
How Well Can I Secure My System?

Barbara Kordy and Wojciech Wide�l(B)

INSA Rennes, IRISA, Rennes, France
{barbara.kordy,wojciech.widel}@irisa.fr

Abstract. Securing a system, being it a computer network, a physical
infrastructure or an organization, is a very challenging task. In prac-
tice, it is always constrained by available resources, e.g., budget, time,
or man-power. An attack–defense tree is a security model allowing to
reason about different strategies that an attacker may use to attack a
system and potential countermeasures that a defender could apply to
defend against such attacks. This work integrates the modeling power
of attack–defense trees with the strengths of integer linear programming
techniques. We develop a framework that, given the overall budget allo-
cated for the system’s protection, suggests which countermeasures should
be implemented to secure the system in the best way possible. We lay
down formal foundations for our framework and implement a proof of
concept tool automating the solving of relevant optimization problems.

1 Introduction

The only system that is guaranteed to be fully secure is the empty system which
does not provide any functionality. Any other system offering an actual service
will always be vulnerable to attacks. These attacks may target the system’s
availability (e.g., denial of service attacks), its integrity (e.g., corruption of data
leading to inaccurate or inconsistent results), or the confidentiality of the users’
private information (e.g., stealing credentials necessary for authentication). To
achieve their malicious goals, attackers, who might be external to the system or
insiders, have a plethora of methods to choose from, including digital means, such
as hacking, physical attacks, for instance, breaking in and stealing, as well as very
powerful social engineering techniques relying on psychological manipulation. All
these aspects must be taken into account while securing a system or a company.
In addition, perfect security would require the system’s owners to have unlimited
resources, in terms of financial means and time, but in practice, this is never the
case. This is where the risk analysis comes into play.

The crucial challenge in every risk assessment methodology is to exhaustively
describe the attack scenarios corresponding to the most feared threats, in order
to determine the most likely ones, and deploy relevant countermeasures, in such
a way that the residual risks are acceptable. Attack–defense trees have been
introduced in [6] as a formal solution to address this challenge and to support
practical risk assessment methodologies.

An attack–defense tree (ADTree) is a graph-based model representing how
an attacker may compromise a system and how a defender may protect it against
c© Springer International Publishing AG 2017
N. Polikarpova and S. Schneider (Eds.): IFM 2017, LNCS 10510, pp. 332–347, 2017.
DOI: 10.1007/978-3-319-66845-1 22

How Well Can I Secure My System? 333

potential attacks. ADTrees enhance the industrially recognized formalism of
attack trees [8,10], by explicitly integrating the countermeasures and the coun-
terattacks against these countermeasures to the model. Methods for quantitative
analysis of ADTrees, e.g., [1,7], allow the modeler to analyze and quantify the
effect of deploying a countermeasure, and to evaluate its consequences.

Several aspects can be taken into account while choosing the countermea-
sures to be implemented. One can be interested in minimizing the number of
undefended attacks, minimizing the impact that the system would suffer from
in a case of an attack, maximizing the minimal necessary investment of the
attacker, etc. It turns out that all these problems might be modeled as integer
linear programming problems [3].

The objective of this work is to develop a framework allowing a security
expert to select the most pertinent set of countermeasures, in order to secure
the analyzed system in the best way possible. This framework combines the mod-
eling features of ADTrees with the potential of integer optimization techniques.
Knowledge about possible attack strategies and the corresponding countermea-
sures is extracted from an attack–defense tree. This information is then used
by integer optimization algorithms to select the most appropriate set of coun-
termeasures. Our selection procedure is guided by practical constraints, such as
the cost of individual actions of the attacker and the defender, the impact of an
attack to the system, and the overall defense budget available.

Contribution. The main scientific novelty of this work is the development of
the defense semantics for ADTrees, capturing possible strategies of a reason-
able attacker and listing corresponding defender’s strategies allowing to secure
the analyzed system. The practical contribution is the formulation of security-
relevant optimization problems in terms of integer programming and the imple-
mentation of a prototype tool to solve them. Our tool takes an ADTree as input
and uses a free integer programming solver lp solve [2] to output the optimal
set of countermeasures to be implemented, according to a given optimization
function.

Related work. The stimulus triggering the framework developed in this paper
has been the work of Laura Albert McLay, an operations researcher working on
cybersecurity problems. McLay investigates optimization techniques to distrib-
ute security budget amongst possible countermeasures and makes use of maximal
coverage models to prioritize mitigations [12]. The major difference between our
approach and the one of McLay is the way in which the link between poten-
tial attacks and the corresponding sets of countermeasures is tackled. In [12],
this link is given as input to the problem. In our approach, this information is
extracted from an ADTree in the form of its defense semantics. We propose an
extraction algorithm which contributes to the development of formal foundations
for ADTrees and, as such, is the main scientific contribution of this paper.

