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Abstract We consider nonlocal reaction-diffusion equations and nonlocal
Korteweg-de Vries-Burgers (KdVB) equations, i.e. scalar conservation laws with
diffusive-dispersive regularization. We review the existence of traveling wave solu-
tions for these two classes of evolution equations. For classical equations the traveling
wave problem (TWP) for a local KdVB equation can be identified with the TWP for
a reaction-diffusion equation. In this article we study this relationship for these two
classes of evolution equations with nonlocal diffusion/dispersion. This connection
is especially useful, if the TW equation is not studied directly, but the existence of
a TWS is proven using one of the evolution equations instead. Finally, we present
three models from fluid dynamics and discuss the TWP via its link to associated
reaction-diffusion equations.
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1 Introduction

We will consider two classes of (nonlocal) evolution equations and study the
associated traveling wave problems in parallel: On the one hand, we consider scalar
conservation laws with (nonlocal) diffusive-dispersive regularization

∂t u + ∂x f (u) = εL1[u] + δ∂xL2[u] , t > 0 , x ∈ R , (1)

for some nonlinear function f : R → R, Lévy operators L1 and L2, as well as
constants ε, δ ∈ R. The Fourier multiplier operators L1 and ∂xL2 model diffusion
and dispersion, respectively. On the other hand, we consider scalar reaction-diffusion
equations

∂t u = σL3[u] + r(u) , t > 0 , x ∈ R , (2)

F. Achleitner (B)
Faculty of Mathematics, University of Vienna,
Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
e-mail: franz.achleitner@univie.ac.at

© Springer International Publishing AG 2017
P. Gonçalves and A.J. Soares (eds.), From Particle Systems to Partial
Differential Equations, Springer Proceedings in Mathematics & Statistics 209,
DOI 10.1007/978-3-319-66839-0_2

47



48 F. Achleitner

for some positive constant σ , as well as a nonlinear function r : R → R and a Lévy
operator L3 modeling reaction and diffusion, respectively.

Definition 1 A traveling wave solution (TWS) of an evolution equation–such as (1)
and (2)–is a solution u(x, t) = ū(ξ) whose profile ū depends on ξ := x − ct for
somewave speed c. Moreover, the profile ū ∈ C2(R) is assumed to approach distinct
endstates u± such that

lim
ξ→±∞ ū(ξ) = u± , lim

ξ→±∞ ū(n)(ξ) = 0 with n = 1, 2. (3)

Such a TWS is also known as a front in the literature. A TWS (ū, c) is called
monotone, if its profile ū is a monotone function.

Definition 2 The travelingwave problem (TWP) associated to an evolution equation
is to study for some distinct endstates u± the existence of a TWS (ū, c) in the sense
of Definition 1.

We want to identify classes of evolutions equations of type (1) and (2), which lead to
the sameTWP.This connection is especially useful, if the TWP is not studied directly,
but the existence of a TWS is proven using one of the evolution equations instead. A
classical example of (1) is a scalar conservation law with local diffusive-dispersive
regularization

∂t u + ∂x f (u) = ε∂2
x u + δ∂3

x u , t > 0 , x ∈ R , (4)

for some nonlinear function f : R → R and some constants ε > 0 and δ ∈ R.
Equation (4) with Burgers flux f (u) = u2 is known as Korteweg-de Vries-Burgers
(KdVB) equation; hence we refer to Eq. (4) with general f as generalized KdVB
equation and Eq. (1) as nonlocal generalized KdVB equation. A TWS (ū, c) satisfies
the traveling wave equation (TWE)

− cū′ + f ′(ū) ū′ = εū′′ + δū′′′ , ξ ∈ R , (5)

or integrating on (−∞, ξ ] and using (3),

h(ū) := f (ū) − cū − ( f (u−) − c u−) = εū′ + δū′′ , ξ ∈ R . (6)

However, the TW ansatz v(x, t) = ū(x − εt) for the scalar reaction-diffusion equa-
tion

∂t v = −h(v) + δ∂2
x v , t > 0 , x ∈ R , (7)

leads to the same TWE (6) except for a different interpretation of the parameters.
The traveling wave speeds in the TWP of (4) and (7) are c and ε, respectively. For
fixed parameters c, ε, and δ, the existence of a traveling wave profile ū satisfying (3)
and (6) reduces to the existence of a heteroclinic orbit for this ODE. This is an
example, where the existence of TWS is studied directly via the TWE.

An example, where the TWE is not studied directly, is the TWP for a nonlocal
KdVB equation (1) withL1[u] = ∂2

x u andL2[u] = φε ∗ u − u for some even non-
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negative function φ ∈ L1(R) with compact support and unit mass, where φε(·) :=
φ(·/ε)/ε with ε > 0. It has been derived as a model for phase transitions with long
range interactions close to the surface, which supports planar TWS associated to
undercompressive shocks of (B.1), see [52]. In particular, the TWP for a cubic flux
function f (u) = u3 is related to the TWP for a reaction-diffusion equation (2) with
L3[u] = L2[u]. The existence of TWS for this reaction-diffusion equation has been
proven via a homotopy of (2) to a classical reaction-diffusion model (7), see [14].

Outline. In Sect. 2 we collect background material on Lévy operators L , which
will model diffusion in our nonlocal evolution equations. Special emphasize is given
to convolution operators andRiesz–Feller operators. In Sect. 3we review the classical
results on the TWP for reaction-diffusion equations (7) and generalized Korteweg-
de Vries-Burgers equation (4). We study their relationship in detail, especially the
classification of function h(u), which will be used again in Sect. 4. In Sect. 4, first
we review the results on TWP for nonlocal reaction-diffusion equations (2) with
operators L3 of convolution type and Riesz–Feller type, respectively. Finally, we
study the example of nonlocal generalized Korteweg-de Vries-Burgers equation (1)
with L1[u] = D1/3

+ u and L2[u] = ∂2
x u modeling a shallow water flow [44], and

Fowler’s equation

∂t u + ∂xu
2 = ∂2

x u − ∂xD
1/3
+ u , t > 0 , x ∈ R , (8)

modeling dune formation [36], whereDα+ is a Caputo derivative. In the Appendix, we
collect background material on Caputo derivativesDα+ and the shock wave theory for
scalar conservation laws, which will explain the importance of the TWP for KdVB
equations.

Scalar conservation laws with fractional Laplacian are another example of equa-
tion (1) with L1[u] = −(−∂2

x )
α/2 u, 0 < α < 2, and L2[u] ≡ 0. However, its trav-

eling wave problem can not be related to a nonlocal reaction-diffusion problem like
our examples. Therefore, instead of discussing its traveling wave problem, we refer
the interested reader to the literature [7, 8, 10, 15, 23, 26, 30–33, 43] and references
therein.

Notations. We use the conventions in probability theory, and define the Fourier
transformF and its inverse F−1 for g ∈ L1(R) and x, k ∈ R as

F [g](k) :=
∫
R

e+ i kx g(x) dx ; F−1[g](x) := 1
2π

∫
R

e− i kx g(k) dk .

In the following,F andF−1 will denote also their respective extensions to L2(R).

