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Abstract Weprove that the equilibriumdensity fluctuations of the symmetric simple
exclusion process in contactwith slowboundaries is given by anOrnstein–Uhlenbeck
process with Dirichlet, Robin or Neumann boundary conditions depending on the
range of the parameter that rules the slowness of the boundaries.
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1 Introduction

The study of nonequilibrium behavior of interacting particle systems is one of the
most challenging problems in the field and it has only been completely solved in very
particular cases. The toymodel for the study of a system in a nonequilibrium scenario
is the symmetric simple exclusion process (SSEP) whose dynamics is rather simple
to explain and it already captures many features of more complicated systems.
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The dynamics of thismodel can be described as follows.Wefix a scaling parameter
n and we consider the SSEP evolving on the discrete space �n = {1, . . . , n − 1} to
which we call the bulk. To each pair of bonds {x, x + 1} with x = 1, . . . , n − 2 we
associate a Poisson process Nx,x+1(t) of rate 1. Now we artificially add two end
points at the bulk, namely, we add the sites x = 0 and x = n and we superpose the
exclusion dynamics with a Glauber dynamics which has only effect at the boundary
points of the bulk, namely at the sites x = 1 and x = n − 1. For that purpose, we
add extra Poisson processes at the bonds {0, 1} and {n − 1, n}. In each one of these
bonds there are two Poisson processes: N0,1(t) with parameter αn−θ, N1,0(t) with
parameter (1 − α)n−θ, Nn−1,n(t)with parameter βn−θ and Nn,n−1(t)with parameter
(1 − β)n−θ. All the Poisson processes are independent. Above α,β ∈ (0, 1) and
θ ≥ 0 is a parameter that rules the slowness of the boundary dynamics. Below in the
figure we colored the Poisson clocks associated to the bonds in the bulk in the blue
color, while the Poisson clocks associated to the bonds at the boundary are colored
in the gray and pink colors, to emphasize that they have different rates.

Now that the clocks are fixed we can explain the dynamics. For that purpose,
initially we place particles in the bulk according to some probability measure and we
denote this configuration of particles and holes by η = (η(1), . . . , η(n − 1)), so that
for x ∈ �n , η(x) = 1 if there is a particle at the site x and η(x) = 0 if the site x is
empty. Now, if a clock rings for a bond {x, x + 1} in the bulk, then we exchange the
coordinates x and x + 1 of η, that is we exchange η(x) with η(x + 1) at rate 1. If the
clock rings for the bond at the boundary as, for example, from the Poisson process
N0,1(t) then a particle gets into the bulk through the site 1 at rate αn−θ if and only if
there is no particle at the site 1, otherwise nothing happens. If the clock rings from
the Poisson process N1,0(t) and there is a particle at the site 1, then it exits the bulk
from the site 1 at rate (1 − α)n−θ. Note that the higher the value of θ the slower is
the dynamics at the boundaries. For a display of the description above, see the figure
below.
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The dynamics just described is Markovian and can be completely characterized
in terms of its infinitesimal generator given below in (1). We note that the space state
of this Markov process is Ωn := {0, 1}�n . Observe that the bulk dynamics preserves
the number of particles and our interest is to describe the space-time evolution of
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this conserved quantity as a solution of some partial differential equation called the
hydrodynamic equation.

Note that for the choiceα = β = ρ a simple computation shows that the Bernoulli
product measure of parameter ρ given by: νn

ρ (η ∈ Ωn : η(x) = 1) = ρ is invariant
under the dynamics. For this choice of the parameters the boundary reservoirs have
the same intensity andwe do not see any induced current on the system.Nevertheless,
in the case α �= β, let us say for example α < β, there is a tendency to have more
particles entering into the bulk from the right reservoir and leaving the system from
the left reservoir. This is a current which is induced by the difference of the density
at the boundary reservoirs. Note that in the bulk the dynamics is symmetric. In the
case α �= β, since we have a finite state Markov process, there is only one stationary
measure that we denote by μss

n which is no longer a product measure as in the case
α = β. By using the matrix ansatz method developed by [3, 10, 11] and references
therein, it is possible to compute the correlation function in the stationary state and
an important problem is to analyze the behavior of the system starting from this
non-equilibrium stationary state.

We note that the hydrodynamic limit of this model was studied in [1] and the
hydrodynamic equations consist in the heat equationwith different types of boundary
conditions depending on the range of the parameter θ. More precisely, for 0 ≤ θ <

1 the heat equation has Dirichlet boundary conditions which fix the value of the
density profile at the points 0 and 1 to be α and β, respectively. In this case we
do not see any difference at the macroscopic level with respect to the case θ = 0.
Nevertheless, for θ = 1 the boundary dynamics is slowed enough in such a way
that macroscopically the Dirichlet boundary conditions are replaced by a type of
Robin boundary conditions. These Robin boundary conditions state that the rate at
which particles are injected into the system through the boundary points, is given
by the difference of the density at the bulk and the boundary. Finally for θ > 1,
the boundaries are sufficiently slowed so that the Robin boundary conditions are
replaced by Neumann boundary conditions stating that macroscopically there is no
flux of particles from the boundary reservoirs.