Optimization techniques have also been applied to attack–defense trees to
address the problem of multi-objective evaluation of security using the concept

334 B. Kordy and W. Wide�l

of Pareto efficient solutions [1,11]. The goal of [11] is to identify optimal counter-
measures that maximize the security performance, minimize the attack impact
and minimize the defense cost. However, contrary to our approach, attack–
defense trees used in [11] do not allow to model attacker’s actions that would
disable a countermeasure of the defender, which results in a less complex but
also much less expressive model. The authors of [1] use Pareto frontier to devise
a technique that optimizes several parameters, e.g., cost and probability, at once.
ADTrees considered in [1] are similar to the ones used in our paper. However,
this work does not consider coverage problems, as we do in the current work.

2 Security Modeling with Attack–defense Trees

We start by explaining the ADTree formalism and presenting the assumptions
about the attacker and the defender considered in this work. Then, we introduce
a formal semantics which allows us to take advantage of integer programming
techniques to reason about attack–defense scenarios modeled with ADTrees.

2.1 Attack–defense Trees

Attack–defense trees (ADTrees) [6] are rooted trees with labeled nodes sup-
porting representation and quantitative analysis of security scenarios involving
two competing (sets of) actors – the attacker (denoted by A) and the defender
(denoted by D). Labels of the nodes of an ADTree depict goals of the actors. One
of the actors is trying to achieve a particular goal represented by the root node
of the ADTree and the other actor is trying to hamper them from doing so.1 The
goal of a node in an ADTree can be refined into sub-goals, either in a disjunctive
way (denoted by OR) or in a conjunctive way (denoted by AND). The meaning
of an ADTree is based on the notion of goal achievement. A goal represented
by a disjunctively refined node is achieved if at least one of the sub-goals rep-
resented by its children is achieved. To achieve a goal of a conjunctively refined
node, sub-goals of all of its children must be achieved. The goals represented by
the labels of the non–refined nodes are called basic actions. They represent the
actual actions that the attacker and the defender will perform to achieve their
goals. In order to forbid an actor from achieving their goal, the other actor may
apply a countermeasure (denoted by C). In the ADTree formalism, the nodes
representing countermeasures can be disjunctively or conjunctively refined and
they can again be countered. At most one countermeasure per node is allowed,
thus different ways of countering the same goal are represented using a single
countermeasure which is disjunctively refined. The goal of a countered node is
achieved if the node’s refinement (or the corresponding basic action in the case of
a non-refined but countered node) is achieved and the goal of the countermeasure
attached to the node is not achieved by the other actor.

1 In [6], the root actor is called the proponent and the other actor is the opponent.

How Well Can I Secure My System? 335

get Bob’s password

hacking

get the file with
hashed passwords

encrypt disk
with DiskCryptor

use password

eavesdrop to learn Bob’s
DiskCryptor password

security training

use key file

steal the disk holding
DiskCryptor key file

ophcrack
attack

use very strong
password

guessing

Fig. 1. ADTree for getting a password (Color figure online)

An illustrative toy
ADTree is given in
Fig. 1 and explained in
Example 1. The follow-
ing graphical conven-
tions are used: nodes
of the attacker are
depicted using red cir-
cles and those of the
defender using green
rectangles; conjunctively
refined nodes are marked
by an arc connecting
their children; nodes are
connected to their coun-
termeasures with the
help of dotted edges.

Example 1. In the sce-
nario represented with
the ADTree from Fig. 1,
Eve (the attacker) wants
to get the password
for Bob’s Windows
account. Eve can either
perform a hacking-based
attack or try to guess
the password, perhaps by executing a brute-force search. To successfully per-
form the hacking attack, Eve needs to get the file with the hashed passwords
stored in the memory of Bob’s computer and then retrieve Bob’s password from
this file with the help of ophcrack [9] – a Windows password cracker for inversing
hashes using rainbow tables. To prevent the theft of the password file, Bob (the
defender) can encrypt the disk of his laptop using encryption software DiskCryp-
tor [4]. DiskCryptor can be set up to work with a password or with a key file. In
the first case, Bob needs to enter his DiskCryptor password before being redi-
rected to the Windows login page. In the second case, Bob needs to boot from
an external disk (e.g., CD or DVD) holding the correct key file. To overcome
the disk encryption, Eve could eavesdrop on Bob entering his DiskCryptor pass-
word or steal the disk with the key file, respectively. Bob could follow a security
training where he would learn that one should never enter his passwords while
observed. Finally, to make the ophcrack attack impossible, Bob should use a very
strong password which does not fall into the specification of available ophcrack
tables.

Formally, an ADTree is defined using rooted, finite, labeled trees. We recall
that a tree is an acyclic, connected graph having neither loops, i.e., edges starting

336 B. Kordy and W. Wide�l

and ending at the same node, nor multiple edges between two different nodes.
A tree is finite if the set of its nodes is finite, and it is said to be rooted if one
of its nodes is designated to be the root.

