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Abstract. In this work we propose an image compression algorithm
based on the fuzzy transform. The algorithm tries to find the best fuzzy
partition of the functions domain in order to obtain the best compressed
image (in terms of quality). To solve the optimization problem we based
ourselves in the Gravitational Search Algorithm, in which each agent
represents a possible fuzzy partition of a fixed size.
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1 Introduction

Image compression consists in reducing the amount of data (generally measured
as the number of bits) required to represent an image [4]. Generally, image
compression algorithms transform or encode the image and this transformation
is stored or transmitted. Then, an inverse transformation or decode process is
applied and a reconstruction of the original image is obtained.

There exist many image compression algorithms in the literature. In this
work, we focus on the fuzzy transform [7] which has been successfully applied in
the field of image processing and, more specifically, in image compression (see
[1–3,6,8,9]). Broadly speaking, the fuzzy transform is based on a fuzzy partition
of the image domain, i.e. [1, N ]× [1,M ] where N and M represent, respectively,
the number of rows and columns of an image. The fuzzy partition is composed by
n and m fuzzy sets defined on the intervals [1, N ] and [1,M ], respectively, with
certain properties. It is known that, given fixed n and m, two different fuzzy
partitions of the image domain will yield two different fuzzy transforms, two
different compressed images and, accordingly, two different reconstructed images.
Since the inverse fuzzy transform is also based on the same fuzzy partition used
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in the compression, it is possible to rank both fuzzy partitions in terms of quality:
the better the quality of the reconstructed image, the better the fuzzy partition.

Taking into account this fact, the objective of this work is the following: given
an image, to find the best fuzzy partition so that the reconstructed image after
applying the fuzzy and the inverse fuzzy transform is as similar as possible to
the original image.

In order to find the best fuzzy partition, we propose to use the Gravitational
Search Algorithm (GSA), an heuristic optimization algorithm based on the law
of gravity and the law of motion [10]. In this algorithm, each agent represents
a solution, i.e. a feasible fuzzy partition of the image domain. The quality (fit-
ness) of an specific agent is measured in the following way: taking the fuzzy
partition represented by the agent, we apply the fuzzy transform (obtaining the
compressed image) and, later, the inverse fuzzy transform. Finally, we measure
the quality of the reconstructed image by means of an error measure and we
associate this error with the agent. Then, the problem becomes a minimization
problem and the GSA tries to find the agent with the minimum error measure.

The structure of this work is as follows. In Sect. 2 we recall the concept of a
fuzzy partition and the definition of the fuzzy and inverse fuzzy transform. In
Sect. 3 we summarize the steps of the Gravitational Search Algorithm. In Sect. 4
we explain in detail the optimization algorithm we propose in order to find the
best fuzzy partition and, in Sect. 5, we show the first preliminary results obtained
by our proposal. We finish, in Sect. 6 with some conclusions and future research
lines.

2 Fuzzy Transform of Discrete Functions

In this section we recall the concept of the fuzzy transform and the inverse
fuzzy transform. For the sake of simplicity, we focus only on the discrete fuzzy
transform, that maps a discrete function defined on an interval of real numbers
into a real vector.

In order to give the definition of the fuzzy and inverse fuzzy transform, we
define the concept of a fuzzy partition of the functions domain.

Definition 1 [7]. Let x1 < · · · < xn be fixed nodes within [a, b], such that x1 = a,
xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An, identified with their
membership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition
of [a, b] if they fulfill the following conditions for k = 1, . . . , n:

(1) Ak : [a, b] → [0, 1], Ak(xk) = 1;
(2) Ak(x) = 0 if x /∈ (xk−1, xk+1) where x0 = a and xn+1 = b;
(3) Ak(x) is continuous;
(4) Ak(x), k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x), k =

