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Foreword

This volume constitutes the proceedings of the two collocated international con-
ferences. The main part includes the papers accepted, after a strict peer review
process, for the presentation at, and for the inclusion in the proceedings of the 10th
Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-2017) held in Warsaw, Poland, on September 11–15, 2017. It is com-
bined with the papers accepted, also after a strict peer review process, for the
presentation at, and for the inclusion in the proceedings of the Sixteenth International
Workshop on Intuitionistic Fuzzy Sets and Generalized Nets (IWIFSGN’2017) held
in Warsaw, Poland, on September 13–15, 2017.

The EUSFLAT-2017 Conference was organized by the Systems Research
Institute, Polish Academy of Science, Department IV of Engineering Sciences,
Polish Academy of Sciences, and the Polish Operational and Systems Research
Society. It is the 10th jubilee edition of the flagship conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT). The aim of the conference,
in line with the mission of the EUSFLAT Society, is to bring together theoreticians
and practitioners working on fuzzy logic, fuzzy systems, soft computing, and
related areas and to provide for them a platform for the exchange of ideas, dis-
cussing newest trends and networking.

The papers included in the proceedings volume have been subject to a thorough
review process by highly qualified peer reviewers. Comments and suggestion from
them have considerably helped improve the quality of the papers but also the
assignment of the papers to best suited sessions in the conference program. In the
proceedings volume, the papers have been ordered alphabetically with respect to the
name of the first author, and a convenient author’s index is included at the end
of the volume.

Thanks are due to many people and parties involved. First, in the early stage
of the preparation of the conference general perspective, scope, topics, and cov-
erage, we have received an invaluable help from the members of the International
Committees of both conferences, notably the chairs responsible for various aspects
of the conferences, as well as many people from the European Society for Fuzzy
Logic and Technology (EUSFLAT). That help during the initial planning stage had
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resulted in a very attractive and up-to-date proposal of the scope and coverage that
had clearly implied a considerable interest of the international research communities
active in the areas covered who submitted a large number of very interesting and
high-level papers. An extremely relevant role of the organizers of special sessions,
competition, and other events should also be greatly appreciated. Thanks to their
vision and hard work, we had been able to collect many papers on focused topics
which had then resulted, during the conferences, in very interesting presentations
and stimulating discussions at the sessions.

Though EUSFLAT-2017 is a subsequent edition of the main European confer-
ence on the broadly perceived fuzzy logic and technology, and an overwhelming
majority of participants come from Europe, many people from other continents
have also decided to submit their contributions. This has clearly resulted in a
“globalization” of the EUSFLAT conferences which we have been able to
increasingly notice since its founding. Of a particular importance in this respect is
that among the plenary and keynote speakers, there are top researchers and scholars,
as well as practitioners, not only from Europe but also from other continents.

The members of the Program Committee, together with the session organizers,
and a group of other anonymous peer reviewers have undertaken a very difficult
task of selecting the best papers, and they have done it excellently. They deserve
many thanks for their great job for the entire community who is always concerned
with quality and integrity. We also wish to thank the members of the EUSFLAT
Board for their support throughout the organization process.

At the stage of the running of the conference, many thanks are due to the
members of the Organizing Committee, chaired by Ms. Krystyna Warzywoda and
Ms. Agnieszka Jóźwiak, and supported by their numerous collaborators.

And last but not least, we wish to thank Dr. Tom Ditzinger, Dr. Leontina di
Cecco, and Mr. Holger Schaepe for their dedication and help to implement and
finish this large publication project on time maintaining the highest publication
standards.

June 2017 The Editors

vi Foreword



Contents

Optimal Control of a Ball and Beam Nonlinear Model Based
on Takagi-Sugeno Fuzzy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
José Miguel Adánez, Basil Mohammed Al-Hadithi, Agustín Jiménez,
and Fernando Matía

The Classification of All the Subvarieties of DNMG . . . . . . . . . . . . . . . . 12
Stefano Aguzzoli, Matteo Bianchi, and Diego Valota

Fuzzy Heyting Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Berhanu Assaye Alaba and Derebew Nigussie Derso

A New Distance on Generalized Fuzzy Numbers and a Glimpse
on Their Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
M. Amirfakhrian and S. Yeganehmanesh

Fuzzy Logic Load Balancing for Cloud Architecture
Network - A Simulation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Łukasz Apiecionek, Jacek M. Czerniak, Wojciech Dobrosielski,
and Dawid Ewald

Dynamical Control of Computations Using the Iterative Methods
to Solve Fully Fuzzy Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Mohammad Ali Fariborzi Araghi and Eisa Zarei

Some Remarks on an Order Induced by Uninorms . . . . . . . . . . . . . . . . . 69
Emel Aşıcı

Some Notes on the F-partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Emel Aşıcı

Two Intuitionistic Fuzzy Modal-Level Operators . . . . . . . . . . . . . . . . . . . 85
Krassimir T. Atanassov

vii



Generalized Net Model of Multicriteria Decision Making Procedure
Using Intercriteria Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Krassimir Atanassov, Evdokia Sotirova, and Velin Andonov

From Semi-fuzzy to Fuzzy Quantifiers via Łukasiewicz Logic
and Games. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Paolo Baldi and Christian G. Fermüller

About Fisher-Tippett-Gnedenko Theorem for Intuitionistic
Fuzzy Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Renáta Bartková and Katarína Čunderlíková

Fuzzy Approaches in Forecasting Mortality Rates . . . . . . . . . . . . . . . . . . 136
Marcin Bartkowiak and Aleksandra Rutkowska

Non-denoting Terms in Fuzzy Logic: An Initial Exploration. . . . . . . . . . 148
Libor Běhounek and Antonín Dvořák

On the Preservation of an Equivalence Relation
Between Fuzzy Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Carlos Bejines, María Jesús Chasco, Jorge Elorza, and Susana Montes

Decision-Making on Flow Control Under Fuzzy Conditions
in the Mechanical Transport System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Stanislav Belyakov, Marina Savelyeva, Dmitry Kiyashko,
and Anna Lashchenkova

Reducing Concept Lattices from Rough Set Theory . . . . . . . . . . . . . . . . 177
M. José Benítez-Caballero, Jesús Medina, and Eloísa Ramírez-Poussa

An Equivalence Relation and Admissible Linear Orders
in Decision Making . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Urszula Bentkowska and Barbara Pȩkala

A Fuzzy Linguistics Supported Model to Measure the Contextual
Bias in Sentiment Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Juan Bernabé-Moreno, Alvaro Tejeda-Lorente, Carlos Porcel,
and Enrique Herrera-Viedma

Generating Load Profiles Using Smart Metering Time Series . . . . . . . . . 211
Christian Bock

Uninorms on Bounded Lattices – Recent Development . . . . . . . . . . . . . . 224
Slavka Bodjanova and Martin Kalina

Kleene Algebras as Sequences of Orthopairs . . . . . . . . . . . . . . . . . . . . . . 235
Stefania Boffa and Brunella Gerla

Method of Maximum Two-Commodity Flow Search in a Fuzzy
Temporal Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Alexander Bozhenyuk, Evgeniya Gerasimenko, and Igor Rozenberg

viii Contents



Allocation Method for Fuzzy Interval Graph Centers Based
on Strong Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Alexander Bozhenyuk, Margarita Knyazeva, and Igor Rozenberg

Measuring Uncertainty for Interval Belief Structures
and its Application for Analyzing Weather Forecasts . . . . . . . . . . . . . . . 273
Andrey G. Bronevich and Natalia S. Spiridenkova

Generalized Net Model of Fingerprint Recognition
with Intuitionistic Fuzzy Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Veselina Bureva, Plamena Yovcheva, and Sotir Sotirov

A New Extension of Monotonicity: Ordered
Directional Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Humberto Bustince, Radko Mesiar, Anna Kolesárová, Mikel Sesma-Sara,
Javier Fernandez, Mikel Galar, and Mikel Elkano

Smart Medical Device Selection Based on Interval
Valued Intuitionistic Fuzzy VIKOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Gülçin Büyüközkan and Fethullah Göçer

Cloud Computing Technology Selection Based on Interval
Valued Intuitionistic Fuzzy COPRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Gülçin Büyüközkan, Fethullah Göçer, and Orhan Feyzioğlu

A Hesitant Fuzzy Based TOPSIS Approach for Smart
Glass Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Gülçin Büyüközkan and Merve Güler

On Topological Entropy of Zadeh’s Extension Defined
on Piecewise Convex Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Jose Cánovas and Jiří Kupka

Fuzzy Relation Equations with Fuzzy Quantifiers . . . . . . . . . . . . . . . . . . 354
Nhung Cao and Martin Štěpnička

Incorporation of Excluding Features in Fuzzy Relational
Compositions Based on Generalized Quantifiers. . . . . . . . . . . . . . . . . . . . 368
Nhung Cao and Martin Štěpnička

A New Optimization Metaheuristic Based on the Self-defense
Techniques of Natural Plants Applied to the CEC 2015
Benchmark Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Camilo Caraveo, Fevrier Valdez, and Oscar Castillo

A Multi-objective Evolutionary Algorithm for Tuning Type-2 Fuzzy
Sets with Rule and Condition Selection on Fuzzy Rule-Based
Classification System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Edward Hinojosa Cárdenas and Heloisa A. Camargo

Contents ix



Sugeno Integral on Property-Based Preference Domains . . . . . . . . . . . . . 400
Marta Cardin

Integrating a Tourism Service Quality Evaluation Linguistic
Multi-criteria Decision Making Model into a Relational Database
Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Ramón Alberto Carrasco, María Francisca Blasco,
Jesús García-Madariaga, and Enrique Herrera-Viedma

Fuzzy Fingerprints for Item-Based Collaborative Filtering . . . . . . . . . . . 419
André Carvalho, Pável Calado, and Joao Paulo Carvalho

A Survey on Nullnorms on Bounded Lattices . . . . . . . . . . . . . . . . . . . . . . 431
Gül Deniz Çaylı and Funda Karaçal

Characterizing Ordinal Sum for t-norms and t-conorms
on Bounded Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Gül Deniz Çaylı

Crisp vs. Fuzzy Data in Multicriteria Decision Making: The Case
of the VIKOR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Blanca Ceballos, María T. Lamata, David A. Pelta,
and Ronald R. Yager

Facility Location Selection Employing Fuzzy DEA and Fuzzy Goal
Programming Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
Michele Cedolin, Nazlı Göker, Elif Dogu, and Y. Esra Albayrak

Finding the Optimal Number of Features Based
on Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Peipei Chen, Anna Wilbik, Saskia van Loon, Arjen-Kars Boer,
and Uzay Kaymak

Selection Among Solar Power Plants Using Fuzzy Economics. . . . . . . . . 487
Veysel Çoban and Sezi Çevik Onar

Co-words Analysis of the Last Ten Years of the Fuzzy Decision
Making Research Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Manuel Jesus Cobo, Ignacio Javier Pérez, Francisco Javier Cabrerizo,
Sergio Alonso, and Enrique Herrera-Viedma

Real Option Analysis with Interval-Valued Fuzzy Numbers
and the Fuzzy Pay-Off Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
József Mezei, Mikael Collan, and Pasi Luukka

Measuring the Incoherent Information in Multi-adjoint Normal
Logic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
M. Eugenia Cornejo, David Lobo, and Jesús Medina

x Contents



Enhancing the Expressive Power of Sugeno Integrals for Qualitative
Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Miguel Couceiro, Didier Dubois, Henri Prade, and Agnès Rico

The Novel Shape Normalization Operator for Fuzzy Numbers
in OFN Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
Jacek M. Czerniak, Iwona Filipowicz, and Dawid Ewald

Fuzzy Relations and Fuzzy Functions in Partial Fuzzy Set Theory. . . . .. . . . 563
Martina Daňková

Medical Fuzzy Control Systems with Fuzzy Arden Syntax . . . . . . . . . . . 574
Jeroen S. de Bruin, Christian Schuh, Andrea Rappelsberger,
and Klaus-Peter Adlassnig

Convolution on Bounded Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Laura De Miguel, Humberto Bustince, and Bernard De Baets

Representing Uncertainty Regarding Satisfaction Degrees
Using Possibility Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
Robin De Mol and Guy De Tré

Triangular Expanding, A New Defuzzification Method on Ordered
Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Wojciech T. Dobrosielski, Jacek M. Czerniak, Janusz Szczepański,
and Hubert Zarzycki

Construction of Intuitionistic Fuzzy Cognitive Maps for Target
Marketing Strategy Decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
Elif Dogu, Tuncay Gurbuz, and Y. Esra Albayrak

Intercriteria Analysis of EU Competitiveness Using the Level
Operator Nc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
Lyubka Doukovska, Vassia Atanassova, Deyan Mavrov,
and Irina Radeva

Some Remarks About Idempotent Uninorms on Complete Lattice . . . . . 648
Paweł Drygaś

Ordinal Sum of Fuzzy Implications Fulfilling Left Ordering
Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658
Paweł Drygaś and Anna Król

Relativization of Fuzzy Quantifiers: Initial Investigations . . . . . . . . . . . . 670
Antonín Dvořák and Michal Holčapek

Some Remarks About Crucial and Unsolved Problems on Atanassov’s
Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684
Piotr Dworniczak

Contents xi



Estimating Fuzzy Life Time with a Fuzzy Reliability Function
in the Appliance Sector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Nihal Erginel, Hande Saraçoğlu, Gülay Yıldız, and Sevil Şentürk

Monitoring Fraction Nonconforming in Process with Interval
Type-2 Fuzzy Control Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
Nihal Erginel, Sevil Şentürk, and Gülay Yıldız

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

xii Contents



Optimal Control of a Ball and Beam Nonlinear
Model Based on Takagi-Sugeno Fuzzy Model

José Miguel Adánez1(B), Basil Mohammed Al-Hadithi1,2, Agust́ın Jiménez1,
and Fernando Mat́ıa1

1 Intelligent Control Group, Centre for Automation and Robotics UPM - CSIC,
Universidad Politécnica de Madrid, C/ J. Gutiérrez Abascal, 2., 28006 Madrid, Spain

jm.adanez@alumnos.upm.es
2 Department of Electrical, Electronics, Control Engineering and Applied Physics,

Higher Technical School of Industrial Design and Engineering,

Universidad Politécnica de Madrid, C/ Ronda de Valencia, 3., 28012 Madrid, Spain

Abstract. In this work, an improved approach for Takagi-Sugeno sys-
tem identification is used. Linear Quadratic Regulator is applied for an
optimal state feedback. Duality theorem and Linear Quadratic Regula-
tor is applied for an optimal state estimation. Simulation results over
the ball and beam nonlinear model show a stable closed loop in the full
range and good transient response.

Keywords: Ball and beam · Takagi-Sugeno model · State model · Lin-
ear Quadratic Regulator · Duality theorem

1 Introduction

The ball and beam system [1] is a classical mechanical system with two degrees
of freedom. The beam rotates, driven by a torque at the center of rotation.
The ball rolls freely along the beam and in contact with the beam. Despite its
mechanical simplicity, the ball and beam system presents significant challenges
from the point of view of automation; the system is nonlinear and unstable.

The ball and beam is a common didactical plant in many control laboratories
around the world [2], as it is very nonlinear, unstable, which means that it is
difficult to control, and can be a benchmark for testing several advanced control
techniques [3].

Takagi-Sugeno (T-S) fuzzy model [4] has been an important tool for the
modelling and control of nonlinear systems, since it builds the full nonlinear
model by a linear model at each fuzzy rule and the fuzzy interpolation among
them. Moreover, the T-S fuzzy identification allows the identification of all the
fuzzy parameters of the full nonlinear system minimizing a global error index.

Optimal control has been a significant method for the controllers design.
Linear Quadratic Regulator [5], is an optimal control design method for state
space linear models which allows the minimization of a cost function in which
state dynamics and control action are weighted.
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 1



2 J.M. Adánez et al.

One of the most important problems in state space feedback is that usually
the states are not directly accessible, since not all the state variables are mea-
surable. For this propose, state observers [6], can create a surrogate state vector,
which tends asymptotically to the real state vector and can be used for state
feedback.

The duality theorem [6] allows the design of an state observer matrix with
the same techniques for an state feedback controller, including the LQR method
[5]. For that propose a dual system can be built from the state space model,
and the duality theorem says that a controller designed in the dual system is
equivalent to an observer designed for the state space model.

The rest of the work is organized as follows. Section 2 describes ball and
beam nonlinear model. The fuzzy T-S model and the fuzzy identification method
are described in Sect. 3. Optimal state controller and optimal state observer
designs are described in Sect. 4. In Sect. 5, the proposed fuzzy optimal controller
is applied to the ball and beam nonlinear model and the results are obtained
and discussed.

2 Ball and Beam Nonlinear Model

In this work, we use the AMIRA BW500 ball and beam model (Fig. 1) [1].
The ball position p, considered as system output, is supposed to be measured
by a camera, therefore the discrete sample time is supposed to be large. The
beam angle α, considered as measurable internal variable, is supposed to be
measured by an incremental encoder. The system input F is supposed to be
a force produced by a DC motor, which causes the beam to rotate around its
center.

The nonlinear differential equations of the ball and beam model [1], used for
the simulation model, are:(

m +
Ib
r2

)
p̈ +

(
mr2 + Ib

) 1
r
α̈ − mpα̇2 = mg sin(α) (1)

(
mp2 + Ib + IW

)
α̈ +

(
2mpṗ + bl2

)
α̇ + Kl2α+

(
mr2 + Ib

) 1
r
p̈ − mgp cos(α) = Fl cos(α)

(2)

where p is the position of the ball, α is the angle of the beam and F is the force
of the drive mechanics. Table 1 summarizes the parameters of the model and its
values.

In this model, some restrictions from the real AMIRA BW500 ball and
beam model [1] have to be added. The ball position p has to be contained in
[−0.4, 0.4]m, the beam angle α has to be contained in [−0.69, 0.69] rad and the
input force F has to be contained in [−5, 5]N .

Since we consider α just as a measurable internal variable, the system is
single-input-single-output (SISO), and the relation between p as output and F
as input is described by two second order differential equations, so the global
system is fourth order.
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Fig. 1. Ball and beam system.

Table 1. Ball and beam parameters

Parameter Meaning Value

m Mass of the ball 0.025 Kg

g Gravity 9.81 m/s2

r Roll radius of the ball 0.0167 m

Ib Inertia moment of the ball 3.516 · 10−6 Kgm2

IW Inertia moment of the beam 0.09 Kgm2

b Friction coefficient of the drive mechanics 1.0 Ns/m

K Stiffness of the drive mechanics 0.001 N/m

l Radius of force application 0.49 m

3 Fuzzy Takagi-Sugeno Model and System Identification

3.1 Fuzzy T-S Model

Nonlinear systems can be modelled by T-S model, supposing known a set of
measurable nonlinear variables [z1(k), z2(k), . . . , zm(k)] of the system. By choos-
ing [r1, r2, . . . , rm] number of fuzzy sets for these variables, a monovariable fuzzy
system can be defined as follows:

S(i1...im): If z1(k) is M i1
1 and . . . and zm(k) is M im

m then:

y(k) = a
(i1...im)
0 + a

(i1...im)
1 y(k − 1) + · · · + a(i1...im)

n y(k − n)

+ b
(i1...im)
1 u(k − 1) + · · · + b(i1...im)

n u(k − n)

(3)
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In each rule, we can transform the difference Eq. (3) to state model with
affine term as follows:

S(i1...im): If z1(k) is M i1
1 and . . . and zm(k) is M im

m then:
x(k) ∈ Rn

x(k + 1) =

⎡
⎢⎢⎢⎢⎣

a
(i1...im)
0 · a

(i1...im)
1

a
(i1...im)
0 · a

(i1...im)
2

...
a
(i1...im)
0 · a

(i1...im)
n

⎤
⎥⎥⎥⎥⎦+

+

⎡
⎢⎢⎢⎢⎢⎣

a
(i1...im)
1 1 · · · 0

a
(i1...im)
2 0

. . . 0
...

...
. . . 1

a
(i1...im)
n 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

x(k) +

⎡
⎢⎢⎢⎢⎣

b
(i1...im)
1

b
(i1...im)
2

...
b
(i1...im)
n

⎤
⎥⎥⎥⎥⎦u(k)

y(k) = a
(i1...im)
0 +

[
1 0 · · · 0

]
x(k)

(4)

This means

S(i1...im): If z1(k) is M i1
1 and . . . and zm(k) is M im

m then:

x(k + 1) = a(i1...im)
x + A(i1...im)x(k) + B(i1...im)u(k)

y(k) = a(i1...im)
y + Cx(k)

(5)

3.2 Estimation of T-S Model Parameters

The identification method of T-S fuzzy models [4] is based on the estimation
of the fuzzy system parameters minimizing a quadratic performance index. The
traditional T-S identification method [4] fails if the membership functions of the
fuzzy rules are overlapped triangular in shape, since the T-S matrix is not of full
rank and then it is not invertible [7]. Thus, in [7] was proposed a generalized
T-S identification, using a parameters weighting method.

The fuzzy estimation of the output becomes:

ŷ =
r1∑

i1=1

· · ·
rm∑

im=1

β(i1...im)
(
z(i1...im)(k)

) [
a
(i1...im)
0 + a

(i1...im)
1 y(k − 1)

+ · · · + a(i1...im)
n y(k − n) + b

(i1...im)
1 u(k − 1) + · · · + b(i1...im)

n u(k − n)
] (6)

where

β(i1...im)
(
z(i1...im)(k)

)
=

μ1i1(z1) . . . μmim(zm)∑r1
i1=1 · · · ∑rm

im=1 (μ1i1(z1) . . . μmim(zm))
(7)

with μjij (zj) being the membership function corresponding to the fuzzy set M
ij
j .
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We have supposed to have a set of input/output system samples and a first
affine linear parameters estimation:

p0 =
[
a0
0 a0

1 . . . a0
n b01 . . . b0n

]
(8)

These parameters could be obtained by a classical input/output identification
of the data, for example with least squares method. This first approximation can
be utilized as reference parameters for all the subsystems. Then, the fuzzy model
parameters can be obtained minimizing:

J =
s∑

k=1

(y(k) − ŷ(k))2 + γ2
r1∑

i1=1

· · ·
rm∑

im=1

n∑
j=0

(
p0j − p

(i1...im)
j

)2

= ‖Y − XP‖2 + γ2 ‖P0 − P‖2 =
∥∥∥∥
[

Y
γP0

]
−

[
X
γI

]
P

∥∥∥∥
2

= ‖Ya − XaP‖2
(9)

where Y are the output data, X are the input/output fuzzy data, P0 are the
linear estimated parameters repeated as many times as the number of fuzzy rules
(P0 = [p0, p0, . . . , p0]), and P are the fuzzy T-S model parameters. The γ factor
represents the degree of confidence of the linear estimated parameters, and it
must be tuned by try and error. It should be noted that the matrix Xa is of full
rank, which solves the problem where the traditional T-S identification method
fails. Thus, the vector P can be computed as:

P =
(
Xt

aXa

)−1
Xt

aYa (10)

4 Fuzzy Controller and Observer Design

In order to calculate the coefficients of the state feedback controller, discrete
LQR [5] method is chosen, which allows optimal control weighting the dynamic
response and the control action.

In LQR method, the goal is to minimize the cost index J:

J =
∞∑
k=0

[
(x(k) − xr)

t
Q (x(k) − xr) + (u(k) − ur)

t
R (u(k) − ur)

]
(11)

LQR method is completely optimal for linear systems, however, in the case
of nonlinear systems, it is complex to propose the minimization of any objective
function for the global system. In order to solve this problem, we suggest mini-
mizing the cost of each fuzzy rule instead of the global cost. The solution will be
a suboptimal one but with the great advantage of being easy to calculate. With
this method, the global stability is not guaranteed, which needs to be analyzed
a posteriori, although gaining in return a balance between static and dynamic
behavior of the system with admissible control actions.

The state observer [6] is a parallel dynamic system with a correction term
that approximates the estimated state to the real one:

xe(k + 1) = ax + Axe(k) + Bu(k) + H (y(k) − ye(k))
ye(k) = ay + Cxe(k)

(12)
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The estimation error is:

ε(k + 1) = x(k + 1) − xe(k + 1) = (ax + Ax(k) + Bu(k))
− (ax + Axe(k) + Bu(k) + H (y(k) − (ay + Cxe(k))))

(13)

which can be rewritten as follows:

ε(k + 1) = (A − HC) ε(k) (14)

The duality theorem [6] states that the design of a state observer is equivalent
to designing a state feedback controller using some transformations in the state
matrices. Based on the linear discrete system described as:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(15)

The corresponding dual system becomes:

xd(k + 1) = Adxd(k) + Bdu(k)
yd(k) = Cdxd(k)

(16)

where:
Ad = At

Bd = Ct

Cd = Bt

(17)

Therefore, it is possible to calculate a control matrix for the dual system Kd

equivalent to the observation matrix for the original system H:

H = Kt
d (18)

In this way, is possible calculate the observation matrix H, obtaining the
controller matrix for the dual system Kd by any state controller design method
in the dual system. In this case, a discrete LQR [5] is proposed, obtaining the
H observer matrix from the dual system matrices Ad = At and Bd = Ct, and
the weighing matrices Qd and Rd, minimizing the following index cost:

J =
∞∑
k=0

[
xd(k)tQdxd(k) + u(k)tRdu(k)

]
(19)

5 Results

In this section, we apply the proposed fuzzy optimal controller to the ball and
beam nonlinear model described in Sect. 2. The ball and beam model works in
continuous time, but the controller has been developed in discrete time, so a
sampler and zero order holding device have been added to the model, supposing
the proposed sampling time is T = 0.05 s. All system variables are supposed to
be ideally measured.
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As first step, a linear identification of the system has been made by least
squares method, obtaining a first affine linear parameters estimation:

p(k) = 0 + 3.92p(k − 1) − 5.75p(k − 2) + 3.75p(k − 3) − 0.92p(k − 4)
− 0.0001F (k − 1) + 0.0001F (k − 2) + 0.0001F (k − 3) − 0.0001F (k − 4)

For a T-S model identification of the system, an iterative adjustment of the
membership functions of the fuzzy rules and theweighting factorγ havebeenmade,
adjusting by try and error the fuzzy membership functions defined in Fig. 2 and the
weighting factor γ = 3.7 · 10−6, obtaining an identification error of 1.61691̇0−11.

With the generalized T-S identification method and Eq. (4), a fuzzy T-S state
matrices of the system has been obtained:

S(1,1,1,1): If p(k) is M1
1 and ṗ(k) is M1

2 and α(k) is M1
3 and α̇(k) is M1

4 then:

a(1,1,1,1)
x = 10−5

[
0.3146 −0.4620 0.3014 −0.0737

]t

A(1,1,1,1) =

⎡
⎢⎢⎣

3.9181 1 0 0
−5.7542 0 1 0
3.7543 0 0 1

−0.9181 0 0 0

⎤
⎥⎥⎦

B(1,1,1,1) = 10−3
[−0.0578 0.1418 0.1160 −0.0544

]t
a(1,1,1,1)
x = 8.0285 · 10−7

C(1,1,1,1) =
[
1 0 0 0

]
...

Thus, the controller matrix K is designed in each rule by discrete LQR [5]
algorithm, using the system matrices A and B, and the positive definite weighting
matrices Q = I and R = 1. Obtaining the fuzzy controller matrix:

S(1,1,1,1): If p(k) is M1
1 and ṗ(k) is M1

2 and α(k) is M1
3 and α̇(k) is M1

4 then:

K(1,1,1,1) = 103
[
2.9586 2.5483 2.1733 1.8322

]
...

The observer algorithm is designed in each rule by duality theorem [6] and
discrete LQR algorithm [5], using the dual system matrices Ad = At and Bd =
Ct, and the positive definite weighting matrices Qd = I and Rd = 1. Obtaining
the fuzzy observer matrix by the Eq. (18):

S(1,1,1,1): If p(k) is M1
1 and ṗ(k) is M1

2 and α(k) is M1
3 and α̇(k) is M1

4 then:

H(1,1,1,1) =
[
2.7955 −4.9873 3.4842 −0.8789

]t
...

With this controller and observer design method, the global stability cannot
be proved theoretically, so it has to be analyzed a posteriori with the simulation
results.
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Fig. 2. Membership functions of the fuzzy sets.

Fig. 3. Ball position.

Figures 3, 4, 5 and 6 show each one the position of the ball, the angle of the
beam, the input force and the observation error of the ball position, when the
controlled system is subjected to changes in the ball position reference.
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Fig. 4. Beam angle.
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Fig. 5. Input force.
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Fig. 6. Observation error of ball and beam position.

In Figs. 3, 4 and 5 it can be seen that, the system variables are in the physical
range of the ball and beam, and all these variables present smooth and stable
transient responses. In Fig. 6 it is shown that the observation error is small and
tends to zero. Thus, the controlled ball and beam model has a stable response
in the full range of the system and presents a good transient response.

6 Conclusion

In this work, we have shown the obtained results that a generalized T-S identi-
fication method and an optimal state controller and observer designed in each
fuzzy rule, applied in a ball and beam nonlinear model. The fuzzy generalized
T-S identification method is based on a weighting parameter of the previously
estimated linear model. The optimal controller and observer has been designed
in each fuzzy rule, so a suboptimal solution have been found, but easy of calcu-
late and compute. The results show that the ball and beam controlled nonlinear
model has a stable behavior and good transient response on the full range of the
ball and beam system.
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petitiveness (Assisted Navigation through Natural Language (NAVEGASE) project
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Abstract. MTL is the logic of all left-continuous t-norms and their
residua. The equivalent algebraic semantics of MTL is constituted by
the variety of MTL-algebras, MTL. The variety WNM of weak nilpotent
minimum algebras is a major subvariety of MTL, containing several sub-
varieties of MTL which have been subjects of study in the literature,
such as Gödel algebras, Nilpotent Minimum algebras, Drastic Product
and Revised Drastic Product algebras, NMG-algebras, as well as Boolean
algebras. In this paper we introduce and axiomatise DNMG, a proper
subvariety of WNM which contains all the aforementioned varieties. We
show that DNMG is singly generated by a standard algebra. Further, we
determine the structure of the lattice of subvarieties of DNMG, and we
provide the axiomatisation of every subvariety.

Keywords: WNM-algebras · DNMG-algebras · NM-algebras · Gödel-
algebras · DP-algebras · Axiomatisations of subvarieties · Single chain
completeness

1 Introduction

Nilpotent minimum t-norm ∗NM [14] was one of the first examples of a left-
continuous but not continuous t-norm. The logic related to ∗NM, NM, was intro-
duced by Esteva and Godo in [12]. In the same paper they presented a gener-
alisation of NM, the logic of Weak Nilpotent Minimum, WNM, and the related
algebraic semantics, the variety of WNM-algebras WNM. WNM is an extension
of MTL, the logic of all left continuous t-norms and their residua [12,20]. Several
extensions of WNM have been extensively studied in the literature. In particular,
Gödel logic G, Drastic Product DP ([4], firstly introduced as S3MTL in [23]),
Revised Drastic product RDP ([9,25], based on the t-norm introduced in [19]),
NMG [26], NM [12], and classical Boolean logic B. During the years a number of
topics concerning WNM and its algebraic semantics has been investigated: the
papers [5,13,16,21,24] are only few examples. WNM has been extensively stud-
ied in [23], where the problem of axiomatising its extensions has been partially
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 2
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solved. The task of characterising and axiomatising the lattice of extensions of
a given extension of WNM has been accomplished in some cases. Gispert [17],
solved the case for NM. The lattice of extensions of G is well known. The exten-
sions of EMTL, which is the largest common fragment of G and DP, have been
axiomatised in [6].

In this article we introduce the variety DNMG, the algebraic semantics of
DNMG, which is an extension of WNM which is a particularly tame single-chain
complete common fragment of G, NM and DP (and hence, of all the aforemen-
tioned extensions of WNM). We prove standard completeness for DNMG. Gen-
eralising Gispert’s result, we describe the structure of the lattice of subvarieties
of DNMG, showing that each one of them is generated by finitely many chains.
We further provide a uniform way to axiomatise each one of these subvarieties.

2 Preliminaries

We assume that the reader is acquainted with many-valued logics in Hájek’s
sense, and with their algebraic semantics. We refer to [11,18] for any unexplained
notion. We recall that MTL is the logic, on the language {&,∧,∨,→,¬,⊥,�},
of all left-continuous t-norms and their residua, and that its associated alge-
braic semantics in the sense of Blok and Pigozzi [7] is the variety MTL of
MTL-algebras, that is, prelinear, commutative, bounded, integral, residuated
lattices [11]. In an MTL-algebra A = (A, ∗,⇒,	,
,∼, 0, 1) the connectives
&,→,∧,∨,¬,⊥,� are interpreted, respectively, by ∗,⇒,	,
,∼, 0, 1. Totally
ordered MTL-algebras are called MTL-chains. In every chain 	 = min and

 = max. An MTL-algebra is called standard whenever its lattice reduct is
([0, 1],≤), with the usual order.

Given an MTL-algebra A, with V(A) we mean the variety generated by
A, which is said to be generic for V(A). A logic L is the extension of MTL
via a set of axioms {ϕi}i∈I if and only if L is the subvariety of MTL-algebras
satisfying {ϕ̄i = 1}i∈I , where ϕ̄i is obtained from ϕi by replacing the connectives
with the corresponding operations, and every propositional variable in ϕ with
an individual variable. With A |= ϕ̄ = 1 we mean that A satisfies ϕ̄ = 1.

The logic WNM [12] is axiomatised as MTL plus:

¬(ϕ&ψ) ∨ ((ϕ ∧ ψ) → (ϕ&ψ)). (wnm)

The logics G, DP, EMTL, RDP, NM, NMG [1,4,6,12,25,26] are axiomatised as
WNM plus, respectively:

ϕ → (ϕ&ϕ). (id)
ϕ ∨ ¬(ϕ&ϕ). (dp)
(ϕ → (ϕ&ϕ)) ∨ (ψ ∨ ¬(ψ&ψ)). (emtl)
(ϕ → ¬ϕ) ∨ ¬¬ϕ. (rdp)
¬¬ϕ → ϕ. (inv)
¬¬ϕ ∨ (¬¬ϕ → ϕ). (nmg)
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NM− [17] is axiomatised as NM plus ¬((¬(ϕ2))2) ↔ (¬((¬ϕ)2))2, where ϕ2

stands for ϕ&ϕ. B is classical logic, axiomatised as MTL plus ϕ ∨ ¬ϕ.
As shown in [17], the operations ∗,⇒ of a WNM-chain A, are:

x ∗ y =

{
0 if x ≤ ∼y

min(x, y) Otherwise.
x ⇒ y =

{
1 if x ≤ y

max(∼x, y) Otherwise.
(1)

Where ∼, the negation of A, is a (generalised) weak negation, that is a map
∼ : A → A such that ∼1 = 0, ∼∼a ≥ a, and if a ≤ b, then ∼a ≥ ∼b. Each weak
negation is the negation of a uniquely determined WNM-chain. WNM is locally
finite, i.e. for every WNM-algebra each one of its finitely generated subalgebras
is finite. For each integer n ≥ 2, with Gn, DPn, NM

−
2n we will denote the variety

generated, respectively, by the Gödel chain with n elements, the DP-chain with
n elements, and the NM−-chain with 2n elements.

3 DNMG-algebras

DNMG is the variety of WNM-algebras satisfying the following identity.

∼∼x 
 (∼∼x ⇒ x) 
 (∼∼x ⇔ ∼x) = 1. (DNMG)

Since each variety of MTL-algebras is generated by its chains, we immediately
have that two subvarieties of MTL-algebras coincide iff they have the same class
of chains. We are then going to analyse the structure of DNMG-chains.

Definition 1. Let A be a WNM-chain. Let us define the following sets.

– A+ = {a ∈ A : a > ∼a}, and A− = {a ∈ A : a < ∼a}.
– S(A) = {a ∈ A | ∼∼a = 1, a �= 1}.
– F (A) = {a ∈ A | ∼a = ∼∼a}.
– I−(A) = {a ∈ A | ∼∼a = a, 0 < a < ∼a}.
– I+(A) = {a ∈ A | ∼∼a = a, 1 > a > ∼a}.
– I(A) = I−(A) ∪ I+(A).

Clearly, I−(A) ∩ I+(A) = ∅. Further, ∼ is a bijection of I(A)+ onto I(A)−.
Notice that S(A) is disjunct from I(A) and F (A). Given B,C ⊆ A, we write
B ≺ C whenever b <A c, for every b ∈ B and c ∈ C. The following is immediate.

Proposition 1. For every WNM-chain A it holds that I−(A) ≺ F (A) ≺
I+(A) ≺ S(A). In particular, I(A)− ∪ F (A) ∪ {0} = A \ A+, and I(A)+ ∪
S(A) ∪ {1} = A+.

By Proposition 1, the sets S(A), F (A), I−(A), I+(A) are pairwise disjoint.
For any subset S ⊆ A, let 〈S〉 be the subalgebra of A generated by S.
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Proposition 2. Let A be a WNM-chain and pick S ⊆ A.

1. If S ⊆ I(A), then 〈S〉 = S ∪ {∼a | a ∈ S} ∪ {0, 1} is an NM− algebra.
2. If S ⊆ F (A), then 〈S〉 = S ∪ {∼a | a ∈ S} ∪ {0, 1} is a DP-algebra.
3. If S ⊆ S(A) then 〈S〉 = S ∪ {0, 1} is a Gödel algebra.

Proof. Using (1) an easy check shows that the sets (S ∩ I(A)) ∪ {∼a | a ∈ S ∩
(I(A))}∪{0, 1}, (S∩F (A))∪{∼a | a ∈ S∩(F (A))}∪{0, 1} and (S∩S(A))∪{0, 1}
are subuniverses of A. The rest follows by Definition 1. 	

Theorem 1. A WNM-chain A is a DNMG-chain iff A = S(A)∪F (A)∪ I(A)∪
{0, 1}.
Proof. Let A be a WNM-chain such that A = S(A)∪F (A)∪I(A)∪{0, 1}. Then,
each element in a ∈ S(A) satisfies ∼∼a = 1, each element a ∈ F (A) satisfies
∼∼a = ∼a, and each element a ∈ I(A) satifies ∼∼a = a. The elements 0 and
1 both satisfy ∼∼a = a. Whence A satisfies the identity (DNMG). Conversely,
let A be a WNM-chain such that there is a ∈ A \ (S(A) ∪ F (A) ∪ I(A) ∪ {0, 1}).
Then ∼∼a �= 1, ∼∼a �= ∼a and ∼∼a �= a. Whence A is not a DNMG-chain. 	

Lemma 1. Let V ∈ {DP, NM

−, G}. For each subvariety W of V, a chain A is
generic for W iff each finite chain in W embeds into A. Moreover, V(A) = V

iff A is infinite.

Proof. Let V ∈ {DP, NM
−, G}, and pick two chains A,B ∈ V. By the results

of [6,17] we have two consequences. First, V(A) = V iff A is infinite. Next, if
|A| < |B| then A embeds into B. The claim follows immediately. 	

Definition 2. Let C ⊆ {F, I, S}, and let A be a WNM-chain. We say that A
is C-semigeneric iff for any X ∈ C and for any finite chain B ∈ WNM, it holds
that 〈X(B)〉 embeds into 〈X(A)〉.

In the following, for any X ∈ {F, I, S}, by L(X)-chain we mean: DP-chain if
X = F , NM−-chain if X = I, and G-chain if X = S.

Lemma 2. For each X ∈ {F, I, S}, a WNM-chain A is X-semigeneric iff
〈X(A)〉 is generic for the variety generated by L(X)-chains.

Proof. By Lemma 1 and Proposition 2. 	

Definition 3. For each n > 0, we let en(F ), en(I) and en(S) denote the follow-
ing terms

en(F ) =
n⊔

i=1

((∼∼xi) 
 ((∼∼xi ⇒ xi) 	 (∼((∼(x2
i ))

2) ⇔ (∼((∼xi)2)))2) ,

en(I) =
n⊔

i=1

((∼∼xi) 
 (∼xi) 
 (∼∼xi ⇔ ∼xi)),

en(S) =
n⊔

i=1

((∼∼xi ⇔ ∼xi) 
 (∼∼xi ⇒ xi)) .



16 S. Aguzzoli et al.

Lemma 3. Let A be a DNMG-chain, X ∈ {F, I, S} and, for each n > 0, let
(a1, a2, . . . , an) ∈ An. Then, (en(X))(a1, . . . , an) < 1 iff (a1, . . . , an) ∈ X(A).

Proof. By Definition 1, it is sufficient to note that the ith disjunct of en(X)
evaluates to 1 iff ai ∈ A \ X(A). 	

Lemma 4. Let A be a non-trivial DNMG-chain, and t(x1, . . . , xn) = 1 be an
equation. Then, for every X ∈ {F, I, S}, the equation t = 1 holds in 〈X(A)〉 iff
t 
 en(X) = 1 holds in A.

Proof. If X(A) = ∅, then 〈X(A)〉 is isomorphic with the two-element Boolean
algebra {0, 1}, and by Lemma 3 A |= en(X) = 1. The claim follows immediately.
We then assume X(A) �= ∅: by Lemma 3 we have that 〈X(A)〉 �|= en(X) =
1. Assume first that A |= t 
 en(X) = 1: we must have 〈X(A)〉 |= t = 1.
Conversely, suppose A �|= t 
 en(X) = 1: by Lemma 3 we have that for some
a1, . . . , an ∈ 〈X(A)〉, en(X)(a1, . . . , an) < 1 and t(a1, . . . , an) < 1. We conclude
that A �|= t = 1. 	

Lemma 5. A DNMG-chain A embeds into a DNMG-chain B iff 〈X(A)〉 embeds
into 〈X(B)〉 for each X ∈ {F, I, S}.
Proof. One direction is trivial. Assume then that there is X ∈ {F, I, S} such
that 〈X(A)〉 does not embed into 〈X(B)〉, and assume further, by contradiction,
that f : A → B is an embedding of A into B. Then there is a ∈ 〈X(A)〉 such
that f(a) �∈ 〈X(B)〉, for otherwise f would embed 〈X(A)〉 into 〈X(B)〉. Assume
X = F and f(a) ∈ B \ 〈F (B)〉. Then ∼∼a = ∼a, while ∼∼f(a) �= ∼f(a),
contradicting the fact that f is an homomorphism. The other cases X = I or
X = S, are dealt with analogously. 	

Lemma 6. Let V be a subvariety of DNMG. Then a DNMG-chain A ∈ V is
generic for V iff each finite chain B in V embeds into A.

Proof. Assume that each finite chain B in V embeds into A. Since V has the finite
model property, being locally finite, then it is generated by the class of its finite
chains. This implies that V(A) = V. On the other hand, assume that B does not
embed into A. Then, by Lemma 5, there is X ∈ {F, I, S} such that 〈X(B)〉 does
not embed into 〈X(A)〉. By Lemma 1, 〈X(B)〉 is an L(X)-chain which does not
belong to the variety generated by the L(X)-chain 〈X(A)〉. Whence there is an
equation t(x1, . . . , xn) = 1 holding in 〈X(A)〉 and failing in 〈X(B)〉. Then, by
Lemma 4, the equation t 
 en(X) = 1 holds in A and fails in B, proving that A
is not generic for V. 	

Lemma 7. Let V ⊆ DNMG be a single chain generated variety. Then there is a
chain B ∈ V such that every countable chain in V embeds into it, and V(B) = V.

Proof. Immediate by Lemma 6, [10, Theorem 3.8] and [22, Theorems 3 and 5].

Lemma 8. A DNMG-chain is {F, I, S}-semigeneric iff it is generic for DNMG.

Proof. Immediate, from Lemmas 2, 5 and 6. 	
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Theorem 2. A chain A is generic for DNMG iff the sets F (A), I(A) and S(A)
are infinite.

Proof. By Lemmas 1 and 8. 	

We are ready to prove standard completeness for the logic DNMG whose asso-
ciated algebraic semantics is given by DNMG.

Definition 4. Let ∗ : [0, 1]2 → [0, 1] be defined by:

x ∗ y =
{

0 if x + y ≤ 3/4 or max{x, y} ≤ 1/2
min{x, y} otherwise.

It is immediate to check that ∗ is a left-continuous t-norm. Moreover ∗ is
the monoidal operation of the standard WNM -chain [0, 1]∗ determined by the
following negation: ∼0 = 1, ∼x = 3/4 − x for all x ∈ (0, 1/4) ∪ (1/2, 3/4],
∼x = 1/2 for all x ∈ [1/4, 1/2], ∼x = 0 for all x ∈ [3/4, 1].

Lemma 9. The WNM-chain [0, 1]∗ determined by the t-norm in Definition 4 is
a DNMG-chain.

Proof. We just check that any element a ∈ [0, 1/4) ∪ (1/2, 3/4) is such that
∼∼a = a, while any element a ∈ [1/4, 1/2] is such that ∼∼a = ∼a = 1/2, and
finally any element a ∈ [3/4, 1] is such that ∼∼a = 1. 	

Theorem 3. The logic DNMG is standard complete, since the variety DNMG

is generated by [0, 1]∗.

Proof. By Lemma 9, [0, 1]∗ ∈ DNMG. Now, F ([0, 1]∗) = [1/4, 1/2], I([0, 1]∗) =
(0, 1/4) ∪ (1/2, 3/4), and S([0, 1]∗) = [3/4, 1). By Lemma 8 and Theorem 2, the
standard chain [0, 1]∗ is generic for DNMG. 	


4 The Lattice of Subvarieties of DNMG

Let ω denote the ordinal {0, 1, 2, . . .} of the natural numbers, and let ω + 1 be
the ordinal ω ∪ {ω}. For any integer n > 0 and any sequence κ1, κ2, . . . , κn of
ordinals, the direct product κ1×κ2×· · ·×κn is the poset obtained equipping the
cartesian product with the pointwise order: (a1, . . . , an) ≤ (b1, . . . , bn) iff ai ≤ bi

for all i ∈ {1, 2, . . . , n}. We write κ(n) to mean the nth direct power of the ordinal
κ, that is, the direct product of n copies of κ.1 A subset S ⊆ κ1 × · · · × κn is an
antichain if for each a, b ∈ S, neither a ≤ b nor b ≤ a. The set of all antichains
of a poset P is denoted AC(P ).

Lemma 10. For n > 0, every antichain of P = κ1 × κ2 × · · · × κn is finite.

1 We use this notation to distinguish direct powers from ordinal exponentiation.
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Proof. By [8, Exercise 2.3.4] a poset is a well-quasi-order (wqo) iff (1) it has
no infinite strictly decreasing sequences, i.e. x0 > x1 > . . . , and (2) it has no
infinite antichains. As every ordinal κi is well-ordered, then it satisfies (1) and
(2): whence it is a wqo. By [8, Lemma 2.3.9] P is also a wqo, whence each one
of its antichains is finite. 	

Corollary 1. For each integer n > 0, the set AC((ω +1)(n)) has cardinality ℵ0.

Proof. By Lemma 10, every antichain of (ω + 1)(n) is a finite set of n-tuples of
ω ∪ {ω}. Hence it can be coded in the natural numbers, i.e. there is an injective
map AC((ω+1)(n)) → ω. Whence, |AC((ω+1)(n))| ≤ ℵ0. To conclude, note that
AC((ω + 1)(1)) = ω + 1, whence, |AC((ω + 1)(n))| ≥ |AC((ω + 1)(1))| = ℵ0. 	

The set AC((ω + 1)(n)) can be equipped with a lattice structure by putting
X ≤ Y if for each n-tuple x ∈ X there is y ∈ Y such that x ≤ y, for all X,Y ∈
AC((ω + 1)(n)). In this section we shall prove that the lattice of subvarieties of
DNMG is isomorphic with AC((ω + 1)(3)).

Definition 5. Let A be a DNMG-chain. Then the triplet T (A) associated with
A is an element (a, b, c) ∈ (ω + 1)(3) defined as follows.

1. If S(A) is infinite then a = ω, otherwise a = |S(A)|.
2. If I−(A) is infinite then b = ω, otherwise b = |I−(A)|.
3. If F (A) is infinite then c = ω, otherwise c = |F (A)|.
Lemma 11. Let A and B be two DNMG-chains with A of finite cardinality.
Then A embeds into B iff T (A) ≤ T (B) in the pointwise order.

Proof. A embeds into B iff, by Lemma 5, 〈S(A)〉 embeds into 〈S(B)〉, 〈I(A)〉
embeds into 〈I(B)〉 and 〈F (A)〉 embeds into 〈F (B)〉, iff T (A) ≤ T (B). 	

Lemma 12. Let A and B be two DNMG-chains. Then V(A) ⊆ V(B) iff T (A) ≤
T (B). As a consequence, V(A) = V(B) iff T (A) = T (B).

Proof. Assume first that V(A) ⊆ V(B). Then each chain in V(A) belongs to
V(B), too. By Lemma 6, each finite chain C ∈ V(A) embeds into both A and
B. By Lemma 11 this occurs only if T (C) ≤ T (A) and T (C) ≤ T (B). But then
〈X(A)〉 embeds into 〈X(B)〉 for each X ∈ {F, I, S}, or they are both of infinite
cardinality. In both cases T (A) ≤ T (B).

For the other way round, assume T (A) ≤ T (B). Take now any finite chain
C ∈ V(A). Then by Lemma 6, C embeds into A, and by Lemma 11, T (C) ≤ T (A).
By our standing assumption, T (C) ≤ T (B), too. Whence, again by Lemma 11, C
embeds into B, which implies that each finite chain in V(A) belongs to V(B),
too. We conclude V(A) ⊆ V(B). 	

Notice that by Lemmas 2 and 8 and Theorem 2, if C is a set of DNMG-chains
containing an infinite chain A of any cardinality, then V(C) = V(C ′) for C ′ =
(C ∪ {A′}) \ {A}, for a suitable A′. More precisely, A′ is obtained from A by
replacing, for every X ∈ {F, I, S} such that X(A) is infinite, the subalgebra
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〈X(A)〉 with a fresh copy of a fixed denumerable L(X)-chain B, where we safely
identify the extremes of B with those of A. We call A′ a regular chain.

Then we may assume that each subvariety of DNMG is generated by a set of
regular chains. Two regular DNMG-chains A and B are isomorphic iff T (A) =
T (B). We now fix, once and for all, one representative regular chain AT , for
each triple T ∈ (ω + 1)(3). Notice that given two regular representative DNMG-
chains A and B, we have that A embeds into B iff T (A) ≤ T (B). A set C
of DNMG-chains is irredundant if each A ∈ C is representative regular and
V(C \ {A}) � V(C) for all A ∈ C. Otherwise C is redundant.

Lemma 13. Every irredundant set C of DNMG-chains is finite. Moreover, the
map A �→ T (A) is a bijection between C and CT = {T (A) : A ∈ C}, which is
the underlying set of a finite antichain of (ω + 1)(3).

Proof. Let C be an irredundant set of DNMG-chains. Then, for every A,B ∈ C,
with A �= B we have that T (A) is incomparable with T (B). Indeed, if not, by
Lemma 12 either V(C \ {A}) = V(C) or V(C \ {B}) = V(C). In both cases we
have a contradiction. By the previous observations we have that CT must be the
underlying set of an antichain of (ω + 1)(3), and by Lemma 10 CT is finite. The
proof is settled by noticing that the map A �→ T (A) is a bijection between C
and CT . 	

Lemma 14. The lattice Λ(DNMG) of all subvarieties of DNMG, ordered by
inclusion, is isomorphic with the lattice Γ (DNMG) of all irredundant sets of
DNMG-chains, ordered by inclusion.

Proof. Clearly, each irredundant set of DNMG-chains generates a subvariety of
DNMG, and each subvariety is generated by some irredundant set of DNMG-
chains. We prove than no subvariety can be generated by two distinct irredundant
sets C,D of DNMG-chains, with C �= D: by Lemma 13 we can assume C =
{A1, . . . ,Ah} and D = {B1, . . . ,Bk}. By contradiction, suppose V(C) = V(D).

Then, without loss of generality, there is a chain Ar ∈ C \D. By [6, Theorem
7], we have that the class of chains in V(C) = V(D) coincides with the one in⋃h

i=1 V(Ai) and with the one in
⋃k

i=1 V(Bi). This means that there is Bs ∈ D
such that V(Ar) ⊆ V(Bs), and clearly Bs /∈ C (otherwise C would be redun-
dant). This implies T (Ar) ≤ T (Bs) and hence Ar embeds into Bs, being both
chains regular representative. On the other hand, for the same reasons, this in
turns implies that Bs embeds into some chain At ∈ C. Note that t �= r, as other-
wise Ar � Bs, and since both chains are regular representative we would conclude
Ar = Bs, in contrast with the fact that Ar /∈ D. But then also Ar embeds into
At, contradicting the fact that C is irredundant. It is obvious that both the
bijective correspondence C �→ V(C) and its inverse are order-preserving. 	

Theorem 4. The lattice Λ(DNMG) is isomorphic with AC((ω + 1)(3)).

Proof. By Lemma 14, we prove that Γ (DNMG) is isomorphic with AC((ω+1)(3)).
Consider a set C of pairwise non-isomorphic representative chains in DNMG
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such that the set CT = {T (A) | A ∈ C} is not an antichain. Then there are
chains A and B ∈ C such that T (A) ≤ T (B). By Lemma 12, V(A) ⊆ V(B).
Whence, V(C) = V(C \ {A}). That is C is redundant. Whence, each element
of Γ (DNMG) is a set C of chains such that CT is an antichain, that is T maps
Γ (DNMG) to AC((ω + 1)(3)). T is injective by construction. For surjectivity, let
A ∈ AC((ω+1)(3)). With each triple (a, b, c) ∈ A we associate the representative
regular DNMG-chain A(a,b,c) such that T (A(a,b,c)) = (a, b, c). Call C(A) the
set of chains so obtained. Clearly, T (C(A)) = A and all chains in C(A) are
representative and regular. Finally, for any triple (a, b, c) ∈ A we have that
V(C(A)\{A(a,b,c)}) � V(C(A)), for otherwise there is a triple (d, e, f) ∈ A such
that (a, b, c) ≤ (d, e, f), contradicting the fact that A is an antichain. Whence
C(A) is irredundant, that is, it belongs to Γ (DNMG). Surjectivity is proved. 	

Corollary 2. There are countably many subvarieties of DNMG. Every subvari-
ety of DNMG is generated by a finite number of DNMG-chains.

Proof. By Theorem 4, Lemma 10 and Corollary 1. 	


5 Uniform Axiomatisations

In this section we axiomatise all the subvarieties of DNMG in a uniform way.

Definition 6. For each integer n > 0 let Qn be the term:

Qn =
⊔

1≤i�=j≤n+1

(xi ⇔ xj) .

Furthermore let Q0 = 0 and Qω = 1, and eω+1(X) = 1 for each X ∈ {F, I, S}.
Given (a, b, c) ∈ (ω + 1)(3), we write V(a, b, c) to mean the variety generated by
a DNMG-chain A such that T (A) = (a, b, c).

Theorem 5. For each (a, b, c) ∈ (ω + 1)(3), the variety V(a, b, c) is the subva-
riety of DNMG satisfying the following equation.

(Qa 
 ea+1(S)) 	 (Qb 
 eb+1(I)) 	 (Qc 
 ec+1(F )) = 1 .

Proof. Let D be a DNMG-chain such that T (D) = (a, b, c). We show that
D |= Qa 
 ea+1(S) = 1. As a matter of fact, if a = 0 then by Lemma 3
1 = ea+1(d1, . . . , da+1) = (Qa
ea+1(S))(d1, . . . , da+1), since di ∈ D\S(D) for all
i ∈ {1, 2, . . . , a+1}. If a = ω then (Qa
ea+1(S))(d1, . . . , dm+1) = 1 for Qa = 1. If
a is a positive integer, then (Qa
ea+1(S))(d1, . . . , da+1) = 1. Indeed, if di ∈ S(D)
for all i ∈ {1, 2, . . . , a+1} then there are distinct indices i, j such that di ⇔ dj =
1, for |S(A)| = a, whence (Qa 
 ea+1(S))(d1, . . . , da+1) = Qa(d1, . . . , da+1) = 1.
If on the other hand there is some di ∈ D \ S(D), then, by Lemma 3,
ea+1(S)(d1, . . . , da+1) = 1 = (Qa 
ea+1(S))(d1, . . . , da+1). We proceed similarly,
to show that D |= Qb 
 eb+1(I) = 1 and D |= Qc 
 ec+1(F ) = 1, mutatis mutan-
dis. Let now D be a DNMG-chain not in V(a, b, c), whence T (D) = (a′, b′, c′)
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with (a′, b′, c′) �≤ (a, b, c). If a′ > a then picking pairwise distinct elements
a1, . . . , aa+1 ∈ S(D) we have that Qa(d1, . . . , da+1) < 1. Further, by Lemma 3,
ea+1(S)(d1, . . . , da+1) < 1, too. We conclude that D �|= Qa 
 ea+1(S) = 1. The
cases b′ > b and c′ > c are dealt with in the same manner, mutatis mutandis. 	


Clearly, if some index a, b, c is zero, the associated conjunct in the axiomatis-
ing equation can be simplified: Qa
ea+1(S) to ea+1(S) and so forth. Analogously,
if some index a, b, c is ω, the associated conjunct can be totally disregarded. For
instance V(ω, ω, ω) = DNMG, and as a matter of fact the axiomatising equa-
tion in this case is identically 1 = 1. As DNMG contains all major subvarieties
of WNM, several varieties of the form V(a, b, c) have already been studied and
axiomatised in the literature. The following theorems report on this aspect.

Theorem 6. V(0, 0, 0) = B. For each integer n > 0, V(n, 0, 0) = Gn+2,
V(0, n, 0) = NM2n+2, V(0, 0, n) = DPn+2. Also, V(ω, 0, 0) = G, V(0, ω, 0) =
NM

− and V(0, 0, ω) = DP.

Proof. Immediate by [6,17], and Definition 5. 	

We now show how the axiomatisation provided in Theorem5 can be simplified,
when exactly one element in the triplet (a, b, c) is zero. In this case V(a, b, c) is
either a subvariety of RDP = V(ω, 0, ω), or of one of the following two subvari-
eties. The variety DNM = V(0, ω, ω), axiomatised as WNM plus:

(∼∼x ⇒ x) 
 (∼∼x ⇔ ∼x) = 1. (IF)

The variety NMG
− = V(ω, ω, 0), axiomatised as NMG plus:

∼((∼(x2))2) ⇔ (∼((∼x)2))2 = 1. (NF)

Theorem 7. 1. For all b, c ∈ (ω + 1)(2) with b �= 0 �= c, the variety V(0, b, c) is
axiomatised as DNM plus

(Qb 
 eb+1(I)) 	 (Qc 
 ec+1(F )) = 1 .

2. For all a, c ∈ (ω + 1)(2) with a �= 0 �= c, the variety V(a, 0, c) is axiomatised
as RDP plus

(Qa 
 ea+1(S)) 	 (Qc 
 ec+1(F )) = 1 .

3. For all a, b ∈ (ω + 1)(2) with b �= 0 �= a, the variety V(a, b, 0) is axiomatised
as NMG

− plus

(Qa 
 ea+1(S)) 	 (Qb 
 eb+1(I)) = 1 .

Proof. Immediate by Theorem 5.

We now provide the general criterion to axiomatise the subvarieties of DNMG.



22 S. Aguzzoli et al.

Theorem 8. Let C = {Ai}i∈I be an irredundant set of DNMG-chains. Let
further ti(x1, . . . , xni

) = 1 be the equation axiomatising V(Ai) for each i ∈ I, as
given by Theorem5. Then V(C) contains exactly the DNMG-algebras satisfying
the equation ⊔

i∈I

ti(yi,1, . . . , yi,ni
) = 1 ,

where all the variables yi,j, for i ∈ I, and j ∈ {1, . . . , ni}, are pairwise distinct.

Proof. First notice that by Corollary 2,
⊔

i∈I ti = 1 is indeed an equation, as I is
a finite index set. The proof is settled by noting that V(C) =

⊔
i∈I V(Ai), and

by using [15, Lemma 5.25]. 	

Corollary 3. Every element of Λ(DNMG) is the join of a finite set of join
irreducible elements.

Proof. By [2, Theorem 5.1] a variety of MTL-algebras is join irreducible, in the
lattice of the subvarieties of MTL, if and only if it is generated by a single chain.
The claim follows by Theorem 8. 	

Theorem 9. DNMG is the smallest subvariety in Λ(DNMG) which contains
DP, NM

−, G and it is generated by a single chain.

Proof. Immediate by Theorem 6 and Lemma 12, since DNMG = V(ω, ω, ω). 	

Remark 1. Notice that NM = V(0, ω, 1), and its lattice of subvarieties is given
by all antichains C ∈ AC((ω + 1)(3)) such that all T ∈ C have either the form
T = (0, b, 1) or T = (0, b, 0) for some integer b ≥ 0, or T = (0, ω, 0), whose
corresponding variety is NM

−.
The almost minimal subvarieties of DNMG are exactly G3 = V(1, 0, 0),

NM4 = V(0, 1, 0), and NM3 = DP3 = V(0, 0, 1). Whence they coincide with
the almost minimal subvarieties of WNM (see [3]).

By Lemma 7 and [10, Theorem 3.5], every variety of DNMG-algebras of the
form V(a, b, c) is such that the corresponding logic has the strong single chain
completeness (see [2,22]).

The subvarieties of DNMG generated by a standard algebra are exactly G =
V(ω, 0, 0), NM = V(0, ω, 1), NMG = V(ω, ω, 1), RDP = V(ω, 0, ω), DNM =
V(0, ω, ω), and, clearly, DNMG = V(ω, ω, ω).

Finally, EMTL = V({(ω, 0, 0), (0, 0, ω)}) is an example of a subvariety of
DNMG which cannot be generated by a single chain [6].
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1 Introduction and Preliminaries

The concept of fuzzy set was first itroduced by Zadeh [8] and this concept was
adapted by Goguen [11] to define and study fuzzy relations. G. Birkhoff [10]
introduced the concept of Brouwerian lattice as a distributive lattice or Heyting
algebra as a bounded distributive lattice in which for any two elements a, b
there exists a largest element a → b such that a ∧ (a → b) ≤ b. Heyting Alge-
bra is a relatively pseudo complemented distributive lattice. It arises from non
classical logic and was first investigated by Skolem T [2]. It is named as Heyt-
ing Algebra after the Dutch Mathematician Arend Heyting [1]. In this paper
we introduced the concept of Fuzzy Heyting Algebra (FHA) and studied some
important properties of Fuzzy Heyting Algebra using fuzzy relation and fuzzy
poset defined by Chon [4]. We also characterized fuzzy Heyting algebra using
the directed above fuzzy poset and proved that any distributive fuzzy lattice is
fuzzy Heyting algebra iff there exists a largest element c of H(Heyting Algebra)
such that A(a ∧ c, b) > 0, for all a, b ∈ H.

Definition 1.1. An algebra (H,∨,∧ →, 0, 1) is called a Heyting algebra if it
satisfies the following

(1) (H,∨,∧, 0, 1) is a bounded distributive lattice
(2) a → a = 1
(3) b ≤ a → b
(4) a ∧ (a → b) = a ∧ b

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 3
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(5) a → (b ∧ c) = (a → b) ∧ (a → c)
(6) (a ∨ b) → c = (a → c) ∧ (b → c), for all a, b, c ∈ H

Definition 1.2. A bounded distributive lattice(H,∨,∧, 0, 1) is said to be a
Heyting Algebra if there exist a binary operation → on H such that, for any
x, y, z ∈ H, x ∧ z ≤ y ⇔ z ≤ x → y

Theorem 1.3. Let H be a Heyting algebra, then for any a, b, c ∈ H, the fol-
lowing hold:

(i) a ∧ c ≤ b ⇔ c ≤ a → b
(ii) a ≤ b ⇔ a → b = 1

Lemma 1.4. In any Heyting algebra H, the following hold:

(a) a → (b ∧ a) = a → b
(b) a ≤ b ⇒ x → a ≤ x → b
(c) a ≤ b ⇒ b → x ≤ a → x, for all a, b, c, x ∈ H

Theorem 1.5. If (H,∨,∧,→, 0, 1) is a Heyting Algebra and a, b ∈ H, then
a → b is the largest element c of H such that a ∧ c ≤ b

Theorem 1.6. The following are equivalent:

(1) H is Heyting algebra
(2) For any a, b, c ∈ H, a ∧ c ≤ b ⇔ c ≤ a → b
(3) b ≤ a → b, forall a, b ∈ H

Definition 1.7. Let X be a set. A function A:X × X → [0, 1] is called a
fuzzy relation in X. The fuzzy relation A in X is reflexive iff A(x, x) = 1,
for all x ∈ X. The fuzzy relation A in X is anti symmetric iff A(x, y) > 0
and A(y, x) > 0 ⇒ x = y. The fuzzy relation A in X is transitive iff
A(x, z) ≥ Supy∈X(min(A(x, y), A(y, z))). A fuzzy relation A is fuzzy partial
order relation if A is reflexive, symmetric and transitive. A fuzzy partial order
relation A is fuzzy total order relation iff A(x, y) > 0 or A(y, x) > 0, for all
x, y ∈ H. If A is a fuzzy partial order relation on a set X, then (X,A) is called a
fuzzy partially ordered set or a fuzzy poset. If A is a fuzzy total order relation
in a set X, then (X,A) is called a fuzzy totally ordered set or a fuzzy chain.

Definition 1.8. Let (X,A) be a fuzzy poset and B ⊆ X. An element u ∈ X
is said to be an upper bound for a subset B iff A(b, u) > 0,∀b ∈ B. An upper
bound u0 for a subset B is least upper bound of B iff A(u0, u) > 0 for every
upper bound u for B. An element v ∈ X is said to be an lower bound for a
subset B iff A(v, b) > 0,∀b ∈ B. A lower bound v0 for a subset B is the greatest
lower bound of B iff A(v, v0) > 0 for every lower bound v for B. We denote the
lub of the set {x, y} = x ∨ y and glb of the set {x, y} = x ∧ y

Definition 1.9. Let (X,A) be a fuzzy poset. (X,A) is a fuzzy lattice iff x ∨ y
and x ∧ y exists for all x, y ∈ X.
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Proposition 1.10. Let (X,A) be a fuzzy lattice and x, y, z ∈ X. Then

(i) A(x, x ∨ y) > 0, A(y, x ∨ y) > 0, A(x ∧ y, x) > 0, A(x ∧ y, y) > 0
(ii) A(x, z) > 0 and A(y, z) > 0 ⇒ A(x ∨ y, z) > 0
(iii) A(z, x) > 0 and A(z, y) > 0 ⇒ A(z, x ∧ y) > 0
(iv) A(x, y) > 0 iff x ∨ y = y
(v) A(x, y) > 0 iff x ∧ y = x
(vi) If A(y, z) > 0, then A(x ∧ y, x ∧ z) > 0 and A(x ∨ y, x ∨ z) > 0

Proposition 1.11. Let (X,A) be a fuzzy lattice and x, y, z ∈ X. Then

(1) x ∨ x = x, x ∧ x = x
(2) x ∨ y = y ∨ x, y ∧ x = x ∧ y
(3) (x ∨ y) ∨ z = x ∨ (y ∨ z), (x ∧ y) ∧ z = x ∧ (y ∧ z)
(4) (x ∨ y) ∧ x = x, (x ∧ y) ∨ x = x

Definition 1.12. Let (H,A) be a fuzzy lattice. (H,A) is distributive iffx∧(y∨z) =
(x ∧ y) ∨ (x ∧ z) and (x ∨ y) ∧ (x ∨ z) = x ∨ (y ∧ z), for all x, y, z ∈ H.

From distributive inequalities (H,A) is distributive iff A(x∧ (y ∨ z), (x∧ y) ∨
(x ∧ z)) > 0 and A((x ∨ y) ∧ (x ∨ z), x ∨ (y ∨ z)) > 0 From now onwards by H,
we mean Heyting algebra unless otherwise specified.

2 Fuzzy Heyting Algebra

In this section, we introduced the concept of fuzzy heyting algebra (FHA) and
studied some important properties.

Definition 2.1. Let (H,A) be a fuzzy lattice. Then (H,A) is said to be a
bounded fuzzy lattice iff

(1) A(x ∧ 0, 0) = A(0, x ∧ 0) = 1
(2) A(x ∨ 1, 1) = A(1, x ∨ 1) = 1, for all x ∈ H

Definition 2.2. A bounded distributive fuzzy lattice(H,A) is said to be a Fuzzy
Heyting Algebra if there exists a binary operation → such that, for any x, y, z
∈ H,A(x ∧ z, y) > 0 ⇔ A(z, x → y) > 0

Theorem 2.3. Let (H,A) be a bounded distributive fuzzy lattice, then (H,A) is
called a fuzzy Heyting algebra if it satisfies the following axioms:

(1) A(a → a, 1) = A(1, a → a) = 1
(2) A(b, a → b) > 0
(3) A(a ∧ (a → b), a ∧ b) = A(a ∧ b, a ∧ (a → b)) = 1
(4) A(a → (b ∧ c), (a → b) ∧ (a → c)) = A((a → b) ∧ (a → c), a → (b ∧ c)) = 1
(5) A((a ∨ b) → c), (a → c) ∧ (b → c)) = A((a → c) ∧ (b → c), (a ∨ b) → c)) = 1

for all a, b, c ∈ H
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Example 2.4. Let (B,∨,∧,′ , 0, 1) be a Boolean algebra and a, b ∈ B and A:B×
B → [0,1] is a fuzzy relation. Define a → b = a

′∨b. Then (B,A) is a Fuzzy Heyting
algebra

Proof: Clearly, (B,∨,∧,→, 0, 1) is a Heyting algebra and (B,A) is a bounded
distributive fuzzy lattice.

(1) A(a → a, a
′ ∨ a) = A(a

′ ∨ a, a → a) = 1
(2) A((a → b) ∧ b, (a

′ ∨ b) ∧ b) = A((a
′ ∨ b) ∧ b, (a → b) ∧ b) = 1

(3) A(a ∧ (a → b), a ∧ b) = A(a ∧ b, a ∧ (a → b)) = 1
(4) A(a → (b ∧ c), a

′ ∨ (b ∧ c)) = A(a → b) ∧ (a → c), a → (b ∧ c)) = 1
(5) A((a ∨ b) → c, (a → c) ∧ (b → c)) = A((a → c) ∧ (b → c, (a ∨ b) → c), for all

a, b, c ∈ B. Thus,(B,A) is a fuzzy Heyting algebra

Lemma 2.5. Let (H,A) be a bounded distributive fuzzy lattice. Then (H,∨,∧,→,
0, 1) is a Heyting Algebra iff (H,A) is a fuzzy heyting algebra.

From the definition of Heyting Algebra and fuzzy lattice property, we have
the following lemma.

Lemma 2.6. A(b, a → b) > 0 iff b ∧ (a → b) = b or equivalently b ∨ (a → b) =
a → b, ∀a, b ∈ H

Lemma 2.7. In any Fuzzy Heyting Algebra the following holds:

(i) A(a → (b ∧ a), a → b) = 1
(ii) A(a, b) > 0 ⇒ A(x → a, x → b) > 0
(iii) A(a, b) > 0 ⇒ A(b → x, a → x) > 0

Proof:

(i) A(a → (b ∧ a), a → b)= A((a → b) ∧ (a → a), a → b)=A((a → b) ∧ 1, a →
b)=A(a → b, a → b)=1

(ii) A(a, b) > 0 iff a∧b = a or a∨b = b [By proposition 1.10] A(x → a, x → b) =
A(x → (a ∧ b), x → b)[since a ∧ b = a] =A((x → a) ∧ (x → b), x → b) > 0
[since (x→ a) ∧ (x → b) ≤ x → b]

(iii) A(a, b) > 0 iff a ∨ b = b [Proposition 1.10].
Now, A(b → x, a → x) = A((a ∨ b) → x, a → x) = A((a → x) ∧ (b →
x), a → x) > 0

Theorem 2.8. If (H,A) is a FHA and a, b ∈H, then a → b is the largest element
of the set S={c ∈ H : A(a ∧ c, b) > 0}
Proof: Let H be a FHA

We shall show that a → b ∈ S. Let a, b ∈ H. Then A(a ∧ (a → b), a ∧ b) > 0
clearly, A(a∧ b, b) > 0. This implies, A(a∧ (a → b), b) ≥ supa∧b(minA(a∧ (a →
b), a ∧ b), A(a ∧ b, b)) > 0.
⇒ A(a ∧ (a → b), b) > 0.
⇒ a → b ∈ S. Let d be such that a ∧ d ≤ b. Then A(a ∧ d, b) > 0
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⇒ A(a → (a ∧ b), a → b) > 0
⇒ A(a → d, a → b) > 0.
⇒ (d, a → b) > 0
⇒ A(d, a → b) ≥ Supa→d∈H(min(A(d, a → d), A(a → d, a → b))) > 0
⇒ A(d, a → b) > 0
⇒ a → b is an upper bound of d.
Thus, a → b is the largest element of S.

Lemma 2.9. Let (H,A) be a fuzzy Heyting algebra, then for any a, b, c ∈ H,
we have A(a, b) > 0 ⇔ A(a → b, 1) = 1 = A(1, a → b)

Proof. Suppose A(a, b) > 0. Then A(a → a, a → b) > 0.
⇒ A(1, a → b) > 0. But a→ b ≤ 1, as 1 is the largest element.
⇒ (a → b, 1) > 0 ⇒ a → b = 1. Hence the result. Conversely, assume
A(a → b, 1) = A(1, a → b). Then, a ∧ (a → b) = a ∧ 1
⇒ a ∧ (a → b) = a
⇒ a ∧ b = a
⇒ a ≤ b. Hence, A(a, b) > 0.

Theorem 2.10. let (H,A) be a fuzzy Heyting algebra, then the following are
equivalent.

(1) A(a ∧ c, b) > 0
(2) A(a → c, a → b) > 0
(3) A(c, a → b) > 0, for a, b, c ∈ H

Proof: straightforward

Theorem 2.11. Every Fuzzy Heyting algebra is a distributive Fuzzy lattice

Proof: Since A(x, x ∨ y) > 0, we have A(y ∧ x, (y ∧ x) ∨ (z ∧ x)) > 0. Hence
A(y, x → (y ∧ x) ∨ (z ∨ x)) > 0. Similarly, A(z, x → (y ∧ x) ∨ (z ∧ x)) > 0. This
implies A(y ∨ z, x → (y ∧ x) ∨ (z ∧ x)) > 0.
⇒ A(x ∧ (y ∨ z), x ∧ (x → (y ∧ x) ∨ (z ∧ x))) > 0.
⇒ A(x ∧ (y ∨ z), x ∧ (y ∧ x) ∨ (z ∧ x)) > 0.
⇒ A(x ∧ (y ∨ z), (y ∧ x) ∨ (z ∧ x)) > 0. *
From A(y, y ∨ z) > 0 and A(y ∧ x, y) > 0 and A(y ∧ x, x) > 0, We have
A(y ∧ x, (y ∨ z) ∧ x) > 0. Similarly, A(z ∧ x, (y ∨ z) ∧ x) > 0 Thus, A((y ∧ x) ∨
(z ∧ x), (y ∨ z) ∧ x) > 0. **
From * and ** we have the result. Hence the theorem follows.

Definition 2.12. The fuzzy poset (H,A) is said to be directed above if ∀a, b, c ∈
H,A(a, c) > 0 and A(b, c) > 0, then ∃x ∈ H such that A(x, c) > 0.

Theorem 2.13. The following are equivalent:

(1) (H,A) is a fuzzy Heyting algebra
(2) The fuzzy poset (H,A) is directed above
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(3) (H,A) is a distributive fuzzy lattice

Proof: (1) ⇒ (2) Let a, b ∈ H. Then ∃c ∈ H such that A(a, c) > 0 and A(b, c) > 0
⇒ A(a∨ b, c) > 0. Take x = a∨ b ∈ H. Hence A(x, c) > 0 (2) ⇒ (3) Suppose (2)
holds.
Then, A(a ∨ b, c) > 0.
⇒ A(c ∧ (a ∨ b), c ∧ c) > 0
Claim: A(a∧ (b∨ c), (a∧ b) ∨ (a∧ c)) > 0 and A(a∨ (b∧ c), (a∨ b) ∧ (a∨ c)) > 0.
We know A(a ∨ b, c) > 0, A(a, c) > 0, A(b, c) > 0, A(c, c) > 0.
⇒ A(b ∨ c, c) > 0.
⇒ A(a ∧ (b ∨ c), a ∧ c) > 0. It is clear that A((a ∨ b) ∧ (a ∨ c), a ∨ c) > 0 and
A((a ∧ b), (a ∧ b) ∨ (a ∧ c)) > 0. Also A((a ∧ c), (a ∧ b) ∨ (a ∧ c)) > 0 Thus,
we have A(a ∧ (b ∨ c), (a ∧ b) ∨ (a ∨ c)) ≥ Supa∧c∈H(min(A(a ∧ (b ∨ c), a ∧ c),
A((a∧c), (a∧c)∨ (a∧b))) > 0. Thus, A(a∧ (b∨c), (a∧b)∨ (a∨c)) > 0. similarly
A(a∨ (b∧ c), (a∨ b)∧ (a∨ c)) > 0. Therefore, (H,A) is a distributive fuzzy lattice
(3) ⇒ (1) Suppose (H,A) is a distributive fuzzy lattice such that A(a ∧ c, b) > 0
Claim: A(c, a → b) > 0. Clearly, A(a ∧ c, a ∧ b) > 0
⇒ A(a → (a ∧ c), a → (a ∧ b)) > 0
⇒ A(a → c, a → b) > 0,but A(c, a → c) > 0
⇒ A(c, a → b) ≥ supa→c∈H(min(A(c, a → c), A(a → c, a → b))) > 0 Hence,
(H,A)is a fuzzy Heyting Algebra

Lemma 2.14. If A(a, c) > 0 and A(b, c) > 0, then we have the following.

(1) A(a ∧ b, b ∧ a) > 0
(2) A(a ∨ b, b ∨ a) > 0
(3) A((a → c) ∧ (b → c, 1) > 0
(4) A((c → a) ∧ (c → b), 1) > 0
(5) A(((a → c) ∧ (b → c)) ∨ ((c → a) ∧ (c → b)), 1) > 0

Theorem 2.15. Let (H,A) be a distributive fuzzy lattice. Then (H,A) is a fuzzy
Heyting algebra iff for any a, b ∈ H, there exists a largest element c ∈ H such
that A(a ∧ c, b) > 0.

Proof: (⇒).Clearly,A(a ∧ (a → b), a ∧ b) > 0 and A(a ∧ b, b) > 0. This implies
A(a ∧ c, b) > 0 Let d ∈ H such that A(a ∧ d, b) > 0. We shall prove that
A(d, c) > 0. A(a ∧ d, b) > 0.
⇒ A(a → d, a → b) > 0, but A(d, a → d) > 0
⇒ A(d, a → b) > 0. Taking c = a → b, we have A(d, c) > 0. Therefore, there is
a largest element c ∈ H such that A(a ∧ c, b) > 0.
Conversely, suppose the given condition holds. Define a binary operation → on
H such that a → b is the largest element of the set{c ∈ H : A(a ∧ c, b) > 0}.
we prove that (H,A) is a fuzzy Heyting algebra

(1) Clearly A(b, a → b) > 0. For b ∈ H, since A(a ∧ b, a) > 0, we have
A(a → (a ∧ b), a → a) > 0
⇒ A(b, a → a) > 0
⇒ a → a is an upper bound of b.
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But a → a=1
⇒ A(a → a, 1) = A(1, a → a) = 1

(2) since A(a ∧ b, b) > 0. Then A(a → b, a → b) > 0
⇒ A(b, a → b) > 0

(3) Since A(a ∧ (a → b), b) > 0, we have A(a ∧ (a ∧ (a → b)), a ∧ b) > 0
⇒ A(a ∧ (a → b), a ∧ b) > 0 , on the other hand, A(a ∧ b, b) > 0.
⇒ A(b, a → b) > 0
⇒ A(a∧ b, a∧ (a → b)) > 0 from anti symmetry we have a∧ (a → b) = a∧ b
Thus, we have A(a ∧ (a → b), a ∧ b)=A(a ∧ b, a ∧ (a → b) = 1

(4) From Heyting algebra, we have a ∧ (a → (b ∧ c)) = a ∧ a ∧ (b ∧ c) ≤ b, we
have A(a ∧ (a → (b ∧ c), b) > 0
⇒ A(a ∧ (b ∧ c), b) > 0
⇒ A(a → (b ∧ c), a → b) > 0. Similarly, A(a → (b ∧ c), a → c) > 0
⇒ a → (b ∧ c) is a lower bound of {a → b, a → c}
⇒ A(a → (b ∧ c), (a → b) ∧ (a → c)) > 0.On the other hand A(a ∧ (a →
b) ∧ (a → c), a ∧ b ∧ (a → c)) > 0
⇒ A(a ∧ (a → b) ∧ (a → c), b ∧ a ∧ (a → c)) > 0
⇒ A(a ∧ b ∧ c, b ∧ a ∧ c) > 0
⇒ A((a → b)∧ (a → c), (a → b)∧ (a → c)) > 0 ⇒ A((a → b)∧ (a → c), a →
(b ∧ c)) > 0
Therefore, A((a → b)∧ (a → c), a → (b∧c)) = A(a → (b∧c), (a → b)∧ (a →
c)) = 1

(5) Consider A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∧ (a → c) ∧ (b → c)) ∨ (b ∧ (a →
c) ∧ (b → c)) > 0
⇒ A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∧ c) ∨ (b ∧ c)) > 0
⇒ A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∨ b) ∧ c) > 0 but A((a ∨ b) ∧ c, c) > 0
⇒ A((a ∨ b) ∧ (a → c) ∧ (b → c), c) > 0 By
Theorem 1.3 we have A((a → c) ∧ (b → c), (a ∨ b) → c) > 0. On the other
hand A(a, a ∨ b) > 0 ⇒ A((a ∨ b) → c, a → c) > 0. Similarly, A((a ∨ b) →
c, b → c) > 0
⇒ A((a ∨ b) → c, (a → c) ∧ (b → c)) > 0
Hence, A((a∨ b) → c, (a → c)∧ (b → c)) = A((a → c)∧ (b → c), (a∨ b) → c)
Therefore (H,A) is a fuzzy Heyting Algebra

Definition 2.16. Let (H,A) be a distributive fuzzy lattice. Then the fuzzy
Heyting algebra (H,A) satisfies the infinite meet distributive fuzzy law if
A(a ∧ (∨i∈Isi),∨i∈I(a ∧ si))) = A(∨i∈I(a ∧ si), a ∧ (∨i∈Isi)) = 1

where
{si : i ∈ I} ⊆ H

Theorem 2.17. Let (H,A) be a distributive fuzzy lattice. Then (H,A)is a fuzzy
heyting algebra iff it satisfies the infinite meet distributive fuzzy law. That is for
any family

{si : i ∈ I} ⊆ H

if ∨i∈Isi exists, then ∨i∈I(a ∧ si) exists for any a ∈ H and it is equal to

a ∧ (∨i∈Isi).
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Proof: Let (H,A)be a distributive fuzzy lattice and a, b ∈ H. Define

a → b = ∨s∈Sab
s,where Sab = {s ∈ H : A(a ∧ s, b) > 0}

Now, let a, b, c ∈ H, Then

(1) Saa = {s ∈ H : A(a ∧ s, a) > 0} = (H,A)
⇒ a → a = ∨H = 1
Thus, A(a → a, 1) = A(1, a → a) = 1

(2) since A(a ∧ b, b) > 0, we have b ∈ Sab. This implies A(b, a → b) > 0. Thus,
A((a → b) ∧ b, b) = A(b, (a → b) ∧ b) = 1

(3) A(a ∧ (a → b), a) > 0 and A(a ∧ (a → b), a ∧ (∨s∈Sab
s)) > 0

⇒ A(∨s∈Sab
(a ∧ s), b) > 0

⇒ A(a ∧ (a → b),∨s∈Sab
(a ∧ s)) > 0

⇒ A(a ∧ (a → b), b) > 0.
Hence a ∧ (a → b) is a lower bound of {a, b}
⇒ A(a ∧ (a → b), a ∧ b) > 0. On the other hand, we have
A(a ∧ (a ∧ b), b) > 0.
⇒ a ∧ b ∈ Sab

⇒ A(a ∧ b, a → b) > 0
⇒ A(a ∧ (a ∧ b), a ∧ (a → b)) > 0
⇒ A(a ∧ b, a ∧ (a → b)) > 0 Thus, A(a ∧ b, a ∧ (a → b)) = A(a ∧ (a →
b), a ∧ b) = 1

(4) Since A(a ∧ (a → (b ∧ c)), b) > 0.
⇒ A(a → (b ∧ c), a → b) > 0
Similarly, A(a → (b ∧ c), a → c) > 0.
⇒ a → (b ∧ c) is a lower bound of {a → b, a → c}
⇒ A(a → (b ∧ c), (a → b) ∧ (a → c)) > 0. On the other hand, A(a ∧ (a →
b) ∧ (a → c), a ∧ b ∧ (a → c)) > 0
⇒ A(a ∧ (a → b) ∧ (a → c), a ∧ b ∧ c) > 0
⇒ A(a ∧ (a → b) ∧ (a → c), b ∧ c) > 0
⇒ A((a → b) ∧ (a → c), a → (b ∧ c)) > 0. Hence, A((a → b) ∧ (a → c), a →
(b ∧ c)) = A(a → (b ∧ c), (a → b) ∧ (a → c)) = 1

(5) Consider, A((a ∨ b) ∧ (a → c) ∧ (b → c), (a ∧ (a → c) ∧ (b ∧ c)) ∨ (b ∧ (a →
c)∧)(b ∧ c)) > 0
⇒ A((a →)∧ (b → c), (a∨ b) → c) > 0. Since A(a, a∨ b) > 0, A(b, a∨ b) > 0.
This implies A((a ∨ b) → c, a → c) > 0 and A((a ∨ b) → c, b → c) > 0
(a ∨ b) → c is a lower bound of {a → c, b → c}.
⇒ A((a ∨ b) → c, (a → c) ∧ (b → c)) > 0. Hence, A((a ∨ b) → c, (a →
c)∧(b → c)) = A((a →)∧(b → c), (a∨b) → c) = 1. Therefore,(H,A) is Fuzzy
Heyting algebra. Conversely,Suppose (H,A) be a fuzzy Heyting algebra. Let
a∈ H, {si : i ∈ I} ⊆H. Then a ∧ si ∈ H. Since A(si,∨si) > 0 we have
A(∨i∈I(a∧si), a∧(∨i∈Isi)) > 0.On the other hand A(a∧si,∨i∈I(a∧si)) > 0.
⇒ A(si, a → ∨i∈I(a ∧ si)) > 0,∀i ∈ I
⇒ A(∨i∈Isi, a → ∨i∈I(a ∧ si)) > 0
⇒ A(a ∧ (∨i∈Isi), a ∧ (a → ∨i∈I(a ∧ si))) > 0
but, A(a ∧ ∨i∈I(a ∧ si),∨i∈I(a ∧ si)) > 0
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⇒ A(a ∧ (∨i∈Isi),∨i∈I(a ∧ si))) > 0
A(a ∧ (∨i∈Isi),∨i∈I(a ∧ si))) = A(∨i∈I(a ∧ si), a ∧ (∨i∈Isi)) = 1

Future Work and Plan:
From now on wards, we will try to introduce fuzzy Heyting ideals and filters

using the concept of fuzzy ideals and filters of fuzzy lattices.
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Abstract. Normalization is the dominant but inexact method to handle
any nonnormal fuzzy sets data. This stems from the fact that normaliza-
tion ignores some parts of such data in order to prepare them for being
used in computational operations. A subset of such data which satisfies
the property of convexity is called Generalized Fuzzy Numbers (GFN).
In this paper, a new distance is presented on the set of GFNs. In the
special case, when GFNs are normal (i.e. Fuzzy Numbers), the proposed
distance is converted to a well-known distance which in the fuzzy litera-
ture has already been proved to be a metric. Also, some of the features
of the proposed distance are studied through several examples.

1 Introduction

Till now, a plenty of fuzzy logic distances have been proposed for fuzzy nor-
mal and convex fuzzy sets named fuzzy numbers. For instance: Amirfakhrian
and Abbasbandy [1,2] introduced source distance between fuzzy numbers, Gerz-
gorzewski [10,11] proposed P- distance and Allahviranloo, et al. [3] presented
TRD distance. However, in reality, a large portion of fuzzy data is non-normal
which meet the condition of convexity. A special case of such data called Gener-
alized Fuzzy Numbers (GFNs) has been studied by Chen in 1985 [5]. The princi-
pal trend till now for treating any non-normal fuzzy sets is converting them into
fuzzy numbers via normalization. However, such an approach notoriously suffers
from data loss. To mitigate this, in this paper we present a distance independent
of height on GFNs. We also investigate some of the important properties of this
distance.

2 Basic Concepts

In this section, the essential basic concepts used throughout the paper are given.
Let F(R) be the set of all fuzzy numbers (the set of all normal and convex fuzzy
sets [14,16]) on the real line.

Definition 1. A generalized LR fuzzy number ũ with the membership function
μũ(x), x ∈ R can be defined as [1,7,8]:
c© Springer International Publishing AG 2018
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μũ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Lũ(x), a ≤ x ≤ b,
1, b ≤ x ≤ c,
Rũ(x), c ≤ x ≤ d,
0, otherwise,

(1)

where Lũ is the left membership function and Rũ is the right membership
function. It is assumed that Lũ is increasing in [a, b] and Rũ is decreasing in
[a, b], and that Lũ(a) = Rũ(d) = 0 and Lũ(b) = Rũ(c) = 1. In addition, if Lũ

and Rũ are linear, then ũ is a trapezoidal fuzzy number, which is denoted by
ũ = (a, b, c, d). If b = c, we denoted it by ũ = (a, c, d), which is a triangular fuzzy
number.

Definition 2. A fuzzy set Ã is convex if ∀x, y ∈ Ã and ∀λ ∈ [0, 1] we have [16]:

μÃ(λx + (1 − λ)y) ≥ min{μÃ(x), μÃ(y)} (2)

Accordingly, if all α-cuts of Ã are convex, then Ã is a convex fuzzy set.

Definition 3. The least upper bound of μũ(x) is height of fuzzy set Ã [6,15],
i.e.

hgt(Ã) = sup
x∈X

μÃ(x) (3)

Ã is normal if and only if ∃x ∈ X,μÃ(x) = 1.

The parametric form of a fuzzy number is given by ũ = (u, u), where u and
u are functions defined over [0, 1] and satisfy the following requirements [12,13]:

(1) u is a monotonically increasing left continuous function.
(2) u is a monotonically decreasing left continuous function.
(3) u ≤ u, in [0, 1].

We name u and u, left and right spread functions, respectively. If a is a crisp
number, then u(r) = u(r) = a, for ∀r ∈ [0, 1].

Definition 4. We say that a fuzzy number ṽ has an m−degree polynomial form,
if there exist two polynomials p and q of degree at most m such that ṽ = (p, q) [4].

Let ṽ ∈ Fm(R) be the set of all m−degree polynomial form fuzzy numbers. For
0 < α ≤ 1, α-cut of a fuzzy number ũ is defined by [7] as follows:

[ũ]α = {t ∈ R | μũ(t) ≥ α}. (4)

The core of a fuzzy number is defined by [8] as follows:

core(ũ) = {t ∈ R | μũ(t) = 1}. (5)
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Let Fc(R) be the set of all fuzzy numbers with continuous left and right
spread functions and let Fm(R) be the set of all m−degree polynomial form
fuzzy numbers [4]. We also consider Πm as the set of all polynomials of degree
at most m.
We can write a fuzzy number ũ ∈ Fm(R) as follows:

ũ = (u, u), (6)

where u, u ∈ Πm.

Definition 5. A fuzzy set whose its membership function μ is defined with the
following conditions is called a Generalized Fuzzy Number, GFN,[5]:

(i) μ is a continuous mapping from R to the closed interval [0, h], 0 < h ≤ 1;
(ii) μ(x) = 0 for x ∈ [∞, a];
(iii) μ is strictly increasing on [a, b];
(iv) μ(x) = h for x ∈ [b, c];
(v) μ is strictly decreasing on [b, c];
(vi) μ(x) = 0 for x ∈ [∞, a].

On the other word, GFN is a fuzzy set with following membership function:

μũ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

Lũ(x), a ≤ x ≤ b,
h, b ≤ x ≤ c,
Rũ(x), c ≤ x ≤ d,
0, otherwise,

(7)

where 0 < h ≤ 1 , Lũ is strictly increasing function on [a, b] and Rũ is strictly
decreasing function on [b, c]. If Lũ and Rũ corresponds to straight lines we have a
Trapezoidal Generalized Fuzzy Number which shows by (a, b, c, d;h), and when
b = c we have Triangular Generalized Fuzzy Number that shows by (a, b, d;h).
Moreover, when a = b = c = d = we have crisp-value and denote that with
{a;h}.

3 A Parametric Distance

To quantify the separation between two fuzzy numbers, we start with presenting
a new distance.

Definition 6. For ũ, ṽ ∈ GFN , with heights hu and hv, respectively, let hmax =
max{hu, hv} and hmin = min{hu, hv}. We define a new distance D as follows:
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Dp,q(ũ, ṽ) ={ 1
hmin

∫ hmin

0

q |u(r) − v(r)|p

+ (1 − q) |u(r) − v(r)|p dr} 1
p

+

∣
∣
∣
∣
∣

∫ hmax

hmin

r(R(r) − L(r)) dr

∣
∣
∣
∣
∣
.

where R(r) and L(r) are defined as follows:

R(r) =
{

u, hmax = hu,
v, hmax = hv,

L(r) =
{

u, hmax = hu,
v, hmax = hv,

and p > 0 is a real positive number and q ∈ [0, 1].

Theorem 1. For two pair crisp-values ũ and ṽ with arbitrary heights with fol-
lowing membership functions:

μũ(x) =
{

h , x = a,
0 , otherwise,

μṽ(x) =
{

h , x = b,
0 , otherwise.

we have:
Dp,q(ũ, ṽ) = |a − b|,

where p ∈ R
+ and q ∈ [0, 1].

Theorem 2. For ũ, ṽ, w̃ ∈ GFN(R) the distance, Dp,q, satisfies the following
properties:

(1) Dp,q(ũ, ũ) = 0,
(2) Dp,q(ũ, ṽ) = Dp,q(ṽ, ũ),
(3) Dp,q(ũ, w̃) ≤ Dp,q(ũ, ṽ) + Dp,q(ṽ, w̃),

where p ∈ R
+ and q ∈ [0, 1].

For the set of all fuzzy semi-numbers with the same height, we prove the
following theorem.

Theorem 3. For ũ, ṽ, ũ′, ṽ′ in Trapezoidal Generalized Fuzzy Number and non-
negative real number k, the distance Dp,q satisfies the following properties:

(1) Dp,q(kũ, kṽ) = kDp,q(ũ, ṽ),
(2) Dp,q(ũ + ṽ, ũ′ + ṽ′) ≤ Dp,q(ũ, ũ′) + Dp,q(ṽ, ṽ′),

where p ∈ R
+ and q ∈ [0, 1].

If h = 1, ũ and ṽ are fuzzy numbers and the distance we defined became as
follows:
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Dp,q(ũ, ṽ) =
(∫ 1

0

q|u(r) − v(r)|pdr

+
∫ 1

0

(1 − q)|u(r) − v(r)|pdr

) 1
p

,

(8)

that presented by Grzegorzewski [9].

Theorem 4. Dp,q is a metric on the set of fuzzy numbers [9].

Proof. It can be found in [9]. �	
Theorem 5. Dp,q is a metric on the set of all equiheigh generalized fuzzy num-
bers.

Proof. For the set of all equiheigh generalized fuzzy numbers we have hmin =
hmax, therefore the proof is completed. �	

we follow our paper with investigating our distance in some examples.

4 Numerical Examples

In this section we present some examples which have been solved by Mathematica
software using 11 decimal digits.

Example 1. Distance between two GFN’s ũ = (0, 1, 2, 4;
1
2
) and ṽ =

(1, 3, 4, 5;
1
3
) which shows in Fig. 1, with p = 2 and q =

1
2
is:

D2,0.5(ũ, ṽ) = 1.5675

Fig. 1. Two Trapezoidal Generalized Fuzzy Numbers ũ and ṽ.

Moreover, Distances between ũ and ṽ when p = {1, 1.1, 1.2, ..., 2} and q =
{0, 0.2, 0.4, ..., 1} were calculated and showed in the Table 1.
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Table 1. D2,0.5(ũ, ṽ) with different p and q

p q = 0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1

1 1.26852 1.36852 1.46852 1.56852 1.66852 1.76852

1.1 1.26892 1.37124 1.47275 1.57351 1.67358 1.77303

1.2 1.26931 1.37403 1.47704 1.57854 1.67865 1.77751

1.3 1.26971 1.37687 1.48139 1.58359 1.68371 1.78197

1.4 1.27011 1.37978 1.48581 1.58868 1.68877 1.7864

1.5 1.2705 1.38275 1.49028 1.59379 1.69382 1.7908

1.6 1.2709 1.38579 1.4948 1.59892 1.69886 1.79518

1.7 1.2713 1.38888 1.49938 1.60408 1.70389 1.79953

1.8 1.27169 1.39205 1.50402 1.60925 1.70891 1.80385

1.9 1.27209 1.39528 1.50871 1.61444 1.71391 1.80813

2 1.27248 1.39857 1.51344 1.61965 1.71889 1.81239

As it seems, increasing both values of p and q will increase the value of
distance between these two generalized fuzzy numbers. The minimum and max-
imum values for distance between these two generalized fuzzy numbers for var-
ious values of p = 1 : 0.1 : 2 and q = 0 : 0.1 : 1 are D1,0(ũ, ṽ) = 1.26852 and
D2,1(ũ, ṽ) = 1.81239, respectively.

Example 2. Let ũ = ((x − 1.3)2,−(x − 2.8)3) and ṽ = (
√

x − 2,
√

3 − x) be the
parametric forms with left and right spreads of two Generalized Fuzzy Numbers
(Fig. 2).

Fig. 2. Two Generalized Fuzzy Numbers ũ and ṽ.

As seen in Fig. 2, we have hgt(ũ) = 0.4993 and hgt(ũ) = 0.7071. The distance
between these two GFNs is as follows:

D2,0.5(ũ, ṽ) = 0.933807
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Example 3. For two Generalized Fuzzy Numbers ũ = (0, 2, 3, 4;
1
2
) and ṽ =

(1, 2, 4, 5;h) the distance with p = 2 and q =
1
2
is plotted when h ∈ [0, 1] (Fig. 3):

Fig. 3. D2,0.5(ũ, ṽ) when h ∈ [0, 1].

The Figure shows that the minimum distance occurs when h =
1
2
.

Example 4. Suppose ũ = (0, 2, 3, 4;
1
2
) and ṽ = (1, 2, 4, 5;h) are Generalized

Fuzzy Numbers, for minimum distance with p = 2 between ũ and ṽ the height h

is approximated when q ∈ {0,
1
20

,
1
10

, ...,
19
20

, 1} (as shown in Table 2).

Table 2. Approximating of height while D2,q is minimum.

q h q h q h

0 0.001 0.35 0.5 0.7 0.5

0.05 0.001 0.4 0.5 0.75 0.5

0.1 0.001 0.45 0.5 0.8 0.516337

0.15 0.35817 0.5 0.5 0.85 0.532521

0.2 0.444457 0.55 0.5 0.9 0.548632

0.25 0.5 0.6 0.5 0.95 0.564758

0.3 0.5 0.65 0.5 1 0.580994

Moreover, distance with p = 2 between ũ and ṽ is calculated while the height
h = 0.0001, 0.1, 0.2, ..., 1 and q = 0 : 0.2 : 1 (as shown in Table 3).

As it seems, for q = 0, the values of distances are increasing when h increases,
whereas for other fixed values of q, the values of h decrease and after reaching
the minimum value, again they increase. From Table 2, for q = 0, the nearest
Generalized Fuzzy Number has the height h = 0.0001 (the minimum distance
which occurs at the first row of the first column is 0.82741). For q = 0.2, the
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Table 3. D2,q(ũ, ṽ) with different q and h.

h q = 0 q = 0.2 q = 0.4 q = 0.6 q = 0.8 q = 1

0.0001 0.82741 1.1063 1.31447 1.48813 1.64026 1.77731

0.1 0.87491 1.05338 1.19947 1.32623 1.43975 1.54349

0.2 0.90711 0.99758 1.07894 1.15347 1.22266 1.28751

0.3 0.93229 0.95185 0.97096 0.98964 1.00793 1.02585

0.4 0.95985 0.92672 0.89227 0.85633 0.81870 0.77911

0.5 1 0.93095 0.85635 0.77460 0.68313 0.57735

0.6 1.20329 1.11796 1.02463 0.92051 0.80066 0.65465

0.7 1.41821 1.32281 1.21783 1.09964 0.96146 0.78746

0.8 1.64992 1.5477 1.43485 1.30713 1.15646 0.96268

0.9 1.90153 1.79439 1.67588 1.54135 1.38173 1.17362

1 2.17497 2.06413 1.94136 1.80173 1.63546 1.41667

nearest Generalized Fuzzy Number has the height h = 0.4 (the minimum distance
which occurs at the fifth row of the second column is 0.92672). For all q = 0.4 :
0.2 : 1, the nearest Generalized Fuzzy Numbers have the height h = 0.5 (the
minimum values occur at the sixth row of the respective column).

This example shows that the optimum value of h (with respect to the minimum
value of distance) is related to q!

Therewith, the figure is plotted the distance with p = 2 between ũ and ṽ when
h ∈ [0, 1] and q ∈ [0, 1] (Fig. 4):

Fig. 4. D2,q(ũ, ṽ) when h ∈ [0, 1] and q ∈ [0, 1].

5 Conclusion

In this paper, a new distance was presented on the set of Generalized Fuzzy Num-
bers, with continuous left and right spread functions. Also, for fuzzy numbers,
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we showed this distance is the same as the one proposed by Gerzgorzewski [9]
which proved that this distance is metric.

In the following, through some examples, the paper explored some of the
capabilities of the proposed distance. One of these examples approximated the
height of a given Generalized Fuzzy Number (GFN) while it had the mini-
mum distance to any arbitrary GFN. Till now, distances presented on GFNs
are applied only on trapezoidal forms but the second example showed the way
the distance proposed in this paper is utilized on GFNs generally. Also, with
some examples we show that this distance related with its parameter.
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Abstract. This article presents the algorithm of resource usage opti-
mization for highly complex computer system architectures, such as
Cloud Computing solutions. The main problem of such solutions is pre-
dicting the resources usage for allocating and dismissal. The proposed
algorithm, based on OFN, allows to recognize the trend in the processed
requests by the servers. In effect, the CC solutions allow to add resources
dynamically, according to the amount of connections, and manage them
in real time. This article proposes a fuzzy logic load balancing method
for highly complex system architecture, which makes possible to use the
resources in more efficient way. Description of the proposed algorithm is
followed by simulation test results.

Keywords: Cloud Computing · Complex architecture · Fuzzy logic

1 Introduction

Cloud Computing (CC) is currently a widely applied technology, but still rep-
resents a fresh approach towards utilizing resources. From the market’s point
of view CC offers a significant operating cost reduction. The users who take
advantage of this data storage capability and access to applications on demand,
may use the resources easily, on various devices, for a long time [1,21]. However,
such solutions as CC require considering the issues related to highly complex
computer system architectures. The main problems include the security of the
data and managing the system resources in most optimal way. Usually big com-
panies use CC for providing big amount of data and process a large number of
server requests. It is impossible to meet such demands basing on single server
solutions, thusa method of load balancing, resources virtualization and a spe-
cial way of their management was developed. This results in creating a highly
complex system the architecture of which provides the means to handle the
users’ demands. It is not an uncommon case that both private and commer-
cial users seek abundant resources under as low price as possible. CC solutions
allow to add resources dynamically, depending on the amount of connections,
and manage them in real time. For example, if one server is not able to han-
dle the connections, another server instance is launched. Inability of the second
c© Springer International Publishing AG 2018
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server to handle the connections leads to starting a third instance of it, which
provides more resources. However, such method of allocation of resources is not
optimal. This article proposes a fuzzy logic load balancing method for highly
complex system architecture, which allows to improve the efficiency of resources
usage. This article is organized as follows: In Sect. 2 a general idea of the system
architecture for cloud computing is provided. Section 3 proposes the method for
optimal usage of the resources. The quoted definitions were originally introduced
by Czerniak et al. for network security purposes. Section 4 presents the results
of simulations. The final Sect. 5 covers the conclusions.

2 Cloud Computing Solution Architecture

As it was already mentioned, the main problem of CC is security and the optimal
allocation of the resources. The issue of assuring the safety of data which is stored
in the cloud, in different sites, is a significant challenge. The lack of security stan-
dards until recently and a difficulty with their determination and application,
along with a limited confidence in this technology, are the main obstacles to
broader implementation of CC [25,30,31]. Thereby, in the Authors’ opinion, the
elaboration of standards and mechanisms for assuring the stored data’s security
and integrity is an indispensable condition for future popularization of CC. It
has been already pointed out that the cloud is a perfect solution for business,
since it offers cost reduction, as after a little investment in the infrastructure, it
provides a quick access to multiple services. However, the strategy of ensuring
the security and trust should be considered at the initial level of designing the
system. It is a widely acknowledged fact that it is difficult - if not impossible - to
develop a single common solution dedicated to every possible system architec-
ture [29]. The emphasis on security issues escalates continuously. The security
should be treated globally, on all layers of communications, starting from hard-
ware protection, through the end point restrictions, to the application level.

The second problem brought out at the beginning of this section - the optimal
allocation of the resources - seems also a complicated matter. The users tend
to choose the solutions which offer more at lower cost. Nowadays the model
of providing the resources and software employs the time of usage as a main
evaluator. As the resources’ requirement grow, subsequent cloud resources are
allocated and dedicated to processing the user’s requests. Figure 1 presents the
possible architecture of the cloud.

The presented architecture consists of four layers:

– servers layer,
– router connections layer,
– switching layer,
– load balancing layer.

The servers layer is responsible for providing the servers - or, to be exact - the
CPU and data storage for the users. The servers resources are the main source
of the cost borne by the users - since they generate the main cost for the cloud
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Fig. 1. Possible cloud architecture

provider, who has to pay for the material resources, while he is selling the virtual
ones, for the specified time of usage.

The router connections layer is accountable for connecting the servers in
a proper way. It provides the routing protocols and transfers the data to an
appropriate server.

The switching layer is responsible for fast switching the packets between the
load balancing layer and the router.

The load balancing layer is the first point of contact between the cloud and
the outside network, which usually is the Internet network. This layer is in charge
of providing one representative point of contact, which during the operation is
multiplied. This allows to provide more resources than a single server is capable
to offer. The main algorithm used for this process is described in the following
steps:

– step 1: oobtaining a connection request from the user,
– step 2: allocating the server resources,
– step 3: transfer connection from the user to the server,
– step 4: in the case when the connections to the server exceed the servers limit,

another server is allocated.

3 Fuzzy Logic Method for Load Balancing

The algorithm for load balancing mentioned in the previous section is not an
optimal method for the resources’ utilization. The number of user connections is
not a constant value. In normal conditions the users shut down their connections
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after finishing their tasks, which results in a decrease in the total number of con-
nections. This could allow to release some server resources, but in most cases
it does not happen. It is because the connections are not divided between the
servers instances in most optimal way. For this purpose, some predictions con-
cerning the connections would be required and in this matter the solutions based
on fuzzy logic can be applied, especially the Ordered Fuzzy Numbers [10,22,27].
The implementation of OFN may accelerate the decision to release the server
instances because they allow to predict an upcoming decrease in the number of
connections.

In this Section the algorithm which uses OFN for detecting a decrease in
the total number of connections is described. The algorithm measures the active
connections in all servers in use during the data processing. This measurement is
performed continuously in a given period of time referred to as a timeslot. Four
subsequent timeslots are described as:

ti, t(i−1), t(i−2), t(i−3) (1)

where ti is represent the current timeslot.
These four results together provide a fuzzy number in OFN notation, pre-

sented in Fig. 2, where

– fA(0) respond to t(i−3),
– fA(1) respond to t(i−2),
– gA(1) respond to t(i−1),
– gA(0) respond to ti.

Fig. 2. Fuzzy number in OFN notation

As it couldcan be noticed, oin Fig. 2, the OFN has gotpresent a trapezoid
form, their shape deriving from the and the value of function fA and gA.

The definition of fuzzy observance of the connection used is as follows:
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Definition 1. Fuzzy observance of C connection in time ti is a set

C/ti = {fC(0)/ti−3, fC(1)/ti−2, gC(1)/ti−1, gC(0))/ti} (2)

where

ti > ti−1 > ti−2 > t3−1 |ti − ti−1| = |ti−1 − ti−2| = |ti−2 − ti−3| = tn,
timeslot of the measurement

fC(0) ≤ fC(1) ≤ gC(1) ≤ gC(0)

This provide the Lemma 1.

Lemma 1.

Cpositive =

⎧
⎨

⎩

fC(0) < fC(1) < gC(1)
or
fC(1) < gC(1) < gC(0)

(3)

In other situation Cnegative.

According to this definition, the counters of active connections to the servers
should give:

– positive order of OFN when the number of connections increases,
– negative order of OFN when the number of connections decreases.

The four measurements performed during the cloud operations allow to prepare
fuzzy numbers in OFN notation. This gives a fuzzy observance of the whole
cloud CCm, defined as follows:

Definition 2. Fuzzy observance of the cloud connections is described by fol-
lowing formula:

CCm =
n∑

i=1

{
Cpositive|Cnegative

Ci ∗ wi| − Ci ∗ wi

}

. (4)

Where wi ∈ {wi, ..., wn} describes the impact of the server on whole cloud archi-
tecture. This value should be considered by the network administrator, jointly
with the server resources and the impact on whole network. CCm will provide
the information for the network administrator that according to the network
trend some servers can be released or that they should still process the user’s
request.

As it is known, the CC solutions base on a highly complicated architecture,
so the number of servers they use may be very high. The result can be visualized
by means of pipe of samples [9], presented in Fig. 3. Each time a connection
is established, a number of measurements take place, the amount of which cor-
responds to the number of servers in use. The results are collected into a pipe,
where a single slice of it contains the measurements from a single timeslot. Over
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Fig. 3. The pipe of samples for data storing

the time a pipe is formed, being an accumulation of n slices. The original solu-
tions [10] where prepared for 360 servers. Figure 4 presents the results with only
server 1 taken into account. As it was mentioned, four measurements give an
OFN number. Two of possible notations of such numbers’ order are presented
in Fig. 4. According to definition 2, it is possible to make a decision on:

Fig. 4. The pipe of samples for data storing

– not allocating another server when a new request appears,
– passing the connections to a different server and releasing one of the instances.
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The first mentioned situation will occur when the load balance layer registers
that the incoming connections are not increasing the total amount of connections
on the servers. This is achieved by recognizing the trend showing that the servers
are processing less requests in general. In consequence, the solution allows to
avoid creating new, unnecessary instances of the server.

The second mentioned situation will take place when a global trend of
decreasing number of processed connections is recognized. This leads to mov-
ing the processed requests to other servers and releasing some of the instances.
The above-described mechanism allows to use the CC resources in most optimal
way.

4 Simulation

The simulation was performed for the proposed CC architecture and the mea-
surement was simulated on the servers as presented in Fig. 5. There were 4 servers
(C1, C2, C3, C4) responsible for processing the users’ requests. Each server was
processing 1000 user requests as a maximum value. When the number of requests
exceeded 1000, another server was switched in. The process of arriving of the
users’ requests and the connections is presented in Table 1. The column “time”
presents the current timeslot. The columns “incoming connections” and “released
connections” present, respectively, the number of connections established basing
on incoming requests and the ones released during the timeslots. The columns
C1-C4 present the total number of requests processed by the servers. As it can
be noticed, the server C2 was launched in the timeslot 2, while the server C3
in timeslot 8 and the server C4 in timeslot 12. It can also be observed that the
server C1 was released in timeslot 20, as it had finished processing the requests.
The same situation was with server C2, but it took place in timeslot 25. Using
the definition 2, the CCm for timeslot 16 can be calculated. According to the
Table 1, the Cs for each server are as follows:

Fig. 5. Simulation test architecture
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Table 1. User request processing during simulation

Time Incomming Relased Sum of connections Servers

connections connections Sum C1 C2 C3 C4

0 500 0 500 500

1 300 0 800 800

2 300 0 1100 1000 100

3 200 0 1300 1000 300

4 100 0 1400 1000 400

5 200 0 1600 1000 600

6 300 0 1900 1000 900

7 100 0 2000 1000 1000

8 200 0 2200 1000 1000 200

9 100 0 2300 1000 1000 300

10 300 0 2600 1000 1000 600

11 250 0 2850 1000 1000 850

12 450 0 3300 1000 1000 1000 300

13 50 50 3300 940 990 1000 350

14 50 100 3250 900 950 1000 400

15 50 300 3000 720 830 1000 450

16 50 300 2750 680 820 1000 500

17 50 200 2600 380 720 950 550

18 50 300 2350 190 700 860 600

19 50 200 2200 20 680 850 650

20 50 100 2150 0 610 840 700

21 100 100 2150 0 560 790 800

22 100 200 2050 0 480 670 900

23 100 300 1850 0 280 570 1000

24 100 200 1750 0 180 570 1000

25 100 300 1550 0 0 550 1000

C1 = [940, 900, 720, 680], with negative order,
C2 = [990, 950, 830, 820], with negative order,

C3 = [1000, 1000, 1000, 1000], with positive order,
C4 = [350, 400, 450, 500], with positive order,

Calculatinge the CCm according to Definition 2 is presented below:

CCm = −C1 − C2 + C3 + C4

So finally fuzzy observance of the cloud servers give as a OFN number in timeslots
16 as
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CCm = [−580,−450,−100, 0],

with a negative order is obtained. It means that a prediction for the servers’
usage is as follows: the number of the process requests is decreasing and the
server C1 can be released in timeslot 17. It also means that it can be released 3
timeslots earlier than in the original algorithm. When the same fuzzy observance
is performed for the timeslot 22, the Cs for each server are as follows:

C1 = [20, 0, 0, 0], with negative order,
C2 = [680, 610, 560, 480], with negative order,
C3 = [850, 840, 790, 670], with negative order,
C4 = [650, 700, 800, 900], with positive order.

The calculation of the CCm according to Definition 2 gives:

CCm = −C1 − C2 − C3 + C4

So finally:

CCm = [−900,−750,−550,−250],

with a negative order is obtained. It means that a prediction for the servers’
usage is as follows: the number of the process request is decreasing and the
server C2 can be released in timeslot 22. This shows that it can be released 3
timeslots earlier than in the original algorithm.

The servers’ usage during each timeslot is presented in Fig. 6. It is noteworthy
that during the simulation the proposed algorithm was using fewer servers than
the original one.

Fig. 6. Server usage simulation
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5 Summary

This article presented the algorithm for the optimization of the resources’ usage
for highly complex computer system architectures, such as Cloud Computing
solutions. Their main problem is predicting the resources’ usage for the purpose
od allocation and dismissal. The proposed algorithm based on OFN usage allows
to recognize the trend in the processed handled by the servers and trace the
signs of a decrease in the number of requests. It also allows to avoid creating
new, redundant instances of the servers, The presented solution helps to move
the processed requests to other servers and release some of the instances faster,
which contributes to more optimal utilization of the CC resources. By means of
the presented algorithm, the CC solutions may add the resources dynamically,
according to the amount of connections, and manage them in real time. This
article proposes a fuzzy logic load balancing method for highly complex system
architectures, which allows to use the resources in a more efficient way and
load balancing, aside from the security issues [23,24,28] remain one of the main
problems the CC solutions have to deal with [7].
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Abstract. A linear system with fuzzy coefficients matrix, unknown and
right hand side fuzzy vectors is called a fully fuzzy linear system (FFLS).
Solving these kinds of systems via iterative methods to find the optimal
number of iterations and optimal solution is important computationally.
In this study, a FFLS is solved in the stochastic arithmetic to find this opti-
mal solution. To this end, the CESTAC (Controle et Estimation Stochas-
tique des Arrondis de Calculs) method and the CADNA (Control of Accu-
racy and Debugging for Numerical Application) library are considered to
evaluate the round-off error effect on computed results. The Gauss-Seidel,
Jacobi, Richardson and SOR iterative methods are used to solve FFLS.
Also, an efficient algorithm is presented based on the proposed approach
to compute the optimal results. Finally, two numerical examples are solved
to validate the results and show the importance of using the stochastic
arithmetic in comparison with the common floating-point arithmetic.

Keywords: Iterative methods · Fully fuzzy linear systems (FFLS) ·
Stochastic arithmetic · CESTAC method · CADNA library · Hausdorff
distance

1 Introduction

The fuzzy system of linear equations as Ax̃ = b̃ studied by Friedman et al. [16]
where A is a crisp matrix and x̃, b̃ are fuzzy vectors. They replaced a 2n×2n crisp
linear system to solve the original n×n fuzzy linear system. They derived condi-
tions for the existence and uniqueness of the solution and presented a numerical
algorithm for estimation the solution. Recently, some authors have proposed
some works to solve the FFLS. In [6,12,18] a linear programming method pro-
posed to calculate the solution of FFLS. A FFLS can be solved by interval
systems, however, the classical solution often fails to exist because the solution
of linear interval equations is not necessarily intervals. The direct method, LU
decomposition method, iterative method and Adomian decomposition method
are applied to find the solutions of fully fuzzy linear systems [12].

When an iterative scheme is chosen to solve a FFLS, the solution is calcu-
lated in the floating-point arithmetic via a package like Matlab or Mathematica
c© Springer International Publishing AG 2018
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that the termination criterion depends on a positive number like ε. Also, the
exact solution of the system must be accessible. In this case, the number of
iteration in results may be increased without increasing the accuracy or results
may not be accurate. Because of the round-off error propagation, the computer
may not able to improve the accuracy of the results. Therefore, to validate the
results and to improve the accuracy, we apply the iterative methods in the sto-
chastic arithmetic. In recent years, the CESTAC method, which is based on the
discrete stochastic arithmetic, is used to validate many problems in mathemat-
ics and physics such as interpolation polynomials [2], ill-condition functions [3],
numerical integration [1,4,17] and others [8,9,24].

In [13], the authors solved fuzzy linear system with crisp coefficient matrix,
based on the Gauss-Seidel and Jacobi iterative methods in the stochastic arith-
metic. This paper is a development of this work on the FFLS.

This paper is organized as follows. We give the definition of fuzzy number, and
fully fuzzy linear systems in Sect. 2. Iterative methods are presented in Sect. 3. In
Sect. 4, we recall the stochastic round-off analysis, the fuzzy CESTAC method in
the stochastic arithmetic. Section 5 describes datasets and experiments by using
the proposed algorithm which is performed by the CADNA library based on the
discrete stochastic arithmetic and the CESTAC method.

2 Preliminaries

2.1 Fuzzy Numbers and Fully Fuzzy Linear Systems

Here, we give some basic definitions on fuzzy numbers and brief description of
FFLS.

Definition 2.1.1. A fuzzy number Ã is called to be an LR fuzzy number, if
there exist shape function L (for left), R (for right) and scalars α, β with

μÃ(x) =

⎧
⎨

⎩

L(a−x
α ) x ≤ a, α > 0

1 x = a
R(x−a

β ) x ≥ a, β > 0

where a is the mean value of Ã, μÃ its membership function, α and β are
the left and right spreads, respectively. An LR fuzzy number Ã is shown as
Ã = (a, α, β)LR. If a − α > 0 then Ã is said positive [11].

Definition 2.1.2 [11]. An arbitrary fuzzy number is presented by an ordered
pair of functions (u(r), ū(r)), 0 � r � 1 which satisfy the following conditions:

1. u(r) is a bounded left continuous non-decreasing function over [0,1].
2. ū(r) is a bounded left continuous non-increasing function over [0,1].
3. u(r) � ū(r), 0 � r � 1.

The set of the fuzzy numbers is denoted by E1.
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Definition 2.1.3 [13]. Let ũ = (u(r), ū(r)) and ṽ = (v(r), v̄(r)) are two arbi-
trary fuzzy numbers, the Hausdorff distance between them is defined by:
H.D(ũ, ṽ) = sup0�r�1 max {| u(r) − v(r) |, | ū(r) − v̄(r) |} .

Definition 2.1.4. A matrix Ã = (ãij) is called a fuzzy matrix if each element
in A is a fuzzy number [11].
In the fuzzy matrix Ã = (A,M,N), the crisp matrix A = (aij) called the main
matrix and M = (αij) and N = (βij) are the right and left spread matrices,
respectively.

Consider the n × n linear system of equations:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ã11 ⊗ x̃1) ⊕ (ã12 ⊗ x̃2) ⊕ . . . ⊕ (ã1n ⊗ x̃n) = b̃1,

(ã21 ⊗ x̃1) ⊕ (ã22 ⊗ x̃2) ⊕ . . . ⊕ (ã2n ⊗ x̃n) = b̃2,
...
(ãn1 ⊗ x̃1) ⊕ (ãn2 ⊗ x̃2) ⊕ . . . ⊕ (ãnn ⊗ x̃n) = b̃n.

(1)

The matrix form of this system is

Ã ⊗ X̃ = b̃. (2)

Here, the matrix Ãn×n = (ãij), 1 � i, j � n is a fuzzy matrix and X̃i, b̃i(1 �
i � n) are two fuzzy vectors in E1. The system (2) is called a fully fuzzy linear
system (FFLS). In Eq. (2), if each element of matrix coefficients Ã and constant
vector b̃ is a positive LR fuzzy number, then fuzzy system is called a positive
FFLS.

Definition 2.2.1 [10]. A fuzzy matrix Ãn×n = (ãij) is called an lower (upper)
triangular fuzzy matrix, if ãij = 0̃ = (0, 0, 0), ∀i < j (i > j).

Definition 2.2.2 [10]. Let Ãm×n = (ãij) and B̃n×p = (b̃ij) be two fuzzy matri-
ces. Operation multiplication is defined as Ã ⊗ B̃ = C̃, which C̃ is the m × p
fuzzy matrix where c̃ij =

∑n
k=1 ãik ⊗ b̃kj .

3 Iterative methods

In this section, we introduce the iterative methods which are applied for solving
the FFLS.

Definition 3.1. Suppose Eq. (2) be the positive FFLS, after operating the mul-
tiplication and summarizing, X̃ is a solution of Eq. (2), if and only if

⎧
⎨

⎩

AX = b,
MX + AY = g,
NX + AZ = h.

(3)
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With conditions Y � 0, Z � 0 and X − Y � 0, the solution X̃ = (X,Y,Z) is
called a consistent solution of positive FFLS or for abbreviation consistent solu-
tion [10]. Otherwise, it will be called dummy solution. In this study, to determine
the consistent solution of the FFLS is the final target. But unfortunately, the
iterative methods may converge to the dummy solutions.

Theorem 3.1. Suppose Ã = (A,M,N) and b̃ = (b, g, h) be a non-negative
fuzzy matrix and a non-negative fuzzy vector, and let A be the product of a
permutation matrix by a diagonal matrix with positive diagonal entries. The
system Ãx̃ = b̃ has a positive fuzzy solution, if h � MA−1b, g � NA−1b and
(MA−1 + I)b � h [10].

For matrix A, the following decomposition is used.

A = D + L + U, (4)

where D is the diagonal, L its strict lower part and U its strict upper part
of matrix A. We can assume that the diagonal entries of the matrix A are all
non-zero.

The Jacobi iterative method to find the solution of the Eq. (2) is as follows:
⎧
⎨

⎩

X(k+1) = −D−1(L + U)X(k) + D−1b,
Y (k+1) = −D−1(L + U)Y (k) − D−1MXk + D−1g,
Z(k+1) = −D−1(L + U)Z(k) − D−1NXk + D−1h.

(5)

Also, an other iterative method for solving Eq. (2) is the Gauss-Seidel method,
which is defined as follows:

⎧
⎨

⎩

X(k+1) = −(D + L)−1UX(k) + (D + L)−1b,
Y (k+1) = −(D + L)−1UY (k) − (D + L)−1MXk + (D + L)−1g,
Z(k+1) = −(D + L)−1UZ(k) − (D + L)−1NXk + (D + L)−1h.

(6)

The Richardson extrapolation method is the other iterative method to solve
Eq. (2), which is as follows:

⎧
⎨

⎩

X(k+1) = (I − γA)X(k) + γb,
Y (k+1) = (I − γA)Y (k) − γMXk + γg,
Z(k+1) = (I − γA)Z(k) − γNXk + γh,

(7)

where γ is called the extrapolation parameter. If the matrix A is symmetric

positive definite, then the optimum parameter would be γopt =
2

m(A) + M(A)
.

The following SOR method is the fourth iterative method, that we apply it
for solving FFLS in the stochastic arithmetic:

⎧
⎨

⎩

X(k+1) = −(D + ωL)−1[(ω − 1)D + ωU ]X(k) + ω(D + ωL)−1b,

Y (k+1) = −(D + ωL)−1[(ω − 1)D + ωU ]Y (k) − ω(D + ωL)−1MXk + (D + ωL)−1g,

Z(k+1) = −(D + ωL)−1[(ω − 1)D + ωU ]Z(k) − ω(D + ωL)−1NXk + (D + ωL)−1h.

(8)
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Theorem 3.2. The iterative method for solving the FFLS Ãx̃ = b̃, converges
if and only the classical iterative method converges for solving the crisp linear
system Ax = b [10].

Theorem 3.3. If the SOR method be convergent then 0 < ω < 2 [20].

Theorem 3.4. Let A ∈ L(Rn) be symmetric positive definite and assume that
0 < ω < 2. Then the SOR method converges for any choice of initial vector
X0 [20].

4 Fuzzy CESTAC Method

In this section, a theorem is proved to show the accuracy of the iterative methods
to solve a FFLS based on the concept of the common significant digits between
two vectors. The results of this theorem is applied to designate the termination
criterion in the proposed algorithm in next section. At first, we introduce the
fuzzy CESTAC method.

Let x̃ = (x, y, z) be a fuzzy number in E1. Then, x̃ in the computer is
represented by X̃ = (X,Y,Z) as follows:

X = x − ε12E1−P α1, (9)

Y = y − ε22E2−P α2, (10)

Z = z − ε32E3−P α3, (11)

where, ε1, ε2 and ε3 are the signs of x, y and z respectively and 2−P α1, 2−P α2

and 2−P α3 are the lost part of the mantissa due to round-off error and E1, E2 and
E3 are the binary exponents of the results. In the floating-point arithmetic and
double precision case, P = 53 and usually −1 � α1, α2, α3 � 1. The CESTAC
method is applied in order to implement an algorithm, any result is a random
variable with mean μ and variance σ2. Hence, a stochastic arithmetic should be
used. The last mantissa bit is perturbed N times, to estimate μ and σ2. Then,
the mean of samples is considered as estimation of the result and the variance
of them is used to determine the accuracy of the result. The main idea of the
CESTAC method is to evaluate the number of significant digits of the result
effectively [24]. The algorithm of the fuzzy CESTAC method is as follows:

Algorithm 1.

1. Let X1,X2, . . . , XN , Y1, Y2, . . . , YN , Z1, Z2, . . . , ZN be N samples for X,Y
and Z by perturbation the last mantissa bit.

2. Calculate the mean of samples as

Xave =
∑N

i=1 Xi

N , Yave =
∑N

i=1 Yi

N , Zave =
∑N

i=1 Zi

N .

3. Calculate the variance of samples as

S2
X =

1

N − 1

N∑

i=1

(Xi−Xave)
2, S2

Y =
1

N − 1

N∑

i=1

(Yi−Yave)
2, S2

Z =
1

N − 1

N∑

i=1

(Zi−Zave)
2.
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4. Calculate

CXave,X = log10
√

N|Xave|
τβSX

, CYave,Y = log10
√

N|Yave|
τβSY

, CZave,Z = log10
√

N|Zave|
τβSZ

,

as the common significant digits of each corresponding components of the
exact solution and the approximate value, where τβ is the value of T distrib-
ution with N − 1 degree of freedom and confidence interval 1 − β (If N = 3
and β = 0.05 then τβ = 4.303).

5. if CXave,X � 0 orXave = 0, CYave,Y � 0 orYave = 0, CZave,Z � 0 orZave = 0.

then write X̃ = @.0

Definition 4.1. In the CESTAC method X = @.0 is an “informatical zero”, if
and only if, Xave = 0 or CXave,X ≤ 0 [15].

For solving the crisp linear system AX = b by the iterative methods, this
system converts into an equivalent system of the form X = QX + C for some
fixed matrix Q and vector C. With the initial vector X(0), the iterative equation
to approximate the solution vectors is as follows:

X(k+1) = QX(k) + C, k = 1, 2, 3, . . . (12)

Corollary 4.1. For any X(0) ∈ R
n, the iterative method X(k+1) = QX(k) + C,

for each k ≥ 1, converges to the unique solution of X = QX + C if and only if
ρ(Q) < 1 [20].

Corollary 4.2. If || Q ||< 1 for any natural matrix norm, and C is a given
vector, then the iterative method X(k+1) = QX(k)+C converges, for any X(0) ∈
R

n [20].

Definition 4.2 [13,19]. For two distinct vectors X,Y ∈ R
n, the number of

common significant digits is defined as:

CX,Y = log10
||X + Y ||2

2
√

n||X − Y ||2 . (13)

for X = Y : CX,Y = +∞.

Now, we can prove the following theorem for computing of the common signifi-
cant digits of each corresponding components of the approximated solution and
exact solution for a linear system using an iterative method.

Theorem 4.1. Let X(k+1) = P1X
(k)+Q1, Y

(k+1) = P2Y
(k)+Q2 and Z(k+1) =

P3Z
(k) + Q3, k � 0 be convergent iterexact solution (X,Y,Z) of the system (3)

with Q1, Q2, Q3 
= 0. Then, for sufficiently large value of k,

log10(1− ‖ P1 ‖2) � CX(k),X − CX(k),X(k+1) � log10(1+ ‖ P1 ‖2), (14)
log10(1− ‖ P2 ‖2) � CY (k),Y − CY (k),Y (k+1) � log10(1+ ‖ P2 ‖2), (15)
log10(1− ‖ P3 ‖2) � CZ(k),Z − CZ(k),Z(k+1) � log10(1+ ‖ P3 ‖2). (16)
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Proof. First we prove (14), then (15) and (16) can be proved similarly.
According to Eq. (13)

CX(k),X − CX(k),X(k+1) = log
‖X(k) + X‖2

2
√

n‖X(k) − X‖2 − log
‖X(k) + X(k+1)‖2

2
√

n‖X(k) − X(k+1)‖2

= log
‖X(k) + X‖2

‖X(k) + X(k+1)‖2 + log
‖X(k) − X(k+1)‖2

‖X(k) − X‖2 . (17)

Since by increasing k, X(k) � X and X(k+1) � X, then first term of this equation
is almost equal to zero. Let X(k) − X = E(k), then one can see

X(k) − X = P
(k)
1 (X0 − X) = P

(k)
1 E(0). (18)

For the second term of Eq. (17) we can write

‖X(k) − X(k+1)‖2

‖X(k) − X‖2
=

‖X(k) − X + X − X(k+1)‖2

‖X(k) − X‖2
≤ ‖X(k) − X‖2 + ‖X(k+1) − X‖2

‖X(k) − X‖2

= 1 +
‖X(k+1) − X‖2

‖X(k) − X‖2
= 1 +

‖P
(k+1)
1 E(0)‖2

‖P
(k)
1 E(0)‖2

= 1 + ‖P1‖2.

(19)

According to Eq. (18),

X(k+1) − X(k) = P k
1 (I − P1)E(0).

Therefore,

‖X(k) − X(k+1)‖2

‖X(k) − X‖2
=

‖P k
1 (I − P1)E

(0)‖2

‖P k
1 E(0)‖2

≥ ‖P k
1 E(0)‖2 − ‖P1‖2‖P k

1 E(0)‖
‖P k

1 E(0)‖2
= 1−‖P1‖2.

(20)
According to (19) and (20),

1 − ‖P1‖2 ≤ ‖X(k) − X(k+1)‖2
‖X(k) − X‖2 ≤ 1 + ‖P1‖2.

And finally,

log(1 − ‖P1‖2) ≤ log
‖X(k) − X(k+1)‖2

‖X(k) − X‖2 ≤ log(1 + ‖P1‖2). (21)

When ‖ P1 ‖2 1, then terms of Eq. (21) are almost zero and according to
Eq. (14), we prove that the common significant digits of each corresponding com-
ponents of the solution in two successive iterations and the common significant
digits of the computed solution and the exact solution are almost equal.

CX(k),X � CX(k),X(k+1) .
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5 Numerical Examples

For solving full fuzzy linear systems in the stochastic arithmetic, we present two
sample examples by using the following algorithm and mentioned iterative meth-
ods with the initial vector (X(0), Y (0), Z(0)). The programs have been written
by C++ code and implemented on a PC in double precision and executed by
using CADNA library on a Linux machine. CADNA is a library which is able
to perform the CESTAC method on a code written in C++ or Fortran [8,24].
For the termination criterion, we consider the Hausdorff distance to be an infor-
matical zero (@.0). The successive values X(k), Y (k) and Z(k) are computed and
at each iteration. The computations in the stochastic arithmetic of the sequence
X(k), Y (k), Z(k) are stopped when for an index like kopt, the number of common
significant digits in corresponding components in the norm of difference between
X(kopt), Y (kopt), Z(kopt) and X(k), Y (k), Z(k) respectively become zero.

Algorithm 2.

1. Type (double−st) The list of the real variables.
2. Call cadna-init(-1)
3. k = 0
4. cin >> X0, Y0, Z0

5. Do {
6. X(k+1) = P1X

(k) + Q1, Y
(k+1) = P2X

(k) + Q2,X
(k+1) = P3X

(k) + Q3,
k = 0, 1, 2, . . .

7. cout << “X = ”, strp(Xk+1), “Y = ”, strp(Y k+1), “Z = ”, strp(Zk+1)
8. k = k + 1 }
9. While Max{Max‖(X(k+1) − X(k))‖2,Max‖(Y (k+1) − Y (k))‖2, Max‖

(Z(k+1) − Z(k))‖2} 
= @.0.
10. cadna-end().

The function “Strp” in the output instruction shows only the significant digits
of the value.

Example 1. Consider the following FFLS with triangular fuzzy numbers as
follows:

⎧
⎨

⎩

(3, 0.2, 0.2)x̃1 + (0, 0.2, 0.2)x̃2 + (1, 0.1, 0.1)x̃3 = (2, 1, 3),
(1, 0.2, 0.2)x̃1 + (2, 0.2, 0.2)x̃2 + (0, 0.1, 0.1)x̃3 = (1, 1, 2),
(0, 0.2, 0.2)x̃1 + (2, 0.2, 0.2)x̃2 + (5, 0.1, 0.1)x̃3 = (3, 2, 2).

(22)

By applying Algorithm 2 with X(0) =[0,0,0]T , Y (0) =[0,0,0]T , and Z(0) =[0,0,0]T ,
as the initial values and using the iterative methods in stochastic arithmetic, the
optimal number of iterations for Jacobi method 42, for the Gauss-seidel method
is 16 iterations, Richardson method with γ = 0.26, is 41 and for the SOR iter-
ative method with ω = 0.96196384 is 11. The optimal solution in the stochastic
arithmetic for this system listed in Tables 1, 2, 3 and 4 for each method.
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Table 1. Jacobi method

k x̃ Distance

1 x̃1 = (0.666666666666667, 0.333333333333333, 1) 1

x̃2 = (0.5, 0.5, 1)

x̃3 = (0.6, 0.4, 0.4)

...
...

...

41 x̃1 = (0.5, 0.1875, 0.875) 0.1E-014

x̃2 = (0.25, 0.30625, 0.4625)

x̃3 = (0.5, 0.2375, 0.175)

42 x̃1 = (0.5, 0.187499999999999, 0.874999999999999) @.0

x̃2 = (0.25, 0.306249999999999, 0.462499999999999)

x̃3 = (0.5, 0.237499999999999, 0.174999999999999)

Table 2. Gauss-Seidel method

k x̃ Distance

1 x̃1 = (0.666666666666667, 0.333333333333333, 1) 1

x̃2 = (0.166666666666667, 0.333333333333333, 0.5)

x̃3 = (0.533333333333333, 0.266666666666667, 0.2)

...
...

...

15 x̃1 = (0.5, 0.1875, 0.875) 0.8E-015

x̃2 = (0.25, 0.306249999999999, 0.4625)

x̃3 = (0.5, 0.2375, 0.175)

16 x̃1 = (0.5, 0.187499999999999, 0.875) @.0

x̃2 = (0.25, 0.30625, 0.4625)

x̃3 = (0.5, 0.237499999999999, 0.175)

Table 3. Richardson method with γ = 0.26

k x̃ Distance

1 x̃1 = (0.666666666666667, 0.333333333333333, 0.8) 1

x̃2 = (0.6, 0.5, 1)

x̃3 = (0.633333333333333, 0.410000000000000, 0.350000000000000)

...
...

...

40 x̃1 = (0.5, 0.187499999999999, 0.875) 0.1E-013

x̃2 = (0.25, 0.306249999999999, 0.462499999999999)

x̃3 = (0.5, 0.237499999999999, 0.174999999999999)

41 x̃1 = (0.5, 0.1875, 0.875) @.0

x̃2 = (0.25, 0.30625, 0.4625)

x̃3 = (0.5, 0.2375, 0.175)
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Table 4. SOR Method with ω = 0.96196384

k x̃ Distance

1 x̃1 = (0.641309226666666, 0.320654613333333, 0.961963839999999) 0.961963840000000

x̃2 = (0.172523776844151, 0.326752848422075, 0.499276625266227)

x̃3 = (0.510793650054278, 0.259055766080384, 0.192671112134663)

2 x̃1 = (0.501913826670359, 0.181212961559680, 0.868201674123549) 0.139441651773652

x̃2 = (0.246132585953391, 0.303394142272884, 0.460509054265435)

x̃3 = (0.501898673987306, 0.236754927645707, 0.173774364702036)

.

.

.
.
.
.

.

.

.

10 x̃1 = (0.49999999999999, 0.18749999999999, 0.87500000000000) 0.1E-014

x̃2 = (0.25000000000000, 0.306249999999999, 0.46250000000000)

x̃3 = (0.49999999999999, 0.237500000000000, 0.17500000000000)

11 x̃1 = (0.5, 0.1875, 0.875) @.0

x̃2 = (0.25, 0.30625, 0.4625)

x̃3 = (0.5, 0.2375, 0.175)

Table 5. Jacobi method

k x̃ Distance

1 x̃1 = (3.05555555555555, 1.03333333333333, 2.12500000000000) 3.05555555555555

x̃2 = (2.53571428571428, 1.28928571428571, 1.21785714285714)

x̃3 = (2.20833333333333, 1.15000000000000, 2.12083333333333)

x̃4 = (2.450000000000000, 1.002500000000000, 1.84750000000000)

2 x̃1 = (0.948809523809523,−0.247464726631393, 0.183831569664902) 2.15687830687830

x̃2 = (0.681746031746031, 0.148316326530612,−0.574909297052154)

x̃3 = (0.051455026455026, 0.294523809523809, 0.294259259259259)

x̃4 = (0.382936507936508, 0.404888888888888,−0.308015873015870)

..

.
..
.

..

.

176 x̃1 = (1.99999999999999, 0.499999999999999, 1.09999999999999) 0.4E-014

x̃2 = (1.50000000000000, 0.749999999999999, 0.249999999999999)

x̃3 = (0.999999999999999, 0.500000000000000, 1.19999999999999)

x̃4 = (1.24999999999999, 0.250000000000000, 1.00000000000000)

177 x̃1 = (2, 0.5, 1.1) @.0

x̃2 = (1.5, 0.75, 0.25)

x̃3 = (1, 0.5, 1.2)

x̃4 = (1.25, 0.25, 1)
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Table 6. Gauss-Seidel method

k x̃ Distance

1 x̃1 = (3.65688229194444, 1.23669110236666, 2.54319541212499) 3.65688229194444

x̃2 = (1.78429485916707, 1.12013743320461, 0.587902862511484)

x̃3 = (1.55759705438353, 0.906209633320182, 1.911366014528020)

x̃4 = (0.829843091661695, 0.15063481614000, 0.862852638868634)

2 x̃1 = (1.63716638626097, 0.12634625980984, 0.479817449745303) 2.06337796237969

x̃2 = (1.44928823554314, 0.566704774529940, 0.12988711292676)

x̃3 = (1.22417591323634, 0.446504994724428, 1.22586612797774)

x̃4 = (1.39015171184824, 0.338259054668160, 1.05579900971072)

.

.

.
.
.
.

.

.

.

37 x̃1 = (1.99999999999999, 0.499999999999999, 1.09999999999999) 0.4E-014

x̃2 = (1.50000000000000, 0.749999999999999, 0.249999999999999)

x̃3 = (0.999999999999999, 0.500000000000000, 1.19999999999999)

x̃4 = (1.24999999999999, 0.250000000000000, 1.00000000000000)

38 x̃1 = (2, 0.5, 1.1) @.0

x̃2 = (1.5, 0.75, 0.25)

x̃3 = (1, 0.5, 1.2)

x̃4 = (1.25, 0.25, 1)

Table 7. Richardson method with γ = 0.097

k x̃ Distance

1 x̃1 = (2.66750000000000, 0.902100000000000, 1.855125000000000) 2.66750000000000

x̃2 = (1.72175000000000, 0.875425000000000, 0.826925000000000)

x̃3 = (1.28525000000000, 0.669300000000000, 1.234325000000000)

x̃4 = (2.37650000000000, 0.972424999999999, 1.792074999999999)

2 x̃1 = (1.154317300000000, 0.157624999999999, 0.781228299999999) 1.36357750000000

x̃2 = (1.27707774999999, 0.564845549999999, 0.153349725000000)

x̃3 = (0.705165750000000, 0.249037800000000, 0.801845649999999)

x̃4 = (1.01292249999999, 0.026119674999999, 0.544102100000000)

..

.
..
.

..

.

48 x̃1 = (2.00000000000000, 0.500000000000000, 1.09999999999999) 0.5E-014

x̃2 = (1.50000000000000, 0.749999999999999, 0.249999999999999)

x̃3 = (0.999999999999999, 0.499999999999999, 1.19999999999999)

x̃4 = (1.25000000000000, 0.249999999999999, 0.99999999999999)

49 x̃1 = (2, 0.5, 1.1) @.0

x̃2 = (1.5, 0.75, 0.25)

x̃3 = (1, 0.5, 1.2)

x̃4 = (1.25, 0.25, 1)
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Example 2. Consider the FFLS with triangular fuzzy numbers as follows:

⎧
⎪⎪⎨

⎪⎪⎩

(9, 0.2, 0.2)x̃1 + (1, 0.4, 0.3)x̃2 + (3, 0.3, 0.4)x̃3 + (4, 0.2, 0.1)x̃4 = (27.5, 9.3, 19.125),

(2, 0.3, 0.1)x̃1 + (7, 0.4, 0.2)x̃2 + (2, 0.2, 0.3)x̃3 + (1, 0.1, 0.3)x̃3 = (17.75, 9.025, 8.525),

(1, 0.3, 0.2)x̃1 + (1, 0.5, 0.2)x̃2 + (6, 0.3, 0.1)x̃3 + (3, 0.2, 0.3)x̃3 = (13.25, 6.9, 12.725),

(2, 0.4, 0.5)x̃1 + (4, 0.5, 0.2)x̃2 + (2, 0.6, 1.2)x̃3 + (10, 0.3, 0.3)x̃3 = (24.5, 10.025, 18.475).

(23)

By assumpsion X(0) = [0, 0, 0, 0]T , Y (0) = [0, 0, 0, 0]T , and Z(0) = [0, 0, 0, 0]T ,
as the initial values and using Algorithm 2 in stochastic arithmetic, the Jacobi
iterative method is converged after 177 iterations and the Gauss-seidel method
is converged after 38 iterations. Also, in Richardson method with γ = 0.097,
the number of iterations is optimized after 49 iterations and for the SOR itera-
tive method with ω = 1.196797841 after 29 iterations. The optimal solution in
the stochastic arithmetic for this system listed in Tables 5, 6, 7 and 8 for each
method.

Table 8. SOR method with ω = 1.196797841

k x̃ Distance

1 x̃1 = 3.05555555555555, 1.03333333333333, 2.12499999999999) 3.05555555555555

x̃2 = (1.66269841269841, 0.994047619047618, 0.610714285714285)

x̃3 = (1.42195767195767, 0.812103174603174, 1.66488095238095)

x̃4 = (0.889417989417989, 0.235793650793650, 0.845238095238095)

2 x̃1 = (2.00152851263962, 0.338422986478542, 0.930116108171663) 1.19488389182833

x̃2 = (1.43051566305534, 0.647582094566221, 0.16546569244981)

x̃3 = (1.19161697600851, 0.475687865681251, 1.29017199266537)

x̃4 = (1.23916463704823, 0.263287848884409, 0.953906896503457)

.

.

.
.
.
.

.

.

.

28 x̃1 = (1.99999999999999, 0.499999999999999, 1.09999999999999) 0.4E-014

x̃2 = (1.50000000000000, 0.749999999999999, 0.249999999999999)

x̃3 = (0.999999999999999, 0.500000000000000, 1.19999999999999)

x̃4 = (1.24999999999999, 0.250000000000000, 1.00000000000000)

29 x̃1 = (2, 0.5, 1.1) @.0

x̃2 = (1.5, 0.75, 0.25)

x̃3 = (1, 0.5, 1.2)

x̃4 = (1.25, 0.25, 1)

6 Conclusion

In this paper, we proposed an algorithm in order to approximate the solution of
a FFLS in the stochastic arithmetic. By applying the CESTAC method based
on the stochastic arithmetic, and use the iterative method as Jacobi, Gauss-
seidel, Richardson and SOR to approximate the solution of FFLS, the results
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are validated step by step. We determined the solution of FFLS with the least
number of iterations on the stochastic arithmetic. Also, the useless iteration are
omitted. By using the computational zero as the optimal termination criterion,
the iterative process is stopped correctly and computation time is saved, because
many useless operations and iterations are not performed. Finally, we show that
by using the stochastic arithmetic is possible to increase the accuracy of the
computed solution of FFLS, and the stochastic arithmetic can play an important
role to rely the numerical algorithms.
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Abstract. Recently an order induced by t-norms, uninorms and null-
norms have been investigated. This paper is mainly devoted to defining
and investigating the set of incomparable elements with respect to the
order induced by a uninorm. Also, by defining such an order, an equiva-
lence relation on the class of uninorms is defined and this equivalence is
deeply investigated.

1 Introduction

Uninorms are introduced by Yager and Rybalov [29]. Uninorms are special aggre-
gation operators which have proven to be useful in many applications like fuzzy
logic, expert systems, neural networks, fuzzy system modeling [14,16,30].

Uninorms on the real unit interval as generalizations of t-norms and
t-conorms admit a neutral element e to be an arbitrary point from [0, 1].

In [27], a natural order for semigroups was defined. Similarly, in [20], a partial
order defined by means of t-norms on a bounded lattice was introduced

x �T y :⇔ T (�, y) = x for some � ∈ L,

where L is a bounded lattice, x, y of a bounded lattice L and T is a t-norm on
L. This partial order �T is called a T -partial order on L.

In [2], with the help of any t-norm T on [0, 1], it was obtained that the family
(Tλ)λ∈(0,1) of t-norms on [0, 1]. If T was a divisible t-norm, then it was obtained
that ([0, 1],�Tλ

) was a lattice. The uninorms, t-norms and t-conorms were also
studied by many other authors [1–3,7,9–13,17–19,23–26,28,31].

In the present paper, we introduce the set of incomparable elements with
respect to the U -partial order for any uninorm on [0, 1]. The main aim is to
investigate some properties of this set. The paper is organized as follows. We
shortly recall some basic notions in Sect. 2 In Sect. 3, we define the set of incom-
parable elements with respect to the U -partial order for any uninorm on [0, 1].
Also, we determine the set of incomparable elements w.r.t. U -partial order for
some special uninorms. Then, we define an equivalence on the class of uninorms
on [0, 1]. In Sect. 4, we define that the set I (x)

U , consisting all incomparable ele-
ments with any x ∈ (0, 1) according to �U . Finally we show that even if the
uninorms are equivalent under this relation, it need not be the case that their
partial orders coincide.
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 7
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2 Preliminaries

Let us now recall all necessary basic notions.

Definition 1. [22] Let (L,�, 0, 1) be a bounded lattice. A triangular norm T
(briefly t-norm) is a binary operation on L which is commutative, associative,
monotone and has neutral element 1.

Definition 2. [22] Let (L,�, 0, 1) be a bounded lattice. A triangular conorm S
(briefly t-conorm) is a binary operation on L which is commutative, associative,
monotone and has neutral element 0.

Example 1. [22] Well-known triangular norms and triangular conorms on [0, 1]
are:

TM (x, y) = min(x, y)
TP (x, y) = x.y

TL(x, y) = max(x + y − 1, 0)

TD(x, y) =

{
0 , (x, y) ∈ [0, 1)2

min(x, y) , otherwise

SM (x, y) = max(x, y)
SP (x, y) = x + y − x.y

SL(x, y) = min(x + y, 1)

SD(x, y) =

{
1 , (x, y) ∈ (0, 1]2

max(x, y) , otherwise

Also, t-norms on a bounded lattice (L,�, 0, 1) are defined in similar way, and
then extremal t-norms T∧ and TW on L is defined as follows, respectively:

T∧(x, y) = x ∧ y

TW (x, y) =

⎧⎪⎨
⎪⎩

x , if y = 1
y , if x = 1
0 , otherwise

Similarly it can be defined the t-conorms S∨ and SW .
Especially we obtained that TW = TD and T∧ = TM for L = [0, 1].

Definition 3. [6] A t-norm T on L is divisible if the following condition holds:

∀x, y ∈ L with x � y there is a z ∈ L such that x = T (y, z).

Abasic example of a non-divisible t-normon an arbitrary latticeL (i.e., cardL > 3)
is the weakest t-norm TW . Trivially, the infimum T∧ is divisible: x � y is equivalent
to x ∧ y = x.
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Definition 4. [4] Given a bounded lattice (L,�, 0, 1) and a, b ∈ L, if a and b
are incomparable, in this case we use the notation a ‖ b.

Definition 5. [4] Given a bounded lattice (L,�, 0, 1) and a, b ∈ L, a � b, a
subinterval [a, b] of L is defined as

[a, b] = {x ∈ L | a � x � b}

Similarly, [a, b) = {x ∈ L | a � x < b}, (a, b] = {x ∈ L | a < x � b} and
(a, b) = {x ∈ L | a < x < b}.
Definition 6. [5] Let (L,�, 0, 1) be a bounded lattice. An operation U : L2 → L
is called a uninorm on L, if it is commutative, associative, increasing with respect
to the both variables and has a neutral element e ∈ L.

We denote by U (e) the set of all uninorms on L with the neutral element e ∈ L.
A(e) = (0, e] × [e, 1) ∪ [e, 1) × (0, e] for e ∈ L \ {0, 1}.
Definition 7. [9] Let U be a uninorm on a bounded lattice L with a neutral
element e ∈ L. An element x ∈ L is called an idempotent element of U if
U(x, x) = x.

Proposition 1. [21] Let (L,�, 0, 1) be a bounded lattice, e ∈ L and U be a
uninorm with the neutral element e on L. Then,

(i) T ∗ = U |[0,e]2 : [0, e]2 → [0, e] is a t-norm on [0, e].
(ii) S∗ = U |[e,1]2 : [e, 1]2 → [e, 1] is a t-conorm on [e, 1].

Definition 8. [20] Let L be a bounded lattice, T be a t-norm on L. The order
defined as following is called a T −partial order (triangular order) for t-norm T :

x �T y :⇔ T (�, y) = x for some � ∈ L.

Definition 9. [15] Let L be a bounded lattice, S be a t-conorm on L. The order
defined as following is called a S − partial order for t-conorm S:

x �S y :⇔ S(�, x) = y for some � ∈ L.

Definition 10. [15] Let (L,�, 0, 1) be a bounded lattice and U be a uninorm
with neutral element e on L. Define the following relation, for x, y ∈ L, as

x �U y :⇔

⎧
⎪⎨

⎪⎩

if x, y ∈ [0, e] and there exist k ∈ [0, a] such that U(k, y) = x or,

if x, y ∈ [e, 1] and there exist � ∈ [e, 1] such that U(x, �) = y or,

if (x, y) ∈ L∗ and x � y.

(1)

where Ie = {x ∈ L | x ‖ e} and L∗ = [0, e]× [e, 1]∪ [0, e]× Ie ∪ [e, 1]× Ie ∪ [e, 1]×
[0, e] ∪ Ie × [0, e] ∪ Ie × [e, 1] ∪ Ie × Ie.

Proposition 2. [15] The relation �U defined in (1) is a partial order on L.
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Proposition 3. [15] Let (L,�, 0, 1) be a bounded lattice and U ∈ U (e). If x �U

y for any x, y ∈ L, then x � y.

Proposition 4. [15] Let (L,�, 0, 1) be a bounded lattice and U ∈ U (e). Then,
(L,�U ) is a bounded partially ordered set.

Lemma 1. [15] Let (L,�, 0, 1) be a bounded lattice and U be a uninorm with
neutral element e on L. The order �U coincides with the order �T (�S), when
e = 1 (e = 0).

Proposition 5. [8] Let T be a t-norm on [0, 1]. T is divisible if and only if T
is continuous.

3 The Set KU ⊂ [0, 1] Consisting of Incomparable
Elements with Respect to �U on [0, 1]

Definition 11. Let (L,�, 0, 1) be a bounded lattice and U1 and U2 be two
uninorms on L. If for all x, y ∈ L, x �U1 y ⇒ x �U2 y, then we say that U2 is
order-stronger than U1, or equivalently, that U1 is order-weaker than U2.

In [2], it was shown that for the t-norms TW and T∧ on L, TW is the order-
weakest and T∧ is the order-strongest t-norm, i.e., �TW

⊆�T ⊆�T∧ . But for the
uninorms, it need not be that case. Now, let us investigate the following example.

Example 2. Consider the uninorms Ue : [0, 1]2 → [0, 1] and Ue : [0, 1]2 → [0, 1]
with neutral element e �= 0, 1 defined by

Ue(x, y) =

⎧⎪⎨
⎪⎩
0 , (x, y) ∈ [0, e)2

max(x, y) , (x, y) ∈ [e, 1]2

min(x, y) , otherwise

and

Ue(x, y) =

⎧⎪⎨
⎪⎩

min(x, y) , (x, y) ∈ [0, e]2

1 , (x, y) ∈ (e, 1]2

max(x, y) , otherwise

We know that Ue is the smallest uninorm and Ue is the greatest uninorm on
[0, 1]. We showed that Ue is not order-weakest and Ue is not order-strongest
uninorm.

Now, we study the set of elements being incomparable with some other ele-
ment with respect to the U -partial order �U with U some uninorm on [0, 1].

Definition 12. Let U be a uninorm on [0, 1] and let KU be defined by

KU = {x ∈ (0, 1) | for some y ∈ (0, 1), [x < y and x �U y] or [y < x and y �U x]}
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Note that an element x ∈ KU is not necessarily incomparable with all ele-
ments y ∈ [0, 1] \ {0, 1, x}.
Theorem 1. [16] Let U : [0, 1]2 → [0, 1] be a uninorm with neutral element
e ∈ ]0, 1[. Then the sections x → U(x, 1) and x → U(x, 0) are continuous in
each point except perhaps for e if and only if U is given by one of the following
formulas.

(a) If U(0, 1) = 0, then

U(x, y) =

⎧⎪⎨
⎪⎩

eT (x
e , y

e ) , (x, y) ∈ [0, e]2

e + (1 − e)S(x−e
1−e , y−e

1−e ) , (x, y) ∈ [e, 1]2

min(x, y) , (x, y) ∈ A(e).
(2)

where T is a t-norm and S is a t-conorm.
(b) If U(0, 1) = 1, then the same structure holds, changing minimum by

maximum in A(e).

The set of uninorms as in case (a) will be denoted by Umin and the set
of uninorms as in case (b) by Umax. We will denote a uninorm U in Umin

with underlying t-norm T , underlying t-conorm S and neutral element e by
U ≡ 〈T, e, S〉min and in a similar way, a uninorm in Umax by U ≡ 〈T, e, S〉max.

Proposition 6. Let U be a uninorm such that U ≡ 〈T, e, S〉min or U ≡
〈T, e, S〉max. Then,

KU = eKT ∪ (e + (1 − e)KS).

Lemma 2. Consider the smallest uninorm Ue on [0, 1] with neutral element
e �= 0, 1 of Example 2. Then, we have that KUe

= (0, e).

Corollary 1. For the drastic product t-norm TD, KTD
= (0, 1).

Corollary 2. For the t-conorm SM , KSM
= ∅.

Lemma 3. Consider the greatest uninorm Ue on [0, 1] with neutral element
e �= 0, 1 of Example 2. Then, we have that KUe

= (e, 1).

Corollary 3. For the minimum t-norm TM , KTM
= ∅.

Corollary 4. For the t-conorm SD, KSD
= (0, 1).

Lemma 4. Let (L,�, 0, 1) be a bounded lattice. For all uninorms U and all
x ∈ L it holds that 0 �U x, x �U x and x �U 1.

Definition 13. Define a relation βU on the class of all uninorms on [0, 1] by
U1βUU2,

U1βUU2 :⇔ KU1 = KU2 .

Lemma 5. The relation βU given in Definition 13 is an equivalence relation.
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Definition 14. For a given uninorm U on [0, 1], we denote by U the βU equiv-
alence class linked to U , i.e.,

U = {U
′ | U

′
βUU}.

Proposition 7. The set [0, 1]/βU , is uncountably infinite.

Theorem 2. [16] Let e ∈ [0, 1]. U ∈ U (e) if and only if

U(x, y) =

⎧⎪⎨
⎪⎩

TU , (x, y) ∈ [0, e]2

SU , (x, y) ∈ [e, 1]2

C , (x, y) ∈ A(e)

where TU and SU are operations respectively isomorphic with some triangular
norm and triangular conorm and increasing operation C : A(e) → [0, 1] fulfills

min(x, y) � C(x, y) � max(x, y) for (x, y) ∈ A(e).

Proposition 8. Let U be a uninorm on [0, 1] with neutral element e of
Theorem 2. If TU and SU are continuous, then KU = ∅.

Corollary 5. Let e ∈ [0, 1]. Consider the uninorms Umin and Umax are unique
idempotent uninorm Umin

e and Umax
e , respectively:

U(x, y) =

{
max(x, y) , (x, y) ∈ [e, 1]2

min(x, y) , otherwise

U(x, y) =

{
min(x, y) , (x, y) ∈ [0, e]2

max(x, y) , otherwise

Then, it is obtained that KU = ∅.

4 About the Set I
(x)
U Consisting all Incomparable

Elements with Any x ∈ (0, 1) According to �U

Definition 15. Let U be a uninorm on [0, 1] and let I
(x)
U for x ∈ (0, 1) be

defined by

I
(x)
U = {y ∈ (0, 1) | [x < y and x �U y] or [y < x and y �U x]}

After that we will use the notation I
(x)
U to denote the set of all incomparable

elements with x ∈ (0, 1) according to �U .
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Example 3. The uninorm U := Umin(T nM ,SM , 12 )
: [0, 1]2 → [0, 1] with neutral

element e = 1
2 defined as follows:

Umin(T nM ,SM , 12 )
(x, y) =

⎧⎪⎨
⎪⎩
0 , (x, y) ∈ [0, 1

2 ]
2

and x + y � 1
2

max(x, y) , (x, y) ∈ [12 , 1]2

min(x, y) ,Otherwise

Then,

(a) I
(x)
U = {y ∈ (0, 1

2 − x] | x �= y} for x ∈ (0, 1
2 )

(b) I
(x)
U = ∅ for x � 1

2 .

Example 4. Consider the smallest uninorm Ue with neutral element e of
Example 2. Then,

(a) I
(x)
Ue

= {y ∈ (0, e) | x �= y} for x ∈ (0, e) and

(b) I
(x)
Ue

= ∅ for x � e.

Example 5. Consider the greatest uninorm Ue with neutral element e of
Example 2. Then,

(a) I
(x)

Ue
= {y ∈ (e, 1) | x �= y} for x ∈ (e, 1) and

(b) I
(x)

Ue
= ∅ for x � e.

Lemma 6. Let U be a uninorm on [0, 1]. Then KU =
⋃

x∈[0,1] IU
(x).

Proposition 9. Let U1 and U2 be two uninorms on [0, 1]. If for all x ∈ [0, 1],
IU1

(x) = IU2
(x), then the uninorms U1 and U2 are equivalent under the relation

βU .

Remark 1. The converse of Proposition 9 may not be true.

Example 6. Consider the uninorms U on [0, 1] with neutral element e = 1
2 of

Example 3 and Ue on [0, 1] with neutral element e = 1
2 of Example 2. We

showed that the uninorms U and Ue are equivalent under the relation βU . But,
IU

( 2
5 ) �= IUe

( 2
5 ).

Corollary 6. Although the uninorms U1 and U2 are equivalent under the rela-
tion βU , it need not be the case that the U1-partial order coincides with the
U2-partial order.

5 Conclusion

We have defined the set of incomparable elements with respect to the U -partial
order for any uninorm on [0, 1]. Also we have introduced and studied an equiva-
lence relation βU defined on the class of all uninorms on [0, 1]. We have defined
that the set I

(x)
U , consisting all incomparable elements with any x ∈ (0, 1)

according to �U . Finally we have shown that even if the uninorms are equiv-
alent under the this relation, it need not be the case that their partial orders
coincide.
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Abstract. Nullnorms have been produced from triangular norms and
triangular conorms and they have several applications in fuzzy logic. The
main purpose of this paper is to study the order induced by nullnorms on
bounded lattices. We discuss the relationship between the natural order
and the order induced by a nullnorm on bounded lattice.

1 Introduction

Menger, in [19], introduced triangular norms and triangular conorms. They have
a lot of fields of mathematics, for instance in fuzzy logic and their applications.

Firstly t-operators were defined by Mas et al. in [17], and then in [5] Calvo
et al. introduced a nullnorm. Also, in [5], they showed that nullnorms were
equivalent to t-operators.

In [20], a natural order for semigroups was defined. Similarly, in [14], a partial
order defined by means of t-norms on a bounded lattice was introduced.

In [2], with the help of any t-norm T on [0, 1], a family of t-norms on [0, 1],
(Tλ)λ∈(0,1) was constructed. If T was a divisible t-norm, then it was obtained
that ([0, 1],�Tλ

) was a lattice. In [1], an order induced by nullnorms on bounded
lattices was defined and discussed. The nullnorms and t-norms were also studied
by many other authors [3,6,8–12,16,18,21,22].

In the present paper, we investigate some properties an order induced by
nullnorms on bounded lattices. The paper is organized as follows. In Sect. 2, we
will first recall all important notions and results. We will discuss the relationship
between the order induced by a nullnorm and the natural order on the lattice in
Sect. 3. Even if L is a chain, we will show that L need not be a chain with respect
to the F -partial order. Similar arguments will be done for lattices. Finally, we
will show that the set of all idempotent elements of F is a chain with respect to
the F -partial order. We will give our concluding remarks in Sect. 4.