Definition 1. An ADTree T is a tuple T = (V,E,L, λ, type, ref), where

– (V,E) is a rooted, finite tree,
– L is a set of labels representing the attacker’s and the defender’s goals,
– λ : V → L is a function that assigns labels to the nodes,
– type: V → {A, D} is a function assigning actors to the nodes, in such a way

that every node has at most one child of the other type,
– ref : V → {OR, AND, N} describes a refinement of the node: we use OR for dis-

junctively and AND for conjunctively refined nodes, and N for the non-refined
nodes, i.e., nodes holding basic actions.

While labels of the refined nodes are important when creating an ADTree,
they are not necessary for its analysis. For instance, if we assume that none of
Bob’s countermeasures was implemented in the scenario from Example 1, Eve
would achieve her main goal by either getting the file with hashed passwords and
running ophcrack or by guessing the password. This situation can be represented
as ORA

(
ANDA(hash, ophcrack), guess

)
2. The actors’ strategies can thus be fully

expressed by the labels of the non-refined nodes combined using refinement oper-
ators of the corresponding refined nodes. This observation leads us to propose a
term-based notation for ADTrees, which is especially useful in the case of large
trees, where the graphical representation is neither convenient nor effective.

Let us denote by B
A and B

D the sets of labels representing basic actions of
the attacker and the defender, respectively. We assume that B

A ∩ B
D = ∅, and

we set B = B
A ∪ B

D. Let bS ∈ B
S, for S ∈ {A, D}. ADTrees can be seen as terms

generated by the following grammar.

T : : T A | T D

T A : : bA | ORA(T A, . . . , T A) | ANDA(T A, . . . , T A) | CA(T A, T D)

T D : : bD | ORD(T D, . . . , T D) | ANDD(T D, . . . , T D) | CD(T D, T A)

If the root of an ADTree has type A, then the tree is said to be of the attacker’s
type. Otherwise it is said to be of the defender’s type. Terms of the form T A (resp.
T D) represent trees of the attacker’s (resp. defender’s) type. The tree in Fig. 1 is
of the attacker’s type and it is represented with term (1).

T = ORA
(
ANDA

(
CA(hash, T ′), CA(ophcrack, strong)

)
, guess

)
, (1)

where T ′ is the following term representing the tree of the defender’s type rooted
in the ‘encrypt disk with DiskCryptor ’ node

T ′ = ORD
(
CD

(
password, CA(eavesdrop, sec-train)

)
, CD(key-file, steal-kf)

)
.

2 Here, as well as in the rest of the paper, we shorten the labels for better readability.

How Well Can I Secure My System? 337

For the rest of this paper, we do a couple of assumptions. We identify ADTrees
with the corresponding terms. To ease the presentation, we assume that the
root actor (i.e., the proponent) is the attacker. Furthermore, we consider only
ADTrees where all basic actions are independent. This implies that there are no
multiple occurrences of the same label in a tree. Finally, it is assumed that both
actors always succeed when executing their basic actions.

2.2 Formal Semantics

In order to formulate optimization problems related to attack–defense scenarios
represented with ADTrees, we first need to extract potential attack and defense
strategies from the ADTree, i.e., define the semantics of ADTrees. These strate-
gies describe sets of actions allowing the attacker to achieve the root goal and
the defender to make such an attack impossible or inefficient.

Let T be an ADTree. A homogenous subtree of T is a maximal subtree of T ,
such that all of its nodes are of the same type (A or D). Node designated to be
the root of a homogenous subtree H of T is the one whose distance from the
root of T is minimal among all nodes of H. Obviously, every ADTree can be
partitioned in a unique way into homogenous subtrees: it suffices to remove all
dotted edges connecting the nodes of the attacker with those of the defender.
Since all of the nodes of a homogenous subtree are of the same type, homogenous
subtrees do not use any C operators. We thus talk about homogenous subtrees
of the attacker or of the defender.

Definition 2. Let H be a homogenous subtree of the attacker (resp. defender).
A minimal, wrt the inclusion, set of basic actions of the attacker (resp. defender)
achieving the root goal of H is called an attack vector (resp. defense vector) in H.

Example 2. The homogenous subtrees in our running example are

H0 = ORA(ANDA(hash, ophcrack), guess) H1 = strong

H3 = eavesdrop H2 = ORD(password, key-file)
H4 = steal-kf H5 = sec-train.

The left column gathers homogenous subtrees of the attacker and the right one
of the defender. The attack vectors in the subtree H0 are {hash, ophcrack} and
{guess}. The defense vectors in H2 are {password} and {key-file}.

Definition 3. Let T be an ADTree.

– A set D ⊆ B
D is called a defense strategy in T , if D = ∅ or if it is a union of

defense vectors from some of the homogenous subtrees of T .
– A set A ⊆ B

A is called an attack strategy in T , if there exists a defense
strategy D in T , such that, with all of the countermeasures from D being
employed, A is a minimal set of actions achieving the root goal of T . Such D
is called a witness for attack strategy A.3

3 To avoid confusion, attack/defense strategies in an ADTree are denoted using capital
letters and attack/defense vectors in its homogenous subtrees using lower case letters.

