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Abstract. Software metrics measure the complexity and quality in
many empirical case studies. Recent studies have shown that threshold
values can be detected for some metrics and used to predict defect-prone
system modules. The goal of this paper is to empirically validate the sta-
bility of threshold values. Our aim is to analyze a wider set of software
metrics than it has been previously reported and to perform the analy-
sis in the context of different levels of data imbalance. We replicate the
case study of deriving thresholds for software metrics using a statistical
model based on logistic regression. Furthermore, we analyze threshold
stability in the context of varying level of data imbalance. The method-
ology is validated using a great number of subsequent releases of open
source projects. We revealed that threshold values of some metrics could
be used to effectively predict defect-prone modules. Moreover, threshold
values of some metrics may be influenced by the level of data imbalance.
The results of this case study give a valuable insight into the importance
of software metrics and the presented methodology may also be used by
software quality assurance practitioners.

Keywords: Software metrics · Threshold · Data imbalance · Software
defect prediction

1 Introduction

There are many different software metrics and each describes the program code
from a different perspective [1,2]. Software metrics that describe the object
oriented code can be used to quantify its quality [3]. One of the most direct
attributes of software quality is the number of defects that need to be handled
after the implementation phase. Software defect prediction (SDP) is the research
area that investigates the possibility to use these metrics to classify the software
modules that contain defects. Contradictory results have been reported across
studies that evaluated the classification accuracy of various software metrics [4].
There are indications that the choice of the prediction model has lower impact
on accuracy than the choice of metrics [5]. However, certain software metrics
proved to be efficient for defect prediction [6]. Moreover, some metrics exhibit
threshold effect, i.e. a relationship can be identified between a metric’s threshold
value and the occurrence of defects [7]. Threshold is the level of a metric, above
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which we classify the module to be faulty, i.e. to contain defects, and non-faulty
otherwise.

Software defects are generally not distributed according to any probability
distribution that could be described with a particular mathematical model [8].
That is why SDP community turned to machine learning methods. However,
there is not any prediction model that is the best in all the application contexts
[9]. Furthermore, most machine learning methods exhibit performance deteriora-
tion in high levels of data imbalance [10]. Data imbalance is the phenomenon in
which one class of data greatly outnumber the other class or classes of data. The
class that represents faulty software modules is outnumbered in SDP, making
data imbalance its inherent feature [11]. Recent studies experimented with the
use of genetic programming algorithms for classification, i.e. building the predic-
tion model in SDP, and achieved some promising results [12]. The multi-objective
framework of genetic programming improves the generalization ability by form-
ing ensembles of diverse classifiers [13]. These algorithms combine all the metrics
in a decision tree structure and train the prediction models using multiple fit-
ness functions sensitive to data imbalance. In such configuration, every software
metric is one additional dimension in the search space. Having a large search
space with too many dimensions reduces the probability of finding the optimal
solutions in any heuristic optimization algorithm [14]. Furthermore, these algo-
rithms may be further improved by incorporating certain domain knowledge [15].
This may be done by using a predefined initial populations or by fine tuning its
configuration.

This paper aims to empirically validate the stability of threshold values of
software metrics for SDP. We replicate the threshold derivation model from the
studies performed by [7,16]. The stability of threshold values is examined in
terms of rate of significance, spread of threshold values and the difference of cen-
tral tendency between different datasets. The results of this case study research
provides us with insight into the importance of individual software metric for
SDP. This valuable domain knowledge will be used to improve the genetic algo-
rithm configuration that achieved promising results in spite of data imbalance
[12]. Software metrics not significant for defects prediction will be excluded and
the significant ones will be given higher priority in the decision making process.
Moreover, the threshold values of metrics that prove to be effective in prediction
will be regarded as reference points in a multivariate model configuration. That
is why it is important to perform a large scale case study and include all the
possible software metrics, whereas previous research focused mainly on a small
number of object-oriented metrics [7,17]. This paper performs this study on
49 different metrics that are calculated according to the systematically defined
collection procedure for SDP research [18].