We emphasize that there are many similar models to the one studied in these
notes which we summarize as follows. In [7–9], the authors consider a model where
removal of particles can only occur at an interval around the left boundary and the
entrance of particles is allowed only at an interval around the right boundary. Their
model presents a current exchange between the two reservoirs and shows some sim-
ilarities with our model for the choice θ = 1. Another case already studied in the
literature (see [12, 19]) is when the boundary is not slowed, that corresponds to
our model for the choice θ = 0. As mentioned above, the hydrodynamic equation
of this model has Dirichlet boundary conditions, see [12] or the Eq. (7). A simi-
lar model, whose hydrodynamic equation has both Dirichlet boundary conditions
and Neumann boundary conditions, was studied in [6]. The main difference, at the
macroscopic level, is that the end points of the boundary conditions vary with time.
The microscopic dynamics there is given by the SSEP evolving on Zwith additional
births and deaths restricted to a subset of configurations where there is a leftmost
hole and a rightmost particle. In this situation, at a fixed rate j birth of particles
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occur at the position of the leftmost hole and at the same rate, independently, the
rightmost particle dies. Another model which has a current is considered in [4]. The
dynamics evolves on the discrete torus Z/nZwithout reservoirs, but has a surprising
phenomenon: a “battery effect”. This effect produces a current of particles through
the system and is due to a single abnormal bond, where the rates to cross from left
to right and from right to left are different. Finally, another model which has sim-
ilarities with the model we consider in these notes is the SSEP with a slow bond,
which was studied in [13–15]. The dynamics evolves on the discrete torus Z/nZ,
and particles exchange positions between nearest neighbor bonds at rate 1, except at
one particular bond, where the exchange occurs at rate n−β . In this case β > 0 is a
parameter that rules the slowness of the bond and for that reason the bond is called
the slow bond. The similarity between the slow bond model and the slow boundary
model considered in these notes is that if we “open” the discrete torus exactly at
the position of the slow bond, then the slow bond gives rise to a slow boundary. In
[13, 15] different hydrodynamic behaviors were obtained, depending on the range
of the parameter β, more precisely, the hydrodynamic equation is, in all cases, the
heat equation but the boundary conditions vary with the value of β, exhibiting three
different regimes as for the slow boundary model, see [1].

Our interest in these notes is to go beyond the hydrodynamical behavior, analyzing
the fluctuations around the hydrodynamical profile. To accomplish this, we restrict
ourselves to the case α = β = ρ and starting from the stationary measure νn

ρ defined
above.Our result states that the fluctuations starting fromνn

ρ are given by anOrnstein–
Uhlenbeck process solution of

dYt = ΔθYt dt +√
2χ(ρ)t ∇θ dWt ,

whereχ(ρ) is the variance ofη(x)with respect toνn
ρ ,Wt is a space-timewhite noise of

unit variance and Δθ and ∇θ are, respectively, the Laplacian and derivative operators
defined on a space of test functions with different types of boundary conditions
depending on the value of θ. We note that the case θ = 0 was studied in [19] and
the case θ = 1 was studied in [16]. In those articles, the nonequilibrium fluctuations
were obtained starting from general initial measures, which include the equilibrium
case νn

ρ treated here. We note however, that the case θ �= 1 is quite difficult to attack
at the nonequilibrium scenario since we need to establish a local replacement (see
Lemma 3) in order to close the martingale problem, which we can only prove starting
the system from the equilibrium state. In a future work, we will dedicate to extending
this result to the nonequilibrium situation as, for example, starting the system from
the steady state when α �= β.

Here follows an outline of these notes. In Sect. 2 we give the definition of the
model, we recall from [1] the hydrodynamic limit and in Sect. 3 we state our main
result, namely, Theorem 3. In Sect. 4 we characterize the limit process by means
of a martingale problem. Tightness is proved in Sect. 5 and in Sect. 6 we prove the
Replacement Lemma which is the most technical part of these notes.
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2 Statement of Results

2.1 The Model

For n ≥ 1, we denote by �n the set {1, . . . , n − 1}, which will be referred by the
expression bulk. The symmetric simple exclusion process with slow boundaries is a
Markov process {ηt : t ≥ 0} with state space Ωn := {0, 1}�n . The slowness of the
boundaries is ruled by a parameter that we denote by θ ≥ 0. If η is a configuration
of the state space Ω , then for x ∈ �n , the random variable η(x) can take only two
values, namely 0 or 1. If η(x) = 0, it means that the site x is vacant, while η(x) = 1
means that the site x is occupied. The dynamics of this model can be described
as follows. In the bulk particles move according to continuous time random walks,
but whenever a particle wants to jump to an occupied site, the jump is suppressed.
At the left boundary, particles can be created (resp. removed) at rate αn−θ (resp.
(1 − α)n−θ). At the right boundary, particles can be created (resp. removed) at rate
βn−θ (resp. (1 − β)n−θ).

Fix now a finite time horizon T . TheMarkov process {ηt (x) : x ∈ �n; t ∈ [0, T ]}
can be characterized in terms of its infinitesimal generator that we denote by Lθ

n and
is defined as follows. For a function f : Ωn → R, we have that

(Lθ
n f )(η) =

[
α

nθ
(1 − η(1)) + (1 − α)

nθ
η(1)

]
(
f (η1) − f (η)

)

+
[

β

nθ
(1 − η(n − 1)) + (1 − β)

nθ
η(n − 1)

]
(
f (ηn−1) − f (η)

)
(1)

+
n−2∑

x=1

(
f (σx,x+1η) − f (η)

)
,

where σx,x+1η is the configuration obtained from η by exchanging the occupation
variables η(x) and η(x + 1), that is,

(σx,x+1η)(y) =
⎧
⎨

⎩

η(x + 1), if y = x ,

η(x), if y = x + 1 ,

η(y), otherwise.
(2)

and for x = 1, n − 1 ηx is the configuration obtained from η by flipping the occupa-
tion variable η(x):

(ηx)(y) =
{
1 − η(y), if y = x ,

η(y), otherwise.
(3)

LetD([0, T ],Ωn) be the space of trajectories which are right continuous and with
left limits, taking values in Ωn . Denote by P

θ,n
μn

the probability on D([0, T ],Ωn)



182 T. Franco et al.

induced by the Markov process with generator n2Lθ
n and the initial measure μn and

denote by E
θ,n
μn

the expectation with respect to Pθ,n
μn

.

