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Abstract. This paper aims to investigate switching capacitor bank of the
115 kV Nong Chok substation under the Electricity Generating Authority of
Thailand (EGAT). The substation comprises of 3 steps capacitor banks with
reactive power of 48 Mvar in each step. In case study, the substation is
downscaled to be an experimental unit with 415 V and 5 Mvar in each step in
laboratory. Inrush currents, the behavior of transient signals, that occurs when
capacitors are switched into the system are studied and analyzed. To reduce the
effect of switching capacitors, current limiting reactors connected in series with
the capacitors are proposed. In addition, a zero-crossing circuit is designed to
control switching angle of the capacitors, since it has a significant effect on the
inrush currents. The results of experiment are compared with two case studies:
switching capacitors without integrated 7% of reactors and switching capacitors
with integrated 7%. It can be summarized that the switching capacitor without
integrated reactors has inrush currents change based on the switched angles of
the capacitors. However, the switching capacitor with integrated reactors gives
inrush current values are almost approximate in each angles of switching and
they are lower the case of the switching capacitor without integrated reactors.
Nevertheless, reactor integration into the system leads to high current values at
the steady states.
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1 Introduction

Nowadays, we need to consume a lot of electrical energy for daily activity but some of
the power systems, distributing and transmitting the electrical energy to the consumers,
have unsuitable power factors resulting in low efficiency. Thus, a capacitor bank is one
of the systems used to enhance the power system efficiency. Many research articles
present that capacitor bank installation to an electrical system provides many benefits,
for instance power factor correction, voltage support, reduction of harmonic distortion
effect in transmission systems and increase of active power transfer capacity [1-3].
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The investigation of efficiency improvement of power systems by integrating different
types of capacitor bank units is presented in K. Tilakul [4] and C. Rivera [5] works.
A capacitor bank comprises of capacitor units connected in series and parallel inside an
enclosed bank. However, capacitor bank switching has a negative effect on power
system operation which is inrush currents, overvoltage transience and harmonic
problems, hence electrical equipment damage.

The inrush current from switching can be very high during short periods, which
leads to the failure of electrical equipment operation. To limit the inrush current,
J. C. Das [6] and Mirza Softi¢ [7] present a power factor controller. Thyristors are used
to control the power factor of the capacitor banks that are connected in series. Results
indicate that this technique is effective and reliable. The installation of an electromag-
netic relay with solid-state transient limiter into a capacitor bank is proposed [8—10].
There are two operation modes by using a thyristor to address any transient overvoltage
and inrush current problems: limiting mode and bypass mode, which have a very simple
structure and reliable performance [8]. Due to an increased voltage stress of a thyristor
switch, paper [9] uses IGBT to turn-on and turn-off a switch without an inrush current at
the voltage zero-crossing. IEEE Std C37 [11] proposes guidelines for shunt power
capacitor bank and filter capacitor bank protection, aiming for many shunt capacitor
installations and designs. Software simulation is used to investigate inrush current for
single and back-to-back capacitor banks, revealing that the pre-insertion resistor tech-
nique can significantly reduce transient [12].

In this paper, switching capacitor bank of the 115 kV Nong Chok substation under
the Electricity Generating Authority of Thailand (EGAT) is studied. The substation is
downscaled to be an experimental unit in laboratory to study and analyze inrush
currents. After that, current limiting reactors connected in series with the capacitors are
installed to reduce the effect of switching capacitors.

2 Experimental Setup

The experimental model is set to simulate the 115 kV Nong Chok substation under the
Electricity Generating Authority of Thailand (EGAT). A single line diagram of the
capacitor bank system is shown in Fig. 1. The substation comprises of 3 steps capacitor
banks with reactive power of 48 MVar in each step. The experimental test set is
downscaled from 115 kV to 415 V in laboratory. In addition, the size of capacitors and
other equipment is determined by using per unit calculation. Hence, the total capacity
power is 15 MVar, 5 MVar in each step, with ungrounded wye for internal connection.
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Fig. 1. The single line diagram of the capacitor bank system in the Nong Chok substation

The experimental setup receives a voltage of 415 V from a variable voltage
transformer used to step up the voltage of the power supply in the laboratory. The
voltage and current measured at phase A by a power factor controller are evaluated and
processed, after that it sends a signal to the switching capacitors with the magnetic
contactors K1, K2, and K3. The operation of the experimental test set is divided into
two parts: a power circuit and a control circuit.