The remainder of this paper is structured as follows: Sect. 2 presents an
overview of related work; Sect. 3 describes the details of the case study we have
conducted; Sect. 4 shows and discusses the results that we have obtained; Sect. 5
gives a conclusion and explains our future work intentions.
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2 Related Work

Many studies searched for software metrics with strong association to software
defect prediction. Majority of these studies concentrated on a small number of
object oriented metrics like: coupling between objects (‘CBO’), response for class
(‘RFC’), weighted method per class (‘WMC’), depth of inheritance tree (‘DIT’)
and number of children (‘NOC’) [7]. Their results indicated that metrics like
‘CBO’, ‘WMC’ and ‘RFC’ were often significant for SDP and other metrics like
‘DIT’ and ‘NOC’ were rarely significant [7,16]. A recent replicated study involved
other metrics like: lack of cohesion between objects (‘LCOM’), maximum or
average cyclomatic complexity (‘MAXCC’, ‘AVCC’) or lines of code (‘LOC’)
and demonstrated that they may also be significant [16].

On the other hand, fewer studies experimented with threshold derivation
[16]. That does not mean that practitioners do not use it. The senior software
developers usually determine the threshold values based on their experience [19].
Their decision making process cannot be replicated nor reused and it is highly
biased. Hence, researchers proposed several methods to perform it systematically.
The most popular are the Bender method which is based on logistic prediction
model and the method which is based on receiver operating curve (ROC) [16].

In most classification applications that suffer from data imbalance, the minor-
ity class is usually the one that is more important to find and this posses a
problem to most classification algorithms [20]. The fact that defects in large
and complex software systems are distributed according to the Pareto principle
[11,21,22] makes data imbalance an inherent feature of SDP. The rate of faulty
software modules is always lower than the rate of modules that are non-faulty
and we refer to it as the level of imbalance in the rest of this paper. Different
methods were proposed to deal with data imbalance. The ones that take into
account the misclassification costs of unequally distributed classes were generally
the most successful [12,23]. In this paper we analyze whether data imbalance has
an impact on threshold derivation method as well and use the proper evaluation
metrics to take that into account.

3 Case Study

The goal of this paper is to empirically validate the stability of threshold values in
different contexts. We want to see whether there are metrics significant for defect
prediction with stable threshold values so that the practitioners could use them
in software quality assurance. The threshold values are calculated by using the
logistic regression model and Bender method, and evaluated by using the decision
tree binary classification. The proposed methodology examines individually the
strength of each metric for defect prediction. The stability of threshold values
is examined in datasets with varying levels of imbalance by using 10-fold cross-
validation. We used Matlab R2014a to perform the case study calculations.
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3.1 Data

We use 14 datasets of two open source projects from the Eclipse community:
JDT and PDE. Each dataset represents one release and there are 7 subsequent
releases of each project in this case study. We used the BuCo Analyzer tool [24] to
collect the datasets. BuCo is a tool that implements systematically defined data
collection procedure [18]. The tool performs linking between bugs and commits
using a technique that is based on regular expression [25]. The effectiveness of
the linking is expressed by linking rate, i.e. the ratio of bugs that are linked to
at least one commit. We present the linking rate, the number of reported bugs,
the number of Java files, the ratio between non-faulty and faulty files and the
number of software metrics for each dataset in Table 1.

Table 1. Datasets used in this study

Eclipse JDT project
tool plug-ins that support the development of any Java application

Release Linking Rate Bugs Files Non-Faulty : Faulty Metrics

2.0 48.4% 4276 2397 54.1% : 45.9% 50

2.1 64.4% 1875 2743 68.1% : 31.9% 50

3.0 70.9% 3385 3420 61.4% : 38.6% 50

3.1 80.6% 2653 3883 67.3% : 32.7% 50

3.2 84.9% 1879 2233 63.5% : 36.5% 50

3.3 88.7% 1341 4821 76.2% : 23.8% 50

3.4 90.0% 989 4932 81.5% : 18.5% 50

Eclipse PDE project
tools to create, develop, test, debug, build and deploy Eclipse plug-ins

