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Abstract In this paper we are concerned with a quantitative method of Landscape
Ecology. More in details we consider an environmental system distributed in land-
scape units (ecological sectors) and we propose a new mathematical model in order
to implement a method for the evaluation of the ecological state of the system under
investigation. After having performed a stability analysis of the model, we apply
the proposed procedure first by considering separately each landscape unit and then
extending our investigation to the system as a whole, by taking into account the
connections between all the landscape units themselves. Our investigation includes
some numerical computations that were performed for aNorthern district of the Turin
Province, using an approximation procedure that should avoid stiffness problems.
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1 Introduction

For a quantitative evaluation of the ecological state of an environmental system an
important contribution is given in the book [10]. Other important contributions to
this matter can be found as well in the paper [19] and in the book [5] where for the
first time the use of the so-called ecological graph is proposed. For a quantitative
description of a territory relevant indicators have been also proposed in the references
[15, 16] where ideas coming from the mathematical theory of communication [17]
and from conceptual models [1] have been transposed to Landscape Ecology.
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In the quoted bibliography, as we shall see, the environment is distributed in
different landscape units (often mentioned in what follows as ecological sectors)
which can be more or less connected by flows of material and biological energy. In
this sense a relevant variable to describe the territory is certainly the last quantity
which can be coupled to the consistency of green areas of high ecological quality.

In the past years some mathematical models useful for a quantitative monitoring
of environments have been proposed in a couple of papers [7, 8]. In particular in
the former a mathematical model, with only two state equations that consider the
environment as awhole, has been deduced, assuming as state variables the bio-energy
and the percentage of green areas in the territory under investigation.

In the latter such a model has been studied in terms of its stability analysis,
finding also bifurcations and discussing on its qualitative properties. Moreover in
paper [8], as a future perspective, a new model including state variables at the level
of landscapeunits has been suggested.Thesemodels, on themathematical ground, are
represented by an autonomous system of evolution ordinary differential equations,
whose equilibrium solutions express the future scenarios of the environment itself.

Starting from this last idea in the present paper we present a model where each
landscape unit is represented by two time-dependent variables, namely the extent
of green areas of high ecological quality and a suitable function depending on the
biological energy per year. Such a new version of the model is capable to identify the
characters of the territory at a more detailed level, so that the territory itself results
to be more readable.

For a first moment, in Sect. 2, we are concerned with the model stability analysis,
considering separately the landscape units.We then apply, in Sect. 3, such an analysis
to a Northern district of the Turin Province. This district has been previously studied
by De Palma in her master degree thesis [4], deriving all the relevant indicators of
this environmental system.Moreover, in Sects. 4 and 5, we complete the environment
analysis by coupling all together the landscape units, showing that, in the present case
study, connectivity plays a crucial role. For this last analysis themodel becomes rather
cumbersome andmay present some instabilities since it includes 48 coupled ordinary
differential equations. For this reason in Sect. 4 we propose an explicit approximation
procedure, discussed in paper [9] starting from the methods presented in the book
[11], and bibliography therein cited. Finally, conclusions and some ideas for future
work are presented in Sect. 6.

2 The Mathematical Modeling for Landscape Units:
Equilibrium Solutions and Stability

An environmental system is an isolated system that may be distributed in n land-
scape units (LU) divided by natural or anthropological barriers (roads, motorways,
railways, buildings, industrial infrastructures, rivers, hill ridges and so on). At the
same time a LU is formed by several biotopes which are patches characterized by
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an uniform land cover. Such a representation of an environment can be given by
the Geographic Information System (GIS) [13] and its ecological indicators [3] can
be deduced by the ecological graph (see its construction in the book [5] and in the
paper [7]).

The nature of each biotope is identified by the value of its bio-potential territorial
capacity (BTC) index [10]. In what follows, such an index, measuring the biological
energy per year and per square meter, produced by the vegetation inside the biotope,
will be indicated by Bji , j = 1, . . . , qi , being i a subscript which indicates that the
j-th biotope belongs to the i-th LU, i = 1, . . . , n. The variable Bji assumes values
[7, 10] in the range [0, Bmax ] where Bmax = 6.5 Mcal/(m2 · year) at the European
latitudes and corresponds to oak woods.

Moreover the BTC index identifies five ecological classes distributed as follows

C1 = [0, 0.4), C2 = [0.4, 1.2], C3 = (1.2, 2.4], C4 = (2.4, 4.0], C5 = (4.0, 6.5].

The total value of BTC of each LU, in Mcal/year , is given by

Bi (t) =
qi∑

j=1

Bji s ji , (1)

where s ji is the area of the biotope j . Accordingly the area of the corresponding LU

is Si =
qi∑

j=1

s ji .

