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Abstract We aim to give a pedagogic and essentially self-contained presentation of
the construction of various stochastic objects appearing in the dynamical Φ4

3 model.
The construction presented here is based on the use of paraproducts. The emphasis
is on describing the stochastic objects themselves rather than introducing a solution
theory for the equation.
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1 Introduction

The purpose of this note is to give a pedagogic presentation of the construction of
the various stochastic “basis” terms entering the construction of the dynamic Φ4

theory in three space dimensions (Φ4
3 for short). Formally, the dynamic Φ4 model

on the torus T
3 = [0, 1]3 is the solution X (t, x) to the stochastic partial differential

equation {
∂t X = ΔX − X3 + mX + ξ, on R+ × [0, 1]3,
X (0, ·) = X0,

(1)

where ξ denotes a white noise over R × T
3, and m is a real parameter. Equation (1)

describes the natural reversible dynamics for the “static” Φ4
3 Euclidean field theory,

which is formally given by the expression
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μ ∝ exp

(
−2

∫
T3

[
1

2
|∇X |2 + 1

4
X4 − m

2
X2

]) ∏
x∈T3

dX (x). (2)

The quartic potential X4 in this energy gives the model its name (replacing X by Φ).
Mathematically, neither (1) nor (2) make sense as they stand. While this problem is
the main concern of this note, we postpone its discussion and first proceed heuris-
tically. (Alternatively, we temporarily replace the continuous space T

3 by a finite
approximation, with a suitable interpretation of the gradient.)

The potential function x �→ 1
4 x

4 − m
2 x

2 has a singleminimumat x = 0 form ≤ 0.
As m becomes positive, a pitchfork bifurcation occurs, with the appearance of two
minima at x = ±√

m, while the point x = 0 becomes a localmaximum. In the energy
between square brackets appearing in (2), the part consisting of

∫
T3

[
1

4
X4 − m

2
X2

]

favors fields X that take values close to those minima, while the part

∫
T3

|∇X |2

favors some agreement between nearby values of the field X . This description is
highly reminiscent of that of the Ising model. Indeed, these two models are believed
to have comparable phase transitions and large-scale properties. In one and two
space dimensions (whenT

3 is replaced byT
d , d ∈ {1, 2}), a precise link between the

Glauber dynamics of an Ising model with long-range interactions and the dynamic
Φ4 model was obtained [2, 10, 20], and a similar result is conjectured to hold in our
present three-dimensional setting.

Starting from the 60s, the Φ4 model was the subject of an intense research effort
from the perspective of quantum field theory. From this point of view, the construc-
tion of the so-called Euclidean Φ4 measure (2) is a first step towards building the
corresponding quantum field theory. This requires the verification of certain proper-
ties known as the Osterwalder–Schrader axioms [24, 25], amongwhich the reflection
positivity and the invariance under Euclidean isometry are the most important (we
refer to [3] for a review on reflection positivity — in particular, the Ising measure
is reflection positive, see [3, Corollary5.4]). The whole endeavour was viewed as a
test-bed for more complicated (andmore physically relevant) quantum field theories.
We stress that from this point of view, one of the directions of space becomes the time
variable in the quantum field theory. The time variable appearing in (1) is then seen as
an additional, physically fictitious variable, sometimes called the “stochastic time”
in the literature. The construction of a quantum field theory based on the invariant
measure of a random process is called “stochastic quantisation”, and was proposed
by Parisi and Wu [26]. We refer to [12, Sect. 20.1] for references and more precise
explanations.
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We now return to the problem that (1) and (2) do not actually make sense mathe-
matically. In (1), the roughness of the noise requires X to be distribution-valued, and
therefore the interpretation of the cubic power is unclear. In (2), one could interpret

exp

(
−
∫
T3

|∇X |2
) ∏

x∈T3

dX (x)

as a formal notation to denote the law of a Gaussian free field. Again, the Gaussian
free field is distribution-valued, and there is no canonical interpretation for X4 or X2.

From now on, we focus on making sense of (1). A naive attempt would consist
of regularising the noise, defining the corresponding solution, and trying to pass to
the limit. However, the progressive blow-up of the non-linearity forces the limit to
be identically zero (see [17] for a rigorous justification in the case of two space
dimensions). Thus, we need to take a step back and modify the original Eq. (1) in a
way that is faithful to the intended “physics” of the model, as sketched above.

A formal scaling argument (see e.g. [6, Sect. 1.1]) shows that the non-linearity
should become less and less relevant as we zoom in on the solution: the equation
is said to be subcritical, or super-renormalisable. The basic idea for making sense
of the equation is therefore to postulate a first-order expansion of X of the form
X = + Y , where is the stationary solution to the linear equation

(∂t − Δ + 1) = ξ. (3)

In other words, letting {Pt = et (Δ−1)}t≥0 denote the heat semigroup on T
3, we have

(t) =
∫ t

−∞
Pt−s(ξ(s)) ds. (4)

The “+1” in (3) serves to prevent the divergence of the low-frequency part of in
the long-time limit (and to allow us to talk about a stationary solution over the whole
time line R).

Making the ansatz X = + Y and formally rewriting (1) in terms of Y leads to
the equation

∂t Y = ΔY − (Y + )3 + m(Y + ). (5)

Solving this equation for Y requires us to make sense of quantities such as ( )2 or
( )3.

These are again ill-defined. We may regularise the noise, on scale 1/n, and define
the corresponding solution n . While ( n)

2 and ( n)
3 still diverge as we remove the

regularisation, the very explicit and simple structure of allows us now to identify a
constant cn such that ( n)

2 − cn and ( n)
3 − 3cn n converge to non-trivial limits as

n tends to infinity, which we denote by and respectively.
At this point, we can rewrite the Eq. (5) for Y = X − using , and . In two

space dimensions, this equation has been solved in [8]with classicalmethods,without
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Table 1 The list of relevant diagrams, together with their regularity exponent, where ε > 0 is
arbitrary

τ = = =

|τ | − 1
2 − ε −1 − ε 1

2 − ε −ε − 1
2 − ε −ε

further recourse to the probabilistic structure of the problem. Note that this approach
shares the philosophy of rough path theory (see e.g. [11] for an introduction), in
that one first constructs a few fundamental objects (here , and ) by relying
on the probabilistic structure of the problem, and then one builds the solution as a
deterministic and continuous map of the enriched datum ( , , ).

In three space dimensions, the equation one obtains for the remainder Y is still
ill-defined, and we need to proceed further in the postulated “Taylor expansion” of
the solution X . The procedure becomes more intricate, and was solved only recently
by Hairer [15] within his ground-breaking theory of regularity structures (see also
[14] for the treatment of the KPZ equation with rough paths). Catellier and Chouk
[5] then showed how to recover the results of Hairer for the Φ4

3 model, using the
alternative theory of para-controlled distributions set up by Gubinelli, Imkeller and
Perkowski [13]. We refer to [22, Sect. 1] for a presentation of the latter approach
with notation consistent with the one we use here. Yet another approach based on
Wilsonian renormalisation group analysis was given by Kupiainen in [19].

We work here in the para-controlled framework, as in [5, 13, 22]. As it turns
out, six “basis” elements, that is, non-linear objects based on the solution to the
linear equation (3) and built using the probabilistic structure, are required to define a
solution to the Φ4

3 equation. We call these processes “the diagrams”. They are listed
in Table1; their precise meaning will be explained shortly. The purpose of this note
is to review their construction.

Minor variants of these diagrams were built in [15] in the context of regularity
structures. There, a very convenient graphical notation akin to Feynman diagrams
was introduced to derive the bounds required for the construction of these diagrams
(see [27] for an elementary introduction to Feynman diagrams. An earlier version of
a graph-based method to bound stochastic terms using diagrams in the context of the
KPZ equation was developed in [14]). In the context of para-controlled distributions,
the exact same diagrams as those we consider here were also built in [5], albeit with
a possibly less transparent notation. More recently, a remarkable machinery was
developped in the context of regularity structures, which ensures the convergence of
diagrams for a large class of models under extremely general assumptions; see [16,
TheoremA.3] and [7].

This note is mostly expository: we aim to provide a gentle introduction to this
graphical notation, and tomake clear that it applies equallywell in the para-controlled
setting. We do not strive to capture the deep results in [7, 16], but rather to give a
“pedestrian” exposition of the calculations involved.
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Wenow introduce somenotation. LetS ′ denote the space of Schwartz distributions
over the torus T

3, and define

I ( f ) :
{

R → S ′

t �→ ∫ t
−∞ Pt−s( f (s)) ds,

(6)

for every f ∈ C(R,S ′) for which the integral makes sense. In other words, I ( f ) is
the “ancient” solution to the heat equation with right-hand side f , that is, the one
“started at time −∞”. We measure the regularity of distributions on T

3 via a scale
of function spaces which we denote by Cα , α ∈ R. The precise definition is recalled
below, and is a natural extension of the notion of α-Hölder regular functions.We also
recall below the definition of the resonant product = . Our goal is to identify suitable
deterministic constants cn, c′

n ∈ R and show the convergence as n tends to infinity
of the following five processes:

, n := ( n)
2 − cn,

n := I
(
( n)

3 − 3cn
)
,

=
n

:= n
= n,

=
n

:= I ( n) = n − 2c′
n,

=
n

:= n
= n − 6c′

n n.

(7)

The interested reader is referred to the discussion in [22, Sect. 1.1] to see how these
diagrams arise in the construction of solutions to (1). The stationarity in space and
time of the white noise ξ as well as the fact that I defines ancient solutions to the
inhomogeneous heat equation imply that these processes are stationary in space and
time. Here is the main result on which we will focus.

Theorem 1 ([5, 15]) Fix

cn := E
[
( n(t))

2
]

and c′
n := E [I ( n) = n(t)] . (8)

For each pair (τ, |τ |) as in Table1, let τn be defined as in (7). There exists a
stochastic process, denoted by τ and taking values in C(R, C|τ |), such that for every
p ∈ [1,+∞), we have

sup
t∈R

E
[‖τn(t) − τ(t)‖p

C|τ |
] −−−−→

n→+∞ 0. (9)

Moreover, for every p ∈ [1,+∞),

sup
t∈R

E
[‖τ(t)‖p

C|τ |
]

< +∞, (10)

and for every p ∈ [1,∞) and λ ∈ [0, 1],
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sup
s<t

E
[‖τ(t) − τ(s)‖p

C|τ |−2λ

]
|t − s|λ < +∞. (11)

Remark 1 Since the processes we consider are stationary in time, the constants in (8)
do not depend on the time t . Moreover, the suprema in (9) and (10) are superfluous.
We prefer to write them nonetheless, since the statements with the suprema are robust
to perturbations of the stationarity property.

Remark 2 As will be seen below, the constants cn and c′
n diverge at order n and log n

respectively.

Remark 3 The bound (11) immediately implies the pathwise Hölder continuity of
the symbols, by the Kolmogorov continuity test. In the construction of solutions to
(1), this strong control on the Hölder regularity of τ is only needed for the symbol
. For the remaining symbols, a weaker bound of the type

E

[
sup

t∈[0,T ]
‖τ(t)‖p

C|τ |

]

suffices. However, the proofs of (11) and (10) are relatively similar anyway, as we
hope to convince the reader below.

This note is organised as follows. In Sect. 2, we introduce Besov spaces. The
diagrams take values in these spaces. The definition of these function spaces is based
on the Littlewood-Paley decomposition. This allows us to define paraproducts along
the way, and to give relevant intuition for them. In Sect. 3, we introduce the white
noise process and discuss the property of equivalence of moments. The latter is very
convenient to reduce the bounds (10) and (11) to easy-to-check second moment
computations. In Sect. 4, we construct the diagrams and prove the fixed time bound
(10). In Sect. 5, we briefly discuss how the bound (11) for time differences follows
easily from the fixed time one. Finally, in the appendix, we give an alternative proof
of the equivalence of moments property exposed in Sect. 3.