Release Linking Rate Bugs Files Non-Faulty : Faulty Metrics

2.0 22.3% 561 576 80.7% : 19.3% 50

2.1 27.4% 427 761 83.7% : 16.3% 50

3.0 33.6% 1041 881 68.8% : 31.2% 50

3.1 51.6% 769 1108 67.8% : 32.2% 50

3.2 69.2% 546 1351 53.8% : 46.2% 50

3.3 85.3% 727 1713 56.3% : 43.7% 50

3.4 80.9% 963 2144 71.5% : 28.5% 50

3.2 Methodology

The methodology of this case study is presented in Fig. 1. In the first phase we
sample the datasets into 10 equally distributed folds, according to the stratified
sampling strategy of 10-fold cross-validation. We use the 10-fold cross-validation
to validate the stability of the results that are going to be obtained in the
following releases. The training dataset contains 9 folds and the testing dataset
contains the remaining fold. This process is repeated 10 times, each time with
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Fig. 1. Methodology of this case study

different fold as the testing dataset but with equal ratio between the minorty
and the majority class.

The following three phases belong to the threshold derivation model. The uni-
variate logistic regression model is built for each dataset separately in the second
phase. The logistic regression model is presented with the following equation [26]:

P (X) =
eβ0+β1·X

1 + eβ0+β1·X (1)

where β0 is the free coefficient, β1 is the regression slope coefficients for predictor
X, X represents a particular metric and P (X) is the probability that a module
is faulty. The coefficients β0 and β1 define the curvature and the non-linearity
of the logistic regression output curve.

Base probability p(0) is the cutoff value that is required to transform proba-
bility P (X) into binary variable. It is often set to 0.5 [27], but it can be tuned to
account for data imbalance present in the dataset [3]. Using the percentage of the
majority class as the base probability accounts for the higher probability that a
randomly selected module is non-faulty [3]. This is also applicable to the Ben-
der method in the following phase so the majority class percentage is forwarded
there. An intermediate step in the methodology is also the analysis of statis-
tical significance. The null-hypothesis states there is no relationship between
the logistic regression model of a particular metric and the defect-proneness of
the examined software modules. This step forwards the metrics for which the
null-hypothesis is rejected to the following phase.



86 G. Mauša and T.G. Grbac

We calculate the value of an acceptable risk level, i.e. the threshold values
for each metric THRj , where j represents the metric, in the third phase. For the
significant metrics, thresholds are derived using the following equation given by
the Bender method [28]:

THRj =
1

β1,j
(ln(

p0
1 − p0

) − β0,j), (2)

where β0 and β1 are coefficients obtained from the logistic regression model
and p(0) is the base probability. As explained earlier, we used the percentage of
majority class as the base probability (p0 = p(0)) [16].

We evaluate the effectiveness of every threshold in the fourth phase. A simple
decision tree is built using the obtained threshold values to classify the software
modules from the testing dataset according to the following equation:

Yi =
{

faulty if Xi,j > THRj

non−faulty if Xi,j > THRj
, (3)

where i and j are the software module and the software metric indexes, respec-
tively. In our study, the granularity level of software modules is the file level. The
software metrics in our study describe the size and complexity of source code
(like lines of code, cyclomatic complexity), the usage of object oriented princi-
ples (inheritance, encapsulation, abstraction and polymorphism), the design of
source code (like coupling and cohesion), the programming style (like number
of comments, blank lines of code) and more. The full list of metrics and their
descriptions that we have used can be found in [12]. Then we compare the output
of prediction with the actual values and evaluate its performance. The following
subsection describes this in more details.

3.3 Evaluation

General importance of each metric for the defect prediction is evaluated upon
building the model based on logistic regression. We test the statistical signifi-
cance in a univariate model by making the opposite null-hypothesis that there
is no relationship between the calculated coefficient and the defect-proneness of
the modules. If the p-value is lower than 0.05, we reject the null-hypothesis and
conclude that the observed metric is significant for prediction.

A more precise evaluation of the metrics that are statistically significant
for prediction is done after building the decision trees. There are four possible
outcomes when performing binary classification and they are present with the
confusion matrix in Table 2. The faulty software modules constitute the positive
(1) class, while non-faulty ones constitute the negative (0) class.

