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Abstract. CORFU is a distributed shared log that is designed to be scalable
and reliable in the presence of failures and asynchrony. Internally, CORFU is
fully replicated for fault tolerance, without sharding data or sacrificing strong
consistency. In this case study, we present themodeling approacheswe followed to
test and verify, using Concuerror, the correctness of repair methods for the Chain
Replication protocol suitable for CORFU. In the first two methods we tried, Con-
cuerror located bugs quite fast. In contrast, the tool did not manage to find bugs
in the third method, but the time this took also motivated an improvement in the
tool that reduces the number of traces explored. Besides more details about all the
above, we present experiences and lessons learned from applying stateless model
checking for verifying complex protocols suitable for distributed programming.

1 Introduction

This work began, as is often the case, around a whiteboard where a group of engi-
neers were discussing distributed protocols used in cloud systems. Diagrams for two
particular protocols were drawn, one for Chain Replication (Sect. 2.1) and one for
CORFU (Sect. 2.3), a recently proposed variant of Chain Replication. Both protocols
have been studied in research papers, but at the heart of the whiteboard discussion were
protocol extensions to repair data after a replica crash; an area of less scientific scrutiny,
but of obvious importance to implementors.

The discussion started with one particular replica repair method, known to work
well when used in the original Chain Replication [16]. CORFU [13] is similar, but not
identical to Chain Replication, therefore warranting an investigation about whether the
differences are significant enough to cause that particular method to break in some
cases. The verdict of the whiteboard discussion was that, indeed, there exists an execu-
tion scenario that violates safety in CORFU, and this same scenario could not manifest
when repairing replicas in a system using the original Chain Replication algorithm. A
different method was therefore proposed, which would not suffer from that particular
weakness. Was this method correct however? No such verdict could be reached at the
whiteboard discussion, as is again often the case.
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A stateless model checking tool like Concuerror (Sect. 3) should, at least in
principle, also be able to find the bug that was discovered at the whiteboard discus-
sion for the first method, and was therefore tried by one of the engineers. After creating
executable models of CORFU and the replica repair extension (Sect. 4), the bug was
indeed found by the tool. A model for the second repair method was therefore created
and tested. After a few iterations, the tool managed to find a scenario that showed that
this method was also erroneous. The engineer shared this (un)fortunate discovery on
Twitter1 catching the attention of Concuerror’s developers, who were intrigued by the
tweet and contacted him for more information about that particular use of their tool and
for his experiences.

A fruitful collaboration began. At the engineer’s end, several variations of repair
techniques were devised and modeled, with new flaws in them found quickly by the
tool. Eventually, a technique emerged that appeared to be safe. At the other end, the
developers of Concuerror used this case study as inspiration to design and implement an
improvement to the partial order reduction techniques that the tool employs (Sect. 5.1)
and to also evaluate how effective a particular search space bounding technique was for
finding bugs.

In this paper, we retell the story, starting with an overview of Chain Replication
and CORFU (Sect. 2), including the ideas related to chain repair, followed by a brief
overview of stateless model checking and Concuerror (Sect. 3). In the same section,
we also briefly describe the main ideas behind the partial order reduction and bound-
ing techniques that Concuerror uses to make testing and verification more effective.
We then describe the initially used model, starting from the correctness properties that
should hold and explaining in detail the various parts of the model that are related
to them (Sect. 4). The chain repair methods are then described together with perfor-
mance results that show the time and effort involved to find bugs in these methods or
verify their correctness. The paper continues by describing and justifying refinements
that were applied to the model, as well as an improvement that was implemented in
Concuerror to increase its effectiveness (Sect. 5). All these enabled Concuerror to ver-
ify the correctness of the final repair method. The paper ends by reviewing related
work (Sect. 6) and offering some final remarks (Sect. 7).

2 Chain Replication

Chain Replication [16] is a variation of leader/follower replication that supports lin-
earizable single objects. In this section, we first describe the basic Chain Replication
algorithm, including how repair of a failed server can be performed after the server
restarts. Then, we describe a variation of the algorithm, which is used by the CORFU dis-
tributed log [13], and finally explain how porting the same repair technique to CORFU

can lead to problems (e.g., linearizability violations).

