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Abstract Detonation waves have a relevant role in many engineering processes,
namely those related to propulsion.Most studies, regarding the stability of detonation
waves, have been carried out by computer simulations, notwithstanding their multi-
scale nature and unstable behaviour makes it difficult to achieve accurate results. In
this paper we propose a kinetic approach to this problem, explain the constraints and
the difficulties that this choice entails as well as its advantages. Numerical methods
are needed to obtain the solutions of the stability. The ones in use imply that a regular
computer takes a long period of time to provide the solutions. In this paper, taking
into account the developments proposed by others, we present a numerical procedure
that helps to overcome the difficulties of the current methods and allows us to answer
some questions related to the stability problem.
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1 Introduction

In kinetic theory of gases the description of a gas system evolution is obtained using
distribution functions in the mesoscopic level. These distributions are defined in the
phase space composed by the position x , and the velocity c for a given time t in
such a way that f (x, c, t) represents the number of particles that, at time t , are in the
volume element dxdc around position x and velocity c.

The basic assumption of kinetic theorymodelling is that the number of particles of
a gas is so large that it can be treated as a continuum. If we consider that particles obey
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classical laws ofmechanics andwe neglectmacroscopic forces acting on the particles
and interactions between them, according to Newton’s Principle, each particle travels
at constant velocity along a straight line, therefore, f (x, c, t) = f (x − ct, c, 0) for
any time t . In these conditions, f is a weak solution of the free transport equation

∂ f

∂t
+

3∑

i=1

ci
∂

∂xi
f = 0. (1)

In 1872, see Ref. [1] Ludwig Boltzmann derived an equation, the so called Boltz-
mann Equation, that is used to describe the evolution of a gas, considering that par-
ticles interact. This derivation was based on some physical assumptions (for more
details see for instance [1] or [2]):

(a) the collision time is much smaller in comparison with the free travelling time of
a particle;

(b) collisions between more than two particles may be neglected;
(c) collisions are micro-reversible;
(d) the velocities of two particles that are about to collide are uncorrelated;
(e) there are some physical quantities that do not change during a collision, such as

mass, linear momentum and kinetic energy.

The Boltzmann Equation is an integro-differential equation that, considering a
single gas speciewithoutmacroscopic forces acting on the particles, has the following
expression [3]:

∂ f

∂t
+

3∑

i=1

ci
∂

∂xi
f = Q( f, f ), (2)

where Q( f, f ) is the integral collisional operator. An extension of the Boltzmann
equation to chemical reactive gases, will be presented with more detail in the next
section.

The Boltzmann Equation was then extended to many different situations, such
as gases with macroscopic forces acting on the particles, gases with more than one
constituent, gases with more than one constituent where particles may interact not
only in elastic collisions but also in reactive collisions, polyatomic gases, relativistic
systems, among others.

The equilibrium solution is the only exact solution of the Boltzmann Equation,
that is currently known. The wide range of applications of this equation and the diffi-
culties of finding its solutions led many researchers to develop simplified variants of
the Boltzmann equation which allowed them to find solutions, while still retaining
its main features. The BGK model [4], the Kac model [5] and the discrete-velocity
models [6] are some of the examples. Others, such as Grad, Chapman and Enskog,
developed different methods to obtain approximate solutions of the full Boltzmann
Equation.
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In this work we will address the problem of the detonation wave propagation, that
will be presented in Sect. 3 and its stability analysis that will be presented in Sect. 4.
The kinetic approach to this problem, using the Boltzmann equation to describe the
evolution of the gas system, allows a discussion around the microscopic features of
the gas, such as the molecular potential, the reaction heat of the considered chemical
reaction and the activation energy needed for the reaction to occur. It also allows the
study on their influence in differentmacroscopic regimes, such as different detonation
velocities and different initial concentrations of the gas constituents.

In what follows, we will present some of our work on this subject and make
reference to a few other works that were important in the development of the current
state of art. The paper is organized as follows. The kinetic description of the gas
system is presented in Sect. 2. In Sects. 3 and 4 we present the detonation wave
problem and the stability analysis modelling. Finally, in Sect. 5 we discuss some
numerical techniques that were used to obtain solutions for the stability analysis and
present recent developments on the study of stability.