There are various evaluation metrics that can be computed using the true
positive (TP), true negative (TN), false positive (FP) and false negative (FN)
predictions. In this paper, we use the geometric mean accuracy (GM) to evaluate
the performance of the decision tree classifier that is based on calculated level
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Table 2. Confusion matrix for binary classification

Actual Predicted Value:
Value: Faulty (1) Non-Faulty(0)

Faulty(1) TP FN
Non-Faulty(0) FP TN

of threshold for each metric. GM is calculated as the geometric mean using the
following equation:

GM =
√

TPR · TNR, (4)

where TPR (true positive rate) and TNR (true negative rate) are calculated as:

TPR = TP/ (TP + FN) ,
TNR = TN/ (TN + FP ) .

(5)

Its values are within a range of [0,1], higher results indicating better performance.
The main advantage of this evaluation metric is its sensitivity to class imbalance
[29]. We adopt the interpretation that metrics which achieve GM > 0.6 are
considered effective for prediction [7,16].

4 Results

The first step in our case study was to build an univariate logistic regression
model for each metric. We used a function built in the Matlab system for that.
The statistical significance of computed coefficients is one of the outputs of
that function. Metrics that had p-value > 0.05 were not considered relevant for
defect prediction and were reject from following analysis. Table 3 presents how
many times the null-hypothesis was rejected in each of the analyzed releases.
The maximum number of times a metric could be significant is 10 because we
used 10-fold cross-validation. Column named sum presents the average rate of
significance in the project. The table is vertically divided in two parts, left part
representing JDT releases and right part representing PDE releases. The metrics
are placed in rows and we categorized several types of metrics in the table based
on their summed values:

– Metrics significant in every release of both projects are marked bold,
– Metrics significant in majority of releases of both projects are not marked,
– Metrics rarely significant in both projects are marked in dark gray color,
– Metrics significant in every release of one project and rarely significant in the

other are marked in light gray color.

Threshold values are calculated and evaluated in terms of GM each time a
metric is considered significant. We have analyzed the distribution of GM values
for all the datasets. Due to a great number of datasets and space limit, we
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Table 3. Rate of rejecting the null-hypothesis in all datasets
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present the distribution of results only for all releases together. The box and
whisker plots is given in Figs. 2 and 3. The central mark presents the median,
the box is interquartile range, the whiskers extend to the non-outlier range,
and outliers are plotted individually. Due to a great number of metrics, we
omitted the ones that did not have 100% rate of significance in the previous
analysis. The majority of presented metrics is considered effective, according to
the (GM > 0.6) interpretation. Figure 2 presents the results obtained from the
releases of JDT project. From the size of the box, we can see that the majority
of metrics exhibits rather stable prediction performance. The best performing
metrics achieve GM value above 0.7. Figure 3 presents the results obtained from
the releases of PDE project. Comparing to the JDT project, the size of the box
is wider and, hence, the performance of metrics is less stable. However, the best
performing metrics achieve admirable GM values above 0.8.

Fig. 2. Box and whisker plot for significant metrics in JDT

The threshold values of metrics that are significant in terms of statistical
test (p-value < 0.05) and prediction performance (GM > 0.6) are given in
Tables 4 and 5. We presented the mean and the standard deviation (in brackets)
of threshold values for each release. The metrics are placed in rows and the
releases are placed in columns. The threshold values of metrics ‘HEFF’ and
‘HVOL’ in Table 5 need to be multiplied by 104. In both projects combined, 21
different metrics were significant for defect prediction. There are 13 significant
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Fig. 3. Box and whisker plot for significant metrics in PDE

metrics in JDT project and 16 significant metrics in PDE project. The following
8 out of 21 metrics were significant for both JDT and PDE:

– ‘LOC’ - lines of code,
– ‘SLOC-P’ - physical executable source lines of code
– ‘SLOC-L’ - logical source lines of code
– ‘BLOC’ - blank lines of code
– ‘NOS’ - total number of Java statements in class
– ‘MAXCC’ - maximum cyclomatic complexity of any method in the class
– ‘TCC’ - total cyclomatic complexity of all the methods in the class
– ‘HLTH’ - cumulative Halstead length of all the components in the class

The level of imbalance is expressed as the percentage of faulty software modules
and it is shown below the corresponding release label in Table 5. We ordered the
releases in the table according to the level of imbalance to get an insight into
the effect of data imbalance on threshold values. The standard deviation of each
threshold is at least two orders of magnitude lower than its mean value. Hence,
we conclude that the threshold values are very stable within the 10 folds of each
release.