To the BTC is often associated another quantity that can be interpreted as a gen-
eralized function of BTC (GBTC) defined by the following formula [5]

Mi (t) = (1 + Ki )Bi (t), (2)

where the constant parameters Ki ∈ [0, 1] depend upon the physical and morpho-
logical features of the LU in such a way that the BTC itself is incremented. Such an
increment takes into account the capacity of the LU to transmit energy to the neigh-
boring LUs. In this paper Ki will be expressed in terms of three other parameters

Ki = (Ksh
i + Kec

i + K pe
i )/3 ,

where Ksh
i , Kec

i , K pe
i ∈ [0, 1] are, respectively, the Shannon landscape diversity

parameter (evenness [15, 16]), the ecotonal parameter [3] and the LU-border perme-
ability parameter [7]. They are defined as follows:

• the Shannon parameter

Ksh
i =

(
5∑

�=1

n�i

5
log

n�i

5

)
/ log

1

5
,
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where n�i is the number of biotopes belonging to the ecological classC�, �=1, . . . , 5,
assuming that n�i log n�i = 0 if n�i = 0;
• the ecotonal parameter (i.e. the length of borders between biotopes)

Kec
i = 1 − Pi

/ qi∑

j=1

Pji ,

where Pi is the perimeter of the i-th LU and Pji are the perimeters of all the biotopes
except those belonging to the ecological class C1;
• the LU-border permeability parameter

K pe
i = 1

Pi

s∑

r=1

Lr
i p

r ,

where Lr
i is the length of the portion r of the border, divided in s parts, and pr ∈ [0, 1]

is the permeability index, with p = 0 for an impermeable barrier, and p = 1 for a
complete permeable barrier (see [7, 10]).

According to previous versions of the mathematical model already indicated in
the Introduction [7, 8], the state variables for each LU of the present model are two,
precisely the area Vi (t) of the biotopes belonging to the ecological classes C4 and C5

(high ecological quality of green) and the GBTC Mi (t). The right-hand-side of the
evolution equations on Vi (t) and Mi (t) consists in a gain term of logistic type and
a loss term accounting for environmental impact. The equations have the following
form

V ′
i (t) = bi (Mi )

(
1 − Vi (t)

Si

)
Vi (t) − hiUiVi (t), (3)

M ′
i (t) = ci

(
1 − Mi (t)

Mmax
i

)
Mi (t) − ri

(
1 − Vi (t)

Si

)
Mi (t). (4)

In Eq. (3) the coefficient bi will be expressed, as we shall see, in terms of the GBTC,
whereas the other parameters hi andUi are, respectively, given by the ratio between
the sum of the perimeters of the built-up areas and the total perimeter of the LU,
and by the ratio between the sum of the built-up areas and the total area Si of the
LU. Therefore, these parameters, assumed as constant, can be considered a mea-
sure, respectively, of the dispersion and of the intensity of edification inside the
LU. According to its definition the parameter hi can assume values greater than one
(values greater than one mean that edification dispersion in the LU is significantly
remarkable); on the other hand Ui is ranging in [0, 1].

In Eq. (4) the coefficient ci is the connectivity index between the i-th LU and
its neighbors, whereas the other parameter ri is defined as the ratio between the
surface area of the impermeable barriers present in the LU and the total area Si of the
LU itself. Both parameters are supposed to range in [0, 1] and for this preliminary
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analysis the indexes ci are assumed to be constant. Let us now deal with the definition
of the parameter bi (Mi ), i.e.

bi := Bi

Bmax
i

, Bmax
i = Bmax Si .

Thus bi expresses the production percentage of BTC with respect to the maximum
value that each LU can produce, assuming that all its biotopes have BTC index equal
to Bmax . If now we define the normalized GBTC

mi := Mi

Mmax
i

, Mmax
i = 2Bmax

i ,

then we have

mi = (1 + Ki )Bi

2Bmax
i

= 1 + Ki

2
bi

and therefore

bi = 2

1 + Ki
mi := aimi , ai ∈ [1, 2]. (5)

If now we normalize Vi as well, defining vi := Vi/Si , both state variables vi and mi

range in [0, 1]. Thus if we divide Eqs. (3) and (4), respectively, by Si and Mmax
i , the

model equations assume the following final form

v′
i (t) = aimi (t)[1 − vi (t)]vi (t) − hiUivi (t), (6)

m ′
i (t) = ci [1 − mi (t)]mi (t) − ri [1 − vi (t)]mi (t). (7)

Moreover to these equations we join the initial data (t = 0)

vi (0) = vi0, mi (0) = mi0, (8)

which must be determined directly from the GIS maps of the environment under
investigation.

Next step consists in finding the equilibrium solutions [12] of the system (6) and
(7). Solving the algebraic equations

vi [aimi (1 − vi ) − hiUi ] = 0, mi [ci (1 − mi ) − ri (1 − vi )] = 0, (9)

one obtains the following equilibria.
• The first is given by (

v(1)
i , m(1)

i

)
= (0, 0) , (10)

which corresponds to a scenario where the environment tends to lose substantially
its ecological quality since it is characterized by a strong fragmentation;
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• the second is expressed by

(
v(2)
i , m(2)

i

)
=

(
0,

ci − ri
ci

)
, (11)

corresponding to a scenario of weak ecological quality characterized by a moderate
level of bio-energy (such a scenario is typical of a territory with a predominant
agricultural production); the admissibility condition of such solution results to be
ci > ri ;
• the third and fourth equilibria are those of coexistence, showing a good level of
bio-energy production together with a high ecological quality of green areas; they
are given by (

v(3)
i , m(3)

i

)
=

(
2ri − ci − Di

2ri
,

2hiUiri
ai (ci + Di )

)
(12)

(
v(4)
i , m(4)

i

)
=

(
2ri − ci + Di

2ri
,

2hiUiri
ai (ci − Di )

)
(13)

where
Di = √

ci (aici − 4hiUiri )/ai .