2 Lévy Operators

A Lévy process is a stochastic process with independent and stationary increments
which is continuous in probability [12, 40, 53]. Therefore a Lévy process is charac-
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terized by its transition probabilities p(t, x), which evolve according to an evolution
equation

∂t p = L p (9)

for some operator L , also called a Lévy operator. First, we define Lévy operators
on the function spaces C0(R) := { f ∈ C(R) | lim|x |→∞ f (x) = 0} and C2

0 (R) :=
{ f, f ′, f ′′ ∈ C0(R)}.
Definition 3 The family of Lévy operators in one spatial dimension consists of
operators L defined for f ∈ C2

0 (R) as

L f (x) = 1
2 A f ′′(x) + γ f ′(x) +

∫
R

(
f (x + y) − f (x) − y f ′(x)1(−1,1)(y)

)
ν( dy)

(10)
for some constants A ≥ 0 and γ ∈ R, and a measure ν on R satisfying

ν({0}) = 0 and
∫
R

min(1, |y|2) ν( dy) < ∞ .

Remark 1 The function f (x + y) − f (x) − y f ′(x)1(−1,1)(y) is integrable with
respect to ν, because it is bounded outside of any neighborhood of 0 and

f (x + y) − f (x) − y f ′(x)1(−1,1)(y) = O(|y|2) as |y| → 0

for fixed x . The indicator function c(y) = 1(−1,1)(y) is only one possible choice to
obtain an integrable integrand. More generally, let c(y) be a bounded measurable
function from R to R satisfying c(y) = 1 + o(|y|) as |y| → 0, and c(y) = O(1/|y|)
as |y| → ∞. Then (10) is rewritten as

L f (x) = 1
2 A f

′′(x) + γc f ′(x) +
∫
R

(
f (x + y) − f (x) − y f ′(x)c(y)

)
ν( dy) ,

(11)
with γc = γ + ∫

R
y (c(y) − 1(−1,1)(y)) ν( dy) .

Alternative choices for c:

(c 0) If a Lévy measure ν satisfies
∫
|y|<1 |y| ν( dy) < ∞ then c ≡ 0 is admissible.

(c 1) If a Lévy measure ν satisfies
∫
|y|>1 |y| ν( dy) < ∞ then c ≡ 1 is admissible.

We note that A and ν are invariant no matter what function c we choose.

Examples

(a) The Lévy operators

L f =
∫
R

(
f (x + y) − f (x)

)
ν( dy) (12)
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are infinitesimal generators associated to a compound Poisson process with finite
Lévymeasure ν satisfying (c 0). The special case of ν( dy) = φ(−y) dy for some
function φ ∈ L1(R) yields

L f (x) =
∫
R

(
f (x + y) − f (x)

)
φ(−y) dy =

(
φ ∗ f −

∫
R

φ dy f

)
(x) .

(13)
(b) Riesz–Feller operators. The Riesz–Feller operators of order a and asymmetry θ

are defined as Fourier multiplier operators

F [Da
θ f ](k) = ψa

θ (k) F [ f ](k) , k ∈ R , (14)

with symbol ψa
θ (k) = −|k|a exp [

i sgn(k) θπ/2
]
such that (a, θ) ∈ Da,θ and

Da,θ := { (a, θ) ∈ R
2 | 0 < a ≤ 2 , |θ | ≤ min{a, 2 − a} } ,

see also (Fig. 1)
Special cases of Riesz–Feller operators are

• Fractional Laplacians −(−Δ)a/2 on R with Fourier symbol −|k|a for 0 <

a ≤ 2. In particular, fractional Laplacians are the only symmetric Riesz–
Feller operators with −(−Δ)a/2 = Da

0 and θ ≡ 0.
• Caputo derivatives −Dα+ with 0 < α < 1 are Riesz–Feller operators with
a = α and θ = −α, such that −Dα+ = Dα−α , see also Sect.A.

• Derivatives of Caputo derivatives ∂xDα+ with 0 < α < 1 are Riesz–Feller
operators with a = 1 + α and θ = 1 − α, such that ∂xDα+ = D1+α

1−α .

Next we consider the Cauchy problem

∂t u(x, t) = Da
θ [u(·, t)](x) , u(x, 0) = u0(x) , (15)

for (x, t) ∈ R × (0,∞) and initial datum u0.

Proposition 1 For (a, θ) ∈ Da,θ with θ 
= ±1 and 1 ≤ p < ∞, the Riesz–Feller
operator Da

θ generates a strongly continuous L p-semigroup

St : L p(R) → L p(R) , u0 �→ Stu0 = Ga
θ (·, t) ∗ u0 ,

with heat kernel Ga
θ (x, t) = F−1[exp(t ψa

θ (·))](x). In particular, Ga
θ (x, t) is the

probability measure of a Lévy strictly a-stable distribution.

The proof of this proposition for a subclass 1 < α ≤ 2 in [6, Proposition 2.2] can be
extended to cover all cases (a, θ) ∈ Da,θ with θ 
= ±1. For (a, θ) ∈ {(1, 1), (1,−1)},
the probability measure Ga

θ is a delta distribution, e.g. G1
1(x, t) = δx+t and G1−1

(x, t) = δx−t , and is called trivial [53, Definition 13.6]. However, we are interested
in non-trivial probability measures Ga

θ for

(a, θ) ∈ D�
a,θ := { (a, θ) ∈ Da,θ | |θ | < 1 } ,
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Fig. 1 The family of Fourier multipliers ψa
θ (k) = −|k|a exp [

i sgn(k)θπ/2)
]
has two parame-

ters a and θ . Some Fourier multiplier operators F [T f ](k) = ψa
θ (k) F [ f ](k) are inserted in the

parameter space (a, θ): partial derivatives and Caputo derivatives Dα+ with 0 < α < 1. The Riesz–
Feller operators Da

θ are those operators with parameters (a, θ) ∈ Da,θ . The set Da,θ is also called
Feller-Takayasu diamond and depicted as a shaded region, see also [47]

such thatDa,θ = D�
a,θ ∪ {(1, 1), (1,−1)}. Note, nonlocal Riesz–Feller Da

θ operators
are those with parameters

(a, θ) ∈ D•
a,θ := { (a, θ) ∈ Da,θ | 0 < a < 2 , |θ | < 1 },

such that D�
a,θ = D•

a,θ ∪ {(2, 0)}.
Proposition 2 ([6, Lemma 2.1]) For (a, θ) ∈ D�

a,θ the probability measure Ga
θ is

absolutely continuous with respect to the Lebesgue measure and possesses a prob-
ability density which will be denoted again by Ga

θ . For all (x, t) ∈ R × (0,∞) the
following properties hold;

(a) Ga
θ (x, t) ≥ 0. If θ 
= ±a then Ga

θ (x, t) > 0;
(b) ‖Ga

θ (·, t)‖L1(R) = 1;
(c) Ga

θ (x, t) = t−1/aGa
θ (xt

−1/a, 1);
(d) Ga

θ (·, s) ∗ Ga
θ (·, t) = Ga

θ (·, s + t) for all s, t ∈ (0,∞);
(e) Ga

θ ∈ C∞
0 (R × (0,∞)).

The Lévy measure ν of a Riesz–Feller operator Da
θ with (a, θ) ∈ D•

a,θ is absolutely
continuous with respect to Lebesgue measure and satisfies

ν( dy) =
{
c−(θ)y−1−a dy on (0,∞) ,

c+(θ)|y|−1−a dy on (−∞, 0) ,
(16)

with c±(θ) = Γ (1 + a) sin((a ± θ)π/2)/π , see [47, 54].
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To study a TWP for evolution equations involving Riesz–Feller operators, it is
necessary to extend the Riesz–Feller operators to C2

b (R). Their singular integral
representations (10) may be used to accomplish this task.

