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Foreword

This volume constitutes the proceedings of the two collocated international con-
ferences. The main part includes the papers accepted, after a strict peer review
process, for the presentation at, and for the inclusion in the proceedings of the 10th
Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-2017) held in Warsaw, Poland, on September 11–15, 2017. It is com-
bined with the papers accepted, also after a strict peer review process, for the
presentation at, and for the inclusion in the proceedings of the Sixteenth International
Workshop on Intuitionistic Fuzzy Sets and Generalized Nets (IWIFSGN’2017) held
in Warsaw, Poland, on September 13–15, 2017.

The EUSFLAT-2017 Conference was organized by the Systems Research
Institute, Polish Academy of Science, Department IV of Engineering Sciences,
Polish Academy of Sciences, and the Polish Operational and Systems Research
Society. It is the 10th jubilee edition of the flagship conference of the European
Society for Fuzzy Logic and Technology (EUSFLAT). The aim of the conference,
in line with the mission of the EUSFLAT Society, is to bring together theoreticians
and practitioners working on fuzzy logic, fuzzy systems, soft computing, and
related areas and to provide for them a platform for the exchange of ideas, dis-
cussing newest trends and networking.

The papers included in the proceedings volume have been subject to a thorough
review process by highly qualified peer reviewers. Comments and suggestion from
them have considerably helped improve the quality of the papers but also the
assignment of the papers to best suited sessions in the conference program. In the
proceedings volume, the papers have been ordered alphabetically with respect to the
name of the first author, and a convenient author’s index is included at the end
of the volume.

Thanks are due to many people and parties involved. First, in the early stage
of the preparation of the conference general perspective, scope, topics, and cov-
erage, we have received an invaluable help from the members of the International
Committees of both conferences, notably the chairs responsible for various aspects
of the conferences, as well as many people from the European Society for Fuzzy
Logic and Technology (EUSFLAT). That help during the initial planning stage had
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resulted in a very attractive and up-to-date proposal of the scope and coverage that
had clearly implied a considerable interest of the international research communities
active in the areas covered who submitted a large number of very interesting and
high-level papers. An extremely relevant role of the organizers of special sessions,
competition, and other events should also be greatly appreciated. Thanks to their
vision and hard work, we had been able to collect many papers on focused topics
which had then resulted, during the conferences, in very interesting presentations
and stimulating discussions at the sessions.

Though EUSFLAT-2017 is a subsequent edition of the main European confer-
ence on the broadly perceived fuzzy logic and technology, and an overwhelming
majority of participants come from Europe, many people from other continents
have also decided to submit their contributions. This has clearly resulted in a
“globalization” of the EUSFLAT conferences which we have been able to
increasingly notice since its founding. Of a particular importance in this respect is
that among the plenary and keynote speakers, there are top researchers and scholars,
as well as practitioners, not only from Europe but also from other continents.

The members of the Program Committee, together with the session organizers,
and a group of other anonymous peer reviewers have undertaken a very difficult
task of selecting the best papers, and they have done it excellently. They deserve
many thanks for their great job for the entire community who is always concerned
with quality and integrity. We also wish to thank the members of the EUSFLAT
Board for their support throughout the organization process.

At the stage of the running of the conference, many thanks are due to the
members of the Organizing Committee, chaired by Ms. Krystyna Warzywoda and
Ms. Agnieszka Jóźwiak, and supported by their numerous collaborators.

And last but not least, we wish to thank Dr. Tom Ditzinger, Dr. Leontina di
Cecco, and Mr. Holger Schaepe for their dedication and help to implement and
finish this large publication project on time maintaining the highest publication
standards.

The EditorsJune 2017
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Higher Degree Fuzzy Transform: Application
to Stationary Processes and Noise Reduction

Linh Nguyen(B) and Michal Holčapek

Institute for Research and Applications of Fuzzy Modelling, NSC IT4Innovations,
University of Ostrava, 30. dubna 22, 701 03 Ostrava 1, Czech Republic

{Linh.Nguyen,Michal.Holcapek}@osu.cz

Abstract. In this contribution, we first elaborate the theory of the fuzzy
transform of higher degree (Fm-transform, m ≥ 0) applied to stationary
processes that was initiated by Holčapek et al. in [5,6]. Then, we provide
mathematical justification for its application to reduction of irregular
fluctuations (noise) generated by specific stationary processes.

Keywords: Fuzzy transform · Stationary process · Noise reduction

1 Introduction

The fuzzy transform (F-transform) applied to stationary processes was first
introduced in [5], and then generalized to the Fm-transform (m ≥ 1) in [6]. These
papers proposed techniques, based on the fuzzy transform of real-valued func-
tions introduced by Perfilieva in [8,9], to analyze stationary processes. More pre-
cisely, under certain assumptions for stationary processes, the authors provided
mathematical justification showing that the Fm-transform is a good technique for
approximation as well as suppression of such stationary processes depending on
specific settings of the used fuzzy partition. These abilities of the Fm-transform
supports its application to reduction of noise in time series that is represented
by a realization of a stationary process.

Recently, the theory of the Fm-transform has been widely investigated in
[2,3,7] at which a new approach for representation of the direct Fm-transform
was introduced based on monomial bases of approximation spaces. In this paper,
we introduce the theory of the Fm-transform applied to stationary processes
using this new approach. Especially, we prove approximation theorems that
were not included in [6] for the higher degree fuzzy transform. We then consider
application of the Fm-transform to reduction of specific types of noise usually
exhibiting in time series. More precisely, under specific assumptions character-
izing short-memory and long-memory stationary processes,1 we prove that the
irregular fluctuations generated by such stationary processes can be significantly
reduced by the application of the Fm-transform with a reasonable adjustment
of parameters of the used fuzzy partition.
1 These are more natural than which were considered in the early investigations.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
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2 L. Nguyen and M. Holčapek

2 Preliminaries

For any complex number c ∈ C, we use |c| to denote the absolute value of c. i.e.,
|c| = (c · c̄)

1
2 , where c̄ is the complex conjugate of c.

2.1 Basic Concepts of Stationary Processes

Through out this paper, we restrict our analysis to the class of continuous-
time, complex-valued stochastic processes ξ(t), t ∈ R defined on a probability
space (Ω,F , P ) where Ω is a sample space, F is a σ-algebra on Ω, and P is a
probability measure defined on F . Moreover, we use E and Var to denote the
expectation and variance of a random variable, respectively. We also use Cor to
denote the correlation between two random variables. Let X,Y be two complex-
valued random variables. Then, Var(X) = E |X − E(X)|2 and Cor(X,Y ) =
E

(
X · Y

)
.

Definition 1. A stochastic process ξ(t) is said to be a stationary process if, for
any t ∈ R it holds that E(ξ2(t)) < ∞, E(ξ(t)) is constant and independent on t,
and Cor(ξ(t), ξ(t + τ)) is independent on t for each τ .

Below, we introduce a special function characterizing relation of random
variables corresponding to different time moments of a stationary process.

Definition 2. Let ξ(t) be a stationary process. The correlation function of ξ(t)
is denoted by γ(·) and defined by γ(τ) = Cor(ξ(t + τ), ξ(t)), τ ∈ R.

Let us recall definitions of the mean-square convergence and the convergence
in probability relating to stochastic processes.

Definition 3. Let ξ(t) and X be respectively a stochastic process and a random
variable on the probability space (Ω,F , P ), and put t0 ∈ R

(i) ξ(t) converges in mean-square to X as t tends to t0, denoted by l.i.mt→t0 ξ(t)
= X, if limt→t0 E|ξ(t) − X|2 = 0.

(ii) ξ(t) converges in probability to X as t tends to t0, denoted by limt→t0 ξ(t) P=
X, if, for any ε > 0, limt→t0 P{|ξ(t) − X| > ε} = 0.

Remark 1. By the Chebyshev inequality that

P{|ξ(t) − X| > ε} ≤ E (ξ(t) − X)2

ε2
,

the mean-square convergence implies the convergence in probability.

Finally, to introduce the theory of the (higher degree) fuzzy transform applied
to stationary processes, we need the mean-square integrals of the form

∫ b

a

ξ(t)f(t)dt (1)
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where f(t) is an arbitrary real function and ξ(t) is a stationary process. For more
details about the integral, we refer to [10]. A necessary and sufficient condition
for the existence of (1) is the existence of the double integral

∫ b

a

∫ b

a

γ(t − s)f(t)f(s)dtds < ∞,

where γ is the correlation function of ξ(t). In the sequel, when considering inte-
grals of form (1), we always assume that the previous condition is fulfilled.

2.2 Generalized Uniform Fuzzy Partition

A fuzzy partition of an interval or the real line is one of the cores of the (higher
degree) fuzzy transform. In this paper, we restrict ourselves to the generalized
uniform fuzzy partitions (see [4]) formed by fuzzy sets determined by a generating
function that are uniformly spread along the real line.

Definition 1. A function K : R → [0, 1] is said to be a generating function if it
is a continuous and even function that is non-increasing in [0,∞) and satisfies
that K(t) > 0 iff t ∈ (−1, 1).

Definition 2. Let K be a generating function, and let h and r be positive real
constants. Let A = {A[h, r, k] | k ∈ Z} be a set of fuzzy sets on R determined by

A[h, r, k](t) = K

(
t − kr

h

)
, k ∈ Z.

The set A is said to be a generalized uniform fuzzy partition of the real line
determined by the triplet (K,h, r) if the Ruspini condition is fulfilled, i.e.,

∑

k∈Z

A[h, r, k](t) = 1, for any t ∈ R. (2)

The fuzzy set A[h, r, k], k ∈ Z is called the k-th basic function of the fuzzy
partition A.

3 Higher Degree Fuzzy Transform Applied
to Stationary Processes

Similarly to the (higher degree) fuzzy transform of (real or complex-valued) func-
tions (see [2,3,7–9]), the fuzzy transform of higher degree applied to stationary
processes consists in two phases: direct and inverse transformation. The former
transforms a stationary process into a set of polynomial stochastic processes
called the direct fuzzy transform components, and the latter provides a model for
approximation of the original stationary process from its direct fuzzy transform.
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3.1 Direct Fm-Transform

We introduce the definition of the direct Fm-transform of a stationary process
on the basis of the new representation devoted in [2,3,7] using monomial bases.

Definition 4. Let ξ(t) be a stationary process, A = {A[h, r, k] | k ∈ Z} a
generalized uniform fuzzy partition of the real line R determined by the triplet
(K,h, r), and let tk = kr for any k ∈ Z. The direct Fm-transform, m ∈ N, of ξ
with respect to A is the set of polynomial stochastic processes Fm

A [ξ] = {Fm
k [ξ](t) |

k ∈ Z} where, for any k ∈ Z,

Fm
k [ξ](t) = Ck,0 + Ck,1(t − tk) + . . . + Ck,m(t − tk)m, t ∈ [tk − h, tk + h]

determined by

(Ck,0, Ck,1, . . . , Ck,m)T = (Hm)−1 · (Zm)−1 · Yn,k

where Hm = diag(1, h, . . . , hm), Zm = (Zij)i,j=1,(m+1)
defined by

Zij =
∫ 1

−1

ti+j−2K(t)dt, i, j = 1, . . . , m + 1,

and Ym,k = (Yk,1, . . . , Yk,m+1)T defined by

Yk,� =
∫ 1

−1

ξ(th + tk) · t�−1K(t)dt, � = 1, . . . , m + 1. (3)

The stochastic process Fm
k [ξ](t), t ∈ [tk − h, tk + h] is called the k-th component

of the direct Fm-transform of ξ.

By the linearity property of the mean-square integral in (3) with respect to
the stationary process ξ(t), the direct Fm-transform satisfies the linearity prop-
erty. Namely, for arbitrarily two stationary processes ξ(t) and η(t) and a, b ∈ C.
Then,

Fm
k [aξ + bη] = aFm

k [ξ] + bFm
k [η], for any k ∈ Z. (4)

In the sequel, we use A[K] to denote a family of generalized uniform fuzzy
partitions of the real line determined by the triplet (K,h, r) for h, r ∈ (0,∞)
such that the ratio h/r is constant.

Below, we provide statistical properties of the direct Fm-transform compo-
nents that need to prove subsequent approximation theorems.

Lemma 1. Let ξ(t) be a stationary process such that E(ξ(t)) = 0. Let Fm
A [ξ] be

the direct Fm-transform of ξ(t) with respect to a generalized fuzzy partition A.
Then, for any k ∈ Z, t ∈ SuppA[K,h, r], it holds that E (Fm

k [ξ](t)) = 0.

Sketch of Proof. The proof is obviously obtained by Definition 4 and the assump-
tion that E(ξ(t)) = 0. ��
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Lemma 2. Let ξ(t) be a stationary process such that E(ξ(t)) = 0, Var(ξ(t)) =
σ2 and its correlation function is continuous at the origin. For any h ∈ (0,∞)
and k ∈ Z, let Fm

k,(K,h)[ξ] be the k-th component of the direct Fm-transform of
ξ(t) with respect to a fuzzy partition A = {A[h, r, k] | k ∈ Z} ∈ A[K]. Then, for
any ε > 0,

(i) there exists h0 > 0 such that for any 0 < h ≤ h0, k, k′ ∈ Z, |k−k′| < 2h/r,2

then ∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)
− σ2

∣
∣
∣ < ε,

for any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′],
(ii) there exists h0 > 0 such that for any 0 < h ≤ h0, k ∈ Z, then

∣
∣
∣Var

(
Fm

k,(K,h)[ξ](t)
)

− σ2
∣
∣
∣ < ε,

for any t ∈ SuppA[h, r, k],
(iii) there exists h0 > 0 such that for any 0 < h ≤ h0, k ∈ Z, then

∣
∣
∣Cor

(
ξ(t), Fm

k,(K,h)[ξ](t)
)

− σ2
∣
∣
∣ < ε,

for any t ∈ SuppA[h, r, k].

Sketch of Proof. (i) For any h ∈ (0,∞), k, k′ ∈ Z, |k−k′| < 2h/r, by Definition 4,
we obtain that

Cor
(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)
=

m∑

i,j,p,ι=0

(
t − tk

h

)i

·
(

t − tk′

h

)j

·

Vi+1p+1 · Vj+1ι+1

∫ 1

−1

∫ 1

−1

γ ((t − s)h + (k − k′)r) · tpsιK(t)K(s)dtds

for any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′] where (V�j)�,j=1,m+1 = (Zm)−1 and
γ(·) is the correlation function of ξ(t). The proof is then obtained by applica-
tion of Lebesgue’s dominated convergence theorem with respect to the fact that
limh→0 γ ((t − s)h + (k − k′)r) = γ(0) = σ2.

(ii) It is straightforward consequence of (i) corresponding to k = k′ and
Lemma 1.

(ii) Similarly to the proof of (i), this proof is obtained by the fact that

Cor
(
ξ(t), Fm

k,(K,h)[ξ](t)
)

=
m∑

i,j=0

(
t − tk

h

)i

· Vi+1j+1

∫ 1

−1

γ(t − tk − sh) · sjK(s)ds,

and the application of Lebesgue’s dominated convergence theorem based on the
fact that limh→0 γ(t − tk − sh) = γ(0) = σ2. ��
2 This inequality is equivalent to the fact that Supp A[h, r, k] ∩ Supp A[h, r, k′] �= φ.
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Lemma 3. Let the assumptions of Lemma 2 be satisfied. Then, for any ε > 0,

(i) there exists h0 > 0 such that for any 0 < h ≤ h0, k, k′ ∈ Z, |k − k′| < 2h/r,
then ∣

∣
∣Cor

(
ξ(t) − Fm

k,(K,h)[ξ](t), ξ(t) − Fm
k′,(K,h)[ξ](t)

)∣
∣
∣ < ε,

for any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′],
(ii) there exists h0 > 0 such that for any 0 < h ≤ h0, k ∈ Z, then

Var
(
ξ(t) − Fm

k,(K,h)[ξ](t)
)

< ε,

for any t ∈ SuppA[h, r, k].

Sketch of Proof. (i) The proof is obtained by application of Lemma 2 and the
fact that for any h ∈ (0,∞), k, k′ ∈ Z, |k − k′| < 2h/r, then

∣
∣
∣Cor

(
ξ(t) − Fm

k,(K,h)[ξ](t), ξ(t) − Fm
k′,(K,h)[ξ](t)

)∣
∣
∣

≤
∣
∣
∣σ2 − Cor

(
ξ(t), Fm

k′,(K,h)[ξ](t)
)∣
∣
∣ +

∣
∣
∣σ2 − Cor

(
Fm

k,(K,h)[ξ](t), ξ(t)
)∣
∣
∣

+
∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)
− σ2

∣
∣
∣

for any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′].
(ii) is a straightforward consequence of (i) for which k = k′. ��

3.2 Inverse Fm-Transform

In this subsection, we provide a model to approximate a stationary process from
its direct Fm-transform components.

Definition 5. Let A = {A[h, r, k] | k ∈ Z} be a generalized uniform fuzzy parti-
tion of R. Let Fm

A [ξ] = {Fm
k [ξ] | k ∈ Z} be the direct Fm-transform of a stationary

process ξ with respect to A. The stochastic process

ξ̂m
A (t) =

∑

k∈Z

Fm
k [ξ](t) · A[h, r, k](t), t ∈ R (5)

is called the inverse Fm-transform of ξ with respect to the direct Fm-transform
Fm

A [ξ] and the fuzzy partition A.

The following Corollary is a straightforward consequence of Lemma 1.

Corollary 4. Let ξ(t) be a stationary process with E(ξ(t)) = 0. Let Fm
A [ξ] =

{Fm
k [ξ] | k ∈ Z} be the direct Fm-transform of ξ(t) with respect to a generalized

uniform fuzzy partition A of the real line R, and ξ̂m
A the inverse Fm-transform

of ξ with respect to Fm
A [ξ] and A. Then, E

(
ξ̂m
A (t)

)
= 0, for any t ∈ R.
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Additionally, by the linearity property of the direct Fm-transform showed
in (4), the inverse Fm-transform preserves the linearity property as well. Namely,
for arbitrarily two stationary processes ξ and η, and two complex numbers a, b,
then (aξ + bη)
∧m

A = aξ̂m
A + bη̂m

A .
In the following, we provide a very important theorem showing that a sta-

tionary process can be approximated with arbitrary precision by the inverse
Fm-transform stochastic process.

Theorem 5. Let ξ(t) be a stationary process such that its correlation function
is continuous at the origin. For any h ∈ (0,∞), let Fm

(K,h)[ξ] be the direct Fm-
transform of ξ(t) with respect to a fuzzy partition A = {A[h, r, k] | k ∈ Z} ∈
A[K]. Let ξ̂m

(K,h) be the inverse Fm-transform of ξ(t) with respect to Fm
(K,h)[ξ]

and A. Then,

l.i.mh→0 ξ̂m
(K,h)(t) = ξ(t), for any t ∈ R. (6)

Sketch of Proof. Let h ∈ (0,∞) be arbitrarily, and assume that

Fm
(K,h)[ξ] =

{
Fm

k,(K,h)[ξ](t) | k ∈ Z

}
.

For t ∈ R, let Λh(t) = {k ∈ Z | A[h, r, k](t) 
= 0}. By the assumption that the
ratio h/r is a constant, the number of elements in Λh(t) is limited (bounded).
Moreover, |k − k′| < 2h/r for any k, k′ ∈ Λh(t). From Definition 5, we find that

E
∣
∣
∣ξ̂m

(K,h)(t) − ξ(t)
∣
∣
∣
2

≤
∑

k,k′∈Λh

∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t) − ξ(t), Fm
k′,(K,h)[ξ](t) − ξ(t)

)∣
∣
∣ ·

A[h, r, k](t)A[h, r, k′](t).

The proof is then obtained by application of Lemma 3 to this inequality. ��

4 Reduction of Noise

In this section, we devote theoretical justification for application of the Fm-
transform to reduction of noise generated by specific types of stationary process
(e.g. the noise in a time series is standardly assumed to be a realization of a
stationary process). Let ξ(t) be a stationary process and γ(·) be its correlation
function. In the sequel, we restrict our analysis on two following assumptions.
The first one supposes that ξ(t) is a “short-memory” stationary process charac-
terized by the quick decay of γ(·). This assumption is formalized by the following
statement:

lim
h→∞

1
h

·
∫ h

0

|γ(τ)|dτ = 0. (7)
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The second one assumes that

γ(τ) =
κ∑

j=1

Aje
iλjτ (8)

where Aj ∈ C, i is the imaginary unit, and λj ∈ R. This assumption character-
izes the periodicity property of the correlation function. Moreover, a correlation
function, which slowly decays, can be approximately represented by the form of
(8) (see [10]). Therefore, this assumption can be considered as a characterization
of “long-memory” stationary processes.3

In the following part, we prove that any stationary process satisfying one of
two previous assumptions can be significantly reduced in the sense of reduction
of its variability by application of the Fm-transform.

Lemma 6. Let ξ(t) be a short-memory stationary process with E(ξ(t)) = 0. For
any h ∈ (0,∞) and k ∈ Z, let Fm

k,(K,h)[ξ] be the k-th component of the direct Fm-
transform of ξ with respect to a fuzzy partition A = {A[h, r, k] | k ∈ Z} ∈ A[K].
Then, for any ε > 0,

(i) there exists h0 > 0 such that for any h ≥ h0, k, k′ ∈ Z, |k − k′| < 2h/r, then
∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)∣
∣
∣ < ε

for any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′],
(ii) there exists h0 > 0 such that for any h ≥ h0, k ∈ Z, then

Var
(
Fm

k,(K,h)[ξ](t)
)

< ε

for any t ∈ SuppA[h, r, k].

Sketch of Proof. (i) Let (Vij)i,j=1,m+1 = (Zm)−1, and let h ∈ (0,∞) be arbitrar-
ily and let k, k′ ∈ Z such that |k − k′| < 2h/r. By the similar arguments used
in the proof of Lemma 2 together with the changing of variables of integrals, for
any t ∈ SuppA[h, r, k] ∩ SuppA[h, r, k′], we find that

∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)∣
∣
∣ ≤

4 ·
m∑

i,j,p,ι=0

|Vi+1p+1 · Vj+1ι+1| ·
∫ 2h+|k−k′|r

0

|γ(u)|
h

du.

Since ξ(t) is a short-memory stationary process satisfying the assumption in (7),
it is easy to prove the desired statement.

(ii) is a straightforward consequence of (i). ��
3 We use the name “short-memory” and “long-memory” stationary process only to

distinguish two considered assumptions. And these names, somehow, characterize
the behavior of the correlation function. By the aim of this paper, we do not further
investigate the same concepts used in probability and statistic (see [1]).
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Lemma 7. Let the assumptions of Lemma 6 be satisfied. The only one difference
is that ξ(t) is now a long-memory stationary process. Then, both of consequences
of Lemma 6 are satisfied.

Sketch of Proof. By the same analysis used in the proof of Lemma 2, we find
that
∣
∣
∣Cov

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)∣
∣
∣ ≤

m∑

i,j,p,ι=0

|Vi+1p+1 · Vj+1ι+1| · |Ip,ι(h)| , (9)

where Ip,ι(h) =
∫ 1

−1

∫ 1

−1
γ ((t − s)h + (k − k′)r)·tpsιK(t)K(s)dtds, for any p, ι =

0, 1, . . . ,m. By the assumption (8), it is easy to prove that limh→∞ |Ip,ι(h)| = 0.
The proof is then a straightforward consequence of these results. ��
Theorem 8. Let ξ(t) be a stationary process with E(ξ(t)) = 0. For any
h ∈ (0,∞), let Fm

(K,h)[ξ] be the direct Fm-transform of ξ(t) with respect to a

fuzzy partition A = {A[h, r, k] | k ∈ Z} ∈ A[K]. Let ξ̂m
(K,h) be the inverse

Fm-transform of ξ(t) with respect to Fm
(K,h)[ξ] and A. Suppose that correlation

function γ(·) of ξ(t) satisfies the assumption (7) or (8). Then, for any t ∈ R, it
holds that

(i) limh→∞ Var
(
ξ̂m
(K,h)(t)

)
= 0,

(ii) l.i.mh→∞ ξ̂m
(K,h)(t) = 0.

Sketch of Proof. (i) Let h ∈ (0,∞) be arbitrarily, and assume that

Fm
(K,h)[ξ] =

{
Fm

k,(K,h)[ξ](t) | k ∈ Z

}
.

For any t ∈ R, let Λh(t) = {k ∈ Z | A[h, r, k](t) 
= 0}. Then, by the same analysis
of Theorem 5 and from Corollary 4, we find that

Var
(
ξ̂m
(K,h)(t)

)
= E

∣
∣
∣ξ̂m

(K,h)(t)
∣
∣
∣
2

≤
∑

k,k′∈Λh(t)

∣
∣
∣Cor

(
Fm

k,(K,h)[ξ](t), F
m
k′,(K,h)[ξ](t)

)∣
∣
∣ · A[h, r, k](t)A[h, r, k′](t).

By the correlation function of ξ(t) satisfies the assumption (7) or (8), from
Lemmas 6 and 7, we obtain statement (i).

(ii) is a straightforward consequence of (i). ��
Let the assumptions of Theorem 8 be satisfied and let R(t) be a realization of

ξ(t), i.e., R(t) = ξ(ω, t) where ω is an elementary event (ω ∈ Ω) of a probability
space (Ω,F , P ) on which ξ is modeled. It follows from Remark 1 that it is in
an arbitrarily high probability value that limh→∞ R̂m

(K,h)(t) = 0, for any t ∈ R.
In other words, the irregular fluctuations that are realizations of the stationary
process ξ(t) can be significantly reduced using Fm-transform technique by a rea-
sonable setting of the bandwidth of the used fuzzy partition (i.e., the bandwidth
is large enough).
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5 Illustrative Examples

In this section, we provide examples demonstrating that the Fm-transform is an
efficient technique for reduction of noise usually exhibiting in time series. For
the sake of simplicity, we only use triangle type of the generalized uniform fuzzy
partitions. Namely, we use the generating functions of the form α · Ktr where
α ∈ (0, 1], and Ktr(t) = max{0, 1 − |t|}.

Let us consider the following stationary processes:

1. ξ1(t) = ε(t) + 0.6ε(t − 1) + 0.6ε(t − 2) + 0.3ε(t − 3) + 0.7ε(t − 4), where
ε(t) ∼ WN(0, 9),

2. ξ2(t) = ε1 sin
(

π
6 t

)
+ε2 cos

(
π
6 t

)
+η1 sin

(
2π
3 t

)
+η2 cos

(
2π
3 t

)
, where ε1, ε2, η1, η2

are independent random variables having the same normal distribution with
εi ∼ N (0, 9) and ηi ∼ N (0, 16), i = 1, 2.

It is easy to see that ξ1(t) and ξ2(t) satisfy the assumptions (7) and (8), respec-
tively. Indeed, the correlation function of ξ1(t) cuts off after the order p = 4,
and the correlation function of ξ2(t) is periodic. For each process ξi(t), i = 1, 2,
we generate three noise data Rij(t), j = 1, 2, 3 corresponding to t = 0, . . . , 100.
These are characterized by the mean and variance in Table 1. We apply the
F2-transform (direct and inverse phase) with respect to the generalized uni-
form fuzzy partition determined by the triplet (0.5 · Ktr, 20, 10) to each of R1j ,
j = 1, 2, 3. The obtained results are depicted in Fig. 1. Additionally, we apply the
F1-transform with respect to the generalized uniform fuzzy partition determined
by the triplet (0.5 · Ktr, 8, 4) to the noise R2j , j = 1, 2, 3. The obtained results
are depicted in Fig. 2. From Figs. 1 and 2, it is easy to see that the variabilities of
these noise data are significantly reduced by the application of fuzzy transform
technique. More evidences for this evaluation can be found in Table 2 at which
the variance of the obtained results is powerfully decreased.

Fig. 1. Inverse F2-transforms (black, dotted black, and magenta lines) of the realiza-
tions 1, 2, and 3 (blue, dotted red, and dark-green lines), respectively.



Fm-transform: Application to Stationary Processes and Noise Reduction 11

Table 1. Mean and variance of the noise data.

Process ξ1(t) ξ2(t)

Noise data R11 R12 R13 R21 R22 R23

Mean 0.1989 −0.9763 −2.4236 −0.2882 0.8262 −0.1278

Variance 171.3627 124.9096 143.4554 705.7320 3042.8487 244.9710

Fig. 2. Inverse F1-transforms (black, dotted black, and magenta lines) of the realiza-
tions 1, 2, and 3 (blue, dotted red, and dark-green lines), respectively.

Table 2. Mean and variance of the inverse Fm-transforms.

Inverse Fm-transform R̂2
11 R̂2

12 R̂2
13 R̂1

21 R̂1
22 R̂1

23

Mean −0.1715 −1.3579 −1.9961 −0.1137 0.0356 −0.0067

Variance 17.6358 27.4762 22.2306 13.4436 27.2926 0.5136

6 Conclusions

In this paper, we provided a new approach for the representation of the direct
Fm-transform of stationary processes. From the advantage of this approach, we
carefully investigated essential properties of the Fm-transform. Furthermore, we
proved that it is a good technique for reduction of certain types of noise usually
exhibiting in time series that are generated by specific stationary processes.
This makes it possible to apply the Fm-transform to time series analysis (or
particularly, to time series decomposition, see [2]).
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9. Perfilieva, I., Daňková, M., Bede, B.: Towards a higher degree F-transform. Fuzzy
Sets Syst. 180, 3–19 (2011)

10. Yaglom, A. M.: An introduction to the theory of stationary random functions.
Revised English ed. Translated and edited by R.A. Silverman. Prentice-Hall, Inc.
XIII, Englewood Cliffs, NJ (1962)

http://dx.doi.org/10.1016/j.fss.2017.06.011
http://dx.doi.org/10.1016/j.fss.2017.06.011
http://dx.doi.org/10.1109/FUZZ-IEEE.2013.6622492


Sheffer Stroke Fuzzy Implications

Wanda Niemyska1, Micha�l Baczyński1(B), and Szymon W ↪asowicz2
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Abstract. A new family of fuzzy implications, motivated by classic
Sheffer stroke operator, is introduced. Sheffer stroke, which is a nega-
tion of a conjunction and is called NAND as well, is one of the two
operators that can be used by itself, without any other logical operators,
to constitute a logical formal system. Classical implication can be pre-
sented just by Sheffer stroke operator in two ways which leads to two
new families of fuzzy implication functions. It turns out that one of them
is mainly a subclass of QL-operations, while the other one, called in our
paper as SSqq-implications, is independent of other well-known families
of fuzzy implications. Basic properties of Sheffer stroke implications are
also analysed.

Keywords: Fuzzy connectives · Fuzzy implication · Sheffer stroke ·
NAND

1 Introduction

The basic fuzzy connectives that perform the role of generalized “And”, “Or”
and “Not” are t-norms, t-conorms and fuzzy negations, respectively, whereas
fuzzy IF-THEN rules are usually managed through multivalued implications
called in the literature as fuzzy implications or fuzzy implication functions. Many
researchers have devoted their efforts to the study of this wide family of functions
(see [1–3,8]). There are three main ways of defining fuzzy implication functions:
from basic fuzzy logic operations like t-norms, t-conorms, fuzzy negations, uni-
norms, copulas, etc.; from unary functions on the unit interval; from other fuzzy
implication functions. In this article we focus on yet another two classes of fuzzy
implication functions defined from binary operations on the unit interval.

Sheffer stroke [4,9], denoted by “|”, is a negation of a conjunction:

p|q ≡ ¬(p ∧ q).

c© Springer International Publishing AG 2018
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Classical implication can be presented just by Sheffer stroke operator in two
ways:

p → q ≡ p|(p|q) ≡ ¬(p ∧ ¬(p ∧ q)), (PQ)
p → q ≡ p|(q|q) ≡ ¬(p ∧ ¬(q ∧ q)). (QQ)

The above tautologies may lead to the following two formulas of multivalued
implication:

I(x, y) = N(C(x,N(C(x, y)))),
I(x, y) = N(C(x,N(C(y, y)))),

for x, y ∈ [0, 1], where C is some generalization of the classical conjunction and
N is some generalization of the classical negation.

In this paper we analyse properties of these two new families of functions,
based on the above two formulas. Section 2 contains basic notions, definitions
and facts used in the sequel. In Sect. 3 we present basic examples of Sheffer
stroke implications and we show when these families are fuzzy implications. In
Sect. 4 we analyse basic properties of Sheffer stroke implications, in particular
we examine the left neutrality property, the exchange principle, the identity
principle and the ordering property.

2 Preliminaries

Definition 1 (see [6,7]). A function T : [0, 1]2 → [0, 1] is called a triangular
norm (t-norm for short) if it is symmetric, associative and increasing function,
and it satisfies T (x, 1) = x, for all x ∈ [0, 1].

Definition 2 (see [6,7]). A function S : [0, 1]2 → [0, 1] is called a triangu-
lar conorm (t-conorm for short) if it is symmetric, associative and increasing
function, and it satisfies S(x, 0) = x, for all x ∈ [0, 1].

Definition 3 (see [2,7]). A non-increasing function N : [0, 1] → [0, 1] is called
a fuzzy negation, if N(0) = 1, N(1) = 0. Moreover, a fuzzy negation N is called

(i) strict if it is strictly decreasing and continuous,
(ii) strong if it is an involution, i.e., N(N(x)) = x, for all x ∈ [0, 1].

In the sequel we will use basic examples of t-norms and fuzzy negations with
the notations from the monograph [2], i.e., TM is the minimum t-norm, TP is
the algebraic product t-norm, TLK is the �Lukasiewicz t-norm, TD is the dras-
tic product t-norm, TnM is the nilpotent minimum t-norm, NC is the classical
fuzzy negation, ND1 is the least fuzzy negation, while ND2 is the greatest fuzzy
negation. Their formulas are collected in Table 1.

Definition 4 (see [2,6]). A function I : [0, 1]2 → [0, 1] is called a fuzzy impli-
cation, if it satisfies the following conditions:
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Table 1. Basic t-norms and fuzzy negations.

TM(x, y) = min(x, y) TP(x, y) = xy

TD(x, y) =

{
0, if x, y ∈ [0, 1)

min(x, y), otherwise
TnM(x, y) =

{
0, if x + y ≤ 1

min(x, y), otherwise

TLK(x, y) = max(x + y − 1, 0) NC(x) = 1 − x

ND1(x) =

{
1, if x = 0

0, if x ∈ (0, 1]
ND2(x) =

{
1, if x ∈ [0, 1)

0, if x = 1

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = 1,
(I4) I(1, 1) = 1,
(I5) I(1, 0) = 0.

The set of all fuzzy implications will be denoted by FI.
Similarly as for t-norms and fuzzy negations, the notion for basic examples

of fuzzy implications is the same as in the book [2]. We recall here the defi-
nition of a QL-operation, which is in use in the paper, while the definitions,
examples and properties of other well-known families of implications, namely
(S,N)-implications, R-implications, f -generated implications and g-generated
implications, one may find in [2].

Definition 5. A function I : [0, 1]2 → [0, 1] is called a QL-operation if there
exist a t-norm T , a t-conorm S and a fuzzy negation N such that

I(x, y) = S(N(x), T (x, y)), x, y ∈ [0, 1]. (1)

The standard properties of fuzzy implications are listed below.

Definition 6 (see [2]). We say that a fuzzy implication I satisfies

(i) the identity principle, if

I(x, x) = 1, x ∈ [0, 1], (IP)

(ii) the left neutrality property, if

I(1, y) = y, y ∈ [0, 1], (NP)

(iii) the exchange principle, if

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1], (EP)

(iv) the ordering property, if

x ≤ y ⇐⇒ I(x, y) = 1, x, y ∈ [0, 1]. (OP)

Lemma 1 (see [2, Sects. 2 and 3]). If I is an (S,N)-implication, then it sat-
isfies (NP) and (EP). If I is an R-implication, then it satisfies (NP) and (IP).
If I is a QL-operation, then it satisfies (NP). If I is an f-generated implication
or a g-generated implication, then it satisfies (NP) and (EP).
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3 Sheffer Stroke Implications

As we have noted in Introduction, there are two representations of implications
that use only Sheffer stroke operator (see Eqs. (PQ) and (QQ)), which leads us
to two families of implications. We introduce them in the next two subsections
and call them SSpq-implications and SSqq-implications, respectively.

3.1 SSpq-Implications

Now, we define new family of implications based on the equivalence (PQ).

Definition 7. A function I : [0, 1]2 → [0, 1] is called an SSpq - implication if
there exist a fuzzy negation N and a t-norm T such that

I(x, y) = N(T (x,N(T (x, y)))), x, y ∈ [0, 1]. (2)

If I is an SSpq - implication generated from the couple (N,T ), then we will often
denote it by Ipq

N,T .

Example 1. Probably the best known SSpq-implication would be the one gener-
ated from NC and TLK, which is a fuzzy implication IKD, i.e.,

Ipq
NC,TLK

(x, y) = NC(TLK(x,NC(TLK(x, y))))

= 1 − max(x + (1 − max(x + y − 1, 0)) − 1, 0)
= 1 − max(min(1 − y, x), 0) = 1 − min(1 − y, x) = max(y, 1 − x)
= IKD(x, y),

for all x, y ∈ [0, 1].

Let us now examine some basic properties of the function Ipq
N,T to check

whether it actually could serve as a fuzzy implication operation.

Lemma 2. If Ipq
N,T is an SSpq-implication, then it satisfies (I2)–(I5).

Proof. Property (I3) holds since

Ipq
N,T (0, 0) = N(T (0, N(T (0, 0)))) = N(T (0, N(0))) = N(T (0, 1)) = N(0) = 1.

The next two properties are direct conclusions from Definition 7 as well. To
prove (I2) it is enough to observe that N is decreasing and T is increasing with
respect to the second variable. 	


The immediate question arises if the requirement (I1), i.e., Ipq
N,T is decreasing

with respect to the first variable, is fulfilled as well. Unfortunately, this is not
always true. Consider, e.g. the classical negation NC and a product t-norm TP.
Then we obtain

Ipq
NC,TP

(x, y) = 1 − x + x2y, x, y ∈ [0, 1],
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Fig. 1. The plot of IpqNC,TP
(x, y) = 1 − x + x2y, which is a QL-operation, but not a

fuzzy implication.

and this function is decreasing for x ∈ [0, 1
2y ] and increasing for x ∈ [ 1

2y , 1], for
any specific y ∈ (0.5, 1] (see Fig. 1). Therefore, however there are fuzzy impli-
cations among this new family of operations (e.g. Ipq

NC,TLK
= IKD ∈ FI), an

SSpq-implication is not – in general – a fuzzy implication.

Theorem 1. An SSpq-implication Ipq
N,T is a fuzzy implication if and only if it

satisfies (I1).

It is an open problem to characterize property (I1) in the terms of N and T .
It turns out that the family of SSpq-implications is basically a subclass of QL-
operations, i.e., all SSpq-implications generated from strong negations are QL-
operations.

Theorem 2. Let N be a strong fuzzy negation and T be a t-norm. The SSpq-
implication Ipq

N,T is a QL-operation.

Proof. Consider the t-conorm S which is N -dual to the t-norm T , i.e., let

S(x, y) := N(T (N(x), N(y))), x, y ∈ [0, 1].

Then for all x, y ∈ [0, 1] we have

Ipq
N,T (x, y) = N(T (x,N(T (x, y)))) = N(T (N(N(x)), N(T (x, y))))

= S(N(x), T (x, y)),

which is the representation (1) of the QL-operation IT,S,N . 	

The following Table 2 introduces basic examples of SSpq-implications and

indicates which of them are fuzzy implications or QL-operations. The last four
implications are not QL-operations, because they do not satisfy (NP), what will
be proven in the next section, while due to Lemma 1 all QL-operations do have
this property. Please note that the first implication is indicated as I−1 in [2],
while the last implication is indicated as I4 in [5].
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Table 2. Basic SSpq-implications.

Negation T-norm Sheffer stroke SSpq-implication I ∈ FI I ∈QL-oper.

NC TM I(x, y) = max(1 − x,min(x, y)) ✗ �
NC TLK IKD � �
NC TP I(x, y) = 1 − x + x2y ✗ �

NC TD I(x, y) =

⎧⎪⎨
⎪⎩

1, if y = 1

y, if x = 1

1 − x, otherwise

✗ �

NC TnM I(x, y) =

⎧⎪⎨
⎪⎩

1, if x ≤ y and y > 1 − x

y, if x > y and y > 1 − x

1 − x, otherwise

✗ �

ND1 TM, TP I(x, y) =

{
0, if y = 0 and x > 0

1, otherwise
� ✗

ND1 TLK, TnM I(x, y) =

{
1, if x = 0 or x + y > 1

0, otherwise
✗ ✗

ND1 TD I(x, y) =

⎧⎪⎨
⎪⎩

0, if x > 0 and

(y = 0 or max(x, y) < 1)

1, otherwise

✗ ✗

ND2 any T I(x, y) =

{
0, if x = 1 and y < 1

1, otherwise
� ✗

3.2 SSqq-Implications

Now, we define the second family of Sheffer stroke implications, based on the
equivalence (QQ).

Definition 8. A function I : [0, 1]2 → [0, 1] is called an SSqq - implication if
there exist a fuzzy negation N and a t-norm T such that

I(x, y) = N(T (x,N(T (y, y)))), x, y ∈ [0, 1]. (3)

If I is an SSqq - implication generated from the couple (N,T ), then we will often
denote it by Iqq

N,T .

Let us check if Iqq
N,T is a fuzzy implication or if some additional requirements

are necessary, as in the case of SSpq-implications.

Theorem 3. If Iqq
N,T is an SSqq - implication, then it is a fuzzy implication,

thus Iqq
N,T ∈ FI.

Proof. The conditions Iqq
N,T (0, 0) = 1, Iqq

N,T (1, 1) = 1, Iqq
N,T (1, 0) = 0 are direct

conclusions from Definition 8, the fact that T (0, x) = 0, T (1, x) = x for all
x ∈ [0, 1], and the property (N1) satisfied by N . The function Iqq

N,T (x, ·), for any
fixed x ∈ [0, 1], is increasing since T is increasing and N is decreasing. For the
same reason, the function Iqq

N,T (·, y), for any fixed y ∈ [0, 1], is decreasing. 	
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Fig. 2. The plot of IqqNC,TP
(x, y) = 1 − x + xy2 fuzzy implication.

Example 2. Let us consider the SSqq-implication Iqq
NC,TP

generated from the clas-
sical negation NC and the product t-norm TP:

Iqq
NC,TP

(x, y) = 1 − x + xy2, x, y ∈ [0, 1]. (4)

The function Iqq
NC,TP

is a continuous fuzzy implication (see Fig. 2), which does
not belong to any well-known family of fuzzy implications, i.e., it is none of
an R-implication, an (S,N)-implication, a QL-operation, an f - or g-generated
implication. This is because Iqq

NC,TP
does not satisfy (NP), i.e., Iqq

NC,TP
(1, y) =

y2 �= y for y ∈ (0, 1), but due to Lemma 1, implications from all the above
mentioned families of fuzzy implications do satisfy that property.

Remark 1. Actually we may consider more general family of functions

Iqq
NC,TP,p(x, y) = 1 − x + xyp, x, y ∈ [0, 1],

for any p > 0. When p = 1 we have Iqq
NC,TP,1 = IRC the Reichenbach implication

(see [2]). It turns out that all functions Iqq
NC,TP,p are continuous fuzzy implica-

tions, but none of them satisfies (IP) or (OP), and IRC is the only one that
satisfies (NP) or (EP).

Indeed, firstly we have Iqq
NC,TP,p(1, y) = yp, which is equal to y for all y ∈ [0, 1]

only if p = 1, thus (NP) is satisfied only for Iqq
NC,TP,1 = IRC. Let us consider

x = 1, y = 0.5, z = 0 to examine (EP),

Iqq
NC,TP,p(1, I

qq
NC,TP,p(0.5, 0)) = Iqq

NC,TP,p(1, 0.5) = 0.5p,

Iqq
NC,TP,p(0.5, I

qq
NC,TP,p(1, 0)) = Iqq

NC,TP,p(0.5, 0) = 0.5,
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and 0.5p = 0.5 if and only if p = 1. Furthermore

Iqq
NC,TP,1(x, I

qq
NC,TP,1(y, z)) = Iqq

NC,TP,1(x, 1 − y + yz)

= 1 − xy(1 − z)
= Iqq

NC,TP,1(y, I
qq
NC,TP,1(x, z)),

thus Iqq
NC,TP,1 = IRC is the only one satisfying (EP) (cf. [2]).

Finally, assume that (IP) is satisfied, so Iqq
NC,TP,p(x, x) = 1 − x + xp+1 = 1,

for all x ∈ [0, 1] and some p > 0. Then xp+1 − x = 0, thus x(xp − 1) = 0, so
either x = 0 or xp = 1, for all x ∈ (0, 1]. Thus p = 0, but we have an assumption
that p > 0, so Iqq

NC,TP,p does not satisfy (IP) for any p > 0 and consequently also
(OP) is not satisfied.

Example 2 with the function Iqq
NC,TP

indicates that this new family of
SSqq-implications is independent from the other well-known families of fuzzy
implications.

Table 3 presents basic examples of SSqq-implications which in most cases are
not QL-operations.

Table 3. Basic SSqq-implications.

Negation T-norm Sheffer stroke SSqq-implication I ∈ FI I ∈QL-oper

NC TM IKD � �

NC TLK I(x, y) =

⎧⎪⎨
⎪⎩

1 − x, if y ≤ 0.5

1, if x ≤ 2y − 1

2y − x, otherwise

� ✗

NC TP I(x, y) = 1 − x + xy2 � ✗

NC TD I(x, y) =

{
1, if y = 1

1 − x, otherwise
� ✗

NC TnM I(x, y) =

⎧⎪⎨
⎪⎩

1 − x, if y ≤ 0.5

y, if x > y > 0.5

1, otherwise

� ✗

ND1 TM, TP I(x, y) =

{
0, if y = 0 and x > 0

1, otherwise
� ✗

ND1 TLK, TnM I(x, y) =

{
0, if x > 0 and y ≤ 0.5

1, otherwise
� ✗

ND1 TD I0(x, y) =

{
1, if x = 0 or y = 1

0, if x > 0 and y < 1
� ✗

ND2 any T I(x, y) =

{
0, if x = 1 and y < 1

1, otherwise
� ✗
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Remark 2. Please note that IKD is the only fuzzy implication which is both SSpq-
implication and SSqq-implication, with the assumption that a negation used in
both definitions is classical. Indeed, assume that N is a strong negation and put
x = 1 in (2). Then we obtain that Ipq

N,T1
(1, y) = N(N(y)) = y, for all y ∈ [0, 1].

Now, putting x = 1 in (3) we have Iqq
N,T2

(1, y) = N(N(T2(y, y))) = T2(y, y), for
all y ∈ [0, 1]. Therefore t-norm T2 has to be idempotent, which implies T2 = TM,
and in the case when N = NC we obtain Kleene-Dienes implication IKD.

4 Basic Properties of Sheffer Stroke Implications

This section is devoted to study basic properties of both types of Sheffer stroke
implications, namely (NP), (EP), (IP) and (OP). We introduce just partial
results which we plan to complete in our future works.

Proposition 1. An SSpq-implication Ipq
N,T satisfies (NP) if and only if N is

strong.

Proof. For any y ∈ [0, 1] we have

Ipq
N,T (1, y) = N(T (1, N(T (1, y)))) = N(N(y)),

which is equal to y for all y ∈ [0, 1] if and only if N is a strong negation. 	

Proposition 2. Let N be a strong negation. An SSqq-implication Iqq

N,T satis-
fies (NP) if and only if T = TM .

Proof. For any y ∈ [0, 1] we have

Iqq
N,T (1, y) = N(T (1, N(T (y, y)))) = N(N(T (y, y))) = T (y, y),

which is equal to y for all y ∈ [0, 1] if and only if T is an idempotent t-norm,
thus T = TM. 	

Proposition 3. Let T = TM. An SSqq-implication Iqq

N,T satisfies (NP) if and
only if N is strong.

Proof. For any y ∈ [0, 1] we have

Iqq
N,T (1, y) = N(T (1, N(T (y, y)))) = N(N(T (y, y))) = N(N(y)),

which is equal to y for all y ∈ [0, 1] if and only if N is a strong negation. 	

We suppose that implication Iqq

N,T satisfies (NP) only if N is strong and T
is the minimum t-norm. However, the following result states what we can prove
for now.

Proposition 4. If an SSqq-implication Iqq
N,T satisfies (NP), then N is continu-

ous, while T is not continuous and Archimedean simultaneously, but T (x, x) is
an injective function.
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Proof. Let us assume that Iqq
N,T satisfies (NP), i.e.,

Iqq
N,T (1, y) = N(T (1, N(T (y, y)))) = N(N(T (y, y))) = y, y ∈ [0, 1].

This directly implies that N is surjective, which, with its monotonicity, gives
continuity of N . Continuous fuzzy negation N has a unique fixed point e ∈
(0, 1), i.e., N(e) = e. Let f(x) := T (x, x), x ∈ [0, 1]. If T is continuous, then
f is continuous and from Darboux property there exists xe ∈ (0, 1) such that
f(xe) = e. If T is continuous and Archimedean, then f(xe) = T (xe, xe) < xe

(see [2, Remark 2.1.4]), thus e < xe. Then we obtain a contradiction by

xe = Iqq
N,T (1, xe) = N(N(T (xe, xe))) = N(N(e)) = N(e) = e �= xe.

Thus T cannot be continuous and Archimedean simultaneously.
Finally, let us assume that T (x, x) is not an injective function, i.e., there exist

x1, x2 ∈ [0, 1], x1 �= x2, such that T (x1, x1) = T (x2, x2). Then

x1 = Iqq
N,T (1, x1) = N(N(T (x1, x1))) = N(N(T (x2, x2))) = Iqq

N,T (1, x2) = x2,

which is a contradiction. 	

Finally, we present some partial results connected to (IP) and (OP).

Proposition 5. Let IN,T be an SSpq-implication or an SSqq-implication, gen-
erated from a strong fuzzy negation N and a strict t-norm T . Then IN,T does
not satisfy (OP) nor (IP).

Proof. Firstly, notice that if T is a strict t-norm, then T (x, y) = 0 implies x = 0
or y = 0. Indeed, because of the representation of a strict t-norm by an additive
generator (see [7]) we have

T (x, y) =f−1(f(x) + f(y)) = 0 ⇔ f(x) + f(y) = ∞
⇔ f(x) = ∞ or f(y) = ∞ ⇔ x = 0 or y = 0.

If IN,T satisfies (IP), then IN,T (x, x) = N(T (x,N(T (x, x)))) = 1, for all x ∈
[0, 1]. Applying the negation N to both sides of the above equation we obtain
T (x,N(T (x, x))) = 0, for all x ∈ [0, 1], which due to the fact just showed above
implies that x = 0 or N(T (x, x)) = 0 for all x ∈ (0, 1]. Since T is continuous, the
set of values of T (x, x) for x ∈ (0, 1] consists the set (0, 1]. Thus N = ND1, which
is not a strong negation, a contradiction. Of course, if IN,T does not satisfy (IP),
then it does not satisfy (OP), too. 	

Example 3. An SSpq-implication Ipq

NC,TLK
= IKD satisfies (EP), while other

SSpq-implications generated from the classical negation NC and the following
t-norms TM, TP, TD, TnM do not satisfy (EP). In the case of SSqq-implications
it seems that all ot them generated from the least or the greatest fuzzy negations
ND1, ND2 do satisfy (EP), while most of implications generated from the classi-
cal fuzzy negation NC do not (see Table 4). However, the full characterization of
solutions to (EP) among Sheffer stroke implications remains an open problem.
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Table 4. Sheffer stroke implications and their properties.

Negation T-norm (NP) (EP) (IP) (OP)

SSpq-implications

NC TM, TP, TD, TnM � ✗ ✗ ✗

NC TLK � � ✗ ✗

ND1 TM, TP ✗ � � ✗

ND1 TLK, TnM, TD ✗ ✗ ✗ ✗

ND2 any T ✗ � � ✗

SSqq-implications

NC TM � � ✗ ✗

NC TLK, TP, TD, TnM ✗ ✗ ✗ ✗

ND1 TM, TP ✗ � � ✗

ND1 TLK, TnM, TD ✗ � ✗ ✗

ND2 any T ✗ � � ✗

5 Conclusions

According to their name Sheffer stroke implications have a basic genesis related
to Sheffer stroke which is one of the two operators that can be used by itself,
without any other logical operators, to constitute a logical formal system. Such
a genesis is in and of itself a good enough reason to study this new family of
implications. In the paper we introduced two subfamilies of Sheffer stroke impli-
cations, namely SSpq-implications and SSqq-implications, and we showed that
while the first one is mainly a subfamily of QL-operations, the second one is in
fact a new family of fuzzy implications. We introduced some basic properties
of both families. However it seems that Sheffer stroke implications usually do
not satisfy (NP), (EP), (IP) or (OP), we have got so far only partial results.
The questions about other properties, among them t-conditionality, distributiv-
ity laws and laws of contraposition, are in our future plans. We believe that
answering them in the future would show the potential in applications of Sheffer
stroke implications.
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Abstract. This paper is a study of fuzzy type theory (FTT) with partial
functions. Out of several possibilities we decided to introduce a special
value “∗” which represents “undefined”. In the interpretation of FTT,
this value lays outside of the corresponding domain. In the syntax, it is
naturally represented by the description operator acting on the empty
(fuzzy) set which, of course, has no element and so, choosing an element
from its kernel gives no result, i.e., it is undefined. We will demonstrate
that our approach leads to reasonable characterization of the undefined-
ness. We will also show that any consistent theory of FTT has a model.

