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Abstract. In this paper, an integrated insurer’s portfolio, which con-
sists of a few layers of insurance and financial instruments, is numerically
analysed. A future behaviour of such a portfolio is related to stochastic
processes (like a random interest rate yield and uncertain catastrophic
losses), therefore the Monte Carlo (MC) approach is applied. A special
attention is paid to a problem of a share of catastrophe bonds in such
a portfolio and to an analysis of an influence of an additional layer—
an external (e.g. governmental) help. Some important measures of an
insurer’s risk (like a probability of his bankruptcy) are then numerically
analysed. In considered examples, apart from strictly crisp sets of para-
meters, also fuzzy numbers are used to model an imprecise information
concerning the possible external help.
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1 Introduction

Nowadays, the insurers face the problem of catastrophic losses, which are caused
by earthquakes, tsunamis and other natural catastrophes. Therefore, a problem
of an estimation and an analysis of a probability of an insurer’s ruin is even more
significant and urgent. Moreover, the insurers apply new, financial (or, simulta-
neously, financial and insurance) instruments, which are intended to lower this
probability. A catastrophe bond (or a cat bond in short) is an example of such
an instrument (see, e.g., [8,10,11]). However, an issuance of additional instru-
ments changes a whole structure of an insurer’s portfolio. Then, a classical risk
process, which describes the cash flows of an insurer, should be also generalized
to take into account these additional layers of the portfolio. This new formula of
the risk process requires more complex approaches and supplementary numerical
simulations in order to estimate the probability of an insurer’s ruin and other
statistics, which are important for an insurer.
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In this paper, we continue a work, which was started in [13,14]. Then, the
generalized form of the classical risk process for the insurer’s portfolio is con-
sidered. A cat bond, which is issued by an insurer, and an external help are
examples of the layers in such a portfolio. Contrary to the classical approach,
we also assume that there is dependency between time and money, i.e., one unit
of money, which is paid now, has other value than the same unit, which will
be paid in the future. In the following, cash flows for the insurer’s portfolio are
analysed using Monte Carlo (MC) simulations.

A contribution of this paper is fourfold. Firstly, a special attention is paid
to a problem of a share of catastrophe bonds in the portfolio. An optimum
level of the issued bonds is an important factor for the insurer. A larger share
minimizes a probability of his bankruptcy, but it also minimizes expected profits
of the insurer. Therefore a relevant numerical analysis is conducted. Secondly,
a structure of the portfolio is further developed and an additional layer—an
external (e.g., governmental or foreign) help—is incorporated. This next layer
changes the mentioned generalized form of the classical risk process in a new
way. Thirdly, we consider both a probabilistic and an imprecise approach to a
value of such a help. In this second case, fuzzy triangular numbers are used to
model this external help. Fourthly, in order to directly compare some important
risk factors for the insurer, a method of a reduction of an estimation error is
applied.

This paper is organized as follows. In Sect. 2, the generalized version of the
classical risk process is introduced. Also an applied model of an interest rate
(the one–factor Vasicek model) is recalled there. Some notes about a possible
optimization procedure, which maximizes the cash flow for an insurer and min-
imizes his probability of a ruin, are included in Sect. 3. Section 4 is devoted to
a numerical analysis of some examples, which are close to practical situations.
Section 5 concludes the paper with some final remarks.

2 Risk Reserve Process and Its Generalization

Traditionally, in the insurance industry, a risk reserve process Rt is defined as a
model of the financial reserves of an insurer depending on time t, i.e.

Rt = u + pt − C∗
t (1)

where u is an initial reserve of the insurer, p is a rate of premiums paid by the
insureds per unit time and C∗

t is a claim process, which is given by

C∗
t =

Nt∑

i=1

Ci (2)

where C1, C2, . . . are iid random values of the claims. These claims are tradition-
ally identified with the losses Ui, which are caused by the natural catastrophes,
so we have Ci = Ui. There are also models, where the claims are only some part
of the losses, e.g.,

Ci = αclaimZiUi , (3)
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so αclaim ∈ [0, 1], Zi ∼ U [cmin, cmax], and Zi, Ui are mutually independent vari-
ables. The parameter αclaim describes a deterministic share of the considered
insurer in the whole insurance market (for the given region) and the random
variable Zi models a random part of the claim Ci in the loss Ui. In this case,
a non-informative random distribution, i.e. a uniform distribution U [cmin, cmax]
(for 0 ≤ cmin ≤ cmax ≤ 1), is used. Then, we have a process of the losses, which
is given by