Theorem 1 ([6]) If (a, θ) ∈ D•
a,θ with a 
= 1, then for all f ∈ S (R) and x ∈ R

Da
θ f (x) =c+(θ) − c−(θ)

1 − a
f ′(x)

+ c+(θ)

∫ ∞

0

f (x + y) − f (x) − f ′(x) y1(−1,1)(y)

y1+a
dy (17)

+ c−(θ)

∫ ∞

0

f (x − y) − f (x) + f ′(x) y1(−1,1)(y)

y1+a
dy

with c±(θ) = Γ (1 + a) sin((a ± θ)π/2)/π . Alternative representations are

• If 0 < a < 1, then

Da
θ f (x) = c+(θ)

∫ ∞
0

f (x + y) − f (x)

y1+a
dy + c−(θ)

∫ ∞
0

f (x − y) − f (x)

y1+a
dy .

• If 1 < a < 2, then

Da
θ f (x) = c+(θ)

∫ ∞

0

f (x + y) − f (x) − f ′(x) y
y1+a

dy

+ c−(θ)

∫ ∞

0

f (x − y) − f (x) + f ′(x) y
y1+a

dy . (18)

These representations allow to extend Riesz–Feller operators Da
θ to C2

b (R) such
that Da

θC
2
b (R) ⊂ Cb(R). For example, one can show

Proposition 3 ([6, Proposition 2.4]) For (a, θ) ∈ Da,θ with 1 < a < 2, the integral
representation (18) of Da

θ is well-defined for functions f ∈ C2
b (R) with

sup
x∈R

|Da
θ f (x)| ≤ K ‖ f ′′‖Cb(R)

M2−a

2 − a
+ 4K ‖ f ′‖Cb(R)

M1−a

a − 1
< ∞ (19)

for some positive constants M and K = Γ (1+a)

π
| sin((a + θ)π

2 ) + sin((a − θ)π
2 )|.

Estimate (19) is a key estimate, which is used to adapt Chen’s approach [24] to the
TWP for nonlocal reaction-diffusion equations with Riesz–Feller operators [6].

3 TWP for Classical Evolution Equations

In this section we review the importance of the TWP for reaction-diffusion equations
and scalar conservation laws with higher-order regularizations, respectively.
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3.1 Reaction-Diffusion Equations

A scalar reaction-diffusion equation is a partial differential equation

∂t u = σ∂2
x u + r(u) , t > 0 , x ∈ R , (20)

for some positive constant σ > 0, as well as a nonlinear function r : R → R and
second-order derivative ∂2

x u modeling reaction and diffusion, respectively. The TWP
for given endstates u± is to study the existence of a TWS (ū, c) for (20) in the sense of
Definition 1. If the profile ū ∈ C2(R) is bounded, then it satisfies limξ→±∞ ū(n)(ξ) =
0 for n = 1, 2. A TWS (ū, c) satisfies the TWE

− cū′ = r(ū) + σ ū′′ , ξ ∈ R . (21)

Phase plane analysis. A traveling wave profile ū is a heteroclinic orbit of the
TWE (21) connecting the endstates u±. To identify necessary conditions on the
existence of TWS, TWE (21) is written as a system of first-order ODEs for u, v := u′:

d

dξ

(
u

v

)
=

(
v

(−r(u) − cv)/σ

)
=: F(u, v) , ξ ∈ R . (22)

First, an endstate (us, vs) of a heteroclinic orbit has to be a stationary state of F , i.e.
F(us, vs) = 0, which implies vs ≡ 0 and r(us) = 0. Second, (u−, 0) has to be an
unstable stationary state of (22) and (u+, 0) either a saddle or a stable node of (22).
As long as a stationary state (us, vs) is hyperbolic, i.e. the linearization of F at (us, vs)
has only eigenvalues λ with non-zero real part, the stability of (us, vs) is determined
by these eigenvalues. The linearization of F at (us, vs) is

DF(us, vs) =
(

0 1
−r ′(us)/σ −c/σ

)
. (23)

Eigenvalues λ± of the Jacobian DF(us, vs) satisfy the characteristic equation
λ2 + λc/σ + r ′(us)/σ = 0. Moreover, λ− + λ+ = −c/σ and λ−λ+ = r ′(us)/σ .
The eigenvalues λ± of the Jacobian DF(us, vs) are

λ± = − c

2σ
±

√
c2

4σ 2
− r ′(us)

σ
= −c ± √

c2 − 4σr ′(us)
2σ

. (24)

Thus r ′(us) < 0 ensures that (us, 0) is a saddle point, i.e. with one positive and one
negative eigenvalue.

Balance of potential. The potential R (of the reaction term r ) is defined as
R(u) := ∫ u

0 r(υ) dυ . The potentials of the endstates u± are called balanced if
R(u+) = R(u−) and unbalanced otherwise. A formal computation reveals a con-
nection between the sign of c and the balance of the potential R(u): Multiplying
TWE (21) with ū′, integrating on R and using (3), yields
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− c‖ū′‖2L2 =
∫ u+

u−
r(υ) dυ = R(u+) − R(u−) , (25)

since
∫
R
ū′′ū′ dξ = 0 due to (3). Thus − sgn c = sgn(R(u+) − R(u−)). In case of

a balanced potential the wave speed c is zero, hence the TWS is stationary.

Definition 4 Assume u− > u+. A function r ∈ C1(R) with r(u±) = 0 is

• monostable if r ′(u−) < 0, r ′(u+) > 0 and r(u) > 0 for u ∈ (u+, u−).
• bistable if r ′(u±) < 0 and

∃u∗ ∈ (u+, u−) : r(u)

{
< 0 for u ∈ (u+, u∗) ,

> 0 for u ∈ (u∗, u−) .

• unstable if r ′(u±) > 0.

We chose a very narrow definition compared to [56]. Moreover, in most appli-
cations of reaction-diffusion equations a quantity u models a density of a sub-
stance/population. In these situations only nonnegative states u± and functions u
are of interest.
If a TWS (ū, c) exists, then a closer inspection of the eigenvalues (24) at (u+, 0)
indicates the geometry of the profile ū for large ξ :

c2 − 4σr ′(u+)

{
≥ 0 TWS with monotone decreasing profile ū for large ξ ;
< 0 TWS with oscillating profile ū for large ξ.

Proposition 4 ([56, Sect. 2.2]) Assume σ > 0 and u− > u+.

• If r is monostable, then there exists a positive constant c∗ such that for all c ≥ c∗
there exists a monotone TWS (ū, c) of (20) in the sense of Definition 1. For c < c∗
no such monotone TWS exists (however oscillatory TWS may exist).

• If r is bistable, then there exists an (up to translations) unique monotone TWS
(ū, c) of (20) in the sense of Definition 1.

• If r is unstable, then there does not exist a monotone TWS (ū, c) of (20).

