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Abstract We present a general construction of matrix product states for stationary
density matrices of one-dimensional quantum spin systems kept out of equilibrium
through boundary Lindblad dynamics. As an application we review the isotropic
Heisenberg quantum spin chain which is closely related to the generator of the sim-
ple symmetric exclusion process. Exact and heuristic results as well as numerical
evidence suggest a local quantum equilibrium and long-range correlations remi-
niscent of similar large-scale properties in classical stochastic interacting particle
systems that can be understood in terms of fluctuating hydrodynamics.
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1 The Quantum Master Equation

This article is concerned with stationary states of non-equilibrium quantum spin
systems, addressing a mathematically minded readership. We spent some effort on
recalling – in mathematical terms – relevant basic quantum mechanical notions as
well as providing motivations from physics as to why quantum spin systems are of
great current interest.Among them is,we feel, a striking analogywith someproperties
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of classical stochastic interacting particle systems [4, 10, 31] that we point out in
the hope of stimulating further mathematically rigorous work.

LetH be a separable complex Hilbert space. A concrete physical quantum system
is mathematically defined by a specific self-adjoint (not necessarily bounded) linear
operator H on H, called quantum Hamiltonian (in the following simply Hamil-
tonian). Vectors in H are denoted by the ket-symbol | · 〉 and vectors in the dual
space H∗ are denoted by the bra-symbol 〈 · |. The scalar product of two vectors
| Ψ 〉 = ∑

n cn| n 〉 ∈ H and | Φ 〉 = ∑
n bn| n 〉 ∈ H with coordinates bn, cn ∈ C in

some orthonormal basis | n 〉, 〈 n | of H and its dual resp. is denoted 〈Φ | Ψ 〉 and
defined to be linear in the second argument, i.e., 〈Φ | Ψ 〉 := ∑

n b̄ncn where the bar
denotes complex conjugation. We denote the unit operator onH by 1. The Kronecker
symbol δa,b is defined by δa,b = 1 if a = b and δa,b = 0 else for a and b from any
set.

The eigenvalues En of the Hamiltonian H are the physical energies measured in
an experiment when the physical system is in an eigenstate n of H , defined by the
corresponding eigenvector | Ψn 〉. One normalizes these eigenvectors, which span the
Hilbert spaceH, to satisfy the orthogonality relation 〈Ψn | Ψm 〉 = δn,m . A spectral ray
| Ψ 〉 ∈ H normalized such that ||Ψ ||2 := 〈Ψ | Ψ 〉 = 1 (i.e. a vector defined up to
an arbitrary phase) is called a state vector. It represents the full information that
one can have about a quantum system under the idealizing assumption that it is
isolated (and has always been isolated) from its physical environment.1 The modulus
|ψn|2 of the components of | Ψ 〉 are the probabilities to find the physical system in
eigenstate n.

In general, physically observable properties of a quantum system (e.g. particle
positions, momenta and so on) are represented by self-adjoint linear operators Oi on
H which we call observables. The “fuzzy” and non-deterministic nature of quantum
mechanics is reflected by the fact that the Oi are not all diagonal in some fixed basis
of H and that only the mean outcome of a large number (mathematically speaking,
an infinite number) of measurements of such an observable is predictable. By the
mean (or expected) value of an observable O in a general state vector | Ψ 〉 we mean
the scalar product 〈 O 〉 ≡ 〈Ψ |O| Ψ 〉 = ∑

m,n c̄mcn〈Ψm |O| Ψn 〉.
A self-adjoint positive definite linear operator on H with unit trace is called a

density matrix or state (not eigenstate!) of a physical system. Therefore a density
matrix ρ with eigenvalues ρn ∈ R has the properties

ρ† = ρ, ρn ≥ 0, Tr(ρ) = 1 (1)

where the dagger-symbol † denotes hermitian conjugation. For a given Hilbert space
we denote the set of all density matrices byS(H). The mean value of an observable
Oi in a state ρ is given by the Frobenius scalar product 〈 Oi 〉 := Tr(O†

i ρ).

1Due to the quantum mechanical phenomenon of entanglement, a quantum subsystem that has
interacted with its environment in the past (until some time t0) cannot be considered isolated for
t ≥ t0 even when there are no interactions from t0 onwards.
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Unlike a state vector describing a single and isolated quantum system, a density
matrix contains the full information about a quantum system in either of the following
three scenarios:

(1) A density matrix of the specific form

ρ = | Ψ 〉〈Ψ | (2)

may describe a single isolated system.2 In this case we say that ρ is a pure state.
If a density matrix is not a pure state then there is no state vector | Ψ 〉 such that
Tr(O†

i ρ) = 〈Ψ |O| Ψ 〉 for all observables Oi .
(2)One describes an ensemble of identical isolated quantum systems. In particular,

if for some β ∈ R
+
0 the density matrix is of the form

ρ = 1

Z
e−βH (3)

where Z = Tr (exp (−βH)) we say that the physical system defined by the Hamil-
tonian H is in thermal equilibrium at temperature T = 1/β and the normalization
factor Z is called the partition function. In this case the probability to find the sys-
tem in an eigenstate n of H is proportional to the Boltzmann weight exp (−βEn)

analogous to classical thermodynamics.
(3) ρ describes a subsystem (or an ensemble thereof) of a larger physical system

with which it interacts (or has interacted in the past).3

Pure states and equilibrium states have in common that they remain so when the
physical system is isolated from its environment or becomes isolated from some time
t ≥ t0 onwards. This follows from the time-evolution equation for the density matrix
ρt of an isolated quantum system with quantum Hamiltonian H

d

dt
ρt = −i[H, ρt ] (4)

where the commutator is defined by [A, B] := AB − BA. Therefore an equilibrium
state is stationary. A pure state ρ0 = | Ψ (0) 〉〈Ψ (0) | is only stationary if | Ψ (0) 〉 is
an eigenstate of H , but generally remains a pure state since the evolution equation (4)
is solved by the unitary transformation ρt = exp (−i Ht)ρ0 exp (i Ht) which gives
ρt = | Ψ (t) 〉〈Ψ (t) | with | Ψ (t) 〉 = exp (−i Ht)| Ψ (0) 〉.

We are interested in open systems that are in contact with an environment. In the
Markovian approach to open quantum systems [2, 7] the time evolution

2Following quantum mechanical convention we use the short hand | · 〉〈 · | ≡ | · 〉 ⊗ 〈 · | for the
Kronecker product ⊗ of a state vector | · 〉 ∈ H and some dual state vector 〈 · | ∈ H∗. We stress that
by the rules of tensor calculus one has 〈Ψ | ⊗ | Φ 〉 = | Ψ 〉 ⊗ 〈 Φ | ≡ | Ψ 〉〈Φ | but 〈 Ψ | ⊗ | Φ 〉 	=
〈Ψ | Φ 〉 since 〈Ψ | Φ 〉 represents the scalar product.
3For this scenario, which we have in mind for applications, one often calls ρ the reduced density
matrix, but we shall refrain doing so here.
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ρt = Λtρ0 (5)

is given by a one-parameter semigroup Λt of linear endomorphisms on the space
S(H) of all densitymatrices [19]. Under some continuity conditions and for bounded
H the Lindblad theorem [12, 21] asserts that the infinitesimal generator L of the
semigroup Λt that preserves self-adjointness, positivity and unit trace is of the form

L (ρ) = −i[H, ρ] + D(ρ). (6)

The commutator describes the unitary part of the time evolution (as in an isolated
quantum system) and the dissipative part D(ρ) ∈ End(S(H)), which encodes the
physical properties of the coupling to the environment, is of the form

D(ρ) =
∑

j

D j (ρ), D j (ρ) = DjρD
†
j − 1

2
{ρ, D†

j D j } (7)

with boundedoperators Dj ∈ End(H) and the anticommutator {A, B} := AB + BA.
The evolution equation (6) with dissipators (7) is called quantum master equation.
The operators Dj that specify an individual dissipator are called Lindblad operators.
In an open system a state that is initially pure or in equilibrium does not in general
remain so as would be the case in the absence of dissipators in (6). This raises the
question of stationary states in open systems.

