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Abstract. We consider a tandem queueing system consisting of two
stations. The input flow at the single-server first station is described by
a BMAP (batch Markovian arrival process). If a customer from this flow
meets the busy server, it goes to the orbit of infinite size and tries its
luck later on in exponentially distributed random time. The service time
distribution at the first station is assumed to be semi-Markovian. After
service at the first station a customer proceeds to the second station
which is described by a multi-server queue without a buffer. The service
time by the server of the second station is exponentially distributed. We
derive the condition for the stable operation of the system and determine
the stationary distribution of the system states. Some key performance
measures are calculated and illustrative numerical results are presented.

Keywords: Tandem retrial queue · Batch Markovian arrival process ·
Semi-Markovian service process · Asymptotically quasi-Toeplitz Markov
chain

1 Introduction

Retrial queues are good mathematical models for many telecommunication net-
works such as telephone switching systems, cellular mobile networks, local area
networks under the protocol of random multiple access, etc. So, despite their
complexity, retrial queueing systems are popular object for investigations. They
have been extensively studied under a variety of scenarios, for references see,
e.g., survey [1] and books [2,3].

The analysis of current situation makes clear the great importance of tan-
dem retrial queueing system with a batch Markovian arrival process (BMAP ).
Tandem queues can be used for modeling real-life networks of linear topology
as well as for the validation of general decomposition algorithms in networks,
see, e.g., [4–6]. Thus, tandem queueing systems have found much interest in the
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literature. An extensive survey of early papers on tandem queues can be seen
in [7]. Most of these papers are devoted to exponential queueing models. Over
the last three decades or so, the efforts of many investigators in tandem queues
were in weakening the distribution assumptions on the service times as well as
on the arrivals. In particular, the arrival process should be able to capture any
correlation and burstiness that are commonly seen in the traffic of modern com-
munication networks [6]. Such an arrival process was introduced in [8] and ever
since this process is referred to as a batch Markovian arrival process (BMAP ).
BMAP includes many input flows considered previously, such as stationary Pois-
son, Erlangian, Hyper-Markovian, Phase-Type (PH) renewal process, Markov
Modulated Poisson Process (MMPP ) and their superpositions. Tandem queues
with the BMAP input or its ordinary counterparts were considered in [9–16].

At the same time, to the best of our knowledge, only the papers [13,16,17] are
devoted to investigation of tandem queues with BMAP input where the effect
of retrials is taken into account. The paper [13] considers the MAP/PH/1 →
·/PH/1/K +1 tandem retrial queue. The paper [16] deals with a tandem retrial
queue with two Markovian flows and reservation of servers on the second sta-
tion is studied. The paper [17] is devoted to the tandem queue BMAP/G/1 →
·/M/N/0 with retrials and group occupation of servers of the second station.
Here the customers receive service individually, and upon completion of a ser-
vice the customer’s type is determined. This type identification is necessary to
determine the nature of service, if any, offered at station 2. The customer’s type
is classified based on the number of servers (resources) required to process the
request of the customer. The simultaneous initiation or occupation of several
servers to a customer’s request is typical for the so called non-elastic traffic in
communication networks.

In this paper, we consider a generalization of the model [17] to the case of
correlated semi-Markovian service process at the first station. Unlike the system
[17], where service times at the first station are independent identically distrib-
uted random variables, in this paper we assume that these times can be signif-
icantly dependent and distributed according to different laws. This assumption
makes the system under consideration more adequate model of real-life systems
and processes but more difficult for analytical investigation.

