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Abstract. At present, the quality control in additive manufacturing is diligently
based on temperature of the process zone or high resolution imaging. Hence,
various sensors such as pyrometers, photo diodes and matrix CCD detectors are
used. The discrepancies in temperature measurements and the real temperature
distribution inside the powder medium reduce the reliability of this method. The
high resolution imaging monitors the quality post factum, after a part is man-
ufactured. So far, no methods are known to monitor the quality of additive
manufacturing in situ and in real-time. To achieve the goal of accurate real-time
quality control, we propose an approach that relies on acoustic emission, which
is further analyzed within artificial intelligence framework. We show that the
additive manufacturing process has a number of unique acoustic signatures that
can be detected, extracted and interpreted in terms of quality.
In this contribution, the processing parameters for the selective laser melting

of a 316L steel were modified to create a specimen consisting of sections with
three quality levels. During the process, the acoustic emission data were
acquired and then processed prior validation. The confidence level achieved in
the classification is 79–84% that demonstrates the applicability of this approach
for in situ and real-time quality monitoring in additive manufacturing. Finally,
the proposed method is very flexible in terms of realization and can be integrated
in any additive manufacturing machine.
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1 Introduction

In recent years, additive manufacturing (AM) has attracted considerable attention from
the industrial world [1, 2]. The main reason is that unlike conventional material
removal methods, AM is based on additive material method [3]. This manufacturing
strategy has placed AM as one of the most promising future technologies [4] and is
recognized, today and by many, as the next industrial revolution [5]. The main reason
for this is that AM reduces the geometrical constraints of the parts as compared to
conventional manufacturing [5, 6].
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Several AM technologies exist such as Laser Cusing, Direct Metal Laser Melting,
Laser Metal Fusing or Selective Laser Melting (SLM) [7]. In this work, we focused on
SLM technology, which is a powder bed AM technology allowing building highly
complex 3D geometries layer by layer parts from an alloy powder. This technology has
been successfully applied for fast prototyping of unique workpieces and for production
of small series of individualized products [7, 8].

Unfortunately, the high expectations are not completely fulfilled as AM is not
matured enough. The reason is in the high sensitivity of the AM process to different
factors, such as laser parameters, laser optics, mechanical and optical material prop-
erties, particles configuration of the powder in the melt zone, etc. [9–11]. Hence, any
small changes can have a direct impact on the part quality in terms of pronounced
porosity, cracking and accumulation of residual stress inside a part [12]. Under such
circumstances, it is obvious that the repeatability of AM processes are limited, pre-
venting the technology from being used in a much wider range. A probable way out of
this situation is the development of in situ and real-time quality monitoring and control
of the part quality [12]. The challenges in such a development are in the complex
underlying physics that require interdisciplinary investigations in materials, laser-
matter interactions, optical properties of powders and heat propagation [6]. The lack of
this knowledge prevents the design of quality monitoring systems [9–12].

At present, the two most common approach for quality monitoring is based on
temperature measurements of the process zone and this information is used to keep the
melt pool stable [12–14]. The other methodology is based on the image processing of
the surface of the manufactured layer [12, 13, 15–18]. Both approaches have draw-
backs. The temperature measurements are taken from the surface and no precise esti-
mation of its propagation in depth exists so that the inaccuracies lead to uncontrollable
formation of defects. The image processing is a post mortem analysis that is carried out
after the workpiece is manufactured and no quality improvements are possible [12, 13,
15–18]. Hence, there is a consensus among scientists and industries that there is a lack
in reproducibility when producing a workpiece in mass production [1, 3, 12–18].

In recent years, acoustic emission (AE) has been involved for quality monitoring of
some industrial processes [19, 20]. Its advantages are in the fast data acquisition and
processing since it is represented by 1D sequences, whereas imaging is 2D. Addi-
tionally, cutting edge AE sensors, in particular fiber Bragg grating (FBG), are known to
be highly sensitive [20, 21]. Thus, some attempts to use either active or passive AE for
AM process exist in the literature [22–26] but no link was found between the AE and
the quality of the part.

