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Abstract. Designing robotic systems can be very challenging, yet con-
trollers are often specified using informal notations with development
driven primarily by simulations and physical experiments, without rela-
tion to abstract models of requirements. The ability to perform formal
analysis and replicate results across different robotic platforms is hin-
dered by the lack of well-defined formal notations. In this paper we
present a timed state-machine based formal notation for robotics that
is informed by current practice. We motivate our work with an exam-
ple from swarm robotics and define a compositional CSP-based discrete
timed semantics suitable for refinement. Our results support verification
and, importantly, enable rigorous connection with sound simulations and
deployments.
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1 Introduction

Robotic systems have applications in many real-life scenarios, ranging from
household cleaning to critical search-and-rescue operations. Assessing their
expected behaviour is challenging. In spite of that, typically controller software is
developed in an ad-hoc manner, driven by simulations and physical experiments,
but without a clear relation with models of requirements and design.

Standard state-machine notations, without underlying formal semantics, are
often used [1,2] together with natural language annotations to specify more com-
plex behaviours, involving aspects such as time and probabilities. State machines
are often neither presented in an abstract way, nor do they contain precise and
sufficient information to relate the designs to the simulations and deployments. In
this scenario, the ability to faithfully replicate results, even just across different
simulators, let alone using different robotic platforms, is significantly hampered.

In this paper we present a timed semantics for RoboChart [3], a state-machine
based notation that can be characterised as a UML profile extended with time
primitives and with a formal semantics. RoboChart provides constructs for cap-
turing the architectural patterns of typical timed and reactive robotic systems.
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An abstract characterisation of a robot’s operations and events is formalised
via the notion of a robotic platform that decouples the software and hardware
platform from controllers. A controller can encapsulate multiple state-machines,
and is connected with a particular platform via the notion of a module. This
enables an abstract and precise approach to the design of robotic systems, where
high-level concepts can be mapped into low-level constructs of typical executable
simulations, for example, as we have considered in [3].

Here we propose a compositional semantics for refinement using Timed CSP
[4], enriched with deadline constructs from Circus Time [5], a discrete-time
process algebra that combines constructs of Z [6], CSP [7], and Timed CSP,
besides deadline operators. A semantics for the enriched Timed CSP is defined
in the Unifying Theories of Programming [5,8].

For RoboChart models that make a modest use of data types, we translate
the semantics to CSP using a special event tock to mark the time. This version
of CSP, called tock-CSP [7], is supported by the model checker FDR [9]. We
use it to validate the design of RoboChart and our semantics, and check timed
properties of RoboChart models. With tock-CSP, we can give a discrete-time
model for all constructs of Timed CSP and deadlines.

The encoding in tock-CSP is mechanised in RoboTool, a graphical editor for
RoboChart models. Using RoboTool and the automatically generated semantics,
we have tackled a number of examples, and present here four experiments: two
chemical detectors [10], an alpha algorithm used in swarm robotics [11], and a
transporter that works in a swarm to move an object to a goal position [1].

Our long-term objective is to use our semantics for verification by automated
theorem proving using an Isabelle encoding of Circus Time [12], and prove that
automatically generated simulations are sound, that is, refine the RoboChart
models. Translation from Timed CSP with deadlines to Circus Time is not chal-
lenging, since Circus Time is a richer language.

In Sect. 2 we motivate our work by presenting an example of a typical timed
robotic controller, as used in swarm robotics, and giving an insight into related
work. In Sect.3, we present RoboChart. We discuss in detail the RoboChart
timed semantics in Sect. 4. In Sect. 5 we present verification results and discuss
tool support. Finally, we summarize our contributions and provide pointers for
future work in Sect. 6.

2 Modelling Robotic Controllers

We now present an example (Sect.2.1) and related works (Sect. 2.2) to indicate
the need for a specialised timed formal language.
2.1 DMotivating Example

Our goal is not to propose an entirely novel notation, but to define a language
that is akin to that currently adopted by roboticists in their informal approach.
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Fig. 1. Transport swarm state machine [1].

We present in this section an example, taken from the domain of swarm robotics,
whose published model is representative of the current practice.