2.2 Stationary Measures

The stationary measure μss
n for this model when α = β = ρ ∈ (0, 1) is the Bernoulli

product measure given by

νn
ρ

(
η ∈ Ωn : η(x) = 1

)
= ρ .

But in the general case, where α �= β, the stationary measure μss
n does not have

independent marginals, see [10]. What we can say about the stationary behavior of
this model is that the density of particles has a behavior very close to a linear profile,
which depends on the range of θ in the sense of the following definition:

Definition 1 Let γ : [0, 1] → [0, 1] be a measurable profile. A sequence {μn}n∈N is
said to be associated to γ if, for any δ > 0 and any continuous function f : [0, 1] →
R the following limit holds:

lim
n→∞ μn

(

η :
∣
∣
∣
∣
∣
1

n

n−1∑

x=1

f ( xn ) η(x) −
∫

f (u) γ(u) du

∣
∣
∣
∣
∣
> δ

)

= 0 .

For μn equal to the stationary measure μss
n , the limit above is called the hydrostatic

limit.

Theorem 1 (Hydrostatic Limit, [1]) Let μss
n be the stationary probability measure

in Ωn wrt the Markov process with infinitesimal generator n2Lθ
n, defined in (1).

The sequence {μss
n }n∈N is associated (in the sense of Definition 1) to the profile

ρ : [0, 1] → R given by

ρ(u) =

⎧
⎪⎪⎨

⎪⎪⎩

(β − α)u + α, if θ ∈ [0, 1),
β−α
3 u + α + β−α

3 , if θ = 1,
β+α
2 , if θ ∈ (1,∞),

(4)

for all u ∈ [0, 1].
Another feature that we can say about the stationary state of the model studied in this
paper is that the profiles in (4) are very close to the mean of η(x) taken with respect
to the stationary measure μss

n . To state this result properly, we start by defining for
an initial measure μn in Ωn , for x ∈ �n and for t ≥ 0 the empirical mean given by

ρnt (x) := E
θ,n
μn

[ηt (x)] . (5)
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If in the expression above μn = μss
n , then ρnt (x) does not depend on t , so that ρ

n
t (x) =

ρn(x). From [1], we have that ρn(x) satisfies the following recurrence relations:

⎧
⎪⎨

⎪⎩

0 = [ρn(x + 1) − ρn(x)] + [ρn(x − 1) − ρn(x)], if x ∈ {2, . . . , n−2},
0 = [ρn(2) − ρn(1)] + n−θ[α − ρn(1)],
0 = n−θ[β − ρn(n−1)] + [ρn(n−2) − ρn(n−1)].

Asimple computation shows thatρn(x) is given byρn(x) = anx + bn, for all x ∈ �n,

where an = β−α
2nθ+n−2 and bn = α + an(nθ − 1). Moreover, we conclude that

lim
n→∞

(
max
x∈�n

∣
∣ρn(x) − ρ( xn )

∣
∣
)

= 0.

2.3 Hydrodynamic Limit

In [1] it was established the hydrodynamic limit of the model for any θ ≥ 0. For
completenesswe recall that result now. Fix ameasurable density profile ρ0 : [0, 1] →
[0, 1] and for each n ∈ N, let μn be a probability measure on Ωn .

Theorem 2 (Hydrodynamic Limit, [1]) Suppose that the sequence {μn}n∈N is asso-
ciated to a profile ρ0(·) in the sense of Definition 1. Then, for each t ∈ [0, T ], for
any δ > 0 and any continuous function f : [0, 1] → R,

lim
n→+∞P

θ,n
μn

[

η· :
∣
∣
∣
∣
∣
1

n

n−1∑

x=1

f ( xn ) ηtn2(x) −
∫

f (u) ρ(t, u) du

∣
∣
∣
∣
∣
> δ

]

= 0,

where ρ(t, ·) is the unique weak solution of the heat equation
{

∂tρ(t, u) = ∂2
uρ(t, u) , for t > 0 , u ∈ (0, 1),

ρ(0, u) = ρ0(u) , u ∈ [0, 1]. (6)

with boundary conditions that depend on the range of θ, which are given by:

For θ < 1, ∂uρ(t, 0) = α and ∂uρ(t, 1) = β, for t > 0. (7)

For θ = 1, ∂uρ(t, 0) = ρ(t, 0) − α and ∂uρ(t, 1) = β − ρ(t, 1), for t > 0. (8)

For θ > 1, ∂uρ(t, 0) = ∂uρ(t, 1) = 0, for t > 0. (9)

Remark 1 Wenote that the profiles in (4) are stationary solutions of the heat equation
with the corresponding boundary conditions given above.



184 T. Franco et al.

3 Density Fluctuations

3.1 The Space of Test Functions

The space C∞([0, 1]) is the space of functions f : [0, 1] → R such that f is con-
tinuous in [0, 1] as well as all its derivatives.
Definition 2 Let Sθ denote the set of functions f ∈ C∞([0, 1]) such that for any
k ∈ N ∪ {0} it holds that
(1) for θ < 1: ∂2k

u f (0) = ∂2k
u f (1) = 0.

(2) for θ = 1: ∂2k+1
u f (0) = ∂2k

u f (0) and ∂2k+1
u f (1) = −∂2k

u f (1).

(3) for θ > 1: ∂2k+1
u f (0) = ∂2k+1

u f (1) = 0.

Definition 3 For θ ≥ 0, let −Δθ be the positive operator, self-adjoint on L2[0, 1],
defined on f ∈ Sθ by

Δθ f (u) =

⎧
⎪⎨

⎪⎩

∂2
u f (u) , if u ∈ (0, 1),

∂2
u f (0

+) , if u = 0,

∂2
u f (1

−) , if u = 1.