In recent years, significant progresses have been made in terms of artificial intel-
ligence (AI). In a first try of combining FBG sensor and artificial intelligence, we
evaluated spectral convolutional neural networks (SCNN) and conventional CNN [27].
The classification accuracy for SCNN was higher than CNN and ranged between 83 to
89% for the three quality levels. In this contribution, a convolutional neural network
(CNN) was employed since it is top notch method used in acoustic signals processing,
principally for speech recognition [28]. CNN incorporates self-features extraction
layers that produce the optimal features for a given task. This makes CNN very
interesting for industrial applications as CNN is able to self-optimize the algorithm with
a minimum human participation.
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2 Experimental Setup, Material and Acoustic Datasets

The experiments were performed on an industrial Concept M2 machine (Concept Laser
GmbH, Germany). This machine is based on a selective laser melting (SLM) process.
The machine had a fiber laser with wavelength of 1071 nm, a spot diameter of 90 lm,
a beam quality M2 = 1.02 and operating in continuous mode. The powder had a
particle size distribution ranging from 10 to 45 lm and was made of CL20ES stainless
steel (1.4404/316L).

The part produced was a cube with dimensions 10 � 10 � 20 mm3 shown in
Fig. 1a. The process was carried out under N2 atmosphere so that the O2 content stayed
below 1% during the entire process. Except the laser scanning velocity, the process
parameters were kept constant. The laser power P was 125 W, the hatching distance
h was 0.105 mm and the layer thickness t was 0.03 mm. Three laser scanning speeds
were selected and they were 300, 500 and 800 mm/s. The corresponding energy
densities were calculated to be 132, 79, 50 J/mm3 [29]. The scanning regimes resulted
in three pore concentrations inside the part, which was measured on cross-sections via
visual inspection of light microscope images. The porosity concentration were
0.07 ± 0.02% (high quality; 500 mm/s; 79 J/mm3), 0.3 ± 0.18% (medium quality;
300 mm/s; 132 J/mm3), and 1.42 ± 0.85% (poor quality; 800 mm/s; 50 J/mm3). The
light microscope images of the different qualities are shown in Fig. 1b–d.

In this study, the acoustic emission emitted during the process was recorded using a
fiber Bragg gratings (FBG) during the whole manufacturing of the part. The FBG was
placed inside the machine chamber, at a distance of 20 cm from the process zone.
The FBG sensor was pumped with a narrow band laser irradiation at a wavelength of
1547 + 0.01 nm and a light power of 4 mW. The FBG sensor provided a 50% of
reflectivity in the optical read out signal and more details about FBGs can be found in
[20, 21]. The reflected signal was additional digitized using a high speed photo-diode,
connected to data acquisition unit and a data recording software. Both were from
Vallen (Vallen Gmbh., Germany). All signals were digitized with a sampling rate of
1 MHz. As an example, the AE signal of a full high quality layer (79 J/mm3,
500 mm/s) is shown in Fig. 2a.

Fig. 1. (a) SLM test part produced with three energy densities where 50 J/mm3 are bright
regions, 79 J/mm3 are dark regions and 132 J/mm3 are blueish regions; (b) – (d) Typical light
microscope cross-section images of regions produced with (a) 50 J/mm3, 800 mm/s, poor quality
with pores concentration of 1.42 ± 0.85%, (b) 132 J/mm3, 300 mm/s, medium quality with
pores concentration 0.3 ± 0.18% and (c) 79 J/mm3, 500 mm/s, high quality with pores
concentration of 0.07 ± 0.02%.
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3 Data Processing

3.1 Wavelet Spectrograms

In this specific work, the search of distinct features in convolution neural network
(CNN) is carried out in the time-frequency domain using wavelet spectrograms. The
intensity measurement of the AE components in spectrograms was taken as the relative
energies of the narrow frequency bands obtained with M-band wavelets.

M-band wavelets are extensions of the traditional wavelet transform [30, 31]. Its
advantage is to operate wavelets at various signal subspaces so that they become
insensitive to shift-invariance artifacts [31]. The representation ofM-band wavelets as a
multi-channel filtering is defined through finite impulse response filters (FIR) [31]:
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where M is the channels number, u(n) is a scaling function, j is the current scale, w() is
the wavelet function, h0, hm−2, hm−1 are the low pass, narrow pass and high pass filters,
respectively. The outcomes of Eqs. (1) and (2) are the extraction of the low, narrow and
high frequency contents of the signal at a fixed scale j. This is represented by a set of
decomposition coefficients dj,s where s denotes the shift within a single frequency band
at scale j. In this contribution, the algebraic wavelets from Lin et al. [31] were used.

