
Continuous Process Compliance Using Model
Driven Engineering

Fahad Rafique Golra1(B), Fabien Dagnat1, Reda Bendraou2,
and Antoine Beugnard1

1 IMT Atlantique, IRISA, Université Bretagne Loire, 29238 Brest, France
fahad.golra@imt-atlantique.fr

2 LIP6/Université Pierre et Marie Curie, Sorbonne Universités, Paris, France

Abstract. Software development methods and standards have existed
for decades and the software industry is often expected to follow them,
especially when it comes to critical systems. They are of vital importance
for establishing a common frame of reference and milestones for software
life-cycle planning, development, monitoring and evaluation. However,
there is hardly any (semi-)automatic method that ensures the compli-
ance of de-facto processes to the adopted de-jure standards through-
out the development life cycle i.e. from specification to enactment. We
argue that compliance assurance should be dealt by the process modeling
methodologies implicitly to facilitate correct by construction approach
for process development. This article presents a framework for modeling
software development processes that ensures their continuous compliance
to an adopted standard from specification to execution.

1 Introduction

Software development standards define the structure and flow of activities
to achieve the objectives efficiently, reduce development risks and promote
trust towards external organizations [1]. Compliance of software development
processes to these standards is often ensured manually, usually at design time [2].
Different approaches allow translation of design level process models to exe-
cutable models (e.g. [3]). Such approaches can ensure the correctness of a process
model for a specific modeling language, but can not guarantee compliance to a
process standard. Compliance assessment process is not fully automated because
of the way standards are described in a natural language. So it requires consid-
erable human effort to assess compliance to a specific standard. Software devel-
opment processes are dynamic in nature and often evolve over time. Design time
compliance assessment techniques need to be implemented in an active man-
ner, so that all modifications and their repercussions in the process model are
evaluated against the standard as the process is being modified.

While some approaches rely on design time assessment of conformance [2],
others resort to runtime assessment mechanisms [4,5]. Design time compli-
ance assessment overlooks the possibility of runtime evolution of the processes.

c© Springer International Publishing AG 2017
Y. Ouhammou et al. (Eds.): MEDI 2017, LNCS 10563, pp. 42–56, 2017.
DOI: 10.1007/978-3-319-66854-3 4



Continuous Process Compliance Using Model Driven Engineering 43

Whereas runtime assessment gives us a late feedback on the design of the
processes being used in the organization. Some artifact based process compliance
approaches even wait till the availability of the artifacts to give the feedback as
to whether the process is compliant or not [6]. We argue that an approach that
can continuously guide a process engineer for the development of processes from
design time to their enactment can provide a viable solution for the IT industry.
It would solve various issues that arise from using multiple approaches of process
compliance assessment in different phases of process development life cycle.

A process modeling approach that separates specification phase process mod-
els from their corresponding implementation phase models, seems an interesting
base for our approach [7]. As a natural extension to this approach, we have added
the process enactment capability. A metamodel for executable process models
is defined using a bi-layered approach. In this approach, the modeling elements
of a single metamodel are partitioned in two conceptual layers i.e. abstract and
concrete levels. It defines the modeling elements related to process standards at
the abstract level and the ones related to process models at the concrete level.
Mappings between the two layers are exploited to realize the notion of compli-
ance to standards. The novelty of our approach is to (1) define a methodology
that integrates the compliance requirements of the standards with a process
model inside a single model, (2) expand the coverage of process compliance from
design till enactment phases of process development life cycle and offer it in a
single approach, (3) define a methodology where abstractly specified standards
can continuously guide the development and enactment of concrete processes.

The rest of this paper is organized as follows. First, we present the key
concepts of process compliance and introduce an running example from our case
study in Sect. 2. Then, in Sect. 3, we explain our process modeling approach. In
Sect. 4, we describe our methodology for continuous process compliance. Then,
Sect. 5 discusses the state of the art in process compliance management. Finally,
we conclude this paper in Sect. 6.

2 Process Compliance

Like all other models in MDE, the language for defining process models is defined
through metamodels. The primary objective of formally specifying processes is
their consistent execution to achieve the intended goals. Process enactment is the
runtime phase for process models, where humans (or tools) carry out the tasks
prescribed in them. Process trace records the sequence of activities and the arti-
facts that were created during their execution. This allows an organization to
analyze the runtime behavior of a process to assess its quality and propose any
improvement for it, if needed. Different standardization organizations and reg-
ulatory bodies define a set of minimum norms that need to be followed so that
they can assure that a certain process fulfills a degree of soundness. Compliance
to standards ensures that processes and practices being followed in an organiza-
tion are in accordance with adopted/agreed set of norms. These standards can
be used either to improve the processes being followed by an organization or to
evaluate a specific software provider.