2 Kinetic Framework and Macroscopic Equations

In this section we present the main microscopic features of the gas system and
synthetically explain how to go from the microscopic description to the macroscopic
equations that describe the gas evolution.

2.1 Microscopic Modelling

We consider a binary gaseousmixture whose constituents, A and B, have equal mole-
cular mass m and binding energies EA and EB . Vibrational and rotational molecular
degrees of freedom are not taken into account. The gas particles can undergo binary
elastic collisions as well as collisions with chemical reaction according to the single
reversible symmetric law

A + A � B + B. (3)

At the mesoscopic scale, the thermodynamical behaviour of the mixture is modelled
by the following system of Boltzmann equations for the constituent distribution
functions fα(x, cα, t), with x, cα ∈ R

3 and t ∈ R
+,

∂ fα
∂t

+ cα∇x fα = Q( fα, fα), α = A, B, (4)

where Q( fα, fα) = QE
α + QR

α , and

QE
α =

B∑

β=A

∫ (
f ′
α f ′

β − fα fβ
)
d2

(
gβα · kβα

)
dkβαdcβ, (5)
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QR
α =

∫ [
fβ f ′

β − fα f ′
α

]
σ �

α
2
(gα · kα) dkαdc′

α. (6)

Above, in Eq. (5), the primes denote post collisional distribution functions, d the
elastic particle diameter, gβα the relative velocity between the α and β particles, kβα

the unit collision vector and dkβα the element of solid angle for elastic collisions and
in Eq. (6), the primes are used to distinguish two identical particles that participate in
the reactive collision, kα is the unit collision vector, gα the relative velocity between
two identical particles of constituent α, with (α, β) ∈ {(A, B), (B, A)}, dkα the
element of solid angle for reactive collisions, and the term σ �

α
2 is the differential

reactive cross section.
The collisional operator Q( fα, fα), was used by Boltzmann to introduce the

influence of the encounters between particles in the description of the evolution of
the gas system. In the considered kinetic framework, this operator must consider
elastic and reactive collisions, therefore, it is split into two operators: the elastic
operator QE

α and the reactive operator QR
α . As we can see in Eq. (5), in the elastic

operator all collisions are considered, even those between two constituents A or two
constituents B that end up being reactive and thus considered in the reactive operator.
This double counting shouldn’t create any major problem in situations where the
number of elastic encounters is much larger than the number of reactive encounters.
Although this is what happens more frequently, some recent works introduced a
correction term to avoid this problem, see for instance [7].

In what follows, the reactive cross section σ�
α
2 is defined as

σ �
α
2 =

{
0 for γα < ε�

α

d2 for γα > ε�
α

α = A, B, (7)

where the relative translational energy γα = mg2α
4kT and the activation energies ε�

α are
written in units of kT , with k being the Boltzmann constant and T the temperature of
the mixture. There are many works on reacting gases that choose different collision
potential. For more details on the implications of these choices see for instance [3].

2.2 Hydrodynamical Limit

Macroscopic state variables may be defined as mean values of microscopic quan-
tities. For instance, the number densities nα of the constituents, the mean velocity
components vi and temperature T of the mixture, may be defined by

nα =
∫

fαdcα, vi = 1

n

B∑

α=A

∫
cα
i fαdcα, T = m

3kn

B∑

α=A

∫
(cα − v)2 fαdcα,

(8)
respectively.
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Aswas explained before, there are some physical microscopic quantities that must
be preserved during a collision and a proper microscopic model must respect those
physical characteristics. It is possible to prove that the model that is used in this paper
has the desired properties. Therefore, if fα is a solution of the Boltzmann equation,
and	α ∈ {

1,mα,mαcα
1 ,mαcα

2 ,mαcα
3 ,

1
2mαc2α + Eα

}
then, multiplying both sides of

the Boltzmann equation (2.1) by the proper 	α and integrating over cα leads to the
following macroscopic equations