The existence of these solutions requires that

ci >
4hiUiri

ai
. (14)

Moreover the third solution exists if

1

2
(ci + Di ) < ri <

1

2
(ci + Di )

ai
hiUi

, (15)

whereas the fourth requires that

ci > Di ,
1

2
(ci − Di ) < ri <

1

2
(ci − Di )

ai
hiUi

. (16)

We are now concerned with asymptotic stability [12] of the previous equilibria. The
Jacobian matrix joined to the system (6) and (7) is given by

J (vi ,mi ) =
(
aimi − 2aivimi − hiUi ai (1 − vi )vi

rimi ci − 2cimi − ri (1 − vi )

)
. (17)

• We have for the first equilibrium

J (v(1)
i ,m(1)

i ) =
(−hiUi 0

0 ci − ri

)
. (18)
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The eigenvalues of the matrix are λ1 = −hiUi < 0 and λ2 = ci − ri . Thus the equi-
librium solution (v(1)

i ,m(1)
i ) is asymptotically stable if ci < ri ; otherwise it is a saddle

point. Moreover the stability of this solution implies that the equilibrium (v(2)
i , m(2)

i )

does not exist (see the admissibility condition of the second equilibrium).

• For the second equilibrium we get

J (v(2)
i ,m(2)

i ) =

⎛

⎜⎜⎜⎝

ai (ci − ri ) − hiUici
ci

0

ri (ci − ri )

ci
−ci + ri

⎞

⎟⎟⎟⎠ , (19)

whose eigenvalues are λ1 = ai (ci − ri ) − hiUici
ci

and λ2 = −ci + ri . Existence of

this equilibrium implies that the eigenvalueλ2 is alwaysnegative.Thus the asymptotic
stability of (v(2)

i ,m(2)
i ) requires that aici < airi + hiUici .

• Moreover for the third equilibrium we have

J (v(3)
i ,m(3)

i ) =

⎛

⎜⎜⎜⎜⎝

hiUi (ci + Di − 2ri )

ci + Di

ai (ci + Di )(2ri − ci − Di )

4r2i

2hiUir2i
ai (ci + Di )

ai (c2i − D2
i ) − 8hiUiciri

2ai (ci + Di )

⎞

⎟⎟⎟⎟⎠
. (20)

If we write the characteristic equation of the Jacobian in the form λ2 + A1λ +
B1 = 0, after simple computations we get

A1 = −2aihiUi (ci + Di − 2ri ) + ai (c2i − D2
i ) − 8hiUiciri

2ai (ci + Di )
(21)

B1 = hiUi (ci + Di − 2ri )[aici (ci + Di ) − 4hiUiciri ]
ai (ci + Di )2

. (22)

Therefore the stability condition for the third equilibrium requires that A1 > 0 and
B1 > 0.Conversely, if A1 > 0 and B1 < 0 or if A1 < 0 and B1 < 0,we have that such
an equilibrium is a saddle point, whereas if A1 < 0 and B1 > 0we have instability. In
addition, in the case of stability, if A2

1 − 4B1 > 0 the equilibrium is a node, whereas
A2
1 − 4B1 < 0 corresponds to a focus. In cases that A1 = 0 or B1 = 0, the asymptotic

stability is not assured.Nevertheless, in practice, since A1 and B1 dependon territorial
indexes of different nature, the vanishing of these quantities is strongly unlikely and
not consistent with the real state of the environment.

• Finally for the last equilibrium (v(4)
i ,m(4)

i ) the Jacobian has the form
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J (v(4)
i ,m(4)

i ) =

⎛

⎜⎜⎜⎜⎝

hiUi (ci − Di − 2ri )

ci − Di

ai (ci − Di )(2ri − ci + Di )

4r2i

2hiUir2i
ai (ci − Di )

ai (c2i − D2
i ) − 8hiUiciri

2ai (ci − Di )

⎞

⎟⎟⎟⎟⎠
, (23)

and the coefficients of its characteristic equation λ2 + A2λ + B2 = 0 are given by

A2 = −2aihiUi (ci − Di − 2ri ) + ai (c2i − D2
i ) − 8hiUiciri

2ai (ci − Di )
(24)

B2 = hiUi (ci − Di − 2ri )[aici (ci − Di ) − 4hiUiciri ]
ai (ci − Di )2

. (25)

The stability or instability discussion on this equilibrium is just like that of the third,
substituting only A1 and B1 with A2 and B2.