The rest of the paper is organized as follows. In Sect. 2, the mathematical
model is described. In Sect. 3, the embedded Markov chain is investigated, the
condition for existence is derived, and the stationary distribution of the system
states at the service completion epochs at the first station is calculated. The
stationary distribution at an arbitrary time is derived in Sect. 4. The system
performance measures are given in Sect. 5. In Sect. 6, the numerical examples
illustrating the behavior of the system characteristics depending on its parame-
ters are presented. Finally, the conclusions are given in Sect. 7.
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2 Mathematical Model

We consider tandem queue consisting of two stations.
The first station has a single server. Customers arrive at the first station in

batches. The input flow of batches is described by the BMAP . The BMAP is
defined by the underlying process νt, t ≥ 0, which is an irreducible continuous
time Markov chain with state space {0, ...,W}, and with the matrix generating

function D(z) =
∞∑

k=0

Dkzk, |z| ≤ 1. Arrivals occur only at epochs of the jumps in

the underlying process νt, t ≥ 0. The intensities of the transitions of the process
νt accompanied by the arrival of a batch of size k are defined by the matri-
ces Dk, k ≥ 0. The matrix D(1) is the infinitesimal generator of the process
νt. The stationary distribution vector θ of this process satisfies the equations
θD(1) = 0,θe = 1, where e is a column vector consisting of 1’s, and 0 is a
row vector of 0’s. The average intensity λ (fundamental rate) of the BMAP is
given by λ = θD′(z)|z=1e. The average intensity λb of group arrivals is defined
by λb = θ(−D0)e. The coefficient of variation cvar of intervals between suc-
cessive group arrivals is defined by c2var = 2λbθ(−D0)−1e − 1. The coefficient
of correlation ccor of the successive intervals between group arrivals is given
by ccor = (λbθ(−D0)−1(D(1) − D0)(−D0)−1e − 1)/c2var. For more information
about the BMAP, its history and properties see, e.g., [8].

If the arriving batch of primary customers meets a free first station server
upon arrival, one customer automatically starts a service and the rest of the
batch go to so called orbit. If the server is busy at an arrival epoch, all customers
of the batch go to the orbit. From the orbit, they try their luck later on after
a random amount of time. We assume that the total flow of retrials is such
as the probability of generating a retrial attempt in the interval (t, t + Δt) is
equal to αiΔt + o(Δt) when the number of customers in the orbit is equal to
i, i > 0, α0 = 0. The orbit capacity is supposed to be unlimited. We do not fix
the explicit dependence of the intensity αi on i assuming only that lim

i→∞
αi = ∞.

Note that such dependence describes the classic retrial strategy (αi = iα) and
the linear strategy (αi = iα + γ, α > 0) as special cases.

The service time of primary and repeated customers at the first station is gov-
erned by the semi-Markovian process mt, t ≥ 0. It is characterized by the state
space {1, ...,M} and the semi-Markovian kernel B(t) = (Bm,m′(t))m,m′=1,M .
The successive service times of customers are defined as the sojourn times of the
process mt, t ≥ 0, in its states. The average service time is calculated as b1 =

δ
∞∫

0

tdB(t)e where δ is the unique solution to the system δB(∞) = δ, δe = 1.

After receiving service at the first station a customer proceeds to the second
station which is represented by N independent identical servers. The service time
by a server is exponentially distributed with the parameter μ > 0. The service
of an arbitrary customer at the second station requires a random number η
of servers. Here η is an integer-valued random variable with the distribution
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qn = P{η = n}, qn ≥ 0, n = 0, N,
N∑

n=0
qn = 1. No queue is allowed between the

first and the second station.
In case a customer completes the service at the first station and does not

see required number of free servers at the second station, it leaves the system
forever with the probability p, 0 ≤ p ≤ 1. With the probability 1−p the customer
waits until the required number of servers of the second station becomes free and
then occupies these servers immediately. The waiting period is accompanied by
blocking the first station server operating.