In order to address existence we introduce the adjoint generator L † which is
defined as follows [19]. Consider the Banach space L1(H) over R of self-adjoint
trace class linear operators σ ∈ H with norm given by ||σ ||1 = sup

∑
n |(xn, σ yn)|

where the supremum is taken over all orthonormal and complete bases {xn} and {yn}
of H. Then all linear, real and continuous functionals F on L1(H) are of the form
〈F, σ 〉 = Tr(F†σ) where F is a bounded self-adjoint linear operator on H. The set
of all such bounded observables F defines the space L∞(H) dual to L1(H). Its norm
is given by ||F ||∞ = sup||σ ||1=1 |〈F, σ 〉| = supΨ ∈H ||FΨ ||/||Ψ ||. Then the adjoint
generator is given by

L †(F) = −i[H, F] +
∑

j

(

D†
j FD j − 1

2
{F, D†

j D j }
)

(8)

and one sees that L †(1) = 0. If H is finite-dimensional then this guarantees the
existence of a density matrix ρ such that

L (ρ) = 0. (9)

We call a density matrix satisfying (9) a stationary state, and, in particular, when
ρ 	= e−βH/Z for any β ∈ R

+
0 , we call ρ a non-equilibrium steady state (NESS)

of the open quantum system with Hamiltonian H . For ergodicity and approach to
stationarity, which are not our concern, we refer to [11]. For Lindblad operators of
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the form Dj = Γ L j with a common coupling constant Γ the strong coupling limit
Γ → ∞ is called the Zeno limit.

Finally we remark that shifting the Lindblad operators by (in general complex)
constants c j generates an additional unitary term in the quantum master equation.
More precisely, defining for some c j ∈ C the self-adjoint operators

G j = i

2

(
c j D

†
j − c̄ j D j

)
, H̃ = H −

∑

j

G j , (10)

one has
L (ρ) = L̃ (ρ) (11)

where L̃ is defined by the modified Hamiltonian H̃ and shifted Lindblad operators

D̃ j := Dj − c j . (12)

Notice that G̃ j = G j .
This paper deals with the construction of non-equilibrium stationary states ρ

defined by (9) for a specific family of physical systems of great interest, viz. quan-
tum spin chains coupled to environment at their boundaries, defined in Sect. 2. In
Sect. 3 we generalize in mathematically rigorous form the matrix product ansatz
(MPA) of Prosen [27, 29] with local divergence condition introduced by us in [16].
As an application (Sect. 4) we summarize recent progress that we made for the sta-
tionary non-equilibrium magnetization profiles in the isotropic spin-1/2 Heisenberg
quantum spin chain [16, 17, 25] and discuss it in the light of very recent results [8] on
correlation functions for this quantum system. The upshot is that there are substan-
tial and perhaps somewhat unexpected similarities between quantum and classical
stationary states of boundary-driven non-equilibrium systems.

2 Quantum Spin Chains

2.1 Why Quantum Spin Chains?

The prototypical model for the quantum mechanical description of magnetism in
linear chains of atoms is the so-called Heisenberg quantum spin chain, proposed first
in 1928 [13] as an improvement over the classical Ising model which was introduced
a few years earlier by Lenz and solved by his student Ernst Ising in 1925 [15]. The
simplest version of theHeisenbergmodel, the spin-1/2 chain defined below, is exactly
solvable in the sense of quantum integrability [3]. Hence the equilibrium properties
of the system, which were derived in the past decades in a vast body of literature,
are rather well understood from a theoretical perspective and to some extent also
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experimentally for various spin-chainmaterials which exhibit quasi one-dimensional
interactions between neighbouring atoms.

In recent years, novel experimental Laser techniques involving single cold atoms
in optical traps have made the investigation of spin chains far from thermal equilib-
rium feasible. The unique possibilities that the study of individual interacting atoms
offers has triggered an immense experimental research activity. On the theoretical
side, however, not much is known about non-equilibrium steady states of spin chains
which are of particular interest in the case of boundary driving, since in this way
one obtains information about anomalous transport properties. By boundary driving
we mean a scenario where the two ends of a chain are forced into different states by
some boundary interaction with the physical environment of the chain, thus inducing
stationary currents of locally conserved quantities along the chain. The bulk of the
system is considered to be effectively isolated from its physical environment, i.e.,
described by some quantum Hamiltonian H . The boundary interaction is described
by Lindblad dissipators.

Exact results are scarce for chains with more than just a few atoms and there are,
to our knowledge, no exact concrete results for specific quantum chains of arbitrary
length kept far from thermal equilibrium by some kind of Lindblad boundary-drive.
This state of affairs is in stark contrast to classical stochastic interacting particle
systems whose Markov generators can be expressed in terms of (non-Hermitian)
quantum spin chains [30] and for which many exact and rigorous results exist [6, 9,
18, 20, 30] andwhich are also amenable to generally applicable analytical approaches
such asmacroscopic fluctuation theory [5] and non-linear fluctuating hydrodynamics
[32].

Nevertheless, a breakthrough in the study of quantum systems far from thermal
equilibrium came a few years ago through the work of Prosen [26, 27] who devised
a matrix product ansatz (MPA) somewhat reminiscent of the matrix product ansatz
for classical stochastic interacting particle systems [6]. This MPA was subsequently
developed by us, using a local divergence technique that reveals a link to quantum
integrability and symmetries of the quantum system [16]. The MPA allowed for
the derivation of recursion relations for mean values of physical observables from
which stationary currents, magnetization profiles and correlations could be com-
puted numerically exactly for large finite chains and analytically from a continuum
approximation to these recursion relations [8, 17, 27]. As pointed out below, these
results point to an interesting analogy with a well-known result in classical stochastic
interacting particle systems [4, 10, 31].