44 F.R. Golra et al.

Fig. 1. Sample activity from ECSS-ST-40C Standard [8]

A software provider may adopt a standard either for improving its inter-
nal processes or to assure its clients about the soundness of its processes. This
assurance to clients is at times mandatory, specially if working for critical soft-
ware systems. The norms described in a standard affect the way different tasks
are carried out in a compliant organization. In this paper, we use a running
example of ECSS-ST-40C [8] that extends a widely adopted ISO/IEC standard,
12207:2008 [9]. It is a software development standard for space engineering by
European Cooperation for Space Standardization. A software sub-contractor
working with European Space Agency (ESA) needs to follow ECSS-ST-40C
Standard to provide a space mission software. For example, for conducting a
maintenance review, ESA’s sub-contractor needs to follow the Conducting main-
tenance reviews activity in software maintenance process of the ECSS standard
(Sect. 5.10.5 [8]). This activity from the standard, shown in Fig. 1, illustrates
that the compliant organization is constrained to ensure some minimum require-
ments. For example, it must (1) perform maintenance reviews (completeness
assessment), (2) allocate a person in charge of these reviews who meets a certain
criteria of a maintainer (capability assessment), (3) produce specific artifacts like
joint review report and baseline for changes (artifact assessment), and (4) ensure
that baseline of changes should be produced after the maintenance reviews (flow
assessment).

For a software contractor to show that it is compliant to a specific stan-
dard, a process compliance assessment must be performed by a recognized body.
But before presenting itself for assessment, it needs to make sure that its inter-
nal processes are actually in compliance with the adopted standard. Software
industry needs a process compliance management approach that can handle the
processes in different phases of process life cycle i.e. from design to their enact-
ment and even post-enactment analysis based on process trace. This can be car-
ried out using a mixture of forward and backward assessment approaches [10].
Forward assessment is a pre-emptive approach used either before the execution
of the process i.e. design time or during the execution. Backward assessment



Continuous Process Compliance Using Model Driven Engineering 45

approaches either use the traces produced by the process enactment or rely on
the assessment of the produced artifacts against their specifications.

3 Process Modeling Methodology

We believe that methods and tools should assist process designers to create,
manipulate or improve software development processes in a manner that compli-
ance to standards becomes an implicit part of the routine. We have developed a
metamodel, that has served as a basis for tool implementations. Figure 2 presents
an excerpt from the complete metamodel, which can be consulted here [11]. This
metamodel uses two layers of abstraction i.e. abstract level and concrete level.
The abstract level defines the abstract notions of process design and the con-
crete level defines the corresponding concrete implementations. It is important
to note here that both these layers are conceptual and do not mean that the
user needs to develop two different models. This separation of modeling notions
in abstract and concrete levels is within a single model. The abstract level suits
process standards that are normally defined on the basis of dataflow and do not
provide implementations. The user process models are modeled at the concrete
level, which provides the modeling notions to deal with concrete implementations
of the software development processes. An implementation relationship between
the two layers is used to concretize the concepts of compliance. The process
model developed using this metamodel can be seen as a single model that cap-
tures the structure and behavior of both processes and standards. There is no
explicit mapping between the concrete process and the abstract process, because
it is implicitly defined through the elements that they contain.

Our metamodel defines a process as an assembly of activities. Processes are
inherently hierarchical in nature. This hierarchy is managed through the concept
of primitive and composite activities. A composite activity contains a process
which gathers a sub-assembly of activities. Whereas a primitive activity specifies
or implements the procedure for performing the activity, depending on whether
the activity is manual or (semi-)automatic. This hierarchy of activities is defined

Fig. 2. Fragment of the core metamodel



46 F.R. Golra et al.

Fig. 3. Conducting maintenance reviews activity

both at the abstract level and at the concrete level. Abstract activities define the
higher level specifications for an activity, much like the ones stated in standards.
Abstract activities can not be enacted/executed directly, because they lack the
necessary implementation details. Activities at the concrete level provide com-
plete implementations of the activity, which makes them enactable (by humans)
or executable (by tools). These details pertain to approach, schedule, resource
planning, refined milestones, objectives and execution status of the activities dur-
ing runtime. Figure 3 shows the conducting maintenance review abstract activity
with both its sub-activities at the abstract level. This activity is implemented
by a user process activity, maintenance review, at the concrete level. A map-
ping between an activity of concrete level (e.g. develop baseline for change) and
the corresponding abstract activity (baseline for change) of this process model
describes the implementation relationship between them.