N∗
t =

Nt∑

i=1

Ui (4)

If the assumption (3) is applied, it can lead to a hedging problem (see, e.g., [13]).
A process of a number of the claims Nt ≥ 0 is usually driven by a homoge-

neous Poisson process (HPP), or a non-homogeneous Poisson process (NHPP).
In this paper, we assume that a cyclic intensity function

λNHPP(t) = a + b2π sin(2π(t − c)) (5)

is used to model NHPP of the number of the claims Nt. The parameters of (5),
which are applied in the following part of the paper, were estimated in [2],
based on the data from the United States, provided by the Property Claim
Services (PCS) of the ISO (Insurance Service Office Inc.). Then we have a =
30.875, b = 1.684, c = 0.3396. Also, using a method described in [2], the value of
the single loss Ui is further modelled by a lognormal distribution with parameters
μLN = 17.357, σLN = 1.7643.

Because a non-constant intensity function (5) is applied, then the premium
in (1) is fixed as a constant function for some deterministic moment T (see
also [14] for further details), so

p(T ) = (1 + νp)ECi

∫ T

0

λNHPP(s)ds (6)

where νp is a safety loading (or security loading) of the insurer, which is usually,
in practical situations, about 10%–20%.

In the following, we consider a more complex insurer’s portfolio, which con-
sists of an additional layer—a special financial instrument, which is known as a
catastrophe bond (or a cat bond, see, e.g., [8,10,11,14]) Therefore, the classical
risk process (1) has to be generalized into a more suitable form, so that the cash
flows related to the cat bond can be taken into account.

In general, when a catastrophe bond is issued, the insurer pays an insur-
ance premium pcb in exchange for a coverage, when a triggering point (usually
some catastrophic event, like an earthquake) occurs. The investors purchase an
insurance–linked security for cash. The above mentioned premium and cash flows
are usually managed by a SPV (Special Purpose Vehicle), which also issues the
catastrophe bonds. The investors hold the issued assets, whose coupons and/or
principal depend on the occurrence of the mentioned triggering point. If such a
catastrophic event occurs during the specified period, then the SPV compensates
the insurer and the cash flows for the investors are changed. Usually, these flows
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are lowered, i.e. there is full or partial forgiveness of the repayment of principal
and/or interest. However, if the triggering point does not occur, the investors
usually receive the full payment from a cat bond (see, e.g., [11,13,14]).

Taking into account the described cash flows of a catastrophe bond, the
classical risk process (1) should be written as

RT = FVT (u − pcb) + FVT (p(T )) − FVT (C∗
T ) + ncbf

i
cb(N

∗
T ) , (7)

where f i
cb(N

∗
T ) is a payment function of the single cat bond for the insurer and

pcb is an insurance premium. We assume, that pcb is proportional to both a part
αcb of a whole price of the single catastrophic bond Icb, and to a number of the
issued bonds ncb, so that pcb = αcbncbIcb.

Moreover, in our setting (which is contrary to the classical approach, see also
[13,14]), a value of money depending on time is taken into account. Therefore,
FVT (.) denotes a future value of the cash flow in (7). In the following, to calculate
this future value, the one–factor Vasicek model

drt = κ(θ − rt)dt + σdWt (8)

is applied. The parameters for (8) are fitted in [1], so we get κ = 0.1179, θ =
0.086565, σ2 = 0.0004.

We can also enrich the considered portfolio and add some other layers (i.e.
financial or insurance instruments), e.g. a reinsurance contract (see [14] for
a more detailed discussion). But, in this paper, we focus only on a governmental
(or, e.g., foreign), external help. We assume, that this help is supplied only if the
losses surpass some given minimal limit Ahlp, and only with a fixed probability
phlp (i.e. Pr(H = 1) = phlp and Pr(H = 0) = 1 − phlp, where H is a binomial
variable, which indicates, if this external fund is used or not). Then, a value of
this help can be modelled by some function f i

cb(N
∗
T ), e.g. by a constant value. If

this external fund is incorporated into the generalized risk process (7), we get a
new formula

RT = FVT (u − pcb) + FVT (p(T )) − FVT (C∗
T ) + ncbf

i
cb(N

∗
T )

+I(H = 1, N∗
T ≥ Ahlp)fhlp(N∗

T ) , (9)

where I(.) is an indicator function. Easily seen, such a help is treated as an
additional source of funds by the insurer, because it lowers the overall losses and
mitigates his expanses.