Keywords: Partial functions · Higher-order fuzzy logic · Fuzzy type
theory · EQ-algebra

1 Introduction

There are several reasons for considering partial functions in mathematics and
its applications. We can meet them in recursion theory (no ending algorithm),
in the analysis (division by zero), in computer science (mistake in the computer
program), and elsewhere. In the logical analysis of natural language (cf. [2]), one
can meet sentences that denote nothing, e.g., “The present French king is bald”.

There are several ways how partial functions can be introduced. For example,
W. Farmer in his paper [5] discusses 8 possibilities which appear in the litera-
ture: non-denoting expressions as non-well-formed terms, functions represented
as relations, total functions with unspecified value, many-sorted language, error
values, non-existent values, partial valuation for terms and formulas, partial
valuation for terms but total valuation for formulas. Each of these approaches
provides a certain kind of solution but has also drawbacks. It seems that fully
satisfactory solution does not exist.

The powerful formal theory applied in many branches from linguistics and
logic to computer science is type theory that formalized higher-order logic.
A couple of years ago, the type theory has been generalized to the fuzzy
one (FTT; see [9]). The syntax of this theory is extension of the λ-calculus.
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The logical system has more axioms than the classical type theory and the
fundamental connective is that of fuzzy equality, i.e., this formalizes imprecise
equality that characterizes relation between objects that do not need to be the
same but only similar to each other in a certain degree. The crucial notion is that
of type that can be understood as an index characterizing the kind of objects in
concern. Hence, we distinguish basic types o of truth values and ε of elements
and then we can form more complex types βα representing functions from a set
Mα of elements of type α to a set Mβ of elements of type β. Hence, semantics of
FTT is based on the concept of frame that is a system of sets (M∗

α,�α)α∈Types

for all types α ∈ Types, each of them endowed by the fuzzy equality �α. We
must also consider the algebra of truth values EΔ.

In this paper, we introduce FTT with partial functions. Our solution is stan-
dard in the sense that we introduce a special value ∗ interpreted as “undefined”.
This approach has one important advantage. Namely, Tichý in [15] found a coun-
terexample showing that when dealing with partial functions, we cannot use the
important principle of type theory called λ-conversion. However, Lepage in [7]
demonstrated that by introducing ∗ as a special value, the counterexample of
Tichý can be overcome and so, the principle of λ-conversion is preserved. This
is important because the latter principle is an important tool of type theory.

The idea presented in this paper follows the idea of [11] to use the description
operator ια(oα). The solution there, however, was not satisfactory as the behavior
of ∗ was close to falsity. Recall that due to [8], interpretation of the description
operator is just a partial function giving a value from the kernel of the corre-
sponding fuzzy set if the latter is normal, and giving nothing otherwise. This
suggests the idea that ∗o of type o can be defined as the formula ιo(oo) · λxo ⊥,
whose interpretation applies the description operator to the empty set. Of course,
empty set contains no element and so, this formula gives no result. We thus get
a natural interpretation of ∗o. Similarly, the ∗ε is defined as ιε(oε) ·λxε ∗o, i.e., the
description operator is applied to nowhere defined function. The latter principle
is then applied also to ∗α for arbitrary type.

We develop our theory as extension of FTT based on the EQ-algebra of
truth values [10]. This is a special algebra introduced as natural algebra of truth
degrees for higher-order fuzzy logics. Because of lack of space, we could not
include proofs of the theorems. These are available in the full paper [12].

2 Truth Values and Fuzzy Equality

2.1 Truth Values

The truth degrees form a linearly ordered bounded good EQΔ-algebra (see [10,13])

EΔ = 〈E,∧,⊗,∼,0,1,Δ〉 (1)

where for all a, b, c, d ∈ E:

(E1) 〈E,∧,1〉 is a commutative idempotent monoid (i.e. ∧-semilattice). We put
a ≤ b iff a ∧ b = a, as usual. Then 1 is the top and 0 the bottom element.
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(E2) 〈E,⊗,1〉 is a monoid, ⊗ is isotone w.r.t. ≤ .
(E3) a ∼ a = 1 (reflexivity)
(E4) ((a ∧ b) ∼ c) ⊗ (d ∼ a) ≤ c ∼ (d ∧ b) (substitution)
(E5) (a ∼ b) ⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d) (congruence)
(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a (monotonicity)
(E7) a ∼ 1 = a (goodness)

We define a → b = (a ∧ b) ∼ a (implication) and ¬a = a → 0 (negation). It
can be proved that a ≤ b iff a → b = 1. The above algebra is extended by the
delta operation Δ : E −→ E which keeps 1 and sends all smaller values to 0 (for
the details, see [3,4]).

It should be emphasized that every residuated lattice is a good EQ-algebra
with fuzzy equality being the biresiduation a ∼ b = (a → b) ∧ (b → a). An EQ-
algebra E is prelinear if for all a, b ∈ E, ((a → b) → c) ≤ ((b → a) → c) → c.
If E is prelinear then it is lattice ordered where the join is defined by a ∨ b =
((a → b) → b) ∧ ((b → a) → a).

2.2 Extended Algebra of Truth Values

To deal with partial functions, we will consider a special “truth value” ∗ where
∗ ∈ E and interpret it as undefined. Extended EQΔ-algebra of truth values E ∗

Δ

has the support E∗ = E ∪ {∗} and the operations ∼,∧,⊗ and Δ are extended
to the whole E∗ as follows.

Let a, b ∈ E and © ∈ {∧,⊗}. Then the following tables define the operations
in the extended algebra E ∗

Δ:

∼ b ∗
a a ∼ b 0
∗ 0 1

© b ∗
a a © b ∗
∗ ∗ ∗

→ b ∗
a a → b 0
∗ 1 1

∨ b ∗
a a ∨ b 0
∗ 0 0

x Δx
a Δa
∗ ∗

x ¬x
a ¬a
∗ 0

Note that 0 remains bottom element for all a ∈ E. We at the same time have
∗ ≤ 0 but 0 ≤ ∗.

Finally we introduce the following derived operations on E∗:

?x = x ∼ ∗, !x = ¬?x,

↓ x = x ∼ 1, ↑ x = ¬!x∨ ↓x.

? ! ↓ ↑
a 0 1 a a
∗ 1 0 0 1

a ∈ E.

The operation “?” is a test for undefined, “!” is a test for defined, ↓ and ↑ are
star-0 and star-1 reinterpretation, respectively.

2.3 Fuzzy Equality

A fuzzy equality on truth values is the operation ∼ from the EQ-algebra E . This
fuzzy equality is separated, i.e., a ∼ b = 1 implies a = b. A fuzzy equality � on
an arbitrary set M is a binary fuzzy relation �: M × M −→ E that is reflexive,
symmetric and ⊗-transitive. If m,m′ ∈ M then we usually write [m � m′]
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instead of �(m,m′). We will extend the fuzzy equality � to �: M∗ × M∗ −→ E
where M∗ = M ∪ {∗}, ∗ ∈ M , as follows1:

� y ∗
x x � y 0
∗ 0 1

x, y ∈ M. (2)

Let M ⊆ MMα

β where Mα,Mβ are sets endowed with the corresponding fuzzy
equalities �α,�β . We will add an element ∗βα ∈ M to M (the ∗βα represents a
nowhere defined function on Mα). Then

[h � h′] =
∧

m∈M∗
α

[h(m) �β h′(m)], h, h′ ∈ M∗ (3)

is the fuzzy equality �: M∗ × M∗ −→ E where �β is the fuzzy equality on the
set Mβ . Note that (2) gives 0 in (3) whenever there is m ∈ M∗

α such that for
h, h′ ∈ M , either h(m) = ∗ or h′(m) = ∗. Consequently, also for functions h ∈ M
we obtain [h � ∗βα] = 0 and [∗βα � ∗βα] = 1.

3 Syntax of Partial FTT

The basic syntactical objects of FTT are classical — see [1], namely the concepts
of type and formula. The atomic types are ε (elements) and o (truth degrees).
Complex types (βα) are formed from previously formed ones β and α. The set
of all types is denoted by Types.

The language of FTT denoted by J consists of variables xα, . . ., special con-
stants cα, . . . (α ∈ Types), auxiliary symbols λ and brackets. Formulas are
formed of variables, constants (each of specific type), and the symbol λ. Thus,
each formula A is assigned a type (we write Aα). The set of formulas of type α is
denoted by Formα, the set of all formulas by Form. Interpretation of a formula
Aβα is a function from the set of objects of type α into the set of objects of
type β. Thus, if B ∈ Formβα and A ∈ Formα then (BA) ∈ Formβ . Similarly,
if A ∈ Formβ and xα ∈ J , α ∈ Types, is a variable then λxα Aβ ∈ Formβα is a
formula whose interpretation is a function that assigns to each object of type α
an object of type β represented by the formula Aβ .

The set of formulas of type α, α ∈ Types, is denoted by Formα. A set of all
formulas of the language J is Form =

⋃
α∈Types Formα.

Specific constants always present in the language of FTT are the following:
E(oα)α, α ∈ {o, ε} (fuzzy equality), C(oo)o (conjunction), S(oo)o (strong conjunc-
tion), Doo (delta) and ια(oα), α ∈ {o, ε} (the description operator).

A variable xα is bound in a formula Aδ if the latter has a well formed part
(λxαBβ). Otherwise xα is free. A formula A is closed if it does not contain free
variables. A closed formula Ao of type o is called a sentence.

1 Note that this “∗” is a different element from “∗” introduced for truth values.
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Formal definitions

(i) Basic fuzzy equality ≡(oα)α ≡ λxα λyα · (E(oα)α yα)xα, α ∈ {o, ε}.
(ii) Strong conjunction &&&(oo)o, conjunction ∧∧∧(oo)o, delta ΔΔΔoo, truth �, falsity ⊥,

implication ⇒⇒⇒ (oo)o, negation ¬¬¬oo and disjunction ∨∨∨(oo)o are defined in the
same way as in [10].

(iii) General quantifier: (∀xα)Ao ≡ (λxα Ao ≡ λxα �)
(iv) Fuzzy equality between functions:

≡(o(βα))(βα) ≡ λfβα λgβα · (∀xα)(fβα xα ≡ gβα xα).

(v) The values “undefined”:

∗o ≡ ιo(oo) · λxo ⊥, (4)
∗ε ≡ ιε(oε) · λxε ∗o, (5)

∗βα ≡ λxα ∗β , α, β ∈ Types. (6)

Note that the element ∗βα represents the nowhere defined function.

(vi) Undefined: ?oα ≡ λxα · xα ≡α ∗α.
(vii) Defined: !oα ≡ λxα · ¬¬¬?xα.
(viii) Star-0 reinterpretation: ↓oo ≡ λxo · xo ≡ �.
(ix) Star-1 reinterpretation: ↑oo ≡ λxo · ¬¬¬!xo∨∨∨ ↓xo.
(x) Existential quantifier: (∃xα)Ao ≡ (∀yo)((∀xα)ΔΔΔ(Ao ⇒⇒⇒↑ yo) ⇒⇒⇒↑ yo)

(yo does not occur in Ao).

Convention 1. The fuzzy equality between formulas of the type α is denoted by
≡α. The fuzzy equality between truth values is usually called fuzzy equivalence.

3.1 Axioms and Inference Rules

Fundamental axioms

(FT-fund1) ΔΔΔ(xα ≡α yα) ⇒⇒⇒ (fβα xα ≡β fβα yα), α, β ∈ Types,
(FT-fund2) (fβα ≡ gβα) ⇒⇒⇒ (fβα xα ≡β gβα xα), α, β ∈ Types,
(FT-fund3) (λxαBβ)Aα ≡β Cβ , α, β ∈ Types,

where Cβ is obtained from Bβ by replacing all free occurrences of xα in it by
Aα, provided that Aα is substitutable to Bβ for xα (lambda conversion).

(FT-fund4) (xε ≡ε yε) ≡ε (yε ≡ε xε),
(FT-fund5) (xε ≡ε yε)&&&(yε ≡ε zε) ⇒⇒⇒ (xε ≡ε zε).

Axioms of truth degrees As usual in fuzzy logic, we have two kinds of conjunction,
namely the “ordinary” conjunction ∧∧∧ and the strong conjunction &&&. Let © ∈
{∧∧∧,&&&}.

(FT-tval1) �
(FT-tval2) (xo ∧∧∧ yo) ≡ (yo ∧∧∧ xo),
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(FT-tval3) (xo © yo) © zo ≡ xo © (yo © zo),
(FT-tval4) !Ao ⇒⇒⇒ ((Ao ≡ �) ≡ Ao),
(FT-tval5) !Aα ≡ (!Aα ≡ �), α ∈ Types,
(FT-tval6) (Aα ≡α Aα) ≡ �, α ∈ Types,
(FT-tval7) !((Aα ≡α Aα) ≡ �), α ∈ Types,
(FT-tval8) (Ao © �) ≡ Ao,
(FT-tval9) ((�&&& Ao) ≡ Ao),
(FT-tval10) !Ao ⇒⇒⇒ ((Ao ∧∧∧ ⊥) ≡ ⊥),
(FT-tval11) (Ao ∧∧∧ Ao) ≡ Ao,
(FT-tval12) ((xo ∧∧∧ yo) ≡ zo)&&&(to ≡ xo) ⇒⇒⇒ (zo ≡ (to ∧∧∧ yo)),
(FT-tval13) (xo ≡ yo)&&&(zo ≡ to) ⇒⇒⇒ (xo ≡ zo) ≡ (yo ≡ to),
(FT-tval14) (xo ⇒⇒⇒ (yo ∧∧∧ zo)) ⇒⇒⇒ (xo ⇒⇒⇒ yo),
(FT-tval15) ΔΔΔ(xo ⇒⇒⇒ yo) ⇒⇒⇒ (xo &&& zo ⇒⇒⇒ yo &&& zo),
(FT-tval16) ΔΔΔ(xo ⇒⇒⇒ yo) ⇒⇒⇒ (zo &&& xo ⇒⇒⇒ zo &&& yo),
(FT-tval17) ((xo ⇒⇒⇒ yo) ⇒⇒⇒ zo) ⇒⇒⇒ ((yo ⇒⇒⇒ xo) ⇒⇒⇒ zo) ⇒⇒⇒ zo.

Axioms of delta

(FT-delta1) (goo(ΔΔΔxo) ∧∧∧ goo(¬¬¬ΔΔΔxo)) ≡ (∀yo)goo(ΔΔΔyo),
(FT-delta2) ΔΔΔ(Ao ∧∧∧ Bo) ≡ ΔΔΔAo ∧∧∧ ΔΔΔBo,
(FT-delta3) ΔΔΔ(Ao ∨∨∨ Bo) ⇒⇒⇒ ΔΔΔAo ∨∨∨ ΔΔΔBo,
(FT-delta4) (ΔΔΔ ↑Ao ∨∨∨ ¬¬¬ΔΔΔ ↑Ao) ≡ �.

Axioms of star

(FT-B1) (⊥ ≡ ∗o) ≡ ⊥,
(FT-B2) (� ≡ ∗o) ≡ ⊥,
(FT-B3) Ao © ∗o ≡ ∗o,
(FT-B4) ΔΔΔ∗o ≡ ∗o,
(FT-B5)]((Aα ≡α ∗α) ∨∨∨ ¬¬¬(Aα ≡α ∗α)) ≡ �, α ∈ {o, ε}.
(FT-B6) !Ao ⇒⇒⇒ (!Bo ⇒⇒⇒ !(Ao © Bo)),
(FT-B7) !Ao ⇒⇒⇒ (!Bo ⇒⇒⇒ !(Ao ≡ Bo).

Axioms of quantifiers

(FT-quant1) ΔΔΔ(∀xα)(Ao ⇒⇒⇒ Bo) ⇒⇒⇒ (Ao ⇒⇒⇒ (∀xα)Bo), xα is not free in Ao,
(FT-quant2) (∀xα)(Ao ⇒⇒⇒ Bo) ⇒⇒⇒ ((∃xα)Ao ⇒⇒⇒ Bo), xα is not free in Bo,
(FT-quant3) (∀xα)(Ao ∨∨∨ Bo) ⇒⇒⇒ ((∀xα)Ao ∨∨∨ Bo), xα is not free in Bo.

Axioms of descriptions

(FT-descr1) ια(oα)(E(oα)α yα) ≡α yα, α = {o, ε},
(FT-descr2) (∀xα)(¬¬¬ΔΔΔ(foαxα ≡ �)) ⇒⇒⇒ (ια(oα)foα ≡ ∗α), α ∈ {o, ε}.

The inference rules remain unchanged:

(R) Let Aα ≡ A′
α ∈ Formo and Bo ∈ Formo be formulas. Then we infer from

them a formula B′
o which comes from Bo by replacing one occurrence of

Aα by A′
α, provided that the occurrence of Aα in Bo is not an occurrence

of a variable immediately preceded by λ.
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(N) Let Ao ∈ Formo be a formula. Then from Ao infer ΔΔΔAo.

A theory T is a set of formulas of type o (determined by a subset of special
axioms, as usual). Provability is defined as usual. If T is a theory and Ao a
formula then T � Ao means that Ao is provable in T . A theory T is contradictory
if T � ⊥. Otherwise it is consistent.

The following theorem shows that we must be careful with definability of
formulas. In syntax, this is internal definability that must be provable to be able
to deal with it.

Theorem 1.(a) (Ao ≡ �) � !Ao.
(b) Ao, (Ao ≡ Bo) � Bo. (Rule (EMP))
(c) (Ao ≡ �), (Ao ⇒⇒⇒ Bo) � Bo. (Modus Ponens I)
(d) Let �!Ao ≡ �. Then � Ao iff � Ao ≡ �.
(e) !Ao, Ao, (Ao ⇒⇒⇒ Bo) � Bo. (Modus Ponens II)
(f) !Ao � (Ao ⇒⇒⇒ ⊥) ⇒⇒⇒ ¬¬¬Ao.

3.2 Logical Connectives and the “undefined”

In this subsection we will show that our fuzzy type theory with the concepts of
defined and undefined behaves in accordance with the intuition.

Theorem 2. Let α ∈ Types. Then

(a) � Aα ≡α Aα, � !(Aα ≡ Aα) and � !(∗α ≡ ∗α), α ∈ Types.
(b) !Aα, !Bα � !(Aα ≡ Bα),
(c) �?∗α, � !?∗α, � ¬¬¬!∗α.

By (c), it is provable that the value “undefined” is internally undefined and also,
not defined. However, the predicate undefined is itself defined.

Corollary 1. If Ao is an axiom of FTT then � !Ao.

Theorem 3.(a) Ao ≡ � � (∀xα)Ao. (generalization I)
(b) !Ao, Ao � (∀xα)Ao. (generalization II)
(c) �Ao, Ao ≡ Bo � �B where � ∈ {!, ?, ↓, ↑}.
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Theorem 4. Let © ∈ {∧∧∧,&&&}. Then

(a) !Ao, Ao, !Bo, Bo � Ao © Bo,
(b) � (Ao ⇒⇒⇒ Bo), (Bo ⇒⇒⇒ Ao) � Ao ≡ Bo,
(c) !Ao, !Bo � !(Ao ∧∧∧ Bo),
(d) !Ao, !Bo � !(Ao ⇒⇒⇒ Bo),
(e) � (↑Ao ⇒⇒⇒ ∗o) ≡ ⊥, � (↓Ao ⇒⇒⇒ ∗o) ≡ ⊥, � (∗o ⇒⇒⇒ Ao) ≡ �,
(f) � !(∗o ∨∨∨ ∗o) and � (∗o ∨∨∨ ∗o) ≡ ⊥,
(g) !Ao, Bo � !(Ao ∨∨∨ Bo).

Theorem 5.(a) � (∀xα)Bo ⇒⇒⇒ (Bo,xα
[Aα] ≡ �), (substitution I)

(b) !Bo � (∀xα)Bo ⇒⇒⇒ Bo,xα
[Aα], (substitution II)

(c) !BoαAα � BoαAα ⇒⇒⇒ (∃xα)Boαxα. (∃-substitution)

Theorem 6. (Deduction theorem). Let T be a theory and Ao ∈ Formo a
closed formula such that T �!Ao. Then

T ∪ {Ao} � Bo iff T � ΔΔΔAo ⇒⇒⇒ Bo

for every formula Bo ∈ Formo such that T � !Bo.

The following simple theorem says that if “undefined” is defined in a theory
T then it is contradictory.

Theorem 7. If T � !∗o then T is contradictory.

Theorem 8.(a) � (∀xα)∗o ≡ ⊥ and � (∃xα)∗o ≡ ⊥.
(b) Let T � (∃xα)ΔΔΔ?Aoαxα. Then T � (∀xα)Aoαxα ≡ ⊥.
(c) Let T � (∀xα)ΔΔΔ?Aoαxα. Then T � (∃xα)Aoαxα ≡ ⊥.

By this theorem, if there is an undefined functional value Aoαxα then it is not
true that Aoαxα holds for all xα. And vice versa, this it is undefined for all xα

then it is not true that it holds for some xα.

Theorem 9. For all types α, β, gamma ∈ Types:

(a) � ∗βα ∗α ≡β ∗β.
(b) (∀xγ)(¬¬¬ΔΔΔ(Aoγxγ ≡ �)) � ιγ(oγ)Aoγ ≡γ ∗γ

(c) � ια(oα)∗oα ≡α ∗α.

By (b), the description operator applied to a subnormal fuzzy set gives “unde-
fined”. By (c), the nowhere defined function at the “undefined” argument gives
again the value “undefined”.
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4 Semantics of Partial FTT

Let M be a frame for FTT. Then we will introduce an extended general frame

M ∗ = 〈(M∗
α,�α)α∈Types ,E ∗

Δ, Io, Iε〉 (7)

so that the following holds:

(i) We put M∗
o = E∗ where the latter is a support of the extended EQ-algebra

E ∗
Δ. Furthermore, let ∗ε ∈ Mε. Then we put M∗

ε = Mε ∪ {∗ε}. For all
α = γβ, the function

∗γβ : M∗
β −→ M∗

γ

where ∗γβ(mβ) = ∗γ for all mβ ∈ M∗
β , represents “undefined”. For all types

γβ we put M∗
γβ ⊆ (M∗

γ )M∗
β , where we require that ∗γβ ∈ M∗

γβ .
(ii) The E ∗

Δ is an extended algebra of truth degrees (EQΔ-algebra). We assume
that the sets M∗

oo, M∗
(oo)o contain all the operations discussed in Sub-

sect. 2.2.
(iii) �α: M∗

α × M∗
α −→ L is a fuzzy equality on M∗

α for every α ∈ Types.
We define: �o:= ∼ and �ε is the fuzzy equality on M∗

ε given explicitly. The
fuzzy equality �βα for complex types is defined in (3).

(iv) Io : F (Mo) −→ Mo, Iε : F (Mε) −→ Mε are partial functions interpreting
the basic description operators. Let B ⊂∼ Mα, α ∈ {o, ε} . Then

Iα(B) =

{
aB ∈ Ker(B) if B is normal,
∗α otherwise,

Interpretation of formulas in the frame M is defined using an assignment p
of elements from M to variables. By p′ = p\xα we denote an assignment that
equals to p for all variables except for xα. The set of all assignments over M is
denoted by Asg(M ).

For arbitrary assignment p ∈ Asg we define M ∗
p (xα) = p(xα) ∈ M∗

α,
Mp(E(oo)o) := ∼, Mp(E(oε)ε := �ε, Mp(C(oo)o) := ∧, Mp(S(oo)o) := ⊗,
Mp(Doo) := Δ. Description operators2: Mp(ιε(oε)) = Io and Mp(ιo(oo)) = Iε.

Interpretation of BβαAα is Mp(BβαAα) = Mp(Bβα)(Mp(Aα)). Interpreta-
tion of λxα Aβ is a function Mp(λxα Aβ) = F : Mα −→ Mβ which assigns to
each mα ∈ Mα the element F (mα) = Mp′(Aβ) determined by an assignment p′

such that p′ = p\xα and p′(xα) = mα.
A model of a theory T is a general frame M for which Mp(Ao) = 1 holds

for all axioms Ao of T and all assignments p ∈ Asg. A formula Ao is true in the
theory T , T |= Ao if it is true in the degree 1 in all its models.

2 Recall that the description operator represents, in fact, the defuzzification operation
(cf. [14, Chapt. 3]).
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5 Canonical Model of Partial FTT

5.1 Extension of Theories

The canonical model of EQ-FTT with partial functions can be obtained by
extension of the canonical model for the basic FTT (see [9,10]) where we define
a special function V , whose domain and range are equivalence classes of formulas
|Aα| obtained using Aα ≈ Bα iff T � Aα ≡ Bα, α ∈ Types.

A theory T is linear if for every two formulas Ao, Bo such that T � !Ao and
T � !B, � Ao ⇒⇒⇒ Bo or T � Bo ⇒⇒⇒ Ao. It is extensionally complete if for every
closed formula of the form Aβα ≡ Bβα, T � Aβα ≡ Bβα it follows that there is
a closed formula Cα such that T � !Cα and T � AβαCα ≡ BβαCα.

Theorem 10. Every consistent theory T can be extended to a maximally con-
sistent, extensionally complete and linear consistent theory T .

Now we will put

TE = {|A| | A ∈ Formo, A closed, T � !A}, (8)
TE∗ = TE ∪ {| ∗o |} (9)

where ∗o is defined in (4). It follows from the definition of “≈” that

| ∗o | = {A | A ∈ Formo, T � ?A}.

Theorem 11. Let T be a consistent linear extensionally complete theory. Then
the algebra

TE ∗ = 〈TE∗, T∧, T⊗, T∼, TΔ, T1, T0〉 (10)

is an extended linearly ordered good EQΔ-algebra.

5.2 Canonical Frame and Completeness

Let T be a consistent, linear and extensionally complete theory. Then the canon-
ical frame is

M ∗ = 〈(M∗
α,�α)α∈Types , TE ∗

Δ, Io, Iε〉 (11)

1. M∗
α = {V (Aα) | Aα ∈ Formα, Aα closed}, α ∈ Types, where V is defined

inductively:
(i) If α = o then

V (Ao) = |Ao|,
V (∗o) = | ∗o | = |ιo(oo) · λxo ⊥|.

(ii) If α = ε then V (Aε) = |Aε|,
V (Aε) = |Aε|,
V (∗ε) = | ∗ε|= |ιε(oε) · λxε ∗o |.
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(iii) If α = γβ then we put V (Aγβ) ⊆ M∗
β ×M∗

γ which is a relation consisting
of couples

〈V (Bβ),V (AγβBβ)〉
for all closed Bβ ∈ Formβ and Aγβ ∈ Formγβ . As a special case,

V (∗γβ) = {〈V (Aβ),V (∗γ)〉 | V (Aβ) ∈ M∗
β}.

The fuzzy equality on M∗
α is defined by

[V (Aα) �α V (Bα)] = |Aα ≡ Bα|. (12)

2. The TE ∗
Δ is the extended EQΔ-algebra from Theorem 11.

3. Let α ∈ {o, ε} and Aoα be a formula such that T � !Aoα. Let V (Aoα) =
{〈V (Bα),V (AoαBα)〉 | V (Bα) ∈ M∗

α} be a fuzzy set on M∗
α. Then we put

I(V (Aoα)) =

⎧
⎨

⎩
|ια(oα)Aoα|, if � (∃xα)ΔΔΔ(Aoαxα),

V (∗α), if � (∀xα)(¬¬¬ΔΔΔ(Aoαxα ≡ �)).

Theorem 12. (Completeness of FTT with partial functions) Let T be a
theory, the special axioms of which have the form Ao ≡ �. Then T is consistent
iff it has a general model M .

6 Partial Functions

Let us briefly demonstrate that the results by Lapierre and Lepage in [6,7] can
be easily expressed in FTT. We define:

(i) Total function TotFo(βα) ≡ λfβα · (∀xα)(!fβαxα)
(ii) Partial function PartFo(βα) ≡ λfβα · (∃xα)(!xα &&&?fβαxα)

A function fβα is strict if � fβα∗α ≡ ∗β . It is non-strict if �!fβα∗α.
We will also introduce a special ordering:

�(oα)α ≡ λxα λyα ·?x ∨∨∨ ΔΔΔ(xα ≡ yα). (13)

It can be proved that this relation is crisp and is indeed an ordering. On the
basis of of it, we can define monotonous functions:

MonFo(βα) ≡ λfβα · (∀xα)(∀yα)((xα � yα) ≡ (fβαxα � fβαyα)). (14)

Lapierre and Lepage gave many arguments in favor of the idea to consider all
the functions to be monotonous in the sense of (14).

Lemma 1. Let T be a consistent theory in which fβα is total and non-strict
such that the following is provable:

T � (∃xα)ΔΔΔ(!xα &&&¬¬¬ΔΔΔ(fβαxα ≡ fβα∗α)). (15)

Then T � MonF fβα.

The function fβα in Lemma 1 extends the domain from Mα to M∗
α assigning ∗α

an element from Mα. Such a function is not monotonous.
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7 Conclusion

In this paper, we studied possibility how partial function can be introduced in
fuzzy type theory. We have chosen the most general kind of FTT based on the
EQ-algebra of truth degrees introduced in [10]. For each type α we introduced
a special value “undefined” (denoted by ∗α) laying outside of the given domain.
In our construction, we used the fact that the description operator ια(oα) gives
no result when applied to formulas representing subnormal fuzzy sets. Hence,
we defined ∗o as the formula ιo(oo) · λxo ⊥ and accordingly the other values
“undefined”. This made it possible to have “undefined” inside the set Form of
all the formulas without necessity to extend the language by new constant with
special properties.

One may argue that, in fact, all our functions remain total and we only
added a special interpretation to one specific functional value. This is true. But
we must realize that what we provide is a mathematical model. And from this
point of view, we argue that there is no principal difference when considering a
function f(x) to be undefined for a given x or, that f(x) = ∗ where ∗ is a special
value laying outside of the original domain and range of f . Our theory makes it
also possible to introduce other kinds of undefined values, for example “error”
or “missing value”.

Acknowledgment. This paper was supported by the grant 16-19170S of GAČR,
Czech Republic.
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Abstract. Entrepreneurship includes various activities including starting a new
business from scratch, creating and developing new business areas for existing
organizations. The countries should provide a supportive entrepreneurial envi-
ronment since entrepreneurship is the key element for the sustainable growth of
a country. In order to improve entrepreneurial support, the level of support
should be measured with different dimensions in the various periods. In this
study, a dynamic intuitionistic fuzzy evaluation method is developed for
determining entrepreneurial support within a country. Five countries are eval-
uated with the proposed method, and a sensitivity analysis is conducted to show
the robustness of the model.

Keywords: Dynamic intuitionistic fuzzy sets � Entrepreneurial support �
Multi-criteria decision making

1 Introduction

Today’s modern economy affected all sectors and companies in different ways. There
exist newly introduced business processes and production techniques. Not only new
technologies but also the entrepreneurs who have a pioneering role in implementing new
technology and new business models. Entrepreneurship is a growing concept of this
modern era; it receives interest from many disciplines such as economics, management,
and sociology. Entrepreneurship becomes the trigger of economic developments in
many countries. Since entrepreneurship creates new job opportunities and new sources
of productivity, it is a critical method to cope with unemployment problems. Also,
entrepreneurship takes its source from innovation, and it is a key for innovation
implementations. Entrepreneurship enables to meet the demands of the customers better,
and it ensures business growth. Entrepreneurship is a motivation source for change.

In order to be successful in the future, governments need to support entrepreneur-
ship. The performance of this entrepreneurial support can be improved by measurement.
This measurement involves uncertain and vague dimensions that should be measured at
different periods. Intuitionistic fuzzy sets enable defining both membership and
non-membership values and are excellent tools for dealing with imprecision. In this
study, a dynamic intuitionistic fuzzy entrepreneurial support evaluation model is
developed. The remaining of the paper is organized as follows: Sect. 2 explains the
entrepreneurial support dimensions. In Sect. 3, the preliminaries of intuitionistic fuzzy
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sets and the steps of dynamic intuitionistic fuzzy evaluation methods are given. In
Sect. 4, the proposed model is used to evaluate entrepreneurial support offive countries.
Conclusion Section concludes the paper and offers further suggestions.

2 Entrepreneurial Support

Entrepreneurship is a multidimensional concept that involves uncertainties. Schumpeter
(1934) indicate the crucial role of entrepreneurship in economy and society. In
Schumpeter’s (1934) definition, the entrepreneur is declared as the person of the cause
of economic development. In 1980’s, Schultz (1982) criticize previous definitions since
they ignore the entrepreneurs’ behaviors, characteristics, and interactions with their
environment. Drucker (1993) claim that innovation is the key element of
entrepreneurship. Entrepreneurship is not only establishing a new business from the
beginning, but also creating new ventures and developing new sectors of activity in
established companies.

Entrepreneur is the one who seeks for opportunities and tries to achieve them by
taking all the risks. Entrepreneurship involves all these risk taking, opportunity seek-
ing, implementation and innovation processes of the entrepreneurs. Thus, establishing a
new firm and making innovations are included in entrepreneurship process. The factors
that have a negative impact on potential entrepreneurs can be listed as:

– Changes in government policies, exchange rates, inflation rate, loan interests and
demand rates

– High finance charges
– Insufficient investment opportunities, labor force, incentives and audit
– High level of competition
– Ambiguous state policies
– Inadequate level of cooperation between industrial institutions and universities

Six main expectations of entrepreneurs can help compensating these disincentive
factors:

– Easier bureaucratic procedures
– Implementing modern and permanent government policies
– Satisfying financial needs
– Increasing incentives
– Accepting standards and inspecting them
– Eliminating infrastructure inabilities

Attractive entrepreneurial environments enable compensating negative impacts.
Education and experience level of the country, connections, cultural factors, govern-
ment policies, technological developments and funds are the main determinants that
show the entrepreneurial support within a country. Table 1 summarizes the entrepre-
neurial support dimensions.
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Table 1. Entrepreneurial support dimensions

Factor Definition References

Education and
experience level of
the country (EE)

Investigating the effects of education
levels and previous work experiences of
the entrepreneurs

Singer et al. (2015), Cansız (2014), Jain
and Ali (2013), Keat et al. (2011), Gerba
(2012), Grilo and Thurik (2008),
Karadeniz (2010), Van der Sluis et al.
(2008), Othman et al. (2006), Kristiansen
and Indarti (2004), Ghazali et al. (1995)

Connections (CN) Identifying possible outcomes of having
connections in chosen business area for
entrepreneurial activity

Jain and Ali (2013), Bygrave and
Zacharakis (2011), Eyal (2008), Xu et al.
(2008), Baum et al. (2000), Preiss et al.
(1996), Powell and Brantley (1992),
Sacks et al. (2001), Helper (1990),
Nohria and Eccles (1992), Klyver and
Foley (2012), Zhao et al. (2006), Witt
(2004)

Cultural Factors
(CF)

Defining how entrepreneurs are affected
from their nations’ and close
environments’ manners towards them

Jain and Ali (2013), Tracy (2013),
Karadeniz (2010), Singer et al. (2015),
Ratten (2014), Klyver and Foley (2012),
Morrison (2000), Begley and Tan (2001),
Thomas and Mueller (2000), Davidsson
and Wiklund (1997), Shane (1992), Ettlie
et al. (1993), Tiessen (1997), Lee and
Peterson (2000)

Government
Policies (GP)

Identifying governmental policies
applied to the entrepreneurs and ways to
improve them in order to increase the
level of entrepreneurial activity

Sebora et al. (2009), Jain and Ali (2013),
Çetindamar et al. (2012); Karadeniz
(2010), Singer et al. (2015), Cansız
(2014), Minniti (2008), Smallbone et al.
(2010), Tende (2014), Ratten (2014),
Dana (2004); Soriano and
Galindo-Martín (2012), Skica et al.
(2013)

Technological
Developments
(TD)

Determining the necessary technological
opportunities and related institutions
especially for technology related start ups

Cansız (2014), Örnek & Danyal (2015),
Robson et al. (2009)

Funds (FU) Giving information about different ways
of fund raising and concerning
institutions, banks, venture capital
markets, angel investors

Jain and Ali (2013), Cansız (2014),
Kuratko (2014), De Bettignies and
Brander (2007), Landier (2003),
Becker-Blease and Sohl (2015), Calopa
et al. (2014); Moy (2014), Khanin et al.
(2012), Keuschnigg and Nielsen (2003),
Rogers (2012), Ho and Wong (2007),
Kreft and Sobel (2005), Black and
Strahan (2002), Hein et al. (2005), Breit
and Arano (2009)
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3 Dynamic Intuitionistic Fuzzy Evaluation

3.1 Preliminaries

An intuitionistic fuzzy set ~I in a given set X can be defined as in Eq. (1).

~I ¼ hx; l~I xð Þ; v~I xð Þ; i; x 2 X
� �

; ð1Þ

where l~I is the membership degree l~I : X ! 0; 1½ � and v~I : X ! 0; 1½ � v~I is the non-
membership degree satisfying the condition 0� l~I xð Þþ v~I xð Þ� 1; for every x 2 X.

Let ~I tð Þ ¼ ð glfI tð Þ ; vfI tð Þ ; pfI tð Þ Þ be a dynamic intuitionistic fuzzy variable is a variable

with a time dimension. ~I tð Þ satisfies Eq. (2) (Xu and Cai 2012):

laðtÞ þ vaðtÞ � 1; paðtÞ ¼ 1� laðtÞ � vaðtÞ ð2Þ

where t is a time variable, lfI tð Þ 2 ½0; 1�, lfI tð Þ 2 ½0; 1�.
Let gI t1ð Þ; gI t2ð Þ; . . .; gI tnð Þ be the intuitionistic fuzzy numbers collected at n different

periods. The addition and multiplication operations can be given as in Eqs. (3) and (4)
(Xu and Cai 2012).

gI t1ð Þ � gI t2ð Þ ¼ ðlfI t1ð Þ
þ lfI t2ð Þ

� lfI t1ð Þ
lfI t2ð Þ

; vfI t1ð Þ
vfI t2ð Þ;

1� lfI t1ð Þ

� �
þ 1� lfI t2ð Þ

� �
� vfI t1ð Þ

vfI t2ð Þ
Þ

ð3Þ

k gI t1ð Þ ¼ ð1� ð1� lfI t1ð Þ
Þk; vkfI t1ð Þ

; 1� lfI t1ð Þ

� �k

� vkfI t1ð Þ
Þ; k [ 0 ð4Þ

Ii
+ = (1, 0, 0) represents the largest intuitionistic fuzzy number where Ii

− = (0, 1, 0)
represents the smallest intuitionistic fuzzy number.

3.2 Dynamic Intuitionistic Fuzzy Evaluation Method

In this Section, the steps of dynamic intuitionistic fuzzy evaluation method developed
by Xu and Yager (2008) is given.

Step 1. Define the criteria and alternatives.
Step 2. Evaluate alternatives at different periods using dynamic intuitionistic fuzzy

numbers.
Step 3. Determine the weight vector x tð Þ ¼ x t1ð Þ;x t2ð Þ; . . .;x tp

� �� �
by using

Eq. (5).

x tkþ 1ð Þ � x tkð Þ ¼ c; x tkð Þ ¼ gþ k � 1ð Þc ð5Þ

where tk is the kth period, xtk is the weight at the tthk period tnð Þ 2 0; 1½ � and Pp
k¼1

x tkð Þ ¼ 1.
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Step 4. Aggregate dynamic intuitionistic fuzzy numbers using Eq. (6).

gDIFWA
eI t1ð Þ;eI t2ð Þ;...;eI tnð Þ
� �
x tð Þ ¼ 1�

Yn

k¼1
1� leI tkð Þ

� 	x tkð Þ
;
Yn

k¼1
vx tkð ÞeI tkð Þ

;
Yn

k¼1
1� leI tkð Þ

� 	x tkð Þ
�

Yn

k¼1
vx tkð ÞeI tkð Þ

� �

ð6Þ

Step 5. Determine the intuitionistic fuzzy ideal Y þ ¼ I þ1 ; I þ2 ; . . .; I þm
� �T

and

negative ideal solutions Y þ ¼ I�1 ; I
�
2 ; . . .; I

�
m

� �T
:

Step 6. Calculate closeness coefficient for the ith alternative using Eq. (7).

Ci ¼
Pm

j¼1 wjð1� vijÞPm
j¼1 wjð1þ pijÞ ; ð7Þ

where i = 1,2,…,n and wj is the weight of the jth attribute

4 Entrepreneurial Support Evaluation

In this Section, the last years’ entrepreneurial support level of five countries are eval-
uated by using dynamic intuitionistic fuzzy evaluation. Three experts with academic
background quarterly assess the entrepreneurial support offive countries. Education and

Table 2. Dynamic intuitionistic fuzzy evaluations

EE CN CF GP TD FU

t1

Country 1 (0.1, 0.8, 0.1) (0.2, 0.7, 0.1) (0.7, 0.2, 0.1) (0.1, 0.5, 0.4) (0.6, 0.2, 0.2) (0.2, 0.2, 0.6)

Country 2 (0.9, 0.1, 0) (0.2, 0.1, 0.7) (0.8, 0.1, 0.1) (0.3, 0.6, 0.1) (0.5, 0.2, 0.3) (0.5, 0.1, 0.4)

Country 3 (0.2, 0.4, 0.4) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) (0.1, 0.8, 0.1) (0.7, 0.1, 0.2) (0.2, 0.2, 0.8)

Country 4 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.3, 0.3, 0.4) (0.7, 0.2, 0.1) (0.7, 0.1, 0.2) (0.8, 0.1, 0.1)

Country 5 (0.2, 0.4, 0.4) (0.5, 0.4, 0.1) (0.6, 0.3, 0.1) (0.6, 0.2, 0.2) (0.2, 0.7, 0.1) (0.8, 0.1, 0.1)

t2

Country 1 (0.5, 0.3, 0.2) (0.2, 0.4, 0.4) (0.5, 0.3, 0.2) (0.1, 0.2, 0.7) (0.3, 0.4, 0.3) (0.5, 0.2, 0.3)

Country 2 (0.5, 0.3, 0.2) (0.3, 0.5,0.2) (0.2, 0.1, 0.7) (0.1, 0.1, 0.8) (0.4, 0.3, 0.3) (0.8, 0.1, 0.1)

Country 3 (0.6, 0.3, 0.1) (0.7, 0.2, 0.1) (0.3, 0.5, 0.2) (0.7, 0.1, 0.2) (0.3, 0.5, 0.2) (0.6, 0.1, 0.3)

Country 4 (0.3, 0.2, 0.5) (0.5, 0.1, 0.4) (0.4, 0.3, 0.3) (0.9, 0.1, 0) (0.2, 0.3, 0.5) (0.2, 0.3, 0.5)

Country 5 (0.6, 0.2, 0.2) (0.4, 0.3, 0.3) (0.4, 0.2, 0.4) (0.8, 0.1, 0.1) (0.3, 0.1, 0.6) (0.6, 0.2, 0.2)

t3

Country 1 (0.9, 0.1, 0.1) (0.2, 0.5, 0.3) (0.8, 0.1, 0.1) (0.9, 0.1, 0) (0.4, 0.3, 0.3) (0.1, 0.4, 0.5)

Country 2 (0.8, 0.1, 0.1) (0.8, 0.1, 0.1) (0.3, 0.7, 0) (0.4, 0.3, 0.3) (0.5, 0.3, 0.2) (0.2, 0.7, 0.1)

Country 3 (0.8, 0.1, 0.1) (0.2, 0.5, 0.3) (0.5, 0.5, 0) (0.2, 0.2, 0.6) (0.3, 0.5, 0.2) (0.6, 0.4, 0)

Country 4 (0.8, 0.2, 0) (0.1, 0.5, 0.4) (0.2, 0.5, 0.3) (0.3, 0.2, 0.5) (0.9, 0.1, 0) (0.5, 0.2, 0.3)

Country 5 (0.4, 0.4, 0.2) (0.6, 0.2, 0.2) (0.4, 0.5, 0.1) (0.9, 0.1, 0) (0.3, 0.2, 0.5) (0.7,0.1, 0.2)

t4

Country 1 (0.2, 0.2, 0.6) (0.7, 0.2, 0.1) (0.1, 0.8, 0.1) (0.4, 0.2, 0.4) (0.4, 0.2, 0.4) (0.2, 0.7, 0.1)

Country 2 (0.2, 0.4, 0.4) (0.2, 0.3, 0.5) (0.7, 0.1, 0.2) (0.5, 0.1, 0.4) (0.8, 0.1, 0.1) (0.2, 0.6, 0.2)

Country 3 (0.8, 0.1, 0.1) (0.5, 0.1, 0.4) (0.5, 0.4, 0.1) (0.5, 0.2, 0.3) (0.9, 0.1, 0) (0.3, 0.1, 0.6)

Country 4 (0.7, 0.2, 0.1) (0.8, 0.2, 0) (0.3, 0.3, 0.4) (0.9, 0.1, 0) (0.4, 0.4, 0.2) (0.7, 0.2, 0.1)

Country 5 (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) (0.5, 0.3, 0.2) (0.5, 0.2, 0.3) (0.8, 0.1, 0) (0.9, 0, 0.1)
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experience level of the country (EE), connections (CN), cultural factors (CF), govern-
ment policies (GP), technological developments (TD) and funds (FU) are the evaluation
factors. The compromised dynamic intuitionistic evaluations are given in Table 2.

The dynamic evaluations are aggregated by using Eq. (6). The aggregated score of
the countries is given in Table 3.

The closeness coefficient for the countries is calculated by using Eq. (7) (Table 4).

Country 5 provides the highest entrepreneurial support whereas Country 3 provides
the least entrepreneurial support.

In order to check the robustness of the results, we apply one at a time sensitivity
analysis. In this sensitivity analysis, the weight of the entrepreneurial support factors is
changed. Figure 1 illustrates the results of sensitivity analysis.

The sensitivity analysis indicates that the change in the criteria weights has a
significant impact on the entrepreneurial support. Countries should define their prior-
ities and improve entrepreneurial support based on these preferences.

Table 3. Aggregated intuitionistic fuzzy evaluations

Aggregated
EE CN CF

Country 1 (0.605, 0.202, 0.193) (0.46, 0.343, 0.197) (0.543, 0.307, 0.15)
Country 2 (0.61, 0.217, 0.173) (0.486, 0.214, 0.3) (0.548, 0.179, 0.273)
Country 3 (0.736, 0.143, 0.121) (0.471, 0.214, 0.315) (0.465, 0.435, 0.1)
Country 4 (0.698, 0.187, 0.115) (0.623, 0.214, 0.163) (0.294, 0.35, 0.356)
Country 5 (0.516, 0.264, 0.22) (0.605, 0.176, 0.219) (0.464, 0.322, 0.214)

Aggregated
GP TD FU

Country 1 (0.604, 0.178, 0.218) (0.406, 0.259, 0.335) (0.246, 0.406, 0.348)
Country 2 (0.386, 0.166, 0.448) (0.641, 0.186, 0.173) (0.422, 0.367, 0.211)
Country 3 (0.449, 0.2, 0.351) (0.705, 0.224, 0.071) (0.464, 0.162, 0.374)
Country 4 (0.8, 0.132, 0.068) (0.654,0.217, 0.129) (0.591, 0.202, 0.207)
Country 5 (0.749, 0.141, 0.11) (0.57, 0.15, 0.28) (0.803, 0, 0.197)

Table 4. Closeness coefficient for the countries

Closeness coefficient

Country 1 0.579
Country 2 0.616
Country 3 0.63
Country 4 0.668
Country 5 0.683
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5 Conclusion

In this study, dynamic intuitionistic fuzzy evaluation method is used to define the
entrepreneurial support within a country. Education and experience level of the
country, connections, cultural factors, government policies, technological develop-
ments, and funds are the main criteria that affect entrepreneurial support. This dynamic,
multi-criteria approach enables us using different criteria and making the evaluation at
various periods. The results indicate that the criteria weights have a significant impact
on the final entrepreneurial support.

For the further studies, the weights of the criteria can be defined with a hierarchical
approach. The other extensions of fuzzy sets such as Type-2 fuzzy sets, hesitant fuzzy
sets or Pythagorean fuzzy sets can be used to model entrepreneurial support.

Fig. 1. Sensitivity analysis
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Abstract. System requirements are vital for software development. Defining
the appropriate requirements and their importance levels and taking the neces-
sary actions to fulfill the most crucial ones are the keys to a successful software
program. However, prioritization of the requirements is a complex problem that
involves fuzziness and ambiguities. In this study, we propose a multi-criteria
decision-making approach based on HFLTS (Hesitant Fuzzy Linguistic Term
Sets) to evaluate the system requirements. The proposed method is applied to
G@together project that focuses on developing an electronic job-matching
platform for disadvantaged people.

Keywords: Hesitant fuzzy sets � Requirements prioritization � Hesitant Fuzzy
Linguistic Term Sets

1 Introduction

Defining the system requirements of a software system involves determining associated
documentations, architectural design principles, coding and testing policies. It has a
vital role in software system development processes. The end users and stakeholders
accept an information system only when the requirements are well captured, analyzed
and prioritized [1–3]. Prioritization of requirements enables the software to function as
expected [4]. Requirements prioritization focus on identification of essential require-
ments as perceived by relevant stakeholders [5]. It is important to implement the core
requirements of stakeholders with respect to cost, quality, available resources and
delivery time [6, 7].

Determining which, among a set of requirements to be implemented first and the
order of implementation is known as requirements prioritization. Prioritization of
requirements provides many advantages before architecture design or coding. It helps
to deal with the challenges associated with software development such as; limited
resources, inadequate budget, insufficiently skilled programmers. It also helps planning
software releases since not all the elicited requirements can be applied in a single
release [8]. Perini et al. [3] propose that prioritizing requirements plays a significant
role in a system development process as it enhances software release planning, budget
control, and scheduling.

© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7_5



Leffingwell [9] defines the prioritization process as a complex multi-criteria
decision-making process. To fulfill the prioritization process, stakeholders will have to
compare the set of requirements to determine their relative importance through a
weighting or scoring system [10]. These comparisons may become complex as the
number of requirements increase [11].

The fuzzy sets theory is a mathematical representation of uncertainty [12]. Fuzzy
sets are frequently used in multi-criteria decision-making problems. Extensions of
fuzzy sets such as intuitionistic fuzzy sets, Type-2 fuzzy sets, Pythagorean fuzzy sets
and hesitant fuzzy sets are developed to represent uncertainty inherent in a system
better. In the cases where more than one sources of vagueness exist, regular fuzzy sets
may have shortcomings [13].

Hesitant fuzzy sets (HFSs) are developed by Torra [14] and enable solving prob-
lems in which a set of values are possible for membership of a single element. Based on
HFS, Rodriquez et al. [15] propose using linguistic terms for problem modeling and
solution. Hesitant fuzzy terms sets (HFLTS) enable the expert evaluations to be cap-
tured by linguistic terms flexibly.

In this paper, software requirements prioritization problem is handled by using
HFLTS and a case study from a G@together project, an EU project supported by Urban
Europe, is provided. In the proposed methodology, the obtained requirements are
grouped, and a hierarchy of requirements are formed. Elements in each level of the
hierarchy are pairwise compared using HFLTS.

The rest of the paper is organized as follows. Section 2 gives a literature review of
software requirement prioritization studies. Section 3 first introduce hesitant fuzzy sets
and then give the steps of the methodology. In Sect. 4, a real case study is provided,
and the requirements are prioritized. Finally, Sect. 5 provides the conclusions and
future research suggestions.

2 Current Studies on Requirements Prioritization

Prioritization of information systems requirements has been taking attention of aca-
demic researchers. In one of the recent studies, Achimugu et al. [4] present an extended
literature review by examining 73 studies on the topic. The authors identify 49 different
methods used for information systems requirements prioritization. Among these
techniques, the most commonly used ones are determined as; Analytic Hierarchy
Process (AHP), Quality Function Deployment (QFD), Planning Game (PG), Binary
Search Tree (BST), and Cumulative Voting (CV). AHP, proposed by Thomas Saaty
[16] is based on pair-wise comparison matrix to calculate the relative importance of
each requirement. Quality Function Deployment is used to add the design quality into
subsystems and component parts [17]. In PG (Planning Game) approach, the users
categorize their requirements into three classes namely, essential, conditional and
optional. The categorization process is based on two criteria: business value judged by
the clients and technical risk judged by the developers [18]. BST (Binary Search Tree)
technique analyzes all the elicited requirements and ranks them in a hierarchical order
using a parent-child relationship [4]. In CV (Cumulative Voting) method, all stake-
holders are given a fictional $100 and asked to spend it on the requirements.
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As all stakeholders accomplish the process, the total numbers of stakeholders to pri-
oritize requirements [9] divides the total expended money for each requirement.

3 Hesitant Fuzzy Multi-criteria System Requirements
Evaluation

3.1 Preliminaries

A hesitant fuzzy set (HFS) on X, where X is a fixed set can be defined as follows:

E ¼ \x; hEðxÞ[ jx 2 Xf g; ð1Þ

where hEðxÞ denotes membership degrees of the element x 2 X to the set E and its
values are in [0, 1].

A hesitant fuzzy linguistic term set (HFLTS) Hs is a finite subset of consecutive
linguistic terms of a linguistic term set S which can be shown as S ¼ s0; s1;. . .; sg

� �
[15, 19].

An HFLTS, Hs, is an ordered finite subset of consecutive linguistic terms of a
linguistic term set S which can be shown as S ¼ s0; s1;. . .; sg

� �
.

3.2 Steps of the Methodology

In this study, the weights of the system requirements are defined with a hierarchical
HFLTS approach [20].

• Defining the hierarchy of system requirements.
• Computing the weights of system requirements.
• Pairwise evaluations of system requirements with HFLTS given in Table 1 and the

context-free grammar “between” and “is”.