2 Function Spaces and Paraproducts

In this section, we introduce the function spaces we will use, denoted by Cα , for
α ∈ R. When α ∈ (0, 1), they are (a separable version of) the usual Hölder spaces.
For general α, they belong to the larger class of Besov spaces, and enjoy remark-
able stability properties under multiplication. We choose to also give an informal
presentation of these properties, although we will not refer to these in our actual
construction of the diagrams. Our choice is motivated by the fact that the question
of defining products of distributions is central to making sense of the Φ4 model.
It is therefore useful to survey first what can be achieved with purely deterministic
methods (and what can be ultimately used to show well-posedness of theΦ4 model).
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Moreover, exploring this question naturally leads to the introduction of paraproducts.
In this section, the space dimension d is arbitrary. For most results, we only provide
a sketch of proof. A much more detailed treatment of the topics discussed in this
section can be found in [1, Chap. 2].

We wish to extend the notion of α-Hölder regularity of a distribution f on T
d

to exponents α < 0. Roughly speaking, this should mean that for every x ∈ T
d and

every test function ϕ ∈ C∞
c (Rd),

〈
f, ε−dϕ(ε−1(· − x))

〉
� εα uniformly in x ∈ T

d and ε → 0, (12)

where we interpret f as a periodic distribution on R
d in the duality pairing above.1

A precise definition can be built along these lines (the interested reader can find it
in [15, Definition3.7]). However, we prefer to adopt here a point of view based on
Fourier analysis, which allows for a more direct understanding of the stability of the
spaces under multiplication.

Remark 4 For positive α, the condition (12) should be replaced by

〈
f − px (·), ε−dϕ(ε−1(· − x))

〉
� εα uniformly in x ∈ T

d and ε → 0, (13)

where px is the Taylor approximation of order α� of f . For negative α, there is no
such polynomial, and this recentering is unnecessary.

For every f ∈ L1(Td) and ω ∈ Z
d , we write

F f (ω) = f̂ (ω) :=
∫
Td

f (x)e−2iπω·x dx, (14)

for the Fourier coefficient of f with frequency ω, so that

f (x) = (F−1 f̂ )(x) :=
∑
ω∈Zd

f̂ (ω)e2iπω·x ,

where F−1 denotes the inverse Fourier transform.
The definition of Besov spaces rests on a decomposition of the Fourier series of

a function along dyadic annuli, an idea due to Littlewood and Paley. More precisely,
we think of splitting f̂ into

f̂ 1B(0,1) +
+∞∑
k=0

f̂ 1B(0,2k+1)\B(0,2k ), (15)

where B(0, r) := {ω ∈ Z
d : |ω| < r}. In (15), the terms of the series associated

with large k’s measure the fast oscillations of the function; the general Besov norm

1Here and below we write A � B to mean that there exists a constant C , which is independent of
the quantities of interest, such that A ≤ CB.
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can be thought of as a weighted average of the L p norm of these summands. This
type of decomposition enjoys better analytical properties if we replace the indicator
functions by smoothened versions thereof. More precisely, we can find functions
χ̃ , χ ∈ C∞

c (Rd) both taking values in [0, 1], with supports

Suppχ̃ ⊆ B

(
0,

4

3

)
, Suppχ ⊆ B

(
0,

8

3

)
\ B

(
0,

3

4

)
,

and such that

χ̃ (ζ ) +
+∞∑
k=0

χ(ζ/2k) = 1, ∀ζ ∈ R
d . (16)

We may furthermore choose these functions to be radially symmetric. We write

χ−1 := χ̃ , χk(·) := χ(·/2k) k ≥ 0. (17)

The supports of χ̃ and χ ensure that χk and χk ′ overlap only if |k − k ′| ≤ 1 (see [1,
Proposition2.10] for more details). For every f ∈ C∞(T) and k ≥ −1, we let

δk f := F−1 (χk f̂
)
,

so that f̂ = ∑
k≥−1 χk f̂ (compare with (15)) and f = ∑

k≥−1 δk f . Let

ηk = F−1(χk), η = η0. (18)

For k ≥ 0, we have
ηk � 2dkη(2k · ), (19)

up to a small error due to the fact that our phase space Z
d is discrete (since our state

space T
d is compact).2 For every k ≥ −1, we have

δk f = ηk � f, (20)

where � denotes the convolution on the torus T
d . In agreement with (12), (19) and

(20), we define the Cα norm by

‖ f ‖Cα := sup
k≥−1

2αk‖δk f ‖L∞ . (21)

2One may estimate the error in (19) and show that it is negligible for our purpose, but the simplest
way around this technical point is probably to interpret each periodic function on T

d as a periodic
function on R

d , and then use L p(Rd ) norms and the continuous Fourier transform throughout, so
that (19) becomes exact. The continuous Fourier transform of any Schwartz distribution is well-
defined, by duality. For a periodic f ∈ L1

loc(R
d ), the Fourier transform is a sum of Dirac masses at

every ω ∈ Z
d , each carrying a mass f̂ (ω) as defined in (14).
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One can check that this quantity is finite if f ∈ C∞(Td). The space Cα is the comple-
tion of C∞(Td) with respect to this norm. This space can be realised as a subspace
of the space of Schwartz distributions.

Remark 5 We depart slightly from the convention to define Cα as the space of dis-
tributions with finite ‖ · ‖Cα norm. Our definition makes the space separable and
allows us below to define products of distributions and functions via approximation.
Moreover, one can check that if a distribution f satisfies ‖ f ‖Cα < ∞, then f ∈ Cβ

for every β < α.

The most important property of Besov spaces for our purpose is the following
multiplicative structure.

Proposition 1 Let α < 0 < β be such that α + β > 0. The multiplication ( f, g) �→
f g extends to a continuous bilinear map from Cα × Cβ to Cα .

The proof of this proposition rests on the decomposition

f g =
∑
k<l−1

δk f δl g +
∑

|k−l|≤1

δk f δl g +
∑
k>l+1

δk f δl g,

which we will write suggestively in the form

f g = f < g + f = g + f > g.

This is often called Bony’s decomposition into the paraproducts f < g, f > g =
g < f , and the resonant product f = g.

In order to prove Proposition1, it suffices to show that each of these terms extends
to a continuous bilinearmap fromCα × Cβ toCα . However, it is very important for our
more general goal of making sense of theΦ4 model to be precise about the behaviour
of each term separately. We thus simply assume that α < 0 < β and f ∈ Cα , g ∈ Cβ

to begin with (but do not yet prescribe the sign of α + β), and see whether and how
we can estimate each of the terms in Bony’s decomposition. We start with

f < g =
∑
k<l−1

δk f δl g. (22)

In view of (21), in order to see which Hölder class f < g belongs to, we need to
estimate ∥∥δ j ( f < g)

∥∥
L∞ =

∥∥∥∥∥
+∞∑
l=−1

δ j

(
l−2∑
k=−1

δk f δl g

)∥∥∥∥∥
L∞

. (23)

Recall that the Fourier transform of δk f (resp. δl g) is supported on an annulus of
both inner and outer radius of size about 2k (resp. 2l). The important observation
is that as we sum over k ≤ l − 2, the Fourier transform of δk f δl g is still supported
in an annulus of inner and outer radius both proportional to 2l . Hence, only a finite
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number of terms l � j contribute to the outer sum on the right hand side above. Now,
since

‖δk f ‖L∞ ≤ 2−αk‖ f ‖Cα , ‖δl g‖L∞ ≤ 2−βl‖g‖Cα ,

the right hand side of (23) can then be bounded by

‖
j−2∑

k=−1

δk f δ j g‖L∞ ≤
j−2∑

k=−1

2−αk−β j‖ f ‖Cα ‖g‖Cβ < C2−(α+β) j‖ f ‖Cα ‖g‖Cβ ,

where we used that α < 0, and C does not depend on f or g. This shows that

‖ f < g‖Cα+β ≤ C‖ f ‖Cα ‖g‖Cβ .

The same analysis applies for the term g < f , except that since we have β > 0, we
get

j−2∑
l=−1

2−α j−βl‖ f ‖Cα ‖g‖Cβ ≤ C2−α j‖ f ‖Cα ‖g‖Cβ ,

which implies that
‖g < f ‖Cα ≤ C‖ f ‖Cα ‖g‖Cβ .

Note that we have made no assumption on the sign of α + β so far. The term f < g
inherits essential features of the small scale behaviour of g “modulated” by the low
frequency modes of f . This is in agreement with the fact that f < g is more regular
than g < f under our hypothesis α < β.

We now turn to the resonant term f = g, which for simplicity we think of as being

+∞∑
k=−1

δk f δkg.

The crucial difference in the analysis of this term, compared with the previous com-
putations, is that the support of the Fourier transform of the summand indexed by
k, which is the convolution of the annulus of radius about 2k by itself, results in a
ball of radius 2k , as opposed to an annulus. Therefore, every summand indexed by
k ≥ l contributes the the l-th Littlewood-Paley block δl( f = g). The L∞ norm of
each summand is bounded by

2−(α+β)k‖ f ‖Cα‖g‖Cβ .

If we want this to be summable over k ≥ l, we need to assume α + β > 0. In this
case, the sum is of order 2−(α+β)l‖ f ‖Cα ‖g‖Cβ , which suggests that

‖ f = g‖Cα+β ≤ C‖ f ‖Cα ‖g‖Cβ .
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Table 2 Summary of the regularity properties of paraproducts for α < 0 < β, f ∈ Cα and g ∈ Cβ

f < g g < f f = g f g

Regularity α + β α α + β α

Needs α + β > 0 No No Yes Yes

These computations can all be made rigorous (see e.g. [1]), and are summarised in
Table2.Note that these relations are relevant in the construction ofΦ4 since there, one
needs to characterise the products between f ∈ Cα and g ∈ Cβ (though sometimes
necessarily α + β < 0, and renormalisations are then needed for the resonant term).

We point out that the regularising effect of the heat kernel can be conveniently
measured using the spaces Cα . While we will not use this proposition in itself here, it
is a useful guide to the intuition. In particular, the time singularity in (24) is integrable
as long as the difference of regularity exponents is less than 2. In other words, the
integration operator I in (6) brings a gain of 2 units of regularity.

Proposition 2 If α ≤ β ∈ R, then there exists C < ∞ such that for every t > 0, we
have

‖etΔ f ‖Cβ ≤ C t
α−β

2 ‖ f ‖Cα . (24)

Sketch of proof The Laplacian Δ is a multiplication operator in Fourier space. As
a consequence, we have δk(etΔ f ) = etΔ(δk f ), and since Δ̂(ω) = −|ω|2, roughly
speaking, we have etΔ(δk f ) � e−t22k δk f . This suggests that

‖δk(etΔ f )‖L∞ ≤ C exp
(−t22k

) ‖δk f ‖L∞ ≤ C exp
(−t22k

)
2−αk‖ f ‖Cα ,

and therefore

2βk‖δk(etΔ f )‖L∞ ≤ C
[
(22k t)

β−α

2 exp
(−22k t

)]
t

α−β

2 ‖ f ‖Cβ .

Since the term between square brackets is bounded uniformly over k and t , the
heuristic argument is complete. A rigorous proof can be derived using techniques
similar to those exposed for Lemma2 below (see also e.g. [21, Proposition3.11]).