1 @slfritchie: “I was all ready to have a celebratory “New algorithm works!” tweet. Then
the DPOR model execution w/Concuerror found an invalid case. Ouch.” (https://twitter.com/
slfritchie/status/745863131407220737).

https://twitter.com/slfritchie/status/745863131407220737
https://twitter.com/slfritchie/status/745863131407220737
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2.1 Basic Algorithm

In Chain Replication’s leader/follower protocol, all replica servers are arranged in an
ordered list of head, middle, and tail servers. The head server is the leader; all other
servers are followers. Clients send update operations to the head server.

If the head server rejects an update operation, it sends an error back to the client. If
the operation is accepted, the head server does not reply, but sends state update requests
down the chain. Each follower server (if any) records the update requests to their respec-
tive local data stores and then forwards the requests downstream, in the same order they
were received. After an update has been stored by the last server in the chain, the tail
server sends a successful acknowledgment (ack) to the client. Thus, for a single update
to a chain of length three, four messages are required: client → head, head → middle,
middle → tail, and tail → client.

Clients send read-only operations to the tail server, which is also the linearization
point for all replicas. If the tail server stores a value, then all other servers upstream in
the chain must already store that value or a newer one.

Note that a chain of length one is a single server that acts in both head and tail roles.

2.2 Chain Repair

The Chain Replication paper [16] is clear about what is required to shorten a chain
when a server crashes or is otherwise stopped. It also discusses how to reintroduce a
crashed server back into the chain, but omits details that an implementor must be aware
of to maintain Chain Replication’s linearizable consistency guarantee.

A naı̈ve repair method might take the following steps:

1. stop all surviving servers in the chain, e.g., [Sa
head, S

b
tail],

2. copy Sb
tail’s update history to the server under repair S

c
repair, then

3. restart all servers with a chain configuration of [Sa
head, S

b
middle, S

c
tail].

This offline repair method is easy, but sacrifices cluster availability. Online repair is
desirable, but we also wish to preserve Chain Replication’s property of linearizable
reads by sending only one query to a chain member.

The Chain Replication repair technique used by HibariDB [7] starts a repair with a
transition from chain [Sa

head, S
b
tail] ⇒ [Sa

head, S
b
tail, S

c
repair], where S

c is the crashed
server. Read queries ignore the server under repair; they are sent to the tail server as
usual. Updates are sent to the head server and propagate down the entire chain; replies
are sent by Sc

repair. While this intermediate chain configuration is in place, a separate
process aynchronously copies missing data from Sb

tail to Sc
repair. When all missing

history items have been copied to the server under repair, all servers in the chain enter
read-only mode. A flush command is sent by the head to force all pending writes down
the chain to the tail. When the corresponding ack from the tail is received by the head,
then we know that all update log histories must be equal: Sa

head = Sb
tail = Sc

repair.
Finally, the chain transitions to [Sa

head, S
b
middle, S

c
tail], and then read-only mode is

canceled.
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2.3 Chain Replication in CORFU

The design of the CORFU system [13] uses Chain Replication with three changes,
related to what we described so far. First, the responsibility for implementing repli-
cation is moved to the client. CORFU servers do not communicate with each other, so
it is impossible for them to implement the original Chain Replication protocol. Instead,
the replication logic is embedded in the client. Thus, for a single update to a CORFU

chain of length three, six messages are involved, in three pairs between each of client
↔ head, client ↔ middle, and client ↔ tail.

The second change is that CORFU’s servers implement write-once semantics.
Clients may not replace or overwrite a previously written value.

Third, CORFU builds upon standard Chain Replication by identifying each chain
configuration by an epoch number. All clients and servers are aware of the epoch num-
ber, and all client operations include the epoch number. If a client operation contains
a different epoch number, the operation is rejected by the server. A server temporarily
stops service if it receives a newer epoch number from a client. When any participant
detects a change of epoch, it can retrieve the new configuration from a dedicated cluster
layout configuration service.

2.4 Chain Repair Techniques for CORFU

Since CORFU’s servers do not communicate directly with each other as HibariDB’s
servers do, the “read-only mode + sync flush down the chain” technique used by
HibariDB cannot be directly applied to CORFU. Consider a scenario where a chain is
undergoing repair during epoch #5 and there exist two clients, Cw and Cr. We are inter-
ested in the value of some piece of data, which starts with an old value (i.e., not written,
since each key can only be written once). ClientCw is writing a new value to the cluster.
This scenario is illustrated in Fig. 1.

epoch #5 Sahead Sbtail Screpair
value=new value=old value=old

or
value=new

epoch #6 Sahead Sbmiddle Sctail
value=new value=new value=old

or
value=new

Fig. 1. An epoch & chain configuration change while a new value is written to the chain.