We consider an individual timed reactive controller used in robots of a swarm
for cooperatively transporting tall objects towards a locally perceived goal [1].
The robotic platform has a camera that allows it to distinguish objects and the
goal, and proximity sensors that can be used to estimate the distance to an
object and to detect other nearby robots.

In Fig. 1 we reproduce the transport swarm controller in [1]. In state S1 the
robot searches for an object and, once it sees one, it transitions to state S2. If
the object is near, then it transitions to state S3. While in states S2 and S3, if
the object is lost for a certain amount of time T,, the robot initiates another
search for the object by transitioning to state S1. When the robot is close enough
to the object, by transitioning from state S3 to 54, it performs an alignment
procedure and checks whether the goal can be seen. The underlying idea is that
if the goal is occluded by the object, and the robot is close to the object, then it
pushes the object towards the goal. While pushing, in state S5, the robot may
lose contact with the object, in which case after a time threshold of T. it evades
the vicinity; or it may lose sight of nearby neighbours, in which case it tries to
align itself again by transitioning to state S4. The transitions between states S7
and S1, and S6 and S1, are equally timed according to thresholds T, and T.

We observe that the state machine in Fig.1 is specified in natural language
and a few aspects are unclear, such as the behaviour and time spent in each
state, whether timed transitions take place immediately or need to wait until
the behaviour has completed, and thresholds related to the distances to the
object. Even when taking into account the implementation details [1], it is ulti-
mately unclear whether the controller, as presented, could be independently and
correctly implemented. In our experience, this is not an uncommon scenario
in the development of robot applications. We refer, for instance, to [13,14] for
examples of other applications modelled with similar state machines.
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2.2 Related Work

According to a recent survey [15], there is increasing interest in domain-specific
and model-driven approaches in robotics. We discuss below those closest to ours
in tackling aspects such as architectural design, time, and verification.

Ge",M [16] provides a component-based approach for designing middleware-
agnostic robotic controllers. Functional aspects are captured by recording the
input and output parameters of functions together with their worst-case exe-
cution time. Implementations are provided by code fragments, for example,
using C code. Verification of schedulability via model-checking is available using
Fiacre [16], through the Timed Petri Net model-checker TINA, while deadlocks
can be checked using BIP. G*",M is primarily an executable language, whereas
RoboChart is a modelling language catering for different levels of abstraction.

Proof techniques, including model-checking, have also been used to identify
optimal configurations of adaptive architectures [17]. Related approaches such as
CIRCA [18] tackle the problem of meeting real-time constraints given dynamic
plan generation. Behavioural properties are not the main focus of these works.

ORccAD [19] supports modelling, simulation, and programming, as well as
verification of timed behavioural properties via translation into ESTEREL and
Timed Argos. Unlike RoboChart, its support for graphical modelling is limited,
while the modelling constructs employed are closest to those of our semantics.

UML has been used for model-based engineering of robotic systems [20].
The profile RobotML [21] supports design modelling and automatic generation
of platform-independent code, but verification is not considered. On the other
hand, several formal models of UML state machines exist; some of them use
CSP [22,23]. However, none of these deal with time modelling.

UML has a simple notion of time. Its profile UML-MARTE [24] supports
logical, discrete and continuous time through the notion of clocks. Specification
of time budgets and deadlines, however, is focused on particular instances of
behaviour via sequence and time diagrams. It is not possible to define timed
constraints directly in terms of transitions and states as we require.

UML-RT [25], an extension to UML, includes the notion of capsules, which
encapsulate state machines. Communication between capsules is governed by
protocols. A timing protocol can raise timeouts, but it is not obvious how timed
constraints, such as deadlines, can be specified directly on state machines. In [26]
a semantics is given for a subset of UML-RT without considering time. An exten-
sion to UML-RT is considered in [27] with semantics given in CSP+T [28], an
extension of CSP that records the timing of events.