4.1 Discussion

In this paper we wanted to analyze the impact of data imbalance on the stability
of threshold values. For the JDT project, all the thresholds have the lowest
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Table 4. Threshold values for significant metrics (ordered by level of imbalance)

TDJ:tcejorP

Release: 2.0. 3.0. 3.2. 3.1. 2.1. 3.3. 3.4.
Imbalance: 46% 38% 36% 33% 32% 24% 18%

‘LOC’ 160.50 (0.95) 199.08 (2.03) 208.10 (1.29) 200.68 (1.71) 202.59 (1.77) 191.19 (1.36) 201.32 (1.53)
‘SLOC P’ 100.84 (0.98) 123.23 (1.45) 132.70 (1.31) 127.80 (1.24) 129.40 (1.28) 118.00 (1.18) 122.79 (1.05)
‘SLOC L’ 75.21 (0.73) 91.92 (1.02) 99.20 (1.10) 96.14 (0.92) 96.79 (0.98) 88.11 (0.86) 91.89 (0.77)
‘BLOC’ 18.51 (0.16) 21.50 (0.19) 24.16 (0.15) 23.37 (0.14) 23.12 (0.26) 20.73 (0.13) 22.60 (0.13)
‘No Methods’ 9.01 (0.06) 10.34 (0.14) 10.80 (0.11) 10.61 (0.09) 10.57 (0.12) 10.00 (0.10) 9.94 (0.07)
‘NOS’ 61.84 (0.63) 74.16 (1.03) 78.67 (0.90) 75.65 (0.89) 77.65 (0.84) 71.56 (0.78) 71.99 (0.60)
‘CCML’ 39.22 (0.29) 48.83 (0.57) 45.05 (0.52) 43.07 (0.55) 44.80 (0.48) 46.70 (0.41) 48.95 (0.75)
‘NLOC’ 83.45 (0.75) 99.01 (1.41) 104.66 (1.13) 100.16 (1.18) 103.65 (1.04) 95.61 (0.89) 96.56 (0.75)
‘MAXCC’ 5.00 (0.04) 5.55 (0.07) 5.67 (0.04) 5.21 (0.03) 5.66 (0.04) 5.41 (0.03) 5.56 (0.03)
‘TCC’ 20.41 (0.19) 24.26 (0.35) 25.67 (0.23) 24.58 (0.27) 25.26 (0.23) 23.36 (0.24) 23.47 (0.17)
‘NCO’ 6.35 (0.05) 7.50 (0.12) 7.67 (0.10) 7.24 (0.07) 7.58 (0.10) 7.30 (0.08) 7.20 (0.07)
‘CCOM’ 14.67 (0.14) 16.74 (0.31) 16.27 (0.24) 15.96 (0.17) 16.93 (0.18) 16.87 (0.15) 16.55 (0.24)
‘HLTH’ 471.22 (5.37) 570.77 (8.74) 612.52 (6.13) 583.54 (6.66) 596.74 (6.47) 547.53 (6.43) 557.38 (5.04)

Table 5. Threshold values for significant metrics (ordered by level of imbalance)

EDP:tcejorP

Release: 3.2. 3.3. 3.1. 3.0. 3.4. 2.0. 2.1.
Imbalance: 46% 44% 32% 31% 28% 19% 16%