We underline that system (6) and (7) is cooperative of Lotka–Volterra type, and
the solution (vi ,mi ) lies in the square [0, 1] × [0, 1]. Thus the system possesses one
stable equilibrium at least (see [18]).

In Sect. 3 we will apply the model studied in this section to an environmental
system situated in the Northern district of the Province of Turin (Italy). According to
the analysis carried on in this section it is evident that the various scenarios admitted
by the model and the asymptotic trend to a stable equilibrium solution crucially
depends on the values of the model parameters. Thus, it is necessary an accurate
determination of these parameters in the environment under investigation through
the GIS data. This will be carried out in Sect. 3 where we show such an accurate
determination of parameters and initial data of the state of each LU. In particular in
that section we propose as well some phase diagrams (Figs. 1, 2, 3, 4, 5, 6) of the
system variables, where the sensitivity of the trend from the initial state to the final
one can be observed.

3 Stability Analysis for Each LU of the Environment

In order to check the theoretical analysis presented in the previous section, we con-
sider the afore-mentioned environment of the Turin Province that has been studied
in the thesis [4]. Such a system has been divided into 24 LUs, corresponding to an
area of several municipalities placed around the city of Cirié.

First of all let us mention that the stability analysis carried on all the 24 LUs
show that the third equilibrium, (v(3)

i ,m(3)
i ), never exists since conditions (15) are

not satisfied.
Moreover the analysis shows that 13 LUs have only the stable equilibrium

(v(1)
i ,m(1)

i ), see LUs 2, 3, 4, 11, 12, 13, 14, 15, 16, 19, 21, 22, 23 in Table1. This
means that these LUs have a bad ecological state and present a strong fragmentation
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Table 1 Data of the environmental system and indication of the stable equilibria for each LU

LU vi0 mi0 ai hi Ui ci ri Si Pi nodes

1 0.30 0.19 1.13 1.83 0.09 0.12 0.03 19156648 25248 (4)

2 0.13 0.05 1.36 1.39 0.60 0.07 0.20 2260943 11109 (1)

3 0.20 0.04 1.43 0.81 0.41 0.04 0.14 764299 3791 (1)

4 0.25 0.11 1.27 1.45 0.25 0.07 0.08 2285714 7271 (1)

5 0.26 0.13 1.20 2.51 0.23 0.08 0.07 17004435 26335 (2)

6 0.28 0.27 1.09 1.36 0.17 0.20 0.06 13162369 22717 (4)

7 0.32 0.53 1.06 1.17 0.03 0.26 0.01 29896496 33085 (4)

8 0.26 0.20 1.12 1.72 0.23 0.30 0.08 10139270 20838 (4)

9 0.30 0.20 1.21 0.60 0.11 0.16 0.04 6584277 24162 (4)

10 0.21 0.09 1.43 1.20 0.36 0.17 0.12 837269 5113 (2), (4)

11 0.18 0.06 1.44 1.48 0.47 0.04 0.16 991018 5007 (1)

12 0.23 0.07 1.69 1.39 0.32 0.09 0.11 1395933 5704 (1)

13 0.26 0.10 1.36 1.81 0.23 0.07 0.08 2431435 7903 (1)

14 0.20 0.08 1.39 1.05 0.40 0.04 0.13 1452734 5483 (1)

15 0.11 0.04 1.62 1.42 0.66 0.04 0.22 1072430 5355 (1)

16 0.17 0.06 1.41 1.09 0.49 0.05 0.16 3416393 10922 (1)

17 0.26 0.13 1.22 1.58 0.21 0.14 0.07 6369795 12599 (4)

18 0.31 0.34 1.06 1.97 0.07 0.17 0.02 69754645 60482 (4)

19 0.13 0.17 1.24 1.88 0.61 0.17 0.20 4589299 18604 (1)

20 0.30 0.45 1.00 2.20 0.09 0.19 0.03 42953048 38826 (4)

21 0.09 0.02 2.00 1.06 0.74 0.06 0.25 459102 2887 (1)

22 0.05 0.01 2.00 1.29 0.86 0.05 0.29 302009 2792 (1)

23 0.15 0.05 1.52 1.27 0.54 0.05 0.18 1059134 4720 (1)

24 0.26 0.11 1.24 1.91 0.22 0.08 0.07 16437048 18458 (2)

due to the presence of a significant edification sprawl. Therefore both bio-energy and
extension of areas with a BTC index in classesC4 andC5 present a decrement of their
values which asymptotically tend to zero. Such a result is somehow in accordance
with the analysis carried out, with other methods, in the thesis mentioned above. On
the other hand 11 LUs exhibit stable equilibria different from (v(1)

i ,m(1)
i ). For these

LUs the first equilibrium is always a saddle point. In Table1, deduced by the GIS
map, we report the relevant data of the model (the area and the perimeter of the LUs
are indicated inm2 andm, respectively). In the last column, for each LU, we indicate
which of the four equilibria results to be a stable node.