Each activity (whether at abstract or concrete level) defines contracts that
serve as interfaces for interaction. The notion of contract is used to bind the
components (activities) using Design by Contract [12]. These contracts ensure
that all interactions to/from an activity are well-specified and can be monitored.
Contracts of an abstract activity precise the artifact specifications that would be
needed by the implementing activity to check that they are using/producing the
right artifacts at runtime. Required contracts specify artifact specifications that
are needed by the abstract activity and provided contracts specify specifications
for the artifacts to be produced. It is possible to chose or define a life cycle
for each activity. Contracts of the concrete level activities specify the events.
A required contract specifies the events that would either trigger an activity
or serve as inputs to their life cycle transitions. A concrete provided contract
specifies the events produced by the activity during its life cycle. A contract of an
activity, at any of these levels, specifies its direction (i.e. external or internal) to
interact with the activity that contains it or with the activities that it contains.

A notion of conditions is also associated with the contracts at both levels.
This serves for specifying the pre/post conditions associated with an activity.



Continuous Process Compliance Using Model Driven Engineering 47

Defining conditions at both levels allows the refinement of conditions specified
at the abstract level. Various software standards specify these conditions for the
activities, which can be translated to the conditions at the abstract level. This
refinement of conditions at the concrete level provides the possibility to further
constrain the interactions of a specific implementation of an abstract activity.

Dependencies between the abstract activities are explicitly defined, because
the processes specified in the standards are generally based on the concept of
flow between the activities. This flow is usually implicitly defined in standards,
where the artifacts produced by one activity are required by the next. We capture
this data-flow through the concept of dependencies and artifact specifications
provided by the contracts at the abstract level. Some standards are very specific
about the artifacts being produced and go as far as pointing to a metamodel, in
case the produced artifact is a model. We treat every artifact in our approach
as model, whether its metamodel is explicitly defined or not. For example, a
document file (e.g. docx) does not seem to have a metamodel, but the XML
based structure of that document is indeed defined by an implicit metamodel.
Activities at the concrete level do not specify this dependency because they are
implemented using an event management system. Activities are responsible for
creating artifacts at the concrete level, but they specify events in their contracts
to notify other activities that they have for example, produced an artifact. We
try to capture the control flow of the process during runtime at the concrete
level, which is constrained by the data flow specified at the abstract level.

Software standards usually specify a role that is responsible for performing
each assigned activity. We translate the role described by the standard as abstract
role at the abstract level in our metamodel. This abstract role is also refined to
the concrete level as role. A concrete level role is described by the process model,
which depends on the work breakdown structure of the compliant organization.
Their roles might not be the same as that of a specific standard, because they
might be following multiple standards. The role defined in the process model
is constrained by the abstract role for its capabilities. This role in the process
model can either be played by an actor (human agent) or a tool (software agent),
depending on the nature of the activity.

4 Continuous Process Compliance

We propose continuous process compliance through the use of correct by con-
struction approach that we call compliance by construction. It allows to guaran-
tee compliance from the process design time till their monitoring and even during
the runtime evolution. To implement this vision, we opted for the development
of reference standard models from existing process standards. One important
aspect of our methodology is to integrate the modeling elements of this reference
process standard in the user process models. A process standard is translated
into the abstract level of a process model only once for each standard. This par-
tial process model is then reused multiple times for the development of process
models that need to be compliant with this standard.



48 F.R. Golra et al.

Each activity in a process has two facets: its static structure and its dynamic
behavior. The structure of an activity is defined by its associated roles, proper-
ties1, objectives (see footnote 1), etc., whereas the behavior through its corre-
sponding states and outputs to various conditions and inputs (see footnote 1).
The behavior helps in deciding the execution sequence of activities, which may
be guided by data (required or produced artifacts) or control (execution depen-
dencies). Continuous process compliance takes both structural and behavioral
facets of the process and maps the corresponding notions by associating the ele-
ments of the concrete level activities to that of abstract activities (where process
standards are specified). The mapping between the modeling elements of the two
levels is carried out at the design time. While the abstract level of the model
remains the same, the concrete level of the process model is transformed to get
the runtime process model used for process enactment. During process enact-
ment, the mapping between the two levels help in ensuring runtime compliance
to process standards.