Figure 2(a) shows a schematic diagram of the power circuit of the experimental test
set. The busbars of the power circuit receive a 3-phase voltage of 415 V three phase via
a main circuit breaker. There are two main circuits connected with them. Firstly, the
415-line voltage of phase A is changed to 230 V by a step down voltage transformer in
order to supply the control circuit (power factor controller) and a thermal ventilation
system (a cooling fan). Next, the switching of the capacitor bank in each step consists
of a HRC fuse, a magnetic contactor, a 7% reactor and a capacitor.
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A schematic diagram of the control circuit of the capacitor bank system in the
experimental test set is shown in Fig. 2(b) The control system comprises the power
factor controller used to control the switching capacitor in each step. The power factor
controller obtains current and voltage values from the current transformer (CT) and
potential transformer (PT). The power factor of the system is calculated from these
values to compare with the power factor value set inside the program. After that, the
capacitor in each step is closed or opened with the magnetic contactor by using on/off
signals from the power factor controller.

415V
MCCB 32A

CT ratio 30/5A

Reactor 7%

Capacitor bank
10kvar

Cooling fan

(a) a schematic diagram of the power circuit of the experimental test set

Fig. 2. The operation of the experimental test set (a) a schematic diagram of the power circuit of
the experimental test set (b) a schematic diagram of the control circuit of the capacitor bank
system
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(b) a schematic diagram of the control circuit of the capacitor bank system

Fig. 2. (continued)

3 Experimental Results

The inrush currents from switching capacitors into the experimental setup are measured
by using a Fluke 435 power quality meter. There are two case studies: switching
capacitors without integrated 7% of reactors and switching capacitors with integrated
7%. In these studies, a zero-crossing detection is installed to control the angle of
switching capacitors.

Figure 3(a) gives the schematic diagram of switching capacitors without integrated
7% of reactors. For inrush current measurement, current clamps are installed between
magnetic contactors (K1, K2, and K3) and capacitors, while voltage probe installation
is set between HRC fuses and the magnetic contactors. For experiment, the test set is
supplied from the three-phase voltage of 415 V in the laboratory via a main circuit
breaker (32 A, MCCA). The capacitor in each step (Ist, 2nd, and 3rd steps respec-
tively) is switched by using the power factor controller to deliver signals to the
magnetic contactors K1, K2, and K3. Electrical parameters including the inrush cur-
rents are recorded by the power quality meter and results are presented in Table 1.
Figure 4 depicts the current and voltage waveforms of switching capacitor bank
without integrated 7% of reactors at the phase angles of 0° and 90°.
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For the schematic diagram of switching capacitors with integrated 7% of reactors as
depicted in Fig. 3 (b), the measurement equipment setting and measurement remain the
same case of the switching capacitors without integrated 7% of reactors. In this model,
the 7% of reactors are integrated between the magnetic contactors and capacitors in
order to reduce effects of the inrush currents; the results are shown in Table 2 and the
current and voltage waveforms of the switching capacitors are shown in Fig. 5.
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(a) switching capacitors without integrated 7% of reactors

Fig. 3. The schematic diagram of switching capacitors (a) switching capacitors without
integrated 7% of reactors (b) switching capacitors with integrated 7% of reactors
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(b) switching capacitors with integrated 7% of reactors

Fig. 3. (continued)

Table 1. Results of inrush current in the case of switching capacitors without integrated 7% of
reactors