1, . . . , n − 1, strictly decreases on [xk, xk+1];
(5) for all x ∈ [a, b],

∑n
k=1 Ak(x) = 1.
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Definition 2 [7]. Let a fuzzy partition of [a, b] be given by fuzzy sets A1, . . . , An

in the sense of Definition 1. We say that it is uniform if the nodes x1, . . . , xn,
n ≥ 3, are equidistant. This means that xk = a + h(k − 1), k = 1, . . . , n, where
h = (b − a)/(n − 1), and

(6) Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h], k = 2, . . . , n − 1;
(7) Ak(x) = Ak−1(x − h), for all k = 2, . . . , n − 1 and x ∈ [xk, xk+1], and

Ak+1(x) = Ak(x − h), for all k = 2, . . . , n − 1 and x ∈ [xk, xk+1].

Definition 3 [7]. Let f be a function given at nodes p1, . . . , pl ∈ [a, b] and
A1, . . . , An, n < l, be basic functions which form a fuzzy partition of [a, b]. We
say that the n-tuple of real numbers F [f ] = (F1, . . . , Fn) given by

Fk =

∑l
j=1 f(pj)Ak(pj)
∑l

j=1 Ak(pj)
, k = 1, . . . , n (1)

is the (discrete) fuzzy transform of f with respect to A1, . . . , An.

Definition 4 [7]. Let f be given at nodes p1, . . . , pl ∈ [a, b] and F [f ] be the fuzzy
transform of f with respect to the fuzzy partition A1, . . . , An. Then, the function

fF (pj) =
n∑

k=1

FkAk(pj)

defined at the same nodes is the inverse fuzzy transform.

The definition of the fuzzy and inverse fuzzy transform can be extended to
functions of more than one variable. In this work we are interested in working
with images, which can be seen as discrete functions of two variables. Therefore,
we will use the two-dimensional fuzzy and inverse fuzzy transform.

Definition 5 [7]. Let a function f be given at nodes (pi, qj) ∈ [a, b] × [c, d],
i = 1, . . . , N , j = 1, . . . ,M and A1, . . . , An, B1, . . . , Bm where n < N , m < M ,
be basic functions which form a fuzzy partition of [a, b] and [c, d], respectively.
Suppose that sets p1, . . . , pN and q1, . . . , qM of these nodes are sufficiently dense
with respect to the chosen partition. We say that the n×m matrix of real numbers
F[f ] = (Fkl) is the discrete fuzzy transform of f with respect to A1, . . . , An, and
B1, . . . , Bm if

Fkl =

∑M
j=1

∑N
i=1 f(pi, qj)Ak(pi)Bl(qj)

∑M
j=1

∑N
i=1 Ak(pi)Bl(qj)

(2)

holds for all k = 1, . . . , n, l = 1, . . . , m.

Definition 6 [7]. Let A1, . . . , An and B1, . . . , Bm be basic functions which form
a fuzzy partition of [a, b] and [c, d] respectively. Let f be given at points (pi, qj) ∈
[a, b] × [c, d], i = 1, . . . , N , j = 1, . . . ,M and F[f ] be the fuzzy transform of f
with respect to A1, . . . , An and B1, . . . , Bm. Then the function

fF(pi, qj) =
n∑

k=1

m∑

l=1

FklAk(pi)Bl(qj) (3)

defined at the same nodes is the inverse fuzzy transform.
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3 The Gravitational Search Algorithm

In this section we present the main steps concerning the GSA. Basically, the
objective of the GSA is to minimize (or maximize) a fitness function defined on
an n-dimensional space (search space). The optimization is performed iteratively
by means of a set of agents that represent feasible solutions. Each agent has an
acceleration and a velocity that is determined by the effect of the rest of agents:
the best agents (the best solutions to the optimization problem) attract each
other with a greater force.