(10)

Above, ∂2
u f (a

±) denotes the side limits at the point a. Analogously, let ∇θ : Sθ →
C∞([0, 1]) be the operator given by

∇θ f (u) =
⎧
⎨

⎩

∂u f (u) , if u ∈ (0, 1),
∂u f (0+) , if u = 0,
∂u f (1−) , if u = 1.

(11)

Definition 4 Let T θ
t : Sθ → Sθ be the semigroup associated to (6) with the corre-

sponding boundary conditions for the caseα = β = 0. That is, given f ∈ Sθ, by T θ
t f

we mean the solution of the homogeneous version of (6) with initial condition f .

Definition 5 Let S′
θ be the topological dual of Sθ with respect to the topology gen-

erated by the seminorms
‖ f ‖k = sup

u∈[0,1]
|∂k

u f (u)| , (12)

where k ∈ N ∪ {0}. In other words, S′
θ consists of all linear functionals

f : Sθ → R which are continuous with respect to all the seminorms ‖ · ‖k .
LetD([0, T ], S′

θ) (resp. C([0, T ], S′
θ)) be the space of trajectories which are right

continuous and with left limits (resp. continuous), taking values in S′
θ.
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The expression for T θ
t , θ ≥ 0, is presented in the next proposition:

Proposition 1 Let θ ≥ 0. Suppose that ρ0 ∈ L2[0, 1]. Then

(T θ
t ρ0)(u) :=

∞∑

n=1

an e
−λn t �n(u) , (13)

where {�n}n∈N is an orthonormal basis of L2[0, 1] constituted by eigenfunctions of
the associated Regular Sturm-Liouville Problem (concerning the operator Δθ) and
an are the Fourier coefficients of ρ0 in the basis {�n}n∈N.

• For θ < 1, the corresponding orthonormal basis of L2[0, 1] is
{

�n(u) = √
2 sin(nπu) , for n ∈ N ,

�0(u) ≡ 1 .

The eigenvalues of the associated Regular Sturm-Liouville Problem (concerning
the operator Δθ) are given by λn = n2π2.

• For θ = 1, the corresponding orthonormal basis of L2[0, 1] is a linear combination
of sines and cosines, namely,

�n(u) = An sin(
√

λnu) + An

√
λn cos(

√
λnu) , for n ∈ N ∪ {0} ,

where An is a normalizing constant. The eigenvalues λn do not have an explicit
formula, but it can verified that λn ∼ n2π2.

• For θ > 1, the corresponding orthonormal basis of L2[0, 1] is
{

�n(u) = √
2 cos(nπu) , for n ∈ N ,

�0(u) ≡ 1 .

The eigenvalues of the associated Regular Sturm-Liouville Problem (concerning the
operator Δθ) are given by λn = n2π2.

Proof For θ = 1 the expression for T θ
t has been obtained in [16]. For the case θ �= 1,

as in [16], we state the associated Regular Sturm-Liouville Problem (for details on
this subject we refer to [2], for instance):

For θ < 1 :
{

� ′′(u) + λ�(u) = 0 , u ∈ (0, 1) ,

�(0) = 0 , �(1) = 0 ;

For θ ≥ 1 :
{

� ′′(u) + λ�(u) = 0 , u ∈ (0, 1) ,

� ′(0) = 0 , � ′(1) = 0 .
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The solution of each one of the problems above (the eigenvalues λn and the eigen-
functions �n) can be found in Chap.10 of [5].

As a consequence, the series (13) converges exponentially fast, implying that
(T θ

t ρ0)(u) is smooth in space and time for any t > 0. This observation implies a
property of T θ

t : Sθ → Sθ stated in the next corollary.

Corollary 1 If f ∈ Sθ, then for any t > 0, T θ
t f ∈ Sθ and ΔθT θ

t f ∈ Sθ.

We observe that the previous result is needed in the proof of uniqueness of the
corresponding Ornstein–Uhlenbeck process (which is defined in the next section).
Its proof is a consequence of the formula (13), see [16] for more details.

3.2 Ornstein–Uhlenbeck Process

Fix ρ ∈ (0, 1). Based on [17, 18], we give here a characterization of the generalized
Ornstein–Uhlenbeck process which is a solution of

dYt = ΔθYt dt +√
2χ(ρ)t ∇θ dWt , (14)

where Wt is a space-time white noise of unit variance and χ(ρ) = ∫
(η(x) −

ρ)2dνn
ρ = ρ(1 − ρ), in terms of a martingale problem. We will see below that this

process governs the equilibrium fluctuations of the density of particles of our model.
In spite of having a dependence of Yt on θ, we do not index on it to not overload
notation. Denote by Qθ

ρ the distribution of Y· and EQθ
ρ
the expectation with respect

to Qθ
ρ.