2.2 Definitions and Notation

The set of integers {0, . . . , n − 1} is denoted Sn . We denote the canonical basis
vectors of the n-dimensional complex vector spaceCn by the symbol |α)withα ∈ Sn .
Complex conjugation of some z ∈ C is denoted by z̄. The canonical basis vectors of
the dual space are denoted by (α|. With the scalar product (w|v) := ∑

α w̄αvα and
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norm ||v|| = √∑
α |vα|2 the vector space Cn becomes a finite-dimensional Hilbert

space which we shall call the local physical space and denote by p.
From the canonical basis vectors of Cn we construct the canonical basis of the

space End(Cn) of endomorphisms C
n → C

n by the Kronecker products Eαβ :=
|α)(β| ≡ |α) ⊗ (β|. Generally we shall somewhat loosely identify endomorphisms
on some vector space with their matrix representation and sometimes call them
operators. The n-dimensional matrices Eαβ havematrix elements (Eαβ) jk = δα, jδβ,k

and they satisfy

EαβEγ δ = δβ,γ E
αδ (13)

Tr(Eαβ) = δα,β . (14)

The n-dimensional unit matrix is denoted by 1. If a complex number appears as one
term in any equation for matrices, then this complex number is understood to be a
multiple of the unit matrix.

We construct a canonical basis of CnN
by the tensor product | a 〉 = |α1) ⊗ · · · ⊗

|αN ) with the N -tuple a = (α1, . . . , αN ) ∈ S
N
n . A general vector in C

nN
with com-

ponents va is then denoted by | v 〉. We also define basis vectors 〈 a | of the dual space
C

2N∗ (isomorphic to C
2N ) and the scalar product 〈w | v 〉 := ∑

a∈SN w̄ava and norm
||v|| = √∑

a |va|2. With these definitions CnN
becomes a finite-dimensional Hilbert

space which we shall call the physical space and denote by P. Here and below

∑

a

:=
∑

α1∈S
· · ·

∑

αN∈S
(15)

is the N -fold sum over all indices in S.
From arbitrary matrices Q ∈ End(Cn) we construct the local tensor operators

Qk = 1⊗(k−1) ⊗ Q ⊗ 1⊗(N−k) ∈ End(P). (16)

By convention Q⊗0 := 1 and Q⊗1 := Q for any matrix Q. We denote the unit matrix
acting on P by 1, i.e., 1 = 1⊗N . The set of products

{Ea,a′ } =
⎧
⎨

⎩

N∏

j=1

E
α jα

′
j

j

⎫
⎬

⎭
(17)

for a, a′ ∈ S
N
n forms a complete basis of End(P). Transposition of a matrix A is

denoted by AT . The adjoint of an operator is denoted A† which in matrix formmeans
A† = ĀT . Self-adjoint operators are called Hermitian. It is convenient to represent
ket-vectors | v 〉 as column vectors with components va. Then 〈 v | is represented by a
row vector with components v̄a. Elements of a generic vector space V (not Hilbert)
overC are denoted by the double-ket symbol | · 〉〉 and elements of its dualV∗ by the
double-bra symbol 〈〈 · |. A linear form φW : V → C is denoted by 〈〈W | · 〉〉.
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With these conventions we are now in a position to define the objects of our
investigation.

Definition 1 Let h ∈ End(Cn2) and bL , bR ∈ End(Cn) be self-adjoint and bL1 =
bL ⊗ 1⊗(N−1), bR

N = 1⊗(N−1) ⊗ bR , hk,k+1 = 1⊗(k−1) ⊗ h ⊗ 1⊗(N−k−1). Then a
homogeneous quantum spin chain with N ≥ 2 sites with nearest-neighbour inter-
action h and boundary fields bL ,R is defined by the Hamiltonian

H = bL1 + bR
N +

N−1∑

k=1

hk,k+1. (18)

A quantum spin system with one site is defined by a self-adjoint operator b ∈
End(Cn).

Definition 2 For Dχk ∈ End(Cn) and a density matrix ρ ∈ S(P) the operator

Dk(ρ) := Dχk
k ρDχk†

k − 1

2

(
ρDχk†

k Dχk
k + Dχk†

k Dχk
k ρ

)
, 1 ≤ k ≤ N , N ≥ 1

(19)
is called dissipator at site k with local Lindblad operator Dχk , indexed by a symbol
χk . For N = 1 the lower index k = 1 is dropped.

Definition 3 Let H be a quantum spin Hamiltonian with N sites according to Def-
inition1, D1 and DN be dissipators with local Lindblad operators DL and DR resp.
according to Definition2 and let ρ ∈ S(P) be the solution of the equation

− i[H, ρ] + D1(ρ) + DN (ρ) = 0. (20)

Then ρ is called a non-equilibrium stationary state of the boundary-driven quantum
spin system defined by H .

We remark that the construction of matrix product states given below is straight-
forwardly generalized to more than one boundary dissipator at each edge of the
chain.

3 Construction of Stationary Matrix Product States

3.1 Matrix Product Ansatz

In order to construct a solution of the stationary Lindblad equation of the form (20)
we first make the following observations:

(a) For any density matrix ρ ∈ S(P) one can find a matrix M ∈ End(P) such that
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ρ = MM†/Z (21)

with the partition function
Z := Tr(MM†). (22)

Thus, given M one knows ρ.4

(b) One can expand M in the basis (17) of End(P) as

M =
∑

a,a′
Ma,a′ E

α1,α
′
1

1 . . . E
αN ,α′

N
N . (23)

The idea of the matrix product ansatz (MPA) is to write the matrix elements Ma,a′

as the linear form [27, 29]

Ma,a′ = 〈〈W |Ωα1,α
′
1 . . . ΩαN ,α′

N | V 〉〉 (24)

where | V 〉〉 is a vector in some (generally infinite-dimensional) auxiliary space A,
the n2 matricesΩα,α′

are suitably chosen endomorphisms ofA and 〈〈W | is a suitably
chosen vector from the dual space A∗.

In order to use this MPA in applications we need to add some more structure.
We define Ω̄α,α′ ∈ End(A) by complex conjugation of the matrix representation of
Ωα,α′

. Next we construct

Ω :=
∑

α,α′
Eαα′ ⊗ Ωαα′

, Ω� :=
∑

α,α′
Eαα′ ⊗ Ω̄α′α ∈ End(Cn ⊗ A) (25)

Ω⊗p N :=
∑

a,a′
Eα1α

′
1 ⊗ · · · ⊗ EαNα′

N ⊗ Ωα1α
′
1 . . . ΩαNα′

N ∈ End(P ⊗ A) (26)

and analogously (Ω�)⊗p N = (
Ω⊗p N

)�
. The subscript p at the tensor symbol indi-

cates that the tensor product is only taken over the local physical space p, i.e., the term
Ωα1α

′
1 . . . ΩαNα′

N ∈ End(A) in (26) is the usual matrix product. The star � denotes
the adjoint operation on the physical space P only, not on the auxiliary space.
This means that the matrix

(
Ω⊗p N

)�
is obtained from the matrix Ω⊗p N by trans-

position and complex conjugation of its components Ω
⊗p N
a,a′ = Ωα1α

′
1 . . . ΩαNα′

N �→
Ω̄α′

1α1 . . . Ω̄α′
NαN = (

Ω⊗p N
)�

a,a′ as in the second definition in (25) without reversing

the order of the matrix products and without transposing the matrices Ωα jα
′
j .