Table 1. Linguistic scale for hesitant fuzzy AHP

Linguistic term Abb. Triangular fuzzy number

Absolutely High Importance (AHI) (7,9,9)
Very High Importance (VHI) (5,7,9)
Essentially High Importance (ESHI) (3,5,7)
Weakly High Importance (WHI) (1,3,5)
Equally High Importance (EHI) (1,1,3)
Exactly Low Importance (EE) (1,1,1)
Equally Low Importance (ELI) (0.33,1,1)
Weakly Low Importance (WLI) (0.2,0.33,1)
Essentially Low Importance (ESLI) (0.14,0.2,0.33)
Very Low Importance (VLI) (0.11,0.14,0.2)
Absolutely Low Importance (ALI) (0.11,0.11,0.14)
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• Calculating fuzzy envelope for HFLTS by using the OWA operator given in
Eqs. (2–8) [19, 21].

a ¼ min aiL; a
i
M; a

iþ 1
M ; . . . :: ajM; a

j
R

n o
¼ aiL ð2Þ

d ¼ max aiL; a
i
M; a

iþ 1
M ; . . . :: ajM; a

j
R

n o
¼ ajR ð3Þ

b ¼
aim; if i þ 1 ¼ j

OWAw2 aim; . . . :: a
iþ j
2
m

� �
; if i þ j is even

OWAw2 aim; . . . :: a
iþ j�1

2
m

� �
; if i þ j is odd

8>><
>>:

ð4Þ

c ¼
aiþ 1
m ; if i þ 1 ¼ j

OWAw1 ajm; a
j�1
m . . . :: a

iþ j
2
m

� �
; if i þ j is even

OWAw1 ajm; a
j�1
m ; . . . :: a

iþ jþ 1
2

m

� �
; if i þ j is odd

8>><
>>:

ð5Þ

OWA a1; a2; . . .; anð Þ ¼
Xn

j¼1
wjbj ð6Þ

where bj is the jth largest of the aggregated arguments a1; a2; . . .; an; and W ¼
w1; w2; . . .; wnð ÞT is the associated weighting vector satisfying wi 2 0; 1½ �; i = 1, 2,
…, n and

Pn
i¼1 wi ¼ 1.

w1
1 ¼ a2; w1

2 ¼ a2 1� a2ð Þ; . . . . . . :w1
n ¼ a2 1� a2ð Þn�2 ð7Þ

w2
1 ¼ an�1

1 ; w2
2 ¼ 1� a1ð Þan�2

1 ; . . . . . . :w2
n ¼ 1� a1; ð8Þ

where a1 ¼ g� j�ið Þ
g�1 ; a2 ¼ j�ið Þ�1

g�1 g is the number of terms in the evaluation scale, j is
the rank of highest evaluation and i is the rank of lowest evaluation value of the given
interval.

• Obtaining aggregated pairwise comparison matrix (~C).

~C ¼
1 ~c12 � � � ~c1n
~c21 1 � � � ~c2n
..
. ..

. ..
...
...
. ..

.

~cn1 ~cn2 � � � 1

��������

��������
ð9Þ

where ~cij ¼ ci j i ; ci j m1 ; ci j m2 ; ci j u
� �

:
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• Computing fuzzy geometric mean for each row (~riÞ of the matrix ~C:

~ri ¼ ~ci1 � ~ci2. . .� ~cinð Þ1=n ð10Þ

• Calculating the fuzzy weight ~wCR
i

� �
:

~wCR
i ¼ ~ri � ~ri � ~r2. . .� ~rnð Þ�1 ð11Þ

• Calculating the fuzzy global weights of sub-customer requirements:

~wG
ij ¼ ~wCR

ij � ~wCR
ij ð12Þ

where ~wG
i j is the global weight of sub-customer requirement ij.

• Defuzzifying ~wG
ij and normalizing the defuzzified values:

wG
ij ¼

aþ 2bþ 2c ¼ d
6

ð13Þ

wN
ij ¼

wG
ijP

i

P
j w

G
ij

ð14Þ

4 Application

The proposed method is applied to G@together project funded by JPI Urban Europe
which an interdisciplinary project is aiming to build an e-platform facilitating the
employment of qualified but disadvantaged people. People from lower income back-
ground, disabled people, and victims of family violence are considered as disadvan-
taged groups suffering social exclusion, having limited access to natural resources,
education, and economic opportunities.

Although there are various studies in the field of job matching [22–26] the con-
sidered problem is different from other from various perspectives. First of all, in
classical job matching job seekers and employers are looking for the best available
alternative. However, in the given case, the job seekers may not be the best available
because by definition they are disadvantaged. Another important distinction about
systems is that policy makers are also stakeholders of them.

Elicited system requirements are grouped under five factors: (i) Awareness and
Personal Improvement Content (APIC): This part contains the main theme and message
of the organization and useful information and links related to the self-improvement of
the job seekers. (ii) Tools and utilities for entering the job and job seeker profile data
(PD): These are the system features that introducing job seekers and companies
regarding their specific characteristics. (iii) Filtering/Matching (FM): This part includes
search and advanced search features enabling to filter according to multiple profile
criteria such as industry or location. (iv) Evaluation Tests (ET): The system features to
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evaluate the competencies, personal qualities, and suitability of the job seekers for the
job. (v) User friendliness (UF): Includes features such as integration with corporate
websites and informing about available employment opportunities through instant
messaging. System requirements hierarchy is given in Fig. 1.

Three experts evaluate the system requirements. The compromised verbal evalua-
tions are given in Table 2.

Table 3 is obtained by using aggregation operations.

Fig. 1. System requirements hierarchy

Table 2. Verbal evaluations

APIC PD FM ET UF

APIC EE Between EHI
and ESHI

Between ESLI
and WLI

Between EE
and EHI

Between EHI
and ESHI

PD EE Between WLI
and ELI

Between WLI
and EE

ELI

FM EE Between ELI
and EHI

Between EHI
and WHI

ET EE Between ESHI
and VSHI

UF EE

Table 3. Numerical evaluations

APIC PD FM ET UF

APIC (1,1,1,1) (1,2.78,3.22,7) (0.14,0.2,0.33,1) (1,1,1,3) (1,2.78,3.22,7)
PD (0.14,0.31,0.36,1) (1,1,1,1) (0.2,0.33,1,1) (0.2,0.93,1.07,1) (0.33,1,1,1)
FM (1,3,5,7) (1,1,3,5) (1,1,1,1) (0.33,1,1,3) (1,1,3,5)
ET (0.33,1,1,1) (1,0.93,1.08,5) (0.33,1,1,3) (1,1,1,1) (3,5,7,9)
UF (0.14,0.31,0.36,1) (1,1,1,3) (0.2,0.33,1,1) (0.11,0.14,0.2,0.33) (1,1,1,1)
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The proposed method is applied to the importance levels in Table 4 are obtained.

5 Conclusion

The real world application shows that HFLTS base method provides an efficient and
easy to use tool for requirements prioritization. The experts can easily make their
evaluations using linguistic terms sets. The proposed method has a limitation since it
only focuses only on user requirements. The technique can be improved by integrating
developers’ point of view showing the costs and technical complexity of the require-
ments, to better help system development.

For the further studies, the robustness of the paper can be analyzed with a sensi-
tivity analysis.
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Abstract. Because of the irrepressible growth in information technologies and
telecommunication infrastructure especially for mobile devices, people are more
disposed to search proper products and find out attractive offers with lower
prices. In order to reach potential customers, companies deal with offering
personalized messages including special promotions and discounts. In this
respect, recommender systems have begun to use as one of the essential tools for
making appropriate selections considering diversified conditions and personal
preferences. On the other hand, users’ preferences could not be easily deter-
mined or predicted in some cases, as seen in visiting prediction of mobile users.
Thus, the use of location based service applications enable the determination of
users visiting patterns, except making predictions. In this study, an interval
valued hesitant fuzzy clustering approach is adapted based on location similarity
and fuzzy c means clustering is applied for user segmentation. After that,
matching location groups and user segments is provided the representation of
user visiting tendency. By using this approach, advertisers will be able to handle
their advertisements considering location similarities and user groups that helps
the implementation of personalized advertising recommender systems.

Keywords: Location similarity � Segmentation � Hesitant fuzzy clustering �
Interval valued hesitant fuzzy clustering

1 Background

As a result of rapid changes in mobile devices and location tracking technologies, more
and more people follow instant messages that present customized offers for specific
locations. Location based systems or in another saying, location aware systems rely on
geographical information determination of mobile users via global positioning systems
(GPS) or Bluetooth (via Beacons) to pinpoint users’ real time locations (Lee et al.
2015) .Today, location based systems are widely adapted in real life, especially seen for
targeted advertisement. This adaptation can be seen as location based recommender
systems which present an alternative channel that enables companies to send special
offers based on consumers’ preferences and previous location and present opportunities
for personalization and increasing revenue (Xu et al. 2009). According to Junglas and
Watson (2008), two main steps are necessary to conduct location based systems:
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location determination and modeling to indicate the context of location, and “possible”
future locations by geo spatial data processing and prediction algorithms and second,
user preference modeling for specifying user properties from previously searching
patterns, online profiles, previously visited places etc.

In recent years, location determination and the prediction of future visits have
become important and integrated with recommender systems in targeted advertisement
management, especially making personalized offers which can enhance companies’
communication channels for customers with limited advertisement budgets. These
systems are relied on time and preference based services including monitoring of
current position of mobile user and searching appropriate offers or advertisement
according to possible visiting places extracted from previously visited places (Wu et al.
2015). However, customers generally avoid to read of follow the instant messages
because of the substantial number of messages, irrelevant offers or redundancy of the
message context (Shin and Lin 2016). The other reasons of avoiding these push up
messages are location privacy which is a significant barrier to the penetration of
location based services and accidentally keystrokes (Abbas et al. 2014; Pingley et al.
2012). To overcome this problem, continuous information feedback for incoming
conditions might be beneficial. Thus, advertisers are prone to search and apply more
efficient approaches that provide both personalized contexts and broad alternatives to
their recommender systems for individual and commonly-held advertisements (Dao
et al. 2012). Additionally, user interests and needs continuously change and the dif-
ferentiation of these needs and interests can be problematic to perform efficient rec-
ommender systems. Thus, location prediction and customer segmentation exist as the
most important topics in location based recommender systems for reflecting user
movements as a characteristic of customer preferences or needs (Fan et al. 2015).

In this respect, the main research question of this study is the matching of customer
movements with respect to previously visited locations and location characteristics the
determination of alternative locations according to the similarities assigned by common
characteristics. For this purpose, location clustering can be applied for grouping
locations and alternative location detection can be conducted of in terms of the simi-
larities appeared from the location clusters and customer segments. Since the nature of
the problem contains insufficient data, vague environment and conflicting expectations
from diverse users, the clustering problem varies as a fuzzy clustering problem, in
particular, fuzzy partition of clusters (Aliahmadipour et al. 2017). In addition to that,
location data could be presented as interval valued fuzzy numbers to provide the
hesitancy of users’ movements which can enhance the recommendation of proper
alternative locations. Therefore, in this study, location grouping is conducted by using
interval valued hesitant fuzzy clustering. Then, the extracted location clusters are
evaluated according to fuzzy c means based user segments. In this way, alternative
location clusters for each characteristic are acquired.

The remainder of this paper is structured as follows: the second section explains the
brief concepts of location based mobile advertising and location based clustering. The
third part presents basic concepts of fuzzy clustering, hesitant fuzzy sets and interval
valued hesitant fuzzy clustering. The proposed methodology is shown with a numerical
application and the last section contains the conclusion and discussion part.
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2 Related concepts

2.1 Location Based Mobile Advertising

Because of the widespread usage of mobile technologies such as GPS and Bluetooth 4.0,
location based systems can adapt users’ personalized interests in a specific location in a
specific time (Fan et al. 2015). Thus, location based systems aim to provide content
providers to send proper services to customers when they visit a specific location at a
specific time (Tussyadiah 2012). The main concepts of these services are tagging,
tracking, navigating and mobile commerce. In particular, tagging enables matching
relevant information to a specific location. Tracking services provide information on the
position of objects. In addition to that, navigating systems assist people to move from one
place to a target destination. Mobile commerce systems are adopted as sending proper
advertisements to a targeted customer in a specific location to facilitate location and
event based service flow (Wu et al 2015). All these services are the results of consumer
interests for the developing of targeted location based systems (Lin et al. 2016).

Location based services include both pull and push systems. Pull advertising
reveals when customers search information about a specific topic or item. As distinct
from pull advertising, advertisers send automatic messages to customers appeared a
specific location in push advertising. All these mechanisms could be evaluated as a type
of targeted advertising where vendors send customized messages to consumers’ mobile
devices when they are near a specific location (Unni and Harmon 2007). In this respect,
permission based pull advertising orientation; real time positioning and personalization
are fundamentals for location based advertising.

Although significant advantages appeared using location based systems, some
challenges are also aroused. Two main challenges are related to the privacy issue and
irritation of messages: customers do not want to share their location data with adver-
tisers and do not expect to receive push messages due to the irrelevance of the message
and disruption of instant messages (Xu et al. 2009). The other challenge for location
based advertising is customers’ location accuracy and the prediction of future routes
that a large volume of both spatial and temporal data should be processed. Another
research direction is the decision of the integration of different data sources especially
for complicated business problems as seen in mobile marketing. In our case, selection
of alternative locations requires collecting different data from diversified sources to
provide conduction of the relationship between people, time, location, objects and their
relationships between each other. The core business in these applications is to ensure
necessary information to users, provide the automatic implementation of the services
that satisfy customer expectations and collect information concerning about actual data.
(Gavalas et al. 2014).

2.2 Location Based Clustering

The revealing of advancements in mobile technologies and the wide application of
location based services has derived the integration of location based services with
respect to user similarities. Today, advertisers are prone to deliver advertisements and
promotion messages considering location information that is stated from mobile
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devices (Lin et al. 2016). The demand for location based systems integration with
clustering is extracted as a need of understanding the process that customer makes the
purchasing decision considering location, time and actual needs (Schilke et al. 2004).
The needs can be derived from consumer life styles, demographical information,
consumption behavior and the reaction to previously sent messages (Shin and Lin
2016). On the other hand, these factors don’t solely reflect the entire purchasing
decision. Thus, researchers try to search other indicators that can reflect customer
characteristics such as geographical data, digital participation in social media and
search history for products for better understanding of the changes in customers pur-
chasing tendency (Gavalas et al. 2014).

Location based clustering is an essential tool for the use of recommender systems.
Recommender systems have divided into two main filters: content based filtering and
collaborative filtering. Content based filtering considers the degree of similarity
between offers and interests. However, collaborative filtering investigates the degree of
integration of recommendations and user preferences (Wei et al. 2010). According to
Zhang et al. (2007), content based filtering is conducted by grouping similar items for
offering new items according to previous preferences and collaborative filtering relies
on finding the appropriate option based on users’ preferences to decide new users’
preferences (Zhang et al. 2007). In this respect, user preference similarities could be
evaluated from geo data, visited location category, price level, rating, and number of
stars, as seen from Foursquare for location based recommender systems. To conduct
the similarity calculation, users should be grouped as segments and the recommen-
dations should be given according to the diversification of these segments. The
divergence between users can be accomplished either by categorization or by adapting
analytical techniques such as cluster analysis, heuristic methods, regression, neural
network, kNN, link analysis, decision tree, association rule mining etc. (Park et al.
2012). By using these methods, gathering user comments and reflections that the
essential clue of customer disposition are provided to assess the changes in customer
behavior and make realistic offers not to spend huge amount of data that means a vast
of time, money and manpower. Lastly, runtime of the segmentation and recommen-
dation techniques have a significant role for the implementation of real time location
based clustering (Öztayşi et al. 2016).

3 Motivation

Because of the results of mobile technologies have been widely penetrated and
improved to facilitate marketing operations and advertising, mobile-wireless tech-
nologies are increasingly applied to send proper messages to customers (Ortega et al.
2013). Consequently, mobile location based applications have been gradually adapted
to make individualized recommendations using customers’ geo data occurred from
GPS or wireless indoor positioning systems (Liu 2007). As a consequence of increasing
demand on mobile technologies and improvements of the integration of smartphones
with location detection systems, personal positioning techniques based advertising
systems have become emitted and these improvements facilitated the tracking cus-
tomers’ physical location and purchasing behavior in shopping fields. For this reason,
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clustering algorithms are widely conducted on the evaluation of the similarities stated
from individuals’ positions in shopping mall and provide the assignment of the cus-
tomer groups. In other words, location-aware systems can be adapted to advertising
activities by making location sensitive suggestions or promotions in accordance with
customer’s previous visits for focusing on the customers’ future buying behavior.

The literature provides a wide range of algorithms for clustering, these algorithms are
categorized according to the formation of clusters by using fuzzy data or crisp data and
(Oztaysi and Onar 2014). Crisp clustering is applied for classical sets theory and includes
the process of converting input data to mutually exclusive subsets. Based on this fact,
crisp clustering algorithms assign input data to one certain cluster. On the other hand,
fuzzy clustering algorithms assign an element to several clusters simultaneously with
various degrees of membership that ranges between 0 and 1 and naturally, the belonging
of the clusters are presented as degrees of each input data to allow the appearance of
diversified distribution of assigned clusters (Oztaysi and Isik 2014). This property is
useful for grouping customers to provide them wide range of recommendations.

Academicians and practitioners generally use clustering algorithms for dividing a
dataset into different clusters. To reflect uncertainty for forming clusters, clustering
tasks are handled as two points of view; i) considering uncertain data, ii) considering
crisp data with uncertain clusters, in particular, fuzzy partition. (Aliahmadipour et al.
2017) Therefore, one of the most adapted clustering algorithm for fuzzy clustering is
fuzzy c means clustering as agglomerative approach in which initial clusters should be
determined in advance (Chen et al. 2014).

In this study, location grouping according to Foursquare ratings of each shopping
mall, number of votes in Foursquare, monthly total number of visits, number of stores
in shopping mall, transportation level (1 presents worst and 3 presents best), real estate
index from Hurriyet Emlak and percentage of rent price variations in a year is achieved
initially by using interval valued hesitant fuzzy c means clustering. Then, users are
grouped according to visiting time zone (morning (1), afternoon (2), late afternoon
(3) and night (4)), location, type of mobile application and location visit day using
fuzzy c means clustering. Finally, user clusters are matched with location groups with
some certain criteria such as number of visits per month and number of visited different
places. This approach will ensure gathering location similarity and constitutes the
matching of location groups and user groups and enhance various location alternatives
that a specific user could visit. Thus, advertisers will be able to submit location related
promotions and advertisements to relevant customer groups as a starting point of
recommender systems.

4 Methodology

4.1 Preliminaries

Hesitant fuzzy sets are the extension of fuzzy sets that presents hesitancy degree when
there is an uncertainty in terms of the determination of membership function. Some of
the related definitions are given in the following:
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Definition 1. A hesitant fuzzy set (HFS) on a reference set X is a function of h that
returns to a subset of values in [0, 1] and h could be represented as follows:

h: X!{[0,1]}
In this respect, a HFS can be expressed as the union of the membership functions.

Definition 2. Let M is a set of n number of membership function which could be
represented as M = {l1, l2.., ln} and HFS with M could be defined as hM:
M ! {[0, 1]} and hM xð Þ ¼ l1 xð ÞS l2 xð ÞS ::

S
lnðxÞf g.

Definition 3. Let S a linguistic term set as {s0, s1, s2,.., sf }which has an order of terms
as S: si � sj where i � j and has a maximization and minimization operator as max
(si, sj) = si and min (si,sj) = sj where i � j. A hesitant fuzzy linguistic term set is
represented as Hs which has an ordered finite subset of sequential linguistic terms using
upper (HSþ Þand lower bounds ðHS�Þ and could be also defined as HSþ ¼ maxðsiÞ ¼ sj
and where si � sj and HS� ¼ minðsiÞ ¼ sj where sj � si for si 2 Hs; 8i
Definition 4. The HFLTS could be defined as the composition of upper and lower
bounds which could be presented as HS: HS� ;HSþ½ � where HS� �HSþ .

Definition 5. Wang et al. (2014). Linguistic term si is involved in a linguistic term set
S, if wi 2R+. Linguistic scale function u is mapping as: S ! R+ such that u:
si ! wi(i = 0, 1, …, 2t), where 0 � w1 < w2 < … < w2t � 1. In this respect,
linguistic scale function used in this study is given as follows: u sið Þ ¼

ta� t�ið Þa
2ta

tb þ i�tð Þb
2tb

(
i ¼ 0; 1; . . .; t

i ¼ tþ 1; tþ 2; . . .; 2t
, where a, b ∊ (0, 1].

Definition 6. Interval valued hesitant fuzzy sets. (Wang et al. 2014). Let X =
x1; x2; . . .; xnf g be a reference set and sh(X) ∊ S. An interval valued hesitant fuzzy

linguistic set is defined as H ¼ x; sh Xð Þ;CHðxÞ; x 2 X
� �

Zhang et al. (2016) defined some operations on the IVHFSs. Let a ¼ shðaÞ;Ca
� �

and b ¼ shðbÞ;Cb
� �

be two interval valued hesitant fuzzy linguistic number (IVHFN).

(1) neg(a) = �u�1 �u s2tð Þ � �u sh Xð Þ
� �� �

;
S

r1¼ r�1 ;r
þ
1½ �2Ca

1� rþ1 ; 1� r�1
� 	� �

(2) a� b ¼ �u�1 �u sh að Þ
� �þ �u sh bð Þ

� �� �u sh að Þ
� �

:�u sh bð Þ
� �� �

;S
r1¼ r�1 ;r

þ
1½ �2Ca;r2¼ r�2 ;r

þ
2½ �2Cb

r�1 þ r�2 � r�1 :r
�
2 ; r

þ
1 þ rþ2 � rþ1 :rþ2

� 	� �
Definition 7. (Wang et al. 2014). Let a ¼ shðaÞ;Ca ¼ shðaÞ;

S
r¼ r�;rþ½ �2Ca

r�; rþ½ �f g be
an interval valued hesitant fuzzy linguistic number. Score function S(a) is defined for
an interval valued hesitant fuzzy linguistic number (IVHFLN) as follows:
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S að Þ ¼ u�ðshðaÞÞ �
P

r¼ r�;rþ½ �2Ca
ðr� þ rþ Þ

2:#Ca

where # Ca is the number of the interval numbers in Ca. For two IVHFNs a and b if S
(a) > S(b), then a > b; if S(a) = S(b), then a = b.

Definition 8. Let a ¼ shðaÞ;Ca and b ¼ shðbÞ;Cb are two IVHFLNs. Distance between
two IVHFNs is defined in the following:

d a;bð Þ ¼


1
2�#C~h

�
X

r1¼ r�1 ;r
þ
1½ �2Ca;r2¼ r�2 ;r

þ
2½ �2Cb

�u sh að Þ
� �

r�1 � �u sh bð Þ
� �

r�2
� �2 þ �u sh að Þ

� �
rþ1 � �u sh bð Þ

� �
rþ2

� �2� �vuut

where #C~h ¼ max #Ca;#Cb
� �

that # Ca and # Cb are the number of the interval
numbers in Ca and Cbrespectively.

4.2 Fuzzy c means clustering

Clustering is defined as the process of dividing a set of observations into subgroups
which are entitled clusters. Various techniques can be used for clustering and the aim of
these techniques is to organize input data so as to make similar objects in a cluster, and
dissimilar objects in different clusters (Han et al. 2001). Clustering techniques are based
on similarity term which is calculated by mathematical distance (Babuska 2009).
Clustering is an unsupervised learning technique, in other words there are no prede-
fined groups and a single correct solution (Theodoridis and Koutroumbas 2008).

In clustering problem, the input is a set of observations or objects each of which
consists of different attributes. The result of cluster analysis produces the clusters and
membership of each data point to these clusters. These outputs are represented by the
partition matrix. Ruspini (1970) defines the conditions for a fuzzy partition matrix as
follows:

lik 2 0; 1½ �; 1� i� c; 1� k�N ð1aÞXc

i¼1
lik ¼ 1; 1� k�N; ð1bÞ

0\
XN

k¼1
lik\N; 1� i� c ð1cÞ

Equation (1b) constrains the sum of each column to 1, and thus the total mem-
bership of each equals one.

One of the most popular fuzzy clustering methods is fuzzy c-means (FCM) which is
based on minimization of the following objective function:

J Z;U;Vð Þ ¼
Xc

i¼1

XN

j¼1
ðlijÞmzj � v2i ð2Þ
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where Z is the data set to be partitioned, U is the fuzzy partition matrix, V is the vector
of cluster centers. In the formula, N represents the number of observations, c is the
number of clusters and µ shows the membership value, m is the parameter called
fuzzifier which determines the fuzziness of the resulting clusters. The fuzzifier
parameter can get values 1 and more. When the fuzzifier parameter equals to one, then
the clusters are formed in crisp format. In the formula, zk - vi shows the distance
between observation k and the center of cluster i.

The minimization of the mention objective function represents a nonlinear opti-
mization problem that can be solved by using a variety of methods such as iterative
minimization, simulated annealing or genetic algorithms. Babuska (2009) presents the
steps of fuzzy c-means (FCM) algorithm as follows:

1. Initialize U=[uij] matrix, U
(0)

2. At k-step: calculate the centers vectors V(k)=[vi] with U(k)

vi ¼
PN

i¼1 l
m
ij :zjPN

i¼1 l
m
ij

3. Update U(k), U(k+1)

lij ¼
1

Pc
k¼1

zj�vik k
zj�vkk k

 � 2
m�1

If Uðkþ 1Þ � UðkÞ�� ��\d then STOP; otherwise return to step 2.

4.3 Interval Valued Hesitant Fuzzy c means clustering

In some real life cases, data could obtain hesitancy or crisp data clustering could be
presented including hesitation degree. This hesitation may be applied as considering
uncertain data and hesitant fuzzy data or considering crisp data set with respect to
uncertain clusters (Aliahmadipour et al. 2017). Thus, fuzzy c means clustering algo-
rithm should be adapted to interval valued hesitant fuzzy sets. Before implementation
of clustering, location value evaluation and comparison is conducted with three expert.
The procedure is described in the following:

1. Initialize U = [uij] matrix and transform the data to pairwise interval valued hesitant
fuzzy expression for each decision maker.

2. Aggregate pairwise interval valued hesitant fuzzy expression using IVHFN
aggregation operator given in the following:
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Let aj = Gj(x) = shðajÞ;Caj (j = 1, 2, …, n) be a collection of IVHFLNs, then the
IVHFLPWA operator can be defined as follows:

IVHFLPWA a1; a2; . . .; anð Þ ¼ T1Pn
i¼1 Ti

a1 � T2Pn
i¼1 Ti

a2 � . . .� TnPn
i¼1 Ti

an

¼ f�1
Xn
j¼1

TjPn
i¼1 Ti

f sh ajð Þ
� � !

;
[

r1¼ r�1 ;r
þ
1½ �2Ca1 ;...:;rn¼ r�n ;r

þ
n½ �2Can

Pn
j¼1 f sh ajð Þ

� �
r�j TjPn

j¼1 f sh ajð Þ
� �

Tj
;

Pn
j¼1 f sh ajð Þ

� �
rþj TjPn

j¼1 f sh ajð Þ
� �

Tj

2
64

3
75

8><
>:

9>=
>;

whereT1 ¼ 1; Tj ¼
Qj�1

k¼1
S akð Þ for (j = 1, 2,…, n) and S(ak) is a score function of ak

calculated from Definition 7.

3. Determine cluster number according to Xie Beni index.
4. At k-step: calculate the centers vectors V(k)=[vi] with U(k)

vi ¼
PN

i¼1 l
m
ij :zjPN

i¼1 l
m
ij

5. Calculate distance between cluster centers and points using Definition 8.
6. Same as the Step 3 in fuzzy c means clustering.

5 Application

As mentioned before, location similarity and grouping is necessary as the initial step for
location prediction of moving customers. Thus, location grouping is adapted using
Foursquare ratings of each shopping mall, number of votes in Foursquare, monthly
total number of visits, number of stores in shopping mall, transportation level as 1
presents worst and 3 presents best, real estate index from Hurriyet Emlak and per-
centage of rent price variations in a year. After that, pairwise comparison matrix of each
shopping mall is gathered in the form of interval valued hesitant fuzzy numbers. Due to
the page restrictions, a sample of crisp data and hesitant information computed from
linguistic scale function are given in Tables 1 and 2. Hesitant fuzzy information matrix
of each locations are determined from comparison of two locations with each other and
interval valued hesitant fuzzy numbers are gathered from this comparison using lin-
guistic scale function description given in Definition 5. Note that the lower side of
pairwise comparison matrix is calculated from Definition 6 using neg (a).

After that, interval valued hesitant fuzzy c means clustering is adapted to this
pairwise comparison matrix. In order to determine the number clusters, Xie-Beni index
is used. The algorithm is run with different values for c parameter as presented in
Table 3. The lower values of Xie-Beni index refer to better clustering results, thus for
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this study c value is selected as three, which means in the study three clusters are
formed. Second, cluster centers are randomly determined and IVHFLS based distance
of each location to each cluster center is computed from using Definition 8.

In order to understand the formed groups, the best way is to analyze the centroid
table. Centroid table shows the typical characteristic of each cluster by calculating the
cluster centers. Table 4 shows the resulting centroid table for the study when c is equal
to three. A sample centroid table for locations 111, 60, 62, 66 and 68 is presented in
Table 4.

Finally, clusters and locations in each cluster are represented in Figure 1. From this
graph, one could conclude that Cluster 1 and Cluster 3 have intersections that constitute
alternative locations of each other. Cluster 2 and Cluster 1 have less intersection and
Cluster 2 and Cluster 3 don’t have any intersection. According to the characteristics of

Table 1. A sample of crisp data of shopping malls (7 from 31 locations)

Location
ID

Location
name

Foursquare
rating

Votes in
foursquare

Total
number of
visits
(month)

Variety
of
stores

Transportation
level

Real
estate
index

Variety
of rent
(%)

111 City’s
Nişantaşı

8.8 17,447 875,342 90 3 36 −0.14

60 212
AVM

6.6 8900 543,876 115 1 16 −0.22

62 Akasya
AVM

9 29,469 1,134,129 237 3 35 0.23

66 Astoria 6.6 2813 798,645 61 2 31 −0.4

68 Buyaka 8.5 17,556 654,390 106 1 14 −0.04
69 Canpark 6.6 7206 876,522 180 2 14 −0.04

71 Capitol 8 14,827 1,245,176 137 3 18 0.04

Table 2. A sample of aggregated pairwise comparison of hesitant fuzzy information of each
location

111 60 62 66 68

111 [1, 1] {[0.6,0.8],
[0.7,0.8]}

{[0.3, 0.6],
[0.7, 0.9]}

{[0.3, 0.4],
[0.5, 0.7]}

{[0.3, 0.4], [0.4,
0.5], [0.5, 0.6]}

60 [1,1] {[0.3, 0.4],
[0.5, 0.6]}

{[0.3, 0.5],
[0.6, 0.8]}

{[0.2, 0.3], [0.4,
0.5]}

62 [1,1] {[0.7, 0.8],
[0.8, 0.9]}

{[0.5, 0.7],
[0.8,0.9]}

66 [1,1] {[0.4, 0.6]}
68 [1,1]

Table 3. Xie-Beni index values for different values of c parameter

C 2 3 4 5

Xie-Beni 1.52 � 10−06 10.28 � 10−07 3.45 � 10−05 6.2 � 10−05
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the locations, Cluster 1 is entitled as “Crowded shopping malls” due to their trans-
portation availability and increasing level of sub-province development in their own
right. Cluster 2 is named “Middle income focused shopping malls” as due to the variety
of stores for each income level. Cluster 3 is identified as “Upstate shopping malls”
because of their prestigious popularity and outstanding brand.

In the second phase, users are grouped according to time zone (morning (1),
afternoon (2), late afternoon (3) and night (4)), location, type of mobile application and
location visit day by implementing fuzzy c means clustering. Again, Xie-Beni index
values for different values of c parameter are determined and four clusters are gathered
to perform whole dataset of users. Second, cluster centers are randomly assigned and
distance between user visits vector to cluster centers are calculated. Finally, customers
are grouped as seen from Figure 2.

The most important result from this study is to identify the characteristics of the
user segments. Based on the cluster plot given in Figure 2, the segments are entitled as
“voyager visitors”. The customers in cluster 1 are using airports and upstate shopping
malls dramatically higher than the existing customers and generally visit in Fridays and
Saturdays. In the second cluster, customers could be named as “weekday visitors” that
generally involves workers that visits shopping malls in the afternoon breaks. Third
cluster obtains “popular shopping mall visitors” that customers spend their leisure time
in popular and overcrowded shopping malls. Final cluster is named as “vacation”
focused hedonics” that generally visit prestigious shopping malls in the weekends.

The final step for location based clustering is the matching location segments and
user segments. To perform the matching of visited location and user segments, location

Table 4. Centroid table of fuzzy c-means algorithm (c = 3)

Locations Clstr1 Clstr2 Clstr3

111 2.69 0.14 1.7
60 0.23 0.01 0.99
62 3.67 0.7 6.39
66 0.35 0.01 0.83
68 1.67 0.14 1.21

Fig. 1. Cluster plot for locations (shopping malls)
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clusters and user clusters database are merged that rows present user segments and
columns indicate location segmentation cluster considering some certain criteria such
as number of visits per month and number of visited different places as presented in the
following manner.

According to Table 5, “Vacation” focused hedonics” mainly visit crowded shop-
ping malls to discover new shopping trends and make use of their spare time by
activities. Similarly, “Weekday visitors” has the same reason but they generally use
shopping malls in the afternoon break for eating lunch. Besides that, “Weekday

Fig. 2. Cluster plot for customer segments

Table 5. User segment-location group matching

(1) Crowded
shopping malls

(2) Middle income focused
shopping malls

(3) Upstate
shopping malls

Voyager visitors x
Weekday visitors x x
Popular shopping
mall visitors

x

“Vacation”
focused hedonics

x
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visitors” also visits middle income focused shopping malls after hours to follow pro-
motions. The motivation of this preference may be they do not want to allocate their
spare time for going shopping. On the other hand, “Voyager visitors” and “Popular
shopping mall visitors” generally prefer to go shopping malls to spend their time in
their weekends.

6 Conclusion

Because of the results that mobile technologies have been widely penetrated and
improved to facilitate marketing operations, mobile-wireless technologies are
increasingly applied to send proper messages to customers. Before that, customer
purchasing tendency should be properly analyzed considering diversified characteris-
tics such as previous visits, location data etc. In this respect, location clustering and
user segmentation can be applied for grouping locations before the determination of
alternative locations.

To detect users’ location, various services can be maintained such as an adver-
tisement or navigation to a specific location. In this study, a novel use of this data is
presented and initial result from a real world case study is conducted. To this end, data
from a beacon network is collected, preprocessed and clustered for user segmentation.
On the other side, location segmentation is implemented using interval valued hesitant
fuzzy clustering.

Results indicate that such a location data from various locations has the potential to
show customers’ life style and interests. In traditional marketing segmentation, seg-
mentation is generally based on demographics or customer value. However, the pro-
posed segmentation approach is more accurate since it is based on real location data. As
a result, market segmentation based on customer location data propose a high potential
for segmentation and get insight about each individual customer before implementing
personalized advertising recommender systems.
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Abstract. The paper deals with the problem of aggregation of risk level
assessments. We describe the technique of a risk level evaluation taking
into account values of the risk level obtained for objects which are in some
sense equivalent. For this purpose we propose to use the construction of
a general aggregation operator based on the corresponding fuzzy equiv-
alence relation. Numerical example of the investment risk level aggre-
gation using an equivalence relation obtained on the basis of different
macroeconomic factors for countries of one region is considered.

Keywords: Aggregation operator · General aggregation operator ·
Fuzzy equivalence relation · Risk level assessment

1 Introduction

Our paper deals with the special construction of a general aggregation operator,
which is based on a fuzzy equivalence relation. The need for such operator may
appear dealing with different problems. For example, it may appear in decision
making if fuzzy sets represent evaluation of some objects provided by several
experts in the case when at the same time we have a fuzzy equivalence relation
between these objects. In order to obtain the evaluation of some object it is
important to take into account how the experts evaluated equivalent objects.
So if we want to aggregate several experts’ evaluations for this object taking
into account the equivalence relation, it could be performed by the proposed
operators.

Let us describe a particular real-world example where one could use a gen-
eral aggregation operator based on a fuzzy equivalence relation. For example,
we could consider an investment firm or a bank, which investigates investment
opportunities in different countries. One of the key components of risk manage-
ment in such institutions is a country risk evaluation. Management of the institu-
tion approves maximal limits for risk exposures to be taken in different countries.
The evaluation of these risk limits is usually performed by risk analysts (experts)
taking into account economical, financial, political and social background of the
particular countries. There are general guidelines for aggregation of similar risk
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factors [1,9]. An alternative approach for aggregating risk assessments using
fuzzy methods is described in [5]. But none of the mentioned models gives an
opportunity to take into account the existing equivalence between objects.

It is usually important to know, which limit was assigned previously to some
similar in many aspects country (or equivalent with some degree). For example,
considering Asian region, we assume that Japan and North Korea are equiva-
lent with very low degree (close to 0), while Japan and South Korea could be
considered equivalent with high degree by many factors. Therefore, to obtain
the evaluation of some country for management approval, a risk manager could
obtain the aggregated result, taking into account the evaluation for equivalent
with high degree countries by using aggregation operators, which are defined by
using the corresponding equivalence relation. For this purpose we propose to use
the construction of a general aggregation operator introduced and developed in
our previous papers [2–4] (i.e., the upper general aggregation operator based on
a fuzzy equivalence relation).

The paper is organized as follows. Section 2 is devoted to the construction
of an upper general aggregation operator based on a fuzzy equivalence relation;
here we recall also the definition of a fuzzy equivalence relation and the defi-
nitions of ordinary and general aggregation operators. In Sect. 3 the model of
application of upper general aggregation for risk level assessments is considered.
In Sect. 4 the applied construction of a fuzzy equivalence relation based on a met-
ric is described. Finally, Sect. 5 presents an example of aggregation of experts’
evaluations of the countries risk level provided by the proposed technique and
its analysis.

2 Upper General Aggregation Operator Based
on a Fuzzy Equivalence Relation

Aggregation is the process of combining several numerical values into a single
representative value. Mathematically aggregation operator is a function that
maps multiple inputs from a set into a single output from this set. In the classical
case [6,7,10] aggregation operators are defined on interval [0, 1].

Definition 1. A mapping A :
⋃

n[0, 1]n → [0, 1] is called an aggregation oper-
ator if the following conditions hold:

(A1) A(0, . . . , 0) = 0;
(A2) A(1, . . . , 1) = 1;
(A3) for all n ∈ N and for all x1, . . . , xn, y1, . . . , yn ∈ [0, 1]:

xi ≤ yi, i = 1, . . . , n =⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn).

The notion of general aggregation operator Ã acting on [0, 1]X , where [0, 1]X

is the set of all fuzzy subsets of a set X, was introduced in 2003 by A. Takači [8].
We denote a partial order on [0, 1]X by �. In this paper we consider the case:

μ � η if and only if μ(x) ≤ η(x) for all x ∈ X
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(here μ, η ∈ [0, 1]X). The least and the greatest elements of this order are denoted
by 0̃ and 1̃, which are indicators of ∅ and X respectively, i.e., 0̃(x) = 0 and 1̃(x) =
1 for all x ∈ X.

Definition 2. A mapping Ã :
⋃

n([0, 1]X)n → [0, 1]X is called a general aggre-
gation operator if and only if the following conditions hold:
(Ã1) Ã(0̃, . . . , 0̃) = 0̃;
(Ã2) Ã(1̃, . . . , 1̃) = 1̃;
(Ã3) for all n ∈ N and for all μ1, ..., μn, η1, ..., ηn ∈ [0, 1]X :

μ1 � η1, . . . , μn � ηn =⇒ Ã(μ1, . . . , μn) � Ã(η1, . . . , ηn).

Two widely used approaches to construct a general aggregation operator Ã
based on an ordinary aggregation operator A are the pointwise extension of
A and the T -extension [8] of A, whose idea comes from the classical extension
principle and uses a t-norm T . Our approach is to construct a general aggregation
operator by using a fuzzy equivalence relation. Let us recall the definition of a
fuzzy equivalence relation.

Definition 3. Let T be a t-norm and E be a fuzzy relation on a set X, i.e., E
is a fuzzy subset of X × X. A fuzzy relation E is called a T -fuzzy equivalence
relation if and only if for all x, y, z ∈ X it holds
(E1) E(x, x) = 1 (reflexivity);
(E2) E(x, y) = E(y, x) (symmetry);
(E3) T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

Using the idea of upper and lower approximation operators in [2] we have
described upper and lower general aggregation operators based on a fuzzy equiv-
alence relation. In this paper we are dealing with the upper general aggregation
operator.

Definition 4. Let A : [0, 1]n → [0, 1] be an aggregation operator, T be a left
continuous t-norm and E be a T -fuzzy equivalence relation defined on a set X.
The upper general aggregation operators ÃE,T :

⋃
n([0, 1]X)n → [0, 1]X is defined

by
ÃE,T (μ1, . . . , μn)(x) = sup

x′∈X
T (E(x, x′), A(μ1(x′), . . . , μn(x′))), (1)

where x ∈ X and μ1, . . . , μn ∈ [0, 1]X .

In [2] it was shown that operator ÃE,T actually is a general aggregation
operator. In this paper we will use constructions of ÃE,T based on minimum
t-norm TM , product t-norm TP and Lukasiewicz t-norm TL. We also use in
(1) such ordinary aggregation operators as arithmetic mean (AV G), weighted
arithmetic mean (WAV G, in which the weights for the smallest and the greatest
elements are two times smaller than for the other elements, which weights are
equal), and the modification of WAV G, where the weights for the smallest and
the greatest elements are excluded (ZAV G).
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3 Upper General Aggregation Operator in Risk Level
Assessments

Now we will demonstrate how such construction could be used in risk level
assessments. We consider the following problem. Let X be the set of all countries
in the world or in some particular region. Let μi(x), where μi : X → [0, 1],
be a normalized evaluation of country’s x ∈ X risk level by the i-th expert
(a country is considered as more risky if this evaluation is closer to 1). As ordinary
aggregation operator A one could take the arithmetic mean or the weighted
arithmetic mean aggregation operator. It is important to define appropriate fuzzy
equivalence relation E : X × X → [0, 1] between the objects of X.

We want to obtain an assessment of the risk level of some country by tak-
ing arithmetic mean of the experts evaluations of other countries taking into
account fuzzy equivalence relation between these countries and to compare it
with ordinary arithmetic mean operator.

Let us consider the discrete universe X, which consists of 8 countries from
some region, and the following TM -fuzzy equivalence relation E given in a matrix
form:

E =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0.9 0.8 0.8 0.8 0.7 0.1 0.1
0.9 1 0.8 0.8 0.8 0.7 0.1 0.1
0.8 0.8 1 0.8 0.8 0.7 0.1 0.1
0.8 0.8 0.8 1 0.8 0.7 0.1 0.1
0.8 0.8 0.8 0.8 1 0.7 0.1 0.1
0.7 0.7 0.7 0.7 0.7 1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 1 0.9
0.1 0.1 0.1 0.1 0.1 0.1 0.9 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Suppose, we have evaluations of the risk level for each country given by 5
experts and expressed in the form of fuzzy sets μi : X → [0, 1], i = 1, . . . , 5:

μ1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0.9
0.8
0.6
1

0.6
0

0.9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, μ2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8
0.8
0.7
0.8
0.4
0.1
0.1
0.8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, μ3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
0.6
0.7
0.6
0.6
0.5
0.1
0.9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, μ4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9
1

0.9
0.8
0.6
0.7
0

0.8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, μ5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7
0.5
0.7
0.6
0.6
0.6
0.1
0.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

First, we calculate the results of aggregations ÃV G, W̃AV G, Z̃AV G, where
ÃV G, W̃AV G, Z̃AV G are the pointwise extensions of AV G, WAV G, ZAV G
respectively, thus obtaining the aggregated evaluations:
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ÃV G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.88
0.76
0.76
0.68
0.64
0.50
0.06
0.82

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W̃AV G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.44
0.38
0.39
0.34
0.33
0.24
0.03
0.41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z̃AV G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.45
0.38
0.37
0.33
0.30
0.28
0.03
0.42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We can see, that operators W̃AV G and Z̃AV G decrease the evaluations of risk
level comparing to ÃV G, but give similar values.

Then we apply the upper general aggregation operator in order to obtain the
upper approximation of AV G, WAV G, ZAV G taking into account equivalence
relation E. This result will give us the most conservative assessment of risk levels
for each country, which is the goal of a risk manager.

First, let us take the strongest t-norm T = TM and apply the upper general
aggregation operator. For example:

ÃV GE,TM
(μ1, . . . , μ5)(x) = max

x′∈X
TM (E(x, x′), AV G(μ1(x′), . . . , μ5(x′))).

As a result we obtain the following fuzzy sets in a vector form:

ÃV GE,TM
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.88
0.88
0.80
0.80
0.80
0.70
0.82
0.82

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W̃AV GE,TM
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.44
0.44
0.44
0.44
0.44
0.44
0.41
0.41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z̃AV GE,TM
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.45
0.45
0.45
0.45
0.45
0.45
0.42
0.42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As one can see, the risk level assessments by using TM equalize. At the same time
the assessments are more conservative. For example, the average risk level for the
7th country is 0.06, while the upper approximation ÃV G taking into account the
equivalence relation gives us more conservative result 0.82, because this country
is equivalent with the high degree to the much more risky 8th country. Operators
W̃AV G, Z̃AV G give us less conservative result.

Now let us consider the results obtained by using Lukasiewicz t-norm TL:

ÃV GE,TL
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.88
0.78
0.76
0.68
0.68
0.58
0.72
0.82

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W̃AV GE,TL
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.44
0.38
0.39
0.34
0.33
0.24
0.31
0.41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z̃AV GE,TL
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.45
0.45
0.45
0.45
0.45
0.45
0.42
0.42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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These results are more trustful. Vectors W̃AV GE,TL
and Z̃AV GE,TL

have sim-
ilar values, but the assessment obtained by ÃV GE,TL

is more conservative and
one could more probably choose this operator.

Finally, we use product t-norm TP :

ÃV GE,TP
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.88
0.79
0.76
0.70
0.70
0.62
0.74
0.82

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, W̃AV GE,TP
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.44
0.39
0.39
0.35
0.35
0.31
0.37
0.41

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Z̃AV GE,TP
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.45
0.41
0.37
0.36
0.36
0.32
0.38
0.42

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The results are similar to the previous case of Lukasiewcz t-norm TL. To sum-
marize we could make the conclusion, that operators ÃV GE,TL

and ÃV GE,TP

suit better for our purposes. One can see that for the 7th and the 8th elements
values equalize. It means that with t-norms TP and TL equivalence relation E
has more influence on the result of aggregation.

Depending on the problem specifics and the construction of T -fuzzy equiva-
lence relation E one could choose different t-norms T and aggregation operators
A, which will influence the result. Analysing not only this, but also several other
examples, we conclude that for the risk level assessment it is better to use AV G,
which give more conservative results.

4 Fuzzy Equivalence Relation Based on a Metric

Suppose we have a metric space (X, d). In order to construct a fuzzy equivalence
relation we will use the following formula:

E(x, y) =
1

1 + d(x, y)
, x, y ∈ X. (2)

By using formula (2) we could obtain relation E, which is not necessary T -
transitive for an arbitrary t-norm T . In general, this condition could not fulfil for
the minimum t-norm, but always holds for the product and Lukasiewicz t-norm.
For example, let us consider the following fuzzy equivalence relation matrix

E =

⎛

⎝
1 0.5 0.7

0.5 1 0.6
0.7 0.6 1

⎞

⎠ ,

which is obtained by using (2). This relation E is T -transitive with respect to
TL and TP , but is not TM -transitive.

Let us show that fuzzy equivalence relation E, which is based on the metric
(2), is TP - and TL-transitive. First, we will check condition (E3) for all elements
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x, y, z ∈ X in the case of product t-norm TP :

1
1 + d(x, y)

· 1
1 + d(y, z)

≤ 1
1 + d(x, z)

.

We rewrite the inequality in equivalent forms

(1 + d(x, y)) · (1 + d(y, z)) ≥ 1 + d(x, z) ⇐⇒
⇐⇒ d(x, y) + d(y, z) + d(x, y)d(y, z) ≥ d(x, z),

the last of which holds by the triangle inequality.
Now let us demonstrate that (E3) holds for each x, y, z ∈ X in the case of

Lukasiewicz t-norm TL

min
(

1
1 + d(x, y)

+
1

1 + d(y, z)
− 1, 0

)

≤ 1
1 + d(x, z)

.

We should check that

1
1 + d(x, y)

+
1

1 + d(y, z)
− 1 ≤ 1

1 + d(x, z)
⇐⇒

⇐⇒ 2 + d(x, y) + d(y, z)
1 + d(x, y) + d(y, z) + d(x, y)d(y, z)

≤ 1
1 + d(x, z)

+ 1.

Now we evaluate

2 + d(x, y) + d(y, z)
1 + d(x, y) + d(y, z) + d(x, y)d(y, z)

≤ 2 + d(x, y) + d(y, z)
1 + d(x, y) + d(y, z)

=

=
1

1 + d(x, y) + d(y, z)
+ 1.

We rewrite the inequality in equivalent forms

1
1 + d(x, y) + d(y, z)

+ 1 ≤ 1
1 + d(x, z)

+ 1 ⇐⇒

⇐⇒ 1 + d(x, y) + d(y, z) ≥ 1 + d(x, z),

the last of which holds by the triangle inequality.
Let us demonstrate by using the real-world data how a fuzzy equivalence

relation could be constructed. We consider universe X of five objects. As the
objects in this example we will choose 5 countries, and we will construct a
fuzzy equivalence relation between them. The distances between countries are
constructed on the basis of different macroeconomic factors:

(1) economic growth (GDP, annual variation in %);
(2) industrial production (annual variation in %);
(3) unemployment rate (in %);
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Table 1. Normalized macroeconomic factors for five countries

1 2 3 4 5

Economic growth (GDP, annual variation in %) 2.54 2.41 2.44 −1.17 −1.22

Industrial production (annual variation in %) 4.65 2.85 3.08 −2.67 −2.91

Unemployment rate (in %) 0.71 0.81 1.09 1.02 1.37

Public debt (% of GDP) 1.11 1.33 0.25 1.04 1.27

Current account (% of GDP) 3.23 0.75 1.09 1.49 −1.55

(4) public debt (% of GDP);
(5) current account (% of GDP).

The obtained factors, normalized by the average of each factor, are given in
Table 1.

Let us denote the number of macroeconomic factors by K, then each object
could be represented as a vector of dimension K. We use the Euclidean metric
to evaluate distances between the objects:

d(x, y) =

√
√
√
√

K∑

k=1

(xk − yk)2, x, y ∈ R
K . (3)

In order to obtain fuzzy equivalence matrix E we apply formula (2):

E =

⎛

⎜
⎜
⎜
⎜
⎝

1 0.24 0.26 0.11 0.09
0.24 1 0.46 0.13 0.12
0.26 0.46 1 0.13 0.12
0.11 0.13 0.13 1 0.24
0.09 0.12 0.12 0.24 1

⎞

⎟
⎟
⎟
⎟
⎠

.

As one can see, the values of degrees of equivalence are very small, but, for
example, the distance between countries 1 and 2 is very small as well, which
means, that equivalence degree should be high. In order to improve the equiv-
alence relation, we introduce additional parameter c and modify formula (2) in
the following way:

E(x, y) =
1

1 + cd(x, y)
, x, y ∈ X. (4)

Such parameter c does not affect that E is TP - and TL-transitive.
To determinate the value of parameter c we consider the following function:

φc(t) =
1

1 + ct
, t ≥ 0. (5)

As argument t of function (5) we will take metric d(x, y). Let us consider
the example, where metric d(x, y) takes values from interval [0, 1], and calculate
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Fig. 1. Dependence of function φ on parameter c

the values of function φ for some values of parameter c. Figure 1 shows the
dependence of the values of function φ on different values of parameter c.
In order to improve the constructed equivalence relation, we will choose c = 0.2.
Then we will obtain the following equivalence relation matrix

E =

⎛

⎜
⎜
⎜
⎜
⎝

1 0.62 0.64 0.37 0.34
0.62 1 0.81 0.43 0.41
0.64 0.81 1 0.42 0.40
0.37 0.43 0.42 1 0.62
0.34 0.41 0.40 0.62 1

⎞

⎟
⎟
⎟
⎟
⎠

,

which is relevant to the real situation.

5 Aggregation of Experts’ Evaluations of Countries
Risk Level

In this section we apply the construction of the upper general aggregation oper-
ator for the problem of aggregation of several experts’ evaluations of a country
risk level, taking into account a fuzzy equivalence relation between countries. We
consider 28 countries from the same region. For the construction of an equiva-
lence relation we use the approach described in the previous section. We take
the same macroeconomic factors for 5 years and take the average values of them.
We calculate the distances between the countries on the basis of these macroeco-
nomic factors, and then we construct the equivalence relation matrix by using
c = 0.2.

