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Abstract We consider a parabolic-hyperbolic system of nonlinear partial differen-
tial equations modeling the motion of a chemically reacting mixture through porous
medium. The existence of classical aswell asweak solutions is established under sev-
eral physically relevant choices of the constitutive equations and relevant boundary
conditions.

Keywords Chemically reacting fluid · Porous medium · DiPerna, Lions theory

1 Introduction

A simple model of the motion of a mixture of n chemically reacting fluids takes the
form (see e.g. Giovangigli [10, Chaps. 2,3]):

∂t (ρ
i ) + divx (ρ

iv) + divxF
i = miω

i , (1)
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where ρi is the mass density of the i-th species, v is the fluid bulk velocity of the
mixture, mi the molar mass of the i-th species, F i the diffusive fluxes, and ωi

represent the molar production, typically given functions of (ρ1, . . . , ρn) and of the
temperature. We also denote

ρ =
n∑

i=1

ρi ,

the total density of the mixture and introduce the mass fractions

Y i = ρi

ρ
, i = 1, . . . , n.

Obviously,

Y i ≥ 0,
n∑

i=1

Y i = 1. (2)

We may sum up (1) to deduce the mass conservation (equation of continuity):

∂tρ + divx (ρv) = −divx

n∑

i=1

F i +
n∑

i=1

miω
i = 0, (3)

where the last equality should be viewed as a natural constraint to be imposed on
F i , ωi enforced by the principle of mass conservation.

The diffusion fluxes are typically given through the empirical Fick’s law:

F i = −di∇xY
i , di > 0, i = 1, . . . , n (4)

If the motion takes place in the porous medium environment, we may close the
systemby imposing the standard hypothesis that the velocityv is given by the pressure
gradient, more specifically

v = −∇x p + ρg, (5)

where g represents the gravitational force. For the one component compressible
flow, the relation (5) has been rigorously identified as a homogenization limit of
the compressible Navier–Stokes system, see Masmoudi [11]. The result has been
extended to a more general class of pressure laws and also to the full Navier–Stokes–
Fourier system in [8]. The Eq. (1) has been considered in many special situations,
namely in connection with the Navier–Stokes system, see, e.g., [9] and references
there. Here, the main point consists in considering mixed boundary conditions for
a simplified model, and an application of the DiPerna, Lions theory to the general
problem.
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1.1 A Parabolic-Hyperbolic System

We consider the problem of solvability of the system described above for (ρi , v),
or alternatively, for (Y i , p), in the set {(t, x) ∈ [0, τ ] × Ω}, where Ω ⊂ R3 is a
bounded smooth domain, under the following simplifying assumptions:

• The diffusion coefficients di vanish for all i = 1, 2, . . . .
• The process is isothermal, the temperature T > 0 is constant.
• The effect of the gravitational force is neglected, g = 0.
• The production rates ωi = ωi (ρ1, . . . , ρn) are given smooth functions of species
densities. More specifically,

ωi = Ci − ρiDi , (6)

where Ci ≥ 0, Di ≥ 0,

Ci =
m∑

j=1

⎡

⎣νb
i, j K

f
j (T )�n

l=1

(
ρl

ml

)ν
f
l, j

+ ν
f
i, j K

b
j (T )�n

l=1

(
ρl

ml

)νb
l, j

⎤

⎦ , (7)

Di = 1

mi

⎡

⎢⎣
m∑

j=1,ν f
i, j≥1

ν
f
i, j K

f
j (T )

(
ρi

mi

)ν
f
i, j−1

�n
l=1,l �=i

(
ρl

ml

)ν
f
l, j

(8)

+
m∑

j=1,νb
i, j≥1

νb
i, j K

b
j (T )

(
ρi

mi

)νb
i, j−1

�n
l=1,l �=i

(
ρl

ml

)νb
l, j

⎤

⎦ ,

wherem is the number of chemical reactions, K f
j , K

b
j are positive functions of the

temperature, and ν
f
i, j , ν

b
i, j are non-negative integers (stoichiometric coefficients),

see [10, Sect. 6.4.6].
• The pressure of the mixture is given by the perfect gas law,

p =
n∑

i=1

1

mi
ρi RT, (9)

where R is the perfect gas constant.

Remark 1 It is interesting to note that (9) with equal molar masses mi = m is the
only choice of the pressure compatible with the Second Law of Thermodynamics as
soon as Fick’s law is imposed, cf. [9].