This construction immediately leads to the following lemma:

Lemma 1 LetA be a vector space,Ωα,α′ ∈ End(A) forα, α′ ∈ Sn, | V 〉〉, | V 〉〉 ∈ A
and 〈〈W |, 〈〈W | ∈ A∗ where the bar denotes complex conjugation of each vector
component. Then M, M† ∈ End(P) defined by (23) and (24) can be written

4M is not uniquely defined. For a given M and arbitrary unitaryU the product MU gives the same
ρ. This non-uniqueness seems to be exactly the point that makes M easier to treat than ρ.
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M = 〈〈W |Ω⊗p N | V 〉〉, M† = 〈〈W | (Ω�
)⊗p N | V 〉〉 (27)

where the linear form 〈〈W | · | V 〉〉 onA is taken on each componentΩα1α
′
1 . . . ΩαNα′

N

of the endomorphism Ω⊗p N on P ⊗ A.

Lemma1 follows immediately from the expansion Ω = ∑
α,α′ Eαα′ ⊗ Ωαα′

and
the multilinearity of the Kronecker product. It expresses the fact that Ω⊗N can be
thought of as a matrix of dimension nN (the dimension of the physical space P)
whosematrix elements (a, a′) are the productsΩα1α

′
1 . . . ΩαNα′

N of (generally infinite-
dimensional) matrices acting on the auxiliary spaceA. The linear form 〈〈W | · | V 〉〉
maps each of these matrix products onto C so that M is indeed a usual matrix of
dimension nN .

The next technical idea is to double the auxiliary space. To this end we denote the
unit operator on A by I and define Ωαα′

1 := Ωαα′ ⊗ I and Ωαα′
2 := I ⊗ Ωαα′

which
are endomorphisms ofA2. The multilinearity of the tensor product allows us to write
Ωαα′

1 Ω
ββ ′
2 = Ωαα′ ⊗ Ωββ ′

for any α, α′, β, β ′ ∈ S. We also define in analogy to (25)
the following endomorphisms of P ⊗ A2

Ω1 :=
∑

α,α′
Eαα′ ⊗ Ωαα′ ⊗ I, Ω2 :=

∑

α,α′
Eαα′ ⊗ I ⊗ Ωαα′

(28)

Ω�
1 :=

∑

α,α′
Eαα′ ⊗ Ω̄α′α ⊗ I, Ω�

2 :=
∑

α,α′
Eαα′ ⊗ I ⊗ Ω̄α′α. (29)

Lemma 2 Let A be a vector space and | V 〉〉, | V 〉〉 ∈ A and Ωαα′ ∈ End(A) for
α, α′ ∈ Sn and 〈〈W |, 〈〈W | ∈ A∗. For some Θαα′ ∈ End(A2) define

Θ :=
∑

α,α′
Eαα′ ⊗ Θαα′ ∈ End(C2 ⊗ A2) (30)

Θ⊗p N :=
∑

a,a′
Eα1α

′
1 ⊗ · · · ⊗ EαNα′

N ⊗ Θα1α
′
1 . . . ΘαNα′

N ∈ End(P ⊗ A2). (31)

Then for
Θ = Ω1Ω

�
2 (32)

a density matrix ρ ∈ S(P) has the matrix product representation

ρ = 〈〈W,W |Θ⊗p N | V, V 〉〉. (33)

where the tensor products

| V, V 〉〉 := | V 〉〉 ⊗ | V 〉〉 ∈ A ⊗ A, 〈〈W,W | := 〈〈W | ⊗ 〈〈W | ∈ A∗ ⊗ A∗
(34)

define a bilinear form φW,W : A ⊗ A → C.
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Proof We first note that for the scalar product on the physical space P we have

〈 a |Θ⊗p N | a′ 〉 = Θα1α
′
1 . . . ΘαNα′

N . (35)

Furthermore, by the construction (32) for a single site and definition (28), one finds

Θαα′ =
∑

β

(α|Ω1|β)(β|Ω�
2 |α′) =

∑

β

Ω
αβ

1 (Ω�
2)

βα′ =
∑

β

Ω
αβ

1 Ω̄
α′β
2 (36)

and therefore with b := (β1, . . . , βN ) ∈ S
N
n

Θα1α
′
1 . . . ΘαNα′

N =
∑

b

Ω
α1β1
1 Ω̄

α′
1β1

2 . . . Ω
αNβN
1 Ω̄

α′
NβN

2

=
∑

b

Ωα1β1 . . . ΩαNβN ⊗ Ω̄α′
1β1 . . . Ω̄α′

NβN . (37)

This shows that Θα1α
′
1 . . . ΘαNα′

N ∈ End(A2) is decomposable into a finite sum of
endomorphisms of A ⊗ A. Then the factorization property of the scalar product
involving the tensor vectors (34) and the tensor operators (37) and Lemma1 give

〈〈W,W |Θ⊗p N | V, V 〉〉aa′ = 〈〈W,W |Θα1α
′
1 . . . ΘαNα′

N | V, V 〉〉
=

∑

b

〈〈W |Ωα1β1 . . . ΩαN βN | V 〉〉〈〈W |Ωα′
1β1 . . . Ωα′

N βN | V 〉〉

=
∑

b

MabM̄a′b (38)

The l.h.s. of the first equation is the matrix element ρ. Observing that M̄a′b = M†
ba′

and completeness of the basis (17) shows that the r.h.s. of the last equation is equal
to (MM†)aa′ . Thus (33) is proved for each matrix element of ρ. �

The point of this lemma is the fact that a matrix product form of M induces a
matrix product form for ρ which allows for a computation of physical observables
in terms of the matrices Ωss ′

. This is the content of the following proposition.

Proposition 1 Let ρ ∈ S(P) be a density matrix with partition function Z (22) and
| V, V 〉〉, 〈〈W,W | as defined in (34). With

Θ0 :=
∑

α

Θαα =
∑

αβ

Ω
αβ

1 Ω̄
αβ

2 ∈ End
(
A2

)
(39)

one has
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Z = 〈〈W,W |ΘN
0 | V, V 〉〉 (40)

〈 Eα1α
′
1

k1
E

α2α
′
2

k2
. . . E

αnα
′
n

kn
〉

= 〈〈W,W |Θk1−1
0 Θα′

1α1Θ
k2−k1−1
0 Θα′

2α2 . . . Θα′
nαnΘ

N−kn
0 | V, V 〉〉/Z (41)

Proof The equality following the definition in (39) follows from (36). By construc-
tion we have for the partition function (40)

Z =
∑

a,a′
Tr

(
E

α1α
′
1

1 . . . E
αNα′

N
N

)
〈〈W,W |Θα1α

′
1 . . . ΘαNα′

N | V, V 〉〉

=
∑

a,a′

⎛

⎝
N∏

j=1

Tr
(
Eα jα

′
j

)
⎞

⎠ 〈〈W,W |Θα1α
′
1 . . . ΘαNα′

N | V, V 〉〉 (42)

where in the second equality we have used the factorization property of the trace for
tensor products. The trace property (14) yields the expression (40) for the partition
function Z . The expression (41) follows in similar fashion by noting that due to (13)
one has Tr(Eαα′

Eββ ′
) = δα,β ′δα′,β . �

Remark 1 Since anobservableOk ∈ End(P) canbe expandedOk = ∑
αα′ Oαα′

k Eαα′
k

with numerical coefficients of the form Oαα′
k = Ōα′α

k ∈ C, Proposition1 allows for
computing averages of products of local observables in terms of matrix products
involving the matrices Θαα′

and Θ0.