In view of (19), we expect that for every p, p′ ∈ [1,∞] such that 1
p + 1

p′ = 1,

sup
k≥−1

2− dk
p ‖ηk‖L p′ < ∞. (25)

Indeed, the relation (19), and therefore the inequality (25), are immediate by scaling
if the torus T

d is replaced by the full space R
d (and therefore the discrete Fourier

series is replaced by the continuous Fourier transform). A rigorous proof of (25) can
be found e.g. in [20, LemmaB.1]. By (20) and Hölder’s inequality, we deduce the
following lemma.
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Lemma 1 Let p ∈ [1,∞]. There exists C < ∞ such that

‖δk f ‖L∞ ≤ C2
dk
p ‖ f ‖L p (26)

for every f ∈ C∞(Td) and k ≥ −1.

If we had chosen to define the decomposition f = ∑
k≥−1 δk f from the Fourier

series decomposition displayed in (15) based on indicator functions, then we would
have δkδk f = δk f , and we could therefore replace f by δk f on the right side of (26).
With our actual definition of δk , this replacement is also possible: instead of using
that

1B(0,2k+1)\B(0,2k ) 1B(0,2k+1)\B(0,2k ) = 1B(0,2k+1)\B(0,2k ),

we choose a smooth function χ ′ ∈ C∞
c (Rd)with support in an annulus and such that

χ ′ ≡ 1 on the support of χ , so that

χ ′ χ = χ.

Setting δ′
k f := F−1(χ ′(·/2k) f̂ ), the identity above translates into

δ′
kδk f = δk f. (27)

Next, we verify that the argument leading to Lemma1 also applies if δk f is replaced
by δ′

k f on the left side of (26). Using (27), we thus obtain the following lemma.

Lemma 2 (Bernstein inequality) Let p ∈ [1,∞]. There exists C < ∞ such that

‖δk f ‖L∞ ≤ C2
dk
p ‖δk f ‖L p (28)

for every f ∈ C∞(Td) and k ≥ −1.

The following proposition uses the previous lemma to bound p-th moments of
the Hölder norm of a random distribution in terms of the p-th moments of its decom-
position in Fourier space.

Proposition 3 (Boundedness criterion) Let β < α − d
p . There exists C < ∞ such

that for every random distribution f on T
d , we have

E
[‖ f ‖p

Cβ

] ≤ C sup
k≥−1

2αkp
E
[‖δk f ‖p

L p

]
. (29)

Proof By definition of the Cβ norm and then Lemma2, we have

‖ f ‖p
Cβ = sup

k≥−1
2βkp‖δk f ‖p

L∞ ≤ C sup
k≥−1

2k(βp+d)‖δk f ‖p
L p .
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In order to take the expectation of ‖δk f ‖p
L p directly, we enlarge the supremum on

the right side above to a sum, and get

E‖ f ‖p
Cβ ≤ C

∑
k≥−1

2k(βp+d)
E‖δk f ‖p

L p = C
∑
k≥−1

2kp(β+ d
p −α)2αkp

E‖δk f ‖p
L p .

The announced estimate then follows, since α > β + d
p .

Remark 6 With our definition of the space Cβ as a completion, the fact that a distri-
bution f satisfies ‖ f ‖Cβ < ∞ does not imply that f ∈ Cβ . However, in the context
of Proposition3, when the right side of (29) is finite, we do have f ∈ Cβ with proba-
bility one. Indeed, we can always pick β ′ ∈ (β, α − d

p ), deduce that ‖ f ‖Cβ′ is finite
with probability one, and conclude by Remark 5.

3 White Noise and Nelson’s Estimate

Proposition3 gives a criterion for determiningwhether a random distribution belongs
to Cβ by looking at the p-th moment of its Paley-Littlewood blocks. However, it is
often difficult to get sharp bounds of high moments of a random distribution. On
the other hand, fortunately, the objects we encounter in the construction of Φ4

3 (and
many other Gaussian models) are all built from multiplications of finitely many
Gaussian random variables. These objects belong to a Wiener chaos of finite order,
and we can therefore leverage on the equivalence of moments property, also often
called Nelson’s estimate, to deduce high-moment estimates from second-moment
calculations. The purpose of this section is to present these arguments, and state
the implied simpler criterion for belonging to Cβ . In this section, we continue to
work in arbitrary space dimension d. We only sketch some well-known arguments
concerning iterated integrals andWiener chaos, and refer the interested reader to [18,
Chap.9] for a more detailed exposition of these topics.

We start by introducing the space-timewhite noise. Formally, the space-timewhite
noise ξ is a centred Gaussian distribution on R × T

d with covariance

Eξ(t, x) ξ(t ′, x ′) = δ(t − t ′) δd(x − x ′) , (30)

where δ(·) and δd(·) denote Dirac delta functions overR andT
d respectively. Testing

(30) against a function ϕ : R × T
d → R leads us to postulate that

E
[
ξ(ϕ)2

] = ‖ϕ‖2L2(R×Td ) . (31)

Definition 1 A space-time white noise over R × T
d is a family of centred Gaussian

random variables {ξ(ϕ), ϕ ∈ L2(R × T
d)} such that (31) holds.
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The existence of a space-time white noise follows from Kolmogorov’s extension
theorem. We prefer here to take a more constructive approach, based on Fourier
analysis.

Let (W (·, ω))ω∈Zd be a family of complex-valuedBrownianmotions overR. These
Brownian motions are independent for different values of ω except for the constraint
W (t, ω) = W (t,−ω) (so that the white noise we are building is real-valued). The
magnitude of the variance is fixed by the condition

E
[
W (t, ω)W (t,−ω′)

] =
{

|t | if ω = ω′,
0 otherwise.

We then set ξ to be the time derivative of the cylindrical Wiener process

(t, x) �→
∑
ω∈Zd

W (t, ω)e2iπω·x .

More precisely, for every ϕ ∈ L2(R × T
d), we set

ξ(ϕ) :=
∑
ω∈Zd

∫ +∞

t=−∞
ϕ̂(t, ω) dW (t, ω),

where the integral is interpreted in Itô’s sense, and the notation ϕ̂(t, ω) stands for
ϕ̂(t, ·)(ω). By Itô’s and Fourier’s isometries, this expression is well-defined and the
relation (31) is satisfied. Since ξ(ϕ) is also a centered Gaussian, this provides us with
a construction of white noise. We use the somewhat informal notation

ξ(ϕ) :=
∫
R×Td

ϕ(z) ξ(dz) ,

although ξ is almost surely not a measure. In particular, for a given ϕ ∈ L2(R × T
d),

the random variable ξ(ϕ) is only defined outside of a set of measure zero, and a priori
this set depends on the choice of ϕ.

As explained for example in [18, Chap.9] or [23, Sect. 1.1.2], we can define
iteratedWiener-Itô integrals based on ξ . For each k ≥ 1 and ϕ ∈ L2((R × T

d)k), we
denote the iterated integral of ϕ by

ξ⊗k(ϕ) =
∫

(R×Td )k
ϕ(z1, . . . , zk) ξ(dz1) · · · ξ(dzk).

Denoting by ϕ̃ the symmetrized function obtained from ϕ:

ϕ̃(z1, . . . , zk) := 1

k!
∑
σ∈Sk

ϕ(zσ(1), . . . , zσ(k)), (32)
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where Sk denotes the permutation group over {1, . . . , k}, we have

ξ⊗k(ϕ) = ξ⊗k(ϕ̃) = k!
∫

(R×Td )k
ϕ̃(z1, . . . , zk) 1{t1<···<tk } ξ(dz1) · · · ξ(dzk), (33)

where ti is the time component of zi . Moreover, we have the isometry property

E
[
ξ⊗k(ϕ)2

] = E
[
ξ⊗k(ϕ̃)2

] =
∫

(R×Td )k
ϕ̃2(z1, . . . , zk) dz1 · · · dzk, (34)

and by Jensen’s inequality,

∫
(R×Td )k

ϕ̃2(z1, . . . , zk) dz1 · · · dzk ≤
∫

(R×Td )k
ϕ2(z1, . . . , zk) dz1 · · · dzk . (35)

Assuming now for notational convenience that ϕ is a symmetric function, that is,
ϕ = ϕ̃, we may rewrite the expression (33) for the iterated integral ξ⊗k(ϕ) as a series
of finite-dimensional iterated Wiener-Itô integrals:

ξ⊗k(ϕ) = k!
∑

ω1,...,ωk∈Zd

∫
t1<···<tk

ϕ̂(t1, ω1, . . . , tk, ωk) dW (t1, ω1) · · · dW (tk, ωk),

(36)
where

ϕ̂(t1, ω1, . . . , tk, ωk) :=
∫

(Td )k
ϕ(t1, x1, . . . , tk, xk)e

−2iπ(ω1·x1+···+ωk ·xk ) dx1 · · · dxk .

See also [18, Sect. 9.6] for a definition of iterated integrals. We let

Hk := {ξ⊗k(ϕ), ϕ ∈ L2((R × T
d)k)}

denote the k-th Wiener chaos, with H0 = R. Denote by (Ω,F , P) the probability
space onwhich ξ is defined. The spacesHk are orthogonal in L2(Ω,F , P).Moreover,
although we will not use it, we recall that ifF is the σ -algebra generated byH1, then

L2(Ω,F , P) =
+∞⊕
k=0

Hk

(the interested reader may find this result in [18, Sect. 9.5]). The more important
property for our purpose is the following.

Lemma 3 For each n ∈ N, the closure in L2(Ω,F , P) of the linear span of the set

{
ξ(ϕ1) · · · ξ(ϕk), k ≤ n, ϕ1, . . . , ϕk ∈ L2(R × T

d)
}
. (37)
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coincides with

H≤n :=
n⊕

k=0

Hk . (38)

Sketch of proof Let Hn = Hn(X, T ) be theHermite polynomials, defined recursively
by {

H0 = 1,
Hn = XHn−1 − T ∂X Hn−1 (n ∈ N),

(39)

so that H1 = X , H2 = X2 − T , H3 = X3 − 3XT , etc. By a recursive application
of Itô’s formula, see [18, Theorem9.6.9], we have, for every ϕ ∈ L2(R × T

d) and
n ∈ N,

ξ⊗n(ϕ⊗n) = Hn(ξ(ϕ), ‖ϕ‖2L2(R×Td )). (40)

This relation already shows that every n-fold iterated integral is a linear combination
of elements of (37). Conversely, it also shows that every Hermite polynomial in ξ(ϕ)

of degree at most n—and therefore every polynomial in ξ(ϕ) of degree at most n—
belongs toH≤n . The full proof of Lemma3 can be derived from [18, Theorem9.5.4].

By extension, we say that a stochastic process τ : R → S ′(Td) belongs to Hn

(resp.H≤n) if for every t and smooth test function φ, we have

〈τ(t), φ〉 ∈ Hn (resp.H≤n).

If τ(t) is in fact a continuous function of the space variable, this boils down to asking
that τ(t, x) ∈ Hn (resp. H≤n) for each x ∈ T

d . By Lemma3, the approximations to
the diagrams we want to construct, see (7), all belong toH≤5. Since Wiener chaoses
are closed, this remains true of their candidate limits (see also Sect. 4 for explicit
representations).

Since δk f is linear in f for every k, the fact that f belongs to someWiener chaos
implies that δk f belongs to the Wiener chaos of the same order. Thus, in view of
Proposition3, the possibility to estimate arbitrarily high moments of elements of a
fixed Wiener chaos from their L2 moments will be very convenient.

Proposition 4 (Nelson’s estimate) For every n ≥ 1 and p ∈ [2,∞), there exists a
constant C < ∞ such that for every X ∈ H≤n,

E
[|X |p] 1

p ≤ CE
[
X2

] 1
2 .

If X ∈ Hn, then we can take C = (p − 1)
n
2 .