2 Basic Notions and Results

Let us now recall all necessary basic notions.
Let (L,�, 0, 1) be a bounded lattice. A triangular norm is a binary function

T : L2 → L which is commutative, associative, non-decreasing in both variables
and 1 is its neutral element.
c© Springer International Publishing AG 2018
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Dual functions to t-norms are t-conorms. A triangular conorms is a binary
function S : L2 → L which is commutative, associative, non-decreasing in both
variables and 0 is its neutral element.

Example 1. [15] Well-known triangular norms and triangular conorms on [0, 1]
are:

TM (x, y) = min(x, y)
TP (x, y) = x.y

TL(x, y) = max(x + y − 1, 0)

TD(x, y) =

{
0 , (x, y) ∈ [0, 1)2

min(x, y) , otherwise

SM (x, y) = max(x, y)
SP (x, y) = x + y − x.y

SL(x, y) = min(x + y, 1)

SD(x, y) =

{
1 , (x, y) ∈ (0, 1]2

max(x, y) , otherwise

Also, t-norms on a bounded lattice (L,�, 0, 1) are defined in similar way, and
then extremal t-norms T∧ and TW on L is defined as follows, respectively:

T∧(x, y) = x ∧ y

TW (x, y) =

⎧⎪⎨
⎪⎩

x , if y = 1
y , if x = 1
0 , otherwise

Similarly it can be defined the t-conorms S∨ and SW .
Especially we obtained that TW = TD and T∧ = TM for L = [0, 1].

Definition 1. [6] A t-norm T on L is divisible if the following condition holds:

∀x, y ∈ L with x � y there is a z ∈ L such that x = T (y, z).

Abasic example of a non-divisible t-normon an arbitrary latticeL (i.e., cardL > 3)
is the weakest t-norm TW . Trivially, the infimum T∧ is divisible: x � y is equivalent
to x ∧ y = x.

Proposition 1. [7] Let T be a t-norm on [0, 1]. T is divisible if and only if T
is continuous.

Definition 2. [4] Given a bounded lattice (L,�, 0, 1) and a, b ∈ L, if a and b
are incomparable, in this case we use the notation a ‖ b.
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Definition 3. [4] Given a bounded lattice (L,�, 0, 1) and a, b ∈ L, a � b, a
subinterval [a, b] of L is defined as

[a, b] = {x ∈ L | a � x � b}
Similarly, [a, b) = {x ∈ L | a � x < b}, (a, b] = {x ∈ L | a < x � b} and
(a, b) = {x ∈ L | a < x < b}.
Definition 4. [5] Let (L,�, 0, 1) be a bounded lattice. A commutative, associa-
tive, non-decreasing in each variable function F : L2 → L is called a nullnorm if
there is an element a ∈ L such that F (x, 0) = x for all x � a, F (x, 1) = x for all
x � a.

It can be easily obtained that F (x, a) = a for all x ∈ L. So a ∈ L is the zero
(absorbing) element for F .

Consider the set F of all nullnorms on L with the following order: For
F1, F2 ∈ F ,

F1 � F2 ⇔ F1(x, y) � F2(x, y) for all (x, y) ∈ L2.

Da = [0, a) × (a, 1] ∪ (a, 1] × [0, a) for a ∈ L\{0, 1}.

Definition 5. [13] An element x ∈ L is called an idempotent element of a
function F : L2 → L if F (x, x) = x. The function F is called idempotent if all
elements of L are idempotent.

Definition 6. [14] Let L be a bounded lattice, T be a t-norm on L. The order
defined as following is called a T− partial order (triangular order) for t-norm T :

x �T y :⇔ T (�, y) = x for some � ∈ L.

The duality between t-norms and t-conorms is expressed by the fact that
from T -partial order for any t-norm T we can obtain its dual S-partial order for
any t-conorm S by the follows

x �S y :⇔ S(�, x) = y for some � ∈ L.

Definition 7. [1] Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm with
zero element a on L. Define the following relation, for x, y ∈ L, as

x �F y :⇔
⎧
⎨

⎩

if x, y ∈ [0, a] and there exist k ∈ [0, a] such that F (x, k) = y or
if x, y ∈ [a, 1] and there exist � ∈ [a, 1] such that F (y, �) = x or,
if (x, y) ∈ L∗ and x � y.

(1)

where Ia = {x ∈ L | x ‖ a} and L∗ = [0, a] × [a, 1] ∪ [0, a] × Ia ∪ [a, 1] × Ia ∪
[a, 1] × [0, a] ∪ Ia × [0, a] ∪ Ia × [a, 1] ∪ Ia × Ia.

Proposition 2. [1] The relation �F defined in (1) is a partial order on L.

Note: The partial order �F in (1) is called F -partial order on L.

Proposition 3. [1] Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm on
L. If x �F y for any x, y ∈ L, then x � y.

Proposition 4. [1] Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm
with zero element a. Then, (L,�F ) is a bounded partially ordered set.



Some Notes on the F -partial Order 81

3 On the F -partial Order

Lemma 1. [1] Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm with
zero element a on L. The order �F coincides with the order �T (�S), when
a = 0 (a = 1).

Remark 1. Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm with zero
element a on L. Even if (L,�, 0, 1) is a chain, the partially ordered set (L,�F )
may not be a chain. To illustrate this claim we shall give the following example.

Example 2. Consider L = [0, 1] and take the nullnorm Fa : [0, 1]2 → [0, 1] with
the zero element a ∈ (0, 1) defined as follows:

Fa(x, y) =

⎧⎪⎨
⎪⎩

min(x, y) , (x, y) ∈ [a, 1]2

a , (x, y) ∈ (0, a]2 ∪ Da

max(x, y) , otherwise

Fa is the greatest nullnorm on [0, 1] by [12]. But L is not a chain with respect
to the �Fa

.

In the paper, for any subset X of L, X�F
(X�F

) denotes the set of the upper
(lower) bounds of X with respect to �F . Also, for any x, y ∈ L, x ∧F y (x ∨F y)
denotes the greatest (least) element of the lower (upper) bounds with respect to
�F , if there exists.

Remark 2. Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm with zero
element a on L. Even if (L,�, 0, 1) is a lattice, the partially ordered set (L,�F )
may not be a lattice. To illustrate this claim we shall give the following example.

Example 3. Consider the function F := F(T nM ,S, 15 )
: [0, 1]2 → [0, 1] defined as

follows:

F(T nM ,S, 15 )
(x, y) =

⎧⎪⎨
⎪⎩

max(x, y) , (x, y) ∈ [0, 1
5 ]

2

1
5 , ((x, y) ∈ [15 , 1]2 and x + y � 1) or (x, y) ∈ D 1

5

min(x, y) , otherwise

The function F is a nullnorm with 1
5 zero element by [1]. Then, ([0, 1],�F ) is

not join-semilattice. Because, we showed that {1
4 , 1

2}�F
= (34 , 1]. Since there does

not exist the least element of ( 34 , 1] with respect to the �F , ([0, 1],�F ) is not a
join-semilattice. So, ([0, 1],�F ) is not lattice.

Remark 3. Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm with zero
element a on L. If (L,�, 0, 1) is a lattice, the partially ordered set (L,�F ) may
be a lattice.
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Example 4. Let (L = {0, x, y, a, z, t, 1},�, 0, 1) be a chain with 0 < x < y < a <
z < t < 1. Consider the function on L defined as follows:

F (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∧ y , (x, y) ∈ [a, 1]2

y , x = 0 and y � a

x , y = 0 and x � a

a , otherwise

By [13], it can be easily seen that F is a nullnorm. The order �F on L has
its diagram as follows (see Fig. 1).

Fig. 1. The order �F on L

Proposition 5. [13] Let (L,�, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and F be
a nullnorm with zero element a on L. Then,

(i) S∗ = F |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].
(ii) T ∗ = F |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

Proposition 6. [1] Let (L,�, 0, 1) be a bounded lattice, F be a nullnorm with
zero element a on L and a ∈ L\{0, 1}. Then, S∗ and T ∗ are divisible if and only
if �F=�.

Corollary 1. Let F : [0, 1]2 → [0, 1] be a nullnorm with zero element a ∈ (0, 1).
Then, S∗ and T ∗ are continuous if and only if �F =�. Moreover, if F is an
idempotent nullnorm on a bounded lattice L, then we have that S∗ = SM and
T ∗ = TM . Thus, the order �F coincides with the order �.

Proposition 7. Let (L,�, 0, 1) be a bounded lattice and F be a nullnorm on L
with zero element a ∈ L\{0, 1} such that a is comparable with all elements of L.
Then, ([0, a],�S∗) and ([a, 1],�T ∗) are lattices if and only if (L,�F ) is a lattice.
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Proposition 8. [5,17] Let F : [0, 1]2 → [0, 1] be a nullnorm with zero element
F (1, 0) = k /∈ {0, 1}. Then,

F (x, y) =

⎧⎪⎨
⎪⎩

kS(x
k , y

k ) , x, y ∈ [0, k]
k + (1 − k)T (x−k

1−k , y−k
1−k ) , x, y ∈ [k, 1]

k , otherwise

where S is a t-conorm and T is a t-norm.

A nullnorm F with zero element k, underlying t-conorm S and underlying
t-norm T will be denoted by F =< S, k, T >.

Proposition 9. Let F =< S, k, T > be a nullnorm with zero element k ∈ (0, 1).
Then,

(i) x �F y for x, y ∈ [0, k] if and only if x
k �S

y
k for x, y ∈ [0, k].

(ii) x �F y for x, y ∈ [k, 1] if and only if x−k
1−k �T

y−k
1−k for x, y ∈ [k, 1].

Proposition 10. Let L be a chain, F be a nullnorm with zero element a ∈
L\{0, 1} and HF be the set of all idempotent elements of F . Then, (HF ,�F ) is
a chain.

4 Concluding Remarks

We have obtained some important results about F -partial order. We have deter-
mined the relationship between the order induced by a nullnorm and the order
on the lattice. If L is a chain, we have shown that L need not be a chain with
respect to the F -partial order. We have shown that the set of all idempotent
elements of F is a chain with respect to the an order induced by nullnorms,
denoted by �F .
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Abstract. Two new intuitionistic fuzzy operators are introduced. For
them it is shown that they have a behaviour similar both to the modal,
as well as to the level operators, defined over intuitionistic fuzzy sets and
for this reason, they are called intuitionistic fuzzy modal-level operators.
Their basic properties are discussed.

Keywords: Intuitionistic fuzzy set · Intuitionistic fuzzy operator

1 Introduction

The Intuitionistic Fuzzy sets (IFSs) were introduced 34 years ago in [1] and
during this time, their theory was enriched with a lot of operators that do not
have analogous in the standard fuzzy sets theory and in the rest of the fuzzy sets
extensions. In the present paper, we introduce two operators that have behaviour
similar to the modal, as well as to the level operators.

2 Preliminary Definitions

Following [3,4], we give the definitions of the basic concepts and the basic oper-
ations, relations and operators over IFSs.

Let us have a fixed universe E and its subset A. The set

A∗ = {〈x, μA(x), νA(x)〉 | x ∈ E},

where
0 ≤ μA(x) + νA(x) ≤ 1

is called IFS and functions μA : E → [0, 1] and νA : E → [0, 1] represent the
degree of membership (validity, etc.) and non-membership (non-validity, etc.).
Now, we can define also function πA : E → [0, 1]by means of

π(x) = 1 − μ(x) − ν(x)

and it corresponds to degree of indeterminacy (uncertainty, etc.).
c© Springer International Publishing AG 2018
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For brevity, we shall write below A instead of A∗, whenever this is possible.
Obviously, for every ordinary fuzzy set A: πA(x) = 0 for each x ∈ E and

these sets have the form {〈x, μA(x), 1 − μA(x)〉|x ∈ E}.
For every two IFSs A and B we can define (see [3,4]):

A ⊂ B iff (∀x ∈ E)((μA(x) ≤ μB(x) & νA(x) > νB(x))
∨(μA(x) < μB(x) & νA(x) ≥ νB(x))
∨(μA(x) < μB(x) & νA(x) > νB(x)));

A ⊆ B iff (∀x ∈ E)(μA(x) ≤ μB(x) & νA(x) ≥ νB(x));
A = B iff (∀x ∈ E)(μA(x) = μB(x) & νA(x) = νB(x));
¬A = {〈x, νA(x), μA(x)〉|x ∈ E};
A ∩ B = {〈x,min(μA(x), μB(x)),max(νA(x), νB(x))〉|x ∈ E};
A ∪ B = {〈x,max(μA(x), μB(x)),min(νA(x), νB(x))〉|x ∈ E};
A + B = {〈x, μA(x) + μB(x) − μA(x).μB(x), νA(x).νB(x)〉 | x ∈ E};
A × B = {〈x, μA(x).μB(x), νA(x) + νB(x) − νA(x).νB(x)〉 | x ∈ E};
A@B = {〈x, (μA(x)+μB(x))

2 , (νA(x)+νB(x))
2 〉|x ∈ E};

A → B = {〈x,max(νA(x), μB(x)),min(μA(x), νB(x))〉|x ∈ E}.

In [4], 34 different operations intuitionistic fuzzy negation and 138 different
operations intuitionistic fuzzy implications are described. They are analogous to
the two classical operations, while the remaining operations have non-classical
behaviour. In [6] their numbers have increased, respectively, to 53 and 185, while,

Fig. 1.

Fig. 2.
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now there are already 189 intuitionistic fuzzy implications and probably, this
number will continue to increase.

In IFS theory there are some other operations that we do not discuss here
because (at least at the moment) they are not related to the operators introduced
here.

The IFSs have different (more than 10) geometrical interpretations. The first
of them (see Fig. 1) is a trivial modification of the fuzzy set geometrical inter-
pretation and it was constructed in the beginning of the research of IFSs. Its
analogue is given in Fig. 2. It is interesting to mention that some authors of
papers over vague sets asserted that the vague sets are better than the IFSs
because the geometrical interpretation of the IFSs is the first interpretation and
of the vague sets – the second one. The truth is that both interpretations have
existed already for 30 years (see [3,4]) in IFSs theory.

Another geometrical interpretation is shown on Fig. 3. It is worth mentioning
that it played very important role in the development of the IFS theory.

Fig. 3.

3 The New Operators

Now, we introduce the two new operators, defined over a given IFS A. They
have the forms:

Hα,β(A) = {〈x, αμA(x), νA(x) + β − βνA(x)〉|x ∈ E},

Jα,β(A) = {〈x, μA(x) + α − αμA(x), βνA(x)〉|x ∈ E},

where α, β ∈ [0, 1] and α + β ≤ 1.
First, we check that

αμA(x) + νA(x) + β − βνA(x) = αμA(x) + (1 − β)νA(x) + β

≤ (1 − β)(μA(x) + νA(x)) + β ≤ 1 − β + β = 1,
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i.e., the first definition is correct. Analogously, we check that the second definition
is also correct.

After this, we see that for each IFS A and for every α, β, γ, δ ∈ [0, 1], so that
α + β ≤ 1 and γ + δ ≤ 1:

Hα,β(A) ⊆ A ⊆ Jγ,δ(A),

where ⊆ is transformed to equality if α = δ = 1 and β = γ = 0.

Theorem 1. For each IFS A and for α, β ∈ [0, 1], so that α + β ≤ 1:

¬Hα,β(¬A) = Jβ,α(A),

¬Jα,β(¬A) = Hβ,α(A).

Two analogues of the topological operators have been defined over the IFSs
(see, e.g., [3,4]): operator “closure” C and operator “intersection” I:

C(A) = {〈x, sup
y∈E

μA(y), inf
y∈E

νA(y)〉|x ∈ E},

I(A) = {〈x, inf
y∈E

μA(y), sup
y∈E

νA(y)〉|x ∈ E}.

In [4] a lot of other topological operators are introduced but here we will
mention only one of them called a weight operator W :

W (A) = {〈x,

Σ
y∈E

μA(y)

card(E)
,

Σ
y∈E

νA(y)

card(E)
〉|x ∈ E},

where card(E) is the number of the elements of the (finite) set E.

Theorem 2. For every two IFSs A and B, and for every α, β ∈ [0, 1] so that
α + β ≤ 1:

C(Hα,β(A)) = Hα,β(C(A)),

I(Hα,β(A)) = Hα,β(I(A)),

W (Hα,β(A)) = Hα,β(W (A)),

C(Jα,β(A)) = Jα,β(C(A)),

I(Jα,β(A)) = Jα,β(I(A)),

W (Jα,β(A)) = Jα,β(W (A)).
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Proof. Let A be a given IFS and let α, β ∈ [0, 1] so that α + β ≤ 1. Then

C(Hα,β(A)) = C({〈x, αμA(x), νA(x) + β − βνA(x)〉|x ∈ E})

= {〈x, sup
y∈E

αμA(x), inf
y∈E

(νA(x) + β − βνA(x))〉|x ∈ E})

= {〈x, α sup
y∈E

μA(x), (1 − β) inf
y∈E

νA(x) + β〉|x ∈ E})

= {〈x, α sup
y∈E

μA(x), inf
y∈E

νA(x) + β − β inf
y∈E

νA(x)〉|x ∈ E})

= Hα,β(C(A)).

The other assertions are proved in the same way.

Theorem 3. For every two IFSs A and B, and for every α, β ∈ [0, 1] so that
α + β ≤ 1:

Hα,β(A → B) = Jβ,α(A) → Hα,β(B),

Jα,β(A → B) = Hβ,α(A) → Jα,β(B).

Proof. Let the IFSs A and B and the real numbers α, β are given. Then

Hα,β(A → B)

= Hα,β({〈x,max(νA(x), μB(x)),min(μA(x), νB(x))〉|x ∈ E})

= {〈x, α max(νA(x), μB(x)),min(μA(x), νB(x)) + β

−β min(μA(x), νB(x))〉|x ∈ E})

= {〈x, α max(νA(x), μB(x)), (1 − β)min(μA(x), νB(x)) + β〉|x ∈ E})

= {〈x,max(ανA(x), αμB(x)),min(μA(x) + β − βμA(x),

νB(x) + β − βνB(x))〉|x ∈ E})

= {〈x, μA(x) + β − βμA(x), ανA(x)〉|x ∈ E}
→ {〈x, αμB(x), νB(x) + β − βνB(x)〉|x ∈ E})

= Jβ,α(A) → Hα,β(B).

The second equality is proved in the same way.

3.1 First Type of Intuitionistic Fuzzy Modal Operator’s Point of
View

The simplest intuitionistic fuzzy modal operators are

A = {〈x, μA(x), 1 − μA(x)〉|x ∈ E};
♦A = {〈x, 1 − νA(x), νA(x)〉|x ∈ E}.
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They are analogous to the modal logic operators “necessity” and “possibility”.
In the framework of the IFSs theory these operators are extended and modi-

fied in “a step by step”manner. The first group of extended modal operators are
the following (see [4]):

Dα(A) = {〈x, μA(x) + α.πA(x), νA(x) + (1 − α).πA(x)〉|x ∈ E},
Fα,β(A) = {〈x, μA(x) + α.πA(x), νA(x) + β.πA(x)〉|x ∈ E},
where α + β ≤ 1,

Gα,β(A) = {〈x, α.μA(x), β.νA(x)〉|x ∈ E},
Hα,β(A) = {〈x, α.μA(x), νA(x) + β.πA(x)〉|x ∈ E},
H∗

α,β(A) = {〈x, α.μA(x), νA(x) + β.(1 − α.μA(x) − νA(x))〉|x ∈ E},

Jα,β(A) = {〈x, μA(x) + α.πA(x), β.νA(x)〉|x ∈ E},
J∗

α,β(A) = {〈x, μA(x) + α.(1 − μA(x) − β.νA(x)), β.νA(x)〉|x ∈ E}.

where α, β ∈ [0, 1] are fixed numbers.
Comparing the two new operators with operator Fα,β , we see that their

parameters α and β satisfy the same conditions. Moreover, for the F - and
G-operators are valid for each IFS A and for every α, β, γ, δ ∈]0, 1] the equalities:

Fα,β(Fγ,δ(A)) = Fα+γ−αγ−αδ,β+δ−βδ−βγ(A),

where α + β ≤ 1 and γ + δ ≤ 1 and

Gα,β(Gγ,δ(A)) = Gαγ,βδ(A),

i.e., each one of these operators when applied to itself is represented by the same
operator with parameters, being functions of the parameters of both identical
operators.

This property is not valid for operators Hα,β ,H∗
α,β , Jα,β , J∗

α,β , but now, we
see that the following assertion is valid.

Theorem 4. For each IFS A and for α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1 and
γ + δ ≤ 1:

Hα,β(Hγ,δ(A)) = Hαγ,β+δ−βδ(A),

Jα,β(Jγ,δ(A)) = Jα+γ−αγ,βδ(A).

Proof. We check sequentially:

Hα,β(Hγ,δ(A)) = Hα,β({〈x, γμA(x), νA(x) + δ − δνA(x)〉|x ∈ E})

= {〈x, αγμA(x), νA(x) + δ − δνA(x) + β − β(νA(x) + δ − δνA(x))〉|x ∈ E}
= {〈x, αγμA(x), νA(x) + (δ + β − βδ) − (δ + β − βδ)νA(x)〉|x ∈ E}

= Hαγ,β+δ−βδ(A)

and

Jα,β(Jγ,δ(A)) = Jα,β({〈x, μA(x) + γ − γμA(x), δνA(x)〉|x ∈ E}
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= {〈x, μA(x) + γ − γμA(x) + α − α(μA(x) + γ − γμA(x)), βδνA(x)〉|x ∈ E}
= {〈x, μA(x) + (α + γ − αγ) − (α + γ − αγ)μA(x), βδνA(x)〉|x ∈ E}

= Jα+γ−αγ,βδ(A).

Therefore, these two operators satisfy the property of F - and G-operators.

Moreover, for each IFS A:

H0,1(A) = {〈x, 0, 1〉|x ∈ E},

J1,0(A) = {〈x, 1, 0〉|x ∈ E},

similarly to operators H∗
0,1 and J∗

1,0, respectively.

Theorem 5. For every two IFSs A and B, and for every α, β ∈ [0, 1] so that
α + β ≤ 1:

Hα,β(A ∩ B) = Hα,β(A) ∩ Hα,β(B),

Hα,β(A ∪ B) = Hα,β(A) ∪ Hα,β(B),

Jα,β(A ∩ B) = Jα,β(A) ∩ Jα,β(B),

Jα,β(A ∪ B) = Jα,β(A) ∪ Jα,β(B).

Proof. Let the IFSs A and B and real numbers α, β ∈ [0, 1] so that α + β ≤ 1
be given. Then

Hα,β(A ∩ B) = Hα,β({〈x,min(μA(x), μB(x)),max(νA(x), νB(x))〉|x ∈ E})

= {〈x, α min(μA(x), μB(x)),

max(νA(x), νB(x)) + β − β max(νA(x), νB(x))〉|x ∈ E}
= {〈x,min(αμA(x), αμB(x)), (1 − β)max(νA(x), νB(x)) + β〉|x ∈ E}

= {〈x,min(αμA(x), αμB(x)),

max((1 − β)νA(x) + β, (1 − β)νB(x)) + β)〉|x ∈ E}
= {〈x, αμA(x), (1 − β)νA(x) + β〉|x ∈ E}
∩{〈x, αμB(x), (1 − β)νB(x) + β〉|x ∈ E}

= Hα,β(A) ∩ Hα,β(B).

The other three equalities can be checked analogously.

It is interesting to mention that similar equalities satisfies only operator
Gα,β , while for all other from the discussed operators, the equalities become
inequalities.

The geometrical interpretations of the new operators are similar to these of
operators H∗

α,β and J∗
α,β - see Figs. 4 and 5. Here, function fX juxtaposes to

each element x of IFS X in universe E, a point in the interpretation triangle.
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Fig. 4. Fig. 5.

Theorem 6. For every IFS A and for every α, β ∈ [0, 1] so that al + β ≤ 1:

Hα,β(A) ⊆ Hα,β( A),
Hα,β(♦A) ⊆ ♦Hα,β(A),

Jα,β(A) ⊆ Jα,β( A),
Jα,β(♦A) ⊆ ♦Jα,β(A).

Proof. For the IFS A and its parameters, mentioned above, the equalities

Hα,β(A) = {〈x, αμA(x), νA(x) + β − βνA(x)〉|x ∈ E}
= {〈x, αμA(x), 1 − alμA(x)〉|x ∈ E}

and

Hα,β( A) = Hα,β({〈x, μA(x), 1 − μA(x)〉|x ∈ E})
= {〈x, αμA(x), 1 − μA(x) + β − β(1 − μA(x))〉|x ∈ E}

= {〈x, αμA(x), 1 − μA(x) + βμA(x))〉|x ∈ E}
hold. From

1 − αμA(x) − (1 − μA(x) + βμA(x)) = (1 − α − β)μA(x) ≥ 0

it follows the validity of the first inequality. The others can be proved in the
same manner.

Similarly to the research, presented in [4], we prove

Theorem 7. For each IFS A and for α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1 and
γ + δ ≤ 1:

Hα,β(Hγ,δ(A)) ⊆ Hγ,δ(Hα,β(A)),
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H∗
α,β(Hγ,δ(A)) ⊆ Hγ,δ(H∗

α,β(A)),

Jα,β(Jγ,δ(A)) ⊆ Jγ,δ(Jα,β(A)),

Jα,β(J∗
γ,δ(A)) ⊆ J∗

γ,δ(Jα,β(A)).

Proof. The validity of the fourth inequality is checked as follows:

Jα,β(J∗
γ,δ(A))

= Jα,β({〈x, μA(x) + γ(1 − μA(x) − δ.νA(x)), δνA(x)〉|x ∈ E})

= {〈x, μA(x) + γ(1 − μA(x) − δνA(x)) + α − αμA(x) − αγ(1 − μA(x) − δνA(x)),

βδνA(x)〉|x ∈ E})

(from

μA(x) + α − αμA(x) + γ(1 − μA(x) − α + αμA(x) − βδνA(x))

−μA(x) − γ(1 − μA(x) − δνA(x)) − α + αμA(x) + αγ(1 − μA(x) − δνA(x))

= γδνA(x) − αγδνA(x) − γβδνA(x)

= γδ(1 − α − β)νA(x) ≥ 0

it follows)

⊆ {〈x, μA(x) + α − αμA(x) + γ(1 − μA(x) − α + αμA(x) − βδνA(x)),

βδνA(x)〉|x ∈ E})

= J∗
γ,δ({〈x, μA(x) + α − αμA(x), βνA(x)〉|x ∈ E})

= J∗
γ,δ(Jα,β(A)).

The remaining inequalities can be proved similarly.

As it is written in [4], In 1991, during a lecture given by the author, a ques-
tion was asked, whether the so far constructed operators (operators Dα, Fα,β ,
Gα,β ,Hα,β , Jα,β ,H∗

α,β , J∗
α,β) can be derived as particular cases of one general

operator? In the next lecture, the author gave a positive answer, preparing the
following text, which was published in [2]. In [5] an addition to the definition is
given. Now, the final form of this operator has the form:

Xa,b,c,d,e,f (A) = {〈x, a.μA(x) + b.(1 − μA(x) − c.νA(x)),
d.νA(x) + e.(1 − f.μA(x) − νA(x))〉|x ∈ E},

where a, b, c, d, e, f ∈ [0, 1] and

a + e − e.f ≤ 1,

b + d − b.c ≤ 1,

b + e ≤ 1.
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Now, we see directly that

Hα,β(A) = Xα,0,r,1,β,0(A),

Jα,β(A) = X1,α,0,β,0,s(A),

where r, s ∈ [0, 1] are arbitrary numbers.
Therefore, the new operators have similar X-representation as the rest of the

extended modal-type operators.

3.2 Second Type of Intuitionistic Fuzzy Modal Operator’s
Point of View

Following [4], we start with the first two simplest operators of the second type:

+ A = {〈x,
μA(x)

2
,
νA(x) + 1

2
〉|x ∈ E},

× A = {〈x,
μA(x) + 1

2
,
νA(x)

2
〉|x ∈ E}.

Let α ∈ [0, 1] and let A be an IFS. Then we can define the first extension:

+ αA = {〈x, α.μA(x), α.νA(x) + 1 − α〉|x ∈ E},

× αA = {〈x, α.μA(x) + 1 − α, α.νA(x)〉|x ∈ E}.

The second extension of operators + and × is introduced in [8] by Katerina
Dencheva. She extended the last two operators to the forms:

+ α,βA = {〈x, α.μA(x), α.νA(x) + β〉|x ∈ E},

× α,βA = {〈x, α.μA(x) + β, α.νA(x)〉|x ∈ E},

where α, β, α + β ∈ [0, 1].
The third extension of the above operators has the forms:

+ α,β,γA = {〈x, α.μA(x), β.νA(x) + γ〉|x ∈ E},

× α,β,γA = {〈x, α.μA(x) + γ, β.νA(x)〉|x ∈ E},

where α, β, γ ∈ [0, 1] and max(α, β) + γ ≤ 1.
In [7] Gökhan Cuvalcioĝlu introduced operator Eα,β by

Eα,β(A) = {〈x, β(α.μA(x) + 1 − α), α(β.νA(x) + 1 − β)〉|x ∈ E},

where α, β ∈ [0, 1] and studied some of its properties.
A natural extension of the three later operators is the operator

•
α,β,γ,δA = {〈x, α.μA(x) + γ, β.νA(x) + δ〉|x ∈ E},
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where α, β, γ, δ ∈ [0, 1] and

max(α, β) + γ + δ ≤ 1.

A new (final?) extension of the above operators is the operator

◦
α,β,γ,δ,ε,ζA = {〈x, α.μA(x) − ε.νA(x) + γ, β.νA(x) − ζ.μA(x) + δ〉|x ∈ E},

where α, β, γ, δ, ε, ζ ∈ [0, 1] and

max(α − ζ, β − ε) + γ + δ ≤ 1,

min(α − ζ, β − ε) + γ + δ ≥ 0.

Now, we can check the validity of the following equalities (for fixed α, β ∈
[0, 1], so that α + β ≤ 1:

+ A = H 1
2 , 12

(A),

× A = J 1
2 , 12

(A),

+ αA = Hα,1−α(A),

× αA = J1−α,α(A),

i.e., the new operators can represent the first two second type of intuitionistic
fuzzy modal operators.

The relation between operators + α,β and × α,β , and Hα,β and Jα,β , respec-
tively, is valid only in the following special cases:

+ α,1−αA = Hα,1−α(A),

× α,1−αA = J1−α,α(A).

Similar is the situation with Guvalcioĝlu’s operator:

E1,β(A) = Hβ,1−β(A),

Eα,1(A) = J1−α,α(A).

The other three second type of intuitionistic fuzzy modal operators can rep-
resent the new two operators as follows:

Hα,β(A) = + α,1−β,βA,

Jα,β(A) = × 1−α,β,αA,

Hα,β(A) = •
α,1−β,0,βA,

Jα,β(A) = •
1−α,β,α,0A,

Hα,β(A) = ◦
α,1−β,0,β,0,0A,

Jα,β(A) = ◦
1−α,β,α,0,0,0A.
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3.3 Intuitionistic Fuzzy Level Operator’s Point of View

The basic intuitionistic fuzzy level operators are (see, e.g., [4]:

Pα,β(A) = {〈x,max(α, μA(x)),min(β, νA(x))〉|x ∈ E},
Qα,β(A) = {〈x,min(α, μA(x)),max(β, νA(x))〉|x ∈ E},

for α, β ∈ [0, 1] and α + β ≤ 1.
The degrees of membership and non-membership of the elements of a given

universe to its subset can be directly changed by these operators.
Obviously, for every IFS A and for α, β ∈ [0, 1] and α + β ≤ 1:

Pα,β(A) = A ∪ {〈x, α, β〉|x ∈ E},
Qα,β(A) = A ∩ {〈x, α, β〉|x ∈ E},
Qα,β(A) ⊂ A ⊂ Pα,β(A).

Therefore, it will be suitable to denote both operators as follows:

O∪
α,β(A) = A ∪ {〈x, α, β〉|x ∈ E},

O∩
α,β(A) = A ∩ {〈x, α, β〉|x ∈ E}.

Now, we can define two new intuitionistic fuzzy level operators on the basis
of operations “+”and “×”, defined in Sect. 2:

O+
α,β(A) = A + {〈x, α, β〉|x ∈ E},

O×
α,β(A) = A × {〈x, α, β〉|x ∈ E}.

We see immediately that:

O+
α,β(A) = Jα,β(A),

O×
α,β(A) = Hα,β(A).

Therefore, the two new operators have level operator’s behaviour.

Theorem 8. For each IFS A and for α, β, γ, δ ∈ [0, 1], so that α + β ≤ 1 and
γ + δ ≤ 1:

Hα,β(Pγ,δ(A)) ⊆ Pγ,δ(Hα,β(A)),

Hα,β(Qγ,δ(A)) ⊆ Qγ,δ(Hα,β(A)),

Pα,β(Jγ,δ(A)) ⊆ Jγ,δ(Pα,β(A)),

Qα,β(Jγ,δ(A)) ⊆ Jγ,δ(Qα,β(A)).
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It can be directly seen that for each IFS A and for α, β ∈ [0, 1], so that
α + β ≤ 1:

Hα,β(A) ⊆ Qα,β(A) ⊆ A ⊆ Pα,β(A) ⊆ Jα,β(A).

Now, we can calculate for every IFS A and for α, β ∈ [0, 1] and α + β ≤ 1:

Hα,β(A)@Jα,β(A)

= {〈x, αμA(x), νA(x) + β − βνA(x)〉|x ∈ E}
@{〈x, μA(x) + α − αμA(x), βνA(x)〉|x ∈ E}

= {〈x,
αμA(x) + μA(x) + α − αμA(x)

2
,

νA(x) + β − βνA(x) + βνA(x)
2

〉|x ∈ E}

= {〈x,
μA(x) + α

2
,
νA(x) + β

2
〉|x ∈ E}

A@{〈x, α, β〉|x ∈ E}.

From the above discussion we see that the two new operators are simultane-
ously modal as well as level operators. By this reason, we really can call them
modal-level operators.

Finally, following the above notation, we can denote:

A@{〈x, α, β〉|x ∈ E} = O@
α,β(A).

4 Conclusion

In future, we will introduce other intuitionistic fuzzy modal-level operators. Each
one of these new operators will be extended in the ways the standard modal
and level operators are extended. For example, for each IFS A, defined over
some universe E, their parameters α and β will be changed with the degrees of
membership and of non-membership of the elements of another IFS B, defined
over the same universe E.
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Abstract. The Generalized Nets (GNs) are extensions of the ordinary
Petri nets and the other Petri net modifications. A GN-model of a multi-
expert multi-criteria decision making process is described. It is extended
with an intercriteria analysis of the criteria used by experts – an addition
to the standard decision making procedure that changes in the end of a
concrete procedure the criteria used by experts during it, so, in the next
procedure they work with the modified set of criteria.

Keywords: Decision making · Generalized net · Intercriteria analysis

1 Introduction

In a series of papers of G. Pasi, R. Yager and the author, different multi-criteria
decision making procedures are described, that contains essentially new ideas in
this area. Here, we describe the process of functioning and the results of the work
of such procedures. They are described by one of Petri Net extensions, called
Generalized Net (GN; see [1–3]). Each GN has transitions, but now, they contain
not only input and output places, but also, moments of activation, duration of
the active state, predicates determining which token from input place to which
output places can be transfered, capacities of transition arcs and a condition
for activation of the transition, when the activation moment arises. Each token
has initial and current characteristics, that it can keep and use during the GN
functioning.

Below, we use the following three types of sets:

– E = {E1, E2, ..., Em} is the set of the measurement tools employed in the
decision process;

– A = {A1, A2, ..., Ap} is the set of the alternatives considered;
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– C = {C1, C2, ..., Cq} is the set of the criteria used for evaluating the alterna-
tives, which are ordered before their use.

The experts use as standard or given to them criteria, as well as new criteria
suggested by the experts, participating in the current procedure. Each expert
can use only those of the criteria, that he/she prefers. Each expert has own score
in the form of Intuitionistic Fuzzy Pairs (IFPs; see [4,7]) 〈a, b〉, where a, b ∈ [0, 1],
so that a+b ≤ 1 and a, b are respectively degree of validity, correctness, etc. and
degree of non-validity, non-correctness, etc.

To illustrate the expert’s reliability score we give the following example: a
sports commentator made 10 prognoses for the results of 10 football matches.
In 5 of the cases he predicted correctly the winner, in 3 of the cases he failed and
in the remaining 2 cases he did not engage with final opinion about the result.
That is why we determine his reliability score as 〈0.5, 0.3〉.

When the i-th expert determines the criteria, which he/she likes to use, he
orders them on the vertices of an oriented graph. As it is shown, e.g., in [5], each
graph can be represent by an Index Matrix (IM, see [5]) in the form

[K,L, {aki,lj}] ≡

l1 l2 . . . ln
k1 ak1,l1 ak1,l2 . . . ak1,ln

k2 ak2,l1 ak2,l2 . . . ak2,ln
...
km akm,l1 akm,l2 . . . akm,ln

,

where for a fixed set of indices I and for set R of numbers (0 and 1; natural,
real, etc.), propositions, variables, predicates, IFPs, etc., K = {k1, k2, ..., km} ⊂
I, L = {l1, l2, ..., ln} ⊂ I; for 1 ≤ i ≤ m, and for 1 ≤ j ≤ n : aki,lj ∈ R.

For two IMs different operations are defined, such as “addition”, some types
of “multiplication”, “subtraction”, “projection”, “restriction”, “substitution”
and others; and some operators are defined, e.g., hierarchical operators.

When the elements of R are IFPs, the IM is Intuitionistic Fuzzy IM (IFIM).
When some IFPs are associated to the arcs and/or vertices of a given graph, the
graph becomes an Intuitionistic Fuzzy Graph (IFG).

2 Generalized Net Model

The present GN model (see Fig. 1) is an extension and modification of the
model from [10], that is an extension of the GN-model from [9]. Since some
of the places and transitions in the new model coincide in both models, we use
the same notation. By this reason we use notation for transitions and places:
Y1, Y2, Y3, Y4, k1, ..., k8 from the second model, Z1, Z2, Z3, l1, ..., l14 from the first
model and now for the new model: X1,X2,X3,X4,m1, ...,m7.

The GN that we describe below has seven types of tokens – α-, β-, γ-, δ-,
ε, ζ- and η-tokens. The third, fourth, ..., and seventh tokens are unique, while
α-tokens are m in number and they generate m in number β-tokens, that in
place k7 are united in one token β.
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The α-tokens are ordered by some criterion (e.g., alphabetically following
experts’ names) and their order is not important. Each of the α-tokens has
an initial characteristic: “expert’s name, his/her own (current) reliability score
〈δi, εi〉 ∈ [0, 1]2 such that δi + εi ≤ 1, and his/her own (current) number of
participations in experts’ investigations γi” (1 ≤ i ≤ m).

In the initial time-moment of the GN functioning, the first α-token, α1 (let
αi denote the i-th α-token) and the γ-token enter places k1 and l3, respec-
tively. The later token has initial characteristics “list of the alternatives, i.e.
A1, A2, . . . , Ap”.

The first GN-transition (as we noted above, it is not met in the GN from
[10]) has the form:

Y1 = 〈{k1}, {k2, k3},
k2 k3

k1 true true
〉.

The current token αi splits into two tokens - the same token αi that enters
place k2 without a new characteristic and the token βi that enters place k3 with
a characteristic “list of the estimation criteria that the i-th expert likes to use
for his/her estimation, i.e., Ci,1, Ci,2, . . . , Ci,qi”. (1 ≤ i ≤ m and 1 ≤ qi ≤ qcu),
where qcu is the current number of criteria that the experts can use.

Y2 = 〈{k2, k4}, {k4, k5},
k4 k5

k2 true false
k4 V4,4 V4,5

〉,

where
V4,4 = “in the current step no token enters place k1 and the current token has
stayed the longest time in place k4 in respect to all other tokens currently staying
in the same place”,
V4,5 = ¬V4,4.

The α-tokens enter place k4 without a new characteristic. They are collected
there, waiting for the beginning of the process of experts’ estimation. When
predicate V4,5 is valid, α-tokens enter place k5 with the characteristic “IFG Gi

of the expert’s opinion for the order among the criteria”. The vertices of the IFG
Gi represent all or a part of the criteria from the last β-token characteristic. The
arcs of this IFG are labeled by the i-th expert’s scores.

Token ε permanently stays in place k7, with an initial and current charac-
teristic “list of actual criteria (qcu in number) that can be used for the current
expertise”.

Y3 = 〈{k3, k7, k15}, {k6, k7},

k6 k7
k3 false true
k7 V7,6 V7,7

k15 false true

〉,

where
V7,6 = “in the current step no token enters place k1”,
V7,7 = ¬V7,6.



102 K. Atanassov et al.

Fig. 1. GN-model

The i-th β-token (let us call it βi) enters place k7. It unites with the ε-token,
that stays in place k7. Let us call it β. It waits for the beginning of the process
of experts’ estimation and it obtains as a current characteristic

xβ
cu = xε

cu−1 ∪ xβi

cu−1,

i.e., the list of all criteria that are formulated by the first i experts.
Token β from place k15 enters place k7, where it is united with token ε, that

obtain as a new (current) characteristic

xε
cu = xε

cu−1 ∪ xβ
cu.

When predicate V7,6 = true, then token ε splits into token ε that continues
to stay in place k7 and token β that enters place k6 with the characteristic
xβi

cu−1 ∪ λi, where λi ⊆ xε
cu is the list of the criteria, different from these in the

set xβi

cu−1 that the i-th expert likes and will use, too.

Y4 = 〈{k5, k6, k8}, {k8, l1, l2},

k8 l1 l2
k5 true false false
k6 false false V6,2

k8 V8,8 V8,1 false

〉,

where
V6,2 = V8,1 = “in the current step no token enters place k5”,
V8,8 = ¬V8,1.
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The α-tokens enter place l1 without any new characteristic, while token β
enters place l2 with a characteristic “IFG G, obtained by the procedure described
below”.

The new IFG G is obtained by operation “+◦” over the IFGs Gi, which for
two IMs A = [K,L, {aki,lj}] and B = [P,Q, {bpr,qs}] has the form

A +◦ B = [K ∪ P,L ∪ Q, {ctu,vw
}],

where

ctu,vw
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

aki,lj , if tu = ki ∈ K and vw = lj ∈ L − Q
or tu = ki ∈ K − P and vw = lj ∈ L;

bpr,qs , if tu = pr ∈ P and vw = qs ∈ Q − L
or tu = pr ∈ P − K and vw = qs ∈ Q;

aki,lj ◦ bpr,qs , if tu = ki = pr ∈ K ∩ P
and vw = lj = qs ∈ L ∩ Q

0, otherwise

and for two IFPs 〈a, b〉 and 〈c, d〉, operation ◦ can be, e.g.

〈a, b〉 ◦ 〈c, d〉 =

⎧
⎨

⎩

〈max(a, c),min(b, d)〉, if ◦ is ∨
〈min(a, c),max(b, d)〉, if ◦ is ∧
〈a+c

2 , b+d
2 〉, if ◦ is @

or others.
With this operation, we obtain an IM corresponding to the IFG G of all

experts’ opinions about the criteria ordering. Now, its arcs have intuitionistic
fuzzy weights being the disjunctions of the weights, of the same arcs in the sep-
arate IFGs. Of course, the new graph may not be well ordered, while the expert
graphs are well ordered. Now, we reconfigure IFG G as follows. If there is a cycle
between two vertices V1 and V2, i.e., there are vertices U1, U2, ..., Uu and ver-
tices W1,W2, ...,Ww, such that V1, U1, U2, ..., Uu, V2 and V2,W1,W2, ...,Ww, V1

are simple paths in the graph, then we calculate the weights of both paths as
conjunctions of the weights of the arcs which take part in the respective paths.
The path that has smaller weight must be cut in two, removing its arc with
smallest weight. If both arcs have equal weights, these arcs will be removed.
Therefore, the new graph is already cycle-free. Now, we can determine the pri-
orities of the vertices of the IFG, i.e., the priorities of the criteria. Let them be
ϕ1, ϕ2, ..., ϕqcu . For example, they can have values s−1

t for the vertices from the
s-th level bottom-up of the IFG with t+1 levels. We shall use these values below.

The first transition of the GN from [9] that now is in the subnet of the present
GN, has the form:

Z1 = 〈{l1, l2, l3, l7}, {l4, l5, l6, l7},

l4 l5 l6 l7
l1 true false false false
l2 false false W2,6 false
l3 false false false true
l7 false W7,5 false W7,7

〉,
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where
W7,7 = “there is a token in place l1”,
W2,6 = W7,5 = ¬W7,7.

If predicate W7,7 = true, then token γ stays in place l7 without a new
characteristic. Only when predicate W7,7 = false, i.e., when predicates W2,6 =
W7,6 = true, token γ enter place l5 without any characteristic, too. Token αi

enters place l4 and obtains as a next characteristic an IM that we shall describe
in more details. Having in mind that the i-th expert can use only a part of the
criteria and can estimate only a part of the alternatives, we can construct the
IM of his/her estimations in the form

Si =

Al1 Al2 . . . Alpi

Ci1

〈αi
j,kβi

j,k〉
Ci2

(1 ≤ j ≤ qi ≤ qcu,
...

1 ≤ k ≤ pi ≤ p)
Ciqi

where: αi
j,k, βi

j,k ∈ [0, 1],, αi
j,k + βi

j,k ≤ 1 and 〈αi
j,k, βi

j,k〉 is the i-th expert
estimation for the k-th alternative about the j-th criterion; Ci1 , ..., Ciqi

and
Al1 , ..., Alpi

are only those of the criteria and alternatives which the i-th expert
prefers. In the cases when pair 〈αi

j,k, βi
j,k〉 does not exist, we will work with pair

〈0, 1〉.
On the other hand, when all α-tokens transfered to place l4, token β

enters place l6 with a characteristic, the set of all α-token’s characteristic, i.e.,
“{S1, S2, ..., Sm}”.

The GN-transition Z2 has the form:

Z2 = 〈{l4, l5, l8}, {l8, l9, l10},

l8 l9 l10
l4 true false false
l5 false false true
l8 false W8,9 false

〉,

where
W8,9 = “there is a token in place l11”.

The α-tokens are collected without any characteristic in place l8. They will
continue their path to place l9, without a characteristic, too, when there is an
objective estimation of the alternatives (token δ in place l11). Token γ obtains
as a characteristic the following IM
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S =

A1 A2 . . . Ap

C1

〈αj,k, βj,k〉
C2

(1 ≤ j ≤ qcu,
...

1 ≤ k ≤ p)
Cqcu

where αj,k and βj,k can be calculated by different formulas, with respect to some
specific aims. For example, such formulas are the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑

i=1
δi.α

i
j,k

m

βj,k =

m∑

i=1
εi.β

i
j,k

m

(here the average degrees of experts’ reliability are taken into account),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑

i=1
δi,j .α

i
j,k

m

βj,k =

m∑

i=1
εi,j .β

i
j,k

m

(here only the experts’ degrees of reliability estimated by the corresponding
criteria are taken into account).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αj,k =

m∑

i=1
αi

j,k

m

βj,k =

m∑

i=1
β

i

j,k

m

,

where αi
j,k and β

i

j,k can also be calculated by various formulas, according to
particular goals and experts’ knowledge. For example, such formulas can be:

⎧
⎪⎨

⎪⎩

αi
j,k = γi.

αi
j,k.δi,j + βi

j,k.εi,j

γi + 1

β
i

j,k = γi.
αi

j,k.εi,j + βi
j,k.δi,j

γi + 1
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or ⎧
⎨

⎩

αi
j,k = αi

j,k.
δi,j + 1 − εi,j

2
β

i

j,k = βi
j,k.

εi,j + 1 − δi,j

2
.

The first formula takes into account not only the rating of each expert by the
different criteria, but also the number of times he has given an opinion (the
first time is neglected, since he does not have a rating then). Obviously, the so
constructed elements of the IM satisfy the inequality: αj,k + βj,k ≤ 1. This IM
contains the average experts estimations taking into account experts ratings.
Let each one of the criteria Cj(1 ≤ j ≤ qcu) have a priority ϕj ∈ [0, 1]. This
information will be put in the initial characteristic of token β. We can determine
for every alternative Ak the global estimation 〈αk, βk〉, where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αk =

qcu∑

j=1
ϕj .αj,k

qcu

βk =

qcu∑

j=1
ϕj .βj,k

qcu

.

Transition Z3 can be activated only when token δ enters place l11 with an
initial (unique) characteristic in the form of an IM with elements (objective)
values about the different criteria:

T =

A1 A2 . . . Ap

C1

〈aj,k, bj,k〉
... (1 ≤ j ≤ qcu,

1 ≤ k ≤ p)
Cqcu

where: aj,k, bj,k ∈ [0, 1] and aj,k + bj,k ≤ 1.
Here we mention a significant difference between the four examples. It consti-

tutes in the time needed for the experts to understand how well they have made
their evaluations and prognoses. In the case of election prognoses, the experts
obtain their own score at the moment of the final announcement of the results
of the vote. On the other hand, when a job candidate is evaluated, the experts
can estimate his/her work in the company in a longer period of time, including
periods of adaptation and training, and first finished projects. Moreover, in such
case the expert’s appraisal may be subjective and liable to refutation.

The transitions Z2 and Z3 will be active until all α-tokens from place l8 go
to place l12 through place l9. Its form is

Z3 =< {l9, l10, l11}, {l12, l13, l14},
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l12 l13 l14
l9 true false false
l10 false false true
l11 false true false

.

In the present model, token δ leaves the GN via place l13 without a final char-
acteristic, but in the future GN-models they will obtain characteristics related,
e.g. to the behaviour of the process flow and GN functioning, to the alternatives
and criteria, etc.

Token αi enters place l12 with final characteristic “expert’s new rating, 〈δi, εi〉,
and new number of participances in expert investigations, γ′

i”. The values of this
characteristic are estimated by formulas

γ′
i = γi + 1,

and ⎧
⎪⎪⎨

⎪⎪⎩

δ′
i =

γi.δi + cM − ci
2

γ′
i

,

ε′
i =

γi.εi − cM − ci
2

γ′
i

,

,

where

ci =

qcu∑

j=1

p∑

k=1
((αj,k − aj,k)2 + (βj,k − bj,k)2)1/2

pqcu
,

and

cM =

n∑

i=1
ci

n
.

Other formulas for the expert’s rating are also possible and they will be discussed
in a next research.

Token γ enters place l14 with a characteristic “IM T”. We remind that its
previous characteristic is IM S.

The GN-transition X1 (the first of the new transitions) has the form:

X1 = 〈{l6, l14}, {k9, k10},
k9 k10

l6 true false
l14 false true

〉.

Token γ from l14 enters place k10 with a characteristic “list of all used criteria
in the process of decision making”. Therefore, it contains the criteria, given to
the experts, as well as the new criteria, introduced by the separate experts and
used in the time of the process.
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Token β from l6 enters place k9 with a characteristic “IM U”, where

U =

A1,1 . . . A1,mA1,m+1A1,m+2 . . . Ap,1 . . . Ap,mAp,m+1Ap,m+2

C1

〈αk,i,j , βk,i,j〉
... (1 ≤ i ≤ m,

1 ≤ j ≤ qcu,
Cqcu 1 ≤ k ≤ p)

,

where 〈αk,i,j , βk,i,j〉, 〈αk,m+1,j , βk,m+1,j〉 and 〈αk,m+2,j , βk,m+2,j〉 are, respec-
tively, the evaluations of the i-th expert (1 ≤ i ≤ m), aggregated evaluation of
all experts (with index i = m+1) and objective result (with index i = m+2) for
the k-th alternative about j-th criterion. Alternatives Ak,i for each i coincide,
but their evaluations are different and by this reason we can interprete them as
different objects. IM U can have simpler form, if we include in it only experts
evaluations, i.e., without the aggregated evaluations and objective results.

Token ζ enters place k11 with initial characteristic “(meta)criterion for a
choice for near criteria”. We discuss its meaning below.

X2 = 〈{k9, k11}, {k12},
k12

k9 true
k14 true

〉.

In place k12, tokens β and ζ unite in token β with a characteristic “IM V , list
of near pair of criteria”. The first component of this characteristic is obtained by
the procedure, that we describe following [5,6,8]. It is the basic component of
the so called intercriteria analysis. Here, it is described from intuitionistic fuzzy
point of view (see, [8]).

Let us have the set of objects O = {O1, O2, ..., On} that must be evaluated
by criteria from the set C = {C1, C2, ..., Cm}.

Let us have an IM

A =

O1 · · · Oi · · · Oj · · · On

C1 aC1,O1 · · · aC1,Oi
· · · aC1,Oj

· · · aC1,On

...
...

. . .
...

. . .
...

. . .
...

Ck aCk,O1 · · · aCk,Oi
· · · aCk,Oj

· · · aCk,On

...
...

. . .
...

. . .
...

. . .
...

Cl aCl,O1 · · · aCl,Oi
· · · aCl,Oj

· · · aCl,On

...
...

. . .
...

. . .
...

. . .
...

Cm aCm,O1 · · · aCm,Oi
· · · aCm,Oj

· · · aCm,On

,

where for every p, q (1 ≤ p ≤ m, 1 ≤ q ≤ n):

(1) Cp is a criterion, taking part in the evaluation,
(2) Oq is an object, being evaluated.
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(3) aCp,Oq
is a variable, formula or aCp,Oq

= 〈αCp,Oq
, βCp,Oq

〉 is an intuitionistic
fuzzy pair, that is comparable about relation R with the other a-objects, so
that for each i, j, k: R(aCk,Oi

, aCk,Oj
) is defined. Let R be the dual relation

of R in the sense that if R is satisfied, then R is not satisfied and vice versa.
For example, if “R” is the relation “<”, then R is the relation “>”, and vice
versa.

Let Sμ
k,l be the number of cases in which

〈αCk,Oi
, βCk,Oi

〉 ≤ 〈αCk,Oj
, βCk,Oj

〉

and
〈αCl,Oi

, βCl,Oi
〉 ≤ 〈αCl,Oj

, βCl,Oj
〉,

or
〈αCk,Oi

, βCk,Oi
〉 ≥ 〈αCk,Oj

, βCk,Oj
〉

and
〈αCl,Oi

, βCl,Oi
〉 ≥ 〈αCl,Oj

, βCl,Oj
〉

are simultaneously satisfied.
Let Sν

k,l be the number of cases in which

〈αCk,Oi
, βCk,Oi

〉 ≥ 〈αCk,Oj
, βCk,Oj

〉

and
〈αCl,Oi

, βCl,Oi
〉 ≤ 〈αCl,Oj

, βCl,Oj
〉,

or
〈αCk,Oi

, βCk,Oi
〉 ≤ 〈αCk,Oj

, βCk,Oj
〉

and
〈αCl,Oi

, βCl,Oi
〉 ≥ 〈αCl,Oj

, βCl,Oj
〉

are simultaneously satisfied.
Obviously,

Sμ
k,l + Sν

k,l ≤ n(n − 1)
2

.

Now, for every k, l, such that 1 ≤ k < l ≤ m and for n ≥ 2, we define

μCk,Cl
= 2

Sμ
k,l

n(n − 1)
, νCk,Cl

= 2
Sν

k,l

n(n − 1)
.

Hence,

μCk,Cl
+ νCk,Cl

= 2
Sμ

k,l

n(n − 1)
+ 2

Sν
k,l

n(n − 1)
≤ 1.

Therefore, 〈μCk,Cl
, νCk,Cl

〉 is an IFP.
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Now, we can construct the IM

C1 · · · Cm

C1 〈μC1,C1 , νC1,C1〉 · · · 〈μC1,Cm
, νC1,Cm

〉
...

...
. . .

...
Cm 〈μCm,C1 , νCm,C1〉 · · · 〈μCm,Cm

, νCm,Cm
〉
,

that determines the degrees of correspondence between criteria C1, . . . , Cm.
When objects O1, ..., On and criteria C1, ..., Cm from the above procedure

coincide with our alternatives and criteria, respectively, we obtain the IM V
that is the first component of the token β characteristic. The second component
of this characteristic is obtained on the basis of the token ζ characteristic. Using
it, we obtain the list of the near criteria.

Token η enters place k13 with initial characteristic “(meta)criterion for a
choice of a better criterion between two given ones”. This (meta)criterion can
determine the better criterion because it is easier for checking, chipper, requires
less time for checking. etc.

X3 = 〈{k12, k13}, {k14},
k14

k12 true
k13 true

〉.

In place k14, tokens β and η unite in token β with a characteristic “list of
bad criteria”.

X4 = 〈{k10, k14}, {k15},
k15

k10 true
k14 true

〉.

In place k15, tokens β and γ unite in token β with a characteristic “list
of good criteria”, i.e., xβ

cu = xγ
cu − xβ

cu−1, where operation “−” between both
characteristics is in set-theoretical sense.

3 Conclusion

The paper is a first attempt to unite two mathematical objects - the GNs and
intercriteria analysis, that is used for increasing the effectiveness of decision
making processes.

In a next research we shall discuss a possible extensions of the so constructed
GN-model including other decision making activities and other applications of
the intercriteria analysis.

The authors work on two projects, provided by the Bulgarian National Sci-
ence Fund. The present paper is the joint point of both ones.
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Abstract. Various challenges for lifting semi-fuzzy quantifier models to
fully fuzzy ones are discussed. The aim is to embed such models into
�Lukasiewicz logic in a systematic manner. Corresponding extensions of
Giles’ game with random choices of constants as well as precisifications
of fuzzy models are introduced for this purpose.

1 Introduction

Fuzzy logic provides formal models of vague quantifier expressions like many, few,
almost all, about half, etc. Following Zadeh [14], the literature on corresponding
fuzzy quantifiers is huge: we refer to the monograph [12] and to the more recent
survey article [2] for an verview of relevant literature. Following a useful and
well argued suggestion by Glöckner [12], a truth function for a fuzzy quantifier
should be determined in two separate steps: (1) define a suitable semi-fuzzy
quantifier, where the (scope and range) predicates are crisp (i.e. classical 0/1-
valued) and (2) lift the semi-fuzzy quantifier to a (fully) fuzzy quantifier in
some systematic and uniform manner. Regarding step (1) we will refer to an
approach based on extensions of Giles’s game for �Lukasiewicz logic [10] that
involve random choices of witness elements. But in this paper we will focus on
step (2). After reviewing various shortcomings of existing approaches, Glöckner
proposed an axiomatic approach for this second step, arriving at a corresponding
quantifier fuzzification mechanism (QFM). However, Glöckner’s QFM is still
unsatisfying in some respects. In particular it is incompatible with the paradigm
of mathematical fuzzy logic [1], where implication is understood as the residuum
of (strong) conjunction.

After reviewing some basic notions regarding quantifiers, �Lukasiewicz logic �L,
and Giles’s game for �L, we will explain some problems that may arise for lifting
semi-fuzzy quantifier models to fully fuzzy ones. We then discuss in a systematic
manner various quantifier fuzzification methods that arise from considering pre-
cisifications of fuzzy interpretations. A central aim in this endeavor is to embed
the quantifier models into (suitable extensions of) �Lukasiewicz logic. Moreover,
we want to avoid ad hoc definitions of truth functions. For this reason, our
main tools are certain extensions of Giles game, where one considers random
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choices of domain elements (constants) as well as choices of precisifications, in
addition to moves by the two strategic players of the game. We conclude with a
brief summary and some hints on further topics for related research.

2 Types of Quantification

We are interested in models of vague quantifier expressions like almost all, about
half, at least about a quarter. We focus on unary (also known as monadic or type
〈1〉) quantification, where the scope of the quantified statement consists of a
single formula and where the quantifier binds a single object variable. Vagueness
will be modeled by fuzziness. A fuzzy set ˜SD is a function of type D → [0, 1],
where the (crisp) set D is the underlying domain or universe. Similarly, an n-ary
fuzzy relation is a function of type Dn → [0, 1]. Every interpretation M with
domain D assigns an n-ary fuzzy relation over D to each n-ary predicate symbol.
Any unary fuzzy quantifier ˜Q is interpreted by a truth function which assigns a
truth degree (truth value) in [0, 1] to each fuzzy set over the domain. As a special
case of fuzzy quantification, we obtain semi-fuzzy quantifiers by restricting the
scope to classical predicates (corresponding to crisp sets).

Throughout this paper we will assume that the domain D is finite; an
assumption that is justified by the intended application of modeling natural
language expressions. We will focus on a specific, but very common type of
quantifiers, namely proportionality quantifiers, where, in the (unary) semi-fuzzy
case, the degree of truth of the quantified sentence depends only on the fraction
of domain elements that satisfy the scope predicate. Given an interpretation M
with domain D and a formula F we define1

PropM(F ) =
∑

d∈D

vM(F (d))
|D| .

When F is a classical formula, then PropM(F ) is |{d ∈ D : vM(F (d)) =
1}|/|D| and denotes the proportion of elements of the domain satisfying F
under M. Hence, if Q is a semi-fuzzy proportionality quantifier, vM(QxF (x))
is uniquely determined by PropM(F ). In the general fuzzy case, we can read
PropM(F ) as the average truth value of F under M. It is much more straight-
forward to judge the linguistic adequateness of semi-fuzzy quantifiers as models
of vague (proportional) quantification, than to deal directly with the general
case, where the scope predicate may be vague as well. For this reason, as already
mentioned in the introduction, Glöckner [12] suggested to split the design of
adequate fuzzy models of vague quantifiers into two separate steps:

(1) specify the truth function for a semi-fuzzy quantifier,
(2) lift the function obtained in (1) to the fully fuzzy case.

1 For convenience, we identify constant symbols with domain elements.
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For step (2) Glöckner introduced the notion of a quantifier fuzzification mech-
anism (QFM) and presented a range of axioms that should be satisfied by a QFM
that lifts a wide class of semi-fuzzy to fuzzy quantifiers in a uniform manner.
While we definitely agree with the usefulness of splitting the task of designing
fuzzy logic based quantifier models as indicated, there remains a number of chal-
lenges. In particular it is left unclear how task (1) can be accomplished without
resorting to ad hoc decisions for selecting appropriate truth functions.

Of particular importance for the current paper, we moreover argue that the
corresponding quantifiers should be embeddable into (full) �Lukasiewicz logic or
at least into some other t-norm based fuzzy logic, as suggested by the paradigm
of Hájek [13], which provides the basis for contemporary Mathematical Fuzzy
Logic [1]. The approach of Glöckner [12] as well as that of many others (see
[2]) leaves much to be desired in this respect. Here, we will not deal directly
with step (1), but rather rely on a framework for the systematic design of semi-
fuzzy proportionality quantifiers, based on Giles’s game for �Lukasiewicz logic
(see Sect. 4).

3 �Lukasiewicz Logic

As already indicated, we do not want to consider fuzzy quantifiers in isolation,
but rather suggest that such quantifiers should lead to natural generalizations
of well understood deductive fuzzy logics, as investigated under the heading of
contemporary Mathematical Fuzzy Logic [1]. Among the corresponding t-norm
based logics, �Lukasiewicz logic �L can be singled out as particularly important,
since it has the unique property that the truth functions of all logical connectives
are continuous2 functions [1]. The semantics of the propositional connectives of
(full) �Lukasiewicz logic is given by the following truth functions:

vM(F ∧ G) = min(vM(F ), vM(G)) vM(F � G) = max(0, vM(F ) + vM(G) − 1)

vM(F ∨ G) = max(vM(F ), vM(G)) vM(F ⊕ G) = min(1, vM(F ) + vM(G))

vM(F → G) = min(1, 1 − vM(F ) + vM(G))

vM(⊥) = 0 vM(�) = 1 vM(¬F ) = 1 − vM(F )

Universal and existential quantification is specified as follows:

vM(∀xF (x)) = infc∈D(vM(F (c))) vM(∃xF (x)) = supc∈D(vM(F (c)))

There is a further reason for choosing �Lukasiewicz logic as a frame for design-
ing formal models of vague language: already in the 1970s Robin Giles [10,11]
provided a game based semantics for �L, that allows one to justify the particular
choice of truth functions with respect to first principles about approximate rea-
soning. As we will see in the next section, Giles’s game provides a suitable base
for extending �L with further quantifiers in a principled manner.
2 In rival candidates, like Gödel logic or Product logic the truth function for implica-

tion is not continuous.



From Semi-fuzzy to Fuzzy Quantifiers via �Lukasiewicz Logic and Games 115

4 Giles’s Game and Semi-fuzzy Quantifiers

In Giles’s game for �L, two players (You and Myself) stepwise reduce logically
complex assertions (formulas) to their atomic components via systematic attack
and corresponding defense moves. A state of the game is given by two multisets
(tenets) of formulas, written as

[F1, . . . , Fm | G1, . . . , Gn] ,

where F1, . . . , Fm denotes the multiset of formulas currently asserted by You
(your tenet), whereas G1, . . . , Gn denotes the multiset of formulas currently
asserted by Myself (my tenet). The rules of the game specify how the player
in role P (‘proponent’) may react to an attack by the player in role O (‘oppo-
nent’) on an occurrence of one the formulas asserted by P. For example, an attack
(by O) on ∀xF (x) has to be answered by P with the assertion of F (c), where
the constant c is chosen by O. Whereas in replying to an attack on ∃xF (x), P
chooses the instance F (c) that replaces the attacked formula occurrence in the
multiset of formulas currently asserted by her. Similar rules apply to proposi-
tional connectives: if a disjunctive formula A ∨ B is attacked, then it is replaced
by either A or B, according to a choice by P, etc. In particular, implication and
strong conjunction are specified by the following rules:

(R→) If P asserts F → G then, if O chooses to attack this formula occurrence,
it is replaced by G in P’s tenet and F is added to O’s tenet; otherwise, if O
chooses not to attack this occurrence of F → G, it is removed from P’s tenet.

(R�) If P asserts F 	 G then P has to reply to O’s attack by either asserting F
as well as G or else ⊥ instead of F 	 G.

In any case, the successor state of the game is obtained by removing the attacked
formula occurrence and adding zero or more immediate subformulas, or the
logical constant ⊥ to my or your tenet. This is repeated until a state is reached,
where all asserted formulas are atomic. At such a final state the payoff for Myself
is given by

m − n + 1 +
∑

1≤i≤n

vM(Gi) −
∑

1≤i≤m

vM(Fi),

where vM(A) denotes the truth value3 assigned to the atomic formula A by the
given interpretation M. Giles [10] (essentially) proved that for every formula F
of �Lukasiewicz logic, there is a strategy for Myself that guarantees a final payoff
of vM(F ) if both players play rationally according to the rules of the outlined

3 The payoff scheme may look arbitrary at a first glimpse. However it results from
Giles’s interpretation of the truth value of a given atom A in terms of the expected
loss for a player, who has to pay a fixed amount of money (say 1 Euro) to the
opposing player, if a certain experiment EA associated with A fails. Such (binary)
experiments may show dispersion, i.e. repeated executions of the same experiment
EA may show different results. However for each A a fixed failure probability (risk)
is associated to EA.
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(finite, two person, perfect information) game. When this is the case, we say
that the truth functions used in vM(F ) for interpreting the connectives and
quantifiers match the corresponding game rules. Here we are interested in game
rules—and the resulting truth functions—for proportional semi-fuzzy quantifiers.
To obtain such rules Fermüller and Roschger [7,8] considered uniformly random
choices of witnessing constants, in addition to the choices made by the two
strategic players in roles P and O, as indicated above for the classical quantifiers
∀ and ∃. The most basic of such rules introduces a new random choice quantifier
Π as follows.

(RΠ) If P asserts ΠxF (x) then this formula occurrence is replaced by F (c),
where c is a (uniformly) randomly chosen constant.

We will call �L (Π) the expansion of �L with the random choice quantifier Π.
More generally, rules for a quantified formula QxF (x) feature bets for and bets
against instances F (c) of its scope formula, where c is a randomly chosen con-
stant. A bet for F (c) is simply an assertion of F (c) by the corresponding player,
whereas a bet against F (c) means that ⊥ has to be asserted, while the opposing
player asserts F (c). Following [7,8], these notions allow us to formulate, e.g., the
following families of rules for so-called blind choice quantifiers.

(RLk
m

) If P asserts Lk
mxF (x) then O may attack by betting for k random instances

of F (x), while P bets against m random instances of F (x).
(RGk

m
) If P assert Gk

mxF (x) then O may attack by betting against m random
instances of F (x), while P bets for k random instances of F (x).

Some clarifications are needed to render these rules intelligible:

1. ‘Blind choice’ signifies that the identity of the randomly picked constants
c1, . . . , cn used for the relevant random instances F (c1), . . . , F (cn) is revealed
to the players only after they have placed their bets.

2. The choices of constants are uniformly random and independent of each other.
In particular, the same constant may be picked more than once. Therefore
the random instances form multisets, rather than sets of formulas.

3. Attacks are always optional in a Giles style game, which means that (the
player in role) O can always decide that the attacked formula is simply
removed from the current state. Giles speaks of a ‘principle of limited lia-
bility’ for attack (LLA) in such a situation.

4. A ‘principle of limited liability’ for defense (LLD) is also in place: if attacked
by O then P may always decide to replace the attacked formula occurrence
by ⊥, rather than to continue the game as indicated in the above rules.

As shown in [8] the above rules, together with the just mentioned principles of
limited liability, allow one to extract the following corresponding truth functions:

vM(Lk
mxF (x)) = min{1,max{0, 1 + k − (m + k)PropM(F )}} (1)

vM(Gk
mxF (x)) = min{1,max{0, 1 − k + (m + k)PropM(F )}}. (2)

These quantifiers are definable in �L(Π) using additional truth constants [5].
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5 Problems with Lifting

It is tempting to extend the above framework for semi-fuzzy quantifiers to fully
fuzzy quantifiers by just applying the same functions and game rules to fuzzy
predicates. From a purely mathematical point of view, no problem arises: for any
formula F in the scope of a quantifier we can just compute PropM(F ) and plug
the obtained value into the corresponding truth functions. However, this leads
to results that run counter to expectations on the behavior of vague quantifiers
in natural language, as illustrated by the following example.

Example 1. Let F a predicate standing for “is tall”. We want to evaluate the
sentence About half (of the elements of the domain) are tall. For modeling About
half we use the quantifier H1

0x, introduced in [8] and shown there to be equivalent
to G1

1x ∧ L1
1x. It is straightforward to see that

vM(H1
0x(F (x))) = max{0,min{2PropM(F ), 2 − 2PropM(F )}}.

We now consider the following two interpretations M1 and M2 under the same
domain D = {d1, d2, d3, d4}. Under the interpretation M1 we let vM1(F (d1)) =
vM1(F (d2)) = 0.1 and vM1(F (d3)) = vM1(F (d4)) = 0.9. Under the inter-
pretation M2 we let instead vM2(F (d)) = 0.5 for any d ∈ D. Note that
PropM1

(F ) = PropM2
(F ) = 0.5, hence vM1(H

1
0xF (x)) = vM2(H

1
0xF (x)) = 1.

In the first interpretation we have two almost clear cases of tall people and
two almost clear cases of not tall people, and we correctly obtain a high value
for vM1(H

1
0xF (x)). In the second interpretation instead, all individuals of the

domain are meant to be of perfectly average height. Of course there is no clear
fact in this situation which would determine the “correct” truth value, but we
would expect it to be smaller than in the first interpretation. As we saw above,
however, vM1(H

1
0xF (x)) = vM2(H

1
0xF (x)). Informally, the approach is not sen-

sitive to the difference between About half (of the people) are tall and All (of
the people) are about half tall. Note that using any other truth function for the
quantifier About half defined only in terms of the average truth value PropM(F )
would not help. The example shows that, when evaluating a fuzzy quantifier
over fuzzy predicates, one should also keep track of how the truth values are
distributed over the elements of the domain.

6 Fuzzification via Random Precisification

Assume that we have a sentence Q̃xF (x), where Q̃ is a fuzzy quantifier corre-
sponding to a semi-fuzzy quantifier Q, and let M be an interpretation evaluating
F over [0, 1]. As we saw before, we cannot interpret Q̃ just in the same way as
Q. To obtain more satisfactory models, we first need to associate to the inter-
pretation M a set of interpretations evaluating F as a classical formula, so that
the corresponding semi-fuzzy quantifier Q can be evaluated properly. Following
the terminology used in supervaluationist accounts of vagueness [6,9], we call
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such a set of interpretations the admissible precisifications4 of M and denote
it by CM. Informally CM collects the “reasonable” ways of making M precise
(i.e. classical) over atomic formulas. A simple idea for the evaluation of fuzzy
quantifiers via reduction to precisifications has been introduced in [4]. It can be
formulated via the following random-precisification based rule, which extends
Giles’ game for �L(Q), where Q is a semi-fuzzy quantifier, to a corresponding
fuzzy quantifier Q̃:

(RRP
Q̃

) If P asserts Q̃xF (x) and O attacks the formula, a precisification M′ is
chosen randomly from CM and P has to assert Qx(F (x)), where this formula
occurrence is evaluated over M′.

A truth function for Q̃ matching this rule is obtained as the expected value
of vM′(QxF (x)), where M′ ranges over the set of admissible precisifications
CM. Even though not explicitly required by the general framework, we can
assume that the random choice of a precisification from CM follows a uniform
distribution. A natural way to instantiate (RRP

Q̃
) is by letting

CM = {M≥α | α ∈ [0, 1]},

where M≥α denotes the interpretation such that, for any atomic formula A,
vM≥α(A) = 1 if vM(A) ≥ α and vM≥α(A) = 0 otherwise. Hence we can think
of the random choice of a precisification as coinciding with the random choice
of a value α acting as a threshold. The truth function matching (RRP

Q̃
) is then

obtained as:

vM(˜QxF (x)) =
∫ 1

0

vM≥α(QxF (x))dα.

The same evaluation function and corresponding lifting mechanism for fuzzy
quantifier is also obtained in [3], though motivated by a different semantics,
based on voting models. In [3] it is also shown that the model satisfies many,
though not all of Glöckner’s desiderata for a quantifier fuzzification mechanism.
Let us look now how this approach deals with the Example 1.

Example 1 (continued). Let b0 = 0, b1 = vM1(F (d1)) = vM1(F (d2)) = 0.1,
b2 = vM1(F (d3)) = vM1(F (d4)) = 0.9, b3 = 1. Clearly, for any bi−1 < α ≤ bi we
have vM≥α

1
(H1

0xF (x)) = vM≥bi
1

(H1
0xF (x)). As the domain D is finite, we get

vM1(
˜H1
0xF (x)) =

3
∑

i=1

(bi − bi−1) · vM≥bi
1

(H1
0xF (x))

= 0.1 · vM≥0.1
1

(H1
0xF (x)) + 0.8 · vM≥0.9

1
(H1

0xF (x)) + 0.1 · vM≥1
1

(H1
0xF (x)) = 0.8.

For the interpretation M2 we instead obtain

vM2(
˜H1
0xF (x)) = 0.5 · vM≥0.5

2
(H1

0xF (x)) + 0.5 · vM≥1
1

(H1
0xF (x)) = 0.

4 Note that, despite the fact that a precisification evaluates atomic formulas classically,
the valuation under a precisification of a formula involving a semi-fuzzy quantifier
might be an intermediate value in [0, 1].
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This computation of the expected value of H1
0xF (x) over the admissible pre-

cisifications delivers more adequate results than the naive application of the func-
tion for H1

0. From our perspective though, the fuzzification mechanism recalled
here still poses a problem: we lose the possibility of expressing fuzzy quantifiers
in the language of the logic �L(Π) – in contrast to the case for the semi-fuzzy
quantifiers introduced in [8]. To embed fuzzy quantifiers in a �Lukasiewicz logic
based framework, we have to consider appropriate expansions of �L(Π). One way
of doing so consists in introducing a random choice quantifier Πp operating over
propositional variables rather than over elements of the domain. Game seman-
tically, given a formula F containing occurrences of a propositional variable p,
we can interpret ΠpF (p) via the following rule.

(RΠp
) If O attacks ΠpF (p), a ropositional variable p′ is randomly chosen and P

has to assert F (p′).

The random choice of a propositional variable can be seen as a syntactic
counterpart of the random choice of a threshold truth value. In addition, we
need to expand �L(Π) with the well-known unary connective Δ (see e.g. [1]),
given by vM(ΔF ) = 1 if vM(F ) = 1 and 0 otherwise. In what follows, �LΔ(Π)
denotes the corresponding expansion of �L(Π). It is easy to see that, if vM(p) = α,
then vM≥α(F (x)) = vM(Δ(p → F (x)). Hence in �LΔ(Π) extended with Πp we
can express Q̃ by Q̃xF (x) ≡ ΠpQx(Δ(p → F (x))) for any fuzzy quantifier Q̃.

7 A Closeness-Based Approach to Fuzzy Quantifiers

We will now introduce a different approach to lift semi-fuzzy to fuzzy quantifiers.
As in the previous case the idea is rooted in Giles’ game semantics setting, but
has an important advantage: the resulting fuzzy quantifiers are already definable
over the logic �LΔ(Π). We start by presenting a more abstract framework.

Assume that, at a certain stage of a Giles’ game, the player acting as P has
in its tenet a fuzzy quantified sentence, say Q̃xF (x). If this assertion is attacked
by O, the following two-step defense ensues:

(i) P adds Qx(F (x)) to his tenet and evaluates this formula occurrence under
a precisification M′ of M of his choice.

(ii) P has to state that vM(F (x)) is “close” to vM′(F (x)).

Playing rationally, the proponent P will choose a precisification which max-
imizes the truth value of the semi-fuzzy quantified sentence, while staying as
close as possible to the original truth values of the (fuzzy) predicate (a “reason-
able” precisification). Let us consider some possible ways to instantiate the above
abstract scheme in Giles’ game in such a way as to obtain the expressibility of
fuzzy quantifiers in �LΔ(Π).

First, in addressing step (i) above, we may reduce the choice of a pre-
cisification to the choice of a certain element of the domain, say c, acting
as a threshold. In other words, we take precisifications Mc of M such that
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vMc(F (d)) = 1 if vM(F (d)) ≥ vM(F (c)), and vMc(F (d)) = 0 otherwise. In
this setting, we could actually even remove any explicit reference to Mc: letting
F c(x) ≡ Δ(F (c) → F (x)), we easily see that vMc(F (x)) = vM(F c(x)). For ease
of reference, in the following we also let F	(x) ≡ ΔF (x), where F	 stands for
the choice of � as a threshold, instead of an element of the domain.

Let us turn now to step (ii). Given two formulas A and B in �Lukasiewicz logic,
the most obvious way of measuring the closeness of their truth values under a
given interpretation is by evaluating A ↔ B, i.e. (A → B) ∧ (B → A). Thus,
a natural way to evaluate how close the formulas F c(x) and F (x) are under
the interpretation M is by computing PropM(F c ↔ F ). In the setting of Giles’
game, the above ideas for (i) and (ii) result in the following closeness-based game
rule for Q̃.

(RCl
Q̃

) If P asserts Q̃xF (x) and O attacks the formula, P can either invoke LLD
(i.e. dismiss this formula occurrence) or add QxF c(x) to his tenet, where c
is either an element of the domain of his choice or �. An element d is then
randomly chosen and O can then choose between the following:
1. O adds F c(d) to his tenet, thereby forcing P to add F (d) to his tenet.
2. O adds F (d) to his tenet, thereby forcing P to add F c(d) to his tenet.

The states of the game corresponding to O’s choices when P does not invoke LLD
can be depicted as follows (Γ and Σ stand for arbitrary multisets of formulas):

[

Γ | Σ, Q̃xF (x)
]

[Γ, F c(d) | Σ,QxF c(x), F (d)] [Γ, F (d) | Σ,QxF c(x), F c(d)]

Proposition 1. Let us define the formula Cl(QxF (x)) as

∃z(QxF z(x) 	 Πy(F z(y) ↔ F (y))) ∨ (Qx(ΔF (x)) 	 Πy(F (y) ↔ ΔF (y))).

The game rules for Cl(QxF (x)) in Giles’ game for �Lukasiewicz logic are
essentially reducible to (RCl

Q̃
), modulo some irrelevant change of order: letting

vM(Q̃xF (x)) = vM(Cl(QxF (x))), where

vM(Cl(QxF (x))) = sup
c∈D∪{	}

(

max{0,PropM(F c ↔ F ) + vM(QxF c(x)) − 1}),

we obtain an evaluation of Q̃xF (x) matching the game rule (RCl
Q̃

).

Note that the occurrence of Πy(F z(y) ↔ F (y)) in Cl(QxF (x)) corresponds to
asserting that F z(y) is “close” to F (y), whereas the subformula Qx(ΔF (x)) 	
Πy(F (y) ↔ ΔF (y)) reflects the choice of � as a threshold instead of an element
of the domain.
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Motivated by game semantics, we have thus obtained an abstract character-
ization of fuzzy quantifiers in terms of semi-fuzzy ones. We remark that simple
changes in the choice of connectives and quantifiers in Cl(QxF (x)), lead to dif-
ferent fuzzification mechanisms, still expressible in �LΔ(Π). Let us check how the
approach sketched here fares with respect to Example 1 of Sect. 5.

Example 1 (continued). Under the interpretation M1, the supremum in
vM(Cl(H1

0xF (x)) is obtained equivalently by choosing d3 or d4 as a thresh-
old element. Hence vM1(

˜H1
0xF (x)) = vM1(H

1
0xF d4(x) 	 Πy(F d4(y) ↔ F (y))).

We have PropM1
(F d4) = 0.5 and PropM1

(F d4 ↔ F ) = 0.9+0.9+0.9+0.9
4 = 0.9.

Hence vM1(
˜H1
0xF (x)) = 1 	 0.9 = 0.9.

For the interpretation M2 it does not matter which element of the domain is
taken as a threshold (the choice of � can only make the value of vM(Cl(H1

0x))
smaller). In any case vM2(H

1
0xF di(x)) = 0, hence vM2(

˜H1
0xF (x)) = 0.

The method correctly determines two different truth values for ˜H1
0xF (x) for

the two interpretations M1 and M2. Note that a different value was obtained for
vM1(

˜H1
0xF (x)) under the random precisification mechanism in Sect. 6. The value

0.8 obtained for M1 in that approach points to a probabilistic interpretation of
the truth values of F (di). Indeed 0.8 stands for the probability that one picks
the precisifications accepting half of the elements of the domain (d3, d4 but not
d1, d2) as instances of F . What we present in this section instead follows a
“metric” intuition: it determines how close the interpretation M1 is from one
where exactly half of the elements of the domain fully satisfy F (x); hence the
value 0.9. We contend that both results are plausible and justifiable under the
respective (different) underlying intuitions.

Some problems persist, due to our choice of the closeness measure: evaluating
how close the truth values of all the elements of the domain are to a precisification
can lead indeed to counterintuitive results, as illustrated in the following.

Example 2. Let us consider the quantifier G1
1, which can be thought of as mod-

eling At least about half. Recall that vM(G1
1xF (x)) = min{1, 2PropM(F )}. We

compare the truth values of G1
1xF (x) under the interpretation M1 in Example 1

and under a new interpretation M3 over the same domain D = {d1, . . . , d4}. As
for the case of ˜H1

0xF (x), we obtain vM1(
˜G1
1xF (x)) = 0.9. Now let vM3(F (d1)) =

vM3(F (d2)) = 0.4 and vM3(F (d3)) = vM3(F (d4)) = 0.9. For M3, the supremum
of vM(Cl(G1

1xF (x))) is obtained by choosing the precisification determined by
F d4 . Again, we have vM3(G

1
1xF d4(x)) = 1, but F d4 is less close to F than in

M1. Indeed, we have vM3(Πy(F d4(y) ↔ F (y))) = 0.6+0.6+0.9+0.9
4 = 0.75 hence

vM3(
˜G1
1xF (x)) = 1 	 0.75 = 0.75.

Note that the semi-fuzzy quantifier G1
1 is monotone increasing, which means

that vM1(F (d)) ≤ vM3(F (d)) for any d ∈ D, implies that vM1(G
1
1xF (x)) ≤

vM3(G
1
1xF (x)). One would expect the same to happen also for the corresponding

fuzzy quantifier, i.e. to have vM1(
˜G1
1xF (x)) ≤ vM3(

˜G1
1xF (x)). But this is not
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the case, as shown above. The problem is that, when evaluating in M3 how
close F is to the precisification F d4 , we take into account also those elements
(d1 and d2) for which vM3(F

d4(d)) = 0. These values should be indifferent for
an increasing quantifier. A simple solution to address this problem is to replace
in the subformula Πy(F z(y) ↔ F (y)) of Cl(QxF (x)) (see Proposition 1) the
quantifier occurrence Πy by ∀y or ∃y, thus obtaining a stricter or looser measure
of closeness, respectively. A more general – and hence more satisfactory – solution
consists in replacing the rule (RCl

Q̃
) above by a simplified version, which reduces

the choices available to O. In case we consider a monotone increasing semi-fuzzy
quantifier, we allow the opponent O only the first choice, which is matched by
the truth function PropM(F c → F ). Similarly, for decreasing quantifiers we
allow only the second option, corresponding to PropM(F → F c), while for other
quantifiers we leave both options available to O. Let Cl′(QxF (x)) stand for

∃z(QxF z(x) 	 Πy(◦(F z(y), F (y))) ∨ (Qx(ΔF (x) 	 Πy(◦(ΔF (y), F (y))))

where ◦(F z(y), F (y)) ≡ F z(y) → F (y) if Q is increasing, F (y) → F z(y) if
Q is decreasing, and F (y) ↔ F z(y) otherwise. The game rules for Cl′(QxF (x))
correspond to the refinement of (RCl

Q̃
) just discussed; i.e., we obtain the analogue

of Proposition 1 for vM(Q̃xF (x)) = vM(Cl′(QxF (x))). We can now solve the
problems with monotonicity in Example 2, while still retaining the important
property of allowing to define fuzzy quantifiers over �LΔ(Π).

Example 2 (continued). For M1 the supremum in vM1(Cl′(QxF (x))) is obtained
considering F d4 . Since G1

1 is a monotone increasing quantifier, the closeness of
F to F d4 is measured by vM1(Πy(F d4(y) → F (y))) = 1+1+0.9+0.9

4 = 0.95 and

consequently we obtain vM1(
˜G1
1xF (x)) = 0.95. The same value is obtained for

vM3(Πy(F d4(y) → F (y))), hence vM3(
˜G1
1xF (x)) = vM3(

˜G1
1xF (x)) = 0.95.

More generally, we obtain the following restricted preservation of monotonicity.

Proposition 2. For any semi-fuzzy quantifier Q, let us interpret Q̃xF (x) as
Cl′(QxF (x)); and let M and M′ be two interpretations such that vM(F (di)) �
vM(F (dj)) iff vM′(F (di)) � vM′(F (dj)) for arbitrary elements di, dj of a finite
domain D, where � is either = or <. If Q is a monotone increasing quantifier
and vM(F (d)) ≤ vM′(F (d)) for any d ∈ D, then vM(˜QxF (x)) ≤ vM′(˜QxF (x)).
Analogously, for decreasing quantifiers.

8 Conclusion

We have investigated different ways of lifting semi-fuzzy to fuzzy quantifiers.
The two main approaches presented in Sects. 6 and 7 have the following advan-
tages: (1) they have a clear semantic foundation, based on Giles’ game and
(2) they provide models of fuzzy quantifiers compatible with �Lukasiewicz logic.
The closeness-based method introduced in Sect. 7 fulfills (2) in an even stronger
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sense, by allowing for the definition of fuzzy quantifiers over �LΔ(Π). We partially
departed from Glöckner’s [12], as the set of axioms presented there for fuzzifica-
tion mechanisms forces an interpretation of the connectives different from that
of �Lukasiewicz logic. Nevertheless we maintain that some of the properties listed
by Glöckner are relevant for our purposes as well. Among them, we stress the
preservation of monotonicity. In the closeness based approach we obtained only
a restricted form of this property. Full preservation of monotonicity can be easily
achieved if we drop the requirement that a precisification should be identified
with the choice of a threshold element. This, however, results in losing the imme-
diate expressibility of quantifiers in �LΔ(Π). Further refinements of the method
yet to be explored can be obtained by changes to the closeness measure.

Another natural research direction is to extend the closeness based approach
to binary, or more generally to n-ary vague quantifiers: linguistically adequate
models of such quantifiers should also take into account general concerns regard-
ing truth functionality, as already suggested in [4] for the random precisification-
based approach.

Finally, we suggest to further explore the advantages of embedding fuzzy
quantifiers models into logical calculi, in particular for t-norm based logics. An
axiomatization and a proof-theoretic study of semi-fuzzy and fuzzy quantifiers
is still lacking, even for the “basic” logic �L(Π). Promising steps in this direc-
tion consider modal counterparts of quantifiers, e.g. along the lines suggested in
Chap. 8 of Hajek’s ground breaking monograph [13].
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12. Glöckner, I.: Fuzzy quantifiers: a computational theory. In: Studies in Fuzziness

and Soft Computing, vol. 193. Springer, Heidelberg (2006)
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Štefánikova 49, 814 73 Bratislava, Slovakia

renata.hanesova@gmail.com, cunderlikova.lendelova@gmail.com

Abstract. In the paper the space of observables with respect to a family
of the intuitionistic fuzzy events is considered. We proved the modifica-
tion of the Fisher-Tippet-Gnedenko theorem for sequence of independent
intuitionistic fuzzy observables. It is the theorem of part of statistic,
which is called the extreme value theory.

Keywords: Intuitionistic fuzzy set · Intuitionistic fuzzy state · The
sequence of intuitionistic fuzzy observables · Independence · Joint intu-
itionistic fuzzy observable · Convergence in distribution · Fisher-Tippet-
Gnedenko theorem · The extreme value theory

1 Introduction

The extreme value theory is a part of statistics, which deals with examination
of probability of extreme and rare events with a large impact. The extreme
value theory search endpoints of the distributions. The Fisher-Tippet-Gnedenko
theorem says about convergence in probability distribution of maximums of inde-
pendent, equally distributed random variables. In the paper we proved the mod-
ification of the Fisher-Tippet-Gnedenko theorem for sequence of independent
intuitionistic fuzzy observables.

One of the preferences of the Kolmogorov concept of probability is the agree-
ment of replacement the notion event with notion of a set. Therefore it seems
to be important also in the intuitionistic fuzzy probability theory to work with
the notion of an intuitionistic fuzzy event as an intuitionistic fuzzy set.

Recall that in the Kolmogorov theory a random variable is a measurable
function ξ : Ω → R defined on a space (Ω,S), i.e. such a function that the
preimage ξ−1(I) of any interval I ⊂ R belongs to the given σ-algebra S of
subsets of Ω. It induces a mapping I → ξ−1(I) ∈ S from the family J of all
intervals to a σ-algebra S.

In the intuitionistic fuzzy probability theory instead of the probability P :
S → [0, 1] an intuitionistic fuzzy state m : F → [0, 1] is considered, where F is
a family of intuitionistic fuzzy subsets of Ω. And instead of a random variable
ξ : Ω → R an intuitionistic fuzzy observable x : B(R) → F is considered.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 12
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Our main idea is in a representation of a given sequence (yn)n of intuitionistic
fuzzy observables yn : B(R) → F by a probability space (Ω,S, P ) and a sequence
(ηn)n of random variables ηn : Ω → R. Then from the convergence of (ηn)n in
distribution the convergence in distribution of (yn)n follows. Of course to dif-
ferent sequences (yn)n different probability spaces can be obtained. Anyway the
transformation can be used for obtaining some new results about intuitionistic
fuzzy states on F .

Mention that the used Atanassov concept of intuitionistic fuzzy sets [1,2]
is more general as the Zadeh notion of fuzzy sets [14,15]. Therefore in Sect. 2
some basic information about intuitionistic fuzzy states and intuitionistic fuzzy
observables on families of intuitionistic fuzzy sets are presented [12]. Further in
Sect. 3 the independence of intuitionistic fuzzy observables is studied. In Sect. 4
the convergence in m is studied and the Fisher-Tippet-Gnedenko theorem is
proved.

Remark that in a whole text we use a notation “IF” for short a phrase
“intuitionistic fuzzy”.

2 IF-events, IF-states and IF-observables

Our main notion in the paper will be the notion of an IF -event, what is a pair
of fuzzy events.

Definition 1. Let Ω be a nonempty set. An IF-set A on Ω is a pair (μA, νA)
of mappings μA, νA : Ω → [0, 1] such that μA + νA ≤ 1Ω.

Definition 2. Start with a measurable space (Ω,S). Hence S is a σ-algebra of
subsets of Ω. An IF-event is called an IF-set A = (μA, νA) such that μA, νA :
Ω → [0, 1] are S-measurable.

The family of all IF-events on (Ω,S) will be denoted by F , μA : Ω −→ [0, 1]
will be called the membership function, νA : Ω −→ [0, 1] be called the non-
membership function.

If A = (μA, νA) ∈ F , B = (μB , νB) ∈ F , then we define the Lukasiewicz
binary operations ⊕,� on F by

A ⊕ B = ((μA + μB) ∧ 1, (νA + νB − 1) ∨ 0)),
A � B = ((μA + μB − 1) ∨ 0, (νA + νB) ∧ 1))

and partial ordering is given by

A ≤ B ⇐⇒ μA ≤ μB , νA ≥ νB

and a unary operation ¬ by

¬A = (νA, μA).
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Example 1. Fuzzy event f : Ω −→ [0, 1] can be regarded as IF-event, if we put

A = (f, 1 − f).

If f = χA, then the corresponding IF-event has the form

A = (χA, 1 − χA) = (χA, χA′ ).

In this case A ⊕ B corresponds to the union of sets, A � B to the product of
sets, ¬A to the complement, and ≤ to the set inclusion.

In the IF -probability theory [12] instead of the notion of probability we use
the notion of state.

Definition 3. Let F be the family of all IF-events in Ω. A mapping m : F →
[0, 1] is called an IF-state, if the following conditions are satisfied:

(i) m((1Ω , 0Ω)) = 1, m((0Ω , 1Ω)) = 0;
(ii) if A � B = (0Ω , 1Ω) and A,B ∈ F , then m(A ⊕ B) = m(A) + m(B);
(iii) if An ↗ A (i.e. μAn

↗ μA, νAn
↘ νA), then m(An) ↗ m(A).

Probably the most useful result in the IF -state theory is the following rep-
resentation theorem [10]:

Theorem 1. To each IF-state m : F → [0, 1] there exists exactly one probability
measure P : S → [0, 1] and exactly one α ∈ [0, 1] such that

m(A) = (1 − α)
∫

Ω

μAdP + α

(
1 −

∫
Ω

νAdP

)

for each A = (μA, νA) ∈ F .

The third basic notion in the probability theory is the notion of an observable.
Let J be the family of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Then the σ-algebra σ(J ) is denoted B(R) and it is called the σ-algebra of Borel
sets, its elements are called Borel sets.

Definition 4. By an IF-observable on F we understand each mapping x :
B(R) → F satisfying the following conditions:

(i) x(R) = (1, 0), x(∅) = (0, 1);
(ii) if A ∩ B = ∅, then x(A) � x(B) = (0, 1) and x(A ∪ B) = x(A) ⊕ x(B);
(iii) if An ↗ A, then x(An) ↗ x(A).

If we denote x(A) =
(
x�(A), 1 − x�(A)

)
for each A ∈ B(R), then x�, x� :

B(R) → T are observables, where T = {f : Ω → [0, 1]; f is S − measurable}.
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If x : B(R) −→ F is an IF -observable, and m : F −→ [0, 1] is an IF -state,
then the IF -distribution function of x is the function F : R −→ [0, 1] defined by
the formula

F(t) = m
(
x((−∞, t))

)

for each t ∈ R.
Similarly as in the classical case the following two theorems can be

proved [12].

Theorem 2. Let F : R −→ [0, 1] be the IF-distribution function of an IF-
observable x : B(R) −→ F . Then F is non-decreasing on R, left continuous in
each point t ∈ R and

lim
n→−∞F(t) = 0, lim

n→∞F(t) = 1.

Theorem 3. Let x : B(R) −→ F be an IF-observable, m : F −→ [0, 1] be an
IF-state. Define the mapping mx : B(R) −→ [0, 1] by the formula

mx(C) = m(x(C)).

Then mx : B(R) −→ [0, 1] is a probability measure.

Theorem 2 enables us to define IF -expectation and IF -dispersion of an IF -
observable.

Definition 5. Let F : R −→ [0, 1] be the IF-distribution function of an IF-
observable x : B(R) −→ F . If there exists

∫
R

t dF(t), then we define the IF-
expectation of x by the formula

E(x) =
∫

R

t dF(t).

Moreover if there exists
∫

R
t2 dF(t), then we define the IF-dispersion D2(x)

by the formula

D2(x) =
∫

R

t2 dF(t) −
(
E(x)

)2 =
∫

R

(t − E(x))2 dF(t).

3 Independence

In the paper we shall work only with independent IF-observables. Of course first
we must need the existence of the joint IF-observable. For this reason we shall
define the product of IF-events [9].

Definition 6. If A = (μA, νA) ∈ F , B = (μB , νB) ∈ F , then their product A.B
is defined by the formula

A.B =
(
μA.μB , 1 − (1 − νA).(1 − νB)

)
=

(
μA.μB , νA + νB − νA.νB

)
.
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The next important notion is a notion of a joint IF-observable and its exis-
tence (see [11]).

Definition 7. Let x, y : B(R) → F be two IF-observables. The joint IF-
observable of the IF-observables x, y is a mapping h : B(R2) → F satisfying
the following conditions:

(i) h(R2) = (1, 0), h(∅) = (0, 1);
(ii) if A,B ∈ B(R2) and A ∩ B = ∅, then h(A ∪ B) = h(A) ⊕ h(B)

and h(A) � h(B) = (0, 1);
(iii) if A,A1, . . . ∈ B(R2) and An ↗ A, then h(An) ↗ h(A);
(iv) h(C × D) = x(C) · y(D) for each C,D ∈ B(R).

Theorem 4. For each two IF-observables x, y : B(R) → F there exists their
joint IF-observable.

Proof. Put x(A) = (x�(A), 1 − x�(A)), y(B) = (y�(B), 1 − y�(B)). We want to
construct h(K) = (h�(K), 1 − h�(K)). Fix ω ∈ Ω and put

μ(A) = x�(A)(ω),
ν(B) = y�(B)(ω).

It is not difficult to prove that μ, ν : B(R) → [0, 1] are probability measures.
Let μ × ν : B(R2) → [0, 1] be the product of measures and define

h�(K)(ω) = μ × ν(K).

Then h� : B(R2) → T , where T is the family of all S-measurable functions
from Ω to [0,1]. If C,D ∈ B(R), then

h�(C × D)(ω) = μ × ν(C × D) = μ(C) · ν(D) = x�(C)(ω) · y�(D)(ω),

hence

h�(C × D) = x�(C) · y�(D).

Similarly h� : B(R2) → T can be constructed such that

h�(C × D) = x�(C) · y�(D).

Put

h(A) = (h�(A), 1 − h�(A)),

for A ∈ B(R2).
Then we have for C,D ∈ B(R)

x(C) · y(D) = (x�(C), 1 − x�(C)) · (y�(D), 1 − y�(D))

=
(

x�(C) · y�(D), 1 −
(
1 − (1 − x�(C))

)
·
(
1 − (1 − y�(D))

))

= (x�(C) · y�(D), 1 − x�(C) · y�(D))
= (h�(C × D), 1 − h�(C × D)) = h(C × D).
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Definition 8. Let m be an IF-state. IF-observables x1, x2, ...xn : B(R) −→ F
are independent if for n-dimensional IF-observable hn : B(Rn) −→ F there
holds

m
(
hn(A1 × A2 × . . . × An)

)
= m

(
x1(A1)

)
· m

(
x2(A2)

)
· . . . · m

(
xn(An)

)

for each A1, A2, ..., An ∈ B(R).

Theorem 5. Let RN be the set of all sequences (ti)i of real numbers. Let
(xn)n be a sequence of independent IF-observables in (F ,m) with the same IF-
distribution function. Define for each n ∈ N the mapping ξn : RN −→ R by the
formula

ξn((ti)i) = tn.

Then (ξn)n is a sequence of independent random variables in a space
(RN , σ(C), P ). If there exists E(xn) then E(ξn) = E(xn). If there exists D2(xn)
then D2(ξn) = D2(xn).

Proof. Notation: A set C ⊂ RN is called a cylinder, if there exists n ∈ N , and
D ∈ B(Rn) such that

C = {(ti)i : (t1, ..., tn) ∈ D}.

By C we shall denote the family of all cylinders in RN , by σ(C) the σ-algebra
generated by C.

Construction: Consider the measurable space (RN , σ(C)) a sequence (xn)n of
independent IF-observables xn : B(R) −→ F (i.e. x1, . . . , xn are independent for
each n ∈ N), and the states mn : B(Rn) −→ [0, 1] defined by

mn(B) = m(hn(B))

for each B ∈ B(Rn).
The states mn are consisting, i.e.

mn+1(B × R) = m
(
hn+1(B × R)

)
= (m ◦ hn+1)(B × R)

= (mx1 × . . . × mxn
× mxn+1)(B × R)

= m
(
hn(B)

)
· m

(
x(R)

)
= m

(
hn(B)

)
· 1 = mn(B)

for each B ∈ B(Rn).
Therefore by the Kolmogorov consistency theorem [13] there exists the prob-

ability measure P : σ(C) −→ [0, 1] such that

P
(
π−1

n (B)
)

= mn(B) = m
(
hn(B)

)

for each B ∈ C, where C is the family of all cylinders in RN and πn : RN → Rn

is a projection defined by πn

(
(ti)∞

1

)
= (t1, . . . , tn).
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Let n ∈ N , A1, ..., An ∈ B(R). Then

P
(
ξ−1
1 (A1) ∩ . . . ∩ ξ−1

n (An)
)

= P
(
{(ti)∞

1 : ti ∈ Ai, i = 1, 2, . . . , n}
)

= P
(
π−1

n (A1 × . . . × An)
)

= m
(
hn(A1 × . . . × An)

)
= m

(
x1(A1)

)
· . . . · m

(
xn(An)

)
= P

(
π−1

{1}(A1)
)

· . . . · P
(
π−1

{n}(An)
)

= P
(
ξ−1
1 (A1)

)
· . . . · P

(
ξ−1
n (An)

)
.

Let F : R −→ [0, 1] be the IF -distribution function of IF -observables xn,
G : R −→ [0, 1] be the distribution function of random variables ξn. Then

G(t) = P
(
ξ−1
n ((−∞, t))

)
= P

(
π−1

n (R × . . . × R × (−∞, t))
)

= m
(
hn(R × ... × R × (−∞, t))) = m

(
xn((−∞, t))

)
= F(t).

If there exists IF-mean value E(xn), then

E(xn) =
∫

R

t dF(t) =
∫

R

t dG(t) = E(ξn).

Similarly the equality D2(ξn) = D2(xn) can be proved.

We need the notion of convergence IF-observables yet (see [8]).

Definition 9. Let x1, . . . , xn : B(R) → F be independent IF-observables and
gn : Rn → R be a Borel measurable function. Then the IF-observable yn =
gn(x1, . . . , xn) : B(R) → F is defined by the equality

yn = hn ◦ g−1
n

where hn : B(Rn) → F is the n-dimensional IF-observable (joint IF-observable
of x1, . . . , xn).

Example 2. Let x1, . . . , xn : B(R) → F be independent IF-observables and hn :
B(Rn) → F be their joint IF-observable. Then

1. the IF-observable yn =
√

n
σ

(
1
n

n∑
i=1

xi − a
)

is defined by the equality

yn = hn ◦ g−1
n ,

where gn(u1, . . . , un) =
√

n
σ

(
1
n

n∑
i=1

ui − a
)
;

2. the IF-observable yn = 1
n

n∑
i=1

xi is defined by the equality

yn = hn ◦ g−1
n ,

where gn(u1, . . . , un) = 1
n

n∑
i=1

ui;
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3. the IF-observable yn = 1
n

n∑
i=1

(xi − E(xi)) is defined by the equality

yn = hn ◦ g−1
n ,

where gn(u1, . . . , un) = 1
n

n∑
i=1

(ui − E(xi));

4. the IF-observable yn = 1
an

(
max(x1, . . . , xn)−bn

)
is defined by the equality

yn = hn ◦ g−1
n ,

where gn(u1, . . . , un) = 1
an

(
max(u1, . . . , un) − bn

)
.

Definition 10. Let (yn)n be a sequence of IF-observables in the IF-space
(F ,m). We say that (yn)n converges in distribution to a function Ψ : R −→
[0, 1], if for each t ∈ R

lim
n→∞m

(
yn((−∞, t))

)
= Ψ(t).

4 Basic Theorem from the Extreme Value Theory

The next notions of the extreme value theory on real numbers we can find in
works [3–7].

Let X1,X2, ... be independent, equally distributed random variables of real
numbers with a distribution function F : R → R defined by

F (x) = P (Xi < x), (i = 1, 2, ...),

where x ∈ R. Denote Mn maximum of n random variables

M1 = X1, Mn = max(X1, ...,Xn),

for n ≥ 2.

Theorem 6 (Fisher-Tippett-Gnedenko). Let X1,X2, ... be a sequence of
independent, equally distributed random variables. If there exists the sequences
of real constant an > 0, bn and a non-degenerate distribution function H, such
that

lim
n→∞ P

(
Mn − bn

an
< x

)
= H(x),

then H is the distribution function one of the following three types of distribu-
tions:

1. Gumbel

Hμ,σ(x) = exp
(
−e−( x−μ

σ )
)

, x ∈ R,
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2. Fréchet

Hμ,σ(x) =

{
0, for x ≤ μ,

exp
(
−

(
x−μ

σ

)−α
)

, for x > μ, α > 0,

3. Weibull

Hμ,σ(x) =

{
exp

(
−

(
−

(
x−μ

σ

))−α
)

, for x < μ, α < 0,

1, for x ≥ μ.

A parameter μ ∈ R is the location parameter and a parameter σ > 0 is
the scale parameter. A parameter α is called the shape parameter.

Gumbel, Fréchet and Weiboll distribution from Theorem6 we can write with
using a generalized distribution of extreme values

Hμ,σ,ε (x) =

{
exp

[
−

(
1 + ε

(
x−μ

σ

))− 1
ε

]
, 1 + ε

(
x−μ

σ

)
> 0, ε �= 0,

exp
(
− exp

(
−x−μ

σ

))
, x ∈ R, ε = 0.

Now we return to the IF-case. Let x1, x2, ... be an independent, equally dis-
tributed IF-observables on F . Denote Mn maximum of n IF-observables

M1 = x1, Mn = max(x1, ..., xn),

for n ≥ 2.

Theorem 7 (Fisher-Tippett-Gnedenko). Let x1, x2, ... be a sequence of
independent, equally distributed IF-observables such that D2(xn) = σ2,E(xn) =
a, (n = 1, 2, . . .). If there exists the sequences of real constant an > 0, bn and a
non-degenerate distribution function H, such that

lim
n→∞m

(
1
an

(
Mn − bn

)(
(−∞, t)

))
= H(t),

then H is the distribution function one of the following three types of distribu-
tions:

1. Gumbel

Hμ,σ(t) = exp
(
−e−( t−μ

σ )
)

, t ∈ R,

2. Fréchet

Hμ,σ(t) =

{
0, for t ≤ μ,

exp
(
−

(
t−μ
σ

)−α
)

, for t > μ, α > 0,

3. Weibull

Hμ,σ(t) =

{
exp

(
−

(
−

(
t−μ
σ

))−α
)

, for t < μ, α < 0,

1, for t ≥ μ.
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Proof. For each n = 1, 2, 3, . . . let the Borel function gn : Rn −→ R be given by

gn(u1, . . . , un) =
1
an

(
max(u1, . . . , un) − bn

)
.

Let further the IF-observable yn : B(R) −→ F be given by stipulation

yn = hn ◦ g−1
n = gn(x1, . . . , xn) =

1
an

(
max(x1, . . . , xn) − bn

)
.

Consider the measure space (RN , σ(C), P ) and random variables

ξn((ti)i) = tn, (n = 1, 2, ...).

Then by Theorem 5 the random variables ξn are independent. Moreover,

E(ξn) = E(xn) = a, D2(ξn) = D2(xn) = σ2.

Therefore by the classical Fisher-Tippett-Gnedenko Theorem 6 we have

lim
n→∞ P

({
(ui)∞

1 ;
1
an

(
max

(
ξ1((ui)∞

1 ), . . . , ξn((ui)∞
1 )

)
− bn

)
< t

})
= H(t).

Hence

lim
n→∞ m

(
1
an

(
Mn − bn

)(
(−∞, t)

))
= m

(
yn((−∞, t))

)

= lim
n→∞m

(
hn

(
g−1

n ((−∞, t))
))

= lim
n→∞ P

(
π−1

n

(
g−1

n ((−∞, t))
))

= lim
n→∞ P

({
(ui)∞

1 ; gn

(
ξ1((ui)∞

1 ), . . . , ξn((ui)∞
1 )

)
∈ (−∞, t)

})

= lim
n→∞ P

({
(ui)∞

1 ;
1
an

(
max

(
ξ1((ui)∞

1 ), . . . , ξn((ui)∞
1 )

)
− bn

)
< t

})

= H(t).

5 Conclusion

We have proved a very important assertion of mathematical statistics for IF-
observables in IF-theory. Evidently the results can be applied also to fuzzy sets
theory. On the other hand families of IF-events may be embedded to suitable
MV-algebras. Therefore it would be useful to try to extend the Fisher-Tippett-
Gnedenko theorem to probability MV-algebras.
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Abstract. Fundamental issues in the study of mortality rate modelling
are goodness of fit and the quality of forecasts. These are still open ques-
tions despite the fact that dozens of mortality models have been formu-
lated. Capturing all mortality patterns remains elusive for the proposed
models. Nevertheless, there are models with better and worse abilities
to explain historical mortality rates and to project accurate forecasts.
This paper considers two fuzzy approaches for forecasting future mor-
tality rates. First, the fuzzy autoregressive integrated moving average
(ARIMA) method allows the making of fuzzy forecasts based on crisp
estimates of mortality model parameters. Second, the fuzzy Lee-Carter
method models past mortality rates as fuzzy numbers, and then allows
the prediction of future fuzzy mortality rates. Numerical findings show
that both methods may be useful tools for forecasting.

Keywords: Mortality rate · Lee-Carter model · Fuzzy ARIMA ·
Mortality forecasting

1 The Problem of Mortality Forecasting

1.1 Introduction

During the last two centuries developed countries have experienced a persistent
increase in life expectancy. This increase, though a sign of social progress, poses
a challenge for governments, private pension plans and life insurers because of
its impact on pension and health costs. For example, in Poland life expectancy
at birth for men has risen from 63 years in 1958 to 73.5 years in 2014. The
increase for women was even more impressive during this period, from 68.5 years
to 81.5 years.

Actuaries and demographers have recognised the problems caused by an age-
ing population and rising longevity and have thus devoted significant attention
to the development of statistical techniques for the modeling and projection of
mortality rates. The basic modeled variable is the central death rate. For a given
population or cohort, the central death rate at age x during a given period of
one year, is found by dividing the number of people, who died after they had
reached the exact age x but before they reached the exact age x+1, by the aver-
age number who were living in that age group during the period. Data are at the
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 13
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heart of mortality modelling, which is why it is important to understanding the
real nature of the data used. Raw population data require various adjustments
before being used as inputs for the demographic database. The most common
adjustments are:

– to distribute persons of unknown age across the age range in proportion to
the number of observed individuals, in each age group,

– to split data into finer or to aggregate into wider age categories,
– to smooth the observed values in order to obtain an improved representation

of the given demographic ratio.

All of the above make data imprecise and so modelling using fuzzy methods is
justified.

1.2 The Lee-Carter Method

One of the most influential approaches to the stochastic modeling of mortality
rates is the mortality model proposed by Lee and Carter [9]. This model uses
principal component analysis to decompose the age-time matrix of mortality
rates into a bilinear combination of age and period parameters, with the latter
being treated as time series to produce mortality projections. The mortality
model for the central death rate mx,t is:

ln(mx,t) = αx + βxκt + εx,t, (1)

where: mx,t represents the matrix of the central death rates at age x in year
t, αx is a static age function capturing the general shape of mortality by age,
κt is a time dependent parameter, an index of the level of mortality at time t,
βx age dependent parameter, is the relative speed of change at each age, εx,t

is an error term. The error term is expected to be Gaussian, εx,t ∼ N(0, σε).
Many empirical studies show that this requirement is often violated. To obtain
a unique solution to (1) the following constraints are imposed:

αx =
1
T

T∑

t=1

ln(mx,t), (2)

T∑

t=1

κt = 0, (3)

xN∑

x=x1

βx = 1, (4)

For forecasting mortality, the κt is projected into the future using ARIMA
(autoregressive integrated moving average) time series methods. Lee and Carter
assume that αx and βx remains constant over time. Because of the linearity of κt,
it is generally modeled as a random walk with trend. However several ARIMA
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specification can be used. The Lee-Carter model has inspired numerous variants
and extensions (see: [2,3]). Koissi and Shapiro [8] proposed a fuzzy approach for
the Lee-Carter model. The advantage of the fuzzy approach is that the errors are
viewed as fuzziness of the model structure. However, one of the disadvantages is
the computational complexity. In particular, when we use standard fuzzy algebra
we get non-differential functions to optimize.

1.3 Contribution

An imprecise forecast is better than a precise false forecast. Thus we test two
approaches for fuzzy forecasting of mortality rates. First we apply the extended
fuzzy ARIMA method for forecast the κ parameter model and then we make
predictions using it with the standard age specific coefficient of the Lee-Carter
model. The second forecasting methods is the extended version of the fuzzy Lee-
Carter model by Koissi and Shapiro proposed in [10]. The modification involves
replacing the fuzzy numbers with oriented fuzzy numbers to obtain differentiated
objective functions during looking for parameters. Thus the aim of this study is
to investigate two different fuzzy approaches to morality rates’ projections: the
fuzzy Lee-Carter model [8] extended by [10] and the fuzzy ARIMA model [11]
extended by adding the fuzzy constant coefficient applied for forecasting in the
Lee-Carter model. We test the efficiency of these two approaches efficiency in
terms of the quality of forecasts.

The structure of the paper is as follows. In the next section, the fuzzy
ARIMA and fuzzy Lee-Carter models are described. Two ways of incorporating
fuzziness in the Lee-Carter model are presented. In Sect. 3 an application for
mortality data forecasting in Poland is made. The last section is a summary of
the study.

2 Mortality Rate Projection Methods

2.1 Fuzzy ARIMA Method

The ARIMA method presented by Box and Jenkins [1] is a class of statistical
model for analyzing and forecasting time series data. ARIMA generalizes the
simpler autoregressive moving average and adds the notion of integration. A
time series Zt can be presented by the ARIMA(p, d, q) process [4], if

φ(B)(1 − B)dZt = c + θ(B)at, (5)

where

– t = 1, 2, . . . , k,
– φ(B) = 1−φ1B−φ2B

2− . . .−φP BP and θ(B) = 1−θ1B−θ2B
2− . . .−θqB

q

are polynomials in B of degree p and q,
– c is a constant,
– B is the backward shift operator,
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– p of AR(p) is the integer derived by PACF (the partial autocorrelation
function),

– q of MA(q) is the integer derived by ACF (the autocorrelation function).

It is assumed that at are independent and identically distributed as normal
random variables with mean 0 and variance σ2, and the roots of φ(Z) = 0 and
θ(Z) = 0 all lie outside the unit circle.

In [11] instead of using crisp fuzzy parameters φ̃1, . . . , φ̃p and θ̃1, . . . , θ̃q in
the form of symmetric triangular fuzzy numbers are used. The algorithm can be
described by following three steps:

1. Fitting the ARIMA(p, d, q) with nonfuzzy input data to find crisp coefficients
c, φ = φ1, φ2, . . . , φp and θ = θ1, θ2, . . . , θq.

2. Determining the spreads s = s0, s1, s2, . . . , sp+q by the minimal fuzziness
criterion (6).

p∑
i=1

k∑
t=1

si|ξi||Wt−i| +
p+q∑

i=p+1

k∑
t=1

si|ρi−p||at+p−i| + s0 → minimize

s.t. :
p∑

i=1

φiWt−i + at −
q∑

i=1

θiat−i+

(1 − h)(
p∑

i=1

si|Wt−i| +
p+q∑

i=p+1

si|at+p−i| + s0) ≥ Wt,

p∑
i=1

φiWt−i + at −
q∑

i=1

θiat−i−

(1 − h)(
p∑

i=1

si|Wt−i| +
p+q∑

i=p+1

si|at+p−i| + s0) ≤ Wt,

t = 1, 2, . . . , k,
si ≥ 0 for all i = 0, 1, 2, . . . , p + q,

(6)

where:
– Wt = (1 − B)dZt,
– ξi is the partial autocorrelation coefficient of time lag i,
– ρi is the autocorrelation coefficient of time lag i.

3. Optional phase 3: deleting the data around the model’s upper boundary and
lower boundary when the fuzzy ARIMA model has outliers with a wide
spread and back to step 1. In this case, this step can not be applied because
unobservable variable κt is forecasted and the removal of outliers would be
based on a forecast of mortality rate which is also affected by αx and βx.

2.2 Fuzzy Lee-Carter Model

The fuzzy formulation of the LC model [8] is:

Ỹx,t = Ãx ⊕ B̃x � K̃t (7)

for x = x1, x2, . . . , xN , t = t1, t1 + 1, . . . , T , where
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– Ỹx,t = (yx,t, ex,t) are known fuzzy log-mortality rate of age group x at time
t, presented by a symmetrical triangular fuzzy number,1

– Ãx = (αx,t, sαx
) and B̃x = (βx, sβx

) are the unknown fuzzy age-specific para-
meters,

– K̃t = (κt, sκt
) is the unknown fuzzy time-variant mortality index.

Fuzzyfication. Koissi and Shapiro [8] used a fuzzy least-squares regression
based on the minimum fuzziness criterion to fuzzify the crisp log-central death
rates. It was emphasized that for simplicity, they used symmetric fuzzy num-
bers. Fuzzification of the given log-central death rates yx,t for age x in year
t, comes down to finding the symmetric triangular fuzzy number (STFN):
Yx,t = (yx,t, ex,t), where yx,t is the central value and ex,t is the unknown spread.
To find ex,t Koissi and Shapiro introduced STFN C0 = (c0x, s0x), C1 = (c1x, s1x),
such that:

(yx,t, ex,t) = (c0x, s0x) ⊕ (c1x, s1x) � t (8)

for each age-group x. Based on fuzzy arithmetic operations 2 it is equivalent to:

yx,t = c0x + c1xt, ex,t = max(s0x, s1xt). (9)

In the following part, according to [10], the STFN are replaced by the Ordered
Fuzzy Numbers. The Ordered Fuzzy Number (OFN), introduced by [7], is an
ordered pair of two continuous functions

−→
A = (fA, gA), where fA and gA are

called the up-part and the down-part, respectively, both defined on the closed
interval [0, 1] with values in R. Thus STFN (yx,t, ex,t), (c0x, s0x),(c1x, s1x) are
replaced by their counterparts: −→yx,t = (fYx,t

, gYx,t
),

−−→
C0x = (fC0x , gC0x),

−−→
C1x =

(fC1x , gC1x), where:

– fYx,t
(z) = yx,t − ex,t(1 − z),

– gYx,t
(z) = yx,t + ex,t(1 − z),

– fC0x(z) = c0x − s0x(1 − z),
– gC0x(z) = c0x + s0x(1 − z),
– fC1x(z) = c1x − s1x(1 − z),
– gC1x(z) = c1x + s1x(1 − z),
– z ∈ [0, 1].

Therefore condition (9) can be expressed as follows:

(fYx,t
, gYx,t

) = (fC0x , gC0x) ⊕ (fC1x , gC1x) � t, (10)

for each age-group x. By definition of addition and multiplication of OFN it
results that the following equations should be satisfied:
1 we use notation Ã = (α, a), where α is the center and a is the spread of fuzzy
number.

2 Koissi and Shapiro used definition of multiplication and addition proposed by Hong
[5] and Kolesarova [6] respectively.
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(yx,t − ex,t(1 − z), yx,t + ex,t(1 − z))
= (fC0x(z) + tfC1x(z), gC0x(z) + tgC1x(z))

= (c0x + c1xt − (s0x + s1xt)(1 − z), c0x + c1xt + (s0x + s1xt)(1 − z))
(11)

for each age-group x, and z ∈ [0, 1]. It means that:

yx,t = c0x + c1xt, (12)

ex,t = s0x + s1xt, (13)

t = 1, 2, . . . , T .
With respect to (12) ordinary least-squares regression is used to find the

centre values c0x and c1x. For each age-group x in the year t the estimates:

ĉ1x =
t̄yx,t − t̄ ȳx,t

t̄2 − t̄2
(14)

ĉ0x = ȳx,t − ĉ1xt̄ (15)

where t̄yx,t, ȳx,t, t̄2, t̄
2 denotes the arithmetic mean of appropriate expressions.

Next, the spreads s0x and s1x are obtained by using the minimum fuzziness
criterion (it is impossible to use least-squares regression, because the left side of
Eq. (13) is unknown). Lets note that from the assumption ex,t are non-negative
numbers. The smallest value is 0. Therefore, the minimum fuzziness criterion
leads to ŝ0x, ŝ1x which minimize the sum:

T∑

t=1

ex,t = Ts0x + s1x

T∑

t=1

t, (16)

subject to the constraints:

– s0x, s1x ≥ 0,
– ĉ0x + ĉ1xt + (s0x + s1xt)(1 − z) ≥ yx,t,
– ĉ0x + ĉ1xt − (s0x + s1xt)(1 − z) ≤ yx,t

for each age x and for a fixed z ∈ [0, 1). Because the greater values of z lead
to greater spreads, it is assumed in the sequel that z = 0. The criterion above
is analogous to the criterion of Koissi and Shapiro. The difference concerns the
manner of calculating spreads.

Estimating Fuzzy-LC. The search for the parameters is to minimize the Dia-
mond distance between Ỹx,t = Ãx,t ⊕ B̃x,t � K̃x,t and Yx,t. Thus for OFN, we
have:

xN∑

x=0

T∑

t1

D2(
−→
Ax ⊕ −→

B x � −→
K t,

−→
Y x,t) → minimize (17)
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where
xN∑
x=0

T∑
t1

D2(
−→
Ax ⊕ −→

B x � −→
K t,

−→
Y x,t)

=
1∫
0

(fAx
(z) + fBx�Kt

(z) − fYx,t
(z))2dz

+
1∫
0

(gAx
(z) + gBx�Kt

(z) − gYx,t
(z))2dz

(18)

One way of solution (17) is deriving the partial derivatives of (18) with
respect to αx, βx, κ(t), sαx

, sβx
, sκ(t), and next equaling them to 0.

2.3 Forecasting

In the first approach the algorithm for forecasting the morality rate for M years
is the following:

1. calculate crisp Lee-Carter model coefficients
2. find the fuzzy ARIMA coefficient for parameter κ
3. calculate κ for periods t = T + 1, T + 2, ..., T + M
4. calculate the fuzzy morality rate using the Lee-Carter formula with forecasted

κ and coefficients αx and βx form step 1.

Despite the large number of parameters, this approach has low computational
complexity. In step 1, by fitting the Lee-Carter model, the maximum likelihood
estimation or SVD method can be used. Step 2 is reduced to a linear optimization
problem.

The second forecasting approach consists of the following steps:

1. calculate crisp Lee-Carter model coefficients
2. fuzzification of log-central death rates
3. minimize the Diamond distance to obtain the fuzzy Lee-Carter model para-

meters
4. forecast (κt, sκt

) for periods t = T + 1, T + 2, ..., T + M by linear trend
5. calculate the fuzzy morality rate using the Lee-Carter formula with forecasted

(κt, sκt
) and coefficients (αx, sαx

) and (βx, sβx
) form step 3.

The second approach is associated with a large increase in computational
complexity, since we have twice as many parameters to set.

3 The Empirical Study

The empirical example is conducted on data about central death rates for
Poland3 covering the years 1958–2014 and ages 0–100 (see Fig. 1). The sam-
ple is divided in training sub-sample - years 1958–2004 and test sub-sample -
years 2005–2014. All calculations were performed separately for women and men.

3 Source: Human Mortality Database http://www.mortality.org/.

http://www.mortality.org/


Fuzzy Approaches in Forecasting Mortality Rates 143

Fig. 1. Logarithms of central death rates for Poland in 1958–2014 and ages 0–100

The calculations were made in the R environment using packages forecast for
ARIMA fitting and pracma for solving equations. Using the revised fuzzy
ARIMA model (case fARIMA) and parameters from the fuzzy Lee-Carter
method (case fLC), we forecast the future value of the κt (see Table 1) and then
forecast mortality for the next 10 years. Results for 0, 20, 40 and 60-year-olds
are presented in Figs. 2 and 3. A black vertical line on each chart separates fit-
ted models from forecasts. As we can see, most problems with models fitting
and forecasting are generated by subpopulations between the ages of 40 and 60.
This is especially evident for men, for the above-mentioned ages are significantly
different from the actual values of the mortality rates. The considered models
do not cope with the change in mortality patterns that occurred in Poland in

Table 1. Projections of κ̃

crisp LC fARIMA fLC

Year Females Males Females Males Females Males

2005 −49.51 −22.58 (−51.14,−47.88) (−23.94,−21.23) (−31.98,−31.41) (−13.71,−13.11)

2006 −49.74 −22.91 (−51.37,−48.11) (−24.27,−21.56) (−33.31,−32.73) (−14.27,−13.67)

2007 −49.79 −23.03 (−51.42,−48.16) (−24.39,−21.67) (−34.63,−34.05) (−14.83,−14.22)

2008 −49.80 −23.07 (−51.43,−48.17) (−24.43,−21.71) (−35.95,−35.37) (−15.40,−14.78)

2009 −49.80 −23.09 (−51.43,−48.17) (−24.45,−21.73) (−37.28,−36.68) (−15.96,−15.33)

2010 −49.80 −23.09 (−51.43,−48.17) (−24.45,−21.73) (−38.60,−38.00) (−16.52,−15.89)

2011 −49.80 −23.09 (−51.43,−48.17) (−24.45,−21.74) (−39.93,−39.32) (−17.09,−16.44)

2012 −49.80 −23.10 (−51.43,−48.17) (−24.45,−21.74) (−41.25,−40.64) (−17.65,−17.00)

2013 −49.80 −23.10 (−51.43,−48.17) (−24.45,−21.74) (−42.57,−41.95) (−18.21,−17.55)

2014 −49.80 −23.10 (−51.43,−48.17) (−24.45,−21.74) (−43.90,−43.27) (−18.77,−18.12)
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Fig. 2. Results of estimation and prediction for males
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Fig. 3. Results of estimation and prediction for females
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Table 2. Forecast errors

MAE MSE RMSE MAPE

Males

fLC 0.239856 0.07623 0.276098 6.294489

fARIMA 0.200425 0.055833 0.2316 5.035917

Females

fLC 0.161778 0.036453 0.190927 4.34994

fARIMA 0.147042 0.037737 0.2419 3.205806

the 1990s. Let’s have a look at the forecasts for a 20-year-old females (Fig. 3,
second panel). Because our forecasts are in the sample there are real values of
the mortality rate (grey dots). The forecast obtained from crisp ARIMA is a
dashed line drawn. As STFN is used, central values got from fuzzy ARIMA
overlap crisp ARIMA. Finally, the forecast obtained from fuzzy Lee-Carter (as
a linear trend) is a solid line. In this case, the real values are in the fuzziness
area. For example, the forecast for year 2014 from crisp ARIMA equals −8.46,
and from fuzzy Lee-Carter we have an interval (−8.64,−8.19), while the real
value is equal to −8.23. For practical reasons, the logarithms of central mortal-
ity rates are modeled, but on this basis one can calculate the annual probability
of dying or the annual probability of living, which can be used to calculate other
demographic ratios.

The prediction errors, calculated for centre values of the fuzzy forecast, are
presented in Table 2. All actual values fall within the fuzzy ARIMA predictive
support, and 26.34% of fLC forecasts for men and for women 52.67%. However,
the average forecast’s spread for fLC is 0.1837 for females and 0.1638 for males.
For fARIMA it is 1.6291 and 1.3582, respectively, so more than eight times
bigger.

As we mentioned in the introduction, demographic data, of their nature,
are imprecise, which in our opinion requires a fuzzy approach in modelling and
forecasting. A comparison of crisp and two fuzzy methods for forecasting is shown
in Table 3.

Table 3. Comparison of standard and fuzzy forcasting of mortality rates

LC + ARIMA LC + fARIMA fuzzy LC

Lack of vague Crisp LC parameters and
vague forecast

Vague parameters and
forecast

Crisp numbers Crisp and fuzzy numbers OFN

Provide a confidence interval of at
least 50 and preferably 100
observations or more

Provide a possibility interval
less than ARIMA

Provide a possibility
interval less than ARIMA

Homoscedasticity assumption Homoscedasticity
assumption

Lack of assumption



Fuzzy Approaches in Forecasting Mortality Rates 147

4 Conclusions

In the paper we test the prediction value of two fuzzy approaches for modelling
mortality rates. The next natural step is checking models’ performance for other
data sets - different countries with different lengths of time series. The results
for Poland have shown the fuzzy ARIMA model to perform usually better than
the fuzzy Lee-Carter model regarding the forecast accuracy. However, too wide
support of fuzzy forecasting means there is no practical business use. Moreover,
when using the fuzzy ARIMA model, we do not avoid the difficult-to-meet
assumption of the Lee-Carter model. The reason for the weaker results of the
fuzzy Lee Carter model may be the linearity of the model, which we have already
introduced by fuzzification steps. Therefore, in further investigations we plan to
propose a new way of fuzzification for this model.
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Abstract. We introduce two variants of first-order fuzzy logic that can
deal with non-denoting terms, or terms that lack existing referents, e.g.,
Pegasus, the current king of France, the largest number, or 0/0. Log-
ics designed for this purpose in the classical setting are known as free
logics. In this paper we discuss the features of free logics and select
the options best suited for fuzzification, deciding on the so-called dual-
domain semantics for positive free logic with truth-value gaps and outer
quantifiers. We fuzzify the latter semantics in two levels of generality,
first with a crisp and subsequently with a fuzzy predicate of existence.
To accommodate truth-valueless statements about nonexistent objects,
we employ a recently proposed first-order partial fuzzy logic with a sin-
gle undefined truth value. Combining the dual-domain semantics with
partial fuzzy logic, we define several kinds of ‘inner-domain’ quantifiers,
relativized by the predicate of existence. Finally, we make a few obser-
vations on some of the resulting rules of free fuzzy quantification that
illustrate the differences between the two proposed systems of free fuzzy
logic and their well known non-free or non-fuzzy variants.

Keywords: Quantifier · Free logic · Existence · Referent · Partial fuzzy
logic

1 Introduction

In both formal and natural languages there are terms with no existing refer-
ents. Classical examples include 1/0,

∑∞
n=0(−1)n, the largest natural number,

Pegasus, or the current king of France. In the classical setting, dealing with
such non-denoting terms falls under the domain of free logics, or ‘logics free of
existential assumptions’ [4–7]. Free logics differ from classical logic mainly in
the conditional validity of certain inference rules for quantifiers. These differ-
ences ensue from the modifications free logics make to the classical first-order
semantics in order to accommodate terms that either have no referents at all,
or have referents that fall outside the domain of existential and universal quan-
tification. Free logics find numerous applications in the logical analysis of nat-
ural language, esp. the theory of definite descriptions, temporal and fictional
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 14
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discourse, modal logics with non-constant domains (where possible worlds can
differ in existent objects), computer science (for dealing with null objects and
unassigned variables), or some areas of mathematics (algebra, foundations) and
philosophy [5–7].

Non-denoting terms or terms denoting nonexistent objects can, obviously,
be encountered in fuzzy contexts just like in crisp contexts, e.g., when a fuzzy
property is predicated of a nonexistent object or in fuzzy definite or indefinite
descriptions. However, like classical logic, known systems of predicate fuzzy logic
all assume that each term in the language is evaluated within the domain of
quantification, and so has an existent referent. To our knowledge, no attempt at
developing free fuzzy logic has yet been undertaken.

This paper aims neither at providing a definite solution to the problem of
handling non-denoting terms or nonexistent objects in fuzzy contexts, nor at
deriving deep mathematical results on free quantification in fuzzy logic. Rather
we make the first exploration into the landscape of viable variants of free fuzzy
logic, pointing out some possible desiderata and design choices, and hint at a
few features in which free fuzzy logic may differ from its non-free or non-fuzzy
variants.

Possible applications of free quantification in fuzzy logic are envisaged wher-
ever non-denoting terms might be encountered in fuzzy contexts, which includes
fuzzy descriptions, fuzzy temporal, fictional, or modal discourse, as well as var-
ious fuzzy methods of computer science and engineering where variables may
happen to lack referents. Naturally, these applications can only be developed
after the sketched systems of free fuzzy logic are elaborated in more detail. Such
an elaboration is a topic for future work.

2 Non-denoting Terms in the Classical Setting

As mentioned in Sect. 1, the treatment of non-denoting terms and nonexistent
objects in the crisp setting is the domain of free logics. There are several variants
of free logics known from the literature, which differ in various design choices
for their semantics [5–7]. In this section, we review the main available options
for the semantics of crisp free logics and justify the choice of one of them as our
starting point for generalization to the fuzzy setting.

In free logics, singular terms may lack referents in the domain of quantifica-
tion. Most variants of free logic contain the (primitive or defined) unary existence
predicate, traditionally denoted by E!, where the atomic formula E!t expresses
the fact that the singular term t has a referent in the domain of quantification.
Besides other things, E! enables an explicit expression of existential presuppo-
sitions in inferences.

There are three main families of free logics, which differ in the way they assign
truth values to empty-termed atomic formulae (i.e., atomic formulae containing
terms that lack referents in the domain of quantification):

– Negative: All empty-termed atomic formulae are considered false.
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– Positive: Some empty-termed atomic formulae can be true.
– Neutral: All empty-termed atomic formulae not of the form E!t are considered

truth-valueless.

A further distinction regards how non-denoting terms themselves are handled
in the semantics. One option is to use a single domain D of referents; the Tarski
conditions then need be modified to allow singular terms to have no value in D.
Another option is the so-called dual-domain semantics. Here, models have two
domains: the outer domain D0 �= ∅ and the inner domain D1 ⊆ D0. In D1,
which is the range of quantification, existent objects are collected. Singular terms
with non-existing referents are assigned the elements of D0 � D1. In the positive
dual-domain semantics, the extensions of predicates can include objects from
D0 � D1; this makes it possible to assign truth values to claims about nonexistent
objects (e.g., that Zeus �= Pegasus or that unicorns are animals). The appeal of
the dual-domain semantics lies in its closeness to the classical semantics: since
every singular term has a referent in D0, there is no need to use some non-
standard way of evaluation of empty-termed atomic formulae. The dual-domain
semantics is also convenient for accommodating objects that exist in possible
worlds other than the actual world: in modal logics with non-constant domains,
each world w comes with its own inner domain (of objects existing in w), which
is a subset of a common outer domain.

An attractive option in the positive dual-domain framework is to take the
so-called outer quantifiers, which range over the outer domain D0, as primitive.
Since all terms have referents in D0, these quantifiers behave as the standard
quantifiers of classical first-order logic. The inner quantifiers (ranging over D1)
are then simply restrictions of the outer quantifiers to the inner domain (delim-
ited by the existence predicate). In particular, if we denote the outer quantifiers
by ∃0,∀0, then the inner quantifiers ∃1,∀1 are defined as

(∃1x)ϕ ≡df (∃0x)(E!x & ϕ) (1)
(∀1x)ϕ ≡df (∀0x)(E!x → ϕ). (2)

The ordinary meaning of the expressions “some” and “all” corresponds to inner
quantification (over existing objects). The outer quantifiers, apart from their
technical role in the semantics, are nevertheless useful in certain specific con-
texts: for instance, the statement “Some things do not exist”, which is not
straightforwardly formalizable by means of classical or inner quantification, can
be expressed by the formula (∃0x)¬E!x. Since D1,∃1,∀1 are definable from the
(classically behaving) D0,∃0,∀0 and E!, free logic with outer quantifiers is essen-
tially the classical logic of restricted quantification.

More details on free logics can be found in [4–7]. It remains to decide which
variant(s) from the rich landscape of free logics are best suited for generalization
to fuzzy contexts.

As has been observed in the literature [6,7], each of the main variants (posi-
tive, negative, and neutral) comes with some problems. Neutral free logics tend
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to be rather weak; also, intuitively it seems strange for statements like “Zeus =
Zeus” to lack a truth value (or be false, as in negative free logics). In negative
free logics, the truth values of empty-termed formulae depend on the choice of
primitive predicates. In bivalent positive free logics, we are often forced to assign
truth values to empty-termed formulae without any clear reason.

Therefore, for our enterprise we favor a non-bivalent variant of positive free
logic, which has also been studied in the literature (see [7]) and seems most flex-
ible compared to alternatives. In non-bivalent positive free logics, some empty-
termed propositions (such as “1/0 is prime”) may lack truth values, while others
(such as “Zeus = Zeus”) can be true and yet others (such as “Zeus = Pegasus”)
false. The truth-value gaps, needed in non-bivalent positive semantics, can conve-
niently be handled within the framework of partial fuzzy logic, recently proposed
in [2,3]. Since single-domain semantics require a non-standard evaluation of sin-
gular terms (and can anyway be emulated by a dual-domain semantics with a
single element in D0 � D1), our choice for fuzzification is that of dual-domain
non-bivalent positive free logic.

3 Partial Fuzzy Logic

Partial fuzzy logic, suitable for dealing with truth-valueless propositions occur-
ring in positive free fuzzy logic, has been proposed in a propositional form in
[3] and extended to a first-order variant in [2]. It represents truth value gaps
by an additional truth value ∗, added to the real unit interval [0, 1] or another
algebra L of truth degrees of an underlying fuzzy logic L. The underlying fuzzy
logic L can be any implicative expansion of the logic MTL� (i.e., an expansion
of MTL� where every connective is congruent w.r.t. fully true bi-implication),
for instance, �L�, BL�, �LΠ, etc. For more information on these logics see, e.g.,
[1]; we assume the reader’s familiarity with at least one such fuzzy logic, both
propositional and first-order.

The semantics of the propositional partial fuzzy logic L∗ based on the fuzzy
logic L is defined as follows (for additional details see [3]):

– The primitive propositional language of L∗ contains:
• For each propositional connective c of L, the (‘Bochvar-style’) connec-

tive cB of the same arity
• The truth constant ∗ (representing an undefined truth degree)
• The unary connective ! (for the crisp indicator of definedness)
• The binary connective ∧K (for ‘Kleene-style’ min-conjunction).

– The intended algebras of truth values for L∗ are defined as expansions of the
algebras for L by a dummy element ∗ (to be assigned to propositions with
undefined truth). In the intended L∗-algebra L∗ = L∪{∗}, for L an L-algebra,
the connectives of L∗ are interpreted by the following truth tables for each
unary connective uB, binary connective cB (and similarly for higher arities),
α, β ∈ L and γ, δ ∈ L � {0}:
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!

α 1

∗ 0

uB

α uα

∗ ∗

cB β ∗
α α c β ∗
∗ ∗ ∗

∧K 0 δ ∗
0 0 0 0

γ 0 γ ∧ δ ∗
∗ 0 ∗ ∗

(3)

– The tautologies of L∗ are defined as those L∗-formulae that are evaluated to 1
under all evaluations in all intended L∗-algebras. Entailment in L∗ is defined
as the transmission of the value 1 under all evaluations in all intended L∗-
algebras. As usual, we write |= ϕ if ϕ is a tautology of L∗, and Γ |= ϕ if the
set Γ of L∗-formulae entails the L∗-formula ϕ in L∗.

The primitive connectives of L∗ make a broad class of derived connectives
available in L∗. Besides the primitive Bochvar-style connectives cB, which treat ∗
as the absorbing element, the following two important families of connectives are
definable in L∗:

– The Sobociński-style connectives cS ∈ {∧S,∨S,&S}, which treat ∗ as the neu-
tral element; and the Sobociński-style implication →S, associated with &S

via the residuation axiom x →S (y →S z) = (x &S y) →S z:

cS β ∗
α α c β α

∗ β ∗

→S β ∗
α α → β ¬α

∗ β ∗
– The Kleene-style connectives cK ∈ {∧K,∨K,&K,→K}, which preserve the

neutral and absorbing elements of the corresponding connectives of L, and
otherwise are evaluated Bochvar-style. For the primitive connective ∧K see (3)
above; the others are defined by the following truth tables:

&K 0 β ∗
0 0 0 0

α 0 α & β ∗
∗ 0 ∗ ∗

∨K δ 1 ∗
γ γ ∨ δ 1 ∗
1 1 1 1

∗ ∗ 1 ∗

→K δ 1 ∗
0 1 1 1

α α → δ 1 ∗
∗ ∗ 1 ∗

(4)

Moreover, several useful auxiliary connectives are definable in L∗, including those
with the following truth tables (for α ∈ L and γ ∈ L � {1}):

? ↓ ↑
α 0 α α

∗ 1 0 1

�

γ 0
1 ∗
∗ 0

(5)

For examples of the logical laws governing the connectives of L∗ see [3]. The
semantics of the first-order extension of L∗ introduced in [2] is defined as follows:
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Let L = (PredL,FuncL) be a first-order language with a non-empty set
PredL of predicate symbols and a set FuncL of function symbols, each with
an arity n ≥ 0 (where predicate symbols of arity 0 are propositional constants
and function symbols of arity 0 are object constants). Let Var be a set of object
variables.

A model for a language L over an intended L∗-algebra L∗ is given as M =(
DM, (PM)P∈PredL , (FM)F∈FuncL

)
, where:

– DM is a crisp non-empty set.
– PM : (DM)n → L∗ for each n-ary P ∈ PredL.
– FM : (DM)n → DM for each n-ary F ∈ FuncL.

The semantic values of a formula ϕ and a term t in a model M under an
evaluation e : Var → DM of object variables will be denoted by ‖ϕ‖Me and ‖t‖Me ,
respectively. The evaluation that assigns a ∈ DM to x and coincides with e on
all other object variables will be denoted by e[x �→ a].

The Tarski conditions for terms and atomic formulae are defined as in the
first-order fuzzy logic L, and for propositional connectives by the truth tables (3)
above. The primitive quantifiers ∃B,∀B of L∗ are interpreted Bochvar-style, i.e.,
yielding the ‘undefined’ value ∗ whenever an instance of the quantified formula
is undefined:

‖(∃Bx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

supa∈DM ‖ϕ‖Me[x�→a] otherwise

‖(∀Bx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

infa∈DM ‖ϕ‖Me[x�→a] otherwise.

Like in the case of propositional connectives, further variants of universal
and existential quantifiers are definable in L∗, including the following important
ones:

– The Sobociński-style quantifiers ∃S,∀S, which ignore the undefined instances
of the quantified formula:

‖(∃Sx)ϕ‖Me =

⎧
⎨

⎩

∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

sup
‖ϕ‖M

e[x�→a] 
=∗
‖ϕ‖Me[x�→a] otherwise

‖(∀Sx)ϕ‖Me =

⎧
⎨

⎩

∗ if ‖ϕ‖Me[x�→a] = ∗ for all a ∈ DM

inf
‖ϕ‖M

e[x�→a] 
=∗
‖ϕ‖Me[x�→a] otherwise.

They can be defined from ∃B,∀B by the L∗-connectives (3)–(5) as follows:

(∃Sx)ϕ ≡df (∃Bx)↓ϕ ∨B �(∀Bx)?ϕ (6)

(∀Sx)ϕ ≡df (∀Bx)↑ϕ ∨B �(∀Bx)?ϕ . (7)
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– The Kleene-style quantifiers ∃K,∀K, respectively analogous to ∨K and ∧K,
can be defined as:

(∃Kx)ϕ ≡df (∃Bx)ϕ ∨K (∃Sx)ϕ (8)
(∀Kx)ϕ ≡df (∀Bx)ϕ ∧K (∀Sx)ϕ . (9)

As usual, validity in a model is defined as truth to degree 1 under all eval-
uations of object variables in the model; tautologicity as validity in all models
for the given language; and entailment as validity in all models validating all
premises. We use the usual notation M |= ϕ for validity, |= ϕ for tautologicity,
and Γ |= ϕ for entailment.

Observation 1. It can be easily verified that, e.g., the rule of generalization is
sound for all the aforementioned quantifiers: ϕ |= (Qx)ϕ for Q ∈ {∀B,∀S,∀K,
∃B,∃S,∃K}. The rule of specification, on the other hand, only holds for Bochvar
and Kleene universal quantifiers: (Qx)ϕ |= ϕ for Q ∈ {∀B,∀K}. Sobociński-style
universally quantified formulae may only be instantiated with terms that do not
make them undefined: (∀Sx)ϕ, !ϕ(t/x) |= ϕ(t/x).

4 Free Fuzzy Logic with a Crisp Existence Predicate

We have now collected all requisite ingredients to brew the first system of free
fuzzy logic. By a design choice justified in Sect. 2, it is going to be a fuzzy variant
of positive free logic with a dual-domain semantics admitting undefined truth
degrees (represented by the dummy value ∗ of a partial fuzzy logic L∗). We shall
start with the simpler case when the existence predicate E! is bivalent (i.e., total
and crisp). The more general case of a fuzzy existence predicate will be discussed
later in Sect. 5.

Let L∗ be a partial fuzzy logic based on a fuzzy logic L. The semantics for
a free variant of L∗ will only require a minor modification to the semantics of
first-order L∗ described in Sect. 3:

Let L∗ be an intended L∗-algebra and L a first-order language as in Sect. 3.
A dual-domain model for L over L∗ is given as M = (DM

0 ,DM
1 , (PM)P∈PredL ,

(FM)F∈FuncL), where:

– DM
0 ,DM

1 are crisp sets such that DM
1 ⊆ DM

0 �= ∅, respectively called the
outer and inner domain of M.

Predicate and function symbols are interpreted over the outer domain:

– PM : (DM
0 )n → L∗ for each n-ary P ∈ PredL.

– FM : (DM
0 )n → DM

0 for each n-ary F ∈ FuncL.

The Tarski conditions for terms, atomic formulae, and propositional connectives
in M under an evaluation e : Var → DM

0 are as in Sect. 3. The additional logical
predicate symbols = (identity) and E! (existence) are interpreted in M as follows:
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– E!M indicates membership in the inner domain DM
1 :

‖E!t‖Me =

{
1 if ‖t‖Me ∈ DM

1

0 otherwise.

– =M indicates the identity across the outer domain DM
0 :

‖t = u‖Me =

{
1 if ‖t‖Me = ‖u‖Me
0 otherwise.

Opting for free logic with outer quantifiers (see Sect. 2), we define the prim-
itive Bochvar-style quantifiers ∀0

B,∃0
B as ranging over the outer domain DM

0 :

∥
∥(∃0

Bx)ϕ
∥
∥M

e
=

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

0

supa∈DM
0

‖ϕ‖Me[x�→a] otherwise

∥
∥(∀0

Bx)ϕ
∥
∥M

e
=

{
∗ if ‖ϕ‖Me[x�→a] = ∗ for some a ∈ DM

0

infa∈DM
0

‖ϕ‖Me[x�→a] otherwise.

The outer Sobociński and Kleene quantifiers can be defined from ∃0
B,∀0

B as in (6)–
(9) of Sect. 3:

(∃0
Sx)ϕ ≡df (∃0

Bx)↓ϕ ∨B �(∀0
Bx)?ϕ (∃0

Kx)ϕ ≡df (∃0
Bx)ϕ ∨K (∃0

Sx)ϕ

(∀0
Sx)ϕ ≡df (∀0

Bx)↑ϕ ∨B �(∀0
Bx)?ϕ (∀0

Kx)ϕ ≡df (∀0
Bx)ϕ ∧K (∀0

Sx)ϕ .

Analogously to (1) and (2) in Sect. 2, we would like to introduce inner
(Bochvar-style) quantifiers ∃1

B,∀1
B by restricting the outer quantifiers ∃0

B,∀0
B to

the inner domain DM
1 (delimited by E!M). In the partial fuzzy setting, there

arises the question as to which of the available conjunctions and implications
should be used in (1) and (2) for the relativization of quantifiers. The desired
behavior of the inner quantifiers is such that they are only affected by the ele-
ments of the inner domain DM

1 , i.e., iff E!x evaluates to 1. In (1) and (2) we
thus need to use a conjunction & and an implication → such that 0 & α = 0
and 0 → α = 1 (to screen off the elements outside DM

1 ), while 1 & α = α and
1 → α = α (not to affect the values for elements in DM

1 ), for all α ∈ L∗. This
suggests the Kleene connectives &K and →K (cf. their truth tables (4) in Sect. 3)
as the adequate choice for relativization. Therefore we define:

(∃1
Bx)ϕ ≡df (∃0

Bx)(E!x &K ϕ) (10)
(∀1

Bx)ϕ ≡df (∀0
Bx)(E!x →K ϕ) . (11)

The inner Sobociński and Kleene quantifiers can again be defined from ∃1
B,∀1

B

just like in (6)–(9) of Sect. 3:

(∃1
Sx)ϕ ≡df (∃1

Bx)↓ϕ ∨B �(∀1
Bx)?ϕ (∃1

Kx)ϕ ≡df (∃1
Bx)ϕ ∨K (∃1

Sx)ϕ

(∀1
Sx)ϕ ≡df (∀1

Bx)↑ϕ ∨B �(∀1
Bx)?ϕ (∀1

Kx)ϕ ≡df (∀1
Bx)ϕ ∧K (∀1

Sx)ϕ .

Finally, the notions of validity, tautologicity, and entailment are defined as
in Sect. 3. Let us now give some observations on this version of free fuzzy logic.
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Observation 2. First, it can be observed that the definition of =M makes all
self-identity statements true to degree 1, thus |= t = t for all terms t.

Secondly, since all terms denote in DM
0 , the outer quantifiers behave just like

the non-free quantifiers of Sect. 3. Thus, for instance (cf. Sect. 3, Observation 1):

ϕ |= (Qx)ϕ for Q ∈ {∀0
B,∀0

S,∀0
K,∃0

B,∃0
S,∃0

K}
(Qx)ϕ |= ϕ for Q ∈ {∀0

B,∀0
K} (12)

(∀0
Sx)ϕ, !ϕ(t/x) |= ϕ(t/x) .

However, the behavior of inner quantifiers, which only range over DM
1 , differs.

For example, unlike (12), in general (∀1
Bx)ϕ �|= ϕ, since x can be evaluated

outside the inner domain DM
1 . The predicate E! makes it possible to indicate

the existence assumptions of inner quantification explicitly; for instance, the
following rules are sound:

ϕ(t/x), E!t |= (Qx)ϕ for Q ∈ {∃1
S,∃1

K}
(Qx)ϕ,E!t |= ϕ(t/x) for Q ∈ {∀1

B,∀1
K} .

For ∃1
B,∀1

S, on the other hand, additional definedness assumptions are needed:

ϕ(t/x), E!t, (∀1
Bx)!ϕ |= (∃1

Bx)ϕ

(∀1
Sx)ϕ,E!t, !ϕ(t/x) |= ϕ(t/x) .

5 Free Fuzzy Logic with a Fuzzy Existence Predicate

In this section, we outline a variant of free fuzzy logic in which the existence
predicate E! need not be bivalent as in Sect. 4, but can be fuzzy. In this more
general setting, the existence of the referent of a singular term can be a matter of
degree. This may be useful, e.g., for modeling definite or indefinite descriptions
determined by a fuzzy condition: for instance, the referent of the term the golden
mountain can be considered to exist in a possible world w to the degree to which
the greatest lump of gold in w can be considered a mountain; or the degree
of purity of gold in the mountain with the most content of gold in w; or a
combination thereof.

The semantics described in Sect. 4 requires just a very minor adjustment in
order to admit fuzzy existence. In fact, the only change required is to assume
that the inner domain DM

1 is a fuzzy (rather than crisp) subset of the outer
domain DM

0 . As was already the case in Sect. 4, the existence predicate E! is
interpreted by the membership function of DM

1 . Thus the only difference to the
semantics of Sect. 4 consists in the following clauses:

– DM
1 : DM

0 → L.
– E!M = DM

1 .
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The Tarski condition for E! thus reads: ‖E!t‖Me = DM
1

(‖t‖Me
)
. All the rest of the

definitions of Sect. 4, including those of the inner and outer quantifiers, remain
in place.

The bivalence of E! (and so the setting of Sect. 4) can easily be enforced by
adding the axiom E!x∨B¬BE!x, or equivalently, (∀0

Bx)(E!x∨B¬BE!x). Note that
using instead the axiom (∀0

Sx)(E!x∨B¬BE!x) would enforce a crisp, but possibly
not totally defined predicate of existence. The question whether a partial E! is
meaningful, i.e., whether we may want to admit referents whose existence has
no truth value (i.e., is objectively undefined, rather than just unknown), is left
aside here for space reasons.

Observation 3. Obviously, the fuzziness of E! does not affect the behavior of the
outer quantifiers, which remains the same as in Sects. 3 and 4. What differs is the
behavior of the inner quantifiers, due to the relativization to a fuzzy rather than
crisp inner domain in their definition; cf. (10) and (11) in Sect. 4. For example,
the following rule is sound if E! is crisp, but fails in general for fuzzy E!:

!ϕ, !ψ |= (∀1
Bx)(ϕ →B ψ) →B

(
(∀1

Bx)ϕ →B (∀1
Bx)ψ

)
. (13)

In our present setting of Sect. 5, the rule (13) only holds if E! is contractive, i.e.,
with the additional premise E!x →B (E!x &B E!x). (So in particular, it does
hold if the underlying fuzzy logic L is Gödel or if E! is crisp.)

As seen in Observation 3, the main culprit of the failure of (13), as well as
many other rules for inner quantifiers, is the non-contractivity of fuzzy existence
claims; i.e., the fact that E!t is in general weaker than E!t &B E!t. Taking the
non-contractivity of conjunction into account, we can obtain a more fine-grained
analysis of the valid rules for inner quantifiers. Let us introduce the following
notation:

ϕ0 = 1
ϕn+1 = ϕn &B ϕ

ϕ� = �Bϕ .

Then we can define the inner quantifiers of grade n, for n ∈ N∪{�}, as follows:

(∃n
Bx)ϕ ≡df (∃0

Bx)
(
(E!x)n &K ϕ

)

(∀n
Bx)ϕ ≡df (∀0

Bx)
(
(E!x)n →K ϕ

)
.

For n ≤ 1, the definition yields the usual outer and inner quantifiers, or the
quantifiers respectively relativized to the outer and inner domain. The n-grade
inner quantifiers can be viewed as relativized to the n-grade inner domain DM

n ,
defined as the fuzzy extension of the n-times iterated existence predicate:

DM
n (a) = ‖(E!x)n‖Me[x�→a]

for each a ∈ DM
0 . Higher-grade inner domains are more restrictive for the exis-

tence degrees of referents: in terms of inclusion of fuzzy sets,

DM
� ⊆ · · · ⊆ DM

2 ⊆ DM
1 ⊆ DM

0 .
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Consequently, higher-grade existential quantifiers are stronger and higher-grade
universal quantifiers weaker than lesser-grade ones. Since the strictest inner
domain DM

� is bivalent, the �-grade inner quantifiers ∃�
B ,∀�

B behave like the
inner quantifiers of Sect. 4.

The stratified hierarchy of inner quantifiers makes it possible to formu-
late sound versions of the rule (13) of Observation 3, as well as many other
contraction-sensitive rules, even for a fuzzy (non-contractive) predicate of exis-
tence:

Observation 4. In the present setting, the following modifications of the rule (13)
are sound for any m,n ≥ 0:

!ϕ, !ψ |= (∀m
B x)(ϕ →B ψ) →B

(
(∀n

Bx)ϕ →B (∀m+n
B x)ψ

)

!ϕ, !ψ |= (∀�
B x)(ϕ →B ψ) →B

(
(∀�

B x)ϕ →B (∀�
B x)ψ

)
.

A detailed investigation of the two variants of free fuzzy logic outlined in
Sects. 4 and 5, including an axiomatic treatment, is left for future work.
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Abstract. Two fuzzy subgroups μ, η of a group G are said to be equi-
valent if they have the same family of level set subgroups. Although it
is well known that given two fuzzy subgroups μ, η of a group G their
maximum is not always a fuzzy subgroup, it is clear that the maximum
of two equivalent fuzzy subgroups is a fuzzy subgroup. We prove that the
composition of two equivalent fuzzy subgroups by means of an aggrega-
tion function is again a fuzzy subgroup. Moreover, we prove that if two
equivalent subgroups have the sup property their corresponding compo-
sitions by any aggregation function also have the sup property. Finally,
we characterize the aggregation functions such that when applied to two
equivalent fuzzy subgroups, the obtained fuzzy subgroup is equivalent to
both of them. These results extend the particular results given by Jain
for the maximum and the minimum of two fuzzy subgroups.

Keywords: t-norm · t-conorm · Aggregation function · Fuzzy sub-
group · Level fuzzy subset · Strong level fuzzy subset · Sup property ·
Equivalent fuzzy subgroups

1 Introduction

In the early eighties, Das [3] defined the level subgroup of a fuzzy subgroup μ
of a group G as the classical subset μt = {x ∈ G | μ(x) ≥ t} for each t ∈ [0, 1].
This notion was a useful tool to develop and formulate many results in fuzzy
set theory and their applications. Murali and Makamba [9] worked on fuzzy
subgroups with finite images and on the equivalence of two fuzzy subgroups of a
finite group G. Jain [6] worked with a weaker equivalence relation and obtained
results under the condition of sup property, which is a generalization of the finite
range property. The equivalence relation defined by Jain is the following: Let G
be a group and μ, η fuzzy subgroups, we say μ and η are equivalent (μ ≈ η) if

{μt}t∈Imμ = {ηs}s∈Im η

where Imμ is the range of μ.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 15
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The purpose of aggregation functions is to combine inputs that are typ-
ically interpreted as degrees of membership in fuzzy sets, degrees of prefer-
ence, strength of evidence, or support of a hypothesis, and so on [1]. A map
F : [0, 1]n −→ [0, 1] is an aggregation function if satisfies:

1. If xi ≤ yi for all i ∈ {1, ..., n}, then F (x1, ..., xn) ≤ f(y1, ..., yn). (Monotony)
2. F (0, ..., 0) = 0 and F (1, ...., 1) = 1 (Boundary conditions)

We extend some results which involve minimum and maximum operations to
other results obtained for an aggregation function (hence, also for t-norms and
t-conorm). Given a binary aggregation function F and two fuzzy equivalent
subgroups μ and η of a group G, we define F (μ, η) as the fuzzy set given by
F (μ, η)(x) = F (μ(x), η(x)). Our main purpose is to prove the following results.

1. F (μ, η) is again a fuzzy subgroup.
2. If μ and η have the sup property, then F (μ, η) also has the sup property.
3. F (μ, η) is in the same equivalence class of μ and η if and only if F is jointly

strictly monotone.

Section 2 is devoted to recall the definitions and preliminary results that we
need along this paper. Section 3 is devoted to the three main results detailed
above. We end with some conclusions in Sect. 4.

2 Preliminaries

We give in this section a brief review of notions and results which are necessary
in the following sections.

A n-ary operation F : [0, 1]n −→ [0, 1] is called a aggregation function [2,4]
if it fulfills the following conditions:

1. If xi ≤ yi for all i ∈ {1, ..., n}, then F (x1, ..., xn) ≤ f(y1, ..., yn). (Monotony)
2. F (0, ..., 0) = 0 and F (1, ...., 1) = 1 (Boundary conditions)

In the sequel, our aggregation functions will be binary operations, that is,
n = 2.

Fuzzy set theory was formulated in terms of Zadeh’s standard operations
of intersection, union and complement. The axiomatic skeleton used for cha-
racterizing fuzzy intersection and fuzzy union are known as triangular norms
(t-norms) and triangular conorms (t-conorms), respectively. Both notions are
particular cases of aggregation function.

A binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is called a t-norm [5,7,8] if it is
an aggregation function and fulfills the following conditions:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ [0, 1]. (Associativity)
2. a ∗ b = b ∗ a for all a, b ∈ [0, 1]. (Commutativity)
3. 1 ∗ a = a for all a ∈ [0, 1]. (1 is the neutral element)
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A binary operation ⊥: [0, 1]× [0, 1] −→ [0, 1] is called a t-conorm [5,7] if it is
an aggregation function and fulfills the following conditions:

1. (a ⊥ b) ⊥ c = a ⊥ (b ⊥ c) for all a, b, c ∈ [0, 1]. (Associativity)
2. a ⊥ b = b ⊥ a for all a, b ∈ [0, 1]. (Commutativity)
3. 0 ⊥ a = a for all a ∈ [0, 1]. (0 is the neutral element)

Given a t-norm ∗, ⊥∗ is called the dual t-conorm of ∗ if it verifies that for all
x, y ∈ [0, 1], x ⊥∗ y = 1 − (1 − x) ∗ (1 − y). T-norms and t-conorms are related
in the following way.

Proposition 1 ([11]). A binary operation ⊥: [0, 1]×[0, 1] −→ [0, 1] is a t-conorm
if and only if there exists a t-norm ∗ such that for all x, y ∈ [0, 1]

x ⊥ y = 1 − (1 − x) ∗ (1 − y)

Reciprocally, a binary operation ∗ : [0, 1]× [0, 1] −→ [0, 1] is a t-norm if and only
if there exists a t-conorm ⊥ such that for all x, y ∈ [0, 1]

x ∗ y = 1 − (1 − x) ⊥ (1 − y)

Given an universal set X, the inclusion of fuzzy subsets is given by the pointwise
order, that is, μ1 ⊂ μ2 if μ1(x) ≤ μ2(x) for all x ∈ X and k denotes the constant
fuzzy set k(x) = k for all x ∈ X. We denote by suppμ the set defined by
suppμ = {x ∈ X | μ(x) > 0} and ϕa denotes the singleton a, that is,

ϕa(x) =
{
1 if x = a
0 if x 
= a

We recall the definition of fuzzy subgroup given by Rosenfeld.

Definition 1 ([10]). Let G be a group and μ a fuzzy subset of G. We say that
μ is a fuzzy subgroup of G if:

– (G1) μ(xy) ≥ min{μ(x), μ(y)} for all x, y ∈ G, where xy represents the value
of the group law of G applied to x and y.

– (G2) μ(x) ≥ μ(x−1) for all x ∈ G, where x−1 denotes the inverse element of
any x.

Moreover, we have the following facts if μ is a fuzzy subgroup.

1. μ(x) = μ(x−1)
2. μ(e) ≥ μ(x), where e denotes the identity or neutral element of G.

In the sequel, L(G) will denote the class of all fuzzy subgroup of G. For a fuzzy
subset μ of X and t ∈ [0, 1], it is defined the level subset μt and the strong level
subset μ>

t as:

μt = {x ∈ X | μ(x) ≥ t} and μ>
t = {x ∈ X | μ(x) > t}

The use of level sets is widely used in the context of fuzzy subgroups. If μ ∈ L(G),
its non-empty level subsets are subgroups of G named level subgroups of μ. A
particular case is supμ = μ>

0 . Moreover, we have the following result.
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Proposition 2 ([3]). Let G be a group and μ a fuzzy subset of G, then μ is
a fuzzy subgroup of G if and only if its non-empty level subsets (strong level
subsets) are subgroups of G.