338 B. Kordy and W. Wide�l

Example 3. The attack strategies in the tree T from Fig. 1 are

{guess}, {hash, ophcrack}, {hash, ophcrack, eavesdrop},

{hash, ophcrack, steal-kf}, {hash, ophcrack, eavesdrop, steal-kf}.

For instance, {hash, ophcrack, eavesdrop} is an attack strategy because it rep-
resents a valid attack when the witness defense strategy {password} is imple-
mented. Likewise, {hash, ophcrack, eavesdrop, steal-kf} is an attack strategy
because the execution of all of these actions is a valid attack in the presence of
the witness defense strategy {password, key-file}.

In contrast, the set X = {hash, ophcrack, guess} is not an attack strategy in
T , because it is not minimal. Indeed, for any defense strategy possible (including
the empty strategy), hash and ophcrack can be removed from X and the root
goal is still achieved with guess.

The reasoning in Example 3 shows that the attack strategies model a reasonable
behavior of the attacker who, to achieve their goal, will not execute more actions
than strictly necessary. In other words, every attack strategy in an ADTree T
contains at most one attack vector from every homogenous subtree of T .

The set of all attack strategies in an ADTree T , that we denote by AS(T),
can be obtained in a bottom–up manner using the rules given in Fig. 2, where⊗n

i=1 Xi = {⋃n
i=1 xi | xi ∈ Xi}. It is important to notice that, in the case

of the nodes of the form ORD(T D
1 , . . . , T D

k), the union is taken over all subsets
I ⊆ {1, . . . , k}, including I = ∅.

AS(bA) = {{bA}}, AS(bD) = {∅},

AS(ORA(T A
1 , . . . , T

A
k)) =

k⋃

i=1

AS(T A
i), AS(ORD(T D

1 , . . . , T
D
k)) =

⋃

I⊆{1,...,k}

⊗

i∈I

AS(T D
i),

AS(ANDA(T A
1 , . . . , T

A
k)) =

k⊗

i=1

AS(T A
i), AS(ANDD(T 1, . . . , T k)) =

k⋃

i=1

AS(T D
i),

AS(CA(T1, T2)) = AS(T1) ⊗ AS(T2), AS(CD(T1, T2)) = AS(T1) ∪ AS(T2).

Fig. 2. Rules for creation of attack strategies in an ADTree

Lemma 1. Let T be an ADTree and A be an attack strategy in T . In addition,
let H be a homogenous subtree of the attacker in T , with BH being the set of all
basic actions in H. Then the set A∩BH is either empty, or else it is exactly one
attack vector in H.

Proof. Let DA be a witness for A, cf. Definition 3, and assume that the set
A ∩ BH is not empty. Since A is a minimal strategy wrt DA, the basic actions
from A ∩ BH achieve the root of H, with the root of H being either the root

How Well Can I Secure My System? 339

of T , or else a countermeasure attached to one of the nodes achieved by DA in
T . From the minimality of A it also follows that if an action was removed from
A ∩ BH , then the root of H would no longer be achieved. Thus, A ∩ BH is an
attack vector in H. �	

The goal of the framework developed in this paper is to suggest to the
defender an optimal way of securing a system. To do so, we need to link possi-
ble attack strategies describing how to attack the system with the correspond-
ing defense strategies allowing to protect it. Unfortunately, previously proposed
semantics for ADTrees do not achieve this, because they take the view of one
actor only into account, as illustrated in Example 4.

Example 4. Consider the tree T = CA
(
b, ANDD(b1, b2)

)
. There exist two (minimal)

ways for the attacker to ensure that they achieve their goal: they need to execute
action b and at the same time prevent the defender from executing either b1 or
b2. Using the multiset semantics [6], this is modeled by the pairs ({|b|}, {|b1|}) and
({|b|}, {|b2|}). However, this interpretation does not give a recipe for a reasonable
defender to counter the attack, which is executing both b1 and b2.

To make use of integer programming, we thus need to develop a new semantics
for ADTrees, called defense semantics for ADTrees, expressing how the defender
may prohibit a reasonable attacker from achieving their goal.

Definition 4. The defense semantics of an ADTree T , denoted by [[T]]D, is the
set of all pairs (A,D), where A is an attack strategy in T and D is a minimal
(with respect to inclusion) defense strategy in T , such that executing all actions
from D makes it impossible for the attacker to achieve the goal represented by
the root of T while realizing only the actions from A.

In order to develop an algorithm constructing the defense semantics of an
ADTree T , we first define the notion of countering attack and defense vectors.

Definition 5. Let T be an ADTree, and HA (resp. HD) be a homogenous subtree
of T of the attacker’s (resp. of the defender’s) type. In addition, let a be an attack
vector in HA (resp. d be a defense vector in HD).