∂nα

∂t
+

3∑

i=1

∂nα

∂xi

(
nαvi + nαu

α
i
) = τα, (9)

∂

∂t
(ρvi ) +

3∑

j=1

∂

∂xi

(
pi j + ρvi v j

) = 0, (10)

∂

∂t

(
3

2
nkT +

B∑

α=A

nαEα + 1

2
ρv2

)
+

3∑

i=1

∂

∂xi

{
qi +

3∑

j=1

pi j v j

+
(3
2
nkT +

B∑

α=A

nαEα + 1

2
ρv2

)
vi

}
= 0. (11)

Above, uα
i and τα are the diffusion velocity components and the reaction rate of the

constituent α, and ρ, pi j , qi are the mass density, pressure tensor and heat flux of the
gas system.

These six Eqs. (9)–(11) do not form a closed system and we must pass to the
hydrodynamic limit to close it. Here we adopt the solution obtained in [8] using the
asymptotic method of Chapman-Enskog and a second order Sonine expansion of the
distribution functions. This approximate solution was used to describe the complete
reactive process, starting from its early stage and going towards the equilibrium final
state. Depending on the chemical regimes that we want to model, we may consider
other regimes or even other approximation methods. In paper [9], for example, the
author derived a different hydrodynamical limit where elastic encounters are the
dominant interactions between particles. The subject of deriving hydrodynamical
limits from microscopic descriptions is a research area for itself, see for instance
[10, 11]. Although interesting, this subject will not be addressed here.

With the distribution function obtained in [8] we may evaluate some macroscopic
quantities of Eqs. (9)–(11) such as the reaction rate τα , constituent diffusion velocities
uα
i , mixture pressure tensor pi j and heat flux qi . The resulting equations, in the one

dimensional form, may be rearranged in the following way:

∂nA

∂t
+ ∂

∂x
(nAv) = τA , (12)

∂

∂t
(nA + nB) + ∂

∂x

[
(nA + nB)v

]
= 0, (13)
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∂v

∂t
+ 1

ρ

∂p

∂x
+ v

∂v

∂x
= 0, (14)

∂p

∂t
+ v

∂p

∂x
+ 5

3
p

∂v

∂x
+ 2

3

B∑

α=A

Eατα = 0, (15)

where v represents now the x-component of the gas system velocity. This choice
was motivated by the fact that these equations’ aim is to study the one dimensional
detonation wave. This subject is the main topic of the next section.

3 One Dimensional Steady Detonation

The one dimensional detonation wave model is based on the assumption that ahead
of a shock there is a gas system in a meta stable equilibrium. This means that in
this location, chemical reactions between particles may be neglected but, if a trigger
appears, such as a shock wave with a large velocity, then a chemical reaction occurs
until the gas system reaches total, elastic and chemical, equilibrium. This phenom-
enon may be described by the simple ZND (Zel’dovich, John Von Neumann and
Werner Döring) model in the case of a detonation wave with velocity greater then
the CJ (Chapman-Jouguet) velocity. For more detail see for instance [12, 13].

Many researchers developed studies concerning the detonation wave problem. In
paper [14] the authors did so by exploring the reaction zone thickness for different
wave velocities and different activation energies. In [15] the influence of the chemical
reaction velocity in the detonation wave profiles was studied.

In paper [16], in collaboration with Ana Jacinta Soares, we studied the influence
of the reaction heat on the detonation wave profiles and its relation with the activation
energy of the chemical reaction. We considered the gas system described before with
the chemical reaction defined in Eq. (3) and with the governing Eqs. (12)–(15). Then,
transforming these equations’ frame to the shock front we obtained the steady state
equations:

d

dx

[
(v − D) nA

]
= DτA, (16)

d

dx

[
(v − D) (nA + nB)

]
= 0, (17)

d

dx

[
(v − D) ρv + nkT

]
= 0, (18)

d

dx

[
(v − D)

(
3

2
nkT + ρv2

2
+ EAnA + EBnB

)
+ nkT v

]
= 0. (19)

These equations with the Rankine-Hugoniot conditions
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(v − D) nA = −DnA0, (20)

(v − D) nB = −DnB0, (21)

(v − D) ρv + nkT = n0kT0, (22)

(v − D)

(
3

2
nkT + ρv2

2
+ EAnA + EBnB

)
+ nkT v =

= −D

(
3

2
n0kT0 + EAnA0 + EBnB0

)
, (23)

constitute a closed equation system that is used to obtain the steady state detonation
wave solution for a given set of parameters such as the initial values for the macro-
scopic variables noted with the subscript 0 and the detonation wave velocity D.