Definition 2. Let G be a group and μ a fuzzy subgroup of G. We say that μ
has the sup property if, for each non-empty subset A of G, there exists a ∈ A
such that

sup
x∈A

{μ(x)} = μ(a)

Definition 3. Let G be a group and μ, η ∈ L(G), then μ is said to be equivalent
to η (μ ≈ η) if the following condition holds

μ(x) > μ(y) if and only if η(x) > η(y)

for any x, y ∈ G.

It is easy to check that this defines an equivalence relation and the class of
an element μ ∈ L(G) is denoted by [μ]. The next characterization of ≈ will be
used later on.

Proposition 3 ([6]). Let G be a group and μ, η ∈ L(G). The following asser-
tions are equivalents:

1. μ(x) > μ(y) if and only if η(x) > η(y).
2. μ(x) ≥ μ(y) if and only if η(x) ≥ η(y).
3. {μt}t∈Im μ = {ηs}s∈Im η.
4. {μ>

t }t∈Im μ = {η>
s }s∈Im η.

3 The Preservation of the Equivalence Relation
≈ Between Fuzzy Subgroups

In the sequel, given a group G, an aggregation function F and μ, η ∈ L(G),
F (μ, η) is defined by F (μ, η)(x) = F (μ(x), η(x)) for all x ∈ G. As particular
cases, for a t-norm ∗ and a t-conorm ⊥, μ ∗ η and μ ⊥ η we have the operators:

(μ ∗ η)(x) = μ(x) ∗ η(x) for all x ∈ G.
(μ ⊥ η)(x) = μ(x) ⊥ η(x) for all x ∈ G.

From above definition, F defines a binary operation between fuzzy sets such that

– If μ ⊂ η, then F (μ, ν) ⊂ F (η, ν) for all μ, η, ν fuzzy subgroups.

When the aggregation function is a t-norm ∗, we obtain new properties:

– μ ∗ η = η ∗ μ for all μ, η fuzzy subgroups.
– 1 ∗ η = η for all η fuzzy subgroup.
– (μ ∗ η) ∗ ν = μ ∗ (η ∗ ν) for all μ, η, ν fuzzy subgroups.
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Analogous, when the aggregation function is a t-conorm ⊥, we obtain new
properties:

– μ ⊥ η = η ⊥ μ for all μ, η fuzzy subgroups.
– 0 ⊥ η = η for all η fuzzy subgroup.
– (μ ⊥ η) ⊥ ν = μ ⊥ (η ⊥ ν) for all μ, η, ν fuzzy subgroups.

Proposition 4. Let G be a group, F : [0, 1]2 −→ [0, 1] an aggregation function
and μ, η ∈ L(G) with μ ≈ η, then F (μ, η) is a fuzzy subgroup.

Proof. It is clear that F (μ, η) is a fuzzy subset of G. Now, using the monotony
of F and the definition of fuzzy subgroup we obtain:

– (G1) F (μ, η)(xy) = F (μ(xy), η(xy)) ≥ F (min{μ(x), μ(y)},min{η(x), η(y)}).
We can consider two cases:

μ(x) ≤ μ(y) (1) or μ(x) > μ(y) (2)

(1) Since μ ≈ η, η(x) ≤ η(y), hence

F (min{μ(x), μ(y)},min{η(x), η(y)}) = F (μ(x), η(x)) = F (μ, η)(x)

Therefore, F (μ, η)(xy) ≥ F (μ, η)(x) ≥ min{F (μ, η)(x), F (μ, η)(y)}.
(2) Since μ ≈ η, η(x) > η(y), hence

F (min{μ(x), μ(y)},min{η(x), η(y)}) = F (μ(y), η(y)) = F (μ, η)(y)

Therefore, F (μ, η)(xy) ≥ F (μ, η)(y) ≥ min{F (μ, η)(x), F (μ, η)(y)}.
– (G2) F (μ, η)(x) = F (μ(x), η(x)) = F (μ(x−1), η(x−1)) = F (μ, η)(x−1) ��
Corollary 1. Let G be a group, ∗ a t-norm, ⊥ a t-conorm and μ, η fuzzy sub-
group such that μ ≈ η, then μ ∗ η and μ ⊥ η are fuzzy subgroups.

Proposition 5. Let G be a group and F : [0, 1]2 −→ [0, 1] an aggregation func-
tion. If μ, η ∈ L(G) are such that μ ≈ η and both of them have the sup property,
then the fuzzy subgroup F (μ, η) has the sup property.

Proof. By Proposition 4, we know that F (μ, η) ∈ L(G). Now, we consider a non-
empty subset A of the group G and r, s ∈ A such that μ(r) = sup

x∈A
{μ(x)} and

η(s) = sup
x∈A

{η(x)} (this is possible because μ and η have the sup property).

By the monotony of F , we have for each x ∈ A

F (μ(x), η(x)) ≤ F (sup
x∈A

{μ(x)}, sup
x∈A

{η(x)}) = F (μ(r), η(s))

Thus,
sup
x∈A

{F (μ(x), η(x))} ≤ F (μ(r), η(s))
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Now, we prove η(r) = η(s). Since r verifies μ(r) ≥ μ(x) for all x ∈ A, we obtain
μ(r) ≥ μ(s) and from μ ≈ η, η(r) ≥ η(s). In addition, η(s) satisfies η(s) ≥ η(x)
for all x ∈ A. Hence, η(r) = η(s). We have

sup
x∈A

{F (μ(x), η(x))} ≤ F (μ(r), η(r))

Since F (μ(r), η(r)) ∈ {F (μ(x), η(x)) | x ∈ A} we conclude

sup
x∈A

{F (μ(x), η(x))} = F (μ(r), η(r))

Hence, F (μ, η) has the sup property. ��
Corollary 2. Let G be a group, ∗ a t-norm and ⊥ a t-conorm. If μ, η are ele-
ments of L(G) such that μ ≈ η and both of them have the sup property, then the
fuzzy subgroups μ ∗ η and μ ⊥ η have the sup property.

The following example shows that the hypothesis μ ≈ η in Proposition 4 can
not be deleted.

Example 1. Let G = {a, b, ab, e} be the group with four elements such that
a2 = b2 = e and ab = ba, let ∗ be the product t-norm t ∗ s = ts for all t, s ∈ [0, 1]
and let μ and η be the following fuzzy subsets:

μ : G −→ [0, 1]
e → 1
a → 0.5
b → 0.8
ab → 0.5

η : G −→ [0, 1]
e → 1
a → 0.9
b → 0.2
ab → 0.2

We know by Proposition 2, that μ and η are fuzzy subgroup of G. Moreover, we
have

(μ ∗ η)(ab) = μ(ab) ∗ η(ab) = μ(ab)η(ab) = 0.5 · 0.2 = 0.1

and,
min{(μ ∗ η)(a), (μ ∗ η)(b)} = min{0.45, 0.4} = 0.4

Hence (μ ∗ η)(ab) < min{(μ ∗ η)(a), (μ ∗ η)(b)}. Therefore μ ∗ η is not fuzzy
subgroup.

Definition 4 ([2]). Let F : [0, 1]n −→ [0, 1] an aggregation function. F is called
jointly strictly monotone if xi < yi for all i ∈ {1, ..., n}, then

F (x1, ..., xn) < F (y1, ..., yn)

Proposition 6. Let ∗ be a t-norm, then ∗ is jointly strictly monotone if and
only if its dual t-conorm ⊥∗ is jointly strictly monotone.
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Proof. Suppose that the t-norm ∗ is jointly strictly monotone. Consider a1 < a2

and b1 < b2 with a1, a2, b1, b2 ∈ [0, 1]. This implies that (1 − a1) > (1 − a2) and
(1 − b1) > (1 − b2). Since ∗ is jointly strictly monotone, we have

(1 − a1) ∗ (1 − b1) > (1 − a2) ∗ (1 − b2)

Therefore,
1 − (1 − a1) ∗ (1 − b1) < 1 − (1 − a2) ∗ (1 − b2)

This is, ⊥∗ is jointly strictly monotone.
The converse is analogous. ��

Theorem 1. Let G be a non-trivial group and F : [0, 1]2 −→ [0, 1] be an aggre-
gation function, then F is a binary operation on [μ] for every μ ∈ L(G), if and
only if F is jointly strictly monotone.

Proof. At first, we suppose F is jointly strictly monotone and we are going to
prove that F is a binary operation on [μ] for every μ ∈ L(G). From Proposition 4,
we obtain that given two elements μ, η in [μ], F (μ, η) is a fuzzy subgroup of G.
Given μ, η ∈ [μ], we need to prove the following assertion:

F (μ, η) ≈ μ

We begin by proving that if μ(x) ≥ μ(y), then F (μ, η)(x) ≥ F (μ, η)(y). Given
x, y ∈ G such that μ(x) ≥ μ(y), since μ ≈ η, η(x) ≥ η(y). By the monotony of
F , we have

F (μ, η)(x) = F (μ(x), η(x)) ≥ F (μ(y), η(y)) = F (μ, η)(y)

For the other implication, given x, y ∈ G with F (μ, η)(x) ≥ F (μ, η)(y), we
need to prove μ(x) ≥ μ(y). For contradiction, there exists x, y ∈ G such that
F (μ, η)(x) ≥ F (μ, η)(y) and μ(x) < μ(y). From μ ≈ η, η(x) < η(y). Since F is
jointly strictly monotone, we conclude

F (μ(x), η(x)) < F (μ(y), η(y))

Conversely, if F is not jointly strictly monotone, then there exists a1, a2, b1, b2
in the interval [0, 1] with a1 < a2 and b1 < b2 such that F (a1, b1) ≥ F (a2, b2)
(by the monotony, we obtain F (a1, b1) = F (a2, b2)). We consider the following
fuzzy subset of G:

μ(x) =
{

a2 if x = e
a1 if x 
= e

η(x) =
{

b2 if x = e
b1 if x 
= e

We know by Proposition 2 that μ and η are fuzzy subgroup of G. Since
μ(x) > μ(y) if and only if η(x) > η(y), we have μ ≈ η. Finally, we prove that
F (μ, η) 
∈ [μ]. Fix x ∈ G with x 
= e and suppose F (μ, η) ∈ [μ]. Since μ(e) > μ(x),
we have F (μ, η)(e) > F (μ, η)(x), but

F (μ, η)(e) = F (μ(e), η(e)) = F (a2, b2) = F (a1, b1) = F (μ(x), η(x)) = F (μ, η)(x)

Therefore F (μ, η) 
∈ [μ]. ��
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Corollary 3. Let G be a non-trivial group, ∗ be a t-norm and ⊥∗ its dual t-
conorm, then ∗ and ⊥∗ are binary operations on [μ] for every μ ∈ L(G) if and
only if ∗ is jointly strictly monotone.

Notice that there are t-norms (t-conorms) that do not fulfill jointly strictly
monotone property as, for instance, the drastic t-norm and the Lukasiewicz t-
norm.

Corollary 4. Let G be a non-trivial group and F : [0, 1]2 −→ [0, 1] be an aggre-
gation function. If F verifies that for every a1, a2, b ∈ [0, 1] with a1 < a2 and
b 
= 0 we have that F (a1, b) < F (a2, b), then F is a binary operation on [μ] for
every μ ∈ L(G).

Proof. Fix x1, x2, y1, y2 in the interval [0, 1] with x1 < x2 and y1 < y2. Since
y1 < y2 implies y2 
= 0, we have F (x1, y2) < F (x2, y2), and by the monotony of
F , we conclude:

F (x1, y1) ≤ F (x1, y2) < F (x2, y2)

Hence F is jointly strictly monotone. By Theorem1, F is a binary operation on
[μ] for each μ ∈ L(G). ��

Notice that the product t-norm is an example of aggregation function which
satisfies Corollary 4. Moreover, we obtain the following result due to Jain.

Corollary 5 ([6]). Let G be a non-trivial group, then the minimum t-norm and
the maximum t-conorm are two binary operation on [μ] for every μ ∈ L(G).

4 Concluding Remarks

It is well-known that the maximum of two fuzzy subgroups of a group G is not
in general a fuzzy subgroup of G. However, if the fuzzy subgroups are equivalent
then the maximum of two fuzzy subgroups so is it.

In this work we have proved that, for an arbitrary aggregation function
F and two fuzzy subgroups μ, η of a group G, F (μ, η) given by F (μ, η)(x) =
F (μ(x), η(x)) is again a fuzzy subgroup if μ is equivalent to η. Moreover we have
proved that if two equivalent fuzzy subgroups μ and η have the sup property,
then F (μ, η) also has the sup property.

Finally, for two equivalent fuzzy subgroup μ and η, we have characterized
when F (μ, η) is in the same equivalence class of μ and η.

Acknowledgement. The authors acknowledge to the referee for your successful sug-
gestions and advices.

The authors acknowledge the financial support of the Spanish Ministerio de
Economı́a y Competitividad (Grant TIN2014-59543-P and Grant MTM 2016-79422-P)
and Carlos Bejines also thanks the support of the Asociación de Amigos of the University
of Navarra.



t-Norm in Fuzzy Groups Theory 167

References

1. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practi-
tioners. Studies in Fuzziness and Soft Computing, vol. 221. Springer, Heidelberg
(2007)

2. Calvo, T., Mayor, G., Mesiar, R.: Aggregation Operation. Aggregation operation.
Physica-Verlag, Heidelberg (2002)

3. Das, P.S.: Fuzzy groups and level subgroups. J. Math. Anal. Appl. 84, 264–269
(1981)

4. Fodor, J., Kacprzyk, J.: Aspect of Soft Computing, Intelligent robotics and Control.
Studies in Computational Intelligence, vol. 241. Springer, Heidelberg (2009)

5. Gupta, M.M., Qi, J.: Theory of T-norms and fuzzy inference methods. Fuzzy Sets
Syst. 40, 431–450 (1991)

6. Jain, A.: Fuzzy subgroup and certain equivalence relations. Iran. J. Fuzzy Syst. 3,
75–91 (2006)

7. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)
8. Menger, K.: Statistical metrics. In: Proceedings of N.A.S.H, vol. 28, pp. 535-537

(1942)
9. Murali, V., Makamba, B.: On an equivalence of fuzzy subgroups I. Fuzzy Sets Syst.

123, 259–264 (2001)
10. Rosenfeld, A.: Fuzzy groups. J. Math. Anal. Appl. 35, 512–517 (1971)
11. Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities.

Math. Debrecen 8, 169–186 (1961)



Decision-Making on Flow Control
Under Fuzzy Conditions in the Mechanical

Transport System

Stanislav Belyakov, Marina Savelyeva(&), Dmitry Kiyashko,
and Anna Lashchenkova

Southern Federal University, Taganrog, Russia
beliacov@yandex.ru, marina.n.savelyeva@gmail.com,

{meus_porta,anna-d-d-d}@mail.ru

Abstract. The article deals with the problem of moving flows in mechanical
transport systems suitable for prevention or greatly decreasing the probability of
emergency situations. The solution is based on minimizing costs during trans-
portation. Routing methods considering the specifics of the MTS are analyzed.
It’s developed routing algorithm with protective correction of flows with fuzzy
temporal variability of adaptation. The algorithm consists in definition and
establishment of high value of transportation cost on the particular segment of
network on a fuzzy time interval. Methods for determining the parameters of
protective correction of flows are studied. A structural diagram of the MTS,
considering the protective correction, is presented. The diagram is implemented
by introduction an intelligent module into the structure. Module operation fea-
ture is the use of case-based reasoning. The example of the implementation of
protective correction of flows is given.

Keywords: Mechanical transport system (MTS) � Dynamic routing � Adaptive
routing � Protective correction � Case-based reasoning (CBR)

1 Introduction

The mechanical transport system (MTS) represents a network built of elements of two
types: conveyors and switches. Conveyors move the load placed on the belt. The
switches play the role of network nodes in which the units of cargo are redirected from
one conveyor to another. An example of MTS is the baggage handling system at
airports. The control system for conveyors and switches is implemented as a local
network of industrial PLC controllers (Programmable Logic Controllers) [1]. The
controllers are assigned the switch control task of the load direction and the electric
drive of the conveyor.

Each unit is provided with a cargo label. This label stores addresses initial and final
nodes. These data permit in the intermediate network nodes to determine the direction
of the cargo unit transfer, solving the routing problem [2–6]. Due to the fact, how is
constructed routing algorithm, depend such important factors as the cost of trans-
portation, the risk of damage or loss of cargo, delivery efficiency [1, 7].

© Springer International Publishing AG 2018
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The problem of transportation management in the MTS can be formulated as
follows:

P
i ðli þwfiÞ ! min;

t\ t�;
fi �F;

8
<

: ð1Þ

where li is the transportation cost of each several cargo unit;
wfi are loss in the event of defect fi �F;
F is set of possible defects that lead to emergency;
t� is transportation time limit. The main means of solving the problem (1) is the

routing. This is explained by the fact that:

• the transmission path of the cargo unit is not uniquely determined, and the route
cost are different in MTS;

• the intensity of the cargo flow on an individual segment determines the possibility
of defect occurrence.

Modern MTSs use dynamic routing [8, 9]. It helps to minimize the total cost of
transportation. However, emergencies arising from overload segments are the result of
an unacceptable increase flow intensity in some parts of the network. In this work, we
propose a modification of the method of adaptive routing, allowing to solve this
problem.

2 Routing Methods and Flow Control in MTS

The solution of the problem (1), using a fixed routing [10], is possible in the case of
complete certainty the behavior of the MTS and outdoor environment. It means high
reliability and stability of operational performance of MTS, strict conformance to the
schedule of appearance and the completion of cargo flows, the stability properties of
the cargo units. MTS in this case is described by a static model network [11], often
used for calculations. The practical application of fixed routing is limited to the above
conditions.

The fixed routing can be based on the dynamic network model [12]. Routing tables
in the nodes are updated on a predetermined schedule. This approach is more adequate
to the real situation, when the cargo is unstable and MTS parameters change over time.
In this case, the complexity of the synthesis and analysis of dynamic models is much
higher [5]. This creates difficulties in solving the problem (1) in real time scale.

Dynamic routing [13] solves problem (1) by adjusting of the routing tables in real
time when changing the transport costs on individual segments. Cost is determined by
the measured parameters network: direction selection speed, electric drive rod, elapsed
time of device, etc. The disadvantage of dynamic routing is the inability to consider the
transportation cost of the temporal parameters of traffic flows and properties of cargo
units that are not available for the measurement. Because of that, it’s possible overload.
In addition, the significant role is playing by the lag of the mechanical part of the MTS.
Routing table modification is completed much faster than the change in cargo flow
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value. And output stream may be unacceptably high in nodes, summing streams. The
problem should be solved in advance decrease the flow value in dangerous situations.

The closest method of solution to the problem is to attract intelligent control
mechanisms [14]. The incompleteness of the data, the time history of cargo flow sources
make motivation for the use of intelligent observation over the MTS and predict of the
cargo flow behavior. Attraction of expert-observer knowledge allows to generate
dynamic routing strategy based on a holistic perception of the outdoor environment and
MTS. The disadvantage of this approach is the lack of a protective mechanism of the
flow correction to prevent accidents.

3 Protective Mechanism of the Flow Correction

Dynamic routing is implemented by changing the transfer value of individual segments
of the MTS and warning about it neighboring nodes. Controller of each node corrects
routing tables and send cargo units with the switch in the direction that minimizes the
total cost of transportation. It will be observed, that dynamic routing does not control
the flows, even though indirectly, affect their value. For instance, the low cost of
transportation through the subnet stimulates the growth of the flow. Accordingly, a
high value may lead to lower flow value. Since the danger an emergency is directly
related to the flow value, we have an idea to use the cost of transportation as security
facilities from accidents.

Protective flow correction is an artificial increase the transportation cost through the
network segment to reduce the flow value. The parameters of the protective correction
element are a pair ðCsi ; TsiÞ, where Csi is cargo unit cost of transportation by the
segment si; Tsi is time window, during which the value of the cost is kept. Parameter
determination of the protective correction is a non-trivial task, at the decision which
found a few uncertainties:

• Csi should be chosen so as, don’t to completely block flow through the segment and
at the same time providing real decrease its rate. It requires an analysis of the
number of cargo elements, that are in the MTS, the ways of their movement and
changes in the rates of the input flows at the time of deciding upon the protective
correction;

• Tsi is determined in such a way so as don’t to provoke an overload of other
segments of the MTS. Figure 1 illustrates the general pattern of selection of value
Tsi . The greater its value is, the lower the probability Psi of occurrence of overload
in the segment si. However, inevitably increases probability PN� of occurrence of
overload on a subnet N�, not consisting segment si. As follows from the qualitative
analysis (Fig. 1), there is a compromise value T�

si , deviation from which increases
the probability of occurrence of accidents. As with the analysis of the parameters it
need information about the network load, the response time to changes in the
routing tables, variations of the rates of the input flows.

The need to consider the whole situation makes it unlikely the effective use of
protective correction as the decentralized management tool of MTS. Means the fol-
lowing: the node controller of the MTS measures the flow rate vsi . If the threshold is
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exceeded a predetermined value �vsi , then the controller sets protective correction with
given parameters ðCsi ; TsiÞ. In this case, there is dangers:

• accidents within the segment si due to the fact that the input flow is not reduced
immediately, and flow may increase for some time inertia system;

• occurrence of deadlock, when the segment si may remove the protective correction,
if the input flow rate vsi decrease. But the input flow rate vsi cannot be reduced as
long as it will not remove the protective correction and the segment does not restore
previous capacity.

Thus, we can conclude about the necessity of central determining the parameters of
protective correction. Management is implemented in a lack of information about the
behavior of the outdoor environment and this MTS, that indicate necessity of appli-
cation of intelligent principles of management system. Figure 2 shows the structure of
the system. Intelligent control module (ICM) is included in the control network PLC.
PLC is associated with control devices of MTS. PLC implement dynamic routing
algorithm, and can perform the ICM commands on the flow protective correction. The
command contains the following fields:

1. timestamp start of protective correction;
2. timestamp end of protective correction;
3. address of output of directional switch;
4. value of the transportation cost to the specified output.

Fig. 1. Illustration of changes in the probability of overload

Fig. 2. Illustration of the structure of MTS with an intelligent control module.
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The controller, receiving the command, implements the dynamic routing algorithm
with fixed transmission cost by the output network segment.

ICM operates based on using the experience of observation of MTS [14]. Expe-
rience is represented by describing previously observed dangerous situations and
decisions in these situations. The logical inference is based on the case-based reasoning
[15]. Every new problem situation is compared with the known to find the nearest in
meaning. The solution found situation is applied in the new situation. It should be
highlighted that each of the known situations in the ICM knowledge base indicates a
potential risk of accidents, i.e. it is forecast. The forecast is not absolutely reliable, so
the “intelligence” of the system is manifested in the effort to prevent the occurrence of
an abnormal situation and loss recovery.

4 Example of Implementation of Protective Correction
Principle

This section examines a schematic application of the principle of flow protective
correction. In fact, the consideration of this issue is accompanied by fuzzy values of
network parameters. Therefore, actual use of fuzzy logic. The most illustrative way of
presenting, in our opinion, is a fuzzy graph.

There is a mechanical transport network (Fig. 3).

For ease of illustration we transform fuzzy graph (Fig. 3) to accurate form. Need to
move cargo from point 2 to point 10. Based on the known routing algorithm finds the
shortest route of transportation. This route is shown in Fig. 4.

2; 10ð Þ ¼ 2; 6; 5; 8; 10f g ¼ 36 ð2Þ
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Fig. 3. Initial fuzzy graph illustrating the mechanical transport network
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At the time of cargo movement from point 2 to point 10 there is a need to move
other cargo from point 1 to point 11. Excluding the first movement, the calculated route
as follows (Fig. 5):

1; 11ð Þ ¼ 1; 5; 8; 9; 11f g ¼ 33 ð3Þ

Further there is the analysis of flow rate. After determining that the flow rate value
vsi exceeds the threshold value �vsi , it triggers the principle of flow protective correction.
Namely, there is an increase in the value segment s58 ¼ 15. The new segment of the
value does not lead to exclusion from the list of possible ways to move, and,
accordingly, will not lead to network congestion.

2

1

3

5

6

8

9

10

11

6

6

5

12

9

10

11

4 7
7

14

19
1311

10 8

Fig. 4. Illustration of the route of minimum cost from 2 to point 10
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Fig. 5. Illustration of the route of minimum cost from 1 to point 11
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Recalculates route.

2; 10ð Þ ¼ 2; 6; 5; 8; 10f g ¼ 42 ð4Þ
1; 11ð Þ ¼ 1; 4; 8; 9; 11f g ¼ 38 ð5Þ

Route from point 2 to point 10 is not changed, but there was an increase in the cost
of transportation. But the route from point 1 to point 11 changed. The resulting routes
are illustrated in Fig. 6.

The time is determined by an expert or is taken from the base of precedent on the
condition of this occurring. Time use of protective correction is always defined fuzzy,
since it depends on network analysis, transportation time of cargo, the time of
decision-making, and others.

5 Conclusion

The efficiency of flow protective correction is determined by the ratio of the loss on
crash recovery and increased transportation costs. It follows from (1), protection from
accidents makes sense if

X
i
li �

X
i
wfi ð6Þ

Since protective correction leads to an increase transportation cost of the formula (2)
can become the requirement to forecast reliability. Let P be the probability that the
accident forecast is realized. Then the average loss from a wrong the forecast is

�W ¼ ð1� PÞML ð7Þ

2

1

3

5

6

8

9

10

11

6

6

5

12

15 (9)

10

11

4 7
7

14

19
1311

10 8

Fig. 6. Cargo moving considering flow protective correction

174 S. Belyakov et al.



where △L is the increase in the transportation cost during runtime of protective cor-
rection. Transform the formula (3) in (2) we find that

P � 1�
P

i wfi

ML ð8Þ

The resulting expression reflects the requirement to knowledge of the intelligent system
in the problem of flow protective correction.

Further research, in our view, should be in the direction of improving the pre-
sentation and use of knowledge just as inside one of MTS, so when moving knowledge
between different systems.
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Abstract. Due to real databases usually contain redundant informa-
tion, reducing them preserving the main information is one of the most
important branches of study within the theory of Formal Concept Analy-
sis (FCA). Taking advantage of the close relationship between Rough
Set Theory (RST) and FCA, in this work, we address the problem of
attribute reduction in FCA using the reduction mechanism given in RST.
We analyze the properties obtained from this kind of reduction and show
an illustrative example.

Keywords: Attribute reduction · Formal concept analysis · Rough set
theory

1 Introduction

Formal Concept Analysis (FCA) is a mathematical tool whose objective is to
extract information collected in databases. With a similar goal, but considering
a different philosophy, we find another interesting mathematical theory, Rough
Sets Theory (RSC). Indeed, both theories are closely related and there are several
papers which study the existing links between these two frameworks.

Both mathematical tools work with databases composed of a set of objects
and a set of attributes related between them, but real databases usually contain
redundant information. Therefore, knowledge reduction is one of the most impor-
tant issues in both theories. Specifically, attribute reduction have been studied
in some papers in these two frameworks [2,3,6–10]. However, the connections
between the two theories from the point of view of the knowledge reduction
have not yet been widely studied.

In this work, we will present a new mechanism to reduce formal contexts in
FCA, based on the philosophy of attribute reduction in RST. In particular, we
will propose to reduce a context in FCA considering the reducts of the associated
context information system. We will show that this kind of reduction satisfies
interesting properties and we will illustrate them by means of an example. Hence,
in this paper we deal with the problem of attribute reduction in FCA considering
the point of view of RST.

Partially supported by the State Research Agency (AEI) and the European Regional
Development Fund (FEDER) project TIN2016-76653-P.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
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We first recall in Sect. 2 the basic definitions and results of FCA and RST, in
particular those notions related to the attribute reduction in both frameworks.
Section 3 includes the reduction mechanism and some interesting results together
with an example. The paper finishes with some conclusions and prospect for
future work in Sect. 4.

2 Preliminary Notions in FCA and RST

In this section, we will recall the basic notions of FCA and RST needed to
understand this work.

In FCA framework, the information is given by means of contexts, which
are triples (A,B,R) composed of two non empty sets and a crisp relationship
between them. That is, a set of attributes A, a set of objects B and the relation
R : A × B → {0, 1} defined, for each a ∈ A and b ∈ B, as R(a, b) = 1, if a and b
are related (we also write aRb) and R(a, b) = 0, otherwise. Fixed a context, we
can define two concept-forming operators1 ↑ : 2B → 2A, ↓ : 2A → 2B , for each
X ⊆ B and Y ⊆ A, as follows:

X↑ = {a ∈ A | for all b ∈ X, aRb} = {a ∈ A | if b ∈ X, then aRb} (1)
Y ↓ = {b ∈ B | for all a ∈ Y, aRb} = {b ∈ B | if a ∈ Y, then aRb} (2)

Given X ⊆ B and Y ⊆ A, we say that the pair (X,Y ) is a concept in the
context (A,B,R), if the equilities X↑ = Y and Y ↓ = X hold. The extent of
the concept (X,Y ) is the subset of objects X and the intent is the subset of
attributes Y .

B(A,B,R) denotes the set of all the concepts, which has the structure of
a complete lattice [4,7], when the inclusion ordering on the left argument is
considered (equivalently, we can consider the opposite of the inclusion ordering
on the right argument). For all (X1, Y1), (X2, Y2) ∈ B(A,B,R), the meet (∧)
and join (∨) operators are defined by:

(X1, Y1) ∧ (X2, Y2) = (X1 ∧ X2, (Y1 ∨ Y2)↓↑)
(X1, Y1) ∨ (X2, Y2) = ((X1 ∨ X2)↑↓, Y1 ∧ Y2)

In addition, given an attribute a ∈ A, the concept generated by a, that is
(a↓, a↓↑), is called attribute-concept. Due to the pair (↑, ↓) is a Galois connec-
tion [4,5], we can assure that this pair is really a concept. Analogously, given
any object b ∈ B, the concept generated by b, (b↑↓, b↑), is called object-concept.

Other necessary notions in this work are related to attribute reduction the-
ory in formal concept analysis. Attribute reduction tries to reduce the set of
attributes in a context, preserving the main information. That means, obtaining
a new concept lattice isomorphic to the original one. Firstly, we need to recall
the notion of isomorphism between concept lattices.
1 Originally, Ganter and Wille denoted these operators as ′ and they were called
derivation operators. We have modified this notation to distinguish between the
mapping defined on objects and on attributes.
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Definition 1. Given two concept lattices B(A1, B,R1) and B(A2, B,R2). If for
any (X,Y ) ∈ B(A2, B,R2) there exists (X ′, Y ′) ∈ B(A1, B,R1) such that X =
X ′ , then we say that B(A1, B,R1) is finer than B(A2, B,R2) and we will write:

B(A1, B,R1) ≤ B(A2, B,R2)

We said two concept lattices B(A1, B,R1),B(A2, B,R2) are isomorphic if
B(A1, B,R1) ≤ B(A2, B,R2) and B(A2, B,R2) ≤ B(A1, B,R1) hold; and we will
write

B(A1, B,R1) ∼= B(A2, B,R2)

Given a context (A,B,R), the triple (Y,B,R|Y ), where Y ⊆ A and R|Y
denotes the restricted relation R|Y = R ∩ (Y × B), is a formal context that can
be seen as a subcontext of the original one. Obviously, for any Y ⊆ A, such that
Y 
= ∅, B(A,B,R) ≤ B(Y,B,R|Y ) holds.

The concept-forming operators in this subcontext are defined in a similar
way to Eqs. (1) and (2) and are denoted as ↓Y

and ↑Y . In addition, the equality
X↑Y = X↑ ∩Y holds, for each X ⊆ B. In particular, if Y1 ⊆ Y , then Y ↓Y

1 = Y ↓
1 .

Definition 2. Let (A,B,R) be a context, if there exists a set of attributes Y ⊆
A such that B(A,B,R) ∼= B(Y,B,R|Y ), then Y is called a consistent set of
(A,B,R). Moreover, if B(Y � {y}, B,R|Y �{y}) 
∼= B(A,B,R), for all y ∈ Y ,
then Y is called reduct of (A,B,R).

The core of (A,B,R) is the intersection of all the reducts of (A,B,R).

The last notion we need to recall is the definition of irreducible element of a
lattice, which will be considered later.

Definition 3. Given a lattice (L,�), such that ∧,∨ are the meet and the join
operators, and an element x ∈ L verifying

1. If L has a top element �, then x 
= �.
2. If x = y ∧ z, then x = y or x = z, for all y, z ∈ L.

we call x meet-irreducible (∧-irreducible) element of L. Condition (2) is equiv-
alent to

2′. If x < y and x < z, then x < y ∧ z, for all y, z ∈ L.

A join-irreducible (∨-irreducible) element of L is defined dually.

Due to our goal is to apply the attribute reduction mechanism given in RST
to FCA, we also need to recall several notions corresponding to the framework of
RST. In this framework, relational databases are seen as decision systems or as
information systems, depending on the problem we want to solve. Here, we only
consider the notion of information systems since they are the natural systems
used when RST and FCA are related.
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Definition 4. An information system (U,A) is a tuple, satisfying that U =
{x1, x2, . . . , xn} and A = {a1, a2, . . . , am} are finite, non-empty sets of objects
and attributes, respectively, in which, each a ∈ A corresponds to a mapping
ā : U → Va, where Va is the value set of a over U . For every subset D of A, the
D-indiscernibility relation, Ind(D), is defined as the equivalence relation

Ind(D) = {(xi, xj) ∈ U × U | for all a ∈ D, ā(xi) = ā(xj)}

where each class given by this relation can be written as [x]D = {xi | (x, xi) ∈
Ind(D)}. Ind(D) produces a partition onU denoted asU/Ind(D) = {[x]D | x ∈ U}.

If we have that the value set of a is Va = {0, 1}, for all a ∈ A, (U,A) is called
a boolean information system.

The notions of consistent set and reduct are considered in the reduction
mechanism, so we recall them in the following definition.

Definition 5. Let (U,A) be an information system and a subset of attributes
D ⊆ A. D is a consistent set of (U,A) if

Ind(D) = Ind(A)

Moreover, if for each a ∈ D we have that Ind(D \ {a}) 
= Ind(A), then D is
called reduct of (U,A).

In the next definition, we present the notions of discernibility matrix and
discernibility function [11]. We will use them in order to characterize the reducts
in RST.

Definition 6. Given an information system (U,A), its discernibility matrix is
a matrix with order |U |× |U |, denoted as MA, in which the element MA(i, j) for
each pair of objects (i, j) is defined by:

MA(i, j) = {a ∈ A | ā(i) 
= ā(j)}

and the discernibility function of (U,A) is defined by:

τA =
∧ {∨

(MA(i, j)) | i, j ∈ U and MA(i, j) 
= ∅

}

The following result states a procedure to get reducts of an information
system, using the discernibility function.

Theorem 1. Given a boolean information system (U,A). An arbitrary set D,
where D ⊆ A, is a reduct of the information system if and only if the cube∧

a∈D a is a cube in the restricted disjunctive normal form (RDNF) of τA.

Now, we can present the new mechanism to reduce a context in FCA based
on RST.
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3 Reducing a Context in FCA Based on RST

In this paper, we will use the reduction given in RST to reduce the set of
attributes of a context in the FCA framework. Therefore, we are introducing
a novel reduction mechanism in FCA, since we are considering the philosophy
of RST. There exist some papers that study the relationship between FCA and
RST, but only a small number of them analyze this relationship from the per-
spective of attribute reduction [1,12]. For example, in [12] was proven that the
reduction in FCA in a certain way implies the reduction in RST. Specifically,
they demonstrated that any consistent set in FCA is a consistent set in RST.
However, the opposite statement does not hold, in general. Therefore, the reduc-
tions in both frameworks are not equivalent. For that reason, in this paper we
are interested in studying the properties that we obtain when we reduce contexts
in FCA from reducts of RST.

Hereafter, the set of attributes and the set of objects will be considered finite.
In addition, consistent sets of a context (A,B,R) will be called CL-consistent
sets and consistent sets of an information system (U,A) as RS-consistent sets.
Analogously, reducts of a context (A,B,R) will be called CL-reducts and reducts
of an information system (U,A) as RS-reducts.

Firstly, given a context we show how to define an information system.

Definition 7. Let (A,B,R) be a context, a context information system is
defined as the pair (B,A) where the mappings ā : B → Va, with Va = {0, 1}, are
defined as ā(b) = R(a, b), for all a ∈ A, b ∈ B.

The proposed mechanism will be explained in the following. Given a con-
text (A,B,R), we consider the corresponding context information system and
we compute the RS-reducts of this information system. We reduce the original
context according to the obtained RS-reducts and analyze the properties sat-
isfied by such reduction. The first one establishes the relationship between the
operators in both frameworks.

Lemma 1. Given a context (A,B,R) and the corresponding context informa-
tion system (B,A), the following equality holds, for each a ∈ A:

a↓ = ā

On the other hand, the next proposition states that if two different objects
generate two different concepts in the original context, then these objects also
generate different concepts in the reduced one. Therefore, the number of different
object-concepts is preserved.

Proposition 1. Let (A,B,R) be a context and (B,A) the corresponding context
information system. Considering D ⊆ A a RS-consistent set of (B,A) and the
objects k, j ∈ B, if k↑ 
= j↑, then k↑D 
= j↑D .

In addition, the consideration of RS-consistent set preserves the (strict)
inequality between object-concepts.



182 M.J. Beńıtez-Caballero et al.

Proposition 2. Given a context (A,B,R) and its corresponding context infor-
mation system (B,A). If D ⊆ A is a RS-consistent set of (B,A) and we consider
two objects k, j ∈ B satisfying that k↑ < j↑, then the inequality k↑D < j↑D holds.

Therefore, when this reduction is carried out, the ordering among the object-
concepts is practically preserved.

Another interesting property states that if an object does not generate a
join-irreducible concept in the original context, then it cannot generate a join-
irreducible concept in the reduced one. Consequently, no new join-irreducible
elements appear after the reduction using an RS-consistent set.

Theorem 2. Given a context (A,B,R), the corresponding context information
system (B,A) and D ⊆ A a RS-consistent set. If an object j ∈ B gener-
ates a join-irreducible concept in the concept lattice associated with the context
(D,B,R), then it also generates a join-irreducible concept of the concept lattice
associated with (A,B,R).

Thus, from all the results previously presented this reduction mechanism has
interesting properties to be considered in the FCA framework.

Now, we will explain how the proposed reduction can be applied in FCA, by
means of the following example. Specifically, we will reduce a formal context,
from the RS-reducts of the associated context information system.

Example 1. We fix a formal context (A,B,R), where the set of objects is formed
by a group of cultived fields and the set A represents attributes as high tem-
perature, high humidity, windy area or the use of, fertilizer and pesticide, cor-
responding to these seven different cultived fields. The relation R is given by
Table 1. The concept lattice associated with this context is displayed in Fig. 1.

Table 1. Relation of example 1.

R High temperature
(ht)

High humidity
(hh)

Windy area
(wa)

Fertilizer
(f)

Pesticide
(p)

1 1 0 1 1 1

2 0 0 1 0 1

3 0 1 0 1 0

4 0 1 1 1 1

5 0 0 1 1 1

6 1 0 1 0 0

7 1 1 1 1 0

We want to reduce the context considering the RS-reducts that we obtain
from the corresponding context information system. We will see that when this
kind of reduction is applied, the structure of the original concept lattice cannot
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Fig. 1. Concept lattice of the context of Example 1

be necessarily preserved but, as we mentioned above, the obtained reduction sat-
isfies interesting properties. In order to analyze these properties, it is important
to observe in Fig. 1 that the set of join-irreducible elements of the concept lattice
are composed of the following concepts, generated by objects 1, 2, 3, 4, 6 and 7:

(1↑↓, 1↑) = ({1}, {ht, wa, f, p})
(2↑↓, 2↑) = ({1, 2, 4, 5}, {wa, p})
(3↑↓, 3↑) = ({3, 4, 7}, {hh, f})
(4↑↓, 4↑) = ({4}, {hh, wa, f, p})
(6↑↓, 6↑) = ({1, 6, 7}, {ht, wa})
(7↑↓, 7↑) = ({7}, {ht, hh, wa, f})

Now, we will take into account the associated context information system
(B,A) and, applying Definition 6, we obtain the discernibility matrix and the
corresponding discernibility function.

In this example, the discernibility matrix is the following2:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

∅

{ht, f} ∅

{ht,hh,wa,p} {hh,wa,f,p} ∅

{ht,hh} {hh,f} {wa,p} ∅

{ht} {f} {hh,wa,p} {hh} ∅

{f,p} {ht,p} {ht,hh,wa,f} {ht,hh,f,p} {ht,f,p} ∅

{hh,p} {ht,hh,f,p} {ht,wa} {ht,p} {ht,hh,p} {hh,f} ∅

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

2 Observe that the discernibility matrix is symmetric matrix since the discernibility
relation is reflexive.
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Therefore, the discernibility function is shown below:

τA = {ht ∨ f} ∧ {ht ∨ hh ∨ wa ∨ p} ∧ {hh ∨ wa ∨ f ∨ p} ∧ {ht ∨ hh}
∧{hh ∨ f} ∧ {wa ∨ p} ∧ {ht} ∧ {f} ∧ {hh ∨ wa ∨ p} ∧ {hh}
∧{f ∨ p} ∧ {ht ∨ p} ∧ {ht ∨ hh ∨ wa ∨ f} ∧ {ht ∨ hh ∨ f ∨ p}
∧{ht ∨ f ∨ p} ∧ {hh ∨ p} ∧ {ht ∨ hh ∨ f ∨ p} ∧ {ht ∨ wa} ∧ {ht ∨ p}
∧{ht ∨ hh ∨ p} ∧ {hh ∨ f}

= {ht ∧ hh ∧ wa ∧ f} ∨ {ht ∧ hh ∧ f ∧ p}

According to Theorem 1, two RS-reducts are obtained:

D1 = {ht,hh,wa, f}
D2 = {ht,hh, f,p}

Hence, D1 and D2 are the RS-reducts from which we are going to reduce
the original context. The corresponding concept lattices obtained from these
reductions are shown in Fig. 2. Observe that, the original structure has been
modified in both cases.

Fig. 2. Concept lattices built from the RS-reducts D1 (left) and D2 (right).
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First of all, the reduction obtained from the second reduct will be analyzed.
For that purpose, we list below the object-concepts generated after the reduction
of the context from D2

3:

(1↑2↓2
, 1↑2) = ({1}, {ht, f, p})

(2↑2↓2
, 2↑2) = ({1, 2, 4, 5}, {p})

(4↑2↓2
, 4↑2) = ({4}, {hh, f, p})

(6↑2↓2
, 6↑2) = ({1, 6, 7}, {ht})

(7↑2↓2
, 7↑2) = ({7}, {ht, hh, f})

In this case, we can observe that 3 concepts have disappeared, hence the size of
the original concept lattice have been reduced. However, according to Theorem 2,
we have that all objects generating join-irreducible elements in the reducing
concept lattice, that is, objects 1, 2, 4, 6 and 7 also generate join-irreducible
concepts in the original one. Moreover, the object-concepts after the reduction
preserve the same extensions as in the original concept lattice, which implies
that Propositions 1 and 2 trivially hold. But this fact does not necessarily have
to be satisfied, as we can see if we consider the reduct D1.

The concept lattice obtained from the RS-reduct D1 is displayed in left side
of Fig. 2. Now, the set of join-irreducible concepts are obtained from the objects
1, 3, 4 and 6, and they are listened below:

(1↑1↓1
, 1↑1) = ({1, 7}, {ht, wa, f})

(3↑1↓1
, 3↑1) = ({3, 4, 7}, {hh, f})

(4↑1↓1
, 4↑1) = ({4, 7}, {hh, wa, f})

(6↑1↓1
, 6↑1) = ({1, 6, 7}, {ht, wa})

From them, it is easy to see that Propositions 1, 2 and Theorem 2 also hold. In
addition, observe that after the reduction, from the objects 3 and 6 we obtain
join-irreducible concepts with the same extensions that in the initial context.
Whereas, the extensions of the object-concepts from 1 and 4 have been modified.
Specifically, the concepts whose extensions are {1, 7} and {4, 7} were not join-
irreducible in the original context but they are irreducible concepts after the
reduction.

The most interesting property that we obtain considering this mechanism to
reduce the context, is that different object-concepts in the original concept lattice
continue being different after the reduction. That is, given two objects if we
have a concept in the original lattice which does not contain both objects, after
the reduction, we also have a concept that does not contain these two objects.
Therefore, we preserve the necessary information to distinguish the objects after
using this reduction mechanism.

As a consequence, in this work an interesting way to reduce contexts in FCA
have been presented, since useful properties are satisfied.

3 For the sake of simplicity, we will write (↑1 ,↓
1
) and (↑2 ,↓

2
), instead of (↑D1 ,↓

D1
) and

(↑D2 ,↓
D2

) to denote the concept-forming operators in the reduced contexts by D1

and D2, respectively.
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4 Conclusions and Future Work

In this paper, we have considered the philosophy of attribute reduction in RST
in order to introduce a new mechanism for reducing context in FCA. We have
shown that when we reduce the number of attributes of a context from an RS-
reduct of the corresponding context information system, the obtained reduction
satisfies interesting properties with respect to the object-concepts of the concept
lattice. The most relevant characteristics of this new reduction procedure is that
the number of different object-concepts is preserved and no new join-irreducible
element is introduced after the reduction. We have illustrated the presented
mechanism by an example.

As prospects for future work, we want to carry out a greater reduction of
contexts in FCA, decreasing the number of objects. For this purpose, we will
consider the notion of bireduct given in RST within the FCA framework.
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Abstract. In this paper interval-valued fuzzy relations in the context of
decision making problems are studied. A new version of transitivity with
admissible linear order involved in its notion is introduced. It is examined
the connection of this new property and some equivalence relation for
interval-valued fuzzy relations. There are also studied admissible linear
orders generated by aggregation functions and their connection with the
considered equivalence relation. Possible applications of the presented
results in decision making are indicated.
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1 Introduction

Interval-Valued Fuzzy Relations (IVFRs), which are extensions of fuzzy relations,
are applied in databases, pattern recognition, neural networks, fuzzy modelling,
economy, medicine or multicriteria decision making [13,18]. In recent applica-
tions to image processing [1] or classification [20] it has been proven that, under
some circumstances, the use of IVFSs together with the total order defined by
Xu and Yager [24] provide results that are better than their fuzzy counterparts.

In this paper we deal with an equivalence relation between aggregation func-
tions and interval-valued fuzzy relations. Applying this equivalence relation is
a method of comparison of diverse types of values. There are different methods
of comparison of fuzzy quantities (cf. [21]). Some of them can generate equiv-
alence relations between fuzzy sets (incomparable elements are similar). The
first concept of a similarity between fuzzy sets was proposed by Warren [22].
It was connected with the normalization of fuzzy sets (cf. e.g. [25]). Two fuzzy
sets were considered equivalent, if they produced the same normalized fuzzy
set after the normalization. This relation can be considered to be the case of
proportional membership functions. A more general relation was introduced by
Bhattacharya [2] in the case of fuzzy groups. Two fuzzy groups were considered
equivalent if they had a common family of level sets. Murali and Makamba [15]
examined this relation in order to describe numerical dependence between mem-
bership functions of equivalent fuzzy groups. Murali [16] has generalized this
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 18
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equivalence for arbitrary fuzzy sets. The classification of fuzzy relations was
introduced by Zadeh [25] and popularized by Kaufmann [12].

In this contribution we also discuss transitivity property and introduce a new
type of this concept with respect to admissible linear orders. Transitivity is an
important property of relations, since it may guarantee consistency of choices of
decision makers. Diverse properties of IVFRs (also for the case of interval-valued
fuzzy reciprocal relations IVFRRs), including transitivity, have been studied by
a range of authors (cf. [1,9,14,23]).

This work is composed of the following parts. Firstly, some concepts and
results useful in further considerations are recalled and new version of transitiv-
ity with an admissible linear order is introduced (Sect. 2). Next, an equivalence
relation for aggregation functions and interval-valued fuzzy relations is consid-
ered (Sect. 3). Finally, (Sect. 4) it is provided information how obtained in the
paper results may be applied in decision making problems.

2 Transitivity of Interval-Valued Fuzzy Relations with
Respect to Admissible Linear Order

Firstly, we give the definition of an aggregation function on [0, 1].

Definition 1 ([8], p. 6). An increasing function A : [0, 1]n → [0, 1], n ∈ N,
n � 2, is called an aggregation function if A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

We recall the notion of the lattice operations and the order in the family of
interval-valued fuzzy sets

LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 � x2} .

Note that LI endowed with the partial order [x1, x2] ≤ [y1, y2] if and only
if x1 � y1 and x2 � y2 is a complete, bounded lattice with the top ele-
ment given by 1 = [1, 1] and the bottom element given by 0 = [0, 0]. In this
lattice, the supremum of any two elements is defined by [x1, x2] ∨ [y1, y2] =
[max(x1, y1),max(x2, y2)], and the infimum is defined by [x1, x2] ∧ [y1, y2] =
[min(x1, y1),min(x2, y2)], respectively.

Note that, if we consider the partial order defined on LI , we see that the
family (IVFR(X × Y ),∨,∧) is a complete and distributive lattice (see [7] for a
study on the concept of lattices). The order ≤ is not linear. To overcome this
problem the methods to obtain linear orders on LI were introduced in [5].

Definition 2 ([5]). An order ≤LI on LI is called admissible if it is linear and
satisfies that, for all x, y ∈ LI , such that if x ≤ y, then x ≤LI y.

In [6], this class of linear orders on LI is used to extend the definition of
OWA operators to interval-valued fuzzy setting.
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Definition 3 ([6]). Let ≤LI be an admissible order on LI , w = (w1, . . . , wn) ∈
[0, 1]n with w1 + · · · + wn = 1. The Interval-Valued OWA operator (IVOWA)
associated with ≤LI and w is a mapping IV OWA≤LI ,w : (LI)n → LI , given by

IV OWA≤LI ,w([a1, b1], . . . , [an, bn]) =
n∑

i=1

wi · [a(i), b(i)],

where [a(i), b(i)], i = 1, . . . , n, denotes the i-th greatest of the inputs with respect
to the order ≤LI and w · [a, b] = [wa,wb], [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].

Similarly, we may consider ordered weighted geometric mean (cf. [11]) on LI .

Definition 4. Let ≤LI be an admissible order on LI , and let w =
(w1, . . . , wn) ∈ [0, 1]n, with w1+· · ·+wn = 1. The Interval-Valued OWG operator
(IVOWG) associated with ≤LI and w is a mapping IV OWG≤LI ,w : (LI)n → LI ,
given by

IV OWG≤LI ,w([a1, b1], . . . , [an, bn]) =
n∏

i=1

[a(i), b(i)]wi ,

where [a(i), b(i)], i = 1, . . . , n, denotes the i-th greatest of the inputs with respect
to the order ≤LI and [a1, b1] · [a2, b2] = [a1 · a2, b1 · b2], [a, b]w = [aw, bw].

There exist a construction of admissible orders with the use of aggregation
functions.

Proposition 1 ([5]). Let B1, B2 : [0, 1]2 → [0, 1] be two continuous aggregation
functions, such that, for all x = [x, x], y = [y, y] ∈ LI , the equalities B1(x, x) =
B1(y, y) and B2(x, x) = B2(y, y) hold if and only if x = y. If the order ≤B1,2 on
LI is defined by x ≤B1,2 y if and only if

B1(x, x) < B1(y, y) or (B1(x, x) = B1(y, y) and B2(x, x) � B2(y, y)),

then ≤B1,2 is an admissible order on LI .

Example 1 ([5]). Let x = [x, x], y = [y, y] ∈ LI . Admissible orders on LI are:
• the Xu and Yager order
[x, x] ≤XY [y, y] if and only if x+x < y +y or (x+x = y +y and x−x ≤ y −y),
• the lexicographical order with respect to the first variable
[x, x] ≤Lex1 [y, y] if and only if x < y or (x = y and x ≤ y),
• the lexicographical order with respect to the second variable
[x, x] ≤Lex2 [y, y] if and only if x < y or (x = y and x ≤ y),
• let Kα : [0, 1]2 → [0, 1] be the function defined as Kα(x, y) = αx+(1−α)y for
some α ∈ [0, 1], the order defined as
[x, x] ≤α,β [y, y] if and only if Kα(x, x) < Kα(y, y) or (Kα(x, x) = Kα(y, y) and
Kβ(x, x) ≤ Kβ(y, y)) is an admissible order for α, β ∈ [0, 1], α �= β.
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The orders ≤XY , ≤Lex1 and ≤Lex2 are special cases of the order ≤α,β with
≤0.5,β (for β > 0.5), ≤1,0, ≤0,1, respectively. The orders ≤XY , ≤Lex1, ≤Lex2,
and ≤α,β are admissible linear orders defined by pairs of aggregation functions
(cf. Proposition 1), namely weighted means. In the case of the orders ≤Lex1 and
≤Lex2 these means are reduced to the pairs of projections: P1, P2 and P2, P1,
respectively.

Definition 5 (cf. [19,25]). An IVFR R between universes X,Y is a mapping
R : X × Y → LI such that

R(x, y) = [R(x, y), R(x, y)]for all pairs(x, y) ∈ X × Y.

The class of all IVFRs between universes X,Y is denoted by IVFR(X ×Y ), or
IVFR(X) for X = Y .

We recall the notion of transitivity (in its basic form for operation ∧) which
is an important measure of consistency of decision makers.

Definition 6 (cf. [3]). R ∈ IVFR(X) is said to be transitive, if

∀
x,y,z∈X

R(x, y) ∧ R(y, z) ≤ R(x, z). (1)

Remark 1. Transitivity of R ∈ IVFR(X) described by (1) may be characterized
by the property involving max-min-composition, namely R2 ≤ R (cf. [4]). In the
context of preference relations, for X = {x1, . . . , xn}, transitivity captures the
fact that, if the alternative xi is preferred to xk and xk is preferred to xj , then
xi should be preferred to xj .

Definition 7. Let ≤LI be an admissible order. R ∈ IVFR(X) is said to be
transitive with respect to ≤LI , if

∀
x,y,z∈X

R(x, y) ∧ R(y, z) ≤LI R(x, z). (2)

Example 2. Relation R ∈ IVFR(X) is not transitive but it is transitive with
respect to ≤Lex1, where

R =
[

[0.1, 0.2] [0.3, 0.4]
[0, 0.3] [0.1, 0.3]

]
.

Remark 2. Transitivity with respect to ≤LI may not be characterized by com-
position in a similar way to the one presented for transitivity in Remark 1. Rela-
tion R from Example 2 is transitive with respect to ≤Lex1 but it is not true that
R2 ≤Lex1 R, where

R2 =
[

[0.1, 0.3] [0.1, 0.3]
[0, 0.3] [0.1, 0.3]

]
.

In the next section we will consider this new concept of transitivity in con-
nection with some equivalence relation.
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3 Equivalence Relation

We will consider an equivalence relation which was originally introduced for
fuzzy groups [2] and then generalized to fuzzy sets [16]. We will use this notion
for aggregation functions (similarly to [10]), but apply it for interval-valued fuzzy
relations. Since the considered relation is an equivalence it can be useful in the
classification of fuzzy information.

Definition 8. Let A,B : [0, 1]2 → [0, 1] be aggregation functions. Aggregation
functions A and B are equivalent (A ∼ B) if

∀
x,y,z,t∈[0,1]

A(x, y) � A(z, t) ⇔ B(x, y) � B(z, t).

Example 3. If we take two aggregation functions K0.3 and K0.2 we observe that,
K0.3 ∼ K0.2. For example we calculate:

x y z t K0.3(x, y) K0.3(z, t) K0.2(x, y) K0.2(z, t)

0,466079512 0,695313702 0,199977086 0,82690187 0,626543445 0,638824437 0,649466864 0,701516916

0,699377369 0,081830674 0,51141676 0,437083250 0,267094683 0,459383303 0,205340013 0,451949952

0,858878619 0,106145726 0,400104100 0,150400847 0,331965594 0,225311823 0,256692305 0,200341498

0,652742085 0,352831954 0,941989642 0,41648294 0,442804994 0,574134954 0,41281398 0,521584284

0,473595392 0,927195804 0,026486991 0,81285943 0,791115680 0,576947703 0,836475721 0,655584947

0,099923048 0,304847811 0,16435941 0,58175802 0,243370381 0,456538443 0,263862857 0,498278304

0,612547796 0,942061811 0,896368801 0,19422334 0,84320760 0,404866982 0,876159008 0,334652436

0,597453753 0,783110941 0,305027938 0,843501889 0,727413789 0,681959704 0,745979509 0,735807099

0,895580406 0,969919426 0,687527348 0,037429380 0,947617720 0,23245877 0,955051622 0,167448974

0,497693834 0,519135501 0,672966809 0,497403272 0,512703001 0,550072333 0,514847167 0,532515980

0,596747066 0,130312935 0,292547222 0,940475743 0,270243175 0,746097187 0,223599762 0,810890039

It is clear that relation ∼ from Definition 8 is an equivalence relation. Now,
we will recall definition and some results for this equivalence relation used for
interval-valued fuzzy relations. We also introduce the notion of equivalence rela-
tion with respect to an admissible order.

Definition 9 (cf. [4]). Let R = [R,R], S = [S, S] ∈ IVFR(X). We say that
relations R and S are equivalent (R ∼ S), if for all x, y, u, v ∈ X

R(x, y) ≤ R(u, v) ⇔ S(x, y) ≤ S(u, v).

By definition of the partial order ≤ we obtain the following result.

Corollary 1. Let R = [R,R], S = [S, S] ∈ IVFR(X). Relations R and S are
equivalent (R ∼ S) if and only if for all x, y, u, v ∈ X

R(x, y) � R(u, v) ⇔ S(x, y) � S(u, v)

and
R(x, y) � R(u, v) ⇔ S(x, y) � S(u, v).

Definition 10. Let R = [R,R], S = [S, S] ∈ IVFR(X). We say that relations
R and S are equivalent with respect to ≤LI (R ∼LI S), if for all x, y, u, v ∈ X

R(x, y) ≤LI R(u, v) ⇔ S(x, y) ≤LI S(u, v).
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In this paper we will apply the concept defined in Definition 10 to admissible
orders described in Proposition 1. This is why we will specify what we mean by
such equivalence in this case.

Definition 11. Let R = [R,R], S = [S, S] ∈ IVFR(X). We say that relations
R and S are equivalent with respect to ≤B1,2 (R ∼B1,2 S), if for all x, y, u, v ∈ X
one of the following equivalences is fulfilled

B1(R(x, y), R(x, y)) < B1(R(u, v), R(u, v)) ⇔ B1(S(x, y), S(x, y)) < B1(S(u, v), S(u, v)) (3)

or

B1(R(x, y), R(x, y)) = B1(R(u, v), R(u, v)) and B2(R(x, y), R(x, y)) � B2(R(u, v), R(u, v))

⇔

B1(S(x, y), S(x, y)) = B1(S(u, v), S(u, v)) and B2(S(x, y), S(x, y)) � B2(S(u, v), S(u, v)).

(4)

The approach proposed in Definition 11 gives us more precise information
about the behaviour of elements in both compared interval-valued fuzzy relations
than just straight applying Definition 10 to the order ≤B1,2 .

Example 4. Let us consider relations R,S ∈ IVFR(X), where

R =
[

[0.2, 0.4] [0.3, 0.6]
[0, 0] [0, 0]

]
, S =

[
[0.3, 0.5] [0.4, 0.4]
[0.1, 0.1] [0.1, 0.1]

]
.

We see that it is not true that R ∼ S but it is true that R ∼Lex1 S. Moreover,
it is neither true that R ∼Lex2 S nor that R ∼XY S (cf. Definition 11).

Example 5. Let us consider relations R,S ∈ IVFR(X), where

R =
[

[0.2, 0.4] [0.3, 0.6]
[0, 0] [0, 0]

]
, S =

[
[0.2, 0.5] [0.4, 0.4]
[0, 0] [0, 0]

]
.

It holds that R ∼XY S and R ∼Lex1 S but it neither holds that R ∼Lex2 S nor
R ∼ S (cf. Definition 11).

Example 6. Let us now consider the following relations R,S ∈ IVFR(X):

R =
[

[0.3, 0.4] [0.2, 0.6]
[0, 0] [0, 0]

]
, S =

[
[0.1, 0.5] [0.4, 0.6]

[0, 0] [0, 0]

]
.

It holds both R ∼XY S and R ∼Lex2 S but it neither holds that R ∼Lex1 S nor
R ∼ S (cf. Definition 11).

Some results related to the operations supremum and infimum may be applied
in verifying the equivalence between two given IVFRs. Firstly, we present them
for relation ∼ and then for ∼LI .
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Proposition 2 ([4]). Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼ S, then
for every non-empty subset P of X × X and each x, y, z, t ∈ P , the following
conditions are fulfilled

⎧
⎪⎪⎨

⎪⎪⎩

R(x, y) = sup
(u,v)∈P

R(u, v) ⇔ S(x, y) = sup
(u,v)∈P

S(u, v)

R(z, t) = sup
(u,v)∈P

R(u, v) ⇔ S(z, t) = sup
(u,v)∈P

S(u, v)
, (5)

⎧
⎪⎪⎨

⎪⎪⎩

R(x, y) = inf
(u,v)∈P

R(u, v) ⇔ S(x, y) = inf
(u,v)∈P

S(u, v)

R(z, t) = inf
(u,v)∈P

R(u, v) ⇔ S(z, t) = inf
(u,v)∈P

S(u, v)
, (6)

⎧
⎪⎪⎨

⎪⎪⎩

R(x, y) = sup
(u,v)∈P

R(u, v) ⇔ S(x, y) = sup
(u,v)∈P

S(u, v)

R(z, t) = inf
(u,v)∈P

R(u, v) ⇔ S(z, t) = inf
(u,v)∈P

S(u, v)
, (7)

⎧
⎪⎪⎨

⎪⎪⎩

R(x, y) = inf
(u,v)∈P

R(u, v) ⇔ S(x, y) = inf
(u,v)∈P

S(u, v)

R(z, t) = sup
(u,v)∈P

R(u, v) ⇔ S(z, t) = sup
(u,v)∈P

S(u, v)
. (8)

The converse statement to Proposition 2 is true, and it is enough to assume
that only one of the conditions in Eqs. (5)–(8) is fulfilled and that set P is
finite. Equivalent relations have connection with the transitivity property. We
can obtain for IVFRs and the partial order ≤ the following property.

Proposition 3 ([4]). Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼ S, then
R is transitive if and only if S is transitive.

Now we will present the analogous results to the ones from Proposition 2 and
Proposition 3 but for admissible orders ≤LI . We will analyze concrete orders,
namely ≤Lex1, ≤Lex2, ≤XY .

Proposition 4. Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼Lex1 S, then for
every non-empty subset P of X × X and each x, y ∈ P , the following conditions
are fulfilled:

R(x, y) = inf
(u,v)∈P

R(u, v) ⇔ S(x, y) = inf
(u,v)∈P

S(u, v), (9)

R(x, y) = sup
(u,v)∈P

R(u, v) ⇔ S(x, y) = sup
(u,v)∈P

S(u, v). (10)

Proof. We will prove condition (9). Let R ∼Lex1 S, x, y ∈ X, P ⊂ X × X and
R(x, y) = inf

(u,v)∈P
R(u, v). It means that for every u, v ∈ P we have R(x, y) �

R(u, v). It means that for every u, v ∈ P we have R(x, y) < R(u, v) or R(x, y) =
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R(u, v). By Definition 11 applied to ≤Lex1 and assumption R ∼Lex1 S we have
for every u, v ∈ P the following cases:

(1) R(x, y) < R(u, v) ⇔ S(x, y) < S(u, v),
(2) (R(x, y) = R(u, v), R(x, y) � R(u, v)) ⇔ (S(x, y) = S(u, v), S(x, y) � S(u, v)),

(3) (R(x, y) = R(u, v), R(x, y) > R(u, v)) ⇔ (S(x, y) = S(u, v), S(x, y) > S(u, v)).

In each case we have: S(x, y) < S(u, v) or S(x, y) = S(u, v) for every u, v ∈ P .
As a result for every u, v ∈ P we have S(x, y) � S(u, v) which proves that S(x, y)
is a lower bound of values S(u, v) for u, v ∈ P . Using analogous methods we may
prove that S(x, y) is the greatest lower bound of values S(u, v) for u, v ∈ P , i.e.
S(x, y) = inf

(u,v)∈P
S(u, v).

Condition (10) may be proven analogously.

By Example 4 we see that supremum and infimum for the remaining ends of
intervals are not ‘preserved’ by the equivalence ∼Lex1. Similarly to Proposition 4
we may prove the following result

Proposition 5. Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼Lex2 S, then for
every non-empty subset P of X × X and each x, y ∈ P , the following conditions
are fulfilled:

R(x, y) = inf
(u,v)∈P

R(u, v) ⇔ S(x, y) = inf
(u,v)∈P

S(u, v), (11)

R(x, y) = sup
(u,v)∈P

R(u, v) ⇔ S(x, y) = sup
(u,v)∈P

S(u, v). (12)

By Example 6 we see that supremum and infimum for the remaining ends of
intervals are not ‘preserved’ by ∼Lex2.

Remark 3. Analyzing interval-valued fuzzy relations from Examples 5 and 6 we
see that for the admissible order ≤XY we do not have similar results to the ones
presented in Propositions 4 and 5.

Now we will consider ‘preservation’ of transitivity with respect to ≤LI by the
equivalence relation ∼LI for the orders ≤Lex1 and ≤Lex2.

Proposition 6. Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼Lex1 S, then R
is transitive with respect to ≤Lex1 if and only if S is transitive with respect to
≤Lex1.

Proof. Let R ∼Lex1 S and R be transitive with respect to ≤Lex1. Transitivity of
R with respect to ≤Lex1 means that for x, y, z ∈ X we have one of the following
conditions fulfilled:
(a) min(R(x, y), R(y, z)) < R(x, z) or
(b) min(R(x, y), R(y, z)) = R(x, z) and min(R(x, y), R(y, z)) � R(x, z).
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As a result, by Proposition 4 and the fact that ends of intervals are just real
numbers linearly ordered by �, we have the following cases for (a):
(1) If R(x, y) < R(y, z), then with P = {(x, y), (y, z)} we get

R(x, y) = min(R(x, y), R(y, z)) ⇔ S(x, y) = min(S(x, y), S(y, z)),

R(x, y) < R(x, z) ⇔ S(x, y) < S(x, z),

which proves that

min(R(x, y), R(y, z)) < R(x, z) ⇔ min(S(x, y), S(y, z)) < S(x, z).

(2) If R(x, y) > R(y, z), then similarly

R(y, z) = min(R(x, y), R(y, z)) ⇔ S(y, z) = min(S(x, y), S(y, z)),

R(y, z) < R(x, z) ⇔ S(y, z) < S(x, z),

(3) If R(x, y) = R(y, z), then we may prove it analogously to the cases (1) or (2).
For the case b) and condition min(R(x, y), R(y, z)) = R(x, z), by Definition 11,
we obtain the formula

min(R(x, y), R(y, z)) = R(x, z) ⇔ min(S(x, y), S(y, z)) = S(x, z).

For the case b) and condition min(R(x, y), R(y, z)) � R(x, z) we also consider
three cases and by Definition 11 we conclude:
(1) R(x, y) < R(y, z), then min(R(x, y), R(y, z)) = R(x, y) and since

R(x, y) < R(y, z) ⇔ S(x, y) < S(y, z),

as a consequence min(S(x, y), S(y, z)) = S(x, y), so by the second part of Defi-
nition 11 we have min(S(x, y), S(y, z)) � S(x, z). Similar considerations we may
obtain for the remaining cases:

(2) R(x, y) > R(y, z)
(3) R(x, y) = R(y, z).

As a result S is transitive with respect to ≤Lex1, which finishes the proof.

Similarly to Proposition 6 we may prove the analogous statement for the
order ≤Lex2.

Proposition 7. Let R = [R,R], S = [S, S] ∈ IVFR(X). If R ∼Lex2 S, then R
is transitive with respect to ≤Lex2 if and only if S is transitive with respect to
≤Lex2.

We will now apply the results considered in this paper which are related to
the equivalence relation of admissible orders described in Proposition 1.
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Definition 12. Admissible orders ≤A1,2 and ≤B1,2 are equivalent (≤A1,2∼
≤B1,2), if

x ≤A1,2 y ⇔ x ≤B1,2 y, where x, y ∈ LI . (13)

Equivalent pairs of aggregation functions, which generate admissible orders
(cf. Proposition 1), generate equivalent admissible orders.

Proposition 8. Let Ai, Bi be aggregation functions for i = {1, 2} and
A1 ∼ B1, A2 ∼ B2. If ≤A1,2 (respectively ≤B1,2) is an admissible order, then
≤A1,2∼≤B1,2 and ≤B1,2 (respectively ≤A1,2) is an admissible order.

Proof. Let ≤A1,2 be an admissible order, x ≤A1,2 y and x = [x, x], y = [y, y]. By
condition (13), interpreted similarly to the way presented in Definition 11, we
obtain: if A1(x, x) < A1(y, y), then

A1(x, x) < A1(y, y) ⇔ ¬(A1(x, x) � A1(y, y))

⇔ ¬(B1(x, x) � B1(y, y)) ⇔ B1(x, x) < B1(y, y).

If A1(x, x) = A1(y, y), then B1(x, x) = B1(y, y) since

A1(x, x) = A1(y, y) ⇔ (A1(x, x) � A1(y, y) and A1(y, y) � A1(x, x))

and it is enough to use twice definition of ∼ relation for B1, B2. If A2(x, x) �
A2(y, y), then by definition of ∼ we get B2(x, x) � B2(y, y), so x ≤A1,2 y ⇔
x ≤B1,2 y and ≤B1,2 is an admissible order.

In the next section we will indicate the application of Proposition 8 in decision
making algorithms.

4 Decision Making Algorithm

We consider interval-valued fuzzy relations on X = {x1, . . . , xn} (set of alterna-
tives). The preferences over these alternatives will be represented with respect to
a finite number of criteria, by relations R1, . . . , Rn ∈ IVFR(X). We will apply
IVOWA (or IVOWG) to aggregate these relations in order to obtain the final
result. In definition of IVOWA (IVOWG) we use linear order ≤A1,2 generated
by aggregation functions (cf. Proposition 1). The set of weights w represents
the importance of criteria. IVOWA (IVOWG) are widely used in computational
intelligence because of their ability to model linguistically expressed aggregation
instructions. To find the solution alternative we may apply diverse methods, for
example nondominance method or voting methods (cf. [4,17]) but here we will
not focus on this issue in detail. To find the selection alternative, in the final step
linear orders generated by aggregation functions ≤B1,2 , but not necessarily with
the same pair of aggregation functions which are used in IVOWA (IVOWG), may
be applied. The following algorithm (general steps) gives a solution alternative.
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Algorithm

Inputs : X = {x1, . . . , xn} set of alternatives; R1, . . . , Rn ∈ IVFR(X); lin-
ear orders ≤A1,2 , ≤B1,2 generated by A1, A2, B1, B2 : [0, 1]2 → [0, 1]; aggregation
operator IV OWA≤A1,2 ,w (respectively IV OWG≤A1,2 ,w).

Output : Solution alternative: xselection the best alternative with respect to
given criteria.

(Step 1) Aggregation of given R1, . . . , Rn ∈ IVFR(X) by the use of
IV OWA≤A1,2 ,w (IV OWG≤A1,2 ,w) obtaining aggregated fuzzy relation RA

(Step 2) Applying the nondominance or voting methods to RA

(Step 3) Ordering the alternatives in a non-increasing way using a linear
order ≤B1,2

In (Step 3) of the given algorithm we may apply diverse linear orders of the
type ≤B1,2 . If we compare the orders of alternatives obtained with the use of
two different but equivalent admissible orders ≤A1,2∼≤B1,2 , then we obtain for
both of them the same orders of alternatives (cf. Proposition 8).

5 Conclusion

We introduced the notion of transitivity with respect to an admissible order
for interval-valued fuzzy relations. We also discussed its connection with some
equivalence relation and consequences of applying both the equivalence relation
and the new type of transitivity. For future work it would be interesting to
find another (stronger) sufficient condition for equivalence of admissible orders
(cf. Proposition 8).
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4. Bentkowska, U., Bustince, H., Jurio, A., Pagola, M., Pȩkala, B.: Decision making
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Abstract. The polarity detection problem typically relies on experi-
mental dictionaries, where terms are assigned polarity scores lacking con-
textual information. As a matter of fact, the polarity is highly dependant
on the domain or community it is analysed, so we can speak of a contex-
tual bias. We propose a method supported by fuzzy linguistic modelling
to quantify this contextual bias and to enable the bias-aware sentiment
analysis. To show how our approach work, we measure the bias of com-
mon concepts in two different domains and discuss the results.

Keywords: Sentiment analysis · Polarity · Linguistic modelling · Fuzzy
logic · Contextual bias

1 Introduction

The identification of positive and negative opinions, emotions and evaluations
summarises the scope of the sentiment analysis task. The use of sentiment analy-
sis is widely spread in many industries to support use cases such as understanding
how customers react to product offerings and campaigns based on their social
media interactions [3], to make the patient experience after a treatment measur-
able [9], to predict the outcome of political elections [24].

The analysis of sentiments involves determining whether the sentiment
expressed in a phrase or a document is positive or negative. This task, also known
as Polarity detection, has become more and more relevant with the advent of the
web 2.0 and the new technologies supporting user generated content (Forums,
Blogosphere, Microblogging, Rating and Reviews, etc.). Thus, sentiment analysis
is widely applied to obtain the unfiltered voice of the customer about products,
services, companies, politicians, etc. [3,26].

Polarity detection usually relies on polarity values that are defined according
to a lookup procedure at term or lemma level. A lexicon of positive and negative
words and phrases consists of entries that have been tagged with their prior

c© Springer International Publishing AG 2018
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polarity, which means without any context, to which degree the word seems
to evoke something positive or something negative. When we for example talk
about something like “football”, it might have a neutral polarity, but if we are
in a domain (e.g.: “sport press” or “sport bets”) where we consistently use the
word “football” with other words such as “thrilling”, “exciting”, “miracle” or
“fascinating”, individuals who are part of this domain tend to associate these
positive feelings to the world “football”. Bias intuitively refers to this positive
“load”. Thus, in this domain, when we compute the sentiment of a sentence where
the term “football” is present, we should have a mechanism to include this bias
in the computation. The value of the bias itself depends on the neighbouring
terms’ polarity (the near context).

The novelty of the method we propose in this paper tackles following aspects:

– We aim at extracting the bias of a particular term at domain level, unlike
other polarity bias studies that focus on the atomic bias modelling (e.g.: in
[27]). It requires a high number of occurrences of the particular term within
the domain corpus to guarantee certain stability and introduces the need
for (a) a threshold and (b) a second indicator to assess how stable (or how
volatile) the bias is.

– We express the bias and stability bias using a multi-granular fuzzy linguistic
approach, to make sure our indicators remain as generic and human-readable
as possible. On the other hand, our linguistic modelling approach allows for
the usage of different linguistic hierarchies to incorporate the bias modelling
into the different methods of sentiment evaluation without incurring in infor-
mation loss, which is one of the most useful advantages of our proposal.

This paper is structured as follows: after having introduced the problem and
explained at high-level our motivation to solve it, we provide the background
references our work builds upon. Then we present our model and the supporting
techniques, for example fuzzy linguistic modelling. After discussing the results
obtained for bias modelling in 2 different domains, we share our concluding
remarks and point to further research directions based on our work.

2 Background

In this section we provide the background information required to describe our
model. It is divided in three parts: an introduction to polarity detection, a dis-
cussion about the bias modelling applied to polarity and the description of the
fuzzy linguistic approach we followed.

2.1 On Polarity Detection

Polarity detection for a sentence or a document can be performed by a variety
of techniques, but almost each of them relies on the existence of a pre-trained or
manually labelled polarity lexicon or dictionary. In [14], the authors created a dic-
tionary of 6779 terms (4776 being tagged with −1 and 2003 being tagged with 1)
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to support the task of opinion mining in customer reviews- The well-known
Lexicoder [6] aimed at a similar purpose and is even offered in a commercial way.
The more recent Syuzhet dictionary [17] provides over 10K entries, with scor-
ing ranging from −1 to 1. The Positive Affect Negative Affect Scale technique
(PANAS) [25] consists of a psychometric scale for detecting mood fluctuations.
In [1], the authors suggest a mapping to negative and positive polarities.

SentiWordNet [2] implements a dictionary based approach to sentiment
extraction. Similar to our approach, Part of Speech labelling is used to apply
the lexical dictionary to synsets or synonym set groups (adjectives, nouns, verbs,
and other grammatical classes). The polarity computation of a given text is an
aggregation operation across all the existing synsets, each one contributing with
their own positive or negative affect score.

In [7], the authors present a dictionary based method to compute the Happi-
ness Index, for which they use the Affective Norms for English Words (ANEW).
The values of the happiness index can be mapped to positive or negative polar-
ity values, as shown in [1]. ANEW has been used for many applications, such
as extraction of emotional profiles for locations [4]. SentiStrength [22] relies on
the existing Linguistic Inquiry and Word Count dictionary [18] to implement
supervised and unsupervised classification methods and extract the strength of
the sentiments, including polarity. SenticNet [5] applies classification techniques
to Natural Language Processing structures to infer the polarity for nearly 14K
concepts.

2.2 On Bias Modelling

Bias modelling has been also extensively researched. In our research, bias mani-
fests as a polarity shift. There are plenty of factors that might influence a polarity
shift given a particular context, as thoroughly explained in [19]. In [8] the authors
demonstrated the presence of a positive bias using an annotated ground truth
for 6 different polarity detection methods. In [15], the authors discussed the so
called domain search bias, which states that a user’s propensity to believe that
a page is more relevant might be influenced by the fact that the page is hosted
in a particular domain.

In [23], the authors recognized the bias introduced by each user in the product
reviews and suggested a method to measure it at user level. Aligned with this
research, a machine learning supported classifying approach was taken in [20]
to solve the problem of the bias introduced by manual annotations created by
non-experts.

In [16] the authors suggests a Bias-Aware Thresholding approach that turns
any lexicon-based method into bias-aware by minimizing the so called Polarity
Bias Rate (PBR = FP+FN

N ) by changing the prediction and therefore changing
the cost associated with making one type of error over the other.
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2.3 On Fuzzy Linguistic Modelling

The fuzzy linguistic approach is a tool based on the concept of linguistic vari-
able proposed by Zadeh [28]. This theory has given very good results to model
qualitative information and it has been proven to be useful in many problems.

The 2-Tuple Fuzzy Linguistic Approach. The 2-Tuple Fuzzy Linguistic
Approach [11] is a continuous model of information representation that allows
reduction in the loss of information that typically arises when using other fuzzy
linguistic approaches, both classical and ordinal [10,13,28]. To define it both the
2-tuple representation model and the 2-tuple computational model to represent
and aggregate the linguistic information have to be established.

Let S = {s0, ..., sg} be a linguistic term set with odd cardinality. We assume
that the semantics of labels is given by means of triangular membership func-
tions and consider all terms distributed on a scale on which a total order is
defined. In this fuzzy linguistic context, if a symbolic method aggregating lin-
guistic information obtains a value β ∈ [0, g], and β /∈ {0, ..., g}, we can represent
β as a 2-tuple (si, αi), where si represents the linguistic label, and αi is a numer-
ical value expressing the value of the translation between numerical values and
2-tuple: Δ(β) = (si, α) y Δ−1(si, α) = β ∈ [0, g] [11].

In order to establish the computational model negation, comparison and
aggregation operators are defined. Using functions Δ and Δ−1, any of the exist-
ing aggregation operators can be easily be extended for dealing with linguistic
2-tuples without loss of information [11]. Some examples are:

Definition 1. Arithmetic mean. Let x = {(r1, α1), . . . , (rn, αn)} be a set of lin-
guistic 2-tuples, the 2-tuple arithmetic mean xe is computed as:

xe[(r1, α1), . . . , (rn, αn)] = Δ(
n∑

i=1

1
n

Δ−1(ri, αi))

= Δ(
1
n

n∑

i=1

βi).

Definition 2. Weighted Average Operator. Let x = {(r1, α1), . . . , (rn, αn)} be
a set of linguistic 2-tuples and W = {(w1, α

w
1 ), ..., (wn, αw

n )} be their associated
weights. The 2-tuple weighted average xw

l is:

xw
l [((r1, α1), (w1, α

w
1 ))...((rn, αn), (wn, αw

n ))]

= Δ(
∑n

i=1 βi · βWi∑n
i=1 βWi

),

with βi = Δ−1(ri, αi) and βWi
= Δ−1(wi, α

w
i ).
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Multi-granular Linguistic Information Approach. To accommodate the
requirements of the different sentiment analysis methods, it’s important to sup-
port different “granularity levels”. Certain methods could for example only deal
with yes/no values and direction only (e.g.: “Negative Bias”, “No Bias”, “Pos-
itive Bias”). Other methods might be able to incorporate higher granularity
values in the aggregation operation for the sentiment computation (e.g.: “Low-
est”, “Low”, “Normal”, “High”, “Highest”).

To enable the compatibility of sentiment analysis methods, we need to sup-
port the different granularities and provide tools to manage the multi-granular
linguistic information. In [12] a multi-granular 2-tuple fuzzy linguistic modelling
based on the concept of linguistic hierarchy is proposed.

A Linguistic Hierarchy, LH, is a set of levels l(t, n(t)), where each level
t is a linguistic term set with different granularity n(t). The levels are ordered
according to their granularity, so that we can distinguish a level from the previous
one, i.e., a level t + 1 provides a linguistic refinement of the previous level t. We
can define a level from its predecessor level as: l(t, n(t)) → l(t+1, 2 ·n(t)−1). In
[12] a family of transformation functions between labels from different levels was
introduced. To establish the computational model we select a level that we use
to make the information uniform and thereby we can use the defined operator
in the 2-tuple model. This result guarantees that the transformations between
levels of a linguistic hierarchy are carried out without loss of information. Using
this LH, the linguistic terms in each level are the following:

– S3 = {b0 = None = N, b1 = Medium = M, b2 = Total = T}
– S5 = {c0 = Lowest = LE, c1 = Low = L, c2 = Normal = N, c3 = High =

H, c4 = Highest = HE}
– S9 = {c0 = None = N, c1 = V ery Low = V L, c2 = Low = L, c3 =

More Less Low = MLL, c4 = Medium = M, c5 = More Less High =
MLH, c6 = High = H, c7 = V ery High = V H, c8 = Total = T}

A graphical example of a linguistic hierarchy is shown in Fig. 1.

Fig. 1. Linguistic Hierarchy of 1, 3, 5 and 9 labels
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3 Modelling the Polarity Bias for a Particular Domain

In this section we describe how our bias model is built up. First we provide
the definitions required to explain our model, then we show how to apply fuzzy
linguistic modelling to express the bias itself and its stability or volatility.

3.1 Domain Specific Bias and Volatility

We start introducing some preliminary definitions our model builds upon.

Definition 3. Atomic Polarity Bias. Let N be the set of terms in the semantic
neighbourhood of ti. For the definition of semantic neighbourhood, we recommend
using standard natural language processing scopes, such as sentence, paragraph
or even document. Let PS(ti,D) is the polarity score of the term ti according to
the dictionary D.

We define Atomic Polarity Bias as follows:

APB(ti,D,N) =
∑#N

j=1 PS(tj ,D) ∗ ω(tj), ti �= tj

where ω(tj) is a function to provide the a specific weight to the polarity
score of the term (tj). This function can defined depending on different criteria
(e.g.: based on the part of speech tag of the term tj to for example give more
importance to the polarity of adjectives or adverbs, based on some quantification
of the distance between tj and ti to for example assign more weight to closer
terms, or just equally distributed for all terms having a polarity score in the
dictionary D).

Definition 4. Bias Computing Threshold. This is the minimum number of doc-
uments with occurrences of any term ti in a Domain Corpus, so that the bias
quantification makes sense. It is established for a particular Domain Corpus C
and is a constant value BCT (C) = K.

Definition 5. Polarity Bias. Based on the Atomic Polarity Bias, the Polarity
Bias is defined as an aggregation over all documents in the Domain Corpus of
the Atomic Polarity Bias

PB(ti,D) =
1

#M

#M∑

j=1

APB(tj ,D,Nj) (1)

where M represents the set of documents in the domain corpus, where the term
ti is present. As we are trying to quantify the contextual bias introduced by
the repeatedly use of the term in the domain, we impose the condition that
#M >= K, being K the established value for the BiasComputingThreshold
in the Domain under analysis.

Definition 6. Bias Stability. This is an indicator for how stable the Bias compu-
tation for a particular term is. The minimum value can be the imposed BCT (C)
and the maximum of #C. To standardize this value, we define a normalizing
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function ε, defined as ε : [BCT (C),#C] −→ [0, 1], which makes the Bias Stabil-
ity value range between 0 and 1:

BS(ti, C) = ε(
#M

#C
) (2)

where M represents the set of documents in the domain corpus, where the term
ti is present and C the set of all documents in the Corpus.

3.2 Fuzzy Language Bias Modelling

After establishing the fundamentals of fuzzy linguistic modelling and defining
the 2-tuple based supporting arithmetic operations to enable the bias-aware
computing of sentiment analysis tasks, we define the label sets for concepts of
polarity bias (Definition 5) and bias stability (Definition 6).

For both cases, we are going to use different label sets (S1, S2) selected from
a LH [12]:

– Polarity Bias indicator of a term in a particular domain, which is assessed
in S1.

– Bias Stability indicator applied to the previous indicator, which is assessed
in S2.

Although this framework guarantees the flexibility in the choice of the LH, we
suggest using a 2 level LH with 3 and 5 labels each one for the Bias Model
stability indicator and a 2 level LH with 5 and 9 labels for the Polarity Bias
indicator itself. Our suggestion is motivated by the intent of making it more
tangible for the reader, but the choice of (S1, S2) remains generic and shall
be taken depending on the nature of the problem or convenience for further
operations.

The Polarity Bias indicator allows for example in combination with the Bias
Stability indicator the correction of the sentiment for a particular sentiment
extraction based on the presence of highly-biased terms, as we are going to show
in the next section.

4 Experimentation

For our experimentation, we gather up to 460 transcripts from the website TED
Talks.1 The reason why we used this data source is many folded: (a) easy and
clean “spoken English” (b) appropriate length of the transcripts (unlike for
example micro blogs) and (c) the talks are quite actual.

In addition, each talk has different topic labels assigned, which makes the
separation in domains feasible (in fact, it is possible filtering talks that belong
to an specific domain). For our experiment, we focused on two domains: environ-
ment (with topics such as sustainability, energy, climate change, environment
itself, green) and education.
1 http://www.ted.org.

http://www.ted.org
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For the design of our experiment, we just focused on nouns (which required
a previous Part of Speech tagger [21]), set the Bias Computing Threshold to 20
(at least a minimum of 20 documents with one or more occurrences of the term)
and used a linguistic granularity level of 5 labels in both polarity senses (positive
and negative) for the Bias and just positive for the Volatility.

Discussing the Results. From the terms that satisfied the aforementioned
conditions (Bias Computing Threshold = 20) we took the subset of nouns that
were present in both domains, resulting in a final number of 744 terms. In the
Table 1 we show the distribution of Bias and Volatility for this experiments; this
table allows for observing general trends in the bias for the studied domains, for
example, we observed as general trend a rather positive bias and quite volatile
results -which might point us to increasing the corpus size to have more evidence
about the bias quantification-. In Tables 2 and 3 we provide the top 20 most
positive and negative biased terms respectively, each one with both indicators
(Bias and Volatility) computed for both domains (Education and Environment).

Figure 2 (a) shows the computed crisp value for the top most and least pos-
itive terms per domain. Having a look at Fig. 2 (b), we see how the same term
can be assigned different bias labels depending on the domain (e.g.: dead, or
disease)... It can be possible, that the same term is assigned a positive bias in a
domain but a negative one in the other, which we can observe in terms such as
kill and societies.

Fig. 2. (a) Top negative and positive biased terms by domain and (b) fuzzy bias quan-
tification labels

For the sake of showing how the polarity bias is computed, we provide in the
Fig. 3 a histogram of all atomic polarity bias values for the term difference in
both domains.

Our approach is to our knowledge, the first attempt to quantify the polar-
ity bias in a domain specific manner. In the Subsect. 3.2 we explained why we
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Table 1. Bias-volatility indicators distribution for environment and education
domakins

Environment Education

Bias\Volatility Medium Slightly Strong Very strong Medium Slightly Strong Very strong

Slightly 56 3 243 23 109 7 316 19

Almost inexistent 96 3 262 22 28 0 197 16

Medium 7 0 25 3 10 0 37 2

Strong 0 0 0 1 0 0 2 1

Fig. 3. Histogram of the domain bias for (a) Environment and (b) Education for the
term “difference”

Table 2. Top 20 positive biased concepts by domain

term domain occurences bias.val fuzzy.label fuzzy.label.complete docs volatility.label
1 people Environment 1664 0.16 Almost inexistent Almost inexistent positive 33655 Medium
2 people Education 1428 0.20 Slightly Slightly positive 26886 Slightly
3 world Environment 1366 0.18 Almost inexistent Almost inexistent positive 33655 Medium
4 world Education 896 0.24 Slightly Slightly positive 26886 Medium
5 think Environment 1371 0.20 Slightly Slightly positive 33655 Medium
6 think Education 1187 0.21 Slightly Slightly positive 26886 Medium
7 time Environment 1389 0.15 Almost inexistent Almost inexistent positive 33655 Medium
8 time Education 1198 0.20 Slightly Slightly positive 26886 Medium
9 years Environment 1134 0.16 Almost inexistent Almost inexistent positive 33655 Medium

10 years Education 681 0.18 Almost inexistent Almost inexistent positive 26886 Medium
11 things Environment 877 0.22 Slightly Slightly positive 33655 Medium
12 things Education 775 0.28 Slightly Slightly positive 26886 Medium
13 laughter Environment 754 0.52 Medium Medium positive 33655 Medium
14 laughter Education 906 0.53 Medium Medium positive 26886 Medium
15 way Environment 1654 0.18 Almost inexistent Almost inexistent positive 33655 Medium
16 way Education 1271 0.25 Slightly Slightly positive 26886 Medium
17 right Environment 810 0.51 Medium Medium positive 33655 Medium
18 right Education 762 0.51 Medium Medium positive 26886 Medium
19 need Environment 1023 0.23 Slightly Slightly positive 33655 Medium
20 need Education 720 0.23 Slightly Slightly positive 26886 Medium
21 look Environment 1225 0.21 Slightly Slightly positive 33655 Medium
22 look Education 849 0.24 Slightly Slightly positive 26886 Medium
23 say Environment 735 0.18 Almost inexistent Almost inexistent positive 33655 Medium
24 say Education 893 0.23 Slightly Slightly positive 26886 Medium
25 thing Environment 2576 0.21 Slightly Slightly positive 33655 Slightly
26 thing Education 2309 0.22 Slightly Slightly positive 26886 Slightly
27 school Environment 221 0.24 Slightly Slightly positive 33655 Strong
28 school Education 1046 0.22 Slightly Slightly positive 26886 Medium
29 water Environment 974 0.14 Almost inexistent Almost inexistent positive 33655 Medium
30 water Education 118 0.12 Almost inexistent Almost inexistent positive 26886 Strong
31 good Environment 563 0.49 Medium Medium positive 33655 Medium
32 good Education 491 0.50 Medium Medium positive 26886 Medium
33 percent Environment 573 0.14 Almost inexistent Almost inexistent positive 33655 Medium
34 percent Education 357 0.15 Almost inexistent Almost inexistent positive 26886 Medium
35 year Environment 1662 0.14 Almost inexistent Almost inexistent positive 33655 Medium
36 year Education 1074 0.19 Almost inexistent Almost inexistent positive 26886 Medium
37 work Environment 1058 0.27 Slightly Slightly positive 33655 Medium
38 work Education 1034 0.28 Slightly Slightly positive 26886 Medium
39 applause Environment 501 0.47 Medium Medium positive 33655 Medium
40 applause Education 512 0.45 Medium Medium positive 26886 Medium
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Table 3. Top 15 negative biased concepts by domain

term domain occurences bias.val fuzzy.label fuzzy.label.complete docs volatility.label
1 dead Environment 102 -0.43 Medium Medium negative 33655 Strong
2 death Education 52 -0.41 Medium Medium negative 26886 Strong
3 disease Education 54 -0.40 Medium Medium negative 26886 Strong
4 worry Education 32 -0.38 Slightly Slightly negative 26886 Strong
5 wrong Education 163 -0.33 Slightly Slightly negative 26886 Strong
6 worry Environment 37 -0.33 Slightly Slightly negative 33655 Strong
7 fear Environment 64 -0.31 Slightly Slightly negative 33655 Strong
8 dead Education 31 -0.30 Slightly Slightly negative 26886 Strong
9 conflict Environment 44 -0.30 Slightly Slightly negative 33655 Strong

10 wrong Environment 84 -0.29 Slightly Slightly negative 33655 Strong
11 poverty Environment 49 -0.29 Slightly Slightly negative 33655 Strong
12 poverty Education 52 -0.29 Slightly Slightly negative 26886 Strong
13 dark Education 80 -0.28 Slightly Slightly negative 26886 Strong
14 disease Environment 107 -0.26 Slightly Slightly negative 33655 Strong
15 fighting Education 23 -0.26 Slightly Slightly negative 26886 Very Strong
16 waste Education 27 -0.24 Slightly Slightly negative 26886 Strong
17 dark Environment 106 -0.24 Slightly Slightly negative 33655 Strong
18 death Environment 67 -0.24 Slightly Slightly negative 33655 Strong
19 fear Education 47 -0.24 Slightly Slightly negative 26886 Strong
20 waste Environment 239 -0.23 Slightly Slightly negative 33655 Medium
21 trouble Environment 33 -0.23 Slightly Slightly negative 33655 Strong
22 conflict Education 33 -0.23 Slightly Slightly negative 26886 Strong
23 crisis Environment 100 -0.22 Slightly Slightly negative 33655 Strong
24 argument Education 35 -0.22 Slightly Slightly negative 26886 Strong
25 argument Environment 33 -0.20 Slightly Slightly negative 33655 Strong
26 crisis Education 34 -0.19 Almost inexistent Almost inexistent negative 26886 Strong
27 problem Environment 638 -0.18 Almost inexistent Almost inexistent negative 33655 Medium
28 fighting Environment 22 -0.18 Almost inexistent Almost inexistent negative 33655 Very Strong
29 problem Education 422 -0.17 Almost inexistent Almost inexistent negative 26886 Medium
30 risk Environment 95 -0.16 Almost inexistent Almost inexistent negative 33655 Strong

employed Fuzzy Language Modelling to guarantee the interoperability across
well-established sentiment computation methods using different polarity dictio-
naries.

4.1 Bias-Aware Sentiment Analysis

After understanding the results, we show a possible way of incorporating the bias
modelling might impact/improve the computation of the sentiment for a phrase
using well-known schemas. Using the Syuzhet [17] dictionary, we compute for
examples the sentiment for the sentence S, “Unfortunately it is going to end
up in a big crisis”. With the standard implementation, the quantified sentiment
is −1.5 Unfortunately contributes with −1.00, big with 0.25 and crisis with
−0.75. In the Education domain, crisis presents an Almost inexistent negative
bias, while in the Environment domain the bias is a bit higher Slightly negative.
Both values are quite volatile, but a bias correction might make sense for the
later domain. It would mean that for the sentence S, sentimentEnvironment(S)
< sentimentEducation(S), being the correction the 2-tuple representation of the
level “Slightly negative”, as explained in the Subsect. 2.3.

5 Concluding Remarks

In this article we propose a method to quantify the polarity bias inherent to a
particular domain within the context of sentiment analysis. For a given domain
specific corpus, our approach extracts first the terms that are eligible for bias
modelling. The eligibility is given by an occurrences number above a given
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threshold -as semantic bias requires repetitiveness-. These terms are then fil-
tered by Part of Speech label (usually only verbs and nouns are taken, as the
polarity of adverbs, adjectives, etc. doesn’t make much sense).

Following on that, each remaining topic inherits a polarity scores from neigh-
bouring terms for each occurrence of the term in the domain corpus. These values
are then aggregated and normalized and assigned a fuzzy level for a particular
granularity level. An additional indicator, stability (or volatility) is also compute
for each term to express how “reliable” is the fuzzy indicator of the bias for the
term.

Our linguistic modelling approach allows for the usage of different linguistic
hierarchies to incorporate the bias modelling in the different methods of senti-
ment evaluation without incurring in information loss, which is one of the most
useful advantage of our proposal. To show the performance of our approach,
we modelled the bias of the top 100 nouns in the Environment and Education
domains based on over 400 recent Ted Talks transcripts.

Further research lines might focus on the development of lexical distance
specific weighting for the computation of the polarity inheritance at document
level. A corpus length and document length dependent modelling might also
bring some improvements to our idea, in particular in combination with the
analysis of optimal values for the Bias Computing Threshold.

Acknowledgments. This paper has been developed with the FEDER financing under
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Abstract. In this work we present a practice-oriented approach for gen-
erating load profiles as a means to forecast energy demand by using smart
metering time series. The general idea is to apply fuzzy clustering on his-
toric consumption time series. The segmentation yielded helps electricity
companies to identify customers with similar consumption behavior. This
knowledge can be used to plan available energy capacities in advance.
What makes this approach special is that this approach segments con-
sumption time series by time in addition to identifying customer groups.
This is done not only to accommodate for customers potentially behaving
completely different on working days than on local holidays for example,
but also to build the resulting load profiles in a way the electricity com-
panies can adapt with minimal adjustments. We also evaluate our app-
roach using two real world smart metering datasets and discuss potential
improvements.

Keywords: Big data · Data mining · Knowledge discovery · Clustering ·
Time series · Smart metering · Load profiles

1 Introduction

When electricity companies are confronted with the task to ensure the availabil-
ity of energy for every customer, they are faced with the important obligation
to announce the demand to the energy producers in advance. This is due to the
fact that energy producers require lead time to ensure the availability of neces-
sary capacities. Thus, in order to be able to announce the demand in advance,
electricity companies require a means to forecast the total energy demand of
their customers.

In general however, the electricity demand is not known in advance. Among
other things, this is because not every customer behaves the same on every day;
for example, it seems reasonable that during working days energy consumption is
different from weekends. In addition, customers like families, singles, agricultural
organizations and businesses typically each have different daily routines and thus
might genuinely differ in their consumer behavior. To forecast the energy demand
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for all customers, electricity companies use so called load profiles. In the case of
Germany, the specific profiles used are usually the standard load profiles released
by the “Bundesverband der Energie- und Wasserwirtschaft” (Federal association
of the energy and water economy). These profiles, having been created during
the 1990s, have not been adjusted to the technological advances and are thus
deemed as an increasingly bad model to forecast the energy demand [28]. Due to
the growing competition and legal obligations like the liberalization of the energy
market and the policies towards green energy usage, there is an increasingly high
interest and necessity to convert the information available thanks to modern
technologies into valuable knowledge [15]. In this paper we focus on applying
fuzzy clustering [5] on smart metering time series to generate load profiles as
a means to provide such knowledge. We also assess our approach in the way
electricity companies in Germany implement load profiles; we do think however
that assessments in other regions might be comparable.

2 Related Work

Along with the increasing amount of data electricity companies and regulators
can measure, process and analyze during the past decades, research towards
understanding and making use of this kind of data gained significant atten-
tion [10,19,24]. These fields of research include, but are not limited to, outlier
detection [29], marketing and tariff optimizations [9,21]. [2,22] present methods
to predict long-term changes of the aggregated energy load. Publications that
rely on clustering often choose K-Means to analyze the data [4,11,16,23,25]
or approaches based on it [20]. Newer publications also increasingly use fuzzy
clustering [19,27,29] and include newer technologies like Smart Metering [3,12].

In this paper, we continue our previous work [6] and present an approach
based on fuzzy clustering [5] for electricity companies to generate load profiles
using smart metering time series. We focus on not only identifying customer
groups to aggregate customers with similar consumption behavior, but also to
dynamically find day types, which help to model long- and short-term periodic
changes in consumer behavior. We also assess our approach using two real-world
smart metering datasets and grade the quality of the energy forecast in a way
closely related to how electricity companies would evaluate the generated load
profile in a production environment.

3 Structure of Load Profiles

When electricity companies forecast the energy demand and negotiate corre-
sponding capacities with producers, they typically assign one load profile and a
year consumption forecast (YCF) to each customer. Load profiles work by seg-
menting all calendar days into groups of so called day types and by segmenting all
customers into customer groups. The idea behind the usage of day types is that
customers tend to have a finite set of genuinely different daily routines. Exam-
ples for this type of behavior are that office employees typically consume less
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energy at home on working days and more on weekends, while seasonal events
like funfairs orientate themselves by local holidays. Load profiles allow for differ-
ent day types to accommodate for these trends. However, each customer group
gets assigned exactly one consumption pattern on a given day type, which is
why this model expects a customer to behave the same for all calendar days
belonging to the same day type. This is a rather strong simplification as cus-
tomers rarely behave exactly the same, even on days with the same daily routine.
Thus, load profiles expect a consumption pattern assigned to a set of customers
to be representative and to even out deviations between individual consumer
behaviors and their associated consumption pattern. This characteristic makes
load profiles bad at forecasting the energy demand of a single user, but useful
at the use case relevant for electricity companies, which is predicting the aggre-
gated total demand. Thus, a good day type segmentation groups calendar days
in a way such that the total demand over the course of a day on calendar days
belonging to the same day type are as similar as possible while aiming to make
the total demand on calendar days belonging to different day types as dissimilar
as possible. This task description closely matches the goal of generic clustering
algorithms which is why we opted to rely on fuzzy clustering for our approach.

Another important aspect of load profiles is the aforementioned year con-
sumption forecast (YCF) assigned to each customer. This YCF is needed because
the consumption patterns used by load profiles are represented by one normalized
time series. The normalization is done to ensure that the consumption patterns
describe only the shape of the consumer behavior, rather than the total amount
used. When used in practice, the model will first determine what day type the
calendar day for which a prognosis shall be generated belongs to. Depending on
the regularity and complexity of day type patterns, this can be done via rule
sets or using the help of an analyst. The appropriate consumption pattern of
each load profile is then chosen depending on the day type. The aforementioned
YCF of each customer is then used to scale the applicable consumption pat-
tern to match the estimated demand. Specifically, scaling is done so that the
estimated total energy demand from the beginning to the end of a given year
equals the YCF, which in turn requires the model to be able to forecast the day
type segmentation for an entire year. Including the YCF as part of the model
accommodates for customers with similar daily routines but different total con-
sumption. In the next section, we describe an approach to generate such load
profiles.

4 Generating Load Profiles

Due to the way load profiles are structured when used in practice, our approach
for building them consists of three stages:

1. Determine the optimal number of day types as well as their segmentation onto
the individual calendar days. In addition, compose rules to classify future
calendar days.
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2. For each day type, determine the optimal number of consumption patterns
and their characteristics.

3. Compile load profiles by combining former results and assign a profile to each
customer.

4.1 Day Type Segmentation

The most important criteria for the day type segmentation is finding calendar
days where the total energy consumption is sufficiently dissimilar. In addition,
the quality of the process of building the partitions must satisfy the properties
of being independent of the number of measurements available and focussing on
the shape of the consumption time series rather than on the amount of energy
consumed. Requiring these properties is based on multiple reasons. First and
foremost, independence from the number of customers is desirable because it
enables electricity companies with both small and big customer bases to use the
approach. It also helps to diminish the impact of missing values introduced by
temporary malfunctions in the way measurements are gathered, transmitted and
processed. As we demonstrate in Sect. 5.1, management of missing values in the
available time series is a non-negligible task in real-world datasets. In addition,
focusing on the shape of the consumption time series is required because the
daily routine that will be predicted by the load profiles is scaled using the year
consumption forecast (YCF) as mentioned in Sect. 3. Thus, we want customers
whose consumption behaviors differ almost only by a scalar to be assigned to
the same load profile. The YCF of a given customer for the current year itself
is usually known in advance; common ways electricity companies calculate the
YCF include setting it equal to the total energy consumed in the previous year
by said customer, or using a moving average of the total consumption over the
last periods. Because of this, even though the YCF is used in combination with
the load profiles when forecasting the energy demand, it is not part of the process
of building the load profiles themselves. As a result, for the purpose of this paper,
we assume the YCF to be known when evaluating our approach.

To construct the day type segmentation, we first build a new time series
X = {x1, x2, ..., xT } for each point in time tj , 1 ≤ j ≤ T using the smart
metering time series Si, 1 ≤ i ≤ N as follows:

xj :=
1
Nj

N∑

i=1

si,j
Y CF i,j

(1)

Here, N stands for the number of distinct customers and Nj represents the
total number of measurements available for tj . The term YCF i,j is a time series
specific scalar we use to normalize each customer; it represents the aforemen-
tioned year consumption forecast for the customer associated with Si for the
year that tj belongs to. This enables us to solely concentrate on the shape of
the consumption time series during clustering. The time series X can be vividly
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descriped as an average time series of all normalized smart metering time series.
Using X we subsequently construct dataset D with elements dl as follows:

D :=
{
dl := (xj , ..., xj+m)

∣∣∣∣
∀a with 1 ≤ j ≤ a ≤ j + m ≤ T :
ta belongs to the l-th calendar day

}
(2)

The term (m + 1) describes the number of measurements per day. Since smart
metering time series are typically measured at fixed points in time, e.g. every
15, 30 or 60 min, each dl corresponds to a 96-, 48- or 24-tuple, respectively.
Afterwards we apply clustering on the dataset to retrieve a good day type seg-
mentation. In principle, an arbitrary clustering algorithm can be used for this
task. For our purposes, we have opted to use Fuzzy-C-Means [5] as the clustering
algorithm and repeat the clustering process with different values for the number
of clusters c; the optimal value for c is then determined using a variety of Cluster
Validity Indices [7]. The reason we chose Fuzzy-C-Means is its tendency to build
spherical clusters [7] as this better conforms to the way load profiles are expected
to even out derivations between the individual consumption time series belong-
ing to the same customer group by using a representative consumption pattern
as outlined in Sect. 3. The optimal clustering yielded by this procedure is the
desired day type segmentation. By knowing which dl got assigned to the same
cluster and which calendar days they represent, it is possible to determine which
calendar days belong to the same day type. For categorizing future calendar days
we rely on the expertise of an analyst to review the day type segmentation and
derive rulesets based upon obeserved regularities.

4.2 Identifying Typical Consumption Patterns

To determine the optimal number and characteristics of customer groups and
their corresponding consumption patterns, we look at the smart metering data
available for each day type separately. For this purpose, let Kn, 1 ≤ n ≤ L be
the sets of day types built in Sect. 4.1 where each Kn contains its matching tj .
We then construct the disjoint sets Pn, 1 ≤ n ≤ L with elements pe,n as follows:

Pn :=

⎧
⎨

⎩(yi,j , ..., yi,j+m)

∣∣∣∣∣∣

∀a, b with 1 ≤ j ≤ a, b ≤ j + m ≤ T :
ta, tb ∈ Kn and yi,a, yi,b belong to

the same calendar day

⎫
⎬

⎭ (3)

with yi,j :=
si,j

YCF i,j

Each Pn is, similar to D, a dataset where smart metering measurements have
been aggregated to (m+1)-tuples. Pn however does only contain data belonging
to the day type Kn and contains the individual normalized measurements yi,j
rather than the average of the normalized measurements. Each Pn is then indi-
vidually segmented using clustering. Contrary to identifying the day type seg-
mentation however, this time we are restricted to centroid-based clustering algo-
rithms. The reason for this is that the cluster prototypes Cq,n, 1 ≤ q ≤ cn,optimal
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for a given Pn that have been deemed optimal by the algorithm directly cor-
respond to the desired typical consumption patterns for the day type Kn. For
our experiments, similar to the day type segmentation, we have opted to use
Fuzzy-C-Means, try different values for the number of clusters c and evaluate
each segmentation using Cluster Validity Indices.

4.3 Compiling Load Profiles

Load profiles as outlined in Sect. 3 can be represented as a set of L-tuples where
the n-th entry contains the consumption pattern to use for calendar days assigned
to Kn. In order for a set of load profiles to be usable however, we also require a
way to assign each customer exactly one load profile; ideally the one that best
suits him. Thus we propose to individually build the optimal load profile for
a given customer based on the available consumption patterns and assign the
constructed load profile to the customer in the process. For this purpose, let each
customer be represented by its smart metering time series Si. We then propose
that for the day type Kn a given customer gets assigned to the consumption
pattern Cq,n if the highest membership degrees of Si-based elements of Pn most
commonly point to Cq,n.

Algorithm 1. Compiling load profiles
Input: Si, Pn,Kn, Cq,n, Un

Output: set of all load profiles G, set of profile assignments Z
1: G ← ∅
2: Z ← ∅
3: for i = 1 to N do
4: for n = 1 to L do

5: H [n] ← Cq,n with q := arg maxq′

∣
∣
∣
∣

{

pe,n

∣
∣
∣
∣

∃j : (yi,j , ..., yi,j+m) = pe,n
∧ �q′′ : uq′′,e,n > uq′,e,n

}∣
∣
∣
∣

6: end for
7: G ← G ∪ H
8: Z ← Z ∪ (Si, H)
9: end for

10: return G,Z

This procedure is illustrated in Algorithm 1. Here, the profile assignments
Z are described by a set of 2-tuples where the first entry contains the customer
Si and the second entry the load profile H constructed for him. H itself is
a L-dimensional array with H [n] containing the consumption pattern for the
day type Kn. The uq,e,n ∈ Un used in Algorithm 1 correspond to the final
membership degree of the dataset-tuple pe,n towards the consumption pattern
Cq,n we determined in Sect. 4.2 via Fuzzy-C-Means.
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5 Evaluation

5.1 Description of Datasets

To evaluate the performance of our approach we have used two real world smart
metering datasets which are both visualized in Fig. 1.

The first one, which we will call the BTU-Dataset, contains a total of 7668
distinct customers with a resolution of 1 measurement every hour over the course
of 26 months. Because this dataset is provided in cooperation with a German
electricity company who had a complete rollout of smart meters, we are able
to test our approach under realistic conditions. The dataset is maintained and
made available by the BTU EVU Beratung GmbH [1].

The second dataset, which we will refer to as the CER-Dataset, consists of
6445 distinct Irish customers with 1 measurement every 30 min over the course of
18 months. It is provided by the Irish CER (Commission for Energy Regulation)
and accessed via the Irish Social Science Data Archive (ISSDA) [8].

Since both datasets contain real world data they are also subject to tempo-
rary technical failures, e.g. by any of the smart metering devices installed in the
homes of the consumers or by network transmission errors. In either of these
cases, a missing value is introduced into the respective dataset.
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Fig. 1. Overview of (a) the BTU-Dataset and (b) the CER-Dataset. The black colored
graphs show the sum of the energy consumption of all customers (applied on the
primary axis); the grey colored graphs show the number of non-missing values from
distinct customers available for a given point in time (applied on the secondary axis).

5.2 Results

To derive the optimal segmentation of the day types and consumption patterns
for both datasets, we have preprocessed each dataset according to Eqs. 2 and 3.
As for the year consumption forecast required to normalize each time series, we
used the total energy consumed per customer per year:

YCF i,j :=
∑

j′∈Zj

si,j′ with Zj :=
{
j′ ∣∣ tj′ belongs to the same year as tj

}

(4)
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Fig. 2. Comparison of the actual consumption (black graph) and the consumption
predicted using the load profiles based on 2 day types and 2 consumption patterns
per day type (light gray graph) for (a) the BTU-Dataset and (b) the CER-Dataset.
The dark gray graph shows the absolute difference of the actual consumption and the
forecast. The apparent outlier on march 29 is due to a switch from standard time to
daylight saving time.

To handle the missing values present in both datasets, we have incorporated the
Partial Distance Strategy [14] adaptation of Fuzzy-C-Means, which has shown
a solid performance in experimental evaluations [17], using different values for
c (2 ≤ c ≤ 25). Since Fuzzy-C-Means uses random coordinates as the starting
configuration of the cluster prototypes, we have opted to improve the statistical
significance of our results by independently repeating the clustering process for
every value of c a total of 100 times each. We have then used the Cluster-
Validity-Indices Partition Coefficient [7], Normalized Partition Coefficient [17],
Compactness & Separation by Xie and Beni [7], Compactness & Separation by
Bouguessa, Wang and Sun [7], Fuzzy Hypervolume [13] and Partition Density
[13] to evaluate each clustering and choose the best day type segmentation as
the basis for the following consumption pattern analysis, as well as choose the
best consumption pattern segmentation as the basis for the following load profile
compilation.

Some of these day type segmentations are visualized in Fig. 4 and are further
discussed in Sect. 5.3. In order to test the accuracy of the profiles, we have excluded
the last month of smart metering data from both the BTU-Dataset and the CER-
Dataset while building the load profiles; we have then used the formerly excluded
month to compare the actual consumption in that month with the one predicted by
the profiles. Some of our results are exemplary shown in Fig. 2. If an electricity com-
pany were to use these load profiles, they would plan their buy-in of energy accord-
ing to the forecast-graph. Because the forecast is known and necessary capacities
can be planned for in advance, they are relatively cheap fromabusiness standpoint.
Deviations fromthe actual total consumptionhowever, bothbyoverestimating and
underestimating the actual demand, require extremely short-term adjustments in
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Fig. 3. Ratio of the deviations and the actual consumption in percent yielded by the
load profiles generated using different values for the number of day types and the
number of consumption patterns. The graphs visualize the results for (a) the BTU-
Dataset and (b) the CER-Dataset.
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Fig. 4. Overview of the segmentations of day types for the (a) (b) BTU-Dataset and
(c) (d) CER-Dataset yielded by using different values for the numbers of day types.
The graphs have been colorized depending on which cluster the total consumption time
series has been assigned to on a given day.

the amount of energy circulating in the energy grid. Because of the ad hoc nature,
their limited availability and the importance of these adjustments in terms of pre-
venting electricity outages, the cost of these reserves are generallymuchhigher than
long-term agreements with producers. Thus, electricity companies typically aim
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to keep deviations to a minimum and assess load profiles by the amount of energy
they are required to trade using the aforementioned short-term reserves to meet
the actual demand. This performance can be made comparable between electricity
companies of different sizes by looking at the ratio of the deviations and the actual
consumption [18]. The results of our approach are shown in Fig. 3. These results
pose a significant improvement over the standard load profiles that are in use by
most electricity companies today. Electricity companies using standard load pro-
files typically achieve ratios of roughly 14% [18]. In the next section, we will present
and discuss ideas to further improve the accuracy of load profiles generated by our
approach.

5.3 Improvements

The idea behind the segmentation of the total energy consumption is to identify
periods of time in which consumption patterns genuinely differ from one another.
Since we are only interested in accurately forecasting the total energy demand
rather than focussing on predicting the consumption of individual customers,
it is reasonable to use the same consumption patterns for each customer on
days where the total consumption is not expected to be significantly dissimilar.
Figure 4 shows a subset of the segmentation we got for the day types for the
BTU-Dataset and the CER-Dataset. One striking property of the clustering
using four or less day types is that it roughly resembles the seasonal segmentation
manually chosen in other publications, e.g. in [26,27]. Increasing the number of
day types further however, it becomes progressively clear that, for both datasets,
the identification of day types has approximately resulted in segmenting the data
according to a threshold filter. This fact by itself does not necessarily mean the
segmentation is flawed; however, while the load profiles based on these day type
segmentations have resulted in a significant performance improvement compared
to the standard load profiles as pointed out in Sect. 5.2, the repeating sine-shaped
pattern visible in the graphs has prevented our approach to compare the daily
consumption tuples based on their shape.

This yearly periodic pattern with its peak near the end of december is some-
thing we also see in a similar fashion in many other (non smart metering based)
total consumption time series. Because of this, we propose to apply a high-pass
filter on the dataset to create the load profiles based only on the daily consump-
tion behavior of the individual customers. We propose this high-pass filter to
be used during both the day type segmentation as well as the identification of
typical consumption patterns. The yearly periodic pattern is then reapplied onto
the time series when the load profiles have been later used to forecast the energy
demand. A candidate to fulfill these requirements is the Fourier transformation,
where the lowest-frequency terms from the total consumption time series can be
used to describe and filter the yearly periodic patterns from the dataset.

Another optimization we propose is to change the function for computing the
dissimilarity between tuples. For our experimental results presented in Sect. 5.2
we have used the partial distance, an adaptation of the euclidean distance for



Generating Load Profiles Using Smart Metering Time Series 221

missing values originally introduced in [14]. However, to make the process of gen-
erating load profiles more sensitive to minimize these costly deviations between
the total energy consumption and its forecast, we propose to adapt the man-
hattan distance to handle missing values. Using this distance function and the
high-pass filter derived by using the Fourier transformation more closely com-
plies to our original vision to compare consumer behavior based on their shape
and optimize for low deviations between forecast and the actual total consump-
tion.

6 Conclusion and Future Work

In this paper we have introduced a clustering method for generating load profiles
using smart metering time series. In order to tailor our approach to the specific
needs of electricity companies we have incorporated the use of consumption
patterns and day types the same way they are treated by the industry. Further-
more, our method does predetermine neither the number nor the shape of the
consumption patterns or day types. Our findings show that using the presented
approach results in a significant improvement regarding the deviations between
the forecasted total demand and the actual energy consumption compared to
the standard load profiles typically in use. This helps electricity companies to
better plan the buy-in of energy ahead of time, which lowers costs and improves
the security of the energy supply. In addition, we have presented and discussed
possible enhancements for our method which we plan to further investigate in
future publications.

As of now, our approach requires the load profiles to be generated from
scratch each time new smart metering data is available. While this is not a
major concern for typical use cases since load profiles are usually changed at
most once per year, there is an interest to reduce the required computation
time, e.g. by looking into ways incrementally add new smart metering data as
it becomes available. This might be one potential area for future research.
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Abstract. The main goal of this paper is to explore whether on every
bonded lattice L, possessing incomparable elements, one can choose
incomparable elements e and a and then to construct a uninorm on L
having e and a as its neutral and absorbing elements, respectively. Some
necessary and some sufficient conditions for construction of uninorms on
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1 Introduction

Uninorms on the unit interval are special types of aggregation functions since,
due to their associativity they can be straightforwardly extended to n-ary oper-
ations for arbitrary n ∈ N. They are important in various fields of applications,
e.g., neuron nets, fuzzy decision making and fuzzy modelling. They are interest-
ing also from a theoretical point of view. Recently they have been studied on
bounded lattices (see, e.g., [2,6,7,14,15]).

Uninorms were introduced by Yager and Rybalov [18]. Special types of asso-
ciative, commutative and monotone operations with neutral elements had been
already studied in [5,8,9]. Deschrijver [6,7] has shown that on the lattice L[0,1]

of closed subintervals of the unit interval there exist uninorms which are nei-
ther conjunctive nor disjunctive (i.e., whose absorbing element is different from
both, 0 and 1). Particularly, he constructed uninorms having the neutral ele-
ment e = [e, e], where e ∈]0, 1[. In [15] the authors have shown that on arbitrary
bounded lattice L it is possible to construct a uninorm regardless which element
of L is chosen to be the neutral one. A different type of construction of uninorms
on bounded lattices was presented in [2].
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 21
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In [13] construction of a uninorm for arbitrary pair (e,a) of incomparable
elements such that e is the neutral element and a the absorbing one, was pre-
sented. In [12] the author showed that on some special bounded lattices, one can
construct operations which are both, proper uninorms and nullnorms, meaning
that their neutral, as well as absorbing elements are different from both, 0 and 1.

At the International Symposium on Aggregation and Structures ISAS 2016,
Ince et al. [11] presented a finite lattice where it is not possible to construct a
uninorm whose pair of neutral and absorbing element is chosen arbitrarily. On
Fig. 1 a lattice L1 is depicted which is a slightly modified version of that one,
presented by Ince et al. [11]. It is not possible to choose, say, element α3 as the
neutral one and β3 as the absorbing one. However, one can choose, e.g., α4 to
be the neutral element, and α5 to be the absorbing element.

α1 β1 β2

β3

β5

α3

1

0

β4

α2

α4 α5

Fig. 1. Lattice L1

The aim of this contribution is to answer the question whether, on arbitrary
bounded lattice L possessing incomparable elements, it is possible to find incom-
parable elements a, e ∈ L and then to construct a uninorm on L such that e
would be its neutral element and a its absorbing element.

2 A Short Review of Known Notions and Properties

This paragraph consists of two parts. In the first part operations on [0, 1] are
reviewed. The other part is devoted to operations on bonded lattices.

2.1 Uninorms on [0, 1]

Several types of associative, commutative and monotone (isotone) operations are
known. An operation ∗ : [0, 1]2 → [0, 1] possesses:

(NE) neutral element e ∈ [0, 1], if for every x ∈ [0, 1]

x ∗ e = e ∗ x = x,
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(AE) absorbing element (called also annihilator) a ∈ [0, 1], if for every x ∈ [0, 1]

x ∗ a = a ∗ x = a,

(IE) idempotent element i ∈ [0, 1], if i ∗ i = i,
(0D) zero-divisor z ∈ ]0, 1[, if there exists x ∈ ]0, 1[ such that

z ∗ x = 0,

(1D) one-divisor z ∈ ]0, 1[, if there exists x ∈ ]0, 1[ such that

z ∗ x = 1.

Lemma 1. Let ∗ : [0, 1]2 → [0, 1] be an associative commutative and monotone
operation. Then ∗ has an idempotent element i which is also absorbing element.
If ∗ has a neutral element e then 0, 1 and e are idempotent elements. Further,
a = 0 ∗ 1 is the absorbing element of ∗.

Schweizer and Sklar [17] introduced the notion of a triangular norm (t-norm
for brevity).

Definition 1 ([17]). An operation T : [0, 1]2 → [0, 1] is a t-norm if it is asso-
ciative, commutative, monotone, and 1 is its neutral element.

T-norms and t-conorms are dual to each other. If T : [0, 1]2 → [0, 1] is a t-norm,
then

S(x, y) = 1 − T (1 − x, 1 − y)

is the dual t-conorm to T . For details on t-norms and t-conorms see, e.g., [16].
As a generalization of both t-norms and t-conorms Yager and Rybalov [18]

proposed the notion of uninorm.

Definition 2 ([18]). An operation U : [0, 1]2 → [0, 1] is a uninorm if it is asso-
ciative, commutative, monotone, and if it possesses a neutral element e ∈ [0, 1].

A uninorm U is proper if its neutral element e ∈ ]0, 1[.
Every uninorm has an absorbing element. A uninorm with the absorbing

element 0 is conjunctive, and a uninorm with absorbing element 1 is disjunctive.

Lemma 2 ([18]). Let U : [0, 1]2 → [0, 1] be a uninorm whose neutral element
is e. Then its dual operation

Ud(x, y) = 1 − U(1 − x, 1 − y)

is a uninorm whose neutral element is 1 − e. Moreover, U is conjunctive if and
only if Ud is disjunctive.

Results in paper [18] imply the following assertion.
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Lemma 3. Let U : [0, 1]2 → [0, 1] be a uninorm whose neutral element is e. Then
there exists a t-norm TU : [0, 1]2 → [0, 1] and a t-conorm SU : [0, 1]2 → [0, 1] such
that

(∀x, y ∈ [0, e]2)(U(x, y) = TU (xe , y
e )),

(∀x, y ∈ [e, 1]2)(U(x, y) = SU (x−e
1−e , y−e

1−e )).

Lemma 4 ([18]). Assume U is a uninorm with neutral element e. Then:

1. for any x and all y > e we get U(x, y) ≥ x,
2. for any x and all y < e we get U(x, y) ≤ x.

Nullnorms as operations were proposed in the paper by Calvo et al. [3].

Definition 3 ([3]). An operation V : [0, 1]2 → [0, 1] is a nullnorm if it is asso-
ciative, commutative, monotone and with an absorbing element a ∈ [0, 1] and
moreover

(∀x ≤ a) V (x, 0) = x,

(∀x ≥ a) V (x, 1) = x.

We say that a nullnorm V is proper if its absorbing element a ∈ ]0, 1[.
For more details on associative monotone operations on [0, 1] see, e.g., mono-

graphs [4,10].

2.2 Uninorms on Bounded Lattices

Detailed information on bounded lattices can be found in the monograph [1].
Recall that on every lattice (L,≤L) there exists a partial order ≤L. This order
induces two binary operations meet, ∧, and join, ∨. For every x, y ∈ L, x ∨ y is
the greatest lower bound of x, y, and x ∧ y is the lowest upper bound of x, y.

For incomparable elements x, y ∈ L the notation will be x ‖ y.
On every bounded lattice (L,∧,∨,0,1) one can define t-norms (t-conorms,

proper uninorms) as associative commutative and monotone operations having
1 (0, an element e ∈ L, respectively) as neutral element. Some examples of
t-norms and t-conorms are

T⊥(x, y) =

{
x ∧ y if x = 1 or y = 1,
0 otherwise,

TM (x, y) = x ∧ y,

S�(x, y) =

{
x ∨ y if x = 0 or y = 0,
1 otherwise,

SM (x, y) = x ∨ y.

TM and T⊥ are the greatest and the least t-norm, respectively. SM and S� are
the least and the greatest t-conorm, respectively.
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Based on an arbitrary t-norm and a t-conorm defined on intervals [0, e] and
[e,1], respectively, two uninorms can be constructed [2]:

Uc(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

S(x, y) if x > e, y > e,
x if y ≥ e, x �> e,
y if x ≥ e, y �> e,
T (x, y) if x < e, y < e,
T (x ∧ e, y ∧ e) otherwise,

Ud(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T (x, y) if x < e, y < e,
x if y ≤ e, x �< e,
y if x ≤ e, y �< e,
S(x, y) if x > e, y > e,
S(x ∨ e, y ∨ e) otherwise.

Then Uc is a conjunctive uninorms and Ud is a disjunctive uninorm, each of them
with its neutral element e.

For arbitrary uninorm U : L × L → L on L with a neutral element e the
operation TU = U � [0, e]2 is the underlying t-norm of U , and the operation
SU = U � [e,1]2 is the underlying t-conorm of U .

3 Uninorms Which Are Neither Conjunctive
nor Disjunctive

In this section some conditions, under which it is possible to construct uninorms
on a bounded lattice L which are neither conjunctive nor disjunctive, will be
explored.

Definition 4. Let L be a bounded lattice and U : L×L → L be a uninorm whose
absorbing element is a ∈ L\{0,1}. Then U is called the third type uninorm.

First, consider again the lattice L1 from Fig. 1.

Lemma 5. Let U : L1 × L1 → L1 be a uninorm whose neutral element is α3 ∈
L1. Then U is either conjunctive or disjunctive.

Proof. First, observe that, regardless which uninorm U is constructed, elements
α4, α5 are one-divisors, and elements α1, α2 are zero-divisors. Monotonicity of U
implies that U(0,1) = a where a ∈ L1 is the absorbing element of U . Assume
that U is neither conjunctive nor disjunctive. Then a /∈ {0,1}, and

a = U(0, U(α4, α5)) = U(U(0, α4), α5).

There are two possibilities. First, when U(0, α4) = α4, then

U(U(0, α4), α5) = U(α4, α5) = 1 �= a. (1)
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Second, U(0, α4) < α4, then

U(U(0, α4), α5) ∈ [0, α5]

and hence
U(U(0, α4), α5) �= a. (2)

Formulae (1) and (2) imply that associativity is violated, and therefore U is
either conjunctive or disjunctive. �

Now, a uninorm on L1 which is neither conjunctive nor disjunctive, will be
presented.

Example 1. Observe that α3 = α4 ∧ α5, and for every element z ∈ L1, if z ‖ α3,
then z ‖ α4 and z ‖ α5. Consider an operation U on L1 defined as follows:

U(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∧ y if x ≤ α4 and y ≤ α4,
or if β1 ≤ x < 1 and β1 ≤ y < 1,

α5 if x ≤ α5 and y ≥ α5

or if x = α5 or y = α5,
x if y = α4,
y if x = α4,
1 if x = 1 and (y ≥ α4 or y ‖ α3)

or if y = 1 and (x ≥ α4 or x ‖ α3),
0 if x ≤ α3 and (y = 0 or y ‖ α3)

or if x ≤ α3 and (y = 0 or y ‖ α3),
β1 if x = β2 and β1 ≤ y < 1,

or if y = β2 and β1 ≤ x < 1.

(3)

Then U is a uninorm on L1 whose absorbing element is α5 and neutral element
is α4. Because of the lack of space, the detailed proof of the fact that U is a
uninorm is omitted. The fact that α4 and α5 are the neutral and absorbing
elements of U , respectively, follows directly from (3).

3.1 Conditions Under Which It Is Possible to Construct a Uninorm
of the Third Type

Further in this paper the following assumption and notation are adopted:

Assumption (A). Let (L,∧,∨,0,1) be a bounded lattice with two distin-
guished elements, a, and e, such that a ‖ e.

Notation (P). Elements of L\{a, e} are partitioned into 9 different subsets as
follows:
1. P1 = {x ∈ L; x ≤ a ∧ e},
2. P2 = {x ∈ L\P1; x < e},
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3. P3 = {x ∈ L\P1; x < a},
4. P4 = {x ∈ L; x ≥ a ∨ e},
5. P5 = {x ∈ L\P4; x > e},
6. P6 = {x ∈ L\P4; x > a},
7. P7 = {x ∈ L; x ‖ e, x ‖ a & (a ∧ e) < x < (a ∨ e)},
8. P8 = {x ∈ L\P7; x ‖ e, x ‖ a & ((∃z ∈ P2)(z < x) or (∃z ∈ P5)(z > x))},
9. P9 = L\{a, e}\(P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 ∪ P6 ∪ P7 ∪ P8).

In what follows the Notation (P) will be used. The next proposition presents
some necessary conditions to be fulfilled by a bounded lattice L, if there exists
a uninorm of the third type on L.

Proposition 1. Let L be a lattice fulfilling Assumption (A), and let U : L×L →
L be a uninorm of the third type with the neutral element e and absorbing element
a. Then:

(i) for all x, y ∈ P2 we have U(x, y) ∈ P2,
(ii) for all x, y ∈ P4 we have U(x, y) ∈ P5,
(iii) if P3 = ∅, then for all x, y ‖ a we have U(x, y) �≤ a,
(iv) if P6 = ∅, then for all x, y ‖ a we have U(x, y) �≥ a.

Proof. We present only the proofs of items (i) and (iii). The proofs of items (ii)
and (iv) are just simple modifications of those of (i) and (iii).

(i) Assume x, y ∈ P2 such that U(x, y) = ξ /∈ P2. Then necessarily ξ /∈ P1.
Let z ∈ P4 be arbitrarily chosen. By monotonicity, since ξ < a, we get
U(ξ, z) = a. By Lemma 4 we get

U(x, z) = ζ ∈ [x, z] and U(y, ζ) ∈ [y, ζ].

Since y �≤ a, U(y, ζ) �= a which is a contradiction with U(ξ, z) = a.
(iii) Assume there exist elements x, y ‖ a such that U(x, y) ≤ a. Then for

any z ∈ P4 we have U(z, U(x, y)) = a. By associativity U(z, U(x, y)) =
U(U(z, x), y) and by monotonicity U(z, x) ≥ x, but also U(z, x) ≥ a, i.e.,
U(z, x) ∈ P4. Similarly we get U(U(z, x), y) ∈ P4, and this contradicts the
assumption U(z, U(x, y)) = a. Similarly we could show a contradiction in
the case U(x, y) ≥ a. �

Corollary 1. Let L be a lattice fulfilling Assumption (A), and let U be a uni-
norm on L of the third type with the neutral and absorbing elements e and a,
respectively. Then:

(i) for all x, y ∈ P2 we have U(x, y) �= 0,
(ii) for all x, y ∈ P4 we have U(x, y) �= 1.

Remark 1.

(i) If P3 �= ∅ as well as P6 �= ∅, we may have U(x, y) = a for x, y ∈ P7 ∪P8 ∪P9.
(ii) Assertions (i) and (ii) of Corollary 1 do not imply that P2 and P5 contain

no zero-divisors and one-divisors, respectively.
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Some uninorms of the third type were already presented in papers [7,12,13].
Now, we show some other possibilities when, for suitably chosen e and a, we
are able to construct a uninorm U on a lattice L, whose neutral and absorbing
elements are e and a, respectively.

Proposition 2. Let L be a lattice fulfilling Assumption (A). Further, assume
that there exists a t-norm T : [0, e]2 → [0, e] and a t-conorm S : [e,1]2 → [e,1]
fulfilling properties (i) and (ii) from Proposition 1, respectively. Let at least one
of the following three conditions be fulfilled:

(C1) P7 ∪ P8 = ∅ and for any x, y ∈ P9 either x ∧ y ∈ P9 or x ∨ y ∈ P9,
(C2) P7 ∪ P8 = {ξ} is a one element set such that

(∀x ∈ P2)(∀y ∈ P5)(x < ξ < y),

and for any x, y ∈ P9 either x ∧ y ∈ P9 or x ∨ y ∈ P9,
(C3) the lattice L is the horizontal sum of lattices L1, L2, and e ∈ L1, a ∈ L2.

Moreover, assume that for all x, y ∈ L1\{0,1} the following inequality
holds

0 < x ∧ y ≤ x ∨ y < 1.

Then there exists a uninorm U on L, whose neutral element is e and absorbing
element is a.

Proof. A possible construction of uninorms for cases (C1), (C2) and (C3) is
presented below.

(C1) We construct uninorm U1 for the case that x∧y ∈ P9 holds for all x, y ∈ P9:

U1(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ∈ P1 ∪ P3, y ∈ P1 ∪ P2 ∪ P3 ∪ P9,
or if y ∈ P1 ∪ P3, x ∈ P1 ∪ P2 ∪ P3 ∪ P9,

1 if x ∈ P4 ∪ P6, y ∈ P4 ∪ P5 ∪ P6 ∪ P9,
or if y ∈ P4 ∪ P6, x ∈ P4 ∪ P5 ∪ P6 ∪ P9,

x if x ∈ P1 ∪ P2 ∪ P3, y ∈ P5,
or if x ∈ P4 ∪ P6, y ∈ P2,
or if y = e, or x ∈ P9 and y ∈ P2 ∪ P5,

y if y ∈ P1 ∪ P2 ∪ P3, x ∈ P5,
or if y ∈ P4 ∪ P6, x ∈ P2,
or if x = e, or y ∈ P9 and x ∈ P2 ∪ P5,

a if x ∈ P1 ∪ P3, y ∈ P4 ∪ P6,
or if y ∈ P1 ∪ P3, x ∈ P4 ∪ P6,
or if x = a or y = a,

w ∧ y if x, y ∈ P2 or if x, y ∈ P9,
x ∨ y x, y ∈ P5,
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(C2) Also in this case we assume that x∧y ∈ P9 holds for all x, y ∈ P9. Then the
construction of a uninorm U2 is just a slight modification of the uninorm
U1 when we define U2(x, y) = ξ if x ∈ P2 ∪ {ξ} and y ∈ P5 ∪ {ξ}, or
vice versa, and U2(ξ, x) = x for x ∈ P9, U2(ξ, x) = 0 for x ∈ P1 ∪ P3,
U2(ξ, x) = 1 for x ∈ P4 ∪ P6.

(C3) We choose some elements e ∈ L1\{0,1} and a ∈ L2\{0,1}. First, define a
nullnorm V on L2 by

V (x, y) =

⎧⎪⎨
⎪⎩

x ∨ y or if x, y ≤ a,
x ∧ y if x, y ∈ L2, x, y ≥ a,
a otherwise,

if x, y ∈ L2.

Further, define an ‘almost uninorm’ Ũ3. This means that Ũ3 is an associative,
commutative operation with the neutral element e. But values when one of the
inputs is 0 or 1, are not defined. Recall that L is the horizontal sum of L1 and
L2, i.e., L1 ∩ L2 = {0,1}. Assume that x, y ∈ L1\{0,1}. Then

Ũ3(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∨ y if x, y ≥ e,
x ∧ y ∧ e if x < e or y < e,
x if y ≥ e and x ‖ e,
y if x ≥ e and y ‖ e.

Finally, the uninorm U3 : L × L → L is defined by

U3(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ũ3(x, y) if x, y ∈ L1\{0,1},
V (x, y) if x, y ∈ L2,
x if x ∈ L2 and y ∈ L1\{0,1},
y if y ∈ L2 and x ∈ L1\{0,1}.

(4)

�
Remark 2. Note that the uninorm U3 given by formula (4), is also a (proper)
nullnorm. This means that this is another example (besides those presented in
paper [12]) of a proper nullnorm with neutral element.

3.2 Example of a Bounded Lattice with only Conjunctive
and Disjunctive Uninorms

In this paragraph, we present an infinite lattice with incomparable elements on
which only conjunctive or disjunctive uninorms can be constructed.

Example 2. Consider the lattice L̃ depicted on Fig. 2, fulfilling assumption (A).
Every element of L̃, up to 0, has two immediate predecessors.
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1

0

Fig. 2. Infinite lattice L̃

Regardless how neutral element e ∈ L̃\{0,1} is chosen, all elements x ∈ ]0, e[
are zero-divisors. On the other hand, if a ‖ e then x ‖ a for all x ∈ [0, e[, i.e.,
x ∈ P2. This violates Proposition 1 and also Corollary 1. Therefore the lattice L
is an example of a lattice with incomparable elements, on which only conjunctive
or disjunctive uninorms can be constructed.

4 Conclusion

Work presented in this paper is a contribution to theoretical aspects on construc-
tion of uninorms on bounded lattices. It was demonstrated that on a bounded
lattice L with incomparable elements it is impossible to choose incomparable
elements e and a, and then to construct a uninorm on L whose neutral and
absorbing elements are e and a, respectively.
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Abstract. We study sequences of approximations of sets given by refin-
ing tolerance relations on the universe, and we show that such sequences
can be equipped with a structure of finite centered Kleene algebra satis-
fying the interpolation property. We further show that every such Kleene
algebra is isomorphic to the algebra of sequences of approximations of
subsets of a suitable universe.

1 Introduction

An equivalence relation R on a universe U (hence every partition of U) deter-
mines for every X ⊆ U the orthopair (L(X), E(X)) consisting respectively of the
union of all equivalence classes fully contained in X (lower approximation) and
the union of all the equivalence classes disjoint with X (impossibility domain).
On the set OP (U) of all orthopairs of U it is possible to defined operations ∧,
∨ and ¬ by the following stipulations: let X,Y ⊆ U

(L(X), E(X)) ∧ (L(Y ), E(Y )) = (L(X) ∩ L(Y ), E(X) ∪ E(Y ))
(L(X), E(X)) ∨ (L(Y ), E(Y )) = (L(X) ∪ L(Y ), E(X) ∩ E(Y ))

¬(L(X), E(X)) = (E(X),L(X))

and it can be shown that OP(U) = (OP (U),∧,∨,¬, (∅, U), (U, ∅)) is a Kleene
algebra.

If R is not an equivalence relation, orthopairs can still be defined by adapting
the notion of equivalence classes. In [14] it is proved that if R is a tolerance, i.e.,
R is a reflexive and symmetric binary relation, then OP(U) in general is not a
lattice [13], but if R is induced by an irredundant covering of U , then OP(U) is a
Kleene algebra that is also an algebraic and completely distributive lattice. By
an irredundant covering C of U we mean a covering (set of subsets of U whose
union is U) such that C\{b} is not a covering of U for any b ∈ C.

In this paper we consider a sequence R1, . . . , Rn of tolerances induced by a
refinement sequence of coverings. Namely, by refinement sequence we mean a
sequence C = C1, . . . , Cn of coverings of a universe U such that every block of
Ci is contained in a block of Ci−1 for each i from 2 to n.

Example 1. We consider the set X = {x1, x2, x3, x4, x5, x6} of objects and the
set Y = {y1, y2, y3, y4} of attributes that represent 6 athletes and 4 athletic
disciplines in a race. The fuzzy formal context K = (X,Y, I) (see [4]), given by
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 22
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the following table, reports the score of each athlete in each discipline in the
interval [0, 1].

I y1 y2 y3 y4
x1 0.2 1 0 0.5
x2 0.3 0.8 0 0.7
x3 1 0.3 0.8 0.25
x4 0.95 0.4 0.9 0
x5 0.7 0 0.3 0.95
x6 0.7 0.1 0.4 1

For each α ∈ [0, 1], we define the relation Rα on X as follow: let xi, xj ∈ X,

xi Rα xj if and only if |I(xi, y) − I(xj , y)| ≤ α for each y ∈ Y.

Note that Rα is a tolerance and Cα = {{x′ ∈ X | xRαx′} | x ∈ X} is a covering
of X. Moreover, if 0 ≤ α1 ≤ α2 ≤ 1, then each block of Cα1 is included in a
block of Cα2 . For example if α1 = 0.3 and α2 = 0.7, we obtain
C0.7 = {{x1, x2}, {x1, x2, x6}, {x3, x4, x5}, {x3, x4}, {x3, x5, x6}, {x2, x5, x6}}
and C0.3 = {{x1, x2}, {x3, x4}, {x5, x6}}.

We shall consider partial coverings of the universe U meaning that the union of
all blocks of each covering is not always equal to U . We generalize the definition
of irredundant covering in the case of partial covering: a partial covering C is
irredundant if and only if each block of C is not included in the union of other
blocks of C that are different to it.

Therefore, let C = C1, . . . , Cn be a refinement sequence of U , we assign a
sequence of orthopairs to C for each X ⊆ U , since we consider the orthopair
(Li(X), Ei(X)) for each covering Ci of C. We call OC the set of all sequences of
orthopairs of C. In [1] sequences of orthopairs given by refinement of partitions
have been put in correspondence with finite IUML-algebras. In this paper we
show how to equip OC with a structure of finite centered Kleene algebra with
interpolation property, starting by hypothesis that C is made by irredundant
partial coverings of a given universe. Further, any finite centered Kleene algebra
A with interpolation property is associated with an universe U and a refinement
sequence C of irredundant coverings such that A is isomorphic to the algebraic
structure on OC . Some of the proofs in this paper are adapted from the ones
in [1] and will be omitted here.

2 Preliminaries

We summarize here some notion and results on De Morgan and Kleene algebras
(see [9] for further references).

Definition 1. A De Morgan algebra is a bounded distributive lattice
(A,∧,∨,¬, 0, 1) such that for each x, y ∈ A, ¬(x ∨ y) = ¬x ∧ ¬y and ¬¬x = x.

A Kleene algebra ([7,15]) (A,∧,∨,¬, 0, 1) is a De Morgan algebra such that
for each x, y ∈ A the Kleene property holds: x ∧ ¬x ≤ y ∨ ¬y.
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Definition 2. An element c of a Kleene algebra A is called a center of A in
case c = ¬c. We say that A is a centered Kleene algebra if A has a center.

Note that the Kleene property implies that if a center c of A exists then it is
unique. As in [9], for each Kleene algebra A, we set

A+ = {x ∈ A | ¬x ≤ x} and A− = {x ∈ A | x ≤ ¬x}.

We have that A+ is a sublattice of A containing 1.
The following costruction is due to Kalman [15]: let (L,∧,∨, 0, 1) be a

bounded distributive lattice and let K(L) = {(x, y) ∈ L × L | x ∧ y = 0}
with the operations 
, � and ¬ defined as follow:

(x, y) 
 (u, v) = (x ∧ u, y ∨ v) (1)

(x, y) � (u, v) = (x ∨ u, y ∧ v) (2)

¬(x, y) = (y, x) (3)

for each (x, y), (u, v) ∈ K(L). Then, (K(L),
,�,¬, (0, 1), (1, 0)) is a centered
Kleene algebra, with center (0, 0). Moreover, K(L)+ = {(x, 0) | x ∈ L}.

Definition 3. Let (A,∧,∨,¬, 0, 1) be a centered Kleene algebra. Let c be the
center of A. We say that A has the interpolation property if and only if for
every x, y ≥ c such that x ∧ y ≤ c there exists z such that z ∨ c = x and
¬z ∨ c = y.

In [8] the above definition is called (CK) property, but it is also noted that it
coincides with the interpolation property described in [9], so we will use this
last name. Not every centered Kleene algebra has the interpolation property, see
Example 5 in [8].

Theorem 1. [9] A Kleene algebra A is isomorphic to K(L) for some bounded
distributive lattice L if and only if A is centered and satisfies the interpolation
property. In this case L is isomorphic to the lattice A+.

Birkhoff representation theorem states that given a partially ordered set P ,
the structure (U(P ),∩,∪, ∅, P ) where U(P ) is the set of upsets of P , ∩ and ∪
are respectively the set intersection and union, is a bounded distributive lattice.
Vice-versa, if L is a bounded distributive lattice, then there is a partially ordered
set P such that L ∼= U(P ).

In this paper, we focus on K(U(P )) = {(A,B) ∈ U(P )×U(P ) | A∩B = ∅},
with 
, � and ¬ defined respectively as (1), (2) and (3).

3 Refinement Sequences and Orthopairs

We call partial covering of U any subset of 2U , i.e. any set of subsets of U .
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Definition 4. A sequence C = C1, . . . , Cn of partial coverings of U is a refine-
ment sequence if each element of Ci is contained in an element of Ci−1, for
i = 2, . . . , n.

From now on, by refinement sequence of U , we mean a refinement sequence of
partial coverings of U .

Example 2. If U = {a, b, c, d, e, f, g}, then (C1, C2), where C1 = {{a, b, c, d},
{d, e, f, g}} and C2 = {{a, b, c}, {c, d}, {d, e}, {f, g}}, is a refinement sequence
of U .

In order to prove our results, we do not consider coverings containing singletons.

Definition 5. Given a refinement sequence C = C1, . . . , Cn of U , the set of
all blocks of C equipped with the reverse inclusion is a partially ordered set. In
particular, we associate with C the partially ordered set (PC ,≤C) where

– PC =
⋃n

i=1 Ci (the set of nodes is the set of all subsets of U belonging to the
coverings C1, . . . , Cn), and

– for N,M ∈ PC, N ≤C M if and only if M ⊆ N .

Example 3. Let (C1, C2, C3) be a refinement sequence of {a, b, c, d, e, f, g, h},
where C1 = {{a, b, c, d, e, f, g}}, C2 = {{a, b, c, d}, {c, d, e, f}} and C3 =
{{c, d}, {d, e, f}}. Then the poset assigned to (C1, C2, C3) is shown in the fol-
lowing figure:

{a, b, c, d} {c, d, e, f}

{d, e, f}

{a, b, c, d, e, f, g}

{c, d}

If C is a refinement sequence and X ⊆ PC , we denote by X∗ the union of all
nodes belonging to X.

Definition 6. A refinement sequence C is complete if A∗ ∩ B∗ = ∅ for each
(A,B) ∈ K(U(PC)).

Example 4. Let us consider the refinement sequence C given by C1 =
{{a, b, c, d, e, f}}, C2 = {{a, b, c, d}, {d, e, f}} and C3 = {{a, b}}. Then set
A = {{a, b, c, d}, {a, b}} and B = {{d, e, f}}. Then (A,B) ∈ K(U(PC) but
A∗ = {a, b, c, d} and B∗ = {d, e, f} hence A∗ ∩ B∗ = {d} and C is not complete.
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On the other side, the following refinement sequence C is complete:

{a, b, c} {d, e, f}

{a, b, c, d, e, f, g}

Definition 7. A refinement sequence C = C1, . . . , Cn is safe if for each N ∈ PC,
if N ∈ Ci with i ∈ {1, . . . , n} and N ⊆ N1 ∪ . . .∪Nr with N1, . . . , Nr ∈ PC, then
there exists j ∈ {1, . . . r} such that N ⊆ Nj and N ∈ Ck with j < k.

Example 5. Let C1 = {{a, b, c, d, e}, {a, f, g, h}} and C2 = {{a, b, c}, {c, d},
{f, g}}, then (C1, C2) is safe. Instead, the refinement sequence (C̃1, C̃2) with
C̃1 = {{a, b, c, d, e}, {c, d, e, f, g, h}} and C̃2 = {{a, b, c}, {c, d}, {e, f, g}}, is not
safe, since {a, b, c, d, e} ⊆ {a, b, c} ∪ {c, d} ∪ {e, f, g}.

Definition 8. A refinement sequence C = C1, . . . , Cn is pairwisely overlapping
if there are no disjoint blocks in Ci, for each i ∈ {1, . . . , n}.

Example 6. The refinement sequence (C1, C2) of Example 3 is pairwisely over-
lapping, since d belongs to each block of C1, C2 and C3. Trivially, all other refine-
ment sequences define in the above examples are not pairwisely overlapping.

Definition 9. A refinement sequence C is irredundant if each its coverings is
irredundant.

Proposition 1. Let C = C1, . . . , Cn be a refinement sequence of U . If C is safe,
then C is irredundant.

Proof. The proof follows by Definition 7: let us fix i ∈ {1, . . . , n} and N ∈ Ci,
then there are not N1, . . . , Nr ∈ PC such that N ⊆ N1 ∪ . . . ∪ Nr and N � Ni

for each i ∈ {1, . . . , r}. Then, there are not nodes of Ci such that their union
includes N , hence Ci is irredundant.

Remark 1. On the contrary, a refinement sequence C made by all irredundant
coverings is not always safe.

Example 7. Suppose that C1 = {a, b, c, d, e, f, g, h}, C2 = {{a, b, c}, {d, e, f, g}}
and C3 = {{a, b}, {d, e}, {f, g}}. Then, (C1, C2, C3) is not safe, but C1, C2 and
C3 are irredundant.

Given a covering C of U and X ⊆ U we consider L(X) = {N ∈ C | N ⊆ X}
and E(X) = {N ∈ C | N ∩X = ∅}. Given a refinement sequence C = C1, . . . , Cn

of U , for any X ⊆ U and for every i = 1, . . . , n, we consider the orthopair
(Li(X), Ei(X)) determined by Ci. Then we let

OC(X) = ((L1(X), E1(X)), . . . , (Ln(X), En(X))),

and OC = {OC(X) | X ⊆ U}.
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Example 8. Let U = {a, b, c, d, e, f, g, h, i, j} and X = {a, b, c, d, e}. If C is
the refinement sequence of U made by C1 = {{a, b, c, d, e, f, g, h, i, j}}, C2 =
{{a, b, c, d, e}, {e, f, g, h, i}}, C3 = {{a, b, c}, {c, d}, {e, f, g}, {g, h}}, then

OC(X) = ((∅, ∅), ({{a, b, c, d, e}}, ∅), ({{a, b, c}, {c, d}}, {{g, h}})) .

4 Sequences of Orthopairs as Pairs of Upsets

Let C = (C1, . . . , Cn) be a refinement sequence of a universe U . For any X ⊆ U
the sequence OC(X) of orthopairs with respect to C determines two subsets of the
poset PC , obtained by considering for every i = 1, . . . , n, the blocks contained in
Li(X) and the blocks contained in Ei(X). This observation leads to the following
definition (see [1]).

Definition 10. For every refinement sequence C = C1, . . . , Cn of U and any
X ⊆ U , we let (X1

C ,X2
C) be such that

X1
C = {N ∈ PC | N ⊆ X} and X2

C = {N ∈ PC | N ∩ X = ∅}.

Moreover, we let SO(C) = {(X1
C ,X2

C) | X ⊆ U}.

Example 9. Given U and C of Example 3, if X = {b, c, d} then X1
C = {{c, d}}

and X2
C = ∅.

Following [1] we can prove that given a set U and a refinement sequence C
of U , the map

h : OC(X) ∈ OC �→ (X1,X2) ∈ SO(C)

is a bijection. We write (X1,X2) instead of (X1
C ,X2

C), when C is clear from the
context. The following proposition shows that, given a refinement sequence C,
the set SO(C) is made by pairs of disjoint upsets of PC .

Proposition 2. Let C be a refinement sequence, then SO(C) ⊆ K(U(PC)).

On the contrary, given a refinement sequence C, a pair of disjoint upsets of PC
is not always an element of SO(C).

Example 10. Given the refinement sequence C of Example 3, the pair ({{c, d},
{d, e, f}}, ∅) of disjoint upsets of PC does not belong to SO(C), since if a set
contains {c, d} and {d, e, f}, then it contains also the block {c, d, e, f}.

In this section, we want to investigate the set SO(C) equipped with operations
defined on K(U(PC)).

First we note that, as shown in the following example, (SO(C),
,�,¬,
(∅, PC), (PC , ∅)) is not necessarily even a lattice.

Example 11. Let us consider the refinement sequence C, where PC is depicted in
the following figure:
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{a, b, c, d, e, f}

{a, b, c, d} {a, d, e, f}

{a, d}

If we consider (∅, {{a, b, c, d}, {a, d}}}), (∅, {{a, d, e, f}, {a, d}}}) ∈ SO(C),
then
(∅, {{a, b, c, d}, {a, d}}}) 
 (∅, {{a, d, e, f}, {a, d}}}) is equal to the pair

(∅, {{a, b, c, d}, {a, d, e, f}, {a, d}}})

that does not belong to SO(C), since it would mean that there is a set X
that is disjoint with {a, b, c, d}, {a, d, e, f} and {a, d} but it is not disjoint with
{a, b, c, d, e, f}, which is clearly impossible.

Proofs of next propositions are similar to the analogous in [1].

Proposition 3. Let C be a safe refinement sequence of U . Suppose that A is an
upset of PC. Then, N ∈ A if and only if N ⊆ A.

Proposition 4. Let C be a safe refinement sequence of U and (A,B) ∈
K(U(PC)). If A∗ ∩ B∗ = ∅, then (A,B) ∈ SO(C).

Theorem 2. Let C be a safe refinement sequence of U . Then, SO(C) contains
K(U(PC))+ and SOC = (SO(C),
,�,�, (∅, PC), (PC , ∅)) is a centered Kleene
subalgebra of K(U(PC)).

Proof. Let (A,B) ∈ K(U(PC))+, then B = ∅. By Proposition 4, (A,B) ∈ SO(C)
since A∗ ∩ ∅ = ∅. SO(C) is closed under all operations of K(U(PC)), since, for
any X,Y ⊆ U , (X1 ∩ Y 1,X2 ∩ Y 2) and (X1 ∪ Y 1,X2 ∩ Y 2) are pairs of disjoint
upsets of PC satisfying the condition of Proposition 4.

Moreover, by Proposition 4 (∅, ∅) ∈ SO(C), hence SO(C) is a centered Kleene
algebra.

Remark 2. It is easy to observe that, when C is a safe refinement sequence of U ,
also K(U(PC))− is included in SO(C).

Theorem 3. Let C be a complete and safe refinement sequence of U . Then,
SO(C) = K(U(PC)). Hence, SOC = (SO(C),
,�,¬, (∅, PC), (PC , ∅)) is a finite
centered Kleene algebra with interpolation property.

Proof. By Proposition 2, SO(C) ⊆ K(U(PC)). By hypothesis C is complete,
hence A∗ ∩ B∗ = ∅ for each (A,B) ∈ K(U(PC)). Then, (A,B) ∈ SO(C) since C
is safe by hypothesis.
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Theorem 4. Let C be a safe and pairwisely overlapping refinement sequence of
U , then SO(C) = K(U(PC))− ∪ K(U(PC))+.

Proof. By Theorem 2, SO(C) ⊇ K(U(PC))− ∪ K(U(PC))+. Vice versa, let
(X1,X2) ∈ SO(C). If X1 �= ∅ and X2 �= ∅, then there exist N,M ∈ PC such
that N ∈ X1 and M ∈ X2. Therefore, N ∩ M = ∅. Suppose that N ∈ Ci and
M ∈ Cj with i, j ∈ {1, . . . , n} and i ≤ j. By Definition 4, there exists N ′ ∈ Cj

such that N ′ ⊆ N . Then, N ′ and M are two disjoint blocks of Cj . This is an
absurd, since, by hypothesis C is pairwisely overlapping.

Example 12. We consider the refinement sequences C = (C1, C2) and C̃ =
(C̃1, C̃2) of {a, b, c, d, e, f}, where C1 = {{a, b, c, d, e}, {c, d, f}}, C2 =
{{a, b}, {c, d}}, C̃1 = {{a, b, d, e, f}, {c, d, e}} and C̃2 = {{b, d}, {d, e}}. As shown
in the following two figures, PC and PC̃ have the same Hasse diagram. Then,
K(U(PC)) ∼= K(U(PC̃)).

{a, b} {c, d}

{c, d, f} {a, b, d, e, f}

{b, d} {d, e}

{c, d, e}{a, b, c, d, e}

We set b1 = {a, b, c, d, e}, b2 = {c, d, f}, b3 = {a, b}, b4 = {c, d}, b′
1 =

{a, b, d, e, f}, b′
2 = {c, d, e}, b′

3 = {b, d} and b′
4 = {d, e}. Then, SOC and SOC̃

have the following Hasse diagrams.

({b1, b2, b3, b4}, ∅)

({b1, b3, b4}, ∅) ({b2, b3, b4}, ∅)

({b3, b4}, ∅)

({b2, b4}, {b3})

({b2, b4}, ∅)

({b3}, ∅) ({b4}, ∅)

(∅, ∅)

(∅, {b3})(∅, {b4})

(∅, {b3, b4})

(∅, {b2, b3, b4}) (∅, {b1, b3, b4})

(∅, {b1, b2, b3, b4})

(∅, {b2, b4})

({b3}, {b2, b4})

({b3}, {b4}) ({b4}, {b3})

({b′
1, b

′
2, b

′
3, b

′
4}, ∅)

({b′
1, b

′
3, b

′
4}, ∅) ({b′

2, b
′
3, b

′
4}, ∅)

({b′
3, b

′
4}, ∅) ({b′

2, b
′
4}, ∅)

({b′
3}, ∅) ({b′

4}, ∅)

(∅, ∅)

(∅, {b′
3})(∅, {b′

4})

(∅, {b′
3, b

′
4})

(∅, {b′
2, b

′
3, b

′
4}) (∅, {b′

1, b
′
3, b

′
4})

(∅, {b′
1, b

′
2, b

′
3, b

′
4})

(∅, {b′
2, b

′
4})
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Note that SO(C) = K(U(PC)), since C is safe and complete. Instead,
since C̃ is safe and pairwisely overlapping, SOC̃ ⊂ K(U(PC̃)) and
({b′

3}, {b′
4}), ({b′

4}, {b′
3}), ({b′

3}, {b′
2, b

′
4}), ({b′

2, b
′
4}, {b′

3}) /∈ SO(C̃).

Remark 3. When C is a safe refinement sequence, it is not always true that SOC
has the interpolation property: if C is not complete, then there exists (A,B) ∈
K(U(PC)) such that A∗ ∩ B∗ �= ∅, hence (A,B) /∈ SO(C); on the other hand
(A, ∅), (B, ∅) ∈ SO(C) and trivially (X,Y )�(∅, ∅) = (A, ∅) and ¬(X,Y )�(∅, ∅) =
(B, ∅) if and only if (X,Y ) = (A,B).

Corollary 1. Let C be a safe refinement sequence. Then, U(PC) is isomorphic
to the lattice SO(C)+.

The following proposition shows that we can equip SO(C) with a structure of
finite Kleene algebra also when each covering of C is irredundant.

Theorem 5. Let C = C1, . . . , Cn be an irredundant refinement sequence of U .
Then, there exists a safe refinement sequence C′ of universe U such that the
function g : SO(C) �→ SO(C′) where g((X1

C ,X2
C)) = (X1

C′ ,X2
C′) for each X ⊆ U

is bijective. Hence,

SO
′
C = (SO(C),
C ,�C ,¬, (∅, PC), (PC , ∅))

where

– (X1
C ,X2

C) 
C (Y 1
C , Y 2

C ) = g−1((X1
C′ ,X2

C′) 
 (Y 1
C′ , Y 2

C′)) and
– (X1

C ,X2
C) �C (Y 1

C , Y 2
C ) = g−1((X1

C′ ,X2
C′) � (Y 1

C′ , Y 2
C′)) for each X,Y ⊆ U

is a centered Kleene algebra. Moreover,

– if C is complete, then SO
′
C satisfies the interpolation property, and

– if C is pairwisely overlapping, then SO(C) ∼= K(U(PC′))+ ∪ K(U(PC′))−.

Proof. We obtain C′ by C with same construction made in Sect. 4 of [1] in the
case of partial partitions of a given universe.

Remark 4. If C is safe, then C = C′ and SO
′
C = SOC .

Let C be a refinement sequence of U , through function h given in this section,
we define on OC the following operations:

1. OC(X) ∧SO OC(Y ) = h−1(h(OC(X)) 
 h(OC(Y ))),
2. OC(X) ∨SO OC(Y ) = h−1(h(OC(X)) � h(OC(Y ))),
3. ¬SOOC(X) = h−1(h(¬OC(X))).

Therefore, each result obtain for SO
′
C holds also for the structure

(OC ,∧SO,∨SO,¬SO, (MC , ∅), (∅,MC))

where MC = {x ∈ N | N ∈ PC}.
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Remark 5. If C = C1, . . . , Cn is a safe refinement sequence of U and X,Y ⊆ U ,
then OC(X) ∧SO OC(Y ) is obtained by applying ∧ between (Li(X), Ei(X)) and
(Li(Y ), Ei(Y )) for each i ∈ {1, . . . , n}. In the same way we obtain ∨SO and ¬SO

from ∨ and ¬ on single orthopairs of the same level.

Example 13. We consider the safe refinement sequence C = (C1, C2) of {a, b,
c, d, e}, where C1 = {{a, b, c, d, e}} and C2 = {{a, b}, {c, d}}. Then, OC({a, b})
∧SO OC({a, b, c}) = h−1(h(OC({a, b})) 
 h(OC({a, b, c}))) = h−1(({{a, b}},
{{c, d}}) 
 ({{a, b}}, ∅)) = h−1({{a, b}}, {{c, d}}) = ((∅, ∅), ({a, b}, {c, d})).

Moreover, (L1({a, b}), E1({a, b})) ∧ (L1({a, b, c}), E1({a, b, c})) = (∅, ∅) ∧
(∅, ∅) = (∅, ∅) and (L2({a, b}), E2({a, b})) ∧ (L2({a, b, c}), E2({a, b, c})) =
({a, b}, {c, d}) ∧ ({a, b}, ∅) = ({a, b}, {c, d})).

Example 14. Let C = (C1, C2) be a refinement sequence, where C1 =
{{a, b, c, d}} and C2 = {{a, b}, {c, d}}. C is not safe and C′ is only made by
covering {{a, b}, {c, d}} (see the construction of C′ in [1]).

We have that OC({a, b}) ∧SO OC({c, d}) = h−1(h(OC({a, b})) 
C
h(OC({c, d}))) = h−1({{a, b}}, {{c, d}}) 
C ({{c, d}}, {{a, b}}) = h−1(g−1

(∅, {{a, b}, {c, d}})) = h−1((∅, {{a, b}, {c, d}, {a, b, c, d}})) = ((∅, {a, b, c, d}),
(∅, {a, b, c, d})).

On the other hand, (L1({a, b}), E1({a, b})) ∧ (L1({c, d}), E1({c, d})) = (∅, ∅)
and (L2({a, b}), E2({a, b})) ∧ (L2({c, d}), E2({c, d})) = (∅, {a, b, c, d}).

