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Abstract. The Reverse k-Nearest Neighbor (RkNN) problem, i.e. find-
ing all objects in a dataset that have a given query point among their
corresponding k-nearest neighbors, has received increasing attention in
the past years. RkNN queries are of particular interest in a wide range
of applications such as decision support systems, resource allocation,
profile-based marketing, location-based services, etc. With the current
increasing volume of spatial data, it is difficult to perform RkNN queries
efficiently in spatial data-intensive applications, because of the limited
computational capability and storage resources. In this paper, we inves-
tigate how to design and implement distributed RkNN query algorithms
using shared-nothing spatial cloud infrastructures as SpatialHadoop and
LocationSpark. SpatialHadoop is a framework that inherently supports
spatial indexing on top of Hadoop to perform efficiently spatial queries.
LocationSpark is a recent spatial data processing system built on top
of Spark. We have evaluated the performance of the distributed RkNN
query algorithms on both SpatialHadoop and LocationSpark with big
real-world datasets. The experiments have demonstrated the efficiency
and scalability of our proposal in both distributed spatial data manage-
ment systems, showing the performance advantages of LocationSpark.

Keywords: Spatial data processing · RNNQ · SpatialHadoop · Loca-
tionSpark

1 Introduction

In the age of smart cities and mobile environments, there is a huge increase
of the volume of available spatial data (e.g. location, routing, navigation, etc.)
world-wide. Recent developments of spatial big data systems have motivated the
emergence of novel technologies for processing large-scale spatial data on clusters
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of computers in a distributed environment. These Distributed Data Manage-
ment Systems (DDMSs) can be classified in disk-based [9] and in-memory-based
[18]. The disk-based Distributed Spatial Data Management Systems (DSDMSs)
are characterized by being Hadoop-based systems and the most representative
ones are SpatialHadoop [4] and Hadoop-GIS [1]. On the other hand, the in-
memory (DSDMSs) are characterized by being Spark-based systems and the
most remarkable ones are Simba [15] and LocationSpark [12]. These systems
allows users to work on distributed in-disk or in-memory spatial data without
worrying about computation distribution and fault-tolerance.

A Reverse k-Nearest Neighbor (RkNN ) query [8,11] returns the data objects
that have the query object in the set of their k-nearest neighbors. It is the
complementary problem to that of finding the k-Nearest Neighbors (kNN) of a
query object. The goal of a RkNN query (RkNNQ) is to identify the influence of
a query object on the whole dataset, and several real examples are mentioned in
[8]. Although the RkNN problem is the complement of the k-Nearest Neighbor
problem, the relationship between kNN and RkNN is not symmetric and the
number of the reverse k-nearest neighbors of a query object is not known in
advance. A naive solution of the RkNN problem requires O(n2) time, since the
k-nearest neighbors of all of the n objects in the dataset have to be found [8].
Obviously, more efficient algorithms are required, and thus, the RkNN problem
has been studied extensively in the past years for centralized environments [16].
But, with the fast increase in the scale of the big input datasets, parallel and
distributed algorithms for RkNNQ in MapReduce [2] have been designed and
implemented [6,7], and there are no RkNNQ implementations in Spark [17].

The most important contributions of this paper are the following:

– The design and implementation of novel algorithms in SpatialHadoop and
LocationSpark to perform efficient parallel and distributed RkNNQ on big
real-world spatial datasets.

– The execution of a set of experiments for examining the efficiency and the
scalability of the new parallel and distributed RkNNQ algorithms. And the
comparison of the performance of the two DSDMSs (SpatialHadoop and Loca-
tionSpark).

This paper is organized as follows. In Sect. 2, we present preliminary concepts
related to RkNNQ. In Sect. 3, the parallel and distributed algorithms for process-
ing RkNNQ in SpatialHadoop and LocationSpark are proposed. In Sect. 4, we
present the most representative results of the experiments that we have per-
formed, using real-world datasets, for comparing these two cloud computing
frameworks. Finally, in Sect. 5, we provide the conclusions arising from our work
and discuss related future work directions.