Define the inner product between the functions f, g : [0, 1] → R by

〈 f, g〉L2,θ
ρ

= 2χ(ρ)

[ ∫ 1

0
f (u) g(u) du +

(
f (0)g(0) + f (1)g(1)

)
1θ=1

]
,

where 1· is the indicator function. Then, L2,θ
ρ ([0, 1]) is the space of functions f :

[0, 1] → R with ‖ f ‖L2,θ
ρ

< ∞, where

‖ f ‖2
L2,θ

ρ
= 〈 f, f 〉L2,θ

ρ
. (15)

Proposition 2 There exists an unique random element Y taking values in the space
C([0, T ], S′

θ) such that:

(i) For every function f ∈ Sθ,Mt ( f ) and Nt ( f ) given by
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Mt ( f ) = Yt ( f ) − Y0( f ) −
∫ t

0
Ys(Δθ f )ds ,

Nt ( f ) = (
Mt ( f )

)2 − 2χ(ρ) t ‖∇θ f ‖2L2,θ
ρ

(16)

are Ft -martingales, where for each t ∈ [0, T ], Ft := σ(Ys( f ); s ≤ t, f ∈ Sθ).
(ii) Y0 is a Gaussian field of mean zero and covariance given on f, g ∈ Sθ by

EQθ
ρ

[
Y0( f )Y0(g)

] = 〈 f, g〉L2,θ
ρ

(17)

Moreover, for each f ∈ Sθ, the stochastic process {Yt ( f ) ; t ≥ 0} is Gaussian, being
the distribution of Yt ( f ) conditionally to Fs , for s < t , normal of mean Ys(T θ

t−s f )
and variance

∫ t−s
0 ‖∇θT θ

r f ‖2
L2,θ

ρ
dr, where T θ

t was given in Definition 4.

The random element Y· is called the generalized Ornstein–Uhlenbeck process of
characteristics Δθ and ∇θ. From the second equation in (16) and Lévy’s Theorem on
the martingale characterization of Brownian motion, for each f ∈ Sθ, the process

Mt ( f )
(
2χ(ρ)t‖∇θ f ‖2L2,θ

ρ

)−1/2
(18)

is a standard Brownian motion. Therefore, in view of Proposition 2, it makes sense
to say that Y· is the formal solution of (14).

3.3 The Density Fluctuation Field

We define the density fluctuation field Yn· as time-trajectory of the linear functional
acting on functions f ∈ Sθ as

Yn
t ( f ) = 1√

n

n−1∑

x=1

f
( x
n

)(
ηtn2(x) − ρnt (x)

)
, for all t ≥ 0, (19)

where ρnt was defined in (5). Our results are given for the case α = β = ρ and for μn

being equal to νn
ρ , that is, the Bernoulli product measure with parameter ρ ∈ (0, 1),

so that ρnt (x) = ρ, for all x ∈ �n and t ≥ 0. Let Qθ,n
ρ be the probability measure on

D([0, T ], S′
θ) induced by the density fluctuation field Yn· and νn

ρ . We note that since

we will consider only the initial measure μn as νn
ρ , we will simplify the notations Pθ,n

νn
ρ

and E
θ,n
νn

ρ
as Pθ,n

ρ and E
θ,n
ρ , respectively. Our main result is the following theorem.

Theorem 3 (Ornstein–Uhlenbeck limit) For α = β = ρ ∈ (0, 1), if we take the ini-
tial measure to be νn

ρ , namely, the Bernoulli product measure with parameter ρ, then,
the sequence {Qθ,n

ρ }n∈N converges, as n → ∞, to a generalized Ornstein–Uhlenbeck
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(O.U.) process, which is the formal solution of equation (14). As a consequence, the
variance of the limit field Yt is given on f ∈ Sθ by

EQθ
ρ
[Yt ( f )Ys( f )] = χ(ρ)

∫ 1

0
( f (u))2 du +

∫ s

0
‖T θ

t−r f ‖2L2,θ
ρ
dr , (20)

where ‖ · ‖2
L2,θ

ρ
was defined in (15).

4 Proof of Theorem 3

4.1 Characterization of Limit Points

Fix a test function f . By Dynkin’s formula, we have that

Mn
t ( f ) = Yn

t ( f ) − Y0( f ) −
∫ t

0
(∂s + n2Lθ

n)Y
n
s ( f )ds, (21)

Nn
t ( f ) = (Mn

t ( f ))2 −
∫ t

0
n2Lθ

nY
n
s ( f )

2 − 2Yn
s ( f )n

2Lθ
nY

n
s ( f )ds (22)

are martingales with respect to the natural filtration Ft := σ(ηs : s ≤ t). To simplify
notation we denote Γ n

s ( f ) := (∂s + n2Lθ
n)Y

n
s ( f ). A long but elementary computa-

tion shows that

Γ n
s ( f ) = 1√

n

n−1∑

x=1

Δn f
(
x
n

)
(ηs(x) − ρ)

+√
n∇+

n f (0)(ηs(1) − ρ) − √
n∇−

n f (n)(ηs(n − 1) − ρ) (23)

−n3/2

nθ
f
(
1
n

)
(ηs(1) − ρ) − n3/2

nθ
f
(
n−1
n

)
(ηs(n − 1) − ρ).

Above

Δn f (x) := n2
[
f
(
x+1
n

)
+ f

(
x−1
n

)
− 2 f

(
x
n

)]
,

∇+
n f (x) := n

[
f
(
x+1
n

)
− f

(
x
n

)]

and

∇−
n f (x) := n

[
f
(
x
n

)
− f

(
x−1
n

)]
.
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We note that for the choice θ = 0, using the fact that f (0) = 0 = f (1), the expres-
sion (23) reduces to

Γ n
s ( f ) = 1√

n

n−1∑

x=1

Δn f
(
x
n

)
(ηs(x) − ρ) , (24)

which is Yn
s (Δn f ).

Now, we close the Eq. (23) for each regime of θ. The goal is to show that we can
rewrite (23) as (24) plus a term which vanishes as n → ∞.

• The case θ < 1: we note that since f ∈ Sθ we can write Γ n
s ( f ) as

Yn
s (Δn f ) + √

n(1 − n−θ)
{
∇+

n f (0)(ηs(1) − ρ) − ∇−
n f (n)(ηs(n − 1) − ρ)

}
.