5 Representation Theorem

In this section we associate a sequence of orthopairs with any finite poset.
Let (P,≤) be a finite partially ordered set and let n be the maximum number

of elements of a chain in P . For each i ∈ {1, . . . , n} we define the i-th level of P as

P i = {N ∈ P | i = max{|h| | h is a chain of ↓ N} }. (4)

We denote by M(P ) the set of maximal element of P and we set UP =
{x1, . . . , xm}, where m = |P | + |M(P )|. We call maximal sequence of P the
sequence C = C1, . . . , Cn built as follows. Suppose M(P ) consists of nodes
N1, . . . , Nu, where u = |M(P )| ≤ �m/2� since u < 2u ≤ |M(P )| + |P | = m. We
set

bNi
= {x2i−1, x2i} (5)

for every i = 1, . . . , u and

Cn = {bNi
| Ni ∈ M(P )}. (6)

Since |P\M(P )| = m−2u, we denote by Nu+1, . . . , Nm−u the nodes of P\M(P )
and we set αP (Ni) = xi+u for any i ∈ {u + 1, . . . ,m − u}.

For each N /∈ M(P ), let

bN =
⋃

M>N

bM ∪ {αP (N)} (7)
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and, for each j ∈ {1, . . . , n − 1},

Cj = {bN | N ∈ P j} ∪ {bM | M ∈ M(P ) and ↓ M ∩ P j = ∅}. (8)

It is trivial to see that for each N,M ∈ P

bN ∩ bM = ∪{ bL | L ∈ ↑ N ∩ ↑ M }. (9)

Example 15. Let P be the partially ordered set with the following Hasse
diagram:

N3 N4

N2N1

UP = {x1, . . . , x6}, since 6 = 4 + 2, where |P | = 4 and |M(P )| = 2. We have
αP (N3) = x5 and αP (N4) = x6. Then, we have bN1 = {x1, x2}, bN2 = {x3, x4},
bN3 = {x1, x2}∪ {x3, x4}∪ {αP (N3)} = {x1, x2, x3, x4, x5} and bN4 = {x3, x4}∪
{αP (N4)} = {x3, x4, x6}. Moreover, n = 2, then the maximal sequence is made
by two partial coverings of {x1, . . . , x6} that are C1 = {{x1, x2, x3, x4, x5}, {x3,
x4, x6}} and C2 = {{x1, x2}, {x3, x4}}.

Proposition 5. Let P be a finite partially ordered set. Then, the maximal
sequence C of P is a complete and safe refinement sequence of UP and SO(C) ∼=
K(U(P )).

Proof. Firstly, we prove that C is a refinement sequence of UP . Then, suppose
that b ∈ Ci with i > 1, we have b = bN where N ∈ P . Since bN ∈ Ci, two cases
are possible: if N ∈ P i, then there exists at least a node M of P i−1 such that
M < N (see (4)), hence bM ∈ Ci−1 (see (8)) and bN ⊂ bM (see (7)); if N /∈ P i,
then N ∈ M(P ) and ↓ N ∩ P i = ∅. In this latter case, we have two subcases
to consider: ↓ N ∩ P i−1 = ∅ which implies bN ∈ Ci−1 and ↓ N ∩ P i−1 �= ∅
which implies that there exists M ∈ P i−1 with M ≤ N , hence bN ⊆ bM where
bM ∈ Ci−1.

C is complete, since if bN ∩ bM �= ∅ with bN , bM ∈ PC , then bN ∩ bM ⊇ bL

with L ∈ ↑ N ∩ ↑ M (see (9)), hence bN and bM can not belong to two upsets
that are disjoint.

To prove that C is safe, we consider the blocks bN , bN1 , . . . , bNk
of cover-

ings of C with bN ⊆ bN1 ∪ . . . ∪ bNk
. Then, we pick a subset {bN ′

1
, . . . , bN ′

h
} of

{bN1 , . . . , bNk
} such that bN ⊆ bN ′

1
∪ . . . ∪ bN ′

h
and bN ∩ bN ′

i
�= ∅ for each

i ∈ {1, . . . , h}. Trivially, bN ∩ b �= ∅ if and only if bN ⊆ b, when N ∈ M(P ). Oth-
erwise, if N /∈ M(P ), by (7) we have that αP (N) ∈ bN , hence αP (N) belongs
to b′

Ni
for some i ∈ {1, . . . , h}, then bN ⊆ bN ′

i
since N ′

i ≤ N (see (7)).
Trivially, the poset PC associate with C is {bN | N ∈ P} (see Definition 5)

and it is isomorphic to P . Then, it is sufficient to show that SO(C) = K(U(PC)).
By Theorem 2, SO(C) ⊆ K(U(PC)). Viceversa, let (A,B) ∈ K(U(PC)),

then A∗ ∩ B∗ = ∅, since otherwise, by (9), there exist N,M,L ∈ P such that
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bL ⊆ bN ∩bM , then bL ∈ A∩B that is an absurd. By Theorem 3, (A,B) ∈ SO(C).
Therefore, K(U(PC)) ⊆ SO(C).

Furthermore, note that if C = C1, . . . , Cn is the maximal sequence of the poset
P , then Cn is a partial partition of the respective universe UP .

By Theorem 1 and Proposition 5, the following Theorem holds:

Theorem 6. Let P be a partially ordered set and C its maximal sequence. Then,
SO(C) is a centered Kleene algebra that satisfies the interpolation property.

Theorem 7. Let S be a Kleene algebra. S is a finite centered Kleene algebra
with interpolation property if and only if S ∼= SO

′
C, where C is a complete and

irridundant refinement sequence of a finite universe U .

Proof. (⇒). If T is a centered Kleene algebra with interpolation property, then
there exists a bounded distributive lattice LT such that T ∼= K(LT ), by Theo-
rem 1. By Birkhoff representation theorem, there exists a poset PLT such that
LT ∼= U(PLT ). Consequently, T ∼= K(U(P )), where P is a partially ordered set.

By Proposition 5, S ∼= SO(PC) where C is the maximal sequence of P .
(⇐). By Theorem 5, SO

′
C is a finite centered Kleene algebra with interpolation

property.

Proposition 6. Let S be a Kleene algebra. S ∼= T + ∪ T − where T is a finite
centered Kleene algebra with interpolation property if and only if S ∼= SO

′
C, where

C is a safe and pairwisely overlapping refinement sequence of a finite universe U .

Proof. (⇒). Let T be a finite centered Kleene algebra with interpolation prop-
erty, then T ∼= K(U(P )), where P is a partially ordered set. We consider the
maximal sequence C of P . We call Cx the sequence obtained by adding x to each
block of C. Trivially Cx is a safe and pairwisely overlapping refinement sequence
of the universe U ∪ {x} and S ∼= SO

′
C .

(⇐). By Theorem 5, if C is irridundant and pairwisely overlapping, then
SO(C) ∼= K(U(PC′))+ ∪ K(U(PC′))−.

6 Conclusions and Further Works

In this paper we have shown that sequences of orthopairs SO(C) determined by
refinement of coverings C of a universe U can be equipped with a structure of
Kleene algebra SOC . In particular, if the refinement sequence C is safe, then SOC
is a subalgebra of a Kalman rotation K(U(PC)); if C is safe and pairwisely over-
lapping, then SOC coincides with the union of positive and negative elements
of K(U(PC)); if C is safe and complete then it is isomorphic with K(U(PC)).
Generalizing the assumption that C is safe, we have the weaker condition of
irredundancy: if C is irredundant then we can find a safe and complete C′ and
define over SO(C) a structure of Kleene algebra in such a way that it is iso-
morphic with SOC′ . While both for safe and pairwisely overlapping and for safe
and complete refinement sequence we have a characterization of the associated
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Kleene algebras, a characterization of Kleene algebras given by safe refinement
sequence is not presented in this paper and this problem will be faced in the
future. On the other side, we shown that for any finite centered Kleene algebra
K with interpolation property, that is, for every K ∼= K(L), there is a safe and
complete refinement sequence C such that K ∼= SOC .

This work can be framed in the context of generalization of operations on
orthopairs to sequences of orthopairs, as done for example in [1,6]. This gives a
way to interpret the operations in the considered algebraic structures (centered
Kleene algebras here and IUML algebras in [1]) in terms of approximation of
sets. Refinement of orthopairs can be also interpreted by a temporal semantics,
as done for example in [5] for NM-algebras and this will be the topic of future
works.
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Abstract. This paper is devoted to the task of the two-commodity maximum
flow finding in a fuzzy temporal graph. Arcs of the network are assigned by the
fuzzy arc capacities and crisp transit times. All network’s parameters can vary
over time, therefore, it allows to consider network as dynamic one. The task is to
maximize total flow passing through the network, considering temporal nature
of the network. Such methods can be applied in the real railways, roads, when it
is necessary to take into account the commodities of two types solving the task
of the optimal cargo transportation, for example, passenger and cargo trains or
motor cars and lorries Method of operating fuzzy numbers for flow tasks is
proposed that doesn’t lead to the blurring of the resulting number.

Keywords: Fuzzy dynamic graph � Two-commodity fuzzy flow

1 Introduction

Considering transportation networks, the situation of two commodities, simultaneously
passing along the network is often occurs. It is valid for passenger and cargo trains
simultaneously moving along the railways, or motor cars and lorries etc. Therefore, we
turn to the two-commodity flow network. This task is a variety of the multi-commodity
flow problem, when different commodities travel along the network and have their own
sources and sinks [1, 2]. The main difficulty of the multi-commodity flow problems (3
or more simultaneously passing commodities) is that the min-cut theorem does not hold
for these tasks [3]. However, the mentioned theorem is valid for the two-commodity
flow problems in undirected graphs [4, 5].

The relevant task while analyzing these networks is the maximum two-commodity
flow-finding task, that consists in finding the maximum value of the flow of two types
in the network. Its peculiarity is in possibility of the first flow to block the second one
in such a way, that we do not obtain the optimal value. Hu [4] devised algorithm for
such a problem and obtained optimal results.

Solving flow tasks in networks it is important to take into account either that the
flow needs time to pass among adjacent nodes or that different departure time can
influence the travel and arrival time. Literature analysis showed that dynamic networks
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[6] considered in the literature took into account no instant flow departure, while
network’s parameters hold constant. Multi-commodity flow tasks analysis is presented
in [7, 8]. Therefore, such networks can not be treated as fully temporal. Temporal
networks should be examined as networks with no instant flow transitions and
time-varying parameters depend on flow departure time.

Transportation networks are usually connected with uncertainty of any kind. There
are errors in measurements, changes in environment, road, weather conditions, the lack
of information about road parameters and so on. Thus, it is necessary to consider
uncertainty peculiar to network’s parameters and represent edges of the network as
fuzzy triangular numbers, therefore, we turn problem statements of flow tasks in fuzzy
networks [9, 10]. The task of the maximum flow finding with fuzzy arc capacities was
presented in [11, 12] and didn’t consider the dynamic nature of the graph and the
possibility of multiple flow passing.

Summarizing, we obtain the problem of the maximum two-commodity flow finding
in the fuzzy temporal network, that was not described in the literature and propose
algorithm for its solution.

The paper is organized as follows. In the Sect. 2 we give basic definitions and rules,
underlying the proposed method. Section 3 presents the method of the maximum
two-commodity dynamic flow finding in fuzzy temporal graph. Section 4 provides
numerical example illustrating the main steps of the proposed method. Section 5 is
conclusion and future work.

2 Definitions and Rules

Peculiarity of the two-commodity dynamic maximum flow finding method is that
calculated maximum flow can block the flow of the second commodity. It is necessary
to find the double path and redistribute the flow, if it is possible to avoid blocking. If
the path doesn’t exist, the corresponding maximum flow is found. The proposed
method is based on following rules.

Rule 1. Transition to the fuzzy static two-commodity graph from the dynamic one.
Fuzzy time-expanded static two-commodity graph ~Gp ¼ ðXp; ~ApÞ is constructed

from the original fuzzy two-commodity dynamic graph ~G creating a copy of each node
xi 2 X at each time period h 2 T . The set of nodes Xp of the graph ~Gp is defined as
Xp ¼ fðxi; hÞ : ðxi; hÞ 2 X � Tg: Expand node-sources and sinks for each commodity
at each time period. Add artificial sources and sinks for each commodity and connect
them by edges of infinite capacity with true sources and sinks. The set of edges ~Ap

includes edges from each node-time pair ðxi; hÞ 2 Xp to every node-time pair ðxj; # ¼
hþ sijðhÞÞ; where xj 2 ðxiÞ and hþ sijðhÞ� p. Fuzzy arc capacities ~uðxi; xj; h; #Þ are
equal to ~uijðhÞ. Transit times sðxi; xj; h; #Þ are equal to sijð hÞ.

Rule 2. of transmission flow along the double path [3].
Define flows of the backward and forward paths depending on the flow values:

~n1f ¼ min~n1 ðxi; xj; h; #Þ; ~n1 ðxi; xj; h; #Þ[ ~0,
~n1b ¼ min~n1 ðxj; xi; #; hÞ; ~n1 ðxj; xi; #; hÞ[ ~0.
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Thus, the flow along the double path is defined as the minimum flow value from the
backward and forward paths: ~nbf ¼ minð~n1f ; ~n1b Þ.

Edge capacity of the double path is determined as minimum from the residual
capacities of the backward and forward paths: ~ubf ¼ minð~ub; ~uf Þ.

As the double path consists of two paths we pass ~r ¼ minð~n1bf ; 0:5~ubf Þ flow units of
each commodity along the double path as follows: push ~r units of the first commodity
from the source to the sink along the backward path, then pass ~r units of the first
commodity from the sink to the source along the forward path.

After that push ~r flow units of the second commodity along the double path as
follows: transit ~r units of the second commodity from the source to the sink along the
backward path, then pass ~r units of the second commodity from the source to the sink
along the forward path.

3 Presented Method of the Maximum Two-Commodity Flow
Finding Task in the Fuzzy Dynamic Graph

3.1 Problem Statement

Let us consider the proposed method for the maximum two-commodity flow finding in
dynamic undirected graph in fuzzy terms, presented as a model (1)–(5):

Maximize
Xp

h¼0

X2

s¼1

~m s; s
0

� �
; ð1Þ

X

i

Xp

h¼0

X

xj2C xið Þ
~nsij hð Þ �

X

xj2C�1 xið Þ
~nsji h� sjiðhÞ
� �

0

@

1

A ¼ ~vðs; s0 Þ pð Þ; xi ¼ s; ð2Þ

X

i

Xp

h¼0

X

xj2CðxiÞ
~nsijðhÞ �

X

xj2C�1ðxiÞ
~nsjiðh� sjiðhÞÞ

0

@

1

A ¼ ~0; xi 6¼ s; s
0
; h 2 T; ð3Þ

X

i

Xp

h¼0

X

xj2CðxiÞ
~nsijðhÞ �

X

xj2C�1ðxiÞ
~nsjiðh� sjiðhÞÞ

0

@

1

A ¼ �~vðs; s0 ÞðpÞ; xi ¼ t; ð4Þ

X2

s¼1

~nsijðhÞ
���

���� ~uijðhÞ; 8 ðxi; xjÞ 2 ~A; h 2 T: ð5Þ

In the model (1)–(5) ~nsijðhÞ – the s-th flow along the arc ðxi; xjÞ at time period h, ~mðs; s0 Þ
– the value s-th flow from the source s to the sink s

0
, ~uijðhÞ – capacity of the arc ðxi; xjÞ

at time period h.
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3.2 Problem Statement

Step 1. Turn to the time-expanded two-commodity fuzzy static graph ~Gp ¼
ðXp; ~ApÞ from the original fuzzy two-commodity dynamic graph ~G according to the
rule 1.
Step 2. Search the maximum flow of the first commodity, considering the second
commodity as zero by selecting the augmenting shortest path (in terms of the
number of arcs) ~P�l

p from the artificial source 1s to the artificial sink 1t in the
time-expanded graph according to the breadth-first-search.
Step 3. Find the maximum flow of the second commodity considering edge
capacities as ~u1ðxi; xj; h; #Þ ¼ ~uðxi; xj; h; #Þ � n1ðxi; xj; h; #Þ

�� ��� n2ðxi; xj; h; #Þ.
Search the augmenting shortest path (in terms of the number of arcs) ~P�l

p from the
artificial source s� to the artificial sink t� in the constructed fuzzy residual network
according to the breadth-first-search.
Step 4. Find the double path from 2s to 2t. There are two paths in the double path:
backward and forward. Backward path consists of edges with first commodity
passing in the opposite direction (negative value) and unsaturated edges. Residual
edge capacity of the backward path is ~ub ¼ ~uðxi; xj; h; #Þþ ~n1ðxj; xi; #; hÞ �
~n2ðxi; xj; h; #Þ[ ~0. Forward path is the path with nonzero positive value of the first
commodity or negative value of the second commodity. Residual edge capacity of
the forward path is ~uf ¼ ~uðxi; xj; h; #Þþ ~n1ðxi; xj; h; #Þ � ~n2ðxi; xj; h; #Þ[ ~0.

4.1. If the whole double path or one of the constituent paths doesn’t exist, the
obtained flow ~r ¼ ðmax½~n1ð1s; 1t; h; hþ s1s1tðhÞÞþ ~n2ð2s; 2t; h; hþ s2s2tðhÞÞ� is
the maximum flow in the time-expanded graph, turn to the step 6.
4.2. If the path is found, pass the value ~r ¼ minð~n1bf ; 0:5~ubf Þ of each commodity

along the double paths, where ~n1bf and ~ubf are calculated due to the rule 2.

Step 5. Update the flow values in the graph ~Gpð~nÞ and turn to the step 3.
Step 6. Turn to the initial dynamic graph ~G as follows: reject the artificial nodes s

0
,

t
0
and arcs, connecting them with other nodes.

Two-commodity flow task is NP-hard and polynomial in the case of even arc
capacities. The time-complexity is based on the time-complexity of the shortest path
finding algorithm.

4 Numerical Example

Consider numerical example, illustrating fuzzy maximum two-commodity dynamic
flow problem. The task is to find the maximum flow of the total commodity of two
types from the source to the sink in the graph, shown in the Fig. 1.
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The values of fuzzy arc capacities depending on the flow departure time are given
in the Table 1. Table 2 illustrates the values of transit times, depending on the flow
departure time.

1s 2s

45

3

1t 2t

Fig. 1. Initial dynamic graph ~G

Table 1. Fuzzy arc capacities ~uij, depending on the flow departure time h

Edges of the
graph

Fuzzy edge capacities ~uij at time periods h, time units

0 1 2 3 4

ð1s; 3Þ 6~0 3~5 3~5 4~0 2~5
ð1s; 5Þ 2~0 2~0 2~5 1~5 1~5
ð2s; 3Þ 3~8 1~0 3~0 1~8 2~5
ð2s; 4Þ 5~5 4~5 5~2 6~0 6~0
ð3; 4Þ 1~5 4~0 2~4 2~4 2~0
ð3; 5Þ 5~5 5~5 1~6 3~0 3~0
ð4; 1tÞ 2~0 2~0 3~0 4~0 5~5
ð4; 2tÞ 4~0 4~0 3~0 3~5 5~2
ð5; 1tÞ 4~0 4~5 1~5 3~0 3~0
ð5; 2tÞ 1~6 2~0 1~8 2~0 4~0
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Step 1. Turn to the time-expanded static version of the initial dynamic graph, as
shown in the Fig. 2.
Step 2. Find the augmenting paths, considering the flow of the second commodity
as zero, therefore, the maximum flow of the first commodity is obtained, as pre-
sented in the Fig. 3. Maximum flow includes paths 1s ! 10s ! 51 ! 13t ! 1t with
2~0 flow inits, 1s ! 10s ! 31 ! 42 ! 13t ! 1t with 3~0 flow inits, 1s ! 10s ! 31 !
52 ! 13t ! 1t with 1~5 flow inits, 1s ! 11s ! 32 ! 43 ! 14t ! 1t with 2~4 flow
inits and it is equal to 8~9 units.
Step 3. Search the maximum flow of the second commodity, considering already
found flow of the first commodity ~u1ðxi; xj; h; #Þ ¼ ~uðxi; xj; h; #Þ � n1ðxi; xj;

��
h; #Þj � n2ðxi; xj; h; #Þ in such a way that the total edge capacity constraint will be
valid. Thus, we receive the following paths: 2s ! 22s ! 43 ! 24t ! 2t and pass 3~5
units along it, 2s ! 21s ! 32 ! 53 ! 24t ! 2t and pass 1~0 units along it, 2s !
20s ! 31 ! 42 ! 23t ! 2t with 1~0 units, as ð31; 42Þ is a joint edge with the maxi-
mum residual capacity 1~0 units and 2s ! 20s ! 31 ! 52 ! 23t ! 2t with 1~8 units
along it. This flow distribution is presented in the Fig. 4.
Step 4.1. Find the double path from 2s to 2t.

Backward path is 2s ! 22s ! 43 ! 32 ! 53 ! 24t ! 2t. It includes edge
ð43; 32Þ with the flow of the first commodity, passing in the opposite direction and
other edges that are unsaturated. The flow of this path is defined according to the
rule 2 and it is equal to ~n1b ¼ min~n13243 ¼ 2~4 units. Edge capacity of the residual
path is determined as minimum of the residual capacities of the backward path, i.e.
~ub ¼ minð1; 1~7; 4~8; ~6; 1~0; 1Þ ¼ ~6.

Table 2. Time parameters sij depending on the flow departure time h

Edges of the
graph

Time parameters sij at time periods h, time units

0 1 2 3 4

ð1s; 3Þ 1 1 3 2 2
ð1s; 5Þ 1 4 4 3 3
ð2s; 3Þ 1 1 3 1 2
ð2s; 4Þ 5 5 1 4 3
ð3; 4Þ 1 1 1 4 4
ð3; 5Þ 5 1 1 2 3
ð4; 1tÞ 5 5 1 1 1
ð4; 2tÞ 6 6 1 1 4
ð5; 1tÞ 5 2 1 2 2
ð5; 2tÞ 5 4 1 1 2
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Forward path is 2s ! 20s ! 31 ! 42 ! 23t ! 2t and it consists of unsaturated
edges and the edge ð 32; 43Þwith positive flow passing in the forward direction. The
flow of this path is defined according to the rule 2 and it is equal to ~n1f ¼ min~n13142 ¼
3~0 units. Edge capacity of the residual path is determined as minimum of the residual
capacities of the forward path, i.e. ~uf ¼ minð1; 1~0; 6~0; 2~0; 1Þ ¼ 1~0.

Therefore, ~n1bf ¼ min ð2~4; 3~0Þ ¼ 2~4 units, ~ubf ¼ minð~6; 1~0Þ ¼ ~6 units, ~r ¼
minð2~4; ~3Þ ¼ ~3 units.

Fig. 2. Time-expanded static graph ~Gp
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Step 4.2. Pass ~3 flow units of the first commodity and second commodity along the
double path, as presented in the Fig. 5.

Step 5. The flow of the second commodity cannot be increased and there are no
augmenting paths. Therefore, the obtained maximum flow is 8~9þ 7~9 ¼ 16~8 units.

The fuzzy maximum flow is obtained and it is necessary to present it as fuzzy
triangular number, determining its deviation borders.

Fig. 3. ~Gp with the maximum flow of the first commodity
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We can utilize the approach, described in [9, 10]. Its main idea is that it is no need
to operate deviations of fuzzy numbers at the first step of calculations: it is sufficiently
to operate centers of fuzzy numbers, blurring them at the final step. Advantages of such
a method is that final fuzzy number preserves its value, avoiding strong blurring of
borders.

Thus, Fig. 6 shows deviation borders of the fuzzy basic capacities, set by experts.

Fig. 4. ~Gp with the maximum flow of the first commodity and corresponding maximum flow of
the second commodity
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Fig. 5. ~Gp with ~n ¼ 3 of each commodity sent along the double path

Fig. 6. Membership functions of the basic values of edge capacities of the network ~G
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The result is between two adjacent basic values of the arc capacities: 12~1 with the
left deviation lL1 ¼ 21, right deviation – lR1 ¼ 24 and 24~0 with the left deviation lL2 ¼ 40,
right deviation – lR2 ¼ 45. We obtain deviations: lL1 	 28, lR1 	 32.

Finally, the maximum flow in the fuzzy two-commodity dynamic graph can be
represented by fuzzy triangular number (140, 168, 200) units.

5 Conclusion and Future Work

Present paper illustrates the approach to the maximum flow determining in the fuzzy
two-commodity dynamic flow graph. Underlying undirected graph has fuzzy values of
arc capacities and two distinguished sources and sinks for each commodity. The
parameters of the graph are transit and depend on the flow departure time. The con-
sidered approach is based on the formulated rules of the time-expanded graph and
transmission the flow along the double path. The proposed approach has important
practical value in transportation planning and optimization the flows on the real types
of roads in the tasks, where it is important to take into account the commodities of two
types, for example, passenger and cargo trains or motor cars and lorries. In the future
methods of the minimum cost multi-commodity flow determining will be solved in the
fuzzy dynamic networks.
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Abstract. In this paper the problem of defining service centres optimum
allocation in transportation network is observed. It is supposed that trans-
portation network is described by a fuzzy interval graph. The notion of fuzzy set
of strong connectivity is introduced. It is shown that the problem of service
centers location can be reduced to a problem of finding fuzzy set of strong
connectivity. The method and algorithm of finding fuzzy set of strong con-
nectivity is considered in this paper. The example of finding optimum allocation
of centers in fuzzy interval graph is considered.

Keywords: Fuzzy interval � Fuzzy interval graph � Service centers � Strong
connectivity fuzzy set

1 Introduction

The worldwide expansion and diversified implementation of geographic information
systems (GIS) are largely appearing due to the need to improve information systems
that support decision-making. Application spheres of GIS are huge, thus geoinforma-
tion technologies become leaders in information retrieval, display, analytical tools and
decision support [1, 2].

However, geographic data are often associated with significant uncertainty. Errors
in data that are often used without considering their inherent uncertainties lead to a high
probability of obtaining information of doubtful value. Uncertainty presents throughout
the process of geographical abstraction: from acquiring data to using them [3].

Data modeling [4] is the process of abstraction and generation of real forms of
geographic data. This process provides a conceptual model of the real world. It is
doubtful that the geographical complexity can be reduced in models of perfect accu-
racy. So, the imminent contradiction between the real world and the model is the
inaccuracy and uncertainty that can lead to the wrong decision making.

Allocation of centers [5] is the optimization problem that is effectively solved by
GIS. This problem includes the tasks of optimum allocation of extremely important
services, such as hospitals, police stations, fire brigades etc. In some tasks, the opti-
mality criterion can considered as distance minimization (travel time) from the service
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center to the most remote service point, therefore, the problem is in optimization of the
“worst case” [6]. At the same time, the information, presented in GIS, can be
approximate or insufficiently reliable [7]. Therefore, utilization of subjunctive estimates
dealing with the distances between the parts of the considered area or travel time, based
on the expert’s experience using linguistic variables, can be a convenient way for the
formalization task of the centers allocation.

Thus, the linguistic variable “distance” can take arbitrary values of the type «about
50 km», «near 20–25 min» , that can be considered as fuzzy number ~a and fuzzy
interval ½~a; ~b� with triangular and trapezoidal membership functions, respectively [8, 9].

In the present work, the approach to service centers allocation is proposed. The
peculiarity of the problem is that distance between the parts of the area or travel time is
fuzzy interval, thus, the model of the territory is a fuzzy interval graph.

2 Basic Concepts and Definitions

We consider some territory which is divided into n areas (set X). There are k service
centres, which may be placed into these areas (set V, k < n). It is supposed that service
centre may be placed into some stationary place of each area. It is necessary for the
given number of the service centers to define the places of their best allocation. In other
words, it is necessary to define the places of k service centers into n areas such that the
service of all territory was carried out on is minimum possible time or distance at least
to one service center.

The task of the best allocation of centers on the fuzzy graph can be limited to the
problem of finding a subset of vertices V, which all the other vertices X/V of the fuzzy
graph are attained in the best way according to a given criterion. Three strategies of the
selection of vertices V can be proposed [10]:

– We “go” from each vertex of subset X/V, and arrive at a vertex of V;
– We “come out” of any of the vertices of V, and reach all vertices of subset X/V;
– We “come out” of any of the vertices of V, reach all vertices of subset X/V and come

back.

In this paper, the third strategy is considered, and the criterion of optimality is the
minimization of the total fuzzy interval (distance or time) from the service center to the
most remote vertex and back.

Let’s consider that the information received from GIS is presented in the form of
the fuzzy interval graph ~G ¼ ðX; ~UÞ [11]. A set X = {xi}, i ∊ I = {1, 2, …, n} is the
set of vertices. The vertices represent areas of some territory. A set ~U ¼ fh~lij=ðxi; xjÞig
is the set of the fuzzy directed edges. A value ~lij ¼ ½~aij; ~bij� is fuzzy interval «ap-
proximately [aij, bij]». It is a meaning of linguistic variable «time of journey from
vertex xi to vertex xj». Here aij, bij ∊ R1, and aij � bij. Let’s believe, that the interval
~lii ¼ ½0; 0�; 8i 2 f1; 2; . . .; ng.

For the decision of this problem we will consider the concept of strong connectivity
fuzzy set of the fuzzy interval graph.
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Let ~l1 ¼ ½~a1; ~b1� and ~l2 ¼ ½~a2; ~b2� are any fuzzy intervals. If a1 > a2 and b1 < b2,
then we set that ~l1\~l2. Otherwise, we can set naturally relations >, <, � , and �
between fuzzy intervals [11].

The sum of fuzzy intervals ~l1 and ~l2 we call an interval ~l ¼ ½~a; ~b�, in which borders
~a ¼ ~a1 þ ~a2 and ~b ¼ ~b1 þ ~b2 [12].

Let ~L1 ¼ f½~a1i; ~b1i�g and ~L2 ¼ f½~a2j; ~b2j�g, i ¼ 1; p1, j ¼ 1; p2 are two sets of fuzzy
intervals. We denote by ~L1 þ ~L2 the sum defined as ~L1 þ ~L2 ¼ f½~ak; ~bk�g,
~ak ¼ ~a1i þ ~a2j, ~bk ¼ ~b1i þ ~b2j, k = p1 � p2.

Example 1. Let sets of intervals ~L1 ¼ f½1~0; 1~5�; ½1~2; 1~4�g and ~L2 ¼ f½~7; ~9�; ½~8; 1~0�g,
then ~L1 þ ~L2 ¼ f½1~7; 2~4�; ½1~8; 2~5�; ½1~9; 2~3�; ½2~0; 2~4�g. Here p1 = p2 = 2, k = 4.

We consider two operations MINð~LÞ and MAXð~LÞ on set of intervals ~L [11]. These
operations are an estimation of subsets of the least and the greatest intervals from set of
intervals ~L.

Example 2. Let set of intervals ~L ¼ f½10; 15�; ½12; 14�; ½12; 17�; ½15; 18�g, then
MINð~LÞ ¼ f½12; 14�g, and MAXð~LÞ ¼ f½15; 18�g.
Property 1.

MINð~L1 þ ~L2Þ ¼ MINð~L1ÞþMINð~L2Þ;
MAXð~L1 þ ~L2Þ ¼ MAXð~L1ÞþMAXð~L2Þ:

Let x and y are any vertices of fuzzy interval graph ~G ¼ ðX; ~UÞ. We will define
through ~Lxy a set of fuzzy intervals by means of which the vertex y is achievable from
the vertex x. Then for each pair of vertices (x, y) we can put a fuzzy interval
MINð~Lxy þ ~LyxÞ in conformity.

Definition 1. A strong connectivity subset is called subset vertices V~K�X with interval
~K ¼ MAX

8y2XnV
ðMIN
8x2V

ð~Lxy þ ~LyxÞÞ from which any vertex of fuzzy graph is accessible with

an interval not more ~K and which is minimal in the sense that there is no subset
V 0
~K
�V~K, having the same accessible property.
Among all strong connectivity subsets consisting of 1 vertex, we select such subset

in which fuzzy interval is the least. We designate them as ~K1. Among all strong
connectivity subsets consisting of two vertices we select such subset in which fuzzy
interval also is the least among themselves and we will designate them as ~K2, and etc.

Definition 2. A fuzzy set

~V ¼ fh~K1=1i; h~K2=2i; . . .; h~Kn=nig

is called a strong connectivity fuzzy set of fuzzy interval graph ~G.
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Fuzzy interval ~Kk (k ∊ {1, 2, …, n}) signify that we can place k-centers in graph ~G
so that there is a route from at least one center to any vertex of graph ~G and back. The
length of this cyclic route will be not more than interval ~Kk.

Example 3. Consider the fuzzy interval graph presented in Fig. 1:

For the strong connectivity subsets, consisting of 1, 2, and 3 vertices fuzzy intervals
families have view:

if V = {x1} or V = {x3} then ~K ¼ ½5~4; 6~2�; if V = {x2} then ~K ¼ ½2~8; 3~1�;
if V = {x1, x3} or V = {x1, x2} then ~K ¼ ½2~6; 3~1�; if V = {x2, x3} then
~K ¼ f½2~8; 3~1�g;
if V = {x1, x2, x3} then ~K ¼ f½0; 0�g.
Hence, the strong connectivity fuzzy set is defined as:

~V ¼ fh½2~8; 3~1�=1i; h½2~6; 3~1�=2i; h½0; 0�=3ig:

3 Method and Algorithm for Finding Strong Connectivity
Fuzzy Set

We will consider the method of finding a strong connectivity fuzzy set in the fuzzy
interval graph. The given method is an analogue Maghout’s method for definition of all
fuzzy interval base sets [11], and Maghout’s method for the definition of fuzzy vitality
sets for fuzzy no interval graphs [13].

Let’s consider some strong connectivity fuzzy set V~K �X with fuzzy interval ~K.
Then for an arbitrary vertex xi 2 X, one of the following conditions must be true:

Fig. 1. Fuzzy interval graph (n = 3)
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(a) xi 2 V~K;
(b) if xi 62 V~K, then there is a vertex xj 2 V~K such that fuzzy interval~lji ¼ ~lðxj; xiÞ is no

more ~K:

In other words, the following statement is true:

ð8xi 2 XÞ½xi 2 V~K _ ð9xj 2 V~Kj~lji � ~KÞ�: ð1Þ

To each vertex xi 2 X we assign Boolean variable pi that takes the value 1, if
xi 2 V~K and 0 otherwise. Let’s enter the predicate form Qð~ljiÞ that takes the value 1, if
~lji � ~K and 0 otherwise. Using analogy between generality and existence quantifiers on
the one hand, both operations conjunction and disjunction with another, we obtain a
true logical proposition:

UV ¼ &
i¼1;n

ðpi _ _
j¼1;n

ðpj&Qð~ljiÞÞ ¼ 1: ð2Þ

Believing, that Qð~liiÞ ¼ Qð½0; 0�Þ ¼ 1, an expression (2) may be rewrite as:

UV ¼ &
i¼1;n

_
j¼1;n

ðpj&Qð~ljiÞÞ
 !

¼ 1: ð3Þ

We open the parentheses in the expression (3) and reduce the similar terms the
following rules:

Qð~l1Þ&Qð~l2Þ ¼ Qð~l1Þ; if ~l1 �~l2;
p1&p2&Qð~l1Þ&Qð~l2Þ _ p1&p2&Qð~l3Þ

¼ p1&p2&Qð~l1Þ&Qð~l2Þ if ~l1\~l3&~l2\~l3;
p1&p2&Qð~l1Þ _ p1&Qð~l2Þ ¼ p1&Qð~l2Þ; if ~l1 �~l2:

8>>><
>>>:

ð4Þ

As a result expression (3) will become:

UV ¼ _
i¼1;t

ðp1i&p2i&. . .&pki&Qð~l1iÞ&Qð~l2iÞ&. . .&Qð~lriÞÞ ¼ 1: ð5Þ

Property 2. If in expression (5) further simplification on the basis of rules (4) is
impossible, then everyone disjunctive member i defines strong connectivity fuzzy set
with the least interval.

The following method of foundation of a fuzzy set of strong connectivity fuzzy set
may be propose on the base of property:

– write proposition (3) for given fuzzy interval graph ~G;
– simplify proposition (3) by proposition (4) and present it as proposition (5);
– define fuzzy set of strong connectivity, which correspond to the disjunctive mem-

bers of proposition (5).
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To construct the expression (5) we rewrite expression (3) as follows:

UV ¼ &
i¼1;n

ðai1p1 _ ai2p2 _ . . . _ ainpnÞ: ð6Þ

To perform absorption, and as a result reduction the number of elements in target
formula, we have to transform expression (6) to another form.

An element aijp can be converted to a vector with coefficient:

aij�Pj; where �Pj ¼ jjpðjÞi jj and pðjÞi ¼ 1; if i ¼ j
0; if i 6¼ j

�
:

Using this notation, let’s show the conjunction rule:

a1�P1&a2�P2 ¼ a�P; where a ¼ min a1; a2f g; �P ¼ jjpijjpi ¼ max pð1Þi ; pð2Þi

n o
; i ¼ 1; n

Also, we need an auxiliary operation of comparing two vectors:

ð�P1 � �P2Þ $ ð8i ¼ 1; nÞ½pð1Þi � pð2Þi �:

Considering the operations described above, the rule of absorption would be as
follows:

a1�P1 _ a2�P2 ¼ a1�P1; ifa1 � a2 and �P1 � �P2: ð7Þ

The correspondent pseudo algorithm below is used to reduce the number of
operands and can be presented as follows:

1. Each element of the first (j = 1) multiplication operand (a11p1 _ a12p2 _ … _
a1npn) of expression (6) is converted to the vector. The result is to be written in the

first n elements of the buffer vector �V1 ¼ jjvð1Þi jj; i ¼ 1; n2.
2. Increase j: = j + 1.
3. Convert each element of the operand (aj1p1 _ aj2p2 _ … _ ajnpn) to the vector.

The result is to be written in the first n elements of the buffer vector
�V2 ¼ jjvð2Þi jj; i ¼ 1; n.

4. The next stage consists of the conjunction of two vectors �V1 and �V2. The result is

placed into �V3 ¼ jjvð3Þi jj; i ¼ 1; n2. While placing elements into �V3, absorption is
made using rule (7).

5. Copy all the elements of vector �V3 to vector �V1 (vð1Þi :¼ vð3Þi ; i ¼ 1; n2).
6. Increase j: = j+1.
7. If j � n then go to step 3, otherwise go to step 8.
8. Expression (5) is built from the elements in �V1. This way we have strong con-

nectivity fuzzy set ~V of graph ~G ¼ ðX; ~UÞ.
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4 Numerical Example

Let’s consider the given method on an example of the fuzzy interval graph presented in
Fig. 2:

The adjacency matrix for this graph has the following form:

For a finding of a reachability matrix of the graph, we will define operation of
adjacency matrix exponentiation as:

– zero degree -

Fig. 2. Fuzzy interval graph (n = 5)
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– second degree - R2
X ¼ RX � RX ¼ jj~lð2Þik jj, where matrix elements are defined as

~lð2Þik ¼ MIN
j¼1;n

ð~lð1Þij þ~lð1Þjk Þ

– degree t - Rt
X ¼ Rt�1

X � RX :

We define matrices R0
X ;R

1
X ;R

2
X ;R

3
X ;R

4
X . Then we find their crossing. As a result we

receive a reachability matrix NX ¼ R0
X \R1

X \R2
X \R3

X \R4
X :

Let’s make an expression (2) on the received reachability matrix:

UV ¼

fQð0; 0Þp1 _ Qð24; 26Þp2 _ Qð46; 52Þp3 _ Qð30; 32Þp4 _ Qð58; 62Þp5g&
&fQð24; 26Þp1 _ Qð0; 0Þp2 _ Qð22; 26Þp3 _ Qð44; 50Þp4 _ Qð46; 52Þp5g&
&fQð46; 52Þp1 _ Qð22; 26Þp2 _ Qð0; 0Þp3 _ Qð22; 24Þp4 _ Qð24; 26Þp5g&
&fQð30; 32Þp1 _ Qð44; 50Þp2 _ Qð22; 24Þp3 _ Qð0; 0Þp4 _ Qð28; 30Þp5g&
&fQð58; 62Þp1 _ Qð46; 52Þp2 _ Qð24; 26Þp3 _ Qð28; 30Þp4 _ Qð0; 0Þp5g:

Before the first iteration of algorithm vectors �V1, �V2, �V3, �V4 and �V5 have forms:

�V1 ¼

½0; 0�ð10000Þ
½24; 26�ð01000Þ
½46; 52�ð00100Þ
½30; 32�ð00010Þ
½58; 62�ð00001Þ

0
BBBBBB@

1
CCCCCCA
; �V2 ¼

½24; 26�ð10000Þ
½0; 0�ð01000Þ

½22; 26�ð00100Þ
½44; 50�ð00010Þ
½46; 52�ð00001Þ

0
BBBBBB@

1
CCCCCCA
; �V3 ¼

½46; 52�ð10000Þ
½22; 26�ð01000Þ
½0; 0�ð00100Þ

½22; 24�ð00010Þ
½24; 26�ð00001Þ

0
BBBBBB@

1
CCCCCCA
;

�V4 ¼

½30; 32�ð10000Þ
½44; 50�ð01000Þ
½22; 24�ð00100Þ
½0; 0�ð00010Þ

½28; 20�ð00001Þ

0
BBBBBB@

1
CCCCCCA
; �V5 ¼

½58; 62�ð10000Þ
½46; 52�ð01000Þ
½24; 26�ð00100Þ
½28; 30�ð00010Þ
½0; 0�ð00001Þ

0
BBBBBB@

1
CCCCCCA
:
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After the first iteration of the algorithm vector �V1 :¼ �V3 ¼ �V1&�V2 has the following
form:

�VT
1 ¼ ð½24; 26�ð10000Þ; ½0; 0�ð11000Þ; ½22; 26�ð10100Þ; ½24; 26�ð01000Þ; ½46; 52�ð00100Þ;

½30; 32�ð00110Þ; ½44; 50�ð00010Þ; ½58; 62�ð00001ÞÞ

After completing the iterations, finally we have:

�VT
1 ¼

ð 58; 62½ � 10000ð Þ; 46; 52½ � 01000ð Þ; 46; 52½ � 00100ð Þ; 44; 50½ � 00010ð Þ;
58; 62½ � 00001ð Þ; 24; 26½ � 10100ð Þ; 24; 26½ � 01100ð Þ; 30; 32½ � 00110ð Þ; 28; 30½ � 10010ð Þ;
46; 52½ � 10001ð Þ; 28; 30½ � 01001ð Þ; 46; 52½ � 00101ð Þ; 44; 50½ � 00011ð Þ; 22; 26½ � 11001ð Þ;
22; 26½ � 10101ð Þ; 24; 26½ � 01011ð Þ; 30; 32½ � 00111ð Þ; 22; 24½ � 11101ð Þ; 22; 24½ � 11011ð Þ;
0; 0½ �ð11111ÞÞ

:

So, the formula (6) for this graph has the form:

UB ¼ Q 58; 62ð Þp1 _ Q 46; 52ð Þp2 _ Q 46; 52ð Þp3 _ Q 44; 50ð Þp4 _ Q 58; 62ð Þp5 _
Q 24; 26ð Þp1p3 _ Q 24; 26ð Þp2p3 _ Q 30; 32ð Þp3p4 _ Q 28; 30ð Þp1p4 _ Q 46; 52ð Þp1p5 _
Q 28; 30ð Þp2p5 _ Q 46; 52ð Þp3p5 _ Q 44; 50ð Þp4p5 _ Q 22; 26ð Þp1p2p5 _ Q 22; 26ð Þp1p3p5 _
Q 24; 26ð Þp2p4p5 _ Q 30; 32ð Þp3p4p5 _ Q 22; 24ð Þp1p2p3p5 _ Q 22; 24ð Þp1p2p4p5 _
Q 0; 0ð Þp1p2p3p4p5:

From this equation follows, that the strong connectivity fuzzy set is:

~V ¼ fh½4~4; 5~0�=1i; h½2~4; 2~6�=2i; h½2~2; 2~6=3�i; h½2~2; 2~4�=4i; h½0; 0�=5ig:

The strong connectivity fuzzy set defines following optimum allocation of the
centers: If we have 5 centers we place them in each vertex. In this case any expenses for
achievement of other areas do not required (time equally 0). If we have 4 centers they
should be placed in the vertices 1, 2, 3, and 5. In this case the least time is placed into
fuzzy interval ½2~2; 2~4�. If we have 3 centers they should be placed in the vertices 1, 2,
and 5. In this case the least time is placed into fuzzy interval ½2~2; 2~6�. If we have 2
centers they should be placed in the vertices 2 and 3. In this case the least time is placed
into fuzzy interval ½2~4; 2~6�. And at last if we have only 1 center it should be placed in
the vertex 4. In this case the least time is placed in fuzzy interval ½4~4; 5~0�.

A fuzzy set of strong connectivity also gives some information about the possible
selection of number centers. Since the allocation of centers is associated with material
costs, for the given fuzzy graph we can conclude that there is not much point in placing
three or four centers in comparison with the two centers.

Let us introduce the approach to obtaining of membership functions of found fuzzy
intervals according to the method, presented in [11, 14]. Present the parameter of fuzzy
time “near ~x0”, which is among the neighboring basic values “near ~x1” and “near ~x2”
with triangular membership functions l~x1ðxÞ and l~x2ðxÞ. Therefore, the borders of
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membership function l~x0 ðxÞ of fuzzy number «near ~x0» can be presented as linear
combination of the left and right basic values’ parameters:

lL ¼ ðx2�x0Þ
ðx2�x1Þ � lL1 þð1� ðx2�x0Þ

ðx2�x1ÞÞ � lL2 ;

lR ¼ ðx2�x0Þ
ðx2�x1Þ � lR1 þð1� ðx2�x0Þ

ðx2�x1ÞÞ � lR2 :

(
ð8Þ

Neighboring membership functions are represented in Fig. 3:

Let Fig. 4 shows the membership functions of basic values of linguistic variable
«travel time» in the form of fuzzy number «near 9», «near 12», «near 18», «near 23»,
«near 25» and «near 30».

Let us found deviation borders for the number 2~4: lL = 3, lR = 3, and for number
2~6: lL = 4, lR = 4, according to expressions (8).

Fig. 3. Definition of the triangular membership function

Fig. 4. Linguistic variable «travel time», its basic values’ membership function
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The proposed method can calculate membership function parameters l½~xl;~xr �ðxÞ of
arbitrary fuzzy interval ½~xl;~xr� in the form of trapezium:

l½~xl;~xr �ðxÞ ¼
l~xlðxÞ; if x� xl;
1; if xl � x� xr;
l~xrðxÞ; if x� xr:

8<
:

Figure 4 shows trapezoidal membership function, corresponding to the fuzzy
interval ½2~4; 2~6�.

We can conclude, that interval metrics between objects with the assigned values of
membership function (time or distance) is obtained. Thus, if the membership function
value is more than 0.8, the service time is within the interval [23.4, 26.8] with two
service centers location, as shown in Fig. 4.

5 Conclusion and Future Work

The task of defining of optimal allocation of centres as the task of definition fuzzy set
of strong connectivity of fuzzy interval graphs was considered. The definition method
of strong connectivity fuzzy set is the generalization of Maghout’s method for fuzzy no
interval graphs. This method is effective for the graphs which have no homogeneous
structure and no large dimensionality. The results of this method were used to solve the
problem of choosing the location of centers on railway networks. The implementation
of this method was carried out on the railway map of the Russian Federation. The data
are taken from GIS «Object Land» [15]. It is necessary to notice, that the considered
method allows define the best places of allocations of the service centers in case of their
placing only into vertices of the graph (instead of on edges with generation of new
vertices). In our future work, we are going to investigate the problem of placing
absolute centers, that is, the problem of finding service centers in the case where it is
possible to place centers on the edges of a fuzzy graph.
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the Russian Federation under Project “Methods and means of decision making on base of
dynamic geographic information models” (Project part, State task 2.918.2017), and the Russian
Foundation for Basic Research, Project №. 15-07-00185a.
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Structures and its Application for Analyzing
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Abstract. While analyzing statistical data we face with a problem of
modeling uncertainty. One among well justified models is based on belief
structures that allow us to describe imprecision and conflict in infor-
mation. We use this model for analyzing contradiction in weather fore-
casts. For this aim we build several measures of contradiction based on
the introduced imprecision index and the disjunctive aggregation rule
for interval belief structures. We use these characteristics for analyzing
weather forecasts.

Keywords: Interval belief structures · Inclusion indices · Wasserstein
metric · Measures of contradiction

1 Introduction

Weather forecast is an interval of possible temperature changes during a day
(or more exactly during night, morning, midday, or evening). These forecasts
are made several days before the target day. This information can be easily
aggregated using belief structures: forecasts are focal elements and the value of
the mass function gives us the degree of our beliefs that a given forecast is true.

Because belief functions can describe information with different nature, the
methods of evaluating uncertainty can be also different. Thus, we should adopt
them for a solving problem. In our investigation we evaluate the amount of con-
tradiction among information sources based on the introduced imprecision index
and the disjunctive rule for interval belief structures, and on related to them
inclusion indices and the introduced distances between interval belief structures.

The paper has the following structure. We remind at first the basic definitions
from the theory of belief structures, and then we discuss types of uncertainty and
their evaluation for interval belief structures. The remained part of the paper is
devoted to analyzing weather forecasts and our conclusions.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 25
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2 Interval Belief Structures for Describing Weather
Forecasts

Let X be the universal set and let A be a system of its subsets. By definition [15],
a tuple BS = (A,m), where m : A → [0, 1], is called a finitely defined belief
structure, if m(A) > 0 for a finite number of elements A in A and

∑

A∈A
m(A) = 1.

The function m is called the basic belief assignment (bba) or mass function. If
m(A) > 0 for A ∈ A, then the set A is called a focal element. Because in this
paper only finitely defined belief structures are considered, the term “finitely
defined” will be often omitted in the sequel. The set of all focal elements for
a belief structure is called the body of evidence. We usually associate with any
belief structure set functions

Bel(B) =
∑

A∈A|A⊆B

m(A), P l(B) =
∑

A∈A|A∩B=∅
m(A),

where B can be an arbitrary subset of X, called the belief function and the
plausibility function respectively.

In the next we will consider interval finitely defined belief structures. In this
case X = R and A consists of segments, i.e. every A ∈ A is of the type A = [a, b],
where a � b.1 In the paper the set of all possible finitely defined interval belief
structures is denoted by BS. Assume that every focal element in a BS = (A,m)
is of the type [a, b], where a = b, then BS is called Bayesian, and the set of all
such belief structures is denoted by BBS.

Assume that BS1 = (A,m1) and BS2 = (A,m2) in BS, then their convex
sum aBS1 + (1 − a)BS2 for a ∈ [0, 1] is the belief structure BS = (A,m) with
bba m(A) = am1(A) + (1 − a)m2(A) for all A ∈ A.

Assume that we have the forecast of temperature for the next midday, and
it certifies that the temperature will be between 12 ◦C and 16 ◦C. Then we
can describe this information by the segment [12, 16]. In the next we will have
forecasts for a target day made during a week. For example, assume that we
should analyze forecasts of the weather in Moscow on the 1st of December, 2016,
made during seven days before the target date, which are shown in Table 1.

Table 1. Temperature forecasts

A7 A6 A5 A4 A3 A2 A1 Actual
temperature

[−10, −9] [−11, −6] [−11, −4] [−8, −3] [−9, −3] [−10, −5] [−9, −4] [−7, −6]

Obviously, forecast A7 made seven days before the target day should be less
precise than A1 made one day before the target day. We can aggregate this

1 Smets considers also in [17] interval belief structures, but they are not finitely defined.
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information using the belief structure assigning values m(Ai), i = 1, ..., 7. The
simplest way is to define m(Ai) = 1/7, i = 1, ..., 7. If we try to take in account
our beliefs in forecasts, then obviously m(A1) > m(A2) > ... > m(A7). For
example, let m(Ai+1) = qm(Ai), i = 1, ..., 6, where q ∈ [0, 1) is a discount of our

beliefs, then
7∑

i=1

m(Ai) =m(A1)
6∑

i=0

qi =1 and m(Ai) = (1 − q)qi
/
(1 − q7).

3 Types of Uncertainty Described by Interval Belief
Structures

It is well known [1,11] that belief structures model two types of uncertainty:
conflict and imprecision (non-specificity). In our problem we observe conflict if
we can find contradictory forecasts in the body of evidence. For example, fore-
casts A7 = [−10,−9] and A4 = [−8,−3] are contradictory because they give
us absolutely different intervals of temperature. Thus, one can decide that a
belief structure (A,m) with a body of evidence M does not contain conflict iff⋂

Ai∈M

Ai �= ∅. This definition seems to be not good for weather forecasts, because

intuitively forecasts A3 = [−9,−3] and A2 = [−10,−5] are also contradictory,
because A2 predicts lower temperature than A3. Thus, it seems that we don’t
observe conflict in the body of evidence M iff Ai ⊆ Aj or Aj ⊆ Ai for every
Ai, Aj ∈ M, i.e. the set M is a linear ordered w.r.t. inclusion relation ⊆. The
third possible interpretation is that each forecast Ai gives us the exact interval of
temperatures during the whole day (24 h). In this case predictions A1, ..., A7 are
not contradictory iff A1 = ... = A7. We will see later how these three interpre-
tations of conflict can be implemented for defining different conflict measures.

In our problem imprecision is explained by the fact that forecasts usually do
not give us the exact value of temperature, but the interval of its possible values.
The simplest idea for measuring imprecision of forecasts is to use the Lebesgue
measure V for measurable subsets of R. It gives us for a segment [a, b] the value
V ([a, b]) = b−a. Following the idea for constructing linear imprecision indices [2]
or the generalized Hartley measure [5], we can define the imprecision index νI
for a interval belief structure BS = (A,m) as

νI(BS) =
∑

Ai∈A
m(Ai)V (Ai).

Let us consider the problem of measuring contradiction between belief struc-
tures. Obviously, we can define any belief structure BS = (A,m) describing
its body of evidence M and giving values m(A), A ∈ M. Thus, any BS ∈ BS
can be defined by BS = (M,m). Assume that we have two belief structures
BS1 = (M1,m1) and BS2 = (M2,m2). For example, these belief structures can
aggregate forecasts for the same target day but obtained from different research
organizations or these structures may describe forecasts for the same day but
made in different intervals of time. For example, BS1 may be the aggregation
of forecasts A7, A6, A5, and BS2 may be the aggregation of next ones. Let us
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answer the question, when there is no contradiction between BS1 and BS2? Con-
sider first the simplest case, when M1 and M2 are singletons, i.e. M1 = {A} and
M2 = {B}. Following the same arguments, as we discuss conflict within belief
structures, we can come to the following possibilities: there is no contradiction
iff (a) A = B; (b) A ⊆ B or B ⊆ A; (c) A ∩ B �= ∅. Let us recognize that any
among given definitions can be appropriate for a solving problem. To generalize
given definitions for any pair BS1 and BS2, we should extend the relation ⊆ to
the set BS. Let us remind that such relation was introduced in [6] and called
specialization.

Definition 1. Let BS1 = (M1,m1) and BS2 = (M2,m2) be belief structures
then we say that BS1 is the specialization of BS2 and write BS1 ⊆ BS2 if there
is a mapping m : M1 × M2 → [0, 1] such that

(1)
∑

A∈M1

m(A,B) = m2(B) for every B ∈ M2;

(2)
∑

B∈M2

m(A,B) = m1(A) for every A ∈ M1;

(3) m(A,B) = 0 if A �⊆ B.

Using Definition 1, we can give the following possible descriptions, when there
is no contradiction between BS1 = (M1,m1) and BS2 = (M2,m2): (a) BS1 ⊆
BS2 and BS2 ⊆ BS1; (b) BS1 ⊆ BS2 or BS2 ⊆ BS1; (c) there is a belief
structure BS3 = (M3,m3) such that BS3 ⊆ BS1 and BS3 ⊆ BS2.

We will describe and analize some known measures of contradiction in the
next section.

4 Basic Contradiction Measures in the Theory of Belief
Functions

There are many approaches for evaluating contradiction between belief functions,
but, in our opinion, since most of them are defined for a finite universal set X,
they are not well suited for interval belief structures. In this case the set A
consists of all possible subsets of X also denoted by 2X . In the next we will
consider belief structures BSi = (2X ,mi) with their corresponding belief Beli
and plausibility functions Pli, i = 1, 2.

Aggregation based approaches use some aggregation rules for belief
structures. The firstly introduced contradiction measure is derived from the clas-
sical conjunctive rule [16]: BS3 = (2X ,m3) is the conjunction of BS1 and BS2 if
m3(C) =

∑

A∩B=C

m(A)m(B), C ∈ 2X , and we evaluate the contradiction using

the value m3(∅). This conjunction is used in the theory of belief functions if
sources of information are independent. If we cannot use this assumption, then
it is justifiable to use conjunctive rules of the type m3(C) =

∑

A∩B=C

m(A,B),

where the joint belief assignment m : 2X × 2X → [0, 1] obeys the conditions:
(1)

∑

A∈2X
m(A,B) = m2(B) for every B ∈ 2X ; (2)

∑

B∈2X
m(A,B) = m1(A) for
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every A ∈ 2X , and if we don’t know the interaction between information sources,
we take the smallest possible value m3(∅) as the amount of contradiction.

It is also possible to evaluate contradiction using the disjunctive rule [8].
Let BS3 = (2X ,m3) be the belief structure generated by the classical dis-
junctive rule, then m3(C) =

∑

A∪B=C

m(A)m(B), C ∈ 2X . Assume that con-

tradiction between belief structures is transformed to non-specificity in BSi,
and we evaluate the amount of non-specificity in BSi by an imprecision index
νI(BSi) =

∑

A∈2X
m(A) |A|. Then the amount of contradiction between BS1 and

BS2 is not higher than max
i=1,2

(νI(BS3) − νI(BSi)). Analogously, the classical dis-

junctive rule is used, when sources of information are independent. In general
case we use the disjunctive rule based on joint belief assignment m of BS1 and
BS2. In this case we define m3(C) =

∑

A∪B=C

m(A,B). In case of unknown inter-

action between belief structures the disjunction BS3 can be chosen with the
smallest non-specificity.

Metric based approaches evaluate contradiction using some metric on
belief structures [9]. One among popular metrics is

dJ(BS1, BS2) =
√

0.5
∑

A,B∈2X

dA,B (m1(A) − m2(A)) (m1(B) − m2(B)),

where dA,B are called Jaccard indices and defined by dA,B = |A ∩ B|/|A ∪ B|
for A,B �= ∅, and d∅,∅ = 0. Another metric is based on plausibility functions

dPl(BS1, BS2) = 1 − 1
r1r2

∑

A∈2X

Pl1(A)Pl2(A),

where ri =
√ ∑

A∈2x
Pl2i (A), i = 1, 2.

Lui [13] proposes a contradiction measure, in which the distance between pig-
nistic probabilities is used. For belief structures BSi, i = 1, 2, pignistic probabil-
ities are defined by Pi({x}) =

∑

x∈B

m(B)/ |B|, where x ∈ X. Then for evaluating

contradiction we use the distance d(P1, P2) = 0.5
∑

x∈X

|P1({x}) − P2({x})|. Anal-

ogously, we can evaluate contradiction [4] using values of plausibility functions
on singletones: Concf (BS1, BS2) =

∑

x∈X

|Pl1({x}) − Pl2({x})|.
Let us analyze when according to above contradiction measures belief struc-

tures BSi = (Mi,mi) are assumed to be non-contradictory. If we use the con-
tradiction measure based on the classical conjunctive rule, then the amount of
contradiction is equal to zero iff A ∩ B �= ∅ for every A ∈ M1 and B ∈ M2,
thus, in this case the amount of contradiction is not necessarily equal to zero if
BS1 = BS2. If we measure contradiction based on all possible conjunctive rules,
then sources of information are non-contradictory iff there is a belief structure
BS with BS ⊆ BS1 and BS ⊆ BS2. If we measure contradiction using disjunc-
tive rules by max

i=1,2
(νI(BS3) − νI(BSi)), then we have non-contradictory sources
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of information iff BS1 = BS2. Obviously, we have the same property if we mea-
sure contradiction by some metric on the set of all belief structures. Of course,
the choice of a contradiction measure should be justified by an application. Some
of above measures can be generalized for interval belief structures, but they do
not look as good measures of contradiction. For example, if we use the contra-
diction measure based on the classical conjunctive rule for intervals, then this
measure is equal to zero if intervals have empty intersection, and it is equal to
one otherwise. This means that this measure is not stable to small changes in
processing data (see [12] how to handle this problem for finite case).

5 The Disjunction and Inclusion Indices of Interval Belief
Structures

The disjunction of interval belief structures looks like their union. The formal
definition of this concept is given in [8]. We will give the definition of disjunc-
tion of belief structures assuming that the resulting disjunction should have the
smallest imprecision. Because the disjunction of interval belief structures has to
be also an interval belief structure, we define the disjunction of intervals [ai, bi],
where ai � bi, i = 1, 2, as [a1, b1] ∪I [a2, b2] = [min{a1, a2},max{b1, b2}].

Definition 2. Let BS1 = (M1,m1) and BS2 = (M2,m2) be in BS, then the
disjunction BS3 = BS1 ∪ BS2 of BS1 and BS2 is an interval belief structure
BS3 = (M3,m3) with the body of evidence M3 = {A ∪I B|A ∈ M1, B ∈ M2}
and m3 is defined as a solution of the linear programming problem:

νI(BS3) → min, (1)

where m3(C) =
∑

A∪IB=C

m(A,B), C ∈ M3, and the set function m obeys condi-

tions (1), (2), and (3) from Definition 1.

Remark 1. The interval belief structure BS3 from Definition 2 is not uniquely
defined in general. But this does not influence on our conclusions, because we
will use in the next only the value νI(BS3).

Lemma 1. Let BS1 = (M1,m1) and BS2 = (M2,m2) be in BS, and let BS3 =
BS1 ∪ BS2. Then (1) BSi ⊆ BS3, i = 1, 2; (2) νI(BSi) � νI(BS3), i = 1, 2;
(3) νI(BS2) = νI(BS3) iff BS1 ⊆ BS2.

Definition 3. Let BS1 = (M1,m1) and BS2 = (M2,m2) be in BS. Then the
inclusion index ν(BS1 ⊆ BS2) is defined by

ν(BS1 ⊆ BS2) = νI(BS1 ∪ BS2) − νI(BS2).

Let us analyze first the properties of the introduced inclusion index, when
bodies of evidence of BS1 = (M1,m1) and BS2 = (M2,m2) are singletons, i.e.
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Mi = {[ai, bi]}, i = 1, 2. Then we identify BS1 and BS2 with segments [a1, b1]
and [a2, b2]. Thus, we can write

ν([a1, b1] ⊆ [a2, b2]) = max{b1, b2} − min{a1, a2} − (b2 − a2). (2)

Because

max{b1, b2} = 0.5 (|b1 − b2| + b1 + b2) , min{a1, a2} = 0.5 (a1 + a2 − |a1 − a2|) ,

the formula (2) can be rewritten as

ν([a1, b1] ⊆ [a2, b2]) = 0.5 (|b1 − b2| + |a1 − a2| + (b1 − b2) − (a1 − a2)) .

Lemma 2. Let dI : A × A → R be defined by

dI([a1, b1], [a2, b2]) = ν([a1, b1] ⊆ [a2, b2]) + ν([a2, b2] ⊆ [a1, b1]).

Then dI is a metric on A, and

dI([a1, b1], [a2, b2]) = |b1 − b2| + |a1 − a2| .

Proposition 1. Let d : BS × BS → R be defined by

d(BS1, BS2) = ν(BS1 ⊆ BS2) + ν(BS2 ⊆ BS1),

Then d is a metric on BS, and its values for any BS1 = (M1,m1) and BS2 =
(M2,m2) can be found as a solution of the linear programming problem:

d(BS1, BS2) =
∑

A∈M1

∑

B∈M2

m(A,B)dI(A,B) → min, (3)

where the set function m obeys conditions (1), (2), and (3) from Definition 1.

6 Measuring Uncertainty Based on the Inclusion Index

In this section we propose functionals for measuring contradiction between inter-
val belief structures based on the considered inclusion index. These functionals
reflect three types of possible interpretations of contradiction in decision prob-
lems. We will introduce these functionals and illustrate their properties for the
case when the considered belief structures can be identified with segments. These
functionals are

(1) Con(1)(BS1, BS2) = 0.5 (ν(BS1 ⊆ BS2) + ν(BS2 ⊆ BS1));
(2) Con(2)(BS1, BS2) = max {ν(BS1 ⊆ BS2), ν(BS2 ⊆ BS1)};
(3) Con(3)(BS1, BS2) = min {ν(BS1 ⊆ BS2), ν(BS2 ⊆ BS1)};
(4) Con(4)(BS1, BS2) = 2 inf

BS∈BS
max {ν(BS ⊆ BS1), ν(BS ⊆ BS2)}.
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Noticing that ν(BS1 ⊆ BS2) = 0.5d(BS1, BS2) − 0.5(νI(BS2) − νI(BS1))
we can express Con(k)(BS1, BS2), k = 1, 2, 3 through the metric d on BS as

Con(1)(BS1, BS2) = 0.5d(BS1, BS2),
Con(2)(BS1, BS2) = 0.5d(BS1, BS2) + 0.5 |νI(BS1) − νI(BS2)| ,
Con(3)(BS1, BS2) = 0.5d(BS1, BS2) − 0.5 |νI(BS1) − νI(BS2)| .

The computation of Con(4)(BS1, BS2) can be simplified by using the following
lemma.

Lemma 3. Con(4)(BS1, BS2) = 2 inf
BS∈BBS

max {ν(BS ⊆ BS1), ν(BS ⊆ BS2)}.

The next result shows how introduced functionals recognize types of contra-
diction.

Proposition 2. The following statements are true:

(1) Con(1) and Con(2) are metrics on BS, in particular, Con(i)(BS1, BS2) = 0
for BS1, BS2 ∈ BS, i = 1, 2, iff BS1 = BS2;

(2) Con(3)(BS1, BS2) = 0 for BS1, BS2 ∈ BS iff BS1 ⊆ BS2 or BS2 ⊆ BS1;
(3) Con(4)(BS1, BS2) = 0 for BS1, BS2 ∈ BS iff there is a BS ∈ BS such that

BS ⊆ BS1 and BS ⊆ BS2.

Remark 2. Notice that bbas m1 and m2 in (1) can be viewed as probability distri-
butions on M1 and M2, respectively. Therefore, d is the Wasserstein metric [14]
on BS. The metric (1) has many names in the literature [9] like Kantorovich-
Rubinshtein metric, Wasserstein metric, Mallows metric, Earth Mover’s Dis-
tance, but it has been firstly introduced in [10]. Metrics or distances play an
important role in the theory of belief functions (see the detail review in [2]).

7 Measuring Conflict Within an Interval Belief Structure

We will propose here the general approach for defining conflict measures based
on contradiction measures. We should define first the set of all possible interval
belief structures without conflict. For example, assume that we have the following
possible choices for sets of interval belief structures without conflict:

(a) BS(1) consists of all possible belief structures BS = (M,m) in BS whose
M = {[a, b]};

(b) BS(2) consists of all possible belief structures BS = (M,m) in BS whose M
is such that [a1, b1] ⊆ [a2, b2] or [a2, b2] ⊆ [a1, b1] for every [a1, b1], [a2, b2] ∈
M;

(c) BS(3) consists of all possible belief structures B = (M,m) in BS whose M
is such that

⋂

[ai,bi]∈M

[ai, bi] �= ∅.
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Then we can use the metric d∗ on BS (Con(1) or Con(2)) to find the closest
interval belief structure in BS(k), k = 1, 2, 3, to a chosen BS ∈ BS, and the
distance gives us the evaluation of conflict in BS. Thus, it is possible to define
indices of conflict by

ν
(k)
C (BS) = inf

{
d∗(BS,BS′)|BS′ ∈ BS(k)

}
. (4)

Obviously, the optimization problem (4) depends on the choice of the set
BS(k) and the metric d∗. This explains that there are many possible ways to
solve it. In this paper we don’t try to analyze it in detail, but give some hints
how these problems can be solved.

(a) if we compute ν
(1)
C (BS) and BS = (M,m), then a good approximation

for BS′ ∈ BS(1) that gives the infinum in (4) is [a∗, b∗], in which a∗ =∑

[ai,bi]∈M

aim([ai, bi]) and b∗ =
∑

[ai,bi]∈M

bim([ai, bi]). Then it is possible to

apply any search method for finding two optimal parameters.
(b) if we compute ν

(2)
C (BS), then the set BS(k) consists of so called consonant

belief structures. In this case the corresponding belief (plausibility) function
is called the necessity (possibility) measure. The problem of finding the
optimal approximation of belief structures by consonant belief structures
has been intensively analyzed in the literature, so we can try to use known
approaches [3,7] for solving (4).

(c) In this case the optimization problem can be simplified as follows:

Q(BS) = inf
{

ν(BS∗ ⊆ BS)|BS∗ ∈ BS(4)
}

,

where BS(4) consists of all possible belief structures BS∗ = ({[x, x]},m∗), and
ν
(3)
C (BS) = 0.5Q(BS) for d∗ = Con(1), and ν

(3)
C (BS) = Q(BS) if we take

d∗ = Con(2).

8 Testing Contradictory Measures on Actual Weather
Forecasts

Let us notice first that every weather forecast in our data set is precise, i.e. the
left point ai of the segment Ai = [ai, bi] should give us the lowest night temper-
ature, and the point bi should give us the highest day temperature. This implies
that in computations we can use contradiction measures Con(1) and Con(2), i.e.
forecasts Ai and Aj are not contradictory iff Ai = Aj . Synopticians say that the
forecast Ai = [ai, bi] for the target day A0 = [a0, b0] is accurate if predicted tem-
peratures differ from actual temperatures not greater than three degrees. Thus,
the forecast Ai is accurate if Con(1)(Ai, A0) � 3, i.e. we can evaluate the accuracy
of forecasts by contradiction measures Con(1) and Con(2). Additionally, we have
prior information that the forecast A1 is accurate approximately in 95% of obser-
vations, forecasts A2 and A3 are accurate approximately in 90% of observations,
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and forecasts A4, ..., A7 are accurate approximately in 80% of observations. This
information should be also taken into consideration for aggregating forecasts in
belief structures. One way consists in the following. At first consider the case
when we measure contradiction between the actual temperature described by A0

and forecasts A1, ..., A7, assume in addition that our confidence in each forecast
is the same, i.e. each forecast is accurate with the same probability. Then we can
aggregate them to a belief structure BS1 = (M1,m1), where M1 = {A1, ..., A7}
and m1(Ai) = 1/7, i = 1, ..., 7, and we can measure the contradiction between
BS1 = (M1,m1) and BS0 = (M0,m0), where M0 = {A0} and m0(A0) = 1,
using

Con(1)(BS0, BS1) = 0.5
7∑

i=1

m1(Ai)dI(A0, A1).

Consider the general case, when our confidence in forecasts Ai are described
by probabilities pi, i = 1, ..., 7, and assume that 1 > p1 � p2 � ... � p7. In
this case consider auxiliary forecasts A′

i consisting of two segments Ai and A0

in which the forecasts Ai and A0 are chosen randomly: Ai with probability αi

and A0 with probability (1 − αi). Such a forecast can be modeled by a belief
structure ({Ai, A0},m(i)), where m(i)(Ai) = αi and m(i)(A0) = 1−αi. Then the
probability of accuracy for this forecast is αipi+(1−αi). It is possible to choose αi

such that αipi +(1−αi) = q, for example, if q = p1, then αi = (1 − p1)/(1 − pi),
i = 1, ..., 7. We can aggregate such auxiliary forecasts by a belief structure BS =

(M,m), where M = {A0, A1, ..., A7) and m(A) = 1
7

7∑

i=1

m(i)(A), in which each

forecast A′
i has the same confidence. Let us observe that BS can be represented

as a convex sum

BS = αBS1 + (1 − α)BS0,

in which α = 1
7

7∑

i=1

αi, BS0 is the belief structure described above, and BS1 =

(M1,m1) is the belief structure with the body of evidence M1 = {A1, ..., A7}
and

m1(Ai) =
1

1 − pi

/
7∑

k=1

1
1 − pi

.

Obviously, BS1 can be considered as the aggregation of forecasts A1, ..., A7 for
general case, when probabilities pi can be different. Assume that p1 = 0.95,
p2 = p3 = 0.9, and pi = 0.8, i = 4, ..., 7. Then the obtained formula for m1 gives
us values:

m1(A1) = 1/3, m1(A2) = m1(A3) = 1/6, m1(Ai) = 1/12, i = 4, ..., 7. (5)

When we analyze our statistical data, we observe the following regularity.
If we have the high conflict between forecasts made during the week before the
target day, then the last forecast was very often not accurate. We have checked
this hypothesis using the following functionals:
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1. Contradiction between the last forecast and previous forecasts. In this
case we compute contradiction measures ξ

(k)
2,3 = Con(k)(BS2, BS3), where

k = 1, 2, and the belief structure BS2 = (M2,m2) aggregates forecasts
A2, ..., A7, and the belief structure BS3 describes the last forecast. Then
M2 = {A2, ..., A7} and

m2(A2) = m2(A3) = 1/4,m2(Ai) = 1/8, i = 4, ..., 7.

2. Contradiction among forecasts A1, ..., A7. In this case we describe these fore-
casts by the belief structure BS1 = (M1,m1), where M1 = {A1, ..., A7} and
m1 is defined by (4). After that we compute the functional ξ

(k)
1 = ν

(1)
C (BS1),

where k shows the choice of d∗ = Con(k), k = 1, 2.
3. We measure the contradiction ξ

(k)
0,3 = Con(k)(BS0, BS3), k = 1, 2, between

the actual temperature and the forecast made one day before the target day.
4. We estimate correlation coefficients between characteristics, described

in items 1–2, and accuracy of the last forecast defined by measures
Con(k)(BS0, BS2), k = 1, 2. These correlation coefficients are given in
Table 2. We see that all estimated correlation coefficients are positive; this
means that higher contradiction among forecasts implies lower probability
of accuracy for the last forecast. This dependence is detected more explicitly
by the functional ξ

(2)
1 , that gives the greatest correlation coefficient.

Table 2. Correlation coefficients

ξ
(1)
2,3 ξ

(2)
2,3 ξ

(1)
1 ξ

(2)
1

ξ
(1)
0,3 0,462 0,506 0,526 0,613

ξ
(2)
0,3 0,373 0,443 0,464 0,700

Fig. 1. The joint distribution of ξ
(1)
0,3 and ξ

(1)
2,3
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Let us notice that it is possible to use these functionals in order to detect if
the probability that the forecasts will be accurate is high. As shown in Fig. 1,
even the plot built not on the optimal functional ξ

(1)
2,3 represents evidentially the

dependence of contradiction between the last forecast and the actual weather on
the contradiction between the last forecast and previous forecasts.

9 Conclusion

Finitely defined interval belief structures potentially have many applications for
interval data processing. We have shown how they can be used for analyzing
weather forecasts. For this purpose, it can be very helpful to apply these func-
tionals for measuring conflict, contradiction with the underlying inclusion indices
and metrics introduced in the paper.
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Abstract. In the paper, a method for evaluation of fingerprint equivalence
obtained in a fingerprint recognition system is proposed. For the assessment of
the equivalence of the respective assessment units, the theory of intuitionistic
fuzzy sets is used. The obtained intuitionistic fuzzy estimations reflect on the
recognition of the system. We also consider a degree of uncertainty when the
information is not enough. In this case we use threshold values for the minimum
and maximum of the degree of membership and non-membership. For the
description of the entire process, we use generalized nets model.

Keywords: Intuitionistic fuzzy sets � Fingerprints � Fingerprint system �
Generalized nets

1 Introduction

The most popular biometric method is based on comparing fingerprints, using two wide
spread techniques. The first takes and compares the details of lines crests, where they
diverge and interrupt. The second technique measures and compares the directions of
the lines of the fingerprint, e.g. changes, crests and arches, their width and depth and
the gnarls also [13, 18]. Some difficulties are possible to occur in automatic recogni-
tion, when the fingers are dirty, wet or oil covered. Besides, the fingerprint depends on
the specific usage of the hand in some professions, such as building, where wounding,
abrasion or some other similar changes of the hand’s skin are frequently occurred. Also
when the skin is getting older some changes are possible in the lines of the fingerprint.
However, this is fixable if periodically the data base is updated, which is important for
comparing identification. For the recognition to be sure, the necessary data base, which
the comparison will be made with, needs to be of very high quality.

Intuitionistic fuzzy sets defined by Atanassov [2, 4] represent an extension of the
concept of fuzzy sets, exhibiting function µA(x) defining the membership of an element
x to set A, evaluated in the interval [0; 1]. The difference between fuzzy sets and
intuitionistic fuzzy sets (IFSs) is in the presence of a second function mA(x) defining the
non-membership of element x to set A, where µA(x) 2 [0; 1], mA(x) 2 [0; 1], under the
condition of µA(x) + mA(x) 2 [0; 1]. The IFS itself is formally denoted by:
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A ¼ x; lAðxÞ; vAðxÞh ijx 2 Ef g:

Comparison between elements of any two IFSs, say A and B, involves pairwise
comparisons between their respective elements’ degrees of membership and
non-membership to both sets.

Generalized nets (GNs) [1, 3, 5] are defined in a way that is principally different
from the ways of defining the other types of Petri nets. The first basic difference
between GNs and ordinary Petri nets is the “place – transition” relation. Here the
transitions are objects of a more complex nature. A transition may contain m input
places and n output places where m, n � 1.

Formally, every transition is described by a seven-tuple:

z ¼ \L0; L00; t1; t2; r; M; h[ ;

where

(a) L′ and L″ are finite, non-empty sets of places (the transition’s input and output
places, respectively). For the transition in Fig. 1 these are

L0 ¼ l01; l
0
2; . . .; l

0
m

� �

and

L00 ¼ l001; l
00
2 ; . . .; l

00
n

� �
;

(b) t1 is the current time-moment of the transition’s firing;
(c) t2 is the current value of the duration of its active state;
(d) r is the condition of the transition to determine which tokens will pass (or

transfer) from the inputs to the outputs of the transition; it has the form of an
Index Matrix:

Fig. 1. A GN-transition
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ri,j is the predicate that corresponds to the i-th input and j-th output place. When its
truth value is “true”, a token from the i-th input place transfers to the j-th output place;
otherwise, this is not possible;

(e) M is an IM of the capacities of transition’s arcs:

(f) h is an object of a form similar to a Boolean expression. It may contain as
variables the symbols that serve as labels for a transition’s input places, andh is an
expression built up from variables and the Boolean connectives ^ and _ and the
semantics of which is defined as follows:

^ li1 ; li2 ; . . .; liuð Þ - every place li1 ; li2 ; . . .; liuð Þ must contain at least one token,
_ li1 ; li2 ; . . .; liuð Þ - there must be at least one token in all places li1 ; li2 ; . . .; liuð Þ, where
li1 ; li2 ; . . .; liuf g � L0:

When the value of a type (calculated as a Boolean expression) is “true”, the
transition can become active, otherwise it cannot.

In this paper we propose a method for evaluation of the fingerprint equivalence of
two fingerprints – one saved in the system and one scanned from a fingerprint
recognition system. For the assessment of the equivalence of the respective assessment
units we use the theory of intuitionistic fuzzy sets. The obtained intuitionistic fuzzy
estimations can affect or not the recognition in the system. We also consider a degree of
uncertainty when the information is not enough. In this case we use threshold values
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for the minimum and maximum of the degree of membership and non-membership. For
the describtion of the entire process we use generalized nets model (Fig. 2).

2 Generalized Nets Model

Many data mining, decision making and pattern recognition tools are modeled with
generalized nets [6–12, 14–17, 19, 20]. There are many papers describing models of
different kinds of data mining process.

A Generalized Net includes the set of transitions:

A ¼ Z1; Z2; Z3; Z4; Z5f g;

where the transitions describe the following processes:

Z1 – Check if the finger is in right position;
Z2 – Check if the finger has right rotation;
Z3 – Correction of intensity;
Z4 – Fingerprint intuitionistic fuzzy estimation.

A token enters the net from place L1 with initial characteristic: “new scanned
fingerprint”.

Transition Z1 has the following form:

Z1 ¼ hfL1; L3; L4; L12g; fL2; L3; L4g;R1;_ðL1; L3; L4; L12Þi;

L13

L11

L9L7

L6

L5

L4

L3

L2

Z3Z1 Z2 Z4

L12L8

L10L1

Fig. 2. Generalized net of fingerprints recognition with intuitionistic fuzzy estimations
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where

W3,2 = “The fingerprint has a correct vertical positioning”;
W3,3 = ¬ W3,2;
W4,3 = “The fingerprint has a correct horizontal positioning”;
W4,4 = ¬ W4,3.

The tokens that enters the place L4 from place L1 do not obtain new characteristics.
They generate a new tokens that enter in place L3 with characteristics:

“fingerprint with a correct vertical positioning”.

At the second activation of the transition the tokens from place L3 generate new
tokens that enter in place L2

“fingerprint with a correct horizontal positioning”.

Transition Z2 has the following form:

Z2 ¼ L2; L6; L7f g; L5; L6; L7f g;R2;_ L2; L6; L7ð Þh i;

where

and:

W6,5 = “The fingerprint is not turned counter clockwise”;
W6,6 = ¬ W6,5;
W7,6 = “The fingerprint is not turned clockwise”;
W7,7 = ¬ W7,6.

The tokens that enter places L7 from place L2 do not obtain new characteristics.
They generate a new tokens that enter in place L6 with the characteristics:

“fingerprint not turned counter clockwise”.

At the second activation of the transition the tokens from place L6 generate new
tokens that enter in place L5

“fingerprint not turned clockwise”.
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Transition Z3 has the following form:

Z3 ¼ h L5; L9f g; L8; L9f g;R3;_ L5;L9ð Þi

where

and:

W9,8 = “The intensity of the images is standardized”;
W9,9 = ¬ W9,8.

The tokens that enter the places L9 (from place L5) do not obtain new characteristic.
The tokens that enter in places L8 obtain the characteristic:

“Standardized intensity of the images”.

Tokens enters the net from place L10 with initial characteristics:

“ fingerprints from the database and minimal threshold of equivalence”.

Transition Z4 has the following form:

Z4 ¼ h L8; L10; L13f g; L11; L12; L13f g;R4;_ð^ L8;L10Þ; L13ð Þi;

where

and:

W13,11 = “Recognized fingerprint”.
W13,12 = “Not enough fingerprint matches”
W13,13 = ¬ W13,11

The tokens that enter place L13 (from places L8, L10) do not obtain new charac-
teristics. They generate a new tokens that enter in places L11 and L12, with the
characteristics:

“Recognized fingerprint” in place L11

and “Not enough fingerprint matches” in place L12.
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Let us examine a monochrome image. This image has size mxn. The pixels have
values from 0 to 255. The evaluation is of several images by calculating their intu-
itionistic fuzzy estimations. Let us have the following sets for an image:

• total number of the pixels - e;
• number of assigned values for all pixels in the image - s;
• number of common values of the pixels for the images - n;
• number of pixels having the value greater than the average value for the image - m;
• number of pixels having the value smaller than the average value for the image - f.

Initially we calculate average value for an image dividing the sum of all the pixels
in the image to the number of the pixels in the image.

Savg ¼ s
e
:

Then, we can find the degree of membership of the image dividing the sum of the
common pixels for the two images to the sum of all the pixels in the image.

limage ¼
n
e
:

In the next step we compare the last pixels in the image with the average value for
the image.

In the case when s� n[ Savg, we obtain the degree of non-membership having the
following form:

mimage ¼ m
e
;

and in the case when s� n\ Savg, we obtain the uncertainty:

pimage ¼ f
e

The calculated final part based on all assessment units for fingerprints has to satisfy the
necessary “minimal threshold of equivalence”. To check this, we introduce threshold
values: Mmax, Mmin, Nmax, Nmin.

If

limage [Mmax & Vimage\Nmin;

then the fingerprints satisfy the “minimal threshold of equivalence” for the current
estimation and W13,11 = “Recognized fingerprint”.

If

limage [Mmin & Vimage\Nmax;
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then the fingerprints do not satisfy the “minimal threshold of equivalence” for the
current estimation and it has to be evaluated for all assessment units again and
W13,13 = ¬ W13,11.

In the rest of the cases the “minimal threshold of equivalence” is undefined and
fingerprints have to be evaluated again for the assessment units for which: limage �
Mmax & Vimage �Nmin; is valid and W13,12 = “Not enough fingerprint matches”.

3 Conclusion

This article elaborates on the main stages of fingerprint recognition. Solving the
problems of such a system requires a total analysis to be done. The model gives the
opportunity to consider the different stages of fingerprint identification. The fingerprint
is one of the most unique parts of the human body and that is why it is used in devices
for identification. For the purpose, we use assessment with intuitionistic fuzzy sets. The
obtained intuitionistic fuzzy estimations reflect on the recognition of the system. The
obtained intuitionistic fuzzy estimations can affect or not the recognition in the system.
We also consider a degree of uncertainty when the information is not enough. In this
case we use threshold values for the minimum and maximum of the degree of mem-
bership and non-membership. For the description of the entire process, we use gen-
eralized nets model.
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Abstract. In this work, we discuss a recent generalization of the classi-
cal notion of monotonicity, with a special focus on the idea of directional
monotonicity. This idea leads to the concepts of pre-aggregation func-
tions and of ordered directional monotonicity. For the former, the direc-
tion along which monotonicity is considered is the same for all the points
of the domain and the same boundary conditions as for aggregation func-
tions are imposed. For the latter, different directions of monotonicity may
be considered at different points.

Keywords: Aggregation function · Pre-aggregation function · Direc-
tional monotonicity · Ordered-directional monotonicity

1 Introduction

Aggregation functions [1,13] are increasingly relevant nowadays to deal with a
type of problems where some kind of information fusion is required [4–7,10,14].
But some operators which are used for this type of problems do not fall into the
scope of aggregation function due to the lack of monotonicity. This is specially
the case of the mode. These operators have caused a growing interest on defin-
ing generalized forms of monotonicity which, while covering the usual case, may
provide a general framework to include other functions. A first step in this sense
was given in [16], where the notion of weak monotonicity was discussed. Weak
monotonicity requires increasingness (or decreasingness) only along the fixed
ray defined by the first quadrant diagonal. The consideration of increasingness
(decreasingness) along general rays was proposed by Bustince et al. [3] and cor-
responds to the idea of directional monotonicity. Note that monotone functions
in the usual sense are both weakly monotone and directionally monotone.
c© Springer International Publishing AG 2018
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However, these extensions may not be sufficient for some applications.
In some cases, the problem lays on the fact that the direction along which
monotonicity is needed may vary from point to point, depending on the specific
inputs to be fused. This is specially the case in some edge detection problems
in image processing [2,11]. But it is also the situation in those problems where
extensions of operators such as the OWA should be considered in order to deal
with generalized forms of monotonicity.

For this reason, and following the developments in [2], in this work we present
the concept of ordered directionally monotone functions, as functions such that
the direction along which monotinicity is considered at each point depends on
the relative size of the inputs at that point. In this way, at different points
monotonicity along a different direction may be considered. Such a possibility
has led to interesting applications in image processing problems [2], which we
not discuss here due to the lack of space.

The structure of this work is the following: in Sect. 2 we present some pre-
liminary definitions and concepts. Section 3 is devoted to the notion of ordered
directionally monotone functions. In Sect. 4 we present some construction meth-
ods of such functions. We finish with some conclusions and references.

2 Preliminaries

Let n ∈ N, n > 1. Bold letters will be used for points in [0, 1]n, that is, x =
(x1, . . . , xn) ∈ [0, 1]n. By abuse of notation, we denote 0 = (0, . . . , 0) and 1 =
(1, . . . , 1). We also consider the partial order on R

n, defined as: given x,y ∈
[0, 1]n, we write x ≤ y if xi ≤ yi for every i ∈ {1, . . . , n}.

The symbol (·) denotes n-dimensional vectors in the Euclidean space R
n. We

denote by Sn the set of permutations of {1, . . . , n}.
Let Sn be the set of all permutations of the set {1, . . . , n} (i.e., bijective

functions from {1, . . . , n} to {1, . . . , n}). Given σ ∈ Sn, x ∈ [0, 1]n and r ∈ R
n,

we use the notation:
xσ = (xσ(1), . . . , xσ(n))

and
rσ = (rσ(1), . . . , rσ(n)).

Definition 1 ([3]). A (n-dimensional) fusion function is any function
F : [0, 1]n → [0, 1].

An outstanding class of fusion functions is that of aggregation functions
[1,9,13].

Definition 2. An aggregation function is a fusion function A : [0, 1]n → [0, 1]
such that

(i) A is increasing; that is, A(x) ≤ A(y) for every x,y ∈ [0, 1]n such that
x ≤ y;

(ii) A(0) = 0;
(iii) A(1) = 1.
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Choquet integrals [12] will be of special interest for us. As a first step to
present them, we recall here the definition of fuzzy measure.

Definition 3. Let N = {1, 2, . . . , n}. A function m : 2N → [0, 1] is a fuzzy
measure if it satisfies the following properties:

(m1) Increasingness: for all X,Y ⊆ N , if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

The Choquet integral is a generalization of the Lebesgue integral, where
additive measures are replaced by fuzzy measures.

Definition 4 ([1,13]). Let m : 2N → [0, 1] be a fuzzy measure. The discrete Cho-
quet integral with respect to m is defined as the function Cm : [0, 1]n → [0, 1],
given, for all x = (x1, . . . , xn) ∈ [0, 1]n, by

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m (
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation of the input n-tuple x, that

is, x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)}
is the subset of indices of n − i + 1 largest components of x.

Finally we also recall here several weaker forms of monotonicity, which are
at the origin of the present work.

Definition 5 ([16]). A function F : [0, 1]n → [0, 1] is said to be weakly monotone
increasing if the inequality

F (x1 + h, . . . , xn + h) ≥ F (x1, . . . , xn) (2)

holds for every x1, . . . , xn, h ∈ [0, 1] such that xi + h ≤ 1, i ∈ {1, . . . , n}.
Analogously, weakly monotone decreasing functions can be defined.

The concept of weak monotonicity can be further extended if we consider
monotonicity along general rays. This idea has led to the notion of directional
monotonicity introduced in [3].

Definition 6 ([3]). Let r = (r1, . . . , rn) be a real n-dimensional vector, r �= 0.
A fusion function F : [0, 1]n → [0, 1] is r-increasing if for all points (x1, . . . , xn) ∈
[0, 1]n and for all c > 0 such that (x1 + cr1, . . . , xn + crn) ∈ [0, 1]n we have

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn).

The notion of r-decreasing fusion function is defined analogously, reversing
the previous inequality.

Directional monotonicity has lead to considering the idea of pre-aggregation
function as a generalization of usual aggregation functions [15].
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Definition 7. A function F : [0, 1]n → [0, 1] is said to be an n-ary pre-
aggregation function if the following conditions hold:

(PA1) There exists a real vector r ∈ [0, 1]n (r �= 0) such that F is r- increasing.
(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1.

Example 1. Some examples of pre-aggregation functions are the following.

(i) Consider the mode, Mod(x1, . . . , xn), defined as the function that gives back
the value which appears most times in the considered n-tuple, or the smallest
of the values that appears most times, in case there are more than one.
Then, the mode is (1, . . . , 1)-increasing, and it is a particular case of pre-
aggregation function. Note that if r is not a constant vector then the mode
is not r-monotone.

(ii) F (x, y) = x − (max{0, x − y})2 is, for instance, (0, 1)-increasing, and then it
is an example of pre-aggregation function. It is also (1, 1)-increasing but not
(1, 0)-monotone and thus not an aggregation function.

Pre-aggregation function can be built in different ways. In particular, we
recall here the following two methods [3].

Proposition 1. Let A : [0, 1]m → [0, 1] be an aggregation function. Let Fi :
[0, 1]n → [0, 1] (i ∈ {1, . . . , m}) be a family of m r-pre-aggregation functions for
the same vector r ∈ [0, 1]n. Then, the function A(F1, . . . , Fm) : [0, 1]n → [0, 1],
defined as

A(F1, . . . , Fm)(x1, . . . , xn) = A(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn))

is also an r-pre-aggregation function.

In order to present the second construction method, let m : 2N → [0, 1] be
a fuzzy measure and M : [0, 1]2 → [0, 1] be a function such that M(0, x) = 0
for every x ∈ [0, 1]. Taking as basis the Choquet integral, we define the function
CM

m : [0, 1]n → [0, n] by

CM
m (x) =

n∑

i=1

M
(
x(i) − x(i−1),m

(
A(i)

))
, (3)

where N = {1, . . . , n}, (x(1), . . . , x(n)) is an increasing permutation on the input
x, that is, 0 ≤ x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and
A(i) = {(i), . . . , (n)} is the subset of indices of n− i+1 largest components of x.
Note that CM

m is well defined by (3) even if the permutation is not unique.
We have the following result.

Theorem 1. Let M : [0, 1]2 → [0, 1] be a function such that for all x, y ∈
[0, 1] it satisfies M(x, y) ≤ x, M(x, 1) = x, M(0, y) = 0 and M is (1,0)-
increasing. Then, for any fuzzy measure m, CM

m is a pre-aggregation function
which is idempotent and averaging, i.e., min(x1, . . . , xn) ≤ CM

m (x1, . . . , xn) ≤
max(x1, . . . , xn).
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Example 2. Taking into account that a semi-copula is an aggregation function
M such that M(1, x) = M(x, 1) = x for every x ∈ [0, 1], we have that, if
M : [0, 1]2 → [0, 1] is a semi-copula, then, for any measure m, CM

m is a pre-
aggregation function which is idempotent and averaging.

3 Ordered Directional Monotonicity

In this section, following the developments in [2], we discuss the main notion of
this paper: ordered directional monotonicity.

To motivate the introduction of this concept, note that by means of
directional monotonicity, usual monotonicity may be relaxed, in order to
require increasingness along some fixed ray. However, the direction along which
monotonicity is demanded is the same for every point in the domain [0, 1]n, and
it is independent of which particular point is considered. This can be a problem
for some applications such as image processing [2].

For ordered directionally monotone functions, on the contrary, the direction
along which monotonicity is required varies depending on the ordinal size of the
coordinates of the considered input. The formal definition reads as follows.

Definition 8. Let F : [0, 1]n → [0, 1] be a fusion function and let r �= 0 be an
n-dimensional real vector. F is said to be ordered directionally (OD) r-increasing
if for each x ∈ [0, 1]n, and any permutation σ ∈ Sn with xσ(1) ≥ · · · ≥ xσ(n) and
any c > 0 such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0

it holds that
F (x + crσ−1) ≥ F (x), (4)

where rσ−1 = (rσ−1(1), . . . , rσ−1(n)).
Analogously, F is said to be ordered directionally r-decreasing if for each

x ∈ [0, 1]n, and any permutation σ ∈ Sn with xσ(1) ≥ · · · ≥ xσ(n) and any c > 0
such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0

it holds that
F (x + crσ−1) ≤ F (x). (5)

Observe that, in general, the r-directional increasingness (decreasingness) is
equivalent to the OD r-increasingness (decreasingness) if and only if rσ = r
for any permutation σ ∈ Sn, i.e., if r is a constant vector. Obviously, if the
considered function F is symmetric, then directional and OD r-increasingness
(decreasingness) are equivalent for any vector r.

Proposition 2. Let F : [0, 1]n → [0, 1] be an OD r-monotone function. Then
for any increasing (decreasing) function ϕ : [0, 1] → [0, 1], the function ϕ ◦ F is
a fusion function and has the same (reversed) type of OD r-monotonicity as F .
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Proof. The claim is a trivial consequence of the definition of the OD r-
monotonicity of F and the standard monotonicity of ϕ. �

Example 3.

(i) Let F : [0, 1]n → [0, 1] be a constant fusion function, i.e., F (x1, . . . , xn) = c
for some c ∈ [0, 1] and for every (x1, . . . , xn) ∈ [0, 1]n. Then, for every vector
r ∈ R

n, r �= 0, F is OD r-increasing and also OD r-decreasing.
(ii) Let p > 0. Then the function G(x, y) = |x − y|p is OD r-increasing if and

only if r = (r1, r2), r1 ≥ r2.
(iii) Let Fw : [0, 1]n → [0, 1] be an OWA operator [17] related to the normed

weighting vector w = (w1, . . . , wn) ∈ [0, 1]n. Then Fw is OD r-increasing if
and only if w · r =

∑
wiri ≥ 0.

Example 4. Let p > 0. Consider the function F : [0, 1]n → [0, 1] given by

F (x) =
1
n

n∑

j=2

|x1 − xj |p .

Then F is OD r-increasing for every r of the type r = (t, . . . , t, s) with t ≥ s.

Note that as a consequence of the previous example, it follows that penalty
functions [8] of the type

P (x1, . . . , xn, y) =
1
n

∑
|xi − y|p

are OD r-increasing for every r of the type r = (t, . . . , t, s) with t ≥ s.
Let us introduce some properties of OD monotone functions. First of all, it

comes out that OD-increasingness and OD-decreasingness are closely related, as
the following result shows.

Proposition 3. A function F : [0, 1]n → [0, 1] is OD r-increasing if and only if
F is OD −r-decreasing.

Proof. It follows from a straightforward calculation. �

The following result is also straightforward.

Proposition 4. Let F : [0, 1]n → [0, 1] be an OD r-increasing function. Then,

(i) for every α > 0, F is OD αr-increasing;
(ii) for every α < 0, F is OD αr-decreasing.

That is, vectors determining the direction for OD-increasingness or decreas-
ingness can be normalized.

Now we consider what happens if a fusion function F is OD increasing with
respect to two different vectors r and s. We show that OD increasingness of
F with respect to a non-negative linear combination of both vectors can be
considered under appropriate conditions.
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Theorem 2. Let r and s be n-dimensional non-null vectors. Consider any a, b ≥
0 with a + b > 0, such that for each point x ∈ [0, 1]n, and for any permutation
σ ∈ Sn with xσ(1) ≥ · · · ≥ xσ(n) and c > 0 such that xσ + cu is in [0, 1]n

and comonotone with xσ, where u = ar + bs, it holds that the points xσ + car
or xσ + cbs are also in [0, 1]n and comonotone with xσ. Then, if a function
F : [0, 1]n → [0, 1] is both OD r- and OD s-increasing, it is also OD u-increasing.

Proof. Note that for each σ ∈ Sn, if u = ar + bs, then uσ−1 = arσ−1 + bsσ−1 ,
and thus, for each x ∈ [0, 1]n, (under the given assumptions), using the OD s-
and r-increasingness of F , we can write

F (x + cuσ−1) = F (x + carσ−1 + cbsσ−1)
≥ F (x + carσ−1) ≥ F (x)

and, hence, the statement holds. �

The different types of monotonicity are related as follows.

Proposition 5. Let F : [0, 1]n → [0, 1] be a fusion function and let {e1, . . . , en}
be the canonical basis in R

n. Then the following statements are equivalent.

(i) F is increasing.
(ii) F is ei-increasing for every i ∈ {1 . . . , n}.
(iii) F is OD ei-increasing for every i ∈ {1 . . . , n}.
Proof. (i) ⇔ (ii): Let F be an increasing function. Fix any element i ∈
{1 . . . , n}. Consider any x ∈ [0, 1]n and any c > 0 such that x+ cei ∈ [0, 1]n. As
x + cei ≥ x, due to the increasing monotonicity of F , we obtain F (x + cei) ≥
F (x), i.e., F is ei-increasing. On the other hand, the ei-increasingness of F for
each i implies that F is increasing in each coordinate, which means that F is
increasing.
(ii) ⇔ (iii): Suppose that F is ei-increasing for every i ∈ {1 . . . , n}. Fix any
i ∈ {1 . . . , n} and put r = ei. Let x be any element in [0, 1]n. Consider any
σ ∈ Sn with xσ(1) ≥ . . . ≥ xσ(i) ≥ . . . ≥ xσ(n), and any c > 0 such that also
xσ(1) ≥ . . . ≥ xσ(i) + c ≥ . . . ≥ xσ(n). Suppose that σ(i) = j. Then rσ−1(j) =
ri = 1 and rσ−1 = ej , so, due to the ej-increasingness of F , we have

F (x + crσ−1) = F (x + c (ei)σ−1)
= F (x + cej) ≥ F (x),

which proves the OD ei-increasingness of F .
On the other hand, suppose that F is OD ei-increasing for each i. Fix i ∈

{1, . . . , n}. Consider any x ∈ [0, 1]n and any c > 0 such that x + cei ∈ [0, 1]n.
If xi = max{x1, . . . , xn}, then there is a permutation σ such that σ(1) = i and

xσ(1) ≥ . . . ≥ xσ(n). We have ei = (e1)σ−1 and due to the OD e1-increasingness
of F , as xσ and xσ + ce1 are comonotone, we can write

F (x + cei) = F (x + c(e1)σ−1) ≥ F (x).
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Now, suppose that xi �= max{x1, . . . , xn}. Let σ be a permutation such that
xσ(1) ≥ . . . ≥ xσ(n). Let i = σ(j) which implies ei = (ej)σ−1 . Clearly, j > 1. If
xi + c = xσ(j) + c ≤ xσ(j−1) then xσ and xσ + cej are comonotone, and thus the
OD ej-increasingness of F implies F (x + cei) ≥ F (x).

If xi +c > xσ(j−1), the mentioned points are not more comonotone. However,
the point xσ is comonotone with xσ +

(
xσ(j−1) − xi

)
ej , and due to the OD ej-

increasingness of F we can deduce

F (x +
(
xσ(j−1) − xi

)
ei) ≥ F (x).

Clearly, then
x + cei = y + dei,

where y = x+
(
xσ(j−1) − xi

)
ei and d = c+xi−xσ(j−1) > 0, and we can continue

by (finite) induction. This follows from the fact that there is permutation τ such
yτ(1) ≥ . . . ≥ yτ(n) and τ−1(i) = j − 1. Thus, in at most j steps we obtain our
result.

The equivalence of (i) and (iii) already follows. �

4 Construction Methods for OD Monotone Functions

In this section we discuss different methods for construction of OD r-increasing
functions from other types of fusion functions.

The first method is based on composition. We first provide a sufficient condi-
tion for OD r-increasingness of composition of OD r-increasing fusion functions.

Proposition 6. Let r ∈ R
n be a non-null vector and let Fi : [0, 1]n → [0, 1], i ∈

{1, . . . , m}, be OD r-increasing functions. If A : [0, 1]m → [0, 1] is an increasing
function then the function A(F1, . . . , Fm) : [0, 1]n → [0, 1] defined by

A(F1, . . . , Fm)(x1, . . . , xn)
= A(F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)),

is also OD r-increasing.

Proof. Let x be any element in [0, 1]n. Consider any permutation σ ∈ Sn with
xσ(1) ≥ . . . ≥ xσ(n) and c > 0 such that xσ + cr is in [0, 1]n and comonotone
with xσ. From the definition of OD r-monotonicity, we have that

Fi(x + crσ−1) ≥ Fi(x), i ∈ {1, . . . , m}.

Moreover, from the increasing monotonicity of A, it follows that

A(F1, . . . , Fm)(x + crσ−1) ≥ A(F1, . . . , Fm)(x),

and, hence, the result holds. �

Ordered directionally increasing functions can also be built from directionally
increasing functions by ordering the inputs in a decreasing way.
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Proposition 7. Let F : [0, 1]n → [0, 1] be an r-increasing function. Then the
function G : [0, 1]n → [0, 1], given by

G(x1, . . . , xn) = F (xσ(1), . . . , xσ(n)),

where a permutation σ ∈ Sn satisfies the property xσ(1) ≥ · · · ≥ xσ(n), is OD
r-increasing.

Proof. Let x be any element in [0, 1]n. Consider any permutation σ ∈ Sn with
xσ(1) ≥ . . . ≥ xσ(n) and any c > 0 such that xσ + cr is in [0, 1]n and comonotone
with xσ. Then, from the r-increasingness of F , we have

G(x + crσ−1) = F ((x + crσ−1)σ)
= F (xσ + cr) ≥ F (xσ) = G(x),

which proves the claim. �

Example 5. Consider the weighted Lehmer mean Lλ : [0, 1]2 → [0, 1], given by

Lλ(x, y) =
λx2 + (1 − λ)y2

λx + (1 − λ)y

(with the convention 0/0 = 0), which is (1−λ, λ)-increasing (but not r-increasing
if r �= k(1 − λ, λ), k > 0) [3]. By Proposition 7, the function

Gλ(x, y) =
λ(max(x, y))2 + (1 − λ)(min(x, y))2

λ max(x, y) + (1 − λ)min(x, y)

is OD (1 − λ, λ)-increasing. In fact, Gλ is not OD r-increasing with respect to
any vector r �= k(1 − λ, λ), k > 0.

Note that Lλ is symmetric only if λ = 1
2 . Then Lλ = Gλ is

(
1
2 , 1

2

)
-increasing

and thus, also OD
(
1
2 , 1

2

)
-increasing, and also weakly increasing.

Finally, we analyze the construction of OD-monotone functions using the
discrete Choquet integral.

Theorem 3. Let m : 2N → [0, 1] be a fuzzy measure and let r = (r1, . . . , rn) be
a non-null real vector. Then the Choquet integral Cm : [0, 1]n → [0, 1] is an OD
r-increasing fusion function if and only if for each permutation τ ∈ Sn it holds
that

n∑

i=1

rimτ (i) ≥ 0,

where mτ (1) = m({τ(n)}), and for each i ∈ {2, . . . , n}, mτ (i) = m({τ(n − i +
1), . . . , τ(n)}) − m({τ(n − i + 2), . . . , τ(n)}).

Proof. Recall that for any x ∈ [0, 1]n the Choquet integral introduced in Defi-
nition 4 can be written equivalently as

Cm(x) =
n∑

i=1

x(i)

(
m

(
A(i)

) − m
(
A(i+1)

))
,
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where (·) is a permutation in Sn, such that x(1) ≤ . . . ≤ x(n), and for each
i ∈ {1, . . . , n}, A(i) = {(i), . . . , (n)}, with the convention A(n+1) = ∅. If xσ +cr ∈
[0, 1]n and xσ and xσ + cr are comonotone for some permutation σ ∈ Sn with
xσ(1) ≥ . . . ≥ xσ(n) and c > 0, then if Cm is OD r-increasing, necessarily
Cm(x+crσ−1) ≥ Cm(x). Clearly, one can assume that σ(1) = (n), . . . , σ(n) = (1),
i.e., σ(i) = (n − i + 1). Thus

Cm (x + crσ−1)

=
n∑

i=1

(
x(i) + crn−i+1

) (
m

(
A(i)

) − m
(
A(i+1)

))

≥ Cm(x) =
n∑

i=1

x(i)

(
m

(
A(i)

) − m
(
A(i+1)

))
,

which implies that

n∑

i=1

ri

(
m

(
A(n−i+1)

) − m
(
A(n−i+2)

))

=
n∑

i=1

rim(·)(i) ≥ 0.

As any permutation τ can be obtained from a permutation (·) related to some
input x ∈ [0, 1]n, the necessity of our result is proved.

The sufficiency can be shown similarly. �

5 Conclusions

In this paper we have discussed the notion of ordered directionally monotonic-
ity, presenting some properties and construction methods. Ordered directionally
monotone functions allow for considering different directions for monotonicity
for different inputs, according to the relative size of the latter. This is specially
of interest in image processing problems or in those settings where extensions of
operators such as the OWA must be considered.

In future work, we will carry on an analysis of the possible applications of
this new concept, specially in the fields of image processing and edge detection.
In particular, we intend to discuss how edge detectors may be built making use
of this new notion.

Acknowledgment. The authors would like to thank research projects TIN2016-
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Abstract. Advances in wireless communication technologies and the internet of
things are leading to new developments in the domain of wearable, smart medical
devices (SMDs) as a major disruptive trend for the medical industry. Wearable
smart sensor technology with non-invasive or invasive implantable materials has
a great potential for interfacing with the human body, thanks to low-power
silicon-based electronics that are very efficient in data processing and transmis-
sion. Novel SMDs are designed for monitoring living being’s vital signs, such as
blood pressure, cardiac monitoring, respiration rate, body temperature, etc. in
either medical diagnostic or health monitoring. Considering various smart
devices in the medical industry, a key decision is which device to choose and
apply on the patient. The decision on the evaluation of SMDs is a complicated
problem that needs to be assessed from different perspectives. This study guides
decision makers on the selection of SMDs of wearable vital sign sensors under
different evaluation criteria. A multi criteria decision making approach is pro-
posed to support the SMD selection process under group decision making
(GDM) in an uncertain environment. A significant feature of this analysis is the
complexity of the selected decision criteria for the SMD evaluation. To simulate
these processes, a methodology that combines interval valued intuitionistic fuzzy
(IVIF) with Višekriterijumsko kompromisno rangiranje (VIKOR) under GDM is
proposed. This methodology is then used to measure the assessment of four
SMDs using five evaluation criteria. To validate the proposed approach, the
selection methodology for wearable vital sign monitoring devices is applied on a
case study.

Keywords: Smart medical devices (SMDs) � Multi criteria decision making
(MCDM) � Group decision making (GDM) � Interval valued intuitionistic fuzzy
(IVIF) � Višekriterijumsko kompromisno rangiranje (VIKOR)

1 Introduction

The healthcare industry is revolutionizing how patients are treated by using technological
tools and devices helping medical staff as well as patients. These innovative ways of
treatment support handling health situations outside of a healthcare facility. This growth
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in the number of novel medical devices is closely associated with digital technologies and
their applications in medical systems. The first driving factor in this progress is due to the
developments in the sensors and actuators technology. Interface of electronic devices
with chemical elements is improving, and micro and nano-technological substances
make it easier to detect and inject more and more substances directly into the human
body. These minimally-invasive or non-invasive small-scale medical tools present
important opportunities for developing dexterous, smart, and robust devices. There are
novel portable or wearable devices to monitor and measure the vital sign of living beings.
These wearable vital sign measurement devices use biometric information from human
body to continuously measure real-time heart rate, body temperature, speed, cadence and
distance data. Several types of SMD are created to perform different medical tasks.
Digital evolution in current era revolutionizes the delivery of healthcare in homes and as
well as at hospitals by introducing either surgical robots to assist complex procedures or
to simply support routine tasks, e.g. increasing medical staff’s efficiency and adminis-
tration of medicine to patients. As the use of SMDs at homes increase, people find it less
necessary to physically visit health facilities. New smartphone apps and wireless con-
nection among different devices with locally available processing power permit com-
munication of remote units, i.e. hospitals, homes, staff, etc.

New SMDs can be fixed on the human body as skin patches or smart woven textiles
or they could also be implanted in smaller SMDs to make the process simpler. Current
trend in the medical industry is to keep tabs on patients’ vital information to aid
medical staff. Thanks to the wearable monitoring technology, the dreaded traditional
ward rounds can soon become a thing of the past. Instead of any medical staff going
from patient to patient taking note of their vital information, SMDs can collect and
report on these data uniformly and surreptitiously on their behalf. For instance, an SMD
can be a biosensor embedded in a wearable patch band with electrocardiography
electrodes with axis accelerometer to detect and record the breathing rate, temperature,
and heart rate, etc. There has been an increase in the demand for wearable devices.
Further, these smart, wearable and connected devices can also be linked to external
smartphones or tablets for the analysis of the results collected by their biosensors. The
SMDs’ literature review presents that there is big gap between the practice in industry
and scientific theory with a limited number of studies. As far as the authors are aware
of, there are few studies that discuss SMD technologies or their applications but no
academic study that explicitly deals with the concept of SMDs. Assenting this
assumption. Stoppa and Chiolerio [1] review the recent advances in the field of smart
textiles and their manufacturing process. Vashist et al. [2] review the widely used
personalized smartphone based healthcare monitoring and management devices. Walsh
et al. [3] review the novel wireless cardiac monitoring devices. Khan et al. [4] review
the latest development in flexible and wearable human vitals sensors.

Decision making processes are usually linked with the selection of the best among
the pre-defined set of alternatives by considering the impact of multiple criteria. Since
the early emergence of multi criteria decision making (MCDM), this methodology has
been evolving and has been one of the key research areas in solving complex decision
problems in the presence of multiple objectives or criteria [5]. As a result of this
revolution, many types of MCDM methodologies are proposed which are being suc-
cessfully used in solving numerous types of scientific and industrial decision making
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problems. MCDM methodology can be used in evaluation and ranking problems that
integrate several conflicting criteria. For decision makers (DMs), this powerful theory
often entails quantitative and qualitative data which are used in the measurement of
available alternatives performance in terms of relevant decision criteria. Many decision
problems faced with in real life also necessitate the contribution of more than one DM
in decision-making processes. Thus, most of the MCDM approaches are applied with a
group decision making (GDM) structure.

Many real problems are mostly characterized by conflicting and noncommensurable
criteria with no solution that simultaneously satisfies all criteria. An MCDM technique,
Višekriterijumsko kompromisno rangiranje (VIKOR) [6], is first proposed by Opricovic
as an efficient methodology to solve these kind of problems. Most of the ordinary
MCDM approaches, however, run on crisp values. Therefore, it is mostly inefficient to
solve these problems using one of these ordinary methods. The so-called fuzzy logic can
address these challenges, which can be combined with many MCDM approaches. Zadeh
[7] generalized the concept of the fuzzy set theory in which a membership value is
linked to every element in a set. Nevertheless, gathered information might not always be
adequate to define exact values, and there can sometimes be lack of precision due to
conventional fuzzy or crisp sets. To address such problems, Atanassov [8] developed a
substitute approach, called the intuitionistic fuzzy (IF) set. Intuitionistic fuzzy sets can
also be extended to IVIF sets [9]. This method is widely studied in the last decades by
numerous researchers. Many different types of MCDM approaches are integrated by
IVIF sets. Characterized by a membership degree, non-membership degree and hesi-
tancy degree parameters, the IVIF sets are very strong and successful in handling the
situations under vagueness, uncertainty, and imprecision. Thus, IVIF sets present an
appropriate tool to express DMs’ preferences and defining its membership function
properly that are subject to hesitation or lack of expertise. There are some studies with
IVIF VIKOR in literature [10, 11]. The proposed method is different than others as it is
easily comprehensible and computationally simple.

To the best of authors’ knowledge, the methodology in this study has not yet been
proposed in any literature at this extent. The originality of this methodology comes
from its ability to present a new methodology which applies VIKOR with GDM under
IVIF set theory for selecting SMDs. This research contributes to literature by providing
a framework on the selection of SMDs with IVIF VIKOR under GDM.

Organization of this paper is summarized as follows. Section 2 provides a detailed
explanation of problem definition and evaluation criteria for SMDs. In Sect. 3, a simple
introduction to IVIF set and the detailed steps of the proposed methodology structure is
given. Section 4 presents a sample case with numerical results in which a suitable
alternative of wearable SMD is selected to present the performance of the applied
methodology. Finally, the last section discusses the results and limitations of this study.

2 Problem Definition of SMD Selection

The way people live is being altered by the digital revolution and the rapid develop-
ment of social networking, mobile connectivity and smart phones. Any average person
in a developed country is constantly connected to a vast amount of information.
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This revolutionary era on digitalization has conspicuously transformed every industry
as well as every facet of people’s personal lives. The reflections of this revolution are
also evident in the medical industry by quickly adopting smart, digital devices. Many
different types of wearable SMDs emerge to monitor patients’ vitals. The authors
believe that the evolution of these SMDS marks a new era in the healthcare industry.
Currently, there are numerous companies developing new wearable vital sign moni-
toring SMDs, with different strengths and objectives. This differentiation in SMDs
make it necessary to view them in the light of different criteria. Table 1 presents the
evaluation criteria for SMDs, its description and related weights.

3 Proposed Methodology

The aim of this proposed methodology is to develop a framework to be used in the
evaluation of prioritization of wearable vital sign monitoring SMDs for achieving
various objectives. The next subsection gives the preliminary explanations about IVIF
values and then, the proposed methodology will be introduced.

3.1 Preliminaries

Here, X is a given fixed set. An IVIF set in x in ~A is defined in Eq. (1) as the basic
component of an IVIF set that is an ordered pair, characterized by an interval valued
membership value and an interval valued non membership value ~A is called IVIF set,
where ~l~AðxÞ � ½0; 1� and ~v~AðxÞ � ½0; 1�; x 2 X with the condition of sup ~l~AðxÞþ
sup ~v~AðxÞ� 1:

~A ¼ x; ~l~AðxÞ;~v~AðxÞ
� �

x 2 Xj� � ð1Þ

For convenience, the IVIF set lower and upper end points are denoted by ~A ¼
lL~A; l

U
~A

h i
; vL~A; v

U
~A

h i
or ~B ¼ lL~B; l

U
~B

h i
; vL~B; v

U
~B

h i
. Using these two IVIF numbers, the

following expressions are defined [12]:

Table 1. Evaluation criteria

Criteria Wj Description

Safety (C1) 0.2170 Helping the implementation of safety principles and requirements
should be a priority for any SMDs [1–3]

Cost (C2) 0.2393 Economic, cost-effective SMDs should be in the center [1–3]
Ease of use (C3) 0.1580 The SMDs themselves and their user interfaces should be

user-friendly [3]
Service life (C4) 0.2148 Prolonged duration of SMDs should be the priority for any SMD

[1, 3]
Quality (C5) 0.1709 Quality should be the top priority for any SMD. While operating,

every stage should be ensuring highest reliability [1–3]
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� �k
 �
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� 	kh i

; vU~A

� �k
 �� 
ð5Þ
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� 	k

; lU~A

� �k
; 1� 1� vL~A

� 	kh i
; 1� 1� vU~A

� �k
 �� 
ð6Þ

~A� ~B ¼ lL~A � lL~B
1� lL~B

;
lU~A � lU~B
1� lU~B

" #
;

vL~A
vL~B

;
vU~A
vU~B

" # !
;
~A
~B
¼ lLA

lL~B
;
lU~A
lU~B

" #
;

vL~A � vLB
1� vLB

;
vU~A � vU~B
1� vU~B

" # !
ð7Þ

3.2 IVIF VIKOR Methodology

The steps of the IVIF VIKOR methodology is as follow:
Step 1. Get the judgments of DMs
DMs are asked to express their opinions on the alternative Ai over criterion Cj from

the viewpoint of the kth DM based on their prior knowledge and their field of
experience.

Step 2. Transform the linguistic variables into IVIF values
The DMs apply linguistic variables listed in Table 2 for voicing their judgments

about the alternatives for each of the criteria.

Table 2. Linguistic variables for rating alternatives [14].

Linguistic terms [lL, lU] [vL, vU]

Extremely good EG 0.00, 0.20 0.50, 0.80
Very good VG 0.10, 0.30 0.40, 0.70
Medium good MG 0.20, 0.40 0.30, 0.60
Good G 0.30, 0.50 0.20, 0.50
Approximately equal AE 0.40, 0.60 0.20, 0.40
Bad B 0.50, 0.70 0.10, 0.30
Medium bad MB 0.60, 0.80 0.00, 0.20
Very bad VB 0.70, 0.90 0.00, 0.10
Extremely bad EB 0.80, 1.00 0.00, 0.00
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Step 3. Determine DMs Weights
Equation (8) is used to determine K DMs’ weights [13]. Linguistic importance

scale in Table 2 is used to assess the importance of DMs. Where [pL, pU] represents the
hesitancy degree (unknown degree) of an IVIF sets and pL = 1 − vU − lU,
pU = 1 − vL − lL.

kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1� pLk~A

� �2
þ 1� pU

k

~A

� �2
 �s

PK
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1� pLl~A

� �2
þ 1� pUl

~A

� �2
 �s ð8Þ

Step 4. Calculate the criteria weights
The weight vectors w1;w2; . . .;wn with wj � 0; j ¼ 0; j ¼ 1; 2; . . .; n andPn

j¼1 wj ¼ 1 are determined that give the relative significance of different criterion by
using Eq. (9).

Wj ¼ 1� w^ j

n�Pn
i¼1 w

^

j
;w^ j ¼ 1�

Pn
j¼1

wj lL~Aij þlU~Aij

� �
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1

wj lL
2

~Aij
þlU

2
~Aij

þvL2
~Aij

þvU2
~Aij

� �
2

s ð9Þ

Step 5. Construct the aggregated matrix
Using DMs’ weights {k1, k2,…,kn} calculated in step 3, individual opinions of

DMs are aggregated to evaluate alternatives by using the IVIF weighted averaging
(IIFWA) operator [15], as shown in Eq. (10).

Let X(k) = (xij
(k))m	n be an IVIF decision matrix of the kth DM for the alternatives.

IIFWA ¼ 1�
Yn

j¼1
1� lL~A
� 	kk

; 1�
Yn

j¼1
1� lU~A

� �kk
 �
;
Yn

j¼1
vL~A
� 	kk

;
Yn

j¼1
vU~A

� �kk
 �� 
ð10Þ
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. . .
. ..

.
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2
666666666664
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ð11Þ

Here, ~xij ¼ ~lL~A ~xij
� 	

; ~lU~A ~xij
� 	h i

; ~vL~A ~xij
� 	

;~vU~A ~xij
� 	h i

denotes an IVIF value.
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Step 6. Calculate the positive and negative ideal solutions
The positive and negative ideal solutions are found by Eqs. (12 and 13) [10, 11].

~f �j ¼ ~lL~A ~x�j
� �

; ~lU~A ~x�j
� �h i

; ~vL~A ~x�j
� �

;~vU~A ~x�j
� �h iD E
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� �
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i

~lL~A ~xij
� 	

; ~lU~A ~x�j
� �
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i

~lU~A ~xij
� 	
 �

;

~vL~A ~x�j
� �
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i
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� 	

;~vU~A ~x�j
� �

¼ min
i

~vU~A ~xij
� 	
 � ð12Þ
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� �
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� �
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� �h iD E
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� �
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� �
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� 	
 �

;
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� �
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i

~vL~A ~xij
� 	

;~vU~A ~x�j
� �

¼ max
i

~vU~A ~xij
� 	
 � ð13Þ

Step 7. Calculate the group utility value and the individual regret value
The group utility value S(Ai) and individual regret value R(Ai) for alternative Ai are

found by the Eq. (14) [10, 11].

SðAiÞ ¼
Xn
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Step 8. Compute the values Q(Ai) using the S*(Ai), S
−(Ai) and R*(Ai), R

−(Ai)
values.

S� Aið Þ ¼ mini SðAiÞ; S� Aið Þ ¼ maxi S Aið Þ ð17Þ

R� Aið Þ ¼ mini RðAiÞ; R� Aið Þ ¼ maxi R Aið Þ ð18Þ
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Q Aið Þ ¼ t
SðAiÞ � S� Aið Þ
S� Aið Þ � S� Aið Þ
� 

þ 1� tð Þ RðAiÞ � R� Aið Þ
R� Aið Þ � R� Aið Þ
� 

ð19Þ

where, “t” is presented as a weight of that defines “the majority of criteria”. Usually t

value is taken as 0.5.
Step 9. The ranking order of alternatives is determined
Alternatives are ranked by sorting each of the S(Ai), R(Ai), and Q(Ai) index values.

These values are sorted in ascending order as in the original VIKOR method [6]. The
outcome is a set of ranking lists denoted as S[i], R[i] and Q[i].

Step 10. The alternative Ai related to Q[1], that is the smallest in ranking of Q(Ai)
values, is proposed as a compromise solution if:

1. The alternative Ai has an acceptable advantage, in other words Q[2] − Q[1] � DQ
where DQ = 1/(z − 1) and z is the number of the alternatives.

2. The alternative Ai is constant within the decision-making process, that is, it is also
the best ranked among S[i] and R[i] lists. If none of the above state is satisfied, then it
is a set of compromise solutions, which consists of:
a. The alternatives Ai and Ai+2 where Q(Ai+2) = Q[2] if only the condition 2 is not

satisfied, or
b. The alternatives A1, A2,…, Az if 1. state is not satisfied; and Az is determined by

the relation Q[z] − Q[1] < DQ for the maximum z where Q(Az) = Q[z] (the
ranking of these alternatives are in closeness).

4 Practical Case

This section presents a practical case to select wearable vital sign monitoring SMDs.
There are three DMs; DM1, DM2, and DM3 and four candidate SMD vendors; A1, A2,
A3, and A4 for the final evaluation. In order to evaluate candidate SMD vendors, five
criteria are considered as evaluation factors; Safety (C1), Cost (C2), Ease of Use (C3),
Service Life (C4), and Quality (C5), as presented in Sect. 2.

Step 1: DMs opinions are displayed in Table 3. DMs give their judgment on each
factor as linguistic terms.

Table 3. Ratings of alternatives and criteria by DMs

DM1 DM2 DM3

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

A1 MB EG VG VG MG B EG VG G VG MB VG G MB VB
A2 VG G MB VG VG VG EG EG EG G VG G EG B EG
A3 G G B VG B VG G VB VG G VG G VG G G
A4 VG VG G VG VG VG B VG G MG VG MG G MB MG
Cj MG VG B G G MG VG MB G VB G VG MG B B
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Step 2: DMs opinions are transformed into IVIF values using the linguistic vari-
ables in Table 2. Due to space limitation, the following Table 4 only displays the
transformed IVIF values of A1 and A2.
Step 3: DMs’ weights are determined by the Eq. (8), as shown in Table 6.
Nine-point IVIF preference scale in Table 2 is used to weight DMs and the highest
importance is given to the first DM and the least importance to the third DM.

Step 4: Criteria weights are calculated using Eq. (9) and the results are displayed in
Table 1. Nine-point IVIF preference scale in Table 2 is used to assess the alterna-
tives. The highest importance is given to C2 and the least importance is given to C3.

Table 4. Transformed IVIF values

DM1 DM2 DM3
[lL, lU] [vL, vU] [lL, lU] [vL, vU] [lL, lU] [vL, vU]

A1 C1 0.600, 0.800 0.000, 0.200 0.500, 0.700 0.100, 0.300 0.600, 0.800 0.000, 0.200
C2 0.000, 0.200 0.500, 0.800 0.000, 0.200 0.500, 0.800 0.100, 0.300 0.400, 0.700
C3 0.100, 0.300 0.400, 0.700 0.100, 0.300 0.400, 0.700 0.300, 0.500 0.200, 0.500
C4 0.100, 0.300 0.400, 0.700 0.300, 0.500 0.200, 0.500 0.600, 0.800 0.000, 0.200
C5 0.200, 0.400 0.300, 0.600 0.100, 0.300 0.400, 0.700 0.700, 0.900 0.000, 0.100

A2 C1 0.100, 0.300 0.400, 0.700 0.100, 0.300 0.400, 0.700 0.100, 0.300 0.400, 0.700
C2 0.300, 0.500 0.200, 0.500 0.000, 0.200 0.500, 0.800 0.300, 0.500 0.200, 0.500
C3 0.600, 0.800 0.000, 0.200 0.000, 0.200 0.500, 0.800 0.000, 0.200 0.500, 0.800
C4 0.100, 0.300 0.400, 0.700 0.000, 0.200 0.500, 0.800 0.500, 0.700 0.100, 0.300
C5 0.100, 0.300 0.400, 0.700 0.300, 0.500 0.200, 0.500 0.000, 0.200 0.500, 0.800

Table 5. Aggregated decision matrix

A1 A2

[lL, lU] [vL, vU] [lL, lU] [vL, vU]

C1 0.568, 0.770 0.000, 0.230 0.100, 0.300 0.400, 0.700
C2 0.030, 0.230 0.469, 0.770 0.209, 0.413 0.274, 0.587
C3 0.162, 0.364 0.328, 0.636 0.288, 0.522 0.000, 0.478
C4 0.345, 0.564 0.000, 0.436 0.211, 0.425 0.290, 0.575
C5 0.371, 0.621 0.000, 0.379 0.149, 0.352 0.336, 0.648

Table 6. Weights of each DMs

DM DM1 DM2 DM3

Weights 0.3711 0.3429 0.2860
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Step 5: Aggregation for GDM is done in this step with Eq. (10). Due to space
limitations, the aggregated decisionmatrix is displayed in Table 5 only for A1 and A2.
Step 6: The positive and negative ideal solutions are determined by Eqs. (12
and 13), as shown in Table 7.

Step 7: The distances from the ideal and the negative ideal solution for each
alternative are computed using Eqs. (15 and 16), as given in Table 8. By the help of
these distances, the group utility value and the individual regret value are deter-
mined with the Eq. (14). The results are listed in Table 9.

Step 8: Q(Ai) values are determined by the Eq. (19) using the S*(Ai), S
−(Ai) and

R*(Ai), R
−(Ai) values determined by the Eqs. (17 and 18). Table 9 show these

results.
Step 9: The ranking order of alternatives is determined with the procedure presented
in the step. Alternatives are ranked by sorting each S(Ai), R(Ai), and Q(Ai) index
values in increasing order as in the original VIKOR method. The result is a set of
three ranking lists denoted as S[i], R[i] and Q[i] and displayed in Table 9.

Table 7. The positive and negative ideal solutions

A1 A2 A3 A4

[lL, lY] [mL, mY] [lL, lY] [mL, mY] [lL, lY] [mL, mY] [lL, lY] [mL, mY]

~f �j 0.568, 0.770 0.000, 0.230 0.288, 0.522 0.000, 0.478 0.504, 0.738 0.000, 0.262 0.345, 0.564 0.000, 0.436

~f�j 0.030, 0.230 0.469, 0.770 0.100, 0.300 0.400, 0.700 0.162, 0.364 0.328, 0.636 0.100, 0.300 0.400, 0.700

Table 8. The distances from the ideal and negative ideal solutions

d ~f �j ;~xij
� �

d ~f �j ;~f
�
j

� �
A1 A2 A3 A4

C1 0.0000 0.4692 0.388 0.4692 0.4692
C2 0.0000 0.1889 0.2702 0.2641 0.2702
C3 0.3573 0.2157 0.0000 0.2827 0.3573
C4 0.0000 0.2148 0.264 0.0000 0.264
C5 0.1602 0.4055 0.1718 0.3916 0.2768

Table 9. Ranking results and relevant parameters

S(Ai) Rank R(Ai) Rank Q(Ai) Rank

A1 0.409 4 0.256 3 0.096 4
A2 0.952 1 0.388 1 1.000 1
A3 0.615 3 0.225 4 0.190 3
A4 0.830 2 0.375 2 0.846 2
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Step 10: The alternative A1 corresponds to the smallest value Q[1] among Q(Ai)
values. Therefore, A1 is proposed as a compromise solution since it is also best
among the ranking lists of S[i] and R[i].

The result according to the performance index indicates that A2 is the best one, A4

is the second, A3 is the third and A1 is the last one in ranking;

A2 [ A4 [ A3 [ A1:

5 Concluding Remarks

SMD vendors notice that patients desire to measure their activity themselves. Medical
devices are not just for healthcare specialists anymore. Every day SMDs are becoming
smarter and more incorporated, such as smart watches, wearable monitoring sensors,
smartphones and even contact lenses. The authors introduce a combined IVIF VIKOR
methodology for an MCDM problem for evaluating and selecting the best wearable
vital sign monitoring SMD. Their evaluation criteria are compiled through an extensive
literature review and experts’ views. Since VIKOR contemplates the complexity of
decision criteria, the ranking outcome of the proposed methodology is more accurate
and realistic than other MCDM techniques. The partiality and bias of individual
opinions are reduced by a group of DMs, which is preferable over a single DM. The
evaluation process is enriched by the use of IVIF values. The IVIF theory is able to
prevent data loss and to assist with the integration of linguistic non-numerical state-
ments into analytic numerical models. The information gathered this way are then
evaluated by means of the IVIF VIKOR methodology, which is a powerful combined
technique for complete or partial rankings. Even though the introduced methodology is
applied for the sake of wearable vital sign monitoring evaluation, it can also be utilized
for other SMD evaluations.

As a further research direction, the proposed methodology can be extended for
other types of SMDs selection processes. Another area to be the examined could be the
further comparison of the proposed methodology with different MCDM problems
based on classical fuzzy, IF or IVIF sets.

Acknowledgments. The authors are grateful to the industrial experts who shared their evalu-
ations for the case study. This research is financially supported by Galatasaray University
Research Fund (Projects No: 16.402.004 and 17.402.009).
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Abstract. Cloud computing technology provides virtual services based on
subscriptions with an associated cost that is accessible to its users from anywhere,
wherever they are. Technology brings many different benefits to companies as
well as to the public by reducing the time and resources for them which would be
needed for establishing and operating their own Information Technology infras-
tructure. The main aim in this study is to identify significant decision criteria that
are relevant to the cloud computing technology selection problem among
‘Infrastructure as a Service’ cloud providers, to provide an effective framework to
evaluate and select themost appropriate ‘Infrastructure as a Service’ providers and
also to apply the proposed approach through an empirical study. Technology
selection essentially is a difficult multi-criteria problem that deals with both
quantitative and qualitative parameters, which are usually conflicting and
uncertain. Interval valued intuitionistic fuzzy set is a powerful method to cope
with uncertainty by taking both degree of membership and non-membership
function in an interval. A multi-criteria approach based on the combination of
interval valued intuitionistic fuzzy set theory and complex proportional assess-
ment is proposed to deal with cloud computing technology selection problem in
uncertain and ambiguous environment. Finally, in order to illustrate the procedure
thoroughly, an application of the proposed approach is considered.

Keywords: Cloud computing technology � Infrastructure as a service provider
selection � Interval valued intuitionistic fuzzy � Multi-criteria � Complex
proportional assessment

1 Introduction

In recent years, cloud computing technology (CCT) is gaining high attention by bringing
next-generation access to infrastructure and application services for the Information
Technology (IT) industry. Following the emergence of this evolution in technological
development, several companies have initiated their own CCT services to serve their
customers. This offering of cloud services online over the internet has generated many
decision-making problems from the view point of customers. Not every CCT service
provider is the same and considering a multitude of criteria concurrently makes it crucial
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to have a CCT service provider selection framework so that customers are best able to
decide on the desired service that fits their expectations. CCT has numerous advantages
over conventional technologies [1], since CCT enables companies to develop and
transfer their applications easily in a flexible manner. In order to extract the full
potential, a key issue for customers is to ensure the fulfillment of their requirements and
to fully utilize the features of the applications from CCT providers. In parallel to these
recent developments in CCT, Infrastructure as a Service (IaaS) is one of the CCT models
that allow companies to outsource resources and computing equipment. Several service
providers, such as Microsoft, IBM, and Google, have started offering similar services
with different features and prices, leading to a differentiation in the quality and the level
of services. IaaS cloud providers own and maintain the equipment while their clients
rent out the specific services they desire, usually on a subscription basis with a fee.
Nowadays, the question is less about whether or not to use IaaS cloud services, but
rather which IaaS providers to choose. This diversity in the CCT makes it a challenge for
customers to discover the “right” technology that satisfies the desires and needs.
Acknowledging this CCT selection problem, an effective decision support framework
can benefit CCT users and create value for them.

Decision-making is quite often associated with the process of selecting the best
among the set of available alternatives. In many cases when selecting the best available
alternative, it is essential to consider the impact of many criteria at the same time. Since
the early 1970s, multiple-criteria decision-making (MCDM) methods are being
developed. MCDM today has become the main area of research in dealing with
complex problems in case of multiple objectives or criteria. As a result, many different
types of MCDM methodologies have been proposed, such as AHP [2], TOPSIS [3] and
VIKOR [4], among others. These approaches are being successfully applied in solving
many types of decision-making problems. However, most of these so-called ordinary
MCDM methods are run with crisp numbers, which prove inadequate in many real-life
problems. Therefore, most of MCDM methods are extended so that they can be used
with fuzzy numbers. Even fuzzy numbers can be insufficient in certain environments.
Given information can be limited leading to inexactness and lack of precision. To
address these weaknesses of the conventional fuzzy or crisp sets, the intuitionistic fuzzy
or interval valued intuitionistic fuzzy (IVIF) concept is developed. In addition, most of
the decision-making problems also require the participation of more than one decision
maker (DM) in decision-making processes. Hence, many MCDM methods are also
extended to a group decision making (GDM) environment. The major advantage of
IVIF sets over the crisp or classical fuzzy sets is that IVIF sets differentiate the positive
and the negative indication for an element’s interval membership and non-membership
in the set.

The Multi-Attribute Complex Proportional Assessment (COPRAS) approach was
first introduced by Zavadskas et al. [5]. When it is compared to other methods, it has
slightly more complex aggregation procedure which does not require transformation of
benefit to cost type criteria [6]. IVIF COPRAS methodology is an MDCM method to
optimize complicated systems with inconsistent criteria and focuses on the ranking of
distinctive alternatives among a set of other options. IVIF numbers provide an oppor-
tunity for a much more adequate modelling and solving complex problems. The orig-
inality of the paper comes from its strength in presenting an extension of COPRAS
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methodology, an IVIF MCDM technique based on GDM, where the ratings of alter-
natives are voiced in IVIF values. There are several studies in the literature considering
COPRAS methodology under intuitionistic fuzzy environment [7–9]. The proposed
method has advantage over others as it is easily comprehensible and computationally
simple. Even though the combination of IVIF and COPRAS has been studied already,
this method differs from those approaches in a way that utilizes GDM approach. It seems
that the proposed framework can be satisfactorily implemented in MCDM problems
under vague and imprecise conditions. GDM is also involved in the proposed extension,
in which multiple DMs can express individual ratings using IVIF values. Group per-
formance ratings provided in this approach have more adequate determination strength
and greater flexibility. This new methodology is then applied on a practical case. Doing
so, this study contributes to the state of research by providing a methodology for the first
time by developing an evaluation model to assess applicable CCT providers in order to
handle the inexact and vague information that is fundamental in criteria.

This paper is structured as follows. The next section discusses the role of MCDM
methodologies on the CCT provider selection problem. The following section present
the CCT selection framework to guide customers in decision processes for the most
suitable IaaS service provider among a set of available alternatives by applying the
IVIF COPRAS methodology. A practical case is presented in Sect. 4 to validate the
proposed methodology. The last section concludes the paper.

2 Problem Definition of CCT Selection in MCDM

MCDM techniques are used for ranking, comparing, and selecting alternatives using
multiple criteria. When assessing the decision-making problems, MCDM techniques
are used extensively. When there is more than one alternative available, MCDM
approach is used and a decision needs to favored over others. In case of real world
conditions, this type of problems frequently occur when a decision needs to be taken in
the presence of multiple criteria. Deciding on a proper alternative requires available
alternatives to be judged, whereby compromise or trade-offs shall also be considered.
There exist numerous different types of MCDM methodologies in literature. A variety
of different approaches to CCT selection have been proposed by scholars and practi-
tioners using different factors and techniques. This study proposes an IVIF COPRAS
methodology for CCT IaaS provider selection in which the criteria are determined with
the help of an expert team and extensive survey of literature. Accordingly, these criteria
affecting the provider selection are determined to be Agility, Accountability, Cost,
Reliability of Service, Response Speed, Performance, Latency, Usability, Security and
Privacy. Agility of an organization is one of the most important advantages of CCT.
The organization can adapt and change quickly without excessive costs. A flexible and
portable CCT service is considered agile [10]. Accountability measures various CCT
providers’ specific characteristics. This factor is important as it translates into estab-
lishing trust with the customer for any CCT provider [10]. Cost criterion arises as a first
question in mind before switching to CCT. Therefore, cost is clearly the vital attribute
for CCT selection [10]. Reliability stands for the likelihood of a CCT service per-
forming as expected [11]. Response Speed is a criterion that measures the efficiency of
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service availability. The response time depends on various factors and sub-factors [11].
Performance is needed to understand how successfully their applications will perform
and whether it will meet their expectations [12]. Latency criterion is described as the
time it takes for any requests to reach and get back to the user from the virtual machine
in the cloud [13]. Usability plays an important role for the rapid adoption of CCT
services [10]. Security and Privacy is one of the most important criteria that every
organization is concerned with about data protection and privacy [10].

3 Proposed Methodology

The IVIF COPRAS methodology employs a stepwise ordering and assessing procedure
of the alternatives with respect to evaluation criteria.

3.1 Preliminaries

Zadeh [14] proposed ordinary fuzzy sets in which a membership value is given to each
element of a set. Later, Atanassov [15] introduced the concept of intuitionistic fuzzy sets,
where a non-membership value is assigned to each element of the set alongside its
membership value. IVIF sets the extended versions of intuitionistic fuzzy sets [16]. Here,
X is a given fixed set. An IVIF set in x in ~A defined in (Eq. 1) as the basic component of an
IVIF set that is an ordered pair, characterized by an interval valuedmembership value and
an interval valued non-membership value. ~A is called IVIF set, where ~l~AðxÞ � ½0; 1� and
~m~AðxÞ � ½0; 1�; x 2 X with the condition of sup ~l~AðxÞþ sup ~m~AðxÞ� 1.

~A ¼ x; ~l~AðxÞ;~m~AðxÞ
� �

x 2 Xj� � ð1Þ

For convenience, the IVIF set lower and upper end points are denoted by
~A ¼ lL~A; l

U
~A

h i
; mL~A; m

U
~A

h i
or ~B ¼ lL~B; l

U
~A
lU~B

h i
; mL~B; m

U
~B

h i
. Using these two IVIF numbers,

the following expressions are defined [17]:

~A� ~B , lL~A � lL~B; l
U
~A � lU~B ; m

L
~B � mL~A; m

U
~B � mU~A ð2Þ

~Aþ ~B ¼ lL~A þ lL~B � lL~Al
L
~B; l

U
~A þ lU~B � lU~Al

U
~B

h i
; mL~Am

L
~B; m

U
~A m

U
~B

h i� �
ð3Þ

~A � ~B ¼ lL~Al
L
~B; l

U
~A l

U
~B

h i
; mL~A þ mL~B � mL~Am

L
~B; m

U
~A þ mU~B � mU~A m

U
~B

h i� �
ð4Þ

k~A ¼ 1� 1� lL~A
� 	kh i

; 1� 1� lU~A

� �k
 �
; mL

k

~A

h i
; mU

k

~A

h i� 
ð5Þ

~Ak ¼ lL~A
� 	k

; lU~A

� �k
; 1� 1� mL~A

� 	k
; 1� 1� mU~A

� �h ik
 �� 
ð6Þ
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~A� ~B ¼ lL~A � lL~B
1� lL~B

;
lU~A � lU~B
1� lU~B

" #
;

mL~A
mL~B

;
mU~A
mU~B

" # !
;
~A
~B
¼ lL~A

lL~B
;
lUA
lU~B

" #
;

mL~A � mLB
1� mLB

;
mU~A � mU~B
1� mU~B

" # !
ð7Þ

3.2 IVIF COPRAS Methodology

The steps of the IVIF COPRAS methodology is as follow:
Step 1: Get Judgments of DMs.
DMs are asked to express their opinions on the alternative Ai over criterion Cj from

the viewpoint of the kth DM, based on their prior knowledge and expertise on the
topics.

Step 2: Transform linguistic variables into IVIF numbers.
Since linguistic variables are not mathematically operable, DMs apply these lin-

guistic variables that are listed in Table 1 for voicing their judgments about the
alternatives for each of the criteria, as well as about the weights of each criterion in the
overall decision.

Step 3: Determine DMs’ weights.
Equation (8) is used to determineKDMs’weights [18]. Linguistic importance scale in

Table 1 is used to assess the importance of DMs, kk 1\k\Kð ÞWhere [pL, pU] represents
the hesitancy degree (unknown degree) of an IVIF sets and pL = 1 − mU − lU,
pU = 1 − mL − lL.

kk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1� pLk~A

� �2
þ 1� pUk

~A

� �2
 �s

PK
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1� pLl~A

� �2
þ 1� pU

l

~A

� �2
 �s ð8Þ

Table 1. Linguistic variables for rating alternatives [19].

Linguistic terms [lL, lU] [mL, mU]

Extremely good EG 0.00, 0.20 0.50, 0.80
Very good VG 0.10, 0.30 0.40, 0.70
Medium good MG 0.20, 0.40 0.30, 0.60
Good G 0.30, 0.50 0.20, 0.50
Approximately equal AE 0.40, 0.60 0.20, 0.40
Bad B 0.50, 0.70 0.10, 0.30
Medium bad MB 0.60, 0.80 0.00, 0.20
Very bad VB 0.70, 0.90 0.00, 0.10
Extremely bad EB 0.80, 1.00 0.00, 0.00
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Step 4: Calculate the criteria weights.
The weight vectorsw1;w2; . . .wn withwj � 0, j ¼ 0; j ¼ 1; 2; . . .; n and

Pn
j¼1 wj ¼ 1

are determined to capture the relative significance of different criteria by using Eq. (9).

wj ¼ 1� w^ j

n�Pn
i¼1 w

^

j
; w^ j ¼ 1�

Pn
j¼1

wj lL~Aij
þlU~Aij

� �
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
j¼1

wj lL
2

~Aij
þlU

2
~Aij

þ mL
2

~Aij
þ mU

2
~Aij

� �
2

s ð9Þ

Step 5: Construct the aggregated matrix.
Aggregate IVIF numbers into group TIFNs to evaluate alternatives A1;A2; . . .;Am

based on criteria C1;C2; . . .;Cn IVIF weighted averaging (IIFWA) operator [20] is used
for aggregation as shown in Eq. (10). The merged IVIF decision matrix is formed for

each alternative based on opinions collected from all experts. Let XðkÞ ¼ xðkÞij

� �
m	n

be

an IVIF decision matrix of the kth DM for the alternatives. Using DMs’ weights {k1,
k2, … kn} calculated in step 3, individual opinions of DMs are merged into the IVIF
decision matrix.

IIFWA ¼ 1�
Yn

j¼1
1� lL~A
� 	kk

; 1�
Yn

j¼1
1� lU~A

� �kk
 �
;
Yn

j¼1
mL~A
� 	kk

;
Yn

j¼1
mU~A

� �kk
 �� 
ð10Þ

~X ¼

~x11 � � � ~x21 ~xi1 � � � ~xm1
..
. . .

. ..
. � � � ..

. . .
. ..

.

~x12 � � � ~x22 ~xi2 � � � ~xm2
..
. . .

. ..
.

~x1j � � � ~x2j ~xij � � � ~xmj
..
. . .

. ..
. � � � ..

. . .
. ..

.

~x1n � � � ~x2n ~xin � � � ~xmn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð11Þ

where, ~xij ¼ ~lL~A ~xij
� 	

; ~lU~A ~xij
� 	h i

; ~mL~A ~xij
� 	

;~mU~A ~xij
� 	h i

denote IVIF values representing the

aggregated performance value of the i alternative in terms of the j criterion.
Step 6: Establish the normalized decision matrix.
Normalize the IVIF decision matrix using the Eqs. (12 and 13).

Establish normalized matrix ~R ¼ ~rij
� �

m	n with ~rij ¼ aLij; a
U
ij

h i
; bLij; b

U
ij

h i
.

aLij ¼
lLijPm

l¼1 lLlj

� �2
þ lUlj

� �2� � 1
2

and aUij ¼
lUijPm

l¼1 lLlj

� �2
þ lUlj

� �2� � 1
2 ð12Þ
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bLij ¼
vLijPm

l¼1 vLlj
� �2

þ vUlj
� �2� � 1

2

and bUij ¼
vUijPm

l¼1 vLlj
� �2

þ vUlj
� �2� � 1

2

ð13Þ

Step 7: Establish the weighted-normalized decision matrix.
Use the criteria weights calculated in step 4, and construct the normalized weighted

values of the criteria with Eq. (14). The weighted normalized decision matrix _~R ¼
_~rij
� �

m	n is formed.

_~R ¼ ~rij � wi: ð14Þ

Step 8: Calculate the sum of all criteria for each alternative where larger values are
more preferable.

~Zi ¼
Xg

j¼1
_~rij: ð15Þ

where j = 1, 2, …, g.
Step 9: Calculate the sums of all criteria for each alternative where smaller values

are more preferable.

~Ti ¼
Xn

j¼gþ 1
_~rij ð16Þ

where g = g + 1, g + 2, …, n.
Step 10: Defuzzify ~Zi and ~Ti values [21] using the Eq. (17).

1�
lL~A þ lU~A þ 1� mL~A

� �
þ 1� mU~A

� �
þ lL~A � lU~A �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mL~A

� �
þ 1� mU~A

� �r
4

ð17Þ

Step 11: Calculate the relative importance of each alternative.

Qi ¼ Zi þ
Pm

i¼1 Ti

Ti
Pm

i¼1
1
Ti

ð18Þ

Step 12: Find the maximum relative importance.

Qmax ¼ max Qið Þ8i ¼ 1; 2; . . .m ð19Þ
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Step 13: Rank alternatives based on the performance index for each alternative.
The alternative with a value of 100 in the performance index “Ii ¼ 100” is the best

one. The ranking is completed in descending order of the performance index for each
alternative.

Ii ¼ Qi

Qmax
:100% ð20Þ

4 Practical Case

This section presents a practical case for a company, hereafter called ABC, which plans
to select IaaS cloud service provider for supporting its operations. There are three DMs;
DM1, DM2, and DM3 and four candidate CCT service providers; A1, A2, A3, and A4

for the final evaluation. In order to evaluate candidate CCTs, the following nine criteria
are considered as evaluation factors, Agility (C1), Accountability (C2), Cost (C3),
Reliability of Service (C4), Response Speed (C5), Performance (C6), Latency (C7),
Usability (C8), Security and Privacy (C9) as presented in Sect. 3.

Step 1: DMs’ opinions are displayed in Table 2. DMs give their judgment on each
factor in linguistic terms.
Step 2: DMs opinions are transformed into IVIF values using the linguistic vari-
ables in Table 1. Due to space limitations, the following Table 3 displays the
transformed IVIF values of A1 and A2 only.

Table 2. Ratings of alternatives and criteria by DMs

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 MB VG G VG G B VG VG VG
A2 MB VG MB VG MB B G MB VG
A3 EG G G VG VG EG EG G B
A4 G VG VG MG VG VB VG G VB
Cj VG MB B G MG VG EG VB VG
A1 VG EG MB VG EG G G B VG
A2 VG VG VG VG B G EG VG G
A3 MB VG VG VG VB G G MB VG
A4 MG VG B VG EG VG G G MG
Cj MB VG G VG G B VG VG VG
A1 MB VG MB VG MB B G MB VG
A2 EG G G VG VG EG EG G B
A3 G VG VG MG VG VB VG G VB
A4 VG MB B G MG VG EG VB VG
Cj VG EG MB VG EG G G B VG
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Step 3: DMs’ weights are determined by the Eq. (8), as displayed in Table 4. The
highest importance is given to the first DM and the least importance is assigned to
the third DM.
Step 4: Criteria weights are calculated using Eq. (9) and the results are displayed in
Table 4. The highest importance is given to C9 and the least importance is given to C2.

Step 5: The GDM-aggregation is done in this step with Eq. (10). Due to space
limitations, only the aggregated decision matrix for A1 and A2 is displayed in
Table 5.
Step 6: Normalization of the aggregated IVIF values is done based on Eqs. (12 and 13).
Table 6 displays the normalized decision matrix.
Step 7: Weighted-Normalized decision matrix is done by the Eq. (14) using the
criteria weights calculated in Step 4. The result is shown in Table 6.

Table 3. Transformed IVIF values

DM1 DM2 DM3
[lL, lU] [mL, mU] [lL, lU] [mL, mU] [lL, lU] [mL, mU]

A1 C1 0.35, 0.44 0.45, 0.60 0.25, 0.34 0.55, 0.70 0.35, 0.44 0.45, 0.60
C2 0.35, 0.44 0.45, 0.60 0.25, 0.34 0.55, 0.70 0.55, 0.64 0.25, 0.40
C3 0.45, 0.54 0.35, 0.50 0.45, 0.54 0.35, 0.50 0.85, 0.95 0.04, 0.15
C4 0.65, 0.74 0.15, 0.30 0.15, 0.24 0.65, 0.80 0.75, 0.84 0.05, 0.20
C5 0.75, 0.84 0.05, 0.20 0.75, 0.84 0.05, 0.20 0.65, 0.74 0.15, 0.30
C6 0.75, 0.84 0.05, 0.20 0.65, 0.74 0.15, 0.30 0.65, 0.74 0.15, 0.30
C7 0.75, 0.84 0.05, 0.20 0.65, 0.74 0.15, 0.30 0.35, 0.44 0.45, 0.60
C8 0.35, 0.44 0.45, 0.60 0.65, 0.74 0.15, 0.30 0.25, 0.34 0.55, 0.70
C9 0.55, 0.64 0.25, 0.40 0.85, 0.95 0.04, 0.15 0.15, 0.24 0.65, 0.80

A2 C1 0.75, 0.84 0.05, 0.20 0.85, 0.95 0.04, 0.15 0.75, 0.84 0.05, 0.20
C2 0.75, 0.84 0.05, 0.20 0.65, 0.74 0.15, 0.30 0.85, 0.95 0.04, 0.15
C3 0.65, 0.74 0.15, 0.30 0.45, 0.54 0.35, 0.50 0.65, 0.74 0.15, 0.30
C4 0.85, 0.95 0.04, 0.15 0.75, 0.84 0.05, 0.20 0.75, 0.84 0.05, 0.20
C5 0.35, 0.44 0.45, 0.60 0.45, 0.54 0.35, 0.50 0.45, 0.54 0.35, 0.50
C6 0.45, 0.54 0.35, 0.50 0.65, 0.74 0.15, 0.30 0.65, 0.74 0.15, 0.30
C7 0.75, 0.84 0.05, 0.20 0.45, 0.54 0.35, 0.50 0.25, 0.34 0.55, 0.70
C8 0.75, 0.84 0.05, 0.20 0.65, 0.74 0.15, 0.30 0.15, 0.24 0.65, 0.80
C9 0.85, 0.95 0.04, 0.15 0.65, 0.74 0.15, 0.30 0.45, 0.54 0.35, 0.50

Table 4. DMs and criteria weights

Weights Weights Weights

DM1 0.3711 DM2 0.3429 DM3 0.2860
C1 0.0997 C2 0.0643 C3 0.1264
C4 0.1362 C5 0.1302 C6 0.1085
C7 0.0874 C8 0.1109 C9 0.1364
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Step 8: The sums of all criteria for each alternative are calculated by the Eq. (15),
where the larger values are preferable. Table 7 displays the calculated values.
Step 9: The sums of all criteria for each alternative are calculated by the Eq. (16),
where the smaller values are preferable. Table 7 displays the calculated values.
Step 10: The ~Zi and ~Ti values are defuzzified with Eq. (17).
Step 11: The relative importance of each alternative is calculated with Eq. (18).P4

i¼1 Ti = 3.487, related values are given in Table 8.
Step 12: The maximum relative importance is calculated with Eq. (19) as 14.978.
Step 13: The performance index for each alternative is calculated with Eq. (20) as
shown in Table 8.

Table 5. Aggregated decision matrix

A1 A2

½lL; lU� ½mL; mU� ½lL; lU� ½mL; mU�
C1 0.568, 0.770 0.000, 0.230 0.100, 0.300 0.400, 0.700
C2 0.474, 0.685 0.000, 0.315 0.174, 0.376 0.315, 0.624
C3 0.030, 0.230 0.469, 0.770 0.209, 0.413 0.274, 0.587
C4 0.438, 0.683 0.000, 0.317 0.100, 0.300 0.400, 0.700
C5 0.162, 0.364 0.328, 0.636 0.288, 0.522 0.000, 0.478
C6 0.232, 0.434 0.259, 0.566 0.201, 0.405 0.281, 0.595
C7 0.345, 0.564 0.000, 0.436 0.211, 0.425 0.290, 0.575
C8 0.483, 0.692 0.000, 0.308 0.397, 0.642 0.000, 0.358
C9 0.371, 0.621 0.000, 0.379 0.149, 0.352 0.336, 0.648

Table 6. The decision matrix

Normalized Weighted-Normalized

A1 A2 A1 A2

[lL,lY] [mL, mY] [lL,lY] [mL, mY] [lL,lY] [mL, mY] [lL,lY] [mL, mY]

C1 0.27, 0.37 0.00, 0.15 0.07, 0.21 0.20, 0.35 0.00, 0.03 0.81, 0.85 0.04, 0.07 0.65, 0.78
C2 0.23, 0.33 0.00, 0.20 0.12, 0.26 0.16, 0.31 0.00, 0.04 0.79, 0.84 0.03, 0.06 0.71, 0.81
C3 0.01, 0.11 0.30, 0.50 0.14, 0.29 0.14, 0.30 0.05, 0.10 0.53, 0.72 0.02, 0.05 0.75, 0.83
C4 0.21, 0.33 0.00, 0.20 0.07, 0.21 0.20, 0.35 0.00, 0.01 0.92, 0.94 0.01, 0.02 0.80, 0.92
C5 0.08, 0.17 0.21, 0.41 0.20, 0.36 0.00, 0.24 0.02, 0.05 0.80, 0.86 0.00, 0.02 0.87, 0.91
C6 0.11, 0.21 0.17, 0.37 0.14, 0.28 0.14, 0.30 0.01, 0.02 0.90, 0.93 0.01, 0.02 0.91, 0.94
C7 0.16, 0.27 0.00, 0.28 0.15, 0.29 0.15, 0.29 0.00, 0.05 0.76, 0.82 0.02, 0.05 0.74, 0.83
C8 0.23, 0.33 0.00, 0.20 0.27, 0.44 0.00, 0.18 0.00, 0.03 0.81, 0.85 0.00, 0.03 0.83, 0.89
C9 0.18, 0.30 0.00, 0.24 0.10, 0.24 0.17, 0.33 0.00, 0.01 0.93, 0.95 0.01, 0.02 0.91, 0.94

Table 7. The decision matrix

[lL, lY] [mL, mY] [lL, lY] [mL, mY] [lL, lY] [mL, mY] [lL, lY] [mL, mY]
~Zi 06, 0.20 0.23, 0.39 0.03, 0.07 0.69, 0.78 0.02, 0.07 0.70, 0.77 0.03, 0.06 0.69, 0.79
~Ti 02, 0.10 0.56, 0.66 0.04, 0.10 0.56, 0.70 0.05, 0.12 0.52, 0.63 0.01, 0.07 0.63, 0.74
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The result according to the performance index indicates that A3 is the best one, A2

is the second, A1 is the third and A4 is the last one in ranking;

A3 [A2 [A1 [A4:

5 Concluding Remarks

This study applies the IVIF COPRAS methodology. The main aim of this study is to
use an MCDM method which combines COPRAS technique with IVIF sets to evaluate
a set of qualified alternatives for the sake of deciding on a best IaaS service provider in
the context of CCT. In the evaluation process, each distinctive alternative is voiced
using linguistic terms which were represented as IVIF values. The success of the
provider selection depends on taking the precise strategic decisions. In this IaaS cloud
service selection problem case, taking decisions can be difficult and costly if the
activity would have to be reversed afterwards. This suggests that the method used for
assessment of the most suitable IaaS cloud service provider under CCT is quite useful.
An extensive literature review and a committee of DMs are used to identify the
decision criteria that need to be taken into account when selecting the most appropriate
CCT. In the light of these attributes, all candidate providers are evaluated with the
IVIF COPRAS method. To derive the significance of the selection, the method has
been applied in the IVIF environment for assessment and ranking of alternatives.
Noting that IVIF MCDM is quite successful in dealing with vague and imprecise
information, the method proposed in this paper can also be used for handling uncer-
tainty in complex decision problems. A practical case is also illustrated to validate the
proposed approach. This method is capable of dealing with similar types of uncer-
tain situations in MCDM problems. For future research, other MCDM methods such as
VIKOR, TOPSIS, etc. can be combined with IVIF preference relation to solve CCT
selection problems. The paper presents a MCDM methodology for solving the problem
considered, which is a usual practice in the cloud computing area. However, it might be
interesting to include strict methodologies (e.g., optimization).
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Research Fund (Projects No: 16.402.004 and 17.402.009).

Table 8. Ranking results and relevant parameters

Zi Ti Qi Ii Rank

A1 0.757 0.869 14.748 96.620 3
A2 0.908 0.871 14.866 97.388 2
A3 0.911 0.847 15.264 100.000 1
A4 0.912 0.899 14.432 94.548 4
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Abstract. Hesitant fuzzy linguistic term sets (HFLTS) are applied to better
represent decision maker’s (DMs’) preferences in complex situations such as
uncertainty in DMs’ opinions and the difficulty about expressing thoughts by
numbers. As an important tool, HFLTS presents a novel and strong approach for
processing qualitative judgments of DMs. Therefore, this paper develops an
approach based on HFLTS, ordered weighted averaging (OWA) operator and
hesitant fuzzy technique for order performance by similarity to ideal solution
(TOPSIS). A case study about smart glass (SG) evaluation is given to demon-
strate the potential of the approach. The originality of the work comes from its
evaluation methodology and its use on a case study for a logistics company. The
study contributes the smart glass (SG) evaluation literature by introducing the
integrated OWA Operator-Hesitant TOPSIS methodology. Since technology
selection is an important subject for managers, the proposed methodology can
be guided managers for an effective SG evaluation process.

Keywords: Hesitant fuzzy linguistic term sets � Multi criteria decision
making � Smart glasses � TOPSIS � OWA

1 Introduction

The selection of a most suitable technology is not a simple judgment. Multiple
influencing factors should be considered in an evaluation process. These factors pos-
itively affect the evaluation process. If there are a lot of factors, however, then the
problem and its solution become more complex. Multi-criteria Decision Making
(MCDM) techniques provide researchers with effective tools for considering these
factors. In order to begin the process, evaluation criteria and alternatives should be
constructed and evaluated by decision makers (DMs).

In general, DMs are inclined to voice their preferences quantitatively in wordings.
Sometimes these quantitative measurements may result in misconceptions or biased
results that do not completely overlap with the actual reality of events. Since it is hard
to evaluate thoughts by numbers, the hesitancy concept is developed. By using hesitant
fuzzy linguistic term sets, DMs have a chance to express their opinions by quantitative
measurements which are closer to the truth. Answering the question of the degree of a
relationship between criteria or alternatives may be “absolutely high importance” or
“weakly high importance”, for example. The term “high importance” is classified and
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expressed by hesitant terms. As a result, in order to obtain reliable results, the con-
sistent hesitant fuzzy MCDM technique is generated. This study proposes a hesitant
fuzzy MCDM approach.

Decision making activities in general aim to select the best available option from two
or more of alternatives. There may be many factors that affect the final decision. MCDM
problems deal with a certain number of alternatives that are clearly known and available
to the DMs. There may be a better choice which was not considered or additional
information that was not available at that time. The Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) is an MCDM technique. The basic idea behind
TOPSIS is that the best option is the one that is closest to the positive ideal solution
(PIS) and farthest from the negative ideal solution (NIS). Hesitant fuzzy TOPSIS is a
useful approach that works fine with limited subjective information from DMs [1].

This article aims to seek the most feasible option for smart glasses (SGs) selection
process under hesitant fuzzy environment. SGs are expected to be a daily used item in the
future, also providing efficiency gains to workspace, for instance through hands-free
working, real time work-data and augmented reality [2]. In related literature, there are a
number of studies integrating wearable technology and MCDM tools. In contrast to
literature, this paper introduces a TOPSIS approach based on hesitant fuzzy concept. To
the best of the authors’ knowledge, no study so far has applied the Hesitant Fuzzy
TOPSIS approach on the SG selection problem. This study aims to address this research
gap by using hesitant fuzzy linguistic term sets (HFLTS) to handle the hesitancy and
difficulty of expressing thoughts by numbers on the SG selection problem. Briefly, the
study proposes a hesitant fuzzyMCDM approach for an effective SG evaluation problem
where the main objective is to decide on the most suitable SG alternative. The
methodology intends to function as a decision support system for business managers who
seek to identify the best SG for their needs. This integrated selection method will also be
tested on a case study.