With this system it was possible to observe, for the input parameters, that for
an exothermic reaction the steady detonation solution is a rarefaction wave, which
means that the pressure decreases along the reaction zone, and for an endothermic
reaction the steady detonation solution is a compression wave, which means that the
pressure increases along the reaction zone. In addition, it was also possible to observe,
among other expected and essential physical features, that the temperature increases
for an exothermic chemical reaction and decreases for an endothermic reaction and
that the extent of the reaction zone decreases when the reaction heat increases.

These are examples of works where the authors started from a kinetic description
of the gas to analyse, using an appropriate hydrodynamic limit, the behaviour of the
detonation wave for different values of hider microscopic, such as the reaction heat
and activation energy, or macroscopic variables, such as initial concentrations and
wave velocity. Provided we have experimental data, we may determine approxima-
tions for unknown parameters, such as transport coefficients of diffusion, viscosity
and thermal conductivity and use the resulting Euler equations or Navier-Stokes
equations to describe the spatio-temporal evolution of the gas system. However, for
a number of reasons, we do not have experimental data for all cases. Hence, a kinetic
theoretical approach constitutes an important step in the understanding of a phenom-
enon andmay be used to predict the result of an experiment, regarding specific values
of the variables in consideration [17].

4 Linear Stability Analysis

In this section we will discuss the linear stability of the detonation wave solution
obtainedwith the ZNDmodel, which is an idealisedmodel of the detonation problem.
Moreover, linear stability analysis only allows us to evaluate the response of the
detonationwave solution to small disturbances.Although this is a simplified problem,
it reflects some of the important features of more realistic models and simultaneously
allows an accurate mathematical approach.
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As far as we know, the study of more complex and complete situations, such
as multidimensional flows, is nearly non-existent. Furthermore, the difficulties of
this approach already constitute an interesting mathematical challenge and, although
some recent contributions and approaches to this problem have been made, there is
still much to be done, namely in the efficiency of the numerical methods that are
used to search for solutions.

The modern theory of detonation stability started with Erpenbeck, in 1962 [18,
19] and it is still the basis for the current stability work. Erpenbeck described the
stability problem as an initial-value problem considering a small perturbation from
the steady state. Along with other mathematical results, Erpenbeck used the Nyquist
winding theorem to develop a numerical procedure that, for a given set of parameters,
would determine the number of zeros of an analytic function in the complex plan.
The zeros of this function corresponded to unstable solutions of the stability problem.

In 1990Lee and Stewart [20] introduced a normal-mode approach and a numerical
shooting method to develop a simpler and more efficient search for unstable solu-
tions. After Erpenbeck’s work, others, besides Lee and Stewart, contributed to the
development of the stability analysis, namely [12, 13, 18, 21–23]. For more details
on the state of detonation stability see [24].

In the next section, we present in more detail the procedure used to develop a
linear stability analysis, using the normal-mode approach proposed in [20].

4.1 Stability Macroscopic Equations

It is well known from theoretical studies, as well as from experimental investigations,
that steady solutions may degenerate into an oscillatory solution in the long-time
limit. The first required test of the steady solutions should be the evaluation of its
response to small rear boundary perturbations. To do that, we introduce a perturbation
that induces a deviation on the shockwave position, giving rise to small perturbations
on the state variables that propagate into the reaction zone. The evolution of the state
variables perturbations over time determines the stability of the steady detonation
solution. In fact, when some perturbation grows over time, the steady solution is said
to be hydrodynamically unstable and if all perturbations decay in time, the steady
solution is stable.