For further use in the sequel, we introduce the following notation:

• I is an identity matrix of appropriate dimension. When needed the dimension
of the matrix will be identified with a suffix;

– ⊗ and ⊕ are symbols of the Kronecker product and sum of matrices, see, e.g.,
[18];

• W̄ = W + 1;
• P (n, t), n ≥ 0, are coefficients of the matrix expansion eD(z)t =

∞∑

n=0

P (n, t)zn,

|z| ≤ 1. The (ν, ν′)th entry of the matrix P (n, t) defines the probability that n
customers arrive in the BMAP during the interval (0, t] and the state of the
underlying process of the BMAP at the epoch t is ν′ given ν0 = ν, ν, ν′ =
0,W ;

• D̃k = Dk ⊗ IM , D̂k = IN+1 ⊗ D̃k, k ≥ 0, D̂(z) =
∞∑

k=0

D̂kzk, |z| ≤ 1;

• H(t) = (Hr,r′(t))r,r′=0,N , where Hr,r′(t) = 0 for r ≤ r′ and, for r > r′, Hr,r′(t)
is the distribution function with the Laplace-Stieltjes transform hr,r′(s) =

r∏

l=r′+1

lμ(lμ + s)−1;

• Qm, m = 1, 3, are square matrices:

Q1 =

⎛

⎜
⎜
⎜
⎝

q0 q1 . . . qN

0 q0 . . . qN−1

...
...

. . .
...

0 0 . . . q0

⎞

⎟
⎟
⎟
⎠

, Q3 =

⎛

⎜
⎜
⎜
⎝

0 . . . 0 qN

0 . . . 0 qN−1

...
. . .

...
...

0 . . . 0 q0

⎞

⎟
⎟
⎟
⎠

,

Q2 = diag{
N∑

n=N−r+1

qn, r = 0, N};

• Q̃m = Qm ⊗ IW̄ , Q̂m = Q̃m ⊗ IM , m = 1, 3; Q̄ = Q̂1 + pQ̂2;
• Q = Q̃1 + pQ̃2 + (1 − p)EQ̃3,
• E = ĪN+1 ⊗ IM , where ĪW̄ is a square matrix of size N + 1 whose below-

diagonal entries are equal to 1 and the rest entries are zeroes.
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3 The Stationary Distribution of the Embedded Markov
Chain

Let tn denote the time of the nth service completion at the first station. Consider
the process

ξn = {in, rn, νn, mn}, n ≥ 1,

where

• in is the number of customers in the orbit at the epoch tn, in ≥ 0;
• rn is the number of busy servers at the second station at the epoch tn − 0,

rn = 0, N ;
• νn is the state of the BMAP underlying process at the epoch tn, νn = 0,W ;
• mn is the state of the service directing process mt at the epoch tn + 0,

mn = 1,M .

It is easy to see that the process ξn, n ≥ 1, is a four-dimensional Markov chain
which describes the process of the system operation at the service completion
epochs.

Enumerate the states of the chain ξn, n ≥ 1, in the lexicographic order
and form the square matrices Pi,l, i, l ≥ 0, of size (N + 1)W̄M of transition
probabilities of the chain from the states having the value i of the first component
to the states having the value l of this component.

Lemma 1. The transition probability matrices Pi,l are defined as follows:

Pi,l = 0, l < i − 1, i > 1,

Pi,l = Q̄Ai[αiΩl−i+1 +

l−i+1∑

k=1

D̂kΩl−i−k+1] + (1 − p)[

l−i+1∑

n=0

HnQ̂3Ai+nαi+nΩl−i−n+1

+

l−i∑

n=0

HnQ̂3Ai+n

l−i−n+1∑

k=1

D̂kΩl−i−n−k+1], l ≥ max{0, i − 1}, i ≥ 0, (1)

Ai =

∞∫

0

e−αite(Δ⊕D̃0)tdt ⊗ IM = (αiI − Δ ⊕ D̃0)−1 ⊗ IM , i ≥ 0,

Ωn =

∞∫

0

eΔt ⊗ P (n, t) ⊗ dB(t), Hn =

∞∫

0

dH(t) ⊗ P (n, t) ⊗ IM , n ≥ 0,

Δ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0
μ −μ 0 · · · 0 0
0 2μ −2μ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · Nμ −Nμ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Proof. Formula (1) becomes clear if we take into account the probabilistic inter-
pretation of the matrices which appear in the right hand side of (1).