Let us consider the case when we have four experts and their evaluations of
each country’s risk level (Table 2 shows evaluations for some of the countries).
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Table 2. Experts evaluations

μ1 μ2 μ3 μ4

1 0.1 0.6 0.4 0.3

3 0.2 0.7 0.7 0.8

4 0.9 0.7 0.4 0.8

8 0.6 0.2 0.5 0.3

12 0.8 0.9 0.6 0.7

13 0.7 0.7 0.8 0.5

14 0.1 0.2 0.3 0.5

19 0.2 0.5 0.5 0.4

26 0.4 0.3 0.2 0.5

Then we calculate the average AV G of these evaluations and the results of the
upper general aggregation operator using ordinary aggregation operator AV G,
and the product and Lukasiewicz t-norms. As the result, we obtain vectors ÃV G,
ÃV GE,TP

, ÃV GE,TL
.

Table 3. Results of aggregation

ÃV G ÃV GE,TP ÃV GE,TL

1 0.35 0.45 0.35

3 0.60 0.60 0.60

4 0.70 0.70 0.70

8 0.40 0.54 0.48

12 0.75 0.75 0.75

13 0.68 0.68 0.68

14 0.28 0.46 0.35

19 0.40 0.41 0.40

26 0.35 0.62 0.58

In order to analyse how the equivalence relation matrix influences the result
of aggregation, we comment the results for each country from Table 3, and then
we give a conclusion.

1. The 1st country is equivalent with the high degree to the 3rd (the equivalence
degree is 0.75) and to the 13th (the equivalence degree is 0.66), but the 13th
country has higher experts’ evaluation. In this case we can see that both values
(the equivalence relation and the expert evaluation) influence the result. The
aggregation using the Lukasiewicz t-norm has no difference with ordinary
aggregation AV G.
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2. For the 3rd country the result doesn’t change, however this country is equiva-
lent with the high degree to the 1st country and to the 6th country. Experts’
evaluations for these countries are quite low, therefore they have no influence
on the result for the 3rd country.

3. The similar situation is for the 4th country: it is equivalent with the high
degree 0.88 to the 26th country, which has low experts’ evaluation 0.35.

4. For the 8th country the results of upper general aggregation are better than
the ordinary aggregation obtained by using both t-norms, and the influence
comes from the 17th country.

5. For the countries with numbers 12 and 13 the results of aggregations are the
same, because for the high experts’ evaluation the equivalence degrees are
not high enough.

6. The 14th country has significant increase in the result of the upper general
aggregation comparing to the ordinary aggregation. It influences by the high
degree of equivalence with the 13th country, which has high experts’ evalua-
tions.

7. For the 19th country the result of the upper general aggregation obtained
by using product t-norm TP slightly differs due to the influence of the 3rd
country, which is equivalent to the 19th with the degree 0.68.

8. The results of the upper general aggregation for the 26th country significantly
increase in compare to the ordinary aggregation. These changes are influenced
by the 4th country, which is equivalent to the 26th with the degree 0.88 and
has very high experts’ evaluations.

Summarizing, we can see that the result is highly influenced by the values
of experts evaluations. If the evaluation is very high, then it influences other
countries, for which the experts evaluation was not so high. For the most cases
the result of the upper general aggregation differs from the ordinary aggregation
using the product t-norm. In order to increase the influence of the Lukasiewicz
t-norm, we should increase the influence of the equivalence relation matrix. It
is possible by decreasing the value of parameter c. If it is necessary to decrease
the influence of matrix E, then we should increase the value of parameter c. It
is the way how we can control the influence of the equivalence relation.

6 Conclusion

The proposed technique was illustrated with a real-world example of the invest-
ment risk level aggregation for countries of one region using an equivalence rela-
tion obtained on the basis of different macroeconomic factors. The obtained
results are applicable and could be modified using not only numerical parame-
ters, but also other ordinary aggregation operator and other t-norm. The dipper
analysis of the influence of all these factors on the result of aggregation will be
a subject of further research.
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Abstract. Six Sigma approaches aim at providing almost defect-free products
and/or services to customers. Six Sigma is a powerful and comprehensive
management tool for meeting customer needs. Well-designed projects are cap-
able to provide significant financial benefits, bring competitive advantage and
increased customer satisfaction.
Well-designed projects having clear and concise descriptions and objectives

are capable to provide significant financial benefits, increased customer satis-
faction and bring competitive advantage. Selecting Six Sigma improvement
projects has been one of the most challenging and frequently discussed issues in
the literature. Selecting the most useful project/s is a key success factor in Six
Sigma approach. Selecting Six Sigma projects is a multi criteria decision making
problem involving many tangible and intangible criteria under uncertainty. In
this paper, uncertainty will be handled by neutrosophic sets. “A neutrosophic set
deals with the origin, nature, and scope of neutralities, as well as their inter-
actions with different ideational spectra” [1]. In neutrosophic sets,
truth-membership, indeterminacy-membership and falsity-membership are all
together included. Neutrosophic sets are accepted as a super set of the other
types of sets such as classical sets, ordinary fuzzy sets, hesitant fuzzy sets,
intuitionistic fuzzy sets, and soft sets.
In this paper, we employ interval neutrosophic TOPSIS method to evaluate

Six Sigma projects. By reviewing the literature, seven criteria e.g. total cost,
required time and customer satisfaction are taken into account. To the best
knowledge of the authors, this is the first study to evaluate Six Sigma projects
using interval neutrosophic TOPSIS approach with group decision making.

Keywords: Interval neutrosophic sets � Multi criteria decision making �
TOPSIS � Six sigma project selection

1 Neutrosophic Sets in Multicriteria Decision Making

Neutrosophic sets have been introduced by Florantin Smandarache in 2013. These sets
aim at including the information for truthness, indeterminacy, and falsity all together in
a set. Neutrosophic sets have been extensively used in decision making processes since

© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7_8



they appeared in 2013. In the following we present some literature review results using
graphical illustrations. Figure 1 shows the journals publishing Neutrosophic based
papers. Journal of Intelligent and Fuzzy Systems and Neural Computing and Appli-
cations are the leading journals in publishing the neutrosophic based papers.

Figure 2 presents the authors who have most published neutrosophic based papers.
J. Ye, F. Smarandache, Y. Guo, and P. Liu are the leading authors.

Fig. 1. Journals publishing Neutrosophic based papers

Fig. 2. Researchers publishing Neutrosophic based papers
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Figure 3 shows the Universities most publishing neutrosophic based papers.
Shaoxing University, University of New Mexico, Central South University China, and
Shandong University of Finance are the leading universities in this area.

Figure 4 illustrates the countries most publishing neutrosophic based papers. China,
United States, India, and Turkey are the leading countries in this area, respectively.

Fig. 3. Affiliations most publishing Neutrosophic based papers

Fig. 4. Countries most publishing Neutrosophic based papers
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Figure 5 illustrates the subject areas of the neutrosophic based papers. Computer
science, mathematics, and engineering are the first major three areas in which neu-
trosphic sets are applied.

In the literature, there are valuable studies on multi-criteria decision making using
neutrosophic sets. For instance, Peng et al. [2] proposed a new outranking approach
using a simplified neutrosophic sets based on ELECTRE. Peng et al. [3] defined the
operations of multi-valued neutrosophic numbers and used Einstein operations and
proposed the multi-valued neutrosophic power weighted average operator and geo-
metric operator. Tian et al. [4] applied TOPSIS based on interval neutrosophic sets and
proposed a fuzzy cross-entropy approach. Bausys et al. [5] introduced the complex
proportional assessment method (COPRAS) method with single value neutrosophic
sets. Liu and Zhang [6] extended the VIKOR method using the neutrosophic hesitant
fuzzy information and proposed a neutrosophic hesitant fuzzy VIKOR approach.
Bausys and Zavadskas [7] developed the extension of VIKOR method with
interval-valued neutrosophic sets. Wang and Liu [8] implemented Opti-
mized PROMETHEE method using interval neutrosophic sets to select the best new
energy storage alternative. Zavadkas et al. [9] evaluated three different circuit design
schemes using neutrosophic WASPAS method with single-valued neutrosophic set.
Tian et al. [10] analyzed green product design selection problem integrating power
aggregation operators and a TOPSIS-based QUALIFLEX method.

Fig. 5. Subject areas of neutrosophic based publications
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2 Preliminaries of Neutrosophic Sets

2.1 Arithmetic Operations with Neutrosophic Sets

Definition 1. TA xð Þ, IA xð Þ, and FA xð Þ, which are the truth-membership function, the
indeterminancy-membership function and the falsity-membership function, respec-
tively are real standard or nonstandard subsets of 0�; 1þ� ½. Their sum may be at most 3
such that

0� � sup TA xð Þþ sup IA xð Þþ sup FA xð Þ� 3þ ð1Þ

Definition 2. The union of two neutrosophic sets A and B is a neutrosophic set C
whose truth-membership, indeterminancy-membership and false-membership function
are TC xð Þ ¼ TA xð Þ � TB xð Þ�TA xð Þ � TB xð Þ; IC xð Þ ¼ IA xð Þ � IB xð Þ�IA xð Þ � IB xð Þ;
and FC xð Þ ¼ FA xð Þ � FB xð Þ�FA xð Þ � FB xð Þ for any x in X, respectively [11].

Definition 3. The intersection of two neutrosophic sets A and B is a neutrosophic set C
whose truth-membership, indeterminancy-membership and false-membership functions
are TC xð Þ ¼ TA xð Þ � TB xð Þ, IC xð Þ ¼ IA xð Þ � IB xð Þ; and FC xð Þ ¼ FA xð Þ � FB xð Þ for
any x in X, respectively.

2.2 Arithmetic Operations with Interval Neutrosophic Sets

Definition 4. An INS A in X is characterized by TA xð Þ ¼ inf TA xð Þ; sup TA xð Þ½ �;
IA xð Þ ¼ inf IA xð Þ; sup IA xð Þ½ �, FA xð Þ ¼ inf FA xð Þ; sup FA xð Þ½ �	 0; 1½ �; and
0� sup TA xð Þþ sup IA xð Þþ sup FA xð Þ� 3 x 2 X ([11]).

3 Neutrosophic TOPSIS with Group Decision Making

Assume there are m alternatives and n criteria in a decision matrix with the weights of

criteria wj where 0�wj � 1;
Pn
j¼1

wj ¼ 1

Suppose NSij i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;mð Þ is the neutrosophic score of alterna-

tive Ai with respect to criterion Cj. Then, NSij ¼
h xLij ; x

U
ij

h i
; TL

ij ;T
U
ij

h i
; ILij ; I

U
ij

h i
; FLij ; F

U
ij

h i
i where xLij ; x

U
ij

h i
is the interval valued score and

TU
ij ; I

U
ij ; F

U
ij ;T

L
ij ; I

L
ij ; F

L
ij 2 0; 1½ � and 0�TU

ij þ IUij þ FUij � 3 ([12]). For obtaininig the
attributes weight vector, the distance between two interval neutrosophic scores is
defined as in Eq. (2).
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Definition 5. Let fS1 ¼ \½Sa1 ; Sb1 �; ½TL
A; T

U
A�; ½ILA; IUA�; ½FLA; FUA�

� �
[ and fS2 ¼

\½Sa2 ; Sb2 �; ½TL
B; T

U
B �; ½ILB; IUB �; ½FLB; FUB �

� �
[ be any two interval neutrosophic sets.

and f: eS 
 eS ! R. Then, the Hamming distance between fS1 and fS2 can be defined as
follows ([12]):

dIVNSð eS1 ; eS2Þ ¼ 1
12ðl� 1Þ a1 
 TL

A � a2 
 TL
B

�� ��þ a1 
 TU
A � a2 
 TU

B

�� ��� �
þ a1 
 ILA � a2 
 ILB
�� ��þ a1 
 IUA � a2 
 IUB

�� ��þ a1 
 FLA � a2 
 FLB
�� ��

þ a1 
 FUA � a2 
 FUB
�� ��þ b1 
 TL

A � b2 
 TL
B

�� ��þ b1 
 TU
A � b2 
 TU

B

�� ��
þ b1 
 ILA � b2 
 ILB
�� ��þ b1 
 IUA � b2 
 IUB

�� ��þ b1 
 FLA � b2 
 FLB
�� ��

ð2Þ

For a certain criterion Cj 2 C; the distance dðzij; zkjÞ to represent the weighted

deviation between attribute values zij and zkj is given by Dij ¼
Pm
k¼1

d zij; zkj
� �

wj. And the

normalized attribute weight is given by Eq. (3):

wj ¼
Pm

i¼1

Pm
k¼1 d zij; zkj

� �Pn
j¼1

Pm
i¼1

Pm
k¼1 d zij; zkj

� � ð3Þ

The steps of the Interval Neutrosophic TOPSIS method are given in the following
(Broumi et al. [12]):

Step 1: Normalize the decision matrix

The normalized matrix R ¼ ðrijÞ; where rij ¼
\½rLij ; rUij �; ½ _TL

ij ;
_T
U
ij �; ½_I

L
ij ;

_I
U
ij �; ½ _F

L
ij ;

_F
L
ij �

� �
[ is obtained as follows:

For benefit type,

rLij ¼ xLij ; r
U
ij ¼ xUij for 1� i�m; 1� j� nð Þ

_T
L
ij ¼ TL

ij ;
_T
U
ij ¼ TU

ij ;
_I
L
ij ¼ ILij ; _I

U
ij ¼ IUij ; _F

L
ij ¼ FLij ; _F

U
ij ¼ FUij

(
ð4Þ

For cost type,

rLij ¼ negðxLijÞ; rUij ¼ negðxUij Þ for 1� i�m; 1� j� nð Þ
_T
L
ij ¼ TL

ij ;
_T
U
ij ¼ TU

ij ;
_I
L
ij ¼ ILij ; _I

U
ij ¼ IUij ; _F

L
ij ¼ FLij ; _F

U
ij ¼ FUij

(
ð5Þ

Step 2: Construct the weighted normalize matrix

88 İ. Otay and C. Kahraman



Y ¼ ½yij�m
n

\½yL11; yU11�; �; ½€TL
11;

€T
U
11�; ½€I

L
11;

€I
U
11�; ½€F

L
11;

€F
U
11�

� �
[

. . .\½yL11; yU11�; �; ½€TL
1n;

€T
U
1n�; ½€I

L
1n;

€I
U
1n�; ½€F

L
1n;

€F
U
1n�

� �
[

\½yL21; yU21�; �; ½€TL
21;

€T
U
21�; ½€I

L
21;

€I�; ½€FL21; €F
U
21�

� �
[

. . .\½yL2n; yU2n�; �; ½€TL
2n;

€T
U
2n�; ½€I

L
2n;

€I
U
2n�; ½€F

L
2n;

€F
U
2n�

� �
[

\½yLmn; y
U
mn�; �; ½€TL

mn;
€T
U
mn�; ½€I

L
mn;

€I
U
mn�; ½€F

L
mn;

€F
U
mn�

� �
[

. . .\½yLmn; y
U
mn�; �; ½€TL

mn;
€T
U
mn�; ½€I

L
mn;

€I
U
mn�; ½€F

L
mn;

€F
U
mn�

� �
[

266666666666666666666664

377777777777777777777775

ð6Þ

where

yLij ¼ wjrLij ; y
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ij ¼ wjrUij
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L
ijÞwj ; €T

U
ij ¼ 1

€I
L
ij ¼ ð_IUij Þwj ; €F

L
ij ¼ ð _FLijÞwj ; €F

U
ij ¼ ð€FUij Þwj

8><>: �ð1� _T
U
ij )

wj ; €I
L
ij ¼ ð_ILijÞwj ;

Step 3: Identify, the sets of the positive ideal solution Yþ ¼ yþ
1 ; yþ

2 ; . . .; yþ
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� �
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where

yLþ
j ¼ maxiðyLijÞ; yUþ

j ¼ maxiðyUij Þ;
€T
Lþ
j ¼ maxið€TL

ijÞ; €T
Uþ
j ¼ maxið€TU

ij Þ; €I
Lþ
j ¼ minið€ILijÞ;

€I
Uþ
j ¼ minið€IUij Þ; €F

Lþ
j ¼ minið€FLijÞ€F

Uþ
j ¼ minið€FUij Þ

yL�j ¼ miniðyLijÞ; yU�j ¼ miniðyUij Þ;
€T
L�
j ¼ minið€TL

ijÞ; €T
U�
j ¼ minið€TU

ij Þ; €I
L�
j ¼ maxið€ILijÞ;

€I
U�
j ¼ maxið€IUij Þ; €F

L�
j ¼ maxið€FLijÞ; €FU�j ¼ maxið€FUij Þ;

8>>>>>>>>><>>>>>>>>>:
ð9Þ

Six Sigma Project Selection Using Interval Neutrosophic TOPSIS 89



Step 4: Obtain the distance between each alternative and the positive ideal solution and
between each alternative and the negative ideal solution.

Dþ ¼ dþ
1 ; dþ

2 ; . . .; dþ
m

� �
; D� ¼ d�1 ; d

�
2 ; . . .; d

�
m

� � ð10Þ

where,
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� �� �2
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d yij; y
�
j

� �� �2
" #1

2

8>>>>><>>>>>:
ð11Þ

where, d yij; y
þ
j

� �
. is the distance between the interval valued neutrosophic sets yij. and

yþ
j . and d yij; y

�
j

� �
. is the distance between the interval valued neutrosophic linguistic

sets yij. and y�j ..

Step 5: Obtain the closeness coefficient of each alternative to the ideal solution and
then we can get

cci ¼ dþ
i

dþ
i þ d�i

i ¼ 1; 2; . . .;mð Þ ð12Þ

Step 6: Rank the alternatives. According to the closeness coefficient above, the
alternative with minimum cci. is selected.

4 Application

In the paper, we apply one of the multi-criteria decision making tools, e.g. TOPSIS, to
solve 6-Sigma Project selection problem by considering a variety of criteria and
sub-criteria under uncertain environment. Alternative 6-Sigma Projects are listed in the
following Table 1. There are seven criteria used to evaluate alternative Six Sigma
projects presented in Table 1 are as follows: C1: Required time to complete projects;
C2: The number of employees affected from the project; C3: Tal cost of a project; C4:
Customer satisfaction impact; C5: Improvement of product quality; C6: Participation
willingness of the employee to the project; C7: The competitive advantage provided by
the project.
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The evaluations are gathered from 3 decision makers from the company. In
Tables 2 and 3, evaluation of criteria by decision makers and decision matrix are
illustrated.

Table 1. The alternative projects

# Projects

1 Process capability improvement
2 Process measurement and control
3 Quality improvement of work environment
4 Standardization of tasks and preparation of hand books
5 Work study applications
6 Improving communication channels via internal and external customers

Table 2. Linguistic evaluations of criteria by decision makers

Decision makers (DM) C1 C2 C3 C4 C5 C6 C7

DM1 VG P VG G M M G
DM2 G P VG VG M P M
DM3 VG VP M G M M G

Table 3. Decision matrix by decision makers

Alternatives DM C1 C2 C3 C4 C5 C6 C7

A1 DM1 VP VP P G G P M
DM2 P P P VP P VP M
DM3 P G M VP P VP P

A2 DM1 VG M G G VG M G
DM2 M G M M G G M
DM3 M G G VG G M G

A3 DM1 G G VG M VG G G
DM2 VG G G G VG G M
DM3 G G VG G G VG M

A4 DM1 VG G VG VG G G G
DM2 G G VG VG G M VG
DM3 VG VG G G VG VG G

A5 DM1 M P M P P M G
DM2 G M P P M G M
DM3 P M P P VP G VP

A6 DM1 M G G VG G M M
DM2 P M P G G P P
DM3 G P M M G P M
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In Table 4, evaluation of decision makers are presented. By applying aggregation
and normalization formulas, we calculate the weights of decision makers as 0.398, 0.36
and 0.242, respectively. In the analysis, the cost attribute criteria are transformed to
benefit attribute criteria. First we convert the linguistic evaluations to neutrosophic
evaluations. Then, following up the steps of Neutrosophic TOPSIS we obtain aggregated
neutrosophic weights of criteria. Once the weights of criteria are obtained, we continue
on the steps of the Neutrosophic TOPSIS approach, neutrosophic relative positive and
negative ideal solutions are derived. Then, distance measures (dþ

i ; d�i ) and relative
closeness coefficient of each alternative (cci) are calculated in Table 5.

5 Conclusion

The study focuses on multi-criteria Six Sigma project selection decision. The study
proposes to apply TOPSIS with interval neutrosophic sets. The results highlight that the
best project is A6 “Improving communication channels via internal and external cus-
tomers”. It is followed by A2 “Process Measurement and Control”. The last ranked
alternative is found as A1 “Process Capability Improvement”. For the further studies,
other MCDM techniques with neutrosophic sets can be applied and the results can be
compared with the ones obtained from this study.
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Abstract. Measurement of performance is an important management process
which deals with assessment and evaluation of a particular process or its’ out-
comes. Performance measurement is used in different managerial levels for
different purposes. While top management, use it to evaluate the results and
construct new goals, at the personal level, performance measurement is good for
recognising the current weaknesses and motivating for the future accomplish-
ments. For a particular process, team or individual, first critical performance
indicators (KPI) are determined, then targets for each KPI is set at the beginning
of the period. At end of the assessment period, performance assessment is done
for each KPI and the overall performance is calculated. When subjective and
qualitative KPIs are used the overall performance measurement has the possi-
bility to be affected by the evaluator. In this study, a performance measurement
model for Call Centers are proposed. In the proposed approach hierarchical
intuitionistic fuzzy axiomatic de-sign is used to calculate overall performance.

Keywords: Axiomatic design � Intuitionistic fuzzy sets � Call center �
Performance measurement

1 Introduction

Performance measurement (PM) focus on analyzing the accomplishment level of an
action or its outcome and it involves collecting, analyzing and reporting information
regarding the action, person, team or organization (Upadhaya et al. 2014). PM can be
used in various levels of a company, at the personal level it helps identifying personal
deficiencies and encourage for future actions. At the mid level, PM helps analyzing the
outcome of teams or departments, and top management use PM to assess the results of
the past activities and set new directions and goals (Meyer 2002).

Because of immense competition, customer service has widely improved. Today
companies provide service to their customer via various channels such as, web, mobile,
call-center and off-line stores. Among the other channels, call-centers are the most
commonly used one. Gartner (2017) define call center as a computer-based organiza-
tion that delivers call and contact routing for inbound and outbound telephony trans-
actions. Companies from various sectors, either have their own call center or they get it
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as a service from another company. In all cases there is a need to monitor and manage
the call center using an objective PM system.

After a literature survey, Oztaysi and Ucal (2009) define six main requirements of a
performance measurement technique. These are; capability to reveal significant
numerical results to express the global performance, capability to reveal the perfor-
mance of lower levels, or different viewpoints, capability to trace the changes in
performance by time, flexibility modify according to changing situations, and capa-
bility to give an understanding about future performance. Multicriteria decision making
(MCDM) techniques can be used in performance measurement systems since they can
fulfill the above mentioned requirements.

Zadeh (1965) propose fuzzy sets theory to handle uncertainty and imprecision that
naturally exist in real world problems. Since then, fuzzy sets are widely used in the
literature to provide more realistic and accurate results. Fuzzy sets are capable of
representation of linguistic terms better than crisp numbers but due to some critsms and
limitations extensions of fuzzy sets are proposed in the literature. Among these
extension, type2 fuzzy sets, hesitant fuzzy sets, intuitionistic fuzzy sets, fuzzy multisets
are the most commonly used ones. In this study, a performance measurement frame-
work utilizing interval-valued intuitionistic fuzzy sets with axiomatic design is pro-
posed. By integrating interval-valued intuitionistic fuzzy sets decision makers’
linguistic evaluations can be better represented so more accurate results are reached.

In the literature there are studies on performance measurement in various industries
such as tourism, energy, supply chain, manufacturing (Huang and Coelho 2017; Ke
et al. 2017; Cevik Onar et al. 2014; Felício and Rodrigues 2015; Oztaysi and Surer
2014; Oztaysi et al. 2011). There are also studies in the literature that directly focus on
measuring overall call-center performance. In one of these studies, Baraka et al. (2015)
define success and gap indices to calculate the performance of the call center. Baraka
et al. (2013) introduce a performance evaluation model for call centers based on
Information Systems success model using six main criteria namely, system quality,
information quality, service quality, usage, user satisfaction, net benefits. In another
study, Ma et al. (2011) propose a performance evaluation methodology for call centers
at the level of customer-agent interactions. Klement and Snášel (2011) propose a
performance measurement approach using Kohonen Self-Organising Map (SOM) al-
gorithm and the Growing Grid algorithm for identifying anomalies.

The originality of the paper comes from two main points. To the best to authors’
knowledge this is the first time to apply axiomatic design approach in performance
measurement domain, and also this is the initial study to apply a hierarchical decision
model into intuitionistic fuzzy axiomatic design approach. The rest of the paper is as
follows: Sect. 2 focus on methodology, thus first basics of intuitionistic fuzzy sets are
introduced, then information axiom is explained and steps of the methodology is given.
Section 3 a case study from call center performance measurement is presented. To this
end first the decision model and performance indicators are introduced and then the
steps of the methodology is given. In the last section, Sect. 4, the results are discussed
and suggestions on future studies are listed.
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2 Methodology

2.1 Intuitionistic Fuzzy Sets

Intuitionistic fuzzy sets developed by Atanasov (1986) have been widely used in the
literature. Intuitionistic fuzzy sets consider non-membership value in addition to
classical membership definition of fuzzy sets. The sum of membership and
non-membership cannot exceed the 1.

Let X 6¼ ∅ be a given set. An intuitionistic fuzzy set in X is an object A given by

~A ¼ x; l~A xð Þ; v~AðxÞ
� �

; x 2 X
� �

; ð1Þ

where leA : X ! 0; 1½ � and veA : X ! 0; 1½ � satisfy the condition

0� leA xð Þþ veA xð Þ� 1; ð2Þ

for every x 2 X. Hesitancy is equal to “1� leA xð Þþ veA xð Þ
� �

”

A Triangular Intuitionistic Fuzzy Number, eA is an intuitionistic fuzzy subset in R

with following membership function and non-membership function:

leA xð Þ ¼
x�l
m�l ; for l� x�m
r�x
r�m ; for m� x� r

0; otherwise

8><
>: ð3Þ

and

veA xð Þ ¼
m�x
m�l0

; for l0 � x�m
x�m
r0 �m

; for m� x� r0

1; otherwise

8><
>: ð4Þ

where l0 � l�m� r� r0; 0� leA xð Þþ veA xð Þ� 1 and TIFN is denoted by eATIFN ¼
l;m; r; l0;m0; r0ð Þ (see Fig. 1).

For the defuzzification of TIFN, Kahraman et al. (2017) propose Eq. 5 by con-
sidering the heights of the membership functions. Let A be an TIFS, N Considering the
intersection function ~ATIFS ¼ l; m; l[ mð Þð Þ; r; l0; m0; v[ m0ð Þð Þ; r0ð Þ

xt ¼ 1� v[ m0ð Þð Þ � l0 þm0 þ r0ð Þ þ l\ mð Þ � lþmþ rð Þ
6

ð5Þ

2.2 Information Axiom

The Information Axiom is used to select the best design among the alternative that
satisfy the Independence Axiom (Suh 2001). It is represent with the information
content, Ii, which is a function of the probability of satisfying the given design
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requirements. Suh (1990) defines the information content for a given design require-
ment as follows (Eq. 6):

Ii ¼ log2
1
pi

� 	
ð6Þ

where p represents probability of achieving the design requirements. The value Ii shows
that the best alternative is the one with the highest probability of success. When the
design fulfills the design requirement for sure, then information content is calculated as
zero, on the other hand, when there is no chance to satisfy the design requirements
information content becomes infinite.

The probability of fulfilling design requirements can be defined as the overlap
between the design range determined by the designer and alternatives’ system capa-
bility range this overlapped region is called common range and the probability to
satisfy the requirements can be defined as Eq. (7).

pi ¼
Common range
System range

� 	
ð7Þ

Kulak and Kahraman (2005) suggest applying fuzzy information axiom approach
into multi criteria decision making in order to use information axiom under certainty or
incomplete information. In the fuzzy extension of information axiom, the system and
design range for a certain criterion can be expressed by using linguistic terms (Kulak
et al. 2010). In general, triangular fuzzy numbers (TFN) or trapezoidal fuzzy numbers
are used to mathematically represent these linguistic terms. Graphical representation of
system range and common area when triangular fuzzy numbers are used is given in
Fig. 2.

Fig. 1. Membership and non-membership functions of TIFN
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Therefore, when TFNs are used the information content is calculated using Eq. 8.

I ¼ log2
TFN of System Design

Common Area

� 	
ð8Þ

While the main formula remains the same, definition of System design and
Common area change when TIFNs are used. Figure Y presents intuitionistic fuzzy

common area of system range (fSR) and design range (fDR). It is important to underline
that in order to calculate the common area, new functions representing 1 − v are
formed.

In Fig. 3, fSR represents system range and fDR represent design range. Kahraman
et al. (2017) propose using Eq. 9 to find the defuzzified system range

DSR ¼ aþ a0 þ 2nþ jþ j0

6
ð9Þ

On the other hand area covered with dots represent common area of membership
values and area covered with lines represent common area of the non-membership
values. The defuzzified common area (DCA) can be calculated by using Eq. 10.

Fig. 2. The common area of system and design ranges (Kulak and Kahraman 2005)

Fig. 3. The common area of system and design ranges (TIFN)

98 B. Oztaysi et al.



DCA ¼ l2 � d0 þ q0 þ j0ð Þ þ l1 � dþ qþ jð Þ
6

ð10Þ

2.3 Hierarchical Intuitionistic Fuzzy Axiomatic Design

In the literature, there are various studies which use information axiom for multicriteria
decision making (Cebi et al. 2016; Chen et al. 2015; Kaya et al. 2012; Akay et al.
2011). In this study, Hierarchical Intuitionistic Fuzzy Axiomatic Design is proposed
based on the study of Kahraman et al. (2017). The steps of methodology proposed for
call center performance measurement is given.

Step 1: Decision model is formed. This step refers to determining performance
criteria and performance indicators.
Step 2: Weights of performance criteria and indicators are determined according to
the decision model.
Step 3: Values of performance indicators are obtained.
Step 4: Design ranges are defined for each performance indicator by the decision
makers.
Step 5: Information content for each indicator is calculated.
Step 6: Weighted information content values are summed up to obtain overall
weighted information content (OWIC).
Step 7: The alternative with the lowest (OWIC) is selected as the best alternative.

3 Application

A call center company wants to measure the overall performance of its operations. To
this end, a decision-making team is formed to select performance indicators, form
decision model and decide the weights of each performance indicator. Different from
regular MCDM applications, in this problem we do not have alternatives instead
performance measurement values from different time periods are compared.

3.1 Decision Model

One of the most important part of performance measurement is to select performance
indicators. To this end meetings with decision making team are made and literature
survey is conducted. As a result, for main performance criteria and twelve performance
indicators are determined (Fig. 4).

The indicators that takes place in the decision model is briefly explained in the
following:

• Service level (C11): a percentage of calls received by the call center that are
answered by an agent within a given period.

• Average speed to answer (C12): the average time it takes for calls to be answered in
the call center.
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• Abondoned rate (C13): the percentage of callers who leave the que before reaching
an agent.

• Agent absenteeism (C21): the percentage of number of days not served due to
agents being absent to the total number of working days.

• Agent turnover rate (C22): the percentage of agents who leave the call center to
work elsewhere to the number of all agents.

• Average occupy rate (C23): Average occupancy rate is the amount of time agents
spend on live calls and after call work associated with the calls to the total working
time.

• Average time in que (C31): the is ratio of the total time customers wait in queues to
the total number of calls answered by the call center.

• Average handle time (C32): the average the elapsed time from the moment agent
answers a call until the agent disconnects.

• Average after call work time (C33): is the average of time agents spend on after call
Works such as updating databases, writing reports etc.

• Customer satisfaction (C41): an average score obtained from customer surveys.
• First call resolution (C42): the percentage of calls that the agent completely

addresses the caller’s needs without having to transfer, escalate or return the call.
• Average quality (C43): is the average of agents’ quality scores. In call centers,

quality assurance teams measure the quality of calls based on a set of rules. While
this score is important for agents’ individual performance, the average quality score
is an important indicator for overall performance.

Fig. 4. Performance measurement criteria and indicators.
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3.2 Call Center Performance Measurement

In this sub section, application of the performance measurement system is explained.
The first step of the proposed methodology is to build the decision model and it is
already explained in the previous sub-section.

Next step is to determine the weights of the criteria and indicators. In order to
calculate the weights Intuitionistic fuzzy AHP method (Cevik Onar et al. 2015) is used.
Because of page limitations here we only give the main inputs and outputs of the
methodology. According to the methodology the decision makers make pairwise
comparison matrics using linguistic scale given in Table 1.

The pairwise comparison matrices are given in Tables 2 and 3.

Table 1. Linguistic scale used for Intuitionistic fuzzy AHP

Linguistic variable Fuzzy representation

Absolutely Low (AL) ([0, 0.2],[0.5, 0.8])
Very Low (VL) ([0.1, 0.3],[0.4, 0.7])
Low (L) ([0.2, 0.4],[0.3, 0.6])
Medium Low (ML) ([0.3, 0.5],[0.2, 0.5])
Equal (E) ([0.4, 0.6],[0.2, 0.4])
Medium High (MH) ([0.5, 0.7],[0.1, 0.3])
High (H) ([0.6,0.8],[0, 0.2])
Very High (VH) ([0.7,0.9],[0,0.1])
Absolutely High (AH) ([0.8,1.0],[0,0])
Exactly Equal ([0.5,0.5],[0.5,0.5])

Table 2. Pairwise comparison of the criteria

Criteria C1 C2 C3 C4 Weights

C1 EE MH MH VH 0.345
C2 EE EH MH 0.268
C3 EE MH 0.244
C4 EE 0.143

Table 3. Pairwise comparison of the performance indicators with respect to criteria

w.r.t C1 C11 C12 C13 Weights w.r.t C3 C31 C32 C33 Weights

C11 EE H VH 0.454 C11 EE MH MH 0.454
C12 EE MH 0.334 C12 EE EE 0.334
C13 EE 0.212 C13 EE 0.212
w.r.t C2 C21 C22 C23 Weights w.r.t C4 C41 C42 C43 Weights

C21 EE ML EE 0.336 C21 EE MH E 0.401
C22 EE MH 0.410 C22 EE MH 0.358
C23 EE 0.255 C23 EE 0.241
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Table 3 shows four different pairwise comparison matrices containing linguistic
evaluations of the indicators with respect to the related criteria.

As mentioned before, here we do not give the detailed calculations; instead, local
weights are given in both Tables 2 and 3. In order to find the weight of each performance
indicator on overall performance, the local weights are multiplied by the weight of the
upper level criterion. Table 4 presents the global weights of performance indicators.

After indicator weights are calculated, next step is to determine performance values
and design range values. In this study, actual performance values of each indicator is
obtained by expert opinions and linguistic terms. To this end, three experts evaluated the
performance of the period using linguistic terms, later these terms are transformed into
TFIN and aggregated (Kahraman et al. 2017). The aggregated TIFNs are shown in
Table 5.

Since same linguistic scale are used to assess all performance indicators, the design
range is defined as (0.7,0.8,0.9;0.6,0.8,1) for all indicators.

For each period and performance indicator, the fuzzy information content is cal-
culated using Eqs. 8, 9 and 10. The results are presented in Table 6.

Table 4. Global weights of the performance indicators

Indicators Overall weights Indicators Overall weights

C11 0.157 C31 0.11
C12 0.116 C32 0.083
C13 0.074 C33 0.053
C21 0.092 C41 0.057
C22 0.101 C42 0.052
C23 0.068 C43 0.037

Table 5. Performance values of the indicator

Perf. Indicator Period 1 Period 2

C11 (0.06,0.41,0.56:0,0.67,0.64) (0.32,0.52,0.79:0,0.7,1)
C12 (0.49,0.73,0.81:0,0.91,1) (0.24,0.46,0.78:0,0.95,1)
C13 (0.42,0.67,0.94:0.28,0.41,1) (0.56,0.89,1:0.44,0.25,1)
C21 (0.35,0.59,0.9:0.21,0.59,1) (0.46,0.7,0.97:0.33,0.25,1)
C22 (0.12,0.36,0.63:0,0.7,0.7) (0.21,0.45,0.71:0,0.67,0.79)
C23 (0.38,0.62,0.91:0.23,0.97,1) (0.4,0.64,0.93:0.26,0.95,1)
C31 (0.42,0.67,0.94:0.28,0.67,1) (0.68,0.95,1:0.55,0.67,1)
C32 (0.12,0.36,0.63:0,0.89,0.7) (0.4,0.64,0.93:0.26,0.95,1)
C33 (0.12,0,0.6:0,0.45,0.63) (0.46,0.7,0.97:0.33,0.3,1)
C41 (0.42,0.67,0.94:0.28,0.67,1) (0.38,0.62,0.91:0.23,0.59,1)
C42 (0.06,0.3,0.56:0,0.95,0.64) (0.25,0.5,0.75:0.15,0.67,0.85)
C43 (0.46,0.7,0.97:0.33,0.97,1) (0.63,0.92,1:0.5,0.89,1)

102 B. Oztaysi et al.



At the very last step, the weighted sum of the performance indicators are calculated.
This operation is done for each criteria to observe criteria performance and also for all
indicators to obtain overall performance. The results are shown in Table 7.

When analyzing information content, one must keep in mind that lower I values
reflect better performance. So, in overall performance Period 2 is better than Period 1.
In a similar way, in Telephone and Efficiency criteria Period 2 outperforms Period 1,
however in Agent and Service it is the other way around. According to Table 7, there is
nearly 7% increase in overall performance. However, this percentage may be mis-
leading since it is calculated by a logarithm function.

4 Conclusion

In this study, hierarchical intuitionistic fuzzy axiomatic design method is proposed
based on Kahraman et al. (2017)’s study. In the proposed method allows a hierarchical
decision model to be defined and used in decision-making problems. In the case study,
a three level decision model, containing 4 criteria and 12 performance indicators, is
defined with and used to measure call center performance.

Table 6. Information content values for each period

Perf. Indicator Weights I - Period 1 I - Period 2

C11 0.157 2.398 2.225
C12 0.116 0.380 1.766
C13 0.074 0.449 0.841
C21 0.092 0.445 3.212
C22 0.101 1.328 2.411
C23 0.068 0.471 1.428
C31 0.11 0.696 0.594
C32 0.083 1.696 1.015
C33 0.053 5.212 1.509
C41 0.057 0.696 1.865
C42 0.052 1.766 2.411
C43 0.037 0.620 0.535

Table 7. Criteria and overall performance scores

Criteria Period 1 Period 2 Percentage difference

Telephone 0.454 0.288 +36.6%
Agent 0.207 0.377 −82.3%
Efficiency 0.278 0.119 +57.2%
Service 0.061 0.144 −134.6%
Total 1.001 0.928 +7.2%
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The results of the study show that, hierarchical intuitionistic fuzzy axiomatic design
method can be an effective approach to performance measurement literature since it
allows linguistic variables to be represented and used. On the other hand, using
information axiom on performance measurement domain has some shortcomings.
Although the results can be used to sort or identify best alternative, it is hard to interpret
the results to see the degree of improvement. In the future studies, new definitions can
be made or formulas can be suggested to maintain more effective results.
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Abstract. Because of emerging technologies, a vast amount of data can be
stored and processed very easily. These advances also affect companies and
many new projects are being proposed. Business analytics is the umbrella term
for these projects and it denotes to the skills, technologies, activities aiming at
assessment and exploration of past performance to gain an understanding for
better decision making. Data and analytical models are the two main pillars of
business analytics. Business analytics project can be grouped into three main
groups: (i) descriptive analytics, efforts to understand what has happened in the
company, (ii) predictive analytics, efforts to figure out the result of an future
event, and (iii) prescriptive analytics use mathematical and computational sci-
ences to suggest decision options to take advantage of the results of descriptive
and predictive analytics. In this study a prioritization method for possible busi-
ness analytics projects using Type-2 fuzzy AHP is proposed. Proposed model is
composed of six criteria namely, strategic value, competitiveness, customer
relations, improved decision-making, improved operations, and data quality.

Keywords: Type-2 fuzzy AHP � Interval type-2 fuzzy sets � Business
analytics � Project selection � Multicriteria decision making

1 Introduction

As a result of emerging technologies, both storing and processing large dataset have
become cheap and feasible. This trend enabled applications of business analytics to
flourish and become important. In its broadest definition, Business analytics (BA) is
“evidence-based problem recognition and solving that happen within the context of
business situations” (Holsapple et al. 2014). There are various business areas for BA
applications, web analytics, marketing analytics, service analytics, talent analytics,
process analytics, and risk analytics are among the most popular domains. BA appli-
cations are divided into three main groups; descriptive, predictive and prescriptive
analytics. (Kiron et al. 2011). Descriptive analytics focus on summarize raw data and
make it something that is interpretable by decision makes, thus it helps describing what
has happened in the past. Predictive analytics aim at providing companies with
actionable insights based on current data and analytical models. The last group, pre-
scriptive analytics aim recommend solutions/actions to the end user.
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According to Gartner’s 2016 Chief Information Officer (CIO) Agenda Report,
Business intelligence and Analytics is the top priority of CIOs, which is followed by
cloud technology and mobile (Gartner 2016). This brings the problem of project pri-
oritization and selection since BA projects require considerable financial investment
and has potential risks and benefits. BA project selection process can be formulated as a
multi criteria decision making (MCDM) which focuses on problems with discrete
decision space and predetermined decision alternatives. MCDM approach brings the
flexibility to handle various different and potentially conflicting criteria in the decision
model. MCDM techniques are applied to various project selection problem in the
literature such as; energy (Read et al. 2017; Stojcetovic et al. 2016), urban planning
(Wey and Wu 2008; Oztaysi et al. 2016), information systems (Rouhani 2017; Oztaysi
2015), six-sigma (Adebanjo et al. 2016; Ortz et al. 2015), research and development
(Oztaysi et al. 2017; Morton et al. 2016), construction (Mousavi et al. 2015).

In the classical MCDM methods, decision makers’ evaluations are characterized by
numerical numbers. However, in real world applications, using crisp numbers can be
impossible. The data may be imprecise by nature, or the decision makers may have
problems assigning numerical values to their assessments. Fuzzy set theory developed
by Zadeh (1965) can be a good solution to overcome this problem since it provides
formalized tools for dealing with the imprecision in decision-making problems.
Although fuzzy sets present a better solution than crisp number still some shortcomings
are reported. Type-2 fuzzy sets are proposed by Zadeh (1975) in order to better rep-
resent imprecision and uncertainty. Type-2 fuzzy sets are extensions of ordinary fuzzy
sets, and they model vagueness and linguistic uncertainties since the membership
grades, themselves are ordinary fuzzy sets (Mendel 2000; Karnik and Mendel 2001).

The originality of this paper comes from using interval type-2 fuzzy sets into
project selection problem for the first time. Besides, to the best of our knowledge this is
the first paper which deals with prioritization of business analytics projects and define
criteria for this purpose. The rest of the paper is as follows. Section 2 focus on
methodology, first basics of interval type-2 fuzzy sets are given and then the steps of
interval type-2 fuzzy AHP is explained. Section 3 provides the application information,
first the background information about the problem is given, then the decision model is
introduced and finally the results of the methodology is presented. In the last section,
Sect. 4, the results are discussed and suggestions on future studies are listed.

2 Methodology

In this section, first preliminaries of interval Type-2 fuzzy sets are given with their
arithmetic operations. Then the steps of interval Type-2 fuzzy AHP are explained.

2.1 Interval Type-2 Fuzzy Sets

Zadeh (1965) propose fuzzy set theory in order to mathematically represent uncertainty
and define mechanisms to handle imprecision and vagueness inherent to real world
cases. In the scope of decision process, fuzzy sets allow methodologies to use
approximate information instead of crisp values. Using approximate information in
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problems relaxed the problems and many engineering and decision problems are
simplified and enhanced. As a result, classical methods which are originally proposed
by using crisp numbers are renewed to enable fuzzy sets to be used. In decision making
area, multicriteria decision making (MCDM) techniques are also updated to utilize
linguistic terms especially for representing expert evaluations. Using fuzzy sets, lin-
guistic variables could be better represented in the problems. Literature provides
studies with different types fuzzy sets such as, triangular fuzzy numbers, trapezoidal
fuzzy numbers and Gaussian membership functions (Kahraman and Kaya 2010).

The ordinary fuzzy sets, proposed by Zadeh (1965), suggests that each element in
the universe has a degree of membership to a set. This membership is represented by a
function called membership function. This is the main property which enable ordinary
fuzzy set to handle uncertainties. However, some limitations of ordinary fuzzy sets are
reported in the literature such as usage of words, difficulties in aggregation of expert’s
opinions and working with noisy data (Mendel et al. 2006). In order to overcome this
limitation, Zadeh (1975) propose type-2 fuzzy sets. Type-2 fuzzy sets are the fuzzy sets
which have membership functions in form of ordinary fuzzy sets. From another per-
spective, type-2 fuzzy sets brings a new third dimension into membership function.
This new dimension brings additional degrees of freedom so that uncertainties can be
better modeled. (Mendel et al. 2006).

A type-2 fuzzy sets ~~A in the universe of discourse X can be represented by a type-2
membership function l~~A

ðx; uÞ, where x 2 X and u 2 Jx� 0; 1½ � as follows (Zadeh 1975):

~~A ¼ x; uð Þ; l~~A
x; uð Þ

� �
j8x 2 X; 8u 2 Jx� 0; 1½ �; 0� l~~A

x; uð Þ� 1
n o

; ð1Þ

where Jx denotes an interval [0, 1]. The type-2 fuzzy set ~~A also can be represented as
follows (Mendel et al. 2006):

~~A ¼
Z
x2X

Z
u2Jx

l~~A
x; uð Þ= x; uð Þ Jx� 0; 1½ � ð2Þ

where Jx� 0; 1½ � and RR
denote union over all admissible x and u.

Interval type-2 fuzzy set are a special case of type fuzzy sets where all l~~A
x; uð Þ ¼

1; (Buckley 1985).

Mendel et al. (2006) represent interval type-2 fuzzy set ~~A as follows:

~~A ¼
Z
x2X

Z
u2Jx

1
x; uð Þ ; ð3Þ

where Jx� 0; 1½ �:
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In accordance with the given definitions, a trapezoidal interval type-2 fuzzy set can
be represented as

~~Ai ¼ ~Ui; ~Li
� � ¼ ui1; ui2; ui3; ui4;H1 ~Ui

� �
;H2 ~Ui

� �� �
;

�
li1; li2; li3; li4;H1 ~Li

� �
;H2 ~Li

� �� ��

where ~Ui and ~Li are ordinary fuzzy sets; ui1; ui2; ui3; ui4; li1; li2; li3; and li4 are the ref-

erences points of the interval type-2 fuzzy set ~~Ai, H1 ~Ui
� �

; shows the membership value
of the element ujðjþ 1Þ in the upper trapezoidal membership function ~Ui

� �
, 1� j� 2,

Hj ~Li
� �

denotes the membership value of the element ljðjþ 1Þ in the lower trapezoidal

membership function ~Li, 1� j� 2, H1 ~AU
i

� � 2 ½0; 1�, H2 ~Ui
� � 2 ½0; 1�, H1 ~AL

i

� � 2 ½0; 1�,
H2 ~Li

� � 2 ½0; 1� and 1� i� n (Chen and Lee 2010). Figure 1 represents a sample
trapezoidal interval type-2 fuzzy set.

Let ~~A1 and ~~A2 be interval type-2 fuzzy sets and k be a crisp number,

~~A1 ¼ u11; u12; u13; u14;H1 ~U1
� �

;H2 ~U1
� �� �

;
�

l11; l12; l13; l14;H1 ~L1
� �

;H2 ~L1
� �� ��

~~A2 ¼ u21; u22; u23; u24;H1 ~U2
� �

;H2 ~U2
� �� �

;
�

l21; l22; l23; l24;H1 ~L2
� �

;H2 ~L2
� �� ��

the arithmetic operations with these numbers are shown in the following (Chen and Lee
2010).

Addition:

~~A1 � ~~A2 ¼ u11 þ u21; u12 þ u22; u13 þ u23; u14 þ u24ð ;ð
min H1 ~U1

� �
;H1 ~U2

� �� �
;min H2 ~U1

� �
;H2 ~AU2

� �� ��
;

l11 þ l21; l12 þ l22; l13 þ l23; l14 þ l24;ð
minðH1ð~L1Þ;H1ð~L2ÞÞ; min ðH2ð~L1Þ;H2ð~L2ÞÞÞÞ

ð4Þ

Fig. 1. Interval type-2 fuzzy sets
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Subtraction:

~~A1H
~~A2 ¼ððu11 � u24; u12 � u23; u13 � u22; u14 � u21;

minðH1ð~U1Þ;H1ð~U2ÞÞ;minðH2ð~U1Þ;H2ð~U2ÞÞÞ;
ðl11 � l24; l12 � l23; l13 � l22; l14 � l21;

minðH1ð~L1Þ;H1ð~L2ÞÞ; minðH2ð~L1Þ;H2ð~L2ÞÞÞÞ

ð5Þ

Multiplication:

~~A1 � ~~A2 ffi u11 
 u21; u12 
 u22; u13 
 u23; u14 
 u24;ðð
min H1 ~U1

� �
;H1 ~U2

� �� �
;min H2 ~U1

� �
;H2 ~U2

� �� ��
;

ððl11 
 l21; l12 
 l23; l13 
 l23; l14 
 l24;

min H1 ~L1
� �

;H1 ~L2
� �� �

;min H2 ~L2
� �

;H2 ~L2
� �� ���

ð6Þ

Multiplication with a crisp number:

k~~A1 ¼ k 
 u11; k 
 u12; k 
 u13; k 
 u14ð Þ;H1 ~U1
� �

;H2 ~U1
� �

;
�
k 
 l11; k 
 l12; k 
 l13; k 
 l14;H1 ~L1

� �
;H2 ~L1

� �� �� ð7Þ

Division by a crisp number:

~~A1

k
¼ 1

k

 u11;

1
k

 u12;

1
k

 u13;

1
k

 u14

� �
;H1 ~U1

� �
;H2 ~U1

� �
;

�

1
k

 l11;

1
k

 l12;

1
k

 l13;

1
k

 l14;H1 ~L1

� �
;H2 ~L1

� �� �� ð8Þ

where k > 0.
Based on these arithmetic operations the interval type-2 fuzzy AHP is introduced in

the next section.

2.2 Interval Type-2 Fuzzy AHP

AHP is a method that aim to quantify relative priorities of a given set of alternatives by
utilizing pairwise comparisons and decision makers’ judgments. Since expert com-
parisons are the main input of the method, it stresses the consistency of the compar-
isons to detect inconsistencies. The original scale used for decision maker’s evaluations
is composed of crisp numbers. However, representing a linguistic term using fuzzy sets
provides better results since fuzzy logic provides mathematical tools and operations to
handle uncertainties (Kahraman et al. 2010). From this point of view, fuzzy extensions
of classical AHP have been proposed.

In the literature there are various studies which use fuzzy AHP with linguistic
variables. The first algorithm in fuzzy AHP is form Laarhoven and Pedrycz (1983)
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which utilizes Lootsma’s logarithmic least square method and defines memberships
with triangular fuzzy sets. Later, Buckley (1985) uses trapezoidal fuzzy numbers in
AHP method and integrates geometric mean method to derive weights. Chang (1996)
propose using extent analysis method for the synthetic extent values of the pairwise
comparisons and representing pairwise evaluations by triangular fuzzy numbers. In one
of the recent studies Zeng et al. (2007), propose using arithmetic averaging method to
calculate performance scores with various scales.

In order to handle the uncertainty and vagueness in a better way, type-2 fuzzy sets
are integrated into AHP method (Kahraman et al. 2014; Sari et al. 2013). The proposed
AHP method integrates trapezoidal interval type-2 fuzzy sets with Buckley’s (1985)
fuzzy AHP method. The steps of the method are given in the following:

Step 1: The problem is analyzed and the goal is established.
Step 2: The decision model is structured, the top through the intermediate levels by

determining the criteria and finally at the lowest level list of alternatives.
Step 3: Pairwise comparison matrices are constructed in accordance with the

decision model. Later, the decision makers make comprised evaluations using lin-
guistic variables. In Table 1, the linguistic variables and corresponding trapezoidal
interval type-2 fuzzy scales are given (Kahraman et al. 2014).

The resulting matrice of a pairwise comparison is given in the following;

~~A ¼
1 ~~a12 � � � ~~a1n
~~a21 1 � � � ~~a2n
..
. ..

. . .
. ..

.

~~an1 ~~an2 � � � 1

2
6664

3
7775 ¼

1 ~~a12 � � � ~~a1n
1=~~a12 1 � � � ~~a2n
..
. ..

. . .
. ..

.

1~~aln 1=~~a2n � � � 1

2
6664

3
7775 ð9Þ

where

1=~~a ¼ 1
aU14

;
1
aU13

;
1
aU12

;
1
aU11

;H1 aU12
� �

;H2 aU13
� �� �

;

�

1
aL24

;
1
aL23

;
1
aL22

;
1
aL21

;H1 aL22
� �

;H2 aL23
� �� ��

Step 4: The consistency of the pair wise comparisons are surveyed. This is
accomplished by defuzzifying the values of matrices and checking the consistencies.

Table 1. Linguistic variables and fuzzy scales

Linguistic variables Trapezoidal Internal Type-2 fuzzy scales

Absolutely Strong (AS) (7, 8, 9, 9; 1, 1) (7.2, 8.2, 8.8, 9; 0.8, 0.8)
Very Strong (VS) (5, 6, 8, 9;1, 1) (5.2, 6.2, 7.8, 8.8; 0.8, 0.8)
Fairly Strong (FS) (3, 4, 6, 7; 1, 1) (3.2, 4.2, 5.8, 6.8, 0.8, 0.8)
Slightly Strong (SS) (1, 2, 4, 5; 1, 1) (1.2, 2.2, 3.8, 4.8; 0.8, 0.8)
Exactly Equal (E) (1, 1, 1, 1; 1, 1) (1, 1, 1, 1; 1, 1)
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Step 5: Fuzzy weights of each element in the row of the matrix is calculated. In this
manner for each row, the geometric mean ~~ri is calculated using Eq. 10;

~~ri ¼ ~~ai1 � . . .� ~~aij
� 	1=j ð10Þ

Geometric means are normalized using Eq. (11) to obtain fuzzy weights.