We note two useful corollaries of Lemma2 which follow directly from (36).

Corollary 1 Let ρ be a density matrix according to Lemma2 and Dk = 1⊗(k−1) ⊗
D ⊗ 1⊗(N−k) be a Lindblad operator acting non-trivially only on site k with some
local Lindblad operator D ∈ End(Cn). Then for the local dissipator Dk with Lind-
blad operator Dk one has

Dk(ρ) = 1

Z
〈〈W,W |Θ⊗(k−1) ⊗ Δ ⊗ Θ⊗(N−k)| V, V 〉〉 (43)

with Z of Proposition1 and

Δ =
∑

β

∑

αα′
D

(
Eαα′) ⊗ Ω

αβ

1 Ω̄
α′β
2 (44)

where D is the dissipator with the local Lindblad operator D.

Corollary 2 Let ρ be a density matrix according to Lemma2 and bk = 1⊗(k−1) ⊗
b ⊗ 1⊗(N−k) ∈ End(P) be a self-adjoint operator acting non-trivially only on site k
with some local self-adjoint operator b ∈ End(Cn). Then for the unitary part of the
time-evolution of the density matrix under bk one has
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− i[bk, ρ] = 1

Z
〈〈W,W |Θ⊗(k−1) ⊗ Γ ⊗ Θ⊗(N−k)| V, V 〉〉 (45)

with Z of Proposition1 and

Γ = −i
∑

β

∑

αα′

[
b, Eαα′] ⊗ Ω

αβ

1 Ω̄
α′β
2 . (46)

For D = ∑
αα′ Dαα′ Eαα′

, b = b† = ∑
αα′ bαα′ Eαα′

we note

D(Eαα′
) =

∑

ββ ′

(

Dβα D̄β ′α′ Eββ ′ − 1

2
Dββ ′ D̄βα′ Eαβ ′ − 1

2
Dβ ′α D̄β ′βE

βα′
)

(47)

[
b, Eαα′] =

∑

β

(
bβαE

βα′ − b̄βα′ Eαβ
)

(48)

which follows from (13) by straightforward computation and b = b†.

3.2 Main Result

The previous discussion is “abstract nonsense” in so far as we have provided no
information about the matrices Ωαα′

and the vectors 〈〈W | and | V 〉〉 from which
a stationary density matrix ρ solving (20) could be constructed. In order to state a
sufficient property of the Ωαα′

we define the local divergence condition which was
first introduced for n = 2 in [16].

Definition 4 (Local divergence condition) Let H be a quantum spin Hamiltonian
according to Definition1 and with finite local physical space p and let A be a vec-
tor space with unit operator denoted by I . For Ωαα′

, Ξαα′ ∈ End(A) define Ω :=∑
αα′ Eαα′ ⊗ Ωαα′ ∈ End(p ⊗ A), Ξ := ∑

αα′ Eαα′ ⊗ Ξαα′ ∈ End(p ⊗ A), and
ĥ := h ⊗ I ∈ End(p2 ⊗ A). We say that H satisfies a local divergence condition
w.r.t. some non-zero Ω and Ξ if

[
ĥ,Ω ⊗p Ω

]
= Ξ ⊗p Ω − Ω ⊗p Ξ (49)

where the tensor product ⊗p over the physical space is defined by Ξ ⊗p Ω :=∑
αα′

∑
ββ ′ Eαα′ ⊗ Eββ ′ ⊗ (Ξαα′

Ωββ ′
).

Remark 2 The local divergence condition (49) defines a quadratic algebra [22] for
2n2 generators Ωαα′

and Ξαα′
. Quadratic algebras arise e.g. as universal enveloping

algebras of Lie algebras and also play an important role in the theory of quantum
groups. They also arise in the study of invariant measures of stochastic interacting
particle systems [1, 6]. The local divergence condition can be generalized to include
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a term T̂Ω ⊗p Ω − T̂Ω ⊗p Ω where T̂ = 1 ⊗ 1 ⊗ T and T ∈ End(A) [24]. This
extension gives rise to a cubic algebra.

Next we define the Lindblad boundary matching condition which underlies in
some shape or form many concrete applications of the MPA [29], but which to our
knowledge has never been stated as such and in full generality.

Definition 5 (Lindblad boundary matching condition) Let A be a vector space.
For | V 〉〉 ∈ A and 〈〈W | ∈ A∗ define the vectors | V, V 〉〉 := | V 〉〉 ⊗ | V 〉〉 and
〈〈W,W | := 〈〈W | ⊗ 〈〈W | and for Ωαα′

, Ω̄αα′
, Ξαα′

, Ξ̄αα′ ∈ End(A) define the
endomorphisms

Λαα′ := i
∑

β

(
Ωαβ ⊗ Ξ̄α′β − Ξαβ ⊗ Ω̄α′β

)
(50)

and for B ∈ {L , R} with bB
αα′ = b̄B

α′α ∈ C, DB
αα′ ∈ C

Γ αα′
B := −i

∑

ββ ′

(
bB

αβΩββ ′ ⊗ Ω̄α′β ′ − b̄B
α′βΩαβ ′ ⊗ Ω̄ββ ′)

(51)

Δαα′
B :=

∑

ββ ′

∑

γ

(
DB

αβ D̄
B
α′β ′Ω

βγ ⊗ Ω̄β ′γ

−1

2
DB

βα′ D̄B
ββ ′Ω

αγ ⊗ Ω̄β ′γ − 1

2
DB

β ′β D̄
B
β ′αΩβγ ⊗ Ω̄α′γ

)

. (52)

We say that vectors | V 〉〉 ∈ A and 〈〈W | ∈ A∗ satisfy the Lindblad boundary match-
ing condition w.r.t. Ω and Ξ if for all α, α′ ∈ Sn

0 = 〈〈 X |
(
Γ αα′
R + Δαα′

R − Λαα′) | V, V 〉〉 = 〈〈W,W |
(
Γ αα′
L + Δαα′

L + Λαα′) | Y 〉〉
(53)

for all 〈〈 X | ∈ A2∗ and all | Y 〉〉 ∈ span(Θα2,α
′
2 . . . ΘαN ,α′

N | V, V 〉〉) for N ≥ 2.

Remark 3 Define Λ0 := ∑
α Λαα . It is easy to see that 0 = ∑

α Δαα
B = ∑

α Γ αα
B .

Hence (53) implies 0 = 〈〈 X |Λ0| V, V 〉〉 = 〈〈W,W |Λ0| Y 〉〉. For the extended
local divergence condition with operator T the Lindblad boundary matching condi-
tion acquires an extra term {T,Ωαα′ } in both brackets in (53).

With these preparations we are in a position to state the main result in terms of
the original local divergence condition (49). The adaptation to the extended local
divergence condition is trivial.