3 Optimization Goals

In a classical problem statement, an insurer is interested in a minimization of a
probability of his ruin. For the given moment T , a probability of a ruin at the
end of time interval T is given as

φ(T ) = Pr(RT < 0) . (10)
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Moreover, an insurer wants to maximize an overall cash flow for his portfolio,
which is described by the generalized risk process (7) or (9). Therefore, in the
following, we focus on an analysis of these two characteristics. Because of a
stochastic and uncertain nature of (7) and (9), the MC approach is used to
estimate an expected value of (7) or (9), namely ERT . In practical situations,
an insurer can be also interested in an overall optimization of his portfolio. Then,
both the probability of the ruin and the expected value of the future cash flows
can be combined in one optimization goal, e.g.,

max(ERT − αpen Pr(RT < 0)) , (11)

where αpen is some penalty factor, which is related to an occurrence of a ruin, and
the maximum is taken for selected parameters of the portfolio (see, e.g., [3] for
other approaches). In order to solve the problem (11), a stochastic optimization
procedure can be necessary (see, e.g., [5]).

4 Numerical Analysis

As it was mentioned in Sect. 2, to model the trajectory of the process RT , we
apply NHPP with the intensity function (5) for the lognormal catastrophic losses.
As for a payment function f(N∗

T ) for a holder of the considered cat bond, a
piecewise linear function is applied (see [8,10,11,14] for a necessary introduction
and an additional discussion), so

f(C∗
T ) = Fv

(
1 −

n∑

i=1

min(N∗
T ,Ki) − min(N∗

T ,Ki−1)
Ki − Ki−1

wi

)
(12)

where Fv is a face value of the cat bond, w1, . . . , wn > 0 are payoff decreases,
and 0 ≤ K0 ≤ K1 ≤ . . . ≤ Kn are the triggering points. We set Fv = 1 (i.e. one
monetary unit assumption is used), and

K0 = Qloss
NHPP−LN(0.75),K1 = Qloss

NHPP−LN(0.9) , (13)

where Qloss
NHPP−LN is x-th quantile of the cumulated value of the losses (for

the considered NHPP and the lognormal distribution of the single loss). The
payoff decrease is equal to w1 = 1 and one year time horizon is applied, so
T = 1. Then, if after one year, the cumulated value of losses surpasses K1, the
bond holder receives nothing. To find the price of such a catastrophe bond,
we apply the method introduced in [8,10,11,14]. It requires analytical for-
mulas and additional Monte Carlo simulations. Then, the mentioned price is
estimated as Icb = 0.809896 (see also [8,10,11,14] for a more detailed discus-
sion), so such a value will be used further in this paper. We also assume, that
u = Qloss

NHPP−LN(0.25), i.e. the initial reserve of the insurer is equal to 0.25-th
quantile of the cumulated value of the claims, and that αcb = 0.3 (so 30% of the
cat bond price is covered by the insurer) and νp = 0.1 (i.e. the safety loading
for the premiums is equal to 10%). For a better readability of results, the losses
(hence, the claims also) are scaled in millions of money units.
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4.1 Number of the Issued Cat Bonds

We start from an analysis of an influence of the number of the issued bonds
ncb on some key factors for the insurer, like a probability of his ruin. For a
larger share of the cat bonds in the portfolio, the potentially catastrophic losses
have lower impact on the insurer. This directly leads to the lower probability
of his bankruptcy. On the other hand, the larger share also reduces the overall
cash flows in the portfolio, even if the issued catastrophe bond will not be used
afterwards (because a fixed triggering point of this cat bond is not even achieved).
Hence, an issuance of the cat bonds works as an alternative way of a reinsurance
(see also [14] for a comparison of these two approaches). Therefore, the insurer
should choose an optimal level of the share of the catastrophe bonds in his
portfolio. It should be not too large (because it does not maximize the expected
insurer’s profits) and not too low (because it leads to the higher probability of
the bankruptcy at time T ). In [13,14] there is no such an exact analysis.

In order to compare simulated outcomes for different values of ncb, it is
necessary to minimize other possible sources of variability. Therefore, to reduce
a variance (and, furthermore, an estimation error), for an each value of ncb

the same set of n = 1000000 simulated trajectories is used. We also analyse
three possible kinds of dependencies between the claims and the losses, namely
Ci = Ui (which is denoted further as Example I), Ci = 0.5Ui (Example II, in
this case each claim is always equal to 50% of the loss) and Ci = ZiUi, where
Zi ∼ U [0, 1] (Example III, the loss is transformed to the claim using a standard
uniform distribution). Then, Example II reflects a situation, when the insurer
has 50% of a whole insurance market, and Example III means, that there is no
strict information about a level of such a share. Then, only a very general, non-
informative statistical approach can be used (see [13] for a different approach to
this problem).