Timed automata [29] use synchronous continuous-time clocks. Temporal logic
properties can be checked using the model checker UPPAAL [30]. It is not
directly comparable to RoboChart, which provides modelling abstractions cater-
ing for robotic applications and has a semantics for refinement. It is our aim to
explore a semantics for RoboChart using UPPAAL for property verification.
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3 RoboChart: A Formal Notation for Robotics

A system in RoboChart is characterised by a module that contains a robotic
platform, associated with one or more controllers. A controller is specified by one
or more state-machines. Our focus here is on the state machines, since that is
where we define the time properties. The untimed RoboChart semantics defined
in [31] already describes how CSP models of state machines can be composed
to define models for controllers, and how these can be composed to define a
complete module and provide a formal model of a robotic system.

A state-machine includes states and composite states with entry, during and
exit actions, junctions, and transitions, possibly guarded by expressions. The
language for actions is well defined to include assignments, operation calls, and
a primitive to raise events. In Fig. 2 we include part of the RoboChart metamodel
showing constructs related to time, whose syntax is summarized in Table 1. The
RoboChart Reference Manual [31] gives a complete description.

Table 1. Timed primitives of RoboChart.

Primitive Metamodel element | Description

#C ClockReset Resets clock C.

since(C) ClockExp Time elapsed since the most recent reset of clock C.
sinceEntry(S) | StateClockExp Time elapsed since state S was entered.

A <{d} TimedStatement Deadline on action A to terminate within d time units.
e <{d} Transition Deadline on event e to happen within d time units.
Wait(d) Wait Explicit time budget of d time units

We have a notion of Clock (see Fig. 2) that allows transitions to be guarded
by time expressions that define constraints relative to the occurrence of other
events via the since(C) (ClockExp in Fig.2) and #C (ClockReset) primitives,
and relative to activation of a state via sinceEntry(S) (StateClockExp). We also
have primitives to impose a deadline d on action A (A <{d}) (TimedState-
ment), or transition trigger e (e <{d}) (Trigger), and to specify a budget d
(Wait(d)) (Wait) for an operation, where d is an Expression.

% %] Statement

[0..1]deadline
[ [ ClockExp l [ [ StateClockExp ] [D TimedStatement] [ H wait l [ [ ClockReset
l ) L l . L a '[0..1]durjatl!on
[ Clock ] { 7] state ] [O..l]deadlineA[ [ Transition ] j [ Trigger ]
( " J ) X 7o J*

Fig. 2. Timed metamodel of RoboChart.
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Similarly to timed automata, expressions involving clocks are restricted to
comparing single timed primitives with constant expressions. We, however, allow
conjunctive as well as disjunctive expressions involving more than one clock.

To illustrate the RoboChart notation we consider a robot that moves at
constant speed in a square pattern while avoiding obstacles. The state machine
is shown in Fig.3, where the annotations TO to T6 uniquely identifying the
transitions are not actually part of RoboChart, but are included to guide the
later discussion of the semantics in Sect. 4.

&g Movement

MovingForward [sinceEntry(Turning)==2]/#C Turning

entry moveForward(linear)<{0} entry send stop <{0};
turn(angular)

Observing 0 [since(C)==5]/segment=segment+1

entry enableCollisionDetection()
exit disableCollisionDetection()

/#C; segment = 0
collisionDetected [since(C)<3] 0
Collision stop <{0}[segment==4]
entry avoid(); wait (2) ®

Fig. 3. Example of a square trajectory state machine controller.

When the robot is started, it transitions from the initial state, denoted by
a black circle, to the state MovingForward, while resetting (#C) a clock C and
assigning 0 to the local variable segment. The local declarations are elided in
Fig. 3, but a RoboChart state machine is self-contained, in that it declares all
the variables, events, and operations that it uses. The local variable segment
records how many sides of the square have been covered so far; the robot stops
when it completes the square (segment == 4). This is achieved by sending an
event stop to the platform and transitioning to the final state: a white circle. The
event stop is given a deadline 0, indicating that it is expected that the robotic
platform is always ready to accept this event immediately.

In the composite state MovingForward, the motion is linear, unless an obstacle
is detected. Linear motion is activated by calling the operation moveForward
in the entry action with a constant value linear passed as a parameter. This
operation is annotated with a deadline of 0, since moveForward can typically be
implemented just as an assignment to a variable whose duration is regarded as
negligible. Operations may be specified by other state machines or have their
implementation provided by the robotic platform.