2 The Reverse k-Nearest Neighbor Query

Given a set of points, the kNN query (kNNQ) discovers the k points that are
the nearest to a given query point (i.e. it reports only the top-k points from a
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given query point). It is one of the most important and studied spatial opera-
tions, where one spatial dataset and a distance function are involved. The formal
definition of the kNNQ for points (the extension of this definition to other, more
complex spatial objects, as line-segments, is straightforward) is the following:

Definition 1 (k-Nearest Neighbor query, kNN) [14]. Let P = {p0, p1, · · · ,
pn−1} a set of points in Ed (d-dimensional Euclidean space), a query point q
in Ed, and a number k ∈ N

+. Then, the result of the k-Nearest Neighbor query
with respect to the query point q is a set, kNN(P, q, k) ⊆ P, which contains k
(1 ≤ k ≤ |P|) different points of P, with the k smallest distances from q:
kNN(P, q, k) = {p ∈ P: |p′ ∈ P : dist(p′, q) < dist(p, q)| < k}.

For RkNNQ, given a set of points P and a query point q, a point p is called
the Reverse k Nearest Neighbor of q, if q is one of the k closest points of p. A
Reverse k-Nearest Neighbors (RkNN ) query issued from point q returns all the
points of P whose k nearest neighbors include q. Formally:

Definition 2 (Reverse k-Nearest Neighbor query, RkNN) [14]. Let P =
{p0, p1, · · · , pn−1} a set of points in Ed, a query point q in Ed, and a number
k ∈ N

+. Then, the result of the Reverse k-Nearest Neighbor query with respect
to the query point q is a set, RkNN(P, q, k) ⊆ P, which contains all the points
of P whose k nearest neighbors include q:
RkNN(P, q, k) = {p ∈ P : q ∈ kNN(P, p, k)}.

3 RkNNQ Algorithms in SpatialHadoop and
LocationSpark

In this section, we present how RkNNQ can be implemented in SpatialHadoop
and in LocationSpark. But in general, our parallel and distributed RkNNQ algo-
rithm is based on the SFT algorithm [10] and it consists of a series of MapReduce
jobs. As we can observe in Algorithm 1, the FILTER function aims to find a can-
didate set of points which are the initial results from a MapReduce-based kNNQ
that uses the partitions from P that are around q [7]. The VERIFY function
aims to examine the candidate points from the FILTER function using another
MapReduce job and return the final set of points that are the reverse k nearest
neighbours of q.

3.1 RkNNQ Algorithm in SpatialHadoop

From Algorithm 1, we can obtain our proposed solution for RkNNQ in Spatial-
Hadoop which follows its general processing steps described in [5] and consists
of a combination of already implemented Spatial MapReduce operations [4].
Assuming that P is the dataset to be processed and q is the query point, the
basic idea is to have P partitioned by some method (e.g. grid) into b blocks or
cells of points. Then, a MapReduce-based kNNQ is executed in order to find
every possible candidate point from P. To carry out that, we find the partition
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Algorithm 1. General Distributed RkNNQ Algorithm
1: function FILTER(P: set of points, q: query point, k: number of points, d: dimen-

sionality)
2: K ← k ∗ d ∗ 10 � K = 10 × 2 × k, where d = 2
3: CandidateSet ← kNN(P, q, K)
4: return CandidateSet
5: end function

6: function VERIFY(P: set of points, q: query point, k: number of points,
CandidateSet: set of PointAndDistance)

7: Initialize(Result)
8: for all candidate ∈ CandidateSet do
9: NumberOfPoints ← Range(P, candidate.point, candidate.distance)