4.1 Design-Time Compliance Management

A process model is developed by reusing an already developed partial process
model from an adopted process standard at the abstract level (Sect. 3). This
partial process model is then enriched with the defined processes of the com-
pliant organization. The constructs of the standard model are accessible to this
process model during the development, which are used for developing a compliant
process. This form of compliance, ensured at the development phase of process
life cycle, is called the design-time compliance management in our methodology.
For design-time compliance, we exploit the mappings between the concrete and
abstract levels of our process metamodel to perform consistent checks concerning
compliance of contracts, capacity and hierarchy of activities.

Contractual Compliance: For making an activity compliant to its corre-
sponding abstract activity, we need to ensure compliance between their contracts.
A contract of abstract activity consists of artifact specifications and a contract
of concrete level activity contains events (Sect. 3). The contractual compliance
between them is ensured using following assessments.

– Interface assessment: Generally, the standards define the input and output
artifacts of the activities that are placed in a sequence/flow such that a later
activity uses the artifact(s) produced by the former activities. For standards
translated at the abstract level of the model, these interactions between the
abstract activities are realized through artifact specifications. However the
activities from the user process model either produce or listen to events,
through their contracts. So the compliance of interfaces for an activity is
to ensure that the events produced and listened by it are compliant to the
artifact specifications of the corresponding abstract activity. A state machine

1 Concepts not included in the excerpt of metamodel are accessible here [11].



Continuous Process Compliance Using Model Driven Engineering 49

Fig. 4. Contractual compliance

related to each artifact specification is available in the abstract contract.
In our example, shown in Fig. 4, the maintenance review abstract activity
from the standard is implemented by organize maintenance review activity
in the user process model. The required contract of the concrete level activity
listens to the events related to maintenance file. The process designer may
choose to trigger this activity with an event that confirms the availability
of maintenance file. The execution of this activity should produce the joint
review report at runtime. On creation of this artifact, organize maintenance
review activity fires an event, which could be used by subsequent activities.
In this scenario, the process designer should make sure that this activity
would listen for an event compliant to maintenance file and produce an event
compliant to joint review report. Following checks are needed to ensure the
contractual compliance between the concrete and abstract activities.

1. The required events of the concrete activity are a subset of events specified
in the required artifact state machine.

2. The events specified in the provided artifact state machine are a subset
of the provided events of the concrete activity.

– Artifact assessment: Standards define the input and output artifacts of their
activities through artifact specifications. This difference between the artifact
and its specification is important in our methodology. The artifact specifi-
cation is modeled at the abstract level, whereas the actual artifact at the
concrete level. We consider each artifact as a model that conforms to its
metamodel. Sometimes the metamodel of an artifact is implicit. When the
metamodel is explicit, the artifact specification points to it. In such a case,
(artifact) model can be checked against the metamodel to verify its structure
and properties, using existing model checking techniques. In our example, as
shown in Fig. 4, the joint review report produced by the organize maintenace
review activity is checked against its specification (MF JRR). The standard
does not provide a metamodel in our example, but in case it did, joint review
report would have to be checked against it as well.



50 F.R. Golra et al.

Fig. 5. Capability and containment

Capability Compliance: Activities specified in the standard are associated to
the abstract roles that perform them. An abstract role is a set of capabilities that
are required from the person, team or tool performing a specific activity. Soft-
ware vendors normally define their own roles, according to their particular team
structures. The mapping between the role at concrete level and the abstract role
is translated as a responsibility assignment matrix (RAM). This matrix ensures
that the concrete level role complies with all the capability requirements speci-
fied by the standard. In our example, the ECSS standard defines a maintainer
abstract role, as shown in Fig. 5a. The concrete role that is responsible for per-
forming the compliant activity is maintenance engineer. The mapping between
the maintenance engineer and the maintainer is translated to the RAM, which
maps each capability of the concrete level role to the abstract role.