Technically, consider a systems of T particles (agents). The position of each
agent Xi in a p-dimensional space is given by

Xi = (x1
i , . . . , x

d
i , . . . , x

p
i )

for each i ∈ {1, . . . , T}. At each specific time t, the mass of a particle Xi rep-
resents the adaptation of that specific particle to the problem. This is done by
means of a fitness function, that maps the p-dimensional space where the par-
ticles are defined into the set of real positive numbers. Each agent Xi has a
particular mass, which is determined by the fitness function as follows:

mi(t) =
fitnessi(t) − worst(t)

best(t) − worst(t)

where
best(t) = min

j∈{1,...,T}
fitj(t) and

worst(t) = max
j∈{1,...,T}

fitj(t)

Finally, the masses are normalized by means of:

Mi(t) =
mi(t)

∑T
j=1 mj(t)

such that
∑T

i=1 Mi(t) = 1.

Remark 1. Previous formulae are used in minimization problems. In the case of
a maximization problem, best(t) and worst(t) are calculated as the maximum
and minimum of fitness function, respectively.

As commented before, the GSA is based on the movement of agents, that
search along the search space for minima of the fitness function. In order to get
this movement, an acceleration is calculated for each agent as the result of the
acting forces of the rest of agents. The force acting on agent i by the rest of
agents is given as

F d
i (t) =

T∑

j=1j �=i

rjF
d
ij(t)
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where rj is a random number in [0, 1] and

F d
ij(t) = G(t)

Mi(t)Mj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t)),

ε is small positive constant and

Rij(t) = ||Xi(t) − Xj(t)||2.
Once the force acting over agent i is calculated, the acceleration is given by

ad
i (t) =

F d
i (t)

Mi(t)
=

T∑

j=1j �=i

rj
Mj(t)
Rij(t)

(xd
j (t) − xt

i(d).

The next velocity of an agent is given as

vd
i (t + 1) = riv

d
i (t) + ad

i (t)

where ri is a random number in [0, 1] and, finally, the next position is given as

xd
i (t + 1) = xd

i (t) + vd
i (t + 1).

Taking into account previous formulae, the most suitable agents will tend to
have heavier masses along the iterations and, therefore, tend to attract the other
with greater forces. At the end, the agents tend to move toward the best agent.
A summarization of the GSA is shown in Algorithm 1.

Algorithm 1. Gravitational Search Algorithm
Input: Number of agents T . Fitness function.
Output: Best agent

for i = 1, . . . , T do
Random initialization of Xi

end for
while stop criteria not reached do

for i = 1, . . . , T do
Evaluate fitness fitnessi(t) of each agent Xi

end for
Update G(t), best(t), worst(t) and Mi(t)
for i = 1, . . . , T do

Calculate the total force Fi(t) acting on agent i
Calculate the acceleration Ai(t)
Calculate the velocity Vi(t)
Update position Xi(t + 1)

end for
end while
Return best(t) as the best agent
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4 GSA for Tuning the Fuzzy Partition of the Fuzzy
Transform

As we have stated in the introduction, the fuzzy (and inverse) transform have
demonstrated to be a useful tool for image compression. Usually, the use of a
uniform fuzzy partition is assumed when compressing images due to its simplicity
and the fact that no extra information needs to be stored. However, it is clear
that given a fixed number of nodes (fuzzy sets) in the fuzzy partition, different
locations of nodes produce different fuzzy transforms. In this section we explain
how to optimize the location of the nodes of a fuzzy partition in order to obtain
better compressed images.

We recall that, given an image f of N ×M pixels (generally f : {1, . . . , N}×
{1, . . . , M} → {0, 1, . . . , 255}) and fuzzy sets A1, . . . , An : [1, N ] → [0, 1],
B1, . . . , Bm : [1,M ] → [0, 1] forming a fuzzy partition of [1, N ] and [1,M ], respec-
tively, the fuzzy transform F of f with respect to A1, . . . , An, B1, . . . , Bm is a
new (compressed) matrix of n × m pixels. The inversion process is performed
by the inverse fuzzy transform that, starting from F and from the same fuzzy
partition A1, . . . , An, B1, . . . , Bm, obtains a new (uncompressed) matrix fF of
N × M pixels.