10: if NumberOfPoints < k then
11: Insert(Result, candidate)
12: end if
13: end for
14: return Result
15: end function

from P where q is located. A first answer for the kNN(P, q,K) is obtained and
we use the distance from the K-th point to q in order to find if there are possible
candidates in other partitions close to q. To ensure an exact result, the value of
K must be greater than k (K � k) as proposed in [13], at a magnitude of at
least K = 10×d×k, where d is the dimensionality of the dataset being examined
(e.g. for 2d points, K = 20 × k). Next, a range query with a circle centered in q
with that distance as radius is run to finally answer the kNNQ. The candidates
with their distance to the query point q are written into Hadoop Distributed File
System (HDFS) files in order to be the input for the next jobs. At this moment,
each candidate is checked to see if it is part of the final answer. That is, it finds
the number of points that are part of the range query centered on the candidate
point and with radius the distance to q. If this number is less than k, the point
is verified to be a RkNN of q. Finally, the results are written into HDFS files,
storing only the points coordinates and the distance with q.

3.2 RkNNQ Algorithm in LocationSpark

The implementation in LocationSpark uses the provided knnfilter and rangefilter
functions [12] and is very similar to the one implemented for SpatialHadoop. It
should be noted that the most important difference when implementing RkNNQ
in LocationSpark and SpatialHadoop is the fact that the former does not need
to store intermediate results on disk, since it is an in-memory DSDMS.
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Table 1. Configuration parame-
ters used in the experiments.

Parameter Values (default)

k 1, 5, (10), 15, 20, 25, 50

Number of nodes 1, 2, 4, 6, 8, 10, (12)

Type of partition Quadtree
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Fig. 1. RkNNQ execution times con-
sidering different datasets.

4 Experimentation

In this section we present the results of our experimental evaluation. We have
used real 2d point datasets to test our RkNNQ algorithms in SpatialHadoop and
LocationSpark. We have used three datasets from OpenStreetMap1: BUILD-
INGS which contains 115M records of buildings, LAKES which contains 8.4M
points of water areas, and PARKS which contains 10M records of parks and
green areas [4]. Moreover, to experiment with the biggest real dataset (BUILD-
INGS ), we have created a new big quasi-real dataset from LAKES (8.4M), with
a similar quantity of points. The creation process is as follows: taking one point
of LAKES, p, we generate 15 new points gathered around p (i.e. the center of
the cluster), according to a Gaussian distribution with mean = 0.0 and standard
deviation = 0.2, resulting in a new quasi-real dataset, called CLUS LAKES, with
around 126M of points. The main performance measure that we have used in
our experiments has been the total execution time (i.e. total response time).
These values are the average of the execution times of the query on 10 previ-
ously obtained random points. All experiments are conducted on a cluster of
12 nodes on an OpenStack environment. Each node has 4 vCPU with 8 GB of
main memory running Linux operating systems and Hadoop 2.7.1.2.3. Each node
has a capacity of 3 vCores for MapReduce2/YARN use. The version of Spark
used is 1.6.2. Finally, we used the latest code available in the repositories of
SpatialHadoop2 and LocationSpark3.

Table 1 summarizes the configuration parameters used in our experiments.
Default values (in parentheses) are used unless otherwise mentioned. Spatial-
Hadoop needs the datasets to be partitioned and indexed before invoking
the spatial operations. The times needed for that pre-processing phase are

1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
2 Available at https://github.com/aseldawy/spatialhadoop2.
3 Available at https://github.com/merlintang/SpatialSpark.

http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/aseldawy/spatialhadoop2
https://github.com/merlintang/SpatialSpark
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94 s for LAKES, 103 s for PARKS, 175 s for BUILDINGS and 200 s for
CLUS LAKES. We decided to exclude indexing time of SpatialHadoop (disk-
based DSDMS) for the comparison, since this is an independent operation. Data
are indexed and the index is stored on HDFS and for subsequent spatial queries,
data and index are already available (this can be considered as an advan-
tage of SpatialHadoop). On the other hand, LocationSpark (in-memory-based
DSDMS) always partitions and indexes the data for every operation. The parti-
tions/indexes are not stored on any persistent file system and cannot be reused
in subsequent operations.