Containment Compliance: Each activity realizes a given abstract activity. A
process designer adds the implementation details to an activity during its devel-
opment while maintaining its compliance to the corresponding abstract activity.
Adding these implementations can either involve enriching the activity directly
or making it a composite activity, hence adding further activities deep in its
hierarchy. The milestones set by an abstract activity are further refined in the
concrete level activity. This refinement can introduce intermediate goals that
can be set as objectives for the sub-activities, when implemented as a compos-
ite activity. Figure 5b shows the maintenance review abstract activity from our
example. It is implemented by organize maintenance review composite activ-
ity containing two sub-activities: conduct review and finalize review report. For
organize maintenance review activity to remain compliant to its abstract activ-
ity, its sub-activities have to respect the compliance as well. Our metamodel
(Sect. 3) defines a position and a direction for every contract. Organize main-
tenance review activity listens to the required events from its external required
contract. Once an event triggers the activity, it is passed on to the sub-activities
through its internal provided contract. The sub-activities produce the planned
artifacts and fire the concerned events, which are moved up in the hierarchy
in the same fashion. Containment compliance ensures both the contractual and



Continuous Process Compliance Using Model Driven Engineering 51

capability compliance for the contained activities. Contractual compliance is
assured when:

1. The events required by the sub-activities are a subset of events provided by
the internal provided contract of the parent activity.

2. The events required by the internal required contract of the parent activity
are a subset of events fired by the sub-activities.

Capability compliance is assured in the hierarchy, by automatically associating
the role of parent activity to the roles of sub-activities. It is important to note
that multiple roles can be associated with an activity. The role who performs an
activity can be different from the role who supervises it.

4.2 Runtime Compliance Management

Runtime assurance of compliance depends on the state of the user defined process
during its enactment. The state of a process is defined by the collective state of
all the activities that it contains. The state of a particular activity depends on
its defined state machine and the events that it has consumed at a particular
time. When an activity changes its state, it can fire events that can be consumed
by other activities. In this event-based enactment paradigm for the processes,
the compliance of a user process to a standard at runtime is assessed though the
compliance of flow, conditions, traceability, completeness and capacity.

Flow Compliance: Processes are defined as a (partially) ordered set of activ-
ities. The order of activities is due to the dependence of certain activities over
others, which comes from the handshake of data, artifacts or control. The order
in which the activities are enacted in a user process model needs to conform
to the standard. A compliant order of enactment for the activities is ensured
through the runtime assessment of data-flow and control-flow of the process.

– Data-flow assessment: In a process standard, activities are defined in a
sequence such that the artifacts produced by an activity are required by the
following activities. This dependence of one activity over another, based on
the artifacts, is captured at the abstract level of our process model through
the notion of contract and dependency. The contracts at the abstract level
of the process model require and provide artifact specifications. When an
abstract activity (of standard process) requires the artifact specification that
is produced by another, this dependence is explicitly stated by the use of
dependency (Sect. 3). However, the user process model uses an event driven
paradigm for enactment. Events at the concrete level map to the artifact spec-
ifications. A data-flow dependence between two activities translates to the
events through the mappings between events and artifact specifications. In
our example, shown in Fig. 6a, once the organize maintenance review (OMR)
activity starts its execution, event related to joint review report (JRR) can
be fired. However, events that map to maintenance file (MF) can not be



52 F.R. Golra et al.

Fig. 6. Flow and condition compliance

fired anymore. OMR activity allows multiple iterations, but the subsequent
executions also require events related to JRR.

– Control-flow assessment: Some activities are only meant to execute some
operations without creating an artifact. For such activities, if their order
of execution is not constrained by the standard, the event-driven paradigm
allows a reactive mechanism to order them according to the execution state
of the process. In case, they are constrained by the standard, compliance
becomes mandatory. In this case, the events use the notion of dependency
at the abstract level to order the execution sequence. In our example, in
Fig. 6a, the dependence of develop baseline for change (DBfC) activity on
OMR is dictated by data-flow, however the control-flow decides the number
of iterations for OMR and subsequent transfer of control to DBfC.

Conditions Compliance: Apart from specifying the input and output artifacts
of an activity, process standards can also constrain them by specifying pre and
post conditions. These conditions are translated into the abstract condition at
the abstract level of our metamodel2. Conditions specified at the concrete level
of the model are the refinement of the abstract conditions. The mapping between
the conditions of organize maintenance review and maintenance review shows
their refinement in Fig. 6b. For the user process model to be compliant with the
standard, all abstract conditions should be implemented at the concrete level.
Concrete conditions may further constrain the user activities based on their
specific implementation details, however they can not relax the conditions.

Traceability Compliance: The runtime compliance management uses the exe-
cution trace of the process model for the following assessments.