Phase 1*" step 2" step 3 step

angle Inrush | Steady Current | Inrush | Steady Current | Inrush | Steady Current
(degree) | current | state (A) current | state (A) current | state (A)

(A) period (A) period (A) period
(ms) (ms) (ms)

0 —69.98 | 179 8.12 41.56 161 8.93 -21.37 | 127 9.23
45 —85.06 | 336 8.35 52.98 225 8.95 37.60 | 190 9.09
90 —197.60 | 712 8.57 —176.52 | 554 8.97 13231 | 595 9.21
135 68.28 350 8.74 52.30 204 9.00 3459 | 189 9.05
180 75.21 204 8.21 53.28 194 8.97 2239 | 154 9.12
225 -82.92 | 377 8.32 56.01 194 9.07 3391 | 168 9.14
270 197.66 | 698 8.78 182.76 | 688 8.88 146.67 | 611 9.25
315 —82.95 | 307 8.67 54.38 270 8.98 —36.05 | 242 9.32
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Fig. 4. Current and voltage waveforms of switching capacitor bank without integrated 7% of
reactors (a) switching capacitors at 0° phase angle in step 1(b) switching capacitors at 90° phase
angle in step 1(c) switching capacitors at 0° phase angle in step 2(d) switching capacitors at 90°
phase angle in step 2(e) switching capacitors at 0° phase angle in step 3(f) switching capacitors at
90° phase angle in step 3
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Fig. 4. (continued)

Table 2. Results of inrush current in the case of switching capacitors with integrated 7% of
reactors

Phase 1% step 2" step 3 step
angle Inrush | Steady Current | Inrush | Steady Current | Inrush | Steady Current
(degree) | current | state (A) current | state (A) current | state (A)

(A) period (A) period (A) period

(ms) (ms) (ms)

0 95.87 |79 12.56 91.08 |48 14.58 —90.45 |39 15.92
45 —95.68 | 74 12.56 -91.98 |53 14.40 —90.92 |48 15.90
90 97.98 |84 12.45 94.56 |68 14.38 92.86 |63 15.89
135 -96.45 |71 12.57 —91.25 |58 14.39 —92.14 |52 15.75
180 96.05 |64 12.61 -91.09 |51 14.39 —91.00 |49 15.84
225 97.66 |81 12.49 93.87 |65 14.40 91.85 |55 15.90
270 96.78 |73 12.56 —93.56 |61 14.14 —91.94 |56 15.86
315 9598 |68 12.60 92.87 |60 14.19 91.00 |51 15.94
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Fig. 5. Current and voltage waveforms of switching capacitor bank with integrated 7% of
reactors (a) switching capacitors at 0° phase angle in Step 1 (b) switching capacitors at 90° phase
angle in Step 1 (c) switching capacitors at 0° phase angle in Step 2 (d) switching capacitors at 90°
phase angle in Step 2 (e) switching capacitors at 0° phase angle in Step 3 (f) switching capacitors
at 90° phase angle in Step 3
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Fig. 5. (continued)

4 Conclusions

This paper aims to study capacitor bank switching transients in a substation by using an
experimental test unit. To reduce the effect of switching capacitors, current limiting
reactors connected in series with the capacitors are proposed. The results of the
switching capacitors without integrated 7% of reactors (see Table 1) show that the
inrush current values obtained from the experimental setup have change based on the
switched angles of the capacitors. Switching of angles at 90 and 270 degrees causes the
maximum inrush current value when comparing with another angles. By contrast, the
angles of 0 and 180 degrees give the minimum inrush current value.

For the results of the switching capacitors with integrated 7% of reactors (see
Table 2), it can be noticed that inrush current values are almost approximate in each
angles of switching capacitors and lower than the inrush currents of the former case.
The 7% reactors connected in series with the capacitors increase in an inductance value
per a phase, resulting in decreased inrush current values and short periods of time for
steady states. However, 7% reactor integration into the experimental setup allows for
high current values at the steady states.
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