3.2 Korteweg-de Vries-Burgers Equation (KdVB)

A generalized KdVB equation is a scalar partial differential equation

∂t u + ∂x f (u) = ε∂2
x u + δ∂3

x u, x ∈ R, t > 0, (26)

for some flux function f : R → R as well as constants ε > 0 and δ ∈ R. The TWP
for given endstates u± is to study the existence of a TWS (ū, c) for (26) in the sense
of Definition 1. The importance of the TWP for KdVB equations in the shock wave
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theory of (scalar) hyperbolic conservation laws is discussed in Sect.B. A TWS (ū, c)
satisfies the TWE

− cū′ + f ′(ū) ū′ = εū′′ + δū′′′ , ξ ∈ R , (27)

or integrating on (−∞, ξ ] and using (3),

h(ū) := f (ū) − cū − ( f (u−) − c u−) = εū′ + δū′′ , ξ ∈ R . (28)

Connection with reaction-diffusion equation. A TWS u(x, t) = ū(x − ct) of a
generalized Korteweg-de Vries-Burgers equation (26) satisfies TWE (28). Thus
v(x, t) = ū(x − εt) is a TWS (ū, ε) of the reaction-diffusion equation

∂t v = −h(v) + δ∂2
x v , x ∈ R , t > 0 . (29)

Phase plane analysis. Following the analysis of TWE (21) for a reaction-diffusion
equation (20) with r(u) = −h(u) and σ = δ, necessary conditions on the parameters
can be identified. First, a TWE is rewritten as a systemof first-orderODEswith vector
field F . Then the condition on stationary states implies that endstates u± and wave
speed c have to satisfy

f (u+) − f (u−) = c(u+ − u−) . (30)

This condition is known in shock wave theory as Rankine–Hugoniot condition (B.4)
on the shock triple (u−, u+; c). The (nonlinear) stability of hyperbolic stationary
states (us, vs) of F is determined by the eigenvalues

λ± = −1

2

ε

δ
±

√
ε2 + 4δh′(us)

2|δ| (31)

of the JacobianDF(us, vs). If ε, δ > 0, then (u+, 0) is always either a saddle or stable
node, and h′(u−) = f ′(u−) − c > 0 ensures that (u−, 0) is unstable. For example,
Lax’ entropy condition (B.5), i.e. f ′(u+) < c < f ′(u−), implies the latter condition.

Convex Flux Functions

Theorem 2 Suppose f ∈ C2(R) is a strictly convex function. Let ε, δ be positive
and let (u−, u+; c) satisfy the Rankine–Hugoniot condition (B.4) and the entropy
condition (B.5), i.e. u− > u+. Then, there exists an (up to translations) unique TWS
(ū, c) of (26) in the sense of Definition 1.

Proof We consider the associated reaction-diffusion equation (29), i.e. ∂t u = r(u) +
δ∂2

x u with r(u) = −h(u). Due to (B.4) and (B.5), r(u) is monostable in the sense
of Definition 4. Moreover, function r is strictly concave, since r ′′(u) = − f ′′(u)

and f ∈ C2(R) is strictly convex. In fact, (u±, 0) are the only stationary points of
system (22), where (u−, 0) is a saddle point and (u+, 0) is a stable node. Thus,
for all wave speeds ε there exists a TWS (ū, ε) – with possibly oscillatory pro-
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file ū – of reaction-diffusion equation (29). Moreover, (ū, c) is a TWS of (26),
due to (27)–(29). �

The TWP for KdVB equations (26) with Burgers’ flux f (u) = u2 has been
investigated in [16]. The sign of δ in (26) is irrelevant, since it can be changed
by a transformation x̃ = −x and ũ(x̃, t) = −u(x, t), see also [41]. First, the results
in Theorem 2 on the existence of TWS and geometry of its profiles are proven. More
importantly, the authors investigate the convergence of profiles ū(ξ ; ε, δ) in the limits
ε → 0, δ → 0, as well as ε and δ tending to zero simultaneously. Assuming that the
ratio δ/ε2 remains bounded, they show that the TWS converge to the classical Lax
shocks for this vanishing diffusive-dispersive regularization [16].

Concave-Convex Flux Functions

Definition 5 ([45]) A function f ∈ C3(R) is called concave-convex if

u f ′′(u) > 0 ∀u 
= 0 , f ′′′(0) 
= 0 , lim
u→±∞ f ′(u) = +∞ . (32)

Here the single inflection point is shifted without loss of generality to the origin. We
consider a cubic flux function f (u) = u3 as the prototypical concave-convex flux
function with a single inflection point, see [39, 45].

Proposition 5 ([38, 41]) Suppose f (u) = u3 and ε > 0.

(a) If δ ≤ 0 then a TWS (ū, c) of (26) exists if and only if (u−, u+; c) satisfy the
Rankine–Hugoniot condition (B.4) and the entropy condition (B.5).

(b) If δ > 0 then a TWS (ū, c) of (26) exists for u− > 0 if and only if u+ ∈ S(u−)

with

S(u−) =
{

[− u−
2 , u−) if u− ≤ 2β ,

{−u− + β} ∪ [−β, u−) if u− > 2β ,
(33)

where the coefficient β is given by β =
√
2
3

ε√
δ
.

Proof Following the discussion from (26)–(29), we consider the associated reaction-
diffusion equation (29), i.e. ∂t u = r(u) + δ∂2

x u with r(u) = −h(u). From this point
of view, we need to classify the reaction term r(u) = −h(u): Whereas r(u−) = 0
by definition, r(u+) = 0 if and only if (u−, u+; c) satisfies the Rankine–Hugoniot
condition (B.4). The Rankine–Hugoniot condition implies c = u2+ + u+ u− + u2−.
Hence, the reaction term r(u) has a factorization

r(u) = −(u3 − u3− − c(u − u−)) = −(u − u−) (u − u+) (u + u+ + u−) (34)

Thus, r(u) is a cubic polynomial with three roots u1 ≤ u2 ≤ u3, such that r(u) =
−(u − u1)(u − u2)(u − u3). In case of distinct roots u1 < u2 < u3 we deduce
r ′(u1) < 0, r ′(u2) > 0 and r ′(u3) < 0. The ordering of the roots u± and u∗ =
−u− − u+ depending on u± is visualized in Fig. 2. Next, we will discuss the results
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Fig. 2 Classification of the cubic reaction function r(u) = −h(u) in (34) depending on its roots
u−, u+ and u∗ = −u− − u+ according to Definition 4

in Proposition 5(b) (for u− > 0 and δ > 0) via results on the existence of TWS for
a reaction-diffusion equation (29).

1. For u+ < u∗ < u−, function r(u) is bistable, see also Fig. 2. Due to Proposition 4,
there exists an (up to translations) unique TWS (ū, ε) with possibly negative
wave speed. Under our assumption that the wave speed ε is positive, relation (25)
yields the restriction −u+ > u−. In fact, for u− > 2β and u+ = −u− + β there
exists a TWS (ū, ε) for reaction-diffusion equation (29), see [41, Theorem 3.4].
The function r is bistable with u∗ = −u− − u+ = −β, hence f ′(u±) > c. This
violates Lax’ entropy condition (B.5) and is known in the shock wave theory as
a slow undercompressive shock [45].

2. For u∗ < u+ < u−, function r(u) is monostable, see Fig. 2. Due to Proposition 4,
there exists a critical wave speed c∗, such that monotone TWS (ū, ε) for (29)
exist for all ε ≥ c∗. However, not all endstates (u−, u+) in the subset defined
by u∗ < u+ < u− admit a TWS (ū, c), see (33) and Fig. 3b. The TWS (ū, c)
associated to non-classical shocks appear again, with reversed roles for the roots
u+ and u∗: For u− > 2β and u+ = −β, there exists a TWS (ū, ε) for reaction-
diffusion equation (29), see [41, Theorem 3.4]. These TWS form a horizontal
halfline in Fig. 3b and divides the set defined by u∗ < u+ < u− into two subsets.
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In particular, TWS exist only for endstates (u−, u+) in the subset above this
halfline.

3. Foru+ < u− < u∗, function r(u)= − h(u) satisfies r(u)< 0 for allu ∈ (u+, u−),
see also Fig. 2. Thus the necessary condition (25) can not be fulfilled for positive
c = ε, hence there exists no TWS (ū, ε) for the reaction-diffusion equation.