– Traceability assessment: Contrary to other approaches, our approach incor-
porates the modeling elements of the standards at the abstract level of the
model and the user process maps to them at design time. Modeling elements
of the standard don’t execute at runtime, however user process activities can

2 Conditions are further refined into pre and post conditions in the metamodel [11].



Continuous Process Compliance Using Model Driven Engineering 53

Fig. 7. Traceability and completeness compliance

trace back to them. This allows to evolve the user process in a compliant
manner, even during the runtime. In our example, shown in Fig. 7, a trace-
ability link is maintained between OMR and MR. During the execution of
the process, OMR activity can be replaced by OMR’. However, for the user
process to stay compliant, OMR’ needs to follow the design time compliance
assessments i.e. contractual, capability and containment compliance.

– Deviation Detection: The traceability links allow to map the runtime process
to the adopted standard. The runtime order of execution for the activities is
generated using a set of execution constraints from the specific runtime con-
ditions (execution history of activities through process trace) and the defined
dependencies. A constraint analyzer detects the any violated constraints if
the process enactment deviates from the defined process. In our example,
shown in Fig. 7, lets imagine a case where the project manager wants to re-
enact OMR after the execution of DBfC, because he is not satisfied with the
results. This is contrary to the defined process. A violated constraint in this
case may put the compliance of runtime user process to the adopted standard
at risk. Thus runtime deviation detection triggers the design-time compliance
assessment for the modified part of the process before the actual execution
of the forced deviation. Then it helps user to pinpoint the exact conflicts by
stating which constraints will be violated by this specific user decision. In
this case, the user is notified that the order of execution of OMR and DBfC
is against the adopted standard.

Completeness Compliance: Compliance to a standard is not ensured, unless
the user process guarantees to execute all the activities defined by the stan-
dard. The mappings between the user process elements and the elements of the
standard, established at design-time, help ensure the completeness of compli-
ance at runtime. Figure 7 shows the mappings from the activities (OMR) to the
abstract activities (MR) and artifacts (BC ) to the artifact specifications (MF
BfC ). These mappings are used for a continual runtime assessment for process
enactment. For a compliant user process, it needs to guarantee that at least one
concrete activity is enacted for each abstract activity of the process standard.



54 F.R. Golra et al.

Capacity Compliance: Capability compliance at design time checks the map-
ping between the concrete level role and the abstract role. Role at the concrete
level is enacted by an actor for manual activities, executed by a tool for auto-
matic activities and by both for semi-automatic activities. During the runtime,
the responsibility assignment matrix of capability compliance is reused to map
the competences of actors and tools to the corresponding role. These mappings
are then used to ensure capacity compliance, such that the competences con-
strained by the standard are fulfilled by the actors and tools. This compliance
further helps in implementing the concrete conditions related to the roles e.g.
two activities X and Y can not be enacted by the same maintenance engineer.

5 Related Work

With process standards becoming increasingly popular as a mean to guarantee
the quality of a software deliverable, we see multiple approaches that deal with
the challenges of compliance assessment for user processes to the adopted stan-
dards. We classify these approaches in three categories: rule-based, artifact-based
and reference model based approaches. Rule based approaches include multiple
proposals for formal modeling of business rules both by academia (e.g. [5,10])
and industry (e.g. ILOG by IBM). A closely related approach models control
objectives for monitoring the execution behavior of the user processes [2]. These
approaches focus on the backward assessment of the process model, hence even
if they detect noncompliance in some part of the process, that part needs to
be re-modeled and re-enacted. They do not offer any support during the initial
development phases of the process models.

Out of different approaches that assure compliance management for process
models, there are some that offer artifact based compliance [6]. They model
the deliverables expected from the activities by a standard. Then the artifacts
developed by the user process model are verified against the expected deliverables
(artifact specifications). Just like rule-based approaches, the problem is that the
artifacts are produced late in a project. In case of noncompliance, the process
needs to be modified and considerable effort of process design and execution
is wasted. Having the compliance assured at design time, we use this kind of
compliance as a secondary assessment method for the quality control of the
artifacts. Reference model based approaches develop a reference model from
the adopted standard [13,14]. They use different model checking approaches for
assessing the compliance of the user process against the developed reference
model. These approaches are closest to our methodology, as we also model the
constructs of a given software process standard. However, we do not translate
the standard as a different model, we put its constructs within the process model
at an abstract level. This allows us to support compliance not only in design and
development phases, but all along the process development life cycle.