Let us note that the connectivity indexes ci , which in the following Sect. 4 will be
defined as functions of Mi (t) and Mk(t), here are assumed constant with their values
recovered by the GIS data. They are computed here by formulas (26)–(28) of Sect. 4
setting Mi = mi0Mmax

i and Mk = mk0Mmax
k , for all i, k = 1, . . . , 24.
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Fig. 1 Representation of LU5 (scenario typical of agricultural areas). Left – Phase diagram: state
(v(1)

5 ,m(1)
5 ) is a saddle point and state (v(2)

5 ,m(2)
5 ) is a stable node. Right – Time evolution of v5 and

m5 towards the equilibrium (v(2)
5 ,m(2)

5 )

From the stability analysis it results that LUs 1, 6, 7, 8, 9, 17, 18, 20 admit the
equilibrium (v(2)

i ,m(2)
i ) as a saddle point and the other (v(4)

i ,m(4)
i ) as a stable node.

The diagrams in the phase plane show that the state of all these LUs, starting from the
initial data vi0 and mi0 reported in Table1, converges towards the fourth equilibrium
which corresponds to a scenario of high ecological quality (see the examples reported
below).

Conversely LUs 5 and 24 present as a unique stable node the point (v(2)
i ,m(2)

i ),
since (v(4)

i ,m(4)
i ) does not satisfy the existence conditions of Eq. (16). Therefore the

LUs show a trend towards a scenario typical of agricultural areas.
Finally LU 10 admits as stable nodes both equilibria (v(2)

i ,m(2)
i ) and (v(4)

i ,m(4)
i ).

In this case the asymptotic behavior depends crucially on initial data. In particular
with those of Table1 the actual attractor results to be the second equilibrium, i.e. the
one of agricultural scenario.

In the following Figs. 1, 2, 3, 4, 5 and 6, we show some representative behaviors
through phase plane diagrams (left plots) and graphics of vi andmi versus time at an
arbitrary scale (right plots). The simulations have been performed with the software
Mathematica, version number 10.0.0.0.

In particular, Fig. 1 is referred to LU 5 that, as discussed previously, admits a
unique stable node (v(2)

i ,m(2)
i ), as it can be seen in the phase plane diagram, with vi

tending to zero and mi almost constant as indicated by the time-dependent plot.
Figure2 refers to LU 8 and shows a trend to a scenario of high ecological quality

since, after a transient time, the vegetation area vi and the biological energy function
mi show an increasing behavior towards the equilibrium (v(4)

i ,m(4)
i ). This trend does

not depend on the initial data vi0 and mi0, in the sense that (v
(4)
i ,m(4)

i ) represents the
unique attractor of the LU, as shown in the phase diagram on the left plot, and the
system asymptotically converges to such an attractor.
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Fig. 2 Representation of LU8 (scenario of high ecological quality). Left – Phase diagram: states
(v(1)

8 ,m(1)
8 ) and (v(2)

8 ,m(2)
8 ) are saddle points and state (v(4)

8 ,m(4)
8 ) is a stable node. Right – Time

evolution of v8 and m8 towards the equilibrium (v(4)
8 ,m(4)

8 )
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Fig. 3 Representation of LU10. Left – Phase diagram: state (v(1)
10 ,m(1)

10 ) is a saddle point, states

(v(2)
10 ,m(2)

10 ) and (v(4)
10 ,m(4)

10 ) are stable nodes. Right – Zoom of the phase diagram around the stable

node (v(2)
10 ,m(2)

10 ) (disregard the negative part of the picture due to the choice of the scales determined
by the software Mathematica)

Figures3 and 4 refer to LU 10 and, as indicated in Table1, such sector shows two
stable equilibria. Accordingly, the phase diagram on the left plot of Fig. 3 shows the
existence of two stable nodes (v(2)

i ,m(2)
i ) and (v(4)

i ,m(4)
i ). The fact that the equilibrium

(v(2)
i ,m(2)

i ) is a stable node can be visualized with a zoom around such a point, as
shown in the right frame of Fig. 3. For the initial data reported in Table1, the left plot
of Fig. 4 shows the time evolution of vi and mi towards the equilibrium (v(2)

i ,m(2)
i ),

which is typical of agricultural areas. The basin of attraction of the equilibrium
(v(2)

i ,m(2)
i ) is represented in the right plot of Fig. 4 by the grey region, showing that

the initial state considered in Table1 belongs to such basin. The case of LU 10 is very
interesting from the dynamical point of view, since it represents a bistable situation.
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Fig. 4 Representation of LU10. Left – Time evolution of v10 and m10 towards the equilibrium
(v(2)

10 ,m(2)
10 ) with the initial data of Table1. Right – Basin of attraction for the node (v(2)

10 ,m(2)
10 )

represented by the grey region

Fig. 5 Representation of LU13 (scenario of ecological quality loss). Left – Phase diagram: state
(v(1)

13 ,m(1)
13 ) is the unique equilibrium and it is given by a stable node. Right – Time evolution of v13

and m13 towards the equilibrium (v(1)
13 ,m(1)

13 )

Moreover, in Sect. 5 when the system will be treated as a whole, the behavior of LU
10 will change significantly.