4. For u∗ < u− < u+, function r(u) is monostable with reversed roles of the end-
states u±, see Fig. 2. Due to Proposition 4, there exists a TWS (ū, ε) however
satisfying limξ→∓∞ ū(ξ) = u±.

If δ = 0, then equation (26) is a viscous conservation law, and its TWE (28) is a
simple ODE −εū′ = r(ū) with r(u) = −h(u). Thus a heteroclinic orbit exists only
for monostable r(u), i.e. if the unstable node u− and the stable node u+ are not
separated by any other root of r .

If δ < 0, then we rewrite TWE (28) as εū′ = h(u) + |δ|ū′′. It is associated to a
reaction-diffusion equation ∂t u = h(u) + |δ|∂2

x u via a TWS ansatz u(x, t) = ū(x −
(−ε)t); note the change of sign for the wave speed. If u+ < u∗ < u− then h(u)

is an unstable reaction function. Thus there exists no TWS (ū,−ε) according to
Proposition 4. If u∗ < u+ < u− then function h(u) = −r(u) satisfies h(u) < 0 for
all u ∈ (u+, u−), see also Fig. 2. The necessary condition (25) is still fine, since also
the sign of the wave speed changed. In contrast to the case δ > 0, there exists no
TWS connecting u− with u∗, which would indicate a bifurcation. Thus, the existence
of TWS for all pairs (u−, u+) in the subset defined by u∗ < u+ < u− can be proven.
The TWP for other pairs (u−, u+) is discussed similarly. �

4 TWP for Nonlocal Evolution Equations

4.1 Reaction-Diffusion Equations

The first example of a reaction-diffusion equation with nonlocal diffusion is the
integro-differential equation

∂t u = J ∗ u − u + r(u) , t > 0 , x ∈ R , (35)

for some even, non-negative function J with mass one, i.e. for all x ∈ R

J ∈ C(R) , J ≥ 0 , J (x) = J (−x) ,

∫
R

J (y) dy = 1 , (36)

and some function r . The operator L [u] = J ∗ u − u is a Lévy operator, see (13),
which models nonlocal diffusion. It is the infinitesimal generator of a compound
Poisson stochastic process, which is a pure jump process.

The TWP for given endstates u± is to study the existence of a TWS (ū, c) for (35)
in the sense of Definition 1. Such a TWS (ū, c) satisfies the TWE −cū′ = J ∗ ū −
ū + r(ū) for ξ ∈ R. Next, we recall some results on the TWP for (35), which will
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Fig. 3 a Classification of reaction function r in (34) depending on its roots u−, u+ and u∗ =
−u− − u+ according to Definition 4; b Endstates u± in the shaded region and on the thick line
can be connected by TWS of the cubic KdVB equation; TWS in the shaded region and on the
thick line are associated to classical and non-classical shocks of ∂t u + ∂x u3 = 0, respectively.
For a classical shock the shock triple satisfies Lax’ entropy condition f ′(u−) > c > f ′(u+); i.e.
characteristics in the Riemann problem meet at the shock. In contrast, the non-classical shocks are
of slow undercompressive type, i.e. characteristics in the Riemann problem cross the shock

depend crucially on the type of reaction function r and the tail behavior of a kernel
function J . We will present the existence of TWSwith monotone decreasing profiles
ū, which will follow from the cited literature after a suitable transformation.

Proposition 6 ((monostable [27]), (bistable [14, 24])) Suppose u− > u+ and con-
sider reaction functions r in the sense of Definition 4. Suppose J ∈ W 1,1(R) and its
continuous representative satisfies (36).

• If r is monostable and there exists λ > 0 such that
∫
R

J (y) exp(λy) dy < ∞
then there exists a positive constant c∗ such that for all c ≥ c∗ there exists a
monotone TWS (ū, c) of (35). For c < c∗ no such monotone TWS exists.

• If r is bistable and
∫
R

|y|J (y) dy < ∞, then there exists an (up to translations)
unique monotone TWS (ū, c) of (35).

For monostable reaction functions, the tail behavior of kernel function J is very
important. There exist kernel functions J , such that TWS exist only for bistable –
but not for monostable – reaction functions r , see [58]. The prime example are kernel
functions J which decay more slowly than any exponentially decaying function as
|x | → ∞ in the sense that J (x) exp(η|x |) → ∞ as |x | → ∞ for all η > 0.

For reaction-diffusion equations of bistable type, Chen established a unified
approach [24] to prove the existence, uniqueness and asymptotic stability with expo-
nential decay of traveling wave solutions. The results are established for a subclass
of nonlinear nonlocal evolution equations
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∂t u(x, t) = A [u(·, t)](x) for (x, t) ∈ R × (0, T ] ,

where the nonlinear operator A is assumed to

(a) be independent of t ;
(b) generate a L∞ semigroup;
(c) be translational invariant, i.e. A satisfies for all u ∈ domA the identity

A [u(· + h)](x) = A [u(·)](x + h) ∀x , h ∈ R .

Consequently, there exists a function r : R → R which is defined by A [υ1] =
r(υ)1 for υ ∈ R and the constant function 1 : R → R, x �→ 1. This function r
is assumed to be bistable in the sense of Definition 4;

(d) satisfy a comparison principle: If ∂t u ≥ A [u], ∂t v ≤ A [v] and u(·, 0) � v(·, 0),
then u(·, t) > v(·, t) for all t > 0.

Chen’s approach relies on the comparison principle and the construction of sub-
and supersolutions for any given traveling wave solution. Importantly, the method
does not depend on the balance of the potential. More quantitative versions of the
assumptions on A are needed in the proofs. Finally integro-differential evolution
equations

∂t u = ε∂2
x u + G(u, J1 ∗ S1(u), . . . , Jn ∗ Sn(u)) (37)

are considered for some diffusion constant ε ≥ 0, smooth functions G and Sk , and
kernel functions Jk ∈ C1(R) ∩ W 1,1(R) satisfying (36) where k = 1, . . . , n. Addi-
tional assumptions on the model parameters guarantee that (37) can be
interpreted as a reaction-diffusion equation with bistable reaction function including
Eqs. (20) and (35) as special cases.

Another example of reaction-diffusion equations with nonlocal diffusion are the
integro-differential equations

∂t u = Da
θ u + r(u) , t > 0 , x ∈ R , (38)

for a (particle) density u = u(x, t), some function r = r(u), and a Riesz–Feller
operator Da

θ with (a, θ) ∈ Da,θ . The nonlocal Riesz–Feller operators are models for
superdiffusion,where from a probabilistic view point a cloud of particle is assumed to
spread faster than by following Brownian motion. Integro-differential equation (38)
can be derived as amacroscopic equation for a particle density in the limit ofmodified
Continuous Time RandomWalk (CTRW), see [48]. In the applied sciences, Eq. (38)
has found many applications, see [54, 57] for extensive reviews on modeling, formal
analysis and numerical simulations.

The TWP for given endstates u± is to study the existence of a TWS (ū, c) for (38)
in the sense of Definition 1. Such a TWS (ū, c) satisfies the TWE

− cū′ = Da
θ ū + r(ū) , ξ ∈ R . (39)
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First we collect mathematical rigorous results about the TWP associated to (38) in
case of the fractional Laplacian Da

0 = −(−Δ)a/2 for a ∈ (0, 2), i.e. a Riesz–Feller
operator Da

θ with θ = 0.

Proposition 7 ((monostable [17, 18, 34]), (bistable [19–21, 25, 37, 50])) Suppose
u− > u+. Consider the TWP for reaction-diffusion equation (38) with functions r in
the sense of Definition 4 and fractional Laplacian Da

0 , i.e. symmetric Riesz–Feller
operators Da

θ with 0 < a < 2 and θ = 0.