We now give a proof of Proposition4 based on the Burkholder-Davis-Gundy
inequality ([28, Sect. 4.4]). The appendix contains an alternative argument based on
the logarithmic Sobolev inequality.
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Lemma 4 (BDG inequality) Let p ∈ (0,∞). There exists C < ∞ such that if
(Mt )t≥0 is a continuous local martingale starting from 0, then

E

[
sup
0≤s≤t

|Ms |p
]

≤ CE

[
〈M〉

p
2
t

]
,

where 〈M〉 denotes the quadratic variation of M.

Proof (First proof of Proposition 4) We show the result by induction on n. For
n = 0, the space H0 only contains constants, so the result is obvious. We now fix
n ≥ 1. We need to verify the property for random variables of the form ξ⊗n(ϕ),
ϕ ∈ L2((R × T

d)n). By (33), we may assume that ϕ is symmetric in its variables.
Let Ft be the σ -algebra generated by

{
ξ(ϕ), Supp ϕ ⊆ (−∞, t] × T

d
}
.

The process

Mt :=
∫

(R×Td )n
ϕ(z1, . . . , zn) 1{t1<···<tn<t} ξ(dz1) · · · ξ(dzn) (t ∈ R)

is an (Ft )-martingale. This can be justified either by approximation of ϕ by elemen-
tary functions which vanish on the diagonal (see [23, (1.10)], and take the Ai there
of product form), or by appealing to the representation (36). Moreover,

〈M〉t =
∫
R×Td

(∫
(R×Td )n−1

ϕ(z1, . . . , zn) 1{t1<···<tn<t} ξ(dz1) · · · ξ(dzn−1)

)2

dzn.

By Minkowski’s triangle inequality for the exponent p
2 ≥ 1,

E

[
〈M〉

p
2
t

] 2
p

≤
∫
R×Td

E

[(∫
(R×Td )n−1

ϕ(z1, . . . , zn) 1{t1<···<tn<t} ξ(dz1) · · · ξ(dzn−1)

)p] 2
p

dzn .

By symmetrizing ϕ as in (32), the induction hypothesis and (34), we infer that

E

[
〈M〉

p
2
t

] 2
p ≤ C

∫
R×Td

∫
(R×Td )n−1

ϕ2(z1, . . . , zn) 1{t1<···<tn<t} dz1 · · · dzn−1 dzn.

The conclusion then follows from the Lemma4, used with t = +∞.

Remark 7 As hinted at in the introduction, certain Ising-type Markov processes
converge (or are expected to converge) to the Φ4 model (see [20]). The proof of
Nelson’s estimate based on the BDG inequality is sufficiently robust to allow for
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a generalization to these Markov processes. Indeed, loosely speaking, a Markov
process can be thought of as an evolution equation with a random forcing that is
white in time. In more precise words, a Markov process comes with a martingale
structure indexed by time, and the possibly surprisingly special role played by the
time variable in the proof we presented above becomes very natural in this context.
Using versions of Itô’s formula and theBDG inequality for processeswith jumps ([20,
AppendixC]), one can show that (40) still holds approximately ([20, Proposition5.3])
and prove a version of Nelson’s estimate ([20, Lemma4.1]) by following essentially
the same reasoning as above.

With Nelson’s estimate, we are now ready to provide a simple criterion to check
the main convergence result in Theorem1. Since for most of the processes defined
in (7), their limits can be characterised explicitly without referring to the limiting
procedure as n → +∞ (and in the cases when the limiting procedure is necessary, it
is also obvious what the limit should be), we only give detailed characterisations of
the limiting processes τ ’s themselves. Once all the properties of the limits are well
understood, the convergence does not pose any further problem.

Proposition 5 Let n ∈ N, and let τ : R → S ′(Td) be a random process in H≤n

which is stationary in space, in the sense that for every x ∈ T
d ,

the processes (τ (t, ·))t∈R and (τ (t, x + ·))t∈R have the same law. (41)

Let (̂τ (t, ω))ω∈Zd denote the Fourier coefficients of τ(t). If for some t ∈ R, there
exists C < ∞ and α ∈ R such that for every ω ∈ Z

d ,

E
[|̂τ(t, ω)|2] ≤ C(1 + |ω|)−d−2α, (42)

then for every β < α, we have τ(t) ∈ Cβ(T3), and moreover,

E
[‖τ(t)‖p

Cβ

]
< +∞. (43)

If, in addition to (42), there exists λ ∈ (0, 1) such that

E
[|̂τ(t, ω) − τ̂ (s, ω)|2] ≤ C |t − s|λ(1 + |ω|)−d−2α+2λ (44)

uniformly in 0 < |t − s| < 1 and ω ∈ Z
d , then for every β < α − λ, we have τ ∈

C(R, Cβ(T3)), and moreover,

sup
0<|t−s|<1

E
[‖τ(t) − τ(s)‖p

Cβ

]
|t − s| λp

2

< +∞. (45)

Proof Step 1.Wefirst show that by the stationarity assumption (41), for everyω,ω′ ∈
Z
d ,

ω + ω′ �= 0 =⇒ E
[̂
τ(s, ω)̂τ (t, ω′)

] = 0. (46)
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Indeed, we have, using a slightly informal integral-sign notation,

E
[̂
τ(s, ω)̂τ (t, ω′)

] =
∫∫

(Td )2
E[τ(s, x)τ (t, y)]e−2π i(ω·x+ω′ ·y) dx dy

=
∫∫

(Td )2
E[τ(s, x)τ (t, y)]e−2π i[(ω+ω′)·x+ω′ ·(y−x)] dx dy.

By the stationarity assumption, the expectation above is a function of (y − x) only.
Integrating in y first and then in x , we therefore obtain (46).

Step 2. We now focus on the proof of (45); the proof of (43) is only simpler.
Let τs,t := τ(t) − τ(s). We have

(δkτs,t )(x) =
∑

ω

χk(ω)̂τs,t (ω)e2π iω·x .

We implicitly assume here that the processes under consideration are real-valued,
and therefore that for every ω ∈ Z

d ,

τ̂ (t,−ω) = τ̂ (t, ω).

Since χk is an even function, we deduce that

E
[|(δkτs,t )(x)|2] =

∑
ω,ω′∈Zd

χk(ω)χk(ω
′)E

[̂
τs,t (ω)̂τs,t (ω

′)
]
e2π i(ω+ω′)·x .

Using (46) and the bound (44), we get

E
[|(δkτs,t )(x)|2] =

∑
ω∈Zd

|χk(ω)|2E [|̂τs,t (ω)|2] � |t − s|λ2−2k(α−λ).

The above bound holds uniformly in k ≥ −1, 0 < |t − s| < 1 and x ∈ T
d . Also,

since τ belongs toH≤n , Nelson’s estimate implies

E
[‖δkτs,t‖p

L p

] ≤ sup
x∈Td

E
[∣∣(δkτs,t )(x)∣∣p]

� sup
x∈Td

(
E
[|(δkτs,t )(x)|2]) p

2

� |t − s| λp
2 2−kp(α−λ).

By Proposition3, we deduce that for each β < α − λ − d
p ,

E
[‖τs,t‖p

Cβ

]
� |t − s| λp

2 ,

uniformly over all 0 < |t − s| < 1.
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4 Construction of the Diagrams

We are now ready to construct the diagrams listed in Table1, and prove the relevant
bounds appearing in Theorem1. We will focus on the bound (10) for fixed times,
and will only briefly discuss in the next section how the continuity in time follows
from there. We also omit the detailed proof of the convergence (9), since once the
bounds (10) for the limit diagrams are established, the convergence of approximations
follows in essentially the same way. Since all our processes τ belong toH≤5 and are
stationary both in space and time, we can invoke Proposition5 and reduce the proof
of (10) to showing the second moment bound (42) for each τ .

The derivation of these bounds involves the estimation of several nested integrals
and sums. We use a graphical notation to represent these operations. This has the
advantage ofmaking themanipulationswith potentially very long expressions shorter
and more transparent. Naturally, the price to pay is to get used to the notation. One
of the aims of these notes is to convince the reader that this investment is worth their
while.

The graphical notation is heavily inspired by the treatment of the stochastic terms
in [15, Sect. 10]. One difference is that there the calculations are performed in “real
space”, while we prefer to work with the spatial Fourier transform, and to keep the
time variable fixed. It turns out that despite this change, the graphs we encounter in
our approach are very similar to the ones in [15, Sect. 10] — only the interpretation
changes slightly. Another difference is that we work with resonant parts of products,
while Hairer considers increments of processes. We comment on this difference
below (see also [14, Sect. 5] for an earlier graphical approach to bounding stochastic
quantities which are represented using the spatial Fourier transform).

The presentation is separated into two parts. We first show how to represent the
various processes as iterated stochastic integrals, and then derive the bounds on these.

4.1 Iterated Integral Representation

We start by showing how all of the stochastic terms τ in Table1 can be represented
as sums of iterated stochastic integrals. As stated above, each of the terms τ is an
element of the inhomogeneous Wiener chaos H≤5, and this sum yields the explicit
decomposition into its components in the homogeneousWiener chaosesH0, . . . ,H5.
This representation as iterated integrals reduces the proof of the required moment
bounds to an application of the isometry property (34). As will be shown below, this
representation alsomakes the choice of infinite renormalisation constants transparent.

Case τ = . We take the simplest process τ = , the solution to the stochastic
heat equation (3), as the starting point of our discussion. For each t ∈ R and ω ∈ Z

3,
we can write
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(̂t, ω) =
∫ t

u=−∞
P̂t−u(ω) dW (u, ω), (47)

where (W (·, ω))ω is the family of complex valued Brownian motions introduced in
Sect. 3, and, for t ≥ 0, P̂t is the Fourier transform of the heat kernel for Pt = et (Δ−1),
that is,

P̂t (ω) = e−t (1+4π2|ω|2) = e−t〈ω〉2 , (48)

where we set
〈ω〉 :=

√
1 + 4π2|ω|2

for concision. It is convenient to extend Pt and P̂t to every time t ∈ R, by setting

for every t < 0, Pt ≡ 0 and P̂t ≡ 0, (49)

so that (47) can be rewritten as

(̂t, ω) =
∫
u∈R

P̂t−u(ω) dW (u, ω).

In future expressions of integrals against dW (u, ω), we always understand that the
variable ω is fixed, and that the variable u is the variable of integration. For instance,
we simply write

(̂t, ω) =
∫
R

P̂t−u(ω) dW (u, ω). (50)

The graphical version of (47) or (50) is

(̂t, ω) =
(t, ω)

. (51)

Here the root represents the pair (t, ω), i.e., the time and frequency at which we
seek to evaluate .̂ The leaf represents an instance of the noise dW (u, ω), and the
line connecting them is the kernel P̂t−u . The time variable u associated to the node
is integrated out.

Case τ = . We now proceed to represent the process τ = , the limit of n :=
( n)

2 − cn . We start with the product 2
n , writing

2̂
n(t, ω) =

∑
ω1+ω2=ω

|ωi |≤n

(̂t, ω1)̂ (t, ω2)

=
∑

ω1+ω2=ω
|ωi |≤n

( ∫ t

−∞
P̂t−u1(ω1) dW (u1, ω1)

)( ∫ t

−∞
P̂t−u2(ω2) dW (u2, ω2)

)
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=
∑

ω1+ω2=ω
|ωi |≤n

(
2
∫ t

−∞

[ ∫ u1

−∞
P̂t−u1(ω1)P̂t−u2(ω2) dW (u2, ω2)

]
dW (u1, ω1)

+ 1{ω1=−ω2}
∫ t

−∞
P̂t−u(ω1)P̂t−u(ω2) du

)
, (52)

where the last equality follows from Itô’s formula. The last term on the right side
vanishes for ω �= 0, because in this case the conditions ω1 + ω2 = ω and ω1 = −ω2

are incompatible. For ω = 0, the sum of these terms can be rewritten as

∑
|ω1|≤n

∫ t

−∞
|P̂t−u(ω1)|2 du =

∑
|ω1|≤n

1

2〈ω1〉2 .