Our goal in the present paper is to discuss the solvability and a proper choice of
boundary conditions for system (1) under the simplifying conditions stated above.
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In Sect. 2, we study the case when the pressure p satisfies a parabolic equation of
porous medium type independent of the species densities ρi . The standard parabolic
theory yields a regular pressure p that can be subsequently substituted in (1) to deter-
mine uniquely ρi , i = 1, . . . , n by the method of characteristics. Relevant boundary
conditions are easy to discuss in this context.

In Sect. 3, we address the general situation when all equations in (1) are strongly
coupled. The resulting system is of mixed parabolic-hyperbolic type. We derive a
priori bounds and show weak sequential stability of the family of solutions. To this
end, a variant of DiPerna, Lions [7] theory for the transport equation is used.

2 The Case of “Independent” Pressure

We start with the simple situation of equal molar masses mi = m > 0 for all i =
1, . . . , n. In accordance with (9) and (3), (5), we may sum up the Eq. (1) to obtain

∂t p − divx (p∇x p) = 0. (10)

Thus the pressure satisfies a parabolic type differential equation that may be solved
separately and independently of the other quantities. Note that the same situation
occurs in the absence of chemical reactions, meaning ωi = 0 for all i = 1, . . . , n.
Most generally, we have (10) whenever

∑

j∈S j
ω j = 0, m j = mSj > 0 for all j ∈ S j , Si ∩ S j = ∅ if i �= j, ∪ j S j = {1, . . . , n}.

(11)

2.1 Boundary Value Problem for the Pressure Equation

Equation (10) represents the standard porous medium equation studied frequently in
the literature, see e.g. Di Benedetto [6]. Here, in addition, we avoid the “vacuum”
problem by imposing positive initial and boundary conditions on p.

2.1.1 Mixed Neumann–Dirichlet Boundary Conditions

We suppose the boundary ∂Ω can be decomposed as

∂Ω = ΓD ∪ ΓN , ΓD, ΓN smooth and compact with ΓD ∩ ΓN = ∅ . (12)
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We impose the (non-homogeneous) Dirichlet boundary condition

p = pb on ΓD, pb is a positive constant, (13)

together with the (homogenous) Neumann boundary condition

∇x p · n = 0 on ΓN . (14)

As usual, n denotes the outer unit normal vector to the boundary ∂Ω of Ω .

Remark 2 This choice of boundary conditions corresponds to the presence of a
“well” in the container Ω on the boundary of which a (constant) pressure is main-
tained, with the rest of ∂Ω being an impermeable wall.

In order to deal with a well-posed problem, we prescribe the initial pressure
distribution

p(0, x) = p0(x) in Ω. (15)

(i) Consider the situation

p0(x) ≥ pb > 0 for all x ∈ Ω, p0 ∈ W 2,∞(Ω), p0 �≡ pb.

By virtue of the standard parabolic theory, problem (10), (12–15) admits a unique
solution

p(t, x) ≥ pb for any (t, x) ∈ (0, τ ) × Ω .

Moreover, the solution is smooth in the open set (0, τ ) × Ω and, by virtue of the
strong maximum principle (Hopf’s boundary point lemma),

∇x p · n < 0 on ΓD . (16)

Now, equation (1) reduces to the transport problem

∂t (ρ
i ) − divx (ρ

i∇x p) = miω
i (ρ1, . . . , ρn), i = 1, . . . n, (17)

with a given (regular) velocity field v = −∇x p. Keeping (14), (16) in mind, the
method of characteristics yields that Eq. (17) admits a unique solution for any initial
data

ρi (0, ·) = ρi
0 , in Ω (18)
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satisfying the obvious compatibility condition

n∑

i=1

1

mi
ρi
0RT = p0 in Ω . (19)

(ii) Now, we examine the complementary situation

0 < p0(x) ≤ pb for all x ∈ Ω, p0 ∈ W 2,∞(Ω), p0 �≡ pb .

It is easy to check, by means of the same arguments as above, that

∇x p · n > 0 on ΓD. (20)

Consequently, for the transport problem (17), (18) to be uniquely solvable, we have
to prescribe the boundary conditions

ρi |ΓD = ρi
b, i = i, . . . , n,

with the compatibility condition

n∑

i=1

1

mi
ρi
b RT = pb.

(iii) In general, the sign of the normal component of the velocity −∇x p · n on ΓD

is determined by the pressure. In particular, the relevant boundary conditions for ρi

must be prescribed a posteriori, after having solved problem (10), (12–15).