• If r is monostable then there does not exist any TWS (ū, c) of (38).
• If r is bistable then there exists an (up to translations) unique monotone TWS (ū, c)
of (38).

For monostable reaction functions, Cabré and Roquejoffre prove that a front moves
exponentially in time [17, 18]. They note that the genuine algebraic decay of the
heat kernels Ga

0 associated to fractional Laplacians is essential to prove the result,
which implies that no TWS with constant wave speed can exist. Engler [34] con-
sidered the TWP for (38) for a different class of monostable reaction functions
r and non-extremal Riesz–Feller operators Da

θ with (a, θ) ∈ D+
a,θ and D+

a,θ :=
{ (a, θ) ∈ Da,θ | |θ | < min{a, 2 − a} }. Again the associated heat kernels Ga

θ (x, t)
with (a, θ) ∈ D+

a,θ decay algebraically in the limits x → ±∞, see [47].
To our knowledge, we established the first result [6] on existence, uniqueness

(up to translations) and stability of traveling wave solutions of (38) with Riesz–
Feller operators Da

θ for (a, θ) ∈ Da,θ with 1 < a < 2 and bistable functions r . We
present our results for monotone decreasing profiles, which can be inferred from our
original result after a suitable transformation.

Theorem 3 ([6]) Suppose u− > u+, (a, θ) ∈ Da,θ with 1 < a < 2, and r ∈ C∞(R)

is a bistable reaction function. Then there exists an (up to translations) unique
monotone decreasing TWS (ū, c) of (38) in the sense of Definition 1.

The technical details of the proof are contained in [6], whereas in [5] we give a
concise overview of the proof strategy and visualize the results also numerically. In
a forthcoming article [4], we extend the results to all non-trivial Riesz–Feller opera-
tors Da

θ with (a, θ) ∈ D�
a,θ . The smoothness assumption on r is convenient, but not

essential. To prove Theorem 3, we follow – up to some modifications – the approach
of Chen [24]. It relies on a strict comparison principle and the construction of sub-
and supersolutions for any given TWS. His quantitative assumptions on operatorA
are too strict, such that his results are not directly applicable. A modification allows
to cover the TWP for (38) for all Riesz–Feller operators Da

θ with 1 < a < 2 also for
non-zero θ , and all bistable functions r regardless of the balance of the potential.

Next, we quickly review different methods to study the TWP of reaction-diffusion
equation (38) with bistable function r and fractional Laplacian. In case of a classical
reaction-diffusion equation (20), the existence of a TWS can be studied via phase-
plane analysis [13, 35]. This method has no obvious generalization to our TWP
for (38), since its traveling wave equation (39) is an integro-differential equation.
The variational approach has been focused – so far – on symmetric diffusion oper-
ators such as fractional Laplacians and on balanced potentials, hence covering only
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stationary traveling waves [50]. Independently, the same results are achieved in [19–
21] by relating the stationary TWE (39)θ=0,c=0 via [22] to a boundary value problem
for a nonlinear partial differential equation. The homotopy to a simpler TWPhas been
used to prove the existence of TWS in case of (35), and (38)θ=0 with unbalanced
potential [37].

Chmaj [25] also considers the TWP for (38)θ=0 with general bistable func-
tions r . He approximates a given fractional Laplacian by a family of operators
Jε ∗ u − (

∫
Jε)u such that limε→0 Jε ∗ u − (

∫
Jε)u = Da

0u in an appropriate sense.
This allows him to obtain a TWS of (38)θ=0 with general bistable function r as the
limit of the TWS uε of (35) associated to (Jε)ε≥0. It might be possible to modify
Chmaj’s approach to study reaction-diffusion equation (38) with asymmetric Riesz–
Feller operators. This would give an alternative existence proof for TWS in Theo-
rem 3. However, Chen’s approach allows to establish uniqueness (up to translations)
and stability of TWS as well.

4.2 Nonlocal Korteweg-de Vries-Burgers Equation

First we consider the integro-differential equation in multi-dimensions d ≥ 1

∂t u + ∂x f (u) = εΔxu + γ ε2
d∑
j=1

(
φε ∗ ∂x j u − ∂x j u

)
, x ∈ R

d , t > 0 , (40)

for parameters ε > 0, γ ∈ R, a smooth even non-negative function φ with com-
pact support and unit mass, i.e.

∫
Rd φ(x) dx = 1, and the rescaled kernel func-

tion φε(x) = φ(x/ε)/εd . It has been derived as a model for phase transitions with
long range interactions close to the surface, which supports planar TWS associated
to undercompressive shocks of (B.1), see [52]. A planar TWS (ū, c) is a solution
u(x, t) = ū(x − cte) for somefixed vector e ∈ R

d , such that the profile is transported
in direction e. The existence of planar TWS is proven by reducing the problem to
a one-dimensional TWP for (40)d=1, identifying the associated reaction-diffusion
equation (35) and using results in Proposition 6. For cubic flux function u3, the exis-
tence of planar TWS associated to undercompressive shocks of (B.1) is established.
Moreover, the well-posedness of its Cauchy problem and the convergence of solu-
tions uε as ε ↘ 0 have been studied [52].

Another example is the fractal Korteweg-de Vries-Burgers equation

∂t u + ∂x f (u) = ε∂xD
α
+u + δ∂3

x u, x ∈ R, t > 0, (41)

for some ε > 0 and δ ∈ R.
Equation (41) with α = 1/3 has been derived as a model for shallow water flows,

by performing formal asymptotic expansions associated to the triple-deck (boundary
layer) theory in fluid mechanics, e.g. see [44, 55]. In particular, the situations of
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one-layer and two-layer shallow water flows have been considered, which yield a
quadratic (one layer) and cubic flux function (two layer), respectively. In the mono-
graph [49], similar models are considered and the well-posedness of the initial value
problem and possible wave-breaking are studied.

The TWP for given endstates u± is to study the existence of a TWS (ū, c) for (41)
in the sense of Definition 1. Such a TWS (ū, c) satisfies the TWE

h(ū) := f (ū) − f (u−) − c(ū − u−) = εDα
+ū + δū′′ . (42)

We obtain a necessary condition for the existence of TWS – see also (25) – by
multiplying the TWE with ū′ and integrating on R,

∫ u+

u−
h(u) du = ε

∫ ∞

−∞
ū′ Dα

+ū(ξ) dξ ≥ 0 , (43)

where the last inequality follows from (A.1).
Connection with reaction-diffusion equation. If a TWS (ū, c) for (41) exists, then

u(x, t) = ū(x) is a stationary TWS (ū, 0) of the evolution equation

∂t u = −εDα
+u − δ∂2

x u + h(u), x ∈ R, t > 0. (44)

To interpretEq. (44) as a reaction-diffusion equation,weneed to verify that−εDα+u −
δ∂2

x u is a diffusionoperator, e.g. that−εDα+u − δ∂2
x u generates a positivity preserving

semigroup.

Lemma 1 Suppose 0 < α < 1 and γ1, γ2 ∈ R. The operator γ1Dα+u + γ2∂
2
x u is a

Lévy operator if and only if γ1 ≤ 0 and γ2 ≥ 0. Moreover, the associated heat kernel
is strictly positive if and only if γ2 > 0.