Before MovingForward is actually entered, its entry action executes, followed
by that of its substate Observing, enabling the collision detection capability. Once
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a collision is detected, the event collisionDetected is raised by the robotic plat-
form: the transition from Observing to the state Collision is then triggered, but
only if there is enough time (since(C)<3) before the next turn, executing the
exit action of Observing and subsequently the avoid operation that performs the
actual collision avoidance. Here we do not specify this operation, but record its
budget of 2 time units by sequentially composing it with the timed primitive
wait(2). In RoboChart time elapses explicitly via budgets, unless a state has
been entered and no transitions are enabled, or, every enabled transition is asso-
ciated with an external event. Once the collision is resolved, a transition back
to Observing is taken. Transitions are triggered once the guard is true and the
associated event is raised, or, if there is no event associated, immediately.

The square motion pattern is achieved by limiting the linear motion to 5 time
units before switching to angular motion for 2 time units, and then switching
again to linear motion. Accordingly, we guard the transition from MovingForward
to the state Turning with the expression since(C) == 5. Upon such a transition,
the value of segment is incremented. Similarly, the angular motion is limited by
guarding the transition from Turning to MovingForward using the timed primitive
sinceEntry(Turning). Upon this transition, the clock is reset.

d Pusher

Searching objectSeen?distance #T MovingToObject ClosingInOnObject
o entry enableObjectWatch() <{0} during moveToObject() during closeInOnObject()

during searchObject(
o ect) [since(T)>=TH_Ta] [distance<close]
Watch
[since(T)>=TH_Ta] o o Watch

[sinceEntry(MovingAround)>=TH_Td] .

[sinceEntry(Evading)>=TH_Te]

objectSeen?distance #T

Evading MovingAround
— - [distance==0]
entry (disableObjectWatch(); entry (disableObjectWatch();
disableNeighbourDetection()) <{0} disableNeighbourDetection()) <{0} [goalSeen]
during evade() during moveAroundObject()
. ) [not goalSeen]
[distance>0/\since(C)>=TH_Tc]
Pushing Scanning
during pushObject() entry goalSeen = false; inding(); Detection()) <{0}
during scanAndAlign()
exit disableGoalFinding() <{0}
[newN>0V/nei i = newN
Watch ‘ [ i 0]/#N; nei = newN
[ i 1/#N; nei = newN o Watch }
® TNV T ——
neighbourDetected?newN neighbourDetectedZnewN .
objectSeen?newD . objectSeen?newD
[newD>0/\distance==0]/#C; distance = newD [newD>0/\distance==0]/#C; distance = newD
| [newD==0Vdistance!=0]/distance = newD [newD==0\/di 1=0]/di e = newD
[neighbours==0/\since(N)>=TH_Tb] goalSeen/goalSeen = true

Fig. 4. RoboChart model of the transport swarm state machine.

In Fig. 4, we also show the RoboChart model for the transport swarm con-
troller described in Sect. 1. We assume that the robotic platform can raise events:
objectSeen, with a distance value passed as a parameter in response to seeing an
object at an estimated distance; goalSeen in response to detecting the goal; and
neighbourDetected, with a number of neighbours passed as a parameter. We also
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assume that the controller needs to enable the platform to receive those events,
by calling appropriate operations, such as enableObjectWatch.

Operations likely to be implemented as assignments to variables have been
annotated with zero deadlines. Overall we have the same structure as the original
specification [1], with the same number of states, but with additional substates.
This stems from interactions that are not clear in the original model, such as
the need to keep counting neighbours while in states Pushing and Scanning, and
the need to keep track of the object across multiple states.

The existing semantics of RoboChart deals with the structure (modules, con-
trollers, and parallel state machines) of models. That semantics defines the visible
behaviour of a module: the order and availability of the events of the platform.
That semantics, however, ignores all time constructs of a model: clocks, and asso-
ciated statements, waits, and deadlines. We address them in the next section.