This is precisely the term cn := E
[
( n(t))2

]
, which is of the order of n as n goes

to infinity, and is removed in the renormalisation procedure. Below we will show
that we can pass to the limit n → ∞ in the first term on the right side of (52). We
denote the limit by ̂(t, ω). It is instructive to translate the expressions back into
“real space”, and to check that in the notation introduced in Sect. 3, we have

̂(t, ω) =
∑

ω1+ω2=ω

2
( ∫ t

−∞

[ ∫ u1

−∞
P̂t−u1 (ω1)P̂t−u2 (ω2) dW (u2, ω2)

]
dW (u1, ω1)

)

=
∫

(R×T3)2

∫
T3

Pt−u1 (y − x1)Pt−u2 (y − x2)e
−i2πω·y dy ξ(du1, dx1)ξ(du2, dx2), (53)

where we identify the operator Pt with its kernel, which we interpret as being null
for t ≤ 0. This expression shows in particular that ̂(t, ω) is an element of the
homogeneous Wiener chaos H2 as defined in Sect. 3.

By the definition of iterated stochastic integrals, we may rewrite the identity in
(52) as

2̂
n(t, ω) =

∑
ω1+ω2=ω

|ωi |≤n

( ∫ t

−∞

∫ t

−∞
P̂t−u1(ω1)P̂t−u2(ω2) dW (u2, ω2) dW (u1, ω1)

+ 1{ω1=−ω2}
∫ t

−∞
P̂t−u(ω1)P̂t−u(ω2) du

)
,

or, with our convention (49),

2̂
n(t, ω) =

∑
ω1+ω2=ω

|ωi |≤n

( ∫
R2

P̂t−u1(ω1)P̂t−u2(ω2) dW (u2, ω2) dW (u1, ω1)

+ 1{ω1=−ω2}
∫ t

−∞
P̂t−u(ω1)P̂t−u(ω2) du

)
. (54)
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As the reader can see, this expression is already quite bulky — and much worse
is to come. This motivates to introduce a graphical notation which encodes these
expressions in amuchmore transparent way, andwhichwewill be able tomanipulate
directly. At this stage, we disregard the truncation, and perform all calculations in
the formal limit n = ∞. The expression (54) then becomes

2̂(t, ω) =
(t, ω)

+
(t, ω)

.

As before the root of the graph represents the pair (t, ω), and each of the leaves
represents one occurrence of the white noise and carries a pair (ui , ωi ) itself. The

kernel P̂t is represented by the arrow connecting the nodes evaluated at time (t − ui ),
and the arrow points towards the node whose time variable is “earlier”. Then all time
variables ui except for the one t at the node are integrated out and the ωi are summed
over, subject to ω1 + ω2 = ω. We will see below that this last rule corresponds to
Kirchhoff’s law that the “ingoing” variable ω must coincide with the sum of all
“outgoing” ωi ’s. The second graph on the right side is obtained by “contracting”
the two nodes of the first graph. In this second graph, we may associate a frequency
ω1 to the left arrow, and a frequency ω2 to the right arrow. Kirchhoff’s law for the
bottom node then imposes ω = ω1 + ω2, and for the top node, ω1 + ω2 = 0, and we
recover that this term is zero unless ω = 0. This contracted graph is removed in the
renormalisation procedure, so that

̂(t, ω) =
(t, ω)

. (55)

Case τ = . We now discuss the next term , which as announced arises as the
limit of n := I

(
( n)

3 − 3cn
)
. As above in (52) (see also (40) with n = 3) we can

use Itô’s formula to obtain an iterated integral representation for 3̂
n , which takes the

form

3̂
n(t, ω) =

∑
ω1+ω2+ω3=ω

|ωi |≤n

6
∫ t

−∞

∫ u1

−∞

∫ u2

−∞
P̂t−u1(ω1)P̂t−u2(ω2)P̂t−u3(ω3)

dW (u3, ω3) dW (u2, ω2) dW (u1, ω1)

+ 3cn̂ n(t, ω). (56)

Wehad already seen above that cn diverges as n goes to∞, whichmotivates to remove
the second term in the renormalisation procedure. The reasonwhywe choose to work
with the integrated object rather than is that (as we will see below) although the
latter can be defined as a space time distribution, it cannot be evaluated at any fixed t .
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(This is similar to temporal white noise which can also only be interpreted when
tested against a function of time and space, but never pointwise in t). In fact, this
is an instance of the well-known fact that Wick powers of order ≥ 3 over the three
dimensional Gaussian free field do not exist (since the covariance function would
not be integrable; see e.g. [9, Sect. 2.7]), and for readers familiar with this fact, it
may be surprising that Wick powers up to order 4 can be constructed as space-time
objects. Using a similar graphical notation to the one used for , we arrive at

̂
(t, ω) =

(t, ω)

.

Case τ = = . At this point we want to start to think more systematically about
the derivation of the diagrammatic expressions and their interpretation, and we illus-
trate this with the diagram = . This particular expansion follows from an iterated
application of Itô’s formula, see [23, Propositions1.1.2 and 1.1.3] and [15, Sect. 10].

For the moment we ignore the additional complexity introduced by the resonant
products = in (7), and give a graphical representation for defined as in (7) with =

replaced by the usual product. To begin with, we give the graphical representation of
this symbol without taking into account the renormalisation procedure, i.e. we work
with the random function I ( 2

n)
2
n . This random function takes values in H≤4, with

components in H4, H2 and H0. The component in the highest Wiener chaos H4 is
represented by the graph

(t, ω)

, (57)

i.e. precisely the graph we use as a symbol to represent this object. This graph can
be interpreted as random variable either in “real space” coordinates or in “Fourier
coordinates”. Both interpretations are equivalent and the former is closer in spirit
to [15, Sect. 10] and also (53) above, while the latter is closer to the spirit of the
present notes. Here we present both interpretations, starting with the “real space”
interpretation because it is slightly easier to explain. The Fourier interpretation then
follows by turning multiplication into convolution in the space coordinates: For the
“real space” interpretation we assign a space-time point to each of the vertices of this
graph (e.g. (u1, x1), . . . , (u4, x4) to the four leaves, (u5, x5) to the internal vertex,
and (t, x6) to the root), an instance of the heat kernel P evaluated at the difference
of the variables associated to the adjacent vertices and the arrow pointing towards
the “earlier” time variable to each of the arrows (e.g. Pu5−u1(x5 − x1) to the upper
right arrow), and multiply all of these kernels. Finally, the variable corresponding to
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the internal variable (u5, x5) is integrated out over space-time, the variables (ui , xi )
for the leaves are integrated against the white noise ξ and we take the spatial Fourier
transform with respect to the variable x6 at the root, yielding the expression3

∫
(R×T3)4

( ∫
T3
dx6

∫
R×T3

du5 dx5Pu5−u1(x5 − x1)Pu5−u2(x5 − x2)

× Pt−u5(x6 − x5)Pt−u3(x6 − x3)Pt−u4(x6 − x4)e
−i2πω·x6

)
ξ(du1, dx1)ξ(du2, dx2)ξ(du3, dx3)ξ(du4, dx4). (58)

Translating the previous expression and interpretation into Fourier variables can be
done as follows: each of the vertices is equipped with a time-frequency variable in
R × Z

3, say (u1, ω1), . . . , (u4, ω4) for the leaves, (u5, ω5) for the internal vertex,
and (t, ω) for the root. The formula (58) then becomes

∑
ω1,...,ω5∈Z3

ω1+ω2=ω5
ω3+ω4+ω5=ω

∫
R4

( ∫
R

du5 P̂u5−u1(ω1)P̂u5−u2(ω2)P̂t−u5(ω5)P̂t−u3(ω3)P̂t−u4(ω4)
)

dW (u1, ω1) dW (u2, ω2) dW (u3, ω3) dW (u4, ω4), (59)

that is, each arrow now corresponds to an instance of P̂ , where the time variables
stay the same as before, but the difference of the space variables is replaced by the
frequency variable corresponding to the top of the arrow. The fact that the product
turns into convolution under the Fourier transform is reflected in the “Kirchhoff rule”
that at each internal vertex, the sum of “incoming” frequency variables equals the
sum of “outgoing” frequency variables. The same rule applies at the root, with the
understanding that ω is an “ingoing” frequency.

The terms in the lower order Wiener chaosesH2 andH0 arise from Itô’s formula,
in the same spirit to our discussion of above. For H2 we get

(t, ω)

+

(t, ω)

+ 4 ×

(t, ω)

These are precisely the graphs that can be obtained by picking a pair of leaves in (57)
and “gluing” them together. The pre-factor “4” is combinatorial and corresponds to
the fact that there are four different ways of picking one vertex from the “top level”
and one from the “bottom level” of the graph, each of which giving rise to the same

3Actually, for finite n the heat kernels connecting to the leaves, i.e. Pu5−u1 , Pu5−u2 , Pt−u3 and Pt−u4
(but not Pt−u5 ) should be replaced by the regularised heat kernel (t, x) �→ ∑

|ω|≤n P̂t (ω)ei2πω·x .
Similarly, in (59) and after we will leave implicit the constraint |ω1|, . . . , |ω4| ≤ n. Here and below
we drop the regularisations for convenience.
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iterated stochastic integral. The interpretation for these graphs is the same as before.
For instance, for the first of these graphs corresponds to the expression

∑
ω1,...,ω5∈Z3

ω1+ω2=ω5
ω3+ω4+ω5=ω

ω1+ω2=0

∫
R2

( ∫
R2

du5 du1 P̂u5−u1(ω1)P̂u5−u1(ω2)P̂t−u5(ω5)P̂t−u3(ω3)P̂t−u4(ω4)
)

dW (u3, ω3) dW (u4, ω4)

= cn
∑

ω3,ω4∈Z3

ω3+ω4=ω

∫
R2

P̂t−u3(ω3)P̂t−u4(ω4) dW (u3, ω3) dW (u4, ω4)

= cn̂(t, ω), (60)

which arises from (59) by replacing the white noises dW (du1, ω1) dW (du2, ω2)

from the vertices which are “glued together” by δ0(u1 − u2)1ω1=−ω2 . In the same
way we get the identity

(t, ω)

= cn × Î ( )(t, ω). (61)

Finally, the term in the zero-th Wiener chaos (that is, the constant) is given by the
only graph that can be obtained from two contractions, namely

2 ×

(t, ω)

. (62)

We now move on to discussing the renormalisation of these terms. As the reader can
verify, working with I ( ) instead of I ( 2) 2 (i.e. performing the Wick renormali-
sation of the product 2 as above) corresponds exactly to removing the graphs in (60)
and (61). The logarithmic sub-divergence corresponding to c′

n arises in (62). Indeed,
evaluating this expression yields
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∑
ω1,...,ω5∈Z3

ω1+ω2=ω5
ω3+ω4+ω5=ω

ω1+ω3=0
ω2+ω4=0

∫
R3

du5 du1 du2 P̂u5−u1(ω1)P̂u5−u2(ω2)P̂t−u5(ω5)P̂t−u1(ω3)P̂t−u2(ω4)

= 1{ω=0}
∑

ω1,ω2,ω5∈Z3

ω1+ω2=ω5

∫
R3

du5 du1 du2 P̂u5−u1(ω1)P̂u5−u2(ω2)

× P̂t−u5(ω5)P̂t−u1(−ω1)P̂t−u2(−ω2)

= 1{ω=0}
∑

ω1,ω2,ω5∈Z3

ω1+ω2=ω5

∫
R

du5 P̂t−u5(ω5)
e−|t−u5|〈ω1〉2

2〈ω1〉2
e−|t−u5|〈ω2〉2

2〈ω2〉2

= 1{ω=0}
1

4

∑
ω1,ω2,ω5∈Z3

ω1+ω2=ω5

1

〈ω1〉2
1

〈ω2〉2
1

〈ω1〉2 + 〈ω2〉2 + 〈ω5〉2 , (63)

In the first identity above, we have used the fact that the four restrictions on the ωi

are incompatible unless ω = 0. The fact that the expression vanishes for non-zero ω

could also be deduced from the fact that (62) represents the expectation of I ( 2
n)

2
n ,

which is constant in space by stationarity. In the second identity, we havemade use of

the symmetry of P̂ inω and of the fact that
∫
R
P̂u5−u1(ω1)P̂t−u1(ω1) du1 = e−|t−u5 |〈ω1〉2

2〈ω1〉2 ,
as well as the corresponding identity for u2.