The matrix Q̄ defines probabilities that a customer served at the first station
finds the required number of idle servers at the second station and occupies them
or does not find the required number of idle servers and leaves the system.

The matrix Δ is an infinitesimal generator of the death process which
describes the evolution of the number of occupied servers at the second station
between two consecutive service completion epochs at the first station.

The matrix Aiαi defines probabilities that, given i customers stay in the
orbit after the service completion epoch at the first station, the next service at
this station will be initiated by a customer from the orbit. The matrix AiD̂k has
the analogous probabilistic sense with the only difference that the next service
at the first station is initiated by a primary customer arriving in k-size batch.

The matrices Ωn and Hn defines probabilities that during the service time at
the first station and during the blocking time, respectively, n customers arrive
into the system.

The matrix (1 − p)HnQ̃3 defines probabilities that a customer served at the
first station does not find the required number of idle servers at the second
station, causes the blocking of the first station server and during the blocking
time n customers arrive into the system.

Using the above probabilistic interpretations and the total probability for-
mula, we get expression (1) for the transition probability matrices.

Lemma 1 is proved.
It is seen from (1) that transition probability matrices Pi,l depend on i and

l and this dependence can not be reduced to the dependence on the difference
l − i only. It means that the Markov chain ξn, n ≥ 1, is a level dependent one.
At the same time the dependence of i vanishes when i tends to ∞ and the
matrices Pi,l approach to matrices that depend on the values i and l only via
the difference l − i. It implies that the chain under consideration belongs to the
class of asymptotically quasi-Toeplitz Markov chains (AQTMC), see [19]. So, the
further investigation of the ξn, n ≥ 1, will be based on the results given in [19].

Let us denote
Yk = lim

i→∞
Pi,i+k−1, k ≥ 0, (2)

and let Y (z) be the generating function of the matrices Yk, k ≥ 0. The matrices
Ỹk, k ≥ 0, can be considered as transition probability matrices of a quasi-Toeplitz
Markov chain ξ̃n, n ≥ 1, with the same state space as the chain ξn, n ≥ 1. The
chain ξ̃n, n ≥ 1, is called as limiting chain relative to the chain ξn, n ≥ 1.

Corollary 1. The Markov chain ξn, n ≥ 1, belongs to the class of asymptoti-
cally quasi-Toeplitz Markov chain. The generating function of its limiting chain
transition probability matrices has form

Y (z) = [Q̄ + (1 − p)H(z)Q̂3]Ω(z), (3)
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where

Ω(z) =
∞∑

n=0

Ωnzn =

∞∫

0

eΔt ⊗ eD(z)t ⊗ dB(t),

H(z) =
∞∑

n=0

Hnzn =

∞∫

0

dH(t) ⊗ eD(z)t ⊗ IM , |z| ≤ 1.

Proof. It is seen from (1) that transition probability matrices Pi,l depend on
i and l and this dependence can not be reduced to the dependence on the differ-
ence l − i only. It means that the Markov chain ξn, n ≥ 1, is a level dependent
one. At the same time the dependence of i vanishes when i tends to ∞ and the
matrices Pi,l approach to matrices that depend on the values i and l only via
the difference l − i. It implies that the chain under consideration belongs to the
class of asymptotically quasi-Toeplitz Markov chains (AQTMC), see [19].

Using (2) and Lemma 1 we get the expression (3) for the generating function
Y (z).

In what follows we will use the results for asymptotically quasi-Toeplitz
Markov chains given in [19] to derive the ergodicity condition and calculate
the stationary distribution.

Theorem 1. The sufficient condition for ergodicity of theMarkov chain ξn, n ≥ 1,
is the fulfillment of the inequality

ρ = λ[b1 + (1 − p)y

∞∫

0

tdH(t)Q3e] < 1, (4)

where the vector y is the unique solution of the system

yQ−
∞∫

0

eΔt ⊗ dB̃(t) = y, ye = 1. (5)

Q− = Q1 + pQ2 + (1 − p)EQ3, B̃(t) = δB(t)e.

