about a few hours to generate the casenote for just one
patient. This application tries to automate the process of the casenote generation.

We collect over a thousand of casenotes (Fig. 2d) in addition to the oral and facial
images of the corresponding patients. Inspired by a related work [20] that describes
the content of an image, we design a hybrid model using CNN and Recurrent neural
network (RNN) that inputs both images and casenotes. The hybrid model will lean
how the casenote was written according to the diagnostic imaging; in other words,
the model will find the association rules between features in images and words in
casenotes.

4 Conclusion

In this paper, we summarize some requirements in handling healthcare data and
the data analytics. We propose a data analytics pipeline that consists of data
curation with cleansing, annotation and integration, and data analytics processes
using several analytics methods and visualization tools. In order to verify the
practical use of such data curation and analytics methods in medical front and show
its effectiveness, we present example healthcare applications such as diagnostic
imaging, landmark extraction and casenote generation using deep learning models,
for orthodontic treatments in dentistry.

In future work, we will conduct rigorous experiments to evaluate the results of
the curation and analytics and whether they satisfy the application requirements.
Eventually, we will build smart healthcare infrastructure and system that fully

A Data Analytics Pipeline for Smart Healthcare Applications 191

or semi-fully automate the set of the curation and analytics processes, where
any doctors and/or researchers efficiently conduct their own data analytics, which
dramatically reduces their workload. This will be smoothly expanded to other fields
such as otolaryngology (ear and nose) and ophthalmology (eye).

Acknowledgements The authors would like to thank Prof. Kazunori Nozaki in Osaka University
Dental Hospital, for managing and providing medical dataset for experiments. We also thank Prof.
Chihiro Tanikawa in Department of Orthodontics & Dentofacial Orthopedics, Osaka University
Dental Hospital, for lending her expertise on the orthodontic treatments in dentistry.

References

1. Brook, P.H., Shaw, W.C.: The development of an index of orthodontic treatment priority. Eur.
J. Orthod. 11(3), 309-320 (1989)

2. Caytiles, R.D., Park, S.: A study of the design of wireless medical sensor network based u-
healthcare system. Int. J. Bio-Sci. Bio-Technol. 6(3), 91-96 (2014)

3. Filipe, L., Fdez-Riverola, F., Costa, N., et al.: Wireless body area networks for healthcare
applications. Protocol stack review. Int. J. Distrib. Sens. Netw. (2015). http://dx.doi.org/10.
1155/2015/213705

4. Sharma, M., Bilgic, M.: Evidence-based uncertainty sampling for active learning. Data Min.
Knowl. Discov. 31(1), 164-202 (2017)

5. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth
Annual Workshop on Computational Learning Theory (1992)

6. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks.
In: Proceedings of the Conference on Empirical Methods in Natural Language Processing,
EMNLPOS8 (2008)

7. Ma, Z., Yang, Y., Nie, F,, Sebe, N., Yan, S., Hauptmann, A.: Harnessing lab knowledge for
real-world action recognition. Int. J. Comput. Vis. 109(1-2), 60-73 (2014)

8. Gomez-Cabrero, D., Abugessaisa, 1., Maier, D., et al.: Data integration in the era of omics:
current and future challenges. BMC Syst. Biol. 8(2) (2014). http://dx.doi.org/10.1186/1752-
0509-8-S2-11

9. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Elsevier, Amsterdam (2012)

10. Sewitch, M.J., Leffondré, K., Dobkin, P.L.: Clustering patients according to health perceptions:
relationships to psychosocial characteristics and medication nonadherence. J. Psychosom. Res.
56(3), 323-332 (2004)

11. Mould, D.: Models for disease progression: new approaches and uses. Clin. Pharmacol. Ther.
92(1), 125-131 (2012)

12. Schulze, M.B., Hoffmann, K., Boeing, H., et al.: An accurate risk score based on anthropomet-
ric, dietary, and lifestyle factors to predict the development of type 2 diabetes. Diabetes Care
30(3), €89 (2007)

13. Krizhevsky, A., Sutskever, 1., Hinton, G.E. : Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, vol. 1 (2012)

14. Lakhani, P., Sundaram, B.: Deep learning at chest radiography: automated classification of
pulmonary tuberculosis by using convolutional neural networks. Radiology (2017). http://dx.
doi.org/10.1148/radiol.2017162326

15. Gulshan, V., Peng, L., Coram, M., et al.: Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus photographs. J. Am. Med.
Assoc. 316(22), 2402-2410 (2016)

16. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a
comprehensive tutorial with selected use cases. J. Pathol. Inf. 7(292), 29 (2016)

http://dx.doi.org/10.1155/2015/213705
http://dx.doi.org/10.1155/2015/213705
http://dx.doi.org/10.1186/1752-0509-8-S2-I1
http://dx.doi.org/10.1186/1752-0509-8-S2-I1
http://dx.doi.org/10.1148/radiol.2017162326
http://dx.doi.org/10.1148/radiol.2017162326

192 C.Leeetal.

17. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-learning and deformable-model
approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med. Image
Anal. 30, 108-119 (2016)

18. Jimbocho Orthodontic clinic: www.jimbocho-ortho.com. Accessed June 2017

19. Grau, V., Alcaniz, M., Juan, M., Knoll, C.: Automatic localization of cephalometric landmarks.
J. Biomed. Inform. 34(3), 146-156 (2001)

20. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator.
In: CVPR15 (2015)

www.jimbocho-ortho.com

	Preface
	Contents
	Part I System Management
	Theory and Practice of Efficient Supercomputer Management
	1 Introduction
	2 Moscow State University HPC Toolkit for Efficiency Analysis
	2.1 DiMMon Monitoring System
	2.2 JobDigest System for Application Behavior Analysis
	2.3 Statistics Analysis Using OctoStat
	2.4 OctoTron: Autonomous Life of Supercomputers
	2.5 OctoScreen Visualization System
	2.6 OctoShell System for Work Organization