The sum in (63), with cutoffs |ωi | ≤ n, diverges logarithmically as n tends to
infinity. It is therefore necessary to remove the diagram in (62) in the renormalisation
procedure. We arrive at the expression I ( n) n − 2c′

n ,
4 which is already very close

to the definition of =
n
in (7).

It only remains to re-introduce the resonant product = in our construction, in place
of the full product.We start by briefly explainingwhy this is actually necessary, going
back to the discussion of product estimates in Sect. 2. In the solution theory of (1),
the term plays the role of a product of = I ( ) and . Now, as we have already
discussed at length, is a random function of class C1−, is a random distribution
of class C−1−, and products (more specifically the resonant part of products) are not
well defined in this regularity class. (Of course, the purpose of the present article
is to explain how to define these products as probabilistic limits of renormalised
approximations). As we have just seen, a renormalisation procedure can be used to
define the products. Yet, it will not improve the regularity of the resulting object
(predicted in Table2), i.e. the product will inherit the bad regularity C−1− from
. It is however crucial, both in Hairer’s theory of regularity structures and in the

theory of paracontrolled distributions, to obtain a bound which reflects the “good”

4In fact, the sum represented by the diagram (62) does not coincide exactly with the constant
c′
n as defined in (8) because the latter is defined as the expectation of the resonant product

E
[
I
(

n
) = n(t)

]
while the former coincides with E

[
I
(

n
)

n(t)
]
. However, as the reader

can check, the difference between these constants remains bounded as n tends to infinity.
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regularity of , i.e. we need to get a bound of regularity (−1−) + (1−) = 0−.
In Hairer’s theory, this is accomplished by working with “increments”: there the
fundamental object is

( (y) − (x)) (y),

which indeed behaves like (y − x)0− as y → x . One key observation in [13] was
that the same effect can be obtained by working with the resonant product = ,
which is of class C0−.

After this short detour, it remains to incorporate the resonant product = into the
graphical notation. For this we recall from Sect. 2 that for arbitrary f, g (e.g. ∈ C∞)
we have

f = g(x) =
∑

|k−l|≤1

δk f (x)δl g(x) =
∑

ω1,ω2∈Z3

e2iπ(ω1+ω2)·x f̂ (ω1)ĝ(ω2)
∑

|k−l|≤1

χk(ω1)χl (ω2).

For the last sum appearing in this expression, we have

∑
|k−l|≤1

χk(ω1)χl(ω2)

{
∈ [0, 1] for all ω1, ω2

= 0 if (|ω1| > 8
3 or |ω2| > 8

3 ) and
|ω1|
|ω2| /∈ [c, c−1],

(64)

where c = 9
64 . Roughly speaking, and in agreement with the intuition in (15), this

term acts as a smooth indicator function, which only selects pairs (ω1, ω2) for which
|ω1| and |ω2| are close to one another on the logarithmic scale. This intuition justifies
the slightly abusive notation

f̂ = g(ω) =
∑

ω1+ω2=ω
ω1∼ω2

f̂ (ω1)ĝ(ω2) :=
∑

ω1+ω2=ω

f̂ (ω1)ĝ(ω2)
∑

|k−l|≤1

χk(ω1)χl(ω2).

(65)

We represent these “restricted convolutions” in the graphical notation by dotted lines.
For example, when the product is replaced by = , the first graph (57) becomes

=
(t, ω)

.

The interpretation of this diagram is the same as in (59), with the only exception that
the additional restriction {ω3 + ω4 ∼ ω5} is enforced. The convention is that next to
a node , the sum of the frequency variables corresponding to the dotted arrows is
similar to the sum of frequency variables from the regular arrows. Summarising all
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of this discussion, we finally arrive at the graphical expression

=̂ (t, ω) =
=

(t, ω)

+ 4 ×
=

(t, ω)

. (66)

Remaining two diagrams. The graphical representation/decomposition of its
components in different Wiener chaoses for the remaining terms follows the same
line of reasoning, and we omit the details. For τ = = , we get

=̂ (t, ω) =
=

(t, ω)

+ 3 ×
=

(t, ω)

. (67)

We only mention that as above in the discussion for = , the Wick renormalisation

(i.e. the fact that we work with I ( ) = rather than I ( 3) = ) corresponds exactly
to removing the graphs in the second Wiener chaos which arise by contracting two
of the three leaves at the top of the graph. The logarithmic sub-divergence plays no
role for this term.

Finally, for τ = = , we have

=̂ (t, ω) =
=

(t, ω)

+ 6 ×
=

(t, ω)

+ 6 ×
(

=
(t, ω)

− c′
n ·

(t, ω)

)
.

It is worth pointing out here that for this diagram, the renormalisation with the
logarithmically diverging constant c′

n does not result in the complete removal of a
diagram, but only in its modification. In fact, when performing the renormalisation
procedure for more complicated equations, it is common that the renormalisation of
a graph results in the subtraction of divergent substructures, rather than the removal
of the whole graph. It is rather a peculiarity that in the graphs (60) and (61) the
removal of the divergent substructure amounts to removing the whole graph. See [7]
for a discussion of this point in a much more general framework.



30 J.-C. Mourrat et al.

4.2 Bounds on Iterated Integrals

We now proceed to explain how to derive the bound (42) for the various stochastic
integrals introduced in the previous subsection. The core ingredient is the isometry
identity (34), which permits to bound the second moment of an iterated stochastic
integral by the L2 norm of the corresponding kernel.

The symbols τ = , , . As before, we first treat the symbol . For this symbol,
Eq. (47) together with the standard Itô isometry yields

E
[̂

(t, ω) (̂t ′,−ω)
] =

∫
R

P̂t−u(ω)P̂t ′−u(−ω) du = e−|t−t ′ |〈ω〉2

2〈ω〉2 , (68)

and in particular the bound (42) (for α = − 1
2 ) follows from the trivial bound

e−|t−t ′ |〈ω〉2 ≤ 1. For later use, we record the following immediate corollary of the
previous bound: for any γ ≥ 0,

∣∣E[̂ (t, ω) (̂t ′,−ω)
]∣∣ � 1

〈ω〉2
( 1

|t − t ′|〈ω〉2
)γ

, (69)

where the implicit constant depends only the choice of γ . In graphical notation, the
previous calculation with t = t ′ becomes

E
[|̂ (t, ω)|2] =

(t, −ω)

(t, ω)

� 〈ω〉−2, (70)

which can be obtained from (51) by “doubling” the graph and by contracting the
leaves to a vertex . The interpretation of the resulting graph then remains the same
as in the previous section, i.e. the time variable is integrated out. This algorithm for
producing the diagram is very natural: first, taking the square corresponds to the
doubling of the graph; and then taking the expectation results in collapsing each pair
of leaves represented by a vertex to a single vertex , for each possible pairing;
this being due to the trivial covariance structure of the instances of white noise
represented by the leaves (in other words, this being due to Itô’s isometry). In the
same “graphical” way, we obtain the formula

E
[|̂(t, ω)|2] = 2

(t, ω)

(t, −ω)

, (71)
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which should be read as

E

[
|̂(t, ω)|2

]
= 2

∑
ω1+ω2=ω

∫
R2

(
P̂t−u1 (ω1)P̂t−u1 (−ω1)P̂t−u2 (ω2)P̂t−u2 (−ω2)

)
du1 du2

= 2
∑

ω1+ω2=ω

1

2〈ω1〉2
1

2〈ω2〉2 . (72)

Of course, this expression could now be bounded directly, but we prefer a slightly
more general approach which will allow us to systematise the calculations to come.
The following lemma, which gives a bound on discrete convolutions, is essentially
contained in [15, Lemma10.14]. We formulate it in arbitrary space dimension d,
although we are only interested in the case d = 3 here.

Lemma 5 Let d ≥ 1 and α, β ∈ R satisfy

α + β > d and α, β < d. (73)

We have, uniformly over ω ∈ Z
d ,

∑
ω1,ω2∈Zd

ω1+ω2=ω

〈ω1〉−α〈ω2〉−β � 〈ω〉d−α−β . (74)

Proof We subdivide the index set A = {(ω1, ω2) ∈ (Zd)2 : ω1 + ω2 = ω} of the
summation into

A1 := {
(ω1, ω2) ∈ A : |ω1| ≥ 2|ω|}

A2 := {
(ω1, ω2) ∈ A : |ω1| ≤ 1

2
|ω|}

A3 := {
(ω1, ω2) ∈ A : |ω2| ≤ 1

2
|ω|}

A4 := A \
( 3⋃

j=1

A j

)
,

and bound the sums over the individual A j separately. For (ω1, ω2) ∈ A1, we make
use of the triangle inequality in the form |ω2| = |ω − ω1| ≥ |ω1| − |ω| ≥ 1

2 |ω1| to
get

∑
(ω1,ω2)∈A1

〈ω1〉−α〈ω2〉−β ≤
∑

(ω1,ω2)∈A1

〈ω1〉−α

(
1

2
〈ω1〉

)−β

�
∑

|ω1|≥2|ω|
〈ω1〉−α−β � 〈ω〉d−α−β,
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where we have used the first condition in (73). ForA2, we use the triangle inequality
in the form |ω2| = |ω − ω1| ≥ |ω| − |ω1| ≥ 1

2 |ω| to get

∑
(ω1,ω2)∈A2

〈ω1〉−α〈ω2〉−β ≤
(
1

2
〈ω〉

)−β ∑
|ω1|≤ 1

2 |ω|
〈ω1〉−α � 〈ω〉d−α−β,

where this time we have used the second assumption (on α) in (73). Exchanging the
role of ω1 and ω2, the same bound follows for the sum over A3. Finally, on A4 we
have |ω1|, |ω2| ≥ 1

2 |ω|, so that

∑
(ω1,ω2)∈A4

〈ω1〉−α〈ω2〉−β ≤
(
1

2
〈ω〉

)−α ∑
|ω2|≥ 1

2 |ω|

(
1

2
〈ω2〉

)−β

� 〈ω〉d−α−β,

and the statement follows.

We briefly discuss the conditions (73) on the exponents α, β. The first condition
α + β > d is necessary to obtain a bound of the type (74), because without it even
the convergence of the sum cannot be guaranteed. The second condition α, β < d
may seem more surprising. It states that a decay beyond summability for 〈ω1〉−α

or 〈ω2〉−β does not improve the behaviour of the convolution. We will see below
that this restriction corresponds exactly to the fact that a (renormalised) product of a
random function f and a random distribution g cannot have better regularity than g
itself. We will show below how the use of the resonant product = instead of the usual
product translates into a Lemma6, which can be understood as a variant of Lemma5
for which this restriction is removed.

Applying this Lemma to the right side of (72) yields

E
[|̂(t, ω)|2] � 1

〈ω〉 ,

which is the desired bound (42) with α = −1 for this symbol. This implies that this
process belongs to Cβ for every β < −1.