Proof For α ∈ (0, 1), the operator −Dα+ is a Riesz–Feller operator Dα−α and gen-
erates a positivity preserving convolution semigroup with a Lévy stable probability
distribution Gα−α as its kernel. The probability distribution is absolutely continuous
with respect to Lebesgue measure and its density has support on a half-line [47].
For example the kernel associated to−D1/2 is the Lévy–Smirnov distribution. Thus,
for γ1 ≤ 0 and γ2 ≥ 0, the operator γ1Dα+u + γ2∂

2
x u is a Lévy operator, because it is

a linear combination of Lévy operators. Using the notation for Fourier symbols of
Riesz–Feller operators, the partial Fourier transform of equation

∂t u = −|γ1|Dα[u] + γ2∂
2
x u

is given by ∂tF [u](k) = (|γ1|ψα−α(k) − γ2k2)F [u](k). Therefore, the operator gen-
erates a convolution semigroup with heat kernel

F−1[exp{(|γ1|ψα
−α(k) − γ2k

2) t}](x) = Gα
−α(·, |γ1|t) ∗ G2

0(·, γ2t) (x) ,
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which is the convolution of two probability densities. The kernel is positive on R

since probability densities are non-negative on R and the normal distribution G2
0 is

positive on R for positive γ2t .
The operator Dα+ for α ∈ (0, 1) is not a Riesz–Feller operator, see Fig. 1, and it

generates a semigroup which is not positivity preserving. Therefore, this operator
and any linear combination with it for γ1 > 0 is not a Lévy operator. �

Convex Flux Functions

Proposition 8 Consider (41) with 0 < α < 1, δ ∈ R and strictly convex flux func-
tion f ∈ C3(R). For a shock triple (u−, u+; c) satisfying the Rankine–Hugoniot
condition (B.4), a non-constant TWS (ū, c) can exist if and only if Lax’ entropy
condition (B.5) is fulfilled, i.e. u− > u+.

Proof The Rankine–Hugoniot condition (B.4) ensures that h(u) in (42) has exactly
two roots u±. If Lax’ entropy condition (B.5) is fulfilled, then u− > u+ and −h(u)

is monostable in the sense of Definition 4. Thus, the necessary condition (43) is
satisfied. If u− = u+ then (43) implies that ū is a constant function satisfying ū ≡ u±.
If u− < u+ then−h(u) is monostable in the sense of Definition 4 with reversed roles
of u±. Thus, the necessary condition (43) is not satisfied. �

Next, we recall some existence result which have been obtained by directly study-
ing the TWE. In an Addendum [28], we removed an initial assumption on the solv-
ability of the linearized TWE.

Theorem 4 ([3]) Consider (41) with δ = 0 and convex flux function f (u). For a
shock triple (u−, u+; c) satisfying (B.4) and (B.5), there exists a monotone TWS of
(41) in the sense of Definition 1, whose profile ū ∈ C1

b(R) is unique (up to transla-
tions) among all functions u ∈ u− + H 2(−∞, 0) ∩ C1

b(R).

This positive existence result is consistent with the negative existence result in Propo-
sition 7 and Engler [34] for (38) with non-extremal Riesz–Feller operators Da

θ for
(a, θ) ∈ D+

a,θ . The reason is that −Dα+ for 0 < α < 1 is the generator of a convo-
lution semigroup with a one-sided strictly stable probability density function as its
heat kernel; in contrast to heat kernels with genuine algebraic decay [17, 18, 34].

Theorem 5 ([2]) Consider (41) with flux function f (u) = u2/2. For a shock triple
(u−, u+; c) satisfying (B.4) and (B.5), there exists a TWS of (41) in the sense of
Definition 1, whose profile ū is unique (up to translations) among all functions
u ∈ u− + H 4(−∞, 0) ∩ C3

b(R).

If dispersion dominates diffusion then the profile of a TWS (ū, c) will be oscillatory
in the limit ξ → ∞. For a classical KdVB equation this geometry of profiles depends
on the ratio ε2/δ and the threshold can be determined explicitly.
Concave-convex flux functions. We consider a cubic flux function f (u) = u3 as
the prototypical concave-convex flux function. Again the necessary condition (43)
and the classification of function h(u) = −r(u) in Fig. 2 can be used to identify
non-admissible shock triples (u−, u+; c) for the TWP of (41).
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We conjecture that a statement analogous to Proposition 5 holds true. Of special
interest is again the occurrence of TWS (ū, c) associated to non-classical shocks,
which are only expected in case of (41) with ε > 0 and δ > 0.

Proposition 9 Suppose f (u) = u3 and ε > 0.

1. If δ ≤ 0 then a TWS (ū, c) of (41) exists if and only if (u−, u+; c) satisfy the
Rankine–Hugoniot condition (B.4) and the entropy condition (B.5).

2. Conjecture: If δ > 0 then a TWS (ū, c) of (41) exists for u− > 0 if and only if
u+ ∈ S(u−) for some set S(u−) similar to (33).

Proof (Sketch of proof) If δ = 0, then Eq. (41) is a viscous conservation law, and
its TWE (42) is a fractional differential equation εDα+ū = h(ū). Thus a heteroclinic
orbit exists only for monostable −h(u), i.e. if the unstable node u− and the stable
node u+ are not separated by any other root of h. This follows from Theorem 4 and
its proof in [3, 28].

If δ < 0, then the TWE (42) is associated to a reaction-diffusion equation (44) via
a stationary TWS ansatz u(x, t) = ū(x). First we note that a stronger version of the
necessary condition (43) is available

∫ ξ

−∞
h(ū)ū′(y) dy = ε

∫ ξ

−∞
ū′ Dα

+ū(y) dy ≥ 0 , ∀ξ ∈ R , (45)

see [2]. If u+ < u∗ < u− then h(u) is an unstable reaction function, see Fig. 2. Thus
there exists no TWS in the sense of Definition 1 satisfying the necessary condi-
tion (45). If u∗ < u+ < u− then function −h(u) is monostable in the sense of Def-
inition 4 and the necessary condition (43) can be satisfied. The existence of a TWS
(ū, c) can be proven by following the analysis in [2, 28]. The TWP for other pairs
(u−, u+) is discussed similarly.

If δ > 0 then the occurrence of TWS (ū, c) associated to non-classical shocks
is possible. Unlike in our previous examples, the associated evolution Eq. (44) is
not a reaction-diffusion equation, since −εDα+ū − δū′′ is not a Lévy operator. Espe-
cially, the results on existence of TWS for reaction-diffusion equations with bistable
reaction function can not be used to prove the existence of TWS (ū, c) associated to
undercompressive shocks. Instead, we investigate the TWP directly [1], extending
the analysis in [2, 28] for Burgers’ flux to the cubic flux function f (u) = u3. �

4.3 Fowler’s Equation

Fowler’s equation (8) for dune formation is a special case of the evolution equation

∂t u + ∂x f (u) = δ∂2
x u − ε∂xD

α
+u , t > 0 , x ∈ R , (46)
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with 0 < α < 1, positive constant ε, δ > 0 and flux function f . Here the fractional
derivative appears with the negative sign, but this instability is regularized by the
second order derivative. The initial value problem for (8) is well-posed in L2 [9].
However, it does not support a maximum principle, which is intuitive in the context
of the application due to underlying erosions [9]. The existence of TWS of (8) –
without assumptions (3) on the far-field behavior – has been proven [11].

For given endstates u±, the TWP for (46) is to study the existence of a TWS (ū, c)
for (46) in the sense of Definition 1. Such a TWS (ū, c) satisfies the TWE

h(ū) := f (ū) − f (u−) − c(ū − u−) = δū′ − εDα
+ū , ξ ∈ R . (47)

For δ = 0, the TWE reduces to a fractional differential equation εDα+ū = −h(ū),
which has been analyzed in [3, 28] for monostable functions −h(u).