2.2 Other Boundary Conditions

More general boundary conditions can be handled in a similar fashion. One should
always keep in mind that the boundary conditions for the species densities ρi

b must
be determined after having identified the sign of ∇x p · n together with p on ∂Ω .

3 General System

We focus on the general case in which the equations for the pressure and the species
densities are coupled. It turns out that it is more convenient to consider p, together
with the mass fractions Y i , as independent variables. Taking into account (3) with
v = −∇x p, the resulting system of equations reads:



On the Motion of Chemically Reacting Fluids Through Porous Medium 145

∂t p − divx (p∇x p) = RT
n∑

i=1

ωi , (21)

∂t Y
i − ∇x p · ∇xY

i = mi

ρ
ωi , i = 1, . . . , n. (22)

Recalling the pressure-density relation

ρ = p

(
n∑

i=1

1

mi
Y i RT

)−1

, ρi = Y iρ, (23)

and using the specific form of ωi stated in (6–8), we view the right-hand sides of the
above equations as functions of p and Y 1, . . . ,Y n .

System (21–23) is nonlinear of parabolic-hyperbolic type. To avoid unnecessary
technicalities, we impose the homogeneous Neumann boundary conditions for the
pressure,

∇x p · n|∂Ω = 0 . (24)

Accordingly, only the initial conditions for Y i are necessary to make the problem,
at least formally, well-posed.

3.1 A Priori Estimates

We start by deriving suitable a priori estimates for (smooth) solutions of problem
(21), (22), (24).

3.1.1 Uniform Bounds on the Pressure

Uniform bounds on the pressure are usually derived by application of some form of
the maximum principle. A short inspection of the pressure Eq. (21) and the structure
(6) of the functions ωi reveals that

n∑

i=1

ωi =
n∑

i=1

Ci − ρiDi
<∼

n∑

j=1

(
p

∑m
l=1 ν

f
l, j + p

∑m
l=1 νb

l, j

)
.

Consequently, in viewof the standardmaximumprinciple estimates,we get a uniform
bound

0 ≤ p(t, x) ≤ p on the time interval (0, τ ), (25)
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where τ > 0 depends, in general, on ‖p(0, ·)‖L∞(Ω). Moreover, the estimate is uni-
form, meaning extendable to any positive τ if at least one of the following situations
occurs:

•
n∑

i=1

Ci − ρiDi
<∼ (p + 1),

for specific examples see [10, Sect. 3.2.3];
•

‖p(0, ·)‖L∞(Ω) is sufficiently small,

where “small” means in terms of τ and the structural constants appearing in (7),
(8).

Accordingly, in the remaining part of this section, we assume the validity of the
bound (25). Note that, in view of the structure ofωi stated in (6), relation (25) implies
that

p(t, ·) ≥ p > 0 for any t ∈ (0, τ ) as soon as inf
x∈Ω

p(0, x) > 0, (26)

where the lower bound p may depend on τ .

3.1.2 Maximal Regularity Estimates

In view of (25), (26) we may use the maximal regularity estimates for (non-
degenerate) parabolic equations, see Denk, Hieber, and Pruess [4] or Ashyralyev
and Sobolevskii [5], to deduce the bounds

∂t p, ∇l
x p ; l = 0, 1, 2 , bounded in Lq((0, τ ) × Ω) for any finite 1 < q < ∞ .

(27)

Unfortunately, the bounds (27) are still not sufficient for the transport Eq. (22)
to be well-posed. The available DiPerna, Lions theory [7] (see also Ambrosio [2],
Crippa and De Lellis [3]) require that, at least,

divx∇x p = 
x p ∈ L1(0, τ ; L∞(Ω)) . (28)

In order to guarantee (28), higher order regularity estimates are needed that will be
established in the next section.
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3.1.3 Higher Order Regularity

Taking the time derivative of (21) with respect to t and denoting P = ∂t p, we obtain

∂t P − divx (p∇x P) = divx (∂t p∇x p) + RT
n∑

i=1

∂tω
i . (29)

To evaluate ∂tω
i we realize that, thanks to (6–8),

ωi =
ki∑

k=1

ρkGk,i (ρ
1, . . . , ρn), i = 1, . . . , n,

where Gk,i are continuously differentiable functions. Using (17) we compute

∂t
(
ρkGk,i (ρ

1, . . . , ρn)
) = ∂tρ

kGk,i (ρ
1, . . . , ρn) + ρk

n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
∂tρ

j

= divx (ρ
k∇x p)Gk,i (ρ

1, . . . , ρn) + ρk
n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
divx (ρ

j∇x p)

+miωiGk,i (ρ
1, . . . , ρn) + ρk

n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
m jω j .