The structure of this paper is designed as follows. The next section summarizes
precedent research. In Sect. 3, the proposed methods are explained in detail. In Sect. 4,
an application is given to demonstrate the potential of the approach. Finally, in Sect. 5,
the consequences of this research and guidance for future work will be given.

2 Literature Survey

2.1 Hesitant Fuzzy TOPSIS

In recent years, several studies have contemplated with the concept of Hesitant TOPSIS.
Boltürk et al. [9] applied Hesitant Fuzzy TOPSIS to select the best hospital site. Beg and
Rashid [10] proposed Hesitant Fuzzy Linguistic TOPSIS for aggregating the opinions of
experts and DMs on various criteria by group decision making. Liao et al. [11] inte-
grated Hesitant Fuzzy Sets and VIKOR to propose a combined approach to solve
complex problems with HFLTS in the presence of conflicting criteria.

Zhang et al. [12] utilized Hesitant Fuzzy TOPSIS and linear programming for
selecting the best supplier. Büyüközkan et al. [13] proposed Hesitant Fuzzy Linguis-
tic AHP, Hesitant Fuzzy Linguistic TOPSIS and QFD methods and explored the
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applicability and effectiveness of their approach by a case study. Kahraman et al. [14]
developed a Hesitant Fuzzy TOPSIS model that considers the complexity and impre-
cision of strategic decisions and presented a case study for an electronics company.

Zhou et al. [15] proposed Hesitant TOPSIS and Hesitant TODIM and combined it
with linguistic hesitant fuzzy sets (LHFS) with the evidential reasoning (ER) method.
Zhang and Wei [16] applied Hesitant Fuzzy VIKOR and Hesitant Fuzzy TOPSIS
methods to select the best project alternative. Xu and Zhang [17] applied Hesitant
Fuzzy TOPSIS with max deviation methods for selecting the energy policy. Rodriguez
and Liu [18] combined HFLTS, OWA and Fuzzy TOPSIS in the material supplier
selection problem. Liao et al. [19] applied Hesitant VIKOR to develop HFL cosine
distance measure for dealing with HFL MCDM problems and applied HFL-VIKOR
method on a ERP system selection case. Joshi and Kumar [20] proposed Hesitant
Fuzzy TOPSIS and Hesitant Fuzzy Choquet Integral methodology. Although there are
many studies and applications, Hesitant Fuzzy TOPSIS methodology integrated with
the OWA operator is still the missing link in literature.

The wearable technology selection process is usually defined by different factors
and brings complexity to the subject. Therefore, the proposed Hesitant MCDM
methodology provides distinct benefits in evaluating different alternatives by linguistic
expressions with regard to different criteria.

2.2 Evaluation Criteria for Smart Glasses

Evaluation criteria for this problem are identified with the help of a detailed literature
survey about existing models and consultation with experts in the industry.

Three main criteria are identified, which are technology (C1), ergonomics (C2) and
privacy (C3). Since the technological components of a SG are the key factors for its
information processing capability, technology is an indispensable parameter for a SG to
determine if it is good or sufficient. Practicality is also important for SG users; therefore,
ergonomics is another key factor. In the modern world, technology causes several
problems concerning the personal life. Therefore, the security of information and pri-
vacy is the other main decision criterion.

There are nine sub-criteria below these main criteria. They are summarized as
follows:

• High performance on ubiquitous computing (C11): Personal computers and ubiq-
uitous computing have become a part of our daily life. This can be linked with the
rapid growth and development of virtual reality applications and their associated
hardware [3].

• Information provision (C12) and communication network (C13): The literature
search concluded that smart 3C products should be equipped with information
provision, intuitive interaction, communication network, and automation [3].

• Mobility and lightness (C21): More opportunities arise through smart clothing and
miniaturization of electronic devices for better mobility and higher comfort thanks
to continuously improving technical functions [3].
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• Aesthetic appearance (C22): The growth of the wearables market depends on its
ability to balance the aesthetics of existing consumer tastes and preferences through
proper styling and by overcoming design hurdles [4].

• Facility of use (user-friendly) (C23): Unless the device interface and apps are
intuitive and user friendly, only eager adopters will likely use them, while the
mainstream market will remain untapped [5].

• Protection and security of information (C31): Personal health information is more
sensitive for human beings for a number of reasons. Therefore, privacy and con-
sumers’ acceptance for healthcare wearable devices are essential [6].

• Defense against malware (C32): Digital security is a major concern for technology
users. However, mobile devices are more susceptible to changing circumstances,
such as different networks, internet connection, new applications etc. in addition to
being connected over the air [7].

• Seamless life integration (C33): Consumers do not wish to change their lifestyle;
they instead want access to more particular information and customized outputs that
enhance their activities [8].

3 Research Methodology

MCDM methods can provide alternative approaches to perceive problems in a distinct
and systematic way. Experts have the option to investigate the problem and adapt the
methods to their own needs [21].

The proposed approach is based on HFLTS, OWA operator and hesitant fuzzy
TOPSIS as indicated in Fig. 1.

The approach is described in following sub-sections.

3.1 The Technique Hesitant Fuzzy Set

Hesitant Fuzzy Sets (HFS) are first presented in 2009 by Torra and Narukawa [22].
HFS describe the degree of adhesion of an element in terms of a set of possible values
between 0 and 1. They are generally helpful for decision problems for processing DMs’
existing hesitation during the evaluation exercise. HFS have attracted great scientific
interest [22], the functioning of which is explained below with definitions.

Describe the 
semantics 

and syntax of 
HFLTS

Selection of 
the criteria 

and 
alternatives

Collect data 
from DMs

Transformati
on of data

Application 
of Hesitant 

TOPSIS 
method 

Ranking and 
scoring of the 
alternatives 

Fig. 1. The methodology of proposed approach
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Definition 1: X is defined as a universal set. HFS over X are defined as a function that
will render a subset between 0 and 1. When applied to X, it can be presented as [23]:

E ¼ x; hE xð Þh i x 2 Xf g ð1Þ

Here, hE(x) is called a hesitant fuzzy element (HFE) and is defined as a set with values
between [0, 1]. Possible degrees of adhesion of the element x 2 X to the set E are
specified. H is the set of all HFE.

Rodriguez et al. [24] presents an MCDM model where DMs express their evalu-
ations with linguistic expressions. This model presents these expressions by repre-
senting a set of hesitant fuzzy linguistic terms (HFLTS) [24].

Definition 2: X is defined as a reference set. Let HFS over X be a function h which
returns values between [0, 1]:

h : X ! 0; 1½ �f g ð2Þ

Subsequently, an HFS is described as the union of their membership functions.

Definition 3: M = {l1, l2,…, ln} is defined as a set of membership functions n. HFS
are linked to M. Here, hM is defined as:

hM : M ! 0; 1½ �f g ð3Þ

hM xð Þ ¼
[

l2M l xð Þf g ð4Þ

Definition 4: The lower and upper boundaries of h, an HFS, are [25]:

h� xð Þ ¼ min h xð Þ ð5Þ

hþ xð Þ ¼ max h xð Þ ð6Þ

Definition 5: When h s defined as an HFS, the envelope of h, Aenv(h), is defined as:

AenvðhÞ ¼ x; lA xð Þ; mA xð Þf g ð7Þ

Here, Aenv(h) is an intuitionistic fuzzy set of h. The factors l and v can be formulated as:

lA xð Þ ¼ h� xð Þ ð8Þ

vA xð Þ ¼ 1� hþ xð Þ ð9Þ

Definition 6: S is defined as a set of linguistic terms, S = {s0,���, Sg}. An HFLTS, Hs, is
an ordered finite subset of the consecutive linguistic terms of S.
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Definition 7: The upper and lower bounds of HFLTS Hs, Hs+ and Hs− respectively,
are defined as:

Hsþ ¼ max sið Þ ¼ sj; si 2 HS et si � sj8i ð10Þ
Hs� ¼ min sið Þ ¼ sj; si 2 HS et si � sj8i ð11Þ

Definition 8: Suppose that EGH is a function that transforms linguistic phrases into
HFLTS, HS. Let GH be an out-of-context grammar that makes use of the linguistic term
set in S. Let Sll be the expression domain generated by GH. This relationship is
expressed as:

EGH : Sll ! Hs ð12Þ

The following conversions are applied to convert comparative linguistic phrases into
HFLTS;

EGH sið Þ ¼ sijsi 2 Sf g ð13Þ

EGH at most sið Þ ¼ sjjsj 2 S et sj � si
� � ð14Þ

EGH lower than sið Þ ¼ sjjsj 2 S et sj\ si
� � ð15Þ

EGH at least sið Þ ¼ sjjsj 2 S et sj � si
� � ð16Þ

EGH greater than sið Þ ¼ sjjsj 2 S et sj [ si
� � ð17Þ

EGH between si and sj
� � ¼ skjsk 2 S et si � sk � sj

� � ð18Þ

Definition 9: An HFLTS’s envelope env(HS) is a linguistic with the following upper
and lower values:

env HSð Þ ¼ Hs�; Hsþ½ �; Hs� � Hsþ ð19Þ

3.2 OWA Operator

This operator is used for aggregating purposes. It is between the two of ‘AND’ which
requires compliance for all the criteria, and ‘OR’ which requires compliance of at least
one of the criteria [26].

In order to obtain a fuzzy membership function, the fuzzy membership functions of
the HFLTS are merged with this OWA operator [27].
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Definition 10: A = {a1, a2,���, an} is defined as a value set for aggregation. The OWA
operator F can be presented as:

F a1; a2; . . .; anð Þ ¼ wbT ¼
Xn

i¼1
wibi ð20Þ

where w = (w1, w2,…, wn)
T is the weighting vector such that wi ∊ [0, 1] etPn

i¼1 wi = 1. Also, b is defined as the corporate ordered value vector, where bi rep-
resents the nth highest value in A.

We compute the weight of the OWA operator with the help of fuzzy linguistic
quantifiers. For a non-decreasing quantifier with respect to Q, they are formulated as:

wi ¼ Q i=mð Þ� Q i� 1ð Þ=mð Þ; i ¼ 1; . . .;m ð21Þ

The non-decreasing relative quantifier Q can be found as [27]:

Q yð Þ ¼
0; y\a;
y�a
b�a ; a� y� b,
1; y[ b;

8<
: ð22Þ

Here, a, b and y are values between 0 and 1. Q(y) indicates the extent to which the
proportion y is compatible with the direction of the quantifier it represents.

Some non-decreasing relative quantifiers are identified by the terms “most”, “at least
half” and “as far as possible”, with parameters (a, b) as (0.3, 0.8) (0.5, 1), respectively [28].

3.3 Hesitant Fuzzy TOPSIS Method

DMs first used hesitant fuzzy set values to evaluate the scenarios of the alternatives.
Then, the matrix of the results is multiplied with the criteria weights vector and then
added for the global criteria. Consequently, an order of estimation is obtained for
scenarios [1].

Definition 11:

~Xij ¼ 1
N
g
zð1Þij þgzð2Þij þ . . .þgzðNÞij

� �
ð23Þ

where ~Xij are hesitant fuzzy values assigned by the kth DM. ð ezijÞm�n is a decision
matrix qualified by hesitant fuzzy numerical values.

Definition 12: The standardized decision matrix is defined as ~Rij presented in (24) and
(25) for alternatives on the criteria.

~Rij ¼ ½~rij�m�n; i ¼ 1; 2; . . .m; j ¼ 1; 2; . . .n ð24Þ

336 G. Büyüközkan and M. Güler



where

erij ¼ rlij; r
m
ij ; r

u
ij

� 	
¼ zlij

c�j
;
zmij
c�j

;
znij
c�j

 !
; i ¼ 1; 2; 3; . . .;m; j 2 B ð25Þ

c�j ¼ maxt zuij
h i

; j ¼ 1; 2; 3; . . .; n ð26Þ

c�j ¼ mint zuij
h i

; j ¼ 1; 2; 3; . . .; n ð27Þ

Definition 13: The weighted standardized decision matrix (~V) can then be computed as
(28).

fvij¼ ðfvlij ;fvmij ; vuijÞ ¼ fwj 	 erij ¼ ðwl
jr
l
ij;w

m
j r

m
ij ;w

u
j r

u
ijÞ ð28Þ

Definition 14: The ideal ideal solution (PIS) and the ideal negative solution (NIS) are
denoted by A * and A− which can be presented in (29) and (30), respectively.

A� = (v�1; v
�
2; . . .v

�
nÞ ð29Þ

A� = (v�1 ; v
�
2 ; . . .v

�
n Þ ð30Þ

v�j ¼ max vlij
n o

;max vmij
n o

max vuij
n o� 	

j ¼ 1; 2; . . .; n ð31Þ

v�j ¼ min vlij
n o

;min vmij
n o

min vuij
n o� 	

j ¼ 1; 2; . . .; n ð32Þ

Definition 15: The vertex approach is used to calculate the distance between the two
fuzzy hesitant numbers. The PIS and NIS values of the alternatives are calculated in
(33) and (34), respectively.

d�i ¼
Xn

j¼1
d(fvij ; ev�j Þ; i ¼ 1; 2; . . .;m ð33Þ

d�i ¼
Xn

j¼1
d(fvij ;fv�j Þ; i ¼ 1; 2; . . .;m ð34Þ

Alternative scenario�ð1; ...;6Þ ¼ 1; 1; 1ð Þ; 1; 1; 1ð Þ; 1; 1; 1ð Þ; 1; 1; 1ð Þ; 1; 1; 1ð Þ; 1; 1; 1ð Þ½ �
ð35Þ

Alternative scenario�ð1; ...;6Þ ¼ 0; 0; 0ð Þ; 0; 0; 0ð Þ; 0; 0; 0ð Þ; 0; 0; 0ð Þ; 0; 0; 0ð Þ; 0; 0; 0ð Þ½ �
ð36Þ
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Definition 16: dðd�i ; d�i Þ is defined as the distance between two hesitant numbers
which help to compute the proximity coefficient (CCi).

CCi¼ d�i
d�i + d�i

i ¼ 1; 2; . . .;m ð37Þ

4 Implementation of the Proposed Model to Smart Glass
Selection

The model’s applicability will be tested on a logistics company, called hereafter as
ABC, that intends to find the best technologic wearable product. Sometimes, operations
in the warehouse decelerate the work flow. The warehouse manager decides to solve
this problem and start a new project with the main objective to augment the efficiency
of warehouse operations. After a series of meetings, the team decides to implement a
smart glass technology for warehouse operations. In order to select the best SG in the
market, the Research & Development department analyses different types of smart
glasses in the market and decides to evaluate them by using scientific methods.
Evaluation criteria are identified based on academic research and thoughts of industrial
experts. The criteria and sub-criteria are determined. Accordingly, C1 is technology
(sub-criteria: high performance on ubiquitous computing (C11), information provision
(C12) and communication network (C13)); C2 is ergonomics (sub-criteria: mobility
and lightness (C21), esthetic appearance (C22), facility of using (user-friendly) (C23))
and C3 is privacy (sub-criteria: protection & security of information (C31), defense
against malware (C32), seamless life integration (to fit into user’s life) (C33)). After a
long market research, the company finds four possible alternatives: A1 is Google Glass,
A2 is KiSoft Vision, A3 is Vuzix M100 Smart Glasses and A4 is Epson Moverio
BT200. There are three DMs; the warehouse manager, IT manager and technology &
innovation department manager of the company. Computational steps are as follows:

Step 1. In the first stage, three DMs evaluated the criteria by using linguistic
expressions. The evaluations the first DM with linguistic expressions are shown in
Table 1.

Step 2. Tables with linguistic hesitant expressions are transformed to fuzzy values
on a scale as given in Fig. 2.

Step 3. OWA operator is used to form the decision matrix. Using (21) and (22), the
matrix is obtained as a function of aggregation. In addition, quantifiers are identified by
the terms “most” with parameters (a, b): (0.3, 0.8). Then, this matrix is normalized with
the multiplication of weights.

Step 4. The normalized matrix is constructed using (22) so that TOPSIS can be
implemented. Then, standardized decision matrix ð~RijÞ that defined as presented in (24)
is created using (25–27).

Step 5. The PIS and the NIS values of the scenarios are computed by (33–36),
respectively. The point (1, 1, 1, 1) is used for calculating the ideal distances, and the
point (0, 0, 0, 0) is used for calculating the ideal negative distances.
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Step 6. The proximity coefficient (CCi) for each alternative is computed as a
function of (37). (CCi) measures the effectiveness of each alternative. The best alter-
native and the order of the alternatives are obtained according to this measure.

The results about the alternatives give an idea about the best technologic wearable
product. As a result, Google Glass (A1) (CC1:0.802) is the most desirable product
among these alternatives, slightly ahead of its nearest competitor, Kisoft Vision (A2)
(CC2:0.788). Vuzix M100 Smart Glasses (A3) (CC3:0.746) ranks the third, and the last
one is Epson Moverio BT200 (A4) (CC4:0.692).

A1[A2[A3[A4

5 Conclusion

This article presents a novel integrated hesitant fuzzy MCDM approach that is based on
HFLTS, OWA operator, hesitant fuzzy TOPSIS. A case study is used to demonstrate
the applicability of the method for selecting the most suitable SG alternative.

Table 1. The linguistic decision matrix of DM1

Alternatives C11 C12 C13

Google Glass (A1) At least G Between M and VG At least VG
KiSoft Vision (A2) At least VG At least G At least VG
Vuzix M100 (A3) At least VG At least G At least G
Epson Moverio BT200 (A4) At least G At least VG At least G
Alternatives C21 C22 C23
Google Glass (A1) Between M and VG Between VB and M Between M and VG
KiSoft Vision (A2) Between M and VG Between B and G Between B and G
Vuzix M100 (A3) Between M and VG Between B and G Between B and G
Epson Moverio BT200 (A4) Between B and G At most VB Between Vb and M
Alternatives C31 C32 C33
Google Glass (A1) At least VG At least G At least VG
KiSoft Vision (A2) At least VG At least G At least VG
Vuzix M100 (A3) At least VG Between M and VG Between M and VG
Epson Moverio BT200 (A4) At least G At least VG Between M and VG

 N VB     B        M             G VG     P 

 0 0.17     0.33         0.5              0.67 0.83     1 

Fig. 2. Table of seven boundaries with its semantics [10]
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There is a lack of SG selection applications in the literature. Evaluating the
influencing factors for the SG selection is difficult when comparing different alterna-
tives. This is because expressing human thoughts in the form of numbers can introduce
complexity and hesitancy for DMs. Complexity and hesitancy of this type of problems
makes decision making even more difficult. As an advantage, HFLTS allow us to
express DMs’ opinions with the help of linguistic term sets. The use of HFLTS
facilitates such expressions that include hesitancy and provides the possibility of giving
preference information by words. The main contribution of this study to literature is its
application of hesitant fuzzy TOPSIS methodology with OWA operator and its
application on SG selection area for the first time. Therefore, this study fills the gap by
using hesitant fuzzy MCDM methodology in this specific SG field.

This problem is illustrated by a case study in the logistics sector and its results are
presented. The evaluation criteria and SG alternatives are identified with a literature and
product review. This study can be useful to researchers to better understand the hesitant
fuzzy MCDM problem practically. Companies can also benefit from this study for their
decision problems about wearable devices. The number of criteria or alternatives can
differ for different purposes. In the future, research can be directed to the use of other
MCDM methods such as Hesitant Fuzzy AHP and Hesitant Fuzzy VIKOR for solving
this problem and comparing the results with the presented approach.
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experts. This research has received financial support of Galatasaray University Research Fund
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Abstract. As the main result of this article we prove that a given contin-
uous interval map and its Zadeh’s extension (fuzzification) to the space of
fuzzy sets with the property that α-cuts have at most m convex (topolog-
ically connected) components, for m being an arbitrary natural number,
have both positive (resp. zero) topological entropy. Presented topics are
studied also for set-valued (induced) discrete dynamical systems. The
main results are proved due to variational principle describing relations
between topological and measure-theoretical entropy, respectively.

1 Introduction

Recently, many authors have been interested in analyzing dynamics of exten-
sions of discrete dynamical systems (see e.g. [1,6,7,15,18]). The motivation for
this interest comes from several facts. On one hand, numerical simulations that
sometimes are used to describe the dynamics can be affected by various round
off effects or estimates of initial states or parameters. On the other hand, the
behavior of discrete dynamical systems can exhibit several “sensitive dependen-
cies to initial conditions”, that is, close initial conditions may lead to different
dynamical behaviors. Hence, it is interesting to analyze the dynamics not on
single points, but on suitable subsets or other objects generated over the phase
space. For instance, nowadays there are many objects (soft sets, fuzzy sets, raw
sets etc.) which allows to work with different kinds of uncertainty on the state
space.

To fix these ideas, let f : X → X be a continuous map on a compact metric
space X. The idea is to consider a suitable family K of subsets of X and then
to extend the map f naturally to K (we will give more precise definitions in the
next section). Then, it is quite interesting and natural to ask what are dynam-
ical properties of this extension, e.g. topological entropy, chaoticity, rigidity,...,
related to the same property or similar dynamical properties of the original
crisp map f . Analogous question is natural for other systems, e.g., of soft, fuzzy,
raw sets, generated over the space X. In principle, other natural families to be
considered are compact or connected subsets, convex subsets (if the space X is
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 31
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convex) and, in general, any topologically relevant family of subsets of X. Some
papers in this direction are for instance [6,7,15,16,19,20]. Many relevant papers
are mentioned therein as well.

The question above was stated for a compact metric space. Although proper-
ties of general dynamical systems are studied since H. Poincaré’s work from early
19th century [2]. Approximately in the last 30 years interest in dynamics of low-
dimensional spaces and their extensions increased rapidly. There is a natural
need to study these systems. Low-dimensional systems (like intervals, graphs,
circles etc.) often allow to study phenomena which appear in high-dimensional
systems - for instance, transitive one-dimensional maps are models of attractors
of arbitrary maps of positive topological entropy [4]. Low-dimensional systems
are often used to create more complicated dynamical systems on spaces of higher
dimensions - probably the most simple example are skew-product (triangular)
maps intensively studied since Kolyada’s paper [14]. Although we mention some
general facts, main results are stated for the simplest one-dimensional maps,
namely for interval maps, which is the first step of understanding dynamics of
fuzzy dynamical systems generated by them.

This topic (studying topological entropy of fuzzy dynamical systems) is
authors’ long-time project. Topological entropy is a classical property in topolog-
ical dynamics (e.g. [3,5]). There are several attempts how to study this concept
in fuzzy setting (see e.g. [12,13]). It is worth mentioning that our papers are the
first in which the size of topological entropy of various fuzzy dynamical systems
is studied. For example, we found a difference in chaotic behavior of induced
and fuzzy dynamical systems [6]. In the same paper we showed that, on general
compact metric spaces, topological entropy can easily reach its maximal value.
In contrast to this, we also studied the simplest fuzzy dynamical systems with
nontrivial fuzzy numbers, i.e. fuzzy dynamical systems on the space of fuzzy
numbers generated by interval maps, and showed that their size of topological
entropy is reasonable [7]. Moreover, we studied influence of degree of fuzziness on
the size of topological entropy [8] which lead to better understanding of behavior
of such systems. This contribution is a natural continuation of this work. The
main aim of this paper is to extend this study to more general family of fuzzy
sets on a compact interval, i.e. we study fuzzy sets for which their level sets (α-
cuts) have at most m connected (convex) components, for some positive integer
m. We will study the topological entropy of the Zadeh’s extension induced by
the crisp interval map, finding that it is positive if and only if the topological
entropy of the crisp map it is positive. However, we will show that both entropies
are not the same when they are positive, providing a formula for computing the
topological entropy of the Zadeh’s extension from that of the crisp map.

The paper is organized as follows. The next section is devoted to introduce
the basic definitions and notation which are necessary to understand the paper.
The main results can be found in Sect. 3. Finally, we finish this paper by obtain-
ing some conclusions on variation of topological entropy called dynamical fuzzy
entropy.
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2 Basic Notions

Let (X, d) be a compact metric space and f : X → X be a continuous map. We
note f ∈ C(X). As usually, a pair (X, f) forms a discrete dynamical system. In
the case of need we emphasize the dependence on X by the notation dX for the
metric on X. Further, we define systems K(X) = {K ⊆ X|K is compact and
nonempty} endowed with the Hausdorff metric DX given by

DX(A,B) = max{d(A,B), d(B,A)},

where

d(A,B) = max{d(a,B) : a ∈ A},

and

d(a,B) = min{d(a, b) : b ∈ B}

for any A,B ∈ K(X). It is well known that the space (K(X),DX) equipped
with the metric (Vietoris) topology induced by DX is compact, complete and
separable if the original space X has the same three properties.

In this paper we distinguish several maps induced by f . First, we deal with
a set-valued extension - a continuous map f̄ : K(X) → K(X) defined in a very
natural way by f̄(K) = f(K) for any K ∈ K(X).

For a discrete dynamical system (X, f) and a given point x ∈ X, an n-th
iteration of the point x is defined inductively by

f0(x) = x and fn+1(x) = f(fn(x))

for any n ∈ N. Then, the sequence {fn(x)}n∈N of all iterations of x is called
a trajectory and points of this trajectory form an orbit of the point x. Limit
points of {ϕn(x)}n∈N are ω-limit points of the point x, and their union ωf (x)
(resp. ω(x, f)) of all ω-limit points of the point x is the ω-limit set of the point
x with respect to the map f . Finally, an ω-limit set ω(f) of the map f we mean
ω(f) =

⋃
x∈X ωf (x). We say that A ⊆ X is invariant if f(A) ⊆ A It is well known

that every ω-limit set is nonempty and invariant (even f(ωf (x)) = ωf (x)).
Below we distinguish several types of ω-limit points - we say that the point

x ∈ X is fixed if f(x) = x or periodic if fk(x) = x for some k ∈ N. Then
the minimal integer k satisfying this condition is a period of x. Moreover, P (f)
denotes the set of all periodic points of f , respectively. Finally, we say that
two discrete dynamical systems (X, f), (Y, g) are conjugate if there exists a
continuous bijection h : X → Y (called a conjugacy) for which h ◦ f = g ◦h. If h
is a continuous surjection only then we speak about a semiconjugacy . It is well
known that the topological entropy defined below is a conjugacy invariant, i.e.
two conjugate dynamical systems have the same topological entropy.
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2.1 Topological and Measure-Theoretical Entropy

Let (X, f) be a discrete dynamical system. In this subsection we introduce the
Bowen’s definition of topological entropy (see [5]). Let K ⊆ X, ε > 0 and n ∈ N

be fixed. We say that a set E ⊆ K is (n, ε,K, f)-separated (by the map f) if for
any x, y ∈ E, x �= y, there exists k ∈ {0, 1, ..., n − 1} such that d(fk(x), fk(y)) >
ε. We denote by sn(ε,K, f) the cardinality of the maximal (n, ε,K, f) -separated
set in K and define

s(ε,K, f) = lim sup
n→∞

1
n

log sn(ε,K, f).

The topological entropy of f is

hd(f) = lim
ε→0

s(ε,X, f).

If the space X is not compact, we consider the following definition [9] of topo-
logical entropy

ent(f) = sup{h(f |K) : K ∈ Kf (X)}, (1)

where Kf (X) denotes the set of all f-invariant compact subsets of X. It is easy to
see that the size of the topological entropy depends on the choice of a metric d. It
is also easy to see that, e.g., the topological entropy of an isometry is necessarily
equal to zero, and topological entropy is monotonous, i.e. h(f |A) ≤ h(f) for any
f -invariant A ⊆ X.

Further, B(X) denotes the σ-algebra of Borel subsets of X. A probability
measure μ : β(X) → [0, 1] is invariant by f (shortly f-invariant) if μ(A) =
μ(f−1(A)) for any A ∈ B(X). It is well-known that when X is compact the
set of all f -invariant measures is non-empty, convex and compact. Moreover, its
extremal points are called ergodic measures of f . Ergodic measures are those
satisfying μ(A) ∈ {0, 1} for each A with μ(A) = μ(f−1A).

Now we are ready to recall the definition of a measure theoretic entropy (also
known as Kolmogorov-Sinai entropy) of f with respect to a probability measure
μ on X. For a given finite partition A := {A1, A2, . . . , Ak} put

f−1(A) = {f−1(A1), f−1(A2), . . . , f−1(Ak)}.

Further, for two partitions A and B := {B1, B2, . . . , Bm} we define a refinement
by

A ∨ B := {Ai ∩ Bj |i = 1, 2, . . . k, j = 1, 2, . . . ,m},

and analogously
∨N

i=0 f−i(A) is defined. Then an entropy of a partition A is
defined as

H(A) = −
k∑

i=1

μ(Ai) log μ(Ai).



346 J. Cánovas and J. Kupka

Then, a measure theoretic entropy of a dynamical system (X, f) with respect to
a partition A is defined by the following expression

hμ(f,A) = lim
N→∞

H

(
N∨

i=0

f−i(A)

)

.

Finally, a measure theoretic entropy of a map f (resp. of a dynamical system
(X, f)) is

hμ(f) = sup
A

hμ(f,A)

where the supremum is taken over all finite measurable partitions in X.
The following relationship (so-called variational principle) between measure-

theoretical and topological entropy can be seen in many books, e.g. in [10]. The
variational principle for topological entropy states that, in the case of X being
a compact metric space, we have the following expression

h(f) = sup
μ∈E(X,f)

hμ(f). (2)

where E(X, f) denotes the set of ergodic measures of f . If there is no risk of
confusion we put E(X) := E(X, f).

2.2 Zadeh’s Extension, Spaces of Fuzzy Sets

In this subsection we introduce some spaces of fuzzy sets and their topological
structures. Formally, a fuzzy set A on the space X is a function A : X → I. The
α-cuts (or the α-level sets), [A]α, and the support , supp(A), of a given fuzzy set
A are defined as

[A]α = {x ∈ X|A(x) ≥ α}, for α ∈ [0, 1],

and

supp(A) = {x ∈ X|A(x) > 0}.

In this contribution we consider the system F(X) of all upper semi-continuous
fuzzy sets A on X. Moreover, let

F1(X) =
{
A ∈ F(X)|max

x∈X
{A(x)} = 1

}

denote the system of normal fuzzy sets on X. In this contribution we mainly
consider a system F1

m(X) ⊆ F1(X) consisting of fuzzy sets whose each α cut
consists of at most m (topologically) connected components. Then for m = 1
we obtain a special class F1(X) of so-called fuzzy numbers. Finally, by an empty
fuzzy set ∅X we call a map ∅X(x) = 0 for each x ∈ X, F0(X) denotes the system
of all nonempty fuzzy sets.
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The following metrics are usually taken on the space of nonempty fuzzy sets.
A levelwise metric d∞ on F0(X) is given by

d∞(A,B) = sup
α∈(0,1]

DX([A]α, [B]α). (3)

It is known that considered spaces of fuzzy sets (F(X), F1(X) and F1
m(X))

equipped with the levelwise topology, i.e. the metric topology induced by d∞,
are complete but are not compact and are not separable (see [15] and references
therein) in general.

For a fuzzy set A ∈ F1(X), its endograph end(A) and sendograph send(A)
of A are defined by

end(A) = {(x, α) ∈ X × I|A(x) ≥ α}, send(A) = end(A) ∩ (supp(A) × I),

respectively. Then

dE(A,B) := HX×I(end(A), end(B))

and

dS(A,B) := HX×I(send(A), send(B))

define the endograph and sendograph metrics on the relevant families of fuzzy
sets. The metric topologies induced by dE and dS are denoted by τE and τS .
It is worth noticing that the three metrics above are the most commonly used
metrics in fuzzy topological dynamics and that the levelwise topology induced
by d∞ is stronger than the others. From this point of view it is natural to study
various dynamical properties in the levelwise topology since many properties can
be naturally shifted to the remaining topological structures. However, for more
details and properties we again refer to [15] and references therein.

Now we are ready to define a self-map on spaces of fuzzy sets. Any map
f ∈ C(X) can be naturally extended to the space of fuzzy sets on X. Namely,
a fuzzification (or Zadeh’s extension) of the dynamical system (X, f) is a map
f̃ : F(X) → F(X) defined by the expression

(f̃(A))(x) = sup
y∈f−1(x)

{A(y)}

for arbitrary A ∈ F(X) and x ∈ X. It is known that f̃ : F(X) → F(X) is
continuous if f : X → X is continuous as well. Therefore, it is obvious that the
continuity is preserved for any restriction of f̃ , especially, for f̃m := f̃ |F1

m(X).
It is known [11] that the original map and its fuzzification are related via

α-cuts, i.e., for any α ∈ (0, 1] and any A ∈ F(X),

f([A]α) = [f̃(A)]α. (4)

Similarly, the equality f(supp(A)) = supp(fϕ(A)) can be proven. Consequently,
we often deal with a set-valued extension of f : X → X. This set-valued (or
induced) extension f̄ : K(X) → K(X) is naturally defined by f(B) = f̄(B) for
any B ∈ K(X). By Km(X) ⊆ K(X) we denote the subsystem of K(X) consisting
of at most m connected components and f̄m := f̄ |K(X).
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3 On Topological Entropy

In this section we study the size of topological entropy on the space F1
m(X).

First, let us give some results on the set-valued case. Let X∗k a system of all
nonempty subset of X consisting of at most k singleton sets. The following result
was mentioned in the proof of Theorem 9 in [18].

Lemma 1. For any dynamical system (X, f), h(f̄ |X∗k) = k · h(f).

Applying this result to the induced system (K(X), f̄) we immediately obtain
the following result.

Proposition 1. Let f ∈ C(X) and m ∈ N be fixed. Then

h(f̄ |Km(X)) = m · h(f).

This statement has an interesting consequence, namely, the main theorem
from [6] claiming that h(f̄) > 0 implies ent(f̃) = ∞ for some dynamical systems.

Let us study the case of F1
m(X). It is easy to see that, for any m ∈ N,

there exists a continuous injective map i : Km → F1
m (regardless to any chosen

metrics) such that f̄m ◦ i = i ◦ f̃m and hence, by [9],

h(f̄m) ≤ ent(f̃m). (5)

Let us discuss the converse inequality for the case of continuous interval map,
that is, for the space F1

m(I). Note that L ∈ F1
m(I) can be written as a union of

m fuzzy numbers, where
⋃

is represented by minimum t-norm. In addition, we
have the following description of ω-limit sets of f̄ (see [7]).

Lemma 2. Let f ∈ C(I) and B ⊆ K1(I). Then, ωf̄ (B) is either equal to an
ω-limit set of the original map f , or a union of finitely many cyclically permuted
intervals.

Then, we can prove the following converse inequality.

Lemma 3. Let (I, f) be a discrete dynamical system and m ∈ N. Then

h(f̄m) ≥ ent(f̃m). (6)

Proof. Since the set F1
m(I) is not compact, we must show that (6) holds on

arbitrary compact f̃ -invariant K ⊆ I. Due to the variational principle, which is
valid on compact spaces, we have

h(f̃m|K) = sup{hμ(f̃m)|μ ∈ E(K)}.

Further, it is well known that the support of any ergodic measure is a subset of
some ω-limit set. Consequently, it is sufficient to prove that

h(f̃m|A) ≤ h(f̄m) (7)

on an arbitrary ω-limit set A.
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Let A ∈ ω(f̃m) ∩ K be fixed. Since A is invariant (see also (4)) any L ∈ A
can be written as a union of at most m fuzzy numbers. Let us assume that L is
expressed by just m fuzzy numbers. More precisely,

L =
m⋃

i=1

Li, where Li ∈ F1
1 (I).

We distinguish several cases according to different shapes of Li’s. By Lemma 2
and (4), α-cuts can be either singletons or nondegenerated periodic intervals.
Two boundary cases are simple to describe. Really (Case I), if [Li]1 is a nonde-
generated and hence periodic interval, for i = 1, 2, . . . ,m, then L is a periodic
point in f̃m. Then obviously h(f̃m|A) = 0 and (7) is satisfied.

Further (Case II) we can assume that [Li]α is a singleton for any α ∈ (0, 1]
and i = 1, 2, . . . ,m. In this case f̃m|A and f̄m|supp(A) are conjugate and hence
h(f̃m|A) = h(f̄m|supp(A)), i.e. (7) is satisfied due to the monotonicity of topolog-
ical entropy.

Now (Case III), to finish this proof, we may assume without loss of generality
that supports of Li’s are nondegenerated intervals and [Li]1’s are singletons.
More precisely, for fixed ε > 0, there are αi for i ∈ {1, 2, . . . ,m} such that

diam([Li]α) < ε for α > αi

and [Li]α is a nondegenerated periodic interval for α ≤ αi.
It is easy to see that A =

⋃
i Ai where Li ∈ Ai ∈ ω(f̃1). Then, for any

B,C ∈ Ai, β ∈ (αi, 1] and j ≥ 0 we have

DI(f̄ j([B]β), f̄ j([C]β)) ≤ DI(f̄ j([B]β), f̄ j([B]1)) (8)
+ DI(f̄ j([B]1), f̄ j([C]1))
+ DI(f̄ j([C]1), f̄ j([C]β))
≤ 2ε + DI(f̄ j([B]1), f̄ j([C]1)),

and, consequently,

sn(3ε,Ai, f̃1) ≤ sn(ε,D(Ai), f̄1)

where D(Ai) := {[B]1 |B ∈ Ai}. Since (8) can be done for any Ai we immediately
have

sn(3ε,A, f̃n) ≤ sn(ε,D(A), f̄n)

Thus, by the definition of topological entropy, we get (7). �
Remark 1. In fact, the same result seems to be valid for all compact metric
spaces X and maps f for which each ω-limit set of f̄ is like in Lemma 2, that
is, it is either an ω-limit of the original map f or a periodic (and hence finite)
orbit consisting of nondegerated intervals.

Now (5) together with Lemma 3 implies the following statement.
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Theorem 1. Let us consider a discrete dynamical system (I, f) and its fuzzy
extension (F1

m(I), τ∞) for m ∈ N. Then

h(f) = m · ent(f̃m).

Let us study what happens in other topological structures.

Theorem 2. Let us consider a discrete dynamical system (I, f) and its fuzzy
extension (F1

m(I), τ), τ ∈ {τE , τS}, for m ∈ N. Then

ent(f̃m) = m · h(f).

Proof. Let us prove this statement for d = dE first. Let us recall that m ·h(f) =
h(f̄m) by Proposition 1. As h(f̄m) ≤ ent(f̃m) is clear, it remains to show

h(f̄m) ≥ entd(f̃m). (9)

Let ε > 0 be fixed and n0 ∈ N be chosen such that 1/n0 < ε. According
to the definition of dE , if dE(A,B) > ε for A,B ∈ F1

m(I) then there exists
i ∈ {1, 2, . . . , n0} such that

DI([A]α, [B]α) >
ε

2
for any α ∈ Ji := [1 − (i + 1)n0, 1 − in0]. (10)

Thus, for fixed n ∈ N such that n ≥ n0, let kn := sn(ε,F1
m(I), f̃m) and A

denote (n, ε)-separated set of cardinality kn with respect to f̃m. According to
(4) and (10), there exists i ∈ {1, 2, . . . , n0} such that, for any α ∈ Ji, the set
{[A]α |A ∈ A} forms an (n, ε/2)-separated set of cardinality kn/n0 with respect
to f̄m. Consequently,

sn(ε/2,Km, f̄m) ≥ kn

n0
.

Thus

log sn(ε/2,Km, f̄m) ≥ log
kn

n0
= log kn − log n0 = log sn(ε,F1

m(I), f̃m).

Consequently, by the definitions of relevant entropies, (9) is proved.
The proof for τS is analogous. It is true that (F1

m(I), τS) is not compact and
some fuzzy points need not have ω-limit sets [7,15]. But we have dealt neither
with compactness of (F1

m(I), τE) nor with ω-limit points of fuzzy sets with m
connected components. It is true that dE(f̃k

m(A), f̃k
m(B)) ≥ dS(f̃k

m(A), f̃k
m(B))

for any k ∈ N and A,B ∈ F1
m(I) in general, but (10) is still valid. �

4 Relations to Dynamical Fuzzy Entropy

We have proved that for continuous interval maps the equality ent(f̃m) = m·h(f)
holds. A natural question can be stated, namely, what is the influence of fuzzy
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and non–fuzzy sets in the dynamics of f̃m. For that end, we consider the notion
of degree of fuzziness of a fuzzy set A ∈ Fm (see [8] and the references therein).

According to [17], in order to define a degree of fuzziness on X, we need a
measure space (X,β(X), μ), where β(X) is the Borel σ-algebra, μ is a nonzero
finite measure, and F(X) consists of μ-measurable functions. Then, for any real-
valued function g : I → R such that

– g(0) = g(1) = 0,
– g(α) = g(1 − α) for any α ∈ I,
– g is strictly increasing on [0, 1/2],

the expression

eμ(A) =
1

μ(X)

∫

g(A(x))dμ(x) (11)

defines a degree of fuzziness eμ(A) (or e(A)) of a fuzzy set A ∈ F(X). As usually,
χB denotes the characteristic function of a set B. Then, if A =

∑k
i=1 aiχBi

, with
ai ∈ (0, 1] and Bi ∈ β(X), i = 1, ..., k, then

eμ(A) =
k∑

i=1

g(ai)μ(Xi).

The following lemma describes basic properties of this notion. Let us recall
that

a.e.◦ denotes that the relation ◦ holds almost everywhere with respect to a
given measure.

Lemma 4 ([17]). The degree of fuzziness e : F(X) → R given by (11) has the
following properties:

A1. e(A) = 0 if and only either A
a.e.= χC for some C ⊆ X or A

a.e.= ∅X , where
χC is the characteristic function on C,

A2. e(A) is maximal if and only if A
a.e.= 1

2χX ,
A3. e(A) ≤ e(B) whenever A is less fuzzy than B, that is A(x) ≤ B(x) ≤ 1/2

or A(x) ≥ B(x) ≥ 1/2 for almost all x ∈ X,
A4. e(A) = e(Ac),
A5. e is continuous with respect to the supremum metric on F(X).

We demonstrated in [8] that the degree of fuzziness need not be a continuous
function when the metrics d∞, dE and dS are considered. Given α ∈ [0, 1], we
define

Fα(eμ) =

{

A ∈ F(X)| lim sup
n→∞

1
n

n−1∑

i=0

eμ ◦ f̃ i
m(A)

}

.

The set F0(eμ) contains all the fuzzy sets that are essentially non–fuzzy along
its orbit, while the set F(eμ) =

⋃
α>0 Fα(eμ) contains all the fuzzy sets whose

orbit is fuzzy with respect to degree of fuzziness. In [8] we have defined several
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concepts helping us to study relations between topological entropy and degree
of fuzziness. For instance, we define the fuzzy entropy of f̃m as

fuzzent(f̃m) = ent(f̃m|F(eµ)).

It is clear from the definition that fuzzent(f̃m) ≤ ent(f̃m). However for inter-
val maps we can state the following result. The proof follows the arguments
contained in [8], so we skip it.

Theorem 3. Let f ∈ C(I) and let eμ be a degree of fuzziness as above. Then,
for any metric d∞, dE and dS it holds that

fuzzent(f̃m) = h(f̄m) = m · h(f) = ent(f̃m).

5 Conclusion and Open Questions

We have studied the topological entropy of the Zadeh’s extension on the space
of fuzzy sets with the property that every α–cut has at most m convex (resp.
topologically connected) components, for some fixed positive integer m. This is a
natural continuation of our previous work (see [6–8]) In particular, we prove that
for extensions of continuous interval maps the topological entropy is positive if
and only if the topological entropy of the crisp map is positive. Moreover, for
extensions of continuous interval maps, we showed that fuzzy sets which are
essentially fuzzy, that is, with positive degree of fuzziness along the orbit, have
full topological entropy. There are still some open questions which, under our
point of view, are interesting.

First, it is an open problem for which compact metric spaces equations

m · h(f) = h(f̄m) = fuzzent(f̃m) = ent(f̃m)

are satisfied. We have shown that it holds for dynamical systems on intervals. But
it is also known that the formula m ·h(f) = h(f̄m) doesn’t hold for some special
dendrites [1]. Consequently, the above chain of equalities has to be analyzed
individually.

On the other hand, it is also interesting to study in detail what the topological
structure of sets Fα(eμ) for α ∈ [0, 1] is. This question can be stated not only
for the set F1

m(X) but also for general normal fuzzy sets F1(X).
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9. Cánovas, J., Rodŕıguez, J.M.: Topological entropy of maps on the real line. Topol-
ogy Appl. 153, 735–746 (2005)

10. Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces.
Lecture Notes in Mathematics, vol. 527. Springer-Verlag, New York (1976)

11. Diamond, P., Pokrovskii, A.: Chaos, entropy and a generalized extension principle.
Fuzzy Sets Syst. 61, 277–283 (1994)

12. Dumitrescu, D.: Fuzzy measures and the entropy of fuzzy partitions. J. Math. Anal.
Appl. 176, 359–373 (1993)

13. Dumitrescu, D.: Entropy of fuzzy dynamical systems. Fuzzy Sets Syst. 70, 45–57
(1995)

14. Kolyada, S.: On dynamics of triangular maps of the square. Erg. Theory Dynam.
Syst. 12, 749–768 (1992)

15. Kupka, J.: On fuzzifications of discrete dynamical systems. Inf. Sci. 181(13), 2858–
2872 (2011)

16. Kupka, J.: On Devaney chaotic induced fuzzy and set-valued dynamical systems.
Fuzzy Sets Syst. 177, 34–44 (2011)

17. Knopfmacher, J.: On measures of fuzziness. J. Math. Anal. Appl. 49, 529–534
(1975)

18. Kwietniak, D., Oprocha, P.: Topological entropy and chaos for maps induced on
hyperspaces. Chaos, Solitons Fractals 33, 76–86 (2007)

19. Román-Flores, H., Chalco-Cano, Y.: Some chaotic properties of Zadeh’s extension.
Chaos, Solitons Fractals 35, 452–459 (2008)

20. Román-Flores, H., Chalco-Cano, Y., Silva, G.N., Kupka, G.J.: On turbulent, erratic
and other dynamical properties of Zadehs extensions. Chaos, Solitons Fractals 44,
990–994 (2011)



Fuzzy Relation Equations with Fuzzy Quantifiers

Nhung Cao(B) and Martin Štěpnička
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Abstract. In this paper, we follow the previous works on fuzzy rela-
tion compositions based on fuzzy quantifiers and we introduce systems
of fuzzy relation equations stemming from compositions based on fuzzy
quantifiers. We address the question, whether such systems under some
specific conditions may become solvable, and we provide a positive
answer. Based on the computational forms of the compositions using
fuzzy quantifiers, we explain a way of getting solutions of the systems.
In addition to showing some new properties and theoretical results, we
provide readers with illustrative examples.

Keywords: Fuzzy relation equations · Mamdani-Assilian model ·
Implicative model · Fuzzy (generalized) quantifiers

1 Introduction and Preliminaries

1.1 Introduction

Systems of fuzzy relation equations have a very important role in many areas
of fuzzy mathematics, especially in fuzzy control and approximate reasoning in
general. The first work on this field was done by Sanchez [19]. Numerous authors
have deeply studied and developed the topic, mainly the problems of finding
solvability criterions of the systems of fuzzy relation equations was focused on.
For the most valuable results, we refer readers to relevant literature [5,6,10,12,
15–17,21]. Furthermore, the interest of the scientific community in this filed does
not seem to decrease, see e.g. [11,18,20,24].

Standardly, two types of compositions, namely the sup-T composition and
the inf-R composition (also called Bandler-Kohout subproduct) are considered in
the investigated systems of equations. These compositions model fuzzy inference
mechanisms in the terminology of fuzzy rule based systems. In this paper, we
follow this standard setting however, with a significant difference consisting in the
employment of fuzzy quantifiers that replace the standard ones – the existential
and the universal. So, the used compositions appearing in the systems of fuzzy
relation equations will be based on generalized intermediate quantifiers [2–4].

Fuzzy relations solving the systems of fuzzy relation equations are con-
sidered as correct models of fuzzy rule bases [16]. In the standard systems,
the Mamdani-Assilian model [14] and the implicative model do possess unique
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 32
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positions among other solutions, in particular, if the sup-T system is solvable,
the implicative model is among the solutions, and similarly, if the inf-R sys-
tem is solvable, the Mamdani-Assilian model is among the solutions. Note, that
the implicative model aggregates rules by the minimum, which represents the
universal quantifier, and the Mamdani-Assilian model aggregates rules by the
maximum, which represents the existential quantifier. The natural questions are
as follows. If we replace the original compositions sup-T and inf-R by compo-
sitions based on generalized quantifiers, will we be still able to obtain solvable
systems? And in the case of a positive answer, will the solutions remain in the
Mamdani-Assilian-like and the implicative-like shape with the only difference:
the quantifiers used for aggregation of rules will be replaced by the generalized
ones? The answer will be positive and it will be provided in a constructive way,
i.e., we will show how to modify the fuzzy sets in order to satisfy the equali-
ties. Furthermore, we show some valid properties for the new systems with fuzzy
quantifiers.

1.2 Systems of Fuzzy Relation Equations

Let us fix a residuated lattice L = 〈[0, 1],∧,∨, ∗,→, 0, 1〉1 as the background
algebraic structure and by F(U) let us denote the set of all fuzzy sets on a given
universe U . Let Ai ∈ F(X), Bi ∈ F(Y ) be the antecedent and consequent fuzzy
sets, respectively. There are two standard systems of fuzzy relation equations
considered with respect to an unknown fuzzy relation R ∈ F(X × Y ):

Ai ◦ R = Bi, i = 1, 2, . . . ,m (sup-T system), (1)
Ai � R = Bi, i = 1, 2, . . . ,m (inf-R system) (2)

where the used compositions (images) ◦ and � may be expanded as follows:

(Ai ◦ R)(y) =
∨

x∈X

(Ai(x) ∗ R(x, y)) , (Ai � R)(y) =
∧

x∈X

(Ai(x) → R(x, y)) .

There are two models with priority positions among other potential solutions,
namely the Mamdani-Assilian model [14] and the implicative model :

RMA(x, y) =
m∨

i=1

(Ai(x) ∗ Bi(y)) , RIMP (x, y) =
m∧

i=1

(Ai(x) → Bi(y)) .

Let us recall fundamental solvability criterions demonstrating the priority
positions for the above models of fuzzy rule bases [5,12,13,15].

Theorem 1. The system (1) [(2)] is solvable if and only if fuzzy relation RIMP

[RMA] is its solution and then RIMP [RMA] is its greatest [least] solution.

1 The operations ∧, ∨, ∗, → stand for meet (infimum), join (supremum), multiplication
(left-continuous t-norm) and its residual implications, respectively.



356 N. Cao and M. Štěpnička

Theorem 2. Let fuzzy sets Ai ∈ F(X) be normal (with non-zero support) and
Bi ∈ F(Y ), i = 1, 2, . . . ,m. Then fuzzy relation RIMP [RMA] is a solution to
(2) [(1)] if and only if for all i, j = 1, 2, . . . ,m the following inequality holds:

∨

x∈X

(Ai(x) ∗ Aj(x)) ≤
∧

y∈Y

(Bi(y) ↔ Bj(y)) . (3)

Definition 1 [16,23]. Fuzzy relation R ∈ F(X × Y ) is said to be a continuous
model of fuzzy rules w.r.t. @ ∈ {◦,�} if for each i ∈ {1, . . . , m} and for A ∈ F(X)
the following inequality holds

∧

y∈Y

(Bi(y) ↔ (A@R)(y)) ≥
∧

x∈X

(Ai(x) ↔ A(x)) . (4)

Theorem 3 [16]. Let R ∈ F(X × Y ) be a fuzzy relation. Then for any A ∈
F(X) and all i = 1, . . . ,m and y ∈ Y it is true that

Bi(y) ↔ (A ◦ R)(y) ≥ δR,i(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) , (5)

where δR,i(y) = Bi(y) ↔ (Ai ◦R)(y) is called degree of solvability of the system.

A similar result has been proven in [23] also for the inf-R system, in particular:

Bi(y) ↔ (A � R)(y) ≥ σR,i(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) , (6)

where σR,i(y) = Bi(y) ↔ (Ai � R)(y).

Theorem 4 [16,23]. R is a solution of system (1) [(2)] if and only if R is
continuous.

1.3 Fuzzy Relational Compositions Based on Fuzzy Quantifiers

In this section, we recall some basic definitions of fuzzy (generalized) quantifiers
determined by fuzzy measures [7–9] that were used e.g. in [2,3,22].

Definition 2. Let U = {u1, . . . , un} be a finite universe, let P(U) denotes the
power set of U . A mapping μ : P(U) → [0, 1] is called a fuzzy measure on U if:
μ(∅) = 0 and μ(U) = 1, and if ∀C,D ∈ P(U), C ⊆ D then μ(C) ≤ μ(D). Fuzzy
measure μ is called invariant with respect to cardinality if: ∀C,D ∈ P(U) : |C| =
|D| ⇒ μ(C) = μ(D) where | · | denotes the cardinality of a set.

Unless specified differently, for the rest of the paper, we will consider only
measures invariant w.r.t. cardinality, i.e., measure, that modify the relative car-
dinality, see Example 1.

Example 1. Fuzzy measure μrc(C) = |C|
|U | is called relative cardinality and it is

invariant w.r.t. cardinality. Let f : [0, 1] → [0, 1] be a non-decreasing mapping
with f(0) = 0 and f(1) = 1 then μf defined as μf (C) = f(μrc(C)) is again a
fuzzy measure that is invariant w.r.t. cardinality.
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Example 2. Consider the fuzzy measure μ50%
rc on U defined as follows:

μ50%
rc (A) =

{
1 if μrc (A) ≥ 1

2

0 otherwise

for any A ∈ P(U). Such measure is used to construct a quantifier “at least half ”.
Analogously, one can define a measure “at least x %” for any x ∈ [0, 100].

Definition 3. A mapping Q : F(U) → [0, 1] defined by

Q(C) =
∨

D∈P(U)\{∅}

((
∧

u∈D

C(u)

)
∗ μ(D)

)
, C ∈ F(U) (7)

is called fuzzy (generalized) quantifier determined by fuzzy measure μ on U .

Example 3. Fuzzy measures μ∀(D) =

{
1 D ≡ U

0 otherwise
and μ∃(D) =

{
0 D ≡ ∅
1 otherwise

construct the classical universal (Q∀) and existential (Q∃) quan-

tifiers. It should be noted that μ∀ ≤ μ ≤ μ∃ for any fuzzy measure μ.

Formula (7) can be rewritten into a computationally cheaper form:

Q(C) =
n∨

i=1

C(uπ(i)) ∗ f(i/n) , C ∈ F(U) (8)

where π is a permutation on {1, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

Definition 4. Let X,Y,Z be non-empty finite universes, let R ∈ F(X × Y ),
S ∈ F(Y ×Z). Let Q be a fuzzy quantifier on Y determined by a fuzzy measure
μ. Then, the compositions R@QS where @ ∈ {◦,�} is defined as follows:

(R@QS)(x, z) =
∨

D∈P(Y )\{∅}

⎛

⎝

⎛

⎝
∧

y∈D

R(x, y) � S(y, z)

⎞

⎠ ∗ μ(D)

⎞

⎠ , (9)

where � ∈ {∗,→} corresponds to the composition and x ∈ X and z ∈ Z.

By (8), these compositions can be rewritten into computationally cheap form:

(R@QS)(x, z) =
n∨

i=1

((
R(x, yπ(i)) � S(yπ(i), z)

) ∗ f(i/n)
)

. (10)

where π is a permutation on {1, . . . , n} such that R(x, yπ(i)) � S(yπ(i), z) ≥
R(x, yπ(i+1)) � S(yπ(i+1), z) for any i = 1, . . . , n − 1 where n denotes the cardi-
nality of Y .
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2 Fuzzy Relation Equations with Fuzzy Quantifiers

This Section introduces new systems of fuzzy relation equations and presents
some related theoretical results. Let us fix the index set Im = {1, . . . ,m} and
Ai ∈ F(X), Bi ∈ F(Y ), i ∈ Im. Let Q be a fuzzy quantifier on X determined by a
fuzzy measure μ. The considered systems solved w.r.t. an unknown R ∈ F(X×Y )
are given as follows:

Ai ◦Q R = Bi , i = 1, . . . ,m , (11)

Ai �Q R = Bi , i = 1, . . . ,m . (12)

First of all, let us present two results stemming from (and generalizing) the
results provided by I. Perfilieva in [16] for the standard systems of fuzzy relation
equations.

Lemma 1. Let Q be a fuzzy quantifier determined by a fuzzy measure μ on X
and let R ∈ F(X × Y ) be a fuzzy relation. Then for any A ∈ F(X) and all
i = 1, . . . , m and y ∈ Y it is true that

Bi(y) ↔ (A ◦Q R)(y) ≥ εQ,R,i(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) , (13)

where εQ,R,i(y) = Bi(y) ↔ (Ai ◦Q R)(y).

Sketch of the proof: The proof is similar to the proof of inequality (5) provided
in [16], mainly the following basic properties are used:

∧

i∈I

(ai ↔ bi) ≤
(

∨

i∈I

ai

)
↔

(
∨

i∈I

bi

)
, (14)

∧

i∈I

(ai ↔ bi) ≤
(

∧

i∈I

ai

)
↔

(
∧

i∈I

bi

)
, (15)

(a ↔ b) ∗ (c ↔ d) ≤ (a ∗ c) ↔ (b ∗ d). (16)

��
Lemma 2. Let Q be a fuzzy quantifier determined by a fuzzy measure μ on X
and let R ∈ F(X × Y ) be a fuzzy relation. Then for any A ∈ F(X) and all
i = 1, . . . , m and y ∈ Y it is true that

Bi(y) ↔ (A �Q R)(y) ≥ ξQ,R,i(y) ∗
∧

x∈X

(Ai(x) ↔ A(x)) , (17)

where ξQ,R,i(y) = Bi(y) ↔ (Ai �Q R)(y).

Sketch of the proof: The proof is similar to the proof of inequality (6) provided
in [23], mainly properties (14)–(16) jointly together with the facts that a → (b →
c) = (a ∗ b) → c = (b ∗ a) → c = b → (a → c), (a → b) → b ≥ a ∨ b are used. ��

Lemmas 1 and 2 lead to the following important results.
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Proposition 1. A fuzzy relation R ∈ F(X × Y ) is a solution of system (11)
if and only if the following inequality holds for any A ∈ F(X) and for all i =
1, . . . ,m and y ∈ Y .

∧

y∈Y

(
Bi(y) ↔ (A ◦Q R)(y)

) ≥
∧

x∈X

(Ai(x) ↔ A(x)) . (18)

Sketch of the proof: The proof can be provided only by using inequality (13). ��
Proposition 2. A fuzzy relation R ∈ F(X × Y ) is a solution of system (12)
if and only if the following inequality holds for any A ∈ F(X) and for all i =
1, . . . ,m and y ∈ Y .

∧

y∈Y

(
Bi(y) ↔ (A �Q R)(y)

) ≥
∧

x∈X

(Ai(x) ↔ A(x)) . (19)

Sketch of the proof: The proof can be provided only by using inequality (17)
only. ��

Lemmata 1 and 2 and Propositions 1 and 2 actually show what was provided
already in [16] for the standard type of fuzzy relation equations, in particular,
that the solvability is identical to a sort of (Lipschitz-like) “continuity”. In other
words, the inferred outputs have to be at least as close2 to the consequent fuzzy
sets as are the input fuzzy sets close to the antecedent fuzzy sets. This conse-
quently means, that we should have consequents at least as “close” to each other
as the antecedents, having in mind again the construction of the closeness.

The above results did not employ the particular shape of the expected solu-
tions, i.e., we have not consider the Mamdani-Assilian nor the implicative models
of fuzzy rules bases with the modification in quantifiers aggregating the rules.
So, let us consider such fuzzy relations possibly serving as solutions of given
systems of fuzzy relation equations and then, let us introduce natural results.

Let Q be fuzzy quantifier on Im determined by a fuzzy measure μ. By for-
mula (9), we define fuzzy relations RQ

IMP , RQ
MA as follows:

RQ
IMP (x, y) =

∨

D∈P(Im)\∅

((
∧

i∈D

Ai(x) → Bi(y)

)
∗ μ(D)

)
,

RQ
MA(x, y) =

∨

D∈P(Im)\∅

((
∧

i∈D

Ai(x) ∗ Bi(y)

)
∗ μ(D)

)
.

Proposition 3. Let Q1, Q2 be fuzzy quantifiers on X determined by fuzzy mea-
sures μ1, μ2, respectively. Let Q3, Q4 be fuzzy quantifiers on Im determined by

2 The closeness is here given by the similarity measure using the fuzzy equivalence
from the underlying algebraic structure. In the case of a continuous Archimedean
t-norm, the similarity is a dual notion to the metric function induced by the additive
generator, which justifies the continuity point of view as well as the terminology [16].
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fuzzy measures μ3, μ4, respectively. Furthermore, let RQ3
IMP solves the system

Ai ◦Q1 R = Bi and let RQ4
IMP solves the system Ai ◦Q2 R = Bi. If μ1 ≤ μ2 then

μ4 ≤ μ3.

Sketch of the proof: The proof is based on the monotonicity property preserved
by the compositions based on fuzzy quantifiers [2, Lemma 1]. ��

Proposition 3 actually confirms a natural monotonic behaviour w.r.t. change
of the used quantifiers. The more the quantifiers replacing the existential one in
the used composition “moves” to the right, i.e. requires more than a single point
but rather a few points, the more the quantifiers replacing the universal one in
the aggregation of implicative rules “moves” to the left, i.e. requiring to meet
less then all rules, for example only most or many of them. An analogous result
may by obtained also for the inf-R equations and the Mamdani-Assilian rules
aggregated by a fuzzy quantifier.

Proposition 4. Let Q1, Q2 be fuzzy quantifiers on X determined by fuzzy mea-
sures μ1, μ2, respectively. Let Q3, Q4 be fuzzy quantifiers on Im determined by
fuzzy measures μ3, μ4, respectively. Furthermore, let RQ3

MA solves the system
Ai �Q1 R = Bi and let RQ4

MA solves the system Ai �Q2 R = Bi. If μ1 ≤ μ2

then μ4 ≤ μ3.

Sketch of the proof: The proof is based on the monotonicity property preserved
by the compositions based on fuzzy quantifiers [2, Lemma 1]. ��

3 First Observations on Solvability

Assume that systems (1) and (2) are solvable and thus, RIMP solves the first
system and RMA, solves the second system. The question addressed in this
Section is, whether there exist fuzzy measures μ1 on X and μ on Im such that
the following equalities

Ai ◦Q1 RQ
IMP = Bi , Ai �Q1 RQ

MA = Bi , (20)

where Q1, Q are fuzzy quantifiers determined by μ1 and μ, respectively, hold?
As we will show, under some assumptions, the answer will be positive.

3.1 Sup-T System

For the sake of comprehension and the convenience of calculation, let us con-
sider the computational form of the compositions (10) and finite universes
Im = {1, . . . , m}, X = {x1, . . . , xn}, Y = {y1, . . . , ys}. Then RQ

IMP (x, y) and
(A ◦Q1 R)(y) are given by

RQ
IMP (x, y) =

m∨

j=1

((
Aπ(j)(x) → Bπ(j)(y)

) ∗ f

(
j

m

))
, (21)

(A ◦Q1 R)(y) =
n∨

k=1

((
A(xπ1(k)) ∗ R(xπ1(k), y)

) ∗ f1

(
k

n

))
(22)

where π, π1 are permutations such that
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Aπ(j)(x) → Bπ(j)(y) ≥ Aπ(j+1)(x) → Bπ(j+1)(y), j = 1, 2, . . . ,m − 1, and
A(xπ1(k)) ∗ R(xπ1(k), y) ≥ A(xπ1(k+1)) ∗ R(xπ1(k+1), y), k = 1, 2, . . . , n − 1.

Before showing some examples, we start with a simple but important
observation. Assume that for each x ∈ X, there is only i ∈ Im such that
Ai(x) > 0 and Aj(x) = 0 for any j �= i. Then, by formula (21), we have
Aπ(j)(x) → Bπ(j)(y) = 1 for any j = 1, . . . ,m − 1. Now, let us consider μ

to be strictly greater than μ∀ on Im. We may consider, e.g., the measure μ such
that f( j

m ) = 0 for j ∈ {1, . . . , m − 2}, f(m−1
m ) = am−1 > 0 and f(1) = 1. Then

RQ
IMP (x, y) = am−1 ∨ (

Aπ(m)(x) → Bπ(m)(y)
)
. The smaller the value am−1, the

closer is the value RQ
IMP (x, y) to the value RIMP (x, y), and vise-versa. In par-

ticular, if am−1 = 1 then RQ
IMP (x, y) = 1, for all pairs (x, y). This implies that

(Ai ◦ RQ
IMP )(y) = 1 for all y ∈ Y assuming normality of all Ai’s . If we define

similarity degrees between membership degrees to Ai ◦ RQ
IMP and to Bi as

εi,Q,Q∃(y) = (Ai ◦ RQ
IMP )(y) ↔ Bi(y), y ∈ Y

and the overall similarity degree as εQ,Q∃ =
∧

i∈Im

∧
y∈Y (εi,Q,Q∃(y)), then this

similarity εQ,Q∃ will be equal to 0 whenever there will be some y ∈ Y and some
i ∈ Im such that Bi(y) = 0.

What if we replace μ∃ used for the composition ◦ to a measure μ1 that is
strictly lower than the μ∃ on X? This approach would be natural as it would
decrease the values of Ai◦Q1 RQ

IMP closer to the membership degrees of y’s to Bi.
However, we have assumed that Ai(x) > 0 just for one i ∈ Im for each x ∈ X.

Now if we consider μ1 such that f( 1
n ) = b1 < 1 and f( k

n ) = 1 for k ∈ {2, . . . , n}
then, by formula (22) we get

(
Ai ◦Q1 RQ

IMP

)
(y) = b1 for any y ∈ Y . This implies

that the similarity degree

εi,Q,Q1 =
∧

y∈Y

((
Ai ◦Q1 RQ

IMP

)
(y) ↔ Bi(y)

)

is rather low. In particular, for the �Lukasiewicz algebra and the consequent fuzzy
sets Bi taking all values from the unit interval [0, 1], the similarity will be always
lower or equal to 0.5, which derives the overall similarity degree εQ,Q1 ,

εQ,Q1 =
∧

i∈Im

∧

y∈Y

(
(Ai ◦Q1 RQ

IMP )(y) ↔ Bi(y)
)

(23)

to be low too.
Analogously, if for each x ∈ X there will be only two indexes i, j ∈ Im such

that Ai(x) > 0, Aj(x) > 0 and if we consider measure μ determined by f( j
m ) = 0

for j ∈ {1, . . . , m−3}, and by f(m−2
m ) = am−2 > 0 then we would encounter the

same situation.
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Thus, we may formulate the following observation.

Observation 5. For a higher similarity degree, the antecedent fuzzy sets Ai

have to be modified in order to overlap in a denser way. And, the higher and
closer the membership degrees at each overlapping point, the higher similarity is
obtained.

It should be noted that while adjusting Ai, we have to take into account
condition (4) in order to ensure that the both standard systems are solvable.
By Irina’s and Lehmke’s results [16] on the continuity of a model of fuzzy IF-
THEN rules, the condition means that consequents Bi have to be “closer” than
antecedents Ai. With such a modifying of fuzzy sets, we expect that, in a certain
sense, the systems of equations with fuzzy quantifiers are also solvable.

Let us demonstrate the observation on examples. For the technical reasons,
let us restrict our choice of Q1, Q to fuzzy quantifiers of the type “at least x %”
mentioned in Example 2. Let us consider the systems based on fuzzy rule bases
with m rules. Then Q will be used to model expressions of the type “at least J
rules” and Q1 will be used to model expressions of the type “at least K elements”
from X.

Example 4. Assume that Im = {1, . . . , 10}, X = {x1, . . . , x26}, Y =
{y1, . . . , y18} and consider Ai, Bi, i = 1, . . . , 10 as depicted in Fig. 1. Let us run
computations for the combinations of fuzzy quantifier Q “at least J rules” with
J ranging form 1 to 9, and the fuzzy quantifier Q1 “at least K elements” with
K ranging from 2 to 26. The goal is to find the combination with the maximal
overall similarity degree, εQ,Q1 .

(a) Fuzzy sets on X (b) Fuzzy sets on Y

Fig. 1. Depiction of fuzzy sets in the case that the overall similarity degree reaches
the maximum value εQ,Q1 = 0.6 for the combinations of Q = “at least J rules” where
J = 9 and Q1 = “at least K elements from X” for K = 4.

As we can see from Fig. 1, the overlapping area of any two antecedent fuzzy
sets is rather narrow. Therefore, only the standard sup-T system is solvable. For
the system with fuzzy quantifiers, the calculations provided the maximum value
of the similarity degree equal to 0.6, which occurred for J = 9 and for K = 4
representing Q1 = “at least 4 elements” from 26 elements of X.
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Example 5. In Fig. 2, we expanded the areas covered by each Ai’s support as
well as kernel and modified corresponding consequents fuzzy sets Bi accordingly.
Then the highest overall similarity degree (0.75) is obtained for Q = “at least 9
rules” and for Q1 = “at least 4 elements from X”.

(a) Fuzzy sets on X (b) Fuzzy sets on Y

Fig. 2. Depiction of fuzzy sets in the case when the overall similarity degree reaches
the maximum value εQ,Q1 = 0.75 for the combinations of Q = “at least 9 rules”
and Q1 = “at least 4 elements from X”.

Example 6. Finally, we will continue in the process in order to reach the overall
similarity degree εQ,Q1 = 1. After a sufficient expansion of the antecedent fuzzy
sets’ supports and kernels and the corresponding modification of the consequent
fuzzy sets in the same way, see Fig. 3, we obtain the desirable setting.

(a) Fuzzy sets on X (b) Fuzzy sets on Y

Fig. 3. Depiction of fuzzy sets in the case when the overall similarity degree equals to
one for the combination of Q = “at least 9 rules” and Q1 = “at least 3 elements”.

3.2 Inf-R System

Let us again consider the computational form of the compositions (10) and finite
universes Im = {1, . . . , m}, X = {x1, . . . , xn}, Y = {y1, . . . , ys}. Then RQ

MA(x, y)
and (A �Q1 R)(y) are given by

RQ
MA(x, y) =

m∨

j=1

((
Aπ(j)(x) ∗ Bπ(j)(y)

) ∗ f

(
j

m

))
, (24)

(A �Q1 R)(y) =
n∨

k=1

((
A(xπ1(k)) → R(xπ1(k), y)

) ∗ f1

(
k

n

))
(25)

where π, π1 are permutations such that
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Aπ(j)(x) ∗ Bπ(j)(y) ≥ Aπ(j+1)(x) ∗ Bπ(j+1)(y), j = 1, 2, . . . ,m − 1, and
A(xπ1(k)) → R(xπ1(k), y) ≥ A(xπ1(k+1)) → R(xπ1(k+1), y), k = 1, 2, . . . , n − 1.

Before showing some examples, we start with a simple but important obser-
vation. Assume that there is i ∈ Im such that Ai(x) > 0 for only one x ∈ X.
Now, let us consider measure μ1 to be strictly greater than μ∀ on X. We may
consider, e.g., the measure μ1 such that f( k

n ) = 0 for k ∈ {1, . . . , n−2}, f(n−1
n ) =

an−1 > 0 and f(1) = 1. Then (Ai�Q1R)(y) = an−1∨
(
Ai(xπ(m)) → R(xπ(m), y)

)
.

The smaller the value an−1, the closer is the value (Ai �Q1 R)(y) to the value
(Ai �R)(y) and vice-versa. In particular, if an−1 = 1 then (Ai �Q1 R)(y) = 1 for
any R ∈ F(X ×Y ) and for any y ∈ Y . If we define the similarity degree between
membership degrees to Ai �Q1 R and to Bi as

ξQ1,i =
∧

y∈Y

(Ai �Q1 R)(y) ↔ Bi(y)

and the overall similarity degree ξQ1 =
∧

i∈Im
ξQ1,i, then ξQ1 = 0 whenever there

will be some y ∈ Y such that Bi(y) = 0.
Thus, consider more than only one x ∈ X such that Ai(x) > 0 for all i ∈ Im,

however, still without any overlapping areas of the antecedent fuzzy sets Ai. In
order to make an observation, let us consider a particular measure μ < μ∃ such
that f( 1

m ) = b1 < 1 and f( j
m ) = 1 for j ∈ {2, . . . , m}. Then, by formula (24), we

have RQ
MA(x, y) = (Aπ(1) ∗ Bπ(1)) ∗ b1. The higher the value b1, the closer is the

value RQ
MA(x, y) to the value RMA and vise-versa. In particular, if b1 = 0 then

RQ
MA(x, y) = 0 for all pairs (x, y). This implies that (Ai �Q1 RQ

MA)(y) = c for
any i ∈ Im and for any y ∈ Y which leads to the similarity degree at i

ξQ,Q1,i =
∧

y∈Y

(Ai �Q1 RQ
MA)(y) ↔ Bi(y)

that is rather low. In particular, for the �Lukasiewicz algebra and the consequent
fuzzy sets Bi taking all values from the unit interval [0, 1], the similarity will be
always lower or equal to 0.5, which derives the overall similarity degree ξQ,Q1 ,

ξQ,Q1 =
∧

i∈Im

∧

y∈Y

(Ai �Q1 RQ
MA)(y) ↔ Bi(y). (26)

to be low too.
Analogously, if there is i ∈ Im such that Ai(x) > 0, Ai(x′) > 0 for only two

elements x, x′ ∈ X and if we consider measure μ1 determined by f( k
n ) = 0 for

k ∈ {1, . . . , n − 3}, and by f(n−2
n ) = an−2 > 0 then we would encounter the

same situation.
Thus, the analysis leads to the following observation which is the same as in

the case of sup-T system:

Observation 6. For a higher similarity degree, the antecedent fuzzy sets Ai

have to be modified in order to overlap in a denser way. And, the higher and
closer the membership degrees at each overlapping point, the higher similarity is
obtained.
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Example 7. Let us consider fuzzy sets Ai, Bi, i = 1, . . . , 10 depicted in Fig. 1.
Now let us run computations for the combinations of fuzzy quantifier Q “at
least J rules” with J ranging form 2 to 10, and the fuzzy quantifier Q1 “at least
K elements” with K ranging from 1 to 25. The goal is to find the combination
with the maximal overall similarity degree, ξQ,Q1 .

As the overlapping area of any two antecedent fuzzy sets is rather narrow,
only the standard inf-R system is solvable. For the system with fuzzy quantifiers,
the calculations provided the maximum value of the similarity degree equal to
0.6, which occurred for J = 2 and K = 23 representing Q1 = “at least 23
elements” from the 26 elements of X.

Example 8. Fuzzy sets constructed in Fig. 2 provided the maximum value of the
overall similarity degree equal to 0.75 which is obtained for Q1 = “at least 24
elements” from the 26 elements of X and Q = “at least 2 rules”.

Example 9. In Fig. 3, if we slightly modify fuzzy sets B1, B10 so that B1 ≡
B2, B9 ≡ B10, then, the maximum of the overall similarity degree ξQ,Q1 = 1.
This result is obtained for Q1 = “at least 24 elements” from the 26 elements of
X and Q = “at least 2 rules”.

Let us mention that the experiment has been computed using the “Linguistic
Fuzzy Logic” lfl v1.3 R-package [1] which contains all necessary functions for the
fuzzy relational calculus.

4 Conclusion

The problem of solvability of fuzzy relation equations with fuzzy quantifiers has
been firstly considered. Under the assumption that the two standard systems
are solvable, we have shown that the two systems of fuzzy relation equations
with fuzzy quantifiers are possibly also solvable. However, this holds only in the
case of a “sufficient” overlap of antecedent fuzzy sets and, consequently, also
of the consequent fuzzy sets. Only in that case we can find appropriate fuzzy
quantifiers Q,Q1 determined by fuzzy measures μ, μ1 such that μ > μ∀ on Im

and μ1 < μ∃ on X so that the equality of Ai ◦Q1 RQ
IMP = Bi is preserved.

These results may lead to a construction of generalized systems of fuzzy infer-
ence systems that closely represent reasoning in natural language. For example,
the implicative rules are aggregated with the universal quantifier which means,
that “all” rules have to be met at the same time. With help of fuzzy quanti-
fiers, we may model situations when the reasoning is made, e.g., on “Majority”
or “Most” of the rules in the given fuzzy rule base. This provide us with a
wider choice of models that may better fit for particular problems incorporated
human-like reasoning with natural language that often encompasses a sort of
“tolerance”.

Acknowledgement. This research was partially supported by the NPU II project
LQ1602 “IT4Innovations excellence in science” provided by the MŠMT.
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Abstract. The concepts of incorporation of excluding features in fuzzy
relational compositions and the compositions based on generalized quan-
tifiers are useful tools for improving relevance and precision of the suspi-
cion provided by the standard fuzzy relational compositions initial stud-
ied by Willis Bandler and Ladislav Kohout. They are independently
extended from the standard compositions. However, it may become a
very effective tool if they are used together. Taking this natural motiva-
tion leads us to introduce the concept of incorporation of excluding fea-
tures in fuzzy relational compositions based on generalized quantifiers.
Most of valid properties preserved for the two mentioned approaches
will be proved for the new concept as well. Furthermore, an illustrative
example will be presented for showing the usefulness of the approach.

Keywords: Fuzzy relational compositions · Fuzzy relational prod-
ucts · Bandler-Kohout products · Fuzzy measures · Generalized (fuzzy)
quantifiers · Medical diagnosis · Classification

1 Introduction

In the late 70’s and the early 80’s, fuzzy relational compositions (or fuzzy rela-
tional products) are firstly studied by Willis Bandler and Ladislav Kohout [1].
After that, they have been studied, extended and developed on various aspects
by numerous authors, see e.g. [3,5,13]. They have an important role in many
areas of fuzzy mathematics, including the formal constructions of fuzzy inference
systems [19,25] and related systems of fuzzy relational equations [12,14,18,21],
medical diagnosis [1], architectures of information processing [2] or in flexible
queries to relational databases [15].

During such a long time and up to the present time, the development on this
topic has been made. It is demonstrated by numerous recent works, for instance,
on flexible query answering systems [20], inference systems [16,17,23] or model-
ing monotone fuzzy rule bases [22]. Other recently interesting directions of the
research are the incorporation of excluding features in fuzzy relational compo-
sitions [6–8] and the employment of generalized quantifiers on the compositions
[9–11,24].
c© Springer International Publishing AG 2018
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Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 33
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This paper provides an investigation stemming from the two previous direc-
tions on the incorporation of excluding features in fuzzy relational compositions
[6–8] and the compositions based on generalized quantifiers [9–11]. The first one
is motivated by the existence of excluding symptoms for some particular diseases
in the medical problem and it has been applied to the classification problems
of animals in biology. The second one is motivated by the possibility to fill a
big gap between the basic composition that uses existential quantifier and the
Bandler-Kohout products that uses universal quantifier. These approaches both
are helpful for improving relevance and precision of the suspicions provided by
the standard compositions, i.e., they both help to reducing number of initial
suspicions given by the basic “circlet” composition without losing the possibly
correct suspicion that often happens when we use Bandler-Kohout products.
Furthermore, the problems, that are motivated for forming the two approaches,
simultaneously happen in the medical problem or classification problem. Because
of this, we propose the concept of incorporation of excluding features in fuzzy
relational compositions based on generalized quantifiers. The contribution of this
extension will be demonstrated on an illustrative example.

2 Preliminaries

We recall some basic definitions of the incorporation of excluding features
in fuzzy relational composition [6–8] and the compositions based on gener-
alized quantifiers [9,11,24]. In the sequel, we fix a residuated lattice L =
〈[0, 1],∧,∨,⊗,→ 0, 1〉 as the underlying algebraic structure and we denote by
F(U) the set of all fuzzy sets on a given universe U .

2.1 Excluding Features in Fuzzy Relational Compositions

Definition 1. Let X,Y,Z be non-empty finite universes, let R ∈ F(X × Y ),
S,E ∈ F(Y × Z). Then the composition R ◦ S�E ∈ F(X × Z) is defined:

(R ◦ S�E)(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗ ¬
∨

y∈Y

(R(x, y) ⊗ E(y, z)) .

We recall that the semantic that E(x, y) means that y is an excluding feature
for object (class) z. There are two other ways to define the composition:

(R ◦ S�E)�(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗
∧

y∈Y

(R(x, y) → ¬E(y, z)) ,

(R ◦ S�E)�(x, z) =
∨

y∈Y

(R(x, y) ⊗ S(y, z)) ⊗
∧

y∈Y

(¬R(x, y) ⊕ ¬E(y, z)) .

Simplified formulas may be given as follows:

(R ◦ S�E)(x, z) = (R ◦ S)(x, z) ⊗ ¬(R ◦ E)(x, z), (1)
(R ◦ S�E)�(x, z) = (R ◦ S)(x, z) ⊗ (R � ¬E)(x, z), (2)
(R ◦ S�E)�(x, z) = (R ◦ S)(x, z) ⊗ (¬R � ¬E)(x, z), (3)
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where the so-called inf-S composition [18] is defined by

(R � S)(x, z) =
∧

y∈Y

(R(x, y) ⊕ S(y, z)) .

Regarding the conditions for which the three distinct definitions (1)–(3) are
equivalent, we recall the following result:

Lemma 1. [8] Let the underlying algebraic structure 〈[0, 1],∧,∨,→,⊗, 0, 1〉 be
a complete residuated lattice such that the negation ¬a = a → 0 is strict and ⊗
has no zero divisors or it is an MV-algebra. Then

(R ◦ S�E)(x, z) = (R ◦ S�E)�(x, z) = (R ◦ S�E)�(x, z).

2.2 Fuzzy Relational Compositions Based on Generalized
Quantifiers

Definition 2. [9,11,24] Let U = {u1, . . . , un} be a finite universe, let P(U)
denote the power set of U . A mapping μ : P(U) → [0, 1] is called a fuzzy
measure on U if μ(∅) = 0 and μ(U) = 1 and if ∀C,D ∈ P(U), C ⊆ D then
μ(C) ≤ μ(D). Fuzzy measure μ is called invariant with respect to cardinality
(w.r.t) if ∀C,D ∈ P(U) : |C| = |D| ⇒ μ(C) = μ(D) where | · | denotes the
cardinality of a set.

Definition 3. [9,11,24] A mapping Q : F(U) → [0, 1] defined by

Q(C) =
∨

D∈P(U)\{∅}

((
∧

u∈D

C(u)

)
⊗ μ(D)

)
, C ∈ F(U)

is called generalized (fuzzy) quantifier determined by a fuzzy measure μ on U .

In case of fuzzy measure μ is invariant w.r.t cardinality, for the simplicity of
calculation, the quantifier can be rewritten into a simpler form:

Q(C) =
n∨

i=1

C(uπ(i)) ⊗ μ({u1, . . . , ui}), C ∈ F(U)

where π is a permutation on {1, . . . , n} such that C(uπ(1)) ≥ C(uπ(2)) ≥ · · · ≥
C(uπ(n)).

Definition 4. [9,11,24] Let X,Y,Z be non-empty finite universes, let R ∈
F(X × Y ), S ∈ F(Y × Z). Let Q be a quantifier on Y determined by a fuzzy
measure μ. Then, the compositions R@QS where @ ∈ {◦,�,�, �} are defined
as follows:

(R@QS)(x, z) =
∨

D∈P(Y )\{∅}

⎛

⎝

⎛

⎝
∧

y∈D

R(x, y) � S(y, z)

⎞

⎠ ⊗ μ(D)

⎞

⎠

for all x ∈ X, z ∈ Z and for � ∈ {⊗,→,←,↔} corresponding to the
composition @.
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3 Excluding Features in Fuzzy Relational Compositions
Based on Generalized Quantifiers

In this section, we directly combine Definitions 1 and 4 to define the new con-
cept of excluding features in fuzzy relational compositions based on generalized
quantifiers and to study its properties.

Definition 5. Let X,Y,Z be non-empty finite universes, let R ∈ F(X × Y ),
S,E ∈ F(Y × Z). Let Q be a quantifier on Y determined by a fuzzy measure μ.
Then, (R ◦Q S�E), (R �Q S�E), (R �Q S�E), (R �Q S�E) are fuzzy relations on
X × Z defined as follows:

(R ◦Q S�E)(x, z) = (R ◦Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (4)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (5)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (6)

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z), (7)

for all x ∈ X and z ∈ Z.

The proposed compositions provide desirable meanings as we use the gen-
eralized quantifiers such as ‘Most’. For example, in the classification problem
of animals in biology, (R �Q S�E)(x, z) means that animal x has ‘Most’ of the
features of a given family and ‘Most’ of the features of x is related to a given
family and at the same time there is no excluding features related to family z
carried by the animal.

Note, that each expression in Definition 5 can be rewritten in two other ways.
For examples, (7) can be rewritten as follows:

(R �Q S�E)(x, z) = (R �Q S)(x, z) ⊗ ¬(R ◦ E)(x, z),

(R �Q S�E)�(x, z) = (R �Q S)(x, z) ⊗ (R � ¬E)(x, z),

(R �Q S�E)�(x, z) = (R �Q S)(x, z) ⊗ (¬R � ¬E)(x, z).

And expressions (4)–(6) can be rewritten analogously.
Regarding the relationship of the three distinct definitions of each expression

in Definition 5, we have the following results:

Lemma 2.

R ◦Q S�E = (R ◦Q S�E)� , R ◦Q S�E ⊇ (R ◦Q S�E)� , (8)

R �Q S�E = (R �Q S�E)� , R �Q S�E ⊇ (R �Q S�E)� , (9)

R �Q S�E = (R �Q S�E)� , R �Q S�E ⊇ (R �Q S�E)� (10)

R �Q S�E = (R �Q S�E)� , R �Q S�E ⊇ (R �Q S�E)� . (11)

Sketch of the proof: The proof is similar to the proof of Lemma 11 [8]. For
example, the first equality of property (11) is proved based on the facts
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that ¬∨
i∈I ai =

∧
i∈I ¬ai for an arbitrary index set I and (a ⊗ b) → c =

a → (b → c), and the second one is derived from ¬(a ⊗ b) ≥ ¬a ⊕ ¬b in the
residuated lattice. ��

Another raised question is, under which conditions, the inclusions shown
above become the equalities. Similarly to the investigation of excluding features
in standard fuzzy relational compositions, we obtain the following result.

Lemma 3. Let the underlying algebraic structure 〈[0, 1],∧,∨,→,⊗, 0, 1〉 be a
complete residuated lattice such that the negation ¬a = a → 0 is strict and ⊗
has no zero divisors or it is an MV-algebra. Then

R ◦Q S�E = (R ◦Q S�E)� , (12)

R �Q S�E = (R �Q S�E)� , (13)

R �Q S�E = (R �Q S�E)� , (14)

R �Q S�E = (R �Q S�E)� . (15)

Sketch of the proof: The proof is similar to the proof of Lemma 12 [8]. ��

4 Properties

In this section, we present some valid properties of the proposed compositions
which might be very useful. As will be shown, many properties of the fuzzy rela-
tional compositions using generalized quantifiers and the compositions incorpo-
rating excluding features are still preserved for the proposed compositions.

Let us fix the notation, let R ∈ F(X ×Y ), let S, S1, S2, E,E1, E2 ∈ F(Y ×Z)
and furthermore, let ∪,∩ denote the Gödel union and intersection, respectively.

Proposition 1 (Containment).

R ◦Q S�E ⊆ R ◦Q S , R ◦Q S�E ⊆ R � ¬E (16)

R �Q S�E ⊆ R �Q S , R �Q S�E ⊆ R � ¬E (17)

R �Q S�E ⊆ R �Q S , R �Q S�E ⊆ R � ¬E (18)

R �Q S�E ⊆ R �Q S , R �Q S�E ⊆ R � ¬E. (19)

Sketch of the proof: Using the properties a ⊗ b ≤ a, a ⊗ b ≤ b, we get

(R ◦Q S�E)(x, z) ≤ (R ◦Q S)(x, z)

for all (x, z) ∈ X ×Z. Thus, R◦Q S�E ⊆ R◦Q S. The other inclusions are proved
analogously. ��
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Proposition 2 (Monotonicity).

S1 ⊆ S2 ⇒ R ◦Q S�
1E ⊆ R ◦Q S�

2E , (20)

E1 ⊆ E2 ⇒ R ◦Q S�E1 ⊇ R ◦Q S�E2 , (21)

S1 ⊆ S2 ⇒ R �Q S�
1E ⊆ R �Q S�

2E , (22)

E1 ⊆ E2 ⇒ R �Q S�E1 ⊇ R �Q S�E2 , (23)

R1 ⊆ R2 ⇒ R1 �Q S�E ⊇ R2 �Q S�E , (24)

S1 ⊆ S2 ⇒ R �Q S�
1E ⊇ R �Q S�

2E , (25)

E1 ⊆ E2 ⇒ R �Q S�E1 ⊇ R �Q S�E2 , (26)

E1 ⊆ E2 ⇒ R �Q S�E1 ⊇ R �Q S�E2 . (27)

Sketch of the proof: The proof is based on properties a → c ≥ b →
c whenever a ≤ b and a → b ≤ a → c whenever b ≤ c. Indeed,

(R ◦Q S1
�E)(x, z) = (R ◦Q S1)(x, z) ⊗ ¬(R ◦ E)(x, z)

≤ (R ◦Q S2)(x, z) ⊗ ¬(R ◦ E)(x, z)

and

(R ◦Q S�E1)(x, z) = (R ◦Q S)(x, z) ⊗ ¬(R ◦ E1)(x, z)

≥ (R ◦Q S)(x, z) ⊗ ¬(R ◦ E2)(x, z).

prove (20)–(21). Properties (22)–(27) are proved similarly. ��
Proposition 3 (Interaction with union).

R ◦Q (S1 ∪ S2)�E ⊇ (R ◦Q S1
�E) ∪ (R ◦Q S�

2E), (28)

R �Q (S1 ∪ S2)�E ⊇ (R �Q S1
�E) ∪ (R �Q S�

2E), (29)

R �Q (S1 ∪ S2)�E ⊆ (R �Q S1
�E) ∩ (R �Q S�

2E), (30)

R ◦Q S�(E1 ∪ E2) = (R ◦Q S�E1) ∩ (R ◦Q S�E2), (31)

R �Q S�(E1 ∪ E2) = (R �Q S�E1) ∩ (R �Q S�E2), (32)

R �Q S�(E1 ∪ E2) = (R �Q S�E1) ∩ (R �Q S�E2), (33)

R �Q S�(E1 ∪ E2) = (R �Q S�E1) ∩ (R �Q S�E2), (34)

Sketch of the proof:

(R ◦Q (S1 ∪ S2)�E)(x, z) = (R ◦Q (S1 ∪ S2))(x, z) ⊗ ¬(R ◦ E)(x, z)

≥ (
(R ◦Q S1) ∪ (R ◦Q S2)

)
(x, z) ⊗ ¬(R ◦ E)(x, z)

=
(
(R ◦Q S�

1E) ∪ (R ◦Q S�
2E)

)
(x, z)

for all (x, z) ∈ X × Z which proves (28). Property (31) is due to

(R ◦Q S�(E1 ∪ E2))(x, z) = (R ◦Q S)(x, z) ⊗ ¬(R ◦ (E1 ∪ E2))(x, z)

= (R ◦Q S)(x, z) ⊗ (¬(R ◦ E1)(x, z) ∧ ¬(R ◦ E2)(x, z))

= ((R ◦Q S�E1) ∩ (R ◦Q S�E2))(x, z).

The other properties are proved analogously. ��
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Proposition 4. (Interaction with intersection).

R ◦Q (S1 ∩ S2)�E ⊆ (R ◦Q S1
�E) ∩ (R ◦Q S�

2E), (35)

R �Q (S1 ∩ S2)�E ⊆ (R �Q S1
�E) ∩ (R �Q S�

2E), (36)

R �Q (S1 ∩ S2)�E ⊇ (R �Q S1
�E) ∪ (R �Q S�

2E), (37)

R ◦Q S�(E1 ∩ E2) = (R ◦Q S�E1) ∪ (R ◦Q S�E2), (38)

R �Q S�(E1 ∩ E2) = (R �Q S�E1) ∪ (R �Q S�E2), (39)

R �Q S�(E1 ∩ E2) = (R �Q S�E1) ∪ (R �Q S�E2), (40)

R �Q S�(E1 ∩ E2) = (R �Q S�E1) ∪ (R �Q S�E2), (41)

Sketch of the proof:

(R ◦Q (S1 ∩ S2)�E)(x, z) = (R ◦Q (S1 ∩ S2))(x, z) ⊗ ¬(R ◦ E)(x, z)

≤ (
(R ◦Q S1) ∩ (R ◦Q S2)

)
(x, z) ⊗ ¬(R ◦ E)(x, z)

=
(
(R ◦Q S�

1E) ∩ (R ◦ S�
2E)

)
(x, z).

which proves (35). And (38) is implied from

(R ◦Q S�(E1 ∩ E2))(x, z) = (R ◦Q S)(x, z) ⊗ ¬(R ◦ (E1 ∩ E2))(x, z)

= (R ◦Q S)(x, z) ⊗ (¬(R ◦ E1)(x, z) ∨ ¬(R ◦ E2)(x, z))

= ((R ◦Q S�E1) ∪ (R ◦Q S�E2))(x, z).

The other properties are proved similarly. ��
Proposition 5 (Interdefinability).

R �Q S�E ⊆ (R �Q S�E) ∩ (R �Q S�E). (42)

Sketch of the proof: The proof is derived from the property R �Q S ⊆ (R�Q S)∩
(R �Q S). Indeed,

(R �Q S�E)(x, z) = (R �Q E)(x, z) ⊗ ¬(R ◦ E)(x, z)

≤ (
(R �Q S)(x, z) ∧ (R �Q S)(x, z)

) ⊗ ¬(R ◦ E)(x, z)

= (R �Q S�E)(x, z) ∧ (R �Q S�E)(x, z).

��
Proposition 6. Let Q1, Q2 be quantifiers determined by fuzzy measures μ1, μ2,
respectively, such that μ1 ≤ μ2. Then,

R ◦Q1 S�E ⊆ R ◦Q2 S�E , (43)

R �Q1 S�E ⊆ R �Q2 S�E , (44)

R �Q1 S�E ⊆ R �Q2 S�E , (45)

R �Q1 S�E ⊆ R �Q2 S�E . (46)
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Sketch of the proof: The proof is based on Lemma 1 in [9]. For example, property
(43) is due to

(R ◦Q1 S�E)(x, z) = (R ◦Q1 S)(x, z) ⊗ ¬(R ◦ E)(x, z)

≤ (R ◦Q2 S)(x, z) ⊗ ¬(R ◦ E)(x, z)

= (R ◦Q2 S�E)(x, z). ��

5 Illustrative Example

Let us demonstrate the influence of the incorporation of the excluding features
into the fuzzy relational compositions based on generalized quantifiers on an
illustrative example. All the calculations are computed using the “Linguistic
Fuzzy Logic” lfl v1.3 R-package [4].

For the convenience of comparing with the former methods, let us consider
the problem of classification of animals mentioned in [6] or in [8]. Let Z be a set of
families of animals (z1 - Bird, z2 - Fish, z3 - Dog, z4 - Equidae, z5 - Mosquito, z6 -
Monotreme, z7 - Reptile), Y be a set of animal features (y1 - flies, y2 - feathers,
y3 - fins, y4 - claws, y5 - hair, y6 - teeth, y7 - beak, y8 - scales, y9 - swims) and
let X be a set of particular animals (x1 - Platypus, x2 - Emu, x3 - Hairless dog,
x4 - Aligator, x5 - Parrotfish, x6 - Puffin). Let R ∈ F(X ×Y ), S, E ∈ F(Y ×Z).
Our task is to classify the animals to their families. Let S,E ∈ F(Y × Z) and
R ∈ F(X × Y ) be given as follows

S z1 z2 z3 z4 z5 z6 z7
y1 0.8 0 0 0 1 0 0
y2 1 0 0 0 0 0 0
y3 0 1 0 0 0 0.5 0
y4 0.9 0 1 0 0 0.8 0.3
y5 0 0 0.8 1 0 0.9 0
y6 0 0.6 1 1 0 0 0.7
y7 1 0.1 0 0 0 0.5 0
y8 0.7 0.9 0 0 0 0 1
y9 0.5 1 0.8 0.6 0.1 0.7 0.8

E z1 z2 z3 z4 z5 z6 z7
y1 0 1 1 1 0 1 1
y2 0 1 1 1 1 1 1
y3 1 0 1 1 1 0 1
y4 0 1 0 1 1 0 0
y5 0.8 1 0 0 1 0 1
y6 1 0 0 0 1 1 0
y7 0 0.1 1 1 1 0 1
y8 0 0 1 0 1 1 0
y9 0 0 0 0 0.8 0 0

R y1 y2 y3 y4 y5 y6 y7 y8 y9
x1 0 0 0 1 1 0 1 0 0.9
x2 0 1 0 1 0 0 1 0.5 0.4
x3 0 0 0 1 0.2 1 0 0 0.7
x4 0 0 0 1 0 1 0 1 0.9
x5 0 0 1 0 0 0.9 0.8 1 1
x6 1 1 0 1 0 0 1 0.4 0.9
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We use the �Lukasiweicz algebra as the underlying algebraic structure. The
basic compositions ◦ gives us too much suspicions as we see below and if we
calculate the square product R � S, we get nearly no more suspicion.

R ◦ S z1 z2 z3 z4 z5 z6 z7
x1 1 0.9 1 1 0 0.9 0.7
x2 1 0.4 1 0 0 0.8 0.5
x3 0.9 0.7 1 1 0 0.8 0.7
x4 0.9 0.9 1 1 0 0.8 1
x5 0.8 1 0.9 0.9 0.1 0.7 1
x6 1 0.9 1 0.5 1 0.8 0.7

R � S z1 z2 z3 z4 z5 z6 z7
x1 0 0 0 0 0 0.5 0
x2 0.2 0 0 0 0 0 0
x3 0 0 0.4 0 0 0 0
x4 0 0 0 0 0 0 0.3
x5 0 0.3 0 0 0 0 0
x6 0.6 0 0 0 0 0 0

There are two methods that help to eliminate false initial suspicions with-
out lowering the membership degrees to the correct families. The first one is
the use of excluding features and the second one is that the compositions based
on generalized quantifiers. In this context, we consider fuzzy set modeling the
meaning of the linguistic expression Roughly Big (abbr. RoBi) which enables
us to construct a generalized quantifier Q = “Majority”. In a standard con-
text, this fuzzy set takes values RoBi(1/9) = 0, RoBi(2/9) = 0, RoBi(3/9) =
0, RoBi(4/9) = 0, RoBi(5/9) = 0, RoBi(6/9) = 0.178, RoBi(7/9) = 0.861 and
RoBi(8/9) = 1, RoBi(1) = 1. We obtain the results:

R ◦ S�E z1 z2 z3 z4 z5 z6 z7
x1 0.2 0 0 0 0 0.9 0
x2 1 0 0 0 0 0 0
x3 0 0 1 0 0 0 0.5
x4 0 0 0 0 0 0 1
x5 0 1 0 0 0 0 0
x6 1 0 0 0 0 0 0

R �Q S z1 z2 z3 z4 z5 z6 z7
x1 0 0 0.6 0 0 0.6 0
x2 0.8 0 0 0 0 0.3 0.1
x3 0 0 0.9 0.7 0 0.3 0.5
x4 0 0.4 0.7 0 0 0 0.7
x5 0 0.7 0 0 0 0.1 0.5
x6 0.7 0 0 0 0 0 0

As we can see from the first result, each animal is classified to one correct
family excepting x3 - Hairless dog, this animal is suspicious of belonging to two
families, z3 (Dog) and z7 (Reptile). For the second one, there are still a number
of suspicions of animals and the families. In some problems like medical diagnosis
problems, it may happen that each patient has many diseases. However, for the
problem of classification of animals in biology, we expect that each animal is
classified to only one family. Thus, from the result of using R ◦ S�E, it will
be better if we can eliminate one of two families, z3, z7 from the suspicion of
belonging of x3 - Hairless dog.

Now let us apply the suggested fuzzy relational composition R �Q S�E. As we
can see below, the composition helped to eliminate the false suspicion provided
by R ◦ S�E and R �Q S without endangering the correct classification. In par-
ticular, the membership degree of x3 (Hairless dog) into the family z7 (Reptile),
that had been determined to 0.5 by the both above mentioned compositions, has
been decreased to 0.3 by their combination.
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R �Q S�E z1 z2 z3 z4 z5 z6 z7
x1 0 0 0 0 0 0.6 0
x2 0.8 0 0 0 0 0 0
x3 0 0 0.9 0 0 0 0.3
x4 0 0 0 0 0 0 0.7
x5 0 0.7 0 0 0 0 0
x6 0.7 0 0 0 0 0 0

6 Discussion

Of course, the results are fully dependent on the choice of the fuzzy relation E
with excluding features, which is a task based on expert knowledge that is at
disposal. The practical example above may seem not enough convincing as the
composition R◦S�E already provided very good results. On the other hand, it has
to be taken into account, that the example is only illustrative and very simple.
In practice, the number of objects, features and classes is much higher and then,
the determination of the fuzzy relation E is often a difficult step that does not
lead to so idealistic results as in the case of the above introduced example.

We recall the application of excluding features in fuzzy relational composi-
tions into the expert system for classification of Odonata (dragonfly) [8]. That
application dealt with 140 families of dragonflies, nearly 106 thousand objects
and 60 features. In such case, the excluding features matrix E determined by
an expert may significantly help to improve the results, as demonstrated in the
recalled work [8], on the other hand, hardly may lead to a unique classification
family. The expert system suggested a sort of set of “guessed classes” with 20
classes on average. In other words, the expert system with nearly perfect accu-
racy (98.9%) decreased the uncertainty of the correct class from 140 classes to
only 20 classes. Although such results were not obtained by any other tested
approach, one could hardly say that there would be no room for any improve-
ment. Combination with generalized quantifiers provides a potential to obtain
such an improvement but, has to be carefully tested first.

So, let the above introduced example is viewed only as for the sake of illus-
tration of the behavior of such a combination, not as a real practical example
to convince readers about superiority of the combination compared to the other
approaches.

7 Conclusion

We have recalled the two methods extending the standard fuzzy relational com-
positions and we have proposed the new concept of excluding features in fuzzy
relational compositions based on generalized quantifiers that can be considered
as a combination of the two methods. The strength of the proposed approach is
that it can help to solve two problems which are existing in compositions: filling
in a huge gap between existential and universal quantifiers and solving the prob-
lems of existence of excluding features for some particular objects. Apart from
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providing the definitions and showing the corresponding properties, we have pre-
sented that a list of valid properties holding for the two mentioned approaches
are still preserved for the proposed compositions. Moreover, the use of excluding
features in fuzzy relational compositions based on generalized quantifiers was
considered on an illustrative example which was stemming from a purpose: to
see how it can be more effective than the use of the single approach.

These results have significantly contributed for extending the standard fuzzy
relational compositions that is widely used in many areas of application, such as
inference systems, flexible query answering systems in database applications.
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Abstract. A new optimization metaheuristic algorithm based on the mecha-
nisms of self-defense of plants in nature in this work is presented. The proposed
optimization algorithm is applied to optimize mathematical functions of CEC
2015, this suite of functions are proposed as a challenge for the area of algorithm
bio-inspired, with the purpose of creating a competition of performance and
stability between algorithms of search and optimization. We propose a new
meta-heuristic inspired in the coping techniques of plants in nature, as there
techniques are developed by plants as a defense from predators. The proposed
algorithm is based on the Lotka and Volterra model better known as the prey
predator model, this model consists of two non-linear equations and is used to
model the growth of two populations that competing with each other.

Keywords: Aggressor � Lotka and Volterra model � Mechanism � Plants �
Self-defense � Lévy flights

1 Introduction

In the literature there are many optimization algorithms that have been applied to
multiple problems and in some cases are successful and in others not. Each algorithm is
selected depending on the problem to be solved. In the area of engineering sciences and
computation there have been different meta-heuristics of optimization that have ben
proposed, such as Particle swarm optimization (PSO) [15], Genetic algorithm
(GA) [12], Flower pollination algorithm (FPA), Gravitational Search Algorithm (SGA),
Ant colony optimization (ACO), Bee colony optimization (BCO) [1, 8].

The aforementioned algorithms have been applied to various problems such as
optimization of neurons, in a neural network to improve the level of recognition of
people’s faces, others for optimizing fuzzy controllers, other authors apply it to opti-
mize mathematical functions in some cases normal functions and also in hybrid or
composite functions [14, 15, 17].

All over the planet, all living organisms are exposed to a large number of threats
that inhabit the environment. Therefore they force us to be in constant fight and
adaptation to be immune to this type of threats [3, 4, 6]. The meta-heuristic proposed in
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this paper uses as a basis the Lotka and Volterra model predator-prey, which is a
system formed by two nonlinear equations, are used to model the behavior of two
interacting populations [7, 10].

2 Self-defense Techniques of Plants in the Nature

In nature, all living organisms on the planet are constantly fighting against different
predators (fungi, bacteria, for mention some), which cause extinction or death of
species [8, 13, 14, 17, 18].

Self-defense techniques are natural or developed processes that protect every living
organism against different threats. The Plants are also sensitive to different stimuli. In
[3–5, 9] the authors define the mechanisms of defense of plants in nature.

In Fig. 1 we can observe a general scheme of the behavior of the plants when they
detect the attack of a predatory organism [3, 4, 9].

All plants have different strategies for example, defense techniques against preda-
tors, also techniques for adaptation to different climates such as humid, cold, sunny
areas, these strategies prevent the extension of the species. However at the same time the
predatory species also develop other adaptation and coping techniques, therefore both
species prey and predator are always in constant fight for the survival of the best. In this
work we only consider the self-defense strategies of the plants in nature.

3 Predator-Prey Model

The Lotka-Volterra equations are a biomathematical model that represents the growth
of two populations interacting with each other, and the model is formed by the fol-
lowing Eqs. (1) and (2) [1, 3, 10–12]:

Fig. 1. Illustration of self-defense techniques
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dx
dt

¼ ax� bxy ð1Þ

dy
dt

¼ �dxyþ ky ð2Þ

The definition of the parameters are observed below.
Where:

x: Represent the number of prey
y: Represent the number of predators
dx
dt Represent the growth of the population of prey time t
dy
dt Represent the growth of the population of predator at time t
a: It represents the birth rate of prey in the absence of predator
b: It represents the death rate of predators in the absence of prey.
d: Measures the susceptibility of prey.
k: Measures the ability of predation.

4 Case Study

In this work we propose a new application of the algorithm of plant defense, in the
previous works the algorithm was used to optimize traditional mathematical benchmark
functions with different methods of biological reproduction [5, 6].

In this work the proposed metaheuristic was used to optimize the functions of CEC
2015 competition, in this set of functions there are some that are composed and others
that are hybrid [12, 15, 18]. Figure 2 shows a graphical representation of the proposed
algorithm and the prey predator model.

Fig. 2. General representation of metaheuristics
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In Fig. 2 we can observe both methods, the predatory prey and our proposal, where
we can observe that we are applying evolutionary processes in the plant population,
however the population of predators are also affected since its size is dependent on the
size of the population of prey in time (t).

Plants and any other living thing in nature have different methods of biological
reproduction, and in this work we are only considering the most common. For example:
pollen, clone and graft. In [5, 6, 9], the authors define the different reproduction
operators.

Prey and predator populations are created using the Lotka and Volterra equations,
where equation one is used to generate the population of the plants and Eq. (2) is used
to generate the population of the predators. In Fig. 3 shows a diagram that describes the
steps of the optimization metaheuristics.

Population sizes (prey, predators) and the values of the variables (a, b, d, k) In
[4, 6] we explain the recommended values for the variables used in the equations of the
model in our proposal and also the values recommended by the creators of the prey and

Fig. 3. Flowchart illustrating the proposed algorithm
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predator model. In [3–5] the authors publish results with other variants of the algorithm
and we can also consult the definition of the proposed biological operators for this
algorithm.

5 Simulation Results

This section shows the results obtained from the experiments performed using the
optimization algorithm bioinspired on the self-defense mechanisms of the plants to the
set of eight functions of the CEC-2015 [15, 18]. Based on previous publications the
authors recommend using the method of pollination as reproduction operator, because it
has a higher performance. 30 experiments were performed for the following mathe-
matical functions and the evaluation is for 10, 30 Variables, Some data of the functions
used can be find in Table 1, for more information of the functions please review [15, 18].

6 Parameters for the Algorithm

For this work the parameters for the variables of (a, b, d, k), were moved in a specific
range, as mentioned before some publicaciones of the algorithm where the authors
recommend a range of optimum values to improve the performance of the meta-
heuristic [5, 6]. And also the configuration of other parameters such as the size of
populations of prey (plants), predators (herbivores).

For the CEC 2015 function problem, they recommend a range of values to be able
to compete against the results found by other algorithms, in this work we only want to
show that the proposed algorithm can also be used to optimize complex problems. The
configuration parameters are defined below: we use plants = 400, Herbivores = 350,
and the ranges for the iterations were 1000–900 to observe the behavior.

In Table 2 we can find the results obtained for the case study used in this paper. In
the table we observed the results of 30 experiments for each function, using 10 and 30
dimensions, we consider important to the reader the following data the worse, best,
average, and standard deviation [4, 6].

Table 1. Mathematical functions

Type No. Function

Unimodal functions 1 Rotated high conditioned elliptic function
2 Rotated cigar function

Simple multimodal functions 3 Shifted and rotated Ackley’s function
4 Shifted and rotated Rastrigin’s function
5 Shifted and rotated Schwefel’s function

Hybrid functions 6 Hybrid function 1 (N = 3)
7 Hybrid function 2 (N = 4)
8 Hybrid function 3 (N = 5)
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In Tables 2 and 3, we show the results obtained from 30 experiments performed for
10 and 30 variables, we can observe that in the experiments it was very difficult to
approximate the value of the function to zero. The mathematical functions used are
very complex, some are hybrid, multimodal and composite, and this increases the
complexity therefore the algorithms need to be more efficient or use the help of other
intelligent techniques such as fuzzy logic or the hybridization with another optimiza-
tion algorithm. It is important to mention that some of the functions do not have their
objetive value as zero.

However, in some functions, for example: f2, f4, f7, the algorithm was able to find
a very good near to zero, in comparison to the others, this was for 10 variables see
Table 2. Also in Table 3 we can observe the performance of the algorithm for 30
variables, where we only succeeded in the following functions: f3, f4, f6.

To conclude this work it is necessary to make a statistical comparison against other
published results, the test used is z-test, in Table 4 we can observe the parameters used
in this test, the results obtained with the algorithm of the mechanisms of the plants
(MSPA) are compared with the Dynamic Search Fireworks Algorithm (dynFWA) [20].

Table 2. Results for 10 dimensions

Function Important results of the algorithm
Best Worse r Average

F1 4.95E+04 4.38E+06 1.06E+06 1.03E+06
F2 1.40E+05 2.87E+06 7.45E+05 1.15E+06
F3 2.00E+01 2.04E+01 1.08E-01 2.03E+01
F4 8.08E+00 6.67E+01 1.67E+01 2.69E+01
F5 2.45E+02 1.08E+03 2.07E+02 6.24E+02
F6 3.55E+02 4.75E+04 8.66E+03 5.93E+03
F7 1.42E+00 1.23E+01 1.96E+00 2.89E+00
F8 9.41E+02 6.75E+03 1.34E+03 2.30E+03

Table 3. Results for 30 dimensions

Function Important results of the algorithm
Best Worse r Average

F1 2.80E+06 2.94E+07 6.77E+06 1.199E+07
F2 1.74E+07 7.07E+09 1.34E+09 4.275E+08
F3 2.02E+01 2.10E+01 1.58E-01 2.09E+01
F4 1.62E+02 2.99E+02 3.90E+01 2.132E+02
F5 2.67E+03 5.54E+03 7.77E+02 3.91E+03
F6 3.57E+02 4.86E+04 8.82E+03 5.14E+03
F8 2.67E+04 1.18E+06 2.29E+05 2.22E+05
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In applying the statistic Z-test, with a significance level of 0.05, and the alternative
hypothesis says that the average of the proposed method is lower than the average of
dynFWA [20], and of course the null hypothesis tells us that the average of the
proposed method is greater than or equal to the average of dynFWA [20], with a
rejection region for all values fall below of −1.6715. In the Table 5 we can observe the
results of the statistical comparison.

The authors of this work can observe that the comparison is not fair, the algorithm
of fireworks uses fuzzy logic to adjust the parameters and our proposal is simple
algorithm, however in some functions the results are very similar.

7 Conclusions

To conclude this work we consider important to mention that the main contribution of
this work is to demonstrate that the proposed algorithm can also be applied to more
complex problems and in this case we decided to use it for mathematical functions of
the CEC-2015 benchmark, however we managed to find some values close to zero in
some functions. We consider it important to mention that in this work we only use the
method of reproduction by polinization, and this is recommended by the authors based
on the previous experiments using this algorithm in other simpler problems for example
using traditional benchmark functions. Based on the results obtained we can conclude
that it is necessary to consider some improvements to the algorithm, we observe
problems of local minima, and it is important to investigate other biological processes
of the plants to apply them to the algorithm to solve the problem of local minima.

Table 4. Parameters for statistical comparison.

Parameters Values

Level of significance 0.05%
Ha µ1 < µ2
H0 µ1 � µ2
p value 1.6715

Table 5. Results of applying the statistical z-test for 10D.

Case study Our method DynFWA Z-value Evidence

F1 MSPA dynFWA 4.7282 Not significant
F2 MSPA dynFWA 8.3890 Not significant
F3 MSPA dynFWA 15.2145 Not significant
F4 MSPA dynFWA 3.1080 Not significant
F5 MSPA dynFWA 1.8319 Not significant
F6 MSPA dynFWA 2.5840 Not significant
F7 MSPA dynFWA 3.9964 Not significant
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Abstract. This paper presents a Multi-Objective Evolutionary Algo-
rithm (MOEA) for tuning type-2 fuzzy sets and selecting rules and con-
ditions on Fuzzy Rule-Based Classification Systems (FRBCS). Before
the tuning and selection process, the Rule Base is learned by means of a
modified Wang-Mendel algorithm that considers type-2 fuzzy sets in the
rules antecedents and in the inference mechanism. The Multi-Objective
Evolutionary Algorithm used in the tuning process has three objectives.
The first objective reflects the accuracy where the correct classification
rate of the FRBCS is optimized. The second objective reflects the inter-
pretability of the system regarding complexity, by means of the quantity
of rules and is to be minimized through selecting rules from the ini-
tial rule base. The third objective also reflects the interpretability as a
matter of complexity and models the quantity of conditions in the Rule
Base. Finally, we show how the FRBCS tuned by our proposed algorithm
can achieve a considerably better classification accuracy and complex-
ity, expressed by the quantity of fuzzy rules and conditions in the RB
compared with the FRBCS before the tuning process.

Keywords: Fuzzy Rule-Based Classification System · Type-2 fuzzy
sets · Multi-Objective Evolutionary Algorithm

1 Introduction

Type-2 fuzzy sets were introduced by Zadeh in 1975 [1] as a generalization of
the type-1 fuzzy sets that offer a more powerful representation of imprecision
by allowing the membership values to be represented as fuzzy sets. Following
this concept, a new class of fuzzy systems was presented in 1999 [2] where the
antecedent or consequent membership functions were type-2 fuzzy sets. Due to
their representational power, type-2 fuzzy sets have been used in several appli-
cations [14]. Additional discussion on the advantages of using type-2 fuzzy sets
can be found in [15,16].
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According to [3], the use of type-2 fuzzy sets is still an open problem in
the context of Multi-Objective Evolutionary Fuzzy Systems (MOEFS). MOEFS
aim at using the learning capabilities of Multi-Objective Evolutionary Algo-
rithms (MOEA) to generate fuzzy systems favoring a balance among conflict-
ing objectives that represent accuracy and interpretability. The problem can be
approached from different modeling schemes that are dedicated to generate or
optimize one or more components of a fuzzy system [3,17]. Those work that
focus on tuning the fuzzy sets parameters, the use of type-2 fuzzy sets poses an
increase in complexity.

In an attempt to investigate this open and promising research field, this work
studies the tuning of type-2 fuzzy sets with simultaneous selection of rules and
conditions, in the helm of Fuzzy Rule Based Classification Systems (FRBCS).
Before the multi-objective evolutionary process, the type-2 fuzzy sets are gen-
erated and an initial Rule Base (RB) is learned using a modified version WM
algorithm [4]. We use the well known, fast sorting and elite MOEA called Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) [5], with three objectives.
The first objective optimizes the accuracy of the classification system varying
the parameters of type-2 fuzzy sets. The second objective optimizes the inter-
pretability by means of the selection of fuzzy rules in the RB. The third objective
optimizes the interpretability too by means of the selection of conditions in fuzzy
rules selected in the second objective.

This paper is organized as follows. In Sect. 2, we present the basic concepts
of type-2 fuzzy sets. In Sect. 3, we explain the fuzzy rule learning process used in
this paper. In Sect. 4, we introduce the multi-objective evolutionary algorithm
for tuning type-2 fuzzy sets with rule and condition selection on FRBCS used. In
Sect. 5, we report the experiments and result of our study. Finally, the conclusions
and future works are presented in Sect. 6.

2 Type-2 Fuzzy Sets

The type-2 fuzzy sets theory was proposed by Lotfi Zadeh in 1975 for mod-
elling the uncertainties inherent to the definition of the membership functions
of antecedents and consequents in a fuzzy inference system. The main concerns
about the use of type-2 fuzzy sets were related to the cost of inference. To sur-
pass this problem, the interval fuzzy sets were proposed, which are simpler type-2
fuzzy sets where the value of the secondary membership is always one.

An interval type-2 fuzzy set, Ã on X, is defined by a type-2 membership
function, 0 ≤ µÃ(x, u) ≤ 1, where x ∈ X and Jx ⊆ [0, 1], i.e. [16]:

Ã = {((x, u), µÃ(x, u))|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

A type-2 fuzzy set can be represented by means a geometric figure, for exam-
ple Fig. 1. This triangular geometric type-2 fuzzy set is used in our proposed
algorithm.
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Fig. 1. Interval type-2 fuzzy set

In Fig. 1 the value µ
Ã(x)

for x is defined by LMF(Lower Membership Function)
for x and the value µÃ(x) for x is defined by UMF (Upper membership function).
The uncertainty of Ã is represented by the Footprint of Uncertainty (FOU(Ã)).

3 Fuzzy Rule Learning Process

The fuzzy rule learning process used to generate the initial RB based on the
WM algorithm. First, we predefined the Data Base (DB) with type-2 member-
ship functions uniformly distributed adopting a process similar to the one used
in [6] and considering the minimum and maximum input values (min and max).
Figure 2 shows an example of a linguistic variable with five type-2 fuzzy sets
where each one have five parameters {ai, bi,mici, di} where bi − ai = mi − bi =
ci − mi = di − ci.

Second, for example pattern in E = {e1, e2, ..., ep} labelled with a class from
the set of classes C = {C1, C2, ..., Cm}, where each eq ∈ E is defined by a set of
k features eq = {aq1 , aq2 , ..., aqk}, the values of µ

Ã(aij
)
and µÃ(aij

) are calculated

for each type-2 fuzzy set.
After that, the linguistic term with maximum value for µ

Ã(aij
)
+ µÃ(aij

) is

included as a condition in the fuzzy rule. For each eq ∈ E a fuzzy rule is learned
in the form:

Ri : IF V1 IS T1l1 AND V2 IS T2l2 AND ... AND Tk IS Tklk THEN Class Cj

where:
Ri : Index of the fuzzy rule i.
V1, V2, ..., Vn : Linguistic variables or features of each example eq.
T1l1 , T2l2 , ..., Tnln: Linguistic terms or type-2 fuzzy sets for each Vr.
Cj : Class of the fuzzy rule Ri.
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Fig. 2. DB uniformly distributed using type-2 fuzzy sets

Third, for each fuzzy rule in the RB with the same antecedent (conflicting
and redundant) the fuzzy rule with the highest degree is selected to remain in
the RB and the other ones are eliminated. The degree of fuzzy rule i (DRi

) is
defined by means of the fuzzification and inference illustrated in Fig. 3 for the
particular case of rules with two antecedents. That output-processing blocks,
fuzzification and inference, are similar to blocks used in [7].

Fig. 3. Fuzzification and inference using type-2 fuzzy sets
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4 Multi-objective Evolutionary Algorithm for Tuning
Type-2 Fuzzy Sets

In this section we present our proposed algorithm for tuning type-2 fuzzy sets in
a FRBCS with selection of rules and conditions using NSGA-II algorithm. This
algorithm follows the steps of NSGA-II algorithm shown in Fig. 4.

Fig. 4. NSGA–II algorithm

First, we define the initial population Pt (t = 0) with size N . Each chromo-
some (CRi), similar to the structure proposed in [8], is represented as:

CRi = CRMi
+ CRRi

+ CRCoi (2)

The first part of the chromosome CRMi
encodes the parameters of the type-2

fuzzy sets for each linguistic variable in the in DB. Each gene in the chromosome
encodes a parameter of a linguistic term in a linguistic variable. Figure 5 shows
an example of CRMi

considering five linguistic terms for each linguistic variable,
where v represents the quantity of linguistic variables.

Fig. 5. Chromosome encoding for the MF parameters
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In order to preserve the semantics of fuzzy sets, we define the limits of each
parameter as shown in Fig. 6 and defined according to the following equations:

Diff = (b − a)/2 = (m − b)/2 = (c − m)/2 = (d − c)/2 (3)

alower = a − Diff ; aupper = a + Diff (4)

blower = aupper; bupper = b + Diff (5)

mlower = bupper; mupper = m + Diff (6)

clower = mupper; cupper = c + Diff (7)

dlower = cupper; dupper = d + Diff (8)

Fig. 6. Type-2 MF parameters

The fuzzy rules used in the fuzzy inference are encoded in the second part of
the chromosome, CRR. The upper and lower limit for each gene in CRR are 1.0
and 0.0 respectively. A fuzzy rule is considered as part of the RB and used in the
fuzzy inference if the gene value is greater than 0.5. Figure 7 shows an example of
CRR considering r fuzzy rules in the RB obtained by learning process described
in the previous section.
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Fig. 7. Chromosome encoding for CRR

The conditions in the RB used in the fuzzy inference are encoded in the thrid
part of the chromosome, CRCo. As in CRR, the upper and lower limit for each
gene in CRCo are 1.0 and 0.0 respectively. A condition is considered as part of
the fuzzy rule and used in the fuzzy inference if the gene value is greater than
0.5. Obviously, the condition is considered if it is in a valid fuzzy rule. Figure 8
shows an example of CRCo considering a linguistic term for v linguistic variables
in r fuzzy rules in RB.

Fig. 8. Chromosome encoding for CRCo

In the initial population Pt, the first chromosome encodes the uniformly
distributed DB, all fuzzy rules and conditions obtained in the WM based learning
process. The other chromosomes are encoded randomly considering the upper
and lower limits of each gene.

Each chromosome is evaluated by means of the calculation of the three objec-
tives, three objectives are calculated. The first objective is defined by the error
rate of the FRBCS and it is based in single-winner inference. The winner fuzzy
rule is the fuzzy rule i with gene value greater than or equal 0.5 in CRM and
DRi

is the maximum value compared with the other fuzzy rules in RB.

Fig. 9. Tuned type-2 fuzzy sets in a linguistic variable
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The value of the second objective is calculated by counting genes with values
greater than 0.5 in CRM . These genes represent the indexes of the fuzzy rules
considered in the inference system.

Similar to the to second objective, the third objective is calculated by count-
ing genes with values greater than 0.5 in CRCo taking into consideration that
this condition is in a fuzzy rule considered in the inference system.

New populations are generated using the genetic operators of selection,
crossover and mutation. Tournament selection, based on the dominance of the
solutions and crowding distances, is the method used for selecting a chromo-
some for crossover operator. Simulated Binary Crossover (SBX) [9] and polino-
mial mutation [9] are the crossover and mutation operator used in our proposal
respectively.

An example of tuned type-2 fuzzy sets in a linguistic variable is shown in
Fig. 9.

5 Experiments and Results

The multi-objective evolutionary algorithm for tuning type-2 fuzzy sets with rule
and condition selection to optimized FRBCS described in the last section was
applied on ten well-known data sets, extracted from KEEL repository [10] and
UCI repository [11], as shown in Table 1.

Table 1. Data sets used in the experiments

Data set Pattern number Atributes Class number

Appendicitis 106 7 2

Bloodtransfusion 748 5 2

Bupa 345 6 2

Haberman 306 3 2

Hayes-roth 160 4 3

Hepatitis 80 19 2

Iris 150 4 3

Newthyroid 215 5 3

Tae 151 5 3

Zoo 87 8 3

All experiments were run using 10-fold cross validation. Results of the ini-
tial learning process before the tuning of fuzzy sets and selection of rules and
conditions are shown in Table 2. First and second columns show the mean error
rate in training (Trer) and test (Teer) dataset respectively. Third and fourth
columns show the quantity of fuzzy rules and conditions in the RB respectively.
Standard deviation is shown in parenthesis for each result.
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Table 2. Results obtained by the initial learning process

Data set Trer Teer Rules number Conditions number

Appendicitis 0.1384 (0.0551) 0.3173 (0.1506) 61.8000 (1.4697) 432.6000 (10.2879)

Bloodtransfusion 0.4923 (0.0197) 0.4987 (0.0321) 29.4000 (0.4899) 117.6000 (1.9596)

Bupa 0.3317 (0.0176) 0.4937 (0.0868) 120.8000 (1.7205) 724.8000 (10.3228)

Haberman 0.4122 (0.0325) 0.4514 (0.0608) 51.7000 (1.2689) 155.1000 (3.8066)

Hayes-roth 0.1049 (0.0085) 0.3625 (0.0729) 78.7000 (1.2689) 314.8000 (5.0754)

Hepatitis 0.0000 (0.0000) 0.7826 (0.1653) 71.2000 (2.1354) 1352.8000 (40.5729)

Iris 0.0674 (0.0420) 0.0467 (0.0427) 40.8000 (1.5362) 163.2000 (6.1449)

Newthyroid 0.0595 (0.0253) 0.0742 (0.0421) 48.0000 (1.0000) 240.0000 (5.0000)

Tae 0.2641 (0.0243) 0.4496 (0.1254) 64.4000 (1.6852) 322.0000 (8.4261)

Zoo 0.0000 (0.0000) 0.3528 (0.1260) 54.2000 (1.4000) 867.2000 (22.4000)

Table 3. Parameters of NSGA-II algorithm

Parameter Value

Size of the population 100.0

Crossover probability 1.0

Mutation probability 0.1

Number of generations 2000.0

Table 4. Results after tuning process

Data set Trer Teer Rules number Conditions number

Appendicitis 0.0933 (0.0275) 0.0655 (0.0592) 12.9000 (14.6318) 56.4000 (80.0165)

Bloodtransfusion 0.2148 (0.0094) 0.2033 (0.0291) 5.3000 (1.9000) 10.7000 (5.1778)

Bupa 0.3317 (0.0243) 0.2866 (0.0557) 45.0000 (16.2358) 158.3000 (89.5735)

Haberman 0.2375 (0.0084) 0.2649 (0.0532) 4.7000 (1.6155) 7.5000 (3.4713)

Hayes-roth 0.1090 (0.0250) 0.2938 (0.0793) 74.7000 (4.3370) 284.1000 (26.9757)

Hepatitis 0.0948 (0.0911) 0.2568 (0.1603) 30.8000 (18.5462) 322.4000 (298.7869)

Iris 0.0385 (0.0162) 0.0200 (0.0306) 4.0000 (0.8944) 5.6000 (1.9079)

Newthyroid 0.0295 (0.0111) 0.0182 (0.0302) 23.8000 (10.7219) 89.0000 (47.3793)

Tae 0.2583 (0.0262) 0.3508 (0.0887) 56.5000 (6.2330) 264.3000 (39.3066)

Zoo 0.0000 (0.0000) 0.0650 (0.0554) 31.8000 (5.7931) 326.6000 (68.9321)

Table 3 shows the parameters used in NSGA-II algorithm.
The results after the evolutionary process considering the a chromosome in

the middle of first frontier F1 are shown in Table 4. The content of columns of
Table 4 are the same as Table 2.

Finally, Table 5 shows the difference (diff) between results obtained after and
before the evolutionary process for tuning the type-2 fuzzy sets and selecting
rules and conditions in the RB. Based on Table 5, one can conclude that the
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reduction in the compared values are considerable, mainly in the number of
rules (R. number) and number of conditions (C. number).

Table 5. Reduction in accuracy, rules number and conditions number after the evolu-
tionary process. Tuning process (TP ). Learning process (LP )

Data set diff(Trer)
TP–LP

diff(Teer)
TP–LP

diff(R. number)
TP–LP

diff(C. number)
TP–LP

Appendicitis −0.0451 −0.2518 −48.9000 −376.2000

Bloodtransfusion −0.2775 −0.2954 −24.1000 −106.9000

Bupa 0.0000 −0.2071 −75.8000 −566.5000

Haberman −0.1747 −0.1865 −47.0000 −147.6000

Hayes-roth 0.0041 −0.0687 −4.0000 −30.7000

Hepatitis 0.0948 −0.5258 −40.4000 −1030.4000

Iris −0.0289 −0.0267 −36.8000 −157.6000

Newthyroid −0.0300 −0.0560 −24.2000 −151.0000

Tae −0.0058 −0.0988 −7.9000 −57.7000

Zoo 0.0000 0.0000 −22.4000 −540.6000

Mean −0.0463 −0.1717 −33.1500 −316.5200

6 Conclusions

This paper describes a multi-objective evolutionary algorithm with three objec-
tives for tuning the parameters of type-2 fuzzy sets and selection of rules and
conditions. The first objective is to minimize the error rate on FRBCS. The
second and third objectives are to minimize the quantity of fuzzy rules and con-
ditions in RB respectively. Before the tuning process we use a modified version
of the WM algorithm considering type-2 fuzzy sets uniformly distributed for
leaning the initial set of fuzzy rules. The results obtained show a considerable
difference between the values before and after the optimization process with
reduction in the error rate both for training and test datasets, number of rules
and number of conditions.

As future work, we intend to explore in the following directions. 1) Apply
the multi-objective evolutionary algorithm for tuning type-2 fuzzy sets after
another fuzzy rule learning process for compare the proposed algorithm with
the most recent similar works that include a tuning process. 2) Apply oth-
ers multi-objective evolutionary algorithms in the tuning process, for example,
MOEA/D [12] or SPEA2 [13], with others geometric type-2 fuzzy sets. 3) To
increase the quantity of interpretability objectives in the tuning process, for
example, the quantity of fuzzy rule throw in the inference system to evaluate
the benefits of adopting type-2 fuzzy sets, comparing the algorithm described
here with the ones using type-1 fuzzy sets.
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Abstract. We consider decision problems in which we have to com-
pare and rank a set of alternatives and each alternative is defined by its
attributes or properties. We introduce and characterize property-based
preference domains. This paper proposes also a characterization and a
generalization of Sugeno integral in our framework.
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1 Introduction

Decision problems are characterized by a plurality of points of view and there
are different dimensions from which the alternatives can be viewed. In order to
solve a decision problem we have to compare and rank a set of alternatives and
each alternative is often defined by its attributes or properties.

We consider the model of abstract aggregation model introduced in [18] and
more recently studied in [9], that represents a decision problem in terms of a set
of Boolean properties specifying for every alternative a list of properties that are
satisfied.

A property-based domains is a pair (X,H ) where X is a non-empty set
and H is a collection of non-empty subsets of X that separates points (i.e.
if x, y ∈ X and x �= y there exists H ∈ H such that x ∈ H and y /∈ H).
The elements of H are referred to as properties and if x ∈ H we say that
x has property associated to the subset H. The “property space” model has
received attention in the literature on judgement aggregation for studying the
problem of aggregating sets of logically interconnected propositions. Moreover, it
provides a general framework for representing preferences and then aggregation
of preferences (see [18]).

Our principal goal is to introduce a general framework to study property-
based preference domains, in particular we do not consider only finite spaces as
in [9,18].

The paper is organized as follows. In the next section some basic information
is given. In Sect. 3 property-based preference domains are introduced and then we
study the categorical equivalence between the description of a partially ordered
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set by means of objects and properties and the representation of the corre-
sponding topological space. In Sect. 4 we consider congruence in property-based
domains while in Sect. 5 we focus on aggregation operators over property-based
domains and we introduce Sugeno integrals in our framework as aggregation
operators that are compatible with congruences (see [12–14]).

2 Basic Notions and Terminology

The aim of this section is to introduce some basic definitions, terminology and
notation. More detailed introduction to the subject of order can be found in e.g.,
Caspard, Leclerc and Monjardet [2], Davey and Priestley or Grätzer [11].

A partially ordered set (poset as a shorthand) (P,≤) is a set P with a reflexive,
antisymmetric and transitive binary relation ≤. We will write (x, y) ∈ R as x ≤ y
(or equivalently, y ≥ x) and we will use x > y to mean that x ≥ y and x �= y.

If for a poset (P,≤) we have that all elements can be compared to each other
i.e. for all x, y ∈ P , at least one of x ≤ y and x ≥ y holds we call (P,≤) a chain.

A relation that is reflexive and transitive is said to be a preorder. This is a
rather general concept, as every partial order and every equivalence order is a
preorder.

If P,Q are posets, the function f : P → Q is called order-preserving if for all
x, y ∈ P with x ≤ y we have f(x) ≤ f(y).

Given a poset P and a set S ⊆ P , then y ∈ P is called an upper bound of
S if x ≤ y for all x ∈ P . A lower bound is defined dually. The set of all upper
bound is denoted by UP (S), and the set of all lower bounds by LP (S). When
the set UP (S) has a least element p with respect to ≤ we say that p is the join
of S and write

∨
S =

∨
x∈S x = p. Similarly when LP (S) has a greatest element

q with respect to ≤ and we say q is the meet of S and write
∧
S =

∧
x∈S x = q.

A lattice is a poset in which every pair of elements (and thus every finite
subset) has both a meet and a join. Every lattice L constitutes a partially ordered
set endowed with the partial order ≤ such that for every x, y ∈ L, write x � y
if x ∧ y = x or, equivalently, if x ∨ y = y. A lattice L is said to be bounded if it
has a least and a greatest element, denoted by 0 and 1, respectively.

A lattice L is said to be distributive, if for every x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) or, equivalently, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A lattice L is said to be complete if
∧
I =

∧
x∈I x and

∨
I =

∨
x∈I x exist for

every I ⊆ L. Clearly, every complete lattice is also bounded.
If L,M are lattices, the function f : L → M is called a lattice homomorphism

if for all x, y ∈ P we have f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y).
A subset S ⊆ P of a poset P is said to be an upper set (down set) if when

x ∈ S and x ≤ y (x ≥ y) then y ∈ S.
A filter of a poset P is a subset F of P such that

(i) if x ∈ F and x ≤ y then y ∈ F ,
(ii) if x, y ∈ F there is z ∈ F such that z ≤ x and z ≤ y.
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The dual notation is that of an ideal. If a ∈ P we define the principal filter
generated by x as ↑ x = {y ∈ L : y ≥ x}. It is easy to prove that ↑ x is a filter
for every x ∈ P . It can be proved that in a finite lattice each filter and each ideal
are principal.

In a lattice L a filter F is an upset such that if x, y ∈ F then x ∧ y ∈ F .
A proper filter is a filter that is neither empty nor the whole lattice while a

prime filter is a proper filter F such that whenever
∨

i∈I xi is defined in P for a
finite set I we have xi ∈ F for some i ∈ I.

If (X,T ) be a topological space where the members of T are the open subsets
of X then a family of open sets B is a base (subbase) if every open set in T is
union of elements in B (union of finite intersections of elements in B).

A topological space (X,T ) satisfies property T0 if for all x, y ∈ X there
exists an open set A such that x ∈ A and y /∈ A or such that y ∈ A and x /∈ A.

There is a natural order defined on the set of the points of every topological
space (X,T ) that is the specialization preorder defined by

x ≤ y if and only if when A ∈ T and x ∈ A then y ∈ A

The open sets are upper sets while the closed sets are down sets with respect to
the specialization preorder. we can also note that the specialization order is a
partial order if the topological space satisfies property T0.

3 Property-Based Domains

In this section, we consider the framework of abstract aggregation introduced
in [9] and in [18] that represents a decision problem in terms of set of Boolean
properties specifying for every alternative a list of properties that are satisfied.

A property-based domain is a pair (X,H ) where X is a non-empty set and
H is a collection of non-empty subsets of X and if x, y ∈ X and x �= y there
exists H ∈ H such that x ∈ H and y /∈ H. The elements of H are referred to
as properties and if x ∈ H we say that x has property represented by the subset
H. Our definition is slightly more general than that of [9] and of [18], in fact we
do not assume that the set X is finite and we do not consider that the set Hc is
a property if H is a property.

The “property space” model provides a very general framework for represent-
ing preferences and then aggregation of preferences. Here are some important
examples.

Example 1. Any chain X is a property-based domain with respect to the family
of subsets {Ha} where Ha = {x ∈ X : x ≥ a}.

Example 2. It is well known that if x, y are two elements of a distributive lattice
L and x � y there exists a prime filter F with y ∈ F and x /∈ F and so if X is a
lattice the family H of prime filters of X defines a property-based domain.
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Example 3. The problem of preference aggregation can be viewed as a property-
based domain. If we consider a finite set of alternatives A and a a set R of binary
relations in A. We can consider different requirements on the set R and so R
can be the set of preorders or the set of linear orders in A.

If we define for each pair a, b ∈ A the set

Ha,b = {R ∈ R : aRb}

the family H = {Ha,b : a, b ∈ A} defines a property-based domain structure on
the set R. See [18] for more details on Arrowian framework.

We can define a natural preorder in any property-based domain. In fact if (X,H )
is a property-based domain we can define the relation ≤ by

x ≤ y for every H ∈ H if x ∈ H then y ∈ H.

We can also note that if (X,T ) is a topological space that satisfies property T0,
X is a property-based domain with respect to the family T and the preorder
associated with the property-based domain is the specialization preorder of the
topological structure.

We can also prove that there is a correspondence between topological spaces
and property-based domains and that we can extend this correspondence to
morphism of the two structures. If (X,H ) is a property-based domain we con-
sider the topological space (X,T (H )) that is generated by the subbase H .
So (X,H ) and (X,T (H )) are two property-based domains on the same set of
alternatives X but we can prove that the two structures are associated to the
same preorder on the set X.

Proposition 1. The property-based domains (X,H ) and (X,T (H )) define
the same preorder on the set X.

Proof. Let ≤1 and ≤2 the preorders associated respectively to T (H ) and to H .
It is straightforward to prove that if x, y ∈ X are such that x ≤1 y then

x ≤2 y. Then we consider two elements x, y ∈ X with x ≤2 y. If x ∈ ⋃
Hi

where Hi ∈ H for every i then there exists a set Hi such that x ∈ Hi and so we
have that y ∈ Hi and then y ∈ ⋃

Hi. We can also prove that if x ∈ ⋂
Hi then

y ∈ ⋂
Hi and so we can conclude that x ≤1 y.

We introduce the definition of morphism between property-based domains as
continuous functions between the associated topological spaces.

If (X,H ) and (Y,K ) are a property-based domains a function f : X → Y is a
morphism if for every K ∈ K , f−1(K) is an element of T (H ). It is important to
note that a morphism between property-based domains is a continuous function
between the topological spaces associated and an isotone function between the
posets associated.
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4 Congruences on Property-Based Domains

Congruence relations are studied in lattices (see [1,8]) and there are various
definitions of a congruence relation in a poset (for example in [12]).

In this section a definition of a congruence on a property-based domain is
proposed. Congruence relations are equivalence relations that are compatible
with the structure defined on the space and an equivalence relation in a set
is a reflexive, symmetric and transitive relation. If (X,H ) is a property-based
domain for every H ′ ⊆ T (H ) we define a congruence ∼ in (X,H ) by

x ∼ y when x ∈ H if and only if y ∈ H, for every H ∈ H ′.

It is straightforward to prove that the relation ∼ is an equivalence relation in X,
and we are going to prove that there are nice characterizations of the proposed
definition.

If x ∈ X, [x] is the equivalence class of the element x with respect to the
equivalence relation ∼.

Proposition 2. If ∼ is a congruence in the property-based domain (X,H )
defined by the set H ′ ⊆ H then the family K of subsets of X/ ∼ where K ∈ K
if K = {[x] : x ∈ H} for some H ∈ H ′ defines a property-based structure on
the set X/ ∼.

Proof. It is almost evident that if x, y are elements of X such that x ∼ y then
x ∈ K if and only if y ∈ K for every K ∈ K and the set K ∈ K is well defined.
Moreover if [x] �= [y] there exists an element H ∈ H ′ such that x ∈ H and
x /∈ H and we can prove by the definition of the set K that for a set K ∈ K
we have that [x] ∈ K and [y] /∈ K.

There is a natural morphism between a property-based domain (X,H ) and the
space (X/ ∼,K ) defined in the above proposition.

Proposition 3. If ∼ is a congruence on the property-based domain (X,H )
there is a surjective morphism f : X → X/ ∼.

If f : X → X is a surjective morphism from (X,H ) to itself then the relation
defined in X by

x ∼ y if and only if f(x) = f(y)

is a congruence in X.

Proof. It is not restrictive to suppose that H = T (H ). Then if we define
a function i : X → X/ ∼ such that i(x) = [x] i is a surjective function. If
K ∈ K is such that K = {[x] : x ∈ H} for some H ∈ H ′ we have that
f−1(K) = H ∪ {H ′ ∈ H : H ′ /∈ H ′} hence the function i is a morphism
between property-based spaces.

Conversely if f : X → X is a surjective morphism from (X,H ) to itself
the relation ∼ defined by x ∼ y if and only if f(x) = f(y) is the congruence
relation defined with respect to the family H ′ = {f−1(H) : HH } that is a
family of subset of H since f is a morphism of (X,H ) onto itself.
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An equivalence relation ∼ defined on a lattice L is a congruence that is compat-
ible with the two lattice operations i.e.

(i) if x ∼ y then x ∧ z ∼ y ∧ z for each z ∈ L;
(ii) if x ∼ y then x ∨ z ∼ y ∨ z for each z ∈ L.

If (X,H ) is a property-based domain and Y ⊆ X we consider the set

LX(Y ) = {x ∈ X : x ≤ y for every y ∈ Y },
UX(Y ) = {x ∈ X : x ≥ y for every y ∈ Y }

where ≤ is the preorder relation associated with the property-based domain
structure.

In a property-based domain we can prove the following proposition on the
ordered structure of the space.

If Y = {x1, . . . , xn} we write LX(Y ) = LX(x1, . . . , xn) and UX(Y ) =
UX(x1, . . . , xn).

Proposition 4. Let ∼ is a congruence on the property-based domain (X,H ).
If x, y ∈ X we have

{[z] : z ∈ LX(x, y)} = LX/∼([x], [y]).

Proof. The proof follows directly if we note that if x, y ∈ X then x ≤ y if and
only if for every H ∈ H if x ∈ H then y ∈ H and that [x] ≤ [y]) if and only if
for every H ∈ H ′ if x ∈ H then y ∈ H.

Then we can conclude that congruences are morphism preserving upper and
lower bounds.

5 Compatible Aggregation Functional on Property-Based
Domains

The process of merging or combining sets of values (numerical or qualitative)
into a single one is usually achieved by the so-called aggregation functionals;
see [10] for a comprehensive overview on aggregation theory. The importance
of aggregation functionals is made apparent by their wide use in several fields
such as decision sciences, computer and information sciences, economics, and
social sciences. There are a large number of different aggregation operators that
differ on the assumptions on the inputs and on the information that you want
to consider in the model.

One of the most important aggregation functional making sense in a quali-
tative framework is Sugeno integral that is a very useful non-linear functional in
several applications in mathematics, economics and decision making (see [3–5]).
The definition of Sugeno integral primarily introduced on real intervals can be
extended to bounded distributive lattices (see [3–5]).



406 M. Cardin

The aim of this section is to introduce a Sugeno-type integral representation
for aggregation operators defined on property-based domains. We follow the
approach of [13,14] where are characterized congruence preserving aggregation
functionals acting on a bounded distributive lattice as discrete Sugeno integrals.

Let N be a non empty set which can be either finite or infinite and X a
property-based poset. We define an aggregation functional as a map F : XN →
P(X). Then we consider the case in which there are more than one equivalent
solutions and also the case in which the only solution is the element with no
properties.

We consider now some of the properties that an aggregation functional
F : Xn → P(X) may or may not satisfy.

Let F be an aggregation functional F : XN → P(X) acting on a property-
based domain (X,H ) F is monotone if F (x1, . . . xi . . . , ) ∈ H for H ∈ H
and yi ∈ H then F (x1, . . . yi . . . , ) ∈ H. F is said to be compatible with the
congruence ∼ if when x,y ∈ XN and for every i, 1 ≤ i ≤ n, xi ∼ yi then
F (x) ∼ F (y).

F is idempotent if and only if for every x ∈ X F (x, x, . . . , x . . .) = x.
We want to characterize the class of multivariate functionals compatible with

every congruence of a property-based domain. Thus we propose a definition of
Sugeno integral which generalizes well known definitions to the more general
setting of property-based domains.
Proposition 5. Let (X,H ) be a property-based domain and F : Xn → P(X)
an idempotent aggregation functional that is compatible with every congruence
in X. Then F is monotone and there exists for every H ∈ H a non empty family
FH of subsets of N such that

F (x) =
⋂

{H : N(x,H) ∈ FH}
where N(x,H) = {i ∈ N : xi ∈ H}.
Proof. If H is an element of H we can consider the congruence ∼H in X
defined by

x ∼H y when x, y ∈ H or x, y /∈ H.

F is compatible with the congruence ∼H so if we consider two elements x,y ∈
XN such that for every i ∈ N , xi ∈ H if and only if yi ∈ H then F (x) ∈ H if
and only if F (y) ∈ H .

We say that a set A is H-decisive if there exists x ∈ XN such that N(x, a) =
A and F (x) ∈ H. Being F compatible with the congruence ∼H a set is H-decisive
if and only if for every x ∈ Xn such that N(x,H) = A, F (x) ∈ H.

For every H ∈ H let FH the family of H-decisive subsets of N . Hence for
every x ∈ XN , F (x) ∈ H if and only if N(x,H) ∈ FH . Note that the family
FH is non empty since F is idempotent. Moreover the characterization of the
functional F implies that F is a monotone functional.

Note that our framework is very general, we do not assume neither that X or
N are finite sets. Moreover, we consider the case in which there are more than
one equivalent solutions and also the case in which there are no solutions.
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6 Concluding Remarks

In this paper we have introduced a general framework for studying preferences
representation. Our framework is abstract and the crucial operations are the
joining and meet of two properties that are subsets of the considered space. It
appears that there are many connections between the work presented here with
the results of [9,15,17,18]. Applications of these types of results can be found in
[6,18]. There are however many opportunities for much more detailed research
in this area from the point of view of aggregation theory.

References

1. Cardin, M.: Benchmarking over distributive lattices. Commun. Comput. Inf. Sci.
610, 117–125 (2016)

2. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Encyclopedia of
Mathematics and Its Applications. Cambridge University Press, Cambridge (2012)

3. Couceiro, M., Marichal, J.-L.: Polynomial functions over bounded distributive lat-
tices. J. Mult. Valued Log. Soft Comput. 18, 247–256 (2012)

4. Couceiro M., Marichal J.L.: Characterizations of discrete Sugeno integrals as lat-
tice polynomial functions. In: Proceedings of the 30th Linz Seminar on Fuzzy Set
Theory, LINZ 2009, pp. 17–20 (2009)

5. Couceiro, M., Marichal, J.L.: Characterizations of discrete Sugeno integrals as
polynomial functions over distributive lattices. Fuzzy Set Syst. 161, 694–707 (2010)
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Abstract. In this paper we present an implementation, using a conventional
relational database management system, of a linguistic multi-criteria decision
making model to integrate the hotel guests’ opinions included in the WWW and
expressed on several dimensions (or attributes) in order to obtain a SERVQUAL
scale evaluation value of service quality. SERVQUAL scale is commonly used
in tourism to standardize the service quality evaluation and is a five-item scale
consisting of: tangibles, reliability, responsiveness, assurance and empathy. As a
particular case study, we show an application example of the implemented
model using TripAdvisor website.

1 Introduction

In [1, 2] we have presented a model to integrate the hotel guests’ opinions included in
several websites (and expressed in several dimension or attributes) in order to obtain a
standard overall evaluation value of service quality by means of linguistic multi-criteria
decision making (LMCDM) processes based on the 2-tuple fuzzy linguistic approach [3].

The fuzzy linguistic approach is a tool intended for modeling qualitative infor-
mation in a problem. It is based on the concept of linguistic variable and has been
satisfactorily used in multi-criteria decision making (MCDM) problems [4]. The
2-tuple fuzzy linguistic approach [3] is a model of information representation that
carries out processes of “computing with words” without the loss of information.

The SERVQUAL scale [6] is the standard used in [1, 2] to obtain the evaluation
value of tourism service quality. It is a survey instrument which claims to measure the
service quality in any type of service organization.

In this paper we present a general implementation of this LMCDM model inte-
grating it in a conventional relational database management system (RDBMS).
Specifically, we have chosen the well-known Oracle© RDBMS and therefore in the
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implementation we will use its corresponding PL/SQL language [7]. This makes able to
be widely applied at a practical level and not only at a theoretical one.

The rest of the paper is organized as follows: Sect. 2 revises the preliminary
concepts, i.e. the 2-tuple linguistic modeling and the SERVQUAL scale. Section 3
presents the implementation of the LMCDM model using an Oracle© environment.
Section 4 shows an application example using the implemented model to integrate
customers’ opinions collected from TripAdvisor [8] website. Finally, we point out
some concluding remarks and future work.

2 Preliminaries

2.1 The 2-Tuple Fuzzy Linguistic Approach

Let S = {s0,…,sT} be a linguistic term set with odd cardinality, where the mid-term
represents a indifference value and the rest of terms are symmetric with respect to it.
We assume that the semantics of labels is given by means of triangular membership
functions and consider all terms distributed on a scale on which a total order is defined,
i.e. si � sj ⟺ i < j. In this fuzzy linguistic context, if a symbolic method aggregating
linguistic information obtains a value b 2 [0, T], and b 62 {0,…,T}, then an approxi-
mation function is used to express the result in S.

Definition 1 [3]. Let b be the result of an aggregation of the indexes of a set of labels
assessed in a linguistic term set S, i.e. the result of a symbolic aggregation operation,
b 2 [0, T]. Let i = round(b) and a = b − i be two values, such that i 2 [0, T] and a 2
[− 0.5, 0.5), then a is called a Symbolic Translation.

The 2-tuple fuzzy linguistic approach [3] is developed from the concept of sym-
bolic translation by representing the linguistic information by means of 2-tuple (si, ai),
si 2 S and ai 2 [− 0.5, 0.5), where si represents the information linguistic label, and ai
is a numerical value expressing the value of the translation from the original result b to
the closest index label, i, in the linguistic term set S. This model defines a set of
transformation functions between numeric values and 2-tuple:

Definition 2 [3]. Let S = {s1,…, sT} be a linguistic term set and b 2 [0, T] a value
representing the result of a symbolic aggregation operation, then the 2-tuple that
expresses the equivalent information to b is obtained with the following function:

D : 0; T½ � ! S� �0:5; 0:5½ Þ
DðbÞ ¼ ðsi; aÞ;with si; i ¼ roundðbÞ and a ¼ b�i; a 2 �0:5; 0:5½ Þ ð1Þ

where round(�) is the usual round operation, si has the closest index label to b and
a is the value of the symbolic translation.

For all D; there exists D�1; defined as D�1ðsi; aÞ ¼ iþ a: ð2Þ
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Below, we describe the aggregation operators which we use in our model:

Definition 3 [5]. Let A = {(l1, a1),…, (ln, an)} be a set of linguistic 2-tuple and
W = {(w1, a1

w),…, (wn, an
w)} be their linguistic 2-tuple associated weights. The 2-tuple

linguistic weighted average �Aw is:

�Aw l1; a1ð Þ; ðw1; a
w
1

� �� �
; . . .; ðln; anÞ; ðwn; a

w
n Þ

� �� ¼ D

Pn
i¼1 bi � bwiPn

i¼1 bwi

� �
; ð3Þ

with bi = Δ−1(li, ai) and bwi = Δ−1(wi, ai
w).

2.2 The SERVQUAL Scale

Below, we will explain the five resultant scales proposed for SERVQUAL [6] and their
adaptation to hotel guests’ perceptions [1, 2]:

• Tangibles: It makes reference to the appearance of the physical facilities, equip-
ment, personnel, and communication materials.

• Reliability: This is the ability to perform the promised service dependably and
accurately. Customers generally place heavy emphasis on the image, sanitary
condition, safety and privacy of the hotel.

• Responsiveness: Willingness to help customers and provide prompt service.
A courteous and friendly attitude by the service personnel makes the consumer feel
respected, and definitely enhances the customer’s appraisal of the hotel.

• Assurance: Knowledge and courtesy of employees and their ability to inspire trust
and confidence. The price level is usually one of the most important factors that will
influence the evaluation result by customers.

• Empathy: Caring and individualized attention that the firm provides its customers. If
the hotel is located in a remote district, whether the hotel provides a tourist route
suggestion, convenient traffic routes, or a shuttle bus to pick up customers will
influence customers’ desire to go to the hotel.

3 Implementing a LMCDM into a RDBMS

In a LMCDM [4] process, the goal consists in searching the best alternatives of the set
id_alternative = {id_alternative1,…, id_alternativen} according to the linguistic assess-
ments provided by a group of experts, id_criterion = {id_criterion1,…, id_criterionm}
with respect to a set of evaluation criteria. In our model, we assume that these assessments
are weighted by the self-rated expertise level set weight = {weight1,…, weightm}.We also
assume that we have p decision problems, one for each dimension (attribute or set of
attributes of the problem domain) value. Therefore, we define the assessments set as
assessments = {assessmentsdij} 8i, j, d, i 2 {1,…, n}, j 2 {1,…, m}, d 2 {1,…, p}.

In order to obtain an easy linguistic interpretability and the high precision of the
model results, we assume that all the information provided by the experts is in the
2-tuple form [3]. In our system we represent the 2-tuple values with a single attribute
(string data type), we denote the pair (si, a), si 2 S, with “si sign(a) abs(a)”, e.g.
(s0, −0.1) is denoted by the string “s0, −0.1” and (s0, 0) by “s0”.
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Our goal is to design some PL/SQL functions [7] that solve all the problems that are
under the previous approach.

First, we need to store information about the symmetric and uniformly distributed
domain S = {s0,…, sT}, T = 4: s0 = Strongly Disagree = SD, s1 = Disagree = D,
s2 = Neutral = N, s3 = Agree = A, and s4 = Strongly Agree = SA. For this purpose we
use a database table called T_S (see Table 1 and Fig. 1).

Below we explain the function implementations made to solve this problem:

AVG_2T UDA Function. In a conventional RDBMS to create a user-defined
aggregate (UDA) functions the user must implement the following basic routines [9, 10]:

(1) Init: This function is used to initialize any variables needed for the computation
later on. Intuitively, it is similar to a constructor. In PL/SQL this function is called
ODCIAggregateInitialize.

(2) Terminate: This function is used to end the calculation and return the final value
of the aggregate function. It may involve some calculations on variables which
were defined to use them with the aggregate function. In PL/SQL this function is
ODCIAggregateTerminate.

(3) Accumulate: This function is called once for each aggregated value. Generally,
this function will “add” the value to the running total computed so far. In PL/SQL
this function is called ODCIAggregateIterate.

An UDA function called AVG_2T based on an Oracle© object type (class) has been
used to implement the 2-tuple linguistic weighted average �Aw. In this function the
inputs are the 2-tuples values (li, ai) and (wi, ai

w), i = 1,…, n, showed in Definition 3.
These two 2-tuple values (labels to be aggregated and their weights) have the string
format mentioned above and are included in a single string variable separated with the
“*” character. This object is composed of:

• Three attributes related to the aggregator to be implemented:
– n: number of rows that are added at a given time. In the end (ODCIAggre-

gateTerminate) it will match the value n of Eq. 3.
– sum_num: it contains the expression

Pn
i¼1 bi � bwi of mentioned equation.

– sum_den: it contains the expression
Pn

i¼1 bwi of the same equation.
• The PL/SQL UDA routines shown in Fig. 2.

Fig. 1. Representation of the Table 1.

Table 1. Database table T_S
ID_LABEL RANKING_

LABEL
ALPHA BETA GAMMA

SD 0 0.0 0.0 0.25

D 1 0.0 0.25 0.5

N 2 0.25 0.5 0.75

A 3 0.5 0.75 1.0

SA 4 0.75 1.0 1.0
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The implementation of this function has used the functions REVERSE_2T and
DIRECT_2T explained below:

REVERSE_2T Function. This PL/SQL function implements the Δ−1 function
(Eq. 2). For this purpose the function uses the table T_S showed in Table 1. The code is
shown in Fig. 3.

Fig. 2. AVG_2T PL/SQL UDA routines for �Aw calculation
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DIRECT_2T Function. This PL/SQL function implements the Δ function (Eq. 1)
using the table T_S (see Table 1). The code is shown in Fig. 4.

Once the AVG_2T UDA function is defined, we are already in a position to define
the following function:

Fig. 3. REVERSE_2T PL/SQL function for Δ−1 calculation

Fig. 4. DIRECT_2T PL/SQL function for Δ calculation
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2T_MCDM Function. This PL/SQL function implements the LMCDM process:

In Fig. 5 a scheme of the implemented function is shown. Inputs are included in
database table format:

• 2T_CRITERIA: it stores the id_criterionj their weightj and an additional description
of each criterion j (DES_CRITERION), j 2 {1,…, m}.

• 2T_ALTERNATIVES: it stores the id_alternativei and an additional description of
each alternative i (DES_ALTERNATIVE), i 2 {1,…, n}.

• 2T_DIMENSIONS: it stores the id_dimensiond and an additional description of each
dimension d (DES_DIMENSION), d 2 {1,…, p}.

Fig. 5. 2T_MCDM PL/SQL function for LMCDM process implementation
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• 2T_ASSESSMENTS: it stores the assessmentsdij for each id_criterionj, id_alterna-
tivei and id_dimensiond.

And also the corresponding output:

• 2T_PERFORMANCE: it stores the performance_valuedi for each id_alternativei and
id_dimensiond which allows to rank these alternatives.

Our function implements the two typical phases of the decision processes [4]:

(1) Aggregation that combines the expert preferences. The 2-tuple performance val-
ues are obtained using the AVG_2T UDA function using the corresponding clause
GROUP BY (Fig. 6).

(2) Exploitation that obtains a solution set of alternatives for the decision problem
sorted descending by the 2-tuple performance values. For which these values are
previously converted to crisp numbers by the function REVERSE_2T and used in
the corresponding clause ORDER BY (Fig. 6).

4 Application Example

In [1, 2] we have presented a LMCDM model to integrate the hotel guests’ opinions
included in several websites in order to get a SERVQUAL evaluation value of service
quality. In this section, we present a RDBMS Oracle© implementation of this model,
using the function 2T_MCDM presented in the previous section, with an application
example using the TripAdvisor website [8]. In this website customers write reviews on
the following dimensions: sleep quality, location, rooms, service, value and cleanliness
(see Fig. 6) using a linguistic five scale which can be modeled with S = {s0,…, sT},
T = 4: s0 = Terrible = SD, s1 = Poor = D, s2 = Average = N, s3 = Very Good = A,
and s4 = Excellent = SA (see Table 1 and Fig. 1).

In the first step of this model the objective is to obtain the linguistic importance of
the dimensions (Fig. 7) for each SERVQUAL scale. In this step, we have counted on
the collaboration of five experts. Using the implementation explained in Sect. 3, the
process to solve this phase is very simple: we collect the input information provided by
experts (Table 2) and then we execute the function 2T_MCDM (Fig. 5) obtaining the
output data (Table 3), i.e., the linguistic importance of each dimensions for each
SERVQUAL scale.

Fig. 6. Extract of the 2T_MCDM PL/SQL function to implement the LMCDM processes
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Fig. 7. Evaluation form of a hotel in TripAdvisor website

Table 2. Input data: (a) 2T_CRITERIA: Expert’s criteria and self-rated weight.
(b) 2T_ALTERNATIVES: SERVQUAL scales. (c) 2T_DIMENSIONS: Attributes on which the
TripAdvisor users express their opinion. (d) 2T_ASSESSMENTS: Provided by experts (we only
show for the alternative PZB1 -Tangibles-).

(a) (b)

(c)

(d)

Table 3. Output data 2T_LMCDM_1 (2T_PERFORMANCE): Importance of the dimensions
(Fig. 7) for each scale (alternative)
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5 Concluding Remarks and Future Work

We have presented a RDBMS Oracle© implementation of a 2-tuple LMCDM model
using UDA functions. Thus, we have implemented the model [1, 2] for integrating the
opinions expressed by hotel guests in the TripAdvisor website [8] in order to obtain the
overall value of service quality under the SERVQUAL instrument perspective. This
makes able to be widely applied at a practical level on several types of problems. The
implementation proposed here can also be applied to other types of problems solved
with 2-tuple LMCDM [11–14]. Therefore, as future work we will implement these
models with the proposed scheme

Acknowledgements. This paper has been developed with the FEDER financing of Projects
TIN2013-40658-P and TIN2016-75850-R.
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Abstract. Memory-based Collaborative filtering solutions are domi-
nant in the Recommender Systems domain, due to its low implemen-
tation effort and service maintenance when compared with Model-based
approaches. Memory-based systems often rely on similarity metrics to
compute similarities between items (or users). Such metrics can be
improved either by improving comparison quality or minimizing compu-
tational complexity. There is, however, an important trade-off—in gen-
eral, models with high complexity, which significantly improve recom-
mendations, are computationally unfeasible for real-world applications.
In this work, we approach this issue, by applying Fuzzy Fingerprints to
create a novel similarity metric for Collaborative Filtering. Fuzzy Finger-
prints provide a concise representation of items, by selecting a relatively
small number of user ratings and using their order to describe them. This
metric requires from 23% through 95% less iterations to compute the sim-
ilarities required for a rating prediction, depending on the density of the
dataset. Despite this reduction, experiments performed in three datasets
show that our metric is still able to have comparable recommendation
results, in relation to state-of-art similarity metrics.

1 Introduction

Users of the digital world are overloaded with information [13]. Recommender
Systems (RSs) allow us to cope with this, by cataloging a vast list of items, that
later can be recommended. Due to their success, RSs can be found in a number of
services, providing recommendations for movies, music, news, products, events,
services, among others [1].

However, turning state of the art solutions into real-world scenarios is still
challenging, mainly due to a large amount of data available and the scalability
issues that ensue. For this reason, more traditional approaches, such as item-
based Collaborative Filtering (CF) are still the most widely used [16]. Despite
its simplicity, item-based CF can provide quite accurate results, thus yielding an
advantageous trade-off between engineering effort and user satisfaction.

In CF systems, the issue of scalability is closely related to the need to com-
pute similarities between a high number of items in the database. To solve
this, two complementary types of solution are usually proposed. One is to pro-
vide scalability by distributing the storage and computational cost over several
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 38
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machines [10,15]. The other is to devise computationally efficient similarity met-
rics [3,8,14,18]. Our work focuses on the latter.