The linear stability problem is formulated as an initial-boundary value problem
in terms of the stability differential equations, with initial conditions at the Von
Neumann state and an additional closure boundary condition at the final state.

The equations for the study of the linear stability are obtained from the steady state
equations attached to the shock front (16)–(19) and the initial Rankine–Hugoniot
conditions (20)–(23). The shock front of a steady detonation wave with constant
velocity D is placed in x − Dt and if we introduce a perturbation on the shock front
that depends on time we may write

x = x� − ψ(t), with ψ(t) = Dt + ψ̃(t), (24)
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where x� is the laboratory frame coordinate, ψ̃(t) the displacement of the shockwave
from the unperturbed position due to a small perturbation, and ψ(t) the location of
the perturbed wave. In the new shock attached coordinate system, the instantaneous
position of the perturbed shock wave is x = 0 and its velocity is D(t) = D + ψ̃ ′(t).
Furthermore, a normal mode expansion with exponential time dependent perturba-
tions is assumed for the steady state variables,

z(x, t) = z∗(x) + eat z(x), ψ(t) = ψ eat , a, ψ ∈ C, (25)

where z=[nA nB v p]T is the state vector, z∗(x) indicates the one-dimensional steady
solution, z(x) is the vector of complex eigenfunctions representing the unknown
spatially disturbances, ψ is a complex disturbance amplitude parameter and a is the
complex eigenvalue, with Re a and Im a being the disturbance growth rate and fre-
quency, respectively. The transformed governing equations in the perturbed shock
frame are then linearized about the steady solution z∗(x), by means of the expansions
(25). Performing a further normalization of the state variables, with respect to the
complex amplitude parameter ψ , namely w = z/ψ , one obtains the evolution equa-
tions in the wave coordinate x , for the complex disturbances. Rewriting z instead of
w, the resulting equations, for x ∈ ]xF , 0[, are

Danα + (
v∗ − D

) dnα

dx
+ n∗

α

dx
(v − Da) + dv∗

dx
nα + n∗

α

dv

dx
= τα, α = A, B, (26)

ρ∗Dav + d p

dx
+ ρ∗ dv∗

dx
(v − Da) + (

v∗ − D
) dv∗
dx

ρ + ρ∗ (
v∗ − D

) dv

dx
= 0, (27)

Dap + 5

3

(
p∗ dv

dx
+ p

dv∗
dx

)
+ (

v∗ − D
) d p
dx

+ (v − Da)
dp∗
dx

= Q∗
RDτ A

3
, (28)

with τα being the linearized reaction rates, explicitly presented in [16].

The initial conditions to be added to the stability Eqs. (26)–(28) are obtained by
introducing the same expansion (25) and linearization about the steady solution as
before, followed by a normalization with respect toψ . Hence, the resulting equations
are:

nα(0) =
(
n∗

α − nα0
)
a − n∗

αv(0)

v∗ − D
, α = A, B, (29)

v(0) = 3ρ0v∗2 + 3
2 (p∗ − p0) − 3

2Dρ0v∗ + 2EAn0 + Q∗
RnB0

−ρ∗ (v∗ − D)2 + 5
2 p

∗ a , (30)

p(0) = −ρ0av
∗ − (

v∗ − D
)
ρ∗v(0) . (31)

Equations (26)–(28) constitute the stability equations for the present modelling,
giving the spatial evolution of the complex perturbations z(x) in the reaction
zone, from the perturbed shock position x=0, with initial conditions given by
Eqs. (29)–(31), to the equilibrium final state x= xF .
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They form a system of eight first-order homogeneous linear ordinary differential
equations with spatially varying coefficients, and eight initial conditions, for the
real and imaginary parts of the complex perturbations and of the eigenvalue a. This
system, which henceforward will be called stability system, is not closed and more
information is needed to close it.