A limitation of our approach is that modeling elements of the abstract model
(process standard) becomes part of the user process model. Even though it offers
the benefits of active compliance assessment, it makes the process model ‘heav-
ier’. It might seem as combining the concepts from both process standard and



Continuous Process Compliance Using Model Driven Engineering 55

the user process in a single model might make the development of process models
even more complex. Actually, an already modeled process standard serves as a
partial model for developing any process model that needs to comply with that
standard. Our prototype guides the user through process development using the
modeling elements of the process standard. Hence the effort for the development
of a process model is in fact reduced.

6 Conclusion

We have presented a model driven approach to continuous process compliance for
a complete coverage of process development life cycle. We proposed a methodol-
ogy for modeling the constructs of a user process model and a given standard in a
single process model. Constructs from the user process and the standard are mod-
eled in two different levels within this model. We create mappings between these
two abstraction levels and use them to ensure compliance of the user process
model to an adopted standard. This compliance is assessed both at design time
and at the runtime. At design time, we concentrate on the structural elements
of the process model, whereas at runtime, we focus on constraining its execu-
tion behavior according to the compliance requirements of the standard. Hence
we provide an overall methodology for the development of process models using
compliance by construction and then verify the compliance during the runtime.
The current prototype implementation of our methodology supports a single
standard for the moment. We are working towards the compliance of a user
process model to multiple standards simultaneously. Our vision is to provide a
methodology where software vendors can define their processes in an intuitive
way and compliance to the quality standards becomes part of this routine.

References

1. Wüllenweber, K., Beimborn, D., Weitzel, T., König, W.: The impact of process
standardization on business process outsourcing success. Inf. Syst. Front. 10(2),
211–224 (2008). doi:10.1007/s10796-008-9063-x

2. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for busi-
ness process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-75183-0 12

3. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.: Translating standard process
models to BPEL. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001,
pp. 417–432. Springer, Heidelberg (2006). doi:10.1007/11767138 28

4. El Kharbili, M., Stein, S., Pulvermüller, E.: Policy-based semantic compliance
checking for business process management. In: MobIS Workshops, vol. 420, pp.
178–192. Citeseer (2008)

5. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

6. Emmerich, W., Finkelstein, A., Montangero, C., Antonelli, S., Armitage, S.,
Stevens, R.: Managing standards compliance. IEEE Trans. Softw. Eng. 25(6), 836–
851 (1999)

http://dx.doi.org/10.1007/s10796-008-9063-x
http://dx.doi.org/10.1007/978-3-540-75183-0_12
http://dx.doi.org/10.1007/978-3-540-75183-0_12
http://dx.doi.org/10.1007/11767138_28


56 F.R. Golra et al.

7. Golra, F.R., Dagnat, F.: Generation of dynamic process models for multi-
metamodel applications. In: 2012 International Conference on Software and System
Process (ICSSP), pp. 48–57. IEEE, June 2012

8. ECSS, Requirements & Standards Division: Space Engineering - Software, ECSS-
E-ST-40C (2009)

9. ISO/IEC: Systems and Software Engineering - Software Life Cycle Processes,
ISO/IEC 12207, IEEE Std 12207–2008 (2008)

10. El Kharbili, M., Stein, S., Markovic, I., Pulvermüller, E.: Towards a framework
for semantic business process compliance management. In: Proceedings of GRCIS
(2008)

11. Golra, F.R.: A refinement based methodology for software process modeling. Ph.D.
thesis, Télécom Bretagne, Université de Rennes 1 (2014)

12. Meyer, B.: Applying ‘design by contract’. Computer 25(10), 40–51 (1992)
13. Chung, P.W., Cheung, L.Y., Machin, C.H.: Compliance flow - managing the com-

pliance of dynamic and complex processes. Knowl.-Based Syst. 21(4), 332–354
(2008)

14. Panesar-Walawege, R., Sabetzadeh, M., Briand, L.: A model-driven engineering
approach to support the verification of compliance to safety standards. In: 22nd
International Symposium on Software Reliability Engineering (ISSRE), pp. 30–39,
November 2011


	Continuous Process Compliance Using Model Driven Engineering
	1 Introduction
	2 Process Compliance
	3 Process Modeling Methodology
	4 Continuous Process Compliance
	4.1 Design-Time Compliance Management
	4.2 Runtime Compliance Management

	5 Related Work
	6 Conclusion
	References