Proof. The matrix Y (1) is an irreducible one. So, as follows from [19], the
sufficient condition for ergodicity of the chain ξn, n ≥ 1, is the fulfillment of the
inequality

xY ′(1)e < 1, (6)

where x is the unique solution of the system

xY (1) = x, xe = 1. (7)

Let the vector x be of the form

x = y ⊗ θ ⊗ v (8)
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where θ is the vector of the stationary distribution of the BMAP , y and v some
stochastic vectors of size N + 1 and M, respectively, and the vector y is the
unique solution of system (5).

It is verified by the direct substitution that the vector x of form (8) is the
unique solution of system (7) and v = δ. The last equation means that the
vector v coincides with the stationary distribution vector of the service process
mt, t ≥ 0.

We differentiate (3) at the point z = 1 and substitute the obtained expression
for Y ′(1) and the vector x of form (8) into inequality (6). Then using that the
vector v = δ, we derive inequality (4).

Theorem 1 is proved.

Remark 1. Inequality (7) is intuitively clear on noting that the vector y gives
the stationary distribution of the number of busy servers at the second sta-
tion given the server of the first station works under overload conditions. Then

y
∞∫

0

tdH(t)Q3e defines the average blocking time of the server of the first station

under overload condition and ρ is the system load.

In what follows we suppose that inequality (4) is fulfilled.
Denote the stationary state probabilities of the Markov chain ξn =

{in, rn, νn, mn}, n ≥ 1, by

π(i, r, ν, m), i ≥ 0, r = 0, N, ν = 0,W , m = 1,M.

Form the row vectors of these probabilities

π(i, r, ν) = (π(i, r, ν, 1), . . . , π(i, r, ν, M)),

π(i, r) = (π(i, r, 0),π(i, r, 1), . . . ,π(i, r,W )),

πi = (π(i, 0),π(i, 1), . . . ,π(i,N)), i ≥ 0.

To calculate the vectors πi, i ≥ 0, we use the numerically stable algorithm
(see [19]) which has been elaborated for calculating the stationary distribution
of the multi-dimensional asymptotically quasi-Toeplitz Markov chain.

The algorithm is based on censoring technique and asymptotic properties of
the chain under consideration. It consists of the next principal steps:

1. Calculate the matrix G as the minimal nonnegative solution of the matrix
equation G = Y (G);

2. For preassigned sufficiently large integer i0 calculate the matrices Gi0−1,
Gi0−2, . . . , G0 using the equation of the backward recursion

Gi = (I −
∞∑

l=i+1

Pi+1,lGl−1Gl−2 . . . Gi+1)−1Pi+1,i, i = i0 − 1, i0 − 2, . . . , 0,

with the boundary condition Gi = G, i ≥ i0.
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3. Calculate the matrices Φl, l ≥ 1, using recurrent formulas

Φl = (P̄0,l +
l−1∑

i=1

ΦiP̄i,l)(I − P̄l,l)−1, l ≥ 1;

4. Calculate the vector π0 as the unique solution to the system

π0(I − P̄0,0) = 0, π0(I +
∞∑

l=1

Φl)e = 1.

5. Calculate the vectors πl by πl = π0Φl, l ≥ 1.

4 The Stationary Distribution at an Arbitrary Time

Consider now the process of the system states at an arbitrary time

ζt = {it, rt, νt,mt, kt}, t ≥ 0,

where

• it is the number of customers in the orbit;
• rt is the number of busy servers at the second station;
• νt is the state of the arrival directing process;
• mt is the state of the service directing process;
• kt is a random which takes values 0, 1, 2 depending on whether the server of

the first station is idle, serves a customer, or it is blocked at time t, t ≥ 0.