While epoch #5 is in effect, reads are sent to server Sb, which is in the tail role.
All read operations during epoch #5 will return either the old or new value. If a client
can read the new value, then all later reads will also read the new value. However,
client Cw should also write to Sc, which is beyond the current tail. This operation can
unfortunately be delayed by the network.
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The repairer is not influenced by the new value, and can therefore change the cluster
configuration to epoch #6. A race condition becomes possible. In epoch #6, Sc will
receive read queries because it has the tail role. Now our writing and reading clients
can race: if Cw is too slow to complete the write—disregarding even that it also has a
wrong epoch number—then Cr can read the old value from the new tail cluster. Back
during epoch #5, it was possible to read the new value. If we can now read the old value
in epoch #6, then it looks like the value has gone “backwards in time”. Such time travel
violates the linearizability property. It is exactly this race condition that was discovered
at the whiteboard discussion in the story of the introduction.

HibariDB’s repair technique works because the head server knows about all pending
writes: the head sends its flush message down the chain, and a final ack sent by the tail
is eventually received by the head. HibariDB also stops new writes during the transition
process. When the flush’s ack is received by the head, all servers have the same update
log history.

In contrast, CORFU has no central coordinator like HibariDB’s head server. Can
we use a variation of this HibariDB’s repair technique without also introducing direct
server ↔ server communication? Does a variation exist that does not require tracking
the state of all writing clients to orchestrate their behavior?

Let us briefly overview a particular testing and verification technique and tool that
we can employ to answer these questions.

3 Stateless Model Checking, Erlang, Concuerror
and Bounding

The problem of verification and testing of distributed systems and their algorithms is
difficult, since one must consider all the different ways in which the involved entities
can interact. Model checking techniques can explore the state space of a program that
implements such an algorithm systematically, verifying that each reachable state satis-
fies some given properties. However, applying model checking to programs of realistic
size is problematic, as it entails capturing, encoding and storing a large number of states.

Stateless model checking [10], also known as systematic concurrency testing, avoids
this obstacle by exploring the state space of a program without explicitly storing inter-
mediate global states. A special run-time scheduler drives program execution, record-
ing operations that can be affected by the interaction between involved entities. State
capturing is not needed, because if all such operations are executed in the same order
from the initial state, then any previously encountered state can be reached again. Thus
the effort of testing and verification can focus only on those operations. Stateless model
checking has been successfully implemented in tools such as VeriSoft [11], CHESS [14]
and Concuerror [12]. The last tool is specific to programs written in Erlang.

Erlang is an industrially relevant programming language based on the actor model
of concurrency [2]. In Erlang, actors are realized by language-level processes imple-
mented by the runtime system instead of being directly mapped to operating system
threads. Each Erlang process has its own private memory area (stack, heap and mail-
box) and communicates with other processes via asynchronous message passing with
copying semantics. Processes then consume messages using selective receive, i.e., they
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can select which message to pick from their mailbox using pattern matching. The use of
message passing for inter-process communication, rather than shared memory, makes
distribution transparent. It also makes Erlang suitable for modeling distributed systems.
Erlang has all the ingredients needed for concurrency via message passing and most of
the ingredients (e.g., reads and writes to data stored in shared ETS tables, etc.) needed
for concurrent programming using shared memory.

The tool we will employ, Concuerror [4], is a stateless model checking tool for
finding errors in Erlang programs or verifying their absence2. Given a program and a
test to run, Concuerror uses a dynamic exploration algorithm to systematically explore
the execution of the test under conceptually all process interleaving. To achieve this, the
tool performs a code rewrite that inserts instrumentation at code points where processes
can yield control back to the scheduler during their execution. The instrumentation
that Concuerror uses is selective (i.e., it takes place only at points that involve process
actions that inspect or update some concurrency-related primitive that accesses VM-
level data structures that are shared by processes) and allows Concuerror to control the
scheduling when the program is run, without having to modify the Erlang VM in any
way. Concuerror supports the complete Erlang language and can instrument and test
programs of any size, automatically including any libraries they use.

Since the number of global states that can be reached due to different scheduling
decisions in stateless model checking can be exponential in the number of execution
steps, systematic concurrency testing algorithms use techniques such as partial order
reduction (POR) and bounding to reduce the size of the search space.