Furthermore,

divx (ρ
k∇x p)Gk,i (ρ

1, . . . , ρn) + ρk
n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
divx (ρ

j∇x p)

= divx
[
ρk∇x pGk,i (ρ

1, . . . , ρn)
] − ρk

n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
∇x p · ∇xρ

j

+ρk

n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
∇x p · ∇xρ

j + ρk
n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
ρ j
x p

= divx
[
ρk∇x pGk,i (ρ

1, . . . , ρn)
] + ρk

n∑

j=1

Gk,i (ρ
1, . . . , ρn)

∂ρ j
ρ j
x p.
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Summing up the previous observations and going back to (29) we infer that

∂t P − divx (p∇x P) = divx (F) + G ,

with

F, G bounded in Lq((0, τ ) × Ω) for any finite 1 < q < ∞, F · n|∂Ω = 0 .

Thus, applying the (weak) maximal regularity theory for parabolic equations (see
Amann [1]), we conclude that

∂t p = P is bounded in Lq(0, τ ;W 1,q(Ω)) for any 1 < q < ∞ . (30)

Note that this step requires higher regularity of the initial data (at t = 0), specifically,

∂t p(0, · ) = P(0, · ) ∈ B1−(2/q);q,q(Ω) ,

see Amann [1, Theorem 2.1]. This kind of initial regularity hypothesis is not unusual
for a parabolic problem.

Finally, embedding W 1,q(Ω) into L∞(Ω) for q > 3, together with boundedness
of the right hand side of (21), (see (25)) yields the desired conclusion

divx∇x p = 
x p ∈ Lq(0, τ ; L∞(Ω)) for any 1 < q < ∞ . (31)

3.2 Weak Sequential Stability

Our goal is to establish the following result:

Theorem 1 Let {pε}ε>0, {Y i
ε }ε>0; i = 1, . . . , n, be a family of (smooth) solutions of

problem (21), (22) such that:

pε → p, ∇x pε → ∇x p in C([0, τ ] × Ω),


x pε → 
x p weakly-(*) in Lq(0, τ ; L∞(Ω)), 1 < q < ∞,

(32)

Y i
ε → Y i weakly-(*) in L∞((0, τ ) × Ω), (33)

Y i
ε (0, ·) → Y i

0 in L1(Ω). (34)

Then

Y i
ε → Y i a.e. in (0, τ ) × Ω , (35)
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where p and Y 1, . . . ,Y n satisfy (22), specifically,

∂t Y
i − divx (Y

i∇x p) + Y i
x p = 1

p
ωi (p, Y

1, . . . , Yn)

n∑

j=1

mi

m j
Y j RT, i = 1, . . . , n.

(36)

The rest of the paper is devoted to the proof of Theorem 1. We use the approach
proposed in the seminal paper by DiPerna and Lions [7].

3.2.1 Existence for the Limit Problem

We show that the limit problem (36) admits a weak solution Y 1, . . . ,Y n such that

Y i ≥ 0 for any i = 1, . . . , n,

n∑

i=1

Y i = 1 ,

provided the initial data satisfy

Y i
0 ≥ 0 ,

n∑

i=1

Y i
0 = 1 .

Step 1
We approximate the pressure p by a family of smooth functions {pδ}δ>0,

pδ → p, ∇x pδ → ∇x p uniformly in [0, τ ] × Ω,


x pδ → 
x p a.e. in (0, τ ) × Ω , ‖
x pδ‖Lq (0,τ ;L∞(Ω))
<∼ 1 for any 1 < q < ∞ .

as δ → 0. Using the standard method of characteristics, we find a unique solution
Y 1

δ , . . . ,Y n
δ emanating from the initial data Y 1

0 , . . . ,Y n
0 .

Thanks to hypothesis (6),

Y i
δ ≥ 0 for all i = 1, . . . , n ,

and, by virtue of (3),
n∑

i=1

Y i
δ = 1 .