We say that a set S ⊆ B
D (resp. S ⊆ B

A) counters the attack vector a (resp.
the defense vector d), if executing all actions from S makes it impossible for the
attacker (resp. for the defender) to achieve the goal represented by the root of
HA (resp. HD) while executing only the actions from a (resp. from d).

In other words, S counters an attack vector a if, in the presence of the coun-
termeasures from S, it is not sufficient to execute only the actions from a to
achieve the root goal of the corresponding homogenous subtree. For instance,
the attack strategy {hash, ophcrack, steal-kf} in the tree T from Fig. 1 coun-
ters the defense vector {key-file}. Likewise, the defense vector {password}
counters the attack vector{hash, ophcrack}.

Algorithm 1, where H0 denotes the homogenous subtree of the attacker con-
taining the root of an ADTree T , gives an algorithmic way of creating the defense

340 B. Kordy and W. Wide�l

semantics of T . In the corresponding lines, we indicate the steps the complexity
of which is exponential wrt the number of nodes. Note however, that, for a given
tree, these worst case scenario estimations will never hold for all of the lines at
the same time, cf. Table 1 depicting a couple of empirical results.

Theorem 1. Given ADTree T , Algorithm 1 generates the semantics [[T]]D.

To prove Theorem 1, we need the following lemma which shows the unique-
ness of the attack vector a′ in line 14 of Algorithm 1.

Lemma 2. Let T be an ADTree and (A,D) ∈ [[T]]D. For every defense vector
d ⊆ D, there exists at most one attack vector a ⊆ A countering d.

Proof. Let (A,D) ∈ [[T]]D and let d ⊆ D be a defense vector. By contraposition,
suppose that there exist two distinct attack vectors a1 and a2 in A that counter
d. Denote by Nd the set of nodes achieved by d, and by Hd the homogenous
subtree containing Nd. By Lemma 1, a1 and a2 are attack vectors from distinct
homogenous subtrees of T , say, H1 and H2, respectively. For i ∈ {1, 2}, denote by
ni the node of Nd, to which the root of Hi is attached. Let n ∈ Nd be the lowest
common ancestor of n1 and n2, i.e., the node that lies on the paths connecting
n1 and n2 with the root of Hd, the distance of which from the root of Hd is
maximal.

Let DA be a witness for A. By definition of witness, neither A \a1 nor A \a2

achieves the root goal of T in the presence of the actions from DA. Minimality
of A wrt DA implies that each of the nodes n1, n2, and n is achieved by DA and
that n is neither n1 nor n2. Furthermore it follows that n is an OR node. However,
this means that achieving both n1 and n2 is not necessary for achieving n, which
contradicts d being a defense vector in Hd. �	
Proof of Theorem 1. Let Alg(T) be the set constructed by Algorithm 1. We prove
that Alg(T) = [[T]]D.

First, let (A,D) ∈ [[T]]D. By Definition 4 and Lemmas 1 and 2, the sets A
and D can be represented as

A = a0 ∪ a1 ∪ . . . ∪ am ∪ A′, D = d0 ∪ d1 ∪ . . . ∪ dm, (2)

where a0 is an attack vector in H0, and for all i ∈ {0, . . . , m − 1}, di is a defense
vector that counters ai, and ai+1 is the unique attack vector in A countering di.
Furthermore, defense vector dm counters am and executing any of the attack vec-
tors from A′ has no impact on the defense vectors from D, and vice versa.

Let i ∈ {1, . . . , m}. By lines 8–15, during the i-th execution of the while
loop, the pair (ai, d0 ∪ . . . ∪ di−1) is added to the NewCandidates set, with the
latter becoming the Candidates set in line 19. When the algorithm enters the
while loop for the (m + 1)-th time and the aforementioned pair is considered in
line 8, the defense vector dm is identified in line 9 and the set D is added to the
set MinDef. Then, the pair (A,D) is added to Alg(T) in line 21.

Now, let (A,D) ∈ Alg(T). Let a0 ⊆ A be the attack vector from line 5.
Observe that the set D was built upon the pair (a0, ∅) by repeatedly identifying

How Well Can I Secure My System? 341

Algorithm 1. Defense semantics for ADTrees
Input: ADTree T
Output: defense semantics [[T]]D
1: Construct the set AS(T) using the rules from Fig. 2 O(2n)
2: [[T]]D ← ∅
3: for A ∈ AS(T) do O(2n)
4: MinDef ← ∅
5: Candidates ← {(a0, ∅) | a0 ⊆ A is an attack vector in H0}
6: while Candidates �= ∅ do
7: NewCandidates ← ∅
8: for (a,D) ∈ Candidates do
9: Counter ← {d | d counters a} O(2n)