The use of relative energies allows tracking the energy redistribution between the
different frequency bands and those are computed as:

qnorm j;m ¼ Ej;m=Ej ð3Þ

where Ej;m ¼ R
dj;m tð Þ�� ��2dt ¼ P

k
dj;s
�� ��2 is the energy of frequency band m at scale j and

Eij is a summary of the energy of all frequency bands within the spectrogram. The

Fig. 2. (a) A typical AE signal from one complete layer of medium quality (132 J/mm3,
300 mm/s). LRW (red box) and SRW (green box) are the long and short running windows
scanning the acquired signal; (b) the complete reconstructed spectrogram from the relative
energies of the M-band wavelets for the LRW time span bounded by red lines in Fig. 2(a).
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outcome of Eq. (3) is a spectrogram. An example of an AE signal and a spectrogram
are presented in Fig. 2. The spectrogram is reconstructed from a pattern of the signal in
Fig. 2a that is bounded by the red lines between 0.2 and 0.4 s.

In this investigation, two AE patterns from the AE signal were analyzed and
marked in Fig. 2a by a red and green boxes. These patterns are defined as a LRW
(Long Range Window, red box) and SRW (Short Range Window, green box). Both
have different span time and have different purposes. The AE signals will be scanned
by these two windows. The SRW will provide a higher resolution for more precise
spatial localization of single process events in the future. But, its short time span makes
it sensitive to noise. This problem is expected to be surmounted thank to the LRW that
will be responsible for the whole classification stability. In this work, the LRW is a
short term memory of a set of several previous and one current SRW.

3.2 Introduction to Wavelet Spectrograms

In this study, the CNN structure was adjusted to process the flows of the spectrograms
from both the LRW and SRW, simultaneously. The scheme of the new CNN structure
is presented in Fig. 3. The two spectrograms go through two separate convolution
layers from which we get a series of perception maps 1. The information from those is
further aggregated in the pooling layers 1. Then, the information from both flows is
forwarded into the common convolution layer 2 which is followed by an additional
repentance of the pooling operation (see pooling 2 in Fig. 3). The final classification is
carried out in fully connected layers as schematically presented in Fig. 3. The classi-
fication result is the output of the procedure and this is given in Table 1. More details
can be found in Thomas et al. [32] for the pooling operation and Krizhevsky et al. [33]
for self-feature extraction and CNN operation principles.

Fig. 3. The structure of the CNN, where LRW and SRW denote the long rang window and short
range window, respectively.
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4 Results and Discussion

4.1 Dynamical Range

As mentioned in Sect. 2, the AMmachine employed in this investigation is an industrial
Concept M2. Due to their conceptions, such industrial machines have a non-negligible
background noise, in particular for acoustic emission (AE). Consequently, it is of utmost
importance to be able to decouple the AE of the AM process from the background noise.
This was accomplished by recording the machine internal noises without the AM
process. Those signals were, then, utilized for the evaluation of the noise background.

It was found from the spectrograms that the background noise of the Concept M2
machine appears in a wide spectral range as for the AM process. However, some
discernible dissimilarity was discovered in the range of 9 to 15 KHz (not shown here).

The noise reduction in the industrial mechanic systems are well known and can be
effectively suppressed by design of filters. These noises are mainly characterized by
low frequencies [34]. But, in this current study, we relied on the ability of CNN to
suppress the stationary noises.

4.2 Classification Results

The training dataset included in total 1.200 LRWs and 4.800 SRWs from the three
quality categories, which were extracted from the AE signals. In this dataset, each
category had the same number of signals. After the training, to test the data, we used a
different dataset that was not used in the training procedure. This can be assimilated to
newly data recorded for a new part. The test dataset was also constituted by the same
number of LRWs and SRWs for each category.

The accuracies of the classification results using the test dataset are given in
Table 1. In this table, the numbers without brackets represent the total accuracies
(LRW and SRW). The numbers in brackets are the classification results for only either
the LRW or the SLRW, respectively. The ground truths, in this table, are given in the
columns whereas the classification test categories are in rows. The accuracy is calcu-
lated from the number of the true positives divided by the total number of the tests for
the individual categories. The total accuracies achieved using the aforementioned time
spans for both windows lie between 79 and 84%. The classification errors for each
category correspond to the values in the non-diagonal cells of Table 1. For example,

Table 1. Test results for different categories (in rows) versus ground truth (in columns). The
color intensity encodes the match of the test result to the ground truth. In brackets the
classification results only for LRW/SRW are shown
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the AE test data from poor quality was classified with an accuracy rate of 84% and so it
has the lowest error rate. The classification error is the lowest (7%) for the medium
quality and the highest (9%) for the highest quality. The situation is completely invers
for the medium quality. Finally, the classification error, for the high quality, is almost
the same for medium and poor quality.