~~pi ¼ ~~ri � ~~r1 � . . .� ~~ri � . . .� ~~rn
� 	�1 ð11Þ

Step 6: Fuzzy performance scores of each alternative is calculated using Eq. (12).

~~Ui ¼
Xn

j¼1
~~wj~~sj; 8i: ð12Þ

where ~~Ui represents the utility of alternative i, ~~wj represents the weight of the criterion
j, and ~~sj shows the score of the alternative with respect to criterion j. Recall that ~~wj and
~~sj are computed from different pairwise comparison matrices using the same formulas
in Step 6. While ~~wj represents the fuzzy priority of the related pairwise comparison of
the criteria, ~~sj represents the fuzzy priority calculated from the related pairwise com-
parison of the alternatives with respect to the related criterion.

Step 7: Type-2 interval fuzzy sets are defuzzified in order to determine the
importance ranking of the alternatives. The DTtrT method (Kahraman et al. 2014) is
used for defuzzification in this step (Eq. 13).

DTtrT ¼
uU�lUð Þþ bU :m1U�lUð Þþ ðaU :m2U�lUÞ

4 þ lU þ uL�lLð Þþ bL:m1L�lLð Þþ ðaL:m2L�lLÞ
4 þ lL

h i
2

ð13Þ

Step 8: The best alternative is determined using the defuzzified utility values of the
alternatives. The alternative with the highest value is selected.

3 Application

3.1 Background of the Case Study

In this section, a numerical application of interval type-2 fuzzy AHP in a case study is
presented. The case study is from a textile manufacturing company, which produces and
sells textile products with its own brand. We assume that there are three alternative BA
projects for the company. Alternative 1 (Alt. 1) is a project on production visibility. The
project promise to capture real time production data, which will support all related
planning activities. Using automatic identification technologies managers can trace and
analyze all processes and products. Alternative 2 (Alt. 2) is on transportation manage-
ment. The products are delivered to all retail points and to customers using various
transportation routes and carriers. This project aims to optimize routes and shipments to in
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order to maintain cost reduction. Alternative 3 (Alt. 3) is called customer experience
monitoring. The main point of this project is to capture and consolidate customer data
through all touch points, including, mobile, web, call-center, phone, fax, and retail store.
As a result, the company can form a single view of the customer and build better analytics.

3.2 Decision Model

The criteria used for BA projects prioritization are determined as a result of literature
review and comments of decision making team (Laursen and Thorlund 2017, de Araújo
et al. 2017). The resulting three level decision making model is constructed as shown in
Fig. 2.

The criteria selected for BA project prioritization are given as follows:

• Strategic Value (C1): A major aspect of BA project evaluation is assessing the
relationship with the project and company strategies. The projects, which have a
direct link or direct effect on strategic goals, should be prioritized.

• Competitiveness (C2): Competitiveness shows ability and performance of a
company, to sell and supply goods and services in a given market, in relation to the
performance of other firms. In some cases, projects can directly affect the com-
petitiveness of the company.

• Customer relations (C3): Companies try to manage its interactions with current
and potential future customers. Since the number of locations, channels and cus-
tomers are very high, it is based on the storing and processing customers’ data.

• Improved decision-making (C4): The ultimate aim of every BA project is to
improve managerial processes by supporting decision-making. However, the con-
tribution of each project may differ. In this criterion, the projects are evaluated with
respect to their direct contribution to decision making process.

• Improved operations (C5): Companies create value and income by realizing its
operations. The performance of operations are measured in terms of efficiency,
effectiveness, cost or time. Improving the performance of operations the company
gets better results and costs decrease.

Fig. 2. Hierarchy of BA project prioritization problem
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• Data Quality (C6): Data quality can be defined as fit for its intended uses in
operations, decision-making and planning (Redmann 2013). If the data quality is
low, the decisions based on this data becomes ineffective and unreliable.

3.3 Prioritization of the Alternatives

This section explains the application steps of interval type-2 fuzzy AHP method
defined in Sect. 2. In the first stage of the application the pairwise comparison matrices
for criteria and alternatives are constructed. One matrix for comparison of the criteria
and six matrices for the comparison of alternatives with respect to each criterion are
formed. The decision making team filled the matrices with consensus. Table 2 shows
the pairwise comparison of the criteria with respect to the goal. Table 3 shows the
pairwise comparison of the alternatives with respect to the criteria

Following the steps given in Sect. 3, the fuzzy and defuzzified weights are cal-
culated as given in Table 4. The weights show that the most important criterion is
Strategic Value (C1) and the least important criterion is (C5)

Table 2. The pairwise comparison for the criteria

w.r.t Goal C1 C2 C3 C4 C5 C6

C1 E SS SS FS FS SS
C2 1/SS E SS SS SS E
C3 1/SS 1/SS E SS SS E
C4 1/FS 1/SS 1/SS E SS E
C5 1/FS 1/SS 1/SS 1/SS E 1/SS
C6 1/SS E E E SS E

Table 3. Pairwise comparison matrices with respect to the criteria

w.r.t C1 ALT.1 ALT.2 ALT.3 w.r.t C2 ALT.1 ALT.2 ALT.3

ALT.1 E SS E AL1/.1 E 1/SS E
ALT.2 1/SS E E AL1/.2 SS E E
ALT.3 E E E AL1/.3 E E E
w.r.t C3 ALT.1 ALT.2 ALT.3 w.r.t C4 ALT.1 ALT.2 ALT.3
ALT.1 E E 1/FS AL1/.1 E E E
ALT.2 1/E E 1/W AL1/.2 E E SS
ALT.3 FS W E AL1/.3 1/E 1/SS E
w.r.t C5 ALT.1 ALT.2 ALT.3 w.r.t C6 ALT.1 ALT.2 ALT.3
ALT.1 E 1/SS SS AL1/.1 E FS E
ALT.2 SS E FS AL1/.2 1/FS E 1/FS
ALT.3 1/SS 1.FS E AL1/.3 E FS E
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Next step is to calculate the weight of the alternatives with respect to each criterion.
Later, these weights are multiplied by the weight of the criteria to find the global
weights. The global weights are summed up to find the overall priority of the alternative.

Table 5 shows that total defuzzified weights of the weights are 0.529, 0.487, and
0.550 respectively. According to these results, called customer experience monitoring
(Alt. 3) has the highest priority and it is followed by production visibility (Alt.1).
Transportation management (Alt. 2) has the lowest priority.

Table 4. Interval Type-2 fuzzy weights

Crt. Fuzzy Weights Weig.

C1 (0.12, 0.24, 0.61, 1.01; 1, 1) (0.14, 0.27, 0.56, 0.90; 0.8, 0.8) 0.382
C2 (0.067, 0.12, 0.30, 0.52; 1, 1) (0.077, 0.13, 0.27, 0.46; 0.8, 0.8) 0.194
C3 (0.051, 0.087, 0.21, 0.40; 1, 1) (0.058,0.095,0.19,0.34;0.8,0.8) 0.143
C4 (0.037, 0.057, 0.13, 0.25; 1, 1) (0.041,0.062,0.12,0.21;0.8,0.8) 0.092
C5 (0.021, 0.032, 0.085, 0.19; 1, 1) (0.023, 0.035, 0.075, 0.15; 0.8, 0.8) 0.062
C6 (0.066, 0.097, 0.19, 0.30; 1,1) (0.073, 0.10, 0.17, 0.27; 0.8, 0.8) 0.127

Table 5. Global weights of the alternatives

Criteria Fuzzy Weight of Alt.1 Def. W.

C1 (0.03, 0.092, 0.34, 0.66; 1, 1) (0.043, 0.10, 0.30, 0.57; 08, 08) 0.260
C2 (0.010, 0.023, 0.083, 0.20; 1, 1) (0.012, 0.026, 0.072, 0.16; 0.8, 0.8) 0.072
C3 (0.005, 0.011, 0.042, 0.11; 1, 1) (0.006, 0.012, 0.036, 0.087; 0.8, 0.8) 0.038
C4 (0.009, 0.017, 0.046, 0.099; 1, 1) (0.011, 0.018, 0.041, 0.082; 0.8, 0.8) 0.039
C5 (0.002, 0.005, 0.034, 0.14; 1, 1) (0.002, 0.00, 0.027, 0.10; 0.8, 0.8) 0.040
C6 (0.022, 0.038, 0.099, 0.18; 1, 1) (0.025, 0.042, 0.090, 0.16; 0.8, 0.8) 0.080
Total (0.084, 0.18, 0.64, 1.41; 1, 1) (0.10, 0.21, 0.56, 1.17; 0.8, 0.8) 0.529
Criteria Fuzzy Weight of Alt.2 Def. W.
C1 (0.019, 0.046, 0.17, 0.39; 1, 1) (0.024, 0.052, 0.14, 0.32; 0.8, 0.8) 0.142
C2 (0.017, 0.046, 0.16, 0.34; 1, 1) (0.022, 0.053, 0.14, 0.29; 0.8, 0.8) 0.132
C3 (0.006, 0.01, 0.053, 0.15; 1, 1) (0.007, 0.014, 0.045, 0.12; 0.8, 0.8) 0.051
C4 (0.009, 0.02, 0.074, 0.17; 1, 1) (0.011, 0.024, 0.064, 0.13; 0.8, 0.8) 0.062
C5 (0.005, 0.01, 0.078, 0.27; 1, 1) (0.006, 0.016, 0.064, 0.20; 0.8, 0.8) 0.081
C6 (0.004, 0.007, 0.021, 0.04; 1, 1) (0.004, 0.008, 0.01, 0.039; 0.8, 0.8) 0.018
Total (0.063,0.14,0.56,1.39;1,1)(0.077,0.16,0.48,1.11;0.8,0.8) 0.487
Criteria Fuzzy Weight of Alt.3 Def. W.

C1 (0.03, 0.073, 0.21, 0.39; 1, 1) (0.021, 0.040, 0.094, 0.17; 0.8, 0.8) 0.164
C2 (0.017, 0.03, 0.10, 0.20; 1, 1) (0.021, 0.040, 0.094, 0.17; 0.8, 0.8) 0.084
C3 (0.01, 0.040, 0.19, 0.51; 1, 1) (0.01, 0.047, 0.16, 0.41; 0.8, 0.8) 0.171
C4 (0.005, 0.010, 0.037, 0.099; 1, 1) (0.006, 0.012, 0.031, 0.077; 0.8, 0.8) 0.034
C5 (0.001, 0.002, 0.01, 0.058; 1, 1) (0.001, 0.002, 0.010, 0.040; 0.8, 0.8) 0.016
C6 (0.022, 0.038, 0.099, 0.18; 1, 1) (0.025, 0.042, 0.090, 0.16; 0.8, 0.8) 0.080
Total (0.096, 0.20, 0.66, 1.46; 1, 1) (0.11, 0.22, 0.58, 1.20; 0.8, 0.8) 0.550
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4 Conclusion

Emerging technologies on data storage and processing has enabled various business
analytics projects feasible. As a result, companies need to prioritize and select right BA
projects, since the budgets are limited. In this paper BA project selection is modeled as
a MCDM problem and interval type-2 fuzzy AHP, is applied in a numerical case study.

In the case study a decision model with six criteria and three alternatives is built.
The criteria are determined after a literature survey and with the help of decision
making team’s comments. As a result of the pairwise comparisons the most important
criterion for BA project selection is determined as strategic value, which is followed by
competition and customer relations. The results of the study also show that among the
three alternative projects, monitoring customer experience has the highest priority and
it is followed by production visibility project.

Both classical AHP and fuzzy AHP methods suggest that they handle linguistic
variables into the calculations. In the former method, linguistic variables are handled as
crisp numbers and triangular fuzzy numbers are used in the later one. In this study
interval type-2 fuzzy sets are used to represent linguistic variables in order to reach
more reliable results.

For the future studies, the decision model can be extended to cover the costs as well
as benefits. Another way for further studies is to use other MCDM techniques and other
fuzzy extensions and compare their results with this study.
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Abstract. In this work we propose an image compression algorithm
based on the fuzzy transform. The algorithm tries to find the best fuzzy
partition of the functions domain in order to obtain the best compressed
image (in terms of quality). To solve the optimization problem we based
ourselves in the Gravitational Search Algorithm, in which each agent
represents a possible fuzzy partition of a fixed size.

Keywords: Fuzzy transform · Image compression · Gravitational
Search Algorithm

1 Introduction

Image compression consists in reducing the amount of data (generally measured
as the number of bits) required to represent an image [4]. Generally, image
compression algorithms transform or encode the image and this transformation
is stored or transmitted. Then, an inverse transformation or decode process is
applied and a reconstruction of the original image is obtained.

There exist many image compression algorithms in the literature. In this
work, we focus on the fuzzy transform [7] which has been successfully applied in
the field of image processing and, more specifically, in image compression (see
[1–3,6,8,9]). Broadly speaking, the fuzzy transform is based on a fuzzy partition
of the image domain, i.e. [1, N ]× [1,M ] where N and M represent, respectively,
the number of rows and columns of an image. The fuzzy partition is composed by
n and m fuzzy sets defined on the intervals [1, N ] and [1,M ], respectively, with
certain properties. It is known that, given fixed n and m, two different fuzzy
partitions of the image domain will yield two different fuzzy transforms, two
different compressed images and, accordingly, two different reconstructed images.
Since the inverse fuzzy transform is also based on the same fuzzy partition used
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in the compression, it is possible to rank both fuzzy partitions in terms of quality:
the better the quality of the reconstructed image, the better the fuzzy partition.

Taking into account this fact, the objective of this work is the following: given
an image, to find the best fuzzy partition so that the reconstructed image after
applying the fuzzy and the inverse fuzzy transform is as similar as possible to
the original image.

In order to find the best fuzzy partition, we propose to use the Gravitational
Search Algorithm (GSA), an heuristic optimization algorithm based on the law
of gravity and the law of motion [10]. In this algorithm, each agent represents
a solution, i.e. a feasible fuzzy partition of the image domain. The quality (fit-
ness) of an specific agent is measured in the following way: taking the fuzzy
partition represented by the agent, we apply the fuzzy transform (obtaining the
compressed image) and, later, the inverse fuzzy transform. Finally, we measure
the quality of the reconstructed image by means of an error measure and we
associate this error with the agent. Then, the problem becomes a minimization
problem and the GSA tries to find the agent with the minimum error measure.

The structure of this work is as follows. In Sect. 2 we recall the concept of a
fuzzy partition and the definition of the fuzzy and inverse fuzzy transform. In
Sect. 3 we summarize the steps of the Gravitational Search Algorithm. In Sect. 4
we explain in detail the optimization algorithm we propose in order to find the
best fuzzy partition and, in Sect. 5, we show the first preliminary results obtained
by our proposal. We finish, in Sect. 6 with some conclusions and future research
lines.

2 Fuzzy Transform of Discrete Functions

In this section we recall the concept of the fuzzy transform and the inverse
fuzzy transform. For the sake of simplicity, we focus only on the discrete fuzzy
transform, that maps a discrete function defined on an interval of real numbers
into a real vector.

In order to give the definition of the fuzzy and inverse fuzzy transform, we
define the concept of a fuzzy partition of the functions domain.

Definition 1 [7]. Let x1 < · · · < xn be fixed nodes within [a, b], such that x1 = a,
xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An, identified with their
membership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition
of [a, b] if they fulfill the following conditions for k = 1, . . . , n:

(1) Ak : [a, b] → [0, 1], Ak(xk) = 1;
(2) Ak(x) = 0 if x /∈ (xk−1, xk+1) where x0 = a and xn+1 = b;
(3) Ak(x) is continuous;
(4) Ak(x), k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x), k =

1, . . . , n − 1, strictly decreases on [xk, xk+1];
(5) for all x ∈ [a, b],

∑n
k=1 Ak(x) = 1.
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Definition 2 [7]. Let a fuzzy partition of [a, b] be given by fuzzy sets A1, . . . , An

in the sense of Definition 1. We say that it is uniform if the nodes x1, . . . , xn,
n ≥ 3, are equidistant. This means that xk = a + h(k − 1), k = 1, . . . , n, where
h = (b − a)/(n − 1), and

(6) Ak(xk − x) = Ak(xk + x), for all x ∈ [0, h], k = 2, . . . , n − 1;
(7) Ak(x) = Ak−1(x − h), for all k = 2, . . . , n − 1 and x ∈ [xk, xk+1], and

Ak+1(x) = Ak(x − h), for all k = 2, . . . , n − 1 and x ∈ [xk, xk+1].

Definition 3 [7]. Let f be a function given at nodes p1, . . . , pl ∈ [a, b] and
A1, . . . , An, n < l, be basic functions which form a fuzzy partition of [a, b]. We
say that the n-tuple of real numbers F [f ] = (F1, . . . , Fn) given by

Fk =

∑l
j=1 f(pj)Ak(pj)
∑l

j=1 Ak(pj)
, k = 1, . . . , n (1)

is the (discrete) fuzzy transform of f with respect to A1, . . . , An.

Definition 4 [7]. Let f be given at nodes p1, . . . , pl ∈ [a, b] and F [f ] be the fuzzy
transform of f with respect to the fuzzy partition A1, . . . , An. Then, the function

fF (pj) =
n∑

k=1

FkAk(pj)

defined at the same nodes is the inverse fuzzy transform.

The definition of the fuzzy and inverse fuzzy transform can be extended to
functions of more than one variable. In this work we are interested in working
with images, which can be seen as discrete functions of two variables. Therefore,
we will use the two-dimensional fuzzy and inverse fuzzy transform.

Definition 5 [7]. Let a function f be given at nodes (pi, qj) ∈ [a, b] × [c, d],
i = 1, . . . , N , j = 1, . . . , M and A1, . . . , An, B1, . . . , Bm where n < N , m < M ,
be basic functions which form a fuzzy partition of [a, b] and [c, d], respectively.
Suppose that sets p1, . . . , pN and q1, . . . , qM of these nodes are sufficiently dense
with respect to the chosen partition. We say that the n×m matrix of real numbers
F[f ] = (Fkl) is the discrete fuzzy transform of f with respect to A1, . . . , An, and
B1, . . . , Bm if

Fkl =

∑M
j=1

∑N
i=1 f(pi, qj)Ak(pi)Bl(qj)

∑M
j=1

∑N
i=1 Ak(pi)Bl(qj)

(2)

holds for all k = 1, . . . , n, l = 1, . . . , m.

Definition 6 [7]. Let A1, . . . , An and B1, . . . , Bm be basic functions which form
a fuzzy partition of [a, b] and [c, d] respectively. Let f be given at points (pi, qj) ∈
[a, b] × [c, d], i = 1, . . . , N , j = 1, . . . , M and F[f ] be the fuzzy transform of f
with respect to A1, . . . , An and B1, . . . , Bm. Then the function

fF(pi, qj) =
n∑

k=1

m∑

l=1

FklAk(pi)Bl(qj) (3)

defined at the same nodes is the inverse fuzzy transform.
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3 The Gravitational Search Algorithm

In this section we present the main steps concerning the GSA. Basically, the
objective of the GSA is to minimize (or maximize) a fitness function defined on
an n-dimensional space (search space). The optimization is performed iteratively
by means of a set of agents that represent feasible solutions. Each agent has an
acceleration and a velocity that is determined by the effect of the rest of agents:
the best agents (the best solutions to the optimization problem) attract each
other with a greater force.

Technically, consider a systems of T particles (agents). The position of each
agent Xi in a p-dimensional space is given by

Xi = (x1
i , . . . , x

d
i , . . . , x

p
i )

for each i ∈ {1, . . . , T}. At each specific time t, the mass of a particle Xi rep-
resents the adaptation of that specific particle to the problem. This is done by
means of a fitness function, that maps the p-dimensional space where the par-
ticles are defined into the set of real positive numbers. Each agent Xi has a
particular mass, which is determined by the fitness function as follows:

mi(t) =
fitnessi(t) − worst(t)

best(t) − worst(t)

where
best(t) = min

j∈{1,...,T}
fitj(t) and

worst(t) = max
j∈{1,...,T}

fitj(t)

Finally, the masses are normalized by means of:

Mi(t) =
mi(t)

∑T
j=1 mj(t)

such that
∑T

i=1 Mi(t) = 1.

Remark 1. Previous formulae are used in minimization problems. In the case of
a maximization problem, best(t) and worst(t) are calculated as the maximum
and minimum of fitness function, respectively.

As commented before, the GSA is based on the movement of agents, that
search along the search space for minima of the fitness function. In order to get
this movement, an acceleration is calculated for each agent as the result of the
acting forces of the rest of agents. The force acting on agent i by the rest of
agents is given as

F d
i (t) =

T∑

j=1j �=i

rjF
d
ij(t)



122 D. Paternain et al.

where rj is a random number in [0, 1] and

F d
ij(t) = G(t)

Mi(t)Mj(t)
Rij(t) + ε

(xd
j (t) − xd

i (t)),

ε is small positive constant and

Rij(t) = ||Xi(t) − Xj(t)||2.
Once the force acting over agent i is calculated, the acceleration is given by

ad
i (t) =

F d
i (t)

Mi(t)
=

T∑

j=1j �=i

rj
Mj(t)
Rij(t)

(xd
j (t) − xt

i(d).

The next velocity of an agent is given as

vd
i (t + 1) = riv

d
i (t) + ad

i (t)

where ri is a random number in [0, 1] and, finally, the next position is given as

xd
i (t + 1) = xd

i (t) + vd
i (t + 1).

Taking into account previous formulae, the most suitable agents will tend to
have heavier masses along the iterations and, therefore, tend to attract the other
with greater forces. At the end, the agents tend to move toward the best agent.
A summarization of the GSA is shown in Algorithm 1.

Algorithm 1. Gravitational Search Algorithm
Input: Number of agents T . Fitness function.
Output: Best agent

for i = 1, . . . , T do
Random initialization of Xi

end for
while stop criteria not reached do

for i = 1, . . . , T do
Evaluate fitness fitnessi(t) of each agent Xi

end for
Update G(t), best(t), worst(t) and Mi(t)
for i = 1, . . . , T do

Calculate the total force Fi(t) acting on agent i
Calculate the acceleration Ai(t)
Calculate the velocity Vi(t)
Update position Xi(t + 1)

end for
end while
Return best(t) as the best agent
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4 GSA for Tuning the Fuzzy Partition of the Fuzzy
Transform

As we have stated in the introduction, the fuzzy (and inverse) transform have
demonstrated to be a useful tool for image compression. Usually, the use of a
uniform fuzzy partition is assumed when compressing images due to its simplicity
and the fact that no extra information needs to be stored. However, it is clear
that given a fixed number of nodes (fuzzy sets) in the fuzzy partition, different
locations of nodes produce different fuzzy transforms. In this section we explain
how to optimize the location of the nodes of a fuzzy partition in order to obtain
better compressed images.

We recall that, given an image f of N ×M pixels (generally f : {1, . . . , N}×
{1, . . . , M} → {0, 1, . . . , 255}) and fuzzy sets A1, . . . , An : [1, N ] → [0, 1],
B1, . . . , Bm : [1,M ] → [0, 1] forming a fuzzy partition of [1, N ] and [1,M ], respec-
tively, the fuzzy transform F of f with respect to A1, . . . , An, B1, . . . , Bm is a
new (compressed) matrix of n × m pixels. The inversion process is performed
by the inverse fuzzy transform that, starting from F and from the same fuzzy
partition A1, . . . , An, B1, . . . , Bm, obtains a new (uncompressed) matrix fF of
N × M pixels.

The loss of quality produced by applying the fuzzy and inverse fuzzy trans-
form to image f can be calculated by means of several distance or error mea-
sures. One of such measures is the main squared error (MSE), that is calculated
as follows:

MSE(f, fF) =
1

N × M

N∑

i=1

M∑

j=1

(f(pi, qj) − fF(pi, qj))2.

Since both F and fF depends on the fuzzy partition formed by A1, . . . , An

and B1, . . . , Bm, one possible way of optimizing the fuzzy transform is by tuning
the position of the fuzzy subsets Ai, Bj [11].

Remark 2. In this work we assume that every fuzzy set of the fuzzy partition
has triangular membership function. Therefore, a fuzzy partition is totally deter-
mined by the position of the fixed nodes (see Definition 1).

In order to do this, we propose to model each possible fuzzy partition by
means of a real vector of n+m real numbers. The first n real numbers represent
the position of the fixed nodes x1, . . . , xn ∈ [1, N ] such that Ai(xi) = 1. The
real numbers going from the n + 1-th to the n + m-th position represent the
nodes y1, . . . , ym ∈ [1,M ] such that Bj(yj) = 1. Therefore, a fuzzy partition is
represented by a real vector X ∈ [1, N ]n × [1,M ]m. However, in order to have a
valid representation of a fuzzy partition we need to assure that:

– xj
1 = 1, xj

n = N,xj
n+1 = 1, xj

n+m = M , for every j ∈ {1, . . . , p};
– xj

i < xj+1
i for every j ∈ {1, . . . , n − 1} and every j ∈ {n + 1, . . . , n + m − 1};

– xj+1
i −xj+1

i for every j ∈ {2, . . . , n− 1} and every j ∈ {n+2, . . . , n+m− 1}.
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Remark 3. This process is done in our implementation of the GSA and those
agents that represent invalid fuzzy partitions automatically transformed in order
to assure previous conditions.

Finally, the summarization of our optimization process is explained in
Algorithm 2.

Algorithm 2. Optimization of fuzzy transform
Input: Image f of N × M pixels. Size of compressed image n < N and m < M .

Number of agents T .
Output: Optimized fuzzy partition A1, . . . , An, B1, . . . , Bm. Optimized compressed

image F. Uncompressed image fF. MSE between f and fF
for i = 1, . . . , T do

Initialize agent Xi ∈ [1, N ]n × [1,M ]m randomly following the restrictions men-
tioned above.

end for
Execute Algorithm 1 and obtain Xbest as the best particle
Decode Xbest into fuzzy partition A1, . . . , An and B1, . . . , Bm

Calculate fuzzy transform F of f with respect to A1, . . . , An and B1, . . . , Bm

Calculate inverse fuzzy transform fF of F with respect to A1, . . . , An and B1, . . . , Bm

Calculate MSE(f, fF)

5 Experimental Results

In this section we evaluate our optimization procedure based on the GSA for
tuning the fuzzy partition associated with the fuzzy transform. We have first
taken an original image of size 321 × 481 pixels (see Fig. 1) and we have fixed
n = 160,m = 240. In order to test different settings of the GSA, we evalu-
ate Algorithm 2 with different number of agents, specifically T = 5, 25, 50, 100.
The MSE of each optimized fuzzy transform is shown in Table 1 (second row).
According to the results it is not until we have 100 agents that we outperform the
non-optimized uniform fuzzy partition. Besides, the improvement is very small,
probably due to the large size of the fuzzy partition (big number of nodes).

With the purpose of testing whether a smaller number of nodes in the fuzzy
partition increases the improvement of the optimized fuzzy transform, we have
executed Algorithm 2 with

– n = 107,m = 160;
– n = 80,m = 120 and
– n = 64,m = 96.

All of these executions have been also tried with T = 5, 25, 50, 100. The MSEs
obtained are shown again in Table 1, row number three, four and five, respec-
tively.

Analyzing the results we first realize that having a big number of agents
guarantees finding a good enough solution to the optimization problem. If we
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Fig. 1. Original image 3096 from [5] (321 × 481 pixels).

Fig. 2. Comparison of MSE of reconstructed images using a uniform fuzzy partition
and Algorithm 2 with T = 100.

Table 1. MSE obtained from reconstructed images using uniform and optimized fuzzy
partitions.

Uniform T = 5 T = 25 T = 50 T = 100

n = 160,m = 240 12,25 35,40 13,44 13,12 10,62

n = 107,m = 160 24,57 68,57 24,09 23,75 21,30

n = 80,m = 120 35,56 97,91 37,18 33,09 31,63

n = 64,m = 96 46,19 75,74 42,97 41,00 40,86

take T = 5 then Algorithm 2 is not able to find a good solution to the problem.
However, when T = 100 we always outperform the uniform partition.

Now, if we focus on the behavior of the MSE among different partition sizes,
we see that the proposed optimization algorithm is able to find better compressed
images (if we have enough number of agents). Although the numbers shown
in Table 1 do not differ too much depending on the size of the partition (the
improvement is around 12% in every case), it seems evident that as long as the
size of the compressed image decreases, the improvement should increase. In
order to prove this we have executed Algorithm 2 with T = 100 and different
sizes of the compressed image. The results in terms of MSE are shown in Fig. 2,
where the MSE of a uniform and an optimized fuzzy partition are shown. In the
horizontal axis we show the different compression rates, i.e. the ratio between
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the size of the compressed image (size of the fuzzy partition) and the size of
the original image. In this sense, a compression rate of 100 means that the
original image has 381 × 421 and the compressed image 38 × 42. Observe that
the difference between the MSE of the uniform and optimized fuzzy partition
increases as long as the compressed ratio increases.

Finally, in Fig. 3 we show the reconstructed images obtained from a uniform
(first column) and the reconstructed images obtained from an optimized fuzzy

Fig. 3. First column: reconstructed images using a uniform fuzzy partition and sizes
m = 160, n = 240 (a), m = 107, n = 160 (d), m = 80, n = 120 (g) and m = 64, n =
96 (j). Second column: reconstructed images using an optimized fuzzy partition by
Algorithm 2 and sizes m = 160, n = 240 (b), m = 107, n = 160 (e), m = 80, n = 120
(h) and m = 64, n = 96 (k). Third column: differences between images a and d (c), d
and e (f), g and h (i) and j and k (l).
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partition (second column) obtained applying Algorithm 2 and taking T = 100
agents and the same sizes used in Table 1. Notice that the differences between the
first and second row appears mainly on the edges of objects. This can be better
seen in the third column of Fig. 3, where the differences between the images of
the first and second column are shown (the differences have been normalized
so that the maximum difference appears in white). The conclusion obtained is
that while using uniform fuzzy partitions produce blurring in the reconstructed
images, the optimization process allows to allocate the fuzzy sets in those areas
of interest where there exist large enough changes of intensities. Then, the fuzzy
transform is able to capture these changes in a better way and the information
is not lost in the process.

6 Conclusions

in this work we have proposed an optimization problem to find the best fuzzy
partition associated with an image. The solution of this problem allows to obtain
better compressed images by means of the fuzzy transform.

In order to solve the optimization problem we have based on the Gravita-
tional Search Algorithm. The first results obtained show that the GSA is able to
obtain optimized fuzzy partitions that minimize the error measure of the image
compression procedure.

In the future, we want to extend the experimental study to a wider set of
images, analyzing which images are suitable for this algorithm. Moreover, it
would be interesting to compare the results when using different optimization
algorithms rather than the GSA.

Acknowledgment. This work has been partially supported by MINECO,
AEI/FEDER, UE under project TIN2016-77356-P and grant VEGA 1/0420/15.
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Department of Mathematical Analysis and Applications of Mathematics,
Faculty of Science, Palacký University Olomouc,
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Abstract. Decision matrices represent a common tool for solving
decision-making problems under risk. Elements of the matrix express
the outcomes if a decision-maker chooses the particular alternative and
the particular state of the world occurs. We deal with the problem of
extension of a decision matrix to the case of fuzzy states of the world
and fuzzy outcomes of alternatives. We consider the approach based on
the idea that a fuzzy decision matrix determines a collection of fuzzy
rule-based systems. The aim of the paper is to study extension of this
approach to the case where the states of the world are fuzzy sets on
the finite universal set and the probabilities of elementary events are
determined by a tuple of fuzzy probabilities. We derive the formulas for
computations of the fuzzy expected values and fuzzy variances of the
outcomes of alternatives, based on which the alternatives can be com-
pared.

Keywords: Decision matrices · Decision-making under risk · Fuzzy
probability measure · Fuzzy states of the world · Fuzzy rule-based
systems

1 Introduction

In decision making under risk, decision matrices, see Table 1, are often used as
a tool of risk analysis, see e.g. [4,6,8,17,18]. They describe how the outcomes
of alternatives x1, . . . , xn depend on the fact which of the possible and mutually
disjoint states of the world S1, . . . , Sm will occur in the future. The probabil-
ities of occurrences of the states of the world are given by p1, . . . , pm, where
pj > 0, j = 1, . . . ,m, and

∑m
j=1 pj = 1. Thus, the outcome from choosing an

alternative xi, i ∈ {1, . . . , n}, is a discrete random variable Hi that takes on
the values hi,1, . . . , hi,m with the probabilities p1, . . . , pm. The alternatives are
usually compared on the basis of their expected outcomes EHi =

∑m
j=1 pjhi,j ,

i = 1, . . . , n, and the variances of their outcomes varHi =
∑m

j=1 pj(hi,j −EHi)2,
i = 1, . . . , n.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7 12
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Table 1. Decision matrix

S1 S2 · · · Sm

p1 p2 · · · pm

x1 h1,1 h1,2 · · · h1,m EH1 var H1

x2 h2,1 h2,2 · · · h2,m EH2 var H2

...
...

...
...

...
...

...

xn hn,1 hn,2 · · · hn,m EHn var Hn

In practical applications, the states of the world as well as the outcomes of
the alternatives can be determined vaguely. For instance, the particular state of
the world could be defined as “inflation is low”. Similarly, the outcome of an
alternative under a certain state of the world can be described as “about 5%
yield”, or as a linguistic evaluation from a given linguistic scale, e.g. “a small
profit”. The vaguely described pieces of information in decision matrix can be
mathematically modelled by means of tools of fuzzy sets theory, see e.g. [5,8,17]
and references therein.

In [12–14], the authors considered the following model: A probability space
(Ω,A, P ) is given, where Ω denotes a non-empty set of all elementary events,
A represents the set of all considered random events (A forms a σ-algebra of
subsets of Ω), and P : A → [0, 1] is a probability measure that assigns to each
random event A ∈ A its probability P (A) ∈ [0, 1]. The states of the world
S1, . . . , Sm are fuzzy sets on Ω whose membership functions μS1 , . . . , μSm

are
A-measurable, i.e. the α-cuts Sjα ∈ A for any α ∈ (0, 1], j = 1, . . . , m, and that
form a fuzzy partition of Ω, i.e.

∑m
j=1 μSj

(ω) = 1 for any ω ∈ Ω. The common
approach in such a case, considered in the literature (see e.g. [7,17]), consists
in applying the well known crisp probabilities of fuzzy events computed as the
expected membership degrees, as was proposed by Zadeh in [19]. However, it was
discussed in [13] that it is not appropriate to model the outcomes of alternatives
as discrete random variables taking on their values with the Zadeh’s probabilities
of the fuzzy states of the world, mainly due to a lack of interpretability (for an
overview of interpretability of fuzzy systems, see e.g. [1]). Therefore, the authors
in [12,14] proposed an alternative way how the information contained in a fuzzy
decision matrix can be treated. Their approach is based on the idea that a fuzzy
decision matrix does not determine discrete random variables, but a collection
of fuzzy rule-based systems (a fuzzy rule-based system was introduced in [20]).
In [12], only the crisp (i.e. not fuzzy) outcomes of alternatives were considered
which made the problem much simpler. They showed that within this approach,
the obtained characteristics of the outcomes of alternatives, like fuzzy expected
values or fuzzy variances, are clearly interpretable.

In practice, we can also meet the problem where the underlying probability
measure P is ill-known, see e.g. [2,17] and references therein. In such cases, it
can be modelled by means of tools of fuzzy sets theory as well, see e.g. [2,3,17].
The aim of the paper is to extend the approach proposed in [12,14] to the
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case where the states of the world S1, . . . , Sm form a fuzzy partition of the
finite universal set Ω = {ω1, . . . , ωr}, m < r, and where the probabilities of
elementary events {ω1}, . . . , {ωr} are determined expertly, by an r-tuple of fuzzy
probabilities P1, . . . , Pr. The problem will be illustrated by an practical example.

2 Fuzzy Decision Matrices Viewed as a Collection of
Fuzzy Rule-Based Systems

First, let us introduce the idea proposed in [12,14] that a fuzzy decision matrix
defines a collection of fuzzy rule-based systems.

In concordance with Introduction, let us consider that a probability space
(Ω,A, P ) is given and that the states of the world are described by fuzzy sets
S1, . . . , Sm forming a fuzzy partition of Ω. Further, let for any i ∈ {1, . . . , n}, the
fuzzy outcomes of the alternative xi under the particular fuzzy states of the world
be given by the fuzzy numbers Hi,j , j = 1, . . . ,m. Then, information about the
outcome of choosing the alternative xi can be expressed by the following m-tuple
of If-Then rules:

If the state of the world is S1, then the outcome of xi is Hi,1.
If the state of the world is S2, then the outcome of xi is Hi,2.
. . .
If the state of the world is Sm, then the outcome of xi is Hi,m.

(1)

In [12], it was shown that in the case of the fuzzy decision matrix with crisp
outcomes Hi,j = hi,j ∈ R, j = 1, . . . , m, it is appropriate to use the Sugeno’s
method of fuzzy inference, introduced in [15]. The obtained output from the fuzzy
rule-based system (1) is expressed by a real number

HS
i (ω) =

∑m
j=1 μSj

(ω)hi,j
∑m

j=1 μSj
(ω)

=
m∑

j=1

μSj
(ω)hi,j , (2)

where the assumption
∑m

j=1 μSj
(ω) = 1 for any ω ∈ Ω was used. In the case of

the fuzzy outcomes of alternatives Hi,j , it was shown in [14] that the so-called
generalised Sugeno’s method of fuzzy inference, introduced in [16], should be
applied for obtaining an output from the fuzzy rule-based system (1). According
to this method, the fuzzy outcome is for any ω ∈ Ω given by a fuzzy number

HS
i (ω) =

∑m
j=1 μSj

(ω)Hi,j
∑m

j=1 μSj
(ω)

=
m∑

j=1

μSj
(ω)Hi,j , (3)

where, again, the assumption
∑m

j=1 μSj
(ω) = 1 for any ω ∈ Ω was used.

Since we operate within the given probability space (Ω,A, P ), the mapping
HS

i : Ω → FN (R), where FN (R) denotes the family of all fuzzy numbers, is a
fuzzy random variable. It can be easily seen from (2) and (3) that in the case
of crisp states of the world S1, . . . , Sm ⊂ Ω and crisp outcomes hi,j ∈ R, i =
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1, . . . , n, j = 1, . . . ,m, the random variables HS
1 , . . . , HS

n coincide with discrete
random variables H1, . . . , Hn taking on the values hi,1, . . . , hi,m, i = 1, . . . , n,
with the probabilities pj = P (Sj), j = 1, . . . , m. Hence, this approach represents
an extension of a decision matrix to the case of fuzzy states of the world.

Analogously as in the common approach to the fuzzy decision matrix, the
ordering of the alternatives x1, . . . , xn can be based on the fuzzy expected values
and the fuzzy variances of the random variables HS

1 , . . . , HS
n . The formulas for

computations of EHS
i and varHS

i , i = 1, . . . , n, derived in [14], are as follows: Let
us denote the α-cuts of fuzzy outcomes by Hi,jα =

[
Hi,j(α),Hi,j(α)

]
. For any

α ∈ (0, 1], the α-cut of the fuzzy expected outcome EHS
i , denoted by EHS

iα =[
EHS

i (α), EHS
i (α)

]
, is obtained as follows:

EHS
i (α) =

∫

ω∈Ω

m∑

j=1

μSj
(ω)Hi,j(α)dP, (4)

EHS
i (α) =

∫

ω∈Ω

m∑

j=1

μSj
(ω)Hi,j(α)dP . (5)

Calculation of the α-cuts of the fuzzy variance var HS
i , denoted by var HS

iα =[
var HS

i (α), var HS
i (α)

]
, is more complex. Let us denote

s(hi,1, . . . , hi,m) =
∫

ω∈Ω

m∑

j=1

(

μSj
(ω)hi,j −

∫

ω′∈Ω

m∑

k=1

μSk
(ω′)hi,kdP

)2

dP.

Then

var HS
i (α) = min {s(hi,1, . . . , hi,m) | hi,j ∈ Hi,jα, j = 1, . . . , m} , (6)

var HS
i (α) = max {s(hi,1, . . . , hi,m) | hi,j ∈ Hi,jα, j = 1, . . . ,m} . (7)

The obtained fuzzy decision matrix is given in Table 2. We can see that there
are no probabilities of fuzzy states of the world since they are not considered in
this approach.

Table 2. Fuzzy decision matrix

S1 S2 · · · Sm

x1 H1,1 H1,2 · · · H1,m EHS
1 var HS

1

x2 H2,1 H2,2 · · · H2,m EHS
2 var HS

2

...
...

...
...

...
...

...

xn Hn,1 Hn,2 · · · Hn,m EHS
n var HS

n
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3 Fuzzy Decision Matrix in the Case of Underlying
Discrete Fuzzy Probability Measure

Now, let us extend a fuzzy decision matrix described in Sect. 2 to the case where
the universal set Ω is finite and the underlying probability measure P is fuzzy.
Let us derive the formulas for computation of the fuzzy expected values and
fuzzy variances of the outcomes of alternatives. In next section, the problem will
be illustrated by an example.

Let Ω = {ω1, . . . , ωr} be a universal set. Let us assume that the probabilities
of elementary events {ω1}, . . . , {ωr} are not known precisely and are set, typically
on the basis of experts’ knowledge and experience, by a special structure of fuzzy
numbers P1, . . . , Pr defined on [0, 1] called an r-tuple of fuzzy probabilities.

Definition 1 (See e.g. [9,17]). We say that fuzzy numbers P1, . . . , Pr, defined
on [0, 1], form an r-tuple of fuzzy probabilities if for all α ∈ (0, 1] and for all k ∈
{1, . . . , r} the following holds: for any pk ∈ Pkα there exist pl ∈ Plα, l = 1, . . . , r,
l �= k, such that

pk +
r∑

l=1,l �=k

pl = 1.

Remark 1. Various methods for expert setting of a tuple of fuzzy probabilities
are proposed in [9,10]. A more general approach to modelling uncertain values
of probabilities, consisting in employing fuzzy vectors, was introduced in [11].

Further, let the fuzzy states of the world S1, . . . , Sm, m < r, be given in the
form of fuzzy sets on Ω that form a fuzzy partition of Ω, i.e.

∑m
j=1 μSj

(ωk) = 1 for
any k ∈ {1, . . . , r}. Further, let the information about the outcome of choosing
the alternative xi, i ∈ {1, . . . , n} be expressed by the m-tuple of If-Then rules 1.
According to (3), the fuzzy outcome is for any ωk ∈ Ω given by a fuzzy number

HS
i (ωk) =

m∑

j=1

μSj
(ωk)Hi,j . (8)

Thus, the outcome of the alternative xi can be seen as a discrete fuzzy random
variable HSF

i taking on the fuzzy values HS
i (ω1), . . . , HS

i (ωr) with the fuzzy
probabilities P1, . . . , Pr. Let us show now how can be the general formulas (4)–
(7) for computing the fuzzy expected values and fuzzy variances of the outcomes
of alternatives extended to this case.

For any α ∈ (0, 1], the α-cut of the fuzzy expected output EHSF
i from the

fuzzy rule-based system (1), denoted by EHSF
iα =

[
EHSF

i (α), EHSF
i (α)

]
, is

obtained as follows:

EHSF
i (α) = min

⎧
⎨

⎩

r∑

k=1

pk

m∑

j=1

μSj
(ωk)Hi,j(α) | (9)

pk ∈ Pkα, k = 1, . . . , r,
r∑

k=1

pk = 1

}

,
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EHSF
i (α) = max

⎧
⎨

⎩

r∑

k=1

pk

m∑

j=1

μSj
(ωk)Hi,j(α) | (10)

pk ∈ Pkα, k = 1, . . . , r,
r∑

k=1

pk = 1

}

.

Remark 2. Let us note that the formulas (9) and (10) correspond to the well
known operation called a fuzzy weighted average of fuzzy numbers that is widely
studied in the literature (see e.g. [10,11] and the references therein). The algo-
rithm for computing the fuzzy weighted average of fuzzy numbers can be found
e.g. in [11].

The α-cut var HSF
iα =

[
var HSF

i (α), var HSF
i (α)

]
of the fuzzy variance of

the output from the fuzzy rule-based system (1) is obtained as follows:
Let us denote

s(hi,1, . . . , hi,m, p1, . . . , pr)

=
r∑

k=1

pk

⎛

⎝
m∑

j=1

μSj
(ωk)hi,j −

r∑

t=1

pt

m∑

u=1

μSu
(ωt)hi,u

⎞

⎠

2

.

Then,

var HSF
i (α) = min

{

s(hi,1, . . . , hi,m, p1, . . . , pr) | hi,j ∈ Hi,jα, j = 1, . . . , m,

pk ∈ Pkα, k = 1, . . . , r,

r∑

k=1

pk = 1

}

, (11)

var HSF
i (α) = max

{

s(hi,1, . . . , hi,m, p1, . . . , pr) | hi,j ∈ Hi,jα, j = 1, . . . , m,

pk ∈ Pkα, k = 1, . . . , r,
r∑

k=1

pk = 1

}

. (12)

Let us note that the optimization problems (11) and (12) can be very difficult
to solve. The algorithms for solving these problems could be a subject of further
research.

4 Illustrative Example

Let us consider the following situation: We can realize one of the two possible
projects, denoted by x1 and x2. The outcome (future yield) depends solely on
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the fact what kind of a government coalition will be established after the parlia-
mentary election. Let us assume that only the six possible coalitions, denoted by
ω1, . . . , ω6, can be established after the election. The probabilities of establishing
each coalition are not known precisely; they are set expertly the triangular fuzzy
numbers P ({ωk}) = Pk = 〈1/12, 1/6, 1/3〉, k = 1, . . . , 6.

We distinguish three vaguely defined states of the world - a right coalition
(S1), a centre coalition (S2), and a left coalition (S3) that are expressed by the
following fuzzy sets defined on Ω:

S1 =
{
1|ω1 ,

0.8 |ω2 ,
0.2 |ω3 ,

0 |ω4 ,
0 |ω5 ,

0 |ω6

}
,

S2 =
{
0|ω1 ,

0.2 |ω2 ,
0.8 |ω3 ,

1 |ω4 ,
0.5 |ω5 ,

0 |ω6

}
,

S3 =
{
0|ω1 ,

0 |ω2 ,
0 |ω3 ,

0 |ω4 ,
0.5 |ω5 ,

1 |ω6

}
,

where elements of the sets are in the form μSj
(ωk)|ωk

, j = 1, 2, 3, and k = 1, . . . , 6.
The future yields (in %) from realization one of the possible projects x1 or

x2 in the cases that the particular type of a coalition will be established are also
not known precisely. They are expressed by triangular fuzzy numbers that are
shown in the fuzzy decision matrix given by Table 3.

Table 3. Fuzzy decision matrix

S1 S2 S3

x1 〈10, 15, 20〉 〈−3, 0, 3〉 〈−12, −4, 4〉
x2 〈10, 15, 20〉 〈−12, −3, 9〉 〈−4, 0, 4〉

Now, let us construct the fuzzy random variables HSF
1 and HSF

2 representing
the future fuzzy yields from the projects. The fuzzy outputs of the If-Then
rules derived from the fuzzy decision matrix, i.e. the triangular fuzzy numbers
HS

1 (ω1), . . . , HS
1 (ω6) and HS

2 (ω1), . . . , HS
2 (ω6), are given in Table 4.

Table 4. Outputs of If-Then rules for the particular possible coalitions

x1 x2

ω1 〈10, 15, 20〉 〈10, 15, 20〉
ω2 〈7.4, 12, 16.6〉 〈5.6, 11.4, 17.8〉
ω3 〈−0.4, 3, 6.4〉 〈−7.6, 0.6, 11.2〉
ω4 〈−3, 0, 3〉 〈−12, −3, 9〉
ω5 〈−7.5, −2, 3.5〉 〈−8, −1.5, 6.5〉
ω6 〈−12, −4, 4〉 〈−4, 0, 4〉

The significant values of the fuzzy expected yields EHSF
1 and EHSF

2 and of
the fuzzy variances varHSF

1 and varHSF
2 , together with their centres of gravity

are shown in Table 5.
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Table 5. Significant values and centres of gravity

Characteristic Significant values Centre of gravity

EHSF
1 −5.33 4.00 13.61 4.17

EHSF
2 −6.33 3.75 15.16 4.33

var HSF
1 4.13 50.33 196.54 75.61

var HSF
2 2.20 47.03 200.58 73.77

According to the rule of maximization of the expected value and minimiza-
tion of the variance of the outcome we can see from Table 5 that both fuzzy
expected values as well as fuzzy variances are not comparable. If we employ
some defuzzification method, e.g. center of gravity, we would prefer the alterna-
tive x2 over x1.

5 Conclusion

We have dealt with the problem of extension of a decision matrix to the case of
fuzzy states of the world and fuzzy outcomes of alternatives. We have considered
the recently developed approach, based on the idea that a fuzzy decision matrix
determines a collection of fuzzy rule-based systems. Since in practical applica-
tions we can also meet the problem where the underlying probability measure P
is not known precisely, the aim of the paper was to study some kind of extension
of this approach to the case where the underlying probability measure is fuzzy.
We have considered the case where the states of the world are fuzzy sets on the
finite universal set and the probabilities of elementary events are determined
expertly, by a tuple of fuzzy probabilities. We have derived the formulas for
computations of the fuzzy expected values and fuzzy variances of the outcomes
of alternatives, based on which the alternatives can be compared.

Next research in this field can be focused on the case of the continuous under-
lying probability measure where, for instance, the parameters of the probability
distribution, like μ and σ in the case of the normal distribution, are fuzzy num-
bers, set expertly or derived from fuzzy data.
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14. Rotterová, P., Pavlačka, O.: New approach to fuzzy decision matrices. Submitted
to Acta Polytechnica Hungarica

15. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co.,
New York (1985)
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Abstract. In this paper it is investigated when some kinds of aggrega-
tion functions satisfy the Modus Ponens with respect to other aggrega-
tion function, or equivalently, when they are A-conditionals. Moreover,
some operation connected with A-conditionals is examined and used to
algorithm of approximate reasoning.

Keywords: Interval-valued fuzzy relation · Modus Ponens property ·
Approximate reasoning

1 Introduction

Aggregation functions play important complementary roles in the field of fuzzy
logic and its extensions because they are successfully used in many practical
applications. Moreover, in this paper we use aggregation functions defined with
respect to linear order to create composition using for approximate reasoning is
proposed. Approximate reasoning is the process or processes by which a possible
imprecise conclusion is deduced from a collection of imprecise premises [7]. We
get the Generalized Modus Ponens (GMP):

Proposition : if x is D then y is E

fact : x is D′

y is E′,

where E′ is a fuzzy set in the universe Y . The main advantage of the GMP is
that we can obtain new information even if D′ and D are different. Usually, in
the GMP the fuzzy rule: If x is D then y is E is represented by means of a
fuzzy relation R on the referential set X × Y . This fuzzy relation R expresses
the relationship between the variables x and y involved in the proposition.

c© Springer International Publishing AG 2018
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In the fuzzy setting, there are situations in which experts have problems build-
ing the membership degrees of the elements to the considered fuzzy sets [9].
When this is the case, it is advisable to use extensions of fuzzy sets. One of the
most widely used extensions is that interval-valued fuzzy sets (IVFSs) (see for
example: [18,20]). In the former sets (IVFSs), the membership degree of each ele-
ment to the considered IVFS is given by a closed subinterval of the unit interval
[0, 1]. Taking all these considerations into account, it may happen that experts
have problems building the sets D, D′ and E appearing in the GMP. For this
reason, in this paper we are going to analyze the GMP when the sets D and
D′ are IVFSs in the referential set X and the sets E and E′ are IVFSs in the
referential set Y . Clearly, in this setting, the relation R used to represent the
rule is an interval-valued fuzzy relation (IVFR) in the referential X × Y [5,6].
Thus we consider more general method to [11] and we study the composition
of IVFRs using interval-valued aggregation functions. We study the conditions
under which these new aggregation-based composition preserve some properties,
especially the Modus Ponens property. Furthermore, we use generalized con-
cept of aggregation functions for intervals with respect to an admissible order.
Moreover, an inference method of the type is developed:

E′(y) = Bx∈X(D′(x), R(x, y)),

where D′ is an IVFS on X, R is the IVFR on X × Y used to represent the
conditional rule and B is interval-valued aggregation functions defined as

Bx∈X(D′(x), Ri(x, y)) = Ax∈X(A1(D′(x), Ri(x, y)),A2(D′(x), Ri(x, y)))

for interval-valued (IV) aggregation functions A,A1,A2 and i ∈ {1, ..., n} for n
rules in schema of multiconditional reasoning.

The motivation of this work is the desire to explore the more general algo-
rithm of approximate reasoning by use the composition creating by inspired
the General Modus Ponens property with IV aggregations. Moreover, we would
like to propose these IV aggregations isotonic with respect to partial or linear
order. This work is composed out of the following parts. Firstly, some concepts
and results useful in further considerations are recalled (Sect. 2). Next, the gen-
eral Modus Ponens property is examined (Sect. 3). At the end an algorithm
for multiconditional approximate reasoning based on the new aggregation-based
composition rules is proposed.