Partial Order Reduction. POR techniques define equivalence classes among traces,
based on the happens-before relation between the operations that occur in them [9].
POR algorithms aim to explore just one trace in each such equivalence class. Reversing
the order of execution for a pair of racing operations that exists in an explored trace is
a simple way to obtain a trace that belongs to a different equivalence class. Dynamic
POR techniques start by executing an arbitrary scheduling and then explore additional
traces, justified by the existence of races between actually executed operations. The
exploration continues ‘by need’, trying to examine a minimal number of traces. Several
DPOR algorithms have been proposed, including the Optimal-DPOR algorithm [1], a
provably optimal DPOR algorithm that Concuerror is using.

Bounding. Even when using POR techniques, the exploration needs to examine a lot
of complex interleaving of processes, as a direct result of reversing every possible pair
of racing instructions. Bounding techniques try to limit the complexity of the explored
traces in order to expose bugs that are “shallower”. In order to do that, they impose
constraints on how processes can be scheduled. Exploration begins with a budget which
is expended whenever such a scheduling constraint is violated.

Preemption bounding [15] limits the number of times the scheduler can preempt
(i.e., interrupt) a process in order to run other processes. The justification is that com-
mon patterns of concurrency bugs require few scheduling constraints and these in turn

2 More information about Concuerror is at http://parapluu.github.io/Concuerror.

http://parapluu.github.io/Concuerror
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can be related to few preemptions [3,18]. Delay bounding [6] is another bounding tech-
nique that forces the scheduler to always schedule the first non-blocked process out of
a total order of all processes. The bound here is the number of times this order can
be violated. Concuerror employs exploration tree bounding, a bounding technique that
restricts the number of times a DPOR algorithm can consider schedulings different
from the “first” one. In implementations of stateless model checking with DPOR, the
first scheduling that is explored is usually the same as the one chosen under preemption
bounding: a round-robin scheduling, in which processes execute without preemptions
until they block. Exploration tree bounding limits the number of times exploration can
‘diverge’ from that first scheduling, and essentially combines the benefits of Optimal-
DPOR (i.e., never even start to explore a trace if one that belongs to the same equiva-
lence class has been already explored) with some of the benefits of delay bounding.

Having described our platform we now move on to the description of our models.

4 Modeling CORFU

In this section, we describe our modeling approach for verifying the correctness of
methods for chain repair suitable for CORFU. We first list the correctness properties
that we are interested in. We continue by describing how we model a number of servers
and clients of CORFU using Erlang, followed by how we model each of the chain repair
methods we want to test/verify. Finally, we give a short initial evaluation of the mod-
eling. This section gives a faithful account of the engineer’s initial effort, before the
developers of Concuerror were involved.

4.1 Correctness Properties

We are interested to verify that CORFU servers and clients do not suffer from scenarios
such as the one described earlier as “a value traveling backwards in time during a chain
repair”. More formally, we want the following correctness properties to hold.

Immutability: Once a value has been written in a key, no other value can be writ-
ten to it.

Linearizability: If a read operation sees a written value for some particular key, sub-
sequent read operations for that key must also see the same value.

4.2 Initial Model

A high-level view of the CORFU system that is modeled is the following: A number of
stable servers (one or two suffice) will undergo a chain repair procedure to have a single
additional server added to their chain. Concurrently, two other clients will try to write
two different values to the same key, while a third client will try to read the key twice.

We make some assumptions about the state prior to running a repair simulation. At
some earlier time, all servers were connected in the cluster’s single chain. Then one
server crashed, causing the chain to be shortened. The procedure to shorten the chain
is well-understood and known to be safe, so it is excluded from the model. We also
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use only a single key/value pair in the store, corresponding to a single address in the
CORFU log, as the aforementioned correctness properties impose constraints on just a
single key (i.e., log address) in the CORFU system. We assume that none of the servers
in the chain had a value for the key before the crash. After the crash, we assume that the
crashed server restarts with an empty local data store. The repairing process, as well as
writer and reader clients are all assumed to be concurrent and freely interleaved; strict
ordering of operations exists only within a particular client, e.g., between the two read
operations performed by the reader or between the steps of the repairing process.

This model, which in the rest of the paper we refer to as the Initial Model, is suf-
ficient to reveal bugs in two of the chain repair methods we tested. Refinements of the
initial model will be described later (Sect. 5.2), when we present the effort that went
into the verification of the third repair method.