Our analysis is done for a wide range of possible values of ncb, which allows
the insurer to directly compare his different possibilities in a construction of the
portfolio. The estimated averages of the final value of the portfolio R̄T , as a
function of ncb, are plotted in Fig. 1 (outcomes for Example I are denoted by
circles, for Example II—by squares, and for Example III—by rhombuses). They
are almost linearly decreasing functions, which behave in a very similar way.
However, an observed reduction of the estimated expected value is not very fast,
e.g. in Example I for ncb = 50 we have R̄T = 3487.55, and for ncb = 1600 (i.e.,
the share of the cat bonds in such a portfolio is 32 times higher than in the
previous case) we get R̄T = 3349.06 (only about 4% reduction).

It should be noted, that the averages R̄T in Example II and Example III are
very similar, but still they are not completely equal. It means, that even if an
expected value of the loss in Example III is the same as a deterministic part
of Ui in Example II, the outcomes are significantly different, which is rather in
contrary to an “intuitive thinking”.

Also the estimators of the ruin probabilities φ̂(T ) can be found in the similar
way, using numerical simulations (see Fig. 2, the relevant plots are labelled in
the same way, as previously). These probabilities are non-linearly decreasing
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Fig. 1. Estimated averages of the final value of the portfolio (in Example I–
Example III)
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Fig. 2. Estimated probabilities of the final ruin (in Example I–Example III)

functions of ncb. But now, the observed reduction for the increasing values of
ncb is more significant. In Example I, for ncb = 50 we have φ̂(T ) = 10.589%,
and for ncb = 1600 we get φ̂(T ) = 7.448% (almost 30% reduction of the ruin
probability).

Because R̄T and φ̂(T ) behave in a different way (linear vs. non-linear) as the
functions of ncb, then the outcomes, which are summarized in Figs. 1 and 2, can
be directly merged using the optimization function (11) (or other one). Then,
the optimal level of the issued cat bonds for the insurer can be directly found.
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4.2 Influence of the External Help

We further develop our analysis of the insurer’s portfolio and incorporate an
additional layer—the external help (see (9)). As it was mentioned, the payment
function for this help fhlp(N∗

T ) can be modelled in various ways. In this paper,
a function similar to a classical excess-of-loss policy is adopted. Then, we have

fhlp(N∗
T ) =

{
Bhlp − Ahlp if N∗

T ≥ Bhlp

N∗
T − Ahlp if Bhlp ≥ N∗

T ≥ Ahlp
, (14)

where Bhlp is a maximum limit for this help. Formulae (14) is, in some way,
similar to commonly used reinsurance contracts (see, e.g., [14]), but without
additional costs incurred by an insurer.

Let us suppose, that ncb = 1000, the claims are equal to the losses, phlp = 1
(i.e., the help is always available, if the minimum limit of the losses is surpassed),
and that Ahlp = Qloss

NHPP−LN(0.95), Bhlp = Qloss
NHPP−LN(0.99), so the minimal limit

for the external help is equal to 0.95-th quantile of the cumulated value of the
losses and the maximal limit is given by 0.99-th quantile. Such a set of the
parameters constitutes Example IV. Then, using simulations for the same set of
trajectories as in Example I, the relevant outcomes can be easily compared. The
average for the final value of the portfolio in Example IV is equal to 3598.21,
comparing to 3402.67 in Example I (about 5.75% more in Example IV). However,
a difference in the ruin probability is less visible—only about 0.01% (8.488% in
Example IV vs. 8.498% in Example I).

Of course, in practical situations, Ahlp and Bhlp can be given as imprecise
values, not as strictly precise information. For example, the minimum limit can
be stated as “about Qloss

NHPP−LN(0.95)”. Such inexact data can be modelled with,
e.g., fuzzy sets, in contrary to an application of real numbers (i.e., “exact” infor-
mation, see [6,7,9,11,13] for examples of applications of the fuzzy numbers in
some areas). Fuzzy sets can be also combined with a probabilistic approach, and
this leads to random fuzzy variables (see, e.g., [4] for a more detailed review).
Therefore, in the next case—Example V—we use triangular fuzzy numbers to
describe Ahlp and Bhlp, and analyse influence of such an assumption on the
simulated output. We restrict ourselves to the triangular fuzzy numbers, but
the presented further approach can be also used for other kinds of L–R fuzzy
numbers.