The loss of quality produced by applying the fuzzy and inverse fuzzy trans-
form to image f can be calculated by means of several distance or error mea-
sures. One of such measures is the main squared error (MSE), that is calculated
as follows:

MSE(f, fF) =
1

N × M

N∑

i=1

M∑

j=1

(f(pi, qj) − fF(pi, qj))2.

Since both F and fF depends on the fuzzy partition formed by A1, . . . , An

and B1, . . . , Bm, one possible way of optimizing the fuzzy transform is by tuning
the position of the fuzzy subsets Ai, Bj [11].

Remark 2. In this work we assume that every fuzzy set of the fuzzy partition
has triangular membership function. Therefore, a fuzzy partition is totally deter-
mined by the position of the fixed nodes (see Definition 1).

In order to do this, we propose to model each possible fuzzy partition by
means of a real vector of n+m real numbers. The first n real numbers represent
the position of the fixed nodes x1, . . . , xn ∈ [1, N ] such that Ai(xi) = 1. The
real numbers going from the n + 1-th to the n + m-th position represent the
nodes y1, . . . , ym ∈ [1,M ] such that Bj(yj) = 1. Therefore, a fuzzy partition is
represented by a real vector X ∈ [1, N ]n × [1,M ]m. However, in order to have a
valid representation of a fuzzy partition we need to assure that:

– xj
1 = 1, xj

n = N,xj
n+1 = 1, xj

n+m = M , for every j ∈ {1, . . . , p};
– xj

i < xj+1
i for every j ∈ {1, . . . , n − 1} and every j ∈ {n + 1, . . . , n + m − 1};

– xj+1
i −xj+1

i for every j ∈ {2, . . . , n− 1} and every j ∈ {n+2, . . . , n+m− 1}.
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Remark 3. This process is done in our implementation of the GSA and those
agents that represent invalid fuzzy partitions automatically transformed in order
to assure previous conditions.

Finally, the summarization of our optimization process is explained in
Algorithm 2.

Algorithm 2. Optimization of fuzzy transform
Input: Image f of N × M pixels. Size of compressed image n < N and m < M .

Number of agents T .
Output: Optimized fuzzy partition A1, . . . , An, B1, . . . , Bm. Optimized compressed

image F. Uncompressed image fF. MSE between f and fF
for i = 1, . . . , T do

Initialize agent Xi ∈ [1, N ]n × [1,M ]m randomly following the restrictions men-
tioned above.

end for
Execute Algorithm 1 and obtain Xbest as the best particle
Decode Xbest into fuzzy partition A1, . . . , An and B1, . . . , Bm

Calculate fuzzy transform F of f with respect to A1, . . . , An and B1, . . . , Bm

Calculate inverse fuzzy transform fF of F with respect to A1, . . . , An and B1, . . . , Bm

Calculate MSE(f, fF)

5 Experimental Results

In this section we evaluate our optimization procedure based on the GSA for
tuning the fuzzy partition associated with the fuzzy transform. We have first
taken an original image of size 321 × 481 pixels (see Fig. 1) and we have fixed
n = 160,m = 240. In order to test different settings of the GSA, we evalu-
ate Algorithm 2 with different number of agents, specifically T = 5, 25, 50, 100.
The MSE of each optimized fuzzy transform is shown in Table 1 (second row).
According to the results it is not until we have 100 agents that we outperform the
non-optimized uniform fuzzy partition. Besides, the improvement is very small,
probably due to the large size of the fuzzy partition (big number of nodes).

With the purpose of testing whether a smaller number of nodes in the fuzzy
partition increases the improvement of the optimized fuzzy transform, we have
executed Algorithm 2 with

– n = 107,m = 160;
– n = 80,m = 120 and
– n = 64,m = 96.