4 Semantics

Here, we describe the semantics of RoboChart state machines (Sect.4.1) [31].
We then focus on the semantics of each timed RoboChart construct, namely
budgets and deadlines (Sect. 4.2) and clocks (Sect. 4.3).

Before defining the semantics, we first introduce the required CSP syntax. A
communication on event e (also known as a channel), optionally parametrised by
z, is defined as e.x — P, with e?x being syntactic sugar for allowing z to range
over the type of e and introducing x in the scope of P, and with e!lv being used
for a specific value v. Processes can be composed in parallel (P | [s] | @), where
s is the set of events on which P and @ require agreement, and if s is empty this
is an interleaving (P ||| @). An external choice P O ) offers an initial choice
between behaving as P or @, while P A @) behaves as P but can be interrupted
by @ at any time, with the timed version P A4 @ in addition also interrupting
P exactly at d time units. P @4 @ initially behaves as P but can be interrupted
by an event in A to behave as (). Sequential composition of P and @ is P; @Q,
with SKIP being the unit. Hiding (P \ h) makes the events in set A internal to
P. Finally, the events in a process P[f] can be renamed according to function f.

4.1 State Machines

A state machine is given a CSP semantics as the parallel composition of a process
States, itself the parallel composition of processes that model a state, with a
process Initial, that models the transition from the initial state. In Fig.5 we
illustrate the architecture of the CSP semantics of the example from Fig.3. A
state is modelled by a process FEntry, modelling its entry action, sequentially
composed with During, a model for its during action, that can be interrupted
by a process Transitions that models the possible outgoing transitions.

A state machine defines a sequential and hierarchical control flow. To model
this flow, there are enter, entered, exit, and exited events that model state acti-
vation and deactivation, with the associated entry and exit actions. Each event
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Fig. 5. Semantics Architecture based on Example of Fig. 3.

takes two parameters: the state that requested the activation or deactivation to
start, and the target state of the request.

A state is modelled in a compositional way, capturing information only about
itself, irrespective of whether it is inside a state machine or another state.
In Fig. 5, the execution sequence is numbered. For example, the process mod-
elling MovingForward offers events enter?z!MF for any other state z, including
the initial state to request it to enter, followed by the process that models its
own entry action, a request on enter!MF!Obs for the child Observing to enter,
the entry action of Observing, and the acknowledgements entered!MF!Obs and
entered!z!MF. The process then offers an external choice of events that trigger
its transitions.

Following a transition event, the exit and exited events to request and
acknowledge deactivation are offered. For instance, in our example, following
a transition triggered from state MovingForward, the process offers to synchro-
nize on events exit!MF.S, where S ranges over all state identifiers except MF
itself, as a way of requiring deactivation of either Observing or Collision.

Each state transition T is modelled by a process that synchronizes on Tpp,
an event that uniquely identifies the transition in the state machine. If an event
trigger e is associated with the transition, then at the outer level we rename the
complete state machine process by mapping 7Tjp to e.

Variables declared in a state machine are modelled using a process Memory
that exposes events get and set for each variable. In our example, Memory is
parametrised by s, which holds the value of the variable segment, and offers the
events getSegment and setSegment in an external choice followed by a recursion.

[ getSegmentls — Memory(s) O setSegment?y — Memory(y)
Memory(s) = <D s ==4& T3 — Memory(s)

Moreover, it also models transition guards by constraining synchronization
on transition events (7;p). In our example, the transition from MovingForward
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to the final state is guarded, so Memory captures this guard by only offering the
event T3 that uniquely identifies the transition (Fig.3) when segment is 4.

4.2 Budgets and Deadlines

As mentioned before, RoboChart budgets can be specified as part of actions.
using the wait(d) construct. Its semantics is given by Wait ¢, a Timed CSP
process that terminates exactly after ¢ units of time elapse. Deadlines specified
on actions are defined using the deadline operator A » t of Circus Time, where
the process A modelling action A must terminate within ¢ time units.