‘LOC’ 143.16 (1.61) 146.49 (1.31) 154.70 (1.41) 151.88 (1.90) 141.68 (1.46) 147.51 (2.45) 165.59 (2.55)
‘SLOC P’ 100.93 (1.29) 106.67 (1.13) 116.54 (1.27) 113.39 (1.59) 102.29 (1.23) 116.43 (2.22) 124.41 (1.99)
‘SLOC L’ 73.27 (0.95) 78.37 (0.86) 84.05 (0.92) 81.55 (1.10) 75.72 (0.91) 85.88 (1.57) 89.29 (1.44)
‘MVG’ 15.09 (0.21) 16.47 (0.19) 16.88 (0.23) 16.51 (0.40) 15.76 (0.22) 15.62 (0.28) 17.39 (0.37)
‘BLOC’ 13.98 (0.12) 14.76 (0.12) 14.06 (0.14) 14.40 (0.15) 15.20 (0.13) 12.25 (0.22) 15.14 (0.18)
‘NOS’ 62.35 (0.73) 64.99 (0.72) 68.76 (0.83) 67.60 (0.86) 63.09 (0.75) 69.93 (1.26) 73.21 (1.38)
‘HBUG’ 0.80 (0.01) 0.84 (0.01) 0.89 (0.01) 0.86 (0.01) 0.82 (0.01) 0.87 (0.02) 0.93 (0.02)
‘HEFF’ [E+4] 2.78 (0.05) 2.99 (0.05) 3.01 (0.05) 2.93 (0.06) 2.98 (0.05) 2.78 (0.07) 3.09 (0.09)
‘UWCS’ 14.09 (0.15) 14.15 (0.12) 15.18 (0.17) 15.10 (0.20) 13.69 (0.16) 16.09 (0.18) 15.81 (0.23)
‘PACK’ 6.97 (0.07) 8.09 (0.06) 8.06 (0.07) 7.23 (0.08) 8.52 (0.08) 8.44 (0.11) 8.38 (0.11)
‘RFC’ 9.32 (0.10) 9.71 (0.07) 9.86 (0.11) 9.74 (0.09) 9.44 (0.08) 10.01 (0.13) 9.82 (0.09)
‘NLOC’ 85.34 (1.02) 88.03 (0.97) 95.47 (1.12) 93.38 (1.22) 85.03 (0.93) 95.49 (1.75) 101.91 (1.93)
‘MAXCC’ 4.41 (0.04) 4.63 (0.05) 4.53 (0.05) 4.49 (0.08) 4.55 (0.03) 4.25 (0.06) 4.57 (0.05)
‘HVOL’ [E+4] 2.41 (0.03) 2.52 (0.03) 2.66 (0.03) 2.57 (0.04) 2.45 (0.03) 2.61 (0.05) 2.80 (0.07)
‘TCC’ 19.24 (0.23) 20.53 (0.21) 20.62 (0.26) 20.19 (0.32) 20.04 (0.22) 19.52 (0.32) 20.99 (0.34)
‘HLTH’ 476.37 (6.10) 497.55 (5.54) 526.96 (6.21) 510.47 (7.13) 484.96 (5.97) 520.08 (10.17) 552.55 (11.50)

values in the most balanced dataset (release 2.0.) and rather stable value in the
remaining datasets. Considering that JDT 2.0. is the earliest release and its liking
rate is the lowest, the more emphasized difference may not be caused by data
imbalance. For the PDE project, almost all the thresholds have the lowest values
in the most balanced dataset (release 3.2.). Unlike the JDT 2.0., PDE 3.2. release
is not the earliest nor does it have the lowest linking rate. Moreover, some metrics
in PDE project exhibit a predominantly increasing rate of threshold values with
higher levels of imbalance (for example ‘LOC’, ‘SLOC-P’, ‘HLTH’). That is why
we suspect that the data imbalance may have an impact on the threshold values
for some metrics, after all. On the other hand, some metrics have a rather stable
threshold value regardless of imbalance (‘No methods’ ‘MAXCC’, ‘NCO’ and
‘CCOM’ for JDT and ‘HBUG’, ‘UWCS’, ‘MAXCC’, ‘RFC’ and ‘TCC’ for PDE).
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Some of the metrics that are significant in both projects do have similar
threshold values. For example, the range of threshold values for ‘NOS’ is [61–79]
for JDT and [62–74] for PDE; for ‘SLOC-P’ it is [100–132] for JDT and [100–
125] for PDE. On the other hand, some of the metrics are more diverse between
the two projects which we have analyzed. For example, the maximum threshold
value for ‘LOC’ is 202 for JDT and only 165 for PDE; for ‘HTLT’ it is 612 for
JDT and 552 for PDE.