10: for defense vector d ∈ Counter do O(2n)
11: if d is not countered by A then
12: MinDef ← MinDef ∪ {D ∪ d}
13: else
14: let a′ be the unique attack vector in A that counters d
15: NewCandidates ← NewCandidates ∪ {(a′, D ∪ d)}
16: end if
17: end for
18: end for
19: Candidates ← NewCandidates
20: end while
21: [[T]]D ← [[T]]D ∪ {(A,D) | D ∈ MinDef }
22: end for
23: return [[T]]D

a defense vector di countering the first element of the pair and an attack vector
ai+1 ⊆ A (if any) countering di, and then replacing the previous pair in the set
of candidates as described in line 19. Hence, the sets A and D can be partitioned
as in decomposition (2), and so (A,D) ∈ [[T]]D. �	
Example 5. The defense semantics of our running tree T from Fig. 1 is

[[T]]D ={({hash, ophcrack}, {strong}),
({hash, ophcrack}, {password}),
({hash, ophcrack}, {key-file}),
({hash, ophcrack, eavesdrop}, {strong}),
({hash, ophcrack, eavesdrop}, {key-file}),
({hash, ophcrack, eavesdrop}, {password, sec-train}),
({hash, ophcrack, steal-kf}, {strong}),
({hash, ophcrack, steal-kf}, {password}),
({hash, ophcrack, steal-kf, eavesdrop}, {strong}),
({hash, ophcrack, steal-kf, eavesdrop}, {password, sec-train})}.

342 B. Kordy and W. Wide�l

3 Security-Oriented Optimization Problems

We integrate the information captured by the defense semantics defined in the
previous section with the integer linear programming. Linear programming is a
standard approach to compute the best outcome, by optimizing a linear objec-
tive function subject to linear equality and linear inequality constraints. In our
framework, the inequalities model the dependencies between attack strategies
and defense strategies expressed by the defense semantics, the constraints related
to the available budget, as well as cost and impact of individual actions of the
attacker and the defender. Provided that the defender’s budget is limited, they
might not be able to implement all countermeasures at will. Our framework
supports them in tackling the following types of the optimization problems

– maximal coverage – minimize the number of attack strategies that remain
uncountered;

– minimal impact – minimize the impact of uncountered attack strategies;
– maximal investment – maximize the necessary investment of the attacker.

3.1 Mathematical Modeling

We start by fixing the notation that we employ in this section to model the
optimization problems. Given an ADTree T , and its defense semantics [[T]]D, let

– B
D = {bD1, . . . , bDp} be the set of basic actions of the defender present in T ,

– A1, . . . , An be the distinct attack strategies that appear in [[T]]D,
– D1, . . . , Dm be the distinct defense strategies that appear in [[T]]D.

Furthermore, for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, and k ∈ {1, . . . , p}, we set

Pij =

{
1, if (Ai,Dj) ∈ [[T]]D
0, otherwise

ykj =

{
1, if bDk ∈ Dj

0, otherwise.

For a basic action bS of any of the actors S ∈ {A, D}, we assume the cost of
executing the action to be a non-negative real number cost(bS). Finally, the
overall budget available to the defender is denoted by B.

To model the different scenarios that may happen depending on which actions
are and which are not executed, the following Boolean variables are defined

– xk = 1, for k = 1, . . . , p, if and only if the defender executes the action bDk,
– fj = 1, for j = 1, . . . ,m, if and only if the defender does not execute at least

one of the basic actions from the defense strategy Dj ,
– zi = 1, for i = 1, . . . , n, if and only if the attack strategy Ai achieves the root

node of T , in the presence of currently deployed countermeasures.

How Well Can I Secure My System? 343

Optimization goal: minimize

n∑

i=1

zi (3)

Subject to:

p∑

k=1

cost(bDk)xk ≤ B (4)

fj ≥
∑p

k=1 ykj(1 − xk)

p
, 1 ≤ j ≤ m (5)

fj ≤
p∑

k=1

ykj(1 − xk), 1 ≤ j ≤ m (6)

zi ≥ 1 +
m∑

j=1

Pij(fj − 1), 1 ≤ i ≤ n (7)

zi ≤
∑m

j=1 Pijfj∑m
j=1 Pij

, 1 ≤ i ≤ n (8)

xk ∈ {0, 1}, 1 ≤ k ≤ p, fj ∈ {0, 1}, 1 ≤ j ≤ m, zi ∈ {0, 1}, 1 ≤ i ≤ n.

Fig. 3. Coverage problem modeled in terms of integer programming.

Coverage problem. We first focus on the problem of covering as many attack
strategies as possible, provided the value of the defense budget B.

Figure 3 gives the specification of the corresponding integer linear program-
ming problem.

Inequality (4) ensures that the defender’s investment cannot exceed their
budget. The next two lines model the meaning of the variable fj : inequalities (5)
ensure that if the defender does not execute some of the actions from Dj , then
fj = 1; inequality (6) ensures that if fj = 1, then the defender does not execute
some action from Dj . Next, we model the meaning of zi: inequalities (7) ensure
that if the defender does not execute some action in any of the sets countering
Ai (i.e., fj = 1 for every j, such that Pij = 1), then zi = 1; and inequalities (8)
ensure that if the defender executes all the actions from at least one of the sets
Dj countering the attack strategy Ai (i.e., there exists j, such that Pij = 1 and
fj = 0), then zi = 0.