Theorem 1 Given a quantum spin Hamiltonian

H = Hb + Hs (54)
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according to Definition1 with bulk part Hb = ∑N−1
k=1 hk,k+1 and surface part Hs =

bL1 + bR
N , and given a vector space A, let Ωαα′

, Ξαα′ ∈ End(A) be representation
matrices of the quadratic algebra (49) defined by h, and let | V 〉 and |W 〉 be vectors
satisfying the Lindblad boundary matching condition (53)with coefficients LB

αα′ ∈ C

and bB
αα′ = (α|bB |α′) for B ∈ {L , R}. Then a density matrix ρ in the matrix product

form (33) is a stationary solution of the quantum master equation (20)with Lindblad
operators LB given by LB

αα′ = (α|LB |α′).

This theorem breathes life into the matrix product form (33) of the stationary
density matrix by providing sufficient (but not necessary!) conditions on the matrices
Ωαα′

, vectors 〈〈W |, | V 〉〉 and the auxiliary matrices Ξαα′
. The basic idea of the

proof is to split the quantum master equation into a bulk part and a boundary part.
The bulk part comes from the unitary part of the evolution under the action of Hb

and leads through the local divergence condition (49) to a quadratic algebra for the
matrices Ωαα′

, Ξαα′
plus some boundary terms. The boundary part, which involves

(i) these boundary terms, (ii) the unitary evolution under the boundary fields, and (iii)
the Lindblad dissipators then becomes a set of equations for the vectors 〈W | and
| V 〉. Choosing a representation for the quadratic algebra and fixing these vectors to
satisfy the Lindblad boundary matching condition then guarantees stationarity.

Proof We decompose ρ = MM†/Z where Z = Tr(MM†) < ∞ since dim(P) <

∞. Hence it suffices to prove

L (MM†) := −i
[
H, MM†

] + D1(MM†) + DN (MM†) = 0 (55)

for M and M† given by Lemma1.
We consider first the bulk part of the unitary evolution. By definition of the com-

mutator one has
[
H, MM†

] = [H, M]M† + M
[
H, M†

]
. The quadratic algebra (49)

ensures validity of the local divergence condition according to Definition4. The tele-
scopic property of the sum in Hb then implies for Ĥb := Hb ⊗ I ∈ End(P ⊗ A) the
commutation relation

[
Ĥb,Ω

⊗p N
]

= Ξ ⊗p Ω⊗p(N−1) − Ω⊗p(N−1) ⊗p Ξ, (56)

and by transposition and complex conjugation in the physical space P

[
Ĥb, (Ω

�)⊗p N
]

= (Ω�)⊗p(N−1) ⊗p Ξ� − Ξ� ⊗p (Ω�)⊗p(N−1) (57)

where
Ξ� =

∑

αα′
Eαα′ ⊗ Ξ̄α′α. (58)

Therefore, with

NL := 〈〈W |Ξ ⊗p Ω⊗p(N−1)| V 〉〉, NR := 〈〈W |Ω⊗p(N−1) ⊗p Ξ | V 〉〉 (59)
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and consequently

N †
L = 〈〈W |Ξ� ⊗p (Ω�)⊗p(N−1)| V 〉〉, N †

R = 〈〈W |(Ω�)⊗p(N−1) ⊗p Ξ�| V 〉〉
(60)

one has
[Hb, M] = NL − NR,

[
Hb, M†

] = N †
R − N †

L . (61)

This yields

− i
[
Hb, MM†

] = iM(N †
L − N †

R) − i(NL − NR)M†. (62)

Now notice that

MN †
L = 〈〈W,W |Ω1Ξ

�
2 ⊗p Θ⊗p(N−1)| V, V 〉〉 (63)

NLM
† = 〈〈W,W |Ξ1Ω

�
2 ⊗p Θ⊗p(N−1)| V, V 〉〉 (64)

NRM
† = 〈〈W,W |Θ⊗p(N−1) ⊗p Ξ1Ω

�
2 | V, V 〉〉 (65)

MN †
R = 〈〈W,W |Θ⊗p(N−1) ⊗p Ω1Ξ

�
2 | V, V 〉〉. (66)

Hence

− i
[
Hb, MM†

] = 〈〈W,W |Λ ⊗p Θ⊗p(N−1)| V, V 〉〉 − 〈〈W,W |Θ⊗p(N−1) ⊗p Λ| V, V 〉〉
(67)

with Λ = i
(
Ω1Ξ

�
2 − Ξ1Ω

�
2

)
. Expanding Λ using (13) yields

Λ =
∑

αα′
Eαα′ ⊗ Λαα′

(68)

with Λαα′
given by (50).

Next we consider the surface part of the unitary evolution. For the boundary fields
we obtain from Corollary2

− i
[
bL1 , MM†

] = 〈〈W,W |ΓL ⊗p Θ⊗p(N−1)| V, V 〉〉 (69)

−i
[
bR
N , MM†

] = 〈〈W,W |Θ⊗p(N−1) ⊗p ΓR| V, V 〉〉 (70)

with
ΓB = −i

∑

β

∑

αα′

[
bL , Eαα′] ⊗ Ω

αβ

1 Ω̄
α′β
2 , B ∈ {L , R}. (71)

With (48) this yields
ΓB =

∑

αα′
Eαα′ ⊗ Γ αα′

B (72)

with Γ αα′
B defined by (51). Putting together the bulk and the surface contribution thus

yields
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− i
[
H, MM†

] = 〈〈W,W | (ΓL + Λ) ⊗p Θ⊗p(N−1)| V, V 〉〉
+ 〈〈W,W |Θ⊗p(N−1) ⊗p (ΓR − Λ) | V, V 〉〉. (73)

For the dissipator part of the generator L (55) we have from Corollary1

D1(MM†) = 〈〈W,W |ΔL ⊗ Θ⊗(N−k)| V, V 〉〉 (74)

DN (MM†) = 〈〈W,W |Θ⊗(N−1) ⊗ ΔR| V, V 〉〉 (75)

with
ΔB =

∑

β

∑

αα′
D B

(
Eαα′) ⊗ Ω

αβ

1 Ω̄
α′β
2 , B ∈ {L , R}. (76)

Using (47) one finds after relabeling of indices

ΔB =
∑

αα′
Eαα′ ⊗ Δαα′

B (77)

with Δαα′
B defined by (52). Thus

L (MM†) = 〈〈W,W | (ΔL + ΓL + Λ) ⊗p Θ⊗p(N−1)| V, V 〉〉
+ 〈〈W,W |Θ⊗p(N−1) ⊗p (ΔR + ΓR − Λ) | V, V 〉〉 = 0 (78)

by the Lindblad boundary matching condition (53). �

4 The Heisenberg Ferromagnet

Wehave skirted the issue of existence of representations of the quadratic algebra aris-
ing from the local divergence condition and vectors satisfying the Lindblad boundary
matching condition. In order to demonstrate that the matrix product construction of
the previous section is not only non-empty but also allows for concrete non-trivial
resultswe review the application to the isotropicHeisenberg ferromagnet [16, 17, 25].
Important other models where the matrix product construction has been employed
include the one-dimensional Hubbard model [28] and the spin-1 Lai-Sutherland
chain [14].