Servers and Clients in the Model. All servers and clients of the CORFU system are mod-
eled as Erlang processes. These processes exchange messages corresponding to requests
sent by clients to the servers and the respective server replies, as well as notifications
to a central coordinator. All processes are running concurrently, allowing all possible
interleaving between events to occur. As mentioned, Concuerror’s scheduler can switch
between processes at every point where instrumentation is added, and this ability can
mimic the effect of network delays at any point in our model and the resulting message
reordering. We are not interested in lost messages.

The types of processes used in the model are the following:

1. Central coordinator. This is the top process of the model and is responsible for
spawning and setting up every other process (servers and clients), monitoring when
all the clients are done and collecting their results, using assertions to check the cor-
rectness properties, and doing final cleanups (i.e., shutting down the servers). It is
used as a modeling convenience; no such coordinator exists in a CORFU system.

2. CORFU log servers. These processes mimic the protocol and behavior specified by
the servers in the CORFU system. There may be two or three of these processes: one
for the server under repair, and the rest representing the healthy chain.

3. The layout server process. This process offers the cluster layout configuration ser-
vice mentioned earlier. A “layout” data structure normally determines the chain
order for each segment of the CORFU distributed log. In our model we assume that
the layout contains only a single chain, and that reads and writes are to a single key;
other aspects of the full CORFU system’s layout structure are out of scope. Each
layout change moves the system to a new epoch.

4. CORFU reading client. This is a process that attempts to read data twice. It must
never experience “time travel” behavior by witnessing a written value followed by a
not written value (i.e., linearizability violation). Also, it should never witness two
different written values (i.e., immutability violation).

5. CORFU writing clients. We have two writer client processes in the model, each
attempting to write a value different from that of the other and report back to the
coordinator. At most one such client is permitted to succeed.

6. The data repair process. This process executes all steps required for copying data
to the server under repair and lengthening the chain afterwards. The steps required
were described in general in Sect. 2.4, and are described in more detail below.
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Coordinator’s Details. The model includes an initialization and shutting down phase
in which the coordinator sets up the servers and waits for all clients to complete their
execution before shutting down the servers. Shutting down the servers is not strictly
necessary, since Concuerror is always able to reset the state of the system before starting
new schedulings, but we include it since a “cleanup phase” is common in testing.

When the clients are done, they send a message back to the coordinator, including
information about the results of their operations. Specifically for the writers, the coor-
dinator uses these results to determine whether more than one write was successful,
violating the immutability property from the writers’ point of view. The coordinator
also inspects whether the log is left at a consistent state, with either no value written to
the key, or a singular value being written consistently to a prefix of the chain.

CORFU Log and Layout Servers’ Details. Servers never initiate any communication
and only respond to requests by clients. As explained earlier, log servers know the
current epoch and will notify clients that are trying to communicate using a wrong
epoch number. Log servers support read and write operations for keys as well as epoch
(and layout) update operations, while the layout server supports layout read and update
operations.

CORFU Clients’ Details. Clients communicate with log servers directly to read or write
data. Write operations are sent to every server in the chain, while read requests are sent
to the tail server only. We assume that clients begin with knowledge of the healthy chain
of servers. If a client request is answered with the information that their epoch is wrong,
they communicate with the layout server to get an update and use this information
consistently to continue their operation.

Valid replies to a write request are ok, meaning that the write was successful, or
written, which denotes that the key already had a value. Valid replies to a read request
are not written, which denotes that no value exists, or {ok,Val} where Val is the value
read. A client request may also be left incomplete, signaled by a starved reply: too
many concurrent layout changes have interrupted the request. In our model, the retry
limit is higher than the number of layout changes performed by the repairing process.

Repair Process’ Details. The data repair process executes the following steps: First, it
changes the layout to include the crashed server in some place in the chain, depending
on the repair method, without changing the head or tail servers. At that stage, read
operations are still sent to the tail server, ignoring the server under repair, even in cases
where it will eventually be in the tail position. On the other hand, write operations must
succeed in all servers (including the server under repair) to be considered successful.

Second, the data repair process copies data from the tail server to the server under
repair. In the model, the repair process needs to copy a single key’s worth of data. We
know the identity of server of the data source (tail), the destination (repair), and the one
data key that we need to sync; all are hard-coded into the repair process. The outcome of
any race between the repairer and the regular writer processes is checked for correctness
at the end of model execution by the coordinator.