4.2 Radiation Condition

The radiation condition is called, in literature, the closure condition since it is used to
close the stability equations system obtained in the previous subsection. This condi-
tion was adopted in many previous works on detonation stability as, for example, in
papers [20, 24–28] and it is needed for physical purposes. This is a system of eight
equations and ten variables therefore it is possible to consider two of those variables,
for instance the real and the imaginary part of the eigenvalue a, as parameters and
solve the system for the remaining eight variables. By doing so, we would obtain a
solution for the stability system. However, this may not be a solution for the stabil-
ity problem. In fact, the probability that the solution obtained in this manner could
represent a solution for the stability problem is very low.

There are, in the above cited papers, some interesting explanations for the need to
include this additional condition in order to obtain a physical solution to the problem.
One argues that the detonation wave solution results exclusively from the interplay
between the leading shock and the reaction zone and can not be affected by further
disturbances traveling towards the shock from a great distance from the reaction
zone. Regarding the adopted model, it has the expression:

v(xF ) + a = −1

γρ∗
eqc

∗
eq

p(xF ), (32)

where γ is the ratio of specific heats, c∗
eq and ρ∗

eq the isentropic sound speed and gas
density at the equilibrium final state, for x = xF .

A solution of the linear stability problem of the steady detonation in terms of the
complex disturbances z(x) and eigenvalue a must be obtained using the ordinary
differential equations (26)–(28) for x ∈ ]xF , 0[, with initial conditions (29)–(31) at
x = 0 and closure condition (32) at x = xF . This problem was addressed in [16] as
described in the next subsections.

4.3 Numerical Method

The stability problem is addressed numerically, with an iterative shooting technique
based on the numerical method proposed by Lee and Stewart in paper [20], with
the aim of obtaining the stability spectrum for the eigenfunction perturbations z and



A Kinetic Approach to Steady Detonation Waves and Their Linear Stability 111

eigenvalue perturbation parameter a, in terms of the parameters characterizing the
steady solution. We choose a trial value of a in a fixed bounded domain R of the
complex plane and then integrate Eqs. (26)–(28) in the reaction zone ]xF , 0[ with
initial conditions (29)–(31) at x = 0, using a fourth order Runge–Kutta routine.
The solution z(x), x ∈ [xF , 0], obtained for the considered trial value of a is then
evaluated for x = xF to check if the boundary condition (32) is verified.

As was mentioned before, for a given steady detonation solution, an arbitrary
value of a does not satisfy the closure condition (32) and thus the outcome is not a
solution of the stability problem. To overcome this mishap, we may use the residual
function H (a), defined from the closure condition (32) by the expression

H (a) = v(xF ) + a + 1

γρ∗
eqc

∗
eq

p(xF ) , a ∈ C. (33)

Notice that the radiation condition is verified if and only if H (a) = 0, therefore to
search for solutions considering the eigenvalue a to be in a limited region R of the
complex plan, we may choose a large number of trial values a in that region and
search for the zeros of H . Although it looks like a simple task, the search for the
zeros ofH is a very time consumer task. There are some straightforward procedures
introduced by Lee and Stewart in paper [20] but they require a huge number of trial
values in a region of the complex plan, which implies that a regular computer needs
a long period of time to do the calculations.

In paper [16] we introduced a numerical procedure to reduce the number of trial
values that are needed to search for the zeros of H . This procedure recovered the
Erpenbeck’s ideaof counting thenumber of zeros of a function in afixeddomainof the
complexplan and combined itwith the shootingmethodproposedbyLee andStewart.
We believe that it is important to develop new and more efficient methods to search
for zeros of the residual function, in order to help researchers in the development of
a complete stability analysis on the detonation wave propagation. For more realistic
cases, the calculations are even longer and those resources are all the more necessary.

In what follows, we present the numerical method that we used to count the
number of zeros in a limited region of the complex plan.

Numerical Procedure

First we have to decide the regionR, of the complex plan, where we want to search
for eigenvalues. With the expansion about the steady state defined in Eq. (25), we
know that a stability solution is unstable if and only if Rea > 0. We also know that it
takes only one unstable solution to classify a steady detonation solution as unstable
and that the existence of stable solutions bring no information about the stability of
the steady detonation solution. Therefore, we must search for solutions in the right
half of the complex plan. On the other hand, since these modes occur in conjugate
pairs, it is enough to choose a domain R in the upper-right quarter of the complex
plan.