Our main contribution is a novel similarity metric for RSs, using the concept
of Fuzzy Fingerprints (FFPs) [7]. More specifically, we propose to represent
items by their low-dimensional Fingerprints, which can then be directly used to
determine similarities between them. A similar idea has been previously applied
to text authorship identification [7] with success. Our goal is to apply the same
principle to RSs. This solution has three major advantages: (1) it has a smaller
computational cost than traditional similarity metrics; (2) it requires a minimal
implementation effort; and (3) the proposed representation of the items is also
easily maintainable.

To demonstrate our claims, experiments were performed on three datasets.
Results show that FFPs are a promising route to be applied for recommenda-
tions, requiring from 23% through 95% less iterations to compute the similarities
for a rating prediction, depending on the density of the dataset. This improve-
ment is achieved while maintaining a comparable quality of results.

The remainder of this paper is organized as follows. Section 2 contains liter-
ature review on similarity metrics for CF. Section 3 presents how FFPs can be
applied to RSs. Section 4 presents an experimental evaluation. Finally, in Sect. 5
some conclusions are drawn from the results and directions for future work are
proposed.

2 Related Work

Even thought Fuzzy systems have been previously applied to RSs, they have
never been specifically used to improve the RS similarity metric [12,17]. Our
proposal applies concepts of Fuzzy Systems to the problem of item-based Col-
laborative Filtering. More specifically, we use the Fuzzy Fingerprints to represent
items in a CF system.

CF systems usually rely on the ratings given to items by users to determine
similarities between items (or users), through the use of a similarity metric. This
allows the creation of neighborhoods of similar items, to predict new ratings.
Traditionally, the similarity is measured using metrics such as Pearson Correla-
tion (PC) or the Cosine similarity (COS) [2]. Nevertheless, many other ways of
measuring similarity have been proposed, ranging from simple variations of PC
and COS, through the design of more complex functions.

An example is the work of [5], where ratings are combined with a measure
of trust between users, which is inferred from social information. The authors
show that such combination does improve the overall rating prediction. On a dif-
ferent approach, in [4], the authors propose a combination of the mean squared
difference between the user’s ratings with the Jaccard coefficient. Through exper-
iments, they demonstrate that results are improved, when compared to tradi-
tional CF.

Liu et al. [9] also propose a new similarity metric, which attributes penalties
to bad similarities, while rewarding good similarities. Defining a similarity as
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good or bad depends on several factors, such as the popularity of the rated items
or the similarity of the rating to the other user’s ratings. Finally, in [18], authors
propose an alternative called M-distance-based recommendation (MBR). They
leverage the average rating of each item and use the difference of such averages
as the distance between items. Authors also have shown that it is possible to
pre-compute such averages and compute the similar items neighborhood in linear
time. Since this is the most time-efficient work that we know of, we use it as a
baseline in our experiments.

The above works show that improving the similarity measures has a bene-
ficial impact on the overall RS results. Nevertheless, this is often done at the
expense of an increase in the computational complexity. In this work, we intro-
duce a similarity metric based on FFPs, adapted for item-based CF, that aims
to improve time-efficiency while maintaining a low implementation effort and a
comparable, or even better, recommendation accuracy.

3 Fuzzy Fingerprints for Collaborative Filtering

We now explain how the Fingerprint of a given item is created and, following,
how a Fuzzifying Function can be applied to obtain the corresponding FFP.

Let ri be the set of ratings that a given set of users u1 · · · , uN has provided
for item i be: ri = {(u1, r1i), (u2, r2i), · · · , (uN , rNi)}. To build the Fingerprint
φi, we start by choosing a subset of k ratings in ri, where k is the parameter
that controls the size of the Fingerprint. The idea is that the selected ratings
should be those that best represent item i. To this effect, we select the k highest
ratings.

However, since users usually provide ratings on a small discrete scale (e.g.
1, 2, 3, 4, or 5 stars), we still need to give a different importance to the possibly
many ratings with the same value. Thus, when two ratings are equal, we use what
we call a sorting scheme (SS) to decide which one will have a higher rank. In our
experiments, we evaluated three different SSs. Let #uj be the total number of
items that user uj has rated: (1) Random: equal ratings are ordered randomly
(to be used as a baseline); (2) Higher to Lower (HL): equal ratings are sorted in
descending order according to #uj ; (2) Lower to Higher (LH): equal ratings are
sorted in ascending according to #uj .

To illustrate, let ri = {(a, 5), (b, 2), (d, 5), (e, 4), (f, 2), (h, 1), (i, 2)}, assume
that k = 4, and #a > #b > · · · > #i. The resulting Fingerprints φi, using each
of the above sorting schemes would be φ

(random)
i = {(d, 5), (a, 5), (e, 4), (f, 2)},

φ
(HL)
i = {(a, 5), (d, 5), (e, 4), (b, 2)}, and φ

(LH)
i = {(d, 5), (a, 5), (e, 4), (i, 2)}.

The Fingerprint φi is, in fact, an ordered set of ratings. This order, deter-
mined by a SS and, reflects the importance of each rating to represent items. It
is by leveraging on this importance that we determine the Fuzzy Fingerprint of
item i, Φi.

A Fuzzyfying Function (FF) μ(idx) assigns a weight to each position in a
Fingerprint. In this case, the FF is used to assign a weight to each user in φi.
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There are many alternatives to define the FF [6]. Here, we have tested three
possibilities, shown in Eq. 1, where puj

is the position of user uj within φi.

µone(puj
) = 1 µlinear(puj

) =
k − puj

k
µerfc(puj

) = 1 − erfc(
2 × puj

k
) (1)

The function μone assigns an equal weight to all users ratings. Using function
μlinear, the weight of a user decreases linearly, according to its position puj

.
Finally, function μerfc, uses a variation of the complementary error function to
yield a faster decrease in weights. It is important to note that these functions
are not the only available options [7]. However, preliminary experiments have
indicated that using other variations does not significantly improve the quality
of the results. For this reason, we have not tested further alternatives.

Using one of the above fuzzifying functions, we can now define the FFP Φi

as: Φi = {(uj , μ(puj
)),∀uj ∈ φi}. The FFP is, therefore, the set of users in the

original Fingerprint, each with an associated weight, given by the Fuzzyfying
Function. It is, in effect, a fuzzy set of users that rated item i.

Once the FFP for each item is determined, it is possible to compute similar-
ities between items.

Consider Φi and Φj the FFPs of items i and j, respectively. Let Ui be the
set of users in Φi and Uj be the set of users in Φj . The FFP similarity between
items i and j is defined as:

sim(Φi,Φj) =
∑

uv∈Ui∩Uj

min(Φi(uv),Φj(uv))
k

(2)

where Φx(uv) denotes the the value associated to user uv in Φx. This similarity,
in fact, corresponds to a minimum t-norm between the two fuzzy sets represented
by the FFPs.

Rating predictions can now be obtained in a process similar to tradi-
tional Collaborative Filtering. More specifically, let r̂vi be the predicted rating
that a given user uv would assign to item i. We start by computing the neigh-
borhood of item i, i.e. the set of n items in the database that are more similar
to i, Ni(v), using the similarity function defined in Eq. (2). The value of r̂vi is
defined as:

r̂vi = r̄i +

∑
j∈Ni(v)

sim(Φi,Φj) × (rvj − r̄j)∑
j∈Ni(v)

sim(Φi,Φj)
(3)

where rvj is the rating assigned by user u to item j, r̄x is the average of all
ratings assigned to item x. A RS will usually perform these predictions for a
large set of items and return those with the highest rating predictions, thus
creating recommendations for a user.

4 Evaluation

4.1 Experimental Setup

To assert the effectiveness of FFPs, experiments were performed using four
baseline similarity metrics and three distinct datasets. The similarity metrics
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used as a baseline for comparison are the traditional Pearson Correlation (PC)
and Cosine similarity (COS). In addition, we also include the Jaccard Mean
Squared Difference (JMSD) [4], an improvement on previous metrics that offers
a high rating prediction accuracy, while using a lower number of neighbors.
Finally, an alternative similarity metric, named MBR [18], is also compared
since its authors have the exact same goal as ours.

The Pearson Correlation coefficient has been widely used since it is simple
to implement, intuitive, and provides good quality results [4]. PC is defined in
Eq. 4, where U is the set users that rated both items i and j.

simPC(i, j) =
∑

u∈U (ru,i − r̄i) × (ru,j − r̄j)√∑
u∈U (ru,i − r̄i)2 × √∑

u∈U (ru,j − r̄j)2
(4)

The resulting similarity will be in within the interval [−1, 1], where −1 corre-
sponds to an inverse correlation, +1 to a positive correlation, and values near
zero show that no linear correlation exists between the two items.

Another often used similarity measure is the Cosine similarity, as defined
in Eq. 5. COS will yield a value between 0 and 1, where 0 corresponds to no
similarity between i and j and 1 to exactly proportional ratings between both
users.

simCOS(i, j) =
∑

u∈U ru,i × ru,j√∑
u∈U r2u,i ×

√∑
u∈U r2u,j

(5)

The idea behind Jaccard Mean Squared Difference (JMSD) it to combine the
Jaccard coefficient, which captures the number of ratings in common between
items, with the Mean Square Difference (MSD) of those ratings, resulting in
Eq. 6:

simJMSD(i, j) = Jaccard(i, j) × (
1 − MSD(i, j)

)
; (6)

where Jaccard and MSD are defined as:

Jaccard(i, j) =
|Ui ∩ Uj |
|Ui ∪ Uj | MSD(i, j) =

∑
u∈U (ru,i − ru,j)2

|U | (7)

where Us is the set of items ranked by user s.
The MBR metric uses a different principle, as shown in Eq. 8. It starts by

computing the average rating r̄j of each item j. The absolute value of the dif-
ference between these average ratings (called MBR) determines the similarity
between the items. The set of neighbors Hi of item i is defined as all items j �= i
such that MBR(i, j) ≤ T , where T is a predefined threshold. Rating predictions
r̂u,i can then be determined such that the rating predicted for user u and item
i is the average of all ratings given by u to items in Hi.

MBR(i, j) = |r̄i − r̄j | r̂u,i =

∑
j∈Hi∩Uu

ru,j

|Hi ∩ Uu| (8)

Evaluation was conducted using three standard datasets: (1) MovieLens-
1M (ML-1M), a dataset from the movie domain; (2) Netflix, a large dataset,
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also from the movie domain with a very sparse user-items ratings matrix; and
(3) Jester, a dataset for recommending jokes, with a high number of ratings per
item. Table 1 shows some statistics regarding their contents.

Table 1. Statistics for the experimental datasets. Column sparsity shows the percent-
age of not rated items in the rating matrix and column #r̄i shows the average number
of ratings per item.

Dataset Ratings Users Items Sparsity #r̄i

ML-1M 1 000 209 6 040 3 706 95.53% 217

Jester 1 728 785 79 681 150 75.64% 12348

Netflix 100 000 000 480 189 17 770 98.82% 5576

All experiments were conducted using the RIVAL framework [11]. All mea-
surements result from a 5 fold cross-validation, where the ratings are split on
a user basis. The exception is the Netflix dataset, where we used the provided
probe test set, to make our results comparable to those found in most literature.

4.2 Results

Recommendation Effectiveness. We start by evaluating the results yielded
by different sorting schemes. Figure 1 presents the RMSE for the three proposed
sorting schemes, while varying the value of k, using μlinear as the Fuzzyfying
Function. We note that the different scale for the Jester dataset is required since
its ratings vary between 1 and 10, whereas the ratings for the ML-1M and Netflix
datasets vary between 1 and 5.

We can see that, in all datasets, the three sorting schemes show a similar
behavior. The best results are achieved, in general, by the LH sorting scheme,
while the worst are achieved by the HL sorting scheme. This indicates that rat-
ings given by the least active users are better sources of information. A possible
explanation for this phenomena is that very active users tend to give the same
rating to a large number of items that, in practice, vary widely in quality (as per-
ceived by the user). On the other hand, less active users are more discriminatory
when evaluating the items.

We now evaluate the impact on RMSE for different Fuzzyfying Functions.
Figure 2 presents the values obtained, while varying the value of k, using the LH
sorting scheme.

As for the sorting schemes, all FFs show a similar behavior on all the datasets.
In addition, all show a similar performance, with only very small differences in
RMSE. The difference is slightly more evident in the ML-1M dataset, although
still lower than 1% between the best (μerfc) and worst (μOne) FFs. This small
difference is, in fact, coherent with other results found in the literature [7].

It is also interesting to show a comparison between the results achieved by our
proposed FFP similarity and the baselines described in Sect. 4.1. Figure 3 shows
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Fig. 1. Impact on RMSE of different sorting schemes. We use 100 neighbors for ML-
1M, 200 for Netflix and 50 for Jester. The scale on the left y axis is for the ML-1M
and Netflix datasets. The scale on the right y axis is for the Jester dataset.

Fig. 2. Impact on RMSE of different Fuzzyfying Functions. We use 100 neighbors for
ML-1M, 200 for Netflix and 50 for Jester. The scale on the left y axis is for the ML-1M
and Netflix datasets. The scale on the right y axis is for the Jester dataset.
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the results obtained, while varying the number of neighbors while computing
rating predictions. We note that the number of neighbors is not applicable to
the MBR similarity metric (see Sect. 4.1). Thus, results for MBR are shown as
an horizontal line across the plot.

The Figure shows that results are clearly comparable, independently of the
number of neighbors used. Furthermore, the lower RMSE was yielded, in general,
by the FFP similarity metrics. We also note that FFP metrics seem to be more
resilient to variations in the number of neighbors used, with results remaining
almost constant as this number increases.

Computational Efficiency. To measure computational efficiency, we count the
number of iterations required to make a single rating prediction. Since computing
the actual prediction, using Eq. (3) is independent of the similarity metric used
(i.e. in all cases, the same items will be compared to the item whose rating is
being predicted) we are only interested in the iterations required to compute the
similarity between any two items.

For the purpose of this work, when computing the similarity between any
pair of items i and j, we define an iteration as: (1) a comparison between a
value in the FFP of item i and a value in the FFP of item j, as in Eq. (2);
(2) a multiplication of a rating of item i by a rating of item j, as required for the
Pearson correlation or Cosine similarity; or (3) a subtraction of a rating of item
i from a rating of item j, as in Eq. (7). In practice, for the baselines, this will be
the number of ratings in common between the two items being compared. For
the FFP, this will be the highest value between k and the number of ratings in
common between the two items. We expect the gain in our proposal to come
from the fact that k will be lower.

Figure 4 shows a plot of the average number of iterations performed per
similarity computed, on each dataset. The number of operations for the FFP
metric is shown as a function of k. A vertical line is drawn where the best
results were achieved. It should be noted that MBR only requires one iteration,
since it compares items by simply computing the difference between their ratings
average.

In Fig. 4a, we observe that, for the ML-1M dataset, the FFP similarity
requires on average 100 iterations when k = 200. This corresponds to a reduc-
tion of about 23% per similarity, since the baselines require 130 iterations. In
the Netflix dataset (Fig. 4b), the gain is even more evident, with the FFP metric
requiring about 1009 iterations, when k = 1500, whereas the baselines use 3791
iterations—a reduction of 73%. Finally, for the Jester dataset (Fig. 4c), the FFP
similarity requires, on average, 281 iterations when k = 300, compared to the
baseline, requiring 5822 iterations. The gain is, therefore, of 95%.

In conclusion, FFP has shown gains in all cases. This is, of course, dependent
on the data. However, it is natural to expect that, the bigger the dataset, the
most likely it is that items have a high number of ratings in common and, thus,
the more gains can be achieved by our proposal.
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Fig. 3. Comparison of FFPs with the baseline similarity metrics. Baseline metrics are
represented in light grey, while the FFP metrics are represented in black. The scales on
the left y axis and bottom x axis are for the ML-1M and Netflix datasets. The scales
on the right y axis and top y axis are for the Jester dataset.

Fig. 4. Average number of iterations performed per similarity computed, on the three
experimental datasets. Vertical lines show the value of k for which the best results were
achieved.
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Table 2. Best results for FFPs and baselines, on ML-1M. Column N contains the
number of nearest-neighbour items used to compute the predicted rating.

Sim. ML-1M Netflix Jester

SS µ k N RMSE SS µ k N RMSE SS µ k N RMSE

FFP LH µlinear 200 20 0.8565 LH µOne 1500 35 0.9497 LH µlinear 200 25 4.0664

LH µerfc 200 25 0.8577 LH µOne 1500 35 0.9497 LH µerfc 300 25 4.0660

Rand µlinear 200 20 0.8568 LH µerfc 3000 35 0.9486 LH µOne 200 25 4.0685

COS - - - 50 0.8914 - - - 15 0.9616 - - - 15 4.0983

PC - - - 75 0.8847 - - - 30 0.9517 - - - 15 4.0419

JMSD - - - 20 0.8670 - - - 20 0.9549 - - - 15 4.0842

MBR - - - - 0.9031 - - - - 1.0016 - - - - 4.4063

Summary of Results. To summarize our experiments, we now present the
best results achieved by each tested similarity metric. Results for the ML-1M,
Netflix, and Jester datasets are shown in Table 2. The lowest values for RMSE
are highlighted using bold.

The best results for the ML-1M dataset were obtained with FFPs, which
outperforms all four baselines. This was achieved using at most 200 ratings to
describe the items and 20 neighbors to compute rating predictions. JMSD, the
best performing baseline, uses the same number of neighbors, as the best FFP
similarity, but still requires using all available ratings to compute the similarities.

Similarly, on the Netflix dataset, the best results were also achieved by the
FFPs. However, the lowest value in RMSE was obtained using the μerfc Fuzzy-
fying Function and k = 3000.

On the Jester dataset, the best results were obtained using Pearson Cor-
relation. Nevertheless, the results for our proposal are still highly relevant, for
several reasons. First, Jester is a somewhat unusual dataset, with a highly num-
ber of ratings per item (see Table 1) thus, we could expect the similarity metrics
to behave differently. Second, the difference in RMSE to the best FFP similarity
is small (0.02). Finally, as shown in Fig. 4c, the gain in efficiency obtained by
the FFP is clearly significant, since on average we need 95% less iterations to
compute a similarity than PC.

In conclusion, the use of FFPs allows the reduction of the similarity com-
putational complexity, while improving, or at least maintaining, the quality of
recommendations, in comparison with the baselines COS, PC, JMSD, and MBR.
The improvements become more noticeable in larger datasets, which translates
to a better solution in real world RSs, where we can expect very sparse data and
a higher number of users and items.

5 Conclusion

In this work, we have applied the concept of Fuzzy Fingerprints to item-based
Collaborative Filtering. FFPs are used to create a new concise item representa-
tion and an efficient and effective similarity metric. They have a smaller compu-
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tational cost than traditional similarity metrics while requiring a low engineering
effort to implement.

We have experimentally compared our proposal to two traditional similarity
measures, Pearson Correlation and Cosine similarity, and two state of the art
similarity metrics, Jaccard Mean Squared Difference and MBR. Results show
that FFPs are a promising approach since they can be applied with success in
recommendation tasks. In fact, using FFPs we were able to obtain a reduction of
the number of operations needed per similarity computation between 23% and
95%, depending on the density of the rating matrix. This was achieved with an
overall improvement in RMSE.

Future work will be conducted with the goal of exploring further configuration
options for the FFPs, such as new sorting schemes and Fuzzyfying Functions.
Also, we will study the application of FFPs to content-based RS.
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11. Said, A., Belloǵın, A.: Rival: a toolkit to foster reproducibility in recommender sys-
tem evaluation. In: Proceedings of the 8th ACM Conference on Recommender Sys-
tems, RecSys 2014, pp. 371–372. ACM Press (2014). doi:10.1145/2645710.2645712

12. Son, L.H.: HU-FCF: a hybrid user-based fuzzy collaborative filtering method in
recommender systems. Exp. Syst. Appl. 41(15), 6861–6870 (2014). doi:10.1016/j.
eswa.2014.05.001

13. Tsai, C.F., Hung, C.: Cluster ensembles in collaborative filtering recommendation.
Appl. Soft Comput. 12(4), 1417–1425 (2012). doi:10.1016/j.asoc.2011.11.016

14. Vijayakumar, V., Neelanarayanan, V., Bagchi, S.: Big data, cloud and com-
puting challenges performance and quality assessment of similarity measures
in collaborative filtering using mahout. Procedia Comput. Sci. 50, 229–234
(2015). doi:10.1016/j.procs.2015.04.055. http://www.sciencedirect.com/science/
article/pii/S1877050915005566

15. Xu, R., Wang, S., Zheng, X., Chen, Y.: Distributed collaborative filtering
with singular ratings for large scale recommendation. J. Syst. Softw. 95, 231–
241 (2014). doi:10.1016/j.jss.2014.04.045. http://www.sciencedirect.com/science/
article/pii/S0164121214001150

16. Ye, T., Bickson, D., Ampazis, N., Benczur, A.: LSRS’15: Workshop on large-scale
recommender systems. In: Proceedings of the 9th ACM Conference on Recom-
mender Systems, RecSys 2015, pp. 349–350. ACM, New York (2015). doi:10.1145/
2792838.2798715

17. Yera, R., Castro, J., Mart́ınez, L.: A fuzzy model for managing natural
noise in recommender systems. Appl. Soft Comput. 40, 187–198 (2016).
doi:10.1016/j.asoc.2015.10.060. http://www.sciencedirect.com/science/article/pii/
S1568494615007048

18. Zheng, M., Min, F., Zhang, H.R., Chen, W.B.: Fast recommendations with the m-
distance. IEEE Access 4, 1464–1468 (2016). doi:10.1109/ACCESS.2016.2549182

http://dx.doi.org/10.1016/j.knosys.2013.11.006
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://www.sciencedirect.com/science/article/pii/S0950705113003560
http://dx.doi.org/10.1016/j.compind.2013.11.005
http://www.sciencedirect.com/science/article/pii/S0166361513002352
http://www.sciencedirect.com/science/article/pii/S0166361513002352
http://dx.doi.org/10.1145/2645710.2645712
http://dx.doi.org/10.1016/j.eswa.2014.05.001
http://dx.doi.org/10.1016/j.eswa.2014.05.001
http://dx.doi.org/10.1016/j.asoc.2011.11.016
http://dx.doi.org/10.1016/j.procs.2015.04.055
http://www.sciencedirect.com/science/article/pii/S1877050915005566
http://www.sciencedirect.com/science/article/pii/S1877050915005566
http://dx.doi.org/10.1016/j.jss.2014.04.045
http://www.sciencedirect.com/science/article/pii/S0164121214001150
http://www.sciencedirect.com/science/article/pii/S0164121214001150
http://dx.doi.org/10.1145/2792838.2798715
http://dx.doi.org/10.1145/2792838.2798715
http://dx.doi.org/10.1016/j.asoc.2015.10.060
http://www.sciencedirect.com/science/article/pii/S1568494615007048
http://www.sciencedirect.com/science/article/pii/S1568494615007048
http://dx.doi.org/10.1109/ACCESS.2016.2549182


A Survey on Nullnorms on Bounded Lattices
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Abstract. Nullnorms are generalizations of triangular norms (t-norms)
and triangular conorms (t-conorms) with a zero element to be an arbi-
trary point from an arbitrary bounded lattice. In this paper, we study
nullnorms on bounded lattices. We examine some properties of nullnorms
considering the concepts of idempotency, local internality, conjunctiv-
ity and disjunctivity on bounded lattices. We investigate relationships
between such concepts for nullnorms on bounded lattices and some illus-
trative examples are added to clearly show connections between these.
Moreover, we give two methods to obtain nullnorms on bounded lattices
with a zero element by using the given nullnorm and t-norm (t-conorm)
with some constraints.

1 Introduction

Aggregation functions play an important role [15,22] in the fuzzy set theory and
its applications. Recently, nullnorms were introduced in [6], which are a general-
ization of triangular norms and triangular conorms with the zero element a any-
where in the unit interval and have to satisfy some additional conditions. In case
of a = 1, we obtain t-conorms and in case of a = 0, we obtain t-norms. In addi-
tion that t-operators were introduced in [23], which are also the generalizations of
the concepts of triangular norms and triangular conorms. And then in [24], it was
demonstrated that nullnorms and t-operators are equivalent since they have the
same block structures in [0, 1]2.Namely, if a binary operation F is a nullnorm then
it is also a t-operator and vice versa. A characterization of such binary operations
is interesting not only from a theoretical point of view but also for their appli-
cations, since they have been proved to be useful in several fields like fuzzy logic
frame-work, expert system, neural networks and fuzzy quantifiers [21,25]. Idem-
potent nullnorms were introduced [17] as the standard median. The certain char-
acterization and various properties of nullnorms (particularly idempotent null-
norms) were also studied in the papers [5,11,12,14,18,27].

Karaçal, İnce and Mesiar [20] have studied nullnorms on bounded lattices.
They have showed the presence of nullnorms with the zero element a ∈ L\{0, 1}
by using t-norms and t-conorms on an arbitrary bounded lattice L. And the
existence of the smallest nullnorm and the greatest nullnorm on L has been
observed. Furthermore, it has been proved the existence of idempotent nullnorms
on a distributive bounded lattice L for any element a ∈ L\{0, 1} playing the role
of a zero element in [19].
c© Springer International Publishing AG 2018
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In this paper, we study nullnorms on bounded lattices and theirs properties
by using especially the concepts of idempotency, local internality, conjunctivity
and disjunctivity on bounded lattices. The paper is organized as follows. We
shortly recall some basic notions in Sect. 2. In Sect. 3, it is proved that consid-
ering an arbitrary bounded lattice L, if the nullnorm V is locally internal on L,
V is either conjunctive or disjunctive. But we exemplify that it may not true
vice versa. And it is showed that if the nullnorm V is locally internal on L, it is
idempotent. We give an example every idempotent nullnorm on bounded lattices
need not be locally internal. Moreover, in Theorem 1 (Theorem 2), we show that
the structure of the bounded lattice L such that every nullnorm on L with the
zero element a ∈ L is idempotent (locally internal). In Sect. 4, we give two meth-
ods to obtain nullnorms on an arbitrary bounded lattice L with the zero element
s ∈ L with underlying the given nullnorm on sublattice [0, a] of L (nullnorm on
sublattice [a, 1] of L) and t-norm on [a, 1] (t-conorm on [0, a]) for arbitrary ele-
ment a ∈ L under some additional assumptions. And some illustrative examples
are added to clarity. Finally, some concluding remarks are given.

2 Preliminaries

In this section, some preliminaries concerning bounded lattices,
t-norms, t-conorms and nullnorms on them are recalled.

Definition 1 ([4]). A lattice (L,≤) is bounded if L has top and bottom ele-
ments, which are denoted as 1 and 0, respectively, that is, there exist two ele-
ments 1, 0 ∈ L such that 0 ≤ x ≤ 1, for all x ∈ L.

Let L be a bounded lattice. An upper bound of the elements x, y ∈ L is an
element a ∈ L containing the elements both x and y. The least upper bound of
the elements x, y ∈ L is an upper bound contained by every other upper bound,
it is denoted sup {x, y} or x ∨ y . The notations of lower bound and the gratest
lower (inf {x, y} or x ∧ y) of the elements x, y ∈ L are defined dually.

Definition 2 ([4]). Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and
b are incomparable, in this case, we use the notation a ‖ b. We denote the set of
elements which are incomparable with a by Ia. So, Ia = {x ∈ L | x ‖ a}.

If a and b are comparable, then we use the notation a ∦ b.

Definition 3 ([4]). Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b,
the subinterval [a, b] of L is defined as [a, b] = {x ∈ L | a ≤ x ≤ b}.

Similarly, we define (a, b] = {x ∈ L | a < x ≤ b}, [a, b) = {x ∈ L | a ≤ x < b}
and (a, b) = {x ∈ L | a < x < b}.
Definition 4 ([1,2]). An operation T : L2 → L is called a t-norm if it is
commutative, associative, increasing with respect to both variables and has as
neutral element 1.
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Definition 5 ([7,9,10]). An operation S : L2 → L is called a t-conorm if it is
commutative, associative, increasing with respect to both variables and has as
neutral element 0.

Definition 6 ([3,20]). Let (L,≤, 0, 1) be a bounded lattice. A commutative,
associative, non-decreasing in each variable function V : L2 → L is called a
nullnorm if there is an element a ∈ L such that V (x, 0) = x for all x ≤ a and
V (x, 1) = x for all x ≥ a.

It can be easily obtained that V (x, a) = a for all x ∈ L. So a ∈ L is the zero
element for V .

Consider the set V of all nullnorms on L with the following order: For
V1, V2 ∈ V ,

V1 ≤ V2 ⇔ V1(x, y) ≤ V2(x, y) for all (x, y) ∈ L2.
It can be easily shown that V is a partially ordered set. If we denote the set

of all nullnorms on L with the zero element a ∈ L by V (a), then each V (a) is
also a partially ordered set.

We use Da to represent the following set:
Da = [0, a] × [a, 1] ∪ [a, 1] × [0, a] for a ∈ L\ {0, 1} .

Definition 7 ([19]). Let (L,≤, 0, 1) be a bounded lattice. An element x ∈ L
is called an idempotent element of a function V : L2 → L if V (x, x) = x. The
function V is called idempotent on L if all elements of L are idempotent.

Definition 8 ([26]). Let (L,≤, 0, 1) be a bounded lattice and F : L2 → L be a
function on L. Then

(i) F is called conjunctive on L if F (x, y) ≤ x ∧ y for all x, y ∈ L.
(ii) F is called disjunctive on L if F (x, y) ≥ x ∨ y for all x, y ∈ L.

Proposition 1 ([13,20]). Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1}
and V be a nullnorm on L with the zero element a. Then

(i) V |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].
(ii) V |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

The next results, characterizing general properties of nullnorms on a bounded
lattice L, are immediate from the definition of nullnorms.

Proposition 2 ([13,20]). Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and
V be a nullnorm on L with the zero element a. The following properties hold:

(i) V (x, y) = a for all (x, y) ∈ Da.
(ii) a ≤ V (x, y) for all (x, y) ∈ [a, 1]2 ∪ [a, 1] × Ia ∪ Ia × [a, 1] .
(iii) V (x, y) ≤ a for all (x, y) ∈ [0, a]2 ∪ [0, a] × Ia ∪ Ia × [0, a] .
(iv) V (x, y) ≤ y for all (x, y) ∈ L × [a, 1] .
(v) V (x, y) ≤ x for all (x, y) ∈ [a, 1] × L.
(vi) x ≤ V (x, y) for all (x, y) ∈ [0, a] × L.
(vii) y ≤ V (x, y) for all (x, y) ∈ L × [0, a] .
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(viii) x ∨ y ≤ V (x, y) for all (x, y) ∈ [0, a]2 .
(ix) V (x, y) ≤ x ∧ y for all (x, y) ∈ [a, 1]2 .
(x) (x ∧ a) ∨ (y ∧ a) ≤ V (x, y) for all (x, y) ∈ [0, a]× Ia ∪ Ia × [0, a] ∪ Ia × Ia.
(xi) V (x, y) ≤ (x ∨ a)∧ (y ∨ a) for all (x, y) ∈ [a, 1]× Ia ∪ Ia × [a, 1] ∪ Ia × Ia.

3 Nullnorms on Bounded Lattices

Proposition 3. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and V be a
nullnorm on L with the zero element a. In this case the nullnorm V is neither
conjunctive nor disjunctive on L.

Proposition 4. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a.

(i) a = 0 if and only if the nullnorm V is conjunctive on L.
(ii) a = 1 if and only if the nullnorm V is disjunctive on L.

Definition 9 ([8]). Let (L,≤, 0, 1) be a bounded lattice. The function F : L2 →
L is called locally internal on L if it satisfies F (x, y) ∈ {x, x ∧ y, x ∨ y, y} for all
x, y ∈ L.

Proposition 5. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and V be a
nullnorm on L with the zero element a. In this case the nullnorm V is not locally
internal on L.

Proposition 6. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a. If the nullnorm V is locally internal on L, then
a = 0 or a = 1.

Corollary 1. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a. If the nullnorm V is locally internal on L, then it
is either conjunctive or disjunctive on L.

Remark 1. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm on
L with the zero element a. By Proposition 6, we know that if V is locally internal
on L, then a = 0 or a = 1. It occurs a natural question: if a = 0 or a = 1, does
the nullnorm V always need to be locally internal on L? The following example
illustrates the fact that this hypothesis is false.

Example 1. Given the bounded lattice L = {0, b, c, d, 1} with the order given in
Fig. 1 and define the mapping V : L2 → L by Table 1. However the mapping V
is a nullnorm on L with the zero element 0, V is not locally internal on L since
V (c, d) = 0 not V (c, d) ∈ {c, d, c ∧ d = b, c ∨ d = 1} .
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Fig. 1. The lattice L

Table 1. The nullnorm V on L

V 0 b c d 1

0 0 0 0 0 0

b 0 0 0 0 b

c 0 0 0 0 c

d 0 0 0 0 d

1 0 b c d 1

Proposition 7. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a. If the nullnorm V is locally internal on L, then it
is idempotent on L.

Remark 2. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm on
L with the zero element a. If the nullnorm V is locally internal on L, we know
that either a = 0 or a = 1 from Proposition 6. We obtain t-norm while a = 0
and we obtain t-conorm while a = 1. So, if the nullnorm V is locally internal
on L, there are the only two idempotent nullnorms on L based on the fact that
the only idempotent t-conorm (sup) S∨ : L2 → L, S∨(x, y) = x∨ y and the only
idempotent t-norm (inf) T∧ : L2 → L, T∧(x, y) = x ∧ y.

Remark 3. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a. In that case, the natural question arises: if the
nullnorm V is idempotent on L, is the nullnorm V locally internal on L? By
Proposition 5, we know that the nullnorm V can not be locally internal on L
while a ∈ L\{0, 1}. The another natural question arises: if the nullnorm V is
idempotent on L with the zero element a such that a = 0 or a = 1, is the
nullnorm V locally internal on L? In the following proposition, we give positive
answer to this question.
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Proposition 8. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L and V be a nullnorm
on L with the zero element a such that a = 0 or a = 1. If the nullnorm V is
idempotent on L, the nullnorm V is locally internal on L.

Theorem 1. The structure of the bounded lattice (L,≤, 0, 1) such that every
nullnorm defined on L with the zero element a ∈ L | {0, 1} is idempotent is as
shown in Fig. 2.

Fig. 2. The lattice L

Theorem 2. The structure of the bounded lattice (L,≤, 0, 1) such that every
nullnorm defined on L with the zero element a ∈ L is locally internal is as
shown in Figs. 3 or 4.

Fig. 3. The lattice L Fig. 4. The lattice L

4 Some Methods to Obtain Nulnorms on Bounded
Lattices

In this section, we introduce two construction methods to obtain nullnorms on
a bounded lattice (L,≤, 0, 1), for the indicated element a ∈ L, by using the
existence of the nullnorm given on sublattice [0, a] of L (the nullnorm given
on sublattice [a, 1] of L) and the t-norm on [a, 1] (the t-conorm on [0, a]) with
some constraints. The zero element s ∈ L of the nullnorms obtained by these
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construction methods allows the freedom to be an arbitrary element from the
sublattice [0, a] of L, see Theorem 3 (the sublattice [a, 1] of L, see Theorem 4).

Theorem 3. Let (L,≤, 0, 1) be a bounded lattice, s, a ∈ L\{0, 1}, [0, a] be a
sublattice of L and s ∈ [0, a] such that x ∦ s for all x ∈ [0, a]. If x ≥ a for all
x ∈ L \ [0, a] , V ∗ is a nullnorm on [0, a] with the zero element s and T is a
t-norm on [a, 1], then the following operation V1 : L2 → L is a nullnorm with
the zero element s, where

V1 (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

V ∗ (x, y) if (x, y) ∈ [0, a]2,
s if (x, y) ∈ [0, s] × [a, 1] ∪ [a, 1] × [0, s] ,
T (x, y) if (x, y) ∈ [a, 1]2,
x ∧ y otherwise.

(1)

Example 2. Given the bounded lattice L = {0, k, s, a, p, q, 1}, see Fig. 5. If the
nullnorm V ∗ on [0, a] is defined by Table 2 and we take the t-norm T on [a, 1]

as T (x, y) =

⎧
⎨

⎩

y if x = 1,
x if y = 1,
a otherwise.

then the operation V : L2 → L defined in Table 3

using the formula (1) is a nullnorm on L with the zero element s from Theorem3.

Fig. 5. The lattice L

Table 2. The nullnorm V ∗ on [0, a]

V ∗ 0 k s a

0 0 k s s

k k k s s

s s s s s

a s s s a
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Table 3. The nullnorm V on L

V 0 k s a p q 1

0 0 k s s s s s

k k k s s s s s

s s s s s s s s

a s s s a a a a

p s s s a a a p

q s s s a a a q

1 s s s a p q 1

The following theorem is given as dual of Theorem 3.

Theorem 4. Let (L,≤, 0, 1) be a bounded lattice, s, a ∈ L\{0, 1}, [a, 1] be a
sublattice of L and s ∈ [a, 1] such that x ∦ s for all x ∈ [a, 1]. If x ≤ a for
all x ∈ L \ [a, 1], V∗ is a nullnorm on [a, 1] with the zero element s and S is a
t-conorm on [0, a] , then the following operation V2 : L2 → L is a nullnorm with
the zero element s, where

V2 (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

V∗ (x, y) if (x, y) ∈ [a, 1]2,
S (x, y) if (x, y) ∈ [0, a]2,
s if (x, y) ∈ [s, 1] × [0, a] ∪ [0, a] × [s, 1] ,
x ∨ y otherwise.

(2)

Example 3. Given the bounded lattice L = {0, p, q, a, s, k, t, 1}, see Fig. 6. If the
nullnorm V∗ on [a, 1] is defined by Table 4 and we take the t-conorm S on [0, a]

as S (x, y) =

⎧
⎨

⎩

y if x = 0,
x if y = 0,
a otherwise.

then the operation V : L2 → L defined in Table 5

using the formula (2) is a nullnorm on L with the zero element s from Theorem4.

Fig. 6. The lattice L
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Table 4. The nullnorm V∗ on [a, 1]

V∗ a s k t 1

a a s s s s

s s s s s s

k s s k s s

t s s s t s

1 s s s s 1

Table 5. The nullnorm V on L

V 0 p q a s k t 1

0 0 p q a s s s s

p p a a a s s s s

q q a a a s s s s

a a a a a s s s s

s s s s s s s s s

k s s s s s k s s

t s s s s s s t s

1 s s s s s s s 1

Remark 4. Let (L,≤, 0, 1) be a bounded lattice, s, a ∈ L\{0, 1}, [0, a] be a sub-
lattice of L, s ∈ [0, a] such that x ∦ s for all x ∈ [0, a] and x ≥ a for all
x ∈ L\ [0, a] . In Theorem 3, if we take t-norm T on [a, 1] as the only idempotent
t-norm (inf) T∧, then we obtain the following nullnorm on L, where

V1 (x, y) =

⎧
⎨

⎩

V ∗ (x, y) if (x, y) ∈ [0, a]2,
s if (x, y) ∈ [0, s] × [a, 1] ∪ [a, 1] × [0, s] ,
x ∧ y otherwise.

(3)

(i) If the nullnorm V ∗ is idempotent on [0, a] with the zero element s, then the
nullnorm V1 given by the formula (3) is idempotent on L with the zero element s.
(ii) If the nullnorm V ∗ is locally internal on [0, a] with the zero element s, then
s = a since s ∈ L\{0, 1}. So, even if the nullnorm V ∗ is locally internal on [0, a]
with the zero element s, then the nullnorm V1 given by the formula (3) can not
be locally internal on L from Proposition 5.

Remark 5. Let (L,≤, 0, 1) be a bounded lattice, s, a ∈ L\{0, 1}, [a, 1] be a sub-
lattice of L, s ∈ [a, 1] such that x ∦ s for all x ∈ [a, 1] and x ≤ a for all
x ∈ L \ [a, 1]. In Theorem 4, if we take t-conorm S on [0, a] as the only idem-
potent t-conorm (sup) S∨, then we obtain the following nullnorm on L, where
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V2 (x, y) =

⎧
⎨

⎩

V∗ (x, y) if (x, y) ∈ [a, 1]2,
s if (x, y) ∈ [s, 1] × [0, a] ∪ [0, a] × [s, 1] ,
x ∨ y otherwise.

(4)

(i) If the nullnorm V∗ is idempotent on [a, 1] with the zero element s, then the
nullnorm V2 given by the formula (4) is idempotent on L with the zero element
s ∈ L\{0, 1}.
(ii) If the nullnorm V∗ is locally internal on [a, 1] with the zero element s, then
s = a since s ∈ L\{0, 1}. So, even if the nullnorm V∗ is locally internal on [a, 1]
with the zero element s, then the nullnorm V2 given by the formula (4) can not
be locally internal on L from Proposition 5.

Remark 6. Let (L,≤, 0, 1) be a bounded lattice, a, s ∈ L\{0, 1}, [0, a] be a sub-
lattice of L and s ∈ [0, a] such that x ∦ s for all x ∈ [0, a]. Turning back to
Theorem 3, observe that the constraint x ≥ a for all x ∈ L \ [0, a] can not be
omitted, in general. The next example illustrates the fact that the associativity
of V can be violated.

Example 4. Given the bounded lattice L = {0, s, a, n,m, 1} by Fig. 7 and the
nullnorm V ∗ on [0, a] by Table 6. And define the mapping V : L2 → L as Table 7
using the formula (1) in Theorem 3.

Since V (V (1, n) ,m) = V (n,m) = 0 and V (1, V (n,m)) = V (1, 0) = s for
the elements 1, n,m ∈ L, the mapping V does not satisfy associativity. So, we
obtain that the mapping V is not a nullnorm on L, however the mapping V is
defined by using the formula (1) in Theorem 3.

Fig. 7. The lattice L

Table 6. The nullnorm V ∗ on [0, a]

V ∗ 0 s a

0 0 s s

s s s s

a s s a
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Table 7. The mapping V on L

V 0 s a n m 1

0 0 s s 0 0 s

s s s s s s s

a s s a 0 0 a

n 0 s 0 n 0 n

m 0 s 0 0 m m

1 s s a n m 1

5 Conclusion Remarks

In this paper, some properties of nullnorms on an arbitrary bounded lattice L
with a zero element are investigated considering the notations of idempotency,
local internality, conjunctivity and disjunctivity. Some results on the relationship
between such notions for nullnorms on L are given. In addition that the structure
of the bounded lattice L such that every nullnorm on L with the given zero
element is idempotent (locally internal) is researched. Moreover, we give two
methods yielding nullnorms on bounded lattices with the indicated zero element
under some constraints.

Acknowledgments. The authors are very grateful to the anonymous reviewers and
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1. Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267, 323–333
(2014)
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norms on bounded lattices. Kybernetika (Submitted)
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12. Drygaś, P.: A characterization of idempotent nullnorms. Fuzzy Sets Syst. 145,
455–461 (2004)
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Abstract. The ordinal sum of triangular norms on the unit interval
has been proposed to construct new triangular norms. However, consid-
ering general bounded lattices, the ordinal sum of triangular norms and
conorms may not generate triangular norms and conorms. In this paper,
we study and propose some new construction methods yielding triangular
norms and conorms on general bounded lattices. Moreover, we generalize
these construction methods by induction to a ordinal sum construction
for triangular norms and conorms, applicable on any bounded lattice.
And some illustrative examples are added for clarity.

1 Introduction

The triangular norms (t-norms for short) and the triangular conorms (t-conorms
for short) firstly appeared in mathematical literature in the study “Statistical
Metrics” of Menger [19]. The main aim of introducing these concepts was that
triangular inequalities were extended from classical metric spaces to probabilistic
metric spaces using the theory of t-norm and t-conorm. The t-norms with 1 as
neutral element and t-conorms with 0 as neutral element which are considered
as special semigroup on unit interval and play a key role in the theory of fuzzy
metric spaces were given as equivalent by Schweizer and Sklar [25,26]. T-norms
and t-conorms also play an important role in decision making, statistics as well
as in the theories of non-additive measures and cooperative games [5,16,22,23].
Therefore, the knowledge of the structure of the class of t-norms and t-conorms
is very important. These operators originally were defined on the unit interval,
although it is crucial and fundamental to work on general structure of them on
bounded lattices. Additionally, the concepts of t-norms and t-conorms were also
studied theoretically by many authors in other papers [1,2,7,17,20].

Constructions for t-norms and t-conorms on [0, 1] by using ordinal sums in the
sense of lattices of Birkhoff [4] and ordinal sums of semigroups [9] are the ordinal
sum construction. Although, the ordinal sum of t-norms on [0, 1] has been used to
construct other t-norms, on a bounded lattice, an ordinal sum of t-norms may not
be a t-norm. Considering an arbitrary bounded lattice L, in order to construct
these operators on L as ordinal sums of t-norms and t-conorms, Goguen has
proposed to study on fuzzy sets with membership values from L [15]. Saminger
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has studied on ordinal sums of t-norms acting on some bounded lattice which is
not necessarily a chain or an ordinal sum of posets [24]. Furthermore, Medina has
given some methods that ordinal sum of arbitrary t-norms on a bounded lattice is
a t-norm under some additional assumptions [18]. Drygaś has investigated some
properties of uninorm-like operations generalizating of t-norms and t-conorms
based on operations are given by ordinal sums [12]. For more details on uninorms,
we refer to [6,11,13,21].

Ertuğrul, Karaçal and Mesiar have proposed a modification of ordinal sums of
t-norms and t-conorms underlying with t-norms and t-conorms valid on general
bounded lattices [14]. In this paper, we propose new construction ways to gener-
ate t-norms and t-conorms on an arbitrary bounded lattice different from given
in [14]. If x or y are from [a, 1] in triangular norm case, then both constructions
coincide and our new construction puts on the remainder 0. Similarly if x or y
are from [0, a] in triangular conorm case, then both constructions coincide and
our new construction puts on the remainder 1. As by-product, our constructions
generate the smallest t-norm T on L such that on [a, 1]2 t-norm T coincides
with an a priori fixed t-norm V on [a, 1] and the greatest t-conorm S on L such
that on [0, a]2 t-conorm S coincides with an a priori fixed t-norm W on [0, a].
Furthermore, we generalize these construction ways by induction to a ordinal
sum construction for t-norms and t-conorms, applicable on any bounded lattice.
And we give some examples to clearly understand these construction ways for
t-norms and t-conorms on general bounded lattices.

Definition 1. [4,10] A bounded lattice (L,≤) is a lattice which has the top and
bottom elements, which are written as 1 and 0, respectively, that is, there exist
two elements 1, 0 ∈ L such that 0 ≤ x ≤ 1, for all x ∈ L.

Definition 2. [4] Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b
are incomparable, in this case, we use the notation a ‖ b . We denote the set of
elements which are incomparable with a by Ia. So Ia = {x ∈ L | x ‖ a}.

Definition 3. [3,8] Let (L,≤, 0, 1) be a bounded lattice. Operation T : L2 → L
is called a triangular norm (t-norm) if it is commutative, associative, increasing
with respect to both variables and it satisfies T (x, 1) = x for all x ∈ L.

Definition 4. [8] Let (L,≤, 0, 1) be a bounded lattice. Operation S : L2 → L is
called a triangular conorm (t-conorm) if it is commutative, associative, increasing
with respect to both variables and it satisfies S (x, 0) = x for all x ∈ L.

2 Construction of t-norms and t-conorms on Bounded
Lattices

Consider a bounded lattice (L,≤, 0, 1), an element a ∈ L\{0, 1}, a t-norm V :
[a, 1]2 → [a, 1] and a t-conorm W : [0, a]2 → [0, a]. An ordinal sum extension T
of V to L and S of W to L is given by (see [24])

T (x, y) =
{

V (x, y) if (x, y) ∈ [a, 1]2 ,
x ∧ y otherwise

(1)
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Fig. 1. The lattice L

and

S (x, y) =
{

W (x, y) if (x, y) ∈ [0, a]2 ,
x ∨ y otherwise

(2)

However, the above-defined mapping T need not be a t-norm, in general. Simi-
larly, S need not be a t-conorm, in general.

Example 1. Given the lattice L = {0, p, q, s, a, r, 1} with the order given in Fig. 1.

(i) Consider the t-norm V : [a, 1]2 → [a, 1] , V (x, y) =
{

x ∧ y if 1 ∈ {x, y} ,
a otherwise

for

all x, y ∈ [a, 1]. Then the operation T is constructed as Table 1 by using the
formula (1), but T is not a t-norm on L.

Table 1. The operation T on L

T 0 p q s a r 1

0 0 0 0 0 0 0 0

p 0 p p p p p p

q 0 p q p p q q

s 0 p p s p s s

a 0 p p p a a a

r 0 p q s a a r

1 0 p q s a r 1

If we take the elements s, r ∈ L, then s ≤ r. But we have that T (s, r) =
s ‖ a = T (r, r). Hence,T does not satisfymonotonicity.Moreover,T (T (r, r) , q) =
T (a, q) = p and T (r, T (r, q)) = T (r, q) = q for the elements r, q ∈ L. Hence, T
does not satisfy associativity. So, we obtain that T is not a t-norm on L.
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(ii) Consider the t-conorm W : [0, a]2 → [0, a] , W (x, y) =
{

x ∨ y if 0 ∈ {x, y} ,
a otherwise

for all x, y ∈ [0, a]. Then the operation S is constructed as Table 2 by using
the formula (2), but S is not a t-conorm on L.

Table 2. The operation S on L

S 0 p a q s r 1

0 0 p a q s r 1

p p a a q s r 1

a a a a r r r 1

q q q r q r r 1

s s s r r s r 1

r r r r r r r 1

1 1 1 1 1 1 1 1

we take the elements p, q ∈ L, then p ≤ q. But we have that S(p, p) = a ‖ q =
S(q, p). Hence, S does not satisfy monotonicity. Moreover, S (S (p, p) , s) =
S (a, s) = r and S (p, S (p, s)) = S (p, s) = s for the elements p, s ∈ L. Hence, S
does not satisfy associativity. So, we obtain that S is not a t-conorm on L.

Theorem 1. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}. If V is a
t-norm on [a, 1] and W is a t-conorm on [0, a], then the functions T : L2 → L
and S : L2 → L are, respectively, a t-norm and a t-conorm on L, where

T (x, y) =

⎧⎨
⎩

V (x, y) if (x, y) ∈ [a, 1[2 ,
x ∧ y if 1 ∈ {x, y} ,
0 otherwise

(3)

and

S (x, y) =

⎧⎨
⎩

W (x, y) if (x, y) ∈ ]0, a]2 ,
x ∨ y if 0 ∈ {x, y} ,
1 otherwise

(4)

Corollary 1. Let a ∈ L\ {0, 1} . If we put V (x, y) =
{

x ∧ y if 1 ∈ {x, y} ,
a otherwise

on

[a, 1] in the formula (3) in Theorem 1, the following t-norm T is the smallest
t-norm on L that extends V .

T (x, y) =

⎧⎨
⎩

a if (x, y) ∈ [a, 1[2 ,
x ∧ y if 1 ∈ {x, y} ,
0 otherwise
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Corollary 2. Let a ∈ L\ {0, 1} . If we put W (x, y) =
{

x ∨ y if 0 ∈ {x, y} ,
a otherwise

on

[0, a] in the formula (4) in Theorem 1, the following t-conorm S is the greatest
t-conorm on L that extends W .

S (x, y) =

⎧⎨
⎩

a if (x, y) ∈ ]0, a]2 ,
x ∨ y if 0 ∈ {x, y} ,
1 otherwise

Fig. 2. The lattice L in Example 2

Example 2. Given a bounded lattice L = {0, p, q, s, a, n, r, 1}, with the order
given in Fig. 2. Consider t-norm V : [a, 1]2 → [a, 1] , V (x, y) = x ∧ y for all
x, y ∈ [a, 1] . By using Theorem 1, the corresponding t-norm T : L2 → L is given
as Table 3.

Table 3. The t-norm T on L

T 0 p q s n a r 1

0 0 0 0 0 0 0 0 0

p 0 0 0 0 0 0 0 p

q 0 0 0 0 0 a 0 q

s 0 0 0 0 0 0 0 s

n 0 0 0 0 0 0 0 n

a 0 0 a 0 0 a r a

r 0 0 0 0 0 r r r

1 0 p q s n a r 1
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Fig. 3. The lattice L in Example 3

Example 3. Given a bounded lattice L = {0, s, n, a, q, r, p, 1}, with order given in
Fig. 3. Consider t-conorm W : [0, a]2 → [0, a] , W (x, y) = x∨y for all x, y ∈ [0, a] .
By using Theorem 1, the corresponding t-conorm S : L2 → L is given as Table 4.

Table 4. The t-conorm S on L

S 0 s n a q r p 1

0 0 s n a q r p 1

s s s a a 1 1 1 1

n n a n a 1 1 1 1

a a a a a 1 1 1 1

q q 1 1 1 1 1 1 1

r r 1 1 1 1 1 1 1

p p 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

3 Ordinal Sum Characterization for t-norms and
t-conorms on Bounded Lattices

Theorem 2. Let (L,≤, 0, 1) be a bounded lattice and {a0, a1, a2, ..., an} be a
finite chain in L such that a0 = 1 > a1 > a2 > ... > an = 0. Let V : [a1, 1]2 →
[a1, 1] be a t-norm on the sublattice [a1, 1]. Then the operation T = Tn : L2 → L
defined recursively as follows is a t-norm, where V = T1 and for i ∈ {2, 3, ..., n}
the operation Ti : [ai, 1]2 → [ai, 1] is given by

Ti (x, y) =

⎧⎨
⎩

Ti−1 (x, y) if (x, y) ∈ [ai−1, 1[2 ,
x ∧ y if 1 ∈ {x, y} ,
ai otherwise

(5)
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The proof follows easily from Theorem 1 by induction and therefore it is
omitted. The construction described inductively by formula (5) can be considered
as a ordinal sum construction for t-norms. Obviously, if L in Theorem 2 is a chain
then the formula (5) reduces to

Ti (x, y) =

⎧
⎨

⎩

Ti−1 (x, y) if (x, y) ∈ [ai−1, 1[2 ,
x ∧ y if 1 ∈ {x, y} ,
ai if (x, y) ∈ [ai, ai−1[

2 ∪ [ai, ai−1[ × [ai−1, 1[ ∪ [ai−1, 1[ × [ai, ai−1[ .

Fig. 4. The lattice L in Example 4

Example 4. Consider the lattice L = {0, p, q, k, t,m, 1} with the order given
in Fig. 4 and in L the finite chain {0, k, t,m, 1} such that V (x, y) = x ∧ y

for all x, y ε [m, 1]. Let V : [m, 1]2 → [m, 1] be the t-norms on the sublattice
[m, 1] such that ∨(x, y) = x ∧ y for all x, y ∈ [m, 1] . By using Theorem 2, where
V = T1, the t-norms T2 : [t, 1]2 → [t, 1] , T3 : [k, 1]2 → [k, 1] and T = T4 : L2 → L
are defined as follows (Tables 5, 6 and 7)

By using the formula (3) in Theorem 1, on the bounded lattice L which is
depicted by Fig. 4 the corresponding t-norm T : L2 → L is defined as Table 8 for
the given t-norm V = T1 : [m, 1]2 → [m, 1] on the sublattice [m, 1] .

Table 5. The t-norm T2 on L

T2 t m 1

t t t t

m t m m

1 t m 1
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Table 6. The t-norm T3 on L

T3 k q t m 1

k k k k k k

q k k k k q

t k k t t t

m k k t m m

1 k q t m 1

Table 7. The t-norm T on L

T = T4 0 p k q t m 1

0 0 0 0 0 0 0 0

p 0 0 0 0 0 0 p

k 0 0 k k k k k

q 0 0 k k k k q

t 0 0 k k t t t

m 0 0 k k t m m

1 0 p k q t m 1

Table 8. The t-norm T on L

T 0 p k q t m 1

0 0 0 0 0 0 0 0

p 0 0 0 0 0 0 p

k 0 0 0 0 0 0 k

q 0 0 0 0 0 0 q

t 0 0 0 0 0 0 t

m 0 0 0 0 0 m m

1 0 p k q t m 1

Theorem 3. Let (L,≤, 0, 1) be a bounded lattice and {b0, b1, b2, ..., bn} be a finite
chain in L such that b0 = 0 < b1 < b2 < ... < bn = 1. Let W : [0, b1]

2 → [0, b1] be
a t-conorm on the sublattice [0, b1]. Then the operation S = Sn : L2 → L defined
recursively as follows is a t-conorm, where W = S1 and for i ∈ {2, 3, ..., n} the
operation Si : [0, bi]

2 → [0, bi] is given by

Si (x, y) =

⎧⎨
⎩

Si−1 (x, y) if (x, y) ∈ ]0, bi−1]
2
,

x ∨ y if 0 ∈ {x, y} ,
bi otherwise

(6)

The proof follows easily from Theorem 1 by induction and therefore it is
omitted. The construction described inductively by formula (6) can be considered
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as a ordinal sum construction for t-conorms. Obviously, if L in Theorem 3 is a
chain then the formula (6) reduces to

Si (x, y) =

⎧
⎨

⎩

Si−1 (x, y) if (x, y) ∈ ]0, bi−1]
2 ,

x ∨ y if 0 ∈ {x, y} ,
bi if (x, y) ∈ ]bi−1, bi]

2 ∪ ]0, bi−1] × ]bi−1, bi] ∪ ]bi−1, bi] × ]0, bi−1] .

Fig. 5. The lattice L in Example 5

Example 5. Consider the lattice L = {0, p, q, k, t, s, 1} with the order given in
Fig. 5 and in L the finite chain {0, p, k, t, 1} such that 0 < p < k < t < 1. Let
W : [0, p]2 → [0, p] be a t-conorm on the sublattice [0, p] such that W (x, y) =
x ∨ y for all x, y ∈ [0, p] . By using Theorem 3, where W = S1, the t-conorms
S2 : [0, k]2 → [0, k] , S3 : [0, t]2 → [0, t] and S = S4 : L2 → L are defined as
follows (Tables 9, 10 and 11)

By using the formula (4) in Theorem 1, on the bounded lattice L which is
depicted by Fig. 5, the corresponding P : L2 → L is defined as Table 12 for the
given t-norm W = S1 : [0, p]2 → [0, p] on the sublattice [0, p] .

Table 9. The t-conorm S2 on L

S2 0 p q k

0 0 p q k

p p p k k

q q k k k

k k k k k



452 G.D. Çaylı

Table 10. The t-conorm S3 on L

S3 0 p q k t

0 0 p q k t

p p p k k t

q q k k k t

k k k k k t

t t t t t t

Table 11. The t-conorm S on L

S = S4 0 p q k t s 1

0 0 p q k t s 1

p p p k k t 1 1

q q k k k t 1 1

k k k k k t 1 1

t t t t t t 1 1

s s 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Table 12. The t-conorm S on L

S 0 p q k t s 1

0 0 p q k t s 1

p p p 1 1 1 1 1

q q 1 1 1 1 1 1

k k 1 k 1 1 1 1

t t 1 1 1 1 1 1

s s 1 1 1 1 1 1

1 1 1 1 1 1 1 1

4 Concluding Remarks

Considering an arbitrary bounded lattice L, we have researched and exemplified
the new ways to characterization of t-norms and t-conorms on L by using the
existence of t-norms on the sublattice [a, 1] and t-conorms on the sublattice
[0, a] for the indicated element a ∈ L\ {0, 1}. Furthermore, we have proposed
that the construction methods considered as a ordinal sum of t-norms and t-
conorms on L. The construction methods as observed in [18,24] be in need of
several constraint conditions ensuring an ordinal sum on L of arbitrary t-norms
and t-conorms. But our ordinal sum construction methods be valid on general
bounded lattices without any additional assumption. And these methods can be
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applied to define connectives for fuzzy sets type 2, interval-valued fuzzy sets,
intuitionistic fuzzy sets, etc.
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Abstract. In this contribution we want to shed light onto the follow-
ing research question: in the context of multicriteria decision making
problem, does the nature of the information available (either crisp or
fuzzy) has any impact in the ranking of the alternatives? We explore this
situation using randomly generated decision problems and the VIKOR
method as an example.

Keywords: MCDM · VIKOR · Fuzzy data · Crisp data

1 Introduction

A multicriteria (or multiattribute) decision making (MCDM) problem can be
represented using a decision matrix as the one shown in Table 1. There are m
rows, each one associated with an alternative {A1, A2, . . . , Am}. Every column
(out of n) is associated with a set of criteria {C1, C2, . . . , Cn}. Finally, it is
assumed that a decision maker is able to reflect the importance of the criteria
using a set of n weights {w1, w2, . . . , wn}. The value of the alternative Ai under
criterion Cj is denoted as xij .

Then, a MCDM method takes as input a decision matrix and gives, as an
output, a ranking of the alternatives. Usually, the ranking is derived from a
rating or scoring of the alternatives.

There are many popular MCDM methods in the literature, as those based on
pairwise comparison of alternatives, Analytic Hierarchy Process (AHP), methods
that consider the distance to the ideal solution as the Technique for Order of
Preference by Similarity to Ideal Solution (TOPSIS) or methods that works with
preferences, as the Preference Ranking Organisation Methods for Enrichment
Evaluations (PROMETHEE). The interested reader can check recent books like
[6] for further information.

It is well known that given the same MCDM problem, different methods may
lead to different results, as it have been shown in [1,2], but here we focus on
the VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) [9,11].
VIKOR has been consistently used in a wide range of areas in the last years.
c© Springer International Publishing AG 2018
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Table 1. Decision matrix of a MCDM problem.

MCDM
w1 w2 . . . wn

C1 C2 . . . Cn

A1 x11 x12 . . . x1n

A2 x21 x22 . . . x2n

. . . . . . . . . xij . . .
Am xm1 xm2 . . . xmn

Fig. 1. Distribution of VIKOR related publications (698 since 1990) by research areas.

A search with the query TITLE-ABS-KEY (vikor) in www.scopus.com, and
considering the results since 1990, retrieved 698 documents. But what is more
interesting is the research areas where these publications appeared, which reveals
the wide range of potential applications of the method. This distribution is shown
in Fig. 1.

In many real life situations, the values xij are not known precisely. In other
words, the imprecision, vagueness, uncertainty, etc. of the data should be taken
into account. In a situation where instead of saying the value of Ai under Cj is
exactly xij , we are allowed to say around xij , then fuzzy numbers [4] are suitable
tools to model such kind of imprecision leading to fuzzy multicriteria decision
making problems [7,12]. In this way, we can obtain a proper modeling of the
imprecision in the nature of the data.

The research question we pose here is: when using the VIKOR method, does
it make any impact to consider or not this imprecision (crisp vs. fuzzy) in the
problem from the point of view of the obtained rankings? In order to shed light
into this topic, we design and perform a simulation based experiment to assess
such impact.

This paper is organized as follows. Section 2 introduces the VIKOR method
and its fuzzy version, Fuzzy VIKOR. In Sect. 4 we describe the computational

www.scopus.com
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experiments and the results obtained. Finally, Sect. 5 summarizes the conclusions
of our research.

2 Description of the VIKOR Method

Here we outline the basic aspects of the VIKOR method following the description
presented in [11].

VIKOR Method for Precise Information

Considering the notation of the Table 1, the method consists of the following
steps:

Step 1: Normalization procedure:

nij =
(f+

j − xij)

(f+
j − f−

j )
(1)

where f+
j and f−

j are defined as follow:

If Cj is a benefit criterion

{
f+
j = maxi fij

f−
j = mini fij

(2)

If Cj is a cost criterion

{
f+
j = mini fij

f−
j = maxi fij

(3)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
Step 2: Compute the values Si and Ri

Si =
m∑
j=1

wj ∗ nij (4)

Ri = max
j

[wj ∗ nij ] (5)

where wj is the weight associated to the criteria Cj , j = 1, 2, . . . , n and
i = 1, 2, . . . ,m.

Step 3: Compute the values Qi, i = 1, 2, . . . ,m as:

Qi = v
(Si − S+)
(S− − S+)

+ (1 − v)
(Ri − R+)
(R− − R+)

(6)

where

S+ = min
i

{Si} S− = max
i

{Si}
R− = min

i
{Ri} R− = max

i
{Ri}
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Parameter v ∈ [0, 1] plays the following role. When v > 0.5, this represents a
decision-making process that could use the strategy of maximum group utility
(i.e., if v is big, group utility is emphasized), or by consensus when v ≈ 0.5,
or with veto when v < 0.5.

Step 4: Rank the alternatives in terms of their Qi values. The lower the Qi value,
the higher position in the ranking.

VIKOR Method for Imprecise Information

VIKOR was modified to deal with imprecise (fuzzy) information in the decision
matrix. This modification led to Fuzzy VIKOR [10]. Now, the input information
considers that the values xij and wj are triangular fuzzy numbers denoted as
x̃ij and w̃j , respectively. The fuzzy decision matrix is shown in Table 2.

Table 2. Fuzzy decision matrix of a MCDM problem.

MCDM
w̃1 w̃2 . . . w̃n

C1 C2 . . . Cn

A1 x̃11 x̃12 . . . x̃1n

A2 x̃21 x̃22 . . . x̃2n

. . . . . . . . . x̃ij . . .
Am x̃m1 x̃m2 . . . x̃mn

From an algorithmic point of view, Fuzzy VIKOR replaces the “classic arith-
metic” with the triangular fuzzy numbers’ arithmetic. For the sake of complete-
ness, the corresponding operations are described below. Being Ã = (a1, a2, a3)
and B̃ = (b1, b2, b3) two triangular fuzzy numbers, the required operations are:

Addition : Ã ⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3)
Subtraction : Ã � B̃ = (a1 − b3, a2 − b2, a3 − b1)

Multiplication : Ã ⊗ B̃ = (a1 × b1, a2 × b2, a3 × b3)
Division : Ã � B̃ = (a1/b3, a2/b2, a3/b1)

ScalarDivision : Ã/k = (a1/k, a2/k, a3/k)
Maximum : MAX(Ã, B̃) = (max(a1, b1),max(a2, b2),max(a3, b3))
Minimum : MIN(Ã, B̃) = (min(a1, b1),min(a2, b2),min(a3, b3))

At the end of step 3, Fuzzy VIKOR has a fuzzy value Q̃i = {Qi1, Qi2, Qi3}
for every alternative. Instead of sorting them, a defuzzification process is made
as follows:

Qi =
Qi1 + 2Qi2 + Qi3

4
where now, the best alternative is again the one with the lowest value of Qi.
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3 Illustrative Examples

In this section, we will show using three examples, that the nature of the data
(fuzzy or crisp) may or may not have an impact in the ranking of the alternatives.

Example 1: the nature of the data has no impact.

Table 3 shows (on top) a fuzzy decision matrix. A corresponding crisp decision
matrix (in the bottom) is derived from the fuzzy one, taking the central values
of each fuzzy number.

The last two columns on each matrix show the scores (Qi values) for the
alternatives together with their corresponding rankings. Please note that the Qi

values in the 7th column of the fuzzy matrix correspond to the defuzzified value
of Q̃i.

For these matrices, the ranking of the alternatives is the same. As a conse-
quence, we can say that in this example, the nature of data is irrelevant or has
no impact.

Table 3. Example 1: fuzzy (top) and crisp (bottom) decision problems. The ranking
of the alternatives is also shown.

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 (47,51,54) (11,11,12) (50,53,56) (79,88,93) (43,43,45) 0.38 3
A2 (29,31,33) (17,19,20) (9,9,9) (1,1,1) (79,86,93) 0.55 5
A3 (24,26,27) (57,60,63) (83,90,91) (44,49,51) (72,77,82) 0.00 1
A4 (38,40,42) (29,31,34) (54,56,60) (85,92,99) (38,41,45) 0.30 2
A5 (8,9,10) (70,72,78) (15,16,17) (29,31,33) (51,52,57) 0.50 4

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 51 11 53 88 43 0.76 3
A2 31 19 9 1 86 1.00 5
A3 26 60 90 49 77 0.00 1
A4 40 31 56 92 41 0.73 2
A5 9 72 16 31 52 0.99 4

Example 2: different rankings but the same top alternative.

Table 4 shows the decision matrices and the corresponding results. For these
matrices, the ranking of the alternatives are almost completely different, but the
top alternative (A2) is the same.

Two reversals occurred when going from the fuzzy to the crisp data: A1 with
A5 and A3 with A4. If we analize the Qi values of these pairs of alternatives,
we can observe that they are very similar. Thus, a minor change in the decision
matrix data, may lead to a change in their rank position. In other words, we can
say that the alternatives (A1, A5) and (A3, A4) have the “same quality”.
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Table 4. Example 2: fuzzy (top) and crisp (bottom) decision problems. The ranking
of the alternatives is also shown.

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 (32,34,37) (83,92,97) (20,22,24) (62,67,70) (52,55,58) 0.06 3
A2 (89,99,105) (75,77,78) (13,13,14) (24,24,25) (42,47,51) 0.04 1
A3 (73,79,84) (4,4,4) (5,5,5) (84,91,100) (36,36,39) 0.33 5
A4 (59,62,67) (73,76,79) (22,22,24) (19,21,23) (31,32,33) 0.22 4
A5 (36,38,43) (86,87,95) (43,45,46) (86,95,104) (22,23,25) 0.05 2

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 34 92 22 67 55 0.50 2
A2 99 77 13 24 47 0.10 1
A3 79 4 5 91 36 0.95 4
A4 62 76 22 21 32 1.00 5
A5 38 87 45 95 23 0.51 3

Example 3: different rankings and the top alternatives changed.

Table 5 shows the problems information and the results.
In this example we observe that the top 3 alternatives changed when the

problem is considered as crisp. In the fuzzy problem, the top alternatives were
A1, A5, A2, while in the crisp case, the order was A2, A1, A5.

Moreover, in the fuzzy case, the difference in the Qi values is smaller between
A1 (0.06) and A5 (0.07) than the one between A5 (0.07) and A2 (0.13), so a minor
change in the data may alter which is the top alternative. However in the crisp

Table 5. Example 3: fuzzy (top) and crisp (bottom) decision problems. The ranking
of the alternatives is also shown.

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 (80,86,93) (81,88,92) (3,3,3) (72,76,83) (50,53,58) 0.06 1
A2 (34,37,39) (81,90,91) (8,9,9) (68,73,80) (33,34,35) 0.13 3
A3 (27,29,30) (16,17,17) (75,78,85) (18,20,21) (20,20,20) 0.35 5
A4 (58,59,63) (85,90,97) (54,55,57) (32,34,35) (9,10,10) 0.22 4
A5 (76,84,85) (59,60,61) (91,99,108) (4,5,5) (70,74,78) 0.07 2

Alt. C1 C2 C3 C4 C5 Qi Rank

A1 86 88 3 76 53 0.50 2
A2 37 90 9 73 34 0.22 1
A3 29 17 78 20 20 1.00 5
A4 59 90 55 34 10 0.73 4
A5 84 60 99 5 74 0.51 3
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case, the top alternative is clearly the best one: Q2 = 0.22 while the second one
has Q1 = 0.5. Here, a minor change in the data may cause a reversal between
the second and third alternatives (as Q5 = 0.51).

4 Experiments and Results

Using a simulation based approach, we want assess the nature of the data’
impact. We will firstly solve a set of randomly generated fuzzy decision mak-
ing problems and their derived crisp versions and secondly, we will compare the
corresponding rankings.

More specifically we consider 100 decision matrices with n = 5 criteria and
m = 5 alternatives. The data generation procedure is outlined below.

We first define a fuzzy decision making problems dataset (FDP ), where each
element ˜dpk ∈ FDP, k = 1, . . . , 100 is a decision matrix with fuzzy data. The
corresponding values x̃ij in the matrix are randomly generated as follows:

x̃ij = (xij1, xij2, xij3) =

⎧⎨
⎩

xij1 ∈ xij2 − ∪(1, 10) ∗ xij2/100
xij2 ∈ ∪(1, 100)
xij3 ∈ xij2 + ∪(1, 10) ∗ xij2/100

Regarding the criteria, and for the sake of simplicity, we assumed that all of
them are equally important and should be maximized (benefit criteria). They
are defined as follows:

w̃j = (wj1, wj2, wj3) =

⎧⎨
⎩

wj1 = 1/n − (0.1 ∗ 1/n)
wj2 = 1/n
wj3 = 1/n + (0.1 ∗ 1/n))

Departing from the set FDP we construct a crisp dataset CDP , where each
dpk ∈ CDP, k = 1, . . . , 100, is the defuzzified version of the corresponding ˜dpk.
Recalling that x̃ij = (xij1, xij2, xij3), we define the crisp value xij = xij2. In
these crisp problems, the weights are defined as wj = 1/n.

Then, for each pair ( ˜dpk, dpk), k = 1, . . . , 100 we apply Fuzzy VIKOR and
VIKOR to obtain two rankings: rfk , r

c
k, respectively. Finally we count the number

of times where rfk = rck and those cases where rfk 
= rck. In the later case, we count
if the top alternative is the same or not in both rankings.

The whole process is repeated for three different values of the VIKOR’s v
parameter: v = {0.0, 0.5, 1.0}.

The computational experiments have been done in R-Project work environ-
ment [13], using the VIKOR and Fuzzy VIKOR implementation provided in the
MCDM [8] and FuzzyMCMD [5] packages respectively. Both packages are available
on the CRAN repository [3].
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4.1 Results

In this section we analyze the results obtained.

Solved Problems. It is well known that VIKOR may fail to solve a problem
(unable to return a ranking), when v < 1.

The reason for the failure lies on the Ri values, which can be the same for
all the alternatives in some problems. In such situation, mini{Ri} = maxi{Ri},
thus R− = R+ and then, in the following calculation

Qi = v
(Si − S+)
(S− − S+)

+ (1 − v)
(Ri − R+)
(R− − R+)

a division by zero occurs.
Table 6 shows an example from our experiment, where VIKOR failed to pro-

vide a solution when v = 0.5. As the Ri, i = 1, . . . ,m values are the same, then
the Qi, i = 1, . . . ,m can not be calculated.

Table 6. Unsolved problems using VIKOR with v = 0.5.

Alt. C1 C2 C3 C4 C5 Si Ri Qi Rank

A1 24 38 100 38 66 0.55 0.20 - -

A2 85 7 41 39 86 0.57 0.20 - -

A3 5 69 59 88 95 0.35 0.20 - -

A4 19 91 21 47 70 0.59 0.20 - -

A5 12 20 69 88 23 0.63 0.20 - -

f+ 85 91 100 88 95 S+ = 0.35 R+ = 0.20

f− 5 7 21 38 23 S− = 0.63 R− = 0.20

This situation also happened in our experiments when considering crisp data
and v = 0 and v = 0.5. However when the data have a fuzzy nature, Fuzzy
VIKOR did not fail. The number of solved cases for both data sets are showed
in Table 7.

The reason behind this “good” behaviour of Fuzzy VIKOR lies on the fact
that it works with fuzzy numbers. Then the chance of obtaining “exactly” the
same fuzzy numbers after the calculations is definitely low.

Of course, we can not ensure that Fuzzy VIKOR is free of the indeterminacies
of its crisp counterpart, but in our experiments, all the problems have been
solved.

Comparison of the Rankings. We compared if the ranking of the VIKOR
method and the ranking of the Fuzzy VIKOR method are the same. In those
cases where the rankings were different, we checked if the top alternative was
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Table 7. Number of solved problems considering crisp and fuzzy data.

v Solved Problems

Crisp Fuzzy

0.0 95 100

0.5 95 100

1.0 100 100

the same or not. The 5 unsolved problems when VIKOR was run with v = 0 and
v = 0.5 in the crisp case were not taken into account in the following analysis.

The results are in Table 8, where for each v value we show the number of cases
where both rankings were the same and, for those cases where the rankings were
different, we also indicate the cases where the top alternative was the same
or not.

Table 8. Number of cases where the rankings were equal. When the rankings were
different, we show the number of cases where the top alternative is the same or not.

Value of v Different Rank

Same Rank Same 1st Different 1st

0.0 9/95 (9%) 82/86 (95%) 4/86 (5%)

0.5 59/95 (62%) 29/36 (80%) 7/36 (20%)

1.0 86/100 (86%) 11/14 (78%) 3/14 (22%)

Several aspects should be highlighted. The first one is the influence of the
v parameter. As v increased, the number of cases with the same ranking also
increased. The second one is that when the rankings are different, the top alter-
native is almost always the same. However, as v increased, the number of cases
with the same top alternative decreased. In other words, as v increased, the
cases where the top alternative changed also increased: 5% cases when v = 0,
20% when v = 0.5 and 22% when v = 1.0.

5 Conclusions

In this work we wanted to shed light into the following question: does the nature
of the information available (either crisp or fuzzy) has any impact in the ranking
of the alternatives produced by the VIKOR method?

Using three examples, with fuzzy and crisp data, we showed that three sit-
uations may occurr with the corresponding rankings: they could be equal, they
could be different but the top alternative is maintained or the rankings could be
different and the top alternative changed.
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Under this situation, we conducted a simulation based experiment where
we randomly generated 100 fuzzy multicriteria decision making problems and
their corresponding crisp variant that were then solved using VIKOR and Fuzzy
VIKOR.

Two conclusions can be derived from the experiments. The first one is that
when dealing with fuzzy data, VIKOR is able to solve all the problems in the
dataset. This is not happened for the crisp dataset, where a reduced number
of problems were not solved due to some indeterminacies occurring in the inner
VIKOR calculations.

The second one regards with the question under study: our experiment
revealed that considering fuzzy information of the model may lead to differ-
ent results in terms of the rankings of the alternatives. Moreover these differ-
ences depended on the VIKOR’s v parameter. When v = 0.0, in just 9% of the
solved cases the rankings were equal. In most of the cases where the rankings
were different, the top alternative remained unchanged (95% of the cases). As
v increased, the cases with the same ranking also increased (up to 86%). The
same occurred with the number of cases where the top alternative changed.

From this initial study, several lines of research emerge. The first one is to
extend the datasets to consider different numbers of criteria and alternatives.
The second one is related with the methods: the same kind of experiment should
be reproduced using other MCMD methods. Both lines are under study.
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Abstract. Facility location selection have strategic importance for companies
because it influences not only manufacturing and transportation costs but also
productivity and lead times to a great extend. Additionally, it is considered as
hard and complicated tasks with respect to its multi-objective nature and diffi-
culties resulted from collecting necessary data. Therefore this problem has
always been an important subject of engineering literature. The aim of this study
is to solve a facility location selection problem in a manufacturing company that
locates in Tekirdağ/Turkey. This company has six different factories in the same
facility and is considering about establishing a plastic injection factory in the
future for producing some of the important plastic components in order to gain
cost advantage and also to increase know-how. For this purpose, facility location
selection problem is aimed to be solved by applying fuzzy data envelopment
analysis (Fuzzy DEA) and fuzzy goal programming (Fuzzy GP) methods.

Keywords: Facility location selection � Fuzzy DEA � Fuzzy goal
programming � MCDM

1 Introduction

The most common corporate growth strategies are mainly related with growing in
global markets, like entrance to new markets or attempting start new businesses to get
the benefit of economies of scale [1]. Many researchers emphasized the significance of
facility location selection problem under the existence of unsteady and versatile
environment of global economy [2]. This kind of location problems that consist of
global development are mostly connected with social, economic, legal, cultural factors
and moreover they require considerable capital investment which will affect the limi-
tation of manufacturing and logistics in long term. Like any other real-life problems,
facility location problems are mostly complicated in nature and their dependence to
other processes change from situation to situation. The basic reasons of difficulty to
solve these problems are determining necessary considerations that will have further
direct effect on selection procedure and fulfilling necessary adjustments between these
considerations [3].
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For manufacturing companies, selecting the most optimal location has gained
significance since minimizing costs and maximizing the use of resources is one of the
most important objectives to achieve. While selecting a location, there are several
criteria to pay attention like human resources, climate conditions, availability of raw
material etc. Depending on this reason, plant selection can be considered as a multiple
criteria decision making problem [4]. According to the literature review, facility
location selection is a group decision making problem which is a non-repetitive pro-
cess, requires the contribution of different departments of the organization and usually
cleared up through a procedure that is not supported by a well-defined framework.
Within the overall operation management, the methodology of facility location is too
broad including product/service design, planning of the capacity and facility layout
design issues. Depending on the fact that decisions related with the design of the
facility location influence each part of the organization, they cannot be made by only
operational managers [5]. Solely top managers can be responsible of these decisions or
the company can also outsource necessary support to as well [6].

Over the last five years, scholars have contributed to facility location selection
problem by applying a few number of multi-criteria decision making approaches. [7]
ranked the nuclear power plant sites in Turkey by integrating fuzzy ENTROPY and
fuzzy compromise programming. [8] solved the carbon dioxide geological storage
location decision problem in Turkey using fuzzy TOPSIS, fuzzy ELECTRE, and fuzzy
VIKOR methods. [9] identified the most appropriate location for a textile manufac-
turing facility in Istanbul by combining Geographic Information Systems and fuzzy
AHP (analytic hierarchy process). [10] selected the most suitable location for the
production of nuclear power by employing interval type-2 fuzzy TOPSIS methodology,
and also conducted a case study in Turkey.

In this study, in order to find the best location for a new factory, four location
alternatives are evaluated by fuzzy DEA ranking methodology, then a fuzzy goal
programming approach is proposed, for selecting the most suitable alternative,
according to the different achievement degrees of goals.

The rest of the paper is organized as follows: Facility location selection problem is
detailed in Sect. 2. Fuzzy DEA and Fuzzy GP methods are explained in Sect. 3.
Numerical application is made in Sect. 4 for a manufacturing company that locates in
Tekirdağ/Turkey and the paper is concluded in Sect. 5.

2 Facility Location Selection Problem

Facility location selection problems are basically dealt with identifying the most
suitable site for a firm for conducting operations. Not only locating but also relocating
or expansion is considered as facility location decisions. Determination, examination,
assessment and choosing between options are the steps of facility location decision
processes [11]. As they are long term, high-investment required and irreversible
decisions, location selection problems have strategic importance. Moreover selected
facility has an observable influence on costs and revenues. A careless location decision
might be the most important reason of excessive transportation costs, lack of raw
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material or labor, loss of adequate logistics network or any other kind of problems
those will badly affect operations [12].

Facility location selection can be considered not only as a decision making problem
at the strategic management level but also a partly constructed process of supply chain
management. Looking at the significance of facility location selection decisions, current
situation and possible future trends have to be elaborately examined by decision-maker
to determine all possible aspects before location selection process begins. Therefore it
is so obvious that many factors have to be considered during the selection procedure.
Although many criterions exist for facility site selection, some of them those may have
a possible impact on decisions are more crucial. As an example of the possible facility
location selection criterions, [13] conducted their study on five criteria which are:
favorable labor climate, proximity to markets, community considerations, quality of
life, proximity to suppliers and resources.

Facility location selection problem is a multi-criteria decision making problem by
nature. In order to evaluate location alternatives, in the beginning managers must define
the affecting criteria which are important for the company. Set of alternatives in the
case of selecting probable alternatives of location are generally determined by top
managers in connection with their business environment, published reports, individual
processes and etc. Information which is necessary to select facility location is provided
externally and based on the human judgments. It is a non-repetitive decision and
therefore has to be examined from many aspects. [14] indicated that most of the
criterions, weights and the rules of decisions are assessed by human perceptions which
are impossible to express exactly with numerical values. This is also a natural result of
ambiguity typically involved in location selection processes which is resulted from
linguistic evaluation and multiple attribute decision making in these problems [15].
Fuzzy sets are valid instruments to deal with such ambiguities in the literature. Fuzzy
numbers have a certain success in representing linguistic data in decision making
models. Fuzzy based methods have been recently emerged in such fields that verbal
statements can be used as translators between verbal statements and quantitative esti-
mates when it is a necessity to deal with the ambiguity [16].

In this study, we consider the problem of selecting a location for a new facility of a
manufacturing company that locates in Tekirdağ/Turkey. Decision makers are four
managing engineers of the company. The problem is observed in two parts; in the first
part Fuzzy DEA is applied in order to find the technical efficiency rankings of the
alternatives and in the second part, as a further step, to meet the targets of the company
given as intervals, we employed a fuzzy goal programming model.

3 Fuzzy MCDM Techniques

3.1 Fuzzy Data Envelopment Analysis

Data envelopment analysis (DEA) model, pioneered by [17], calculates the relative
efficiency of a decision making unit (DMU) by maximizing the ratio of its total
weighted outputs to its total weighted inputs with a constraint that the output to input
ratio of every decision making unit (DMU) is less than or equal to unity. The standard
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CCR model is as follows; where Ej0 is the efficiency score of the evaluated DMU, ur is
the weight assigned to output r, vi is the weight assigned to input i, yrj is the quantity of
output r generated and xrj is the amount of input i consumed by DMU j, respectively,
and ɛ is a small positive scalar.

MaxEj0 ¼
Ps

r¼1 uryrj0Pm
i¼1 vixij0

ð1Þ

subject to

Ps
r¼1 uryrjPm
i¼1 vixij

� 1; 8j

ur; vi � e 8r; i

The classical model has several drawbacks, namely poor weight dispersion and poor
discriminating power among the DMUs. In the literature, several approaches such as
weight restriction and cross-efficiency analysis have been developed in order to handle
the unrealistic weight distribution and improve the discriminating power of DEA [18,
19]. Moreover, some proposed models like minsum and minimax efficiency models
restrict favorable consideration to the DMU under evaluation unlike the traditional DEA
model. Minimax efficiency is to minimize maximum deviation from efficiency whereas
minsum efficiency minimizes the total deviation from efficiency [19, 20].

The conventional DEA models are limited for dealing technology, supplier or
health-care service systems evaluation and selection problems, where the observed data
set may provide vague and imprecise knowledge about the generating process [21].
Then use of the fuzzy measures and fuzzy mathematical programs in the DEA models
is unavoidable, which are obtained from the experts, generally by linguistic terms, and
then denoted as fuzzy numbers [22, 23]. Fuzzy DEA, is an extension of DEA which
incorporates imprecision in DEA. There are several approaches in fuzzy DEA litera-
ture, such as tolerance approach [21], the a-cut approach [24, 25], fuzzy ranking
approach [26, 27] and the possibility approach. [28]. In this study, the model proposed
by [25] is employed to deal with the facility location selection problem. The selected
framework, deal the problem for different a-cuts in order to rank the alternatives.

Min z ¼ h ð2Þ

subject to

h axmip þ 1� /ð Þxlip
� �

�
Xn

j¼1
kj / xmij þ 1� /ð Þxuij
� �

8i;

/ ymrp þ ð1� /Þyurp �
Xn

j¼1
kj / ymrj þ 1� /ð Þylrj
� �

8r;
kj � 0 8j;

In this formulation; / ∊ (0, 1] is a parameter. ~xij ¼ ðxl; xm; xuÞ and ~yij ¼ ðyl; ym; yuÞ
are fuzzy triangular numbers.
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3.2 Fuzzy Goal Programming

Fuzzy goal programming (FGP) is to determine imprecise aspiration levels of the goals
in a fuzzy decision environment by using membership functions. In a FGP model, the
goals are considered fuzzy and their priorities can be expressed by both using linguistic
variables such as “important”, “medium”, “low”, and ordinal numbers namely “first”,
“second”, etc. A membership function of each goal can be provided by making
interviews with the decision-makers for determining the achievement degrees that are
to be satisfied for each objective function.

In this study, the linear membership function of Zimmerman [29] is adapted, the
membership function is as follows:

li ¼
1 if GiðxÞ� gi
Gi xð Þ�Li
gi�Li

if Li �GiðxÞ� gi
0 if GiðxÞ� Li

8
<

: ð3Þ

or

li ¼
1; if GiðxÞ� gi
Ui xð Þ�Gi xð Þ

Ui�gi
; if gi �GiðxÞ�Ui

0; if GiðxÞ� Li

8
<

: ð4Þ

Where Li is the lower tolerance limit, Ui is the upper tolerance limit for the ith fuzzy
goal and gi is the aspiration level. The simple additive fuzzy goal programming model
[30] is as follows:

Maximize f lð Þ ¼
Xn

k¼1
lk ð5Þ

subject to

li ¼
GiðxÞ � Li
gi � Li

for some i,

lj ¼
UiðxÞ � GiðxÞ

Ui � gi
for some j, j 6¼ i,

Ax� b;

li; lj � 1;

x; li; lj � 0; i; j 2 1; . . .; nf g

Where Ax � b are the crisp system constraints and li, lj are the goal’s achieve-
ment degree.
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4 Case Study: New Plastic Injection Factory

4.1 Problem Definition

The company in which this study is conducted has five other factories in one facility.
Production in all of these six factories basically only consists of assembly lines in
which parts are supplied from selected vendors and assembled inside the factory. There
is a possibility of establishing a new plastic injection factory to manufacture some of
the selected plastic parts as in-house production especially the ones that are expensive
and the others those have frequent quality problems. It has to be emphasized that
various plastic parts with many different sizes are required to produce any kind of white
goods. Establishing a plastic factory regarded as a necessary decision not only for
financial point of view but also for increasing know-how and not to be behind com-
petitors technically.

For the application, first of all a committee of four decision makers (D1, D2, D3,
D4) are selected. These four decision makers are all managing engineers of the com-
pany from different departments. Objective is defined as finding optimal location for
the new plastic factory among four alternatives which are Tekirdağ, Hadımköy, Gebze
and Yalova (A1, A2, A3, A4). These alternatives are especially selected depending on
the proximity to location of the facility that it is going to serve and closeness to related
industries depending on the meeting of qualified labor force requirement. Evaluation
criteria (C1, C2, C3, C4, C5) have been determined by the decision makers, as shown
explicitly in Fig. 1, in the hierarchical structure of the problem.

• Transportation costs (C1)

Transportation is a significant criteria to consider as it has a certain impact on costs and
therefore on facility location selection decisions. With the logic of “Just In Time”, in

Fig. 1. Hierarchical structure of facility location selection methodology
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the future the aim is to deliver materials to concerned factories as much frequent as
possible. Therefore how close the selected location is, and how good transportation
sources of selected location are, have a certain impact on costs and efficiency of
production system. It is important to provide that the new established factory has to be
located close to the facility of other six factories in order to assure the easiness of
transport conditions.

• Proximity to raw materials (C2)

Transportation costs of raw material supply to the factory also consist of a great portion
among the expenditure item. New plastic factory will serve to 6 factories as much as its
total capacity, it can be estimated how frequent raw materials will be transported to
factory. Therefore, selected alternatives have to be analyzed with respect to the sources
of raw materials and the existence of potential suppliers.

• Energy and water sources (C3)

It is a fact that the facility requirement for energy and water will affect the costs in a
large portion. Therefore it is important to establish related factory in a location that the
energy and water sources are cheaper comparing to other alternatives.

• Labor force (C4)

Plastic injection production requires not only experienced and qualified blue collar but
also white collar employees. It has to be analyzed in details if the labor force is both
quantitatively and qualitatively adequate. Selected location should also provide nec-
essary conditions that employees and their families can live during their carrier.

• Cost of land (C5)

The first and the most important cost item at the beginning of the establishment process
is the investment on the land. Selected location also should not be a constriction for
further expanding strategies of the factory.

4.2 Fuzzy DEA Application

In order to find the technical efficiency rankings of the alternatives, Fuzzy DEA is
implemented. First, decision makers are asked to evaluate location alternatives with
respect to the pre-defined criteria using linguistic terms set given below in Fig. 2. The
data set of the problem is given in Table 1.

Then, evaluations of four decision makers are aggregated with equal weights for
each decision maker. Using Eq. (2), the efficiency ranking results are obtained and
given in Table 2.

As observed from the table given above, the first and second alternatives have the
best results according to the different possibility levels (alfa-cuts). At a = 1, which is
the pessimistic scenario, alternative 4 is the only non-efficient alternative among the
four alternatives.
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Fig. 2. A linguistic term set where VL: (0, 1, 2), L: (2, 3, 4), M: (4, 5, 6), H: (6, 7, 8), VH: (8, 9, 10)

Table 1. Four DM’s evaluation of four alternatives with respect to five criteria

Criteria Alternatives Decision-makers
D1 D2 D3 D4

C1 A1 VG VG VG VG
A2 G G G G
A3 MG G G MG
A4 G MG MG G

C2 A1 VG G VG VG
A2 VG VG G VG
A3 F MG F MG
A4 MG F MG F

C3 A1 VG VG G VG
A2 G G VG G
A3 G MG MG G
A4 MG G MG F

C4 A1 VG G VG VG
A2 VG G G G
A3 MG G F G
A4 F MG G F

C5 A1 F MG MP F
A MG F P MG
A3 VG G MG VG
A4 MG F G G
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4.3 Fuzzy Goal Programming Model

Ranking of the alternatives is obtained at the first step with the Fuzzy DEA model,
however, as a further step, a fuzzy goal programming model is constructed according to
the company’s goals, in order to find the best alternative which minimizes the total
deviation from company’s goals. The goals were pre-defined by the company in
accordance with its financial resources, technical analyses, market research etc. In this
study, interactions between goals are not observed because the company claimed that
there is not any interaction between their goals.

The company has four major goals in this new factory project: Material (G1), labor
force (G2), Capital Investment (G3) and Energy (G4).

Hence, the fuzzy goal programming model is obtained:

G1 : 49000x1 þ 42000x2 þ 47000x3 þ 44000x4 ffi 45000� 5000

G2 : 130000x1 þ 170000x2 þ 120000x3 þ 180000x4 ffi 150000� 50000

G3 : 200000x1 þ 400000x2 þ 320000x3 þ 270000x4 ffi 350000� 150000

G4 : 75000x1 þ 120000x2 þ 110000x3 þ 90000x4 ffi 100000� 50000

Max l1 þ l2 þ l3 þ l4
subject to

l1 �ð�49000x1 � 42000x2 � 47000x3 � 44000x4 þ 50000Þ=ð50000� 45000Þ
l1 �ð49000x1 þ 42000x2 þ 47000x3 þ 44000x4 � 40000Þ=ð45000� 40000Þ
l2 �ð�130000x1 � 170000x2 � 120000x3 � 180000x4 þ 200000Þ=ð200000� 150000Þ
l2 �ð130000x1 þ 170000x2 þ 120000x3 þ 180000x4 � 100000Þ=ð150000� 100000Þ
l3 �ð�200000x1 � 400000x2 � 320000x3 � 270000x4 þ 500000Þ=ð500000� 350000Þ
l3 �ð200000x1 þ 400000x2 þ 320000x3 þ 270000x4 � 200000Þ=ð350000� 200000Þ
l4 �ð�75000x1 � 120000x2 � 110000x3 � 90000x4 þ 150000Þ=ð150000� 100000Þ
l4 �ð75000x1 þ 120000x2 þ 110000x3 þ 90000x4 � 50000Þ=ð100000� 50000Þ

li � 0; i ¼ 1; 2; 3; 4

xj 2 0; 1f g; j ¼ 1; 2; 3; 4

Table 2. Fuzzy DEA results

a = 0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 a = 1

A1 2.097 1.796 1.545 1.333 1.154 1
A2 2.097 1.796 1.545 1.333 1.154 1
A3 1.771 1.571 1.399 1.248 1.116 1
A4 1.615 1.429 1.267 1.127 1.004 0.897

474 M. Cedolin et al.



The problem is solved using GAMS program, and the solution is (x1, x2, x3, x4) = (0, 0,
1, 0)with the respective achievement degree of ðl1; l2; l3; l4Þ = (0.6, 0.4, 0.8, 0.8). The
best location alternative is the third alternative-Gebze. Therefore, the maximum achieved
goals are capital investment and energy with 0.8. However, selecting the third alternative
yields to a poor achievement degree of 0.4 for the second goal which is the labor force,
and a moderate achievement degree of 0.6 for the first goal.

5 Conclusions

Facility location selection problem, being a strategic level decision, is highly examined
problem in the literature. Due to its ambiguous nature where crisp data does not exist,
fuzzy set theory and its extensions are often employed in this problem type. In this study,
we employed a fuzzy DEA methodology for ranking the location alternatives, based on
linguistic assessment of decision makers. Although, fuzzy DEA is a powerful tool to
derive the technical efficiency score of alternatives, it does not reflect totally the goals of
the company. Therefore, as a further step, a fuzzy goal programming methodology is
used considering four goals of the company with respect to four location alternatives. As
is mentioned in section before, while the first and second alternatives are the most
efficient location alternatives, when the goals are incorporated problem, it is found that
the third alternative is the selected alternative, for maximum achievement degree of the
mentioned fuzzy goals. Further research, may focus on different scenario on the location
selection problem, as differentiating the weights of the goals or prioritizing some of them.
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Abstract. For high dimensional data analytics, feature selection is an
indispensable preprocessing step to reduce dimensionality and keep the
simplicity and interpretability of models. This is particularly important
for fuzzy modeling since fuzzy models are widely recognized for their
transparency and interpretability. Despite the substantial work on fea-
ture selection, there is little research on determining the optimal number
of features for a task. In this paper, we propose a method to help find
the optimal number of feature effectively based on mutual information.

Keywords: Feature selection · Mutual information · Number of fea-
tures · Fuzzy models

1 Introduction

In recent decades, fuzzy models have been widely recognized as valuable tools
for data-driven modeling because of their interpretability and transparency (e.g.
[21,22]). Fuzzy models are based on IF-THEN fuzzy rules, in which the partitions
of variables are formed by fuzzy sets. Since these fuzzy sets can be used to
represent linguistic concepts, fuzzy models describe the relationships between the
input variables and output variables in a way similar to the natural language [1].

However, the number of fuzzy rules of a fuzzy model grows exponentially with
the increasing number of input variables, which undermines the understandabil-
ity of the model. With the increasing dimensionality of the data collected in var-
ious fields, this problem becomes more and more prominent. Therefore, to avoid
“the curse of dimensionality” and to lay the foundation for the interpretability
of fuzzy models, dimensionality reduction is an indispensable preprocessing step
in fuzzy modeling applications.

Dimensionality reduction techniques have been extensively investigated by
the machine learning and data mining community. Those techniques can be
c© Springer International Publishing AG 2018
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divided into two categories: feature extraction and feature selection. In fea-
ture extraction, the input dimensionality can be reduced through linear or non-
linear combination of features, e.g. principle components analysis (PCA) [2,10].
Because of the combination of features, it is difficult to interpret the model when
using feature extraction techniques. Different from feature extraction, in feature
selection, only the most relevant feature subset is selected. Feature selection
algorithms, therefore, are widely applied in fuzzy modeling applications.

The objective of feature selection is to select the smallest feature subset from
the full feature space that yields the best performance. Various feature selection
methods haven been developed in the literature [4,5,9]. In general, feature selec-
tion methods are grouped into three categories: filter methods, wrapper methods
and embedded methods. There is not a “best method” and each type of feature
selection methods presents advantages and disadvantages. Filters are indepen-
dent of the classifier, have good generalization ability and are computationally
cheaper than wrappers, but may fail to select the best feature subset for the
classifier. Wrappers interact with the classifier and can capture the dependency
among features, but are computationally expensive and may have the risk of
overfitting. Embedded methods are computationally less expensive than wrap-
pers but are limited to certain learning machines, e.g. SVM [11]. Therefore, new
feature selection methods are constantly appearing [8,18,23].

Deciding the optimal number of features is still an open question, especially
for filter feature selection methods. Typically, the number of features is selected
in an heuristic fashion which may sometimes lead to suboptimal performance.
In fact, in many situations, the chosen feature number maybe too large and a
much smaller feature subset can achieve similar or even better performances. In
other cases, the chosen feature number maybe a bit small and a small increase of
feature number can create big increase of performance. In this paper, we propose
a structured way to determine the optimal number of features based on filter
feature selection, specially based on mutual information feature ranking. We
apply the proposed method to cardiac resynchronization therapy (CRT) data
set and the results are promising.

The remainder of the paper is organized as follows. Section 2 introduces
the background of filter feature selection methods and mutual information. In
Sect. 3, the proposed method to find the optimal number of features is described.
Section 4 describes the experiments and discusses the results. Finally, Sect. 5 con-
cludes the paper.

2 Background

Filter feature selection methods are popular because of their simplicity and gen-
erality. Filters select feature subsets by ranking the features’ relevance based
on some criteria. The relevance of features can be viewed as a measurement of
the ability of features to predict the target features. Various feature relevance
ranking methods have been proposed by the researchers [7,12,13,19]. One of
the simplest criteria to rank features is the correlation coefficient, e.g. Pearson
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correlation. However, Pearson correlation can only measure the linear relation
between input features and targets.

Compared with the correlation coefficient, mutual information (MI) can mea-
sure any kind of relationship between random variables, including nonlinear rela-
tionships [3,6]. Therefore, mutual information attract more and more attention
in the feature selection field. MI quantifies the “amount of information” (in units
such as bits) obtained about one random variable, through an other random
variable. Formally, given two random discrete variables X and Y , their mutual
information is defined as follows in terms of their probabilistic density functions
p(x), p(y) and p(x, y):

I(X;Y ) =
∑

x∈X

∑

y∈Y

p(x, y)log
(

p(x, y)
p(x)p(y)

)
. (1)

In the case of continuous random variables, the summation is replaced by a
definite double integral:

I(X;Y ) =
∫

Y

∫

X

p(x, y)log
(

p(x, y)
p(x)p(y)

)
dxdy. (2)

Extensive work has been done on mutual information based feature selection.
For example, the “minimum-redundancy-maximum-relevance” (mRMR) method
proposed in [19] selects features that have the highest relevance with the target
classes and are also minimally redundant. Both optimization criteria of max-
imum relevance and minimum redundancy are based on mutual information.
Max-relevance is to search a feature subset S satisfying (3), which approximates
D(S, c): the mean value of all mutual information values between individual
feature fi and class c.

max D(S, c), D =
1
|S|

∑

fi∈S

I(fi; c). (3)

The feature subset selected according to max-relevance could have rich redun-
dancy because of the dependency among features. Therefore, min-redundancy
criterion is added to exclude dependent features:

min R(S), R =
1

|S|2
∑

fi,fj∈S

I(fi; fj). (4)

Finally, mRMR method combines the above two criterions to optimize D and R
simultaneously:

max Φ(D,R), Φ = D − R. (5)

After getting the ranked feature list based on incremental mRMR selection, the
author proposed to determine the optimal number of features through more
sophisticated schemes (wrappers). However, the computational cost of wrappers
is expensive.
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While there is substantial research on filter feature selection, there is much
less work on how to determine the optimal number of features. Usually, filters
rank the features based on the score of relevance and a threshold is used to
remove the variables below the threshold. However, the threshold is generally
chosen heuristically. Sometimes, the number of features h is decided arbitrar-
ily by users to select the top h features. In most of these situations, optimal
performance will not be achieved.

Typically (not always), for a finite data set, the quality of a model increases
at first with the number of features increasing. After a certain point, the quality
becomes stable or even decreasing. This phenomenon was described for discrete
classification in [15]. Exploiting this phenomenon, we propose a method to find
the optimal number of features efficiently using mutual information.

3 Method

The method proposed in this paper aims to provide a structured way to decide
the optimal number of features for filter feature selection. It is based on the
observation that the performance of a model increases as more and more relevant
features are added to the model. As more irrelevant features are added, the model
performance will decrease. Then the optimal number of features for the model
should be at the turning-point (peak). Our method to find the peak is described
below.

To select a feature subset S from the full feature space F with N features, the
optimal number h of S could be determined through the following steps using
cross validation.

1. Rank the features in F using the mutual information between individual
feature and target class according to Eq. (1). The sequenced feature list is
denoted as F1.

2. Build models with the first k features of F1 and test the quality (e.g. AUC,
accuracy, AUK, see [14,17]) of models. k is from 1 to N .

3. Plot the figure of quality of models vs. number of features. According to
the figure, the corresponding feature number of one of the peaks will be the
optimal number of features h.

In the first step, note that except for ranking the features using mutual infor-
mation, this method can be applied to feature rankings by any other methods,
e.g. correlation based filters. We use mutual information based filters in this
work because mutual information can be used to measure any kind of relation-
ship between random variables [6]. In the second step, different classifiers can
be used to build models, e.g. C4.5 decision tree, k-nearest neighbor classifica-
tion, logistic regression and fuzzy models. In the third step, the peak need to be
selected according to the real applications. For example, as is shown in Fig. 1,
there are two obvious peaks, and the performance is similar. Therefore, the peak
corresponding to the fewer number of features is preferred. However, if the per-
formance of the other peak is much better than the first peak, then the second
peak could be selected to get better performance.
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Fig. 1. Example of performance vs. feature number.

4 Experiments

We test our method on cardiac resynchronization therapy (CRT) data set from
Catharina Hospital in Eindhoven, the Netherlands. The data set contains 187
patients who underwent CRT in the period between January 1, 2008 and July 1,
2015. Each patient has 137 input variables: gender, age, surgery type, 11 lab vari-
ables and 123 ultra soundvariables. There are two output classes,which are respon-
sive and non-responsive. The data set is imbalanced because 22 percent of patients
are in responsive class and the remaining patients are non-responsive. Because
accuracy can be misleading with imbalanced data sets, we use AUC to evaluate the
performance of models. The features within this data set have different character-
istics, being binary, discrete or continuous. The continuous features are discretized
using a quantized feature space [20] to calculate the mutual information.

Two classifiers are used to evaluate the quality of the selected feature subsets:
Multinomial Logistic Regression and first order Takagi-Sugeno fuzzy model (also
known as TSK fuzzy model). We choose multinomial logistic regression in our
experiments for its speed and simplicity. We choose TSK fuzzy model because it
is one of the most commonly used fuzzy systems. We build multinomial logistic
regression models with 1 to 137 features and fuzzy models with 1 to 30 fea-
tures. We did not build fuzzy models with more than 30 features for keeping the
computational cost small. Experiments are repeated 5 times using ten-fold cross
validation. We calculate the average AUC to evaluate each model.

In the experiments, the features are ranked in three different ways:

1. Mutual information ranking according to the mutual information between
individual variables and class labels.

2. Reverse ranking of mutual information ranking.
3. Random ranking.

The reverse ranking of mutual information ranking and random ranking are
used to test whether the mutual information ranking provide added value, i.e.
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the reverse mutual information ranking and the random ranking are not expected
to outperform the mutual information ranking. The experimental framework is
shown in Fig. 2.

Fig. 2. Experimental framework.

4.1 Results of Multinomial Logistic Regression

Figure 3 shows the average AUC of the multinomial logistic regression model over
the whole size of the input variables, from 1 feature up to 137 features. In this
figure, one can clearly see that the highest average AUC (0.6535) is achieved by
mutual information ranking with 22 features in the second peak. The model with
18 features achieve the first peak with average AUC 0.6517, which is similar to
the second peak. Since the model with fewer features are more understandable,
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Fig. 3. Average AUC vs. number of features using multinomial logistic regression.
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the optimal number of features for multinomial logistic regression model on CRT
data set will be 18.

In comparison, the reverse mutual information ranking and random ranking
reach significantly lower AUC, i.e. the models based on random ranking keep
relatively stable performance (around 0.60) from 4 to 40 features and the models
based on reverse mutual information ranking are reaching stable AUC (around
0.61) from 23 to 44 features.

4.2 Results of Fuzzy Inference Systems

The second experiment builds TSK fuzzy model using fuzzy c-means (FCM)
clustering with 1 to 30 features [16]. Fuzzy models with clusters from two to
20 are built. As Fig. 4 shows, in general, fuzzy models with three clusters have
better performance than other models and the best performance is achieved by
fuzzy models with three clusters. Besides, with the number of clusters increasing,
the performance fluctuates from 1 to 30 features. For visual convenience, Fig. 4
only displays the average performance of models with 7 to 20 clusters to prevent
clutter.

In Fig. 5, the performance of fuzzy models with 3 clusters based on three
feature rankings is shown. Similar to the results of multinomial logistic regression
model, the fittest fuzzy model is obtained with mutual information ranking with
14 features. Besides, there is another peak point with 9 features. Compared with
multinomial logistic regression, fuzzy models reach the peak with fewer features.

In addition, from the figure we can see that the performance of reverse mutual
information ranking is also contrary to the performance of mutual information
ranking. Therefore, mutual information provide import information regarding
the importance of ranking criteria.
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Fig. 4. Average AUC of fuzzy models with two to 20 clusters.
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5 Conclusion

This paper presents a method to find the optimal number of features based on
mutual information. This method is designed to resolve the issue of deciding
the optimal number of features for the final model, particularly for filter feature
selection.

The method has been evaluated on a clinical data set of CRT patients. The
model performance using the ranking of feature based on mutual information has
been compared with reverse ranking of mutual information ranking and random
ranking. Two classifiers, multinomial logistic regression and fuzzy models, are
used to evaluate the performance of the selected features. Overall, the perfor-
mance of models using mutual information ranking is significantly better than
the reverse mutual ranking and random ranking. Furthermore, from the figure
of performance vs. number of features, one can easily find the optimal number
of features. Comparing the optimal number of features for multinomial logistic
regression and fuzzy model, we can conclude that, for different modeling meth-
ods, the optimal number of features could be different and fuzzy model reaches
the peak with less features than multinomial logistic regression.

In the future, we will test our proposed method on more data sets and
with more classifiers. We will also compare this method with other alternative
approaches to decide the optimal number of features.

In this paper, the simplest feature ranking criterion for mutual information
is used. Further improvements of the proposed method could be made by imple-
menting better methods to rank features, e.g. mRMR. In addition, further work
will be done to decide which features should be included.

Acknowledgement. This work is partially supported by Philips Research within the
scope of the BrainBridge Program.
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Abstract. Alternative energy sources are gaining popularity against the world’s
fossil energy sources. There is an increasing energy demand due to the growing
population. Renewable energy sources are used as alter-natives for fulfilling this
demand. Since these sources are non-exhaustible and can renew themselves,
they are considered as primary energy sources for the future. Although solar
energy has the highest capacity among renewable energy sources, currently it
has the disadvantage of high equipment and installation costs. Therefore, the
economic analysis of investments in solar energy systems should be accurate
and realistic but the uncertainty and ambiguity inherit in the parameters make
this analysis complex and inaccurate. In this work, the solar economic model
containing economic and technical uncertainties has been evaluated by using
fuzzy logic. Realistic solutions from the developed solar fuzzy economic model
direct investors to more accurate solar power plant investments.

1 Introduction

The energy that is used at every stage of our life has an important role in sustaining life.
With increasing population and industrialization, the demand for energy is increasing
rapidly [1]. Fossil fuels are the most important sources of energy as a result of existing
technologies and their price advantages. Despite these advantages, carbon dioxide and
other greenhouse gases are emitted when fossil fuels burn down, that is, when they
enter the energy conversion process. These gases causing the ozone layer to be thinned
cause harmful radiation that endangers the food chain and ecological order [2]. The
ecological problems that have emerged at the end of this process have led the world to
turn to alternative energy sources.

Non-fossil energy sources such as hydraulics, wind, solar, geothermal, and biomass
are defined as renewable energy sources [3]. Renewable energy emerges as the most
important alternative energy source for fossil fuels with their environmental and social
benefits [4]. The sun which is the most important renewable energy source is the source
of all renewable and conventional sources (except nuclear and tidal energies) [5]. In
addition to its indirect use, solar energy is directly utilized with newly developed
technologies. These special advantages distinguish the sun from the renewable energy
sources and make the sun a promising resource.

Determining the most suitable locations and conditions to promote the use of solar
energy systems, which require a high initial cost, provides price advantage against
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competitors. The economic analyzes and evaluations to be made are of critical
importance at this stage. Taking into account the uncertainties in the expenditure and
earnings contributes to the development of realistic solutions. For this purpose, solar
economics calculation models should be developed based on fuzzy logic. The fol-
lowing sections refer to solar energy, fuzzy logic, and fuzzy economic parameters. The
developed models are tested with a sample application in Sect. 4. General evaluation
and future studies are concluded in the conclusion section.

2 Solar Energy and Economic Bases

The Sun is a star with a blackbody character with a surface temperature of 5777 K
degrees. The mass that disappears in the fusion reaction is released as energy and is
transferred to the solar surface and this energy spreads to the space [2, 6]. This energy
spreading in space reaches as far as our Earth and is transformed into direct and indirect
usable forms on earth. Solar energy can be used directly with simple (cooking, hot
water) or modern technology (PV, CSP). These special advantages distinguish the sun
between renewable energy sources and strengthen the belief that future use of solar
energy systems will increase. It is seen that solar energy does not have enough interest,
which meets only 1% (2016) of global electricity generation [4]. Nevertheless, the
presence of the potential of solar energy is obvious and it is necessary to increase the
efforts to help the decision makers to evaluate this potential [7].

The major disadvantage for the solar energy industry is the high initial costs
required for installation. The costs of solar energy system components and the
installation of these components are important factors for the solar economy. These
factors include hardware equipment such as collectors, pumps, storage unit and con-
nection equipment, and software infrastructure and their installations. It is of great
importance to ensure the correct economic equilibrium between the high installation
costs and the gain from the solar energy system. Therefore, it is crucial for investors to
make accurate economic analyzes of solar energy systems operated with high instal-
lation costs and low operating costs. The economic analysis is based on the comparison
between the present total cost of the solar energy system and the present value of fuel
economy to be realized in the future [6]. The economic analyzes provide to determine
the lowest cost method to meet the energy need by comparing solar energy and
non-solar energy alternatives and determine the optimal solar energy system size that
provides cost and gain balance. The life cycle saving method is commonly used in the
analysis by taking into account the lifetime defined for the energy system.

3 Fuzzy Economic Analysis of Solar Energy Plants

Economic analyzes are influenced by many vague factors such as national and inter-
national social, political, economic and so on. Economic assessments based on
long-term temporal calculations cannot be instantly measured and analyzed within these
uncertainties. There are similar uncertainties in the economic analysis of solar energy
systems as in all other economic analysis methods. The energy sector, which has a
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complex market on a global scale, has more complex economic and political uncer-
tainties [8]. Fuzzy logic based calculations should be done to incorporate these uncer-
tainties into economic evaluations and to produce realistic solutions.

3.1 Fuzzy Logic

In 1965, L.A. Zadeh introduced fuzzy clusters [9] to the science literature in order to
illuminate the classes of unexplained events and objects such as 0–1. Zadeh’s proposal
explains that objects and events have properties defined in a class between 0 and 1. The
fact that real world situations and events are ambiguous, hesitant, vague and unknown in
a complex and dynamic structure supports this proposition. Fuzzy logic generates more
accurate solutions for real life by taking intermediate alternatives between events and
situations. The fuzzy sets (X) and subsets (e.g. ~A) defined in the range [0,1] are expressed
by the membership function ~AðxÞ� �

. For example, Xð0:5Þ represents that x has mem-
bership value 0.5 in ~X. Basic fuzzy set operations can be expressed as follows [10];

Union of fuzzy sets : l�~X [ �Y ¼ max l~X xð Þ � l~Y xð Þ½ � ð1Þ

Intersection of fuzzy sets : l~X
T

�~Y ¼ min l~X xð Þ � l~Y xð Þ½ � ð2Þ

Complement of a fuzzy set : l~Zc ¼ 1� l~Z ð3Þ

Addition : ~X þð Þ~Y ¼ x1; x3½ � þð Þ y1; y3½ � ¼ ½x1 þ y1; x3 þ y3� ð4Þ

Subtraction : ~X �ð Þ~Y ¼ x1; x3½ � �ð Þ y1; y3½ � ¼ ½x1 � y3; x3 � y1� ð5Þ

where ~X and ~Y are assumed as numbers in the interval as ~X ¼ x1; x3½ �, ~Y ¼ y1; y3½ �.
In defining fuzzy membership functions, fuzzy sets are divided into discrete and

continuous fuzzy sets. Fuzzy numbers have an important place in fuzzy operations, and
triangular (Fig. 1), trapezoidal, and Gaussian numbers are commonly used in real world
problems.

Fig. 1. Continuous triangular fuzzy sets.
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Triangular fuzzy numbers are expressed by three points of the function they
describe such as ~Y ¼ 0; b; dð Þ (Fig. 1). Fuzzy membership function of the triangular
fuzzy set ~Y can be defined as;

l~Y yð Þ ¼
0: y\0
y
b : 0� y� b
b�y
d�b : b� y� d
0: y[ d

8>><
>>: ð6Þ

Where ~X ¼ x1; x2; x3ð Þ and ~Y ¼ ðy1; y2; y3Þ, fuzzy arithmetic operations for tri-
angular fuzzy numbers can be defined as:

~X þð Þ~Y ¼ x1:x2: x3ð Þ þð Þ y1:y2:y3ð Þ ¼ ðx1 þ y1:x2 þ y2:x3 þ y3Þ ð7Þ
~X �ð Þ~Y ¼ x1:x2: x3ð Þ �ð Þ y1:y2:y3ð Þ ¼ ðx1 � y3:x2 � y2:x3 � y1Þ ð8Þ

� ~X
� � ¼ ð�x3: � x2: � x1Þ ð9Þ

~X �ð Þ~Y ffi ðx1 � y1:x2 � y2: x3 � y3Þ ð10Þ

~X =ð Þ~Y ffi ðx1
y 3

:
x2
y 2

:
x3
y1
Þ ð11Þ

Although triangular fuzzy numbers are obtained at the end of the addition and
subtraction of two triangular fuzzy numbers, triangular fuzzy numbers cannot be
obtained at the end of the multiplication and division of two triangular fuzzy numbers.
However, multiplication and division operations are performed on three points to
obtain approximate triangles.

In this study, the uncertainty parameters included in the installation and operation
costs of the solar energy system are defined by the triangular fuzzy membership
functions and the economic analysis calculations are made on a fuzzy logic basis. The
inflation rate, the market discount rate, the discount rate, the effective income tax rate,
the solar fraction, the fuel cost increase rate and the variable costs are the main
uncertainties, and these headings are included in the economic analysis calculations by
defining them with fuzzy numbers. Fuzzy numbers obtained at the end of fuzzy cal-
culations are converted to crisp values by defuzzification method for use in compar-
ative evaluations. In this study, it is appropriate to use the weighted average method in
Eq. (12) [11] for defuzzification in accordance with our method of defining the
uncertainties with fuzzy numbers.

z� ¼
P

lA Z
� �

ZP
lA Z

� � ð12Þ

where z is the centroid of each membership function.
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3.2 Fuzzy Economic for Solar Systems

This part deals with methods of fuzzy economic analysis based on life-cycle saving
method. In this method, the costs and benefits over the time value of the money are
examined in detail [2, 6]. The process initiated by defining the installation and oper-
ating costs is followed by the incorporation of the periodical gains to be obtained into
the life cycle analysis [12]. The installation cost of the solar energy system is calculated
by summing the two costs, which are dependent and independent of the collector field
in Eq. (13) [6].

CS ¼ CAAC þCE ð13Þ

where CS is the total installation cost of solar energy equipment, CA is the sum of the
costs dependent to collector area, AC is the collector area and CE is the total cost of
equipment independent for collector area.

Operating costs associated with the operation of the solar system occur periodically.
These costs consist of fuel cost, mortgage payment, maintenance and insurance costs,
parasite energy cost and property tax. Revenue generating equipment may be subject to
depreciation and income tax may also decrease. In the process of using the system, fuel
is saved and fuel cost is reduced. The lifetime of the equipment can eventually be
salvage or resale, which creates a return on capital. There may be income tax effects in
the purchase of solar equipment. Revenue generating assets and equipment may be
subject to depreciation, in which case the taxable income is reduced. The use of solar
energy system reduces fuel costs by saving fuel. The annual costs of energy systems
can be expressed as [6, 8, 13, 14]:

Annual cost ¼ Fuel cost þ mortgage paymentþ maintenance and insurance þ
cost of interference energy þ property taxes � income tax savings ð14Þ

Income tax savings for a non-income system can be expressed as:

Income tax saving ¼ effective tax rate � ðinterest payment þ property taxÞ ð15Þ

Income tax savings for income generating systems are as follows;

Income tax saving ¼ effective tax rate x ðinterest payment þ property tax þ
fuel cost þ maintenance and insurance þ parasitic energy costs � depreciationÞ

ð16Þ

The concept of solar savings describes the system requirement and is expressed in
terms of the difference between traditional system cost and solar system cost. Negative
savings indicate value losses.

Solar energy savings ¼ traditional energy costs � solar energy costs ð17Þ

In this study, the life-cycle cost (LCC) economic criteria are used to evaluate and
optimize solar energy systems. Life-cycle analysis, which adds the time value of money
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to the account, is the sum of the current worth of all the costs associated with the
system over the lifetime defined for the energy system or the selected analysis period.
The life cycle cost method compares future costs with current costs. All expected costs
are reduced to the present value and the best alternative investment rate is determined
to cover all expected expenses. The best approach for a solar energy economy is to use
a life cycle costing method that takes into account all future costs. Thus, it is deter-
mined that the best alternative investment rate must be invested in order to be able to
use funds in the future to cover all expected expenses.

The reason for the reduction of the cash flow is the time value of money. In order to
determine the present worth of a money amount, the discount rate (d) in the future
market and N period (usually years) must be known. The discount rate implies uncer-
tainty due to future vagueness and must be defined as a fuzzy number (~d) [6, 12, 13].
Periodic costs are assumed to be inflated or deflated in a given period of time. Inflation
rate including future ambiguity as in the discount rate also includes uncertainty and is
defined as fuzzy number (~i). The current value of the N. period is generated at the end of
the first time period. These present fuzzy worth calculations can be shown as [6, 12, 13]:

gPW ¼ F

1þ ed� �N ð18Þ

The present worth factor (PWF) is used to determine the periodic and fixed pay-
ment amount of the loan used for system installation. The present value factor of a
series of N periodic payments of a repetitive payment that is subjected to head inflation
every period is defined as follows [6, 12, 13].

gPWF N;~i; ~d
� � ¼ XN

j¼1

1þ~i
� �j�1

1þ ~d
� � j ¼

1
~d�~i 1� 1þ~i

1þ ~d

� �N
� �

; if ~i 6¼ ~d

N
~iþ 1

; if ~i ¼ ~d

8<
: ð19Þ

where equity between ~i and ~d is concluded according to user preferences. Because all
mortgage payments are equal, a series of payments with an inflation rate of zero occurs.
In this case, the discount rate in the gPWF equation becomes the mortgage interest rate,
and the periodic loan payment (PLP) is defined as [12, 13];

gPLP ¼ MgPWF ðNL; 0; ~mÞ ð20Þ

where M is the mortgage principal, NL is the mortage period, and m is the mortage
interest rate. The savings achieved in the jth year of fossil fuels not used in the solar
energy system are calculated as follows [12, 13]:

fFS ¼ ~F � L � CF1 1þ ~iF
� �j�1 ð21Þ
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The fuel cost increase (~iF) is defined by the fuzzy number because it is uncertain
depending on national and international economic indicators. The solar fraction (~F) that
determines the amount of fuel savings is defined in the fuzzy logic because it is variable
and uncertain depending on equipment and atmospheric conditions. The CF1 parameter
in the equation represents the unit energy cost of the fuel saved in the first period.

Life cycle costs of insurance, maintenance, parasite energy, property taxes and
mortgage payments and life cycle fuel saving can be determined using appropriate
present worth factors ( gPWF ). The present fuzzy values of fuel saving (gPWFS), mort-
gage payments series (gPWM), other expenses (gPWO), property tax (gPWPT ), income tax
saving on payment of mortgage interest (gPWITS), mortgage interest payments (gPWint)
and income tax savings (gPWITS) are calculated as following methods [6, 12, 13]:

gPWFS ¼ ~F � L � CF1 � gPWF Ne; ~iF ; ~d
� � ð22Þ

gPWM ¼ �M � gPWFðNL; 0; ~dÞ ð23Þ

gPWO ¼ �MS1 � gPWFðNe;~i; ~dÞ ð24Þ

gPWPT ¼ �PT1 � PWFðNe; ~i; ~dÞ ð25Þ

gPWITS ¼ ~t � gPWint ð26Þ

gPWint ¼ M½
gPWF Nmin; 0; ~d

� �
PWF NL; 0; ~mð Þ þ gPWFðNmin; ~m; ~dÞð~m� 1gPWFðNL; 0; ~mÞ

Þ� ð27Þ

The present value of income tax savings [6, 12, 13];

gPWITS ¼ ~t � PT1 � gPWFðNe; ~i; ~dÞ ð28Þ

where ~t is the effective income tax, MS1 is the various expenses to be paid at the end of
the first period (maintenance, insurance, parasitic power) and PT1 is the property tax to
be paid at the end of the first period.

4 Application

The high initial equipment and installation costs are the most critical disadvantage of
solar energy systems. Therefore, solar energy investment should be done carefully at
the right time and in the right place. The energy sector, which is affected by many
national and international factors, includes uncertainties due to political and economic
dynamism and complexity. These uncertainties that are taken into account in the
economic analysis phase of the solar energy system enable more realistic solutions. In
this section, fuzzy-based solutions are introduced to the uncertainties in the solar
economic analysis through the example application.
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4.1 Case Study

Managers of Turkey’s largest white goods factory wants decrease energy costs in a
long-term by using renewable energy. The company also has a sustainable environment
policy. At the end of the feasibility studies made for this purpose, factory roofs were
found to be the most suitable place with their wide use area. The factory splits have
been found to be very suitable for photovoltaic solar energy panels and it has been
decided that the solar energy system is the most suitable choice. The economic data
obtained at the end of the market researches are explained below. In this study, we
assess the suitability of the company’s decision with the solar fuzzy economic analysis.

The energy system is supported by the solar energy system and it is planned to meet
the energy demand with a hybrid system. The cost of the solar system, which is
financed at €97,000 and 80% with an interest rate of 7% over 20 years, is expected to
reduce fuel consumption by 63%. The cost of energy consumption in the first year of a
fuel-only (non-solar) energy system is €12,000. The equipment is expected to have a
resale value of 30% of its original cost after 20 years. The market discount rate is %8
per year and the fuel cost inflation rate is 9% per year. In the first year, insurance,
maintenance and interference energy costs are estimated at $500 and the property tax at
€720. These expenses are expected to increase by a general inflation rate of 5% per
year. Property taxes and mortgage interest can be deducted from tax purposes. During
the analysis period, the effective income tax rate is expected to be 40%.

As a results, fuzzy present values are obtained by fuzzy operations for each fuzzy
calculation method. These fuzzy values are converted into crisp values by using the
weighted average method as shown below (Table 1);

Calculations made by using economic analysis methods for solar energy systems
based on fuzzy logic refer to profit at the present value. The results show that the high
initial investment made can be economically offset by solar savings in the long run.
Incorporating economic and technical uncertainties into economic analysis with fuzzy
logic enables more realistic results to be obtained.

Table 1. Defuzzified results of solar fuzzy economics.

Present value (€)

Fuel saving 153026,71
Mortgage payments −71916,86
Other expenses −7179,00
Property tax −10337,75
Income saving on mortgage interest 15912,79
Income tax savings 4135,10
Resale value 6243,35
Advance payment −19400,00
Total present value of solar savings 70484,35
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5 Conclusion

The most important problem encountered in the selection of solar energy systems is
high equipment and installation costs. High initial investment in solar energy systems
must be planned accurately and realistically. Therefore, uncertainties involving eco-
nomic analyzes must be included in the calculations. In this study, economic and
technical uncertainty parameters in solar economic calculation methods are defined on
the basis of fuzzy logic. In this way, the problems of deciding to install the solar energy
plant are decided by more realistic solutions. The uncertainties in solar economic
calculations have been attributed to economic and technical reasons such as interest
rate, discount rate, fuel cost inflation rate, other expense increases by inflation, and
solar fraction. These parameters are fuzzified by using triangular fuzzy numbers which
are most suitable for economic analysis methods. At the end of calculations made with
triangular fuzzy operators, fuzzy present worth value and present worth factors are
obtained. The defuzzified method is used to convert these fuzzy values to crisp form
and more meaningful values are obtained. The validity of the solar fuzzy economic
calculation methods is verified by the case study in the last section.

The experience gained from this work carried out for a hybrid model can only
develop fuzzy economic models for energy systems consisting solely of solar energy as
a future study. Fuzzy economic models to be obtained from these studies can be
combined with fuzzy technical calculation methods to develop more general models for
the installation of solar energy systems.
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Abstract. The main aim of this contribution is to develop a co-words
analysis of the Fuzzy Decision Making research area in the last ten years
(2007–2016). The software tool SciMAT is employed using an approach
that allows us to uncover the main research themes and analyze them
according to their performance measures (qualitative and quantitative).
Using an advance query, an amount of 1,465 documents were retrieved
from the ISI Web of Science. The corpus was divided into two consecutive
periods (2007–2011 and 2012–2016). Our key findings are that the most
important research themes in the first and second period was Consensus
and Aggregation-Operators, respectively.

Keywords: Fuzzy group decision making · Bibliometric analysis · Sci-
ence mapping analysis · Co-Words analysis

1 Introduction

The Fuzzy Decision Making [3,14] research field born from the synergy of the
Decision Making and Fuzzy Sets research fields. Decision Making is a common
task carried out by humans each day. Its goal is to find a best decision from
among some possible options [14]. A lot of real world decision making processes
take place in an environment in which the aims, the constraints and the con-
sequences of possible actions are not precisely known. Thus, Fuzzy Sets theory
[22,23] is a common tool used to deal with imprecision and vagueness problem,
and also to represent the concept in a natural way through linguistic terms. In
this sense, to deal with imprecision in the Decision Making research field, Fuzzy
Set theory is employed.

Fuzzy Decision making is a growing research area, publishing a high amount
of research documents each years. Although an expert on the field can discover

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
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and analyze the different subtopics of the research field, it is obvious that the
high volume of research documents that are available makes this a difficult and
daunting task to carry out. Therefore, scientific support tools to uncover the
conceptual structure of a research area of interest are worth and necessary. In
that sense, Science Mapping Analysis is a powerful bibliometric technique to
study the conceptual structure of a particular research field [9,18].

So, the main aim of this contribution is to carry out a conceptual science
mapping analysis [4,6,9] of the research conducted by the Fuzzy Decision Making
research area from 2007 to 2016 (the last ten years). The analysis is developed
using SciMAT [10] software tool and partially based in the approach presented
in [8].

This article is organized as follows: Sect. 2 introduces the methodology
employed in the analysis. In Sect. 3, the dataset is described. In Sect. 4, the sci-
ence mapping analysis of the Fuzzy Decision Making research area is presented.
Finally, some conclusions are drawn in Sect. 5.

2 Methodology

Science mapping or bibliometric mapping is a spatial representation of how
disciplines, fields, specialities, and documents or authors are related to one
another [21]. It has been widely used to show and uncover the hidden key ele-
ments (documents, authors, institutions, topics, etc.) in different research fields
[7,11,16,19,20].

Science mapping analysis can be carried out with different software tools [9].
Particularly, SciMAT was presented in [10] as a powerful tool that integrates
the majority of the advantages of available science mapping software tools [9].
SciMAT was designed according to the science mapping analysis approach pre-
sented in [8], combining both performance analysis tools and science mapping
tools to analyze a research field and detect and visualize its conceptual sub-
domains (particular topics/themes or general thematic areas) and its thematic
evolution.

Therefore, in this contribution, SciMAT was employed to develop a longitu-
dinal conceptual science mapping analysis [4,9] based on co-words bibliographic
networks [2,6]. Thus, the analysis was carried out in three stages:

1. Detection of the research themes. In each period of time studied the corre-
sponding research themes are detected by applying a co-word analysis [6] to
raw data for all the published documents in the research field, followed by
a clustering of keywords to topics/themes [12], which locates keyword net-
works that are strongly linked to each other and that correspond to centres
of interest or to research problems that are the subject of significant interest
among researchers. The similarity between the keywords is assessed using the
equivalence index [5].

2. Visualizing research themes and thematic network. In this phase, the detected
themes are visualized by means of two different visualization instruments:
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strategic diagram [13] and thematic network [8]. Each theme can be charac-
terized by two measures [5]: centrality and density. Centrality measures the
degree of interaction of a network with other networks. On the other hand,
density measures the internal strength of the network. Given both measures,
a research field can be visualized as a set of research themes, mapped in a
two-dimensional strategic diagram (Fig. 1) and classified into four groups:

(a) Themes in the upper-right quadrant are both well developed and impor-
tant for the structure of the research field. They are known as the motor-
themes of the specialty, given that they present strong centrality and high
density.

(b) Themes in the upper-left quadrant have well-developed internal ties but
unimportant external ties and so, they are of only marginal importance
for the field. These themes are very specialized and peripheral.

(c) Themes in the lower-left quadrant are both weakly developed and mar-
ginal. The themes in this quadrant have low density and low centrality
and mainly represent either emerging or disappearing themes.

(d) Themes in the lower-right quadrant are important for a research field but
are not developed. This quadrant contains transversal and general, basic
themes.

3. Performance analysis. In this phase, the relative contribution of the research
themes to the whole research field is measured (quantitatively and quali-
tatively) and used to establish the most prominent, most productive and
highest-impact subfields. Some of the bibliometric indicators to use are: num-
ber of published documents, number of citations, and different types of h-
index [1,15,17].

Highly developed
and

isolated themes
Motor themes

Emerging or
declining themes

Basic and
transversal themes

Density

Centrality

Fig. 1. The strategic diagram.
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3 Dataset

In order to carry out the performance and science mapping analysis, the research
documents published in the Fuzzy Decision Making research area during the last
ten years must be collected and also, preprocessed.

Since ISI Web of Science (ISIWoS) is the most important bibliometric data-
base, the research documents published by Fuzzy Decision Making research area
were downloaded from it using the following advance query: SO=(“FUZZY
SETS AND SYSTEMS” OR “IEEE TRANSACTIONS ON FUZZY SYS-
TEMS” OR “INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZI-
NESS AND KNOWLEDGE BASED SYSTEMS” OR “JOURNAL OF INTEL-
LIGENT FUZZY SYSTEMS” OR “INTERNATIONAL JOURNAL OF FUZZY
SYSTEMS” OR “IRANIAN JOURNAL OF FUZZY SYSTEMS” OR “FUZZY
OPTIMIZATION AND DECISION MAKING” OR “FUZZY LOGIC AND
APPLICATIONS” OR “ROUGH SETS FUZZY SETS DATA MINING AND
GRANULAR COMPUTING” OR “INFORMATION FUSION” OR “INFOR-
MATION SCIENCE” OR “INTERNATIONAL JOURNAL OF INFORMA-
TION TECHNOLOGY & DECISION MAKING” OR “IEEE TRANSAC-
TIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS
AND HUMANS” OR “IEEE TRANSACTIONS ON SYSTEMS MAN AND
CYBERNETICS PART B-CYBERNETICS” OR “INTERNATIONAL JOUR-
NAL OF GENERAL SYSTEMS” OR “APPLIED SOFT COMPUTING”
OR “SOFT COMPUTING” OR “KNOWLEDGE-BASED SYSTEMS” OR
“CONTROL AND CYBERNETICS” OR “COMPUTERS & MATHEMAT-
ICS WITH APPLICATIONS” OR “EUROPEAN JOURNAL OF OPERA-
TIONAL RESEARCH” OR “EXPERT SYSTEMS WITH APPLICATIONS”
OR “INTERNATIONAL JOURNAL OF APPROXIMATE REASONING”
OR “INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS”) AND
TS=(“fuzzy decision making” OR “fuzzy group decision making” OR “fuzzy
preference*” OR “aggregation operator*” OR “fuzzy AHP*” OR “fuzzy ana-
lytic hierarchy process” OR “fuzzy majority” OR “fuzzy quantifier*”) AND
PY=2007-2016 NOT TS=“FUZZY QUERYING”.

This query retrieved a total of 1,465 documents from 2007 to 2016 (Fig. 2).
The corpus was further restricted to articles and reviews. Citations of these
documents are also used in this study; they were counted up to 17th April 2017.

The raw data was downloaded from ISIWoS as plain text and entered into
SciMAT to build the knowledge base for the science mapping analysis. Thus,
it contains the bibliographic information stored by ISIWoS for each research
document. To improve the data quality, a de-duplicating process was applied
(the author’s keywords and the ISI keywords plus were used as unit of analysis).
Words representing the same concepts were grouped. Furthermore, some mean-
ingless keywords in this context, such as stop-words or words with a very broad
and general meaning, e.g. “SYSTEMS”, were removed.

Next, using the SciMAT period manager, the corpus was divided in different
slices in order to analyze the evolution. To avoid data smoothness, the best
option would have been to choose one-year periods. However, it was found that
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Fig. 2. Distribution of documents retrieved by years.

not enough data were generated in the span of a single year to obtain good
results from science mapping analysis. For this reason, two consecutive periods
of five years were established (Fig. 3): 2007–2011 and 2012–2016, with 1,606 and
2,898 keywords, respectively.
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Fig. 3. Distribution of documents retrieved by years.

4 Conceptual Analysis

In order to analyze the most highlighted themes of the Fuzzy Decision Making
research area, a strategic diagram is shown for each period. In addition, the



502 M.J. Cobo et al.

spheres size is proportional to the number of published documents associated
with each research theme.

First Period (2007–2011). According to the strategic diagram shown in Fig. 4,
during this period the research area of Fuzzy Decision Making pivoted on nine-
teen themes, with the following ten major themes (motor themes plus basic
themes): Consensus, Computing-with-Words, Fuzzy-Analytic-Hierarchy-Process,
Intuitionistic-Fuzzy-Sets, Transitivity, Prioritize-Design-Requirements, T-Norm,
Priority-Vector, Uncertainty and Fuzzy-Sets.

centrality

density

CONSENSUS
268

FUZZY-ANALYTIC-HIERARCHY-PROCESS
175

INTUITIONISTIC-FUZZY-SETS
124

FUZZY-SETS
116

UNCERTAINTY
72

COMPUTING-WITH-WORDS
71

T-NORM
68

TRANSITIVITY
31

FUZZY-MEASURE
30

PRIORITY-VECTOR
29

SUPPLIER-SELECTION
29

DECISION-SUPPORT-SYSTEM
28

INTERVAL-VALUED-INTUITIONISTIC-FUZZY-SET
20

FUZZY-NUMBERS
20

FUSION
14

CARDINALITY
12

FUZZY-PREFERENCES
12

PRIORITIZE-DESIGN-REQUIREMENTS
10

ANALYTIC-NETWORK-PROCESS
9

Fig. 4. Strategic diagram for the 2007–2011 period.

The performance measures of the themes are given in Table 1, showing the
number of documents, numbers of citations and h–index per theme. According
to this performance measures, the following six themes stand out: Consensus,
Fuzzy-Analytic-Hierarchy-Process, Intuitionistic-Fuzzy-Sets, Fuzzy-Sets, Uncer-
tainty and Computing-with-Words. These research themes get important impact
rates, achieving more than one-thousand citations and getting higher h-index in
comparison with the other themes.

The motor theme Consensus (Fig. 5a) gets the highest citation count and
h-index in that period. It plays a central role in this period and it associated
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Table 1. Performance of the themes in the 2007–2011 period

Name Number of
documents

Number of
citations

h-index

CONSENSUS 268 13, 346 67

FUZZY-ANALYTIC-HIERARCHY-PROCESS 175 7, 465 49

INTUITIONISTIC-FUZZY-SETS 124 7, 757 50

FUZZY-SETS 116 4, 727 40

UNCERTAINTY 72 3, 512 32

COMPUTING-WITH-WORDS 71 4, 382 33

T-NORM 68 1, 580 24

TRANSITIVITY 31 835 16

FUZZY-MEASURE 30 1, 088 18

PRIORITY-VECTOR 29 1, 760 20

SUPPLIER-SELECTION 29 1, 861 19

DECISION-SUPPORT-SYSTEM 28 1, 709 20

INTERVAL-VALUED-INTUITIONISTIC-FUZZY-SET 20 1, 527 17

FUZZY-NUMBERS 20 1, 052 15

FUSION 14 562 10

CARDINALITY 12 412 8

FUZZY-PREFERENCES 12 455 7

PRIORITIZE-DESIGN-REQUIREMENTS 10 608 8

ANALYTIC-NETWORK-PROCESS 9 263 9

with topics such as, fuzzy preference relations, linguistic variables, majority and
operators.

The motor theme Fuzzy-Analytic-Hierarchy-Process, achieves important cita-
tions score (over seven-thousand citations). It is mainly focused on fuzzy TOP-
SIS, multicriteria decision making, balanced scorecards, among others.

The motor theme Intuitionistic-Fuzzy-Sets, gets the second highest impact
rate, both in citations and h-index. It specializes in aspect related with vague
set theory, operators, distance measures, similarities measures, etc.

The motor theme Computing-with-Words (Fig. 5b) collects the research con-
ducted on linguistic modeling, linguistic representation and information retrieval.

Second Period (2012–2016). The research conducted in this period piv-
ots in twenty-two themes. According to the strategic diagram shown in Fig. 6,
during this period eleven themes could be highlighted (motor themes plus
basic themes): Uninorms, Priority-Weights, Aggregation-Operators, Analytic-
Hierarchy-Process, Entropy, Multi-Attribute-Group-Decision-Making, T-Norm,
Decision-Analysis, Ranking, Consensus-Model, Choquet-Integral.

According to the performance measures shown in Table 2 four themes
stand out since they have the highest citations count (more than two-thousand):
Aggregation-Operators, Analytic-Hierarchy-Process, Multi-Attribute-Group-
Decision-Making and Hesitant-Fuzzy-Set. Moreover, Ranking, Priority-Weights,
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Fig. 5. Thematic networks for the period 2007–2011.
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Fig. 6. Strategic diagram for the 2012–2016 period.
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Decision-Analysis, Fuzzy-Sets, Entropy, Consensus-Model, Incomplete-Weight-
Information and Supplier-Selection are also remarkable since they get more than
one-thousand citations.

Table 2. Performance of the themes in the 2012–2016 period

Name Number of
documents

Number of
citations

h-index

AGGREGATION-OPERATORS 831 9,747 46

ANALYTIC-HIERARCHY-PROCESS 303 4,163 32

CHOQUET-INTEGRAL 179 1,476 20

MULTI-ATTRIBUTE-GROUP-DECISION-MAKING 169 2,441 28

RANKING 151 1,821 25

HESITANT-FUZZY-SET 126 2,018 25

PRIORITY-WEIGHTS 122 1,962 26

DECISION-ANALYSIS 117 1,241 18

IMMEDIATE-PROBABILITIES 116 965 18

FUZZY-SETS 114 1,130 20

ENTROPY 112 1,515 20

CONSENSUS-MODEL 110 1,470 23

INCOMPLETE-WEIGHT-INFORMATION 108 1,155 16

SUPPLIER-SELECTION 92 1,644 21

VAGUE-SETS 53 946 16

T-NORM 52 341 10

FUZZY-PREFERENCES 42 316 11

UNINORMS 39 207 9

ANALYTIC-NETWORK-PROCESS 32 546 14

FUZZY-QUANTIFIERS 27 329 9

MISSING-VALUES 23 401 10

GENERALIZED-AGGREGATION-OPERATORS 17 183 6

The motor theme Aggregation-Operators (Fig. 7a) is the theme with the high-
est impact rate. In fact, it doubles the citations achieved by the second ranked
theme, Analytic-Hierarchy-Process. Aggregation-Operators could be seen as one
of the central topics studies in the Fuzzy Decision Making Area. Particularly,
it collects the research related with the different kind of operators (i.e. OWA),
multi-criteria and multi attribute aspects. It could be seen as an evolution of the
Consensus theme appeared in the previous period.

The motor theme Analytic-Hierarchy-Process, evolves from the previous
period. It gets the second best impact score, doubling the third one. It encom-
passes topics related with TOPSIS, pairwise comparisons, preference relation
among others.
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AGGREGATION-OPERATORS

DISTANCE

INTUITIONISTIC-FUZZY-SETS

OWA-OPERATORS

PREFERENCE-RELATIONS

SIMILARITY-MEASURES

DECISION-MAKING

GROUP-DECISION-MAKING

MULTICRITERIA-DECISION-MAKINGMULTIPLE-ATTRIBUTE-DECISION-MAKING

VAGUE-SET-THEORY

REPRESENTATION-MODEL

(a) Theme Aggregation Operators.

ASSESSMENTS

LINGUISTIC-2-TUPLE

POWER-GEOMETRIC-OPERATOR

RANKING-METHOD

UNCERTAIN-LINGUISTIC-VARIABLE

CONSENSUS

LINGUISTIC-ASSESSMENTS

LABELS TERM-SETS

FAULT-TREE-ANALYSIS

MULTI-ATTRIBUTE-GROUP-DECISION-MAKING

POWER-AVERAGE-OPERATOR

(b) Theme Multi-Attribute-
Decision-Making.

Fig. 7. Thematic networks for the period 2012–2016.

The motor theme Multi-Attribute-Group-Decision-Making is related with
topics such as, linguistic 2-tuple, power operators, etc.

5 Conclusions

In this contribution a conceptual science mapping analysis of the research con-
ducted in the field of Fuzzy Decision Making in the last ten years (2007–2016)
was carried out. The analysis, was performed using SciMAT.

An amount of 1,465 documents (articles and reviews) were retrieved. The
whole corpus was divided in two consecutive period of five years length: 2007–
2011 and 2012–2016.

In the first period, the themes Consensus, Fuzzy-Analytic-Hierarchy-Process,
Intuitionistic-Fuzzy-Sets, Fuzzy-Sets, Uncertainty and Computing-with-Words
stand out due to their highest impact rates. We should point out that Consensus
doubles the citations achieved by the second one. Similarly, in the second period
four themes must be highlighted according to their impact scores: Aggregation-
Operators, Analytic-Hierarchy-Process, Multi-Attribute-Group- Decision-Making
and Hesitant-Fuzzy-Set. Also, Aggregation- Operators gets two time more cita-
tions that the remaining themes.

Finally, we would like to address some future works. First, a global analysis
could be carried out taking into account a wider time span. Second, the evolution
of the research themes could be studied across the consecutive time periods.
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Abstract. This paper presents an extension of the fuzzy pay-off method
for real option valuation using interval-valued fuzzy numbers. To account
for a higher level of imprecision that can be present in many applications,
we propose to use triangular upper and lower membership functions as
the basis of real option analysis. In the paper, analytical formulas are
derived for the triangular case by calculating the possibilistic mean of
truncated interval-valued triangular fuzzy numbers. A numerical exam-
ple of a cash-flow analysis is presented to illustrate the use of the pro-
posed approach.

Keywords: Real option valuation · Fuzzy pay-off · Interval-valued fuzzy
numbers · Possibilistic mean

1 Introduction

As one of the most prominent tools to model imprecise information, fuzzy set
theory has been introduced in [15] as an approach to deal with uncertainty
different from randomness. In many real life situations, the available data cannot
be specified either precisely, or by relying on the tools of traditional probability
theory. A typical example of this is, when one needs to construct models and
then operate them based on estimates given by experts. This situation frequently
occurs in the context of real option valuation, as in many situations there is no
sufficient historical data available for constructing data-based estimates of the
value of the underlying asset.

From a practical point of view, real options resemble financial options, but
they give their holder the possibilities that are connected to tangible real-
world investments. Due to this resemblance, until recently, the traditional finan-
cial option valuation tools were used almost exclusively in real option analysis
(ROA), and still dominate the ROA literature. One of the most promising alter-
native approaches that utilizes methodological basis different from probability
theory is the fuzzy pay-off method, introduced in [3]. In order to account for
the imprecision and inaccuracy present in the real investment analysis context,
the authors proposed to use fuzzy set and possibility theory as the basis for
ROA, resulting in an easy-to-use and intuitively understandable model. There
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 46
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are also other fuzzy ROA approaches that include binomial option valuation
based methods in [6,9], and hybrid stochastic-fuzzy Black-Scholes pricing model
based models [18].

In this article, we propose an extension to the fuzzy pay-off method that
replaces the underlying fuzzy net present value estimations with interval-valued
fuzzy numbers (IVFNs) to account for a higher level of uncertainty. IVFNs (and
in general type-2 fuzzy sets) are extensively used in different problems of decision-
making [10], particularly in financial modelling and option pricing [9]. In addition
to the derivation of analytical formulas for the possibilistic mean of truncated
IVFNs used in the extended fuzzy pay-off method, a numerical case is presented
to illustrate the difference in results, when compared to the original method.

The rest of the paper is structured as follows. In the following section, we
will shortly present the necessary definitions and notations. In Sect. 3, the exten-
sion of the original fuzzy pay-off method with interval-valued fuzzy numbers is
presented. An application of the approach to evaluating cash-flow estimations is
discussed in Sect. 4. Finally, the conclusions are presented in Sect. 5.

2 Preliminaries

In this section we present the definitions and concepts used in the discussion
of the model, including fuzzy sets, ordinary and interval-valued fuzzy numbers,
and the definition and main properties of the possibilistic mean value.

2.1 Fuzzy Numbers and Possibilistic Mean

A fuzzy subset A of a non-empty set X can be defined as a mapping,

μA : X → [0, 1].

μA is termed as the membership function specifying the degree to which
elements from X belong to A. In the following, as it is a common tradition,
we will write simply A(x) instead of μA(x) to denote the membership function.
A typical way to characterize fuzzy sets is through the γ-cuts denoted by [A]γ

defined as
[A]γ = {x ∈ X|A(x) ≥ γ},

if γ > 0 and cl(suppA) if γ = 0, where cl(suppA) denotes the closure of the
support of A. A fuzzy set A of X is called convex if [A]γ is a convex subset of X
for all γ ∈ [0, 1]. A fuzzy number A is a fuzzy set of the real line with a normal,
(fuzzy) convex and continuous membership function of bounded support [1]. An
important reason for utilizing fuzzy numbers in many applications is that they
constitute a family of possibility distributions. Formally, possibility [17] can be
defined as a maxitive normalized monotone measure (in contrast to probability,
which is an additive measure). In case of fuzzy numbers, the possibility measure
of a set B can be specified as follows:
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Pos(B ⊂ R) = sup
x∈B

A(x),

where A(x) is the membership function of the fuzzy number A. This interpreta-
tion offers an important motivation in utilizing fuzzy numbers instead of prob-
ability distributions in (real) option analysis.

Fuzzy numbers can be uniquely characterized by their γ-cuts that constitute
an interval for every γ.

Definition 1. Let A be a fuzzy number. Then [A]γ is a closed convex (compact)
subset of R for all γ ∈ [0, 1]. Let us introduce the notations

a1(γ) = min[A]γ , a2(γ) = max[A]γ

where a1(γ) denotes the left-hand side and a2(γ) denotes the right-hand side of
the γ-cut, γ ∈ [0, 1].

In most applications, a special class of fuzzy numbers is utilized, namely the
class of triangular fuzzy numbers [11].

Definition 2. A fuzzy set A is called a triangular fuzzy number with center a,
left width α > 0 and right width β > 0, if its membership function has the
following form

A(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 − a − t

α
if a − α ≤ t ≤ a

1 − t − a

β
if a ≤ t ≤ a + β

0 otherwise

and we use the notation A = (a, α, β).

A typical, non-trivial problem frequently occurring in various applications
of fuzzy numbers is the process of ranking [13]. One often used approach is
simply to map fuzzy numbers into the real line by using any one of the many
applicable methods available, and then ranking the resulting values. One of the
most widely used ranking approaches, the possibilistic mean, is studied in [1],
and can be defined as follows.

Definition 3. The possibilistic mean value of fuzzy number A with [A]γ =
[a1(γ), a2(γ)] is defined as

E(A) =
∫ 1

0

(a1(γ) + a2(γ))γ dγ.

2.2 Interval-Valued Fuzzy Numbers

An important aspect of fuzzy set theory-based modelling in recent decades has
been that of incorporating various types and levels of imprecision in the different
approaches. In addition to the contributions relying on traditional fuzzy sets,
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the number of contributions that are based on, for example, interval-valued,
intuitionistic, and hesitant fuzzy sets or vague sets, increases continuously. The
extensions that aim to more completely model imprecision involved in defining
the limits of fuzzy sets include the class of type-2 fuzzy sets and as their special
case interval-valued fuzzy sets (IVFS) [16]. In the following, we will only consider
IVFS’s, and introduce the most important definitions used.

An IVFS is a mapping A from the universe X to the set of closed intervals
of [0, 1] [5]. By using the notations A(u) = [AL(u), AU (u)], the traditional ter-
minology is to call AL and AU as lower fuzzy set and upper fuzzy set of A,
respectively. An interval-valued fuzzy set is said to be an interval-valued fuzzy
number (IVFN), if AU and AL are fuzzy numbers [12]. IVFN’s have been exten-
sively used in different problems of decision-making [7,14].

The γ-cuts of AL and AU are denoted as

[AL]γ = [a1(γ), a2(γ)],

[AU ]γ = [A1(γ), A2(γ)]

with
[A]γ = ([AL]γ , [AU ]γ).

The extension of the possibilistic mean value for interval-valued fuzzy num-
bers can be defined as follows.

Definition 4 [2]. The possibilistic mean value of A ∈ IVFN is defined as

EI(A) =
∫ 1

0

γ(M(Uγ) + M(Lγ))dγ, (1)

where Uγ and Lγ are uniform probability distributions defined on [AU ]γ and
[AL]γ , respectively, and M stands for the probabilistic mean operator.

Intuitively, the possibilistic mean of an interval-valued fuzzy number is the
arithmetic mean of the mean values of its upper and lower fuzzy numbers. If
A = AU = AL is an ordinary fuzzy number, this definition collapses into the
possibilistic mean value.

It is additionally proven in [2] that this definitions satisfies numerous reason-
able properties required from a ranking method on fuzzy sets [13], and that the
operator is linear in the sense of the max-min extended operations addition and
multiplication by a scalar on IVFN.

Lemma 1. If A,B ∈ IVFN and c ∈ R, then

1. EI(cA) = cEI(A),
2. EI(A + B) = EI(A) + EI(B).

As we will use this property extensively, it is important to highlight that the
possibilistic mean of an IVFN can be calculated as the arithmetic mean of the
possibilistic mean of the upper and lower fuzzy numbers:

EI(A) =
E(AU ) + E(AL)

2
.
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3 Fuzzy Pay-Off with IVFNs

The fuzzy pay-off method introduced in [3] is based on the same option valuation
logic underlying simulation-based real option methods see, e.g., [4,8], where the
main idea is that of by simulation creating probability distributions for the net
present value (NPV), from which a pay-off distribution for the real option is
created. In the real option pay-off distribution the possible negative values are
accounted for as zero and consequently the real option value can be calculated
as the probability weighted average of the real option pay-off distribution. In
the fuzzy pay-off method, fuzzy numbers (possibility distributions) are used to
represent the NPV and the real option pay-off distributions. A single real option
value is reached by calculating an area weighted possibilistic mean of the positive
NPV outcomes.

Definition 5. We calculate the real option value from the fuzzy NPV as follows

ROV =

∫ ∞
0

A(x)dx
∫ ∞

−∞ A(x)dx
× E(A+) (2)

where A stands for the fuzzy NPV, E(A+) denotes the possibilistic mean value
of the positive side of the NPV.

3.1 An Extension of the Pay-Off Method

As we pointed out above, interval-valued fuzzy sets extend the traditional fuzzy
sets by introducing a second level of imprecision. In the traditional case, while
the exact value of an object is not precisely identified, the membership function
estimates the degree to which a specific values belong to the underlying object.
In the interval-valued case, we assume that the membership function is impre-
cisely known, an assumption that is in line with the reality facing the context of
this paper, real investments. Compared to using general type-2 fuzzy sets, IVFSs
are more intuitive from a practical point of view as they only require the spec-
ification of an interval for membership values, and not second level fuzzy sets.
Moreover, as we consider in connection with the application, triangular IVFN’s
can be specified by five unique real numbers, while allowing a more complete
representation.

Motivated by these observations, we propose an extension of the fuzzy pay-off
method that uses IVFN’s as follows.

Definition 6. The real option value from an interval-valued fuzzy NPV is cal-
culated as follows

IV − ROV =

∫ ∞
0

(AU (x) + AL(x))dx
∫ ∞

−∞(AU (x) + AL(x))dx
× EI(A+) (3)

where A stands for the interval-valued fuzzy NPV, EI(A+) denotes the possi-
bilistic mean value of the positive side of the NPV.

∫ ∞
−∞ 0.5(AU (x) + AL(x))dx
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computes the average of the area below the upper and lower membership func-
tion of A, while

∫ ∞
0

0.5(AU (x) + AL(x))dx is the average of the area below the
positive part of AU and AL.

In the following, we will calculate the possibilistic mean value for the positive
part of a triangular interval-valued fuzzy number A, with upper triangular fuzzy
number AU = (a, α1, β1) and lower triangular fuzzy number AL = (a, α2, β2).

Specifically, if 0 = a − α1 + z, EI(A|z) denotes the possibilistic mean of the
truncated interval-valued fuzzy number A. In the following, we will look at the
different cases depending on the location of the value of 0. It is important to
mention that the possibilistic mean value of a triangular interval-valued fuzzy
number can be calculated as

EI(A) = a +
β2 − α2

12
+

β1 − α1

12
.

This implies in our specific application that, if the fuzzy number A is greater
than 0, then the possibilistic mean of the truncated fuzzy number is the same
as the mean of the original fuzzy number specified in the above formula. In case
a+β1 < 0, the support of the fuzzy number does not contain any positive values;
this situation implies that the possibilistic mean of the truncated interval-valued
fuzzy number (and the real option value) is 0.

Additionally to these trivial cases, depending on the location of 0, there are
four situations to be considered:

– a − α1 < 0 < a − α2;
– a − α2 < 0 < a;
– a < 0 < a + β2;
– a + β2 < 0 < a + β1.

In the first case, we need to consider the situation when

a − α1 < 0 < a − α2.

In this case, we only truncate the upper membership function, the lower will
remain the same. Before presenting the calculations, we introduce the following
notation for the upper membership value of 0:

z1 = AU (0) = AU (a − α1 + z) = 1 − α1 − z

α1
=

z

α1
.

According to this, for the lower membership function, the γ-cuts remain the
same,

[AL]γ = [a1(γ), a2(γ)]

while for the upper membership function, they remain the same for γ > z1, and
for γ < z1

[AU ]γ = [a − α1 + z,A2(γ)].
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We need to calculate the following possibilistic mean value:

EI(A|z) =
1
2

(I1 + I2 + I3)

= 0.5
∫ z1

0

γ(a − α1 + z + a + (1 − γ)β1)dγ

+ 0.5
∫ 1

z1

γ(a − (1 − γ)α1 + a + (1 − γ)β1)dγ

+ 0.5
∫ 1

0

γ(a − (1 − γ)α2 + a + (1 − γ)β2)dγ

(4)

The integrals can be computed as follows.

I1 =
∫ z1

0

[(2a − α1 + z)γ + γ(1 − γ)β1]dγ

= (2a − α1 + z + β1)
z2

2α2
1

− β1
z3

3α3
1

= (2a − α1 + β1)
z2

2α2
1

− β1
z3

3α3
1

+
z3

2α2
1

I2 =
∫ 1

z1

[2aγ + γ(1 − γ)(β1 − α1)]dγ

= a − az2

α2
1

+
β1 − α1

6
− (β1 − α1)

z2

α2
1

+ (β1 − α1)
z3

3α3
1

I3 = a +
β2 − α2

6
Using these values, one can obtain that

EI(A|z) = a +
β2 − α2

12
+

β1 − α1

12
+

z3

12α3
1

In the second case, we need to calculate the truncated mean when

a − α2 < 0 < a.

In this case, additionally to z1, we also need to calculate the membership value
of 0 in the lower membership function:

z2 = AL(0) = AL(a − α1 + z) = 1 − α1 − z

α2
=

α2 − α1 + z

α2
.
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The possibilistic mean of the positive part can be calculated as:

EI(A|z) =
1
2

(I1 + I2 + I3 + I4)

= 0.5
∫ z1

0

γ(a − α1 + z + a + (1 − γ)β1)dγ

+ 0.5
∫ 1

z1

γ(a − (1 − γ)α1 + a + (1 − γ)β1)dγ

+ 0.5
∫ z2

0

γ(a − α1 + z + a + (1 − γ)β2)dγ

+ 0.5
∫ 1

z2

γ(a − (1 − γ)α2 + a + (1 − γ)β2)dγ

(5)

The integrals can be computed as follows.

I1 = (2a − α1 + β1)
z2

2α2
1

− β1
z3

3α3
1

+
z3

2α2
1

I2 = a − az2

α2
1

+
β1 − α1

6
− (β1 − α1)

az2

α2
1

+ (β1 − α1)
z3

3α3
1

I3 =
∫ z2

0

[(2a − α1 + z)γ + γ(1 − γ)β2]dγ

= (2a − α1 + β2 + z)
z22
2

− β2
z22
3

+
z32
2

I4 =
∫ 1

z2

[2aγ + γ(1 − γ)(β2 − α2)]dγ

= a − az22 +
β2 − α2

6
− (β2 − α2)

z22
2

+ (β2 − α2)
z32
3

Using these values, one can obtain that

EI(A|z) = a +
β2 − α2

12
+

β1 − α1

12
+

z3

12α3
1

+
(z − α1 + α2)3

12α2
2

In the third case, we need to calculate the truncated mean when

a < 0 < a + β2.

In this case, we have the following expression specifying the membership value
of 0:

z1 = AU (0) = AU (a − α1 + z) = 1 − z − α1

β1
=

β1 + z − α1

β1
.

Additionally, we also need the membership in the lower membership function:

z2 = AL(0) = AL(a − α1 + z) = 1 − z − α1

β2
=

β2 + z − α1

β2
.
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The possibilistic mean of the positive part can be calculated as:

EI(A|z) =
1
2

(I1 + I2)

= 0.5
∫ z1

0

γ(a − α1 + z + a + (1 − γ)β1)dγ

+ 0.5
∫ z2

0

γ(a − α1 + z + a + (1 − γ)β2)dγ

(6)

The integrals can be computed as follows.

I1 = (2a − α1 + β1 + z)
z21
2

− β1
z31
3

I2 = (2a − α1 + β2 + z)
z22
2

− β2
z32
3

Using these values, one can obtain that

EI(A|z) = a

(
β1 − α1 + z

β2
1

+
(β2 − α1 + z)2

β2
2

)

+
β2 − α1 + z)3

6β2
1

+
β2 − α1 + z)3

6β2
2

Finally, in the last case, we need to calculate the truncated mean when

a + β1 < 0 < a + β2.

In this case we only consider the upper membership, as the support of the lower
triangular fuzzy number does not contain positive values.

The possibilistic mean of the positive part can be calculated as:

EI(A|z) = 0.5I1 = 0.5
∫ z1

0

γ(a − α1 + z + a + (1 − γ)β1)dγ (7)

The integral can be computed as

I1 = (2a − α1 + β1 + z)
z21
2

− β1
z31
3

Finally,

EI(A|z) = a

(
β1 − α1 + z

β2
1

)

+
β2 − α1 + z)3

6β2
1

In all the four cases, to compute the real option value, according to the defi-
nition, the ratio between the average of the positive area of the upper and lower
triangular fuzzy number and the mean of the total area under the upper and
lower triangular fuzzy numbers has to be calculated as the weight for the above
calculated possibilistic mean of the truncated interval-valued fuzzy number.
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4 Numerical Example

In this section we present a numerical example to illustrate the application of
the proposed approach. In particular, we will discuss how to assess uncertain
cash-flows. The data was used in [3] to illustrate the benefits of the original
fuzzy pay-off method. The original data is presented in the form of three points
corresponding to triangular fuzzy numbers that in turn characterize future cash-
flow scenarios. In Fig. 1, the data presented in [3] and used in the following
example is shown.

The scenario values can be specified by managers as crisp values, or generated
from any preliminary analysis. Costs and revenues are specified separately, with
the cost cash-flows discounted at the risk-free rate and the revenue discount rate
is selected according to the risk adjusted discount rate. The final fuzzy NPV is
the fuzzy pay-off distribution for the investment.