All of these executions have been also tried with T = 5, 25, 50, 100. The MSEs
obtained are shown again in Table 1, row number three, four and five, respec-
tively.

Analyzing the results we first realize that having a big number of agents
guarantees finding a good enough solution to the optimization problem. If we
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Fig. 1. Original image 3096 from [5] (321 × 481 pixels).

Fig. 2. Comparison of MSE of reconstructed images using a uniform fuzzy partition
and Algorithm 2 with T = 100.

Table 1. MSE obtained from reconstructed images using uniform and optimized fuzzy
partitions.

Uniform T = 5 T = 25 T = 50 T = 100

n = 160,m = 240 12,25 35,40 13,44 13,12 10,62

n = 107,m = 160 24,57 68,57 24,09 23,75 21,30

n = 80,m = 120 35,56 97,91 37,18 33,09 31,63

n = 64,m = 96 46,19 75,74 42,97 41,00 40,86

take T = 5 then Algorithm 2 is not able to find a good solution to the problem.
However, when T = 100 we always outperform the uniform partition.

Now, if we focus on the behavior of the MSE among different partition sizes,
we see that the proposed optimization algorithm is able to find better compressed
images (if we have enough number of agents). Although the numbers shown
in Table 1 do not differ too much depending on the size of the partition (the
improvement is around 12% in every case), it seems evident that as long as the
size of the compressed image decreases, the improvement should increase. In
order to prove this we have executed Algorithm 2 with T = 100 and different
sizes of the compressed image. The results in terms of MSE are shown in Fig. 2,
where the MSE of a uniform and an optimized fuzzy partition are shown. In the
horizontal axis we show the different compression rates, i.e. the ratio between
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the size of the compressed image (size of the fuzzy partition) and the size of
the original image. In this sense, a compression rate of 100 means that the
original image has 381 × 421 and the compressed image 38 × 42. Observe that
the difference between the MSE of the uniform and optimized fuzzy partition
increases as long as the compressed ratio increases.

Finally, in Fig. 3 we show the reconstructed images obtained from a uniform
(first column) and the reconstructed images obtained from an optimized fuzzy

Fig. 3. First column: reconstructed images using a uniform fuzzy partition and sizes
m = 160, n = 240 (a), m = 107, n = 160 (d), m = 80, n = 120 (g) and m = 64, n =
96 (j). Second column: reconstructed images using an optimized fuzzy partition by
Algorithm 2 and sizes m = 160, n = 240 (b), m = 107, n = 160 (e), m = 80, n = 120
(h) and m = 64, n = 96 (k). Third column: differences between images a and d (c), d
and e (f), g and h (i) and j and k (l).
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partition (second column) obtained applying Algorithm 2 and taking T = 100
agents and the same sizes used in Table 1. Notice that the differences between the
first and second row appears mainly on the edges of objects. This can be better
seen in the third column of Fig. 3, where the differences between the images of
the first and second column are shown (the differences have been normalized
so that the maximum difference appears in white). The conclusion obtained is
that while using uniform fuzzy partitions produce blurring in the reconstructed
images, the optimization process allows to allocate the fuzzy sets in those areas
of interest where there exist large enough changes of intensities. Then, the fuzzy
transform is able to capture these changes in a better way and the information
is not lost in the process.

6 Conclusions

in this work we have proposed an optimization problem to find the best fuzzy
partition associated with an image. The solution of this problem allows to obtain
better compressed images by means of the fuzzy transform.

In order to solve the optimization problem we have based on the Gravita-
tional Search Algorithm. The first results obtained show that the GSA is able to
obtain optimized fuzzy partitions that minimize the error measure of the image
compression procedure.

In the future, we want to extend the experimental study to a wider set of
images, analyzing which images are suitable for this algorithm. Moreover, it
would be interesting to compare the results when using different optimization
algorithms rather than the GSA.
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