Remark 1. We notice that the number of elements in the set Dj can be expressed
as |Dj | =

∑p
k=1 ykj . Thus, the defender executes all of the actions from Dj , iff
p∑

k=1

ykj =
p∑

k=1

xkykj which means
p∑

k=1

(1 − xk)ykj = 0. (9)

In consequence, if there exists j for which equality (9) holds and Pij = 1, then
the attacker cannot succeed by the attack strategy Ai. Conversely, if for all j
with Pij = 1, equality (9) does not hold, then the attacker can succeed with Ai.
This explains the form of inequalities (5) and (6).

Observe that when the inequalities from Fig. 3 are expressed in a matrix form,
say M x̂ ≤ ĉ, where x̂ = (x1, . . . , xp, f1, . . . , fm, z1 . . . , zn) and ĉ is a vector of

344 B. Kordy and W. Wide�l

Table 1. Running time of the tool on randomly generated trees.

Size Time in sec

T AS(T) [[T]]D M AS(T) [[T]]D from [[T]]D to M Solving

28 8191 53248 16409 × 8217 129.36 3.67 8.8 1152.22

80 3955 57508 7951 × 3997 0.02 4.1 4.5 0.58

80 3 99 81 × 76 >10800 0.01 <0.01 0.01

100 25 32 67 × 107 <0.01 0.06 <0.01 >3600

500 23 71 65 × 166 0.01 0.26 <0.01 0.01

constants, then the size of M is (2m + 2n + 1)×(p + m + n). For the completeness
of presentation of results, sizes of corresponding matrices are included in Table 1.

Below, we investigate other optimization problems that fall into our setting.

Impact problem. Here it is assumed that every attack strategy A has assigned a
value Imp(A) of it’s impact when executed. The value of Imp(A) could be esti-
mated by the security experts or expressed as the sum of impacts of basic actions
composing the attack strategy A. The goal is to select the countermeasures to
be implemented in such a way that the impact of uncountered attack strategies
is minimal. The optimization goal from line (3) in Fig. 3 is replaced with

Optimization goal: minimize I

and the list of inequalities from Fig. 3 is extended with additional constraints

I ≥ zi Imp(Ai), 1 ≤ i ≤ n, (10)

ensuring that I is the maximum of the impacts of uncountered attack strategies.

Attacker’s investment problem. We may use a similar technique to maximize the
minimal necessary investment of the attacker in achieving their goal. In this case
the optimization goal is replaced with

Optimization goal: maximize C

with respect to the same conditions as previously, extended with

C ≤ zi Cost(Ai), 1 ≤ i ≤ n, (11)

where Cost(Ai) is equal to the investment of the attacker they need to make in
order to perform all basic actions from Ai, i.e. Cost(Ai) =

∑
bA∈Ai

cost(bA).

Remark 2. The mathematical framework described in this section is generic and,
as such, can be used to address not only problems relating to budget, impact,
and monetary cost, but also to any other optimization problem expressed with
the help of a linear function over the Boolean variables that we have defined in
Sect. 3.1, subject to linear constraints. This is illustrated in Sect. 3.3, where we
look for the optimal usage of available time.

How Well Can I Secure My System? 345

3.2 Implementation

To validate the framework developed in this paper, we have implemented a proof
of concept tool. It is programmed in Python and uses a free integer linear pro-
gramming solver lp solve [2]. Given an ADTree T , specified as in Definition 1,
and the input values for the defense budget and cost, our prototype follows
Algorithm 1 to construct the defense semantics [[T]]D, and extracts the speci-
fication of the optimization problem of interest, as described in Sect. 3.1. The
optimization problem is then solved using lp solve and the optimal solution, i.e.,
the optimal value of the objective function together with the corresponding set
of the defender’s actions that need to be performed, is given as output.

We have tested the prototype on a computer running Intel Core i7–5600U
CPU at 2.60 GHz dual core with 16 GB of RAM. ADTrees for the tests have
been generated randomly to cover various possible cases.

The budget B has been set to be half of the sum of the costs of all basic
actions of the defender.

Table 1 presents a sample of the obtained results. It compares the time spend
on generation of the set AS(T), generation of [[T]]D, translation of the defense
semantics into an integer programming problem specified by a matrix M , and
solving the problem. In general, the most time-consuming of these steps are
generation of AS(T) and solving of the obtained optimization problem, since
in the worst case they are both exponential in the number of nodes of T . In
particular, the time necessary to generate AS(T) depends exponentially on the
maximum number of children of the ORD nodes in T , cf. Fig. 2.

3.3 Countermeasure Optimization on the Running Example

We now illustrate the optimal countermeasure selection on our running scenario
from Example 1. Here, the budget B represents the available time resources.