Fig. 1. Data for the numerical example

To extend this process of acquiring data in the form of interval-valued fuzzy
costs and revenues, from a practical point of view, the experts specifying the
values can be asked to specify, instead of three crisp values, the following:

– a crisp value corresponding to the most likely scenario: the center of both the
upper and lower fuzzy numbers;

– a real interval that can potentially contain the minimum possible outcome:
the interval [a − α1, a − α2]

– a real interval that can potentially contain the maximum possible outcome:
the interval [a + β2, a + β1]
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This description illustrates the main benefit of the proposed approach: we are
not restricted any more to a crisp minimum and maximum possible scenarios,
as they can be difficult to estimate precisely in many applications, but we can
estimate two intervals that contain these two scenarios, respectively.

For illustrative purposes we have used the estimated values presented in Fig. 1
as a starting point and artificially generated intervals around. The interval-valued
triangular fuzzy numbers use the base scenarios from Fig. 1 as the center, while
the minimum and maximum possible intervals around the center are specified
with endpoints plus and minus t% of the center value, for t ∈ {1, 5, 10}. The
results from the original analysis presented in [3] and for the three considered t
values can be seen in Table 1.

Table 1. Results from the numerical example

Pay-off bad Pay-off base Pay-off good ROV

Original model −243.46 −67.93 222.43 13.56

t = 1% [−247.22,−238.28] −67.93 [218.74, 225.42] 13.69

t = 5% [−255.66,−234.02] −67.93 [215.63, 231.04] 13.89

t = 10% [−270.45,−222.23] −67.93 [205.02, 241.12] 14.11

5 Conclusions

In this paper, we have proposed a new extension that uses interval-valued fuzzy
sets in the fuzzy pay-off method [3]. The proposed method allows for a more
complete representation of the imprecision connected to cash-flow estimation
underlying real option valuation. While the structure and the complexity of the
method remains the same, with an extra effort one can potentially improve the
quality of the final real option value prediction. We specifically considered the
case of triangular interval-valued fuzzy numbers and an extension of the possi-
bilistic mean in this paper, and derived analytical formulae for the possibilistic
mean values of truncated numbers.

This paper is one of the first contributions in the literature on real options
to account for higher level of imprecision in terms of the underlying mathemat-
ical representation by utilizing interval-valued fuzzy numbers. While the case
of trapezoidal interval-valued fuzzy numbers is not presented, the derivation of
the formulae can be done straight forward based on our results, while account-
ing for the presence of the central interval. From a practical point of view, the
input data requires the experts to specify an interval for the outcome of some
basic scenarios, which on one hand does not complicate their task excessively,
but allows for a more complete picture as the basis of real option value to be
obtained.
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Abstract. Databases usually contain incoherent information due to, for
instance, the presence of noise in the data. The detection of the inco-
herent information is an important challenge in different topics. In this
paper, we will consider a formal notion for this kind of information and
we will study different measures in order to detect incoherent information
in a general fuzzy logic programming framework. As a consequence, we
can highlight some irregular data in a multi-adjoint normal logic program
and so, in other useful and more particular frameworks.

Keywords: Multi-adjoint normal logic program · Coherence interpre-
tation · Incoherence measure

1 Introduction

Fuzzy logic programming is the computational branch of fuzzy logic, which
has widely been studied [1,10,15,16,29]. One of the most general frameworks
is multi-adjoint logic programming (MALP) [13,14,25,27,30], which was intro-
duced by Medina, Ojeda-Aciego and Vojtáš in [26] as a general framework in
which the minimal mathematical requirements are only considered in order
to ensure the main properties given in the diverse usual logic programming
frameworks. For instance, this theory generalizes the annotated logic program-
ming [17], possibilistic logic programming [7], monotonic and residuated logic
programming [5,6], fuzzy logic programming [32], etc. All these frameworks are
part of the set of “positive” logic frameworks which only consider monotonic
operators.

The use of negation operators enriches the flexibility of the logic language
considered in order to model a particular knowledge database. However, this
consideration hinders the computational operability of the obtained framework.
Recently, multi-adjoint normal logic programming (MANLP) arises as a gen-
eralization of MALP in which negation operators can be considered [3,4] and
different studies on the syntax and semantics of this general framework have
been presented.
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Recently, in [3], the suitable notion of coherence and incoherence in a MANLP
has been studied and a final definition has been proposed. Based on this defini-
tion, we will study in this paper different measures in order to detect incoherent
information in a general fuzzy logic programming framework. As a consequence,
we can highlight some irregularity in the data in a multi-adjoint normal logic
program and so, in other useful and more particular frameworks, previously enu-
merated. This fact will provide a procedure in order to assess the quality of the
data of the considered knowledge system and so, of the obtained results from it.

The structure of the paper is the following. Section 2 recalls the basic def-
initions in multi-adjoint normal logic programming and graph theory needed
throughout of the paper. Section 3 set the notion of coherent interpretation we
will consider, introduce different properties and diverse incoherent measures.
The paper finishes with the conclusions and several aims for future work.

2 Preliminaries

This section will provide an overview with some necessary definitions and results
of the multi-adjoint normal logic programming framework and graph theory,
which will contribute to a better understanding of the carried out study.

2.1 Multi-adjoint Normal Logic Programming

The first definitions we need to recall in this framework are the notions of multi-
adjoint normal lattice and multi-adjoint normal logic program.

Definition 1. The tuple (L,�,←1,&1, . . . ,←n,&n,¬) is a multi-adjoint nor-
mal lattice if the following properties are verified:

(1) (L,�) is bounded lattice, i.e. it has a bottom (⊥) and a top (�) element;
(2) (&i,←i) is an adjoint pair in (L,�), for i ∈ {1, . . . , n};
(3) �&i ϑ = ϑ &i � = ϑ, for all ϑ ∈ L and i ∈ {1, . . . , n};
(4) ¬ is a negation operator on (L,�), that is, ¬ is a decreasing mapping sat-

isfying that ¬(⊥) = � and ¬(�) = ⊥.

From a multi-adjoint normal lattice together with an additional (symbol of)
negation ∼, we can define a multi-adjoint normal logic program P as a set of
weighted rules in which different implications are used. The elements appear-
ing in the rules of P can be either (positive) propositional symbols or negated
propositional symbols by ∼. All these elements are called literals and they are
collected in a set denoted by LitP. The set composed only by (positive) propo-
sitional symbols appearing in P is denoted by ΠP.

Definition 2. Let (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal lat-
tice and ∼ be a strong negation. A multi-adjoint normal logic program (MANLP)
P is a finite set of weighted rules of the form:

〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉
where i ∈ {1, . . . , n}, @ is an aggregator operator, ϑ is an element of L and
l, l1, . . . , ln literals such that lj 
= lk, for all j, k ∈ {1, . . . , n}, with j 
= k.
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Notice that the negation operators ¬ and ∼ play different roles, that is, the
truth value of ∼φ can straightforwardly be inferred from the program whereas
the value of ¬φ is obtained from the truth value of φ. As a consequence, we
will call “default negation” to ¬ and “strong negation” to ∼, as it is usual. It is
important to recall that the strong negation operator should not be confused in
this paper with the well-known notion of involutive operator.

With respect to the semantics of multi-adjoint logic programming framework,
it is based on the notion of stable model [11] which is closely related to the
notion of minimal model. For that reason, the existence of minimal models in
multi-adjoint normal logic programs was studied in [4] following the philosophy
considered in [23]. Now, we will introduce the definition of interpretation and
an interesting property corresponding to the whole set of interpretations which
will play a crucial role throughout the paper.

Definition 3. Given a complete lattice (L,�), a mapping I : LitP → L,
which assigns to every literal appearing in LitP an element of L, is called L-
interpretation. The set of all L-interpretations is denoted by IL.

Proposition 1. If (L,�) is a complete lattice, then (IL,�) is a complete lattice
where the ordering relation � is given in the following way:

I1 � I2 if and only if I1(l) � I2(l), for all l ∈ LitP and I1, I2 ∈ IL.

Satisfaction and model are other fundamental notions for multi-adjoint nor-
mal logic programming semantics. In order to present these definitions, we need
to consider some previous notational conventions:

(a) The interpretation of a operator symbol ω under a multi-adjoint normal
lattice will be denoted by

.
ω.

(b) The evaluation of a formula A under an interpretation I will be denoted
as Î(A). It will be proceeded inductively as usual, until all propositional
symbols in A are reached and evaluated under I.

Definition 4. Given an interpretation I ∈ IL, we say that:

(1) A weighted rule 〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln];ϑ〉 is satisfied by I if
and only if ϑ � Î (〈l ←i @[l1, . . . , lm,¬lm+1, . . . ,¬ln]).

(2) An L-interpretation I ∈ IL is a model of a MANLP P if and only if all
weighted rules in P are satisfied by I.

The first two challenges in this research topic were: (1) obtaining an exis-
tence theorem for stable models in MANLPs, and (2) choosing a suitable notion
in order to handle inconsistent information given by the stable models of a
multi-adjoint normal logic program. Both goals were achieved in [4] and in [3],
respectively. Now, we are focused on the fundamental problem of providing an
incoherence measure for MANLPs defined on a finite lattice. To carry out this
task, we will need some notions related to graph theory which will be recalled
in the following section.
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2.2 Some Useful Notions of Graph Theory

Graph theory has become an indispensable mathematical tool in diverse fields
such as industrial engineering [8], medical diagnosis [12] and decision making [33],
among others. In this paper, the next basic notions will lead us to obtain another
application of graph theory helpful for our logic programming framework.

Definition 5. A graph G = (V,E) is an ordered pair composed by a non-empty
set whose elements are called vertices, denoted as V , and a set whose elements
are called edges, denoted as E, together with an incidence mapping γG : E →
{{u, v} | u, v ∈ V } that associates each edge in E with two vertices in V .

Definition 6. Let G be a graph. A path of length n in G is a sequence of
edges e1e2 . . . en together with a sequence of vertices v1v2 . . . vn+1 satisfying that
γG(ei) = {vi, vi+1}, for all i ∈ {1, . . . , n}. In this case, we say that the path
e1e2 . . . en is a path between the vertex v1 and the vertex vn+1.

Considering the above definitions, we can interpret the Hasse diagram of a
finite lattice (L,�) as a graph G = (V,E) in which V = L and each edge in E
correspond to an edge in the diagram. Taking into account this consideration, we
can define the distance between two elements in a finite lattice (L,�) as follows.

Definition 7 ([2]). Let G = (V,E) be the graph associated with the Hasse dia-
gram of a finite lattice (L,�), PG be the set of all paths in G and lG : PG → R be
a mapping which assigns to each path in G its length. The mapping d : V ×V → R

defined as:

d(x, y) = min{lG(p) | p is a path between the vertices x and y}

for all x, y ∈ V , is called the geodesic distance between the vertices x and y
belonging to the graph G.

The relevance of the geodesic distance in this paper will be shown in Sect. 3.2,
where it will be used to give original incoherence measures for multi-adjoint
normal logic programs defined on a finite lattice. It can be straightforwardly
proved that d is in fact a distance.

3 Coherence Interpretations and Incoherence Measures

According to the syntactic structure of MANLPs, we can ensure that the incon-
sistency causes - instability and incoherence - explained by Madrid and Ojeda-
Aciego for residuated logic programs [18–22], can be also given in this framework.
The instability is characterized by the absence of stable models in a MANLP,
therefore it is easy to classify a MANLP in this case as unstable. By contrast, the
incoherence is given by stable models in a MANLP which assign contradictory
values to a propositional symbol p and to its corresponding negation ∼ p. In this
case, the determination of incoherent programs is not clear. From this fact, the
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necessity to establish definitions that allows us both to decide when a program
is incoherent and what is a good measure in order to assess such incoherent
information.

A detailed survey on different notions related to the concept of coherence
was carried out in [3], in order to select an appropriate coherence notion capable
of handling inconsistent information contained in MANLPs. In this section, we
will include the coherence notion chosen for multi-adjoint normal logic program-
ming theory [3], and we will introduce some interesting properties related to this
coherence notion as well as different incoherence measures for MANLPs defined
on a finite lattice.

3.1 Coherence: Definition and Properties

The concept of coherence has been an interesting object of study in recent
years [9,24,28,31]. In [3], we justified the selection of the coherence interpreta-
tion notion considered in [22,24] as the most suitable definition for dealing with
the inconsistent information included in MANLPs. Madrid and Ojeda-Aciego
provided more reasons in order to justify why the definition of coherent inter-
pretation is a good generalization of the consistent interpretation in a fuzzy
environment. The flexibility of the coherent interpretation definition comes from
we can accept an interpretation contradicting the next inference rule: “If the
truth value of a propositional symbol p is ϑ then the truth value of ¬p is n(ϑ)”,
where n is a negation operator. Formally:

Definition 8 ([22,24]). Let L = (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-
adjoint normal lattice, ∼ be a strong negation and I an interpretation. We say
that:

(a) p ∈ ΠP is a coherent propositional symbol with respect to I if and only if
the inequality I(∼p) � ∼̇I(p) holds. Otherwise the propositional symbol p is
called incoherent.

(b) I is a coherent interpretation if and only if the inequality I(∼ p) � ∼̇I(p)
holds, for every p ∈ ΠP.

Notice that the definition above allows a possible lack of information but
not an excess of information. For instance, the interpretation I ∈ IL satisfying
I(p) = I(∼ p) = 0 for all p ∈ ΠP, which provides no information, is a coherent
interpretation. The following definition is closely related to the coherence inter-
pretation and model notions previously presented. Now, we will introduce what
is a coherent multi-adjoint normal program.

Definition 9. Let L = (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-adjoint normal
lattice, ∼ be a strong negation and P the multi-adjoint normal logic program
defined on L. We say that P is a coherent program if there exists at least a
coherent model.

An interesting property, corresponding to coherent interpretations, ensures
that if there exists a coherente interpretation then all interpretations less or
equal to it are also coherent.
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Proposition 2 ([24]). Let I and J be two L-interpretations satisfying I � J .
If J is coherent, then I is coherent as well.

Observe that, by Proposition 2, we can deduce that if a MANLP P has a
least model, then P is coherent program if and only if its least model is coherent.
This statement will be useful for defining incoherence measures in Sect. 3.2.

Moreover, from the proposition above, we obtain a clear idea of how coherent
and incoherent interpretations are distributed in the lattice of interpretations.
Before presenting the algebraic structure obtained from these interpretations,
we need to define the following sets:

CI = {I ∈ IL | I(∼p) � ∼̇I(p) for each p ∈ ΠP}
C̄I = {I ∈ IL | there exists p ∈ ΠP such that I(∼p) 
� ∼̇I(p)}

The previous sets CI and C̄I denote the set of all coherent interpretations
and the set of all incoherent interpretations belonging to IL, respectively. The
ordering relation � introduced in Proposition 1 provides to CI and C̄I with the
structure of semilattice.

Proposition 3. The following statements are satisfied:

(1) (CI ,�) is a lower semilattice.
(2) (C̄I ,�) is an upper semilattice.

It is worth mentioning that, knowing the algebraic structure formed by the
set of coherent interpretations and the set of incoherent interpretations is a great
achievement, since it can reduce the computation time and improve the effec-
tiveness of an incoherence measure. In the next section, we present incoherence
measures for multi-adjoint normal logic programs defined on a finite lattice.

3.2 Incoherence Measures for MANLPs defined on a Finite Lattice

An interesting survey on incoherence measures in multi-adjoint normal logic
programs has been given by Madrid and Ojeda-Aciego in [24]. Specifically, the
authors measure the degree of incoherence generated by one interpretation on
each negated literal considering only its negation and for that, they make use
of an information measure [24, Definition 7] in order to assign a positive real
value to each element in the general lattice considered in the program. In this
paper, we are interested in defining incoherence measures directly from the given
lattice, without considering any extra mapping. From now on, we will consider
a finite multi-adjoint normal lattice L = (L,�,←1,&1, . . . ,←n,&n,¬) together
with a fixed strong negation ∼.

We will present our first proposal of incoherence measure taking into account
the meaning of a coherent/incoherent propositional symbol. This proposal is a
simple definition in which the ratio of incoherent propositional symbols under
an L-interpretation is considered with respect to the number of propositional
symbols appearing in a MANLP P. The idea under the following definition con-
sists in estimating the average number of incoherent propositional symbols [24].
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Definition 10. Let I be an L-interpretation. We define the measure of incoher-
ence as:

M1(I) =
NI(I)
|ΠP|

where NI(I) denotes the number of incoherent propositional symbols in P.

This notion is similar to the one introduced by Madrid and Ojeda-Aciego
in [24]. The main drawback of this definition is that it does not take into
account how incoherent a propositional symbol is. For example, given two L-
interpretations I, J ∈ IL and a propositional symbol p ∈ ΠP, the definition
above does not indicate if p is more incoherente with respect to I than with
respect to J . In order to introduce incoherence measures capable of dealing with
such degree of incoherence, we will define the set of coherent pairs with respect
to L as follows:

ΔL = {(x, y) ∈ L × L | y � ∼̇x}

The set ΔL contains all the values that a coherent interpretation can consider.
Furthermore, we can characterize coherent interpretations by means of ΔL, as
follows:

Proposition 4 ([24]). Let I be an L-interpretation. Then, I is coherent if and
only if the pair (I(p), I(∼p)) ∈ ΔL, for all p ∈ ΠP.

Now, we are ready to present different alternatives to measure the distance
from the elements in L×L to the set of coherent pairs. Considering the geodesic
distance d associated with the Hasse diagram of the multi-adjoint normal lattice
L, we introduce our first definition of incoherence measure in a multi-adjoint
approach taking into account the degree of incoherence of a pair of elements
(a, b) ∈ L × L given by:

d1((a, b),ΔL) = d(b, ∼̇(a)) (1)

The definition of d1 makes sense since the pair (a, ∼̇(a)) belongs to ΔL, for
each a ∈ L. Notice that ∼̇(a) is the greatest value for b satisfying that (a, b) ∈ ΔL.
Therefore, if there exists c ∈ L such that c ≺ ∼̇(a), that is (a, c) ∈ ΔL, we obtain
d1((a, c),ΔL) > 0 because d is a distance and c 
= ∼̇(a). Hence, this first measure
must be improved in order to avoid this fact, since the distance from a pair (a, b)
in ΔL to the set ΔL must be 0. Therefore, we can conclude that d1 is not the
most suitable definition of incoherence measure in this framework.

A similar result is obtained if we define the degree of incoherence of a pair
(a, b) ∈ L × L as follows:

d2((a, b),ΔL) = d(zb, a) (2)

where zb = inf{z ∈ L | ∼̇z � b} (see Fig. 1). The definition of zb is needed
because ∼̇ is not necessarily an involutive negation.
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Fig. 1. Definition of zb in distance d2.

It is important to observe that somehow d1 measures how much one has to
be removed from b to obtain that (a, b) is a coherent pair, while d2 measures
how much one has to be removed from a to ensure that (a, b) is a coherent pair.

According to the previous considerations, we propose to consider a more
general definition for the degree of incoherence of a pair (a, b) ∈ L × L which
combines d1 and d2. We will consider the geodesic distance of the graph associ-
ated with the Hasse diagram of the lattice (L × L,�), where (a1, b1) � (a2, b2)
if and only if a1 � a2 and b1 � b2, for each a1, a2, b1, b2 ∈ L. Formally, we define
the degree of incoherence of a pair (a, b) ∈ L × L as:

dG((a, b),ΔL) = inf{d((a, b), (c, d)) | zb � c � a, d � ∼̇c} (3)

It is easy to see that if (a, b) ∈ ΔL then dG((a, b),ΔL) = 0. As we noted above,
this fact is not satisfied with the distances d1 and d2.

From the previous notion corresponding to the degree of incoherence given
by dG, we have many different ways to define a measure of incoherence for an
interpretation and a given propositional symbol. We have chosen the next two
incoherence measures due to their simplicity and utility:

M2(I) = max{dG((I(p), I(∼ p)),ΔL) | p ∈ ΠP}

M3(I) =

∑
p∈ΠP

dG((I(p), I(∼ p)),ΔL)
|ΠP|

Note that, given an interpretation I, M2(I) measures the maximum size
of incoherence while M3(I) indicates the average size of incoherence. These
previous incoherence measures will be helpful for reaching the main goal in this
paper, that is, to decide how much incoherent a program is.
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Now, we want to extend the incoherence measures given above for an interpre-
tation and a given propositional symbol to an arbitrary MANLP P. In order to
achieve this aim, we will define the incoherence measure, for all i ∈ {1, 2, 3}, as:

Mi(P) = inf{Mi(I) | I is a model of P}
It is fundamental to observe that if P has a least model, then Proposition 2

lead us to ensure that P is coherent if and only if its least model is coherent. As
a consequence, the previous incoherence measure can be written in the following
way Mi(P) = Mi(MP), for all i ∈ {1, 2, 3}, where MP represents the least model
of the MANLP P.

Below, we will include an illustrative example useful for clarifying the pre-
sented incoherence measures. First of all, we show a coherent program such that
the incoherence measures with respect to it are equal to zero, as one can expect.
After that, we complete the program adding one rule more and we prove that
the obtained program is incoherent.

Example 1. Consider the multi-adjoint normal lattice L = (L,�,←,&,¬) com-
posed by the complete lattice (L,�) displayed in Fig. 2, the adjoint pair (&,←)
with respect to L defined as x& y = min{x, y}, z ← x = � if x � z and
z ← x = z otherwise, for all x, y, z ∈ L, and the negation operator ¬ : L → L
shown in Fig. 2. Moreover, we will consider a strong negation ∼ associated with
a mapping ∼̇ : L → L which is also defined in Fig. 2.

¬(x) =

⎧
⎨

⎩

⊥ if x �� d

� if x � d
∼̇(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥ if x = �
g if d � x � a
b if x = e
c if x = f
� if x � g

•⊥

•g

•e •f

• d

•b • c

• a

• �

Fig. 2. Definition of negation operators appearing in P and the Hasse diagram of (L,�).

From this multi-adjoint normal lattice, the following MANLP P is defined:

r1 : 〈p ← q & ¬(∼ r) ; b〉
r2 : 〈∼ p ← r ; d〉
r3 : 〈q ← s ; e〉
r4 : 〈r ← � ; f〉
r5 : 〈s ← � ; d〉
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whose least model is given by the interpretation MP:

MP(p) = e MP(∼ p) = f
MP(q) = e MP(∼ q) = ⊥
MP(r) = f MP(∼ r) = ⊥
MP(s) = d MP(∼ s) = ⊥

Clearly, the propositional symbols p, q, r and s are coherent since they satisfy
the inequality MP(∼ x) � ∼̇MP(x) for all x ∈ {p, q, r, s}. Therefore, we can
conclude that MP is a coherent interpretation by Definition 8. Hence, the least
model of the program P is coherent which let us to ensure that P is coherent.
Indeed, M1(P) = M2(P) = M3(P) = 0.

Now, we will consider a MANLP P
∗ which is formed by the rules appearing

in P together with the following rule r∗
2 : 〈p ← r; f〉. In this case, the least

model MP∗ of the program P
∗ is defined as follows:

MP∗(p) = d MP∗(∼ p) = f
MP∗(q) = e MP∗(∼ q) = ⊥
MP∗(r) = f MP∗(∼ r) = ⊥
MP∗(s) = d MP∗(∼ s) = ⊥

which is not a coherent interpretation due to Definition 8 is not satisfied. In
particular, we obtain that MP∗(∼p) = f 
� g = ∼̇(d) = ∼̇MP∗(p).

Note that, (MP∗(p),MP∗(∼ p)) = (d, f) is the unique pair which does not
belongs to ΔL. Therefore, to compute the incoherence measures M2(P∗) and
M3(P∗), we will only need to make the computation for the value dG((d, f),ΔL).
Since zMP∗ (∼p) = zf = inf{z ∈ L | ∼̇z � f} = d, applying the definition of
distance dG given by Eq. (3), we obtain that

dG((d, f),ΔL) = inf{d((d, f), (d, x)) | x � ∼̇(d)}
= inf{d((d, f), (d, g)), d((d, f), (d,⊥))} = inf{1, 2} = 1

Finally, considering the definitions for the incoherence measures with respect
to a program, we can conclude that:

M1(P∗) = M1(MP∗) =
1
4

= 0.25

M2(P∗) = M2(MP∗) = max{1, 0, 0, 0} = 1

M3(P∗) = M3(MP∗) =
1
4

= 0.25

The first incoherence measure shows that the ratio of incoherent propositional
symbols in the program P

∗ is 25%. The second and third ones provide infor-
mation on the degree of incoherence of the propositional symbols appearing in
P

∗. Specifically, the equality M2(P∗) = 1 means that any propositional symbol
p ∈ P

∗ is either coherent or (MP∗(p),MP∗(∼p)) is neighbor of a pair of elements
(x, y) ∈ L × L satisfying (x, y) ∈ ΔL. M3(P∗) = 0.25 shows that the average of
incoherence in the program from all the propositional symbols.
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4 Conclusions and Future Work

Our contribution has been focused on introducing incoherence measures in order
to ensure how much coherent a multi-adjoint normal logic program is. First of
all, we have presented different distances to measure the degree of incoherence of
a pair of elements belonging to a finite multi-adjoint normal lattice. We have pre-
sented different ways to obtain an incoherence measure for an interpretation and
a given propositional symbol. Finally, these measures have been extended to a
multi-adjoint normal logic program whose computations are different depending
on whether the program has a least model or does not have it.

In the future, we will apply these measure to real examples, we will compare
them with other measures and we will study new measures, if we detect they are
needed from the practical examples.
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Abstract. Sugeno integrals are useful for describing families of multiple
criteria aggregation functions qualitatively. It is known that Sugeno inte-
grals, as aggregation functions, can be represented by a set of rules. Each
rule refers to the same threshold in the conditions about the values of
the criteria and in the conclusion pertaining to the value of the integral.
However, in the general case we expect rules where several thresholds
appear. Some of these rules involving different thresholds can be repre-
sented by Sugeno utility functionals where criteria values are rescaled by
means of utility functions associated with each criterion. But as shown
in this paper, their representation power is quite restrictive. In contrast,
we provide evidence to conjecture that the use of disjunctions or con-
junctions of Sugeno integrals with utility functions drastically improves
the expressive power and that they can capture any aggregation function
on a finite scale, understood as piecewise unary aggregation functions.

Keywords: Sugeno integrals · Piecewise unary functions · Rule-based
representation

1 Introduction

Sugeno integrals are aggregation functions that return a global evaluation in-
between the minimum and the maximum of the combined partial evaluations.
They are used in multiple criteria decision making and in decision under uncer-
tainty [5,8,9,15]. They are qualitative aggregation functions because they can be
defined on any completely ordered scale. The idea is to use a lattice polynomial
(using min and max operations) whereby the importance of each subset of cri-
teria is assessed by means of a monotonic set-function called a capacity. Sugeno
integrals include weighted minimum and weighted maximum as particular cases.

The problem of representing a function of several variables with a Sugeno
integral is discussed in [15]. More precisely, for a given piece of data composed
of a vector of partial evaluations and a global evaluation, the set of Sugeno
c© Springer International Publishing AG 2018
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Expressive Power of Sugeno Integrals 535

integrals that agree with this piece of data is determined. Moreover, necessary
and sufficient conditions are presented.

The problem of eliciting Sugeno integrals agreeing with a set of data has
received some attention both from a theoretical and a practical point of view
[13,14]. The idea is to define a pair of best upper and lower capacities with
importance weights bearing on the same subsets of criteria, corresponding to a
pair of Sugeno integrals that enclose the dataset. For each piece of data, this
approach computes tightest constraints from above and constraints from below
on the capacity needed for representing the dataset. In [13], a general approach to
the elicitation of several such families of Sugeno integrals is proposed in cases in
which the data are not altogether compatible with a unique family of capacities.

In [7,10] a Sugeno integral S is shown to represent a set of single-threshold
if-then rules of the form x ≥ α and y ≥ α and . . . z ≥ α ⇒ S ≥ α, or yet, x ≤ α
and y ≤ α and . . . z ≤ α ⇒ S ≤ α. These representations are used to select or
reject some alternatives, respectively.

Recently, Sugeno integral has been generalized into Sugeno utility functionals
[2] that introduce a utility function for each criterion. In the domain of multiple
criteria decision making, this aggregation function can be viewed as the combi-
nation of the Sugeno integral and order preserving one-argument maps on each
criterion. In [3] the Sugeno utility functional is extended to distributive lattices
with more general maps.

In this paper, we take a step beyond the above results by considering dis-
junctions or conjunctions of Sugeno utility functionals. We claim that this class
covers all monotonic piecewise unary functions on finite scales, and can represent
multi-threshold rules of the form

x ≥ α and y ≥ β and . . . z ≥ γ ⇒ S ≥ δ (selection rules);

or yet

x ≤ α and y ≤ β and . . . z ≤ γ ⇒ S ≤ δ (deletion rules);

The paper is organized as follows: The next section is devoted to the back-
ground on Sugeno integrals and the kind of if-then rules they can represent.
Section 3 presents necessary and sufficient conditions for a set of rules to be
represented with a Sugeno utility functional, that is Sugeno integral on utility
functions that modify the value scale of each criterion. The main purpose of
Sect. 4 is the extension of Sugeno utility functionals to conjunctive and disjunc-
tive combinations thereof, that capture the class of non-decreasing piecewise
unary functions. This class of functions is shown to be very expressive and can
capture any aggregation function on a finite scale.

2 Sugeno Integrals and Qualitative Datasets

We use the terminology of multiple criteria decision-making where some objects
are evaluated according to criteria. We denote by C = {1, · · · , n} the set of
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criteria, 2C the power set and L a totally ordered scale with top 1, bottom 0,
and the order-reversing operation denoted by ν (ν is involutive and such that
ν(1) = 0 and ν(0) = 1). An object is represented by a vector x = (x1, . . . , xn)
where xi is the evaluation of x according to criterion i.

Sugeno integral. In the definition of Sugeno integral the relative weights of
the set of criteria are represented by a capacity (or fuzzy measure) which is a
set function μ : 2C → L that satisfies μ(∅) = 0, μ(C) = 1 and A ⊆ B implies
μ(A) ≤ μ(B). The conjugate capacity of μ is defined by μc(A) = ν(μ(Ac)) where
Ac is the complement of A. Sugeno integral was originally defined in [16,17]. The
most common definition is as follows:

Definition 1. The Sugeno integral of a function x : i ∈ C 	→ xi ∈ L with respect
to a capacity μ : 2C → L is defined by:

Sμ(x) = maxα∈L min(α, μ(x ≥ α)), where μ(x ≥ α) = μ({i ∈ C|xi ≥ α}).

It can be equivalently written under various forms [6,11,12,16], especially:

Sμ(x) = max
A⊆C

min(μ(A),min
i∈A

xi) = min
A⊆C

max(μ(Ac),max
i∈A

xi) (1)

Sugeno integrals compatible with a dataset. Let us recall how to elicit
a family of Sugeno integrals that are compatible with a given dataset that is a
collection of pairs (xk, αk), k = 1, . . . , N where each xk is a tuple (xk

1 , . . . , x
k
n) of

local evaluations of object k with respect to criteria i ∈ C and αk is the global
evaluation of object k.

In [15] it is proved that for a given piece of data (x, α) the set of capacities
μ such that Sμ(x) = α is such that ∀A ⊆ C, μ̌x,α(A) ≤ μ(A) ≤ μ̂x,α(A), where
μ̌x,α and μ̂x,α are capacities defined by

μ̌x,α(A) =
{

α if {i|xi ≥ α} ⊆ A
0 otherwise and μ̂x,α(A) =

{
α if A ⊆ {i|xi > α}
1 otherwise.

Note that μ̌x,α is a necessity measure with respect to the possibility distrib-
ution

π̌x,α(i) =

{
1 if xi ≥ α

ν(α) otherwise
,

and μ̂x,α(A) is a possibility measure with respect to the possibility distribution

π̂x,α(i) =

{
1 if xi ≤ α

α otherwise
.

It is worth noticing that a capacity μ is compatible with the piece of data (x, α) in
the above sense if and only if μ(x > α) ≤ α and μ(x ≥ α) ≥ α. Note that for the
set of compatible μ’s to be not empty we need that minn

i=1 xi ≤ α ≤ maxn
i=1 xi,

due to idempotence.
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The set of capacities compatible with the dataset (xk, αk)k is the set of
capacities μ satisfying maxk μ̌xk,αk

≤ μ ≤ mink μ̂xk,αk
. This set of solutions can

be empty, even if the set of compatible μ’s is not empty for each piece of data.
In order to compare maxk μ̌xk,αk

and mink μ̂xk,αk
it is not necessary to calculate

their values and to compare them on each subset of criteria. It is proved in [15]
that the set of compatible capacities is not empty if and only if for all αk < αl

we have {i|xl
i ≥ αl} �⊆ {i|xk

i > αk}.

Sugeno integral as a set of if-then rules. In [6] it is described how to express
if-then rules associated to Sugeno integrals. We have two sorts of rules: selection
rules and deletion rules. Their construction is based on the inner qualitative
Moebius transform of a capacity μ which is a mapping μ# : 2C → L defined by

μ#(E) = μ(E) if μ(E) > max
B⊂E

μ(B) and 0 otherwise.

A set E such that μ#(E) > 0 is called a focal set. The set of focal sets of μ is
denoted by F(μ). Sugeno integral can be expressed in terms of μ# using Eq. (1)
as follows [7]:

Sμ(x) = max
E∈F(μ)

min(μ#(E),min
i∈E

xi) = min
T∈F(μc)

max(ν(μc
#(T )),max

i∈T
xi).

A selection rule is a rule whose conclusion is of the form S ≥ α. A deletion rule
is a rule whose conclusion is of the form S ≤ α. A Sugeno integral corresponds
to the following rules:

– Selection rules associated to Sμ. Each focal set E of μ corresponds to the
selection rule:

Rs
E : If xi ≥ μ#(E) for all i ∈ E then Sμ(x) ≥ μ#(E).

– Deletion rules associated to Sμ. Each focal set T of the conjugate μc corre-
sponds to the deletion rule:

Re
T : If xi ≤ ν(μc

#(T )) for all i ∈ T then Sμ(x) ≤ ν(μc
#(T )).

Note that a Sugeno integral is equivalent to a set of single-thresholded
rules. In the following, single-thresholded selection rules will be denoted by
(
∧

i∈Ej
xi ≥ δj) ⇒ S(x) ≥ δj and single-thresholded deletion rules will be

denoted by (
∧

i∈Tj
xi ≤ δj) ⇒ S(x) ≤ δj .

As Sugeno integrals are idempotent, the set of selection rules of the form
(
∧

i∈C xi ≥ δj) ⇒ S(x) ≥ δj or deletion rules of the form (
∧

i∈C xi ≤ δj) ⇒
S(x) ≤ δj , is always valid.

Let us denote by ri, i ∈ I the rules in a single-thresholded rule set R, and
Ari i ∈ I the set of criteria involved in the rule ri and δi i ∈ I the associated
threshold. In some cases, we can define a capacity μ with focal sets Ari such
that μ#(Ari) = δi such that the corresponding Sugeno integral induces R.
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Proposition 1. Any set of single-thresholded selection rules R is representable
by a Sugeno integral.

Proof: A single-thresholded rule set is equivalent to a set of pairs {(Ari , δi), i =
1, . . . , N}. Consider the set of rules R(A) = {ri : Ari ⊆ A}. Then define a
set-function μ : 2C → L, by μ(A) = max{δi : ri ∈ R(A)} and μ(C) = 1. This
set-function induced by R is clearly a capacity. Consider a rule ri, the min-
term associated to it is min(μ(Ari),mini∈Ari xi) ≥ δi. So ∀ri ∈ R,Sμ(x) ≥ δi

whenever x ≥ δi, i ∈ Ari . Moreover μ is the smallest capacity ensuring these
inequalities. �

Note that the set of rules associated to focal sets of μ will provide a minimal
representation of the set of selection rules R, deleting the redundant ones. For
instance, if R consists of x1 ≥ α∧x2 ≥ α ⇒ S ≥ α and x1 ≥ β∧x2 ≥ β ⇒ S ≥ β,
where {1, 2} ⊂ C (there are more than two criteria), and α > β, the second
rule is redundant, if we assume they are represented by a Sugeno integral with
respect to μ : μ({1, 2}) = α (and 0 otherwise), since if x1 ≥ β ∧ x2 ≥ β then
Sμ(x) = min(α, β).

A similar proposition holds for deletion rules. However, in general rules are
multi-thresholded. So, we need to go beyond pure Sugeno integrals to represent
them.

3 Generalizing Sugeno Integrals with Utility Functions

In this paper we are going to consider multi-thresholded rules. It is then clear
we need to go beyond the mere use of Sugeno integrals. A first generalization is
the following:

Definition 2: The Sugeno utility functional with respect to a capacity μ is
Sμ,ϕ(x) = Sμ(ϕ(x)) where ϕ(x) = (ϕ1(x1), · · · , ϕn(xn)) and each mapping
ϕi : L → L is an increasing function in the wide sense, with limit conditions
ϕi(0) = 0 and ϕi(1) = 1.

Note that Sμ,ϕ(x) = max
E∈F(μ)

min(μ#(E),min
i∈E

ϕi(xi)). It is also worth noticing

that Sμ,ϕ is not always an idempotent aggregation function. Note that when the
value scale L is finite, the effect of function ϕi is essentially one of shrinking the
value scale since when ϕi is not the identity, ϕi(L) ⊂ L. Despite this remark,
Sugeno utility functionals are strictly more expressive than Sugeno integrals, as
shown in [1], for instance.

It is easy to figure out that Sμ,ϕ expresses the rules:

(
∧

i∈Ej

ϕi(xi) ≥ δj) ⇒ Sμ,ϕ(x) ≥ δj and (
∧

i∈Tj

ϕi(xi) ≤ δj) ⇒ Sμ,ϕ(x) ≤ δj .

Let αi be such that ϕi(αi) = δj . Then the above single-thresholded rules
express multi-thresholded selection rules of the form (

∧
i∈Ej

xi ≥ αi) ⇒
Sμ,ϕ(x) ≥ δj . Let us show that any multi-thresholded selection rule can be
represented by a Sugeno utility functional.
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Example 1: Consider the selection rule x1 ≥ α and x2 ≥ β ⇒ S ≥ δ with
1 ≥ α ≥ β > δ ≥ 0, where C contains at least 3 criteria. Define utility
functions ϕ1, ϕ2 such that ϕ1(x1) ≥ δ if x1 ≥ α and ϕ1(x1) < δ otherwise;
ϕ2(x2) ≥ δ if x2 ≥ β and ϕ2(x2) < δ otherwise. Then we do have that the
single-thresholded rule ϕ1(x1) ≥ δ and ϕ2(x2) ≥ δ ⇒ S ≥ δ is equivalent to
the previous multi-thresholded rule. This is because, by construction, x1 ≥ α is
equivalent to ϕ1(x1) ≥ δ, and likewise for x2. Then we can use a capacity with
weight δ assigned to focal set {1, 2} and weight 1 assigned to C; the Sugeno
utility functional max(min(ϕ1(x1), ϕ2(x2), δ),mini∈C ϕi(xi)) induces the origi-
nal multi-thresholded selection rule, provided that, for i > 2 we let ϕi(1) = 1
and ϕi(xi) = 0 otherwise.

More generally, consider the selection rule x1 ≥ α1 and x2 ≥ α2 and . . . x� ≥
α� ⇒ S ≥ λj , with weights on a finite scale L = {0, λ1 < · · · < λk = 1}. We
can represent its effect by means of utility functions ϕi such that ϕi(xi) ∈ [λj , 1]
if xi ≥ αi and ϕi(xi) ∈ [0, λj−1] otherwise. The weight λj assigned to focal
set {1, 2, . . . , 
} and weight 1 assigned to C; the Sugeno utility functional rep-
resenting the rule is max(min(min�

i=1 ϕi(xi), λj),mini∈C ϕi(xi)), provided that,
for i > 
 we let ϕi(1) = 1 and ϕi(xi) = 0 otherwise.

Likewise, for the deletion rule, x1 ≤ α1 and x2 ≤ α2 and . . . x� ≤ α� ⇒ S ≤
λj , we can represent its effect by means of utility functions ψi such that ψi(xi) ∈
[0, λj ] if xi ≤ αi and ψi(xi) ∈ [λj+1, 1] otherwise. The weight λj assigned to
focal set {1, 2, . . . , 
} and weight 1 assigned to C; the Sugeno utility functional
representing the rule is Sμ,ψ(x) = min(max(max�

i=1 ψi(xi), λj),maxi∈C ψi(xi)),
provided that, for i > 
 we let ψi(0) = 0 and ψi(xi) = 1 otherwise.

However, it is sometimes impossible to represent the behavior of several rules
by a single Sugeno utility functional, because the constraints on the utility func-
tions induced by the rules may be in conflict.

Proposition 2: Consider two selection rules r1 and r2 sharing one criterion
x, and of the form “if . . . and x ≥ αi and . . . then S ≥ δi such that α1 > α2

but δ1 ≤ δ2. There is no Sugeno integral with utility functions that can represent
both of them.

Proof: Indeed the utility function ϕ for criterion x is submitted to the following
constraints: for rule 1: ϕ(x) ≥ δ1 if x ≥ α1, and ϕ(x) < δ1 otherwise. For rule
2: ϕ(x) ≥ δ2 if x ≥ α2, and ϕ(x) < δ2 otherwise. But since α1 > α2, suppose
α1 > x ≥ α2. Then the conditions enforce ϕ(x) < δ1 and ϕ(x) ≥ δ2, which is
impossible.

Example 2. Let us consider the rules:
{

if x1 ≥ λ2 and x2 ≥ λ3 then S ≥ λ3

if x2 ≥ λ2 and x3 ≥ λ2 then S ≥ λ3

}

where λ2 < λ3. Variable x2 is common to both rules. Due to the first rule,
we must add a utility function ϕ2 such that ϕ2(λ3) ≥ λ3 and ϕ2(x2) < λ3 if
x2 < λ3 (for instance ϕ2(x2) = x2). In particular, ϕ2(λ2) < λ3. But according to
the other rule, one must have that ϕ2(λ2) ≥ λ3, which creates a contradiction.
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Note that in the above proposition, if the two rules involve the same criteria
(Ar1 = Ar2) and the thresholds in r1 for criteria other than x are not less than
the thresholds in r2 for these criteria, then rule r1 is just a consequence of rule
r2 and can be dropped.

A proposition similar to Proposition 2 would hold for deletion rules.
If the condition in the above proposition is not encountered in a set of selec-

tion rules R, that is, ∀r1, r2 ∈ R,∀i ∈ Ar1 ∩ Ar2 , if αr1
i > αr2

i implies δ1 > δ2,
then the set of rules can be accounted for by a Sugeno integral based on a capac-
ity μ such that μ(Arj ) = δj , r

j ∈ R, provided that we delete redundant rules
from R.

Example 3. Let us consider the rules:
{

if x1 ≥ λ3 and x2 ≥ λ5 then S ≥ λ4

if x1 ≥ λ2 and x2 ≥ λ3 then S ≥ λ3

}

where λ2 < λ3 < λ4 < λ5. Both rules involve the same criteria. Observe that the
impossibility condition of Proposition 2 is not met. Due to the first rule, we must
add a utility function ϕ1 such that ϕ1(λ3) ≥ λ4 and ϕ1(x1) < λ4 if x1 < λ3. Due
to the second rule, ϕ1 must also satisfy ϕ1(λ2) ≥ λ3 and ϕ1(x1) < λ3 if x1 < λ2.
For instance, one may choose ϕ1(λ1) = λ2;ϕ1(λ2) = λ3;ϕ1(λ3) = λ4. Likewise
for attribute 2, ϕ2 must also satisfy ϕ2(λ5) ≥ λ4 and ϕ2(x2) < λ4 if x2 < λ5, and
ϕ2(λ3) ≥ λ3 and ϕ2(x2) < λ3 if x1 < λ3, for instance ϕ2(λ2) = λ2, ϕ2(λ3) = λ3,
ϕ2(λ4) = λ3, ϕ2(λ5) = λ4. Using utility functions we get single-thresholded rules

{
if ϕ1(x1) ≥ λ4 and ϕ2(x2) ≥ λ4 then S ≥ λ4

if ϕ1(x1) ≥ λ3 and ϕ2(x2) ≥ λ3 then S ≥ λ3.

which can be represented by the single expression S = min(ϕ1(x1), ϕ2(x2), λ4).

Here a question arises: what sort of rule sets can be represented with a Sugeno
utility functional Sμ,ϕ?

The above results suggest that the set of rules must have a locally strict
monotonic behavior, in the following sense: Let R(j) be the set of rules where
attribute xj appears. Let Θj be the set of thresholds αi appearing in the rules
ri of R(j) in the form xj ≥ αi, and let Γ (α) be the set of conclusion thresholds
δi for rules ri such that αi = α ∈ Θj . Then the multifunction Γ must be
strictly monotonic in the sense that ∀α, α′ ∈ Θj , α > α′ implies min Γ (α) >
max Γ (α′). Indeed, note that if there are several conclusion thresholds δ ∈ Γ (α),
corresponding to several rules having the same condition threshold xj ≥ α, the
utility function for xj will have to satisfy ϕj(α) ≥ max Γ (α) and ϕj(xj) <
min Γ (α) if xj < α.

4 Combination of Sugeno Utility Functionals

In order to find an aggregation operation that can represent any set of multi-
thresholded selection rules, we consider non decreasing functions f : Ln → L of
the form

f(x1, . . . xn) = max
i∈I

min(min
j∈Ai

ϕij(xj), δi)
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where L is a finite chain and each mapping ϕi,j : L → L is an increasing function
such that ϕi,j(0) = 0 and ϕi,j(1) = 1. We call such functions f piecewise unary
functions in disjunctive form (df-PUF), in the sense that the domain Ln, can
be partitioned into subsets where f(x1, . . . xn) = ϕij(xj) or is a constant δi for
some i ∈ C.

The main purpose of this part is to study whether there exists a family
of K Sugeno utility functionals Sk such that f = ∨K

i=1Sk, and to show that
any aggregation function g (non-decreasing and such that g(1, 1, . . . , 1) = 1 and
g(0, 0, . . . , 0) = 0) can be expressed in this way. If this is so, we can then find a
disjunction of Sugeno utility functionals that accounts for a set of selection rules,
and more generally we can hope to learn such aggregation from qualitative data.

On the first issue we can prove the following result:

Proposition 3. Any df-PUF on a finite domain such that f(1, 1, . . . , 1) = 1
and f(0, 0, . . . , 0) = 0 is a disjunction of Sugeno utility functionals.

Proof: First notice that as f(1, 1, . . . , 1) = 1, there exists i ∈ I such that
δi = 1, and ∀j ∈ Ai, ϕij(1) = 1; moreover ∀j ∈ Ai, ϕij(0) = 0. It
is clear that we can rewrite f as f(x1, . . . , xn) = maxi∈I max(min(minj∈Ai

ϕij(xj)), δi),mink∈C ϕik(xk)), provided that ∀k �∈ Ai, ϕik(1) = 1 and ϕik(xk) = 0
if xk < 1. The inner expression

max(min(min
j∈Ai

ϕij(xj)), δi),min
k∈C

ϕik(xk))

is a Sugeno utility functional with respect to the capacity μi such that Ai is a focal
set with μi(Ai) = δi and μi(C) = 1 in the case Ai �= C. �

The decomposition of f as
∨

i∈I Sμi,ϕi
(x) in Proposition 3 is not parsimo-

nious. Some terms inside
∨

i∈I can be grouped into a single Sugeno utility func-
tional with respect to a more complex capacity by unifying the utility functions
for each attribute into a single one. To do so, the idea is that we extract a
maximal number of subsets Ai ⊂ C, such that

– whenever Ai ∩ Ai′ �= ∅, the utility functions ϕij and ϕi′j for all j ∈ Ai ∩ Ai′

must be equal.
– whenever Ai ⊂ Ai′ , we have that δi < δi′ .

Let I1 be the maximal subset of indices of terms that can form a Sugeno utility
functional using the corresponding subsets of Ai’s as described above. The idea
is then to apply the same procedure to the remaining {Ai : i ∈ I \ I1}, until no
index remains in I.

Likewise we can consider piecewise unary functions in conjunctive form (cf-
PUF), namely expressions such as:

f(x1, . . . xn) = min
i∈I

max(max
j∈Ai

ψij(xj), γi).
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Proposition 4: Any cf-PUF on a finite domain such that f(1, 1, . . . , 1) = 1
and f(0, 0, . . . , 0) = 0 is a conjunction of Sugeno utility functionals.

Proof: First notice that as f(0, 0, . . . , 0) = 0, there exists i ∈ I such that
γi = 0, and ∀j ∈ Ai, ψij(0) = 0; moreover ∀j ∈ Ai, ψij(1) = 1. It is clear
that we can rewrite f as f(x1, . . . , xn) = mini∈I min(max(maxj∈Ai

ψij(xj),
γi),maxk∈C ψik(xk)), provided that ∀k �∈ Ai, ψik(0) = 0 and ψik(xk) = 1 if
xk > 0. The inner expression

min(max(max
j∈Ai

ψij(xj), γi),max
k∈C

ψik(xk))

is a Sugeno utility functional (in conjunctive form) with respect to the capacity
μi such that Ac

i is a focal set with μi(Ac
i ) = γi (and μi(∅) = 0). �

Based on these results, we can try to model any aggregation function g com-
pletely defined by a n-dimensional table, by means of a disjunction or a con-
junction of Sugeno utility functionals. Indeed, we can represent such a table by
means of a set of multi-thresholded selection or deletion rules.

Example 4. Let us consider the function f(x1, x2) in the table below where the
scale is 0 < λ < 1

x2 ↑ x1 → 0 λ 1
1 1 1 1
λ 0 λ 1
0 0 0 λ

We can describe the positive values in position (α1, α2) in the table by means
of selection rules of the form “if x1 ≥ α1 and x2 ≥ α2 alors S ≥ δ”. In our exam-
ple the following rules are enough:

For output value 1

r1 x2 = 1 ⇒ S = 1; (upper line)
r2 x1 = 1 and x2 ≥ λ ⇒ S = 1 (value 1 in line 2).

For output value λ

r3 x1 ≥ λ and x2 ≥ λ ⇒ S ≥ λ (λ in line 2);
r4 x1 = 1 ⇒ S ≥ λ (λ in bottom line).

This set of rules can be expressed by means of a df-PUF formed by the
maximum of the following terms

– r1: ϕ12(x2), with ϕ12(1) = 1 and ϕ12(λ) < 1(δ1 = 1).
– r2: min(ϕ21(x1), ϕ22(x2)) with ϕ21(1) = 1 and ϕ21(λ) < 1; ϕ22(λ) = 1 and

ϕ22(0) = 0(δ2 = 1).
– r3: min(ϕ31(x1), ϕ32(x2), λ) with ϕ31(λ) ≥ λ ; ϕ32(λ) ≥ λ(δ3 = λ).
– r4: min(ϕ41(x1), λ), with ϕ41(1) = 1 and ϕ41(λ) = 0(δ4 = λ).
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By construction, the df-PUF that corresponds to the superposition of tables
in Fig. 1,

max(ϕ12(x2),min(ϕ21(x1), ϕ22(x2)),min(ϕ31(x1), ϕ32(x2), λ),min(ϕ41(x1), λ)) ≤ f(x1, x2),

i.e., is a lower bound of function f .

1 1 1

≥ 0 ≥ 0 ≥ 0

0 0 0

0 ≥ 0 1

0 ≥ 0 1

0 0 0

0 λ λ

0 λ λ

0 0 0

0 0 λ

0 0 λ

0 0 λ

Fig. 1. r1: ϕ12(x2) r2: min(ϕ21(x1), ϕ22(x2)) r3: min(ϕ31(x1), ϕ32(x2), λ) r4:
min(ϕ41(x1), λ)

It can be checked that the df-PUF acting as a lower bound of f can be made
equal to f provided that ϕ12(λ) = 0.

Let us represent f by the maximum of Sugeno utility functionals. First, rules
r1 and r4 together correspond to the Sugeno utility functional Sμ,ϕ(x) where
μ#(1) = λ, μ#(2) = 1, where ϕ1(λ) = 0 = ϕ2(λ), i.e., we can choose Sμ,ϕ(x) =
(λ∧ϕ1(x1))∨ϕ2(x2). Rule r2 alone corresponds to the Sugeno utility functional
Sμ′,ϕ′(x) where μ#({1, 2}) = 1, and ϕ′

2(λ) = 1, that is Sμ′,ϕ′(x) = x1 ∧ ϕ′
2(x2).

Note that the utility functions for rule r3 can be chosen as being the same as
those for rule r2, in which case the term min(ϕ31(x1), ϕ32(x2), λ) is subsumed
by Sμ′,ϕ′(x). It yields the following expression of f :

f(x1, x2) = Sμ,ϕ(x) ∨ Sμ′,ϕ′(x) = (λ ∧ ϕ1(x1)) ∨ ϕ2(x2) ∨ (x1 ∧ ϕ′
2(x2)).

The values other than 1 in position (α1, α2) in the table can also be repre-
sented by means of deletion rules of the form “if x1 ≤ α1 and x2 ≤ α2 then
S ≤ δ”. In our example the following rules are enough:

For output value λ

r′1 x2 = 0 ⇒ S ≤ λ; (value λ in line 1)
r′2 x1 ≤ λ and x2 ≤ λ ⇒ S ≤ λ (value in line 2).

For output value 0

r′3 x1 = 0 and x2 ≤ λ ⇒ S = 0 (value 0 in column 1);
r′4 x1 ≤ λ and x2 = 0 ⇒ S = 0 (value 0 in line 1).

This set of rules can be expressed by means of a piecewise unary function
formed by the minimum of the following max-terms

– r′1: max(ψ12(x2), λ);
– r′2: max(ψ21(x1), ψ22(x2), λ) with ψ21(λ) ≤ λ;ψ22(λ) ≤ λ;
– r′3: max(ψ31(x1), ψ32(x2)) with ψ32(λ) = 0;
– r′4: max(ψ41(x1), ψ42(x2)) with ψ41(λ) = 0;
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The piecewise unary function that corresponds to the superposition of tables
in Fig. 2 verifies

min(max(ψ12(x2), λ),max(ψ21(x1), ψ22(x2), λ),

max(ψ31(x1), ψ32(x2)),max(ψ41(x1), ψ42(x2))) ≥ f(x1, x2).

It can be checked that this piecewise unary function acting as an upper bound
of f becomes equal to f , provided that ϕ12(λ) = 1, which ensures value 1 on
entry (1, λ).

1 1 1

≤ 1 ≤ 1 ≤ 1

λ λ λ

1 1 1

λ λ 1

λ λ 1

1 1 1

0 ≤ 1 1

0 ≤ 1 1

1 1 1

≤ 1 ≤ 1 1

0 0 1

Fig. 2. r′1 r′2 r′3 r′4

We can find utility functions in such a way that the upper bound coincides
with the function f and can be expressed as a minimum of Sugeno integrals.
Namely rules r′1 and r′4 can be put together and yield a capacity μ such that
μ(2) = λ and μ({1, 2}) = 1. We can unify the utility functions appearing in the
max-terms for these rules: ψ1(λ) = 0, ψ2(λ) = 1; rule r′3 yields a capacity ν
such that ν({1, 2}) = 1. We need utility function ψ′

2(λ) = 0, while ψ′
1 can be

the identity. Rule r′2 holds if we use the same utility functions as for rule r′3.
We get:

f(x1, x2) = min(Sμ,ψ(x), Sν,ψ′(x)) = min(max(λ, ψ2(x2)),

max(ψ1(x1), ψ2(x2)),max(x1, ψ
′
2(x2))) �

To generalize the approach outlined in the above example we can consider
the following steps.

1. Transforming the function into a set of selection (resp. deletion) rules.
2. Expressing each rule as a weighted min-term (resp. max-term) involving unary

functions, and building the corresponding df-PUF (resp. cf-PUF).
3. Grouping min-terms (resp. max-terms) into Sugeno utility functionals, by

unifying the utility functions for each involved variable.

In order to find the minimal set of selection rules that can represent (a
lower bound of) an aggregation function f , we can proceed as follows. Consider
δ = f(λ1, . . . , λn) and the Cartesian products of the form Λδ = ×n

i=1[λi, 1]. We
can restrict to the maximal sets of this form in the sense of inclusion, i.e.,

Kδ = max
⊆

{Λδ : δ = f(λ1, . . . , λn), (λ1, . . . , λn) ∈ Ln}.
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For each such maximal hypercube Λδ ∈ Kδ and each δ > 0, we can write the
selection rule ∧

i:λi>0

xi ≥ λi ⇒ f ≥ δ

and construct a max-term following the procedure described earlier in this paper.
For deletion rules, the procedure is similar, but we consider maximal sets of

the form Mδ = ×n
i=1[0, λi], δ < 1 and for each of them, define the deletion rule

∧
i:λi<1

xi ≤ λi ⇒ f ≤ δ,

and construct a min-term.
While Step 2 of the above procedure is obvious to get a df-PUF (resp. cf-

PUF), we again get a non-parsimonious representation. Moreover in order to
have an exact representation of the aggregation function f using selection rules
only (or deletion rules only), we may need to enforce additional constraints on
the utility functions as patent in Example 4. Finally, Step 3 should be more
formally defined, as the choice of the groupings of max-terms (resp. min-terms)
of the df-PUF (resp.cf-PUF), and the alignment of utility functions so as to form
several Sugeno utility functionals to be combined does not seem to be unique.
The question of finding a minimal representation of any aggregation function on a
finite scale by means of conjunction or a disjunction of Sugeno utility functionals
is a matter of further research.

It is interesting to measure the improved expressive power, when going from
Sugeno integrals to monotonic aggregation functions on L. For instance in the
case when |L| = 3 as in Example 4, it is easy to check from Fig. 3 that there
are 49 = 7 × 7 idempotent aggregation functions, only 9 of which are Sugeno
integrals, all of the form max(min(x1, μ(1)),min(x2, μ(2)),min(x1, x2)), with
μ(1), μ(2) ∈ L.

x2 ↑ x1 → 0 λ 1

1 d ≥ c ≥ max(λ, c) 1

λ c ≤ λ λ ≥ max(λ, b)

0 0 a ≤ λ b ≥ a

Fig. 3. Aggregation functions on the three-valued scale

5 Conclusion

The main result of this paper is to show that any set of rules involving thresh-
olds acting as lower bounds (resp. upper bounds) on attribute values or global
evaluation can be represented by piecewise unary functions that in turn can be



546 M. Couceiro et al.

expressed in the form of fuzzy conjunctions or disjunctions of Sugeno integrals on
suitable transformations of the common attribute scale. We have shown that this
family of functions corresponds to monotonic aggregation functions on a finite
scale. We have shown how to express such an aggregation function by means of
a set of multi-thresholded rules, that in turn can be captured by combination of
Sugeno utility functionals.

These results could be applied to learning aggregation operations (hence
rules with thresholds) from qualitative data, viewing the latter as a partially
defined aggregation table. There is another approach to this problem, based on
Sugeno integrals and single-thresholded rules [4,6]. In these papers, the idea is
to approach a set of data from above and from below by two standard Sugeno
integrals with respect to an upper and a lower capacity, which is not always
possible. In this method, there is no utility function. In contrast, an approach
based on our result seems to lead to the conjunction or the disjunction of several
Sugeno integrals (hence several capacities) and several unary functions acting as
utility functions, which may require the tuning of many parameters. However,
the latter drawback can be alleviated by searching for a minimal representation,
which is a topic for further research.
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Abstract. In the article, the authors undertook to resolve a burden-
some problem in the OFN calculus concerning so-called improper shapes.
Although the calculations are possible for all shapes of the numbers in
the OFN notation but the interpretation of the numbers of improper
shapes has been rather poor and little intuitive. Moreover, indeed, an
effective fast calculus in OFN arithmetic has lost some of its reliability
due to those shapes, which was indicated by the critics. First the authors
presented the definition for the adoption of an order by the created OFN
number, which has a significant impact on the results of the calcula-
tions. Then they defined a new, unprecedented normalization operator
- ShapeNO. For given four coordinates of an OFN number the authors
presented all 256 variants of its theoretically possible shapes and normal-
ized all of them, which resulted in only a dozen or so repetitions. This
article is another element of the series of related basic studies on the
artificial intelligence inspired by nature, where new methods in the OFN
area allow creation and development of new meta-heuristic methods of
swarm intelligence. Thanks to that operator, arithmetic operations have
been simplified, fuzzy input and output data do not cause consternation
during the interpretation and the time needed to perform the calculation
itself has been shortened.

Keywords: Fuzzy numbers · OFN · Normalization operator

1 Introduction

One of important areas of the computational intelligence is the fuzzy logic. It
allows to define and to infer under conditions of naturally imprecise concepts
(terms) and literals. The origins of that theory go back to 1960’s. The professor
of the Columbia University in New York and of Berkeley University in California
Lotfii Askar Zadeh is regarded as the author of that theory. He published the
paper entitled Fuzzy sets in the journal Information and Control in 1965. He
defined the “fuzzy set” term. This allowed to record the uncertainty and perform
the operations on imprecise terms [42].

c© Springer International Publishing AG 2018
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By generalizing, one can say that fuzzy numbers enable presentation of possi-
ble data values as well as abstract values either fully or partially [10,35]. Diverse
approaches to that issue can be noticed in the definition of the fuzzy number
[21,22,28]. According to some authors, the definition includes both single kernel
sets, which are referred to as actual fuzzy numbers, as well as sets with a ker-
nel in form of an interval, which is called a fuzzy interval. In accordance with
[3,7,22] the above definitions come down to the following Definition (1). Whereas
J. Kacprzyk in his paper [24,40] defined a fuzzy number as a fuzzy set on R with
a continuous membership function, and named such a number a normal number
[28,30,39].

Definition 1. A fuzzy number is defined as a fuzzy set A specified on a set of
real numbers, A ⊆ R, for which the membership function:

μA : R → [0, 1] (1)

– a fuzzy set A is normal when there is an argument for which it satisfies the
following conditions:

supp μA(X) = 1, x ∈ R (2)

– a fuzzy set A is convex when its membership function is convex:

∀x,y∈R ∀λ∈[0,1] μA[λx + (1 − λ)y] ≥ min μA{μA(x), μA(y)} (3)

– a membership function μA(x) is constant at intervals, has a finite number of
discontinuity numbers, i.e. such that the left-hand limit is different from the
right-hand limit.

Figure 1 is an example of the interpretation of a fuzzy number. The number
A is a negative number, while the numbers C and D are called positive fuzzy
numbers, accordingly. The number B is neither positive nor negative, i.e. its
support contains zero.

Fig. 1. The example of fuzzy numbers
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Definition 2. μA : R[0, 1] (1) a fuzzy set A is normal when there is an argument
for which it satisfies the following conditions:
The fuzzy number A ⊆ R is positive, if:
∀x < 0 μA(x) = 0
The fuzzy number A ⊆ R is negative, if:
∀x > 0 μA(x) = 0

As various shapes of the membership function are possible, as specified by
the authors in their numerous papers [5,12,16,17], the development of matching
fuzzy logic arithmetic has become a non-trivial problem. a triangular member-
ship function:

a Gaussian membership function:

a trapezoid membership function:
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a sigmoidal membership function:

an S class membership function:

a Z class membership function:

Singleton (defuzzyfied value):

Many researchers took up the issue of building an Zadeh’s arithmetic enabling
to perform calculations for selected shapes of the membership function [41]. One
of the most popular arithmetics was the LR one proposed by Dubois and Prade
[42]. An interesting approach, i.e. constrained fuzzy arithmetic (CFA) can be
found in articles of Klir [13,14] and in the article of Chang and Hung (see [6]).
Another approach has been proposed by Piegat and Plucincki in RMD arithmetic
[32,33]. However, for the needs of this article, the most important is the OFN
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arithmetic introduced by Kosinski, Slezak and Prokopowicz [7,25,36], which,
in accordance with the intentions of the authors, enables calculations on fuzzy
numbers of various membership function shapes [17–20].

2 The OFN Numbers Normalization Operator

However, an ordered fuzzy number is, in accordance with the intention of the cre-
ators [25,36], the generalization of shapes and takes the trapezium form (Fig. 2).

Fig. 2. An ordered fuzzy number with (a) positive order (b) negative order

Definition 3. A membership function of an ordered fuzzy number A is the
function μA: R → [0, 1] if defined for x ∈ R as follows:

x /∈ supρA ⇒ μA(x) = 0
x ∈ (1−

A, 1+A) ⇒ μA(x) = 1 (4)
x ∈ supρA ∧ x /∈ (1−

A, 1+A) ⇒ μA(x) = max(f−1
A (x), g−1

A (x))

The above membership function can be used in the control rules simi-
larly to the way in which the membership of classic fuzzy numbers is used
[1,2,4,8,11,15,16,29,34,37,38]. All quantities that can be found in fuzzy con-
trol describe a selected element of reality [26,27]. The process of determining
this value is called a fuzzy observation. Unfortunately, as repeatedly mentioned
by the authors [Y XR) the arithmetic operations, although they are always
possible in the OFN domain, encounter difficulties in interpretation among
the representations of numbers which have traditionally been called improper
numbers [9,10,23,31]. Improper numbers are for example numbers for which
core(A) > sup(A). This means that the support of the number is smaller than
the core of the number or sometimes equal to one. The interpretation of this
type of numbers is dubious but a number of such shape may be the result of a
calculation or an argument for the calculation. To solve problems of that type,
the authors of this article proposed the Shape Normalization Operator (SNO).
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3 Mathematical Grounds of SNO Operator

Let A be the space of fuzzy numbers. A fuzzy number A ∈ A is described by
the four ordered real numbers: a, b, c, d, i.e. A = (a, b, c, d). These numbers are
called coordinates of A. For any a ∈ R the fuzzy number A = (a, a, a, a) is called
a singleton. The set of singletons is denoted by S. We distinguish the following
subsets P,Q, T of A, defined by

P = {A ∈ A : a 	= b},
Q = {A ∈ A : a = b ∧ a 	= c},
T = {A ∈ A : a = b = c ∧ a 	= d}.

Of course, the sets P,Q, T and S are pairwise disjoint and moreover family
F = {P,Q, T, S} is a partition of A, i.e. A = P ∪ Q ∪ T ∪ S. We define order of
fuzzy number in the following way:

an arbitrary A ∈ P has positive order if a < b, otherwise order of A is
negative,

an arbitrary A ∈ Q has positive order if a < c, otherwise order of A is
negative,

an arbitrary A ∈ T has positive order if a < d, otherwise order of A is
negative.

Now, we define the operator Ψ : A −→ A of the form

Ψ(A) = Ψ(a, b, c, d) =
{

(α1, α2, α3, α4) if order of A is positive,
(β1, β2, β3, β4) if order of A is negative.

where (α1, α2, α3, α4) is a permutation of (a, b, c, d) such that α1 ≤ α2 ≤
α3 ≤ α4,(in other words α1 = min{a, b, c, d}, α2 = min{{a, b, c, d} \ {α1}},
α3 = min{{a, b, c, d} \ {α1, α2}}, α4 = max{a, b, c, d}.) and (β1, β2, β3, β4) is
a permutation of (a, b, c, d) such that β1 ≥ β2 ≥ β3 ≥ β4, (in other words
β1 = max{a, b, c, d}, β2 = max{{a, b, c, d} \ {β1}}, β3 = max{{a, b, c, d} \
{β1, β2}}, β4 = min{a, b, c, d}.) The operator Ψ on the set S is the identity i.e.
∀ A∈S, Ψ(A) = A.

4 The Catalog of OFN Shapes in Their Notation

Below is a catalog of all the 256 possible shapes which may be adopted by A(a, b,
c, d) number in OFN notation. However, as stated in the paragraph concerning
the mathematical background, each of a, b, c, d coordinates belongs to R set of
real numbers and their sequence is relevant.
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5 The Set of Normalizations for OFN Numbers of Unique
Shapes

Below is the list of unique shapes of OFN numbers. Each of them was subject to
SNO(A) normalization. As a result, the set of fuzzy numbers in OFN notation
was obtained which does not include any improper numbers. Each number is
clear and its interpretation is unambiguous.
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6 Conclusions

As can be seen in the previous paragraph, 256 possible shapes of the number in
OFN notation have been analyzed. Such value of combinations of the coordinates
is the result of variations with repetitions of a vector with four fields. Half of
the shapes of the analyzed numbers were characterized by a positive orientation,
while the other half by a negative one. Prior to normalization of the shape of the
number, its current order is checked using the formula specified in paragraph 3.
Then the normalization itself is performed. The normalization process must lead
to achievement of so-called proper shapes from all the shapes of the numbers.
As a result of this operation only shapes of numbers for which the core(A) value
was not higher than the supp(A) value were obtained. Numbers of that type
are suitable for interpretation in all conditions and their accompanying orders
in OFN notation allow to carry more information than in other notations. The
results of the conducted experiments show that the normalization has influence
on 12, 7% of possible numbers. Proper numbers do not change, the same as the
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singleton. As a rule, the observation of the normalization experiment indicates
that numbers are normalized identically irrespective of the order. However, the
original order is recorded and assigned to the number after normalization because
it carries information on a trend which is desirable and critical for OFN.
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Abstract. In this paper, we will study partially-defined fuzzy relations
i.e., fuzzy relations with membership functions that are not necessarily
defined everywhere. We will handle them in a suitable framework that
is a partial fuzzy set theory. It provides tools for dealing with undefined
values of the membership by means of special operations based on the
connectives and quantifiers of a background fuzzy logic. We analyze a
suitability of operations of a partial fuzzy set theory for a meaningful
definition of the functionality property. This property determines fuzzy
functions and we will be concerned with their properties.

Keywords: Fuzzy function · Partial function · Undefined values · Func-
tional relation

1 Introduction

Partial fuzzy set theory (PFST) that has been introduced in [1], formalizes fuzzy
sets that can have undefined membership degrees and offers basic fuzzy set
operations and properties for their handling. Consequently, it provides tools for
dealing with undefined values of the membership that may be useful in may
practical applications, where the undefinedness is present. The background logic
for PFST is the fuzzy partial propositional logic that has been proposed in [2],
there, the motivations and explanations for the choice of a logical formalism can
be found.

We will touch only a few aspects of the theory. Our purpose is to present
first steps towards analysis of fuzzy functions in PFST. In our approach, fuzzy
function is a fuzzy relation fulfilling the functionality property—a direct gener-
alization of the classical property that specifies functions out of relations. In the
fuzzy community the functionality property has been studied by many authors
[3–6] and it is also known as the unique mapping [7]. We will propose the notion
of functionality for fuzzy relations with variable domains in agreement with our
intuitive expectations. Further, we will study properties of fuzzy functions w.r.t.
fuzzy set operations and a relational composition.
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
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We stem from [8] where the functionality has been explored in the frame-
work of Fuzzy Class Theory [9]. We define the semantics of a simple first-order
extension of fuzzy partial propositional logic and a simple theory of partial fuzzy
sets of the first order. We next introduce a selection of basic partial fuzzy set—
theoretic notions and present a few results about these notions. Because of space
limitation, we omit all proofs; they will be given in the upcoming full paper.

2 Partial Fuzzy Sets

We call fuzzy sets that can have undefined membership degrees—partial fuzzy
sets. We identify partial fuzzy sets with pairs A = (XA, μA), where XA ⊆ U
is a crisp domain of A, U is a universe of discourse, and μA : XA → L is a
membership function from XA to a suitable structure L of membership degrees.
We denote this fact by A ⊂∼ XA.

Whenever it is clear from the context, we refer to partial fuzzy sets simply
as fuzzy sets. But a reader should keep in mind that from the point of view of
the universe U a fuzzy set A ⊂∼ XA is partial.

2.1 The Representation of Partial Fuzzy Sets

The main idea of the representation of partial fuzzy sets is to replace undefined
membership values by a dummy element • that stands outside the scale for truth
values L and is incomparable with any a ∈ L. Consequently, original partial
membership functions to L of fuzzy sets (with undefined membership values)
are replaced by total functions to the extended scale L ∪ {•} that represent
partial fuzzy sets.

Let A = (XA, μA) be a fuzzy set, where XA is a crisp domain and μA : XA →
L is a membership function from XA to a suitable structure L of membership
degrees. We introduce a new dummy index • /∈ L as a new membership degree,
designed for undefined membership values. And we set μA(x) = • for all x /∈ XA.

Definition 1. Let L �= ∅ and L• = L ∪ {•}. We shall say that a fuzzy set
A = (XA, μA) in a universe U ⊇ XA is represented by a L•-valued membership
function μ̇A on X, defined for each x ∈ U as:

μ̇A(x) =

{
μA(x) if x ∈ XA

• if x ∈ U \ XA.
(1)

This representation is clearly one to one correspondence between partial fuzzy
sets on the universe U and L•-valued functions on U . Note that the original fuzzy
set A (Fig. 1(a)) can be recovered from μ̇A (Fig. 1(b)) by setting XA = {x ∈ U |
μ̇A(x) �= •} and defining μA as the restriction of μ̇A to XA. Therefore we may
handle partial fuzzy sets by means of total L•-valued functions on a common
universe U .



Fuzzy Functions 565

(a) The fuzzy set A = (XA, µA). (b) The representation µ̇A for A.

Fig. 1. The representation of the fuzzy set A = (XA, µA) on a universe U ⊇ XA.

2.2 Operations with Undefined Degrees

Then, a natural question arise: how do we define usual fuzzy set-theoretical oper-
ations such as the unions or intersections of fuzzy sets for fuzzy sets on different
domains? There are several meaningful options that follows from suitable exten-
sions of connectives used in definitions of the intended operations. In this paper,
we will recall only two families of extended connectives descended from classical
3-valued connectives [10–12]. For more explanation and other extensions see [2].

In the sequel, let us assume L be an MTL-algebra of the form

L = 〈L,∨,∧, ∗,⇒, 0, 1〉. (2)

We will call the operation ∗ product and ⇒ residuum.

Convention: To reduce the number of parenthesis used in mathematical expres-
sions we set that ∗ has the highest priority and ⇒ the lowest priority out of all
operations that are at the disposal.

Definition 2. Let L be an MTL-algebra of the form (2).

– The Bochvar operation cB ∈ {∧B,∨B, ∗B,⇒B}, cB : L• × L• → L• is inter-
preted by the following truth table for all binary operations of L (and similarly
for higher and lower arities):

cB β •
α α c β •
• • •

(3)

– The Sobociński operation cS ∈ {∧S,∨S, ∗S}, cS : L• × L• → L•, which treat
• as the neutral element; and the Sobociński-style residuum ⇒S residuated
with ∗S:

cS β •
α α c β α

• β •

⇒S β •
α α ⇒ β ¬α

• β •
(4)
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The names Bochvar and Sobociński in the above definitions of operations
have been chosen according to the interpretation of three-valued connectives
(namely, Bochvar and Sobociński conjunction and disjunction, see, e.g., [12])
with which they coincide on the three values {0, 1, •}.

Definition 3. Let αi ∈ L• for each i ∈ I (where I is an arbitrary index set).
Then we define:

– The Bochvar infimum
∧

B
i∈I

αi =

{
inf
i∈I

αi if αi �= • for each i ∈ I

• otherwise

– The Bochvar supremum
∨

B
i∈I

αi =

⎧⎨
⎩

sup
i∈I

αi if αi �= • for each i ∈ I

• otherwise

– The Sobociński infimum
∧

S
i∈I

αi =

⎧⎨
⎩

inf
i∈I

αi �=•
αi if αi �= • for some i ∈ I

• otherwise

– The Sobociński supremum
∨

S
i∈I

αi =

⎧⎪⎨
⎪⎩

sup
i∈I

αi �=•
αi if αi �= • for some i ∈ I

• otherwise.

Observe that all four operators coincide with the usual supremum and infi-
mum on L if all of their operands are defined. Otherwise, the Bochvar operators∧

B,
∨

B yield the undefined value • as soon as any operands are undefined, while
the Sobociński operators

∧
S,

∨
S ignore the undefined values and only yield • if

all of their operands are undefined.

Remark 1. The Bochvar (Sobociński) infimum and supremum correspond with
the Bochvar (Sobociński) universal and existential quantifiers, respectively,
see [1].

2.3 Unions and Intersections of Fuzzy Partial Sets

Definition 4. Let us consider two fuzzy sets A = (XA, μA) and B = (XB , μB):

– We define

A ∪B B = (XA ∩ XB , μA∪B) Bochvar union ofAandB

A ∩B B = (XA ∩ XB , μA∩B) Bochvar intersection ofAandB

A �B B = (XA ∩ XB , μA�B) Bochvar strong intersection ofAandB

where

μA∪BB(x) = μA(x) ∨ μB(x), for all x ∈ XA ∩ XB

μA∩BB(x) = μA(x) ∧ μB(x), for all x ∈ XA ∩ XB

μA�BB(x) = μA(x) ∗ μB(x), for all x ∈ XA ∩ XB

Bochvar union is denoted by ∪B, Bochvar intersection is denoted by ∩B and
Bochvar strong intersection is denoted by �B.
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– We define Sobociński union of A and B is defined by

A ∪S B = (XA ∪ XB , μA∪SB) Sobociński union of A and B

A ∩S B = (XA ∪ XB , μA∩SB) Sobociński intersection of A and B

A �S B = (XA ∪ XB , μA�SB) Sobociński strong intersection of A and B

where

μA∪SB(x) = μA(x) ∨ μB(x), for x ∈ XA ∩ XB ,

μA∩SB(x) = μA(x) ∧ μB(x), for x ∈ XA ∩ XB ,

μA�SB(x) = μA(x) ∗ μB(x), for x ∈ XA ∩ XB ,

μA∪SB(x) = μA∩SB(x) = μA�SB(x) = μA(x), for x ∈ XA \ XB ,

μA∪SB(x) = μA∩SB(x) = μA�SB(x) = μB(x), for x ∈ XB \ XA.

That is, the membership degree of x in A ∪B B is considered to be defined only
if the membership degrees of x in both A and B are defined.

By means of operations given in Definition 2, the representation of Bochvar
and Sobociński unions and intersections can be expressed in a uniform way:

μ̇A∩BB(x) = μ̇A(x) ∧B μ̇B(x) (5)
μ̇A�BB(x) = μ̇A(x) ∗B μ̇B(x) (6)
μ̇A∪BB(x) = μ̇A(x) ∨B μ̇B(x) (7)
μ̇A∩SB(x) = μ̇A(x) ∧S μ̇B(x) (8)
μ̇A�SB(x) = μ̇A(x) ∗S μ̇B(x) (9)
μ̇A∪SB(x) = μ̇A(x) ∨S μ̇B(x), (10)

for x ∈ U .
Thus, Bochvar and Sobociński operations with fuzzy sets can be defined

straightforwardly by means of Bochvar and Sobociński operations with their
representations.

2.4 Characteristics of Fuzzy Partial Sets

Characteristics that have been introduced for fixed-domain fuzzy sets can be
modified for fuzzy partial sets in a straightforward manner. Since, we have two
types of operations at a disposal, consequently, more than one meaningful mod-
ification is available. It appears, there are also several characteristics which are
meaningful for fuzzy partial sets.

Definition 5. Let A = (XA, μA) be a fuzzy set, XA ⊆ U , and μ̇A the represen-
tation of A due to Definition 1.

– We say that A is total on U and write TotX(A) (or simply Tot(A) if the
universe U is fixed) if dom A = U , i.e., if μ̇A(x) �= • for all x ∈ U .

– We say that A is crisp and write Crisp(A) if μA(x) ∈ {0, 1} for all x ∈ XA,
i.e., if μ̇A(x) ∈ {0, 1, •} for all x ∈ U .
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Alongside, we will use binary relations between partial fuzzy sets, such as
equality and inclusion.

Definition 6. Let A = (XA, μA) and B = (XB , μB) be fuzzy sets, where
μA : XA → L and μB : XB → L, and let U ⊇ XA ∪ XB. Then we say that:

1. A and B are strongly equal, written A = B, if XA = XB and μA(x) = μB(x)
for all x ∈ XA.

2. A is a subfunction of B, written A =sub B, if XA ⊆ XB and μA(x) = μB(x)
for all x ∈ XA.

3. A is strongly included in B, written A ⊆ B, if XA = XB and μA(x) ≤ μB(x)
for all x ∈ XA.

4. A is subincluded in B, written A ⊆sub B, if XA ⊆ XB and μA(x) ≤ μB(x)
for all x ∈ XA.

Remark 2. The relations introduced in Definition 6 are bivalent (yes/no). Graded
notions of inclusion and equality (cf. [13], [14, Sect. 18.2.2]) can be defined too,
e.g., by means of the operators

∧
B,

∧
S and ⇒B,⇒S of Sect. 2.2. For instance,

the degree of Bochvar–Sobociński inclusion might be defined as:

(A ⊆BS B) =
∧

B
x∈U

(
μ̇A(x) ⇒S μ̇B(x)

)
.

In this paper, though, we shall leave graded relations between partial fuzzy sets
aside.

3 Fuzzy Relations in PFST

Let us start with the Cartesian product of (two) fuzzy sets. In our apparatus,
we set μ̇A×B(x, y) = • for (x, y) outside the domain of A × B. As can be easily
observed, it is the Bochvar extension ∗B of the product ∗, which should then be
used to make the domain of A × B equal to XA × XB . Therefore we define:

Definition 7. Let A = (XA, μA) and B = (YB , μB) be fuzzy sets, where
μA : XA → L and μB : YB → L. Let U ⊇ XA ∪ YB and let μ̇A, μ̇B : U → L• be
the representations of A,B. The Bochvar Cartesian product A ×B B is defined
by the representation μ̇A×BB : U × U → L• as follows:

μ̇A×BB(x, y) = μ̇A(x) ∗B μ̇B(y) for each (x, y) ∈ U × U. (11)

Remark 3. Expanding the definition of ∗B, we obtain:

μ̇A×BB(x, y) =

{
μA(x) ∗ μB(y) ifx ∈ XA and y ∈ YB

• otherwise.

Thus, the Bochvar Cartesian product thus captures the usual definition of Carte-
sian product of fuzzy sets.

Besides the Bochvar product ∗B, we could also use another extension of ∗ to
L• in (11), for instance the Sobociński product ∗S.
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We can define the notion of binary fuzzy relation between two fuzzy sets as
follows:

Definition 8. Let A = (XA, μA) and B = (YB , μB) be fuzzy sets, and U ⊇
XA, YB a common universe. Let R = (XR, μR), where XR ⊆ U × U and
μR : XR → L.

We say that R is a fuzzy relation between A and B if R ⊆sub A ×B B.
If A = B, we speak of fuzzy relations on A.

The notion of binary fuzzy relations between two crisp sets is a special case
of the one given in the above definition.

Proposition 1. Let R,R1, R2 be fuzzy relations between fuzzy sets A and B.

1. If A ⊆sub A′ and B ⊆sub B′, then R is also a fuzzy relation between A′

and B′.
2. The fuzzy relations R1∩BR2, R1∩SR2, R1�BR2, R1�SR2, are fuzzy relations

between A and B as well.
3. If A and B are crisp, then analogous claims hold also for ∪B,∪S and �B,�S.
4. λ = (∅, ∅) is the smallest and A ×B B the largest fuzzy relation between A

and B with respect to subinclusion ⊆sub.

4 Relational Composition of Fuzzy Relations

Relational composition sup-T of fuzzy relations is intended to have the following
values:

μ̇R◦SBS(x, y) =

{
μR◦S(x, y) for (x, y) ∈ A × C

• for (x, y) ∈ (U × U) \ (A × C)
(12)

It leads to the following setting of operations: a domain of composition is
obtained when using the Bochvar operation ∗B for combining the degrees of
both relations and the Sobociński supremum for aggregating them. Hence, we
obtain the following generalization of sub-T composition of fuzzy relations:

Definition 9. Let R = (A×B,μR) and S = (B×C, μS), where μR : A×B → L
and μS : B×C → L be fuzzy relations and U ⊇ A∪B∪C a common universe. Let
μ̇R, μ̇S : U × U → L• be the representation of R,S as in Definition 1. Then, we
define the Sobociński–Bochvar sup-T composition R ◦SB S as the fuzzy relation
on U such that for all x, y ∈ U :

μ̇R◦SBS(x, y) =
∨

S
z∈U

(
μ̇R(x, z) ∗B μ̇S(z, y)

)
.
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5 Fuzzy Functions in PFST

In the sequel, let A and B be crisp sets, U ⊇ A,B be a common universe, and
≈i = (X≈i

, μ≈i
), for i = 1, 2, be fuzzy relations on A,B, respectively. Moreover,

let R = (XR, μR) be a fuzzy relation between A and B.
We require from the definition of fuzzy function the following:

μ≈1(x, x′) ∗ μR(x, y) ∗ μR(x′, y′) ≤ μ≈2(y, y′), (13)

for all (x, x′) ∈ X≈1 , (y, y′) ∈ X≈2 and (x, y), (x′, y′) ∈ XR.
This specification leads to the definition using the representation of fuzzy

sets which combines Sobociński infimum and Bochvar operations.

Definition 10. Let μ̇R, μ̇≈1 , μ̇≈2 : U ×U → L• be the representation of R,≈1,≈2

as in Definition 1.

– We say that R is a fuzzy function between A and B w.r.t. ≈1,≈2 if∧
S

x,x′,y,y′∈U

(μ̇≈1(x, x′) ∗B μ̇R(x, y) ∗B μ̇R(x′, y′) ⇒B μ̇≈2(y, y′)) = 1. (14)

– We say that R is a function between A and B if R is a fuzzy function between
A and B w.r.t. =,=, and moreover, Crisp(R).

5.1 Set Operations and the Relational Composition with Fuzzy
Functions

Let us summarize properties of fuzzy functions.

Theorem 1. Let R = (XR, μR) and S = (XS , μS) be fuzzy functions between
A and B, respectively, w.r.t. ≈1,≈2, moreover, let T = (XT , μT ) be a fuzzy
function between B and C w.r.t. ≈2,≈3 Then

– R ∩B S = (XR ∩XS , μR∩BS), R ∩S S = (XR ∪XS , μR∩SS) are fuzzy functions
between A and B, respectively, w.r.t. ≈1,≈2,

– R �B S = (XR∩XS , μR�BS) is a fuzzy function between A and B, respectively,
w.r.t. ≈1 �B ≈1,≈2 �B ≈2.

Figure 3 demonstrates Bochvar and Sobociński intersections of crisp functions.
Note that R �S S = (XR ∪XS , μR�SS) is not a fuzzy function between A and B,
respectively, w.r.t. ≈1 �B ≈1,≈2 �B ≈2, because R and S are not fuzzy functions
w.r.t. ≈1 �B ≈1,≈2 �B ≈2 on XR \ XS and XS \ XR, respectively.

We will demonstrate it on a simple example over the standard �Lukasiewicz
algebra. Put R = ([0, 0.5]2, μR), S = ([0, 1]2, μS) and ≈1 = ≈2 = S, where
μS(x, y) =df (1 − |x − y|) ∨ 0 and μR(x, y) = μS(x, y) for x, y ∈ [0, 0.5]2 and
μ≈1 = μ≈2 = μS . Then, R�B R is a fuzzy function between [0, 1] and [0, 1] w.r.t.
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(a) A function R = (XR, µR) (b) A function S = (XS , µS)

Fig. 2. Functions with different domains.

≈1 �B ≈1,≈2 �B ≈2. But R �S R is not a fuzzy function w.r.t. ≈1 �B ≈1,≈2

�B ≈2, take e.g. x, x′ = 0.6, y = 0.6, y′ = 0.7 then

μ̇≈1(x, x′) ∗B μ̇R�SR(x, y) ∗B μ̇R�SR(x′, y′) ⇒B μ̇≈2(y, y′)
= 1 ∗B 1 ∗B 0.9 ∗B • ⇒ 0.9 ∗B 0.9︸ ︷︷ ︸

0.8

< 1.

Theorem 2. Let the assumptions of Theorem 1 hold. Moreover, let (y, y′) ∈ ≈2

for all x, x′, z, z′ such that (x, y), (x′, y′) ∈ R and (y, z), (y′, z′) ∈ T .
Then R ◦SB T is a fuzzy function between A and C w.r.t. ≈1,≈3,

(a) The function R B S (b) The function R S S

Fig. 3. Intersections of the functions from Fig. 2.

Theorem 3. Let R = (XR, μR) and S = (XS , μS) be fuzzy functions between A
and B w.r.t. ≈1,≈2.

If R ∪S S is a fuzzy function between A and B w.r.t. ≈1,≈2 then R and S
are fuzzy functions between A and B w.r.t. ≈1,≈2.

If R ∪B S is a fuzzy function between A and B w.r.t. ≈1,≈2 then R and S need
not be fuzzy functions between A and B w.r.t. ≈1,≈2. It is easy to find a crisp
counterexample see Fig. 4, where the Bochvar-union R∪B S is crisp function but
R is not.
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(a) The function R B S (b) A relation R (c) A function S

Fig. 4. Bochvar-union of relations.

6 Conclusions

We have introduced basic notions of the fuzzy set and fuzzy relational calculus
in PFST. The main focus was put to the section devoted to fuzzy functions for
which we have provided some basic properties and illustrative examples. Let
us emphasize the fact that results from the classical fuzzy set theory are not
directly transferable to PFST. As an example we recall Theorem 2, where we
have to add non-trivial requirements. Moreover, we have shown that there are
properties of fuzzy functions that hold in the classical fuzzy set theory but not
in PFST for all types of partial fuzzy set operations.

Acknowledgement. The work was supported by grant No. 16-19170S “Fuzzy partial
logic” of the Czech Science Foundation.
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Abstract. Arden Syntax is a formal language for representing and processing
medical knowledge that is employed by knowledge-based medical systems. In
HL7 International’s Arden Syntax version 2.9 (Fuzzy Arden Syntax), the syntax
was extended by formal constructs based on fuzzy set theory and fuzzy logic,
including fuzzy control. These concepts are used to model linguistic and
propositional uncertainty – which is inherent to medical knowledge – in a variety
of clinical situations. Using these fuzzy methods, we can create medical fuzzy
control systems (MFCSs), in which linguistic control rules are used and evalu-
ated in parallel. Their results are aggregated so that gradual transitions between
otherwise discrete control states are enabled. In this paper, we discuss the
implementation of MFCSs in Fuzzy Arden Syntax. Through code examples from
FuzzyArdenKBWean, an MFCS for weaning support in mechanically ventilated
patients after cardiac surgery, we illustrate the implementation of fuzzy control.

Keywords: Arden Syntax � Fuzzy logic � Fuzzy control � Clinical decision
support systems � Weaning from ventilation

1 Introduction

Arden Syntax is a widely known international standard for computerized knowledge
representation and processing that supports the collection, description, and processing
of medical knowledge in a machine-executable format. With Arden Syntax, medical
rules and procedures can be expressed using algorithmic expressions and conditional
statements. The rule sets are known as medical logic modules (MLMs) and usually
contain sufficient logic to make at least a single medical decision [1]. Due to the fact
that Arden Syntax MLMs can be interconnected and invoke each other, modularized
packages for certain clinical decision support tasks can be established [2].
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A drawback of earlier versions of Arden Syntax is that the modeling of fuzziness of
linguistic clinical terms and uncertainty with respect to clinical conclusions were not
intrinsically supported. Such linguistic and propositional uncertainties are, however,
inherent to medical knowledge. For example, clinical guidelines are sometimes
expressed using linguistic constructs such as “usually” or “often”, which are subject to
interpretation and lead to inter-rater variability. The same is true of clinical concepts
such as “fever”, “increased glucose levels”, “leukopenia”, and many others. As of
version 2.9, Arden Syntax supports formal operators for fuzzy sets and fuzzy logic.
Hence we will refer to this version as Fuzzy Arden Syntax [3]. Fuzzy sets can be
employed to formally model the unsharpness of linguistic clinical concepts in relation to
underlying medical data [4]; fuzzy logic can then be used to evaluate logical combi-
nations of declared clinical concepts in order to draw conclusions about more abstract
higher-level clinical concepts, and propagate the results through an inference network.

A number of medical applications have been based on fuzzy sets and fuzzy logic
[5, 6]. Fuzzy control is of special interest in this paper. Medical fuzzy control systems
(MFCSs) are based on linguistic control rules. The rules are evaluated in parallel, and
their outcome is aggregated such that small transitions between “on” and “off” are
possible. Examples of MFCSs include the control of drug dosages for human immun-
odeficiency virus and acquired immune deficiency syndrome (HIV/AIDS)-infected
patients [7], the control of limb prostheses [8], and the regulation of mechanical venti-
lators in intensive care units [9].

In the present report, we discuss how fuzzy control is intrinsically supported in
Fuzzy Arden Syntax. Using examples from FuzzyArdenKBWean, a system for weaning
support in mechanically ventilated patients after cardiac surgery [10], we show how
fuzzy sets and fuzzy logic control rules can be implemented in Fuzzy Arden Syntax.
These MLMs were implemented and executed using the ArdenSuite framework for
medical knowledge representation and rule-based inference, which supports Arden
Syntax to version 2.10 [11] (including Fuzzy Arden Syntax).

2 Methods

2.1 Arden Syntax

Arden Syntax is a medical knowledge representation and processing standard with
properties that make it well suited for the computerized representation of medical
knowledge [12]. In Arden Syntax, the program code resembles natural language, thus
healthcare professionals can understand the code more easily. Furthermore, it supports
data types tailored to the needs of medical documentation, such as data concerning time
and duration. Finally, medical knowledge is separated from technical code, which
improves code transparency. We will describe Arden Syntax version 2.9 to the extent
that the reader will be able to understand the present report and the examples mentioned
therein. For a complete description of the syntax we refer to the Arden Syntax version
2.9 specification [3].

In Arden Syntax, knowledge bases are segmented into MLMs. Each MLM is
constructed hierarchically. At the top level, an MLM is divided into four categories:
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maintenance, library, knowledge, and resources. These categories, in turn, are divided
into slots. The maintenance category contains metadata on the MLM; it includes
self-explanatory slots that describe various aspects of the MLM, such as title, author, or
version. The library category is meant to provide contextual and background infor-
mation about the MLM. Using slots such as purpose, explanation, keywords, citations,
and links, the MLM author(s) can describe why the MLM was created, what it does,
and refer to external sources. The actual implementation of algorithms and rules takes
place in the knowledge category. MLM parameters can be declared in the data slot.
Apart from input parameters, MLMs can also acquire data from external sources
through curly braces expressions, which allow for dynamic interaction between an
MLM and the data-providing host system. The MLM algorithms, rules, or program
logic expressions are implemented in the logic slot. Other MLMs can also be invoked.
Execution in the logic slot is finished with a concluding statement. If the statement
proves to be true, the content of the action slot is executed, such as sending data to an
external data source or returning a value. Finally, the conditional resources category
allows for the construction of localized messages.

2.2 Fuzzy Arden Syntax

In this section, we present a selection of fuzzy extensions implemented in Fuzzy Arden
Syntax. This is not a complete overview; for an extended survey of fuzzy methods in
Fuzzy Arden Syntax, we refer to previously published work on the subject [13].

An underlying principle of fuzzy methods in Fuzzy Arden Syntax is the extension
of the syntax’s truth value model. In Fuzzy Arden Syntax, a truth value is defined over
a continuous spectrum in a range [0,1] rather than a dichotomous “true/false” model. In
this range 0 stands for false, 1 for true, and an intermediate value indicates a degree of
truth (or compatibility). Based on this extension, Fuzzy Arden Syntax intrinsically
supports fuzziness with data types, built-in propositional fuzzy logic operators, and
handling of fuzzy conditions in conditional branches.

With the fuzzy set data type, the unsharpness of boundaries in definitions of lin-
guistic concepts can be conveniently modeled and explicitly calculated. A fuzzy set
declaration requires that the boundaries of the fuzzy region be specified. Based on these
boundaries, a linear membership function is associated to the variable, which is then
able to calculate the truth value of measured data with respect to the clinical linguistic
concept under consideration.

Three basic propositional fuzzy logic operations are implemented in Fuzzy Arden
Syntax: conjunction, disjunction, and negation. These operations are equipped to
handle all truth values in the specified range [0,1]. In Fuzzy Arden Syntax, these
operators were implemented by the standard intersection, union, and complement
operators min, max, and 1-x, respectively [14].

Because of the extended truth value model, it is possible that conditions in con-
ditional branches are neither true nor false. When this happens, the affected conditional
branches are executed in parallel; they are also assigned a degree of applicability
(DoA), which refers to the degree to which it is reasonable to use the value of a variable
or set of variables modified or assigned in the respective branch [3]. By default, the
DoA equals 1, and is reduced automatically to a weighted average when a program
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branches on a fuzzy condition; after all, since the condition enabling this program
branch was neither true nor false, any values resulting from its execution are relativized
accordingly.

In Fuzzy Arden Syntax, the DoA was implemented as follows: When n conditional
statements are grouped in if-then-elseif statements with fuzzy values as conditions, the
execution of the MLM is split into n branches, which are executed in parallel. In this
process, each branch is provided with its own set of duplicated variables. Furthermore,
each branch is assigned a DoA, which is the truth value of its condition divided by the
sum of all truth values in the if-then-elseif block.

If, after execution of all conditional branches, the if-then-elseif block is not sub-
sumed using the “aggregate” keyword, the different sets of duplicated variables will
remain separate and the MLM will conclude with multiple return values, each with a
DoA equal to the DoA of its respective program branch. However, if the branches are
aggregated, the values of the variables are joined using a weighted average, and only
one value for each variable is returned, here with a DoA equal to 1.

As a practical example of using fuzzy constructs in Fuzzy Arden Syntax, consider
the MLM code below. Note that we have limited the example to the knowledge
category.

The logic in this MLM is based on infection surveillance criteria defined by the
European Centre for Disease Prevention and Control [15]. Surveillance definitions for
leukopenia (4,000 white blood cells (WBC) per mm3 blood or less) and leukocytosis
(12,000 WBC/mm3 blood or more) are included in these criteria. However, one might
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argue that patients with measured values close to these thresholds are also of interest.
As such, we created fuzzy sets for both clinical concepts that extend beyond the defined
thresholds (Fig. 1).

Truth values are determined during leukocyte count analysis with both fuzzy sets.
The truth values are then combined using a logical fuzzy disjunction. In case the
outcome is neither true nor false, both conditional branches are executed; as the
branches are not aggregated, this would cause the MLM to return two copies of msg,
each with its own DoA. For example, if the laboratory result were to be 4,400
WBC/mm3, the outcome of the conditional statement would be 0.6, due to the evalu-
ation with fs_leukopenia. Consequentially, the DoA of that conditional branch would
be 0.6, and for the else branch it is automatically 0.4. As no aggregate keyword was
provided at the endif branch closure, two copies of the msg variable are returned: one
with a DoA of 0.6 that specifies that “leukocyte count is in pathological range”, and
another with a DoA of 0.4 that states that “leukocyte count is in normal range”.

2.3 Fuzzy Control and FuzzyArdenKBWean

In fuzzy control, the control strategy is written in “if-then-else” statements similar to
natural language rather than using abstract mathematical equations. In these statements,
the unsharpness of linguistic terms is represented by fuzzy sets. As a result, transition
between control states in fuzzy control systems is more gradual than in traditional
control systems.

In general, a fuzzy controller performs the following actions: First, (discrete)
system inputs are acquired from the device to be controlled and possibly from addi-
tional data sources. The inputs are then interpreted with fuzzy sets (fuzzification) to
produce truth values for linguistic concepts. Using the resulting truth values as con-
ditions, all linguistic control rules in the knowledge base are evaluated in parallel,
yielding a set of values for each output parameter. In the last processing step, values in
each set are aggregated and made discrete again (defuzzification). These discrete results

Fig. 1. Graphical depiction of leukopenia and leukocytosis fuzzy sets. Note: WBC, white blood
cells.
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are then either interpreted by the user to manually adjust the system (open-loop sys-
tem), or fed back into the system itself (closed-loop system).

FuzzyArdenKBWean is an open-loop MFCS that works as described above. This
system was developed to improve weaning support in mechanically ventilated patients
after cardiac surgery in intensive care units. More specifically, the system optimizes the
weaning process (i.e., the transition from full to no ventilation support) by trying to
achieve optimal values for arterial oxygen partial pressure (PaO2), arterial carbon
dioxide partial pressure (PaCO2), and the fraction of inspired oxygen (FiO2). It is an
open-loop, knowledge-based control system that proposes changes to peak inspiratory
pressure (PIP), positive end expiratory pressure (PEEP), and FiO2, which patient
caregivers then implement or, due to reasons unknown to the MFCS, deviate from
these proposals.

On average, measured in our tests, FuzzyArdenKBWean reacted 131 min earlier
than the attending physicians, with a standard error of mean (SEM) of 47 min. The
mean delay in case of hyperventilation was 127 min, (SEM 34); the corresponding
value for hypoventilation was 50 min (SEM 21).

2.4 ArdenSuite

In order to obtain examples for the present report, MLMs in FuzzyArdenKBWean were
created with the ArdenSuite software [11, 16]. ArdenSuite is a framework for medical
knowledge representation, rule-based inference, and extended integration in health IT
landscapes. It comprises an integrated development and test environment (ArdenSuite
IDE) and the ArdenSuite Server, including software to interconnect with data sources
(Fig. 2).

Fig. 2. The ArdenSuite framework for medical knowledge representation, rule-based inference,
and health IT integration.
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The ArdenSuite IDE includes an authoring component, which allows users to write
and compile MLMs. Given the appropriate data, the IDE also allows users to imme-
diately test the written MLMs. After MLMs have been compiled, they are uploaded to
the ArdenSuite server. The central element of the ArdenSuite server is the Arden Syntax
engine, which executes the compiled MLMs. On top of the engine, an administration
module is provided. Functionality reaches from being a repository for compiled Arden
Syntax projects to allowing for the management of those projects (such as MLM version
management, activation or deactivation of MLMs in an application, or implementing
temporal restrictions). Furthermore, the server hosts a web service component that
enables service-oriented access to the server by arbitrary clients.

To promote interoperability between the ArdenSuite server and host systems, such
as electronic health records (EHRs), the system is provided with several forms of server
and data access as well as multiple communication standards. For data exchange and
MLM execution, the ArdenSuite server supports various web services. MLM and event
calls are realized by Simple Object Access Protocol (SOAP) or Representational State
Transfer (REST); the data required for MLM processing can also be provided in this
call. Alternatively, data can also be acquired from external databases, Fast Healthcare
Interoperability Resources (FHIR) resources, and through web services for EPIC using
the ArdenSuite connector repository.

3 Results

The first step in implementing FuzzyArdenKBWean was the construction of fuzzy sets
for classifying the inputs in linguistic terms. Based on medical experience, as well as
statistical data from prospective randomized trials and archived data, fuzzy sets were

Fig. 3. Graphical depiction of fuzzy sets defined in FuzzyArdenKBWean.

580 J.S. de Bruin et al.



created for linguistic classifications (Very low, Low, Normal, High, and Very high,
respectively) for both inputs (Fig. 3).

The fuzzy sets in Fig. 3 were used as conditions of fuzzy control rules in the
knowledge base. The following rules were selected for this paper:

R1: IF O2 IS NORMAL AND CO2 IS VERY HIGH THEN PIP = +5;
R2: IF O2 IS LOW AND CO2 IS VERY HIGH THEN PIP = +5;
R3: IF O2 IS LOW AND CO2 IS HIGH THEN PIP = +0;
R4: IF O2 IS NORMAL AND CO2 IS HIGH THEN PIP = +0;
Note that despite rules R3 and R4 seem to have no impact, their presence is vital in

the control mechanism, as they influence the final PIP increase, depending on the truth
value of their condition.

Finally, for defuzzification we used the aggregate command. The resulting (partial)
MLM code is shown below. Due to space constraints, we only defined a subset of the
fuzzy sets used in the rule selection mentioned earlier, namely those that were used in
conditions in this MLM.
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To clarify the workings of this MLM, let us consider an example. Assume that
PaO2 equals 89 and PaCO2 equals 52. This yields the following truth values for the
defined fuzzy sets: (O2_normal, 0.8), (O2_low, 0.2), (CO2_high, 0.6), and (CO2_
very_high, 0.4). Using the standard intersection operator, the truth values for the rule
conditions evaluate to: (R1, min(0.8, 0.4) = 0.4), (R2, min(0.2, 0.4) = 0.2), (R3, min
(0.2, 0.6) = 0.2), and (R4, min(0.8, 0.6) = 0.6). Given that the total sum of truth values
for these conditions equals (0.4 + 0.2 + 0.2 + 0.6 = 1.4), the weighted average of
individual condition truth values, thus the DoA for the conditional branches, is: (R1,
(0.4 /1.4) = 0.285), (R2, (0.2 /1.4) = 0.143), (R3, (0.2 /1.4) = 0.143), (R4, (0.6 /
1.4) = 0.429).

Finally, the aggregate keyword causes a defuzzification of all the program branches
and different PIP_inc copies, resulting in a single PIP_inc value:

PIPinc ¼ 0:285 � 5ð Þþ 0:143 � 5ð Þþ 0:143 � 0ð Þþ 0:429 � 0ð Þ ¼ 2:14

Thus, the program will return the suggestion that the ventilator’s PIP should be
increased by 2.14 percentage points.

4 Discussion

In the present report, we showed how MFCSs can be implemented using fuzzy
methods supported by Arden Syntax version 2.9, an international HL7 standard for
computerized knowledge representation and processing that incorporates fuzzy meth-
ods. This is important because fuzzy control is used increasingly often in medical
devices and systems and has yielded encouraging results [6]. As logical rules are
implemented in natural language, clinical experts together with clinical knowledge
engineers can implement their expertise quite easily without having to learn complex
syntaxes of current programming languages. Uncertainty and incompleteness of
knowledge can be modeled by introducing fuzzy sets for linguistic concepts that are
part of these rules. Through the ArdenSuite server, with its standardized communi-
cation as well as information exchange capabilities, MFCSs can be more easily inte-
grated into small and large healthcare institutions or single medical applications.

In our experience, the implementation of FuzzyArdenKBWean in Fuzzy Arden
Syntax yields the MLMs to be clearer and easier to understand in comparison to
implementations done with functional programming languages (Delphi or Java).
Although clinicians indicated that they were not able to rapidly produce MLMs by
themselves, they did find it straightforward and easy to validate written MLMs and
identify logical flaws. As such, the cooperation between knowledge engineer and
clinician becomes more productive, resulting in high quality medical software.

The limitations of the present report are worthy of note. The study is limited to a
single application, FuzzyArdenKBWean. Other forms of fuzzy control in medicine,
e.g., those mentioned in [5, 6], need to be studied to see whether those can be
implemented in Fuzzy Arden Syntax as well. For example, for defuzzification we used
a weighted average based on truth values and the DoA. Other ways, such as centroid
methods or mean–max methods need to be studied too. Furthermore, we have not yet
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fully tested how the program behaves in real time. Such performance is crucial,
especially in intensive care units.

We performed the first steps in implementing fuzzy control with Fuzzy Arden
Syntax. In the future, we plan to study and address aforementioned limitations, and also
apply Fuzzy Arden Syntax for other medical areas and tasks, such as fuzzy automata
for real-time monitoring purpose.
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Abstract. The union and intersection of two membership degrees of
type-2 fuzzy sets are defined using a generalization of the mathemati-
cal operation of convolution. In the literature, it has been deeply studied
when these convolution operations constitute a bounded distributive lat-
tice. In this paper, we generalize the union and intersection convolution
operations by replacing the functions from [0, 1] to itself with functions
from a bounded lattice L1 to a frame L2, a particular type of bounded
lattice. Similarly to some previous studies in the literature, we analyze
when these new convolution operations constitute a bounded distributive
lattice.

Keywords: Convolution operation · Bounded lattice · Fuzzy logic

1 Introduction

The mathematical operation of convolution is at the basis of mathematical mor-
phology, both for binary [7] and gray-scale images [3]. Specifically, for gray-scale
images the dilation and erosion of an image f by a structuring function b are
defined as follows:

(f ⊕ b)(x) =
∨

y∈E

(f(y) + b(x − y))

and
(f � b)(x) =

∧

y∈E

(f(y) − b(y − x)),

where
∨

represents supremum and
∧

infimum, and E is the set of pixels of f .
Similar convolution operations are at the basis of Zadeh’s extension principle.

For a function on a composite universe X = X1 ×X2, the extension principle is
defined as

f(A1, A2)(z) =
∨

f(x1,x2)=z

min(A1(x1), A2(x2)).

Zadeh’s extension principle has been successfully used to define union and inter-
section operations on type-2 fuzzy sets that generalize Zadeh’s definition of union
and intersection on fuzzy sets [11].
c© Springer International Publishing AG 2018
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Let X be the universe of discourse of a type-2 fuzzy set A. The membership
degree A(x) (with x ∈ X) is a function from [0, 1] to itself, i.e., a function f
belonging to the set F([0, 1], [0, 1]). Hence, the union and intersection convolution
operations of two membership degrees are defined as:

(f � g)(x) =
∨

u∨v=x

f(u) ∧ g(v) := sup{f(u) ∧ g(v) | u ∨ v = x};

and

(f � g)(x) =
∨

u∧v=x

f(u) ∧ g(v) := sup{f(u) ∧ g(v) | u ∧ v = x} ,

for any f, g ∈ F([0, 1], [0, 1]).
Moreover, some relevant studies on the algebra (F([0, 1], [0, 1]),�,�) show

that by considering suitable restrictions on the functions, the union and intersec-
tion constitute a bounded distributive lattice [5,6,8]. Some other works study the
algebraic/lattice-theoretical properties of similar convolution operations when
the functions from [0, 1] to itself are replaced by functions from a finite chain to
another one [9,10]. However, as far as we know, there is no study about these
convolution operations in more general lattice frameworks.

The main purpose of this paper is to study the algebraic laws of the
union and intersection convolution operations when we replace the functions
of F([0, 1], [0, 1]) with functions from a bounded lattice to a frame (a particular
type of bounded lattice). Specifically, we focus on the algebraic laws of a bounded
distributive lattice. We also analyze two different lines of research. On the one
hand, the algebraic laws can be ensured by restricting to particular instances of
bounded lattices. On the other hand, they can also be ensured by restricting to
appropriate subsets of functions that satisfy additional properties.

The structure of the paper is as follows. In Sect. 2 we recall the notion of
bounded distributive lattice and introduce the convolution operations. In Sect. 3,
we analyze whether or not there exist particular classes of lattices where the
union and intersection convolution operations constitute a bounded distribu-
tive lattice. Similarly, in Sect. 4 we study which additional properties should be
imposed on the functions in order to constitute a bounded lattice. In Sect. 5 we
study which subsets of functions are closed under the convolution operations
in order to ensure that the operations are well-defined. We finish with some
conclusions and future research.

2 Convolution on Bounded Lattices

Let L be a set equipped with two binary operations, in our context usually
referred to as join (∨) and meet ∧, and two elements 0L ∈ L and 1L ∈ L.
Table 1 summarizes some potential algebraic properties of binary operations.

The universal algebra constituted by the set L equipped with join and meet
operations that satisfy commutativity, associativity and absorptions laws is
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Table 1. Some algebraic properties of binary operations.

The idempotency laws a ∨ a = a for any a ∈ L
a ∧ a = a for any a ∈ L

The commutativity laws a ∨ b = b ∨ a for any a, b ∈ L
a ∧ b = b ∧ a for any a ∈ L

The associativity laws a ∨ (b ∨ c) = (a ∨ b) ∨ c for any a, b, c ∈ L
a ∧ (b ∧ c) = (a ∧ b) ∧ c for any a, b, c ∈ L

The absorption lawsa a ∨ (a ∧ b) = a for any a, b ∈ L
a ∧ (a ∨ b) = a for any a, b ∈ L

The identity lawsa a ∨ 0L = a for any a ∈ L
a ∧ 1L = a for any a ∈ L

The distributivity lawsa a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for any a, b, c ∈ L
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L

aIn order not to overload the notation we only define the algebraic properties for
commutative operations.

called a lattice [1,2]. It worth mentioning that a lattice can be also defined
as a partially ordered set where each pair of elements has a supremum and an
infimum. If it is a linearly ordered set, the lattice is called a chain.

The join and meet operations of a lattice satisfy the idempotency laws as con-
sequence of the two absorption laws. Additionally, if the identity laws are satis-
fied, the lattice is said to be bounded. Similarly, if the distributivity laws are sat-
isfied the lattice is said to be distributive. A bounded lattice L = (L,∨,∧, 0L, 1L)
is said to be complete, if the supremum and infimum of each subset of elements
exist. A frame [4] is a complete lattice that satisfies the meet continuity property:
for any a ∈ L and any ∅ ⊂ B ⊆ L, it holds that

a ∧
(

∨

b∈B

b

)
=

∨

b∈B

(a ∧ b) . (1)

It is important to mention that any frame is a distributive bounded lattice. In
this paper, we consider a bounded lattice L1 = (L1,∨1,∧1, 01, 11) and a frame
L2 = (L2,∨2,∧2, 02, 12), and the corresponding set of functions between them
F(L1,L2) = {f | f : L1 → L2}, called lattice functions further on. Note that
F(L1,L2) depends on lattices L1 and L2, but we will refer to F without explicitly
indicating the lattices.

Let L1 be a finite lattice. We visualize a function f : L1 → L2 by replacing
the elements of L1 in the Hasse diagram of L1 by their corresponding function
values in L2. For example, let L1 = M2 be the lattice depicted in Fig. 1(a) and
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Fig. 1. (a) Hasse diagram of the lattice L1 = M2 and (b) graphical representation of
the function f1.

let f1 from L1 to L2 = ([0, 1],max,min, 02, 12) be defined as

f1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.2, if x = 01 ,
02, if x = x1 ,

0.5, if x = y1 ,

0.7, if x = 11 .

The function f1 is depicted in Fig. 1(b).
The following operations are of major importance in our work.

Definition 1. The join- and meet-convolution on F are defined, for any f, g ∈
F , as:

(f � g)(x) =
∨

u∨1v=x

f(u) ∧2 g(v) := sup{f(u) ∧2 g(v) | u ∨1 v = x} ;

and

(f � g)(x) =
∨

u∧1v=x

f(u) ∧2 g(v) := sup{f(u) ∧2 g(v) | u ∧1 v = x} .

Note the we are studying the union and intersection convolution operations of
two membership degrees of type-2 fuzzy sets [6,8] when the functions from [0, 1]
to itself are replaced by functions belonging to F . The purpose of this paper
is to study when these operations constitute a bounded distributive lattice. In
order not to overload the notations and since no confusion can occur, we will
drop the subindices 1 and 2 from here on.

Theorem 1. Let F be the set of lattice functions. The convolution operations
� and � satisfy the commutativity and associativity laws.

In general, the convolution operations on the set of functions F([0, 1], [0, 1])
satisfy the idempotency laws. However, this no longer holds when L1 is a bounded
lattice.
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Fig. 2. Graphical representations of the functions in Example 1: (a) the function f ,
(b) the join-convolution f � f , and (c) the meet-convolution f � f .

Example 1. Let L1 = M2 and L2 = ({0, 1},max,min, 0, 1). Consider the function
f ∈ F depicted in Fig. 2(a). The join- and meet-convolution f � f and f � f are
depicted in Figs. 2(b)–(c). One easily verifies that f = f � f and f = f � f .

Remark 1. To study the remaining of the algebraic laws of a lattice, there are
two different lines of research. On the one hand, we can restrict the classes of
lattices L1 and L2. In this manner, the more restrictive the lattices are, the more
algebraic properties the convolution operations satisfy. On the other hand, we
can restrict the set of functions G ⊆ F , only considering functions g ∈ G that
satisfy some additional properties. These two lines of research are analyzed in
Sects. 3 and 4, respectively.

3 Restricting the Lattices

As a first step, we study in which classes of lattices the idempotency laws are
satisfied.

Theorem 2. The following statements hold:

(i) the operation � satisfies the idempotency law on F if and only if L1 is chain;
(ii) the operation � satisfies the idempotency law on F if and only if L1 is chain.

Chains are a very special class of lattices, i.e., the restriction in the preceding
theorem is a very restrictive condition. Moreover, even if we restrict to chains,
the absorption laws are not satisfied as we show in the following example.

Example 2. Let L1 = ({0, 1
2 , 1},max,min, 0, 1) and L2 = ({0, 1},max,min, 0, 1).

Consider the functions f, g ∈ F depicted in Figs. 3(a)–(b). The corresponding
functions f � (f � g) and f � (f � g) are depicted in Figs. 3(c)–(d). One easily
verifies that f = f � (f � g) and f = f � (f � g).

Note that the preceding counterexample shows that when L1 is a chain with
at least three elements (L1 = {0, 1

2 , 1}) and L2 has at least two elements (L2 =
{0, 1}) the absorption laws fail. Hence, the possibility of restricting the lattice
such that the absorption laws hold does not seem a suitable option. From now
on, we will study appropriate restrictions on the set of functions.
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Fig. 3. Graphical representation of the functions in Example 2: (a) the function f ,
(b) the function g, (c) the corresponding function f �(f �g), and (d) the corresponding
function f � (f � g).

4 Restricting the Set of Functions

Let sf ∈ L2 denote supremum of the function f , defined as sf :=
∨

x∈L1

f(x) and

let 0a and 1a (with a ∈ L2) denote the functions

0a(x) =

{
a, if x = 0 ,
0, otherwise ;

1a(x) =

{
a , if x = 1 ,
0 , otherwise .

In order to study all the algebraic laws of a lattice, we consider the following
sets of functions:

Na = {f ∈ F | sf = a} for some a ∈ L2 ,

I� =
{
f ∈ F | (∀(x, y) ∈ L1

2)(f(x) ∧ f(y) ≤ f(x ∨ y))
}
,

I� =
{
f ∈ F | (∀(x, y) ∈ L1

2)(f(x) ∧ f(y) ≤ f(x ∧ y))
}
,

C = {f ∈ F | (∀(x1, x2, x3) ∈ L1
3)(x1 ≤ x2 ≤ x3 ⇒ f(x1) ∧ f(x3) ≤ f(x2))} .

Theorem 3. Let f, g, h ∈ F . The following statements hold:

(i) f � 0a = f if and only if sf ≤ a;
(ii) f � 1a = f if and only if sf ≤ a;
(iii) f � f = f if and only if f ∈ I�;
(iv) f � f = f if and only if f ∈ I�;
(v) f � (f � g) = f , for any g ∈ Nsf , if and only if f ∈ I� ∩ C;
(vi) f � (f � g) = f , for any g ∈ Nsf , if and only f ∈ I� ∩ C;

The only algebraic properties we have not studied yet are the distributivity
laws. For their fulfillment we impose L1 to be distributive.

Theorem 4. Let L1 be a distributive lattice and f, g, h ∈ F . The following
statements hold:

(i) If f ∈ I� ∩I� ∩C, then f �(g�h) = (f �g)�(f �h) holds, for any g, h ∈ F ;
(ii) If f ∈ I� ∩I� ∩C, then f �(g�h) = (f �g)�(f �h) holds, for any g, h ∈ F .
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Corollary 1. Let L1 be a distributive lattice. The convolution operations satisfy
all the algebraic laws of a bounded distributive lattice if we restrict to the set
Na ∩ I� ∩ I� ∩ C, for some a ∈ L2.

Remark 2. Note that all the algebraic laws of a bounded distributive lattice are
satisfied on Na∩I�∩I�∩C, for some a ∈ L2. Moreover, if L1 is distributive, then
the distributivity laws are also satisfied. However, we have not studied whether
or not the convolution operations are internal on these subsets, i.e., we have not
studied if the convolution operations are well-defined on these subsets.

5 Closedness

We devote this section to study whether or not the subsets of functions that have
appeared in Sect. 4 are closed under the convolution operations. Specifically, for
any subset of functions G, and for any f, g ∈ G, we should study if f � g and
f � g belong to G.

Theorem 5. The following statements hold:

(i) The sets Na (with a ∈ L2) are closed under join- and meet-convolution.
(ii) The set I� is closed under join-convolution.
(iii) The set I� is closed under meet-convolution.

In the following example we show that neither I� nor C is closed under
join-convolution. Similarly, neither I� nor C is closed under meet-convolution.

Example 3. Let L1 be the distributive lattice with Hasse diagram depicted in
Fig. 4(a) and L2 = ({0, 1},max,min, 0, 1).

(i) Consider the functions f1, g1 ∈ I� depicted in Figs. 4(b)–(c). The join-
convolution f1�g1 is depicted in Fig. 4(d). One easily verifies that x2∧x4 =
x3, while (f1 � g1)(x2) ∧ (f1 � g1)(x4) = 1 > (f1 � g1)(x3) = 0. Hence,
f1 � g1 /∈ I�.

(ii) Consider the functions f2, g2 ∈ C depicted in Figs. 4(e)–(f). The join-
convolu-
tion f2 � g2 is depicted in Fig. 4(g). One easily verifies x1 ≤ x2 ≤ 1, while
(f2 � g2)(x1) ∧ (f2 � g2)(1) = 1 > 0 = (f2 � g2)(x2). Hence, f2 � g2 /∈ C.

Due to Theorem 3, in order to constitute a bounded lattice the restriction
to the set Na ∩ I� ∩ I� ∩ C, for some a ∈ L2, must be considered. Hence, the
non-closedness of the sets I�, I� and C is of major importance. Fortunately, the
intersection of the sets I�, I� and C is closed under the convolution operations
with the additional assumption of L1 being distributive. Moreover, the latter
will turn out to be a necessary and sufficient condition.
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Fig. 4. Graphical representation of the functions in Example 3: (a) the Hasse diagram
of the lattice N5, (b) the function f1, (c) the function g1, (d) the join-convolution
f1 � g1, (e) Hasse diagram of the lattice L1, (f) the function f2, (g) the function g2,
and (h) the join-convolution f2 � g2.

Theorem 6.

(i) The set I� ∩ I� ∩ C is closed under join-convolution if and only if L1 is a
distributive lattice.

(ii) The set I� ∩ I� ∩ C is closed under meet-convolution if and only if L1 is a
distributive lattice.

Proof. Note that we have omitted all the preceding proofs due to space con-
straints. Since we want to illustrate the general idea of the proofs, we include
here the proof of statement (i).

Fig. 5. Hasse diagram of: (a) the sublattice M3, and (b) the sublattice N5.
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⇒ Suppose that I� ∩ I� ∩ C is closed under join-convolution, while L1 is
not distributive. Due to the well-known M3–N5 theorem (see [1] or [2]), L1 has
a sublattice that is isomorphic to M3 or to N5 (depicted in Fig. 5(a)–(b)). We
distinguish two cases.

(a) The case that L1 has a sublattice isomorphic to M3. We refer to the elements
of this sublattice as in Fig. 5(a). We consider the functions f, g ∈ I� ∩I� ∩C
defined as:

f(x) =

{
1, if x ∈ {x1, x2} ,
0, otherwise ;

g(x) =

{
1 , if x ∈ {x1, x3} ,
0 , otherwise .

It holds that (f �g)(x) = 0 for any x ∈ L1 unless x ∈ {x1, x2, x3, x5}, where
f � g takes the value 1. Since x1 ≤ x4 ≤ x5 and (f � g)(x4) = 0 < 1 =
(f � g)(x1) ∧ (f � g)(x5), we conclude that f � g /∈ C, a contradiction.

(b) The case that L1 has a sublattice isomorphic to N5. We refer to the elements
of this sublattice as in Fig. 5(b). We consider the functions f, g ∈ I� ∩I� ∩C
defined as:

f(x) =

{
1, if x = x2 ,

0, otherwise ;
g(x) =

{
1, if x ∈ {x1, x4} ,
0, otherwise .

It holds that (f � g)(x) = 0 for any x ∈ L1 unless x ∈ {x2, x5}, where
f � g takes the value 1. Since x2 ≤ x3 ≤ x5 and (f � g)(x3) = 0 < 1 =
(f � g)(x2) ∧ (f � g)(x5), we conclude that f � g /∈ C, a contradiction.

⇐ Let L1 be a distributive lattice and f, g ∈ I� ∩ I� ∩ C. Since I� is closed
under join-convolution, it holds that f � g ∈ I� and we only need to show that
f � g ∈ I� ∩ C.

Firstly, we prove that f � g ∈ I�. For any x1, x2 ∈ L1, it holds that

(f � g)(x1) ∧ (f � g)(x2) =

( ∨
u1∨v1=x1

f(u1) ∧ g(v1)

)
∧
( ∨

u2∨v2=x2

f(u2) ∧ g(v2)

)

=
∨

u1∨v1=x1
u2∨v2=x2

f(u1) ∧ f(u2) ∧ g(v1) ∧ g(v2) .

Since f ∈ I, it holds that f(u1) ∧ f(u2) ≤ f(u1 ∨ u2) and f(u1) ∧ f(u2) ≤
f(u1 ∧ u2), and, hence, f(u1) ∧ f(u2) ≤ f(u1 ∧ u2) ∧ f(u1 ∨ u2). Similarly, since
g ∈ I, it holds that g(v1) ∧ g(v2) ≤ g(v1 ∧ v2) ∧ g(v1 ∨ v2). This leads to

(f � g)(x1) ∧ (f � g)(x2)

≤
∨

u1∨v1=x1
u2∨v2=x2

f(u1 ∧ u2) ∧ f(u1 ∨ u2) ∧ g(v1 ∧ v2) ∧ g(v1 ∨ v2) .

Taking into account that u1 ≤ u1 ∨ v1 = x1 and u2 ≤ u2 ∨ v2 = x2, it holds that
u1 ∧ u2 ≤ x1 ∧ x2. Moreover, since u1 ∧ u2 ≤ u1 ∨ u2, we find that

u1 ∧ u2 ≤ (x1 ∧ x2) ∧ (u1 ∨ u2) ≤ (u1 ∨ u2) .
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Analogously, it follows that

v1 ∧ v2 ≤ (x1 ∧ x2) ∧ (v1 ∨ v2) ≤ (v1 ∨ v2) .

Since f, g ∈ C, it holds that

(f � g)(x1) ∧ (f � g)(x2)

≤
∨

u1∨v1=x1
u2∨v2=x2

f((x1 ∧ x2) ∧ (u1 ∨ u2)) ∧ g((x1 ∧ x2) ∧ (v1 ∨ v2)) .

Finally, since L1 is a distributive lattice, it holds that

((x1 ∧ x2) ∧ (u1 ∨ u2)) ∨ ((x1 ∧ x2) ∧ (v1 ∨ v2))
= (x1 ∧ x2) ∧ ((u1 ∨ u2) ∨ (v1 ∨ v2))
= (x1 ∧ x2) ∧ ((u1 ∨ v1) ∨ (u2 ∨ v2))
= (x1 ∧ x2) ∧ (x1 ∨ x2) = x1 ∧ x2 .

By denoting u = (x1 ∧x2) ∧ (u1 ∨u2) and v = (x1 ∧x2) ∧ (v1 ∨ v2), it holds that

(f � g)(x1) ∧ (f � g)(x2) ≤
∨

u∨v=x1∧x2

f(u) ∧ g(v) = (f � g)(x1 ∧ x2) .

Consequently, f � g ∈ I�.
Secondly, we prove that f � g ∈ C. For any x1, x2, x3 ∈ L1 such that x1 ≤

x2 ≤ x3, it holds that

(f � g)(x1) ∧ (f � g)(x3) =

( ∨
u1∨v1=x1

f(u1) ∧ g(v1)

)
∧
( ∨

u3∨v3=x3

f(u3) ∧ g(v3)

)

=
∨

u1∨v1=x1
u3∨v3=x3

f(u1) ∧ f(u3) ∧ g(v1) ∧ g(v3) .

Analogously to the case I�, since f, g ∈ I, it holds that

f(u1) ∧ f(u3) ≤ f(u1 ∧ u3) ∧ f(u1 ∨ u3)

and
g(v1) ∧ g(v3) ≤ g(v1 ∧ v3) ∧ g(v1 ∨ v3) .

This leads to

(f � g)(x1) ∧ (f � g)(x3)

≤
∨

u1∨v1=x1
u3∨v3=x3

(f(u1 ∧ u3) ∧ f(u1 ∨ u3)) ∧ (g(v1 ∧ v3) ∧ g(v1 ∨ v3)) .

Taking into account that u1∧u3 ≤ u1 ≤ u1∨v1 = x1 ≤ x2 and u1∧u3 ≤ u1∨u3,
it holds that

u1 ∧ u3 ≤ x2 ∧ (u1 ∨ u3) ≤ u1 ∨ u3 .
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Analogously, it follows that

v1 ∧ v3 ≤ x2 ∧ (v1 ∨ v3) ≤ v1 ∨ v3 .

Since f, g ∈ C, it holds that

(f � g)(x1) ∧ (f � g)(x3)

≤
∨

u1∨v1=x1
u3∨v3=x3

(f(x2 ∧ (u1 ∨ u3))) ∧ (g(x2 ∧ (v1 ∨ v3))) .

Finally, since L1 is a distributive lattice, it holds that

(x2 ∧ (u1 ∨ u3)) ∨ (x2 ∧ (v1 ∨ v3)) = x2 ∧ ((u1 ∨ u3) ∨ (v1 ∨ v3))
= x2 ∧ ((u1 ∨ v1) ∨ (u3 ∨ v3))
= x2 ∧ (x1 ∨ x3) = x2 ∧ x3 = x2 .

By denoting u2 = x2 ∧ (u1 ∨ u3) and v2 = x2 ∧ (v1 ∨ v3), it holds that

(f � g)(x1) ∧ (f � g)(x3) ≤
∨

u2∨v2=x2

f(u2) ∧ g(v2) = (f � g)(x2) .

Consequently, f � g ∈ C.

Taking into account all the preceding results, we can conclude the following.

Theorem 7. The algebraic structure F = (Na∩I∩C,�,�,0a,1a) (with a ∈ L2)
is a bounded distributive lattice if and only if L1 is a distributive lattice.

6 Conclusions

This paper studies some convolution operations generated by replacing the func-
tions of the set F([0, 1], [0, 1]) with functions of the set F(L1,L2). Firstly, it is
shown that the idempotency laws do not hold unless L1 is a chain. But even
in this case, the absorption laws fail. The second part of the paper focuses on
the restriction to a suitable subset of functions where the convolution operations
fulfill the algebraic properties of a bounded distributive lattice. Moreover, the
question which of these subset are closed under the convolution operations is
also answered. The most important result of the paper is that the convolution
operations constitute a bounded distributive lattice on the set Na ∩ I� ∩ I� ∩ C
(with a ∈ L2) if and only if L1 is a distributive lattice.

We expect to expand the present work in the future studying the subsets on
which the convolution operations constitute a bounded lattice when L1 is not
distributive.
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Abstract. Evaluating flexible criteria on data leads to degrees of sat-
isfaction. If a datum is uncertain, it can be uncertain to which degree
it satisfies the criterion. This uncertainty can be modelled using a pos-
sibility distribution over the domain of possible degrees of satisfaction.
In this work, we discuss the meaningfulness thereof by looking at the
semantics of such a representation of the uncertainty. More specifically,
it is shown that defuzzification of such a representation, towards usability
in (multi-criteria) decision support systems, corresponds to expressing a
clear attitude towards uncertainty (optimistic, pessimistic, cautious, etc.)

1 Introduction

Consider for the remainder of this paper that a data set consists of objects
which represent real-world entities as collections of attribute values. An example
data set might store information on people by tracking attributes such as “age”,
“name”, “sex”, “weight”, “height”, and so on. As such, each actual person cor-
responds to a collection of values for these attributes taken from their respective
domains.

Often, our knowledge of entities is limited to information stored in a data-
base. In the best case scenario, all attributes of an entity are precisely known.
In practice however, attribute values are often missing (not yet measured or
inapplicable), outdated, incorrect or vague. In all cases where the real, exactly
correct value of an attribute is not known, it is said that (the value of) each
such an attribute is uncertain. This lack of knowledge can be represented by a
possibility distribution over the domain of the attribute, whereby each value in
the domain is associated with a degrees of possibility that it is the real value of
the attribute. To deal with inapplicability, the domain of each attribute might
have to be extended with a special symbol to denote this [6].

Data are commonly subjected to criteria in order to test their suitability for a
specific purpose. Examples hereof are querying systems, (multi-criteria) decision
support systems, recommender tools, and so on. Mathematically, criteria can be
seen as functions which are used to test attribute values. Evaluating a criterion
on an attribute then corresponds to testing the function in the attribute value.
The resulting score can be interpreted as a score indicating how acceptable the
value is.
c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 53



598 R. De Mol and G. De Tré

Evaluating an uncertain attribute is not straightforward because if the exact
value is not known and it can not be tested. It follows that the resulting degree
to which an uncertain attribute satisfies a criterion is also uncertain. As such, it
can be treated as an uncertain ‘attribute’ and the uncertainty thus modelled by
a possibility distribution. This has already been suggested by Dubois and Prade
in [10] but was not investigated further. Instead, they proposed using possibility
and necessity degrees to represent respectively the possibility and the necessity
that the uncertain attribute satisfies the criterion. To that end, the formulae to
compute them are generalized. The advantage hereof is that these degrees are
well known and compatible with (and comparable to) the case when evaluating
non-flexible criteria on uncertain data. However, as mentioned by Dubois and
Prade themselves, the result of the generalization comes at the cost of some
properties which have a non-negligable impact on their interpretability, which
can lead to counter-intuitive results. Indeed, when evaluating different entities
in order to compare them using their approach, it can occur that an entity which
certainly satisfies a criterion to a certain degree (and possibly fully satisfies it)
is ranked worse than an entity which is not in the least guaranteed to satisfy the
criterion.

In this work, we further explore the feasability of using possibility distribu-
tions to model the uncertainty over the degree to which an uncertain attribute
satisfies a criterion. Towards multi-criteria decision support, we discuss how
defuzzification can be applied to reduce these distributions to numbers so they
may be used for further calculations. We will show that different ways of per-
forming defuzzification correspond to different attitudes a decision maker can
have towards uncertainty.

The remainder of this paper is structured as follows. In Sect. 2 some prelimi-
naries and relevant research are mentioned. Afterwards, mathematical notations
used throughout the remainder of the paper are given in Sect. 3 to define pos-
sibility distributions over degrees of satisfaction. Then, the usefulness of such
distributions is discussed in Sect. 4. Towards usability in existing tools, defuzzi-
fication is carefully studied. The findings are illustrated in Sect. 5 by means of an
example. To conclude, Sect. 6 summarizes the feasibility and usefulness of using
possibility distributions.

2 Preliminaries

2.1 Flexible Criteria

Traditional criteria evaluation is Boolean: either the criteria are satisfied or they
are not. Flexible criteria, in contrast, compute a degree (typically from the unit
interval) for each entity denoting how well it satisfies the criterion. This has many
advantages, the most obvious one being the fact that flexible criteria do not filter
but rather sort the objects in a data set. It also allows agents to model vague
preferences. For example, one may be interested in identifying which people are
“old”.
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Flexible criteria are typically modelled by fuzzy sets [21]. A fuzzy set F over
a domain X is a generalization of a regular set, characterized by a membership
function μF which associates each element from X with a real number in a
partially ordered set (usually the unit interval), with the value μF (x) of element
x representing the “grade of membership” of x in F . It can easily be seen that a
regular set is a special case of a fuzzy set where the membership can only take
values 0 and 1, respectively denoting non-membership and membership.

Treating a criterion as a function that is used to test attribute values, it
can easily be seen that, mathematically, the relation between fuzzy sets and
regular sets is identical to the relation between regular (crisp) criteria and flexible
criteria. In a sense, a regular criterion can be seen as a function which partitions
the data set in regular sets (satisfied and not satisfied). In contrast, a flexible
criterion can be seen as a function which describes the membership of all objects
in the data set in the fuzzy set of satisfaction.

Fuzzy sets are at the base of many flexible systems [4,5,12,15,22,23]. Note
that flexible criteria are in no way related to uncertainty [9]. To reflect uncer-
tainty in criteria, extended fuzzy sets such as type-2 fuzzy sets, interval-valued
fuzzy sets, Atanassov’s intuitionistic fuzzy sets [2] and, more recently, hesitant
fuzzy sets [17] have been proposed.

2.2 Representation of Uncertainty

There has been a lot of research towards representing uncertain data. For a
singular attribute (i.e. it can only take one value), the underlying idea is that
we are incapable of storing the correct value because it is not known. Instead,
in accordance to the information that we do have, we must store each possible
value that the property might take, associated with a degree of belief that it
is the correct value. Mathematically, this can be represented by a function u,
associating each value x from the attribute’s domain X with a real number in a
partially ordered set (usually the unit interval), where u(x) denotes the “degree
of belief” that x is the correct value of the attribute.

A classical example of modeling stochastic uncertainty is by means of a prob-
ability distribution. Alternatively, uncertainty due to a lack of knowledge is gen-
erally modelled using a possibility distribution [10,14,18,20].

3 Uncertainty Regarding Satisfaction Degrees

In this section we introduce a formal notation of the representation of uncer-
tainty regarding the extent to which an uncertain attribute satisfies a criterion.
Considering the precise value of an uncertain attribute is not known, it is not
possible to say to which degree it satisfies a given criterion. As such, the degree
of satisfaction of the uncertain attribute is inherently uncertain and can be mod-
elled using a possibility distribution.

With the understanding that A is an attribute with domain X, and that E
is an entity for which the value of A is not exactly known, let πA : X → [0, 1] :
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x �→ πA(x) be a possibility distribution over X where πA(x) denotes the possibility
that E takes value x for A. Let further E[A] denote the value that E takes for
A, whatever it may be. Let then πσ : [0, 1] → [0, 1] be a possibility distribution
expressing the uncertainty regarding the degree σ to which E[A] satisfies a flexible
criterion defined on A.

Using a possibility distribution to represent the uncertainty over the degree
of satisfaction of an uncertain attribute regarding a preference brings all the
advantages of working with possibility distributions. As such, it is immediately
apparent that such distributions can represent full certainty, full uncertainty and
any degree in between. Further more, factoring in the semantics of the domain of
these possibility distribution as being a degree of satisfaction, such a model can
be used to represent statements like “possibly fully satisfied”, “certainly at least
x satisfied”, “at most x satisfied”, “certainly not satisfied”, “could be anything”
and many more, which are semantically rich and intuitive.

4 Attitudes Towards Uncertainty

Assume there is a way to construct such possibility distributions. Given that the
evaluation of a flexible criterion on a data set containing uncertain data yields,
for each object, a possibility distribution regarding the degree of satisfaction,
we can immediately ask ourselves the question how the results may be ranked.
After all, this is one of the key advantages of flexible criteria evaluation which
is no longer straightforward. Indeed, ranking objects by a degree of satisfaction
comes down to sorting a list of numbers in descending (or ascending) order, but
how should possibility distributions be compared?

There have been many studies devoted to the comparison of fuzzy sets (also
known as comparing fuzzy numbers) [1,3,7]. There is no real consensus in this
area of research, which testifies to the flexibility of fuzzy sets. It also proves that
there is no one-size-fits-all approach because the semantics of fuzzy sets play a
fundamental role when it comes to how they should be compared [8].

We can ask ourselves the question: how would we compare two uncertain
attributes? We argue the only correct answer is it depends. It depends on the
application in which we are considering the uncertainty and on the impact of
making a mistake. For example, when it comes to comparing travel options we
might be inclined to choose for a suboptimal route which will certainly get us
there in time rather than a different route that might get us there faster at the
risk of running late, especially if arriving on time is of critical importance.

Another field of application which is built on flexible criteria evaluation is
multi-criteria decision support. After evaluating all the criteria, a multi-criteria
decision support system aggregates all elementary satisfaction degrees into a sin-
gle, global score. There exist techniques for aggregating membership functions
[19,20]. However, these techniques are tightly coupled to the context in which
they are used. As such, the conjunction of two such functions is different for
possibility distributions on one hand and characteristic functions on the other.
Furthermore, these functions are mostly limited to either simple aggregators or
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force the user to use a specific technique. To be able to tap into the power of
any proven aggregation technique (including but not limited to: OWA, WOWA,
LSP, Choquet, Sugeno) it is logical to reduce uncertain satisfaction degrees rep-
resented by possibility distributions to numerical values. This comes down to the
defuzzification of a possibility distribution. There are different ways of perform-
ing defuzzification. We will discuss and compare three defuzzification strategies,
considering especially the semantics of each. If a decision maker purposefully
chooses for a specific defuzzification strategy, aware of the semantics, this can
be viewed as explicitly expressing an attitude towards uncertainty.

4.1 Maximal Possible Satisfaction

Let us first look at defuzzification by taking the maximal possible degree of sat-
isfaction that is associated with a degree of belief larger than 0. In this case,
however unlikely, the result of the defuzzification corresponds to the event that
the attribute takes the best possible value regarding the preferences of the deci-
sion maker. Obviously, this might not be the reality, but assuming this degree
of satisfaction clearly indicates an optimistic attitude by believing in the best
possible case. Alternatively, it could be seen as a greedy attitude, aggressively
assuming the best possible case, neglecting the fact that reality might be less
optimal. This kind of attitude is typical for prediction systems such as GPS-
based routing software, which assume you can drive at the highest speed for
each road and that no sudden accidents happen which could influence travel
time.

One could also choose for the maximal fully possible value, e.g. the maximal
value which has a degree of belief equal to 1. Such cases can be seen as a greedy
attitude assuming “normal circumstances”, yielding a natural trade off between
what is desired and what can be expected if nothing unforseeable happens.

4.2 Minimal Possible Satisfaction

Let us now look at defuzzification by taking the minimal possible value that is
associated with a degree of belief larger than 0. Instead of the best possible case,
the worst possible case is assumed. Consequently, this defuzzification strategy
denotes a pessimistic attitude. This might be valuable when the outcome of the
decision is of critical importance and there is no room for error. As such, it can
be seen as an attitude of safeness, avoiding risk.

However, one might also choose a slightly less pessimistic attitude by choosing
the minimal fully possible value, e.g. the worst value with degree of belief equal
to 1. As such, possibly disastrous but very unlikely outcomes are purposefully
ignored, again assuming “normal circumstances”.

4.3 Center of Mass

A common approach for defuzzification is to compute the abscissa of the center
of mass of the area under the possibility distribution [16]. This can be viewed as a
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sort of weighted average of all possible outcomes, where the degrees of belief are
used as weights. Semantically, the center of mass can be viewed as an indicator of
the “expected” degree of satisfaction, taking into account all possible outcomes.
As such, it portrays an intermediary attitude which is generally more robust
to outliers with low possibility. However, it might produce unexpected results
in case of a non-convex possibility distribution by producing an average degree
of satisfaction that corresponds to a value that the uncertain attribute might
not even be able to take. Consider for example that we know a certain bottle
is either completely empty or completely full. Defuzzification through center of
mass might lead to an “expected” satisfaction of 0.5, though it is not possible the
bottle is half-full. However, if interpreted as a real average, the center of mass
strategy can still be useful. One can see that aggregated degrees of satisfaction
near 0.5 indicate uncertainty or otherwise mediocre objects, values near 1 denote
rather certainly good objects and values near 0 denote rather certainly poor
objects. Then one can use the center of mass approach to represent a cautious
attitude to reliably identify the good and bad objects, leaving the uncertain and
mediocre objects in the middle. For attributes with a defuzzified satisfaction
degree below 0.5 it can be said that there is more reason to believe that it will
take an unsatisfactory value than that it will take a satisfactory value. However,
it should be kept in mind that this degree should not be reverse engineered to an
attribute value to guesstimate which value the uncertain attribute might take.

5 Example

Suppose we are trying to evaluate if an area of the subsurface is suitable for
extracting a specific lithological resource. To that end, a model of the subsurface
is queried. This model is a collection of discrete 3D cuboids (voxels) representing
minimal extractable volumes. For each voxel, the lithological classification of the
extractable resource (medium sand, fine sand, clay...) and a degree of impuri-
ties (percentage rocks, shells...) are stored. In practice, such subsurface models
are largely generated through statistical interpolations from only a very small
amount of soil samples that typically cover less than 1% of the actual model
area. As a result, practically all voxels denote interpolated data and are as such
inherently uncertain.

Let us say we are looking for fine sand without impurities for some industrial
purpose. Because we can not say with certainty whether or not a voxel contains
fine sand nor if it is pure (both are possibly uncertain), we must express an
attitude towards the possibility that the voxel contains a different resource or is
impure. Assume our application absolutely requires fine sand. Any other resource
is unusable. Assuming our preference reflects that only fine sand results in the
maximal satisfaction degree and that other lithological classes result in a low(er)
degree of satisfaction, we use the minimal possible satisfaction strategy to ensure
that only voxels that only contain fine sand (i.e. have a high satisfaction degree)
are defuzzified to a high satisfaction degree. Voxels that possibly contain other
resources (i.e. have a low possible satisfaction degree) will be defuzzified to a low
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satisfaction degree. Towards impurities we are more forgiving, as we can filter
these out after extraction. However, purer is still better, and we want to exclude
voxels that are so impure that the remaining usable volume after extraction
would be too low to make the extraction cost worthwhile. Here we choose the
center of mass strategy for defuzzification of uncertainty regarding impurities
to reliably reject those voxels that contain many impurities but including the
voxels that are both likely and possibly pure.

6 Conclusions

In this work, we have briefly examined the feasibility of using possibility dis-
tributions to represent uncertainty regarding the degree to which an uncertain
attribute satisfies a flexible preference. Further, we have discussed how differ-
ent strategies for defuzzifying these distributions correspond to specific attitudes
regarding uncertainty. When dealing with uncertainty in decision support, we
argue the decision maker must necessarily express his or her attitude towards
uncertainty. A small example illustrates the intuitiveness of the approach and
highlights how a decision maker may express different attitudes towards different
properties in multi-criteria decision problems. There is still a lot to be done, such
as defining how possibility distributions representing uncertainty regarding the
satisfaction degree of a flexible criterion on uncertain data should be derived,
and how such a representation can be further expanded to be capable of deal-
ing with bipolar queries [11,13,24], interval-valued fuzzy sets, hesitant fuzzy sets
[17], two-fold fuzzy sets, Atanassov’s intuitionistic fuzzy sets [2] and type-2 fuzzy
sets.

References
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6. De Tré, G.: Extended possibilistic truth values. Int. J. Intell. Syst. 17(4), 427–446
(2002)

7. Dubois, D., Prade, H.: Ranking fuzzy numbers in the setting of possibility theory.
Inf. Sci. 30(3), 183–224 (1983)

8. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90(2),
141–150 (1997)

9. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In:
Flexible Query Answering Systems, pp. 45–60. Springer, Heidelberg (1997)



604 R. De Mol and G. De Tré
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Abstract. At the beginning of the article the authors describe a new
trend in the artificial intelligence, associated with fuzzy sets and the
accompanying derivative solutions which may include L-R numbers by
Dubois and Prade. On their basis the redefined theory has started a
new trend in the form of ordered fuzzy numbers (OFN). Main features
of ordered fuzzy numbers further in this article. Due to the nature of
this article, which is related to the proposed defuzzyfication method, the
authors mentions a fuzzy controller model and in particular the defuzzy-
fication process. Criteria used for conventional solutions of fuzzy numbers
and ordered fuzzy numbers were also presented. In the further part of
the article the defuzzyfication method called Triangular Expanding was
presented. The author compared it to the Geometrical Mean method
introduced earlier, which inspired his solution. Results of comparison
with other methods such as FOM, LOM, COG were presented in the
paper as well. The summary including conclusions and directions of fur-
ther research were provided at the end.

Keywords: Fuzzy logic · Ordered fuzzy numbers

1 Introduction

Although fuzzy control and fuzzy logic control were introduced over 50 years
ago, no doubt they can still be regarded as modern technology. That statement
is confirmed by three items of the references [6], describing new concepts in the
field of research or applications. One of those novelties are undoubtedly Ordered
Fuzzy Numbers introduced by professor Witold Kosiński and his research team
including P. Prokopowicz and D. Śl ↪ezak, which, since 2016, should be called
Kosinski Fuzzy Numbers. It can easily be noticed that the introduction of the
c© Springer International Publishing AG 2018
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fuzzy logic theory was a turning point in the manner of perceiving the tradi-
tional logic, which assumes only 0 or 1 value. The same turning point was the
appearance of the ordered fuzzy numbers theory. One of the main reasons for
which the classic theory of fuzzy sets has been redefined is its inconsistency in
the execution of arithmetic operations on fuzzy sets that is observed in the case
of operations on real numbers.

2 Reasons Behind Development of OFN

The theory of ordered fuzzy numbers is not an isolated being, but it is a postulate
that extends previous achievements of the fuzzy logic. Contrary to some opinions,
OFN is rather an abstraction or a generalization of fuzzy numbers rather than
just their notation. To explain this position, one has to refer to the Zadeh’s
definition of a fuzzy set. However, this definition provides too narrow concept of a
fuzzy set. In his paper [50] the author on the one hand treats a fuzzy set as classes
of a membership function and on the other hand the definition has a specific form,
i.e. it applies to the membership function. In their considerations on the ordered
fuzzy numbers, their precursors perceived the possibility of introducing novelties
in the formulation of the function class. The current form of the ordered fuzzy
number results from a transitory, which is related to the use of the so-called
quasi-convex membership functions.

A comprehensive polemic on quasi convexity of functions and related con-
cepts can be found in the articles [22,27,35].

The basic form of a fuzzy number according to the definition together with
the individual conditions has become the foundation for new insights on fuzzy
numbers. Since the support of the fuzzy number is an interval then the convex-
ity condition, can be replaced by quasi-convexity condition of the membership
function, as is the case in the paper [23]. The authors of the ordered fuzzy num-
ber solution, [29,31], take things step further by thus modifying the convexity
condition of the fuzzy set A into strictly quasi-convexity condition of a function
over its support. Since the membership function takes the above form, then on
the basis of the theory of convex functions [35] the representations are reversible
intervals. One can state that, respectively:

Theorem 1. The scalar function ϕ(x) is strictly quasi-convex in the convex set
X only and exclusively when any segment

[
x1, x2

] ⊂ X can be divided into three
such sections (each cutting point belongs at least to one of the sections and closes
it) that ϕ(x) is decreasing in the first, constant in the second and growing in the
third section. Any one or two of these sections may be empty or degenerated to
points x1 and (or) x2.

On the contrary, while observing strictly quasi-concave relationships one can
notice the change in the order of individual sections i.e. monotonicity properties
of the interval

[
x1, x2

] ⊂ X. In this case, the order shall be from the increasing to
the decreasing part. Thus, it is concluded that for the fuzzy number A = {R,μA}.
As regards strictly quasi-convex relationship, the membership function is strictly
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Fig. 1. Example (a) of an ordered fuzzy number and interpretation (b) and (c) referring
to a convex fuzzy number

quasi convex, and, consequently, the support of the fuzzy number is treated as
an interval (Fig. 1).

3 Classic Defuzzyfication Methods

The popularity of classic defuzzyfication methods which are used in the reduction
process of the resulting membership function, results mainly from the domain of
application in a given environment. Basically, there are two approaches among
the available mechanisms: the first one includes the methods of maxima. These
are solutions characterized by simplicity either as regards interpretation or imple-
mentation. The second group of widely used algorithms are so called center of
gravity methods together with derivatives. These methods are derived from the
geometry and are particularly important for solving problems in the field of
physics or mechanics. Thus it can be stated that the new defuzzyfication meth-
ods should either be based on their simplicity or concern a generally known prop-
erty taken from nature. Those two main approaches, in a sense, form a lodestar
when developing the methods described below. It follows from the assumptions
adopted for the purpose of this article that the proposed defuzzyfication meth-
ods are to be order sensitive. This means that on the basis of the theory of OFN
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numbers we will be able to describe physical phenomena over time, although
the time will not be formally given. Similarly to time series fully reflecting the
time, in case of OFN numbers we use only so called discrete (left, right) form
of a trend. For example, there is: for positively ordered OFN numbers - growing
trend, for negatively ordered OFN numbers - declining trend to the expected
value.

3.1 Method 1 - The Triangular Expanding Method

The assumption to the Triangular Expanding method in the defuzzyfication
process for ordered fuzzy numbers is that the method shall be order sensitive.
The possibility to apply the concept of ordered fuzzy numbers allows to capture
the trend in a given phenomenon. The order - as the approaching some status of
a value extends the existing concept of conventional fuzzy numbers. The achieved
expansion introduces an additional dimension into the control process. The tar-
get in many cases may be more important than the initial status. Referring to
the defuzzyfication process itself, where in the conventional approach we obtain
a real (defuzzyfied) value from the resulting membership function, we underline
order in the result for the ordered system using OFN numbers. The wording
“in the result” is meant as the obtained defuzzyfication value, which shall addi-
tionally bear the trend index. Graphic interpretation of the proposed method is
shown in Fig. 2, where for the ordered fuzzy number H = (fH , gH) the defuzzy-
fication is executed. The figure shown herein, intuitively reflects the character
of the method in the further analysis. In a simplified case, when both functions
in the OFN representation are affine, i.e. continuous, the direction of the order
coming from the UP to DOWN arm defines the place where the extension is
created. The triangle generated in this place from the DOWN part (as one of
the triangle sides) extends the possible values of defuzzyfication. For the number
H = (fH , gH), where both functions are continuous and fH , gH : [0, 1] → R, we
take the DOWN part of the OFN number expressed as gH , hereinafter called
the falling slope. The DOWN arm is selected due to the emphasis on the order
as the trend to be achieved. The defuzzyfication process of the number proceeds
as follows. Two points A = (0, g(0)) and B = (1, g(1)) are centers of circuits
K1(A, r) and K2(B, r) respectively. The radius r is the same for K1 circle and
for K2 circle. The radius r is a function gH , previously named the DOWN part.
The selection of this part is related to the order which approaches that arm. In
the example shown in Fig. 2, two circles K1 and K2 intersect each other thus
creating two intersection points. Points C1 and C2 are candidates for vertices
C of the triangle, whose aim will be to extend the order. The selected vertex
is the one located in the positive part of s axis. The so created common part
of three planes limited by vertice ABC forms a triangle. Defuzzyfication occurs
at the intersection of the straight lines l1 oraz l2. The straight line l1 is created
by points C and D = (0, f(0)) while straight line l2 is determined by points
A = (0, g(0)) and E = (1, f(1)). The presented intuitive operation aspect of the
Triangular Expanding defuzzyfier method is intended to outline the essence of
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Fig. 2. Graphic interpretation of the Triangular Expanding method

that proposal. Analytical form of the defuzzyfier shall be discussed further in
this article.

3.2 Analytical Formula of TR (Triangular Expanding) Method

The above considerations include formal description of the proposed method in
the OFN number defuzzyfication process that comes down to determining the
equations for the intersection of two circles and the intersection of two linear
functions.
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Following those assumptions, for the circle K1 we obtain the Eq. (1) expressed
with the formula:

K1(A, r) : {(s, x) : (s − 0)2 + (x − g(0))2 = r2} (1)

while the circle K2 is described in form of the Eq. (2)

K2(B, r) : {(s, x) : (s − 1)2 + (x − g(1))2 = r2} (2)

whereas x ∈ K1 ∩ K2.
The determination of radius r which is equal for both circles K1 and K2,

results from the formula (3) presented below:

r =
∣
∣
∣
−−→
AB

∣
∣
∣ =

√
((g(0) − g(1))2 + 12) (3)

In the analyzed method, the radii of the circle K1 and K2 are identical, as they
lie at the ends of the common straight line. The only assumption for those radii
is that they must meet the following inequality:

0 < r < 2r (4)

for which there are two points of intersection of the circles.
When considering the Eqs. (1) and (2), with the assumption that the radii of

the two equations are the same, we receive the Eq. (5) of the following form:

(s − 0)2 + (x − g(0))2 = (s − 1)2 + (x − g(1))2 (5)

On the basis of the above formula, x of the s function is determined, and as a
result we obtain:

x(s) = −2s − g(1)2 + g(0)2 − 1
2g(1) − 2g(0)

(6)

by substituting the formula (6) to the Eq. (1) the following equation is obtained:

s2 +
(

g(1)2 − g(0)2 − 2s + 1
2g(1) − 2g(0)

− g(0)
)2

= r2 (7)

The above square Eq. (7) is solved against s, with the assumption that Δ > 0,
and we obtain respectively:

s1 = − g(1) − g(0)
2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2

∗
√

Z1

2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2

− g(1)2 − 2g(0)g(1) + g(0)2 + 1
2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2

(8)

the denominator is such that 2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2 �= 0

s2 =
g(1) − g(0)

2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2
∗

√
Z2

2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2

− g(1)2 − 2g(0)g(1) + g(0)2 + 1
2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2

(9)
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the denominator is such that 2g(1)2 − 4g(0)g(1) + 2g(0))2 + 2 �= 0
where:

Z1 =
(
g(1)2 − 8g(0)g(1) + 4g(0)2 + 4

)
r2 − g(1)4 + 4g(0)g(1)3+

(−6g(0)2 − 2
)
g(1)2 +

(
4g(0)3 + 4g(0)

)
g(1) − g(0)4 − 2g(0)2 − 1 (10)

Z2 =
(
g(1)2 − 8g(0)g(1) + 4g(0)2 + 4

)
r2 − g(1)4 + 4g(0)g(1)3+

(−6g(0)2 − 2
)
g(1)2 +

(
4g(0)3 + 4g(0)

)
g(1) − g(0)4 − 2g(0)2 − 1 (11)

The variables s1, s2 described by formulas (8, 9) specify x1 and x2, respec-
tively, then we obtain:

x1 = −2s1 − g(1)2 + g(0)2 − 1
2g(1) − 2g(0)

(12)

for 2g(1) − 2g(0) �= 0

x2 = −2s2 − g(1)2 + g(0)2 − 1
2g(1) − 2g(0)

(13)

for 2g(1) − 2g(0) �= 0

The calculated intersection points of the circuit K1, K2 as C1(s1, x1),
C2(s2, x2), make it possible to determine the point C, which is a vertex of the
triangle expanding the OFN number. The vertex selection criterion has been
determined as the following condition:

if s1 > 0 ∧ s2 < 0 then C = C1 (14)

lub
if s1 < 0 ∧ s2 > 0 then C = C2 (15)

For the OFN number shown in figure (2) the selected point of the expanding
triangle shall be the point C1, where according to the selection criterion, the
condition (14) is met.

A further stage of the method consists in defining the equations of straight
lines passing through the points, for the straight line l1 determined by the points
C = (s1, x1) and D = (s2, x2) respectively. We get the equality:

s(x) = l1(x) =
s1x2 − s2x1 + (s2 − s1) x

x2 − x1
(16)

assuming that s2 = 0, x2 = f(0), the equation of a straight line l1 as:

s(x) = l1(x) =
s1(x − f(0))
x1 − f(0)

(17)
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For straight line l2 passing through points A = (s3, x3) and E = (s4, x4) the
equation of the straight line assumes the form:

s(x) = l2(x) =
s3x4 − s4x3 + (s4 − s3) x

x4 − x3
(18)

taking into consideration the characteristic values for the ordered OFN number,
such that x3 = g(0), x4 = f(1) and s3 = 0 and s4 = 1 the Eq. (18) assumes the
form:

s(x) = l2(x) =
x − g(0)

f(1) − f(0)
(19)

Considering the Eqs. (17) and (19) for straight lines l1 and l2, the searched
intersection point is expressed as:

{
s(x) = l1(x) = s1(x−f(0))

x1−f(0)

s(x) = l2(x) = x−g(0)
f(1)−f(0)

(20)

The solution of the set of Eq. (20) is the point W = (sw, xw), of the following
coordinates:

xw =
f(0)(f(1)s1 − g(0)s1 + g(0)) − g(0)x1

f(0) + f(1)s1 − g(0)s1 − x1
(21)

where: x1, s1 are the determined coordinates of the point C as per formulas (12)
and (8), considering the vertex selection criterion (14).

Determining a real (defuzzyfied) value in the defuzzyfication process consists
in calculation of the argument xw as the Eq. (21).

3.3 Method 2 - Extended TR Method

In the extended Triangular Expanding method the second intersection point is
taken into account. The point of intersection that was rejected, i.e. C2 with
the point C1 applied in the original Triangular Expanding method will be used
to build a straight line passing through those points. The straight line created
using those two points together with the function g of the ordered fuzzy number
shall determine the defuzzyfication value at the point of intersection of these
straight lines. The defuzzyfication value will be mainly determined in the area
of the function g, i.e. the DOWN part of the OFN number. Thanks to that
property the method focuses solely to the goal underlined in the order of the
OFN number. Explanation of the proposed solution is shown in Fig. 3, where
the straight line lc intersecting the falling edge of the OFN number is presented.
Point W indicates the defuzzyfication value in x axis. The analytical formula
of the extended Triangular Expanding method is determined similarly to the
original Triangular Expanding method. That concept includes similar phases
related to the determination of the intersection points with the circles. The
calculated intersection points of the circuits K1, K2 as C1(s1, x1), C2(s2, x2),
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Fig. 3. Graphic interpretation of the extended Triangular Expanding method

make up two triangles extending the OFN number. A straight line lc drawn
through the designated points C1 and C2, is described as the function:

lc(x) =
s1x2 − s2x1 + (s2 − s1) x

x2 − x1
(22)

where: s1 and s2 and x1 and x2 are determined based on the following Eqs. (8,
9, 12, 13).

Together with the function g, of the formula:

g(x) =
s3x4 − s4x3 + (s4 − s3) x

x4 − x3
(23)
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where: s3 and s4 as well as x3 and x4 are values 0, 1 of the function g and
arguments g(0), g(1), respectively.

The intersection point of the functions (22, 23) is calculated by comparison
of the above functions:

{
lc(x) = s1x2−s2x1+(s2−s1)x

x2−x1

g(x) = s3x4−s4x3+(s4−s3)x
x4−x3

(24)

The result is the point W = (sw, xw), the value xw of which defines the
defuzzyfication:

xw =
((s3 − s1) x2 + (s2 − s3) x1) x4 + ((s1 − s4) x2 + (s4 − s2) x1) x3

(s2 − s1) x4 + (s1 − s2) x3 + (s3 − s4) x2 + (s4 − s3) x1
(25)

and

sw =
(s2 − s1) s3 x4 + (s1 − s2) s4 x3 + (s1 s3 − s1 s4) x2 + (s2 s4 − s2 s3) x1

(s2 − s1) x4 + (s1 − s2) x3 + (s3 − s4) x2 + (s4 − s3) x1

(26)
Taking into account the points of the OFN number, the formulas (25, 26)

assume the following form:

xw =
((g(1) − g(0)) s1 − g(0)) x2 + ((g(0) − g(1)) s2 + g(0)) x1

x2 − x1 + (g(0) − g(1)) s2 + (g(1) − g(0)) s1
(27)

and

sw =
s1 x2 − s2 x1 − g(0) s2 + g(0) s1

x2 − x1 + (g(0) − g(1)) s2 + (g(1) − g(0)) s1
(28)

4 Comparison of Methods

The proposed defuzzyfication method as the Triangular Expanding presented in
the third chapter of this paper was intended to be sensitive to the order of the
ordered fuzzy number present in the argument. It is going to be demonstrated
further in the article. In this section, the proposed method will be compared with
the methods FOM, LOM, GM and COG. The first two methods belong to the
group of maxima methods. In the FOM (First Of Maxima) method, the defuzzy-
fication value is determined for the first element of the kernel, where the kernel
means the section of the domain in which the membership function achieves the
maximum value equal one. In the case when the defuzzyfication value is associ-
ated with the last element of the kernel, the LOM (Last Of Maxma) method is
achieved. The Geometrical Mean (GM) method by D. Wilczyńska is described
in detail in the article [49]. It is based on determination of the intersection of
two lines located at the poles of the OFN number. The last method, which was
selected for comparison, is the Center Of Gravity method. This method yields
good results both in case of ordered fuzzy numbers and convex fuzzy numbers.
The calculations for that method were carried out by means of the software
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developed by L. Lewiński and M. Szymański. For the other methods, the defuzzy-
fication value was determined geometrically using the tool: GeoGebra - Dynamic
Mathematics for Everyone. The following two numbers were used for the needs
of the test: H = [2, 3, 4, 7] and Z = [7, 4, 3, 2]. Thire graphic interpretation is
shown in Fig. 4, where: (a) H number and (b) the reversely ordered Z number.
The presented numbers are characterized by the same shape but differ in the
opposite order. Those numbers were subject to defuzzyfication using individual
methods. The calculation results are presented in Table 1. For the GM and COG
methods, the order does not affect the defuzzyfication value. In the case when the
maxima method is used, either FOM or LOM, the defuzzyfication value depends
on the order of the number, thus yielding extreme values of defuzzyfication in the
kernel area. The results of the Triangular Expanding method indicate that the
method is order sensitive. For the H number, the defuzzyfication value is 3.3 and

Fig. 4. Two OFN numbers, (a) H number and (b) the reversely ordered Z number
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Table 1. Defuzzification measurements for two OFN numbers

Ordered Fuzzy Number Defuzzyfication method

TE FOL LOM GM COG

H = [2,3,4,7] 3.3 3 4 3.67 4.11

Z = [7,4,3,2] 3.67 4 3 3.67 4.11

for Z number it amounts to 3.67. It can also be noticed that for Z number, the
TE method yields the same defuzzyfication as GM method for both numbers: H
and Z. Thus it proves that TE method is order sensitive.