The process ζt, t ≥ 0, is non-Markovian. It can be classified as semi-regenera-
tive processes, for definition see [20]. The stationary distribution of this process
can be related to the stationary distribution of the embedded Markov chain
ξn, n ≥ 1, using the results [20] for Markov renewal and semi-regenerative
processes.

Let

p(i, r, ν,m, k) == lim
t→∞ P{it = i, rt = r, νt = ν, mt = m, kt = k},

i ≥ 0, r = 0, N, ν = 0,W ,m = 1,M, k = 0, 2,

be the steady-state probabilities of the process ζt, t ≥ 0.
Define the vectors of these probabilities

p(i, r, ν, k) = (p(i, r, ν, 1, k), ..., p(i, r, ν,M, k)),

p(i, r, k) = (p(i, r, 0, k), ...,p(i, r,W, k)), pi(k) = (p(i, 0, k), ...,p(i,N, k)).
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Theorem 2. The non-zero stationary probability vectors pi(k), i ≥ 0, k = 0, 2,
are related to the stationary probability vectors πi, i ≥ 0, of the embedded
Markov chain ξn, n ≥ 1, as follows:

p0(0) = λ−1π0[Q̄ + (1 − p)H0Q̂3]A0,

pi(0) = λ−1[πiQ̄Ai + (1 − p)
i∑

l=0

πlHi−lQ̂3Ai], i ≥ 1,

pi(1) = λ−1{
i∑

l=0

πl[Q̄Al

i−l+1∑

k=1

D̂kΩ̃i−l−k+1 + (1 − p)
i−l∑

k=0

HkQ̂3Al+k

×
i−l−k+1∑

m=1

D̂mΩ̃i−l−k−m+1] +
i+1∑

l=0

πl[Q̄AlαlΩ̃i−l+1

+ (1 − p)
i−l+1∑

k=0

HkQ̂3Al+kαl+kΩ̃i−l−k+1]}, i ≥ 0,

pi(2) = λ−1(1 − p)
i∑

l=0

πl

i−l∑

k=0

(Hk + δ0,kI)Q̂2

∞∫

0

e−μRt ⊗ P (i − l − k, t) ⊗ IMdt,

where δi,j is Kronecker’s symbol, Ω̃n =
∞∫

0

eΔt ⊗P (n, t)⊗ (IM −∇B(t))dt, n ≥ 0,

∇B(t) is the diagonal matrix with diagonal elements (B(t)e)j , j = 1,M.

Corollary 2. The stationary probability vectors pi, i ≥ 0, can be calculated by
the following formula:

p0 = p0(0), pi = pi(0) +
2∑

m=1

pi−1(m), i ≥ 1.

5 Performance Measures

Basing on the stationary distribution we can calculate different performance
characteristics of the system. The most important performance measures are
calculated as follows:

• Mean number of customers at the first station at the service completion epoch
at this station and at an arbitrary time

L̃ = Π ′(1)e, L = P ′(1)e,

where Π(z) =
∞∑

i=0

πiz
i, P (z) =

∞∑

i=0

piz
i, |z| ≤ 1.
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• Variance of the mean number of customers at the first station at the service
completion epoch at this station and at an arbitrary time

D̃ = Π ′′(1)e + L̃ − L̃2, D = P ′′(1)e + L − L2.

• The vector of the stationary distribution of the number of busy servers at the
second station at the service completion epoch at the first station and at an
arbitrary time

r̃ = Π(1)(IN+1 ⊗ eW̄M ), r = P (1)(IN+1 ⊗ eW̄M ).

• Mean number of busy servers at the second station at the service completion
epoch at the first station and at an arbitrary time

Ñbusy = r̃diag{r, r = 0, N}e, Nbusy = rdiag{r, r = 0, N}e.

• The probability that an arbitrary customer leaves the system or causes the
blocking of the server at the first station

Ploss = pΠ(1)Q̂2e, Pblock = (1 − p)Π(1)Q̂2e.