Our first experiment aims to measure the scalability of the distributed
RkNNQ algorithms, varying the dataset sizes. As shown in Fig. 1, the execution
times in both DSDMSs do not vary too much, showing quite stable performance.
This is due to the indexing mechanisms provided by both DSDMSs that allow
fast access to only the necessary partitions for the spatial query processing. The
smaller execution times shown by LAKES and CLUS LAKES datasets is due
to how the points are distributed into the space and because one dataset is
built based on the other, and they show a similar behavior. From the results
with real data, we can conclude that LocationSpark is faster for all the datasets
(e.g. it is 2131 s faster for the biggest dataset, CLUS LAKES) thanks to its
memory-based processing that allows to reduce execution times considerably.
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Fig. 2. RkNNQ cost (execution time) vs. k values (left). Query cost with respect to
the number of computing nodes (nodes) (right).

The second experiment studies the effect of the increasing k value for the
largest full-real dataset (BUILDINGS). The left chart of Fig. 2 shows that
the total execution time grows as the value of k increases. As we can see from
the results, the execution time for SpatialHadoop grows much faster than for
LocationSpark. This is because as the value of k increases, so does the number
of candidates K and for each of them a MapReduce job is done. Due to the fact
that SpatialHadoop is a disk-based DSDMS, the cost of multiple MapReduce
jobs increases the execution time by having to perform different input and output
operations for each of the candidate points (for instance, the dataset is read from
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disk for each candidate). On the other hand, LocationSpark is a in-memory
DSDMS, which allows to reduce the number of disk accesses since the data is
already available for each candidate point and thus achieving faster and more
stable results even for large k values.

The third experiment aims to measure the speedup of the RkNNQ MapRe-
duce algorithms, varying the number of computing nodes (nodes). The right
chart of Fig. 2 shows the impact of different number of computing nodes on the
performance of parallel RkNNQ algorithm, for BUILDINGS with the default
configuration values. From this chart, it could be concluded that the perfor-
mance of our approach has a direct relationship with the number of computing
nodes. It could also be deduced that better performance would be obtained if
more computing nodes are added. LocationSpark is still outperforming Spatial-
Hadoop and it is affected to a lesser degree despite reducing the number of
available computing nodes.

By analyzing the previous experimental results, we can extract several con-
clusions that are shown below:

– We have experimentally demonstrated the efficiency (in terms of total exe-
cution time) and the scalability (in terms of k values, sizes of datasets and
number of computing nodes) of the proposed parallel and distributed algo-
rithms for RkNNQ in SpatialHadoop and LocationSpark.

– The larger the k values, the greater the number of candidates to be verified,
more tasks will be needed and more total execution time is consumed for
reporting the final result.

– The larger the number of computing nodes, the faster the RkNNQ algorithms
are.

– Both DSDMSs have similar behavior trends, in terms of execution time,
although LocationSpark shows better values in all cases (if an adequate
number of processing nodes with adequate memory resources are provided),
thanks to its in-memory processing performance and capabilities.

5 Conclusions and Future Work

The RkNNQ has received increasing attention in the past years. This spatial
query has been actively studied in centralized environments, however, it has not
attracted similar attention for parallel and distributed frameworks. For this rea-
son, in this paper, we compare two of the most modern and leading DSDMSs,
namely SpatialHadoop and LocationSpark. To do this, we have proposed novel
algorithms in SpatialHadoop and LocationSpark, the first ones in the literature,
to perform efficient parallel and distributed RkNNQ algorithms on big spatial
real-world datasets. The execution of a set of experiments has demonstrated
that LocationSpark is the overall winner for the execution time, due to the
efficiency of in-memory processing provided by Spark. However, SpatialHadoop
shows interesting performance trends due to the nature of the proposed algo-
rithm, since the use of multiple MapReduce jobs in a disk-based DSDMS needs
multiple disk accesses to datasets. Our current proposal is a good foundation
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for the development of further improvements in which the number of candidate
points could be reduced by adapting recent RkNNQ algorithms [16] to MapRe-
duce methodology. Other future work might cover studying other Spark-based
DSDMSs like Simba [15] and implement other spatial partitioning techniques [3].
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