In order to close the equation for the martingale we need to show that:

lim
n→∞E

θ,n
ρ

[(∫ t

0

√
n(ηs(x) − ρ) ds

)2
]

= 0, for x = 1, n − 1, (25)

which is a consequence of Lemma 3, see Remark 2.
• The case θ = 1: we can write Γ n

s ( f ) as

Yn
s (Δn f ) + √

n
(
∂u f (0) − f (0)

)
(ηs(1) − ρ)

+ √
n
(
∂u f (1) + f (1)

)
(ηs(n − 1) − ρ) + O

(
1√
n

)
.

Since f ∈ Sθ the last expression equals to Yn
s (Δn f ).

• The case θ > 1: we can repeat the computations above and since f ∈ Sθ, Γ n
s ( f )

can be rewritten as

Yn
s (Δn f ) − n3/2

nθ
f
(
1
n

)
(ηs(1) − ρ) − n3/2

nθ
f
(
n−1
n

)
(ηs(n − 1) − ρ) + O

(
1√
n

)
.

Then, in order to close the equation for the martingale term we need to show that

lim
n→∞E

θ,n
ρ

[(∫ t

0

n3/2

nθ
(ηs(x) − ρ) ds

)2
]

= 0, for x = 1, n − 1 , (26)

which is a consequence of Lemma 3, see Remark 2.
From the previous observations, for each regime of θ we can rewrite (23) as (24)

plus a negligible term.
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Lemma 1 For all θ ≥ 0, t > 0 and f ∈ Sθ it holds that

lim
n→∞E

θ,n
ρ [|Mn

t ( f )|2] = t‖∇θ f ‖L2,θ
ρ

,

where the norm above was defined in (15).

Proof A simple computation shows that the integral part of the martingale Nn
t ( f )

can be written as

n2Lθ
nY

n
s ( f )

2 − 2Yn
s ( f )n

2Lθ
nY

n
s ( f ) = 1

n

n−2∑

x=1

(
∇+

n f
(
x
n

))2(
ηs(x) − ηs(x + 1)

)2

+ n

nθ

(
f
(
1
n

))2(
ρ − 2ρηs(1) + ηs(1)

)

+ n

nθ

(
f
(
n−1
n

))2(
ρ − 2ρηs(n − 1) + ηs(n − 1)

)
,

from where we get that

E
θ,n
ρ

[|Mn
t ( f )|2]

= 2χ(ρ) t

{
1

n

n−2∑

x=1

(
∇+

n f
(
x
n

))2 + n

nθ

((
f
(
1
n

))2 +
(
f
(
n−1
n

))2
)}

. (27)

Let f ∈ Sθ. The first term at the right hand side of the previous expression con-

verges to 2χ(ρ)
∫ 1
0

(
∇θ f (u)

)2
du, for all θ ≥ 0. The second term at the right hand

side of last expression has to be analyzed for each case of θ separately:
• The case θ < 1: since f (0) = 0 = f (1), the second term at the right hand side

of (27) can be rewritten as 2χ(ρ) t times

n

nθ

((
f
(
1
n

))2 +
(
f
(
n−1
n

))2
)

= 1

n1+θ

((
∇+

n f (0)
)2 +

(
∇−

n f (n)
)2)

,

which goes to zero as n → ∞.
• The case θ = 1: the second term at the right hand side of (27) converges, as

n → ∞, to
2χ(ρ) t

(
f 2
(
0
)+ f 2

(
1
))

.

Recalling that f (0) = ∂u f (0) and f (1) = −∂u f (1), the proof ends.
• The case θ > 1: since f ∈ Sθ and n

nθ → 0, as n → ∞, the second term at the
right hand side of (27) converges to zero when n → ∞.

We have just proved that the quadratic variation of the martingale converges in mean.
In the next Lemmawe state the stronger convergence of themartingales to aBrownian
motion.
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Lemma 2 For f ∈ Sθ, the sequence of martingales {Mn
t ( f ); t ∈ [0, T ]}n∈N con-

verges in the topology of D([0, T ],R), as n → ∞, towards a Brownian motion
Wt ( f ) of quadratic variation given by t‖∇θ f ‖L2,θ

ρ
where ‖ · ‖L2,θ

ρ
was defined in

(15).

Proof Wecan repeat here the same proof of [14, p. 4170], which is based onLemma1
and the fact that a limit in distribution of a uniformly integrable sequence of martin-
gales is a martingale. We leave the details to the interested reader.

4.2 Convergence at Initial Time

Proposition 3 The sequence {Yn
0}n∈N converges in distribution to Y0, where Y0 is a

Gaussian field with mean zero and covariance given by (17).

Proof We first claim that, for every f ∈ Sθ and every t > 0,

lim
n→+∞ log E

θ,n
ρ

[
exp{iλYn

0( f )}
]

= −λ2

2
χ(ρ)

∫ 1

0
f 2(u) du .

Since νn
ρ is a Bernoulli product measure,

log E
θ,n
ρ [exp{iλYn

0( f )}] = log
∫ [

exp

{
iλ√
n

∑

x∈�n

(η0(x) − ρ) f
( x
n

)
}]

dνn
ρ

=
∑

x∈�n

log
∫ [

exp

{
iλ√
n

(η0(x) − ρ) f
( x
n

)}]
dνn

ρ .

Since f is smooth and using Taylor’s expansion, the right hand side of last expression
is equal to

−λ2

2n

∑

x∈�n

f 2
( x
n

)
χ(ρ) + O

(
1√
n

)
.

Taking the limit as n → +∞ and using the continuity of f , the proof of the claim
ends. Replacing f by a linear combination of functions and recalling the Cramér-
Wold device, the proof finishes.
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5 Tightness

Nowwe prove that the sequence of processes {Yn
t ; t ∈ [0, T ]}n∈N is tight. Recall that

we have defined the density fluctuation field on test functions f ∈ Sθ. Since we want
to use Mitoma’s criterium [20] for tightness, we need the following property from
the space Sθ.