When a deadline is imposed on a transition trigger, however, it must be
enforced only when the transition is enabled, that is, the transition’s guard is
true and the source state has been entered. In our model, we define a pair of
events deadline. Tip.on and deadline. Trp.off for each transition T whose trigger
has a deadline. Whenever T’s guard is true, the Memory process offers the
event deadline.Tip.on, and when the guard is false, it offers deadline. Tip.off.
The Memory process of our example is defined as follows.

M ()= (= O s == 4 & deadline. T3.on — Memory(s)
emoryis) =\ o —(s == 4) & deadline. T3.off — Memory(s)

In addition to the get and set events for setting and getting the value of variable
segment, and the guarded synchronization on T3, the event deadline.T3.on is
guarded by the expression corresponding to the guard on the transition identified
by T3, and the negation of this expression guards the event deadline.T3.off .

For each process that models a state where an outgoing transition has a trig-
ger with a deadline, we then compose in interleaving with the process modelling
its during action, a Dline; process for each deadline d; as defined below.

Dline; = deadline. Trp.on — ((deadline. Trp.off — SKIP) » d;) ; Dline;

Dline; initially synchronizes on deadline.Tip.on, and thereafter must synchro-
nize on deadline. Tip.off within d; time units, followed by a recursion. The dead-
line is imposed on deadline. Trp.off rather than the transition identifier T;p. The
deadline can be satisfied either as a result of the transition’s guard no longer
being true, in which case the process synchronizes on deadline. Tip.off, or as a
result of the process being interrupted due to some transition out of the source
state of T, modelled by a process Transitions, being triggered, possibly T itself.
Effectively an enabled deadline on a transition becomes a deadline on the exter-
nal choice between all enabled transitions out of the same state.
As an example, we show the process M for the state MovingForward.

moveForward ; enter!MF!Obs —
M = enter?SIMF — | entered!MF!Obs — entered! SIMF — SKIP; | ; M
((SKIP ||| Dlinepp) A Transitionsar)

Initially it offers events enter?S!MF, so that any other state identified by S
may request it to be entered. It then behaves as moveForward, the process
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that models the operation moveForward, and then requests the substate Obser-
vation to enter by synchronising on enter!MF!Obs, subsequently waiting for an
acknowledgement via entered!MF!Obs and then acknowledging its own entry
through entered!SIMF. M then behaves as an interleaving (|||) between the
process modelling its during action, in this case SKIP as there is none, and
the process Dlineyr that models the deadlines on triggers of every outgoing
transition of state MovingForward, while offering for any event in Transitionsy g,
the process that models every outgoing transition from this state, to interrupt
the interleaving.

4.3 Clocks

As previously mentioned, RoboChart clocks allow conditions to be set relative
to the time elapsed since a particular clock reset. To model a reset #C on clock
C we introduce an event clockReset.C, where C' is the name of the clock.
Although clocks could be explicitly modelled in the semantics, for example,
by adding variables in the Memory process for each clock, this would make the
model intractable for model-checking as the variables would have an unbounded
domain. Since we assume clocks can only be compared with constant expressions,
we adopt a model where a timed expression involving a comparison between
a constant and constructs since(C) or sinceEntry(S) is encoded by a boolean
variable together with an auxiliary CSP process synchronizing with the Memory
process. For example, a transition with unique identifier T1 guarded by the
expression x = 1 V since(C)>= d is encoded in the Memory process as follows.

... O setWepy ?we — Memory(..., z, we) )

Memory(..., z, wern) = (D (r =1V wer1) & T1 — Memory(...,z, wery)

A boolean variable wer; encodes the timed condition since(C)>=d, with channel
setWepy used to set it true or false. Synchronizing in parallel with the Memory
process we introduce a WaitingCondition process WC_T1 defined below.