Figure5 shows the behavior of LU 13 that, as discussed before, is one of the eco-
logical sectors presenting a strong fragmentation. Therefore the picture in the phase
plane shows the existence only of the unique stable node (v(1)

i ,m(1)
i ) in accordance

with the time-dependent plot.
Finally, Fig. 6 corresponds to LU 20 and shows a scenario of high ecological

quality, similar to the one of LU 8 represented in Fig. 2, but with a stronger trend
to an equilibrium of high ecological quality. In fact, for the initial data vi0 and mi0,
reported in Table1 for this LU, the variable vi presents a monotonic increase from
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Fig. 6 Representation of LU20 (scenario of high ecological quality). Left – Phase diagram: states
(v(1)

20 ,m(1)
20 ) and (v(2)

20 ,m(2)
20 ) are saddle points and (v(4)

20 ,m(4)
20 ) is a stable node.Right –Time evolution

of v20 and m20 towards the equilibrium (v(4)
20 ,m(4)

20 )

the initial state to the equilibrium (v(4)
i ,m(4)

i ), conversely to that non monotonic of
LU 8.

Let us finally comment that we have also considered in our simulations the case of
LU 24 which however presents exactly the same behavior as LU 5. Thus, we do not
include here the plots of LU 24. Nevertheless, when studying in Sect. 5 the behavior
of these LUs in the whole environmental system, our numerical simulations will take
into account the correct connectivity to the neighboring sectors, founding that LU 5
and LU 24 exhibit a significantly different dynamics.

4 The Mathematical Model Extended to the Whole
Environmental System

In this section we extend the mathematical model to the whole territory under inves-
tigation by coupling the equations of each LU with those of their neighbors. Such
a coupling is determined by the connectivity indexes ci which can be computed
through the GBTC fluxes Φi between the i LUs and all their k neighbors. We get [8]

Φi (t) =
∑

k∈Ii

Mi (t) + Mk(t)

2(Pi + Pk)
Hik, Hik =

s∑

r=1

Lr
ik p

r , (26)

where Lr
ik is the length of the portion r of the borderwith a permeability pr .Moreover

Pi and Pk are, as already defined, the perimeters of the two LUs and where the sum is
extended to the set Ii including all the neighbors of the i-th LU. In addition it results
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s∑

r=1

Lr
ik = Lik,

Lik being the length of the border.
Taking into account that complete permeability implies pr = 1, the corresponding

maximum value of Φi is given by

Φmax
i =

∑

k∈Ii

Mmax
i + Mmax

k

2(Pi + Pk)
Lik . (27)

Finally the connectivity index of the i-th LU is defined by [9]

ci (t) = Φi (t)/Φ
max
i , (28)

so that ci (t) ∈ [0, 1] for all t (ci = 0 corresponds evidently to no connectivity, and
ci = 1 to total connectivity).

Thus the equations of the system (6) and (7) are coupled through the coefficients
ci (t) which depend on Mk(t) and definitively on mk(t).

Because of the great number of LUs that an environment can possess, solving (6)
and (7) through a numerical integrator may be costly and stiffness problems may
arise. Morever in [9], the numerical integration of a system similar to that of Eqs. (6)
and (7) has shown the presence of some instability due to the presence of such a
large amount of equations. Thus, an approximation method has been there proposed
in order to transform the system of ODEs in an algebraic closed hierarchy, evaluating
as well its accuracy (see also [11]). The problem of solving Eqs. (6) and (7) through
an algebraic hierarchy instead of a numerical integration allows the use of the model
also by persons not acquainted with ODE integrators.

For this reason in the present paper we adopt such a method and we derive as
follows such an algebraic hierarchy. If one assumes for a moment that the Eqs. (6)
and (7) are completely uncoupled, meaning that the quantitiesmi and vi are constant,
respectively, inEq. (6) and inEq. (7), and that the coefficient ci is constant aswell, then
the system itself, starting from the initial data vi (t = 0) = vi0 and mi (t = 0) = mi0,
has the following explicit solution, thanks to its classical logistic structure [12]

vi (t) = aimi − hiUi

Dv
i exp[−(aimi − hiUi )t] + aimi

(29)

mi (t) = ci − ri (1 − vi )

Dm
i exp

[
−

(
ci − ri (1 − vi )

)
t
]

+ ci
(30)

where

Dv
i = aimi (1 − vi0) − hiUi

vi0
, Dm

i = ci (1 − mi0) − ri (1 − vi )

mi0
.
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Such a solution can be used by discretizing from t0 = 0, the time axis in intervals
Δt = ts − ts−1 sufficiently small, so that the quantities ci , vi and mi can be assumed
constant in the time interval Δt . Then the solution of Eqs. (6) and (7), by extending
the formulae (29) and (30), can be approximated by the hierarchy (see the discussion
in paper [9] according to the book [11])

vi (ts) = aimi (ts−1) − hiUi

Dv
i (ts−1) exp

[
−

(
aimi (ts−1) − hiUi

)
Δt

]
+ aimi (ts−1)

(31)

mi (ts) =
ci (ts−1) − ri

(
1 − vi (ts−1)

)

Dm
i (ts−1) exp

[
−

(
ci (ts−1) − ri

(
1 − vi (ts−1)

))
Δt

]
+ ci (ts−1)

(32)

where

Dv
i (ts−1) = aimi (ts−1)[1 − vi (ts−1)] − hiUi

vi (ts−1)
,

Dm
i (ts−1) = ci (ts−1)[1 − mi (ts−1)] − ri [1 − vi (ts−1)]

mi (ts−1)
.