4.1 Definitions and Notation

It is expedient to introduce the Levi-Civita symbol εαβγ (defined α, β, γ ∈ {1, 2, 3})
by ε123 = 1 and εαβγ = (−1)πεπ(αβγ ) for any permutation π(·). We also define
ζ0αβ = ζα0β = ζαβ0 = δα,β for α, β ∈ {0, 1, 2, 3} and ζαβγ = iεαβγ for α, β, γ ∈
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{1, 2, 3} and introduce the two-dimensional unit matrix and the Pauli matrices

σ 0 ≡ 1 :=
(
1 0
0 1

)

, σ 1 :=
(
0 1
1 0

)

, σ 2 :=
(
0 −i
i 0

)

, σ 3 :=
(
1 0
0 −1

)

(79)

which form a complete basis of End(C2). They satisfy

σασβ =
3∑

γ=0

ζαβγ σ γ . (80)

For α ∈ {1, 2, 3} the matrices σα
k are related by a unitary transformation U with the

property
Uσα

k U
† = σα+1

k , ∀k ∈ {1, . . . , N }, α mod 3. (81)

Straightforward computation shows that this transformation is realized by the tensor
product

U = u⊗N (82)

with

u = 1√
2

(
1 −i
1 i

)

(83)

which is unique up to a non-zero factor.
We shall also use thenotation n̂ ≡ E00 = (1 + σ z)/2,σ+ ≡ E01 = (σ x + iσ y)/2,

σ− ≡ E10 = (σ x − iσ y)/2, v̂ ≡ E11 = (1 − σ z)/2 and the representation of the
local basis vectors as column vectors as

|0) :=
(
1
0

)

, |1) :=
(
0
1

)

. (84)

For later use we also introduce the notation σ x ≡ σ 1, σ y ≡ σ 2, σ z ≡ σ 3 and the
three-vectors σ = (σ 1, σ 2, σ 3) with the dot product A · B := ∑3

i=1 A
i Bi . Here the

Ai and Bi can be real numbers or Paulimatrices. The reason for introducing this defin-
ition is the interpretation of the upper indices of the Pauli matrices as the components
of the (quantum) angular momentum vector of an atom in the coordinate directions
x, y, z ofR3. IfA ∈ R

3 is a vector of (Euclidean) lengthA · A = 1, then the quantum
expectation 〈 A · σ 〉 is the mean of the projection of the angular momentum vector
in the direction defined by the vector A.

The Lie algebra gl2(C) with generators Xα , α ∈ {0, 1, 2, 3} is defined by Lie
brackets



Matrix Product Ansatz for Non-equilibrium … 239

[
X0, Xα

] = 0 (85)

[
Xα, Xβ

] = 2i
3∑

γ=1

εαβγ X
γ , α, β ∈ {1, 2, 3}. (86)

The two-dimensional unit matrix 1 and Pauli matrices σα (79) are representation
matrices for gl2(C) with the Lie-bracket represented by the commutator. Since
σα
k σα

l = σα
l σα

k for l 	= k it follows that also 1 ∈ P together with

Sα =
N∑

k=1

σα
k ∈ P (87)

are representation matrices of gl2(C). We say that an endomorphism G on P is
SU (2)-symmetric if its representation matrix satisfies [G, Sα] = 0 for α ∈ {1, 2, 3}.

We also define the generators

X± := 1

2

(
X1 ± i X2

)
, Xz := 1

2
X3. (88)

In terms of these generators the defining relations (85), (86) of gl2(C) read

[
X0, X±,z

] = 0 (89)
[
X+, X−] = 2Xz,

[
Xz, X±] = ±X±. (90)

An infinite-dimensional family of representations X0 �→ I , X±,z �→ S±,z is given
by matrices I, S±,z with matrix elements

Ikl = δk,l, S+
kl = lδk+1,l , S−

kl = (2p − l)δk,l+1, Szkl = (p − l)δk,l (91)

for the non-negative integers k, l ∈ N0 and parameter p ∈ C.

4.2 Boundary-Driven Lindblad–Heisenberg Chain

We consider an open chain of N ≥ 2 quantum spins in contact with boundary reser-
voirs forwhichwewish to construct the stationary densitymatrix defined by (20). For
the unitary part of the time evolution we consider the isotropic spin-1/2 Heisenberg
Hamiltonian [3, 13] defined with the dot-product by

H =
N−1∑

k=1

σ k · σ k+1 (92)
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for N quantum spins at positions k along the chain.
Before defining the boundary dissipators we point out that H is manifestly rota-

tion invariant in R3 which due to the quantum nature of the spin is equivalent to the
symmetry [H, Sα] = 0 under the Lie-algebra SU (2) with representation matrices
(87). Thus the spin components are locally conserved with associated locally con-
served currents jαk defined by (8) with F = σα

k . For 1 < k < N the action of the
adjoint generator (8) yields

L †(σ α
k ) = jαk−1 − jαk (93)

with

jαk = 2
3∑

β=1

3∑

γ=1

εαβγ σ
β

k σ
γ

k+1, 1 ≤ k < N . (94)

In the steady state the current expectations jα := 〈 jαk 〉 are position-independent.
We choose two boundary Lindblad operators DL ,R to favour a relaxation of the

boundary spins towards target states given by density matrices ρL , ρR satisfying
D1(ρL) = DN (ρR) = 0. As target states we choose fully polarized states of one
boundary spin

ρL = 1

2
(1 + nL · σ ) ⊗ ρ̃, ρR = ρ̃ ⊗ 1

2
(1 + nR · σ ) (95)

where |nL | = |nR| = 1 and ρ̃ is an arbitrary reduced densitymatrix for the remaining
N − 1 spins. The reduced single-site boundary density matrix ρ

(1)
B = 1

2 (1 + nB · σ )

is a pure state since for a projection direction given by

nB = (sin(φB) cos(θB), sin(φB) sin(θB), cos(φB)). (96)

One has ρ
(1)
B = |ψB) ⊗ (ψB | with

|ψB) = eiαB

(
cos (φB/2)e−iθB/2

sin (φB/2)eiθB/2

)

(97)

and arbitrary phase αB ∈ [0, 2π). The notion “full polarization” means that the
expectation of the spin projection nB · σ in the space-direction defined by nB is
given by 〈 nB · σ 〉 = 1.

Due to the rotational symmetry (87) of H only the angle between the two boundary
polarization vectors plays a role. Thereforewemay,without loss of generality, choose
φL = φR = π/2 and fix the coordinate frame in R

3 such that the X–axis points in
the nL direction (corresponding to θL = 0) and to let the XY -plane be spanned by
the family vectors nR(θ), i.e.,

nL = (1, 0, 0), nR = (cos θ, sin θ, 0), 0 ≤ θ ≤ π (98)
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corresponding to θR = θ .
It is easy to verify that there are two families of local Lindblad operators satisfying

D1[ρL ] = 0, viz. DR
1 = a(σ 2

1 + iσ 3
1 ) + b(1 − σ 1

1 ) and DR′
1 = a′1 + b′σ 1

1 . Following
[16, 17] we choose DR with b = 0 (so that Tr(DR

1 ) = 0) and coupling strength
a = √

Γ . Similarly, we choose for the right boundary site N the rotated projection
to arrive at

DR
1 = √

Γ (σ 2
1 + iσ 3

1 ), DL
N = √

Γ (σ 2
N cos θ − σ 1

N sin θ + iσ 3
N ). (99)

Then in absence of the unitary term in (20) the boundary spins relax with characteris-
tic times∝ Γ −1 to approach ρL , ρR : Writing ρL(t) = 1/2(σ 0

1 + x(t)σ 1
1 + y(t)σ 2

1 +
z(t)σ 3

1 ) ⊗ ρ̃ one has x(t) = 1 + (x(0) − 1) exp (−4Γ t), y(t) = y(0) exp (−2Γ t),
z(t) = z(0) exp (−2Γ t), and similarly for ρR(t).