Third and last, after a successful second phase, the layout is once more changed to
include the repaired server in its final place in the chain.
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We will test three repair methods, differing in where the recovered server is placed
in the chain: the head, the tail or an intermediate position. In the last case, we will test
a configuration with two initially healthy servers, in which the position of the repaired
server will be just between them, as well as a configuration with only one healthy server,
which we will have to “logically split in two” to make space for the server under repair.

4.3 Method 1: Add Repaired Server at End of Chain

Repair using the “end of chain” method is starting from a [Sa
head, S

b
tail] layout, tran-

sitioning to a [Sa
head, S

b
tail, S

c
repair] layout, doing the value copying from Sb and

then changing layout again to shift Sb to a middle role and Sc to the new tail:
[Sa

head, S
b
middle, S

c
tail].

This method is vulnerable to the race condition described in detail in Sect. 2.4. If
we find the same bug in our model, we have some confidence that Concuerror is indeed
a suitable tool to investigate correctness of methods for chain repair.

4.4 Method 2: Add Repaired Server at Start of Chain

This second repair technique is a variation of the first. Instead of putting the server
under repair at the end of the chain, we put it at the beginning. The chain’s configura-
tion during the middle epoch looks like this: [Sc

repair, S
a
head, S

b
tail]. A write operation

during repair in this chain configuration must be sent to Sc and then propagate down the
chain to the other servers. Reads are always served by the tail Sb and the repair value is
also copied from there. A writer trying to communicate with server Sa after repair has
started will be notified that this is no longer the head and will have to ask for a layout
update.

4.5 Method 3: Add Repaired Server in the Middle

In the final technique, the server under repair is placed in the middle of the chain. Our
intuition suggests that this should be a safe thing to do. The original Chain Replication
protocol has no direct contact between a client and a server in the middle of the chain.
There should be no opportunity for a reader client to witness a consistency violation.

For CORFU’s variant of Chain Replication, the client does interact with middle
servers: the client cannot act upon the effect of a write unless the update is success-
ful at all servers in the chain, applied serially in the chain’s order.

This method uses three epochs of chain configuration: (i) epoch #1: [Sa
head, S

b
tail],

(ii) epoch #2: [Sa
head, S

c
repair, S

b
tail], and (iii) epoch #3: [Sa

head, S
c
middle, S

b
tail].

There is only one small problem with this method. What if the healthy chain is of
length one? How can we insert the repaired server into the middle of a too-short chain?
The proposed solution is to split the single server of the healthy chain into two logical
servers: a logical head and a logical tail. The data stores of the two logical roles have
different implementations.

For the logical tail role, the data store remains the same as CORFU’s normal disk-
based store. The differences are applicable only in the context of the head role’s store.



Testing and Verifying Chain Repair Methods for CORFU 237

Table 1. Runs of the methods using bounded and unbounded exploration.

Method Bounded exploration Unbounded exploration

Bug? Traces Time Bug? Traces Time

1 (Tail) Yes 638 57 s Yes 3 542 431 144 h

2 (Head) Yes 65 7 s Yes 389 26 s

3 (Middle) No 1257 68 s No >30 000 000 >750 h

The logical head role’s store is split into a conceptual RAM-based and a disk-based
store. If a key is unwritten, the value of an update operation is first written to the RAM-
based half of the store. Later, if and when the update reaches the logical tail role, the
value is written to the disk-based half of the store and the key is deleted from the RAM
store. If the repair process is interrupted for any reason, the RAM store is discarded,
and the next epoch change will fall back to a chain containing only the healthy server.

4.6 An Evaluation of the Repair Methods on the Initial Model

Let us see where we are so far. Table 1 shows the experimental results of running each of
the three methods on the initial model using a standard desktop and the current version
of Concuerror. We run Concuerror in two modes: (i) using exploration tree bounding
(we used a bound of at most 4) in order to check for bugs, and (ii) without bounding
the exploration, i.e., using the tool for verification. We explain our findings below.

Method 1: Add Repaired Server at End of Chain. When this model is executed, Con-
cuerror finds the linearization violation described earlier. The reader process sees the
value written by a writer in the tail of epoch #2, but after the repair process is com-
pleted, and moves the servers to epoch #3 (without copying that value) the reader’s
second read runs ahead of the writer and finds a non-written entry in the added server,
since the writer has not yet also written there. The bug is found quite fast (in under
a minute) when using bounded exploration. In contrast, without a bound, many more
traces are explored before the bug is found and the hunt lasts for several days.