2 Preliminaries

First, we recall the lattice operations and the order for the family of intervals.
Let X,Y,Z be finite sets. We denote by LI the set

LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 ≤ x2}.

Note that if LI is endowed with the partial order [x1, x2] ≤P [y1, y2] if and
only if x1 ≤ y1 and x2 ≤ y2, it becomes a complete bounded lattice with the top
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element given by 1 = [1, 1] and the bottom element given by 0 = [0, 0]. In this
lattice, the supremum of any two elements is defined by

[x1, x2] ∨ [y1, y2] = [max(x1, y1),max(x2, y2)]

and the infimum is defined by

[x1, x2] ∧ [y1, y2] = [min(x1, y1),min(x2, y2)],

respectively.
In the next part, we are interested in extending the partial order ≤P to a

linear order (in several ways). We recall the notion of an admissible order, which
solve problem of the existence of incomparable elements, a new class of linear
orders, called admissible, was introduced in [8] and studied, for example, in [2,16]
or [5].

Definition 1 ([8]). An order ≤ in LI is called admissible if it is linear and
satisfies that for all x, y ∈ LI , such that x ≤P y, then x ≤ y.

Simply said, an order ≤ on LI is admissible, if it is linear and refines the order
≤P . In [8] is showed that 1 = [1, 1] and 0 = [0, 0] are the greatest and the
smallest elements of (LI ,≤), respectively.

Example 1. Admissible (linear) orders on LI are:
• The Xu and Yager order (see [8]): [x, x] ≤XY [y, y] if and only if

x + x < y + y or (x + x = y + y and x − x ≤ y − y).

• The first lexicographical order (with respect to the first variable), ≤lex1 defined
as: [x, x] ≤lex1 [y, y] if and only if

x < y or (x = y and x ≤ y).

• The second lexicographical order (with respect to the second variable), ≤lex2

defined as: [x, x] ≤lex2 [y, y] if and only if

x < y or (x = y and x ≤ y).

• Let Kα : [0, 1]2 → [0, 1] be the function defined as Kα(x, y) = αx + (1 − α)y
for some α ∈ [0, 1]. The order defined as x ≤αβ y if and only if

Kα(x, x) < Kα(y, y) or (Kα(x, x) = Kα(y, y) and Kβ(x, x) ≤ Kβ(y, y))

is an admissible order for α �= β and x, y ∈ LI .

We know that orders ≤XY ,≤Lex1 and ≤Lex2 are special cases of ≤αβ .
In the further part of the work we use the label for partial or linear order ≤,

for the partial order will be used ≤P and for the linear order will be used with
the appropriate linear order ≤L.

We recall the concept of an aggregation function on LI , which is a crucial
definition for this paper.
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Definition 2. (cf. [2,4,12]). An operation A : (LI)n → LI is called an
interval-valued (IV) aggregation function if it is increasing with respect to the
partial or linear order ≤ and

A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

A relevant class of aggregation functions is that of representable aggregation
functions.

So, we may build [10] an IV representable aggregation function A : (LI)2 →
LI with respect to the partial order ≤P if there exist two (real) aggregation
functions A1, A2 : [0, 1]2 → [0, 1] such that, for every [x1, x2], [y1, y2] ∈ LI ,
A1 ≤ A2 it holds that

A([x1, x2], [y1, y2]) = [A1(x1, y1), A2(x2, y2)].

Operations ∧ and ∨ on LI define representable aggregation functions on LI ,
with A1 = A2 = min in the first case and A1 = A2 = max in the second. More-
over, many other examples of representable aggregation functions with respect
to ≤P may be considered, such as:

– the representable product AP ([x1, x2], [y1, y2]) = [x1y1, x2y2],
– the representable arithmetic mean Amean([x1, x2], [y1, y2]) = [x1+y1

2 , x2+y2
2 ],

– the representable geometric mean Ag([x1, x2], [y1, y2]) = [
√

x1y1,
√

x2y2],
– the representable product-mean AP,mean([x1, x2], [y1, y2]) = [x1y1,

x2+y2
2 ].

Whereas, the function A : (LI)2 → LI ,

A(x, y) =
{

[1, 1], if (x, y) = ([1, 1], [1, 1])
[0, A(x1, y2)], otherwise

for x, y ∈ LI is an IV aggregation function on LI with respect to ≤P or ≤Lex1,
but non-representable, where A is a fuzzy aggregation function. Moreover, Amean

is an aggregation function with respect to ≤αβ [2].
In the subsequent part of this work we will use following properties of aggre-

gation functions with respect to partial or admissible order, with interval-valued
(IV) negation NIV that is decreasing with respect to ≤ and NIV (1) = 0,
NIV (0) = 1 [3].

Definition 3. (cf. [1,13,17]). IV aggregation functions A,B : (LI)2 → LI for
x, y, z, t ∈ LI are said to be:

(i) commutative, if
A(x, y) = A(y, x),

(ii) associative, if
A(A(x, y), z) = A(x,A(y, z)),

(iii) idempotent, if
A(x, x) = x,
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(iv) A is said to have e ∈ LI an neutral element, if

A(x, e) = A(e, x) = x,

(v) A is said to have z ∈ LI an absorbing element, if

A(x, z) = A(z, x) = z,

(vi) A distributive with respect to B, if
A(x,B(y, t)) = B(A(x, y),A(x, t)),

(vii) A dominates B (A 	 B), if
A(B(x, y),B(z, t)) ≥ B(A(x, z),A(y, t)),

(viii) A, B are modular, if

z ≤ x ⇒ A(x,B(y, z)) = B(A(x, y), z),

(ix) A satisfies the Non-Contradiction principle w.r.t. NIV (NC(N)), if

A(x,NIV (x)) = 0,

(x) A satisfies the Excluded-Middle principle w.r.t. NIV (EM(N)), if

A(x,NIV (x)) = 1,

(xi) A is a conjunctor (disjunctor) if and only if it satisfies the condition

A(0,1) = A(1,0) = 0 (A(0,1) = A(1,0) = 1),

(xii) A is conjunctive (disjunctive, averaging), if

A ≤ min (A ≥ max, min ≤ A ≤ max).

3 General Modus Ponens Property

Inference schemes in approximate reasoning are usually based on the Modus
Ponens that is carried out through the well known Compositional Rule of Infer-
ence (CRI) of Zadeh, based on the sup T -composition, where T is a t-norm. Thus,
if I is a fuzzy implication function and T is a t-norm, the Modus Ponens property
for I with respect to T (T -conditionality) becomes the functional inequality:

T (x, I(x, y)) ≤ y, x, y ∈ [0, 1], (1)

where T is continuous fuzzy t-norm and I a fuzzy implication function. Moreover,
some generalizations of this T -conditionality have been studied. One of these
generalizations is based on uninorms obtaining the so-called RU -implications
and (U,N)-implications [15], and in [14] was examined generalization based on
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continuous uninorm U instead of a t-norm T in study U -conditionality of impli-
cation I.

In this section we will examine more general aggregation functions instead
of t-norms and we will use the function IA,N , such that

IA,N (x, y) = A(N(x), y),

which is (A,N)-implication if and only if aggregation A has absorbing element
1 and N a negation function (see [17]).

The approximate reasoning is the process or processes by which a possible
imprecise conclusion is deduced from a collection of imprecise premises [7], thus
instead of (1) we have

TIV (x, IIV (x, y)) ≤ y, x, y ∈ LI , (2)

where TIV is continuous interval-valued (IV) t-norm and IIV an interval-valued
(IV) implication function.

The previous inequality is known as the Modus Ponens property. We want
to generalize of the definition of Modus Ponens using two aggregations instead
of t-norm and implication based on IV negation, that is decreasing with respect
to ≤ and NIV (1) = 0, NIV (0) = 1.

Implication and aggregation functions play important complementary roles in
the field of fuzzy logic and its extensions. Both have been intensively investigated
since the early 1980s, revealing a tight relationship between them.

Aggregation functions are successfully used in many practical applications,
and the interest in them is unceasingly growing. Aggregation and implication
functions appear to have a close relation, mainly realized via negation functions,
which model the logical negation within the fuzzy framework.

Thus we more generalize the Modus Ponens property further and we will use
second interval-valued fuzzy aggregation function instead of t-norm TIV .

Definition 4. Let A1, A2 be IV aggregation functions and NIV be IV negation.
It is said that A2 satisfies the Modus Ponens property with respect to A1 (A1-
conditionality), if

A1(x,A2(NIV (x), y)) ≤ y for all x, y ∈ LI . (3)

Proposition 1. Let A1, A2 be IV aggregation functions with respect to the same
order ≤. Then A2 satisfies the Modus Ponens property with respect to A1, if at
least one of following conditions is fulfilled:

1. A1, A2 be IV aggregation functions with neutral element 1.
2. A1, A2 are conjunctive.
3. A1 fulfill NC(N) and (A2 is conjunctive or (A2 is averaging or has the neutral

element 0 by modularity of A1,A2)).

Proof. First and second conditions are obvious. We prove third condition. If
A2 ≤ min and A1(x,NIV (x)) = 0, then

A1(x,A2(NIV (x), y)) ≤ A1(x,min(NIV (x), y)) ≤ A1(x,NIV (x)) = 0 ≤ y.
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By modularity of A1 and A2 and A2 ≤ max, A1(x,NIV (x)) = 0 we conclude

A1(x,A2(NIV (x), y)) = A2(A1(x,NIV (x)), y) ≤ max(0, y) = y.

Moreover, by modularity of A1 and A2 and by 0 as the neutral element of A2

by condition A1(x,NIV (x)) = 0 we obtain

A1(x,A2(NIV (x), y)) = A2(A1(x,NIV (x)), y) ≤ A2(0, y) = y,

what finished the proof of the Proposition 1 (for 3. case).

Example 2. IV aggregation functions with respect to the order ≤P :

A2(x, y) =
{

[0, 0], if [y, y] ≤ [1 − x, 1 − x]
[1, 1], otherwise

and

A1(x, y) =
{

min(x, y), if [x + y, x + y] > [1, 1]
[0, 0], otherwise

fulfilling A1(x,NIV (x)) = 0 by IV negation NIV (x) = [1 − x, 1 − x] satisfies
condition (3) (Proposition 1, for 3. case).

By monotonicity of aggregation functions we observe following conditions.

Proposition 2. Let A1, A2, A3 and A4 be IV aggregation functions with respect
to the same order ≤.
• If A2 satisfies the Modus Ponens property with respect to A1 and A3 ≤ A1,
then A2 satisfies the Modus Ponens property with respect to A3.
• If A2 satisfies the Modus Ponens property with respect to A1 and A4 ≤ A2,
then A4 satisfies the Modus Ponens property with respect to A1.

Except that, the Modus Ponens property implies following results.

Proposition 3. Let A1, A2 be IV aggregation functions with respect to the same
order ≤. If A2 satisfies the Modus Ponens property with respect to A1, then must
be A1(1,0) = 0.

Proof. Just taking x = 1 in (3) we obtain

A1(1,A2(0,0)) ≤ 0 ⇔ A1(1,0) = 0.

Proposition 4. Let A1, A2 be interval-valued fuzzy aggregation functions with
respect to the same order ≤. If A2 satisfies the Modus Ponens property with
respect to A1, then

A1(x,A2(NIV (x), y)) = y

for neutral element e1 of A1, e2 of A2 and e1 ≤ x and e2 ≤ NIV (x).

Proof. Let A2 satisfies the Modus Ponens property with respect to A1. Then

y = A1(e1,A2(e2, y)) ≤ A1(x,A2(NIV (x), y)) ≤ y.
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As we know, there are different construction methods for building new aggrega-
tion functions from data. Some of the most usual ones are those based on either
composition or transformation (see [17]).

Proposition 5 (cf. [17]). If A,A1,A2 are IV aggregation functions with
respect to the same order ≤, then the function B = A(A1,A2) : (LI)2 → LI ,
defined as

B(x, y) = A(A1(x, y),A2(x, y)) (4)

for any x, y ∈ LI is an IV aggregation function.

We will say that A preserves some property P if A(A1,A2) fulfills P whenever
A1 and A2 fulfill it. We examine a preservation of Modus Ponens property by
this composition.

Proposition 6. Let A1, A2, A3 be IV aggregation functions and NIV be IV
negation function with respect to the same order ≤. If A1 or A2 satisfies the
Modus Ponens property with respect to A3 and A is conjunctive, then
B = A(A1,A2) also satisfies the Modus Ponens property with respect to A3.

Proof. Let A1 satisfies the Modus Ponens property with respect to A3 and
A ≤ min. Then

A3(x,B(NIV (x), y)) = A3(x,A(A1(NIV (x), y),A2(NIV (x), y))) ≤
A3(x,min(A1(NIV (x), y),A2(NIV (x), y))) ≤ A3(x,A1(NIV (x), y) ≤ y.

If A2 satisfies the Modus Ponens property with respect to A3 proof is similar.

Furthermore, the aggregation B has following adequate properties:

Proposition 7 (cf. [17]). Let B = A(A1,A2) be an aggregation function built
as in (4). Then:

1. B preserves commutative, the absorbing element, concjunctive, disjunctive,
concjunctor, disjunctor, EM(N) or NC(N) property.

2. If A is averaging aggregation function, then B preserves the neutral element
of A1 and A2.

Proposition 8 (cf. [19]). Let D be an aggregation function. Then for any
A,A1,A2 dominate D, where A is idempotent, also B = A(A1,A2) 	 D.

Now we propose the other very interesting composition from the point of view
the Modus Ponens property.

Definition 5. Let NIV be IV negation and A1,A2 be IV aggregation functions
with respect to the same order ≤. Then the operation (composition) C : (LI)2 →
LI is defined as follows

C(x, y) = A1(x,A2(NIV (x), y)) (5)

for x, y ∈ LI .
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Proposition 9. Let NIV be IV negation, A1,A2 be IV aggregation functions
with respect to the same order ≤ and C be the operation defined in Definition 5.
Then
If A1 and A2 are A3-conditionality and A2 is conjunctive aggregation function,
then C also fulfill A3-conditionality.

Proof.

A3(x, C(NIV (x), y)) = A3(x,A1(NIV (x),A2(NIV (NIV (x)), y))) ≤
A2(NIV (NIV (x)), y) ≤ y.

Moreover, we consider basic properties of presented composition C.

Proposition 10. Let C be the operation defined in Definition 5, NIV be IV
negation and A1,A2 be IV aggregation functions with respect to the same order
≤. Then

1. C preserve the absorbing element of A1 and A2.
2. C preserve the neutral element of A1 for dual aggregations A1 and A2 (i.e.

A1(x, y) = NIV A2(NIV (x), NIV (y))) by strong IV negation NIV .
3. If A1,A2 are conjnctive (disjunctive) aggregation functions, then also C is

conjnctive (disjunctive) operation.
4. If A1 fulfill NC(N) (EM(N)) property and A2 is an averaging aggregation

function, then also C fulfill NC(N) (EM(N)) property.
5. C(0,0) = 0, if A1 or A2 is a conjunctor.
6. C(1,1) = 1, if A1 or A2 is a disjunctor.
7. C satisfy left side isotonicity for both variable and right side isotonicity for

the first variable and right side antytonicity for the second variable.

Proof. The proof we can directly obtain from the Definitions 3 and 5.

Except that, directly by left side isotonicity of C built as in (5) we obtain for
averaging IV aggregation function A2:

(A1 fulfill NC(N)) ⇒ (y ≤ NIV (x) ⇒ C(x, y) = 0);

(A1 fulfill EM(N)) ⇒ (y ≥ NIV (x) ⇒ C(x, y) = 1).

Proposition 11. Let A1,A2,D be IV aggregation functions and D be N-stable,
i.e. NIV (D(x, y)) = D(NIV (x), NIV (y)) for IV negation function NIV .
If A1 	 D and A2 	 D, then C 	 D, where C satisfy (5).

Proof. Let A1 	 D and A2 	 D and C(xi, yi) = A1(xi,A2(NIV (xi), yi)) for
i ∈ {1, 2}. Then

D(C(x1, y1), C(x2, y2)) =

D(A1(x1,A2(NIV (x1), y1)),A1(x2,A2(NIV (x2), y2))) ≤
A1(D(x1, x2),D(A2(NIV (x1), y1),A2(NIV (x2), y2)) ≤
A1(D(x1, x2),A2(D(NIV (x1), NIV (x2)),D(y1, y2)) =

C(D(x1, x2),D(y1, y2)),

what finished the proof.
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4 Algorithm for Interval-Valued Multiconditional
Approximate Reasoning

The general schema of interval-valued multiconditional reasoning has a form:

R1 : if x is D1 then y is E1

R2 : if x is D2 then y is E2

...........................................

Rn : if x is Dn then y is En

fact : x is D′

y is E ′,

where D1, · · · ,Dn,D′ ∈ IVFS(X), E1, · · · , En, E ′ ∈ IVFS(Y ).
The following method to determine E ′ is proposed. We omit the aspect

of fuzzification and defuzzification in presented algorithm of approximate
reasoning.

Algorithm. ApprReasComp:

Inputs: Premises D1, · · · ,Dn,D′ ∈ IVFS(X); Conclusions E1, · · · , En ∈
IVFS(Y ); The composition consistent with the formula (5), i.e. C = (A1,A2)
by conjunctive interval-valued fuzzy aggregation function A2 satisfy:

A2(1,0) = A2(0,1) = 1; The IV aggregation function B created by (4) with
IV aggregation functions A,A3,A4,A5 and A conjunctive and A5 ≥ max;

Outputs: E ′

1. For each rule, the associated interval-valued fuzzy relation Ri is built, where
Ri ∈ IVFR(X × Y ) for i = 1, · · · , n and

Ri(x, y) = C(Di(x), Ei(y));

2. The interval-valued aggregation function B = A(A3,A4) is taken;
3. For i = 1, · · · , n is calculated (GMP):

E ′
i(y) = Bx∈X(D′(x), Ri(x, y)),

where

Bx∈X(D′(x), Ri(x, y) = Ax∈X(A3(D′(x), Ri(x, y)),A4(D′(x), Ri(x, y)));

4. Compute: E ′ = A5(E ′
i) for each i = 1, ..., n.

Preliminary calculations give satisfactory results because, by comparing the
algorithm proposed above with algorithms using t-norms and t-conorms, we
observe that the received fuzzy set in the new method has higher intervals, That
is, it represents a lower degree of uncertainty and, as a result, gives you the
possibility of better precision in the application.
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5 Conclusions and Future Research

Inference schemes in approximate reasoning are based on the Modus Ponens
property, also called A-conditionality. Thus, IV aggregation functions used in the
inference process of any IV fuzzy rule based system are required to satisfy this
property, which becomes essential in general approximate reasoning. The con-
ditions under which aggregates meet A-conditionality (General Modus Ponens
property) are presented. In the future we would like present practical example
using presented algorithm and compare it with other known algorithms.
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19. Saminger, S., Mesiar, R., Bodenhoffer, U.: Domination of aggregation operators
and preservation of transitivity. Int. J. Unc. Fuzz. Knowl. Based Syst. 10, 11
(2002). http://dx.doi.org/10.1142/S0218488502001806

20. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Michie, D.,
Mikulich, L.I. (eds.) Machine Intelligence 9, pp. 149–194 (1979)

http://dx.doi.org/10.1142/S0218488502001806


General Preference Structure with Uncertainty
Data Present by Interval-Valued Fuzzy Relation

and Used in Decision Making Model

Barbara Pȩkala(B)
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Abstract. Interval-valued fuzzy relations can be interpreted as a tool
that may help to model in a better way imperfect information, espe-
cially under imperfectly defined facts and imprecise knowledge. Prefer-
ence structures are of great interest nowadays because of their appli-
cations. From a weak preference relation derive the following relations:
strict preference, indifference and incomparability, which by aggregations
and negations are created and examined in this paper. Moreover, we pro-
pose the algorithm of decision making by using new preference structure.

Keywords: Interval-valued fuzzy relations · Preference relations · Reci-
procity property

1 Introduction

Interval-Valued Fuzzy Relations (IVFRs) [35] form a generalization of the con-
cept of a fuzzy relation [34] and represent uncertainties, systematic or random
uncertainties. Fuzzy sets and relations are applied in diverse areas, e.g. in group
decision making [8,21,24,33]. In recent applications to image processing [2] or
classification [29,30] it has been proven that, under some circumstances, the use
of IVFSs together with the total order provide results that are better than their
fuzzy counterparts. Many decision making processes take place in an environ-
ment in which the information is not precisely known. As a consequence, experts
may feel more comfortable using an interval number rather than an exact crisp
numerical value to represent their preference. The concept of a preference rela-
tion has been studied by many authors, both in crisp or fuzzy environments
[9,27]. But interval-valued fuzzy preference relations (IVFRs) can be considered
as an appropriate representation format to capture experts’ uncertain prefer-
ence information. Diverse properties of IVFRs, also in the case of interval-valued
fuzzy reciprocal relations, have been studied by a range of authors [17,22]. The
assumption of reciprocity is often used for a preference relation both in the
interval-valued [2] and classical fuzzy environment [9].
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Our main goal this paper is to examine certain aspect of decision making
problem based on preference relations built by aggregations and reciprocity
property built by negation function, which means that instead of using classical
negation in definition of reciprocity, we apply negations. Reciprocity appears in
preference relations as a natural assumption. We present generalisation of the
concept of defining model of three relations: strict preference, indifference and
incomparability, corresponding to preference relation.

This work is composed of the following parts. Firstly, some concepts and
results useful in further considerations are reminded (Sect. 2). Next, results con-
nected with preference structure and some properties are presented (Sect. 3).
Finally, we present the algorithm of decision making problem with new strict
preference, indifference and incomparability relations.

2 Preliminaries

Necessary for our considerations will be the negation function. Thus, we give the
definition of negation functions on the unit interval [0, 1] and definition of the
dual function which refers also to aggregation functions.

Definition 1 ([19]). A fuzzy negation function is a decreasing function N :
[0, 1] → [0, 1] verifying the boundary conditions N(0) = 1 and N(1) = 0.
Strictly decreasing and continuous negation functions are known as strict nega-
tions, whereas involutive negation functions (i.e., those for all x ∈ [0, 1] verifying
N(N(x)) = x) are known as strong negations (and constitute a subclass of strict
negations).

Typical examples of negation functions are:

• N(x) = 1−x, which is a strong negation and is called the classical or standard
negation;

• Nλ
S (x) = 1−x

1+λx , the Sugeno family of fuzzy (strong) negations, where λ ∈
(−1,∞), and for λ = 0 we get the classical fuzzy negation.

Definition 2 (cf. [26]). Let F : [0, 1]n → [0, 1], N be a strong fuzzy negation.
The N -dual of F is the function

FN (x1, . . . , xn) = N(F (N(x1), . . . , N(xn))), x1, . . . , xn ∈ [0, 1]. (1)

We recall the notion of operations and the order in the family of intervals.

LI = {[x1, x2] : x1, x2 ∈ [0, 1], x1 ≤ x2}.

Note that LI endowed with the partial order [x1, x2] ≤LI [y1, y2] if and only
if x1 ≤ y1 and x2 ≤ y2 is a complete bounded lattice with the top element given
by 1 = [1, 1] and the bottom element given by 0 = [0, 0]. In this lattice, the
supremum and the infimum of any two elements is defined respectively by
[x1, x2] ∨ [y1, y2] = [max(x1, y1),max(x2, y2)],
[x1, x2] ∧ [y1, y2] = [min(x1, y1),min(x2, y2)].
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Now, we give the definition of interval-valued negation function.

Definition 3 ([2]). An interval-valued (IV) negation is a function NIV : LI →
LI that is decreasing with respect to ≤LI with NIV (1) = 0 and NIV (0) = 1. An
IV negation is said to be involutive if it fulfils NIV (NIV (x)) = x for any x ∈ LI

and is known as strong negation.

Theorem 1 (cf. [12]). Let x = [x, x] ∈ LI . NIV is an involutive IV negation
if and only if there exists a strong fuzzy negation N such that NIV ([x, x]) =
[N(x), N(x)].

The above statement holds true also for fuzzy negations, not only involutive
ones.

Moreover, we may define aggregation function on a set of intervals by follow-
ing way:

Definition 4 (cf. [7], p. 6, [20]). An operation A : (LI)n → LI is called an
aggregation function if it is increasing with respect to the order ≤LI and

A(0, ...,0
︸ ︷︷ ︸

n×
) = 0, A(1, ...,1

︸ ︷︷ ︸

n×
) = 1.

A relevant class of aggregation functions is that of representable aggregation
functions.

Definition 5 (cf. [13–15]). Let A : (LI)2 → LI be an aggregation function.
A is said to be a representable aggregation function if there exist two fuzzy
aggregation functions A1, A2 : [0, 1]2 → [0, 1], A1 ≤ A2 such that, for every
[x1, x2], [y1, y2] ∈ LI it holds that

A([x1, x2], [y1, y2]) = [A1(x1, y1), A2(x2, y2)].

We observe that both ∧ and ∨ in LI define representable aggregation func-
tions in LI , with A1 = A2 = min in the first case and A1 = A2 = max in the
second. Moreover, many other examples may be considered, such as:

• the representable arithmetic mean Amean([x1, x2], [y1, y2]) = [x1+y1
2 , x2+y2

2 ],
• the representable weighted mean with w1 + w2 = 1, w1, w2 ∈ [0, 1]

Awmean([x1, x2], [y1, y2]) = [w1x1 + w2y1, w1x2 + w2y2],
• the representable geometric mean Ag([x1, x2], [y1, y2]) = [

√
x1y1,

√
x2y2],

• the representable weighted geometric mean with w1 + w2 = 1, w1, w2 ∈ [0, 1]
Awg([x1, x2], [y1, y2]) = [xw1

1 yw2
1 , xw1

2 yw2
2 ],

• the representable product-mean AP,mean([x1, x2], [y1, y2]) = [x1y1,
x2+y2

2 ].

In the subsequent part of this work we will use following properties of aggre-
gation functions with respect to the order ≤LI .

Definition 6 (cf. [1,26]). Let A,B : (LI)2 → LI be aggregation functions,
x, y, z, t ∈ LI :
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– A is symmetric, if A(x, y) = A(y, x),
– A is idempotent, if A(x, x) = x,
– A is bisymmetric, if A(A(x, y),A(z, t)) = A(A(x, z),A(y, t)),
– A is said to have e ∈ LI a neutral element, if A(x, e) = A(e, x) = x,
– A is said to have z ∈ LI an absorbing element, if A(x, z) = A(z, x) = z,
– A dominates B (A 	 B), if A(B(x, y),B(z, t)) ≥LIB(A(x, z),A(y, t)),
– A satisfies the Non-Contradiction principle w.r.t. NIV (NC(N)), if

A(x,NIV (x)) = 0,
– A satisfies the Excluded-Middle principle w.r.t. NIV (EM(N)), if

A(x,NIV (x)) = 1,
– A is conjunctor (disjunctor) if and only if it satisfies the condition

A(0,1) = A(1,0) = 0 (A(0,1) = A(1,0) = 1),
– A is conjunctive (disjunctive, averaging), if A ≤LI min

(A ≥LI max, min ≤LI A ≤LI max).

3 Preference Structure

Firstly, we recall concept of fuzzy preference relation. A fuzzy preference relation
R on a set of alternatives X = {x1, ..., xn} is a fuzzy subset of the Cartesian
product X × X, that is R : X × X → [0, 1] [10,11,16,23] or [27] for each pair of
alternatives xi and xj , Rij = R(xi, xj) represents a degree of (weak) preference
of xi over xj , namely the degree to which xi is considered as least as good as xj .
The preference relation may be conveniently represented by the n × n matrix
R = (Rij) for all i, j ∈ {1, ..., n}. From a weak preference relation R, Fodor and
Roubens [16] or [11] derive the following relations:

1. Strict preference Pij = P (xi, xj) is a measure of strict preference of xi over xj ,
indicating that xi is (weakly) preferred to xj but xj is not (weakly) preferred
to xi.

2. Indifference Iij = I(xi, xj) is a measure of the simultaneous fulfillment of Rij

and Rji. Roughly speaking, xi and xj are considered equal in the sense that
both xi is as good as xj and the other way around.

3. Incomparability Jij = J(xi, xj) is a measure of the incomparability of xi

and xj . More specifically, Fodor and Roubens [16] proposed the following
expressions of the above relations in terms of a t-norm T and a strict negation
N :

Pij = T (Rij , N(Rji)), Iij = T (Rij , Rji), Jij = T (N(Rij), N(Rji))

for all i, j ∈ {1, ..., n}.
Now, we recall the notion of interval-valued fuzzy relation.

Definition 7 (cf. [28,35]). An interval-valued fuzzy relation (IVFR) R
between universes X,Y is a mapping R : X × Y → LI such that

R(x, y) = [R(x, y), R(x, y)] for all pairs (x, y) ∈ X × Y.

The class of all IVFRs between universes X,Y is denoted by IVFR(X ×Y ),
or IVFR(X) for X = Y .
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Note that, if we consider the order defined in LI , we see that the family
(IVFR(X × Y ),∨,∧) is a complete and distributive lattice (see [6] for a study
on the concept of lattices).

An approach that adds flexibility to represent uncertainty in decision making
problems consists of using interval-valued fuzzy relations [18,31,32]. An interval-
valued fuzzy preference relation R on X is defined as an interval-valued fuzzy
subset of X × X, that is, R : X × X → LI , which have been studied deeply (see
[2,4,31–33] or [5] created with grouping and overlap functions).

The interval R(xi, xj) = rij = [rij , rij ] denotes the degree to which elements
xi and xj are related (representing the degree of preference of xi over xj) in the
relation R for all xi, xj ∈ X. In [2] for given an IVFR, R = (rij), was examined
corresponding Interval-valued strict preference (P), interval-valued indifference
(I) and interval-valued incomparability (J) by using IV t-norms and IV negations
generated from the standard strict negation. We based on the corresponding ones
given by Fodor and Roubens propose generalization of these concept and we use
IV aggregations instead of IV t-norms and negations instead of classic negations.
According to Independence of Irrelevant Alternatives and Positive Association
Principle (see [16]) we propose three functions p, i, j : (LI)2 → LI such that

P (a, b) = p(R(a, b), R(b, a)),

I(a, b) = i(R(a, b), R(b, a)),

J(a, b) = j(R(a, b), R(b, a))

and functions p(x,N(y)), i(x, y) and j(N(x), N(y)) are increasing with respect
to both arguments. Moreover, according to the considerations in [16] we use two
different IV aggregations A and B:

(1) Interval-valued strict preference

Pij = A(rij , NIV (rji)) = A([R(i, j), R(i, j)], [N(R(j, i)), N(R(j, i)))
= [A1(R(i, j), N(R(j, i))), A2(R(i, j), N(R(j, i)))];

(2)

(2) Interval-valued indifference

Iij = B(rij , rji) = B([R(i, j), R(i, j)], [R(j, i), R(j, i)])
= [B1(R(i, j), R(j, i)), B2(R(i, j), R(j, i))];

(3)

(3) Interval-valued incomparability

Jij = B(NIV (rij), NIV (rji)) = B(NIV ([R(i, j), R(i, j)]), NIV ([R(j, i), R(j, i)]))

= [B1(N(R(i, j)), N(R(j, i))), B2(N(R(i, j)), N(R(j, i)))]

(4)

for all i, j ∈ {1, ..., n}. It is generalisation by A,B IV aggregations and NIV

IV negation of preference structure. Now, we recall the crucial definition for
this paper of reciprocity property based on negation.
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Definition 8 ([25]). Let card(X) = n. An Interval-Valued Fuzzy Recipro-
cal Relation (IVFRR) R on the set X is a matrix R = (rij)n×n with rij =
[R(i, j), R(i, j)], for all i, j ∈ {1, . . . , n}, where rij ∈ LI

rii = [0.5, 0.5], rji = NIV (rij) = [N(R(i, j)), N(R(i, j))]

for i �= j, where N is a fuzzy negation and NIV is an IV negation function.

Presented the reciprocity property is based on negation. This notion is a gen-
eralization of the reciprocity property introduced in [32], where N was a standard
negation. However, the assumption rji = 1−rij for i, j ∈ {1, . . . , n}, which stems
from the reciprocity property, is rather strong and frequently violated by deci-
sion makers in real-life situations. This is why we use a fuzzy negation instead
of the classical negation N(x) = 1 − x. Especially, if R(i, j) = R(i, j) = rij for
i, j ∈ {1, . . . , n}, then an IVFRR reduces to a reciprocal fuzzy relation (it is
also worth mentioning that IVFRRs may be built from the fuzzy ones using the
concept of ignorance function [2]). The interval rij indicates the interval-valued
reciprocal degree or intensity of the alternative xi over alternative xj and R(i, j),
R(i, j) are the lower and upper limits of rij , respectively.
The following results extends Theorem from [2].

Proposition 1 ([4]). Let R ∈ IVFR(X × X) be reciprocal and let Pij be its
associated interval-valued strict fuzzy preference relation given. The following
equivalence holds:
Pij = rij for all i, j ∈ {1, ..., n} if and only if IV aggregation A is idempotent.

Corollary 1. Pij = rij ⇔ A is averaging aggregation function.

Proposition 2. Let R ∈ IVFR(X) be reciprocal and I, J be associated interval-
valued indifference and incomparability fuzzy preference relations. If B is sym-
metric, then I = J.

Now, we consider the most important property in point of view of consistency
of the group decision making, i.e. transitivity. We will consider A-transitivity of
the relation R ∈ IV FR(X), i.e. A(R(x, y), R(y, z)) ≤LI R(x, z) for x, y, z ∈ X.

Proposition 3. Let R ∈ IVFR(X) be reciprocal and P be associated interval-
valued strict fuzzy preference relation and A be bisymmetric IV aggregation func-
tion. If R is A-transitive, then P is also A-transitive.

Proof. By reciprocity of R and A-transitivity by bisymmetry of A we have:

A(P (x, y), P (y, z)) = A(A(R(x, y), NIV (R(y, x))),A(R(y, z), NIV (R(z, y))) =

A(A(R(x, y), R(x, y)),A(R(y, z), R(y, z)) =

A(A(R(x, y), R(y, z)),A(R(x, y), R(y, z)) ≤ A(R(x, z), R(x, z)) =

A(R(x, z), NIV R(z, x)) = P (x, z).

So P is A-transitive.
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Now, we consider asymmetry property and more practical property, i.e. weak
asymmetry property of relation R ∈ IVFR(X), card(X) = n:

• R is A-asymmetric, if A(Rij , Rji) = 0,
• R is weakly A-asymmetric, if A(Rij , Rji) ≤LI [12 , 1

2 ]
for all i, j = {1, ..., n}, n ∈ N.

Proposition 4. If R is A-asymmetric, A is N -stable
(i.e. A(NIV (Rij), NIV (Rji)) = NIV (A)(Rij , Rji)) and bisymmetric aggregation
function such that A(0,1) = 0, then P is also A-asymmetric.

Proof. Let A be bisymmetric aggregation function, i.e.

A(A(x11, ..., x1m), ...,A(xm1, ..., xmm)) = A(A(x11, ..., xm1), ...,A(x1m, ..., xmm)).

Then for m = 2 we have

A(Pij , Pji) = A(A(Rij , NIV (Rji)),A(Rji, NIV (Rij)) =

A(A(Rij , Rji),A(NIV (Rji, NIV (Rij)) = A(A(Rij , Rji), NIV A(Rji, Rij) =

A(0,1) = 0.

Thus P is A-asymmetric.

Proposition 5. Let NIV be IV negation function fulfil NIV (x) ≤LI x. If R is
weakly A-asymmetric and A is N -stable and bisymmetric, subidempotent aggre-
gation function, then P is also weakly A-asymmetric.

Proposition 6. For an interval-valued fuzzy preference structure (P, I, J) the
following equalities are fulfilled:
p(0,1) = i(0,0) = j(1,1) = 0 and p(1,0) = i(1,1) = j(0,0) = 1.

We would like to consider the system of the functional equations:

C(P (a, b), I(a, b)) = R(a, b),

C(P (a, b), J(a, b)) = N(R(b, a)),

where IV aggregation function C fulfils C(s, t) = 0 ⇔ s = 0 and t = 0 and
C(s, t) = 1 ⇔ s = 1 and t = 1.
If we denote R(a, b) = x and R(b, a) = y we can write our system in the following
way:

C(p(x, y), i(x, y)) = x, (5)

C(p(x, y), j(x, y)) = N(y). (6)

Proposition 7. If (5) and (6) are fulfilled, then

i(0, y) = p(0, y) = j(x,1) = p(x,1) = 0.
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Directly from the Eqs. (5) and (2–3) appears the corresponding following
composition:

Definition 9. Let A,B, C be IV aggregation functions and NIV be IV negation
function. The operation D : (LI)2 → LI associated with aggregation functions
A,B, C we define as follows

D(x, y) = C(A(x,NIV (y)),B(x, y)). (7)

We can also write this operation as follows:

D(x, y) = C(P (x, y), I(x, y)).

Example 1. Let x, y ∈ LI .

A(x, y) =
{

1, if y = 1
Amean, otherwise

for NIV IV negation function,

B(x, y) =

⎧

⎨

⎩

1, if x ≥LI [12 , 1
2 ] or y ≥LI [12 , 1

2 ]
0, if x = y = 0
α, otherwise

and

C(x, y) =
{

1, if x = 1 or y = 1
Amean, otherwise.

Then

D(x, y) =
{

1
4x + 1

4NIV (y) + 1
2α, if x, y <LI [12 , 1

2 ], y �= 0
1, otherwise

for α ∈ (0, 1).

The operation D has following properties.

Proposition 8. Let A,B, C be IV aggregation functions and D be created by (7).

1. D has the absorbing element 0 (1), if A,B, C have the absorbing element 0 (1).
2. D(0,0) = 0 (D(1,1) = 1), if A(0,1) = 0 (A(1,0) = 1).
3. D has NC(N) (EM(N)) property, if B has this property and C has the absorb-

ing element 0 (1).
4. D is isotonic with respect to the first variable.
5. D 	 E, if A 	 E, B 	 E and C 	 E.
6. D is conjunctive (disjunctive), if A,B, C are conjunctive (disjunctive).

In [4] we check preservation reciprocity property by aggregation function, now
we study this property by operation D.

Proposition 9. Let A,B, C be IV representable aggregation functions, such that
A1 = AN

2 ,B1 = BN
2 , C1 = CN

2 and N be IV strong negation function. Then
operation D preserves reciprocity property of R.
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4 Application

Our above results allow to perform the following applications. We consider an
interval-valued fuzzy relation on X = {x1, . . . , xn} (set of alternatives) which
represents the expert’s opinion of each alternative over another one, i.e. pref-
erences. The preferences will be represented with respect to a finite number of
criteria, mathematically these are relations R1, . . . , Rn ∈ IVFR(X). To find the
solution alternative we apply modified voting method by generalized preference
structure (P, I, J) and a linear order generated by aggregation functions ≤K1,2

[3] defined in the following way: x ≤K1,2 y if and only if

K1(x, x) < K1(y, y)

or (K1(x, x) = K1(y, y) and K2(x, x) ≤ K2(y, y))

for two continuous aggregation functions, such that, for all x, y ∈ LI , the equal-
ities K1(x, x) = K1(y, y) and K2(x, x) = K2(y, y) hold if and only if x = y.

It is worth to mention that at the beginning of algorithm it may be checked
if R1, . . . , Rn ∈ IVFR(X) are reciprocal with respect to some fuzzy negation
N . If the answer is positive we may apply the presented in this paper results
in order to consider the appropriate aggregation function to aggregate these
relations and obtain reciprocal aggregated result. We will present the algorithm
in the case when we do not check reciprocity of input relations. In such situation
the aggregated IVFR is normalized to obtain the given reciprocity with the use
of the following formula

Rij =
{

Rij if Rij ≥Lex1 Rji,
NIV (Rji) else,

(8)

where [x, x] ≤lex1 [y, y] ⇔ x < y or (x = y and x ≤ y).
The following algorithm gives an alternative who has the worst/best rela-

tionships in a considered X.

Algorithm. D − composition.

Inputs : X = {x1, . . . , xn} set of alternatives; A, B IV aggregation functions;
R1, . . . , Rn ∈ IVFR(X); D created according to (7); Interval-valued fuzzy pref-
erence (reciprocal and transitive or not) relations; The linear order ≤K1,2 .

Output : The best alternative: xselection.

(Step 1) Aggregation of given relations R1, . . . , Rn ∈ IVFR(X) to obtain
R ∈ IVFR(X);

(Step 2) Normalization of relation R with the use of Eq. (8);

(Step 3) Build J interval-valued fuzzy relation according to (4);
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(Step 4) Calculate

Mij = A(D(Rij , Rji), Jij);

(Step 5) For m = 1 to n + 1
Find

xselection = arg max
i

(B(Mij)),

where 1 ≤ j �= i ≤ n, B ≥LI max, using a linear order ≤Km
1,2

;

If only one alternative is the “best” solution, then this alternative is the final
solution of the decision making problem;

Else we chose the one with the smallest interval length as the final solution
of the decision making problem (if they have the same lengths, then we change
aggregation B and we repeat Step 5)

End

5 Conclusion

We present certain aspect of decision making problem based on preference rela-
tions built by IV aggregations and reciprocity property built by negation func-
tions. We propose new idea of reciprocity property and new preference struc-
ture. In future we would like to study more properties and classification of these
reciprocity and structure. Moreover, we would like to consider solutions of the
presented system of the functional Eqs. (5–6). Especially, assumptions about C,
A and B by which mentioned solutions exist. We would like to propose the
practical example of the presented algorithm and compare obtained results with
similar algorithms, e.g. from [2,5] or [4].
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3. Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Generation of linear orders
for intervals by means of aggregation functions. Fuzzy Sets Syst. 220, 69–77 (2013)



160 B. Pȩkala
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Abstract. At present the use of fuzzy systems applied to problem solving is
very common, since the use of linguistic variables is less complex when solving
a problem. This article presents a study of the use of type-1 and interval type-2
fuzzy system applied to the solution of problems of optimization using meta-
heuristic algorithms. There are many types of algorithms that mimic social,
biological, etc. behaviors. In this case the work focuses on the metaheuristic
algorithms in specific the fuzzy harmony search algorithm (FHS), the meta-
heuristic algorithms use a technique to obtain a suitable exploration in a definite
space to finish with an exploitation around the best position found, with this it is
possible to obtain a good solution of the problem. In particular, it was applied to
11 mathematical reference functions using different numbers of dimensions.

Keywords: Metaheuristic algorithms � Harmony search � Type-1 fuzzy logic �
Type-2 fuzzy logic � Dynamic parameter adaptation

1 Introduction

The use of fuzzy systems at present is increasing as they take advantage of the concepts
of fuzzy sets, these sets use terms and concepts that are easily understood by people and
in turn these apply them to solve all kinds of problems of life real. According to [16,
19, 20], fuzzy logic was conceived by Lotfi. A. Zadeh in 1965, on the basis of a theory
of fuzzy sets, which differ from traditional ones, because they considered the degree of
membership. The degree of membership is represented by a membership function, or
membership, which evaluates the input, and certain predefined rules, assigns the degree
of membership to a fuzzy set. These values range from 0 to 1, with 0 none and 1 total
membership. There is another classification called type-2 fuzzy systems, which were
theoretically proposed by Lotfi A. Zadeh in 1975 [7–10]. The reason for the original
fuzzy systems to evolve is to consider levels of uncertainty, expanding its scope. In
type-2 fuzzy systems the membership functions can now return a range of values that
varies depending on the uncertainty involved, not only in the input but also based on
the same membership. Type-2 fuzzy systems use a footprint of uncertainty and it is the
value of the function at each point in the two-dimensional space. In type-1 we have
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uncertainty only in the antecedent of the rule, whereas in type-2 we have uncertainty
both in the antecedent and in the consequent of the sentence.

This work is based on metaheuristic algorithms which are used a lot to solve real
life problems using evolutionary computation techniques, fuzzy systems, neural net-
works, data mining, etc. as can be observed in [1, 2, 15, 17, 18]. In this case we used
the metaheuristic called the harmony search algorithm [4], which is inspired by the
music and its aim is to imitate jazz improvisation, some of the most relevant works of
the present time with this method are the following [3, 5, 6, 11, 12].

In previous works [13, 14] a fuzzy harmony search algorithm was developed
applied to benchmark mathematical functions, achieving with this the control of
internal parameters of the algorithm by type-1 and interval type-2 fuzzy systems,
removing the update of these parameters manually. It is worth mentioning that in these
works only the parameters are updated as the number of iterations advance.

The objective of this research is to analyze changes in the fuzzy harmony search
algorithm to improve it, mainly with new input parameters and with techniques that
allow an improvement to the method to obtain better solutions.

The document is structured as follows: Sect. 2 describes the problem description
and the proposed method, Sect. 3 presents the benchmark functions and the results of
the simulation and finally in Sect. 4 the conclusions are presented.

2 Proposed FHS Algorithm

This section describes the main contribution of this work, as mentioned above this
paper focuses on a metaheuristic based on music, in specific we refer to the fuzzy
harmony search algorithm (FHS), which is based on the original algorithm. FHS
dynamically adjusts internal parameters of the previous algorithm to a detailed study of
the original method using a type-1 fuzzy system as the number of iterations progresses.
The difference with previous work is to incorporate a second input to the type-1 and
interval type-2 fuzzy system and combine the two parameters in the outputs to achieve
a more complex method, with which problems are solved more effectively. In this case
the proposed method focused on the minimization of benchmark mathematical func-
tions. In the Fig. 1 the diagram of the proposed method can be observed, in the part of
the process of improvisation is executed the adjustment of dynamic parameters.

Figure 1 described the proposal, in the improvisation step the dynamically adjusted
parameters are the harmony memory accepting (HMR) and pitch adjustment (PArate)
parameters, are responsible for achieving a control of exploitation and exploration
within a specified range.

To achieve the control of exploration and exploitation within a specified range the
proposed method uses two measures in the inputs of the fuzzy system, the first are the
iterations shown in Eq. 1 and the second is the diversity shown in the Eq. 2, with the
purpose of achieving the overall optimum.

Iteration ¼ Initial Iteration
Final Iterations

ð1Þ
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Diversity S tð Þð Þ ¼ 1
nS

XnS

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnx

j¼1

xij tð Þ � �xj tð Þ
� �2

vuut ð2Þ

Where Eq. 1, the initial iteration is the current iteration and final iterations are the
maximum iterations. In Eq. 2, S is the harmonies or the population of HS; t is the
current improvisation or time, ns is the size of the harmonies, i is the number of the
harmony, nx is the total number of dimensions, j is the number of the dimension, xij is
the j dimension of the harmony i, �xj is the j dimension of the current best harmony of
the harmonies.

The fuzzy systems that one used are illustrated in Fig. 2 (type-1 fuzzy system) and
Fig. 3 (Interval type-2 fuzzy system). In the two proposed fuzzy systems we use as
input the iterations and the diversity and as output the HMR and PArate parameters. In
this case used triangular membership functions were used in all fuzzy systems and all
are granulated in three membership functions.

Start

Add New 
Harmony to 

HM?

Initialization

Update the 
HM

Stop

HMR

PArate

Evaluate New 
Harmony

Termination Criteria 
Satisfied?

No

YES

YESNo

Improvisation 
Process

Fuzzy  
System 

Type-1 and 
Type-2

Fig. 1. Schema of the proposed method
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Fig. 2. Type-1 fuzzy system (FHS1).

Fig. 3. Interval type-2 fuzzy system (FHS2).
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In Fig. 4 there are inputs that are used by each fuzzy system, Fig. 4a and b show
the inputs of type-1 fuzzy system, Fig. 4c and d show the inputs of the interval type-2
fuzzy system.

In Fig. 5 shows the outputs used in each fuzzy system, Fig. 5a and b show the
outputs of the type-1 fuzzy system, it can be observed that granulated three triangular
type membership functions. Figure 5c and d show the outputs of the interval type-2
fuzzy system.

The rules used in fuzzy systems proposed, were created in base knowledge about
the behavior of the algorithm and its parameters, thus achieving explore in low itera-
tions and exploiting in high iterations (Fig. 6).

a) Input 1 (Type-1) b) Input 2 (Type-1)

c) Input 1 (Type-2) d) Input 2 (Type-2)

Fig. 4. Inputs of type-1 and interval type-2 fuzzy systems. (a) Input 1 (Type-1). (b) Input 2
(Type-1). (c) Input 1 (Type-2). (d) Input 2 (Type-2)
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a) Output 1 (Type-1) b) Output 2 (Type-1)

c) Output 1 (Type-2) d) Output 2 (Type-2)

Fig. 5. Outputs of type-1 and interval type-2 fuzzy systems. (a) Output 1 (Type-1) (b) Output 2
(Type-1) (c) Output 1 (Type-2) (d) Output 2 (Type-2)

Fig. 6. Rules for the type-1 and interval type-2 fuzzy systems
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3 Simulation Results

The simulations obtained are shown in this section; the proposed method was tested
using the mathematical functions shown in Table 1. For the experiments used the
dimensions between 2, 6 and 1. In maximum of the functions their global optimum is
zero, except for the Shubert and Trid function. 1000 iterations and 50 runs were used
for each type-1 and interval type-2 method.

In Table 1, the benchmark functions with which the proposed method was tested
this article, also the range used, dimensions, and its global minimum for each function
is shown.

50 runs were performed for each mathematical function using the original HS,
type-1 FHS and interval type-2 FHS methods. The average was obtained for each
function as shown in Table 2.

Table 1. Benchmark functions and parameters

Function Dimension Search Domain Global minimum

Rosenbrock 10 [−5, 10] 0
Sphere 10 [−5.12, 5.12] 0
Hump 10 [−5, 5] 0
Rastrigin 10 [−5.12, 5.12] 0
Schwefel 10 [−500, 500] 0
Shubert 2 [−10, 10] −186.7309
Sum Square 10 [−10, 10] 0
Zakharov 10 [−5, 10] 0
Griewank 10 [−600, 600] 0
Powel 10 [−4, 5] 0
Trid 6 [−36, 36] −50
Trid 10 [−100, 100] −200

Table 2. Values obtained in each function

Function HS Type-1 FHS Type-2 FHS

Rosenbrock 2.57E-02 9.16E-03 5.67E-08
Sphere 1.00E+01 1.07E-02 0.00E+00
Hump -1.02E+00 6.49E-01 0.00E+00
Rastrigin 1.07E+00 1.59E-02 6.44E-08
Schwefel 1.87E+01 4.82E + 00 1.27E-07
Shubert -1.85E+02 -1.86E + 02 -1.86E+02
Sum Square 1.47E-01 8.35E-03 3.86E-10
Zakharov 1.65E-01 2.38E-03 8.64E-10
Griewank 3.90E-01 2.11E-01 1.05E-10
Powel 2.66E+00 0.00E+00 0.00E+00
Trid -1.51E+01 -1.98E+00 -3.31E+01
Trid 6.83E-01 -7.10E-03 -6.03E+00
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In Table 2 the averages of the 50 experiments applied to each function are shown,
note the improvement in the use of the interval type-2 FHS compared to the original
and the type-1 FHS algorithms, in most cases better results are achieved.

4 Conclusions

In this paper the type-1 and interval type-2 FHS algorithm is proposed. This method
applies to 11 mathematical reference functions for validation, achieving in most cases
to obtain better results when using interval type-2, it can be verified that the greater
complexity interval type-2 manages to maintain better results. Unlike the previously
created methods based on this same algorithm, this proposal uses two inputs the
“iterations” and “diversity” and two outputs the HMR and PArate to achieve total
control over the exploration and exploitation of the algorithm.

Type 2 is more complex and time consuming but it obtains better results in the
majority of the 50 experiments by each mathematical function, Type 1 in 1000 itera-
tions and with the same execution time that type 2 does not get better results than type
2. In future works this methodology will be tested to different functions and problems
with greater complexity and number of dimensions.
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Abstract. The field of aggregation theory addresses the mathematical
formalization of aggregation processes. Historically, the developed math-
ematical framework has been largely confined to the aggregation of real
numbers, while the aggregation of other types of structures, such as rank-
ings, has been independently considered in different fields of application.
However, one could lately perceive an increasing interest in the study and
formalization of aggregation processes on new types of data. Mostly, this
aggregation outside the framework of real numbers is based on the use of
a penalty function measuring the disagreement with a consensus element.
Unfortunately, there does not exist a comprehensive theoretical frame-
work yet. In this paper, we propose a natural extension of the definition
of a penalty function to a more general setting based on the compati-
bility with a given betweenness relation. In particular, we revisit one of
the most common methods for the aggregation of rankings – the method
of Kemeny – which will be positioned in the penalty-based aggregation
framework.

Keywords: Penalty function · Aggregation of rankings · Kemeny ·
Monometric

1 Introduction

The use of penalty1 functions measuring the disagreement of a list of values
with a consensus value is a common approach to data aggregation [1,3,4,16,17].
Mostly, the theoretical framework of penalty-based data aggregation has been
developed for real numbers [2]. This confinement contrasts with the increasing
interest of the research community in the aggregation of new types of data.
For instance, we refer to the problems of the aggregation of rankings [13], the
aggregation of multidimensional data [7] and the aggregation of mappings [6].
1 Some other terms, such as ‘cost’, ‘disagreement’, ‘discrepancy’, ‘divergence’ or ‘error’,

have been occasionally used for replacing the term ‘penalty’. However, in the field
of aggregation theory, the term ‘penalty’ is nowadays considered the standard.

c© Springer International Publishing AG 2018
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In this contribution, we take a step towards a comprehensive theoretical
framework for penalty-based aggregation outside this current confinement to
real numbers. In particular, we restrict our attention to the aggregation of rank-
ings, which has been addressed independently by the field of social choice theory
since the eighteenth century, and we propose to revisit one of its best-known
methods: the method of Kemeny [8]. This method will be proved to be a promi-
nent example of a penalty-based aggregation process.