Consequently, passing to a suitable subsequence if necessary, we may assume that

Y i
δ → Y i weakly-(*) in L∞((0, τ ) × Ω) ∩ Cweak([0, τ ]; L1(Ω)) as δ → 0,
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where

∂t Y
i − divx (Y

i∇x p) + Y i
x p = 1

p
ωi (p, Y 1, . . . , Yn)

n∑

j=1

mi

m j
Y j RT, i = 1, . . . , n .

(37)

Y i (0, ·) = Y i
0 . (38)

Here and hereafter, the upper bar denotes a weak limit of compositions of smooth
functions applied to weakly convergent sequences.

Step 2
In order to complete the proof, we have to show strong convergence

Y i
δ → Y i a.a. in (0, τ ) × Ω as δ → 0. (39)

To this end, we write down a renormalized formulation of the δ−problem in the
form:

∂t |Yδ|2 − divx (|Yδ|2∇x pδ) + |Yδ|2
x pδ = 2RT

pδ

n∑

i, j=1

mi

m j
ωi (pδ,Y

1
δ , . . . ,Y n

δ )Y i
δY

j
δ .

Letting δ → 0 we obtain

∂t |Y |2 − divx (|Y |2∇x p) + |Y |2
x p = 2RT

p

n∑

i, j=1

mi

m j
ωi (p,Y 1, . . . ,Y n)Y iY j .

(40)

Now, applying the regularization procedure of DiPerna and Lions [7] to (37) we
deduce that

∂t |Y |2 − divx (|Y |2∇x p) + |Y |2
x p = 2RT

p

n∑

i, j=1

mi

m j
ωi (p,Y 1, . . . ,Y n)Y jY i .

(41)
Step 3
Finally, we integrate the difference of (40), (41) over Ω:

d

dt

∫

Ω

(
|Y |2 − |Y |2

)
dx = −

∫

Ω


x p
(
|Y |2 − |Y |2

)
dx

+
∫

Ω

2RT

p

n∑

i, j=1

mi

m j

[
ωi (p,Y 1, . . . ,Y n)Y iY j − ωi (p,Y 1, . . . ,Y n)Y jY i

]
dx,
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where
∫

Ω

[
ωi (p,Y 1, . . . ,Y n)Y iY j − ωi (p,Y 1, . . . ,Y n)Y jY i

]
dx

= lim
δ→0

∫

Ω

[
ωi (pδ,Y

1
δ , . . . ,Y n

δ )Y i
δ − ωi (pδ,Y

1, . . . ,Y n)Y i
]
(Y j

δ − Y j ) dx

<∼ lim
δ→0

∫

Ω

|Yδ − Y |2 dx =
∫

Ω

(
|Y |2 − |Y |2

)
dx .

Thus, applyingGronwall’s lemmaandusing the fact that the initial values converge
strongly, we conclude

|Y |2 = |Y |2

yielding (39).

3.2.2 Compactness

Our ultimate goal is to show (35), (36). As Yε are smooth, we may rewrite (36) as

∂t Y
i
ε − ∇xY

i
ε · ∇x pε = RT

pε

n∑

j=1

mi

m j
ωi (pε,Y

1
ε , . . . ,Y n

ε )Y j
ε , i = 1, . . . , n. (42)

At this stage, we employ once more the regularization procedure of DiPerna,
Lions [7] to Eq. (36):

∂t Y
i
r − ∇xY

i
r ∇x p = RT

p

n∑

j=1

mi

m j
ωi (p,Y

1
r , . . . ,Y n

r )Y j
r + er , i = 1, . . . , n, (43)

where

er → 0 in L1((0, τ ) × Ω) as r → 0.

Similarly to the above, we subtract (42), (43), multiply the resulting expression
by Y i

ε − Y i
r , and integrate over Ω obtaining

d

dt

∫

Ω

|Yε − Yr |2 dx +
∫

Ω


x pε|Yε − Yr |2 dx =
∫

Ω

n∑

i=1

(∇x pε − ∇x p) · ∇xY
i
r (Y

i
ε − Y i

r ) dx
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=
∫

Ω

RT

pε

n∑

i, j=1

mi

m j

[
ωi (pε, Y

1
ε , . . . , Yn

ε )Y j
ε − ωi (pε, Y

1
r , . . . , Yn

r )Y j
r

]
dx + eε(r) + er ,

where

eε(r) → 0 in L1((0, τ ) × Ω) as ε → 0 for any fixed r.

Finally, letting first ε → 0, then r → 0, and realizing that

Y i
r → Y i in C([0, τ ]; L2(Ω)),

we get the desired conclusion (35), (36).
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