Equation (47) is also the TWE for a TWS (ū, δ) of an evolution equation

∂t u = −εDα
+u − h(u), x ∈ R, t > 0. (48)

For ε > 0, the operator is −εDα+ū is a Riesz–Feller operator εDα−α whose heat
kernel Gα−α has only support on a halfline. For a shock triple (u−, u+; c) satisfy-
ing the Rankine–Hugoniot condition (B.4), at least h(u±) = 0 holds. Under these
assumptions, Eq. (48) is a reaction-diffusion equation with a Riesz–Feller operator
modeling diffusion.

The abstract method in [11] does not provide any information on the far-field
behavior. Thus, assume the existence of a TWS (ū, c) in the sense of Definition 1,
for some shock triple (u−, u+; c) satisfying the Rankine–Hugoniot condition (B.4).
Again, a necessary condition is obtained by multiplying TWE (47) with ū′ and
integrating on R; hence,

∫ u+

u−
h(u) du =

∫
R

(ū′)2 dξ −
∫
R

ū′Dα
+ū dξ . (49)

The sign of the right hand side is not pre-determined since each integral is non-
negative, see also (A.1).

For a cubic flux function f (u) = u3 and a shock triple (u−, u+; c) satisfying the
Rankine–Hugoniot condition (B.4), we deduce a bistable reaction function r(u) =
−h(u) as long as u+ < −u+ − u− < u− see Fig. 2. However, since the heat kernel
has only support on a halfline, we can not obtain a strict comparison principle as
needed in Chen’s approach [4, 6, 24].
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Appendix A: Caputo Fractional Derivative on RRR

For α > 0, the (Gerasimov–)Caputo derivatives are defined as, see [42, 54],

(Dα
+ f )(x) =

{
f (n)(x) if α = n ∈ N0 ,

1
Γ (n−α)

∫ x
−∞

f (n)(y)
(x−y)α−n+1 dy if n − 1 < α < n for some n ∈ N0 .

(Dα
− f )(x) =

{
f (n)(x) if α = n ∈ N0 ,
(−1)n

Γ (n−α)

∫ ∞
x

f (n)(y)
(y−x)α−n+1 dy if n − 1 < α < n for some n ∈ N0 .

Properties:

• For α > 0 and λ > 0

(Dα
+ exp(λ·))(x) = λα exp(λx) , (Dα

− exp(−λ·))(x) = λα exp(−λx)

• For α > 0 and f ∈ S (R), a Caputo derivative is a Fourier multiplier operator
with (FDα+ f )(k) = (i k)α(F f )(k) where (i k)α = exp(απ i sgn(k)/2).

• If ū is the profile of a TWS (ū, c) in the sense of Definition 1, then
∫ ∞

−∞
ū′(y)Dα

+ū(y) dy = 1
2

∫
R

ū′(x)
∫
R

ū′(y)
|x − y|α dy dx ≥ 0 , (A.1)

where the last inequality follows from [46, Theorem 9.8].

Appendix B: Shock Wave Theory for Scalar Conservation
Laws

A standard reference on the theory of conservation laws is [29], whereas [45] covers
the special topic of non-classical shock solutions. A scalar conservation law is a
partial differential equation

∂t u + ∂x f (u) = 0 , t > 0 , x ∈ R , (B.1)

for someflux function f : R → R. For nonlinear functions f , it iswell known that the
initial value problem (IVP) for (B.1) with smooth initial data may not have a classical
solution for all time t > 0 (due to shock formation). However, weak solutions may
not be unique. TheRiemann problems are a subclass of IVPs for (B.1), and especially
important in some numerical algorithms: For given u−, u+ ∈ R, find a weak solution
u(x, t) for the initial value problem of (B.1) with initial condition
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u(x, 0) =
{
u− , x < 0 ,

u+ , x > 0 .
(B.2)

Weak solutions of a Riemann problem that are discontinuous for t > 0 may not be
unique.

Example 1 A shock wave is a discontinuous solution of the Riemann problem,

u(x, t) =
{
u− , x < ct ,

u+ , x > ct ,
(B.3)

if the shock triple (u−, u+; c) satisfies the Rankine–Hugoniot condition

f (u+) − f (u−) = c(u+ − u−) . (B.4)

TheRankine–Hugoniot condition (B.4) is a necessary condition that u± are stationary
states of an associated TWE (28), see (30).

Shock Admissibility

Classical approaches to select a unique weak solution of the Riemann problem are

(a) Lax’ entropy condition:
f ′(u+) < c < f ′(u−) . (B.5)

It ensures that in the method of characteristics all characteristics enter the
shock/discontinuity of a shock solution (B.3). For convex flux function f , con-
dition (B.5) reduces to u− > u+. Shocks satisfying (B.5) are also called Lax or
classical shocks. For non-convex flux functions f , also non-classical shocks can
arise in experiments, called slow undercompressive shocks if f ′(u±) > c, and
fast undercompressive shocks if f ′(u±) < c.

(b) Oleinik’s entropy condition.

f (w) − f (u−)

w − u−
≥ f (u+) − f (u−)

u+ − u−
for allw between u− and u+. (B.6)

(c) Entropy solutions satisfying integral inequalities based on entropy-entropy flux
pairs, such as Kruzkov’s family of entropy-entropy flux pairs.

(d) Vanishing viscosity. In the classical vanishing viscosity approach, instead of (B.1)
one considers for ε > 0 equation

∂t u + ∂x f (u) = ε∂2
x u , t > 0 , x ∈ R , (B.7)
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where ε∂2
x u models diffusive effects such as friction. Equation (B.7) is a par-

abolic equation, hence the Cauchy problem has global smooth solutions uε for
positive times, especially for Riemann data (B.2). An admissible weak solution
of the Riemann problem is identified by studying the limit of uε as ε ↘ 0.
In other applications, different higher order effects may be important.
For example, a nonlocal generalized KdVB equation (1) can be interpreted as
a scalar conservation law (B.1) with higher-order effects R[u] := εL1[u] +
δ∂xL2[u].
Already for convex functions f , the convergence of solutions of the regular-
ized equations (e.g. (1)) to solutions of (B.1) reveals a diverse solution struc-
ture. The solutions of viscous conservation laws (B.7) converge for ε ↘ 0 to
Kruzkov entropy solutions of (B.1). In contrast, in case of KdVB equation (4)
with f (u) = u2 the limit ε, δ → 0 depends on the relative strength of diffusion
and dispersion:

• Weak dispersion: δ = O(ε2) for ε → 0 e.g. δ = βε2 for some β > 0.
TWS converge strongly to entropy solution of Burgers equation.

• Moderate dispersion: δ = o(ε) for ε → 0 includes weak dispersion.
TWS converge strongly to entropy solution of Burgers equation, see [51].

• Strong dispersion: weak limit of TWS for ε, δ → 0 may not be a weak
solution of Burgers equation.

For non-convex flux functions f , a TWS may converge to a weak solution
of (B.1) which is not an Kruzkov entropy solution, but a non-classical shock.

A simplistic shock admissibility criterion based on the vanishing viscosity
approach is the existence of TWS for a given shock triple:

Definition 6 (compare with [41]) A solution u of the Riemann problem is called
admissible (with respect to a fixed regularizationR), if there exists a TWS (ū, c) in
the sense of Definition 1 of the regularized equation (e.g. (1)) for every shock wave
with shock triple (u−, u+; c) in the solution u.
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