Of course the determination of such a hierarchy at time ts must take into account
that for any solution mi at time ts−1 it is necessary to compute, for all the LUs, the
values of the GBTC Mi = miMmax

i , of the fluxes Φi and then of the connectivity
indexes ci . On the other hand the values of hi ,Ui , ri , Mmax

i and Hik are constant and
consequently can be computed before the generation of the hierarchy itself.

Finally, it is worthwhile to note that the hypothesis that territorial quantities are
almost constant during the time intervalΔt is justified by the fact the relaxation time
of an environmental system is sufficiently long.

5 Evaluation Analysis of the Whole Environmental System

In this section we examine the dynamics of the whole environmental system, provid-
ing the solution obtained with the iterative scheme explained in the previous section,
using Eqs. (31) and (32). The computations have been performed using the software
Mathematica, version number 10.0.0.0. We give in the Table2 the values of the
quantities Hik and Lik . Note that in the first column of the table the couple of the
neighboring LUs is indicated only for those LUs that present permeable borders.

Figures7, 8 and 9 show the time evolution of vi and mi (for i = 5, 8, 10, 13, 20,
24), at an arbitrary scale, when the corresponding LUs are connected in the whole
environmental system, through time dependent connectivity indexes ci (t).

In particular Fig. 7 presents the time evolution of LU 5 and LU 24. In Sect. 3,
when studying separately the landscape units, we have mentioned that these two LUs
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Table 2 Values of Hik and Lik for the neighboring LUs presenting permeable borders

LUs Hik Lik

1__ 2 391 782

1__ 17 3017 7543

1__ 18 3664 7327

1__ 24 2896 5792

2__ 3 1098 1569

2__ 4 1292 1845

4__ 5 964 1377

4__ 15 1062 2654

5__ 2 262 374

5__ 6 3837 7675

5__ 9 2804 7011

5__ 14 553 1383

5__ 15 633 1583

5__ 21 267 381

5__ 22 122 175

6__ 7 5416 9027

6__ 8 533 927

7__ 8 1460 2919

8__ 9 4231 8991

9__ 11 241 602

9__ 12 1931 2758

9__ 13 1072 1531

9__ 23 771 1543

10__ 9 425 850

10__ 20 305 763

11__ 12 855 2137

11__ 19 228 1138

12__ 13 984 2461

13__ 19 821 1172

13__ 23 680 3401

14__ 15 634 1585

14__ 16 548 1096

14__ 22 109 156

16__ 17 1785 3570

16__ 21 311 778

16__ 22 281 702

18__ 17 5429 10857

(continued)
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Table 2 (continued)

LUs Hik Lik

18__ 19 3352 6705

18__ 20 5390 10780

19__ 20 1553 3106

21__ 22 184 459

21__ 23 197 493

24__ 2 2557 5114

Fig. 7 Representation of the LUs in the whole environmental system. Left – LU 5. Evolution of v5
and m5 versus time. Right – LU 24. Evolution of v24 and m24 versus time

exhibit the unique stable node (v(2)
i ,m(2)

i ), see Table1, and have a similar behavior,
so that we have shown only the plots of Fig. 1 concerning LU 5. The behavior of
these LUs is completely different when the environmental system is considered as
a whole. In fact, a new stable node of high ecological quality appears for LU 5, say
(v(4)

5 ,m(4)
5 ), thanks to themonotonic increasing of the GBTC variablem5. Despite the

fact that for a long initial transient the variable v5 assumes values close to zero, LU 5
tends to the node (v(4)

5 ,m(4)
5 ). Conversely LU 24, because of a significant decreasing

ofm24 during the transient behavior, does not reach an equilibrium of high ecological
quality and leads to the one typical of agricultural areas.

Moreover Fig. 8 describes the dynamics of LU 8 and LU 20 which, when isolated,
exhibit a trend to the stable nodes (v(4)

i ,m(4)
i ) of high ecological quality, as shown

in Figs. 2 and 6 of Sect. 3. In the whole system simulation, LU 8 still reaches the
equilibrium (v(4)

8 ,m(4)
8 ), whereas LU 20 presents a loss of ecological quality and

evolves towards the equilibrium (v(2)
20 ,m(2)

20 ), since for a long time interval it exhibits
a strong decrease of the GBTC variable m20 which causes the decay to zero of the
variable v20.