Remark 4 In the untwisted case nL = nR := n corresponding to θ = 0 the Lindblad
equation (20) for the stationary density matrix is trivially solved by [27]

ρN (Γ, 0) =
(
1 + n · σ

2

)⊗N

. (100)

This is a pure state of the form ρN (Γ, 0) = | Ψ 〉〈Ψ | where | Ψ 〉 = | ψ 〉⊗N and

| ψ 〉 = 1√
2

(
1
1

)

. (101)

This pure state is not of the form exp (−βH)/Z for any β and therefore not an
equilibrium state.

4.3 Matrix Product Solution

From now on we exclude θ = 0 so that the boundary coupling introduces a twist in
the XY -plane, which drives the system perpetually out of equilibrium.

Theorem 2 Let I, S±,z ∈ End(A) be the infinite dimensional representation (91) of
gl2(C) with representation parameter

p = iΓ −1 (102)

and let Ω00 = −Ω11 = i Sz, Ω01 = i S+, Ω10 = i S−. Furthermore, let

〈W ,W | = 〈 0 | ⊗ 〈 0 |, | V, V 〉 =
∞∑

m,n=0

(

− cot
θ

2

)m+n (
2p

m

)(
2 p̄

n

)

|m 〉 ⊗ | n 〉.
(103)
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Then for ρ in matrix product from (33) and U defined by (81) the density matrix

ρN (Γ, θ) = UρU † (104)

is the unique solution of the quantum master equation (20) for the Heisenberg fer-
romagnet (92) with boundary dissipators (99).

Uniqueness is guaranteedby the structure of theLindbladdissipators, see [29]. The
proof of (104) follows from verifying the local divergence condition (49) withΞ 00 =
Ξ 11 = i I , Ξ 01 = Ξ 10 = 0 and the Lindblad boundary matching condition (53) by
(somewhat lengthy but straightforward) explicit computation [16, 17]. Proposition1
then yields for the non-equilibrium partition function (22)

ZN (Γ, θ) = 〈W ,W |ΘN
0 | V, V 〉 (105)

with Θ0 = 2Sz1S
z
2 + S+

1 S
+
2 + S−

1 S
−
2 defined by (39).

We summarize the main conclusions of [16, 17, 25] drawn from Theorem2
and the underlying quadratic algebra and Lindblad boundary matching property for
0 < θ < π .
(1) Dropping the arguments Γ, θ , the stationary magnetization currents are given by

j xN = −8i p
ZN−1

ZN
, j yN = − cot

θ

2
j xN , j zN = −4

d
dθ ZN−1

ZN
. (106)

Based on numerically exact computation up to N = 100 we conjectured that for any
fixed coupling strength Γ one has [17]

lim
N→∞ N 2 ZN−1(Γ, θ)

ZN (Γ, θ)
= 1

4
θ2. (107)

For the currents this result implies

lim
N→∞ N 2 j xN (Γ, θ) = 2θ2

Γ
, lim

N→∞ N jzN (Γ, θ) = 2θ. (108)

Some rigorous results have been obtained for the Zeno limitΓ → ∞ [25]. Rescal-
ing the normalization factor yields a finite limit

Z̃ N (θ) := 1

4
lim

Γ →∞ Γ 2ZN (Γ, θ) (109)

whichwas computed explicitly. Then for small twist angle θ = o(1/N ) the conjecture
(107) can be proved rigorously. For the currents one therefore finds

Theorem 3 Let j̃αN (θ) := limΓ →∞ jαN (Γ, θ)be the stationary currents of theHeisen-
berg chain in the Zeno limit. Then for any N one has
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j̃ xN (θ) = j̃ yN (θ) = 0 ∀θ ∈ [0, π [ (110)

and for any real ε > 0 and real θ0 > 0

lim
N→∞ N 2+ε j̃ zN

(
θ0

N 1+ε

)

= 2θ0. (111)

The first statement is a trivial consequence of the explicit expressions (106) and
the result that Z̃N (θ) is finite and non-zero. The second statement follows from the
explicit form of Z̃N (θ) given in [25].
(2) In terms of

Bx := Θ01 + Θ10, By := i
(
Θ01 − Θ10

)
, Bz = Θ00 − Θ11 (112)

the multiplication property (80) yields

〈 σα
k 〉N = Sα

k,N (Γ, θ)

ZN (Γ, θ)
(113)

with
Sα
k,N (Γ, θ) = 〈W ,W |Θk−1

0 BαΘN−k
0 | V, V 〉. (114)

(3) The quadratic algebra implies that the operatorsΘ0 and Bα satisfy the remarkable
cubic relation

[Θ0, [Θ0, Bα]] + 2{Θ0, B
α} − 8p2Bα = 0 (115)

which was found earlier for a specific representation by using computer algebra [27].
This relation induces recursion relations for the unnormalized correlation functions
ZN 〈 σ

α1
k1

. . . σ
αn
kn

〉. In particular, with

Bx = S+
1 S

+
2 − S−

1 S
−
2 , By = Sz1(S

−
2 − S+

2 ) + (S−
1 − S+

1 )Sz2,

Bz = i Sz1(S
−
2 + S+

2 ) − i(S−
1 + S+

1 )Sz2. (116)

one finds for the unnormalized one-point function (dropping the arguments)

Sα
k+2,N+1 + Sα

k,N+1 − 2Sα
k,N + 2(Sα

k,N + Sα
k+1,N ) − 8p2Sα

k,N−1 = 0. (117)

By setting r = k/N and taking the continuum limit k, N → ∞ such that the macro-
scopic coordinate r remains fixed this recursion together with (107) yields the simple
ordinary differential equationm ′′(r) + θ2m(r) = 0 for the large-scale magnetization
profilemα(r) := limk,N→∞ 〈 σα

k 〉N . The boundary conditions are given by themicro-
scopic complete polarizations so that

mx (r) = cos (θr), my(r) = sin (θr), mz(r) = 0, 0 ≤ r ≤ 1 (118)
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corresponding to a spin helix state [25]. This implies a strongly sub-diffusive current
0 = limN→∞ N jxN = limN→∞ N j yN inside the twist-plane.

For maximal twist θ = π one has by symmetry j yN (Γ, π) = j zN (Γ, π) = 0 for all
N , Γ [23]. Magnetization profiles and correlation functions were computed in [8,
27] using the cubic relation (115) and the resulting continuum approximation, see
also the review [29]. Remarkably, the correlations along the twist axis are of a form
reminiscent of what was obtained for the symmetric simple exclusion process with
open boundaries, using the fluctuating hydrodynamics approach [31]. This similarity
suggest that also the boundary driven quantum problem may be understood in terms
of fluctuating hydrodynamics.

Acknowledgements VP and GMS thank T. Prosen for useful discussions and DFG for financial
support.
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