WC_T1= Do(T1) A WC_T1_reset
WC_T1_reset = clockReset.C — setWerpy!false — WC_T1_body
WC_T1 body = (Do(T1) Ay setWepyltrue — Do(T1)) A WC_T1_reset

This process ensures that while wepy is being updated the event T'1 is not
offered. Initially it is ready to synchronise on T'1 indefinitely (as defined using
the process Do(e) = e — Do(e)), but can be interrupted by the event
clockReset.C offered in the process WC_T1_reset. Whether T1 is actually
enabled or not is controlled by Memory and not WC_T1. So, the availabil-
ity of T'1 in WC_T'1 indicates only that wcy; is not being updated. If there is a
clock reset, WC_T1_reset sets the value of the Memory process variable wcpy to
false via the synchronization setWerq!false and behaves as WC_T1_body. This
ensures that, when the clock is reset, the transition cannot take place, even if
the value of the condition is not yet updated. Initially this process continuously
offers the event T'1 until exactly d units elapse (Ag4), after which it sets wepg
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to true via the synchronization setWery!true and then continuously offers the
event T'1. At any point the process may be interrupted by WC_T1_reset due
to a clockReset.C.

The complete semantics of a timed state machine is given by the parallel
composition of the process modelling the state machine, STM, the Memory
process and a Clocks process whose definition is the parallel composition of all
WaitingCondition processes as defined for each timed condition.

((STM | [g U dc] | (Memory | [w U ] | Clocks) \ w)) \ D)[f]) O trermy SKIP

Memory and Clocks synchronise on the events in the sets w, containing all
setWe events, which are then subsequently hidden (\). They also synchronise on
the events of the set ¢ of identifiers for transitions whose conditions are timed.
This parallel process synchronises with STM on the events from ¢, containing
the get and set events for reading and writing the value of state variables and
the transition identifiers, and from dc, containing the deadline and clockReset
events. This is illustrated by the lines on the top right corner of Fig.5. The
set of identifiers for internal transitions (I) are hidden (\). Also, as explained,
we use a function f to rename transition identifiers to external events of the
platform. Finally if the state machine has a final state, the process STM can
signal termination via the event term, which interrupts the process to behave as
SKIP.

Our RoboTool presented next automatically calculates the timed semantics
of a RoboChart model just described. Instead of Timed CSP, it uses tock-CSP
for direct use of FDR. The time constructs are encoded as described in [4].

5 Tool Support and Model-Checking

To provide support for designing robotic systems using RoboChart, we have
developed RoboTool!, an Eclipse plugin that allows specifications to be
input using both graphical and textual editors, implemented using the Sir-
ius and Xtext? frameworks. RoboTool automatically generates the semantics
of RoboChart models in CSPy, the machine readable version of CSP used by
FDR [9].

FDR includes facilities to translate untimed processes into tock-CSP. For
example, the prefixing ¢ — P is translated into an external choice offering tock,
the event that marks the passage of time, in addition to a: X = a — P O
tock — X. Other operators are similarly accommodated, while more intricate
concepts need to be manually specified using tock-CSP. For example, deadlines
are encoded by timelocking once a deadline expires, that is, by refusing tock.

Using the timed semantics of RoboChart we can perform a number of core
checks using FDR, namely, determinism and divergence freedom. In addition,
for a given tock-CSP process STMp modelling a state machine, and whose set

! https://www.cs.york.ac.uk/circus/RoboCalc.
2 www.eclipse.org/sirius and www.eclipse.org/xtext.


https://www.cs.york.ac.uk/circus/RoboCalc
www.eclipse.org/sirius
www.eclipse.org/xtext

30 P. Ribeiro et al.

of externally observable events is E, we can establish that there are no time-
locks provided the following refinement is satisfied [7]. Since in our model unmet
deadlines lead to timelocks this is a useful check to identify infeasible deadlines.

RUN ({tock}) ||| CHAOS(E) Ty STMz | (E U {tock})

With the above we require that STMy, with every event other than those in
E and tock hidden (using the projection operator [), is a refinement (Cg) in
the failures model of the process RUN ({tock}), that is always offering tock,
in interleaving (|||) with the process CHAOS(FE) that can perform any event in
the set F nondeterministically. Zeno freedom, that is, the absence of a behaviour
where an infinite sequence of events is performed in finite time, can be ascertained
by checking that STMr | (EU{tock}) is divergence free. Assertions to establish
all these core properties are also automatically generated by RoboTool.