Method 2: Add Repaired Server at Start of Chain. Concuerror finds a case analogous
to the problem of Method 1, where trouble happens immediately after an epoch change.
Two different bugs are detected, depending on whether bounding is used or not.

In bounded exploration, the buggy trace, which is found very fast, involves a process
scheduling that permits both writer processes to write different values to Sa and Sc:
one during epoch #1 and the other immediately after the transition to epoch #2. Thus,
Concuerror finds that the log history invariant outlined in Sect. 2.1 is violated. Recall
that CORFU’s server implements a write-once store. CORFU’s write-once enforcement
means that nobody can overwrite or replace the conflicting value that is now in the
middle of the chain at Sa. Similarly, the bad value written at Sc cannot be altered.

In unbounded exploration the bug found is different. One of the writers starts a write,
but is interrupted, so the write never reaches the tail server. Then the repair process
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starts, notifying the servers in the chain about the new head. The writer finds out about
the new head and starts the write again from the top of the chain. The server under repair
is not initialized and reports that the writer knows a newer layout, so it repeatedly denies
its requests until the writer starves. The remaining clients finish with the new server
unwritten at the head and a value committed at the second position (by the writer’s first
attempt). At this state, any subsequent writer can immediately move the system to a
bad state (succeeding with a different value on the new head, and failing at the second
server since a value is already there).

This scenario is arguably fixable if the layout server notifies the repaired server (that
is to become the new head) before the other servers in the chain. However, this fix is
still vulnerable to the repaired server accepting a value to its unwritten entry, which the
repairer will not see at the tail, just as before.

Method 3: Add Repaired Server in the Middle. For the third method, we used the model
of transition from 1-to-2 servers. Concuerror’s bounded exploration did not find any
trace that violates either Chain Replication’s invariants or CORFU’s invariants. This
result is encouraging, but full verification was not achieved: unbounded exploration ran
for many days without exhausting the search space.

Let us summarize the results of our evaluation so far: (1) Concuerror was able to
detect problems in buggy methods fairly quickly. (2) In the first method, bounding was
crucial for finding the bug in reasonable time. (3) The third method could not be verified.

5 Optimization and Refinements

Since full verification of the third method was not possible with the initial model, we
describe the actions we took to increase the effectiveness of our approach: an opti-
mization of the tool and two refinements of the model. Both were direct results of our
investigation of the traces explored by Concuerror.

5.1 Optimization: Avoid Reordering the Delivery of Unrelated Messages

One of the design choices of Erlang’s message passing mechanism, namely the fact that
at the point when a process receives a message the contents of its mailbox are checked
in the order of their arrival, can lead to a very simple race scenario: If multiple messages
can match a receive statement, the message placed first in the mailbox will be the one
selected. If the order of delivery is different, receive will pick a different message.

To be sound, Concuerror detects such races and explores all possible orders of deliv-
ery for such messages. However, Concuerror’s original implementation had not been
optimized to detect cases where a receive statement is written in a way such that
only particular messages can be received, regardless of the delivery of other messages.
Instead, the tool treated any two messages that were delivered to the same process as
“possibly racing”.

In our model, once a client process C has executed its code, it has to notify the
coordinator process with a {done,C,. . .} message. Even though the coordinator is
written in a way such that each such message can only be received by one particular
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receive statement (using a particular C value), Concuerror originally explored all
possible orders of delivering such messages. This introduces a multiplicative factor in
the number of traces that need to be explored, which is factorial in the number of clients.

To avoid this unnecessary exploration, we extended Concuerror with the ability to
take into account the receive patterns used when a message is received when deter-
mining which other messages are racing with that message’s delivery. As a trivial exam-
ple of the usefulness of the extension, we note that the extended version of Concuerror
will not try different delivery interleavings for messages that are never retrieved from a
process’ mailbox. The technical aspects of the implementation are beyond the scope of
this paper, but its benefits will become evident in the final evaluation.

5.2 Two Refinements of the Model

Conditional Read. In the initial model, the reader issues two read requests, with the
intent to detect values that change or disappear. Either bug observation is possible only
if the first read operation sees a value written (from either writer). There exist, however,
cases where the first read is either observing the location as not yet written, or is starved
altogether. Issuing another read request in such cases cannot expose any bugs and only
results in exploring unnecessary traces when interleaving this second read request.