We would like to point out again here that the poorest quality is made with the
highest speed (800 mm/s), followed by the high quality (500 mm/s) and finally the
medium quality (300 mm/s). It is also interesting to note that, for the poor quality, the
error rates decrease as the differences in the laser scanning speed increases. In contrast,
this statement is not valid for the medium quality. In this case, the error rate is highest
for the high quality, although the laser scanning speed difference is the smallest as
compared to the poor quality, and the error rate is lowest for the poor quality, despite
having the largest laser scanning speed difference. As far as the high quality is con-
cerned, although the error rates between the two other quality levels, the lowest value is
found to be for the medium quality (10%, 300 mm/s) which has, actually, the closest
laser scanning speed with the high quality (500 mm/s) as compared to the poor quality
(11%, 800 mm/s). Hence, we can conclude that the laser scanning velocity has no
impact on the self-extraction of the distinct features in CNN.

Another source of error may be due to the acoustic echo and noise behavior pro-
duced during the additive process. As already mentioned, there are some overlaps in the
AE signals coming from the AM process and the noise of the machine. Considering also
the stochastic behavior of the AM process and the noise of the machine, it cannot be
excluded that some features are not well classified during the training. Such behaviors
complicate the extraction of the distinct frequencies and increase the error rates.

The results of the AE signal classification for the LRW and SRW only are pre-
sented in brackets in Table 1. It is found that the classification accuracy obtained only
considering the LRW is very close or equal to the total classification accuracy, which is
obtained from the combined LWR and SRW. In contrast, the classification accuracy of
the SRW only is significantly lower than the total and LRW only accuracies. Two
reasons may account for this result. First, this may be due to the fact that the SRWs are
extremely sensitive to the noises as they operate at much smaller time scales. Second,
this could be due to the fluctuations of the acoustic signal from the additive process.
The local fluctuations might be caused by very local events which are different from
each other due to the non-uniformities of the laser-material interactions. Those are
probably caught by the SRWs due to their much smaller time scales. This conveys to
higher error rates when splitting all signals only in three categories. Despite its poor
classification accuracy, the SRW will bring benefits in the future. Due to the shorter
time spans, we will be able to localize more precisely the defects. But, this was out of
the scope of this contribution and is the subject for further developments.

5 Conclusions

The main goal of this contribution was to study the feasibility of a very innovative
approach which combines acoustic emission (AE) with artificial intelligence (AI) for
in situ and real-time monitoring of additive manufacturing (AM) processes.
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To answer the question, we used an industrial selective laser melting (SLM) ma-
chine Concept M2. The material used was a CL20ES stainless steel (1.4404/316L)
powder (∅ 10–45 lm). The acoustic sensor selected was a fiber Bragg grating
(FBG) due to its high sensitivity. In terms of artificial intelligence, a convolution neural
network (CNN) was employed. The CNN employed was modified to be able to
analysis input data at two time scales. The CNN was fed with wavelet spectrograms
that were are a representation of the AE signals. A part was produced with constant
process parameters except for the laser scanning velocity. Three laser scanning speeds
were selected to give three levels of quality levels in terms of porosity. The measured
porosity concentration were 0.07 ± 0.02% (high quality; 500 mm/s; 79 J/mm3),
0.3 ± 0.18% (medium quality; 300 mm/s; 132 J/mm3), and 1.42 ± 0.85% (poor
quality; 800 mm/s; 50 J/mm3). The recorded AE signals were grouped accordingly.

It is known that industrial machines, such as the Concept M2 machine, produce
high noise levels resulting in a low signal/noise ratio leading to classification inaccu-
racies. The approach considered in this work has two tools for effective noise sup-
pression. To start with, we used wavelet spectrograms which allow suppressing noises
by excluding the noisy frequency bands. Secondly, the noises can be partly eliminated
by the artificial intelligence framework during the training procedure.

The CNN was trained and tested on two different datasets. The classification
accuracy was in the range of 79–84%. It was also found that the long range window
(LRW) had a very close classification accuracy as compared to the total classification
accuracy. The results of the short range window (SRW) are much lower than the LRW
and this was explained by the fact that SRW was very sensitive to the local fluctuations
of the AE signals.

To conclude, our results show that there are distinct AE features for each manu-
facturing quality. The extracted features can be differentiated with artificial intelligence
technique. Taking into account that it is the first tests carried out, the classification
results can be considered as very promising and they showed the feasibility of the
quality monitoring of AM process by combining acoustic emission and artificial
intelligence.

For improving our actual algorithm to deal with very noisy atmosphere, it requires
additional investigation of noises nature and types. Moreover, a further increase of the
sensitivity of the AE sensor is possible by utilizing other optical structures. Both
ameliorations are our future work.
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