Using our semantics we have considered several case studies. We have verified
core properties and also defined requirements directly in CSP and tock-CSP. A
complete account of the experiments can be found in [32].

Table 2 summarises the results of checking for divergence freedom, a particu-
larly expensive check in FDR, including state-space complexity (S/T) in terms
of number of states (5) and transitions (7') visited, compilation time (Cr) and
verification time (V7). We also include the experimental results obtained with
the untimed models, defined without using tock, for comparison. Results were
obtained using FDR version 4.2.0 on a computer with 16GiB of RAM and an
Intel i5-5287U CPU. Times correspond to an average of 5 runs. For the purpose
of verification, in examples E2, E3 and E4 the types for reals and integers are
instantiated in CSPy as ranging from 0 to 1, whereas in E'1 reals are instantiated
within the range from —90 to 180 due to the specification using such values.

Table 2. Verification results of checking divergence freedom with FDR.

Examples Untimed Timed

S/T Cr |Vp |S/T Cr |Vrpr
E1. Chemical Detector 80/265|0.23s | 2.3s | 240/861 0.15s | 4.58s
E2. Autonomous Chemical Detector | 5/112 |2.03s|0.65s | 6/72 1.82s|1.99s
E3. Alpha Algorithm 52/184 | 0.26s | 1.28s | 12045/30918 | 0.66s | 1.30s
E4. Transport Swarm 8/28 1.12s | 0.56 s | 436/1085 2.49s|0.17s

Our results show that assertions in the failures-divergences model can typi-
cally be checked within a few seconds. Diligent application of compression func-
tions significantly reduces the time required to compile and verify the assertions.
We use diamond, which removes silent transitions from the LTS, and wbisim,
that reduces the LTS by computing the maximal weak bisimulation.

To cope with additional variables in the Memory process, typically as the
result of modelling timed conditions, we have optimized this process. Each vari-
able is captured in separate, but parallel, “cell” processes, that synchronize with
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an auxiliary non-parametrised process, modelling the transitions’ conditions,
such that whenever a variable is changed it introduces in scope the current
value of all variables. This yields a reduction in the number of possible states.
The efficiency gain is particularly noticeable when a state machine has sev-
eral variables, or timed conditions, which we have also optimized by generating
equivalent timed expressions only once as a Waiting Condition CSP process.
As expected, the usage of tock increases the state-space complexity of exam-
ples compared to their untimed counterparts. The exception here is E2, likely
due to wbisim that can yield better compression than diamond in some cases.
We observe that diamond is not permitted by FDR within timed processes.

6 Conclusion

RoboChart can be viewed as a UML profile extended with timed primitives
and a formal semantics. We have used constructs from Circus Time to capture
budgets and deadlines in a timed semantics for refinement and model checking.
Support for refinement is essential to our future plans to prove soundness of
automatically generated simulation and deployment code.

To optimise model checking, clocks are modelled implicitly, with timed con-
ditions modelled explicitly. Our use of clocks makes a translation into UPPAL
feasible, and of interest for further analysis. For example, we have considered
UPPAAL models of the transport swarm, including a model based on the archi-
tecture of our semantics and a simplified version. Both require additional states
and transitions when compared to RoboChart to achieve a faithful model.

A semantic model generator has been implemented in RoboTool via transla-
tion into tock-CSP [7]. We have tackled several examples and verified whether
the generated models satisfy expected system requirements, in addition to core
properties like divergence freedom and zeno freedom. Results suggest an increase
in complexity, but not necessarily in verification time, when compared to the ver-
ification of untimed models. The verifications are tractable given modest data
ty pes and diligent use of FDR’s compression functions. For realistic data types
we do not expect scalability, instead we will consider theorem proving.

We have a precise account of the timed semantics of RoboChart embedded in
RoboTool. We will capture this semantics via translation functions that generate
Circus Time models suitable for use in Isabelle/UTP [12], which supports rea-
soning about the Circus family of languages via theorem proving. Furthermore,
to account for the environment and probabilistic behaviour we will ultimately
consider richer semantics models in the context of the UTP.

Acknowledgments. This work is funded by EPSRC grant EP/M025756/1. No new
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