Wemoveon to the symbol .Wefirst discusswhy theneed for the extra integration
against the heat kernel arises. If we tried to work with , that is to say, to define
the limit of 3

n − 3cn n (see (56)), then the same calculation as (71) and (72) would
become

E

[
|̂(t, ω)|2

]
= 6 × (t, ω) (t, −ω) = 6

∑
ω1+ω2+ω3=ω

1

2〈ω1〉2
1

2〈ω2〉2
1

2〈ω3〉2
,

but then Lemma5 does not apply to this situation (applying the Lemma once for the
variables ω1 and ω2 would yields the bound �

∑
ω̃+ω3=ω〈ω̃〉−1 〈ω3〉−2, but then the
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resulting exponents α = 1 and β = 2 just fail the summability condition α + β > 3.)
We leave it for the reader to check that indeed, this sum diverges logarithmically for
every ω. However, this problem can be fixed by considering different times t �= t ′.
Then recalling (69) we get for any γ ≥ 0

E
[̂(t, ω)̂(t ′,−ω)

] = 6 × (t, ω) (t ′, −ω)

� 1

|t − t ′|γ
∑

ω1+ω2+ω3=ω

1

〈ω1〉2+2γ

1

〈ω2〉2
1

〈ω3〉2

� 1

|t − t ′|γ 〈ω〉2γ ,

which (for γ < 1) can be taken as a basis for defining as a space-time distribution.
We prefer, to integrate it once more against a heat kernel (because this is the way it
enters the solution theory for (1)), yielding an object which can be evaluated at fixed
time. More precisely, for every γ ∈ (0, 1),

E

[
|̂(t, ω)|2

]
= 6 u u′

�
∫
R2

P̂t−u(ω)P̂t−u′(ω)
1

|u − u′|γ 〈ω〉2γ du du′ � 1

〈ω〉4 , (75)

which proves that this symbol satisfies (42) for α = 1
2 .

Case τ = = . We now turn to the case τ = = . Recall that its decomposition into
components in homogeneous Wiener chaoses was given in (67). We write

=̂ (t, ω) =
=

(t, ω)

+ 3 ×
=

(t, ω)

=: =̂

(4)
(t, ω) + =̂

(2)
(t, ω). (76)

It is then clear that =̂ ∈ Hn , and as a consequence of the orthogonality of the Hn’s

in L2, we have

E

[
| =̂ (t, ω)|2

]
= E

[
| =̂

(4)
(t, ω)|2

]
+ E

[
| =̂

(2)
(t, ω)|2

]
. (77)

In our graphical notation, the first term above can be bounded by
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E

[
| =̂

(4)
(t, ω)|2

]
�

=

=

(t, −ω)

(t, ω)

. (78)

There is a slightly subtle point worth underlying here: standard Gaussian calculus
(the Wick formula) yields an explicit identity for the quantity on the left hand side of
this expression, in terms of contractions of all of the different leaves on the original

diagram representing =̂

(4)
. This formula includes additional graphs such as

=

=

(t, −ω)

(t, ω)

.

However, using (35) to bound the term on the left side of (78) greatly simplifies
the ensuing argument, as opposed to relying on the exact formula involving the
asymmetric trees. (This idea was first used in this context in [15, Sect. 10].)

Going back to bounding (78), we use (75) on the “left part” and (70) on the “right
part” of the graph to obtain the bound

E

[
| =̂

(4)
(t, ω)|2

]
�

∑
ω1+ω2=ω

ω1∼ω2

1

〈ω1〉4
1

〈ω2〉2 . (79)

Lemma5 on the decay of convolutions is not enough to bound the remaining sum.
Indeed, this is precisely a case as discussed below Lemma5, where the second con-
dition in (73) fails (here, 4 ≥ 3). Of course, the same estimate could be used by
“forgetting” some of the good decay of 〈ω1〉−4, and replacing it by 〈ω1〉−(3−), but
this would only yield a bound of order 〈ω〉−(2−) corresponding to a regularity of
index − 1

2− instead of 0−. The following lemma shows that the additional condition
ω1 ∼ ω2, which arises from our use of the resonant product = in the definition of the
diagram, resolves this problem.
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Lemma 6 Let α, β ∈ R satisfy α + β > d. We have, uniformly over ω ∈ Z
d ,

∑
ω1+ω2=ω

ω1∼ω2

〈ω1〉−α〈ω2〉−β � 〈ω〉d−α−β .

Proof Recall (65) and the definition of the “smooth cut-off” (64). For small |ω| (say,
|ω| ≤ 16

3 ) there is only a bounded number of admissible ω1, ω2 with ω1 + ω2 = ω

for which
∑

|k−l|≤1 χk(ω1)χl(ω2) �= 0. Hence, for such ω, we have

∑
ω1+ω2=ω

ω1∼ω2

〈ω1〉−α〈ω2〉−β � 1.

We can thus now assume that |ω| > 16
3 . For such ω, the conditions ω1 + ω2 = ω and

ω1 ∼ ω2 enforce that
|ω1|
|ω2| ∈ [c, c−1] for c = 9

64 , by (64). Hence, on the one hand, we
have

|ω| ≤ |ω1| + |ω2| ≤ |ω1| + c−1|ω1|,

that is, |ω1| ≥ 1
1+c−1 |ω|, and on the other hand, |ω2| ≥ c|ω1|. These considerations

allow us to write

∑
ω1+ω2=ω

ω1∼ω2

〈ω1〉−α〈ω2〉−β �
∑

|ω1|≥ 1
1+c−1 |ω|

〈ω1〉−α−β � 〈ω〉d−α−β,

as desired.

Applying this Lemma to (79) immediately yields

E

[
| =̂

(4)
(t, ω)|2

]
� 〈ω〉−3.

We now turn to the variance of =̂

(2)
, which has the expression

E

[
| =̂

(2)
(t, ω)|2

]
� = =ω −ω

ω4 −ω′
4−ω4 ω′

4
ω1 −ω1

ω2 −ω2

ω5 −ω′
5

.

For later reference, we have labelled all the edges with their frequency variables
(but dropped the time variables) in the diagram above. In addition to the identities
already implicit in this diagram, Kirchhoff’s law enforces that we have to sum over
the indices ω1, ω2, ω4, ω5, ω

′
4, ω

′
5 satisfying
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ω4 + ω5 = ω, ω′
4 + ω′

5 = ω, ω1 + ω2 = ω,

so that we ultimately have to sum over three free variables. The fact that we have a
resonant product = at the roots yields the additional constraintsω4 ∼ ω5 andω′

4 ∼ ω′
5,

but we will not rely on these additional constraints to bound this diagram. With this
notation in place, we proceed to analyse each part of this diagram separately. The
inner square corresponds to the integral

∑
ω1+ω2=ω

( ∫
R

Pu−u1(ω1)Pu′−u1(−ω1) du1
)( ∫

R

Pu−u2(ω2)Pu′−u1(−ω2) du2
)

�
∑

ω1+ω2=ω

1

〈ω1〉2
1

〈ω2〉2 � 1

〈ω〉 ,

where we have used Lemma5 in the last inequality. Note that this bound is slightly
sub-optimal, because we have not used the fact that the time variables u and u′
corresponding to the nodes at the left and right corners of the square are different.
In principle, this would yield extra factors exp(−|u − u′|〈ωi 〉) for each term, but we
simply bound these factors by 1. Similarly, we get for the left-most triangle

∑
ω4+ω5=ω

∫
Pt−u(ω5)

( ∫
R

Pt−u4(ω4)Pu−u4(−ω4) du4
)
du

�
∑

ω4+ω5=ω

∫
Pt−u(ω5)

1

〈ω4〉2 du �
∑

ω4+ω5=ω

1

〈ω4〉2
1

〈ω5〉2 � 1

〈ω〉 ,

where again we have used Lemma5. The right-most triangle in the diagram is
bounded in the same way, resulting in the final bound

E

[
| =̂

(2)
(t, ω)|2

]
� 〈ω〉−3,

as desired.

Case τ = = . For this symbol, we recall from (66) the Wiener chaos decompo-
sition

=̂ (t, ω) =
=

(t, ω)

+ 4 ×
=

(t, ω)

=: =̂

(4)
(t, ω) + =̂

(2)
(t, ω) .
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We start with =̂

(4)
. Similarly to the case for = , we have the bound

E

[
| =̂

(4)
(t, ω)|2

]
�

=

=

(t, −ω)

(t, ω)

. (80)

After all our preparation, this diagram poses no additional difficulty. First, the same
calculation as in (75) allows to bound the “inner part” of the diagram by 〈ω2〉−5,
and the integrals corresponding to the “outer parts” can be bounded by 〈ω1〉−2 and
〈ω3〉−2 immediately, yielding the bound

E

[
| =̂

(4)
(t, ω)|2

]
�

∑
ω1+ω2+ω3=ω

ω1+ω3∼ω2

1

〈ω1〉2
1

〈ω2〉5
1

〈ω3〉2 �
∑

ω̃+ω3=ω
ω̃∼ω2

1

〈ω̃〉
1

〈ω2〉5 � 1

〈ω〉3 ,

(81)

where we have used Lemma5 in the first and Lemma6 in the second inequality.

We now turn to the bound for =̂

(2)
, for which we have

E

[
| =̂

(2)
(t, ω)|2

]
�

=

=

u′

u

−ω1

ω1 ω2

ω′
2

ω3

−ω3

−ω2

−ω′
2

(t, ω)

(t, −ω)

. (82)

This graph is more complicated, and requires more careful treatment. We integrate
first the innermost time variable, with two arrows pointing to it labelled ω1 and −ω1

respectively. We bound this contribution by 〈ω1〉−2, uniformly over u and u′, as in
(70). We are more careful with the integration of the time variable with incoming
arrows labelled ω2 and −ω2, and evaluate its contribution to be

e−|t−u|〈ω2〉2

2〈ω2〉2 ,
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as in (68). We next compute the contribution of the triangle in the lower part of the
diagram by integrating over u:

∫
R

P̂t−u(ω1 + ω2)
e−|t−u|〈ω2〉2

2〈ω2〉2 du = 1

2〈ω2〉2
1

〈ω2〉2 + 〈ω1 + ω2〉2 .

A similar calculation applies to the upper part of the diagram, andwe therefore obtain
the bound

E

[
| =̂

(2)
(t, ω)|2

]

�
∑(

〈ω1〉〈ω2〉〈ω′
2〉〈ω3〉

(〈ω2〉 + 〈ω1 + ω2〉
)(〈ω′

2〉 + 〈ω′
2 − ω1〉

))−2

,

(83)

where the sum is over all (ω1, ω2, ω
′
2, ω3) satisfying

ω1 + ω3 = ω, ω1 + ω2 ∼ ω3 − ω2, −ω1 + ω′
2 ∼ −ω3 − ω′

2. (84)

The first requirement comes from the “Kirchhoff” law in the bottom node, while
the other two constraints come from the paraproduct in the bottom and upper-most
nodes.

We proceed to estimate this sum. Note first that the first two conditions in (84)
imply that

ω1 + ω2 ∼ ω − (ω1 + ω2) .

By (64), if |ω1 + ω2| > 8
3 , we deduce that

|ω1 + ω2| ≥ c (|ω| − |ω1 + ω2|) ,

where c = 9
64 , and therefore that

|ω1 + ω2| ≥ c

1 + c
|ω|.