The argument principle states that the difference between the number Z of zeros
and P of poles of the function H within the region R, provided that there are no
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zeros in its contour, is given by

Z − P = 1

2π i

∫

ζ

H ′(u)

H (u)
du, (34)

or equivalently by

Z − P = 1

2π i

∫ �

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt, (35)

where ζ : [k, �] → C is a path smooth by parts, describing the contour of R in the
positive sense. We may consider that H does not have any poles, since we expect
that the disturbancies do not blow in a finite time consistent with a linear analysis of
the stability. Therefore we have P = 0 and the expression (35) gives the number of
zeros of H inside the region R,

Z = 1

2π i

∫ �

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt. (36)

The mean value theorem states that the integral in expression (36) is equal to the
integral ∫ �

k

H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖ dt = μ(� − k), (37)

where μ represents the mean value in the interval [k, �] of the function h defined by

h(t) = H ′(ζ(t))

H (ζ(t))
‖ ζ ′(t) ‖, t ∈ [k, �] . (38)

Hence, to count the number of zeros in the region R, all we need to compute is
the value of μ.

It is well known that if n is large enough, then the mean value of the sample
S, μS , can be treated as a statistical variable following a normal distribution with
mean value μ and standard deviation σS/

√
n, where σS is the standard deviation of

S. Therefore, the mean value μ of the function h can be inferred in a confidence
interval by the mean value μS of the sample S. In this situation we considered

S = {
h(t j ) : i = 1, 2, . . . , n

}
, (39)

with t j ∈ [k, �]. To obtain the value of each h(t j ), since we know path ζ , we directly
obtain the values for ζ ′(t j ) and ζ(t j ) and this last one is a point in the complex plan
that might be used as a trial value to the eigenvalue a j and thus solving the stability
equation system,weobtain the valueofH (ζ(t j )). ThevalueofH ′(ζ(t j )) is obtained
choosing a suitable point close enough to ζ(t j ), say b j , with Re b j = Re a j + 10−6

and Im a j = Im b j , as follows
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H ′(a j ) ≈ H (b j ) − H (a j )

b j − a j
, i = 1, 2, . . . , n. (40)

Consequently, the number of zeros of the residual functionH inside the domain
R is estimated as follows

� − k

2π i

(
μS − 2.58

σS√
n

)
< Z <

� − k

2π i

(
μS + 2.58

σS√
n

)
, (41)

where the number 2.58 is used to assure the 99% confidence of the interval.

5 Discussion

The numerical procedure presented in the previous section requires a much smaller
number of trial values than those needed to compute the methods presented by Lee
and Stewart and is sufficient to determine if, given a specific set of parameters,
a steady detonation is stable or not. This is precisely the information we have to
have if we want to determine the stability boundary in some parameter plan such
as the plan defined by the reaction heat and forward activation energy. On the other
hand, if we want to determine the value of the eigenvalues, we need to proceed with
the computation, considering subregions of R and using the numerical procedure
considered above or applying the methods proposed by Lee and Stewart or even a
combination of both.

We consider that it is important to improve this method or to create new ones
to obtain solutions of the stability problem in order to increase the knowledge on
the linear stability problem of the one-dimensional detonation wave as well as to
approach more realistic models.

In paper [16] we were able to determine the region of the parameter plan of the
reaction heat and forward activation energy that corresponds, giving a specific set
of parameters, to unstable solution. Moreover, we tracked the fundamental eigen-
value along different values of the reaction heat. These are two examples of the nice
perspectives that we might have on the macroscopic behaviour of a physical phe-
nomenon such as a detonation wave, starting from the microscopic features of the
system constituents and their relations.

Stability analysis is a major issue in the study of detonation waves which, in
turn, are used to model many relevant engineering processes. As was said before,
the model used in this paper is rather simplistic but still faces interesting challenges.
We are already working on the development of a bidimensional stability analysis
starting from a kinetic level and we expect to obtain new and interesting results on
this subject.
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