The rest of the paper is structured as follows. First, we recall the definition
of a penalty function in Sect. 2. We expand the definition of a penalty function
beyond the current restriction to real numbers in Sect. 3. We discuss the partic-
ular setting of the aggregation of rankings in Sect. 4 and prove that the method
of Kemeny is a prominent example of penalty-based aggregation of rankings in
Sect. 5. We end with some conclusions in Sect. 6.

2 Penalty Functions in the Setting of Real Numbers

Back in 1993, Yager [16] proposed for the first time the use of penalty functions in
data aggregation. Given a penalty function measuring the degree of disagreement
of a list of values with a consensus value, the value(s) that minimizes the penalty
is considered the result of the aggregation. Usually, the considered penalty func-
tion has been provided with a well-founded semantic basis (L(y, x) ≤ L(z, x),2

if |y − x| < |z − x|, in [17]; L(y, x) ≤ L(z, x), if x ≤ y ≤ z or z ≤ y ≤ x, in [4];
quasi-convexity in the second argument in [2,15]). After three decades of stud-
ies of the notion of a penalty function, the current understanding of a penalty
function is the following [2].

Definition 1. Consider n ∈ N and a closed interval I ⊆ R. A function P :
In+1 → R

+ is called a penalty function if there exists c ∈ R
+ such that:

(i) P (x, y) ≥ c, for any x ∈ In and any y ∈ I;
(ii) P (x, y) = c if and only if x = (y, . . . , y);
(ii) P (x, ·) is quasi-convex and lower semi-continuous for any x ∈ In.

Remark 1. In most cases, the value c is set to zero.

The properties of quasi-convexity and lower semi-continuity of a penalty
function P imply that the set of minimizers of P (x, ·) is either a singleton or an
interval. This minimizer (or middle point of the interval) is usually considered
as the result of the ‘aggregation’,3 which is given by the so-called penalty-based
function associated with P .

2 We denote (local) penalty functions defined on R × R by L and penalty functions
defined on R

n × R by P . For more details, we refer to [2].
3 Note that we write the term ‘aggregation’ between quotation marks due to the

fact that the penalty-based function associated with P is only assured to satisfy the
boundary conditions (it is actually idempotent), while the property of increasingness
might not hold. For more details, we refer to [2,3].
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Definition 2. Consider n ∈ N, a closed interval I ⊆ R and a penalty function
P : In+1 → R

+. A function f : In → I is called the penalty-based function
associated with P if, for any x ∈ In, it holds that

f(x) =
a + b

2
,

where [a, b] is the interval closure of the set of minimizers of P (x, ·).

3 The Extension Beyond the Setting of Real Numbers

Condition (iii) of a penalty function has a twofold goal: first, provide the penalty
with a well-founded semantic basis, and, second, assure that the set of minimizers
of P (x, ·) is either a singleton or an interval. In case there exists at least one
minimizer, the quasi-convexity property is equivalent to the fact that P (x, ·)
decreases up to the set of minimizers and increases from the set of minimizers
on. Unfortunately, this property can no longer be defined in case we are dealing
with other types of data. We propose to introduce the notion of a betweenness
relation, which is a ternary relation [10] that describes when an element is in
between two other ones, in order to provide the penalty with a well-founded
semantic basis. In what follows, we adhere to the formal relaxed definition given
by Pitcher and Smiley [14], requiring a minimal set of axioms.

Definition 3. A ternary relation B on a set X is called a betweenness relation
if it satisfies the following two properties:

(i) Symmetry in the end points: for any x, y, z ∈ X, it holds that

(x, y, z) ∈ B ⇔ (z, y, x) ∈ B .

(ii) Closure: for any a, b, c ∈ X, it holds that
(
(x, y, z) ∈ B ∧ (x, z, y) ∈ B

) ⇔ y = z .

The fact that (x, y, z) ∈ B is referred to as ‘y is in between x and z’.

As shown in [12], any betweenness relation on a set X can be easily extended
to Xn.

Proposition 1. Consider n ∈ N and a betweenness relation B on a set X. The
ternary relation B(n) on Xn defined as

B(n) = {(x,y, z) ∈ (Xn)3 | (∀i ∈ {1, . . . , n})((xi, yi, zi) ∈ B)} ,

is a betweenness relation on Xn, called the product betweenness relation.

The definition of a penalty function can then be adapted by requiring the
preservation of a given betweenness relation.
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Definition 4. Consider n ∈ N, a set X and a betweenness relation Bn on Xn.
A function P : Xn+1 → R

+ is called a penalty function (compatible with Bn) if
there exists c ∈ R

+ such that:

(i) P (x, y) ≥ c, for any x ∈ Xn and any y ∈ X;
(ii) P (x, y) = c if and only if x = (y, . . . , y);
(iii) P (x, y) ≤ P (x′, y), for any x,x′ ∈ Xn and any y ∈ X such that ((y, . . . , y),

x,x′) ∈ Bn.

Remark 2. An alternative condition requiring the penalty to increase when mov-
ing away from the minimizer(s) may be considered: (iii’) P (x, y) ≤ P (x, y′), for
any x ∈ Xn, any y, y′ ∈ X and any minimizer z ∈ X of P (x, ·) such that
((z, . . . , z), (y, . . . , y), (y′, . . . , y′)) ∈ Bn. Note that, while condition (iii) is the
natural extension of the condition required in [4] (L(y, x) ≤ L(z, x), for any
x ≤ y ≤ z or z ≤ y ≤ x), condition (iii’) is the natural extension of quasi-
convexity required in [2].

Remark 3. The set of minimizers might be empty, unless, of course, the set X
is finite. This problem could be avoided by adding a fourth condition: (iv) The
set of minimizers of P (x, ·) is non-empty, for any x ∈ Xn.

As the set of minimizers is not assured to be a singleton, nor non-empty, the
codomain of the corresponding penalty-based function associated with P needs
to be the power set P(X) of X rather than X.

Definition 5. Consider n ∈ N, a set X, a betweenness relation Bn on Xn and
a penalty function P : Xn+1 → R

+ compatible with Bn. A function f : Xn →
P(X) is called the penalty-based function associated with P if, for any x ∈ Xn,
it holds that f(x) equals the set of minimizers of P (x, ·).
Remark 4. Any penalty-based function f associated with P is idempotent, i.e.,
it holds that f(x, . . . , x) = {x}, for any x ∈ X.

4 The Framework of the Aggregation of Rankings

Here, we consider the particular case of the aggregation of rankings. A ranking
is a strict total order relation 
 on a set C = {a1, . . . , ak} of k elements, i.e., the
asymmetric part of a total order relation � on C . The set of all rankings on C
is denoted by L(C ). Each ranking 
 on C defines an order relation �≥� on L(C )
according to how far two rankings in L(C ) are from 
 in terms of reversals [11].

Definition 6. Let C be a set of k elements. A ranking 
 on C induces the
following partial order relation �≥� on L(C ):

�≥� =
{
(
′,
′′) ∈ L(C )2 | (∀ai1 , ai2 ∈ C

) ((
(ai1 
 ai2) ∧ (ai1 
′′ ai2)

) ⇒ (ai1 
′ ai2)
)}

.
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a�b�c�d

b�a�c�d a�c�b�d a�b�d�c

b�c�a�d c�a�b�d b�a�d�c a�c�d�b a�d�b�c

c�b�a�d b�c�d�a b�d�a�c c�a�d�b a�d�c�b d�a�b�c

c�b�d�a b�d�c�a c�d�a�b d�b�a�c d�a�c�b

c�d�b�a d�b�c�a d�c�a�b

d�c�b�a

Fig. 1. Hasse diagram of the order relation �≥� for the ranking a � b � c � d.

Figure 1 displays the Hasse diagram of the order relation �≥� for the ranking
a 
 b 
 c 
 d on the set of four elements C = {a, b, c, d}. Clearly, every ranking

′ is closer (in terms of reversals) to 
 than 
′′ if it holds that 
′ �≥� 
′′.

The most common notion of distance on rankings is measured by means
of the Kendall distance function K between rankings [9]. This distance function
assigns to each couple of rankings the number of pairwise disagreements between
them. Formally, for any two rankings 
1 and 
2, the Kendall distance is defined
as

K(
1,
2) = #{(ai1 , ai2) ∈ C 2
�= | ai1 
1 ai2 ∧ ai2 
2 ai1} .

The Kendall distance function induces a natural betweenness relation BL(C ) on
L(C ), which is defined as follows:

BL(C ) = {(
1,
2,
3) ∈ L(C )3 | K(
1,
3) = K(
1,
2) + K(
2,
3)} .

Figure 2 illustrates the rankings that are in between the rankings a 
 b 
 c 
 d
and d 
 b 
 a 
 c according to the betweenness relation BL(C ) for the set
C = {a, b, c, d}. Intuitively, the fact that (
1,
2,
3) ∈ BL(C ) is equivalent to
the fact that 
2 �≥�1 
3 (or to the analogous 
2 �≥�3 
1).
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a�b�c�d

b�a�c�d a�c�b�d a�b�d�c

b�c�a�d c�a�b�d b�a�d�c a�c�d�b a�d�b�c

c�b�a�d b�c�d�a b�d�a�c c�a�d�b a�d�c�b d�a�b�c

c�b�d�a b�d�c�a c�d�a�b d�b�a�c d�a�c�b

c�d�b�a d�b�c�a d�c�a�b

d�c�b�a

Fig. 2. Graphical representation of BL(C )

5 A Prominent Example of Penalty-Based Aggregation
Outside the Setting of Real Numbers: The Method
of Kemeny

The method of Kemeny [8] is one of the most (if not the most) common methods
for the aggregation of rankings. The winning ranking according to this method
is the ranking that minimizes the sum of the Kendall distances to the given
list of rankings. Considering the terminology of the penalty-based aggregation
framework, we have that the penalty function P : L(C )n+1 → R

+ associated
with the method of Kemeny is defined as

P (R,
) =
n∑

j=1

K(
j ,
) =
∑

ai1�ai2

#{
j∈ R | ai2 
j ai1} ,

for any list of rankings R = (
j)nj=1 and any ranking 
.

Note that this function is indeed a penalty function (compatible with B
(n)
L(C ))

in the sense of Definition 4, as we will prove in the remainder of this section.
First, as the Kendall distance function is a metric, it holds that condition (i)

is trivially satisfied. Second, due to the coincidence axiom of a metric, it holds
that condition (ii) is satisfied. Third, consider the betweenness relation B

(n)
L(C ).
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For any R,R′ ∈ L(C )n and any 
∈ L(C ) such that ((
, . . . ,
),R,R′) ∈
B

(n)
L(C ), it holds that

(∀j ∈ {1, . . . , n})(K(
′
j ,
) = K(
′

j ,
j) + K(
j ,
)) .

In particular, as the Kendall distance function is a metric, it holds that

(∀j ∈ {1, . . . , n})(K(
′
j ,
) ≥ K(
j ,
)) .

Therefore, we conclude that condition (iii) is satisfied, i.e.,

P (R,
) =
n∑

j=1

K(
j ,
) ≤
n∑

j=1

K(
′
j ,
) = P (R′,
) .

Note that, in case the winning ranking 
 according to the method of Kemeny
is unique, condition (iii’) is equivalent to the penalty P (R, ·) being decreasing
when going from top to bottom in the Hasse diagram of the order relation �≥�.
In general, this condition is not satisfied by the penalty function associated with
the method of Kemeny. For instance, in case we consider the list of rankings on
C = {a, b, c, d} given in Table 1.

Table 1. List of rankings on C = {a, b, c, d} and their respective frequencies.

Freq. Ranking

9 a � b � c � d

5 a � c � b � d

5 b � d � c � a

5 c � d � b � a

5 d � b � a � c

5 d � c � a � b

The penalty P (R,
) associated with each ranking 
 on C = {a, b, c, d} for
the list R of rankings given in Table 1 is shown in Table 2.

We see that the unique minimizer of P (R, ·) is the ranking a 
 b 
 c 
 d.
Due to the fact that (a 
 b 
 c 
 d, a 
 b 
 d 
 c, d 
 a 
 b 
 c) ∈ BL(C ), it
holds that (

Ra�b�c�d,Ra�b�d�c,Rd�a�b�c

) ∈ B
(n)
L(C ) ,

where Ra�b�c�d, Ra�b�d�c and Rd�a�b�c denote the unanimous lists of rank-
ings where all the rankings are a 
 b 
 c 
 d, a 
 b 
 d 
 c and d 
 a 
 b 
 c,
respectively. Due to the fact that P (R, a 
 b 
 d 
 c) = 99 > 97 = P (R, d 

a 
 b 
 c), we conclude that condition (iii’) is not satisfied.

A common notion in the field of the aggregation of rankings is that of the
existence of the Condorcet ranking, which is named after one of the forefathers
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Table 2. Penalty P (R,�) associated with each ranking � on C = {a, b, c, d} for the
list R of rankings given in Table 1

Ranking Penalty Ranking Penalty Ranking Penalty Ranking Penalty

a � b � c � d 95 b � a � c � d 99 c � a � b � d 103 d � a � b � c 97

a � b � d � c 99 b � a � d � c 103 c � a � d � b 107 d � a � c � b 101

a � c � b � d 99 b � c � a � d 103 c � b � a � d 107 d � b � a � c 101

a � c � d � b 103 b � c � d � a 97 c � b � d � a 101 d � b � c � a 105

a � d � b � c 103 b � d � a � c 97 c � d � a � b 101 d � c � a � b 105

a � d � c � b 107 b � d � c � a 101 c � d � b � a 105 d � c � b � a 109

of social choice theory: Marquis de Condorcet [5]. For a given list R of rankings,
we say that a ranking 
 is the Condorcet ranking (associated with R) if, for any
ai1 , ai2 ∈ C such that ai1 
 ai2 , it holds that ai1 is ranked at a better position
than ai2 in a greater number of rankings in R than the number of rankings in
R in which ai2 is ranked at a better position than ai1 .

We now prove that the existence of a Condorcet ranking associated with R
implies the compliance of condition (iii’). It is known that, in case the Condorcet
ranking 
 exists, it is the unique winning ranking according to the method of
Kemeny. Therefore, it suffices to prove that the penalty P (R, ·) decreases when
going from top to bottom in the Hasse diagram of the order relation �≥�. For any
two consecutive rankings 
1,
2∈ L(C ) in the order relation �≥� (i.e. 
1 �≥� 
2

and there does not exist 
3∈ L(C ) such that 
1 �≥� 
3 �≥� 
2), it holds
that there exists a unique pair of elements ai1 , ai2 ∈ C such that ai1 
1 ai2
while ai2 
2 ai1 (it obviously holds that ai1 
 ai2). By definition of the penalty
associated with the method of Kemeny, it follows that

P (R,
1) = P (R,
2) − #{
j∈ R | ai1 
j ai2} + #{
j∈ R | ai2 
j ai1} .

As 
 is the Condorcet ranking associated with R and ai1 
 ai2 , it holds that

#{
j∈ R | ai1 
j ai2} > #{
j∈ R | ai2 
j ai1} ,

and, therefore, P (R,
1) ≤ P (R,
2). We conclude that, in case a Condorcet
ranking exists, condition (iii’) is satisfied.

As the set of rankings on C is finite, condition (iv) is trivially satisfied. Note
that, like in most methods for the aggregation of rankings, the set of minimizers
is not assured to be a singleton. For instance, it is not possible to decide which
ranking on C = {a, b, c} should be the result of aggregating the list of rankings
on C given in Table 3.

We conclude that the associated penalty function satisfies conditions (i), (ii),
(iii) and (iv), while the additional condition (iii’) is assured in case of existence
of a Condorcet ranking.
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Table 3. List of rankings on C = {a, b, c}.

a � b � c

a � c � b

b � a � c

b � c � a

c � a � b

c � b � a

6 Conclusions

In this contribution, we have proposed a natural extension of the definition
of a penalty function beyond its current confinement to real numbers based
on the compatibility with a given betweenness relation. In particular, we have
paid special attention to one of the best-known methods for the aggregation of
rankings: the method of Kemeny. We have proved that the method of Kemeny
can be understood as a prominent example of penalty-based aggregation outside
the setting of real numbers satisfying all the proposed conditions.
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Rendues à la Pluralité des Voix, De l’Imprimerie Royale, Paris (1785)

6. De Miguel, L., Campión, M.J., Candeal, J.C., Induráin, E., Paternain, D.: Point-
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180 R. Pérez-Fernández and B. De Baets
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Abstract. Present versions of fuzzy arithmetic (FA) are not ideal. For
some computational problems they deliver credible results. However for
many other problems the results are less credible or sometimes clearly
incredible. Reason of this state of matter is the fact that present FA-
versions partially or fully (depending on a method) do not possess math-
ematical properties that are necessary for achieving correct calculation
results as: distributivity law, cancellation law, neutral elements of addi-
tion and multiplication, property of restoration, possibility of decom-
position of calculation in parts, ability of credible equations’ solving,
property of delivering universal algebraic solutions, possibility of formula
transformation, and other. Lack of above properties is, in the authors’
opinion, caused by incorrect assumption of all existing FA-versions that
result of arithmetic operations on unidimensional fuzzy intervals is also
a unidimensional fuzzy interval. In the paper authors show that the cor-
rect result is a multidimensional fuzzy set and present a fuzzy arith-
metic based on this proposition, which possess all necessary mathemat-
ical properties and delivers credible results.

Keywords: Fuzzy arithmetic · Fuzzy computations · Uncertainty the-
ory · Granular computing · Soft computing · Artificial intelligence

1 Introduction

Fuzzy arithmetic is very important for uncertainty theory [2], granular comput-
ing [18], soft computing [16] and generally for artificial intelligence [11] because
human thinking uses information granules that can be modeled as fuzzy sets.
Motivation of this paper is explanation that fuzzy interval is not solution of
arithmetic operations on fuzzy intervals and also explanation of other basic
problems of fuzzy arithmetic [6,9,18,19] and of the sense of the calculation
result because incorrect understanding of it leads to many misunderstandings
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and computational paradoxes in fuzzy arithmetic (shortly: FA, F-arithmetic).
There exist few versions of FA mentioned below.

FA1. Fuzzy arithmetic based on Zadeh’s extension principle [6,9,19].
FA2. Fuzzy arithmetic of decomposed fuzzy numbers based on α-cuts of fuzzy

sets and on interval arithmetic [6,18]. Because there exist few versions of
interval arithmetic also there exist few versions of FA2. However, the mostly
used is the standard interval arithmetic of Moore [8,17,18].

FA3. Left-Right (L-R) version of fuzzy arithmetic [4].
FA4. Advanced fuzzy arithmetic based on transformation method or on

extended transformation method [6].
FA5. Constrained fuzzy arithmetic [10].
FA6. Ordered fuzzy numbers arithmetic [12].

Each of the cited F-arithmetic versions assumes that result of arithmetic
operations {+,−,×, /} on unidimensional fuzzy numbers (shortly FNs, F-
numbers) also is a unidimensional FN. E.g. result of addition of two triangular
FNs A = (1, 2, 3) and B = (3, 4, 5) is the number X = (4, 6, 8) shown in Fig. 1.
when FA2-version is used.

Fig. 1. Example of addition of triangular fuzzy numbers A and B with use of existing
versions of FA: the result is also a triangular fuzzy number.

The addition result in Fig. 1 is also a triangular FN. This result seems intu-
itively correct. It is also consistent with axiom of closure [1,3] that for triangular
FNs can be formulated as follows: “the set of triangular FNs has closure under
an operation (e.g. of addition) if performance of that operation on numbers of
this set always produces a member of the same set, i.e. a triangular FN”. Because
the closure axiom (property) seems intuitively obvious many authors of exist-
ing FA-versions have assumed that result of operations on FN-s also is a FN.
However, using the axiom of closure results in many calculation paradoxes and
weaknesses of FA. E.g. in [5,28] Dymova and Sevastjanov describe phenomenon
of “multiple results”. It consists in achieving different calculation results for one
and the same system of data processing if contemporary FA or interval arith-
metic is used. Let us assume that a system realizes addition a + b = x, where a
and b are input values and x is the output value. Mathematical model (M-model)
of the system can be expressed not only as (1) a + b = x but also in form of
equivalent M-models (2) a = x − b, (3) b = x − a, and (4) a + b − x = 0. If crisp
input values are known, e.g. a = 2 and b = 4 then on the basis of all 4 models
we achieve the same result x = 6. This result satisfies principle of solution uni-
versality. The universal solution does not depend on the form of M-model used
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in calculations. In conventional arithmetic of crisp numbers this principle is sat-
isfied. However, let us assume that not crisp but only approximate input values
are known in form of triangular FNs: A = (1, 2, 3) and B = (3, 4, 5) and that we
want to calculate their addition result X. With use of FA2 for fuzzy extension
(F-extension) A + B = X of the system dependence a + b = x we achieve the
result X = (4, 6, 8) shown in Fig. 1. For second F-extension A = X − B the
result X = (0, 3, 6) is achieved. For third F-extension B = X − A the result
is X = (0, 3, 6) and for forth extension A + B − X = 0 we achieve the result
X = (8, 6, 4) being improper fuzzy number [8] in which the lower limit 8 is
greater than the upper limit 4. Which of the achieved results is correct? It can
easily be checked that no one of them is universal result which satisfies all four
F-extensions A + B = X, A = X − B, B = X − A, A + B − X = 0. Then,
one can ask: does there exists a universal result of the addition operation of
two FNs in general? Yes, it exists, but, as it will be shown later, this result is
not an ordinary F-number. Existing FA-versions with FN-results have also many
further weaknesses which hamper effective calculations. E.g., in the present FA
and IA the interval difference X = A−B can be calculated in two ways: as ordi-
nary difference X = A−B and as Hukuhara difference XH [7,18,29]. Hukuhara
difference is calculated from equation A = XH + B and has smaller uncertainty
than ordinary difference X. Let us use two triangle FNs : A = (0, 3, 5) and
B = (2, 3, 6). Then the ordinary difference X = (−6, 0, 1) and Hukuhara differ-
ence XH = (−2, 0, 1). One can ask: which difference is true and correct? This
situation is strange and seems illogical. Next disadvantage of FA consists in that.
the version FA2 and other versions have not inverse elements of addition −X
and of multiplication 1/X that satisfy conditions (1) and (2).

X − X = 0 (1)

X/X = 1 (2)

In FA2-arithmetic a very important distributivity law (3) does not hold.

X(Y + Z) = XY + XZ (3)

Without this law formula transformations can not be made because it can
change calculation result. If X, Y , Z are triangle F-sets and X = (1, 2, 3), Y =
(2, 4, 5), Z = (−2, 0, 1) then with FA2 we achieve following results: X(Y + Z) =
(0, 8, 18) and XY + XZ = (−6, 8, 18). As can be seen X(Y + Z) �= XY + XZ
in this case. Similarly in FA2 cancellation law (4) does not hold, what also can
cause calculative paradoxes.

IF (XZ = Y Z) THEN (X = Y ) (4)

Why FA2 and other FA-versions do not have such important mathematical
properties? As it will be shown later, the reason is the assumption that result
of arithmetic operations on F-numbers is also a F-number. An important fea-
ture required from any FA is not only correct realization of basic arithmetic
operations {+,−,×, /} but also ability of solving arithmetic equations as e.g.
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A + B = X, A + BX + CX2 = 0, etc. Solving of even the simplest fuzzy equa-
tions as A + X = B at present is difficult and solutions delivered by particular
existing methods [16,23] are different. To verify whether a particular FA delivers
correct solution X of an equation conditions of the correct solution should be
determined. One of important conditions is that solution X should have property
of algebraic solution. E.D. Popova in [27] gives definition of algebraic solution:
“interval algebraic solution of a linear equation is an interval (interval vector)
that substituting it into the equation and performing all interval operations
results in valid equality”. It should be noted that Popova also assumes that
result of interval equation should be an interval. Further on a little corrected
definition formulated by the paper authors will be given: “Universal algebraic
solution of a fuzzy equation is a solution that after substituting it into the
equation and performing fuzzy arithmetic operations according to rules of this
arithmetic gives equality of both sides of the equation, independently of math-
ematical equation form used in calculations”. Universality of solution X means
e.g. in the case of equation A + X = B, that the solution should satisfy also
other alternative forms of the equation A = X −B, B = X −A, A+B −X = 0.
It should be noted that the proposed definition of algebraic solution does not
assume that solution of a fuzzy equation is a fuzzy number.

2 Relationship Between Fuzzy and Interval Arithmetic

One of realization methods of FA-operations is decomposition of FNs on α-cuts
[6,18]. Further on, instead of the name α-cuts the name μ-cut will be used. Let
D be a set of domain and x be an element in D. Then a fuzzy set A in D is
characterized by (5),

A = {x, μ(x);x ∈ D} (5)

where μ(x) is the grade of membership of x in A. For an ordinary set μ(x) is
either 0 or 1 while for a fuzzy set μ(x) ∈ [0, 1]. A μ∗-cut denoted by Aμ∗ of a
fuzzy set A is an ordinary set of elements with membership not less than μ∗ for
0 ≤ μ ≤ 1, (6).

Aμ∗ = {x ∈ D;μ(x) ≥ μ∗} (6)

Let A and B be two fuzzy numbers and Aμ∗ and Bμ∗ be their intervals of
confidence for the level μ∗, 0 ≤ μ ≤ 1. Then, we can write (7),

Aμ∗ ∗ Bμ∗ = Xμ∗ (7)

where ∗ is one of arithmetic operations {+,−,×, /} and Xμ∗ is the operation
result achieved with I-arithmetic. As can be seen from above, arithmetic oper-
ation on F-numbers can be decomposed on set of operations on intervals rep-
resenting μ-cuts made on various levels. It means that F-arithmetic is strongly
connected with I-arithmetic which is its basis. If we possess a correct I-arithmetic
then we can create correct F-arithmetic. According to all versions of present I-
arithmetic [8,17,18] result Xμ of arithmetic operations on μ-cuts Aμ and Bμ

being intervals is also an interval. As it will be shown this interpretation is
incorrect.
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3 What Is the Result of Arithmetic Operations
on Ordinary Intervals?

Let us begin the problem analysis from discrete intervals. Let us consider a
simple example.

Example 1. On Sunday in village C a dance party is organized. It is known
that from village A maximally 2 persons will come on motor bike. However, it also
is possible that nobody will come. Similar situation is with village B. How many
persons will come from both villages? Let us denote the real number of persons
from village A by a and from village B by b. We know that a ∈ A = {0, 1, 2} and
b ∈ B = {0, 1, 2}. A and B are sets of persons that can come from village A and
B. Number a of persons from village A does not depend on number b of persons
from village B. Let us notice that true values of a and b are not known for us.
Thus, they are unknown variables. Hence, it is not possible to predict with full
certainty the true sum x = a+ b of person that will come from both villages. All
what we can do is determining all possibilities. SetX of possible point-results is
shown in Fig. 2.

Fig. 2. Visualization of addition of discrete intervals A = {0, 1, 2} and B = {0, 1, 2}.

The result set X = {X1, . . . , X9} consists of 9 possible single results Xi, i =
1, . . . , 9, of conditional character (x|a, b) which linguistically can be interpreted
as rules (8).

(x|a, b) : IF (a = a∗) AND (b = b∗) THEN (x = a∗ + b∗) (8)

E.g. for a = 1 and b = 2 the single conditional addition is expressed by (9).

(3|1, 2) : IF (a = 1) AND (b = 2) THEN (x = 3) (9)

Full set of single conditional results for the considered addition has form of (10).

X = {(0|0, 0), (1|1, 0), (2|2, 0), (1|0, 1), (2|1, 1, ), (3|2, 1),
(2|0, 2), (3|1, 2), (2|0, 2), (3|1, 2), (4|2, 2)} (10)
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The above example shows that in the case of addition of discrete intervals
the result is not a discrete interval but set X of addressed, possible, conditional
results existing not in 1D-space but in 3D-space. Because we do not know real
values of variables a and b therefore we can only find conditional point solutions
as (9). Full addition of discrete intervals A+B is given by (11).

A + B = X
{0, 1, 2} + {0, 1, 2} = {(0|0, 0), (1|1, 0), (2|2, 0), (1|0, 1), (2|1, 1, ), (3|2, 1),

(2|0, 2), (3|1, 2), (2|0, 2), (3|1, 2), (4|2, 2)}
(11)

Analysis of the result set X, formula (11) or Fig. 2, shows that this set con-
tains one solution for x = 0, 2 solutions for x = 1, 3 solutions for x = 2, 2
solutions for x = 3, and 1 solution for x = 4. The solution number in particular
subsets of X can be called cardinality (card.x) or frequency (freq.x) [13]. Car-
dinality is a valuable representative or indicator of result sets. Distribution of
cardinality for the considered example is shown in Fig. 3.

Fig. 3. Not normalized distribution of cardinality (frequency) of resul subsets with
identical result value x = a + b = const.

Cardinality distribution from Fig. 3 can be interpreted as a priori informa-
tion (not verified experimentally) which value x of the result set has smaller or
greater chance to occur. Card.x is not the direct result of interval addition. It
is only an indicator (simplified information piece) about the result set X. The
next indicator (representative) of this set can be its span s(x), see Fig. 3 and
formula (12).

s(X) = {(min x), (min x) + 1, (min x) + 2, . . . , (max x)} = {0, 1, 2, 3, 4} (12)

It should be noticed that according to present interval arithmetic versions
just this indicator is understood as direct result of I-arithmetic operations. It is
a mistake. Span is only one of many possible indicators of the result set similarly
as cardinality distribution or center of gravity of the set. At the very most it
can be interpreted as “secondary” result. Treating it as direct result is reason of
calculation paradoxes observed in I-arithmetic and F-arithmetic [5,20,28].

Third valuable indicator (representative) of the result set X is its center of
gravity (COG(X)). If the set X contains n single conditional result xi then
COG(X) can be calculated from (13).
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COG(X) =
n∑

i=1

xi · cardxi

/
n∑

i=1

cardxi (13)

In the considered discrete example position of COG(X) is given by (14).

COG(X) =
1 · 0 + 2 · 1 + 3 · 2 + 2 · 3 + 1 · 4

1 + 2 + 3 + 2 + 1
= 2 (14)

The center of gravity informs us about the average weighted value of the
result x we can hope on the basis of possessed knowledge.

Now, let us consider continues intervals and realization of arithmetic opera-
tions leading to achievement of the complete result set. If set A is set of variable
a values such that a ∈ [a, a] = A and set B is interval of variable b values such
that b ∈ [b, b] = B then all present I-arithmetic versions assume that result
X of arithmetic operation A ∗ B = X is an interval, where ∗ = {+,−,×, /}.
E.g., with such assumptions for addition of A = [0, 2] and B = [0, 2] we achieve
[0, 2] + [0, 2] = [0, 4]. This notation of the arithmetic operation is incorrect and
imprecise. First of all it is not addressed. This notation suggests that we can
take any number from interval A = [0, 2] and any number from B = [0, 2]
and can get any number from X = [0, 4]. E.g., a can be equal 0.1, b can be
equal to 0.2 and the addition result can be equal to e.g. 3.5 (0.1 + 0.2 = 3.5).
The equality sign in equation A + B = X = [x, x] is incorrect. More sensible
though also incorrect could seem the notation (a|a ∈ A) + (b|b ∈ B) ∈ X e.g.:
(a|a ∈ [0, 2]) + (b|b ∈ [0, 2]) ∈ [0, 4]. About incorrectness of the notation used in
present I-arithmetic have also written W. Lodwick and D. Dubois in their com-
prehensive paper [14], where they propose the sign ≈ instead of equation sign =.
To elaborate correct I -arithmetic, addressing all values inside an interval should
be introduced. Such addressing can be realized with RDM (Relative-Distance-
Measure) variable α, α ∈ [0, 1] used in RDM I-arithmetic [20–22]. M-model of a
single variable value contained in interval X = [x, x] has form of (15).

x = x + αx(x − x), αx ∈ [0, 1] (15)

E.g. M-model of a single variable-value x ∈ [2, 5] has form x = 2 + 3αx,
αx ∈ [0, 1]. In (15) each value contained in the interval is not anonymous because
it can be distinguished by a value of RDM-variable α assigned to it. M-model (15)
is not only a model of a single variable-value, it is can be interpreted a model of
the true, though precisely unknown value of the variable that occurred in a real
system. If we know that an uncertain variable value a ∈ [a, a] and b ∈ [b, b] and
variables a and b are independent then any operation ∗ from the set {+,−,×, /}
can be realized according to (16).

A ∗ B = X

A ∗ B : a ∗ b = [a + αa(a − a)] ∗ [b + αb(b − b)] = X(αa, αb),
αa, αb ∈ [0, 1]

(16)

E.g., if a ∈ [0, 2] and b ∈ [0, 2], then their addressed values have form: a =
0 + 2αa, b = 0 + 2αb, αa, αb ∈ [0, 1]. It can easily be noticed that the sum X
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Fig. 4. 3-dimensional result set of interval addition A + B = [0, 2] + [0, 2] = X with
isoclines of constant result x-values.

does not exists in 1D-space but in multidimensional 3D-space αa × αb × X. The
set of possible results X of interval addition A = [0, 2] and B = [0, 2] is shown
in Fig. 4.

Result set X(αa, αb) is the complete set of infinite number of possible single
results x. Formula (17) can be used for generating any possible conditional result
(x|a, b) = (x|αa, αb). E.g. for αa = 0.3 and αb = 0.7 we get a = 0.6 and b = 1.4,
x = 2, i.e. we get the triple (x|a, b) = (2|0.6, 1.4) or ((x|αa, αb) = (2|0.3, 0.7). On
the basis of RDM I-arithmetic we can correctly realize arithmetic operations for
particular μ-cuts of fuzzy numbers. This arithmetic possess similar mathematic
properties as arithmetic of crisp numbers. It possess property of commutativity
(X+Y = Y +X, XY +Y X), property of associativity [X+(Y +Z) = (X+Y )+Z],
[X(Y Z) = (XY )Z)], it possess neutral elements of addition and multiplication
(X + 0 = 0 + X = X),(X · 1 = 1 · X), distributive law [X(Y + Z) = XY + XZ],
cancellation law for addition and multiplication (X + Z = Y + Z ⇒ X =
Y ), (XZ = Y Z ⇒ X = Y ). RDM I-arithmetic possess also a very important
property of restoration for addition: if after adding intervals A + B the result X
has been achieved then knowing X and B restoration of A should be possible
(A + B = X ⇒ X − B = A and X − A = B). Similarly restoration property for
multiplication has form:(AB = X ⇒ X/B = A and X/A = B). Both restoration
properties possess crisp-number arithmetic. E.g. (2 + 3 = 5 ⇒ 5 − 3 = 2 and
5 − 2 = 3). However, no I-arithmetic assuming that arithmetic operation result
is an interval possess this property. E.g., let A = [0, 2] and B = [0, 2]. Then,
according to SI-arithmetic A + B = [0, 4]. However, X − B = [0, 4] − [0, 2] =
[−2, 4] �= A = [0, 2] and X − A = [0, 4] − [0, 2] = [−2, 4] �= B = [0, 2]. In the case
of RDM I-arithmetic we have: a = 2αa and b = 2αb, x−b = (2αa +2αb)−2αb =
2αa = a. Similar result is achieved for multiplication. Thus, RDM I-arithmetic
possess property of restoration thanks to addressing variable values taking part in
operations. Figure 4 presents a 3D-result of addition operation realized with use
of RDM I-arithmetic. For this result 3 basic indicators (representatives) can be
determined: cardinality distribution card(x) of possible single results x = const,
span s(x) of possible x results, and center of gravity COG(x) of possible x-results
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(average weighted value of the results). Cardinality is a measure of frequency of
occurrence [13] of triples (x|a, b) with the same x-value. This frequency measure
is length of particular isoclines shown in Fig. 4. In the case of addition the length
can be calculated with formula (17).

L(x = const) =
√

2(amax(x = const) − amin(x = const)) (17)

The cardinality distribution is shown in Fig. 5.

Fig. 5. Distribution of cardinality (frequency measure) of possible addition results
a+ b = x of elements of intervals A = [0, 2] and B = [0, 2] as indicator (representative)
of the 3D set X(αa, αb) of possible results x.

Second indicator of the 3D-result set X(αa, αb) is span s(X) which can be
calculated with (18).

s(X(αa, αb)) = [min x(αa, αb),max x(αa, αb)] (18)

In the considered addition of intervals A+B span of the result is s(X) = [0, 4].
Third indicator (representative) of the set X of possible results is center of

gravity COG(X) which can be calculated from (19).

COG(X) =

xmax∫

xmin

(x · cardx)dx

/ xmax∫

xmin

(cardx)dx (19)

In the considered example of interval addition A + B position of the center
of gravity of the result set X is equal to COG(X) = 2. The center and the span
of the set X are shown in Fig. 6.

Fig. 6. Visualization of two indicators of the result set X of possible results of addition
of two intervals A+B = [0, 2]+[0, 2]: span s(X) and center of gravity of results COG(x).
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4 Arithmetic Operations on Fuzzy Intervals

Arithmetic operations on fuzzy intervals can separately be performed on chosen
μ-cuts, e.g. for levels μ = 0, 1, 2/4, 3/4, 1. Then, for the achieved result sets of
particular μ-cuts their indicators can be determined and presented together.
However, arithmetic operations can also be performed not separately but for the
full range of membership μ ∈ [0, 1] if horizontal membership functions (HMFs,
HM-functions) are used [23–26]. Horizontal membership functions were used for
solving fuzzy differential equations of motion for the Boeing 747 [15]. Figure 7
shows example of trapezoidal and triangle membership function.

Fig. 7. Trapezoidal and triangle membership function with denotations.

If usual models of MFs have form μ = fμ(x) then horizontal MFs have the
inverse form x = fx(μ, αx). And so horizontal MF of the trapezoidal fuzzy set
from Fig. 7 is determined by (20), where αx ∈ [0, 1] is RDM variable.

x = [a + (b − a)μ] + [(d − a) − μ(d − a + b − c)]αx, αx ∈ [0, 1] (20)

For parameter values as in Fig. 7 the horizontal MF is given by (21).

x = (1 + 2μ) + (4 − 3μ)αx, αx ∈ [0, 1] (21)

Assuming any cut level μ a corresponding RDM interval model can be deter-
mined from (21). E.g. for μ = 0.5 the cut of trapezoidal MF from Fig. 7 is
described by formula x = 2+2.5αx, αx ∈ [0, 1]. The result can easily be checked
on this figure. In the case of triangle MFs formula (22) concerning trapezoidal
MFs also can be used after substituting b = c because triangle is a special case
of trapezoid, see (22).

y = [a + (b − a)μ] + [(d − a) − μ(d − a)]αy, αy ∈ [0, 1] (22)

For numerical values as in Fig. 7 M-model of horizontal MF is given by (23).

y = (1 + 2μ) + 4(1 − μ)αy, αy ∈ [0, 1] (23)

For the cut level μ = 0.5 the interval horizontal model has form x =
2 + 2αx, αx ∈ [0, 1]. One can check in Fig. 7 that this model is correct. Oper-
ations {+,−,×, /} of fuzzy arithmetic can with use of horizontal MFs be per-
formed very simply. If x = fx(μ, αx) is the horizontal MF representing one
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uncertain variable value and y = fy(μ, αy) represents second uncertain variable
value and both variables are independent then operations of fuzzy arithmetic
can be realized with formula (24).

X ∗ Y = Z : x(μ, αx) ∗ y(μ, αy) = z(μ, αx, αy), μ, αx, αy ∈ [0, 1] (24)

E.g., if trapezoidal fuzzy set X = (1, 3, 4, 5) from Fig. 7 is described by hor-
izontal MF x = (1 + 2μ) + (4 − 3μ)αx, αx ∈ [0, 1] and the triangle fuzzy set
Y = (1, 3, 5) is described by the function y = (1 + 2μ) + 4(1 − μ)αy, αy ∈ [0, 1]
then their sum X + Y = Z is expressed by (25).

X + Y = Z : z = [(1 + 2μ) + (4 − 3μ)αx] + [(1 + 2μ) + 4(1 − μ)αy] = z(μ, αx, αy)
(25)

As can be seen from (25) the result set Z exists in 4D-space Z ×m u×αx ×αy

and hence it can not be visualized directly. However, its particular μ-cuts can.
E.g., for cut at level μ = 0 function (25) takes form of (26).

Z(μ = 0) = (1 + 4αx) + (1 + 4αy), αx, αy ∈ [0, 1] (26)

For particular μ-cuts one can determine indicators such as cardinality distrib-
ution of the result set, span of the set, and center of gravity of the set. Relatively
easy is determining of the span s(μ) of the result set Z, formula (27).

s(μ) = [ min
αx,αy

z, max
αx,αy

z], μ, αx, αy ∈ [0, 1] (27)

In the addition example of two fuzzy numbers X + Y = Z determined by
formula (25) min z is achieved for αx = αy = 0 and max z for αx = αy = 1.
Hence, the span indicator of Z is determined by formula (28). It is also shown
in Fig. 8.

s(μ) = [2 + 4μ, 10 − 3μ] (28)

Fig. 8. Distribution of the span indicator s(μ) of the addition result set Z = X + Y
for various levels of membership μ.

Finishing the paper authors would like to give a convincing example proving
that solution of arithmetic operations with fuzzy intervals cannot be a fuzzy
interval. Let the example be the fuzzy interval equation A+X = B with triangle
fuzzy sets A = (1, 3, 5) and B = (7, 7.5, 8). One can try to solve this equation
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with arithmetic FA2 in which fuzzy sets are decomposed in ordinary intervals for
particular μ-levels and one tries to determine interval solutions for each μ-level.
For checking whether solution can be an interval it is sufficient to analyze the
problem for the support level μ = 0. For this level the fuzzy equation A+X = B
takes the form A0+X0 = B0 ([1, 5]+X0 = [7, 8]). Let us assume that the solution
X0 is an interval [x0, x0]. Then the equation takes the form [1, 5]+[x0, x0] = [7, 8].
After solving this equation we achieve the “solution” X0 = [x0, x0] = [6, 3], which
is improper interval in which lower limit is greater than the upper one: x0 > x0.
Such intervals cannot be realized in the practice as solution [14] because each
value x0 inside the considered interval should satisfy the condition x0 ≤ x0 ≤ x0

which in this case means x0 ≥ 6 and x0 ≤ 3 that is impossible. There exists no
proper interval which could be solution of the considered equation which means
that in terms of any existing arithmetic versions the considered equation has no
solution. However, with use of the “common sense” one can easily find many
possible point solutions. E.g. for a = 4 and b = 7.5 the solution is x0 = 3.5.
The real solution set X0 can be found if one accepts the truth that the solution
X0 is not a 1D-interval but a 3-dimensional information granule consisting of
triples (x0|a, b). This solution can be found with use of RDM I-arithmetic. In
terms of this arithmetic model of interval A = [1, 5] has form a = 1 + 4αa,
αa ∈ [0, 1], and model of interval B = [7, 8] has form b = 7 + αb, αb ∈ [0, 1].
The RDM IA-solution of the equation has form of a 3D granule x = b − a =
(7+αb)− (1+4αa), with αa, αb ∈ [0, 1]. Choosing any allowable values of αa, αb

we achieve corresponding values of a = 1 + 4αa, b = 7 + αb, and corresponding
possible value of x = b − a. E.g. for αa = 0.75, αb = 0.5 the result is x = 3.5 or
more formally (x|a, b) = (3.5|4, 7.5). Concluding: there exists RDM IA-solution
X0 of the equation [1, 5] + X0 = [7, 8] for which no interval solution exists.
Figure 9 shows the set X0 of possible point-solutions x0 in the space A × B and
indicators of this solutions cardinality distribution, span and center of gravity
of the solutions’ set.

Fig. 9. Visualization of the solution set X0 of interval equation [1, 5] + X0 = [7, 8] in
the space A × B and indicators of this solution: cardinality (frequency) distribution,
span and center of gravity.
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5 Conclusions

It was shown in the paper that the assumption speaking that results of F-
arithmetic operations on F-intervals is a F-interval is incorrect. This assumption
is typical for all existing FA-versions and frequently leads to incredible prob-
lems’ solutions and calculative paradoxes described in scientific papers. It was
explained in the paper that the correct result is a multidimensional fuzzy set and
its fuzzy span is only one of its possible indicators. The paper presented also a
fuzzy RDM arithmetic based on this proposition which applies horizontal mem-
bership functions. This multidimensional arithmetic possess all mathematical
properties necessary for delivering credible calculation results.
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Abstract. Currently the great advances in Web technologies are chang-
ing the process of access to information and the Web is one of the most
important source of information. Furthermore, the Web influences the
development of others media, for example, newspapers, journals, books,
libraries, etc. In this paper we analyze its impact in the development of
the university digital libraries. As well as on the Web, the information
growth is a big problem for academic digital libraries, and similar tools
can be applied in university digital libraries to provide users with access
to the information. Given the importance of this aspect, in this paper we
analyze and review different proposals that improve the processes of dis-
semination of information in these university digital libraries, promoting
access to information of interest. These proposals manage to adapt access
to information according to the needs and preferences of each user. As
we can see in the literature, one of the techniques with the best results,
is the application of recommender systems. Recommender systems are
tools whose objective is to evaluate and filter the large amount of infor-
mation available on the Web to assist users in their process of access
to information. Thus, in this paper we analyze some proposals based
on recommender system to help students, teachers and researchers to
find research resources that can improve the services provided by the
university digital libraries.

Keywords: Digital libraries · Dissemination of information · Recom-
mender systems · Fuzzy linguistic modelling

1 Introduction

Digital libraries are collections of information that have associated services
offered to the users community using a variety of technologies. The information
collections can be scientific, business or personal data, and can be represented in
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different formats such as digital text, images, audio, video, or any other digital
media. This information can be digitalized or digitally born information and the
services offered with this content can be varied, and can be offered to individ-
uals or user communities. Internet access has made digital libraries more and
more used by diverse communities for various purposes, in which sharing and
collaboration have become important social elements. As digital libraries have
become common spaces, and their contents and services are more varied, peo-
ple expect more sophisticated services from their digital libraries [6,9,23]. The
digital libraries are composed by human resources (staff) that are responsible
for managing and enabling access to the most interesting documents for users,
taking into account both their areas of interest and their needs [18]. The library
staff search, evaluate, select, catalogue, classify, preserve and schedule the access
to the digital documents [14]. Digital libraries have been incorporated into many
environments, but we will focus on the academic context. specifically, we talk
about University Digital Libraries (UDL), which provide information resources
and services to students, faculty and staff in an environment that supports learn-
ing, teaching and research [7,25].

The exponential growth of Web sites and documents contributes to users
not being able to find the information they are looking for in a simple and
time-effective way. Users need tools to help them deal with the large amount
of information available to them on the Web [12]. Therefore, search and mining
techniques of the Web are becoming vital. Furthermore, the Web influences the
development of others information media, for example, newspapers, journals,
books, etc. and specifically the development of academic digital libraries [25].
As on the Web, the exponential growth of information is the mayor problem of
these libraries because the employees have problems carrying out the tasks of
delivering the information to the users. For this we can use Web context tools
in UDL, to facilitate the tasks of employees and therefore improve access to
information for students, teachers and researchers.

A traditional search function is an essential part of any digital library, but
the frustration of users increase as their needs are more complex and the vol-
ume of information handled by the library grows. Digital libraries should move
from being passive to being more proactive in offering and tailoring informa-
tion for individuals and communities, and in supporting community efforts to
capture, structure and share knowledge [6]. So, the digital libraries can antici-
pate the users’ needs and recommend resources that could be of their interest.
Given these features, in a UDL a service that is particularly important is the
selective dissemination of information or filtering. Users develope their interests
profile, so when new materials are added to the collection of information, the
UDL can notify the users with relevant items [14]. Due to the problem of infor-
mation overload, although there is a great abundance of information available,
sometimes it is difficult to obtain useful or relevant information when necessary.
When the users of a UDL try to access to useful information, they often obtain
irrelevant information or information which does not meet their needs. So, users
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need easier access to the thousands of resources that are available but yet hard
to find [17,24].

As on the Web, we can use recommender systems to facilitate the access to
information. A recommender system attempts to discover information items that
are likely of interest to a user. Recommender systems are especially useful when
they identify information that a person was previously unaware of. Furthermore,
recommender systems are personalized services because they may treat each
user in a different way. These recommender systems play an important role in
highly rated Web sites, such as Amazon,1 YouTube,2 Netflix,3 Tripadvisor4 or
IMDb5 [8].

The provision of personalized recommendations, requires that the system
knows something about every user, such as the ratings provided by the users
about the explored items [4,28]. This knowledge implies that the system must
maintain users’ profile containing the users’ preferences or needs. But the way
in which this information is acquired and exploited depends on the particu-
lar recommendation approach. The system could acquired implicit information
about the users analyzing the users behavior, or the system might request the
users insert explicitly their preferences. Another question to consider is what
additional information is required by the system, and how this information is
processed and managed to generate a list of personalized recommendations.

Following these ideas, in this paper we review and analyze different proposals,
which favor the dissemination of information in UDL. Based on the success
shown by the application of recommender system we focus on proposals based
on these recommendation techniques [24]. Besides, these proposals also face the
problem of the wide variety of representations and evaluations of information,
which is more pronounced when users are part of the process, as is the case of
UDL. Therefore, we also expose the fuzzy linguistic modelling that will help us
to represent and efficiently manage the qualitative information present in the
communication processes, as in previous proposals in which fuzzy approaches
were applied [25,26]. Specifically, we analyze the multi-granular approach that
gives us greater flexibility in the system-user interaction [16,19].

We analyzed four proposals, each of them improving the performance of the
previous one. The first one proposes a fuzzy linguistic recommender system that
recommends both specialized resources of the user interest area, and comple-
mentary resources that could be interesting to form multi-disciplinar groups [22].
The second one proposes a new method for acquiring the user profiles reducing
the great effort of previous proposals; users provide their preferences on some
research resources (by means of incomplete fuzzy linguistic preference relations)
and from this information the system obtain their respective preference vectors
on topics of interest [21]. The third one improves the previous proposals with

1 http://www.amazon.es/.
2 www.youtube.com/.
3 www.netflix.com/.
4 www.tripadvisor.es/.
5 www.imdb.com/.

http://www.amazon.es/
www.youtube.com/
www.netflix.com/
www.tripadvisor.es/
www.imdb.com/
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a recommender system which uses a memory to avoid the information overload
problem still persistent in UDL; the main idea is to use previous selected items
to make a new selection in a new recommendation round [20]. Finally, the last
proposal faces the recommendations generation process about research resources
as a task with two distinct elements: On one hand, finding research resources
that are relevant to the users, and on the other hand, finding valid research
resources from the standpoint of the quality of items [28].

The paper is structured as follows. Section 2 revises the preliminaries needed
to understand the analyzed proposals. In Sect. 3 we analyze several proposals
to improve the dissemination of information in digital libraries. Finally, some
conclusions and future research are pointed out.

2 Preliminaries

2.1 Basis of Recommender Systems

Recommender systems try to guide the users in a personalized way towards suit-
able tasks among a wide range of possible options [4,28]. Personalized recom-
mendations rely on some knowledge about the users, which might be tastes, pref-
erences as well as the ratings of previously explored items. The way of acquiring
this information may vary from implicit information, obtained analyzing users
behavior, or explicit information, where users directly provide their preferences.

Other aspect to take care of is the way of generating recommendations. In the
literature we can find them mainly pooled in two categories [4,27]. In the first
one authors consider two different approaches: On one side, the content-based
approaches generate the recommendations taking into account the characteris-
tics used to represent the items and the ratings that a user has given to them.
On the other side, the collaborative approaches generate recommendations using
explicit or implicit preferences from many users, ignoring the items representa-
tion. The second one extends the categorization with another three approaches:
Demographic systems, Knowledge-based systems and Utility-based systems [4].

Since each approach has certain advantages and disadvantages, depending
on the scope settings. In order to combine different approaches to reduce the
disadvantages of each one and to exploit their benefits, a widespread solution is
the combination of approaches, known as hybrid approach [4].

2.2 Fuzzy Linguistic Approach

The fuzzy linguistic approach is a tool based on the concept of linguistic vari-
able proposed by Zadeh [29]. This theory has given very good results to model
qualitative information and it has been proven to be useful in many problems.
We briefly describe the approaches used in the reviewed proposals.
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The 2-Tuple Fuzzy Linguistic Approach. In order to reduce the loss of
information of other methods such as classical or ordinal, in [10] was proposed a
continuous model of information representation based on 2-tuple fuzzy linguistic
modelling. To define it both the 2-tuple representation model and the 2-tuple
computational model to represent and aggregate the linguistic information have
to be established.

Let S = {s0, ..., sg} be a linguistic term set with odd cardinality. We assume
that the semantics of labels is given by means of triangular membership func-
tions and consider all terms distributed on a scale on which a total order is
defined. In this fuzzy linguistic context, if a symbolic method aggregating lin-
guistic information obtains a value β ∈ [0, g], and β /∈ {0, ..., g}, we can represent
β as a 2-tuple (si, αi), where si represents the linguistic label, and αi is a numer-
ical value expressing the value of the translation between numerical values and
2-tuple: Δ(β) = (si, α) and Δ−1(si, α) = β ∈ [0, g] [10].

In order to establish the computational model negation, comparison and
aggregation operators are defined. Using functions Δ and Δ−1, any of the exist-
ing aggregation operators can be easily be extended for dealing with linguistic
2-tuples without loss of information [10]. For instance arithmetic mean, weighted
average operator or linguistic weighted average operator could be used.