We suppose that the goal of Bob (the defender) is to learn how to secure
his computer against the attacks depicted in the tree from Fig. 1. Bob is a busy
person, so he can devote 50 min only to his learning process. He wants to know
how he should spend this time in the most efficient way, i.e., so that he is able
to minimize the number of unprevented attacks. To set up a password which
is resistant to the ophcrack attack, Bob needs to understand how the rainbow
table analysis works – this would take him 60 min. To be able to use DiskCryptor,
20 min are necessary to learn how to use it with a password and 30 min to master
how to handle a key file. Finally, Bob can also follow the security training offered
by his company, which lasts 25 min.

We have input these data to our tool and obtained a matrix of size 17 × 12.
The tool solves the problem instantaneously and suggests that Bob should
follow the security training and learn how to use DiskCryptor with a pass-
word, i.e., the optimal set of countermeasures is {password, sec-train} and
it prevents all four attack strategies listed in Example 5. However, if the

346 B. Kordy and W. Wide�l

duration of the security training was 45 min, then the optimal set of coun-
termeasures would be {password, key-file} which prevents three out of four
attack strategies, namely {hash, ophcrack}, {hash, ophcrack, eavesdrop}, and
{hash, ophcrack, steal-kf}.

4 Conclusion

The goal of the work presented in this paper has been to provide a framework
to assist industry practitioners using ADTrees in performing their risk assess-
ment evaluations. To achieve this, the security model of ADTrees is fused with
optimization techniques. We rely on the expressive power of ADTrees to link
potential attack and defense strategies and profit from the strengths of integer
programming to select the most optimal sets of countermeasures. From a formal
perspective, we introduce a novel defense semantics for ADTrees and thus con-
tribute to the developments of mathematical foundations for this security model.
To validate the usefulness of the proposed approach, we have implemented a
proof of concept tool automating the computation of the defense semantics and
the selection of the most appropriate set of countermeasures to be deployed.

As a next step, we will extend our framework to the probabilistic case, taking
the probability with which actions are executed into account. We would also like
to improve the worst case running time of our tool, by exploiting the possibility of
using approximation algorithms. Finally, we plan to integrate this framework to
ADTool, free software assisting creation and quantitative analysis of ADTrees [5].

References

1. Aslanyan, Z., Nielson, F.: Pareto efficient solutions of attack-defence trees. In:
Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 95–114. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46666-7 6

2. Berkelaar, M., Eikland, K., Notebaert, P.: lp solve: Open source (Mixed-Integer)
Linear Programming system (2005). http://lpsolve.sourceforge.net/5.5/ version
5.5.2.5, Accessed Sep 2016

3. Chvátal, V.: Linear Programming. W.H Freeman, San Francisco (1983)
4. DiskCryptor: (2014). https://diskcryptor.net/ Accessed 17 March 2017
5. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,

R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). doi:10.1007/978-3-319-43425-4 10

6. Kordy, B., Mauw, S., Radomirovic, S., Schweitzer, P.: Attack-defense trees. J. Log.
Comput. 24(1), 55–87 (2014). doi:10.1093/logcom/exs029

7. Kordy, B., Pouly, M., Schweitzer, P.: Probabilistic reasoning with graphical security
models. Inf. Sci. 342, 111–131 (2016). doi:10.1016/j.ins.2016.01.010

8. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). doi:10.
1007/11734727 17

9. Ophcrack: (2016). http://ophcrack.sourceforge.net/ Accessed 17 March 2017

http://dx.doi.org/10.1007/978-3-662-46666-7_6
http://lpsolve.sourceforge.net/5.5/
https://diskcryptor.net/
http://dx.doi.org/10.1007/978-3-319-43425-4_10
http://dx.doi.org/10.1093/logcom/exs029
http://dx.doi.org/10.1016/j.ins.2016.01.010
http://dx.doi.org/10.1007/11734727_17
http://dx.doi.org/10.1007/11734727_17
http://ophcrack.sourceforge.net/

How Well Can I Secure My System? 347

10. Schneier, B.: Attack trees: modeling security threats. Dr. Dobb’s J. Softw. Tools
24(12), 21–29 (1999)

11. Shameli-Sendi, A., Louafi, H., He, W., Cheriet, M.: Dynamic optimal countermea-
sure selection for intrusion response system. IEEE J. TDSC 99, 10–14 (2016).
doi:10.1109/TDSC.2016.2615622

12. Zheng, K., McLay, L.A., Luedtke, J.R.: A budgeted maximum multiple coverage
model for cybersecurity planning and management (2017, under submission)

http://dx.doi.org/10.1109/TDSC.2016.2615622

	How Well Can I Secure My System?
	1 Introduction
	2 Security Modeling with Attack--defense Trees
	2.1 Attack--defense Trees
	2.2 Formal Semantics

	3 Security-Oriented Optimization Problems
	3.1 Mathematical Modeling
	3.2 Implementation
	3.3 Countermeasure Optimization on the Running Example

	4 Conclusion
	References