Our metrics ‘No Methods’ and ‘NSUB’ are also known as ‘WMC’ and ‘NOC’
in related studies. The mean of threshold value of ‘WMC’ in related research
varies from 10.49 [16], 13.5–13.94 [17] up to 23.17 [7]. The mean threshold value
of ‘No Methods’ varies from 9 to 10.8 in JDT and from 9.18 to 9.88 in PDE,
which is similar to [16]. Although this metric passes the statistical significance
criterion in every dataset, its GM value was lower than 0.6 for some datasets in
PDE. Another metric that is often significant in related studies is ‘CBO’. We
obtained the same results for JDT, but the completely opposite results for PDE,
where it was never significant. On the other hand, ‘RFC’ was found statistically
significant both in our case study and in related research. However, the threshold
values were 9.2–11.02 for JDT, 9.3–10.01 for PDE in our case study and 26.82
[16], around 40 [17] or 41.77 [7] in related studies. The ’DIT’ metric was rarely
significant in related studies and our case study confirmed this.

All of these examples confirm that general threshold values are hard to find
and cross-project SDP is still difficult to achieve. Instead, we may only find gen-
erally significant or insignificant metrics. This case study also shows somewhat
unexpected results. Software metrics that present very important features of
object oriented code and its design, like for example cohesion or coupling, seam
to be less often significant to defect prediction. This shows that most of previous
research intentions that focused on a smaller number of intuitively important
metrics offered a narrow view of this complex problem. That is why we believe
this methodology should to be used to gain additional knowledge that can be
used to improve the multivariate defect prediction models.

5 Conclusion and Future Work

This paper replicated the methodology for deriving the threshold values of soft-
ware metrics which are effective for SDP. Afterwards, we analyzed the rate of
metrics’ significance, the spread of threshold values and we compared the cen-
tral tendency of these values among different datasets. Unlike previous studies,
our focus was not on finding generally applicable threshold values. Instead, we
analyzed the stability of thresholds for within-project defect prediction. For that
purpose we tested the metrics using a statistical test of significance and cross-
validated the geometric mean accuracy of defect prediction. The results revealed
that all the metrics that passed the two significance criteria had stable threshold
values within the same release of a project. Data imbalance may have influenced
the threshold values of some metrics, for which we noticed different values in the
most balanced datasets and an increasing trend of values. Some of the derived
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thresholds were stable regardless of data imbalance and some were stable even
across different projects. However, the results and the discussion pointed out that
practitioners need to use the presented methodology for their specific projects
because it is difficult to obtain general conclusions with regard to threshold
values.

It is important to discuss the threats to construct, internal and external valid-
ity of this empirical case study. Construct validity is threaten by the fact that
we do not posses industrial data. However, we used carefully collected datasets
from large, complex and long lasting open source projects. The choice of thresh-
old derivation model is a threat to internal validity, so we have used a model
that was used and replicated in related studies. The main disadvantage of this
case study is the inability to discover strong evidence regarding the influence of
data imbalance on the stability of derived threshold values. Finally, the external
validity is very limited by the diversity of data we have used. The results of this
case study are reflecting the context of open source projects, in particular from
the Eclipse community. We used only two projects and both are quite central
for the Eclipse community. Our future work will expand the number of datasets
and combine the results of this case study with our previous research in evolving
co-evolutionary multi-objective genetic programming (CoMOGP) classification
algorithm for SDP. We plan to use the calculated rate of significance for better
definition of the weights that are assigned to each metric in the CoMOGP. We
also plan to use the estimated threshold values for building the decision tree in
the CoMOGP. Instead of taking the absolute value of each metric, we will use
the distance of its value from the threshold. That way, we hope to achieve a
more focused CoMOGP and improve the prediction results.
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