Let ã = [aL, aC , aR] denote a triangular fuzzy number, where aL is its left
end of a support, aR—its right end of a support, and aC—a core. Then, ã[α] =
[aL[α], aR[α]] is an α-cut of ã, if α ∈ [0, 1].

We assume that

Ãhlp = [Qloss
NHPP−LN(0.95)− 200, Qloss

NHPP−LN(0.95), Qloss
NHPP−LN(0.95)+200] (15)

(so, the minimum limit of the external help is 0.95-th quantile ±200), and, in
the same way,

B̃hlp = [Qloss
NHPP−LN(0.99)−200, Qloss

NHPP−LN(0.99), Qloss
NHPP−LN(0.99)+200] . (16)
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Then, simulations for consecutive α-cuts of Ãhlp and B̃hlp can be performed
to obtain an outcome (i.e. an approximation of a fuzzy number) for a desired
function f(x). During the MC simulations, α is changed from some starting value
α0 ≥ 0 up to an upper bound α1 ∈ (α0, 1] with an increment Δα > 0. After
an evaluation of the left and right end points of the different α-level sets of the
considered function of the output, i.e. [f̃L[α](x), f̃R[α](x)], the obtained intervals
are put on one another, so they form an approximation of a final fuzzy outcome
f̃(x). During this procedure, we should keep in mind, if f(x) is an increasing or
decreasing function of the fixed x, in order to select relevant left or right ends of
the α-cuts for Ãhlp and B̃hlp (see [11–13] for further details of this approach).

The estimated average of the final value of the portfolio forms a L–R fuzzy
number, which is almost a triangular fuzzy number (see Fig. 3, a plot labelled
with circles). Its support is equal to [3586.59, 3610.27] (respectively, 5.5% and
6.1% more than in Example I) and its core is given by the relevant value from
Example IV. A supplier of the external help can be also interested in an evalua-
tion of a probability of using such a help. This value can be directly estimated,
if the introduced approach is applied (see Fig. 4, a plot labelled with circles),
and it is also a L–R fuzzy number. Its support is equal to [4.65%, 5.141%] and
its core is given by 4.88%.

3500 3520 3540 3560 3580 3600

0.2

0.4

0.6

0.8

1.0

Fig. 3. Estimated averages of the final value of the portfolio (in Example V and Exam-
ple VI)

An average is an important measure, however, a practitioner can be also
interested in a more detailed analysis of other characteristics of the portfolio,
e.g., a statistical behaviour of its final value. An example of such a study can be
seen in Fig. 5, where a quantile plot for the final value of the insurer’s portfolio
is plotted. In this case, the quantiles for α = 0 of Ãhlp and B̃hlp are calculated,
using the approach described previously. Main differences between the portfolios
are seen in Fig. 5 only for lower ranks of the quantiles, e.g., for 0.01-th quantile
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Fig. 4. Estimated probabilities of using the external help (in Example V and Exam-
ple VI)

we have the final value of the portfolio −2722.21 versus −2247.15 (the difference
is equal to 475.06), and for 0.99-th quantile we have the final value 7224.41 versus
7224.56 (so the difference is only 0.15). Then, a major effect of the external help
is related rather to the “really catastrophic” events, which are statistically rare
(only about 5% cases).
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2000

2000
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6000
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Fig. 5. Quantile plot of the final value of the portfolio (Example V)

In practical situations, we are not completely sure, if the external help will be
supplied, i.e., we have phlp ≤ 1. Therefore, we analyse a case (which is labelled
further as Example VI), when phlp = 0.5 (so, there is 50% chance, that the
external help can be used in a relevant situation) and all of the other parameters
are the same as in Example V. Then, the estimated average of the final value
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of the portfolio and the probability, if the external help is used, can be seen in
Figs. 3 and in 4 (plots labelled with squares). Easily seen, both of these fuzzy
numbers are shifted to a left hand side, and their supports are narrower than in
Example V.

5 Conclusions

In this paper, we focus on the analysis of the influence of the catastrophe bonds
and the external help on the behaviour of the integrated insurer’s portfolio.
In order to evaluate the probability of the ruin and other important factors
for the insurer, Monte Carlo simulations, together with the reduction of the
estimation error, are applied. Then, various scenarios for the insurer’s portfolio
with different parameters are analysed. The outcomes from these examples are
compared, using statistical measures. Apart from the crisp approach, the fuzzy
numbers are also used to model an imprecise information, like the borderline
limits of the external help.
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