Proposition 4 The space Sθ endowed with the semi-norms given in (12) is a Fréchet
space.

Proof The definition of a Fréchet space can be found, for instance, in [21]. Since
C∞([0, 1]) endowed with the semi-norms (12) is a Fréchet space, and a closed
subspace of a Fréchet space is also a Fréchet space, it is enough to show that Sθ is
a closed subspace of C∞([0, 1]), which is a consequence of the fact that uniform
convergence implies point-wise convergence.

As a consequence ofMitoma’s criterium [20] and Proposition 4, the proof of tightness
of the S′

θ valued processes {Yn
t ; t ∈ [0, T ]}n∈N follows from tightness of the sequence

of real-valued processes {Yn
t ( f ); t ∈ [0, T ]}n∈N, for f ∈ Sθ.

Proposition 5 (Mitoma’s criterium, [20]) A sequence of processes {xt ; t ∈
[0, T ]}n∈N in D([0, T ], Sθ

′) is tight with respect to the Skorohod topology if, and
only if, the sequence {xt ( f ); t ∈ [0, T ]}n∈N of real-valued processes is tight with
respect to the Skorohod topology of D([0, T ],R), for any f ∈ Sθ.

Now, to show tightness of the real-valued process we use the Aldous’ criterium:

Proposition 6 A sequence {xt ; t ∈ [0, T ]}n∈N of real-valued processes is tight with
respect to the Skorohod topology of D([0, T ],R) if:

(i) lim
A→+∞ lim sup

n→+∞
Pμn

(
sup

0≤t≤T
|xt | > A

)
= 0 ,

(ii) for any ε > 0 , lim
δ→0

lim sup
n→+∞

sup
λ≤δ

sup
τ∈TT

Pμn (|xτ+λ − xτ | > ε) = 0 ,

where TT is the set of stopping times bounded by T .

Fix f ∈ Sθ. By (21), it is enough to prove tightness of {Yn
0( f )}n∈N, {

∫ t
0 Γ n

s ( f ) ds; t ∈
[0, T ]}n∈N, and {Mn

t ( f ); t ∈ [0, T ]}n∈N.

5.1 Tightness at the Initial Time

This follows from Proposition 3.

5.2 Tightness of the Martingales

By Lemma 2, the sequence of martingales converges. In particular, it is tight.
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5.3 Tightness of the Integral Terms

The first claim of Aldous’ criterium can be easily checked for the integral term∫ t
0 Γ n

s ( f ) ds, where the expression for Γ n
s ( f ) can be found in (23). Let f ∈ Sθ.

• The case θ < 1: by Young’s inequality and Cauchy-Schwarz’s inequality we have
that

E
θ,n
ρ

[
sup
t≤T

(∫ t

0
Γ n
s ( f ) ds

)2]

≤ CT
∫ T

0
E

θ,n
ρ

[(
1√
n

n−1∑

x=1

Δn f (
x
n )(ηsn2(x) − ρ)

)2]
ds

+ C (∇+
n f (0))2 T

∫ T

0
E

θ,n
ρ

[(√
n(ηsn2(1) − ρ)

)2]
ds

+ C (∇−
n f (1))2 T

∫ T

0
E

θ,n
ρ

[(√
n(ηsn2(n − 1) − ρ)

)2]
ds.

Since f ∈ Sθ and by (25), the second and third terms at the right hand side of
the previous expression go to zero, as n → ∞. Then there exists C > 0 such that
these two terms are bounded from above by CT . The first term at the right hand
side of last expression is bounded from above by T 2 times

1

n

n−1∑

x=1

(
Δn f (

x
n )
)2

χ(ρ) . (28)

Now, since f ∈ Sθ last expression is bounded from above by a constant. Now
we need to check the second claim of Aldous’ criterium. For that purpose, fix a
stopping time τ ∈ TT . By Chebyshev’s inequality together with (28), we get that

P
θ,n
ρ

(∣∣
∣
∫ τ+λ

τ

Γ n
s ( f ) ds

∣
∣
∣ > ε

)
≤ 1

ε2
E

θ,n
ρ

[( ∫ τ+λ

τ

Γ n
s ( f ) ds

)2] ≤ δC

ε2
,

which vanishes as δ → 0.
• The case θ = 1: we note that it was treated in [16].
• The case θ > 1: as in the case θ < 1, we have that

E
θ,n
ρ

[
sup
t≤T

(∫ t

0
Γ n
s ( f ) ds

)2]

≤ CT
∫ T

0
E

θ,n
ρ

[(
1√
n

n−1∑

x=1

Δn f (
x
n )(ηsn2(x) − ρ)

)2]
ds



194 T. Franco et al.

+ C f 2
(

1
n

)
T
∫ T

0
E

θ,n
ρ

[(
n3/2

nθ
(ηsn2(1) − ρ)

)2]
ds

+ C f 2
(

n−1
n

)
T
∫ T

0
E

θ,n
ρ

[(
n3/2

nθ
(ηsn2(n − 1) − ρ)

)2]
ds ,

plus a term of order 1√
n
. To bound the first term at the right hand side of the

previous inequality we repeat the same computations as in the case θ < 1. In order
to bound the second and the third terms at the right hand side of the previous
inequality, we use (26) and the proof follows as in the case θ < 1.