Finally, Fig. 9 considers LU 10 and LU 13. The stability analysis carried out in
Sect. 3 for LU 10 shows, as visualized by Fig. 3–left, that this sector admits the two
stable attractors (v(2)

10 ,m(2)
10 ) and (v(4)

10 ,m(4)
10 ), and consequently the dynamics of such
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Fig. 8 Representation of the LUs in the whole environmental system. Left – LU 8. Evolution of v8
and m8 versus time. Right – LU 20. Evolution of v20 and m20 versus time

Fig. 9 Representation of the LUs in the whole environmental system. Left – LU 10. Evolution of
v10 and m10 versus time. Right – LU 13. Evolution of v13, m13 and c13 versus time

LU depends strongly on the initial data (in particular for those of Table1 the equilib-
rium solution reached was (v(2)

10 ,m(2)
10 )).When the whole system is considered, LU 10

improves its environmental properties and tends to a scenario of high ecological qual-
ity reaching the equilibrium (v(4)

10 ,m(4)
10 ), since evidently the basin of attraction of node

(v(2)
10 ,m(2)

10 ) is now different. Analogously, also LU 13 presents such an improvement
when well connected to its neighbors, as it can be seen by Fig. 9–right: after a long
initial transient where the variable v13 is close to zero, then there is a strong growth
of v13 itself due to the monotonic increasing of both the GBTC variable m13 and the
connectivity index c13 (dashed line). Thus, LU 13 changes from a scenario showing
a complete loss of ecological quality, defined by the stable node (v(1)

13 ,m(1)
13 ) when it

is isolated, to an opposite scenario of high ecological quality stated by (v(4)
13 ,m(4)

13 ),
when it is considered connected to the whole environmental system. Such examples
evidence how a LU can commute to a scenario of high ecological quality when it
is well connected to its neighbors, even when a bad trend is found in the stability
analysis developed individually for each LU. Such a behavior influences also the
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time scaling of the system. Let us note in fact that the time scales of Figs. 7, 8 and
9 are much greater than those provided when the LUs were considered separately.
This peculiarity seems reasonable since, when the environmental system is treated
as a whole, then the relaxation times increase and fluctuations of territorial quantities
get slower.

6 Conclusions and Future Perspectives

In this paper we have proposed a new mathematical model for the evaluation of the
ecological state of an environmental system distributed in landscape units (LUs).
More specifically, starting from previous ideas advanced in paper [8], our model
acts at the level of each LU, instead at that of the whole system, and introduces as
state variables the extent of green area of high ecological quality and a generalized
biological energy of each landscape unit. The model is then capable to describe the
territory at a more detailed level, so that its properties are better apprehended. From
the mathematical point of view, the model is represented by an autonomous system
of ordinary differential equations of cooperative Lotka–Volterra type [14]. The sta-
bility analysis developed in Sect. 2 for each LU determines the equilibrium solutions
of the equations, whose qualitative trend indicates the future possible scenarios of
the LU itself. The analysis is then applied in Sect. 3 to a Northern district of the
Turin Province consisting of 24 different ecological sectors linked through a con-
stant connectivity index recovered from the GIS. It allows to identify the LUs with
high ecological quality, showing a great potential to evolve to a favorable scenario,
and, conversely, those presenting a bad ecological state with a tendency to a sce-
nario of ecological quality loss. It also allows to identify the LUs showing a different
asymptotic equilibrium, in particular that typical of agricultural areas.

For a comprehensive description of thewhole environmental system, the dynamics
of the landscape units is then investigated in Sect. 4, considering all LUs connected to
their neighboring sectors. The resulting model incorporates the connectivity issues
among the neighboring sectors showing that the connectivity index plays an impor-
tant role since now it has become time dependent through the state variables. The
analytical treatment of such a system is rather complicated, since it is represented by
48 coupled ordinary differential equations. Our strategy was then to use an approxi-
mation procedure based on an algebraic hierarchy and, following the ideas discussed
in paper [9], we propose an explicit algorithm presented in Sect. 5. The simulations
show how a LU can commute from a certain scenario to a completely different sit-
uation, due to the influence of its neighbors, even if a different trend is predicted in
the stability analysis developed individually for each LU.

Therefore, the study developed in this paper indicates that the connectivity among
the neighboring sectors has a significant impact in the dynamics of the LUswhen they
are considered as parts of a whole. Even a rather complete analysis of the individual
LUs is not enough to describe the whole system and a model taking into account the
connectivity issues is an appropriate tool.
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In our opinion, the model proposed here offers promising results and motivates
future perspectives in terms of networking systems accounting for neighboring sec-
tors. In fact, we think that it is possible to propose amodel similar to the one presented
here for what concerns the state variables, but different for the LUs coupling, bor-
rowing some ideas from electrical synapses linking neurons [2] and exploiting the
analysis of the landscape connectivity [6]. Moreover, another development could
take into account a model with more state variables, namely considering variables
v’s for each ecological class C2, . . . ,C5 with non-null BTC indexes. In such a way,
the model would also include the effects due to the presence of landcover areas with
weak production of biological energy. These developments can be introduced in a
forthcoming paper.
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