	3 Conclusion
	References

	Towards A Software Defined Secure Data Staging Mechanism
	1 Introduction
	2 Challenges and Issues
	3 Key Technologies
	3.1 Software Defined Networking
	3.2 ExpEther Technology
	3.3 Job Management System

	4 Proposal
	5 Conclusion
	References

	Part II Mathematical Methods and Approaches
	The Numerical Approximation of Koopman Modes of a Nonlinear Operator Along a Trajectory
	1 Introduction
	2 The Koopman Operator
	3 Trajectories and Observables
	4 The Relation to Time Series Analysis
	5 Approximation of an λ-Eigenmode Along a Trajectory
	5.1 Determining the Polynom Coefficient Vector c
	5.2 Roots and Pseudo-Eigenvectors
	5.3 Handling Intermediate Data Steps

	6 The λ-Eigenmode Mapping Operator
	6.1 Incompressible Navier-Stokes Equations as Example

	7 Remarks
	8 Computational Costs and Performance Aspects
	9 Application Example
	10 Conclusions
	References

	Part III Optimisation and Vectorisation
	Code Modernization Tools for Assisting Users in Migrating to Future Generations of Supercomputers
	1 Introduction
	2 General Process for Manual Code Modernization and Migration
	3 Using IPT for Code Modernization (Parallelization)
	4 Overview of KNL Processors
	4.1 Multiple Memory Modes
	4.2 Multiple Cluster Modes

	5 Using ICAT for Code Modernization and Migration (Porting Code to KNL Processors)
	6 Using IPT and ICAT with a Sample Application
	6.1 Using IPT to Parallelize the MD Application
	6.2 Using ICAT to Adapt the MD Application for KNL Processors

	7 Conclusion
	References

	Vectorization of High-Order DG in Ateles for the NEC SX-ACE
	1 Introduction
	2 High-Order Discontinuous Galerkin in Ateles
	2.1 The Modal Basis
	2.2 The Mesh Structure

	3 Vectorization on the NEC SX-ACE
	3.1 Porting of Ateles

	4 Measurements and Observations
	4.1 Linear Equations
	4.2 Nonlinear Equations

	5 Summary and Outlook
	References

	Vectorization of Cellular Automaton-Based Labeling of 3-D Binary Lattices
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Initialization
	3.2 Cellular Automaton Update
	3.2.1 Maximum Operator
	3.2.2 Branch-Based Maximum Operator
	3.2.3 Closed-Form Maximum Operator

	4 Implementation
	4.1 Dense Data Representation
	4.2 OpenMP-Code
	4.3 CUDA Implementation
	4.3.1 Termination Criterion

	4.4 Multi-GPU Computation
	4.5 Sparse Data Representation
	4.5.1 OpenMP-Code

	5 Simulation Results
	5.1 Maximum Operator

	6 Conclusions
	References

	Part IV Computational Fluid Dynamics
	Turbulence in a Fluid Stratified by a High Prandtl-Number Scalar
	1 Introduction
	2 Direct Numerical Simulations
	3 Results
	4 Conclusions
	References

	Wavelet-Based Compression of Volumetric CFD Data Sets
	1 Introduction
	2 Technical Description
	2.1 Fixed Point Number Format
	2.2 The Discrete Wavelet Transform
	2.3 Quantization

	3 Experimental Results
	3.1 Data Sets
	3.2 Results

	4 Conclusions
	References

	Validation of Particle-Laden Large-Eddy SimulationUsing HPC Systems
	1 Introduction
	2 Mathematical Models
	2.1 Navier-Stokes Equations
	2.2 Particle Dynamics
	2.2.1 Direct Particle-Fluid Simulation
	2.2.2 Euler-Lagrange Model

	3 Numerical Methods
	3.1 Direct Particle-Fluid Simulation
	3.2 Implicit Large-Eddy Simulation
	3.3 Euler-Lagrange Model

	4 Results and Discussion
	4.1 Large-Eddy Simulation of Isotropic Turbulence
	4.2 Turbulence Modulation by Particles

	5 Conclusion
	References

	Coupled Simulation with Two Coupling Approacheson Parallel Systems
	1 Introduction
	2 Data Mapping Methods
	2.1 Interpolation
	2.2 Data Mapping by Evaluation

	3 Results
	3.1 Configuration of the Simulation
	3.2 Coupled Simulation Results
	3.3 Performance of the Mapping Methods

	4 Conclusion
	References

	MRI-Based Computational Hemodynamics in Patients
	1 Introduction
	2 Methodology
	2.1 Geometries
	2.2 Meshing
	2.3 CFD Setup
	2.4 Optimization Workflow

	3 Results
	3.1 Optimization Results
	3.2 Global Target Values
	3.3 Local Variations
	3.4 Performance Issues

	4 Conclusion
	Appendix
	References

	Part V High Performance Data Analytics
	A Data Analytics Pipeline for Smart Healthcare Applications
	1 Introduction
	2 Healthcare Data Analytics Pipeline
	2.1 Data Curation Phase
	2.1.1 Data Type
	2.1.2 Data Cleansing
	2.1.3 Data Annotation
	2.1.4 Data Integration

	2.2 Data Analytics Phase
	2.2.1 Analytics Methods

	3 Smart Orthodontic Treatment in Dentistry
	3.1 Assessment of Treatment Need (App 1)
	3.2 Morphological Landmarking (App 2)
	3.3 Casenote Generation (App 3)

	4 Conclusion
	References