6 Replacement Lemma

This section is devoted to estimate the expectations (25) and (26). In order to
do this we start introducing some notations. Let μ be an initial measure. For
x = 0, 1, . . . , n − 1, define

Ix,x+1( f,μ) :=
∫

rx,x+1(η)
(
f (σx,x+1η) − f (η)

)2
dμ ,

where σx,x+1η was defined in (2), for x = 1, . . . , n − 2, σ0,1η := η1, σn−1,nη :=
ηn−1 (the configurations η1 and ηn−1 were defined in (3)), and the rates are given by

r0,1(η) := rα(η) := α

nθ
(1 − η(1)) + 1 − α

nθ
η(1) ,

rn−1,n(η) := rβ(η) := β

nθ
(1 − η(n − 1)) + 1 − β

nθ
η(n − 1) ,

rx,x+1(η) := 1, if x = 1, . . . , n − 2 .

Define the quantity:

Dn( f,μ) :=
n−1∑

x=0

Ix,x+1( f,μ) =
n−1∑

x=0

∫
rx,x+1(η)

(
f (σx,x+1η) − f (η)

)2
dμ .

(29)

The Dirichlet form is defined by 〈−Lθ
n f, f 〉μ, where we can rewrite for short the

infinitesimal generator as

Lθ
n f (η) :=

n−1∑

x=0

Lx,x+1 f (η) :=
n−1∑

x=0

rx,x+1(η)( f (σx,x+1η) − f (η)) .
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Now, we recall that we consider the case α = β = ρ ∈ (0, 1), so that the measure
νn

ρ (the Bernoulli product measure) is invariant for this process and it satisfies

rx,x+1(η) νn
ρ (η) = rx,x+1(σ

x,x+1η) νn
ρ (σx,x+1η) , (30)

for all x ∈ {0, 1, . . . , n − 1}. Let us check this equality in the case x = 0, the case
x = n − 1 is similar and the others are also very simple to check. Note that

r0,1(σ
0,1η)

νn
ρ (σ0,1η)

νn
ρ (η)

=
[

ρ

nθ
(1 − η1(1)) + 1 − ρ

nθ
η1(1)

]
νn

ρ (η1)

νn
ρ (η)

. (31)

Since

νn
ρ (η1)

νn
ρ (η)

= 1η(1)=1
1 − ρ

ρ
+ 1η(1)=0

ρ

1 − ρ
, (32)

then (31) becomes

1η(1)=1

[
ρ

nθ

]
1 − ρ

ρ
+ 1η(1)=0

[
1 − ρ

nθ

]
ρ

1 − ρ
= r0,1(η) .

Thus, using (30), we get

〈−Lθ
n f, f 〉νn

ρ
= 1

2
Dn( f, ν

n
ρ ) . (33)

Lemma 3 (Replacement Lemma) Let x = 1, n − 1 and t > 0 fixed. Then

E
θ,n
ρ

[(∫ t

0
cn
(
ηs(x) − ρ

)
ds

)2]
≤ C

c2nn
θ

n2
.

Remark 2 Recall that for θ < 1 we have in (25) cn = √
n, so that the error above

becomes nθ/n, which vanishes as n → ∞. Recall that for θ > 1 we have in (26)
cn = n3/2/nθ, so that the error above becomes n/nθ, which vanishes as n → ∞.

Proof The proof follows by a classical argument combining both the Kipnis–
Varadhan’s inequality (see [18, p. 333, Lemma 6.1]) with Young’s inequality. For
that purpose let x = 1 (the other case is completely analogous) and note that the
expectation in the statement of the lemma can be bounded from above by

sup
f ∈L2

νnρ

{ ∫
cn(η(1) − ρ) f (η) dνn

ρ + n2〈Lθ
n f, f 〉νn

ρ

}
, (34)

where L2
νn

ρ
is the space of functions f such that

∫
f 2(η) dνn

ρ < +∞. We start by

writing the integral
∫
cn(η(1) − ρ) f (η)dνn

ρ as twice its half and in one of the terms



196 T. Franco et al.

we make the exchange η → η1 to have

1

2

∫
cn(η(1) − ρ) f (η) dνn

ρ + 1

2

∫
cn(1 − η(1) − ρ) f (η1)

νn
ρ (η1)

νn
ρ (η)

dνn
ρ ,

see (32) to get the expression of
νn

ρ (η1)

νn
ρ (η)

. A simple computation shows that the integral

at the right hand side of last expression is equal to

−1

2

∫
cn(η(1) − ρ) f (η1) dνn

ρ ,

so that the display above is equal to

1

2

∫
cn(η(1) − ρ)( f (η) − f (η1)) dνn

ρ .

By Young’s inequality we can bound the previous expression by

B
∫

c2n(η(1) − ρ)2dνn
ρ + 1

4B

∫
( f (η) − f (η1))2 dνn

ρ .

Now, remember the notation η1 = σ0,1η and multiply and divide by r0,1(η) the inte-
grand function inside the second integral above. We can do it, because there exists

C̃ρ such that C̃ρ

nθ ≤ r0,1(η) ≤ Cρ

nθ . Then we can bound the previous expression from
above by

B
∫

c2n(η(1) − ρ)2 dνn
ρ + nθ

4BC̃ρ

∫
r0,1(η) ( f (σ0,1η) − f (η))2 dνn

ρ .

Using (29) the second integral in the last expression is bounded from above by
Dn( f, νn

ρ ). Recalling (33), we get

∫
cn(η(1) − ρ) f (η) dνn

ρ ≤ B c2n

∫
(η(1) − ρ)2 dνn

ρ + nθ

2BC̃ρ

〈−Lθ
n f, f 〉νn

ρ
.

Putting this inequality in (34) and choosing B = nθ−2/2C̃ρ, the term at the right hand
side of the last expression cancels with n2〈Lθ

n f, f 〉νn
ρ
. Therefore, the expectation

appearing in the statement of the lemma is bounded from above by

c2nn
θ

2C̃ρn2

∫
(η(1) − ρ)2 dνn

ρ .

Since η is bounded the proof ends.
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