In order to avoid such unnecessary exploration, we have refined the reader client so
that it only attempts a second read operation if such an operation can actually reveal
bugs: namely only if the first read operation sees some written value.

Convert Layout Server to an ETS Table. A second refinement of the model is to simplify
the modeling of the communication with the layout server. The reader and writer clients
communicate with the layout server just to read epoch and layout information, and in the
initial model this communication is implemented with messages. Concuerror, even with
the optimization described in Sect. 5.1, must explore both orderings in which requests
from different clients arrive to the layout server; the server’s receive patterns should
be able to handle any client’s request.

To avoid reorderings of requests that are layout read operations, and therefore com-
mutable, we changed the modeling of the layout server to instead use a shared mem-
ory location in the Erlang Term Storage area for the layout information. Concuerror’s
knowledge of operations that conflict with each other is precise enough to not treat read
operations to such a location as racing. Therefore it does not need to reverse them and
explore “the other” trace. There will of course still be races involving the layout server:
the repairing process has to write to the same shared memory location when changing
epochs, introducing races with any read requests.

5.3 Evaluation of the Effect of the Optimization and Refinements

Recall that the only two cases where Concuerror did not complete in reasonable time
was when bounding was not used. More specifically, Concuerror took a lot of time to
find a bug in Method 1 and could not verify the correctness of Method 3.

For Method 3, applying the optimization and the two refinements above is sufficient.
With these changes, Concuerror can verify that the new model has no bugs in 48 h,
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after exploring 3 931 413 traces. We did not evaluate the effect of each change on its
own, since the required time is significantly larger (e.g., not using the optimization of
Sect. 5.1 with four clients sending done messages back to the supervisor, conceptually
leads to the exploration of 4! = 24 times as many traces).

Table 2. Evaluation of improvements applied on Method 1, without bounding.

Optimization (Sect. 5.1) Refinements (Sect. 5.2) Traces Time

Cond. read ETS layout

✗ ✗ ✗ 3 542 431 144 h

✓ ✗ ✗ 151 923 5 h 30m

✗ ✓ ✗ 3 787 6m20 s

✓ ✓ ✗ 212 19 s

✗ ✗ ✓ 1 059 043 29 h 40m

✓ ✗ ✓ 47 148 1 h 05m

✗ ✓ ✓ 5 239 5m20 s

✓ ✓ ✓ 289 18 s

For Method 1, we show more detailed results in Table 2. The message delivery
order optimization reduces the time to the first bug to 5 h 30m (151 923 traces) and
the reader refinement even more so: a bug is found in 6m20 s (3 787 traces). When
used together, these improvements can find a bug in the method in just 19 s (only 212
traces are explored). The layout server refinement is not so effective on its own and
its application slightly increases the number of traces when combined with the reader
refinement. With all three changes, the traces are shorter (no back and forth communi-
cation with an extra server) and thus the bug is found slightly faster (in 18 instead of
19 s) even though slightly more traces (289) are explored.

6 Related Work

An approach similar to ours has been described in the presentation of the P# lan-
guage [5], which is suitable for designing asynchronous systems modeled as state
machines. This modeling is very appealing for systems such as CORFU and indeed
the chain replication algorithm has been included in the evaluation of the language.
However, the bug-finding capabilities of the P# runtime are based on either depth-first
systematic testing (without POR or our improvements for message passing), or random
testing (which cannot be used for verification). Moreover the focus of the evaluation of
chain replication is not on chain repair methods.

A different approach, used in the verification of distributed databases (including
ones based on chain replication), has been to write a rigorous formal specification of
the system and then use techniques such as temporal logic [8] or proof assistants [17]
to complete the verification, possibly extracting an executable implementation from the
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specification. In contrast, our technique is using a simple, directly executable simula-
tion of the system and all safety properties are described as plain, non-sophisticated
assertions.

7 Concluding Remarks

We have described our experiences from using stateless model checking to test the
correctness of three repair methods for the Chain Replication algorithm used in CORFU.
Using a fairly straightforward model written in Erlang, we were able to find bugs in the
first two repair methods using Concuerror, some more quickly detectable after applying
a simple bounding technique. In an attempt to verify the correctness of the third repair
method, we also designed and implemented an optimization for Concuerror, based on a
particular pattern found in Erlang programs, and two techniques for refining the model.
These changes allowed us to verify the correctness of the third chain repair method in
reasonable time.
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