After reducing the constant c > 0 as necessary, if follows that in every case, the first
two conditions in (84) imply that

〈ω1 + ω2〉 ≥ 2c〈ω〉. (85)

(The factor of 2 is of course a matter of convenience only.) The same argument also
shows that under the conditions in (84), we have

〈ω1 − ω′
2〉 ≥ 2c〈ω〉. (86)
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Define the sets of indices E1(ω) and E2(ω) by

E1(ω) := {
(ω1, ω2, ω

′
2, ω3) : (84) holds and (|ω1| < c|ω| or |ω3| < c|ω|)} ,

E2(ω) := {
(ω1, ω2, ω

′
2, ω3) : (84) holds and |ω1| ≥ c|ω| and |ω3| ≥ c|ω|} .

We first estimate the sum on the right side of (83) over the set E1(ω). By (85), (86)
and the constraint ω3 − ω2 ∼ ω1 + ω2, for variables in the set E1(ω), we must have

〈ω2〉 ≥ c̃ 〈ω〉 and 〈ω′
2〉 ≥ c̃ 〈ω〉,

for some c̃ > 0. Thus, using the simple bounds

〈ω2〉 + 〈ω1 + ω2〉 ≥ 〈ω2〉, 〈ω′
2〉 + 〈ω′

2 − ω1〉 ≥ 〈ω′
2〉,

and summing over ω1 and ω3 = ω − ω1 using Lemma5, we arrive at

∑
E1(ω)

· · · � 〈ω〉−1
∑

|ω2|,|ω′
2|�|ω|

(
〈ω2〉−4 · 〈ω′

2〉−4

)
� 〈ω〉−3, (87)

where the left side above stands for the sum on the right side of (83) restricted to the
index set E1(ω). As for the the index set E2(ω), we start by summing over ω2 to get

∑
ω2

〈ω2〉−2(〈ω2〉 + 〈ω1 + ω2〉
)−2 � 〈ω1〉−2

∑
|ω2|≤ |ω1|

2

〈ω2〉−2 +
∑

|ω2|≥ |ω1|
2

〈ω2〉−4 � 〈ω1〉−1,

and similarly we have

∑
ω′
2

〈ω′
2〉−2(〈ω′

2〉 + 〈ω′
2 − ω1〉

)−2 � 〈ω1〉−1.

We deduce that

∑
E2(ω)

· · · �
∑

ω1+ω3=ω

|ω1|,|ω3|≥ |ω|
16

〈ω1〉−4〈ω3〉−2 � 〈ω〉−2
∑

|ω1|≥ |ω|
16

〈ω1〉−4 � 〈ω〉−3,

with the same notational convention as in (87). Combining this with (83) and (87)

gives the desired bound for =̂

(2)
.

Case τ = = . This is the last diagram. We have the Wiener chaos decomposition
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=̂ (t, ω) =
=

+ 6 ×
=

+ 6 ×
(

=
(t, ω)

−
=

(t, 0)

·

(t, ω)

)

=: =̂

(5)
(t, ω) + =̂

(3)
(t, ω) + =̂

(1)
(t, ω),

where the last term subtracted in the parenthesis above corresponds to the renor-
malisation c′

n in (7) (in the limit as n → +∞). As we will see, neither term in the
parenthesis abovemakes sense separately: they both represent some divergent object,
but their difference converges to a well-defined limit as the Fourier mode cut-off n
goes to infinity. In addition, this limit can be characterised explicitlywithout referring

to a limiting procedure, so this justifies the notation =̂

(1)
(t, ω).

We start with =̂

(5)
. Proceeding as in (80) and (81), using Lemmas5 and 6, we

immediately have

E

[
| =̂

(5)
(t, ω)|2

]
�

=

=

(t, −ω)

(t, ω)

u

u′

�
∑

ω1+ω2+ω3=ω
ω1+ω3∼ω2

1

〈ω1〉2
1

〈ω2〉4
1

〈ω3〉2 � 1

〈ω〉2 ,

where the term 1
〈ω2〉4 comes from the previous bound for the tree .

We now turn to the component in the third Wiener chaos, whose second moment
is bounded by the graph

E

[
| =̂

(3)
(t, ω)|2

]
�

=

=

u′

u
ω1

−ω1

ω2

−ω2

ω3

ω′
3

ω4

−ω4

−ω3

−ω′
3

.

The bound for this graph is similar to the one in (82), and one can proceed essentially
in the same way to get
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E

[
| =̂

(3)
(t, ω)|2

]
� 〈ω〉−2,

which is the desired bound.
We now turn to the last term

=̂

(1)
(t, ω) = 6 ×

⎛
⎜⎜⎜⎜⎜⎜⎝

=
(t, ω)

−
=

(t, 0)

·

(t, ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

As mentioned before, the two terms in the parenthesis are both ill-defined, but their
difference is well-defined as the limit when the regularisation parameter n tends to
infinity. To see this, we introduce a notation for the “lower square” which both of the
expressions have in common, namely

Kt−u(ω) :=
=

(t, ω)

u

=
∑

ω1∼ω2

P̂t−u(ω + ω1 + ω2)
( ∫ u

−∞
P̂t−u1 (−ω1)P̂u−u1 (ω1)du1

)

×
( ∫ u

−∞
P̂t−u2 (−ω2)P̂u−u1 (ω2)du2

)

=
∑

ω1∼ω2

e−(t−u)(〈ω1〉2+〈ω2〉2+〈ω+ω1+ω2〉2)

4〈ω1〉2〈ω2〉2 .

Note that the divergent constant c′ coincides with
∫ t
−∞ Kt−u(0) du.5 The kernel Kt−u

is clearly well defined and controlled uniformly over the regularisation for any fixed

t − u > 0. We use this notation to represent =̂

(1)
(t, ω) as

=̂

(1)
(t, ω) =

∫ t

−∞
Kt−u(ω)

(̂
(u, ω) − (̂t, ω)

)
du, (88)

so that

E

[
| =̂

(1)
(t, ω)|2

]
=
∫ t

−∞

∫ t

−∞
Kt−u(ω)Kt−u′(ω)

× E
[(̂

(u, ω) − (̂t, ω)
)(̂

(u′,−ω) − (̂t,−ω)
)]

du du′.

5This is slightly formal - here c′ should denote the limit of c′
n as n → ∞, which is infinite as

discussed before. We are implicitly assuming that a regularisation is present, although we do not
capture it in the notation.
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Now, since by (68) we have for any λ > 0

E
[|̂ (u, ω) − (̂t, ω)|2] 1

2 � (t − u)λ〈ω〉−1+2λ,

an application of the Cauchy-Schwarz inequality yields

E

[
| =̂

(1)
(t, ω)|2

]
� 〈ω〉−2+4λ

(∫ t

−∞
(t − u)λKt−u(ω)du

)2

� 〈ω〉−2,

where we have used the fact that for any (small) strictly positive λ, the integral can
be bounded uniformly over the regularisation by 〈ω〉−2λ. This latter point can be
checked as follows: for λ = 0 and without the condition ω1 ∼ ω2, we had already
calculated the integral in (63); the factor (t − u)λ makes an extra power (〈ω1〉2 +
〈ω2〉2 + 〈ω + ω1 + ω2〉2)−λ appear in the sum, which permits to invoke Lemma5
and conclude. This completes the bound for τ = = .

5 Bounds for Time Differences

We finally discuss briefly how the reasoning in Sect. 4 should be modified to estab-
lish the bound (44) on the time differences E|̂τ(t, ω) − τ̂ (s, ω)|2. We illustrate the
(simple) modification necessary for the graph τ = = . First, recall the Wiener chaos
decomposition (76) for this graph, which yields the following expression for its
time-differences:

=̂ (t, ω) − =̂ (s, ω) =
⎛
⎜⎝

=
(t, ω)

−
=

(s, ω)

⎞
⎟⎠ + 3 ×

⎛
⎜⎝

=
(t, ω)

−
=

(s, ω)

⎞
⎟⎠ .

The differences of graphs can be bounded separately. We only discuss the first dif-
ference here. We can rewrite this difference as

Pt−u − Ps−u Pt−u1=
+

=
Ps−u Pt−u1 − Ps−u1

,

where we have made explicit which kernels are associated to the lower edges in the
graph. (Amore systematic treatment would suggest the use of new graphical notation
for these!) The variance of each of these terms can then be bounded, by “glueing”
two copies of each graph together, as in (78). We then use the elementary bounds
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∫ t

−∞
|P̂t−u(ω) − P̂s−u(ω)| du � 1

〈ω〉2
(
1 ∧ |t − s|〈ω〉2),

∫ t

−∞
(P̂t−u1(ω) − P̂s−u1(ω))2 du1 � 1

〈ω〉2
(
1 ∧ |t − s|〈ω〉2).

By interpolation, the right side can be replaced by � 〈ω〉−2+2λ|t − s|λ, for any λ ∈
[0, 1]. In other words, an extra factor |t − s|λ can be obtained by sacrificing a bit of
the decay of the integral in ω. Then all of the arguments based on convolutions can
be performed exactly as before, only with a slightly worse factor of ω at one place.
We do not go through the details here, but leave it to the interested reader to check
that this does not change the arguments in Sect. 4 in any significant way.
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Appendix

We now give a second proof of Proposition4, based on the following logarithmic
Sobolev inequality (see [4, Sect. 1.6] and [23, Sects. 1.1 and 1.5]).

Lemma 7 (log-Sobolev inequality) Letμbe aGaussianmeasure and X ∈ W 1,2(μ).
We have

E(|X |2 log |X |) ≤ E|DX |2 + 1

2
E|X |2 log(E|X |2), (89)

where D is the Malliavin derivative, and E is the expectation taken with respect to
μ.

Now, let Tt be the Ornstein-Uhlenbeck semigroup defined by

Tt X =
+∞∑
n=0

e−nt Xn, (90)

where Xn is the component of X in Hn . The Ornstein-Uhlenbeck semigroup is
closely related to the Malliavin derivative, because it determines the quadratic form
associated with the infinitesimal generator L of Tt . More precisely, for sufficiently
nice random variables X,Y , we have
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∂tE[(Tt X)Y ] = E[(LX)Y ] = −E[〈DX, DY 〉]. (91)

See [23, Sect. 1.4] for a more detailed discussion of these objects. The main use of
the logarithmic Sobolev inequality will be to show the following hypercontractivity
estimate.

Proposition 6 (Hypercontractivity) Let Tt be the Ornstein-Uhlenbeck semigroup.
We have (

E|Tt X |q) 1
q ≤ (

E|X |p) 1
p , (92)

for all p ≥ 2 and q = 1 + (p − 1)e2t .

Proof (Second proof of Proposition 4) If X ∈ Hn , then Tt X = e−nt X , and we can
see that Proposition4 is an immediate consequence of Proposition6. It then remains
to prove Proposition6. We can assume X ≥ 0 without loss of generality.

Fix p ≥ 2. Let q(t) = 1 + (p − 1)e2t , and let

F(t) = E|Tt X |q(t), G(t) = F(t)
1

q(t) .

Our aim is to show that G ′(t) ≤ 0 for all t > 0, and (92) will follow. In fact, we have

G ′(t) = G(t)

[
− q ′(t)

q2(t)
log F(t) + F ′(t)

q(t)F(t)

]
.

Since q ′(t) ≥ 0, it suffices to show that

− 1

q(t)
F(t) log F(t) + F ′(t)

q ′(t)
≤ 0. (93)

Noting that

F ′(t) = E

[
(Tt X)q(t)

(
q ′(t) log(Tt X) + q(t)

LTt X

Tt X

)]
,

we see that (93) is equivalent to

− 1

q(t)
F(t) log F(t) + E

[
(Tt X)q(t) log(Tt X)

]
+ q(t)

q ′(t)
E

[
(Tt X)q(t)−1(LTt X)

]
.

(94)

Applying the log-Sobolev inequality to the random variable (Tt X)
q(t)
2 and using the

integration by parts formula (91) which in the current context becomes
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E〈DY, DZ〉 = −E
(
Y (LZ)

)
,

we see that (94) follows immediately.
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