5 Conclusions

Ordered fuzzy numbers, as the mathematical method providing broad possibil-
ities for the information describing and processing, has become a new solution
in the construction of controller models used as a tool for inference or control.
Main advantages of this approach include smooth application of real numbers
algebra. The proposed defuzzyfication method as a Triangular Expanding for
ordered fuzzy numbers, can be an alternative to existing solutions that do not
take into account an order. It has been proved in this article that the method is
order sensitive. The results presented clearly show the course of the defuzzyfica-
tion value change. Further research, the authors intends to take, will be related
to determination of the efficiency and its comparison to widely used methods
such as COA. In his article, the authors intended to use ordered fuzzy numbers
to create the OFCL (Ordered Fuzzy Control Language) for the fuzzy controller.
Although the specification of FCE (Fuzzy Control Language) is available for the
conventional fuzzy logic, which is used by manufacturers of re-programmable
controllers, the ability to compare the method with other ones and to dissemi-
nate the technology is a sufficient motivation to continue research in that scope.
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Abstract. Shopping malls today, are the centers of social life. There exists an
increasing demand of shopping malls. The market’s profit margin is promising
however from the investor’s perspective, shopping malls require big investments
and the risk level is high. For the success of a shopping mall, its target market
needs to be chosen carefully in the beginning and its marketing mix needs to be
in the same direction. There exist many factors influencing the target market
strategy selection of a shopping mall; this process can be observed as an MCDM
problem. The purpose of this study is to determine the interrelations between the
criteria affecting a shopping mall’s target market differentiation degree, to select
a target marketing strategy while considering the hesitations of decision makers
and to represent this complex decision making system with intuitionistic fuzzy
cognitive maps. Numerical application is made for investment decision making
process of a new shopping mall that will locate in Istanbul, Turkey.

Keywords: Shopping mall � Target market strategy � Intuitionistic fuzzy
cognitive map � MCDM

1 Introduction

Since consumption habits have increased worldwide, there is a growing interest in
shopping malls. This interest in Turkey has also increased in proportion to the world. In
Turkey, where the first shopping mall was opened in 1988, there are currently more
than 400 active shopping malls. As the green areas gradually diminished, shopping
malls became the center of social life. Especially in cities with parking problems,
shopping malls with parking facilities have become common meeting points. By the
early 1990s, a growing population and a strong economy encouraged a demand for
better shopping facilities and a recognition that there was too much of an emphasis on
the central area [1]. The first shopping mall in Turkey was founded in 1988 followed by
an average of one per year between 1988–1997 [2]. By the end of 2016, there are
around 100 shopping malls in İstanbul, followed by 35 in Ankara, 19 in İzmir and 16 in
Antalya and overall 400 across country, visited by over a billion visitors per year. Due
to the intense competition, there is an increasing pressure on shopping malls to clearly
differentiate themselves more distinctively [3]. Therefore the target market of a
shopping mall should be chosen carefully in the strategic marketing planning.
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Strategic planning process starts with thorough internal and external analysis. Then,
business-units strategies are formed accordingly. Once the strategies are formed, it
needs to be implemented and constant surveillance and feedbacks are crucial in order to
keep the strategies up to date and prevent them to become obsolete. This surveillance
must be made with concrete performance measures. In this paper, we used Intuitionistic
Fuzzy Sets (IFS) Theory, which incorporates the hesitation of decision makers; com-
bined with Fuzzy Cognitive Maps (FCM), which provides a representation and
quantitative solution of the causal relationships among the decision criteria given by the
decision makers.

Strategy prioritization in shopping malls is a multi-criteria decision making prob-
lem with many conflicting tangible/intangible and independent/dependent criteria.
Scholars contributed to literature with MCDM approaches to shopping mall decisions.
[4] used Fuzzy ANP method for target market strategy selection, [5] used Stepwise
Weight Assessment Ratio Analysis (SWARA) and Weighted Aggregated Sum Product
Assessment (WASPAS) for location selection, [6, 7] used ANP for retail tenant mix
planning and location selection, respectively.

Many decision-making and problem-solving tasks are too complex to be understood
quantitatively; however, people succeed by using knowledge that is imprecise rather
than precise. Fuzzy set theory resembles human reasoning in its use of approximate
information and uncertainty to generate decisions. It was specifically designed to
mathematically represent uncertainty and vagueness and provide formalized tools for
dealing with the imprecision intrinsic to many problems. By contrast, traditional com-
puting demands precision down to each bit. Since knowledge can be expressed in a more
natural by using fuzzy sets, many engineering and decision problems can be greatly
simplified. Fuzzy set theory implements classes or groupings of data with boundaries
that are not sharply defined (i.e., fuzzy). There are few studies on shopping mall using
fuzzy logic [8–10]. As an extension of fuzzy sets, intuitionistic fuzzy sets provide the
decision makers the flexibility of expressing their hesitations on the information that
they give. In this paper IFSs are used to represent hesitations of the decision makers
mathematically

After a thorough literature survey, one can see that, in such shopping mall case,
IFCM and/or FCM have not been used as a decision tool and furthermore, although
FCM has been used, albeit once, in marketing strategy selection [11] but IFCM has
never been used. Therefore, the originality of our study comes from the novel approach
to marketing strategy selection and a novel decision making application area.

The rest of the paper is organized as follows: In Sect. 2, target marketing strategy is
described. In Sect. 3, IFCM method is explained in detail. In Sect. 4, numerical
application is given with a case study and the paper is concluded in Sect. 5.

2 Target Marketing Strategy

Marketing strategy of an organization consists of determining a target market or target
markets and afterwards determining a marketing mix (4P of product, price, place and
promotion). The strategy has to come up with the right combination of target market(s)
and marketing mix(es) to ensure competitive advantage on the rivals.
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There are two main options in order to select the target market:

– Undifferentiated Strategy: This is also called mass marketing and refers to con-
sidering the market as one homogeneous group of customers whose requirements
are somewhat same.

– Multi-segment Marketing: In this approach, the market is considered to be formed
by clusters/segments of customers where each segment has its own requirements/
needs. Therefore, in this approach, each segment needs its own strategy.

Under multi-segment marketing, one can specifically focus on one or few segments
in a whole. This is called Concentrated (Niche) Marketing. And if the focus is on
specific individuals, then the concept is called Micromarketing.

Companies need to consider many factors when choosing a market-targeting
strategy. Which strategy is best depends on the company’s resources. When the firm’s
resources are limited, concentrated marketing makes the most sense. The best strategy
also depends on the degree of product variability. Undifferentiated marketing is more
suited for uniform products, such as grapefruit or steel. Products that can vary in
design, such as cameras and cars, are more suited to differentiation or concentration.
The product’s life-cycle stage also must be considered. When a firm introduces a new
product, it may be practical to launch one version only, and undifferentiated marketing
or concentrated marketing may make the most sense. In the mature stage of the product
life cycle, however, differentiated marketing often makes more sense [12].

For our application we adopted the model presented in [4].
Four main criteria of the decision model and their brief explanation including their

sub-criteria are as follows:

– BrandMix: Refers to the brands which will be included in the shopping mall. This will
determine the mall’s success from the perspective of sales, tenants etc. The brands
included in a mall will form a perception of attractiveness in consumers’minds and this
will affect the time consumed in that mall. The sub-criteria are: Product type, Profit,
Brand Awareness, Brand Loyalty, Life Cycle, Market Share and Economy of Scale.

– Company: Refers to the owner and manager of the shopping mall in question.
A successful shopping mall is a result of an effective management. A review of the
retailing literature reveals six dominant attributes in shopping center’s company
concept: company resources, risk level, accessibility, capacity, price determinant,
innovation and adaptation to technological developments [4].

– Market: Refers to the understanding of the market in general in order to form an
appropriate strategy. Now with the technological advances and ease of use that
come with it in online shopping, the fierce competition among the shopping malls is
even fiercer. Mall market indicator was formed by the following factors: market
structure, segment size, market growth, and number of competitors [4].

– Consumer: Marketing Strategy is built around an understanding of the consumer.
A shopping mall will stand a chance to satisfy its customers once the consumers’
needs and requirements are analyzed. Shopping mall consumer criteria were formed
by the following factors: Heterogeneity of Consumer Shopping Behaviour, Ease of
Consumer Profiling, Consumer Sensitivity to Point of Purchase Promotions, and
Consumer Sensitivity to Prices [4].

622 E. Dogu et al.



3 Intuitionistic Fuzzy Cognitive Maps

3.1 Fuzzy Sets and Intuitionistic Fuzzy Sets

A conventional fuzzy set is a set containing elements that have varying degrees of
membership in the set. This idea is in contrast with classical or crisp sets because
members of a crisp set would not be members unless their membership is full, or
complete, in that set (i.e., their membership is assigned a value of 1). Elements in a
fuzzy set, because their membership need not be complete, can also be members of
other fuzzy sets on the same universe [13]. If an element in the universe U, say x, is a
member of fuzzy set ~A then this mapping is given by the membership function;
l~AðxÞ 2 ½0; 1�. The membership value is the belongingness of the element x 2 U to the
set ~A. Fuzzy set ~A has a form as shown in Eq. (1).

~A ¼ x; l~AðxÞ
� �jx 2 U
� � ð1Þ

Intuitionistic Fuzzy Sets (IFSs), which are introduced by Atanassov in 1986 [14,
15], represent the generalization of conventional fuzzy sets. IFSs have an additional
value which is the non-membership degree gA xð Þ 2 ½0; 1�. It is the degree of “not
being” in the set. For every x 2 U, 0� lA xð Þ� 1 and 0� gA xð Þ� 1. Also,
0� lAðxÞþ gAðxÞ� 1. IFS A has a form as shown in Eq. (2).

A ¼ x; lAðxÞ; gAðxÞh ijx 2 Uð Þ ð2Þ

In application, IFSs are abbreviated and represented as lAðxÞ; gAðxÞ. If
lAðxÞþ gAðxÞ ¼ 1, then x is a fuzzy set. If lA xð Þþ gA xð Þ\1, then x is an intuitionistic
fuzzy set with the degree of hesitancy pAðxÞ 2 ½0; 1�. For every x 2 U,

lAðxÞþ gAðxÞþ pAðxÞ ¼ 1 ð3Þ

The degree of hesitancy represents the lack of information and the hesitations of the
decision makers in the problem.

3.2 Fuzzy Cognitive Map

Cognitive Maps are a type of directed graph that offers a means to model interrela-
tionships or causalities among concepts; there are various forms of cognitive maps,
such as signed digraphs, weighted graphs, and functional graphs. The use of simple
binary relationships (i.e., increase and decrease) is done in a conventional (crisp)
cognitive map. Cognitive maps have a clear way to visually represent causal rela-
tionships, they expand the range of complexity that can be managed, they allow users
to rapidly compare their mental models with reality, they make evaluations easier, and
they promote new ways of thinking about the issue being evaluated [13]. Fuzzy
Cognitive Map (FCM) is an extension of conventional cognitive map that includes
various degrees of increase or decrease (small increase, large decrease, almost no
decrease, etc.). FCMs include concept nodes and weighted arcs that are graphically
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showed as a signed weighted graph with feedback. Signed weighted arcs, connecting
the concept nodes, display the causal relationship that exists among concepts [16].
Graphical representation of FCM is shown in Fig. 1. The weight value w represents the
strength of relationship between two concepts.

In conventional cognitive maps, the weight w can only have three values;−1, 0 and 1.
In FCMs, w values can be fuzzy numbers and this gives an infinite number of choices to
decision makers to speak their mind.

The value of each concept is calculated, computing the influence of other concepts
to the specific concept, by applying the following calculation rule:

A kþ 1ð Þ
i ¼ f Ak

i þ
XN

j¼1
AðkÞ
j wji

� �
ð4Þ

where A kð Þ
i is the value of concept Ci at iteration step k, A kþ 1ð Þ

j is the value of the
concept Cj at iteration k + 1, wji is the weight of the connection from Cj to Ci and f is a
threshold function [16].

3.3 Intuitionistic Fuzzy Cognitive Maps

Intuitionistic Fuzzy Cognitive Map (IFCM) is introduced in 2009 [17] and applied in
medical decision making. Then it has been developed and discussed [18–20] in recent
years. Its applications proved its usefulness in medical decision making when the
decision makers have hesitations. In marketing field, decision makers usually have
hesitations because it is very expensive and time-consuming to gather the customer
data. IFCM is a powerful tool to cope with hesitations.

IFCM has the same iteration-based system with FCM however its equation is
slightly different:

A kþ 1ð Þ
i ¼ f Ak

i þ
XN

j¼1
AðkÞ
j wl

ji � AðkÞ
j wp

ji

� �
ð5Þ

In Eq. (5), wl
ji 2 �1; 1½ � represents the influence weight and wp

ji 2 �1; 1½ � represents
the hesitancy weight. Hesitancy has a negative effect on the interrelations but the

Fig. 1. FCM representation
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weight factor ðwl
ji � wp

jiÞ may not always conserve the direction of the influence. Hence

the linguistic scale must be chosen carefully which all have wl
ji

���
���[ wp

ji

���
���.

As a decision making tool, the steps of IFCM method is as follows:

Step 1: The key-factors of the system, namely the concepts, are defined by the
experts (decision makers). Input concepts and output concepts are determined.
Step 2: The interactions between these concepts are first specified by the experts as
“positive relation” or “negative relation” and then the strengths of these relations are
determined by the experts using linguistic terms.
Step 3: According to a pre-defined scale, linguistic terms are signed to IFSs and all
the weight values are obtained.
Step 4: Using Eq. (5), the final value of each concept is calculated.

4 Case Study: New Shopping Mall in Istanbul

Numerical application of IFCM method is the case study of a new shopping mall in
Istanbul. The exact location and the capacity of the mall have been already decided
however, investors and managers need to determine a target marketing strategy as soon
as possible because all the brands that will serve in the mall, must be chosen con-
sidering this strategy. The investors of this mall are experienced in the market and the
managers are specialized in shopping mall initialization and management. The mall
will be installed in a region where high income segment (A++) is located. However in
that region there exist other malls that people got used to. Therefore the competition
will be challenging.

Decision makers of this application are one investor and two managers of the mall.
They prepared the data with consensus hence no aggregation method is used.
Numerical application steps are as follows:

Step 1: The concepts of IFCM are the criteria that have influence on target market
differentiation degree. There exist 21 criteria which are given in Sect. 2:

C1: Product type, C2: Profit, C3: Brand Awareness, C4: Brand Loyalty, C5: Life
Cycle, C6: Market Share, C7: The Economy of Scale, C8: Company Resources, C9:
Risk Level, C10: Accessibility, C11: Capacity, C12: Price Determinant, C13: Inno-
vation and Adaptation to Technological Developments, C14: Segment Size, C15:
Number of Competitors, C16: Market Growth, C17: Market Structure, C18: Hetero-
geneity of Consumer, C19: Ease of Consumer Profiling, C20: Consumer Sensitivity to
Point of Purchase Promotions, C21: Consumer Sensitivity to Prices.

These criteria are the input concepts of the model. There is only one output concept,
C22: Target Market Differentiation Degree. Target marketing strategy alternatives are
explained in Sect. 2. The scale of the output concept, that relates final values to the
alternatives, is pre-defined according to expert decisions and marketing indicators as
shown in Fig. 2. The thermal scale is used to represent the relations between output
values and alternatives, since there are not strict boundaries and there exist intersections.
For example, if the output value is calculated as 0.35, that means mass marketing or
differentiated marketing can be used or a mixed strategy of these two can be employed.
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Step 2: Directions and strengths of relations between concepts are determined by
the experts using linguistic terms: “Positive-Negative” for directions and “Very
Low-Low-Medium-High-Very High” for strengths. All the relations are listed in
Table 2. The IFCM with the concepts and relations are shown in Fig. 3. In the graph,
blue and red arrows represent positive and negative relations, respectively. Strengths of
the relations are represented with the width of arrows; maximum width represents
“Very High” (Table 1).

Step 3: The scale, which assigns IFSs to linguistic terms, is chosen from the liter-
ature of multi-attribute group decision making with IFSs. The scale used in the
numerical application by Li and Huang [21] is suitable for this study. The scale is given
in Table 2 using the representation given in Eq. (2). This scale assumes that boundary

Fig. 2. Scale of the output concept

Fig. 3. The IFCM
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values do not include hesitations; if a decision maker says “Very Low” instead of “Low”
or “Very High” instead of “High”, it means he/she is certain about this information,
therefore the sum of membership and non-membership degrees equals to 1 as opposed to
what appears for the other linguistic values for which a degree of hesitation exists.

Step 4: According to Eq. (5), iterations are coded in MATLAB. Initial values of
concepts are taken as 1; A0

i ¼ 1, for all i = 1, …, 22. The sigmoid function is used as

Table 1. Relations between concepts

Relation Direction Strength Relation Direction Strength

C1–C3 Positive Medium C1–C4 Positive Medium
C2–C8 Positive Very High C2–C22 Positive Very Low
C3–C2 Positive High C3–C5 Positive Low
C3–C6 Positive High C3–C7 Positive Low
C3–C22 Negative Very Low C4–C2 Positive High
C4–C5 Positive Medium C4–C6 Positive Low
C4–C7 Positive Low C4–C22 Positive Very Low
C5–C7 Positive Medium C6–C2 Positive Very High
C6––C7 Positive Medium C6–C22 Positive Low
C7–C22 Negative Very Low C8–C1 Positive Medium
C8–C13 Positive High C8–C22 Positive High
C9–C2 Positive High C9–C12 Negative Low
C9–C22 Negative Medium C10–C22 Negative Low
C11–C22 Negative Very Low C12–C9 Negative Medium
C12–C22 Positive High C13–C12 Positive Medium
C14–C2 Negative High C14–C15 Positive Medium
C14–C22 Positive Medium C15–C2 Negative High
C15–C17 Positive Low C15–C22 Positive Very Low
C16–C2 Positive Medium C16–C14 Positive Low
C16–C22 Positive Medium C17–C15 Positive Low
C17–C22 Positive Medium C18–C19 Negative Medium
C18–C22 Negative High C19–C22 Positive Medium
C20–C19 Positive Medium C20–C22 Negative Very Low
C21–C19 Positive Medium C21–C19 Positive Medium
C21–C22 Negative Low

Table 2. The scale of linguistic terms and IFSs

Linguistic terms IF sets

Very Low 〈0.05, 0.95〉
Low 〈0.25, 0.7〉
Medium 〈0.5, 0.4〉
High 〈0.7, 0.25〉
Very High 〈0.95, 0.05〉
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threshold function since the value of the output concept must be between 0 and 1. The
values are converged in 8 iterations and the final values are given in Table 3.

The final value of the output concept “Target Market Differentiation Degree” is
0.9048. According to the scale given in Fig. 2, this value is in the intersection of two
alternatives “Niche Marketing” and “Micromarketing”. The IFCMmodel claims that the
managers of this shopping mall should use niche marketing or micromarketing strategy,
or a combination of them as the target marketing strategy of this new shopping mall.

5 Conclusions

Target market strategy selection of shopping malls plays a major role in their future
success and maintainability. It is a one-time decision that involves great risks because of
huge investments. In this study, we used IFCM method, which employs cognitive
mapping to model the complex decision making system while considering hesitations of
the decision makers using IFSs, in order to determine the best target marketing strategy
of a new shopping mall. 21 input concepts and one output concept are implicated in the
decision making model and the result is calculated as “Niche Marketing-
Micromarketing”. According to the experts, a mix strategy of niche marketing and

Table 3. Final values of concepts

C1 Product Type 0.8898
C2 Profit 0.9124
C3 Brand Awareness 0.7517
C4 Brand Loyalty 0.7517
C5 Life Cycle 0.7727
C6 Market Share 0.8098
C7 Eco. of Scale 0.8570
C8 Company Resources 0.8474
C9 Risk Level 0.5707
C10 Accessibility 0.6590
C11 Capacity 0.6590
C12 Price Determinant 0.7146
C13 Innovation 0.7931
C14 Segment Size 0.6959
C15 No of Competitors 0.7657
C16 Market Growth 0.6590
C17 Market Structure 0.7016
C18 Heterogeneity 0.6590
C19 Ease of Profiling 0.7298
C20 Sensit. to Promo’s 0.6590
C21 Sensit. to Prices 0.6590
C22 Differentiation Degree 0.9048
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micromarketing is also the best target marketing strategy for this shopping mall. In
addition, when the experts interpret the rest of the final values, some remarks emerged:

The final values of the input concepts can be interpreted as; the influence of the
factor over the target marketing strategy being “Niche Marketing-Micromarketing”.
The greatest final value belongs to “Profit” criterion (0.9124) which is significant for
these strategies. Amongst these criteria, “Profit” is the biggest motivation of launching
a niche shopping mall because niche markets have the greatest profit margins.

“Product type” is the second with the value (0.8898) which is revealing because the
type of the product is one of the essential factors while selecting its target marketing
strategy. Type of the products that the shopping mall offers is mostly decisive for its
target marketing strategy. If they sell mostly convenience products in that mall, the
target marketing strategy cannot be niche.

“Risk Level” has the smallest final value which is also significant; “Niche
Marketing-Micromarketing” strategy involves major risks. If these strategies are cho-
sen, it shows the risk seeking behavior and it means that a high level of risk has been
already envisaged. Hence the risk has a very minor effect on these strategies.

Other factors also have influences close to 1, therefore no concepts should be
excluded from the model. The model is well-constructed.

In this target marketing strategy selection model, effects of the concepts varies
according to industry’s structure (service or production), periods of economic pros-
perity and depression, economic conjuncture of the country etc. As a future research,
the model can be applied in different industries and the effect of economic changes can
be observed.
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Abstract. A recent leg of research on a new level operator over intuitionistic
fuzzy sets, Nc, inspired the development of a new approach to establishing the
thresholds for evaluation of the results of application of the InterCriteria
Analysis (ICA) over multiobject multicriteria problems. ICA is a novel method
of detecting the levels of pairwise correlations within the set of criteria (termed
here positive consonance, negative consonance and dissonance), which uses as
input the dataset of measurements or evaluations of a set of objects against these
criteria. The output of ICA, being a matrix of intuitionistic fuzzy pairs, gives all
possible consonances and dissonances between the pairs of criteria, and it is a
matter of either expert decision or algorithmic solution what thresholds of
precision will be implemented to outline the top correlating pairs of criteria and
yield certain domain-specific conclusions from the data. The present paper
discusses practical aspects of selecting these top performing pairs of criteria with
the use of the newly proposed intuitionistic fuzzy level operator Nc. For illus-
trative purposes, we analyze the dataset of 28 EU member states’ performance
from the Global Competitiveness Report of the World Economic Forum for the
year 2016–2017. Further, we comment on the interval in which parameter c
reasonably varies, making use of the intuitionistic fuzzy interpretational triangle
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1 Introduction

In [12], a new operator of level type was defined over intuitionistic fuzzy sets (IFSs),
expanding the available theoretical knowledge and instrumentation for handing IFSs
(see [1, 3, 5, 7]). The new operator Nc elaborates the idea of the existing operator Na,b,
which aims to produce a subset of an IFS, whose elements have their degrees of
membership above a given level (threshold) a and have their degrees of
non-membership below a given level b. The formal notation of the operator producing
the subset of A, Na,b(A), is the following:

Na;b Að Þ ¼ x; lA xð Þ; mA xð Þh ijx 2 E&lAðxÞ� a&mAðxÞ� bf g;

where A is an IFS within a universe E, and a, b 2 [0, 1], a + b � 1, are fixed numbers
[5]. The definition of the new level operator, as given in [12], is as follows.

Definition: Let us call an IFS A m-positive, if for each A we have (8x 2 E)(mA(x) > 0).
Let us define for each m-positive IFS A the operator

Nc Að Þ ¼ x; lAðxÞ; mAðxÞh ijx 2 E&
lAðxÞ
mAðxÞ � c

� �
;

where c is an arbitrary non-negative real number.
Several basic properties of the new level operator Nc were formulated and proved in

[12], showing its application over the union and intersection of two IFSs, as well as the
relations between Nc and the modal operators Necessity and Possibility, and between Nc

and the topological operators Interior and Closure.
The so formulated new operator is graphically visualized onto the IF interpreta-

tional triangle as presented in the following Fig. 1.

p

μp = γ.νp

νp

A

Nγ (A)

Fig. 1. Graphical visualization of the operator Nc onto the IF triangle
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The new operator inspires a new leg of research related to the thresholds for
evaluation of the results of application of the InterCriteria Analysis over multiobject
multicriteria problems (see a detailed overview in [20]).

InterCriteria Analysis (ICA, originally proposed in [9]) is an IFS-based novel
method for detecting the levels of pairwise correlations within the set of criteria, based
on the measurements or evaluations of the set of objects against these criteria. The
ultimate goal of the method is to detect data-supported hypotheses if some of the
criteria exhibit high enough correlations with others, so that skipping them from the
further decision making process would not affect the whole process. The motivation
behind this method is that in certain domains the need has been defined to eliminate
some of the criteria, when measurement against these comes at a higher cost, consumes
more time or other resources, or is in any other way considered undesirable. Selecting
these high enough correlations (termed in ICA as: positive consonance, negative
consonance or dissonance) requires either an expert decision or an algorithm for the
precise establishment of the thresholds, beyond which the top-correlating criteria are
selected in order to yield certain problem-specific conclusions [9].

On the input, ICA requires a table of numerical values of the measuring of m ob-
jects against n criteria. It returns as output a matrix of intuitionistic fuzzy pairs (IFPs)
with the relations between all the n(n − 1)/2 pairs of criteria. Since ICA is based on the
concept of IFS and index matrices [8], its algorithm is constructed in such a way to
handle the inherent uncertainty, as represented by the use of IFPs, which consist of a
pair of numbers in the [0, 1]-interval, staying for the membership and the
non-membership, whose sum is also a number in this interval, [10]. These n(n − 1)/2
intercriteria pairs, represented as IFPs, can be plotted as points onto the IF interpre-
tational triangle, where the membership and non-membership parts stay respectively
for the abscissa and ordinate (see [4, 5]).

2 Discussion of the Parameter c

In the previous work [12] where the operator Nc was defined for the first time, we
formulated and proved the validity of several statements. At the subsequent step when
we aim to apply the operator to a particular dataset, however, we face the question
about the practical considerations of the range in which parameter c changes, so that it
cuts a nonempty set as a subset of the IFS. Obviously, if we are interested in the subset
of the IFS, which is closer to the Truth, we should define c as c 2 (1, ∞), since c = 1
gives the angle bisector of the right angle of the IF interpretational triangle, and if we
are interested in the subset closer to the Falsity, we should define c as c 2 (0, 1).

More precisely, here we can benefit from our knowledge of the topological oper-
ators Interior and Closure, which are defined using the following formulas, and
illustrated in Fig. 2. (see [2, 5–7]).

I Að Þ ¼ fhx; inf
y2E

lAðyÞ; sup
y2E

mAðyÞijx 2 Eg

C Að Þ ¼ fhx; sup
y2E

lAðyÞ; infy2E
mAðyÞijx 2 Eg
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These two operators help finding the range, from which parameter c shall rea-
sonably be selected in a particular decision making case, i.e.:

sup ( )inf ( )
;

sup ( ) inf ( )

AAy E y E

A Ay Ey E

yy

y y

μμ
γ

ν ν
∈ ∈

∈∈

∈ .

For instance, in the illustrative example in Fig. 2, we have some IFS of elements,
visually interpreted in the white points in the IF triangle. With the help of the operators
Interior and Closure, expressed with the points with coordinates C(A) (0.40, 0.49)
and I(A) (0.78, 0.14), parameter c should be selected from the interval [0.82; 5.57]. For this
particular case, if selected outside of this interval, cwill produce an empty subset of the IFS.

On a side note, the illustrative example in Fig. 2 shows that even finer correction of
the boundaries of the range of parameter c is possible, depending on the actual location
of the elements of the set (e.g., see the elements, defining I(A)).

(0; 0) (1; 0)

(0; 1)

I(A)

C(A)

Fig. 2. An illustrative IFS, plotted onto the IF Triangle, with the indicated places of the
topological operators Interior and Closure.
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As it was noted in [12], the idea about the new operator Nc has been inspired by the
theory of the American psychologist John M. Gottman that marital relationships are
likely to be stable if they exhibit the “magic ratio” of 5:1 of positive to negative
interactions between the partners (see [21]). This idea is transferred here in the ratio l/m
of the membership–to–non-memberships calculated for the elements of an IFS, which
is another way to shortlist some of these elements, along with those already proposed in
[11, 14, 16–18] (see also [20] for an overview).

3 Application of the Operator Nc Over Real Data

We approbate the use of the newly proposed level operator with the dataset of 28
European Union member states’ performance from the Global Competitiveness Report
(GCR) of the World Economic Forum for the year 2016–2017 [25], taking as a
motivation the WEF’s general address to policy makers to ‘identify and strengthen the
transformative forces that will drive future economic growth’ [24]. So far, there has
been a long-term research of the application of various threshold of the ICA method
with data from the GCRs over the years [13–17], which allows not only comparison of
the same threshold techniques over the datasets from consequent years, but also dif-
ferent threshold techniques over the same datasets. Another research of applying ICA
too various EU enterprises was performed in [19].

The input data for the ICA are collected in the Table 1, populated with the data of the
evaluations of the 28 EU Member States (in ICA: objects) against the 12 pillars of
competitiveness (in ICA: criteria), being ‘1. Institutions’; ‘2. Infrastructure’;
‘3. Macroeconomic stability’; ‘4. Health and primary education’; ‘5. Higher education
and training’; ‘6. Goods market efficiency’; ‘7. Labor market efficiency’; ‘8. Financial
market sophistication’; ‘9. Technological readiness’; ‘10. Market size’; ‘11. Business
sophistication’; ‘12. Innovation’. These evaluations are input in the form of an index
matrix with dimensions 28 � 12. According to the adoptedmethodology ofWEF, the set
of possible scores for each of the 12 criteria comprises the numbers 1.0, 1.1,…, 6.9, 7.0.

As an output of the software application implementing the algorithm of ICA
[22, 23], we obtain two 12 � 12 tables (Tables 2 and 3), giving respectively the
membership and the non-membership parts of the IFPs forming the degrees of relation
between each pair of criteria (intercriteria pairs). The two matrices are symmetrical
according to their main diagonal, along which all the IFPs are all identical to the perfect
Truth plotted in the interpretational triangle in (1, 0), since every criterion would
perfectly correlate with itself.

Taking the results produced by the ICA, with the IF pairs distributed in two index
matrices Ml and Mm, collected respectively in Tables 2 and 3, we plot them onto the IF
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Table 2. Membership parts of the intercriteria IFPs calculated from the input in Table 1.

μ 1 2 3 4 5 6 7 8 9 10 11 12

1 1.00 0.74 0.63 0.75 0.81 0.83 0.77 0.74 0.85 0.51 0.80 0.83

2 0.74 1.00 0.50 0.70 0.74 0.70 0.65 0.61 0.77 0.66 0.81 0.79

3 0.63 0.50 1.00 0.48 0.56 0.62 0.67 0.74 0.63 0.42 0.59 0.60

4 0.75 0.70 0.48 1.00 0.79 0.70 0.63 0.59 0.70 0.53 0.74 0.77

5 0.81 0.74 0.56 0.79 1.00 0.73 0.69 0.66 0.76 0.57 0.78 0.82

6 0.83 0.70 0.62 0.70 0.73 1.00 0.81 0.72 0.80 0.50 0.75 0.75

7 0.77 0.65 0.67 0.63 0.69 0.81 1.00 0.74 0.77 0.47 0.71 0.71

8 0.74 0.61 0.74 0.59 0.66 0.72 0.74 1.00 0.72 0.53 0.70 0.72

9 0.85 0.77 0.63 0.70 0.76 0.80 0.77 0.72 1.00 0.57 0.83 0.81

10 0.51 0.66 0.42 0.53 0.57 0.50 0.47 0.53 0.57 1.00 0.63 0.60

11 0.80 0.81 0.59 0.74 0.78 0.75 0.71 0.70 0.83 0.63 1.00 0.87

12 0.83 0.79 0.60 0.77 0.82 0.75 0.71 0.72 0.81 0.60 0.87 1.00

Table 3. Non-membership parts of the intercriteria IFPs calculated from the input in Table 1.

ν 1 2 3 4 5 6 7 8 9 10 11 12

1 0.00 0.21 0.32 0.13 0.13 0.08 0.14 0.20 0.09 0.43 0.12 0.12

2 0.21 0.00 0.46 0.19 0.20 0.22 0.28 0.34 0.17 0.29 0.12 0.15

3 0.32 0.46 0.00 0.39 0.39 0.30 0.26 0.21 0.32 0.54 0.34 0.35

4 0.13 0.19 0.39 0.00 0.08 0.14 0.21 0.28 0.17 0.35 0.12 0.10

5 0.13 0.20 0.39 0.08 0.00 0.18 0.22 0.28 0.18 0.38 0.15 0.11

6 0.08 0.22 0.30 0.14 0.18 0.00 0.09 0.19 0.11 0.42 0.15 0.15

7 0.14 0.28 0.26 0.21 0.22 0.09 0.00 0.19 0.15 0.45 0.19 0.20

8 0.20 0.34 0.21 0.28 0.28 0.19 0.19 0.00 0.21 0.42 0.23 0.22

9 0.09 0.17 0.32 0.17 0.18 0.11 0.15 0.21 0.00 0.38 0.10 0.13

10 0.43 0.29 0.54 0.35 0.38 0.42 0.45 0.42 0.38 0.00 0.30 0.34

11 0.12 0.12 0.34 0.12 0.15 0.15 0.19 0.23 0.10 0.30 0.00 0.07

12 0.12 0.15 0.35 0.10 0.11 0.15 0.20 0.22 0.13 0.34 0.07 0.00
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interpretational triangle in Fig. 3. We further render this data in one more layout
(Table 4), showing the intercriteria pairs, sorted by the calculated l/m ratio, which
relates with the determination of the threshold parameter c. In addition, we also give the
distance to Truth. Each of the columns in Table 4 is conditionally formatted with a
3-color scale based on their values, where the minimum is the lowest value per column
and the maximum is the highest value per column (justified by the different ranges in
which these values belong to).

From Table 4 we notice the obvious similarity between the results as sorted by l/m
ratio, and by distance to the Truth. We reason that this is a particular result from the
form of this IFS. Let us compare which are the best correlating pairs of criteria, as seen
from the point of view of membership, nonmembership, l/m ratio, and distance to the
Truth, and let for example take in each case the top 20% and the bottom 20% of the
pairs of criteria, as sorted in these four ways (e.g. in this case of 66 different pairs, the
highest 14 and lowest 14 pairs). Table 5 gives these results when the intercriteria pairs
are sorted by membership (descending); Table 6 – when the pairs are sorted by
non-membership (ascending); Table 7 – when the pairs are sorted by l/m ratio (de-
scending); Table 8 – when the pairs are sorted by distance from Truth (ascending).
Such detailed comparison of the ranking of the top correlating pairs of criteria has not
been made so far in the research of intercriteria analysis, with any of the case studies,
where ICA has been applied.

(0,0) (1,0)

(0,1)

Fig. 3. Intercriteria IFPs calculated from the input in Table 1, plotted on the intuitionistic fuzzy
interpretational triangle.
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Table 4. Intercriteria IFPs calculated from the input in Table 1, sorted by l/m ratio.

Ci Cj μ ν μμ /νν ratio distance 
to T

11. Business sophistication 12. Innovation 0.868 0.069 12.615 0.149

1. Institutions 6. Goods market efficiency 0.828 0.077 10.793 0.188

4. Health and primary education 5. Higher education and training 0.791 0.082 9.645 0.225

1. Institutions 9. Technological readiness 0.847 0.093 9.143 0.179

6. Goods market efficiency 7. Labor market efficiency 0.812 0.093 8.771 0.209

4. Health and primary education 12. Innovation 0.772 0.095 8.111 0.247

9. Technological readiness 11. Business sophistication 0.825 0.103 8.000 0.203

5. Higher education and training 12. Innovation 0.820 0.111 7.381 0.211

1. Institutions 12. Innovation 0.825 0.116 7.091 0.210

6. Goods market efficiency 9. Technological readiness 0.799 0.114 7.023 0.231

2. Infrastructure 11. Business sophistication 0.807 0.124 6.489 0.230

1. Institutions 11. Business sophistication 0.796 0.124 6.404 0.239

1. Institutions 5. Higher education and training 0.810 0.127 6.375 0.229

9. Technological readiness 12. Innovation 0.807 0.127 6.354 0.231

4. Health and primary education 11. Business sophistication 0.735 0.122 6.043 0.291

1. Institutions 4. Health and primary education 0.746 0.132 5.640 0.286

1. Institutions 7. Labor market efficiency 0.772 0.143 5.407 0.269

5. Higher education and training 11. Business sophistication 0.780 0.146 5.364 0.263

2. Infrastructure 12. Innovation 0.791 0.151 5.246 0.258

7. Labor market efficiency 9. Technological readiness 0.767 0.151 5.088 0.277

6. Goods market efficiency 11. Business sophistication 0.751 0.148 5.071 0.289

6. Goods market efficiency 12. Innovation 0.751 0.148 5.071 0.289

4. Health and primary education 6. Goods market efficiency 0.704 0.143 4.926 0.329

2. Infrastructure 9. Technological readiness 0.770 0.175 4.409 0.289

(continued)
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Table 4. (continued )

Ci Cj μ ν μμ /νν ratio distance 
to T

5. Higher education and training 9. Technological readiness 0.757 0.183 4.145 0.304

5. Higher education and training 6. Goods market efficiency 0.733 0.177 4.134 0.321

4. Health and primary education 9. Technological readiness 0.696 0.175 3.985 0.351

7. Labor market efficiency 8. Financial market development 0.735 0.190 3.861 0.326

6. Goods market efficiency 8. Financial market development 0.725 0.190 3.806 0.335

2. Infrastructure 4. Health and primary education 0.698 0.185 3.771 0.354

7. Labor market efficiency 11. Business sophistication 0.706 0.188 3.761 0.349

1. Institutions 8. Financial market development 0.743 0.198 3.747 0.324

2. Infrastructure 5. Higher education and training 0.738 0.204 3.623 0.332

1. Institutions 2. Infrastructure 0.743 0.209 3.557 0.331

7. Labor market efficiency 12. Innovation 0.706 0.204 3.468 0.357

3. Macroeconomic environment 8. Financial market development 0.738 0.214 3.444 0.338

8. Financial market development 9. Technological readiness 0.725 0.214 3.383 0.349

8. Financial market development 12. Innovation 0.717 0.220 3.265 0.358

2. Infrastructure 6. Goods market efficiency 0.698 0.222 3.143 0.375

5. Higher education and training 7. Labor market efficiency 0.693 0.222 3.119 0.379

4. Health and primary education 7. Labor market efficiency 0.635 0.206 3.077 0.419

8. Financial market development 11. Business sophistication 0.698 0.233 3.000 0.381

3. Macroeconomic environment 7. Labor market efficiency 0.672 0.259 2.592 0.418

5. Higher education and training 8. Financial market development 0.661 0.280 2.358 0.440

2. Infrastructure 10. Market size 0.664 0.288 2.303 0.443

2. Infrastructure 7. Labor market efficiency 0.646 0.280 2.302 0.452

10. Market size 11. Business sophistication 0.630 0.296 2.125 0.474

4. Health and primary education 8. Financial market development 0.593 0.280 2.113 0.495

3. Macroeconomic environment 6. Goods market efficiency 0.619 0.302 2.053 0.486

1. Institutions 3. Macroeconomic environment 0.627 0.320 1.959 0.492

3. Macroeconomic environment 9. Technological readiness 0.627 0.323 1.943 0.493

2. Infrastructure 8. Financial market development 0.608 0.339 1.797 0.518

10. Market size 12. Innovation 0.598 0.339 1.766 0.526

3. Macroeconomic environment 12. Innovation 0.595 0.347 1.718 0.533

3. Macroeconomic environment 11. Business sophistication 0.587 0.344 1.708 0.537

5. Higher education and training 10. Market size 0.571 0.376 1.521 0.570

4. Health and primary education 10. Market size 0.526 0.347 1.519 0.587

9. Technological readiness 10. Market size 0.569 0.376 1.514 0.572

3. Macroeconomic environment 5. Higher education and training 0.558 0.389 1.435 0.589

8. Financial market development 10. Market size 0.532 0.421 1.264 0.629

3. Macroeconomic environment 4. Health and primary education 0.481 0.392 1.230 0.650

1. Institutions 10. Market size 0.513 0.429 1.198 0.649

6. Goods market efficiency 10. Market size 0.497 0.418 1.190 0.654

2. Infrastructure 3. Macroeconomic environment 0.500 0.458 1.092 0.678

7. Labor market efficiency 10. Market size 0.468 0.452 1.035 0.698

3. Macroeconomic environment 10. Market size 0.423 0.540 0.784 0.790
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Table 5. Top 20% and Bottom 20% intercriteria IFPs from Table 4, sorted by membership
(descending)

Ci Cj μμ

11. Business sophistication 12. Innovation 0.868
1. Institutions 9. Technological readiness 0.847
1. Institutions 6. Goods market efficiency 0.828
9. Technological readiness 11. Business sophistication 0.825
1. Institutions 12. Innovation 0.825
5. Higher education and training 12. Innovation 0.820
6. Goods market efficiency 7. Labor market efficiency 0.812
1. Institutions 5. Higher education and training 0.810
2. Infrastructure 11. Business sophistication 0.807
9. Technological readiness 12. Innovation 0.807
6. Goods market efficiency 9. Technological readiness 0.799
1. Institutions 11. Business sophistication 0.796
4. Health and primary education 5. Higher education and training 0.791
2. Infrastructure 12. Innovation 0.791

3. Macroeconomic environment 12. Innovation 0.595
4. Health and primary education 8. Financial market development 0.593
3. Macroeconomic environment 11. Business sophistication 0.587
5. Higher education and training 10. Market size 0.571
9. Technological readiness 10. Market size 0.569
3. Macroeconomic environment 5. Higher education and training 0.558
8. Financial market development 10. Market size 0.532
4. Health and primary education 10. Market size 0.526
1. Institutions 10. Market size 0.513
2. Infrastructure 3. Macroeconomic environment 0.500
6. Goods market efficiency 10. Market size 0.497
3. Macroeconomic environment 4. Health and primary education 0.481
7. Labor market efficiency 10. Market size 0.468
3. Macroeconomic environment 10. Market size 0.423
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Table 6. Top 20% and Bottom 20% intercriteria IFPs from Table 4, sorted by non-membership
(ascending)

Ci Cj νν

11. Business sophistication 12. Innovation 0.069
1. Institutions 6. Goods market efficiency 0.077
4. Health and primary education 5. Higher education and training 0.082
1. Institutions 9. Technological readiness 0.093
6. Goods market efficiency 7. Labor market efficiency 0.093
4. Health and primary education 12. Innovation 0.095
9. Technological readiness 11. Business sophistication 0.103
5. Higher education and training 12. Innovation 0.111
6. Goods market efficiency 9. Technological readiness 0.114
1. Institutions 12. Innovation 0.116
4. Health and primary education 11. Business sophistication 0.122
2. Infrastructure 11. Business sophistication 0.124
1. Institutions 11. Business sophistication 0.124
1. Institutions 5. Higher education and training 0.127

10. Market size 12. Innovation 0.339
3. Macroeconomic environment 11. Business sophistication 0.344
3. Macroeconomic environment 12. Innovation 0.347
4. Health and primary education 10. Market size 0.347
5. Higher education and training 10. Market size 0.376
9. Technological readiness 10. Market size 0.376
3. Macroeconomic environment 5. Higher education and training 0.389
3. Macroeconomic environment 4. Health and primary education 0.392
6. Goods market efficiency 10. Market size 0.418
8. Financial market development 10. Market size 0.421
1. Institutions 10. Market size 0.429
7. Labor market efficiency 10. Market size 0.452
2. Infrastructure 3. Macroeconomic environment 0.458
3. Macroeconomic environment 10. Market size 0.540
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Table 7. Top 20% and Bottom 20% intercriteria IFPs from Table 4, sorted by l/m ratio
(descending)

Ci Cj μμ /νν ratio
11. Business sophistication 12. Innovation 12.615
1. Institutions 6. Goods market efficiency 10.793
4. Health and primary education 5. Higher education and training 9.645
1. Institutions 9. Technological readiness 9.143
6. Goods market efficiency 7. Labor market efficiency 8.771
4. Health and primary education 12. Innovation 8.111
9. Technological readiness 11. Business sophistication 8.000 
5. Higher education and training 12. Innovation 7.381 
1. Institutions 12. Innovation 7.091 
6. Goods market efficiency 9. Technological readiness 7.023 
2. Infrastructure 11. Business sophistication 6.489 
1. Institutions 11. Business sophistication 6.404 
1. Institutions 5. Higher education and training 6.375 
9. Technological readiness 12. Innovation 6.354 

 
10. Market size 12. Innovation 1.766 
3. Macroeconomic environment 12. Innovation 1.718 
3. Macroeconomic environment 11. Business sophistication 1.708 
5. Higher education and training 10. Market size 1.521 
4. Health and primary education 10. Market size 1.519 
9. Technological readiness 10. Market size 1.514 
3. Macroeconomic environment 5. Higher education and training 1.435 
8. Financial market development 10. Market size 1.264 
3. Macroeconomic environment 4. Health and primary education 1.230 
1. Institutions 10. Market size 1.198 
6. Goods market efficiency 10. Market size 1.190 
2. Infrastructure 3. Macroeconomic environment 1.092 
7. Labor market efficiency 10. Market size 1.035 
3. Macroeconomic environment 10. Market size 0.784 
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Table 8. Top 20% and Bottom 20% intercriteria IFPs from Table 4, sorted by distance to Truth
(ascending)

Ci Cj Distance to T 

11. Business sophistication 12. Innovation 0.149 
1. Institutions 9. Technological readiness 0.179 
1. Institutions 6. Goods market efficiency 0.188 
9. Technological readiness 11. Business sophistication 0.203 
6. Goods market efficiency 7. Labor market efficiency 0.209 
1. Institutions 12. Innovation 0.210 
5. Higher education and training 12. Innovation 0.211 
4. Health and primary education 5. Higher education and training 0.225 
1. Institutions 5. Higher education and training 0.229 
2. Infrastructure 11. Business sophistication 0.230 
6. Goods market efficiency 9. Technological readiness 0.231 
9. Technological readiness 12. Innovation 0.231 
1. Institutions 11. Business sophistication 0.239 
4. Health and primary education 12. Innovation 0.247 

 
10. Market size 12. Innovation 0.526 
3. Macroeconomic environment 12. Innovation 0.533 
3. Macroeconomic environment 11. Business sophistication 0.537 
5. Higher education and training 10. Market size 0.570
9. Technological readiness 10. Market size 0.572
4. Health and primary education 10. Market size 0.587
3. Macroeconomic environment 5. Higher education and training 0.589
8. Financial market development 10. Market size 0.629
1. Institutions 10. Market size 0.649
3. Macroeconomic environment 4. Health and primary education 0.650
6. Goods market efficiency 10. Market size 0.654
2. Infrastructure 3. Macroeconomic environment 0.678
7. Labor market efficiency 10. Market size 0.698
3. Macroeconomic environment 10. Market size 0.790
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4 Discussion and Conclusion

From the conducted analysis of the discussed case study, we observe that the following
pairs of criteria exhibit similar high occurrence in the Top 20% (positive consonance)
regardless of the approach of ranking them: with four occurrences of the pairs 11–12,
1–9, 1–6, 9–11, 1–12, 5–12, 1–5, 2–11, 6–9, 1–11, 4–5, with three occurrences of the
pairs 9–12, 4–12 and one occurrence of the pairs 2–12, 4–11. The following pairs of
criteria exhibit similar high occurrence in the Bottom 20% (negative consonance)
regardless of the approach of ranking them: with four occurrences of the pairs 3–10,
7–10, 3–4, 6–10, 2–3, 1–10, 4–10, 8–10, 3–5, 9–10, 5–10, 3–11, 3–12, with three
occurrences of the pairs 10–12, and one occurrence of the pair 4–8. Practically, with one
exception, all of these intercriteria pairs contain either criterion 3 or criterion 10. These
results outline the high relevance of institutions, goods market efficiency technological
readiness, higher education and training, business sophistication and innovation on the
competitiveness of EU Member States, and demonstrates the limited relation of the
macroeconomic environment and market size on the EU competitiveness.

The findings in the case study are arguably the result of the location of the IFS onto
the IF interpretational triangle and more specifically due to the low levels of uncertainty
(proximity of the IFS to the hypotenuse of the IF interpretational triangle). We reason
that in cases of IFSs having elements exhibiting higher levels of uncertainty, the
different approaches of cutting a subset of the IFS and ranking them will demonstrate
more substantial differences in the selection and ranking of the highest intercriteria
correlations in ICA, as suggested in Fig. 4.

We will specifically discuss on the operator Nc over ICA case studies. The use and
applicability of the operator would be more visible in cases where the IFS elements
exhibit both high degrees of uncertainty and high membership-to-non-membership
ratios of the elements. The use of thresholds a and b for the membership and
non-membership, respectively, to outline the positive correlations, which was part of
the original formulation of the ICA approach, tends to isolate such elements due to the
higher degree uncertainty. In the same manner, these elements would remain undis-
cussed if the IFS elements are ranked with respect to their distance from the Truth.
Even with higher degree of uncertainty, however, the high l/m ratio can prove to be
indicative and helpful for the decision maker. Studying more cases can make this open
question clearer and can contribute to the wider adoption and applicability of this newly
proposed operator over IFSs.

Fig. 4. Different scenarios to cut a subset of an IFS, plotted on the IF interpretational triangle.
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Abstract. In this paper we study the properties of idempotent uni-
norms on the lattice, that are one of the binary operations. It is shown
that in any lattice idempotent uninorms need not be internal (with the
extended definition of the term “internal”). But with additional assump-
tions, we get that the uninorm is locally internal. With this assumption,
we present the theorem of Czoga�la and Drewniak for a complete lattice.
Moreover, many properties of idempotent uninorm in this case is shown.

Keywords: Uninorms · Aggregation operators · Complete lattice ·
Idempotent operations

1 Introduction

Uninorms were introduced by Yager and Rybalov [19] as a generalization of
triangular norms and triangular conorms [18,20] with more applications, allow-
ing the freedom for the neutral element e to be an arbitrary element from unit
interval [0, 1] , which is 1 for t-norms and 0 for t-conorms. Fodor et al. and De
Baets [4,5,12] is among others that have studied the structure of these operators
in considerable detail. If the neutral element is not 0 or 1, the construction of
uninorm aggregation operators is an important work. These operators play an
important role both in theoretical investigations and in practical applications
such as the expert systems, neural networks, fuzzy logics, etc.

Martin, Mayor and Torrens [16] characterize idempotent uninorms on unit
interval [0, 1] as improvement of a well-known theorem of Czoga�la and Drewniak
[3] on idempotent, associative and increasing operations with a neutral element.
Associative, monotonic, idempotent operations with a neutral element are special
combinations of minimum and maximum and, consequently, locally internal. The
classes Umin and Umax are well-known examples of idempotent uninorms, which
are the smallest and largest idempotent uninorms with the neutral element e.
The characterization of idempotent uninorms given in [4] are also locally internal.

De Baets et al. [5] characterize all idempotent uninorms defined on a finite
ordinal scale, similarly as on the unit interval the characterization of idempotent
uninorms [3,4,16]. They have proved that any idempotent uninorm is uniquely
determined by a decreasing function from the set of scale elements not greater
c© Springer International Publishing AG 2018
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than the neutral element to the set of scale elements not smaller than the neutral
element. Some other studies related to uninorms can be found also in [7–11,13,17].

In this paper, after some preliminaries concerning locally internal operation
on unit interval [0, 1] we present the properties of idempotent uninorms on the
lattice. It is shown that in any lattice idempotent uninorms need not be internal
(with the extended definition of the term “internal”). We remaind a sufficient
condition for the lattice to any idempotent uninorm be internal. In addition,
many properties of idempotent uninorm in this case is shown and at the end
there is given a description of idempotent uninorms on such lattices.

2 Preliminaries

We recall here some definitions and results about binary operations on [0, 1] that
are monotonic and satisfy the locally internal property, i.e. the value of such
operation at any point (x, y) is always one of its arguments. Next we consider
uninorms on bounded lattice and its basic properties.

Definition 1 ([16]). We say that a binary operation F : [0, 1]2 → [0, 1] is
locally internal if it satisfies the following condition:

F (x, y) ∈ {x, y}

for all x, y ∈ [0, 1] .

The following results shows the relationship between commutativity and asso-
ciativity for locally internal, monotonic operations.

Proposition 1 ([16]). If a locally internal, monotonic operation is commuta-
tive, then it is associative.

Proposition 2 ([3]). Idempotent, associative, monotonic operation with neu-
tral element is locally internal.

Definition 2 ([2]). A bounded lattice we denote by (L,≤, 0, 1) where the top
and bottom elements are written as 1 and 0, respectively. Moreover, for a, b ∈ L,
if a and b are incomparable, we use the notation a ‖ b.

Definition 3 ([2]). Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b, a
subinterval [a, b] of L is defined as

[a, b] = {x ∈ L | a ≤ x ≤ b}.

Similarly, we define (a, b] = {x ∈ L | a < x ≤ b}, [a, b) = {x ∈ L | a ≤ x < b}
and (a, b) = {x ∈ L | a < x < b}.

Let (L,≤, 0, 1) be a bounded lattice and e ∈ L. Let A(e) = [0, e] × [e, 1] ∪
[e, 1] × [0, e] and Ie = {x ∈ L | x ‖ e}.
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Definition 4 ([14]). Let (L,≤, 0, 1) be a bounded lattice. Operation U: L2 → L
is called a uninorm on L (shortly a uninorm, if L is fixed) if it is commutative,
associative, increasing with respect to both variables and there exist an element
e ∈ L such that U (x, e) = x, for all x ∈ L. The element e is called the neutral
element of U.

We denote by U (e) the set of all uninorms on L with the neutral element
e ∈ L.

Definition 5 ([14]). Operation T : L2 → L
(
S : L2 → L

)
is called a triangu-

lar norm (triangular conorm) if it is commutative, associative, increasing with
respect to both variables and has a neutral element e = 1 (e = 0).

Proposition 3 ([14]). Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and
U a uninorm on L with the neutral element e. Then

(i) T = U |[0, e]2 : [0, e]2 → [0, e] is a t-norm on [0, e].
(ii) S = U |[e, 1]2 : [e, 1]2 → [e, 1] is a t-conorm on [e, 1].

Proposition 4 ([14]). Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U
a uninorm on L with the neutral element e. The following properties hold:

(i) x ∧ y ≤ U(x, y) ≤ x ∨ y for all (x, y) ∈ A (e),
(ii) U(x, y) ≤ x for (x, y) ∈ L × [0, e],
(iii) U(x, y) ≤ y for (x, y) ∈ [0, e] × L,
(iv) x ≤ U(x, y) for (x, y) ∈ L × [e, 1],
(v) y ≤ U(x, y) for (x, y) ∈ [e, 1] × L.

3 Idempotent Uninorms

Definition 6 ([6]). Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U a
uninorm on L with the neutral element e. U is called an idempotent uninorm if
U(x, x) = x for all x ∈ L.

Proposition 5 ([6]). Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and U
an idempotent uninorm on L with the neutral element e. Then it holds:
(i) U(x, y) = x ∧ y for all (x, y) ∈ [0, e]2,
(ii) U(x, y) = x ∨ y for all (x, y) ∈ [e, 1]2.

Proposition 6 (cf. [7]). Let (L,≤, 0, 1) be a bounded lattice, e ∈ L\{0, 1} and
U an idempotent uninorm on L with the neutral element e. Then it holds:

(i) U(x, y) ∈ {x, y} or U(x, y) ∈ Ie for all (x, y) ∈ A (e),
(ii) U(x, y) = x ∧ y or U(x, y) ∈ Ie for all x ∈ [0, e] and y ∈ Ie,
(iii) U(x, y) = x ∨ y or U(x, y) ∈ Ie for all x ∈ [e, 1] and y ∈ Ie,
(iv) U(x, y) = x ∧ y or U(x, y) ∈ Ie for all y ∈ [0, e] and x ∈ Ie,
(v) U(x, y) = x ∨ y or U(x, y) ∈ Ie for all y ∈ [e, 1] and x ∈ Ie,
(vi) U(x, y) ∈ {x ∧ y, x ∨ y} or U(x, y) ∈ Ie for all x ∈ Ie and y ∈ Ie.
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Proposition 7 (cf. [7]). Let (L,≤, 0, 1) be a bounded lattice, U an idempo-
tent uninorm on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L
comparable with e. Then, U (x, y) ∈ {x ∧ y, x ∨ y} for all (x, y) ∈ L2.

Directly from Proposition 5, we see that an idempotent uninorm can not
be locally internal in the sense of the Definition 1. In accordance with the
above proposition, we see that under the appropriate assumptions an idempo-
tent uninorm is locally internal in the broader sense. A natural question arises:
If there are some x ∈ L incomparable with e, it must always be the fact that
U (x, y) ∈ {x, y, x ∧ y, x ∨ y} for U ∈ U (e)? In the following example, we give a
negative answer regarding the above hypothesis.

Example 1. Given a bounded lattice L = {0, x, y, e, z, t, 1} with order in the
Fig. 1, define a mapping U : L2 → L by Table 1. Then U is an idempotent
uninorm on L with a neutral element e and U (z, x) = t.

Table 1. The idempotent uninorm given in Example 1

U 0 a b e c d 1

0 0 0 0 0 0 0 0

a 0 a a a a d d

b 0 a b b d d d

e 0 a b e c d 1

c 0 a d c c d 1

d 0 d d d d d d

1 0 d d 1 1 d 1

� 0

�a�
�

�
�e � b

�d � c�
�

�
� 1

Fig. 1. The lattice given in Example 1
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Proposition 8. (cf. [7]). Let (L,≤, 0, 1) be a lattice, U an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with
e. For x, y, z ∈ L such that x, y ≥ e, x ‖ y and z ≤ e, it may be possible only one
of the following conditions:

(i) If U(x, z) = z, then U(y, z) = z, U(x ∨ y, z) = z and U(x ∧ y, z) = z.
(ii) If U(x, z) = x, then U(y, z) = y and U(x ∨ y, z) = x ∨ y.

Unfortunately, value of U(x∧y, z) is not always equal to x∧y while U(x, z) =
x for x, y ≥ e, x ‖ y and z ≤ e.

Example 2. Given a lattice L = {0, a, e, b, c, d, 1} with order given on Fig. 2,
define a mapping U : L2 → L by Table 2. Then, U is an idempotent uninorm on
L with the neutral element e. But U(c ∧ d, a) = a while U(c, a) = c for c, d ≥ e,
c ‖ d and a ≤ e.

Proposition 9. (cf. [7]). Let (L,≤, 0, 1) be a lattice, U an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with

Table 2. The idempotent uninorm given in Example 2

U 0 a e b c d 1

0 0 0 0 0 c d 1

a 0 a a a c d 1

e 0 a e b c d 1

b 0 a b b c d 1

c c c c c c 1 1

d d d d d 1 d 1

1 1 1 1 1 1 1 1

� 0

�a

� e

� b�
�

�
�c � d�

�
�
� 1

Fig. 2. The lattice given in Example 2
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e. For x, y, z ∈ L, such that x, y ≤ e, x ‖ y and z ≥ e, it may be possible only
one of the following conditions:

(i) If U(x, z) = z, then U(y, z) = z, U(x ∨ y, z) = z and U(x ∧ y, z) = z.
(ii) If U(x, z) = x, then U(y, z) = y and U(x ∧ y, z) = x ∧ y.

4 Separating Function of Idempotent Uninorms on Some
Types of Lattices

In this section we will consider the structure of uninorms under some assump-
tions, that L is a complete lattice, e ∈ L\{0, 1} and all elements are comparable
with e.

Definition 7. Let (L,≤, 0, 1) be a complete lattice, U be an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with
e. Then the function g : L → L defined by

g (x) =
{

sup{z ∈ L | U(x, z) = min(x, z)} if x ≤ e,
inf{z ∈ L | U(x, z) = max(x, z)} otherwise.

(1)

is called a separating function of idempotent uninorm U .

Lemma 1. Let (L,≤, 0, 1) be a complete lattice, U be an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with
e. Then the function g : L → L defined by (1) has the following properties:

(i) g(e) = e.
(ii) For all x < e, it holds that g(x) ≥ e and U(x, y) = x∧y whenever y < g(x).
(iii) For all x > e, it holds that g(x) ≤ e and U(x, y) = x∨y whenever y > g(x).

Proof. Let x ∈ L, x < e. Then U(x, e) = x and consequently the set Bx =
{z ∈ L | U(x, z) = min(x, z)} is nonempty. Moreover, by Propositions 8 and 9
we obtain, that supBx exist. Similarly we have for x ≥ e. It means, that the
function g : L → L defined by (1) is well defined.

To prove (i) we have

g(e) = sup{z ∈ L | U(e, z) = min(e, z)}
= sup{z ∈ L | z = min(e, z)}
= sup{z ∈ L | z ≤ e} = e

(ii) For all x < e, we have that U(x, e) = x = min(x, e) and

g(x) = sup{z ∈ L | U(x, z) = min(x, z)} ≥ e
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Moreover, because of Proposition 5 (i) it is enough to consider the condition
x < e ≤ y < g(x). By monotonicity of U and definition of g, we obtain that
U(x, y) = min(x, y) = x. So, U(x, y) = x = x ∧ y.

(iii) It can be proved as (ii).

Corollary 1. Let (L,≤, 0, 1) be a complete lattice, U be an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with
e. Then the function g : L → L defined by (1) separate the values min and max
in A(e)

Lemma 2. Let (L,≤, 0, 1) be a complete lattice, U be an idempotent uninorm
on L with the neutral element e ∈ L\{0, 1} such that all x ∈ L comparable with
e and g : L → L be defined by (1). Then

(i) There does not exist y ∈ L such that y ‖ g(x) for all x < e.
(ii) There does not exist y ∈ L such that y ‖ g(x) for all x > e.

Proof. (i) Suppose that there exists y ∈ L such that y ‖ g(x) for some x < e.
By Proposition 7, U(x, y) ∈ {x, y} . If U(x, y) = x, then by Proposition 8,
U (x, y ∨ g(x)) = x. So, we obtain that

g(x) = sup{z ∈ L|U(x, z) = min(x, z)} ≥ y ∨ g(x) > g(x).

This is a contradiction. If U(x, y) = y, by Proposition 8, U(x, g(x)) = g(x).
Taking t = y ∧ g(x) we have two possibilities:
(a) U(x, t) = t, then we have a contradiction with Lemma 1.
(b) U(x, t) = x, then for all z > t we have U(x, z) = z. So, t is is the
supremum of the set {z ∈ L|U(x, z) = min(x, z)} and t < g(x). This is
contradiction.

(ii) It can be proved as (i).

Theorem 1. Let (L,≤, 0, 1) be a complete lattice, U be an idempotent uninorm
on L with neutral element e ∈ L\{0, 1} such that all x ∈ L are comparable with e.
Then there exists a decreasing function g : L → L with g(e) = e such that

U (x, y) =

⎧
⎨

⎩

x ∧ y if y < g(x)
x ∨ y if y > g(x)
x or y otherwise.

(2)

Proof. Consider the function g : L → L defined by (1). By using Proposition 7
and Lemma 1, we obtain that U is given by (2). The monotonicity of U imme-
diately implies that g is decreasing.

Example 3. Let L = {0, a, b, c, d, h, e, x, y, z, u, v, w, 1} ba a lattice with order
given on Fig. 3 and a mapping U : L2 → L be given by Table 3. Then, U is an
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� 0

�a�
�

�
�b � c � d

�h

�
�

�

� e

�x�
��

�y

�u � v

�z �
��

�w

�
�

�

� 1

Fig. 3. The lattice given in Example 3

Table 3. The idempotent uninorm given in Example 3

U 0 a b c d h e x y z u v w 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 a a a a a a a a a a a a 1

b 0 a b a a b b b b b b b b 1

c 0 a a c a c c c c c c c c 1

d 0 a a a d d d d d d d d d 1

h 0 a b c d h h x y z u v w 1

e 0 a b c d h e x y z u v w 1

x 0 a b c d h x x y z u v w 1

y 0 a b c d y y y y z w w w 1

z 0 a b c d z z z z z w w w 1

u 0 a b c d u u u w w u w w 1

v 0 a b c d v v v w w w v w 1

w 0 a b c d w w w w w w w w 1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1
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idempotent uninorm on L with the neutral element e with a separating function
given by

g (s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, s = 0
v, s ∈ {a, b, c, d}
x, s = h
e, s = e
h, x ∈ {x, y, z, u, v, w}
a, x = 1.

5 Conclusion

In this paper we studied the properties of idempotent uninorms on the lat-
tice. It is shown that under additional assumption about the lattice idempotent
uninorms need to be internal (with the extended definition of the term “inter-
nal”). In this case the representation of idempotent uninorm using the separating
function is given. Unfortunately, in contrast to the finite lattice considered in
[7], in this case we do not get uniqueness, i.e. for one function g we can get
several uninorms (as in the case of characterization idempotent uninorms on a
unit interval). Moreover, the full characterization of idempotent uninorms on
the considered type of latices remains an open problem. In addition, it is an
open problem to provide a condition equivalent for a complete lattice so that
the idempotent uninorm on the considered lattice is locally internal.
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1. Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inf. Sci. 267, 323–333
(2014)

2. Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publish-
ers, Providence (1967)

3. Czoga�la, E., Drewniak, J.: Associative monotonic operations in fuzzy set theory.
Fuzzy Sets Syst. 12, 249–269 (1984)

4. De Baets, B.: Idempotent uninorms. Eur. J. Oper. Res. 118, 631–642 (1999)
5. De Baets, B., Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on

finite ordinal scales. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 17(1), 1–14
(2009)
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14. Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261, 33–43
(2015)

15. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ., Dor-
drecht (2000)

16. Martin, J., Mayor, G., Torrens, J.: On locally internal monotonic operations. Fuzzy
Sets Syst. 137, 27–42 (2003)
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Abstract. In the article new methods of constructing of ordinal sum
of fuzzy implications are proposed. The concepts are based both on a
construction of ordinal sums of overlap functions and residual implica-
tion of ordinal sum of triangular norms. Moreover, preservation of some
properties of the ordinal sums of fuzzy implications are examined.

Keywords: Fuzzy connectives · Fuzzy implication ·Ordinal sum ·Over-
lap functions · Residual implication

1 Introduction

Fuzzy implications find applications in many fields such as approximate reason-
ing, decision support systems, and fuzzy control. For this reason new families of
these connectives are the subject of investigation. One of the directions of such
research is considering an ordinal sum of fuzzy implications on the pattern of the
ordinal sum of t-norms. Some interesting results connected to representation of
the residual implication corresponding to a fuzzy conjunction (for example con-
tinuous or at least left-continuous t-norm) given by an ordinal sum were obtained
in [5,13,19]. In [21] Su et al. introduced an idea of ordinal sum of fuzzy implica-
tions similar to the construction of the ordinal sum of t-norms. In [2,10,11,18]
other constructions of ordinal sums of fuzzy implications were proposed.

In this paper, new ways of generating ordinal sums of fuzzy implications
are proposed. The ideas are on the basis of a construction of ordinal sums of
overlap functions and residual implication of ordinal sum of triangular norms.
The proposed constructions generates a fuzzy implication without any additional
assumptions on summands.

In Sect. 2 some basic information about fuzzy connectives, in particular tri-
angular norms, overlap functions and fuzzy implications, including their ordinal
sums are recalled. In Sect. 3 two new constructions of ordinal sums of fuzzy
implications are presented and properties of these operations are examined.

2 Preliminaries

Here we recall the notions of a triangular norm, an overlap function, and a fuzzy
implication including residual implication. Moreover, we recall and illustrate
some of the constructions of ordinal sums of the fuzzy connectives.
c© Springer International Publishing AG 2018
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Advances in Intelligent Systems and Computing 641, DOI 10.1007/978-3-319-66830-7 58
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2.1 Triangular Norms

Firstly, we put definition of a triangular norm and one important class of t-norms
with some examples of these operations.

Definition 1 ([16]). A triangular norm (a t-norm) is an increasing, commu-
tative and associative operation T : [0, 1]2 → [0, 1] with a neutral element 1.

Example 1 (cf. [14, p. 7], [16, p. 4]). Here, we list well-known t-norms.
TM (x, y) = min(x, y), TP (x, y) = xy,

TL(x, y) = max(x + y − 1, 0), TD(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 1
y, if x = 1
0, otherwise

,

TnM (x, y) =

{
0, ifx + y ≤ 1
min(x, y), otherwise

.

Next, let us recall the generalized Ordinal Sum Theorem for triangular norms
[15, Corollary 2].

Theorem 1 (cf. [9,15,16]). Let ([ak, bk])k∈A be a countable family of
nonoverlapping, closed, proper subintervals of [0, 1], where A is a finite or infinite
index set. Let T be an operation in [0, 1] defined by

T (x, y) =

{
ak + (bk − ak)Tk

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if (x, y) ∈ (ak, bk]2,

min(x, y), otherwise,
(1)

where for each k the binary operation Tk : [0, 1]2 → [0, 1] is associative, com-
mutative increasing such that Tk ≤ min, i.e., Tk is a t-subnorm. Moreover, if
bk = al for some l, k and Tl is with a zero divisor, then Tk has the neutral
element e = 1. We also assume that if bk = 1 for some k, then the operation Tk

has the neutral element e = 1. Then the operation T is a t-norm.

Definition 2. T-norm T defined as in Theorem 1 in Eq. (1) is called an ordinal
sum of (〈[ak, bk], Tk〉)k∈A and each Tk is called a summand.

For the general structure of such ordinal sum of t-norms see Fig. 1. Please
note that in all our figures we indicate summands for subdomains, having in
mind that they need to be linearly transformed (as given precisely in related
formulas), but because of space problems we use this abbreviated indication.

Ordinal sums of t-norms are important not only because in this way we can
construct new t-norms but also because they are important in the characteriza-
tion of continuous t-norms.

Theorem 2. For a function T : [0, 1]2 → [0, 1] the following statements are
equivalent:

(i) T is a continuous t-norm.
(ii) T is uniquely representable as an ordinal sum of continuous Archimedean

t-norms.
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10

1

bk

bk

ai

ai

bi

bi = ak

Ti

Tk

aj

aj

bj

bj

Tjmin

Fig. 1. The structure of an ordinal sum of t-norms given by Eq. (1).

2.2 Overlap Functions

The concept of overlap functions was introduced by Bustince et al. [4]. Some
properties of these functions (e.g., migrativity, homogeneity, idempotency, con-
vex combination, additive generators) were studied by Bedregal et al. [3,7].

Definition 3. A function O : [0, 1]2 → [0, 1] is called an overlap function if it
satisfies the following conditions:

(O1) O is commutative,
(O2) O(x, y) = 0 if and only if xy = 0,
(O3) O(x, y) = 1 if and only if xy = 1,
(O4) O is non-decreasing,
(O5) O is continuous.

Example 2. As an example of an overlap function, we can take any positive
continuous t-norm. Examples of overlap functions that are not t-norms are the
following functions:

Op(x, y) = xpyp with p > 0 and p �= 1.

Definition 4 ([7]). Let A be a countable set of indexes, (Ok)k∈A be a family
of overlap functions and (ak, bk)k∈A be a family of non-empty, pairwise dis-
joint open subintervals of [0, 1]. An ordinal sum of (Ok)k∈A is a binary function
O : [0, 1]2 → [0, 1] defined by

O(x, y) =

{
ak + (bk − ak)Ok

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if (x, y) ∈ [ak, bk]2,

min(fA(x), fA(y)), otherwise,
(2)

where fA : [0, 1] → [0, 1] is given by

fA(x) =

{
ak + (bk − ak)Ok

(
x−ak

bk−ak
, 1

)
, if ∃k∈A | x ∈ [ak, bk],

x, otherwise.
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Theorem 3 (cf. [7]). The ordinal sum of overlap functions given by (2) is an
overlap function.

2.3 Fuzzy Implications

Now, we focus on fuzzy implications.

Definition 5 (cf. [1,14]). A function I : [0, 1]2 → [0, 1] is called a fuzzy impli-
cation if it satisfies the following conditions:

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = 1,
(I4) I(1, 1) = 1,
(I5) I(1, 0) = 0.

Directly from the definition we obtain as follows.

Corollary 1. Each fuzzy implication I is constant for x = 0 and for y = 1,
i.e., it satisfies the following properties, called left and right boundary condition,
respectively: I(0, y) = 1, for all y ∈ [0, 1] and I(x, 1) = 1 for all x ∈ [0, 1].

There are other properties the fuzzy implication may also have. Some of them
are listed below.

Definition 6 (cf. [1,7,8]). We say that a fuzzy implication I fulfils:

• the (left) neutrality property (NP), if

I(1, y) = y, y ∈ [0, 1], (NP)

• the identity principle (IP), if

I(x, x) = 1, x ∈ [0, 1], (IP)

• the ordering property (OP), if

I(x, y) = 1 ⇔ x ≤ y, x, y ∈ [0, 1], (OP)

• the property (CB), if

I(x, y) ≥ y, x, y ∈ [0, 1], (CB)

• the left ordering property (LOP), if

x ≤ y ⇒ I(x, y) = 1, x, y ∈ [0, 1], (LOP)

• the right ordering property (ROP), if

I(x, y) = 1 ⇒ x ≤ y, x, y ∈ [0, 1], (ROP)
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• the strong boundary condition (SBC), if

x �= 0 ⇒ I(x, 0) = 0, x, y ∈ [0, 1], (SBC)

• the strong corner condition for 0 (SCC0), if

I(x, y) = 0 ⇒ x = 1 ∧ y = 0, x, y ∈ [0, 1], (SCC0)

• the strong corner condition for 1 (SCC1), if

I(x, y) = 1 ⇒ x = 0 ∨ y = 1, x, y ∈ [0, 1]. (SCC1)

Remark 1. Let us notice that the property (CB) is equivalent to the following
one

I(1, y) ≥ y, x, y ∈ [0, 1]. (CB’)

Moreover, if a fuzzy implication satisfies NP, then it satisfies (CB).

Example 3 ( [1,17]). The following are well-known examples of fuzzy implica-
tions.

I�LK(x, y) = min(1 − x + y, 1), IGG(x, y) =

{
1, if x ≤ y
y
x , ifx > y

,

IGD(x, y) =

{
1, if x ≤ y

y, if x > y
, IRS(x, y) =

{
1, if x ≤ y

0, if x > y
,

IRC(x, y) = 1 − x + xy, IYG(x, y) =

{
1, if x, y = 0
yx, if else

,

IDN(x, y) = max(1 − x, y), IFD(x, y) =

{
1, if x ≤ y

max(1 − x, y), if x > y
,

IWB(x, y) =

{
1, if x ≤ 1
y, if x = 1

, IDP(x, y) =

⎧
⎪⎨

⎪⎩

y, if x = 1
1 − x, if y = 0
1, if x < 1, y > 0

.

Now, let us recall an important class of fuzzy implications which are called
residual implications.

Definition 7. A function I : [0, 1]2 → [0, 1] is called a residual implication (an
R-implication) if there exists a t-norm T such that for all x, y ∈ [0, 1]

I(x, y) = IT (x, y) = sup{t ∈ [0, 1] : T (x, t) ≤ y}. (3)

Example 4. Table 1 shows R-implications obtained by formula (3) from basic
t-norms presented in Example 1.

Now, let us recall the structure of residual implications (3) whose correspond-
ing triangular norms are an ordinal sums of triangular norms.
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Table 1. Basic R-implications.

t-norm T R-implication IT

TM IGD

TP IGG

TL ILK

TD IWB

TnM IFD

Theorem 4 ([1], p. 83, [19]). If T is a continuous triangular norm with an
ordinal sum structure (see Theorem 2), then the corresponding R-implication IT
is given by the formula

IT (x, y)=

⎧
⎪⎨

⎪⎩

1, if x ≤ y

ak + (bk − ak)ITk

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y ∈ [ak, bk], x > y

y, otherwise
. (4)

3 Main Results

In this section we propose two methods of generating a new fuzzy implication
from given ones based on ordinal sum of overlap functions and residual implica-
tion obtained from ordinal sum of t-norms, which take into account differences
in monotonicity between overlap functions and fuzzy implications. Let start with
the first method.

10

1

ai

ai

bi

bi aj

aj

bj

bj

Ii

Ij

Ii(bi, y)

y

1

y

Ij(bj , y)

y

Fig. 2. The structure of ordinal sum of implications given by Eq. (5).

Definition 8. Let (Ik)k∈A be a family of fuzzy implications and (ak, bk)k∈A be
a family of pairwise disjoint subintervals of [0, 1] with ak < bk for all k ∈ A,



664 P. Drygaś and A. Król

where A is a finite or countably infinite index set. Let us define an operation
I : [0, 1]2 → [0, 1] by the following formula:

I(x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x≤y,

ak + (bk − ak)Ik
(

x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y∈ [ak, bk], x>y

ak + (bk − ak)Ik
(
1, y−ak

bk−ak

)
, if x∈(bk, 1], y∈ [ak, bk],

y, otherwise,

(5)

For the general structure of the above ordinal sum of fuzzy implications see
Fig. 2 (the symbols Ii(bi, y) and Ij(bi, y) are a shortcut and should be understand
as a linear combination of these values).

Our first new result is the following.

Theorem 5. The operation I given by (5) is a fuzzy implication.

Proof. Let x1, x2, y ∈ [0, 1] and x1 < x2. If y ∈ [ak, bk] for some k ∈ A, then we
consider the following cases:

1. x1 ≤ y, then I(x1, y) = 1 ≤ I(x2, y);
2. x1 ∈ [ak, bk], x1 > y and

(a) x2 ∈ [ak, bk], then using the monotonicity of Ik we have

I(x1, y) = ak + (bk − ak)Ik

(
x1 − ak
bk − ak

,
y − ak
bk − ak

)

≥ ak + (bk − ak)Ik

(
x2 − ak
bk − ak

,
y − ak
bk − ak

)

= I(x2, y).

(b) x2 > bk, then again using the monotonicity of Ik we have

I(x1, y) = ak + (bk − ak)Ik

(
x1 − ak
bk − ak

,
y − ak
bk − ak

)

≥ ak + (bk − ak)Ik

(
bk − ak
bk − ak

,
y − ak
bk − ak

)

= ak + (bk − ak)Ik

(

1,
y − ak
bk − ak

)

= I(x2, y).

3. x1 > bk, then using (5) we have I(x1, y) = I(bk, y) = I(x2, y).

If y /∈ [ak, bk] for all k ∈ A, then I(x1, y) = y = I(x2, y). Thus, I satisfies (I1).
Next, let consider the condition (I2). Let x, y1, y2 ∈ [0, 1] and y1 < y2. If

x ∈ [ak, bk] for some k ∈ A, then we consider the following cases:

1. y2 > x, then I(x, y1) ≤ 1 = I(x, y2).
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2. y1, y2 ∈ [ak, bk], y2 < x then using the monotonicity of Ik we have

I(x, y1) = ak + (bk − ak)Ik

(
x − ak
bk − ak

,
y1 − ak
bk − ak

)

≤ ak + (bk − ak)Ik

(
x − ak
bk − ak

,
y2 − ak
bk − ak

)

= I(x, y2).

3. y1 ∈ [ai, bi], y2 ∈ [aj , bj ], y2 < x and bi < aj for some i, j ∈ A, then
I(x, y1) ∈ [ai, bi], I(x, y2) ∈ [aj , bj ], so I(x, y1) ≤ I(x, y2).

4. y1 ∈ [ai, bi] for some i ∈ A and y2 /∈ [aj , bj ] for all j ∈ A, y2 < x, then
I(x, y1) ∈ [ai, bi], I(x, y2) = y2, so I(x, y1) ≤ bi < y2 = I(x, y2).

5. y1 /∈ [ai, bi] for all i ∈ A and y2 ∈ [aj , bj ] for some j ∈ A, y2 < x, then
I(x, y1) = y1, I(x, y2) ∈ [aj , bj ], so I(x, y1) = y1 ≤ aj ≤ I(x, y2).

6. y1, y2 /∈ [ai, bi] for all i ∈ A, y2 < x, then I(x, y1) = y1 < y2 = I(x, y2).

If x /∈ [ak, bk] for all k ∈ A, x �= 0 then we consider the following cases:

1. y2 > x, then I(x, y1) ≤ 1 = I(x, y2).
2. y1, y2 ∈ [ak, bk] and bk < x, then using the monotonicity of Ik we have

I(x, y1) = ak + (bk − ak)Ik

(

1,
y1 − ak
bk − ak

)

≤ ak + (bk − ak)Ik

(

1,
y2 − ak
bk − ak

)

= I(x, y2).

3. y1 ∈ [ai, bi], y2 ∈ [aj , bj ], y2 < x and bi < aj for some i, j ∈ A, then
I(x, y1) ∈ [ai, bi], I(x, y2) ∈ [aj , bj ], so I(x, y1) ≤ I(x, y2).

4. y1 ∈ [ai, bi] for some i ∈ A and y2 /∈ [aj , bj ] for all j ∈ A, y2 < x, then
I(x, y1) ∈ [ai, bi], I(x, y2) = y2, so I(x, y1) ≤ bi < y2 = I(x, y2).

5. y1 /∈ [ai, bi] for all i ∈ A and y2 ∈ [aj , bj ] for some j ∈ A, y2 < x, then
I(x, y1) = y1, I(x, y2) ∈ [aj , bj ], so I(x, y1) = y1 ≤ aj ≤ I(x, y2).

6. y1, y2 /∈ [ai, bi] for all i ∈ A, y2 < x, then I(x, y1) = y1 < y2 = I(x, y2).

Thus, I satisfies (I2).
Directly from (5) we have I(0, 0) = 1 and I(1, 1) = 1. If 0 /∈ [ak, bk] for

all k ∈ A, then I(1, 0) = 0. If 0 ∈ [ak, bk] for some k ∈ A i.e. ak = 0, then
I(1, 0) = bkIk(1, 0) = 0. Therefore I fulfils (I3), (I4) and (I5).

Now, let us examine some properties of the operation I given by (5).

Theorem 6. Let I be given by (5).

(i) I satisfies (NP) if and only if Ik satisfies (NP) for all k ∈ A.
(ii) I satisfies (IP).
(iii) I satisfies (LOP).
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(iv) I satisfies (ROP) if and only if one of following conditions holds
(a) 1 /∈ [ak, bk] for all k ∈ A,
(b) there exists k ∈ A such that bk = 1 and Ik satisfies (ROP).

(v) I satisfies (OP) if and only if one of following conditions holds
(a) 1 /∈ [ak, bk] for all k ∈ A,
(b) there exists k ∈ A such that bk = 1 and Ik satisfies (OP).

(vi) I satisfies (CB) if and only if Ik satisfies (CB) for all k ∈ A.
(vii) I satisfies (SBC) if and only if one of following conditions holds

(a) 0 /∈ [ak, bb] for all k ∈ A,
(b) there exists k ∈ A such that ak = 0 and Ik satisfies (SBC).

(viii) I satisfies (SCC0) if and only if there exists k ∈ A such that [ak, bk] = [0, 1]
and Ik satisfies (SCC0).

(ix) I does not satisfy (SCC1).

Proof. Directly by (5) we obtain that I satisfies (IP) and (LOP).
(iv) Firstly, let us assume that I satisfies (ROP). If there exists k ∈ A such

that bk = 1 then

Ik(x, y) = 1,
I ((1 − ak)x + ak, (1 − ak)y + ak) − ak

1 − ak
= 1,

I ((1 − ak)x + ak, (1 − ak)y + ak) = 1.

Since I satisfies (ROP) we have

(1 − ak)x + ak ≤ (1 − ak)y + ak,

(1 − ak)x ≤ (1 − ak)y,
x ≤ y.

This means that Ik satisfies (ROP).
Now, let us assume that x > y and consider two cases

1. 1 /∈ [ak, bb] for all k ∈ A. If y ∈ [ak, bk] for some k ∈ A, then I(x, y) ∈ [ak, bk]
and I(x, y) < 1. If y /∈ [ak, bk] for all k ∈ A then I(x, y) = y < 1.

2. there exists k ∈ A such that bk = 1 and Ik satisfies (ROP). If y ∈ [ak, 1] then
we have

I(x, y) = 1,

ak + (1 − ak)Ik

(
x − ak
1 − ak

,
y − ak
1 − ak

)

= 1,

(1 − ak)Ik

(
x − ak
1 − ak

,
y − ak
1 − ak

)

= 1 − ak,

Ik

(
x − ak
1 − ak

,
y − ak
1 − ak

)

= 1,
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Since Ik satisfies (ROP) we have

x − ak
1 − ak

≤ y − ak
1 − ak

x ≤ y.

a contradiction.
If y < ak then the proof is similar as in 1.

(v) By joining (iii) and (iv) we get (OP).
The rest of the properties are simple consequence of Eq. (5).

In this paper we propose yet another method of generating fuzzy implication
by the use of an ordinal sum of fuzzy implications.

Definition 9. Let (Ik)k∈A be a family of fuzzy implications and (ak, bk)k∈A be
a family of pairwise disjoint subintervals of [0, 1] with ak < bk for all k ∈ A,
where A is a finite or countably infinite index set. Let us define an operation
I : [0, 1]2 → [0, 1] by the following formula:

I(x, y)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, if x≥y,

ak + (bk − ak)Ik
(

x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y∈ [ak, bk],

ak, if x∈(bk, 1], y∈ [ak, bk],
y, otherwise,

(6)

For the general structure of the above ordinal sum of fuzzy implications see
Fig. 3.
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Fig. 3. The structure of ordinal sum of implications given by Eq. (6).

Similarly as in the previous method we obtain a fuzzy implication.
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Theorem 7. The operation I given by (6) is a fuzzy implication.

Now, let us examine some properties of the operation I given by (6).

Theorem 8. Let I be given by (6).

(i) I satisfies (NP) if and only if I has only one summand Ik0 which satisfies
(NP) with underlying interval [ak0 , 1].

(ii) I satisfies (IP).
(iii) I satisfies (LOP).
(iv) I satisfies (ROP) if and only if one of following conditions holds

(a) 1 /∈ [ak, bk] for all k ∈ A,
(b) there exists k ∈ A such that bk = 1 and Ik satisfies (ROP).

(v) I satisfies (OP) if and only if one of following conditions holds
(a) 1 /∈ [ak, bk] for all k ∈ A,
(b) there exists k ∈ A such that bk = 1 and Ik satisfies (OP).

(vi) I does not satisfy (CB).
(vii) I satisfies (SBC) if and only if one of following conditions holds

(a) 0 /∈ [ak, bb] for all k ∈ A,
(b) there exists k ∈ A such that ak = 0 and Ik satisfies (SBC).

(viii) I satisfies (SCC0) if and only if there exists k ∈ A such that [ak, bk] = [0, 1]
and Ik satisfies (SCC0).

(ix) I does not satisfy (SCC1).

4 Conclusions

In the paper two new methods of constructing ordinal sums of fuzzy implications
which lead to fuzzy implications are presented. Basic properties of thus obtained
operation have been examined.

It seems useful to examine other properties of the component of introduced
ordinal sums which can be preserved by the ordinal sums. It seems also nec-
essary to compare the here obtained methods with other existing methods of
constructing ordinal sum of fuzzy implications.
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9. Drewniak, J., Drygaś, P.: Ordered semigroups in constructions of uninorms and
nullnorms. In: Grzegorzewski, P., et al. (eds.) Issues in Soft Computing Theory
and Applications, pp. 147–158. EXIT, Warsaw (2005)
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Abstract. We discuss so-called relativization of various classes of gen-
eralized quantifiers (bivalent, fuzzy, semi-fuzzy). We show that for fuzzy
quantifiers, relativization cannot be defined in a satisfactory way. Hence
we provide a generalization of fuzzy quantifiers consisting of use of a
fuzzy set as a universe for quantification. Relativization of these fuzzy
quantifiers fulfills intuitive requirements.

Keywords: Fuzzy quantifier · Generalized quantifier · Relativization ·
Residuated lattice

1 Introduction

In this paper we study the important operation of relativization from the per-
spective of fuzzy quantifiers. In the most common case of quantifiers1 with
one argument (so-called type 〈1〉2), relativization of such (bivalent, i.e., two-
valued) quantifier Q is a quantifier Qrel with two arguments (type 〈1, 1〉). Qrel

behaves as Q, but on a universe provided by its first argument. Formally, for all
A,B ⊆ M ,

Qrel
M (A,B) := QA(A ∩ B), (1)

(see Sect. 3.2).3

The importance of relativization follows from its ability to link related quan-
tifiers of different types. It also permits to characterize an important class of
type 〈1, 1〉 quantifiers with semantic properties of extension and conservativity

1 In this paper, we will use the term quantifier instead of more common generalized
quantifier. Our presentation of (generalized) quantifiers mainly follows a general
approach of book [16], see also [10]. Important papers and books on fuzzy quantifiers
include [3,7,8,12–15,17].

2 This notation originated in [11], where quantifiers are understood to be classes of
relational structures of a certain type (representing a number of arguments and
variable binding). It is widely used in the literature on generalized quantifiers [16].

3 Qrel
M (A, B) denotes the truth value of quantifier Qrel defined on universe M for argu-

ments A and B.
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as relativizations of type 〈1〉 quantifiers. However, if we translate formula (1)
directly into the language of fuzzy set theory (A and B are now fuzzy subsets
of M), we run into problems, because there is a type mismatch in the expres-
sion on the right side of (1): in a position for the universe for Q, a classical set
(such as M) is expected, not a fuzzy set A. It is possible to try to amend this by
using, for example, the support of A in this place, but results are not satisfactory
(see Sect. 4.2). We are even able to proof (Theorem 2) that it is not possible to
define relativization of fuzzy quantifiers (in the sense of Definitions 7 and 8) in
a satisfactory way.

Our solution lies in a generalization of the definition of fuzzy quantifiers. It
turns out that when we define fuzzy quantifiers not on a crisp universal set,
but on a fuzzy set (Definitions 12 and 13), things start to run smoothly and
important theorems that hold for bivalent quantifiers start to hold for fuzzy
quantifiers too.

These new fuzzy quantifiers (we call them C-fuzzy quantifiers)4 possess inter-
esting properties. In this paper, we, besides some examples showing how models
of common quantifiers “for all”, “some” etc., can be defined, concentrate only
on their behaviour with respect to relativization.

2 Preliminaries

2.1 Structures of Truth Values

The basic structure of truth values in this paper will be a commutative bounded
integral residuated lattice L = 〈L,∧,∨,→,⊗,⊥,�〉 [6],5 that is, an algebra with
four binary operations and two constants such that L = 〈L,∧,∨,⊥,�〉 is a
lattice, where ⊥ is the least element and � is the greatest element of L, L =
〈L,⊗,�〉 is a commutative monoid (i.e., ⊗ is associative and commutative and
the identity a ⊗ � = a holds for any a ∈ L) and the adjointness property

a ⊗ b ≤ c if and only if a ≤ b → c

is satisfied for all a, b, c ∈ L, where ≤ denotes the corresponding lattice order-
ing. The operations ⊗ and → are usually called multiplication and residuum,
respectively. Negation ¬ is a defined operation: ¬a := a → ⊥ for all a ∈ L.

Important special cases of residuated lattices are IMTL-algebras, MV-
algebras, the standard �Lukasiewicz algebra on [0, 1] and the Boolean algebra 2
on the two-element support 2 := {0, 1}. Details on these algebras can be found,
e.g., in [1,2].

4 The C in their name refers to the most natural denotation for the fuzzy set acting as
a universe of discourse, because letters A and B are usually reserved for arguments
of the most common quantifiers of type 〈1, 1〉 and M is always used for a crisp
universe.

5 We will call this structure a residuated lattice for short.
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2.2 Sets and Fuzzy Sets

Let X be a set. Then 2X denotes the set of all mappings from X to {0, 1}.
These mappings can be understood as characteristic functions of subsets of X.
Therefore, 2X denotes also the set of all subsets of X.

Let M be a set and L be a residuated lattice. A mapping A : M → L is called
a fuzzy set on M . A value A(m) is called the membership degree of m in the fuzzy
set A. The set of all fuzzy sets on M is denoted by LM . A support of a fuzzy
set A is denoted by Supp(A) and defined as Supp(A) = {m ∈ M | m > ⊥}. ∅M
denotes the empty fuzzy set on M , that is, ∅M (m) = ⊥ for all m ∈ M . A fuzzy
set A is a subset of fuzzy set B if for all m ∈ M , A(m) ≤ B(m). The set of all
subsets of a fuzzy set A is denoted by LA. A fuzzy set A is called crisp if there is
a subset Z ∈ M such that A = 1Z , where 1Z denotes the characteristic function
of Z.

Let {Ai | i ∈ I} be a non-empty family of fuzzy sets on M . Then the union
and intersection of Ai are defined as(⋃

i∈I

Ai

)
(m) :=

∨
i∈I

Ai(m) and

(⋂
i∈I

Ai

)
(m) :=

∧
i∈I

Ai(m), (2)

respectively, for any m ∈ M . Finally, an extension of the operations ⊗ and →
on L to the operations on LM is given by

(A ⊗ B)(m) := A(m) ⊗ B(m) and (A → B)(m) := A(m) → B(m), (3)

respectively, for any A,B ∈ LM and m ∈ M .
Let f : M → M ′ be a mapping. A mapping f→ : LM → LM ′

defined by
f→(A)(m′) :=

∨
m∈f−1(m′) A(m) is called the fuzzy extension of the mapping f .

Obviously, if f is a one-to-one mapping from M onto M ′, then f→(A)(f(m)) =
A(m) for any m ∈ M .

2.3 L-fuzzy Equivalence

In Sect. 5 we will need the following operations. Let M be a set and L be a
complete residuated lattice.

(i) The mapping ∼=M : LM × LM → L defined as

A ∼=M B :=
∧

m∈M

(A(m) ↔ B(m)) (4)

is called the L-fuzzy equivalence on M .
(ii) The mapping ∼=M : LM × LM → L defined as

A ⊆M B :=
∧

m∈M

(A(m) → B(m)) (5)

is called the L-fuzzy subsethood on M .
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3 Bivalent Quantifiers

By NL-quantifiers, we in this paper understand natural language expressions
such as “for all”, “many”, “several”, etc. For our purposes it is not necessary
to delineate the class of NL-quantifiers formally. In fact, we are interested in
mathematical models of these natural language quantifiers. For the sake of com-
prehensibility, we in the following informal explanation consider NL-quantifiers
with two arguments, such as “some” in sentence “Some people are clever.”

3.1 Global and Local Quantifiers

Generally [16], a model of the NL-quantifier “some” takes the form of a functional
(the so-called global quantifier) some that to any universe of discourse M assigns
a local quantifier someM . This local quantifier is a mapping that to any two
subsets A and B of M assigns a truth value someM (A,B). If we consider only
(classical) sets A and B and the truth value of someM (A,B) can be either true or
false only, we say that this some is a bivalent quantifier. If A and B are fuzzy sets
and the truth value of someM (A,B) is taken from some many-valued structure
of truth degrees, we say that this some6 is a fuzzy quantifier.

Definition 1 (Local bivalent quantifier). Let M is a universe of dis-
course. A local bivalent quantifier QM of type 〈1n, 1〉 on M is a function from
(2M )n × 2M to 2 that to any sets A1, . . . , An and B from 2M assigns a truth
value QM (A1, . . . , An, B) from 2.

Definition 2 (Global bivalent quantifier). A global bivalent quantifier Q
of type 〈1n, 1〉 is a functional that to any universe M assigns a local bivalent
quantifier QM : (2M )n × 2M → 2 of type 〈1n, 1〉.

Important examples of bivalent quantifiers of type 〈1〉 are ∀ and ∃. They are
defined as ∀M (B) := B = M and ∃M (B) := B �= ∅.7 Important examples of
bivalent quantifiers of type 〈1, 1〉 are all and some, defined as allM (A,B) := A ⊆
B and someM (A,B) := A ∩ B �= ∅.

There are many semantic properties that can be defined for bivalent quan-
tifiers. Here we recall only three properties necessary for the statement of an
important theorem in the next subsection. However, these properties are essen-
tial from the point of view of the adequacy of our models with respect to natural
language semantics. For discussion on motivation of these properties, see [16] and
also [4,5,9]. Briefly, isomorphism invariance (ISOM) holds for quantifiers invari-
ant with respect to bijections between various universes of discourse. It means
that these quantifiers are not sensitive to individual objects but to numbers of
them (cardinalities of respective sets). Quantifiers with the property of extension

6 It will be always clear from the context whether some denotes (global/local) bivalent
quantifier, fuzzy quantifier or C-fuzzy quantifier (see Sect. 5).

7 For example, the definition of ∀ should be read as follows: If B is equal to M , then
the truth value of ∀M (B) is equal to 1, otherwise it is equal to 0.
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(EXT) are invariant with respect to possible extensions of the universe of dis-
course. This is typical for models of NL-quantifiers of type 〈1, 1〉, because their
first argument (also called restriction) provides the universe of discourse for the
given quantifier application. Hence, the extension of the underlying universe of
discourse should not be relevant. The final semantic property is conservativity
(CONS). The intuitive meaning of this property can be expressed as follows. If
we want to know the truth value of a quantified statement “Q As are B” (e.g.,
“All streets are wet”), only those B that are also A are relevant. Specifically,
if “all” is conservative, the sentence above is logically equivalent to S = “All
streets are streets and are wet”. Wet things that are not streets are irrelevant.

Definition 3 (Isomorphism invariance). We say that a bivalent quantifier
Q of type 〈1n, 1〉 is isomorphism invariant if for any universe M and bijection
f : M → M ′ and all A1, . . . , An, B ∈ 2M it holds that

QM (A1, . . . , An, B) = QM ′(f(A1), . . . , f(An), f(B)),

where f(A) denotes the image of A under f . The set of all isomorphism-invariant
bivalent quantifiers is denoted by ISOM.

Definition 4 (Extension). We say that a bivalent quantifier Q of type 〈1n, 1〉
satisfies the property of extension if for any M and M ′ such that M ⊆ M ′ it
holds that, for any A1, . . . , An, B ∈ 2M ,

QM (A1, . . . , An, B) = QM ′(A1, . . . , An, B).

The set of all bivalent quantifiers satisfying the property of extension is denoted
by EXT.

Definition 5 (Conservativity). Let n ≥ 1. We say that a bivalent quantifier
Q of type 〈1n, 1〉 is conservative if for any M and any A1, . . . , An, B,B′ ∈ 2M

it holds that if A1 ∩ B = A1 ∩ B′, · · · , An ∩ B = An ∩ B′, then

QM (A1, . . . , An, B) = QM (A1, . . . , An, B′).

The set of all conservative bivalent quantifiers is denoted by CONS. It can be
shown that for the most common quantifiers of type 〈1, 1〉, a quantifier Q is
conservative if and only if for any M and any A,B ∈ 2M ,

QM (A,B) = QM (A,A ∩ B).

3.2 Relativization of Bivalent Quantifiers

In this paper, we consider only the most common case of relativization of quan-
tifiers of type 〈1〉.
Definition 6 ([16]). Let Q be a global bivalent quantifier of type 〈1〉. The rela-
tivization of Q is a global bivalent quantifier Qrel of type 〈1, 1〉 defined as

(Qrel)M (A,B) := QA(A ∩ B) (6)

for all A,B ∈ 2M .
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The importance of relativization follows from its ability to link related quan-
tifiers of different types. For example, it is intuitively clear that the bivalent
quantifier ∀ of type 〈1〉 is related to the bivalent quantifier all of type 〈1, 1〉. This
relation is established by the fact that

∀rel = all,

and, similarly,
∃rel = some.

Relativization is especially interesting from the point of view of modeling
of NL-quantifiers. In [16], it is argued that all models of NL-quantifiers of the
most common type 〈1, 1〉 should be conservative and satisfy the property of
extension. The following theorem shows that there is one-to-one correspondence
between bivalent quantifiers of type 〈1〉 and bivalent quantifiers of type 〈1, 1〉
satisfying conservativity and extension. This correspondence is provided just by
the relativization. Hence, any model of a NL-quantifier of type 〈1, 1〉 can be
established as the relativization of a bivalent quantifier of type 〈1〉. Moreover, if
a bivalent quantifier of type 〈1〉 is isomorphism invariant, the same holds for its
relativization.

Theorem 1 ([16]). Let Q be a bivalent quantifier of type 〈1〉 and P be a bivalent
quantifier of type 〈1, 1〉. Then

(a) Qrel is EXT and CONS.
(b) If P is EXT and CONS, then there exists a bivalent quantifier Q of type 〈1〉

such that Qrel = P .
(c) Qrel is ISOM if and only if Q is ISOM.

4 Fuzzy Quantifiers

4.1 Definitions

Straightforward generalization [9] of Definitions 1 and 2 consists of replacing
classical sets A1, . . . , An and B by fuzzy subsets of M and of using a residuated
lattice L instead of the Boolean algebra 2.

Definition 7 (Local fuzzy quantifier). Let M is a universe of discourse. A
local fuzzy quantifier QM of type 〈1n, 1〉 on M is a function from (LM )n × LM

to L that to any fuzzy sets A1, . . . , An and B from LM assigns a truth value
QM (A1, . . . , An, B) from L.

Definition 8 (Global fuzzy quantifier). A global fuzzy quantifier Q of type
〈1n, 1〉 is a functional that to any universe M assigns a local fuzzy quantifier
QM : (LM )n × LM → L of type 〈1n, 1〉. The set of all global fuzzy quantifiers of
type 〈1n, 1〉 will be denoted by QUANT〈1n,1〉.
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Important examples of fuzzy quantifiers of type 〈1〉 are, again, ∀ and ∃. They
are standardly defined as

∀M (B) :=
∧

m∈M

B(m)

and
∃M (B) :=

∨
m∈M

B(m).

Important examples of fuzzy quantifiers of type 〈1, 1〉 are all and some, defined
as

allM (A,B) :=
∧

m∈M

(A → B)(m) (7)

and
someM (A,B) :=

∨
m∈M

(A ∩ B)(m). (8)

In some situations, it is advantageous to consider fuzzy quantifiers that are
sensitive only to supports of some of its arguments. In other words, they ignore
vagueness in some of its arguments. We call such fuzzy quantifiers semi-fuzzy
quantifiers [7]. The formal definition is as follows.

Definition 9 (Semi-fuzzy quantifiers). A fuzzy quantifier Q of type 〈1n, 1〉
is semi-fuzzy in its i-th component, where i ∈ {1, . . . , n + 1}, if for an arbitrary
universe M and A1, . . . , An+1 ∈ LM it holds that

QM (A1, . . . , Ai, . . . , An+1) = QM (A1, . . . ,Supp(Ai), . . . , An+1).

A fuzzy quantifier Q of type 〈1n, 1〉 that is semi-fuzzy in each of its components
is called semi-fuzzy quantifier of type 〈1n, 1〉.

As an example, consider the sentence “All pregnant women are happy”.
Because the predicate “to be a pregnant woman” is bivalent, it is not neces-
sary to model the NL-quantifier “all” by “fully fuzzy” quantifier (7), but by
semi-fuzzy in the first argument quantifier allsf defined as

allsfM (A,B) :=
∧

m∈Supp(A)

B(m). (9)

Similarly,
somesfM (A,B) :=

∨
m∈Supp(A)

B(m). (10)

It is easy to see that for any M and A,B ∈ LM it holds that if A is crisp, then
allM (A,B) = allsfM (A,B).
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4.2 Relativization of Fuzzy Quantifiers

In [9], the second author of the present paper defined relativization and weak
relativization of fuzzy quantifiers of type 〈1〉 defined according to Definitions 7
and 8.

Definition 10. Let Q is a fuzzy quantifier of type 〈1〉. Then its relativization
Qrel or weak relativization Qw-rel is the fuzzy quantifier of type 〈1, 1〉 given by

Qrel
M (A,B) := QSupp(A)(A ∩ B) (11)

or
Qw-rel

M (A,B) := QSupp(A)(Supp(A) ∩ B), (12)

respectively, for an arbitrary crisp universe M and A,B ∈ LM .

We see that these definitions are somewhat awkward, because they use the
support of A instead of expected A itself on their right sides (compare with (6)).
It is caused by the fact that the universe on which fuzzy quantifiers are defined
is always crisp. Therefore, we are forced to use a crisp set there, and Supp(A)
seems to be a natural choice. It is easy to see that for any fuzzy quantifier Q of
type 〈1〉, Qw-rel is semi-fuzzy in its first component.

If we try to establish a similar correspondence between fuzzy quantifiers of
types 〈1〉 and 〈1, 1〉 by means of relativization (11) or weak relativization (12)
as for bivalent quantifiers in Sect. 3.2, we obtain the following results.

(∀rel)M (A,B) =
∧

m∈Supp(A)

(A ∩ B)(m), (13)

(∀w-rel)M (A,B) =
∧

m∈Supp(A)

(Supp(A) ∩ B)(m) =
∧

m∈Supp(A)

(B)(m), (14)

(∃rel)M (A,B) =
∨

m∈Supp(A)

(A ∩ B)(m), (15)

(∃w-rel)M (A,B) =
∨

m∈Supp(A)

(Supp(A) ∩ B)(m) =
∨

m∈Supp(A)

(B)(m). (16)

We can see that ∀w-rel = allsf and ∃w-rel = somesf. Therefore, weak rela-
tivization links fuzzy quantifiers of type 〈1〉 to semi-fuzzy in the first component
quantifiers of type 〈1, 1〉. However, use of relativization (11) does not provide
satisfactory results, because although it holds that ∃rel = some, it also holds
that ∀rel �= all (cf. (7)). Moreover, the fuzzy quantifier ∀rel from (13) does not
model the NL-quantifier “all” in any reasonable sense.

Now we formulate the theorem saying that it is not possible to define a
relativization operation for fuzzy quantifiers in such a way that the relativization
of ∀ is all and, at the same time, the relativization of ∃ is some. It means that
the failure of the relativization (11) and the weak relativization (12) in this
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respect is inevitable and cannot be avoided in the frame of fuzzy quantifiers from
Definitions 7 and 8. For this purpose, we define an operation called generalized
relativization in the following way.

Definition 11 (Generalized relativization). Let M be an arbitrary uni-
verse. Let XM : LM × LM → 2M be an operation that to any two fuzzy sets
A,B ∈ LM assigns a crisp subset of M .8 Let ϕM : LM × LM → LM be an
operation that to any two fuzzy sets A,B ∈ LM assigns a fuzzy set on M .9 We
say that grel : QUANT〈1〉 → QUANT〈1,1〉, defined as

(Qgrel)M (A,B) := QXM (A,B)(ϕM (A,B)) (17)

for any Q ∈ QUANT〈1〉, any M and A,B ∈ LM , is a generalized relativization
from fuzzy quantifiers of type 〈1〉 to fuzzy quantifiers of type 〈1, 1〉.
Theorem 2. Let L be a residuated lattice such there exists α ∈ L for which
⊥ < α < �. Let grel be a generalized relativization (17). Then if ∀grel = all, then
∃grel �= some, and if ∃grel = some, then ∀grel �= all.

Proof sketch. Let M be an arbitrary non-empty universe. Let us define fuzzy
sets A0 and B0 on M as follows:

A0 = B0 =
{
α
/
m0

}
for m0 ∈ M and ⊥ < α < �.

We can prove that, in order to secure that ∃grel
M (A0, B0) = someM (A0, B0)

and, in the same time, ∀grel
M (A0, B0) = allM (A0, B0), it would be necessary that

ϕM (A0, B0)(m0) = α and ϕM (A0, B0)(m0) = �, which is impossible. ��

5 C-fuzzy Quantifiers

In the previous section, we saw that it is not possible to define a relativization of
fuzzy quantifiers in a way that satisfies intuitive requirements. In this section, we
outline a solution consisting in a generalization of a definition of fuzzy quantifiers.

Definition 12 (Local C-fuzzy quantifier). Let C be a fuzzy set (on some
fixed non-empty universe M). A local C-fuzzy quantifier QC of type 〈1n, 1〉 on
C is a function from (LC)n × LC to L that to any fuzzy sets A1, . . . , An and B
from LC assigns a truth value QC(A1, . . . , An, B).

In the rest of this paper, we always assume that M is a non-empty (fixed)
set.10 In many cases, when no misunderstanding can occur, we omit in defini-
tions, examples, etc., that C-fuzzy quantifiers are defined “on M”.
8 An example of XM : XM (A, B) := Supp(A) as in (11) and (12).
9 Examples of ϕM : ϕ1

M (A, B) := A ∩ B as in (11) or ϕ2
M (A, B) := Supp(A) ∩ B as

in (12).
10 It has hardly any sense to consider the empty M here. Note that M has a similar

rôle in our approach as a universal class V in the set theory – it permits to pick
some (fuzzy) sets and work with them.
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Definition 13 (Global C-fuzzy quantifier). A global C-fuzzy quantifier Q
of type 〈1n, 1〉 (on M) is a functional that assigns to any fuzzy set C ∈ LM a
local C-fuzzy quantifier QC : (LC)n × LC → L of type 〈1n, 1〉.

If we write “C-fuzzy quantifier”, we always understand the quantifier in ques-
tion as a global one. If M is finite or countable, we call Q a finite or countable
C-fuzzy quantifier, respectively.

Example 1. Let ∼=M be an L-fuzzy equivalence (4) (on M). A C-fuzzy quantifier
∀ of type 〈1〉 assigns to any C ∈ LM a local fuzzy quantifier ∀C defined as

∀C(B) := C ∼=M B

for any B ∈ LC . It can be shown that

∀C(B) =
∧

m∈M

(C(m) → B(m)).

If C is crisp, then

∀C(B) =
∧

m∈M

(C(m) → B(m)) =
∧

m∈M

(� → B(m)) =
∧

m∈M

B(m),

that is, it coincides with the standard definition of the fuzzy quantifier ∀.

Example 2. Let ∼=M be a L-fuzzy equivalence (on M). A C-fuzzy quantifier ∃ of
type 〈1〉 assigns to any C ∈ LM a local fuzzy quantifier ∃C defined as

∃C(B) := (C ∩ B) �∼=M ∅M (18)

for any B ∈ LC .11 It can be obtained that

∃C(B) = ¬¬
∨

m∈M

B(m).

If the negation in L is involutive (for example, if L is an IMTL-algebra, MV-
algebra or �Lukasiewicz algebra), then

∃C(B) =
∨

m∈M

B(m), (19)

that is, it coincides with the standard definition of the fuzzy quantifier ∃.

Example 3. Let ⊆M be a L-fuzzy subsethood (5) (on M). A C-fuzzy quantifier
all of type 〈1, 1〉 assigns to any C ∈ LM a local fuzzy quantifier allC defined as

allC(A,B) := A ⊆M B

for any A,B ∈ LC .
11 A �∼=M B denotes ¬(A ∼=M B).
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Due to the definition of L-fuzzy subsethood (5), we can write12

allC(A,B) = A ⊆M B =
∧

m∈M

(A(m) → B(m)). (20)

Let ∼=M be a L-fuzzy equivalence (on M). A C-fuzzy quantifier some of type
〈1, 1〉 assigns to any C ∈ LM a local fuzzy quantifier someC defined as

someC(A,B) := (A ∩ B) �∼=M ∅M
for any A,B ∈ LC . It can be shown that

someC(A,B) = ¬¬
∨

m∈M

(A(m) ∧ B(m)).

If the negation in L is involutive, then

someC(A,B) =
∨

m∈M

(A(m) ∧ B(m)).

6 Relativization of C-fuzzy Quantifiers

Now we define relativization for C-fuzzy quantifiers (cf. Definition 6).

Definition 14 (Relativization of C-fuzzy quantifiers). Let Q be a global C-
fuzzy quantifier of type 〈1〉. The relativization of Q is a global C-fuzzy quantifier
Qrel of type 〈1, 1〉 defined as

(Qrel)C(A,B) := QA(A ∩ B) (21)

for all A,B ∈ LC .

Remark 1. Observe that relativization of C-fuzzy quantifiers is structurally iden-
tical with relativization of bivalent quantifiers (Definition 6). It means that the
only difference between formulas (6) and (21) on the surface level is in the
replacement of M on the left side of (6) by C on the left side of (21).

Example 4. Let ∀ be the C-fuzzy quantifier (on M) from Example 1. Its rela-
tivization is the C-fuzzy quantifier ∀rel of type 〈1, 1〉. It can be shown that

(∀rel)C(A,B) = ∀A(A ∩ B) =
∧

m∈M

(A(m) → B(m)) = allC(A,B).

Hence, we see that the relativization of ∀ is indeed the C-fuzzy quantifier all
from Example 3.
12 We can see that the resulting expression for allC(A, B) does not depend on the fuzzy

set C. It is a natural result considering the fact that the first argument of natural
language quantifiers of type 〈1, 1〉 serves as a new universe of discourse.
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Example 5. Let ∃ be the C-fuzzy quantifier (on M) from Example 2. Its rela-
tivization is the C-fuzzy quantifier ∃rel of type 〈1, 1〉:

(∃rel)C(A,B) = ∃A(A ∩ B) = ¬¬
∨

m∈M

(A(m) ∧ B(m)) = someC(A,B).

Hence, we see that the relativization of ∃ is indeed the fuzzy quantifier some
from Example 3, as expected.

Due to lack of space, we cannot elaborate more details and examples on
relativization of C-fuzzy quantifiers in this paper. However, for stating the main
theorem we need to define generalizations of semantic properties ISOM, EXT
and CONS from Definitions 3–5.

Definition 15 (Isomorphism invariance). A global C-fuzzy quantifier Q of
type 〈1n, 1〉 (on M) is isomorphism invariant, if for all C ∈ LM and all permu-
tations f ∈ Perm(M) it holds that

QC(A1, . . . , An, B) = Qf→(C)(f→(A1), . . . , f→(An), f→(B))

for all A1, . . . , An, B ∈ LC . The class of all C-fuzzy quantifiers with this property
is denoted by C-ISOM.

Definition 16 (Property of extension). A global C-fuzzy quantifier Q of
type 〈1n, 1〉 (on M) has a property of extension, if for all C,D ∈ LM such that
C ⊆ D it holds that

QC(A1, . . . , An, B) = QD(A1, . . . , An, B)

for all A1, . . . , An, B ∈ LC . The class of all C-fuzzy quantifiers with this property
is denoted by C-EXT.

Definition 17 (Conservativity). A global C-fuzzy quantifier Q of type 〈1, 1〉
(on M) is conservative, if for all C ∈ LM and all A,B,B′ ∈ LC it holds that if
A ∩ B = A ∩ B′, then

QC(A,B) = QC(A,B′).

The class of all C-fuzzy quantifiers with this property is denoted by C-CONS.

Then we can prove the final theorem analogous to Theorem 1.

Theorem 3. Let Q be a C-fuzzy quantifier of type 〈1〉 and P be a C-fuzzy
quantifier of type 〈1, 1〉. Then

(a) Qrel is C-EXT and C-CONS.
(b) If P is C-EXT and C-CONS, then there exists a C-fuzzy quantifier Q of

type 〈1〉 such that Qrel = P .
(c) Qrel is C-ISOM if and only if Q is C-ISOM.

Proof. We sketch the proof of the part (b) of the theorem.
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(b) Let P be a C-fuzzy quantifier of type 〈1, 1〉. Define a C-fuzzy quantifier Q
of type 〈1〉 as

QC(B) = PC(C,B) (22)

for all B ∈ LC . We show that if P ∈ C-EXT ∩ C-CONS, then Qrel = P .
Indeed, for all A,B ∈ LC ,

(Qrel)C(A,B) = QA(A ∩ B) = PA(A,A ∩ B) = PA(A,B) = PC(A,B),

where we use, in turn, the definition of relativization, the definition of Q
(22), the conservativity and the property of extension of P . ��

7 Conclusion

In this paper we discussed an important operation of relativization of (gener-
alized) quantifiers. We showed that it is not possible to define relativization of
standardly defined fuzzy quantifiers in a satisfactory way. As a solution, we pro-
vide a new definition of fuzzy quantifiers (C-fuzzy quantifiers). Relativization
of C-fuzzy quantifiers fulfills intuitive requirements. In future research, we will
study further properties of C-fuzzy quantifiers, for example so-called freezing
operation [16], which reduces type 〈1, 1〉 quantifiers to type 〈1〉. We will also
investigate semantic properties of these quantifiers, as well as various ways of
defining negations and duals of them. Applications can be expected, e.g., in novel
definitions of fuzzy relational compositions and data mining.
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Abstract. In the paper Crucial and unsolved problems on Atanassov’s intu-
itionistic fuzzy sets D.-F. Li pointed out that some kind of definitions of oper-
ations over Atanassov’s intuitionistic fuzzy sets (IFSs) are incorrect. In this
paper the Li’s reasoning is presented and commented.
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1 Introduction

Intuitionistic fuzzy sets (IFSs) were first introduced by Krassimir T. Atanassov in 1983.
The latest development of the theory are collected in the monograph [2]. Despite fairly
well-defined terms, there may be still some misunderstandings regarding the operations
on the intuitionistic fuzzy sets. Such misunderstandings can be found in the paper
Crucial and unsolved problems on Atanassov’s intuitionistic fuzzy sets.

The citations of the original Li’s paper will be denoted (except for mathematical
symbols and formulas) by the Monotype corsiva font.

2 Main Remarks

In the paper [6] - Crucial and unsolved problems on Atanassov’s intuitionistic fuzzy
sets - the Author, Deng-Feng Li, presents the doubts related to some operations on the
intuitionistic fuzzy sets. Based on the Atanassov’s paper [1], Li gives the definition of
the sum A + B and the product A�B in the form

AþB ¼ f\x; lA xð Þþ lB xð Þ�lA xð ÞlB xð Þ; mA xð ÞmB xð Þ[ : x 2 Xg; ð1Þ

A � B ¼ f \x; lA xð ÞlB xð Þ; mA xð Þþ mB xð Þ�mA xð ÞmB xð Þ[ : x 2 Xg; ð2Þ

Li presented first the doubts related to operations on particular sets. The Li’s
examples (a–c) are given below (see: [6], p. 59).
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(a) If B = {<x, 1, 0> : x 2 X}, i.e., B is a fuzzy set, which means that every element
x completely belongs to B, then according to Eq. (1), we have

AþB ¼ f\x; 1; 0 [ : x 2 Xg ¼ B;

which also means that every element x completely belongs to A + B despite A is any
Atanassov’s IFS. Similarly, according to Eq. (2), we have

AB ¼ A;

which means that whether every element x belonging to AB completely depends on
A despite B ensures that all elements x completely belong to B.

Li calls the above set B the fuzzy set. Formally, it is correct. However, the set B can
be called a classical set, and, moreover B = X.

(b) If B = { <x, 0, 1> : x 2 X}, i.e., B is a fuzzy set, which means that every
element x completely does not belong to B, then according to Eq. (1), we have

AþB ¼ A;

which means that whether every element x belonging to A + B completely depends on
A despite B ensures that all elements x completely do not belong to B. Similarly,
according to Eq. (2), we have

AB ¼ B;

which means that every element x completely does not belong to AB despite A is any
Atanassov’s IFS.

Li calls the above set B the fuzzy set. Formally, it is correct. However, the set B is
in fact the classical empty set.

(c) If B = { <x, 0, 0> : x 2 X}, which means that every element x cannot be com-
pletely determined whether it belongs to B or not, then according to Eq. (1), we have

AþB ¼ f\x; lA xð Þ; 0 [ : x 2 Xg;

which means that the membership degree of the element x to A + B is the same as that
of x to A whereas the non-membership degree of the element x to A + B is 0 despite
A ensures that the non-membership degree of the element x to A is mA(x). Similarly,
according to Eq. (2), we have

AB ¼ f\x; 0; mA xð Þ [ : x 2 Xg;

which means that the non-membership degree of the element x to A + B is the same as
that of x to A whereas the membership degree of the element x to A + B is 0 despite
A ensures that the membership degree of the element x to A is lA(x).

After the next numerical example (see: [6], p. 60), Li argues that the Eqs. (1) and
(2) define the operations incompatible/inconsistent with the Zadeh’s extension
principle.
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The example, given by Li, is as follows.
Let A and B be intuitionistic fuzzy sets on the universum X = {3, 4, 5, 6, 7}, which

mean “approximately 5”, where

A ¼ f\3; 0:7; 0:2[ ; \4; 0:8; 0:1[ ; \5; 1; 0 [ ; \6; 0:8; 0:1[ g ð3Þ

and

B ¼ f\4; 0:7; 0:2[ ; \5; 1; 0 [ ; \6; 0:9; 0:05[ ; \7; 0:85; 0:1[ g; ð4Þ

respectively. Using Eqs. (1) and (2), we have

AþB ¼ \3; 0:7; 0[ ; \4; 0:94; 0:02[ ; \5; 1; 0[ ; \6; 0:98; 0:005[ ; \7; 0:85; 0[f g;

ð5Þ

A � B ¼ \3; 0; 0:2[ ; \4; 0:56; 0:28[ ; \5; 1; 0[ ; \6; 0:72; 0:145[ ; \7; 0; 0:1[f g:

ð6Þ

In a similar way to the extension principle of the fuzzy sets, we have

AþB ¼ \3; 0:7; 0:2[ ; \7; 0:7; 0:2[ ; \8; 0:7; 0:2[ ; \9; 0:8; 0:1[f
\10; 1; 0[\11; 0:9; 0:05[ ; \12; 0:85; 0:1[ ; \13; 0:8; 0:1[ g;

ð7Þ

A � B ¼ f\12; 0:7; 0:2[ ;\15; 0:7; 0:2[ ;\16; 0:7; 0:2[ ;\18; 0:7; 0:2[ ;

\20; 0:8; 0:1[ ;\21; 0:7; 0:2[ ;\24; 0:8; 0:1[ ;\25; 1; 0[ ;

\28; 0:8; 0:1[ ;\30; 0:9; 0:05[ ;\35; 0:85; 0:1[ ;\36; 0:8; 0:1[ ;

\42; 0:8; 0:1[ g: ð8Þ

which are remarkably different from Eqs. (5) and (6) since Eqs. (7) and (8) compute
elements in A and B rather than membership and nonmembership degrees.

It is really easy to see that the results (5), (6) and (7), (8) are different. Li does not
consider whether the use of the extension principle - known for classical fuzzy sets - is
legitimate for the IFSs. He assumes it is so and, because the extension principle is, in
this case, not fulfilled, hence the operations of the sum and the product are incorrect.

The above reasoning has been also presented by Li in the monograph [7]
(pp. 33–35).

It is understandable that “approximately 5” added to “approximately 5” must be
“approximately 10”, and “approximately 5” multiplied by „ approximately 5” must be
“approximately 25”. Here the argumentation of Li is convincing, and the Atanassov’s
mistake is evident.

However, in fact, it is Li who makes the mistake!
Namely, he does not correctly understand the signs + and � (the sign � is by Li,

typically, omitted). These signs denote not the operations of sum and product in terms
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of arithmetic of fuzzy numbers (or intuitionistic fuzzy numbers) but the sum and the
product in the set-theoretically sense.

Here the mistake of Li is obvious and the rest of his reasoning is invalid.
This means, obviously, that the results in the examples (a), (b), and (c) are not

surprising. By the way - similar results we obtain based on typical sum and product
using the minimum and maximum operators.

It is possible that the use of the symbols + and � by Atanassov, without direct
comments, are not fortunate, but such a notation is very often used in the case of
classically fuzzy sets also.

Quite weird is that D.-F. Li, otherwise known as creative researcher of intuitionistic
fuzzy sets theory, failed to notice the use of sum and product based on other t- and
s-norms, over the most popular norms: minimum and maximum.

In general, the union and intersection of the IFSs are defined based on the IF t-norm
and IF s-norm. For IFSs these norms are considered explicitly first by Cornelis and
Deschrijver [3], Cornelis, Deschrijver and Kerre [4] and Deschrijver and Kerre [5].

Cornelis, Deschrijver and Kerre, (see: [4], p. 1), defined the intuitionistic fuzzy
t-norm (IF triangular norm) on the lattice L as any monotonous, commutative, asso-
ciative mapping from L2 to L with the neutral element <1, 0> . The intuitionistic fuzzy
s-norm (IF triangular co-norm) on the lattice L the Authors call any monotonous,
commutative, associative mapping from L2 to L with the neutral element <0, 1> .

The Authors formulated also the theorem given below (the idea of the theorem; see:
[3], p. 5, and, [5], p. 3).

3 Theorem

Let T1 and T2 are t-norms, and S1 and S2 are s-norms.
The mappings T ;S: L2!L on the lattice L = {<a, b> 2 [0, 1]2 : a + b � 1},

given in the form:

T ð\a; b[ ;\c; d[ Þ ¼ \T1 a; cð Þ; S1ðb; dÞ[ ;

and

Sð\a; b[ ;\c; d[ Þ ¼ \S2 a; cð Þ; T2ðb; dÞ[ ;

fulfilling the conditions T1(a, c) + S1(b, d) � 1 and S2(a, c) + T2(b, d) � 1, are the IF
t-norm and IF s-norm, respectively.

The definition of the t-, s-norms and the lattice are widely known.
It is not difficult to see, in the cited formulas (1) and (2), the use of the probabilistic

(product) t-norm

T a; bð Þ ¼ a � b;

and the s-norm
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S a; bð Þ ¼ aþ b�a � b;

to define the union and intersection of intuitionistic fuzzy sets.
Li is therefore wrong, when he wrote in the end of his paper the addition and

multiplication operations of Atanassov’s IFSs are incorrect.

4 Conclusion

In this paper we can see that, near 30 years after the first Atanassov’s papers, there exist
some misunderstandings related, for example, on the basic operations on IFSs. Those
misunderstandings can be found not only in the papers of young adepts of science, but
also in the papers written by prominent Authors cited by hundreds of scientists. It is
worth noticing that despite of several years that passed by from the Li’s papers [2012,
2014] being published, the misunderstanding described above were not commented on
in the known literature.
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Abstract. Reliability is defined as the length of time a component works
without failing. The reliability function shows an estimate for the probable
amount of time a component should work without experiencing failure. Fuzzy
set theory is rather useful for evaluating ambiguity and vagueness that exists
within reliability parameters. Fuzzy reliability can model more appropriately a
components lifetime if the inputs on the system are fuzzy numbers. Also fuzzy
parameters of function can be estimated as fuzzy numbers in a reliability
analysis. In this study, the fuzzy lifetime of a component in a refrigerator with
censored data is estimated via a fuzzy reliability function for modeling the
uncertainty of the process.

1 Introduction

Although there is a consensus that the concept of reliability is an important feature of a
product, there is no universally accepted definition of reliability. Some of the defini-
tions used in the past for reliability are:

• “Reduction of things gone wrong” [1].
• “The capability of a product to meet customer expectations of product performance

over time” [2].
• “The probability that a device, product, or system will not fail for a given period of

time under specified operating conditions” [3].

Since there is always uncertainty about the future performance of a product, a
product’s future performance may vary randomly and the mathematical theory of
probability may be used to characterize the uncertainty about the future performance of
a product. When a product is purchased, the product is expected to work for a certain
period of time. Generally, a manufacturer provides a guarantee that the product will not
fail, and if it fails, the replacement guarantee is given to customer [4].

If there is a general definition of “reliability” in all these lights,
Reliability is the fulfillment of the desired function or task of a product or system

during its lifetime under the conditions of life without any deterioration or malfunction.
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It is expected that this distribution will comply with the Weibull, exponential, log-
normal distributions etc. because it is concerned with the time it takes for a product to
fail and its reliability.

Weibull probability density function is so flexible that it will provide a good fit for a
wide variety of data sets with three parameters in reliability engineering. In addition to
being the most useful density function for reliability calculations, the Weibull analysis
provides the information required for troubleshooting, classifying failure types,
scheduling preventive maintenance and scheduling inspections [5].

It is sometimes difficult to record the data obtained as a result of the application of
the Weibull analysis because of unexpected situations. Therefore, deficiencies can be
observed in the data to be analyzed. This is called censoring for ignoring certain
unknown data that can not be observed for any reason. In one study, it is impossible for
various reasons to keep each dataset from the beginning to the end of the study, when
the event of interest is the life of a dataset. In this case, the data is called censored [6].
In some cases, life testing of some products takes time and it is difficult to apply
real-time monitoring on samples to check if the samples are failing. Under these
conditions, periodic inspection is always carried out to obtain failure time data in the
life test. When a failure is detected during the inspection, the time of the failure is
recorded as an estimate. Therefore, the failure time can be at any time during the next
inspection interval and can not be detected immediately when the failure occurs. For
this reason, this time is not certain. Another uncertainty in this sense is that the failure
time can not be determined precisely because the failure of the samples immediately
after the completion of an inspection can not be detected until the next inspection, and
because the time between the two inspections is long [7]. For all these reasons, fuzzy
set theory studies for reliability analysis have been done.

Since the fault time can not be determined precisely during the periodic exami-
nations, uncertainties arise. Xu, Li and Liu [7] proposed a statistical method for
accelerated life testing (ALT) with fuzzy theoretic type 2 censored samples to remove
this situation, and assumed that the life span of product followed the Weibull distri-
bution. Katithummarugs et al. [8] proposed an estimation method. The aim of this
method is to predict a reliability index of power distribution feeders in the central area
of the Provincial Electricity Authority (PEA) of Thailand. Using the Weibull distri-
bution, the time to failure data during 2002–2009 was analyzed over moving 4-year
periods to determine the failure rates associated with protective devices. Fuzzy sets
were introduced to describe uncertainty of failure rates using a fuzzy arithmetic
operation. When the distribution of lifetimes is 2-parameter exponential, Balasooriya
[9] provided a failure-censored reliability sampling-plan to save test time. Wu et al.
[10] extended the Balasooriya sampling plan to the Weibull distribution and provided a
limited failure-censored reliability sampling plan (LFCR) to do life testing when test
facilities are scarce. In the paper edited by Cheng, a different approach of assessing the
total failure time of censored data was investigated and a fuzzy estimator for the total
failure time was discussed. Cheng [11] said that the system test with several identical
components could be repeated a few times to evaluate the reliability of the system. The
fuzzy estimator used in the study provided more information in total failure time than
just a point estimate, or just a single confidence estimate. Jamkhaneh [12] indicated that
it is difficult to determine the parameters of the probability distributions in many
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situations where the data contain uncertainties and imprecision. Therefore, it was
assumed that these parameters are fuzzy in the article. At the same time, the lifetimes
and repair times of components were assumed to have Weibull distribution with fuzzy
parameters. Formulas of a fuzzy reliability function, fuzzy hazard function and their
a-cut set were presented. Finally, some numerical examples were presented to illustrate
how to calculate the fuzzy reliability characteristics and their a-cut set.

2 Conventional Reliability Theory

Reliability is the fulfillment of the desired function or task of a product or system
during its lifetime under the conditions of life without any deterioration or malfunction.
There is always uncertainty about the future performance of a product. Therefore, this
performance is a random variable and the mathematical theory of probability can be
used to characterize this uncertainty. Reliability Engineering is the engineering field
that deals with the ability of the product or system to fulfill the desired function in its
entirety. It aims to reduce the probability of fault by analyzing faults. It aims to improve
the use of the products on this. The failure characteristics of products or systems are
shown in Fig. 1. It is called a bath tub pattern, which has three distinct phases.

Phase A or the burning in period: The major contributing factor to this failure is poor
component quality. When the equipment is given initial trials, there might be many
initial failures due to poor design, workmanship, assembly errors, etc. Damaged
components and poor joints or connections also contribute to this failure. These are
tested and replaced generally at the manufacturer’s premises to improve their
reliability.

Phase B or the useful life period: Here the failure rate is low, but may occur unex-
pectedly and at random intervals. They are known as random failures or normal fail-
ures. It is during this period, that all our available reliability analysis is based on. The
major contributing factor is the stress to which the equipment or products are subjected

 Phase A  Phase B      Phase C 

Time Scale

Fa
ilu

re
 R

at
e

Fig. 1. Failure rate of products or systems [13].
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to and could be due to operating stresses, poor maintenance, operator abuse, and
accidents.

Phase C or the wear out period: Beyond the useful period, the wear rate is the major
contributing factor because of aging or wear of the components of the system, and
could be due to weak design, poor lubrication, wear, fatigue failure, corrosion, and
insulation breakdown [13].

The occurrence times of failures occurring at a certain time interval are frequently
used as data in reliability analysis. Failure times are continuous random variables that
can take any value in a real number interval. For a random variable T representing the
data, while the probability density function is f(t), the cumulative distribution function
F(t) is calculated as follows.

FðtÞ ¼ PðT� tÞ ¼
Z t

0
f ðtÞdt ð1Þ

In the reliability analysis, the failure of a product until time t is concerned. Thus F(t)
is the probability of unit failure here. In this study, two cases “success” or “failure” in
the reliability analysis is considered. Because the success and the failure are two
mutually independent states of probability, the sum of these probabilities is always
equal to 1. The reliability function R(t) is the probability that something will survive
past a certain time (t). It is defined as follows.

F tð ÞþR tð Þ ¼ 1; then

R tð Þ ¼ P T[ tð Þ ¼ 1� F tð Þ ð2Þ

Hazard rate refers to the rate of death for an item of a given age, and is also known
as the failure rate.

h tð Þ ¼ f(t)
R(t)

ð3Þ

2.1 Weibull Analysis

The Weibull distribution with two parameters have usually been used to model failure
times.

The goal is to find a cumulative distribution function that has a wide variety of
failure rate shapes, with the constant h(t) = k as just one possibility. Allowing any
polynomial form of the type h(t) = atb for a failure rate function achieves this objective.
In order to derive F(t), it is easier to start with the cumulative hazard function H(t).

Because h(t) = dH tð Þ
dt , setting

H tð Þ ¼ ktð Þb ð4Þ
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results in

h tð Þ ¼ bk ktð Þb�1 ð5Þ

This form gives us the exponential constant failure rate when b = 1 and a poly-
nomial failure rate for other values of b.

Now, we use the basic identity relating F(t) and H(t):

F tð Þ ¼ 1�e�HðtÞ ¼ 1�e�ðktÞb ð6Þ

We obtain the equation for the Weibull cumulative distribution function by making
a substitution of h = 1/k in the above equation and write

F tð Þ ¼ 1�e� t=hð Þb ð7Þ

The parameter h is a scale parameter that is often called the characteristic life. The
parameter b is known as the shape parameter. h and b must be greater than zero, and
the distribution is a life distribution defined only for positive times 0 � t < ∞.

The Weibull probability density function (PDF) f(t), failure rate h(t) are given by
the following:

f(tÞ ¼ b
t

t
h

� �b
e� t=hð Þb

h(t) ¼ b
h

t
h

� �b�1
¼ b

t
t
h

� �b
ð8Þ

Forb > 1, the failure rate h(t) increasesmonotonically, with h(0) = 0 and h(∞) = ∞.
For b < 1, the failure rate h(t) decreases monotonically, with h(0) = ∞ and h(∞) = 0.

The reliability function R(t) is defined by R(t) = 1 − F(t) [14]. Thus,

RðtÞ ¼ e� t=hð Þb ð9Þ

2.2 Maximum Likelihood Estimation Method

There are many methods for the parameter estimation of the Weibull distribution. One
of the most common of these methods is the Maximum Likelihood Method. The
likelihood function for the Weibull distribution is as follows.

L ¼
Yn

i¼1

b
h

x
h

� �b�1
e� x=hð Þb ð10Þ

For the unknown h and b parameters of theWeibull distribution, the estimators of the
parameters ĥ and b̂ are calculated using the following equations. Firstly, to make easier
mathematical operations, the log-likelihood function is obtained by taking the logarithm
of the likelihood function to transform the multiplication expression into a sum [15].
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ln L ¼ LL ¼ n ln(bÞ � n b ln hð Þþ b� 1ð Þ
Xn

i¼1
ln xið Þ � 1

hb
Xn

i¼1
xið Þb ð11Þ

In order to obtain the h and b parameters, the first-order partial derivative is
obtained according to the h and b parameters of the log-likelihood function and
equalized to zero.

@LL
@h

¼ �nþ 1

hb
Xn

i¼1
xið Þb ¼ 0 then,

h =
1
n

Xn

i¼1
xið Þb

� �1=b ð12Þ

If the logarithm of h is taken;

ln h =
1
b
ln
Xn

i¼1
xið Þb � 1

b
ln(n)

@LL
@b

¼ n
b
� n ln hð Þþ

Xn

i¼1
ln xið Þ � 1

hb
Xn

i¼1
xið Þb ln xið Þþ 1

hb
ln hð Þ

Xn

i¼1
xið Þb ¼ 0

b ¼
Pn

i¼1 xið Þbln xið ÞPn
i¼1 xið Þb

� 1
n
ln xið Þ

" #�1

ð13Þ

3 Fuzzy Theory

A fuzzy number ~x is expressed by a characterizing function. This function is called
membership function l(x) which means the degree of membership of element ~x of the
universe X [7].

~x 2 X,

l~xðxÞ 2 ½0; 1� ð14Þ

An a-cut of ~x, written as ~xa, is described as below:

~xa ¼ x l~x xð Þ� ajf g
0� a� 1

ð15Þ

A fuzzy number ~x can be turned into a finite closed interval as below when the
value of a is settled.

~xa 2 ~xLa;~x
U
a

� � ð16Þ
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4 Fuzzy Reliability

Jamkhaneh suggests a general procedure to construct the reliability characteristics and
its a-cut set in his paper, when the parameters are fuzzy. The parameter of the system is
represented by a trapezoidal fuzzy number [12]. With the difference of Jamkhaneh’s
paper, in this study the parameter of the system is considered by a triangular fuzzy
number.

4.1 Fuzzy Weibull Distribution

The Cumulative Weibull distribution function with fuzzy scale parameter ~h and a – cut
can be defined the following equations [12].

F(x,~hÞ ¼ F xð Þ a½ �; lF xð Þ F xð Þ a½ � ¼ Fmin xð Þ a½ �; Fmax xð Þ a½ ��;j lF xð Þ ¼ a
n o

;

Fmin xð Þ a½ � ¼ inf Fðx,hÞ hj 2 ~h a½ �
n o

;

Fmax xð Þ a½ � ¼ sup Fðx,hÞ hj 2 ~h a½ �
n o

:

ð17Þ

When the fuzzy probability of event X 2 [c, d], the fuzzy probability of X 2
(c � X � d), c � 0 and its a-cut intervals with crisp shape parameter b can be
calculated the following equations:

~P c�X� dð Þ a½ � ¼
Z d

c

b
x

x
h

� �b
e� x=hð Þbdx hj 2 ~h a½ � ¼ PL a½ �; PU a½ �� � ð18Þ

for all a, where

PL a½ � ¼ min
Z d

c

b
x

x
h

� �b
e� x=hð Þbdx hj 2 ~h a½ �

� 	
;

PU a½ � ¼ max
Z d

c

b
x

x
h

� �b
e� x=hð Þb dx hj 2 ~h a½ �

� 	
;

ð19Þ

4.2 Fuzzy Reliability Function

Fuzzy reliability function ð~Rðt)) defines the fuzzy probability for the period of time that
components do not break down time t. Let the random variable X represents compo-

nent lifetime, and its fuzzy density function f x, ~h
� �

and fuzzy cumulative distribution

function ~Fx(t) = ~P(X � t) where parameter, ~h is a fuzzy triangular number. The fuzzy
reliability function at time t is defined as:
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~Rðt) ¼ ~PðX [ t) = 1� ~Fxðt) = 1� FmaxðxÞ ½a�; 1� FminðxÞ ½a�; lF xð Þ ¼ a
n o

; t [ 0: ð20Þ

Because of X has fuzzy Weibull distribution, parameter ~h can be shown with a
triangular fuzzy number as ~h = (a1, a2, a3) such that a membership function l~h(x) in
the following manner:

l~hðxÞ ¼
0; x� a1
x�a1
a2�a1

; a1 � x� a2
a3�x
a3�a2

; a2 � x� a3
0; x� a3

8>><>>: ð21Þ

The a – cut value of ~h is calculated as follows:

~h½a� ¼ ½ða2 � a1Þ aþ a1;�ða3 � a2Þ aþ a3� ð22Þ

The fuzzy reliability function of a component is as follows:

~RðtÞ½a� ¼ fZ 1
t

b
x

x
h

� �b
e� x=hð Þbdx h 2 ~h a½ �

 g ¼ fe� t=hð Þb h 2 ~h a½ �

 o

: ð23Þ

Then the a – cuts of fuzzy reliability function is as:

~RðtÞ½a� ¼ ½ef�ðt= a2�a1ð Þaþ a1Þð Þbg; ef�ðt= � a3�a2ð Þaþ a3Þð Þbg�; ð24Þ

The triangular membership function of fuzzy reliability function (~R(t0) [a]) is given
in the following equation.

l~Rðt0ÞðxÞ ¼

0; x\e�ðt0=a1Þb

x�e�ðt0=a1Þb

e�ðt0=a2Þb�e�ðt0=a1Þb
; e�ðt0=a1Þb � x\e�ðt0=a2Þb

e�ðt0=a3Þb�x

e�ðt0=a3Þb�e�ðt0=a2Þb
; e�ðt0=a2Þb � x� e�ðt0=a3Þb

0; x[ e�ðt0=a3Þb

8>>>>><>>>>>:
ð25Þ

Fuzzy mean time to failure (FMTTF) is presented following equation by using
Buckley’s definition [16].

M~TTF½a� ¼ fZ 1
0
xf xð Þdx h 2 ~h a½ �g ¼ fZ 1

0
R tð Þdtjh 2 ~h a½ �g ¼ ½PL½a�; PU½a��:





PL½a� ¼ minfZ 1

0
R tð Þdt h 2 ~h a½ �g;



PU½a� ¼ maxfZ 1
0
R tð Þdt h 2 ~h a½ �g:

 ð26Þ
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M~TTF ½a� ¼ fhC 1þ b�1� �
h 2 ~h a½ �g



¼ ½ðða2 � a1Þaþ a1ÞC 1þ b�1� �
; ð�ða3 � a2Þaþ a3ÞC 1þ b�1� � ð27Þ

The triangular membership function of fuzzy mean time to failure is given as
follows.

lM~TTFðxÞ ¼

0; x\a1Cð1þ b�1Þ
x�a1Cð1þ b�1Þ

ða2�a1ÞCð1þ b�1Þ ; a1Cð1þ b�1Þ� x\a2Cð1þ b�1Þ
a3Cð1þ b�1Þ�x

ða3�a2ÞCð1þ b�1Þ ; a2Cð1þ b�1Þ� x\a3Cð1þ b�1Þ
0; x[ a3Cð1þ b�1Þ

8>>>><>>>>: ð28Þ

5 Application

In this study, a product reliability analysis study was carried out in a white goods
operation in Turkey. It is sometimes difficult to record the data obtained as a result of
the application of the Weibull analysis because of unexpected situations. Therefore,
deficiencies can be observed in the data to be analyzed. In some cases, life testing of
some products takes time and it is difficult to apply real-time monitoring on samples to
check if samples are failing. Therefore, the failure time cannot be detected immediately
when the failure occurs. For all these reasons, fuzzy set theory is used in this study.

Parameter values were obtained with the aid of the Minitab v.16 package program
and the fuzzy scale parameter values is found like ~h ¼ ð3580; 3661; 3742Þ; the shape
parameter value is found 5.87. Here the parameter values are in days.

The a – cut of fuzzy scale parameter and fuzzy reliability function are given as
follows. The a – cut value is taken 0.35 in study.

~h½a� ¼ ½81aþ 3580;�81aþ 3742� ¼ ½3608:35; 3713:65� ð29Þ

eRðt)[0:35�¼ ½ef�ðt= 3608:35ð Þ5:87g; ef�ðt= 3713:65ð Þ5:87g� ð30Þ

According to these parameter values, the membership function of scale parameter,
l~h(x) is given in the Eq. 31. Also, the a – cut of fuzzy survival plot is shown in Fig. 2.

l~hðxÞ ¼
0; x� 3580
x�3580

81 ; 3580� x� 3661
3742�x

81 ; 3661� x� 3742
0; x� 3742

8>><>>: ð31Þ

When the shape parameter values takes 2, 4, 6 values, the changes in the survival
plot are shown in Fig. 3. According to Fig. 3, the increasing value of shape parameter
results the decreasing the life time.
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Fuzzy mean time to failure is given as follows for b = 5.87

M~TTF½a� ¼ ½36:08:35C 1þ 5:87�1
� �

; 3713:65C 1þ 5:87�1
� �� ð32Þ

Here, C 1þ 5:87�1ð Þ. � 1, so;

M~TTF½a� ¼ ½3608:35; 3713:65�

Fig. 2. The a – cut of fuzzy survival plot

Fig. 3. The a – cut of fuzzy survival plot while b = 2, 4, 6
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The membership function lM~TTF(x) of fuzzy mean time to faire is given as follows.
The graphical representation is given in Fig. 4.

lM~TTF xð Þ ¼
0; x\3580
x�3580

81 ; 3580� x\3661
3742�x

81 ; 3661� x� 3742
0; x[ 3742

8>><>>: ð33Þ

6 Conclusion

Fuzzy reliability is based on the fuzzy sets concept and fuzzy probability theory. In this
paper, the failure times of a product are determined using Weibull distribution with a
fuzzy parameter. In real life, the failure can be observed at certain interval times and
cannot be determined at an exact time. Therefore the time to failure includes uncer-
tainty. For this reason, fuzzy set theory is used in this study. Also the Weibull scale
parameter is considered as a fuzzy triangular number. The fuzzy life time of a com-
ponent in a refrigerator with censored data is estimated via the fuzzy reliability func-
tion. According to the application results, failure times of all samples are deduced. It is
examined how the result changes according to different values of the shape parameter.
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Abstract. Fuzzy set theory is particularly appropriate approach when data
include imprecise. Type-2 fuzzy set theory captures ambiguity that associates
the uncertainty of membership functions by incorporating footprints and models
high level uncertainty. If the quality characteristic is a binary classification into
conforming/non-conforming of product, this decision depends on human sub-
jectivity that have ambiguity or vague. In this situation, monitoring the process
with statistical control charts based on interval type-2 fuzzy sets, a special case
of type-2 fuzzy sets, is more suitable due to the human imprecise judgments on
quality characteristics. In this paper, interval type-2 fuzzy p-control chart is
developed into the literature for the first time. Due to the interval type-2 fuzzy
sets modelled more uncertainty for defining membership functions, in this paper
interval type-2 fuzzy fraction nonconforming numbers used for handling more
uncertainty in process. Real word application is implemented with developed
fuzzy control chart.

Keywords: Fuzzy set theory � Interval type-2 fuzzy sets � Fraction
nonconforming � Fuzzy control charts

1 Introduction

Fuzzy sets theory is developed for modelling uncertainty on data. Type-1 fuzzy sets
introduce vagueness by using membership function. In this situation the membership
function degree is crisp and located [0, 1]. But type-2 fuzzy set consider membership
function degree as fuzzy. So, it can be defined the membership function of membership
function. If the upper membership function is equal to 1, it is called interval type-2
fuzzy number. Interval type-2 fuzzy sets can be modelled more effectively uncertainty
than type-1 fuzzy sets.

Fuzzy set theory was introduced firstly by Zadeh [1] in literature. Zadeh (1965) gave
the information about the reasons why fuzzy set theory is needed. Control charts
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proposed byMontgomery [2] are used for monitoring and controlling the process. Fuzzy
control charts are more suitable to monitor the process if data are fuzzy. Fuzzy variable
and attribute control charts have been well documented in literature since 1990. But the
latest articles are handled in this paper. Erginel [3] presented the fuzzy individual and
moving range control charts with a-cuts. Şentürk and Erginel [4] developed a-cut fuzzy.
~�X � R and ~�X � S control charts together with a-level fuzzy midrange transformation
techniques. Şentürk [5] presented fuzzy regression control charts based on an a-cut
approximation. Kaya and Kahraman [6] are derived firstly fuzzy rule method for
evaluating the fuzzy variable control charts in their paper. Gülbay et al. [7] proposed
a-cut control chart for attribute with triangular fuzzy numbers. Gülbay and Kahraman
[8] presented fuzzy c-control chart using a without defuzzification. Şentürk et al. [9]
showed a theoretical structure of fuzzy ~u control charts. Erginel [10] developed a fuzzy p
control chart based on both constant sample size and variable sample size and a fuzzy np
control chart using decision rules.

2 Interval Type-2 Fuzzy Sets

The arithmetic operations on interval type-2 fuzzy sets are defined by Mendel et al. [11]
and given in following definitions. This calculations are made by using trapezoidal
fuzzy number and their upper and lower membership functions.

Definition 1. A type-2 fuzzy set ~~A in the universe of discourse X can be represented by
a type-2 membership function l~~A

shown as follow [11, 12];

~~A ¼ x; uð Þ; l~~A
x; uð Þj8x 2 X; 8u 2 Jx � 0; 1½ �; 0� l~~A

x; uð Þ� 1
n o

ð1Þ

where Jx denotes an interval in [0, 1]. The type-2 fuzzy set ~~A also can be represented as
follows:

~~A ¼
Z
x2X

Z
u2Jx

l~~A
x; uð Þ= x; uð Þ ð2Þ

where Jx � 0; 1½ � and RR denotes the union over all admissible x and u. If all l~~A
x; uð Þ ¼ 1;

then ~~A is called an interval type-2 fuzzy set. An interval type-2 fuzzy set can be regarded
as a special case of type-2 fuzzy set, shown as follows,

~~A ¼
Z
x2X

Z
u2Jx

1= x; uð Þ ð3Þ

where Jx � 0; 1½ �:
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Definition 2. The upper membership function and the lower membership function of an
interval type-2 fuzzy set are type-1 membership functions, respectively [11, 12];

A trapezoidal interval type-2 fuzzy set

~~Ai ¼ ~AU
i ;

~AL
i

� � ¼ aUi1; a
U
i2; a

U
i3; a

U
i4;H1 ~AU

i

� �
;H2 ~AU

i

� �� �
;

aLi1; a
L
i2; a

L
i3; a

L
i4;H1 ~AL

i

� �
;H2 ~AL

i

� �� �� �
ð4Þ

where ~AU
i and ~AL

i are type-1 fuzzy numbers; aUi1; a
U
i2; a

U
i3; a

U
i4; a

L
i1; a

L
i2; a

L
i3; a

L
i4 are the

references points of the interval type-2 fuzzy ~~Ai. While subscript j takes values 1 and 2
in the Eq. (4), the subscript i can take values from 1 to n. Hj ~AU

i

� �
present the mem-

bership value of the element aUi jþ 1ð Þ in the upper trapezoidal membership function ~AU
i ,

Hj ~AL
i

� �
indicates the membership value of the element aLi jþ 1ð Þ in the lower trapezoidal

membership function ~AL
i above equation and the membership functions take values in

the interval [0, 1].

Definition 3. The addition operation between two trapezoidal interval type-2 fuzzy sets
are defined as follows:

~~A1 � ~~A2 ¼ ~AU
1 ;

~AL
1

� �� ~AU
2 ;

~AL
2

� �
¼

aU11 þ aU21; a
U
12 þ aU22; a

U
13 þ aU23; a

U
14 þ aU24;

min H1 ~AU
1

� �
;H1 ~AU

2

� �� �
min H2 ~AU

1

� �
;H2 ~AU

2

� �� �
;

aL11 þ aL21; a
L
12 þ aL22; a

L
13 þ aL23; a

L
14 þ aL24;

min H1 ~AL
1

� �
;H1 ~AL

2

� �� �
;min H2 ~AL

1

� �
;H2 ~AL

2

� �� �

0BBBB@
1CCCCA ð5Þ

Definition 4. The subtraction operation between the trapezoidal interval type-2 fuzzy
sets are defined as follow:

~~A1 � ~~A2 ¼ ~AU
1 ;

~AL
1

� �� ~AU
2 ;

~AL
2

� �
¼

aU11 � aU24; a
U
12 � aU23; a

U
13 � aU22; a

U
14 � aU21;

min H1 ~AU
1

� �
;H1 ~AU

2

� �� �
;min H2 ~AU

1

� �
;H2 ~AU

2

� �� �
;

aL11 � aL24; a
L
12 � aL23; a

L
13 � aL22; a

L
14 � aL21;

min H1 ~AL
1

� �
;H1 ~AL

2

� �� �
;min H2 ~AL

1

� �
;H2 ~AL

2

� �� �

0BBBB@
1CCCCA ð6Þ

3 Interval Type-2 Fuzzy p-Control Chart

The theoretical structure interval type-2 fuzzy p control chart for trapezoidal fuzzy
numbers are developed and given in Table 1 and following equations.
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�paU
:1
¼

Pm
i¼1 a

U
i1

m
; �paU

:2
¼

Pm
i¼1 a

U
i2

m
; �paU

:3
¼

Pm
i¼1 a

U
i3

m
; �paU

:4
¼

Pm
i¼1 a

U
i4

m
ð7Þ

�paL
:1
¼

Pm
i¼1 a

L
i1

m
; �paL

:2
¼

Pm
i¼1 a

L
i2

m
; �paL

:3
¼

Pm
i¼1 a

L
i3

m
; �paL

:4
¼

Pm
i¼1 a

L
i4

m
ð8Þ

The fuzzy upper control limit can be calculated by following equations;

UCLp ¼
�paU

:1
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:1
1� �paU

:1

� �
n

vuut
; �paU

:2
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:2
1� �paU

:2

� �
n

vuut
; �paU

:3
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:3
1� �paU

:3

� �
n

vuut
; �paU

:4
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:4
1� �paU

:4

� �
n

vuut
;min H1 eAU

i

� �
;H2 eAU

i

� �� �

�paL
:1
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paL

:1
1� �paL

:1

� �
n

vuut
; �paL

:2
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paL

:2
1� �paL

:2

� �
n

vuut
; �paL

:3
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paL

:3
1� �paL

:3

� �
n

vuut
; �paL

:4
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paL

:4
1� �paL

:4

� �
n

vuut
;min H1 eAL

i

� �
;H2 eAL

i

� �� �

266666664

377777775
ð9Þ

The fuzzy centre line and fuzzy lower control limit can be calculated by following
equations;

CLp ¼
�paU

:1
; �paU

:2
; �paU

:3
; �paU

:4
;min H1 ~AU

1

� �
;H2 ~AU

1

� �� �
;

�paL
:1
; �paL

:2
; �paL

:3
; �paL

:4
;min H1 ~AL

1

� �
;H2 ~AL

1

� �� �" #
ð10Þ

LCLp ¼
�paU:1 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:4
1� �paU

:4

� �
n

vuut
; �paU:2 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:3
1� �paU

:3

� �
n

vuut
; �paU:3 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:2
1� �paU

:2

� �
n

vuut
; �paU:4 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paU

:1
1� �paU

:1

� �
n

vuut
;min H1 ~AU

1

� �
;H2 ~AU

1

� �� �

�paL:1 � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�paL

:4
1� �paL

:4

� �
n

vuut
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�paL

:3
1� �paL

:3

� �
n

vuut
; �paL:3 � 3
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�paL

:2
1� �paL

:2

� �
n

vuut
; �paL:4 � 3
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�paL
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1� �paL
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� �
n
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;min H1 ~AL

1

� �
;H2 ~AL

1

� �� �

266666664

377777775
ð11Þ

Table 1. Interval type-2 fuzzy fraction nonconforming p
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3.1 Defuzzification Method for Interval Type-2 Fuzzy p-Control Chart

In the type-2 fuzzy sets studies, several defuzzification techniques are proposed for
reduction process. Kahraman et al. [12]. are modified BNP method for trapezoidal
type-2 fuzzy sets, given as follows:

DIT2UTrap ið Þ ¼
aUi4 � aUi1
� �þ H2 ~AU

1

� �
aUi2 � aUi1

� �þ H1 ~AU
1

� �
aUi3 � aUi1

� �
4

þ aUi1 ð12Þ

DIT2LTrap ið Þ ¼
aLi4 � aLi1
� �þ H2 eAL

1

� �
aLi2 � aLi1

� �
þ H1 eAL

1

� �
aLi3 � aLi1

� �
4

þ aLi1 ð13Þ

DIT2Trap ið Þ ¼
DIT2UTrap ið Þ þDIT2LTrap ið Þ

2
i ¼ 1; 2; . . .; n ð14Þ

where H1 ~AU
1

� �
and H2 ~AU

1

� �
are the maximum membership degree values of upper

membership function in type-2 fuzzy number; aUi4 is the largest possible value of the
upper membership function; aUi1 is the least possible value of the upper membership
function; aUi2 and aUi3 are the second and third parameters of the upper membership
function. The same definitions valid for the lower membership function.

Modified BNP method for trapezoidal type-2 fuzzy sets are adopted to the interval
type-2 fuzzy control charts for defuzzification as follows:

P DIT2UTrap ið Þ ¼
�paU

:4
� �paU

:1

� �
þ H2 ~AU

1

� �
�paU

:2
� �paU

:1

� �
þ H1 ~AU

1

� �
�paU

:3
� �paU

:1

� �
4

þ �paU
:1

ð15Þ

P DIT2LTrap ið Þ ¼
�paL

:4
� �paL

:1

� �
þ H2 ~AL

1

� �
�paL

:2
� �paL

:1

� �
þ H1 ~AL

1

� �
�paL

:3
� �paL

:1

� �
4

þ �paL
:1

ð16Þ

P DIT2Trap ið Þ ¼
P DIT2UTrap ið Þ þ P DIT2LTrap ið Þ

2
; i ¼ 1; 2; 3 ð17Þ

where P DIT2Trap ið Þ represents the deffuzification value of interval type-2 fuzzy
fraction nonconforming.

4 Application

The interval type-2 fuzzy p-control chart application was made in company that pro-
duces in the ceramic sector in Eskisehir Industry Region in Turkey. The case of errors
in ceramic tiles produced in this company is analysed using numbers of crack in
different samples with the same sample size. The process is observed at 15 different
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times and the numbers of cracked samples are determined. Due to the operators made
visual checking, there are ambiguity on data by operators’ judgments. The number of
nonconforming include vagueness, so these data expressed as interval type-2 fuzzy
numbers.

Table 2. The interval type-2 trapezoidal fuzzy number of fractions of cracked samples
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In addition, the trapezoidal interval type-2 fuzzy fractions of cracked units for each
sample are given in Table 2. The interval type-2 fuzzy arithmetic means are given as
follows:

�paU
:1
¼ 0:079; �paU

:2
¼ 0:095; �paU

:3
¼ :0:102; �paU

:4
¼ 0:116

�paL
:1
¼ 0:067; �paL

:2
¼ :0:08; �paL

:3
¼ :0:089; �paL

:4
¼ 0:102

The fuzzy upper and lower limits and fuzzy centre line of interval type-2 fuzzy
p-control chart are calculated according to the Eqs. (9–11) where fuzzy arithmetic
operations given in Eqs. (5–7) are used.

U eeCLp ¼ 0:165; 0:187; 0:198; 0:218; 1; 1ð Þ;
0:146; 0:166; 0:180; 0:199; 0:6; 0:5ð Þ

	 


CLp ¼ 0:079; 0:095; 0:102; 0:116; 1; 1ð Þ;
0:067; 0:080; 0:090; 0:103; 0:6; 0:5ð Þ

	 


LCLp ¼ �0:022;�0:001; 0:010; 0:031; 1; 1ð Þ;
�0:029;�0:010; 0:004; 0:024; 0:6; 0:5ð Þ

	 

After calculating the limits of interval type-2 fuzzy p-control chart, p-control limits

are defuzzified by using proposed modified BNP method for fuzzy control charts. The
operations of defuzzification for interval type-2 fuzzy control limits and centre line are
performed according to the Eqs. (15–17). The results of these operations are given in
Table 3.

After the control limits of p-control charts are defuzzified, fraction of cracked
samples is defuzzified by using modified BNP method. The obtained results are given
in Table 4.

Table 3. Defuzzified values of fuzzy control limits and centre line

UCL P DIT2UTrap ið Þ CL P DIT2LTrap ið Þ UCL P DIT2Trap ið Þ

0.192 0.167 0.179

CL P DIT2UTrap ið Þ CL P DIT2LTrap ið Þ CL P DIT2Trap ið Þ

0.098 0.081 0.090

LCL P DIT2UTrap ið Þ CL P DIT2LTrap ið Þ LCL P DIT2Trap ið Þ

0.004 –0.009 –0,002 < 0
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Defuzzified p-control chart limit and defuzzified observations are analysed in
Fig. 1. Regard to Fig. 1, the production process of ceramic tile is under control for
cracking number.

5 Conclusion

Since the interval type-2 fuzzy numbers consider the membership function of mem-
bership functions, they can analyse ambiguity more sensitive than type-1 fuzzy num-
bers for reflecting human decision. Also, decision on cracking error of ceramic tile

Table 4. Defuzzified values of fraction nonconforming for each sample

P DIT2UTrap ið Þ P DIT2LTrap ið Þ P DIT2Trap ið Þ

0.114 0.099 0.107
0.094 0.069 0.082
0.103 0.091 0.097
0.058 0.042 0.050
0.136 0.113 0.125
0.053 0.039 0.046
0.111 0.099 0.105
0.092 0.069 0.081
0.181 0.162 0.171
0.092 0.079 0.085
0.139 0.123 0.131
0.058 0.043 0.051
0.150 0.136 0.143
0.056 0.043 0.049
0.036 0.027 0.031

Fig. 1. Interval type-2 fuzzy p control chart for crack numbers
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depends on human experience and subjective. Therefore, using the interval type-2
fuzzy numbers for monitoring and evaluation production process with a fuzzy control
chart is more suitable than type-1 fuzzy numbers. In this study, interval type-2 fuzzy
p-control chart is developed into the literature for the first time and application is
presented. The main contribution of this paper is to give a structure of interval type-2
fuzzy p-control chart for modelling more vagueness that exists inherently collecting
nonconforming data from process.
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