• The probability of immediate access to the first station server

Pimm = −λ−1
∞∑

i=0

pi(0)(e(N+1)M ⊗ D0e).

6 Numerical Examples

The proposed algorithms for calculating the stationary distributions were real-
ized as computer programm using tools of software “Sirius++” [21]. In this
section we present numerical examples demonstrating the behavior of the per-
formance measures as function of the system load and intensity of retrials.

We consider BMAP having the fundamental rate λ = 10, the correlation
coefficient ccor = 0.1 and characterized by the matrices

D0 =
( −5.39233 4.33008 × 10−5

1.74403 × 10−5 −0.70174

)

, D1 = D3 =
(

1.60698 0.01072
0.11744 0.09307

)

,

D2 =
(

2.14264 0.01429
0.15659 0.12410

)

.

Semi-Markovian kernel B(t) is defined as B(t) = diag{B1(t), B2(t)}P, where

the transition matrix P has the form P =
(

0.6 0.4
0.35 0.65

)

,

B1(t) and B2(t) define the Erlangian distributions of order 3 with the para-
meters 20 and 50, respectively. The average service time b1 is equal to 0.102.
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Fig. 1. The mean number of customers at the first station as a function of retrial rate
α for different values of system load ρ.

Fig. 2. The variance of the mean number of customers at the first station as a function
of retrial rate α for different values of system load ρ.

We assume that the number of servers at the second station N = 3, the
probability p is equal to 0.6. The parameters of service at the second station are
as follows: q0 = 0, q1 = 0.9, q2 = q3 = 0.05, and the service rate μ = 3.

We consider the classical retrial strategy: αi = iα, i ≥ 0, and vary the retrial
rate α in the interval [0.5, 15].

Figures 1, 2 illustrate the dependence of mean number L of customers and
the variance D of the number of customers at the first station on the value α
for three different values of system load ρ.

The dependence of the loss probability Ploss and the probability Pimm of
immediate access to the first station server on the value α under the different
values of system load is presented in Figs. 3 and 4.

The system load (ρ = 0.1, 0.4, 0.7) in this experiment varies by means of
scaling the fundamental rate (λ = 0.8, 3.12, 5.45, respectively). In turn, the
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Fig. 3. The loss probability as a function of retrial rate α for different values of system
load ρ.

Fig. 4. The probability of immediate access to the first station server as a function of
retrial rate α for different values of system load ρ.

fundamental rate λ of the BMAP varies by multiplying the matrices Dk, k =
0, 3, by some positive constant.

Figures show that the mean number of customers, the variance of the number
of customers at the first station and the loss probability increase, while the
probability of immediate access to the first station server without visiting the
orbit decrease when the input intensity λ (and the system load ρ) increases. It
confirms the fact that the system load has a great impact on the performance
measures: the increase of the load makes the quality of service in the system
worse.

It is also seen from the figures that all characteristics are sensitive with
respect to the value of retrial rate α. Under the fixed value of system load ρ,
the probability Pimm becomes worse, while characteristics L and D become
better when α increases, but when α becomes greater than 4 the change of
these characteristics becomes unessential. The increase of retrial rate α has a
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negative influence on the loss probability Ploss. This probability increases when
α increases.

The obtained results illustrate the importance of computational investigation
of the tandem queue under consideration and can be used for correct prediction
of system operation.

7 Conclusion

In this paper, the tandem queue with repeated attempts and semi-Markovian
service process is investigated. The processes of the system states at embedded
epochs and at arbitrary time are studied. The condition for the stationary dis-
tribution existence is derived and the algorithms for calculating the stationary
distribution are presented. The key performance measures are calculated. The
numerical examples demonstrating the dependence of the performance measures
on the system load and intensity of retrials are given. The results of this paper
can be exploited for capacity planning, performance evaluations, and optimiza-
tion of real-life tandem queues and two-node networks with the random multiple
access to the first station in the case of correlated bursty traffic as well as for
validation of general networks decomposition algorithms.
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