Multi-granular Linguistic Information Approach. A problem modelling
the information arises when different experts have different uncertainty degrees
on the same phenomenon or when an expert has to evaluate different concepts.
Then, several linguistic term sets with a different granularity of uncertainty are
necessary. In such situations, we need tools to manage multi-granular linguistic
information [11]. In [11] a multi-granular 2-tuple fuzzy linguistic modelling based
on the concept of linguistic hierarchy is proposed. A Linguistic Hierarchy LH,
is a set of levels l(t, n(t)), where each level t is a linguistic term set with different
granularity n(t). In [11] a family of transformation functions between labels
from different levels was introduced. To establish the computational model we
select a level that we use to make the information uniform and thereby we can
use the defined operator in the 2-tuple model. This result guarantees that the
transformations between levels of a linguistic hierarchy are carried out without
any loss of information.

Incomplete Fuzzy Preference Relations. A fuzzy preference relation P on
a set of alternatives X = {x1, .., xn} is a fuzzy set on the product set X × X,
i.e., it is characterized by a membership function μP : X × X −→ [0, 1]. When
cardinality of X is small, the preference relation may be conveniently represented
by the n × n matrix P = (pij), being pij = μP (xi, xj) (∀i, j ∈ {1, . . . , n})
interpreted as the preference degree of the alternative xi over xj , where pij = 1/2
indicates indifference between xi and xj , pij = 1 indicates that xi is absolutely
preferred to xj , and pij > 1/2 indicates that xi is preferred to xj .

As the proposals analyzed integrate the multi-granular fuzzy linguistic
modeling based on 2-tuples, a linguistic preference relation must be defined.
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Let X = {x1, .., xn} a set of alternatives and S a linguistic term set. A linguistic
preference relation P = pij(∀i, j ∈ {1, . . . , n}) on X is:

μP : X × X −→ S × [0.5, 0.5) (1)

where pij = μP (xi, xj) is a 2-tuple which denotes the preference degree of
alternative xi regarding to xj .

However, in many problems the experts are often not able to provide all the
preference values that are required. In order to model these situations, incom-
plete fuzzy preference relations are used [1,2,15]. A function f : X −→ Y is
partial when not every element in the set X necessarily maps onto an element
in the set Y . When every element from the set X maps onto one element of
the set Y , then we have a total function. A two-tuple fuzzy linguistic preference
relation P on a set of alternatives X with a partial membership function is an
incomplete two-tuple fuzzy linguistic preference relation.

3 Proposals to Improve the Dissemination of Information
in Digital Libraries

3.1 A Multi-disciplinar Recommender System to Advice Research
Resources in University Digital Libraries

The first proposal was presented in [22]. This paper presents a fuzzy linguis-
tic recommender system that recommends two types of resources: specialized
resources of the user research area, and complementary resources in order to
include resources from related areas that could lead to interesting collaboration
possibilities with other researchers and form multi-disciplinar groups. The vector
model [13] is used to represent both the resource scope and the topics of interest
that characterize the users profiles. A classification composed by 25 disciplines
is used, and in each position of the resource or user vector, a linguistic 2-tuple
value represents the importance degree of the discipline regarding to the resource
or the user topics of interest is stored. The recommendation approach is based
in a matching process among the terms used in the users and resources repre-
sentations [13]. The vector model is used to represent both the resource scope
and the users topics of interest. Since the system works with linguistic values, a
linguistic similarity measure σl(V1, V2) is defined, based on cosine measure but
defined in a linguistic context. The recommendation strategy has two phases:

– To generate recommendations for a resource i, σl(Vi, Vj) is computed among
the resource scope vector (Vi) against all the stored resources in the system
(Vj , j = 1 . . . m where m is the number of resources). If σl(Vi, Vj) ≥ α (lin-
guistic threshold value to filter out the information), the resource j is chosen.
Next, the system searches for the users which were satisfied with these chosen
resources. To obtain the relevance of the resource i for a selected user x, the
system aggregates (using the arithmetic mean) σl(Vi, Vj) with the assessments
previously provided by x about the similar resources and with the assessments
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provided by others users. If the calculated relevance degree is greater than a
linguistic threshold μ, then, the system sends the resource information and its
calculated linguistic relevance degree to the selected users. If not, the system
proceeds to estimate if the resource could be interesting as a complementary
recommendation.

To obtain the complementary recommendations, the system computes
σl(Vi, Vx) among the resource i and the user x (for all users). Then, it applies
a multi-disciplinar function to the value σl(Vi, Vx). This function must give
greatest weights to similarity middle values (near 0.5), because values of total
similarity contribute with efficient recommendations but are probably known
for the users. Like null values of similarity show a null relationship between
areas. In the proposed system a triangular function, g(x) is used. Next, if the
obtained multi-disciplinar value is greatest than a previously defined linguistic
threshold γ, the system recommends the complementary resource.

– The proccess of generating recommendations for a user x, is similar, but
computing σl(Vx, Vy) between the topics of interest vectors of the new user
(Vx) against all users in the system (Vy, y = 1..n where n is the number of
users). If σl(Vx, Vy) ≥ δ (linguistic threshold value), the user y is chosen as
near neighbor of x. Next, the system searches for the resources that satisfied
these users. To obtain the relevance of a resource i for the user x, the system
aggregates σl(Vx, Vy) with the assessments previously provided about i by
the nearest neighbors of x. If the calculated relevance degree is greater than
the linguistic threshold μ, then, the system recommends to the new user the
resource information and its calculated linguistic relevance degree. If not,
the system proceeds to estimate if the resource could be interesting as a
complementary recommendation for the user. The system computes σl(Vx, Vi)
among the user x and the resource i (for all resources). Then, it applies
the multi-disciplinar function g(x) to the value σl(Vx, Vi). If the obtained
multi-disciplinar value is greatest than the linguistic threshold γ, the system
recommends the resource as complementary.

3.2 Dealing with Incomplete Information in a Fuzzy Linguistic
Recommender System to Disseminate Information
in a University Digital Library

The second proposal is presented in [21]. The problem of the previous proposal is
that users must directly specify their user profiles by providing their preferences
on all topics of interest and it requires too much effort by the user. The system
presented in [21] allows users to provide their preferences by means of incomplete
fuzzy linguistic preference relations [1], and this facilitate the determination
of user profiles. To reduce that effort and make the process of acquiring user
preferences easier, an alternative method to obtain the user preferences on topics
of interest is proposed. The system shows to the users only a selection of the most
representative resources, and the users stablish their preferences about these
resources by means of an incomplete fuzzy preference relation. Furthermore,
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according to results presented in [2], it is enough that the users provide only
a row of the preference relation. Then the method proposed in [2] is used to
complete the relations. Once the system completes the fuzzy linguistic preference
relation provided by the user, it is possible to obtain a vector representing the
user preferences on the topics of interest.

The recommendation strategy is based on a matching process developed
between user profiles and resource representations, using a linguistic similarity
measure based on cosine measure, σl(V1, V2). To generate the recommendations
for a resource i, σl(V Ri, V Uj) is computed, between the representation vec-
tor of the resource (V Ri) and all the user preference vectors, {V U1, . . . , V Um},
where m is the number of users in the system. If σl(V Ri, V Uj) ≥ ψ (linguistic
threshold previously defined), the user j is selected to receive recommendations
about resource i. For users who want it, the system also recommends collab-
oration possibilities. The linguistic compatibility degree is obtained computing
σl(V Ux, V Uy) between each two users x and y who want to collaborate.

3.3 An Improved Recommender System to Avoid the Persistent
Information Overload in a University Digital Library

In third place, we analyze the proposal presented in [20]. Despite that the use
of the two previous techniques to avoid the information overload problem was
successful, the number of electronic resources daily generated keeps growing con-
tinuously and the problem rises again. Therefore, a persistent problem of infor-
mation overload was found. The idea is to use a memory to remember selected
items but not recommended previously, and in such a way, the system could
incorporate them in future recommendations to complete the set of recommen-
dations. For example, if there are a few items to be recommended or if the user
wishes outputs obtained by combination of items selected in different recommen-
dation rounds. Users are asked to express restrictions on the quantity of items
to receive in each recommendation round and about the novelty of such items.

This system works in two phases:

1. To generate the recommendations using the recommendation approach of the
previous proposal [21].

2. To apply a second filter or selection process according to the user’s restric-
tions. Taking into account the number of recommendations that the user
would like to receive:
(a) If there are not enough resources to satisfy the amount of recommended

resources specified by the user, the system remembers the items previ-
ously selected but not recommended and now could be recommended.
The system then repeats the recommendation process detailed in phase
1, but now incorporating these remembered resources.

(b) If the amount of selected resources is enough, the system checks the
restrictions talking about the novelty of the resources or if the user is
also interested in previous resources but still with validity, which could
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be most interesting than a new resource. If the user wants both kinds
of resources, the system repeats the recommendation process of the first
phase, but now incorporating these remembered resources.

Finally, the system shows to the users the resource information and its calcu-
lated linguistic relevance degree, and for the users who want to collaborate,
the system sends the resource information, its calculated linguistic relevance
degree and the collaboration possibilities characterized by its linguistic com-
patibility degrees.

3.4 A Quality Based Recommender System to Disseminate
Information in a University Digital Library

Finally, we analyze the proposal presented in [28]. Analyzing the previous pro-
posals, different aspects that may limit their performance were found. Really
they worked as an information retrieval system based on matching functions
which acted among the resources representation and user profiles, and this lim-
ited their performance. Furthermore, the number of electronic resources daily
generated grows continuously, so the problem appears again and the system
performance decreases.

In this proposal the system implements a hybrid recommendation strategy
based on a switching hybrid approach [3], which switches between a content-
based recommendation approach and a collaborative one to share the user indi-
vidual experience and social wisdom. With this dual perspective, the cold-start
problem is minimized because the system switch from one approach to another,
depending on the circumstances.

Besides, now the recommendations generation process is a task with two
distinct elements: On one hand, finding resources that are relevant to the users
and on the other hand, finding valid resources from the standpoint of the quality
of the items [5]. The system incorporates a new module which performs a re-
ranking process which takes into account the estimated relevance of an item
along with the item quality. But the problem is how to obtain the resource
quality without much interaction from users. So, a new way to evaluate the
quality of resources is proposed. Based on the idea of whether one resource is
usually preferred than others, indicates that the resource has a certain quality.
To do that, the system incorporates the method presented in [21] in which the
users are asked to provide their preferences on five research resources, by means
of an incomplete fuzzy preference relation. Then, the system completes this
preference relation. This method is used to obtain the user profiles, but it is
also used to estimate the quality of these resources. It is assumed that resources
usually preferred over others have a higher quality. So, you can count the times
that each resource has been selected to be shown as well as the times that each
resource has been preferred over other. The displayed resources will vary over
time, so the system must record each time a resource is selected and each time
a resource is preferred to other. The quality of a resource is estimated as the
probability that the resource is chosen against another.
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Once a research resource is considered relevant for a user, and both the
estimated relevance degree and the resource quality score, have been computed,
the last step is to aggregate both in a single score. To do this, the system uses
a multiplicative aggregation in which the estimated relevance is multiplied by
the translated quality score (with the corresponding linguistic transformations).
Then, the systems recommends the user these resources along with these final
estimated scores to justify the recommendations.

3.5 Comparative Analysis

Now, we include some brief comments about the capacity of ratings predictions.
In order to obtain data to compare the Mean Absolute Error (MAE) was com-
puted for the different propsosals, i.e. the average absolute deviation between a
predicted rating and the user’s true rating. The first two approaches get sim-
ilar values of yield, but the advantage of the second is the lower participation
of users, thus improving the satisfaction of users. The third approach presents
a small performance improvement, with greater precision. But it is the fourth
approach that performs best. Therefore, the predictions obtained by using the
quality of resources are better than the predictions obtained only with the rele-
vance or memory. Specifically an improvement of 4.80% is obtained. That is, the
predictions generated with the new system are closer to the users’ preferences.

4 Conclusions and Future Work

In a UDL the selective dissemination of information about research resources
is a particularly important service. The UDL staff and users need tools to help
them in their processes of information discovering because of the large amount
of information available on these systems. Recommender systems have been suc-
cessfully applied in academic environments to assist users in their access to
relevant information. For this reason, we found it really interesting and in this
paper we have reviewed and analyzed several proposals based on recommender
system that help students, teachers and researchers to find information. These
proposals can improve the services provided by the UDL to their users. The
four different proposals reviewed follow an evolution in the time. All of them are
based on the application of recommender system and used the fuzzy linguistic
modeling, besides each one improves the performance of its predecessors.

Analyzing these proposals, we could conclude and point out that although
some progress has been made, it is fundamental to continue working to solve the
information overload problem, even more pressing with the continuous advances
in technology and especially social networks. In this sense, and focusing on future
research, we believe that a promising direction is to study automatic techniques
to establish the representation of resources. Moreover, given the current situation
of intensive use of social networks, other idea is to explore new improvements in
the recommendation approach, exploring new methodologies for the generation
of recommendations, for example, extracting knowledge from the information we
share in social networks.
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15. Mart́ınez, L., Pérez, L., Barranco, M., Espinilla, M.: Improving the effectiveness
of knowledge based recommender systems using incomplete linguistic preference
relations. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 16(2), 33–56 (2008)

16. Mata, F., Mart́ınez, L., Herrera-Viedma, E.: An adaptive consensus support model
for group decision making problems in a multi-granular fuzzy linguistic context.
IEEE Trans. Fuzzy Syst. 17(2), 279–290 (2009)

17. Meghabghab, G., Kandel, A.: Search Engines, Link Analysis, and User’s Web
Behavior. Springer, Heidelberg (2008)

18. Montoya, R.: Boundary objects/boundary staff: Supporting digital scholarship in
academic libraries. J. Acad. Librarianship (2017, in press)

http://ils.unc.edu/~march/digital_library_R_and_D.html
http://ils.unc.edu/~march/digital_library_R_and_D.html


206 C. Porcel et al.
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Abstract. The paper presents the analysis and application of hierar-
chical fuzzy system to the problem of evaluation/measurement of the
rehabilitation effects in post-stroke patients. Healthy people constitute
reference group. Prevalence and impact of the stroke-related disorders
on Health-Related Quality of Life (HRQoL) as a recognized and impor-
tant outcome after stroke is huge. Quick, valid and reliable assessment of
HRQoL in people after stroke constitutes a worldwide significant problem
for scientists and clinicians - there are many tools, but no one fulfills all
requirements or has prevailing advantages. Evaluation model presented
here is improved version of earlier attempts and applies the potential of
fuzzy systems for linguistic modeling of rules. It provides a great advan-
tage as there are experienced clinicians working on the improvement of
the rehabilitation methods but there is no intuitive formal model to mea-
sure their effects. The innovative element here is the use of Ordered Fuzzy
Number model. It is a good tool for modeling the trends in information
used to create the fuzzy rules of small fuzzy systems which together form
a hierarchical fuzzy evaluation model.

Keywords: Ordered Fuzzy Number · Kosinski’s Fuzzy Number · Fuzzy
system · Hierarchical fuzzy system · Linguistic modeling · Stroke reha-
bilitation · Health-related quality of life

1 Introduction

There are many medical practitioners experienced in post-stroke rehabilitation,
but often there is also a lack of formal models for important data processing.
In general, we deal here with a problem how to transform rich practical experi-
ence into a formal tool, which can be easily used and help in work for the less
experienced medics.
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In such situation, we need the tool which will transform the linguistic
model into the formal algorithm. The fuzzy system Mamdani’s type is a good
proposition.

Measurement of the patient-centered outcomes such as functional status and
health-related quality of life (HRQoL) is very important within current health
care, especially in rehabilitation after severe diseases, injuries and cerebrovas-
cular accidents such as stroke [17]. Conceptual and methodological issues of
patients quality of life (QoL) measurement are not easy and are still under
debate. Many developed tools such as Ferrans and Powers QOL Index-Stroke
Version, Niemi QOL scale, SA-SIP30, Sickness Impact Profile, etc. have advan-
tages and disadvantages (or even some unresolved issues), thus selection of the
proper tool need for particular caution, and taking into consideration goals,
context, and limitations of the particular application.

The HRQoL is a very general concept. There is many elements which are
difficult to calculate. Therefore if a precise model is out of reach, we can use the
tools for the imprecise information processing - fuzzy systems. Key advantage
here is the flexibility, intuitiveness and clarity of rules that are easy to describe
linguistically.

In this paper, an algorithm for evaluation of a general quality of life of people
after stroke is presented. A hierarchical fuzzy system [12,27,28] is used here as
the main evaluating mechanism. Presented tool has work-name Multicriterial
Fuzzy Evaluator of Health-Related Quality of Life (abbr. MuFE-HRQoL) and it
is an extended variant of the proposition from [24].

The new feature of the present proposition is considering a kind of trend (or
tendency) in the model of data processing. It is carried by using in low-level
parts of fuzzy system hierarchy new kind of methods based on the special model
- the Ordered Fuzzy Number.

That model was started by three authors Witold Kosiński, Piotr Prokopowicz
and Dominik Ślȩzak in [10,11]. Since the paper [26], the alternative name the
Kosiński’s Fuzzy Numbers (KFN) is used to honor the contribution of late Witold
Kosiński in development of the considered model. This name also will be used
here in following parts of this paper.

Using KFN concept we can model with one object a situation like: ‘gait veloc-
ity is high and growing’. There are indications about some features of HRQoL,
which can be better formulated using a trend in the data.

This paper also presents another innovative element which is the combination
of both ideas together in one application: the classical fuzzy system and concepts
based on the KFN model.

The order of this paper is as follows: a short description of medical scores
used in the estimation of HRQoL, presentation of main ideas of Kosinski’s Fuzzy
Numbers and key-method for the processing directed data with them. Next
description of the model of evaluation, then results for processing of data gath-
ered in post-stroke patients and the healthy reference group. Finally, an analysis
of results and summary will be provided. Thus main aim of this paper is to
present a novel approach to HRQoL assessment based on KFN calculations.
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2 Clinical Scores to Evaluate

Bobath Scale (to assess hand functions), Barthel Index (to assess activities of
daily living - ADL), and normalized values of the gait parameters (normalized
gait velocity, normalized cadence, and normalized stride length) were applied to
asses functional status and independence of the subjects. Measures above are
often used in everyday clinical practice, assessed as valid and reliable. Measure-
ments were performed in every post-stroke patient (i.e. belonging to the study
group) twice:

– before the therapy (before the first session of the therapy),
– after the therapy (after the last session of the therapy) - to compare results

and assess rehabilitation effects.

Ten sessions of the NDT-Bobath therapy were provided during the course of
2 weeks (10 days of the therapy rehabilitation was performed every day for 5 days
a week). Each session lasted 30 min. NDT-Bobath Concept (NDT stands for neu-
rodevelopmental treatment) constitutes the most popular treatment approach
applied in stroke rehabilitation, despite the superiority of the one particular app-
roach has not been established yet due to methodological limitations and scarce
compartmental studies. Current evidence syntheses are weak, pose too many
methodological shortcomings, and lack of the high-quality trials. Lack of detailed
clinical guidelines in the area of post-stroke physiotherapy cause that prefer-
ences and experience of the therapist constitute framework of the most effective
treatment (so-called mixed/eclectic approach) [6,7,13,14]. Patients were treated
according to the rules of the method by experienced (>15 years of experience)
therapists of NDT-Bobath method for adults with international certificates: by
IBITA (basic and advanced course) and EBTA (basic and advanced course).
Measurements were performed in every member of the reference group (healthy
people) once. The study was accepted by the appropriate Bioethical Commit-
tee. The subjects gave written informed consent before entering the study, in
accordance with the recommendations of the Bioethical Committee, acting on
the rules of Good Clinical Practice and the Helsinki Declaration.

3 Kosinski’s Fuzzy Number Model

The concept of the model of Kosinski’s Fuzzy Number was defined as a result
of searching for simple and flexible algorithms performing calculations on fuzzy
numbers [9–11]. It is alternative for Zadeh’s fuzzy numbers approach for man-
aging a vagueness in the quantitative data. There is the latest monograph [22]
which gathers in one place most of the present knowledge about this model. Here
are introduced only basic concepts to understand an idea of linguistic modeling
of direction in presented in this paper evaluation process.

Each convex membership function of fuzzy number can be split into two
parts: first is non-decreasing and second is non-increasing. It is a base of widely
known classical fuzzy numbers model called the L-R fuzzy numbers [3]. The
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KFNs are also based on the idea of membership function splitting. However, the
order of parts independent of the values from the function domain is introduced.
Figure 1 shows the general idea and basic labels used in the further part of this
paper. We denote direction by the arrow. It points an order from the up part to
the down part. For purposes of this paper the up part and down part are linear
functions (we use the trapezoidal shapes), so we use a simplified representation
of the any KFN by four (see Fig. 1):

A = (s, 1−, 1+, e). (1)

Fig. 1. Two KFNs with the same shape, but different direction/orientation.

4 Processing the Direction

The Kosinski’s Fuzzy Number model introduces new feature - the direction. Its
useful interpretation was already proposed (see [9,19]. We got a possibility to
describe the situation with the trend/tendency in data i.e. ‘a temperature is
about 15 ◦C and it is rising’.

It should be noted that some similar idea was proposed for the classical fuzzy
model - the gradual fuzzy system (see [4]). It was also extended and analyzed in
an interesting approach to trend modeling in [5], where the trend is understood
as a gradual dependence between attributes.

However, the gradual fuzzy rules have a form ‘The more X is F , the more
Y is G’, but for the KFN model more appropriate is IF X is in F which is
growing/lowering, THEN Y is in G which is growing/lowering. Here, the KFNs
in a natural way have advance - the trend is represented by their direction.
Various methods presented in the publications [18,20,22,23,26] are designed to
process data with the trend.

4.1 Inference Mechanism Based on the KFN Model

The basis for the processing of fuzzy rules are the operators of inference (i.e.
see [1,16]). Generally they are based on logical implications. However, there
are also popular solutions like the MIN or PROD, which formally are not the
implications, but their practical usefulness is proved.
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The method used in the evaluation model in the further part of this paper is
named the ‘Directed Inference by the Multiplication with a Shift’ and
was presented in the [20,21,26]. We emphasize here only its directed character,
which let to model the trend in the linguistic rules. We consider the rule as
follows:

IF X is A THEN Y is B (2)

where A,B - are fuzzy values modeling the rule, X,Y - input and output variable.
Figures 2 and 3 explain the main mechanism of the directed inference. On

the Fig. 2(a) we see that the level of activation of the rule is 0.66 and it is on
the up part side of KFN from premise part of the rule.

Fig. 2. (a) KFNs X - input, A - model of rule premise (b) Y - result, B - model of
conclusion

Fig. 3. (a) KFN A with opposite direction while X is the same like in Fig. 2(a), (b)
New result of inference operation.

As we see on Fig. 2(b) the answer to the rule is in bounds of the KFN from
the consequent part, but it is shifted in its up part. Figure 3(a) presents the same
shape with only the direction changed. Thus activation is the same (0.66), but
this time it is on the down part part of premise part KFN. We see (Fig. 3(b))
that the result is also in the bounds of KFN from the consequent part of rule
but now it is shifted in the down part side.

5 Hierarchical Fuzzy Evaluator of HRQoL

Fuzzy system used in the MuFE-HRQoL works in two steps. First one uses
a group of small fuzzy systems to evaluate separately every singular feature
describing HRQoL. Next step uses outputs of the first one as inputs where the
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Fig. 4. Hierarchy of fuzzy model of evaluation.

final result - the general quality of HRQoL is calculated. Ideas presented in
this paper are strictly connected with [15,25]. The model presented in further
sections is modified variant of that proposed in the [24]. Main changes are: using
the KFNs, and trapezoidal shapes for modeling the reference group fuzzy values.

The proposed structure of evaluation is a kind of hierarchical fuzzy systems
[12,27,28]. Generally, the hierarchical organization of fuzzy systems is used to
decrease the total number of rules. However additionally, in our proposition the
hierarchy let us to separate the context of the medical properties what makes
easier to formulate the model of evaluation linguistically.

Technically MuFE-HRQoL is a hierarchical fuzzy system with five inputs and
one output value (see Fig. 4). Input values are the medical scores for Bobath
Scale, Barthel Index and three descriptors of gait: velocity, cadence and stride
length. The output - general quality - range is [0; 1] interval which can be easily
transformed to any other. The fuzzification of all inputs is singleton type.

The calculations of evaluation were done with the help of a dedicated tool
(implemented by first author Piotr Prokopowicz). However, all KFN calcula-
tions can also be done with the use of spreadsheet tools like Microsoft Excel or
LibreOffice Calc.

5.1 Evaluator - Low-Level Fuzzy Systems

First two systems evaluate Bobath Scale and Barthel Index. These are strictly
defined tests and their quality results represent a typical monotonic tendency,
‘low input, so low output’, where maximum means a normal/healthy condition,
and minimum very bad condition. Thus it is modeled by classic fuzzy systems
with MIN as inference operator, MAX as conclusions aggregation and COG
(center of gravity) defuzzification.

Technically input linguistic variables are divided into two triangular fuzzy
sets each. They represent ‘bad/low’ and ‘good/high’ opinion on values - see
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Fig. 5. Left - two input linguistic variables ‘Bobath Scale’ and ‘Barthel Index’, right -
output linguistic variables

Fig. 5 left side. The assumption is that the range of output values is interval [0; 1],
however we observe on the right side graph that we have symmetrical triangular
fuzzy sets. Thanks to that using defuzzification COG we really gain range from
exactly 0 to exactly 1 without additional normalization (compare with [24]). The
rules for the Bobath Scale and Barthel Index are simply illustration of the idea
‘high input, then high output’ and ‘low input, then low output’.

Describing the features of gait is more complex. Too low and too high vales
are not ‘wanted’. So, each gait parameter is represented by three fuzzy values
- two for ‘bad’ and one for ‘good’ quality. Additionally, we want to express a
trend for ‘good’ value. Although, too high values are not wanted, in the range of
‘good’ we prefer the higher values rather than the lower. The same is with gait
velocity, cadence and stride length.

Technically each of gait parameters is represented by a separate linguistic
variable. Unlike in the [24], here we using KFNs to model these values.

The values representing ‘ideal’ gait are based on the data given for the ref-
erence group - people without stroke. They have a trapezoidal shape and are
determined on the all available data. For the inference, operation presented ear-
lier in Sect. 4.1 was used and for defuzzification - the Mean of Maxima. In the
papers [2,8] some special KFN defuzzification operators were presented.

All three gait linguistic variables are proposed in the same pattern. Lets look
at set Good Gait Velocity - (goodGV ). We base on three characteristic values:
xmin/xmax/xmean – the minimum/maximum/mean value of the Gait Velocity
parameters for data about healthy (non post-stroke) people. Next we count two
deltas: Δ− = xmean − xmin, Δ+ = xmax − xmean. We using the arithmetical
mean. Next we describe the KFNs by fourths (see formula 1):

goodGV = (GS , NS , NE , GE) (3)

where: GS = xmean − 1.5 ·Δ−, NS = xmean − 0.5 ·Δ−, NE = xmean + 0.5 ·Δ+,
GE = xmean + 1.5 · Δ+.

The KFNs representing ‘bad’ quality of gait:

badGV
too−low = (NS , GS , x0, x0),

badGV
too−high = (NE , GE , 2 · xmean, 2 · xmean),

(4)

where x0 = MIN(0, xmean − 2 · Δ−).
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(a) (b)

Fig. 6. (a) A pattern of the KFNs describing gait parameters, (b) KFNs for the con-
sequent parts of the rules

Figure 6 shows the general idea such assumptions. It is worth to notice the
directions of the KFNs, because it will be important at the determination of
rules. The range of linguistic variable is defined as interval [x0; 2 · xmean]. It is
enough to cover the all available data for healthy and post-stroke people.

The output KFNs are presented on the Fig. 6(b). The result will be a number
from the continuous interval [0, 1] where the higher value means better quality. It
can be presented as convenient and intuitive percentage scale. However, it should
be stressed that the upper bound stands for the ideal gait parameters, but in the
real life there are natural individual differences between healthy people. Thus,
the model is formulated to point evaluation each of this persons at least like 50%
result value.

Rules for the gait features use the trend/tendency describing linguistic
expressions:

– if parameter is ‘too low and decreasing’ the quality is ‘bad and getting worse’,
– if parameter is ‘good and increasing’ the quality is ‘good and getting better’,
– if parameter is ‘too high and increasing’, the quality is ‘bad and getting worse’.

Considering directions of the KFNs (see Fig. 6) with these rules we are intuitively
expressing an expected dependency between input and outputs. The third rule
i.e. means ‘parameter too high, then quality bad’, and at the same time express
‘parameter is increasing then quality is getting worse’.

5.2 Evaluator - Fuzzy Sets for Output Fuzzy System

The fuzzy system from the final/second level in hierarchy aggregates the partial
evaluations. The input variables are simply two triangular values ‘low’ and ‘high’
defined on interval [0; 1]. However the output ‘Quality’ is divided into six fuzzy
values (see Fig. 7). They represents terms from an ‘extremal low’ to a ‘normal’. It
situation like for Bobath Scale and Barthel Index outputs. We define here fuzzy
sets ‘extremal low’ and ‘normal’ as symmetrical to get for COG defuzzification
in real [0; 1] interval. Aggregation of the premise parts is MIN, the implication
operator - MIN, the aggregation of fuzzy outputs (accumulation) – MAX.

As for the rules, there are five input variables two fuzzy sets (‘low’ and ‘high’)
each. Therefore for complete rule base we have 25 = 32 rules here. To shorten
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Fig. 7. A pattern of fuzzy sets for the gait describing linguistic variables.

the description we will use the abbreviations of qualities: qV - quality of gait
velocity, qC - of gait cadence, qS - of gait stride length, qBT - of Bobath Test,
qBI - of Barthel Index.

The output variable (see Fig. 7) is represented by values denoted in the fur-
ther description as Outi where i = 0..5. The value Out0 is interpreted as worst
and Out5 is desirable health condition understand as the ‘normal quality of life’.
Rules follow the pattern:

IF qV and qC and qS and qBT and qBI THEN Outs (5)

where s is a number of times the term ‘high’ was used in the premise part of
rule. For the example the highest Out5 is used only in one rule:

IF qV = h and qC = h and qS = h and qBT = h and qBI = h THEN Out = Out5
(6)

the letter ‘h’ stands for ‘high’. Output is Out5 because the ‘high’ was used five
times in premise of the rule. Adequately the Out0 also is used only in one rule
(‘l’ stands for ‘low’):

IF qV = l and qC = l and qS = l and qBT = l and qBI = l THEN Out = Out0
(7)

6 Practical Results

The evaluator was used to measure a condition of 40 patients twice. First -
before beginning a cycle of rehabilitation, and second - after it was finished. For
comparing/validation purposes we also evaluated a reference group (20 persons),
which was the source of a pattern of the gait quality. See Table 1 for collective
data about the results. Comparing the averages we see that the rehabilitation in
general improves the patient’s life quality. As we can see for the reference group,
their results are much higher than patients.

With the Table 2 we want to do some validation of the presented evaluator. As
the trend expressed in the model is important for this paper, the Table 1 shows
evaluation for a special artificially generated set of data. We do not analyze
here the inputs for other used HRQoL scores. They are modeled by the classical
fuzzy systems and there is no trend expression in the rules. However, it should
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Table 1. Collective data about results of evaluation with the MuFE-HRQoL

Before rehab. After rehab. Reference group

Min 0.1178 0.1778 0.7907

Max 0.5782 0.7325 1

Average 0.37352 0.48477 0.90584

Table 2. Trend sensitive results

S.n. Gait velocity Gait cadence Stride length HRQoL evaluation

1 Average Average Average 1

2 Min Average Average 0.8999

3 Max Average Average 0.942

4 Average Min Min 0.7999

5 Average Max Max 0.8695

6 Min Min Max 0.7406

7 Max Max Min 0.7642

be clarified that for those inputs were used ideal values generating full activation
of rules pointing ‘high quality’.

For better analysis the Table 2 it is good to look for construction of the gait
input linguistic values presented on the Fig. 6(a). The KFN representing ‘good-
quality’ is based on the numeric interval generated for the reference group. In the
mechanism of evaluation, we model the idea that non post-stroke people’s gait
quality is at least 0.5. Thus the borders of that interval - min and max values
- basically gives 0.5 evaluation as partial evaluation of whole MuFEG-HRQoL
(if it would be a classic fuzzy system). However, modeling the trend, we are
changing it and the min value still gives 0.5 result but the max value should give
more. In fact, presented case max value gives the partial result equal to 0.75.

As for the average value on input, it represents the ideal expected situation
so it always gives the quality 1.

The evaluation results from the Table 2, confirms modeled trend. The first
line produces quality 1, because the inputs are averages ideal values for gait
parameters. If we change only one input on min we get 0.8999 result, however
if this input will be max value it will generate 0.942 quality - table rows 2, 3.
The difference between two system with minimal values an two with maximal is
even greater - see rows 4, 5. Table rows 6, 7 shows the result where there is no
ideal value on input, but still one more maximal input than minimal generates
slightly higher evaluation result.

That validation results also shows the expected general pattern. The more
ideal are the inputs, the evaluations are higher.
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7 Summary and Future Actions

In this paper, we presented the tool MuFE-HRQoL for evaluation of the quality
of life for the people after stroke. Thanks to the use of the KFN model we get the
possibility of managing vagueness with the trend which is described linguistically.
The results for real life data show the potential for application in the practical
problems.

The evaluation tool has also a potential to compare the different rehabil-
itation methods. Therefore, it could also be a tool for evaluation of them.
Application of KFNs in the modeling gives the additional potential for involving
information about trend/tendency of data used to build fuzzy evaluation system.

In addition, this publication shows that a hierarchical fuzzy system is the
right construction to successfully combine classic fuzzy systems with KFN-based
solutions. The limitation of the proposed approach it a fact, that it is still in the
beginning of its development. Such complex computational approach need for
further studies, including careful validation procedures in clinical setting. But
our current results strengthen values of the proposed approach as an useful tool
in everyday clinical practice.

As for the future actions a gait is only one aspect of life it could be modeled
by the independent level of hierarchy which gives as result one value representing
the gait quality. Then, it could be used as one independent value among other
features affects the final result.

Finally, an improvement of evaluator would be using more medical scores
in evaluation of quality of life. However, it is restricted by availability of the
another tests results, which should be performed on the same group of patients.
We continue our efforts toward web-based version of our tool, which may increase
the number of assessed patients and compared scores.
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Abstract. We describe the use of fuzzy sets within MonitorSI-Text. It
is a real and operative data-to-text system that generates textual infor-
mation about the operational state of Information Technology services,
monitored by the commercial software platform Obsidian. Until now,
Obsidian provided several dashboards that allowed to monitor in real
time the state of the service infrastructure of the clients. MonitorSI-
Text extends the capabilities of Obsidian with the automatic generation
of textual reports, live descriptions and notifications that complement
the visualization dashboards with enhanced textual information. More-
over, our system performs an analysis of time series data based on a
fuzzy filtering approach as part of its content determination process.
MonitorSI-Text has been tested, commercialized and deployed as part of
the Obsidian Business Service Intelligence platform, which is currently
in use by several customer companies, such as Camper and PwC.

Keywords: Data-to-Text · Fuzzy sets · Time series data · Business
service intelligence · Real application

1 Introduction

In recent times, concepts such as Business Intelligence (BI) and Business Ana-
lytics (BA) [2] are increasingly gaining attention from the business scene. In
general, these terms refer to the ability of a company to manage and analyze
effectively its data to improve its decision-making processes. For instance, com-
panies such as Microsoft, Qlik or Tableau offer BI solutions for third-parties and
are being extensively used nowadays. In this context, the application of Artificial
Intelligence techniques to improve the analysis and interpretation of data in BI
is currently a hot topic in this field.
c© Springer International Publishing AG 2018
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In the realm of Computational Intelligence, fuzzy sets theory has contributed
to the emergence of novel proposals in the context of BI. For example, we can
highlight the use of fuzzy inference mechanisms and fuzzy clustering in a fraud
prevention and risk assessment solution for banking [12], fuzzy cognitive maps in
Business Analysis [21], and fuzzy partitions to model an expert’s vocabulary [19].

However, one of the disciplines that is currently receiving increased atten-
tion from the BI panorama is natural language generation (NLG) [7]. With
several decades of research, but a relatively small community when compared to
other disciplines such as fuzzy logic, NLG actually encompasses different types
of text generation that characterize well-differentiated subfields. For instance,
NLG in dialogue systems, narratives and summarization (of other texts) are
well-recognized categories. But perhaps the subfield that is currently enjoying
the most attention is data-to-text (D2T), defined by Reiter in [18] as the branch
of NLG that deals with the generation of texts from non-linguistic data.

D2T and NLG have been a source of successfully deployed systems in many
application domains for quite a long time (e.g., see the NLG systems timeline
in [13]), with early companies like CoGenTex [3] emerging in the 1990s. However,
it was not until the late 2000s that commercial NLG started to experience an
important growth, with the apparition of bigger companies in recent years, such
as NarrativeScience, AutomatedInsights, YSEOP and ARRIA (these are briefly
described in [15]). In this context, NLG is a hot topic in BI and, according to
the IT consultant company Gartner, by 2019, natural-language generation will
be a standard feature of 90% of modern BI and analytics platforms [6].

From a fuzzy sets research perspective, the interest in D2T is also impor-
tant. Paradigms such as computing with words and perceptions, and mainly
related research topics as fuzzy linguistic summarization and description of data,
have become increasingly aware of the usefulness and complementarity of D2T.
This paradigm allows to provide a textual interface to the already human-like
linguistic concepts that fuzzy sets theory and fuzzy logic usually model upon
numeric data. In fact, much has happened since Kacprzyk and Zadrȯzny identi-
fied in [10] NLG as a powerful tool to convey the information computed by fuzzy
protoforms [22].

On the one hand, the original research on the theoretical side of fuzzy lin-
guistic summarization, which is also plentiful in illustrative use cases [1], is still
continuing in search of new types of protoforms (e.g. [20]). However, on the
other hand, complementary research lines have emerged that explore how D2T
and NLG in general may benefit from the imprecision modeling capabilities of
words and expressions that fuzzy sets can provide [4,5,8,11,15–17].

This paper brings together the three main elements described in this intro-
duction, namely BI, fuzzy sets and D2T. For this, we present an actual D2T
system, MonitorSI-Text, that has been developed in collaboration with Ozona
Consulting S.L., an internationally established company specialized in consul-
tancy about Information Technology (IT) services under the ISO/IEC 20000
standard [9]. Our system has already been commercialized and deployed as part
of a Business Service Intelligence platform, Obsidian [14], which is currently in
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use by several customer companies, such as Camper and PwC. MonitorSI-Text
allows the generation of monthly reports and real time notifications about the
state of any kind of IT services within a company’s infrastructure. The gener-
ation of monthly reports is based on time series data and statistical analysis,
but also includes fuzzy set techniques to address the imprecision of some of the
terms and expressions that are conveyed in the generated texts.

The rest of this paper is structured in three sections. Section 2 describes
in more depth our specific application domain, Business Service Intelligence,
and the Obsidian platform. Section 3 depicts MonitorSI-Text from a general
perspective, and describes the usual NLG content determination process, where
we use of fuzzy sets to model imprecise terms and analyze historic time series
for several metrics about the state of IT services. Finally, Sect. 4 summarizes the
main contributions described in this paper.

2 Business Service Intelligence: The Obsidian Platform

Nowadays many companies and organizations rely on complex IT infrastructures
that are essential for a correct functioning of internal and external services, such
as mail services, web platforms, storage, virtualization, firewalling, etc. Although
data are usually available to managing these IT services, they are usually found in
unstructured formats, distributed into multiple tools and under the responsibility
of different units or departments.

In this context, monitoring and managing tools for technical platforms, ser-
vice desk tools, or business applications like enterprise resource planners (ERPs)
are, among others, valid sources of information to calculate in real time the per-
formance of IT services and align them with the business needs. However, there
is a lack of tools that allow to integrate and analyze this kind of information.
This problem is addressed by Obsidian, a platform that allows to model IT ser-
vices from data produced by heterogeneous sources. It also calculates indicators
at service and business process levels.

Obsidian is a Business Service Intelligence and Analytics platform devel-
oped by Ozona Consulting S.L., and designed with the objective of helping align
IT services with business objectives. It provides real time metrics and indica-
tors, historical data and predictors through dashboards and reports. This allows
Obsidian to provide a holistic view of the IT services. Thus, Obsidian moni-
tors and contributes to enhance the service alignment with the business process
(Fig. 1). In other words, Obsidian can be deemed as a BI solution based on IT
Service Management.

Obsidian ’s main functionalities can be classified into three different
categories:

– Service modeling. Obsidian allows to model the architecture of IT ser-
vices, their internal and external dependencies, and their impact on business
processes.
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Fig. 1. Snapshots of different visualization dashboards provided by Obsidian.

– Real time computation. A multi-threaded computing engine which allows to
calculate in parallel real time metrics about multiple services and their impact
on business processes.

– Service monitoring through dashboards and reports. Obsidian provides sev-
eral out-of-the-box reports and web-based dashboards, as well as tools to
design any kind of dashboards and specific reports.

The dashboards and the report generator in Obsidian include D2T capa-
bilities, which are provided by MonitorSI-Text. This D2T system makes use of
different data and information about service state metrics and service depen-
dencies to generate textual information, as we will describe in the next section.

3 MonitorSI-Text: A D2T System Using Fuzzy Sets

3.1 General Description

MonitorSI-Text is a D2T system developed to provide the Obsidian platform
with enriched information, which is expressed in natural language as a com-
plement to the graphical information already given in dashboards and reports.
From a high level view, it has been designed as a set of RESTful web services
and an associated client which facilitates the integration with the rest of the
platform.

Currently, the system provides D2T services for three different purposes:
generation of notifications, generation of monthly reports, and generation of
real time descriptions for dashboards. Although each set of services is meant to
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address different text generation needs within Obsidian (see Fig. 2), all of them
have been implemented using a similar D2T approach.

From a D2T perspective, our system follows a simplified version of the D2T
architecture proposed by Reiter in [18], consisting of two main processing stages:
a content determination stage supported by fuzzy sets and a realization stage
based on templates. In this regard, the general architecture of MonitorSI-Text
is similar to the already operational D2T system GALiWeather [16].

3.2 Content Determination

Most of the data and information the system needs to generate the texts is
already provided by the Obsidian platform, including numeric measurements and
statistical values. However, more sophisticated data processing is also present,
including the analysis of time series data using fuzzy sets (which is limited to
the monthly report generation), as well as the analysis of service dependencies
to determine the root cause of specific problems (common for all D2T services)

Fig. 2. General architecture of MonitorSI-Text.

Input data. The textual information generated by MonitorSI-Text focuses on
four main numeric indicators in the range [0,100] about the state of IT services:

– Availability, which measures the aggregated operational state of a given
service based on the availability monitor measurements of the service itself
and its dependencies (for instance, a web server may depend partly on other
services such as a mail server, and depending on the dependency strength, an
inoperative dependency might propagate to the main service).

– Capacity, which measures performance and available resources at the service
level, once more based on the monitor measurements of the service itself and
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its dependencies. For instance, a level of 100 in capacity means that the service
has enough resources.

– Service desk, a synthetic indicator which measures the quality of service
support, according to the service desk provider tool. For instance, this indi-
cator can depend on the current number of unresolved issues.

– Service level, an indicator which aggregates the values of the three previous
metrics.

The numeric values associated with these indicators can be categorized into
different labels that represent the possible states of the services according to the
service level agreement (SLA) contracted by the company. Particularly, three
different states are considered: admissible (green), partially admissible (yellow),
and inadmissible (red). Each state corresponds to a closed range within [0,100],
whose exact definition depends on the SLA. This means that, for instance, for
one company values in the admissible range may correspond to [95,100], but for
others this range can be wider or even narrower.

All these indicators are measured and/or calculated regularly on a short tem-
poral basis, providing lengthy sets of time series data. MonitorSI-Text uses these
data to generate different kinds of texts. For instance, for real time descriptions
our system takes into account only the most recent values, but for the generation
of monthly reports it considers aggregated data which may encompass several
months backwards for comparison purposes.

Using fuzzy sets in MonitorSI-Text.We will focus now on the particular use
that MonitorSI-Text makes of fuzzy sets within its content determination task.
Namely, we use fuzzy sets to analyze time series data in the task of generating the
more sophisticated monthly reports about the state of IT services. This allows us
to fulfill three similar content determination tasks: determining intervals of time
that correspond to episodes with values in specific SLA states according to their
severity, and evaluating the stability and the variation trend of the indicators at
a monthly level.

This analysis is performed regarding all four indicators (availability, capacity,
service desk and service level) at different time granularities. Regarding the
severity values the analysis is made using aggregated daily data, in the case of
the stability we analyze the difference between monthly standard deviations of
the time series data for several months, and in the case of the variation trend we
perform the same analysis on the average monthly values. This allows the system
to extract descriptions such as “last month there was a partial unavailability from
the 15 to the 19” in the case of the severity analysis, “the service is more stable
compared to the previous month” in the case of the stability analysis, and “the
service has increased its average capacity value during the previous six months”
in the case of the variation trend.

Our approach is based on a fuzzy filtering of the time series data, which is
made for each task according to three different linguistic variables that model
the severity of the daily indicator values, the stability over the difference between
monthly standard deviation values, and the variation trend over the difference
between monthly average values, respectively. Particularly, the severity linguistic
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Fig. 3. Linguistic variables used in our approach, which were refined experimentally.
From left to right, the severity linguistic variable SEV , the stability linguistic variable
STV , and the trend variation linguistic variable V AV .

Algorithm 1. General fuzzy-based algorithm for analyzing time series data in
MonitorSI-Text.
Input: TSD, V AV or SEV or STV
Output: EL {A list of relevant episodes}
1: EL ← {}
2: for all l ∈ V AV |SEV |STV do
3: FSD ← μl(TSD) {Fuzzify the time series data}
4: episode ← {}
5: startindex ← 0
6: for i=startindex, fvi ∈ FSD do
7: episode ← episode ∪ fvi {Add fuzzy values until episode < ε}
8: if episode < ε then
9: startindex ← i

10: break
11: end if
12: end for
13: EL ← EL ∪ episode
14: end for
15: return EL

variable is dynamically defined by fuzzifying the crisp intervals that define the
indicator levels in accordance to the company’s SLA. The variation and stability
linguistic variables, on the contrary, are statically defined, independently from
the SLA.

Regarding the specific algorithms that perform the analysis of the severity,
the stability and the variation trend, they all share the same underlying idea. The
time series data are filtered for each label in the linguistic variables, providing
a linguistic signal which is then analyzed to search for periods with an average
membership degree that exceeds an experimental threshold. Consequently, this
method provides a more flexible linguistic layer which is tolerant to values that
do not fulfill specific labels entirely, but are still relevant enough to be considered
during the analysis.
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Formally, all algorithms receive as input the following elements:

– The time series data of an indicator, TSD = {v0, ..., vi, ...vn}, where n
depends on the type of task and the current month (only a few values in the
variation analysis, but ≈ 30 in the severity analysis), and vi = {i, val}, i ∈
N, val ∈ [−100, 100].

– A linguistic variable which can be either the trend variation (V AV ), the
severity variable (SEV ), the stability variable (STV ). Namely, V AV =
{substantially worsen, worsen, improve, substantially improve}, SEV =
{high severity, medium severity, low severity}, and STV = {much less stable,
less stable, more stable, much more stable}.

– A threshold value, ε, that determines the minimum average membership
degree that the extracted subperiods must fulfill.

The membership functions (modeled as trapezoidal functions in our case, as
shown in Fig. 3) associated to each label in the linguistic variables are defined
as μ : [−100, 100] → [0, 1]. Based on these definitions, Algorithm1 describes in
more detail the general procedure which is shared for the stability, variation and
severity content determination tasks.

Fig. 4. The algorithm for severity detection selects the longest periods with higher
fulfillment degrees.

Algorithm 1 produces EL as output, a list of temporal intervals that are
deemed relevant to be included in the generated monthly reports. These inter-
vals are ranked according to their average membership degree, and their associ-
ated information (linguistic label, start and end temporal references) is further
processed in the natural language generation stage to be properly verbalized.

In the case of the severity analysis, the corresponding version of Algorithm1
includes several restrictions. For instance, ε is set to 0.8, each temporal episode
also requires that its first and last values fulfill that μl(vi) > 0.8, and it also
adds an overlapping detection feature that controls situations where two episodes
identified for different labels may overlap in time (see Fig. 4). Given that there
may appear several episodes throughout a month where the indicators drop to
specific severity states, we are more restrictive about the conditions that the
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detected episodes need to meet in order to be deemed as relevant for being
conveyed. Figure 4 illustrates how the severity analysis is performed in more
detail.

The severity analysis is complemented by the root cause analysis. This allows
the D2T system to communicate not only time periods on specific severity levels,
but also the actual cause of that event, as in the following description generated
by MonitorSI-Text: “The period with a partial unavailability from the 1st to the
20th stands out, caused by an unavailability in the Directory Service, on which
this service depends.”

In the case of the stability and trend variation analysis, the algorithm is
simplified to search backwards only a single monthly interval that starts from
the last available month, with ε ≥ 0.5. This allows the system to determine,
for a given indicator, if the current month is more or less stable than previous
ones, and whether the indicator values have been improving or decreasing. In
this case, as the length of the input time series is greatly reduced and we are
interested in obtaining a single interval, the search thresholds are relaxed.

Fig. 5. Illustration of the content determination task using fuzzy sets and correspond-
ing example texts

For instance, the trend variation analysis allows to generate textual descrip-
tions like “the average value of the service has been decreasing significantly during
the previous two months.” In the case of the stability, MonitorSI-Text gener-
ates sentences like “the service has been more unstable compared to the previous
month.” The whole content determination based on fuzzy sets is illustrated in
Fig. 5, which also includes a text example generated by the service that conveys
information obtained by the three content determination tasks.
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3.3 Text Realization

We follow a template-based approach to generate the texts requested by the
Obsidian platform. Real time descriptions and notifications require simple and
mostly static templates. Monthly reports, on the contrary, are more sophisti-
cated, as they may include dynamic information and linguistic resources that
depend on the content which is to be communicated. For this, we have devel-
oped an additional module that addresses tasks like the aggregation of individual
indicator reports. Figure 6 shows several actual examples that MonitorSI-Text
is currently able to generate. This includes a live description and a notification,
that communicate quantitative and qualitative data about several features, such
as the remaining time to breach the committed SLA and changes on the state of
a specific indicator with detailed explanations. Figure 6 also provides two differ-
ent examples of monthly reports. The first one aggregates the information about
all indicators as they present similar states, while the second one is a description
of one indicator that presents several issues.

MonitorSI-Text currently supports generation for several languages, based
on the needs of Obsidian’s current customers. These include Spanish, English,
Portuguese, and French.

Fig. 6. Real examples of the different kinds of texts that MonitorSI-Text generates.

4 Conclusions

We have described the use of fuzzy sets to provide flexibility in the analysis of
time series data within a real data-to-text system, MonitorSI-Text. This sys-
tem generates reports about the monthly state of different metrics (capacity,
availability, service desk and service level) that measure the state of the services
within a company’s IT infrastructure through the Obsidian platform.
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Although our D2T system is still evolving with the addition of new features,
thanks to its previous testing and subsequent commercialization and deployment
as part of Obsidian, MonitorSI-Text is already facilitating the work of IT tech-
nicians in several companies by automatically analyzing and interpreting the
monthly evolution of the services. Likewise, thanks to the automatic generation
of real time notifications, MonitorSI-Text allows both technicians and managers
to be aware of the state of their IT services without the need of having them
constantly monitored.

As future work, we intend to improve the natural language generation capa-
bilities of our system by adapting the generated texts to different job profiles
(such as consultants, technicians or managers). We also intend to perform an
extrinsic evaluation of the system, to study the actual impact of the texts gen-
erated by MonitorSI-Text on final users. From a fuzzy sets perspective, we are
interested in exploring new ways of integrating fuzzy set-based techniques for this
system that allow to determine the content of new pieces of textual information
as new requirements arise.
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itividad” and by the “Conselleŕıa de Cultura, Educación e Ordenación Universitaria”
(accreditation 2016-2019, ED431G/08) and the European Regional Development Fund
(ERDF).

References

1. Boran, F.E., Akay, D., Yager, R.R.: An overview of methods for linguistic summa-
rization with fuzzy sets. Expert Syst. Appl. 61, 356–377 (2016)

2. Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from
big data to big impact. MIS Q. 36(4), 1165–1188 (2012). http://dl.acm.org/
citation.cfm?id=2481674.2481683

3. CoGenTex, Inc. http://www.cogentex.com. Accessed 19 March 2017
4. Conde-Clemente, P., Alonso, J.M., Trivino, G.: Towards automatic generation of

linguistic advice for saving energy at home. In: Soft Computing, pp. 1–15 (2016)
5. Conde-Clemente, P., Trivino, G., Alonso, J.M.: Generating automatic linguistic

descriptions with big data. Inf. Sci. 380, 12–30 (2017)
6. Gartner: Neural Networks and Modern BI Platforms Will Evolve Data and Analyt-

ics. http://www.gartner.com/smarterwithgartner/nueral-networks-and-modern-bi
-platforms-will-evolve-data-and-analytics/. Accessed 14 March 2017

7. Gatt, A., Krahmer, E.: Survey of the state of the art in natural language gener-
ation: core tasks, applications and evaluation. ArXiv e-prints. https://arxiv.org/
abs/1703.09902, March 2017

8. Gatt, A., Portet, F.: Multilingual generation of uncertain temporal expressions
from data: a study of a possibilistic formalism and its consistency with human
subjective evaluations. Fuzzy Sets Syst. 285, 73–93 (2016). Special Issue on Lin-
guistic Description of Time Series

9. International Organization for Standardization: ISO/IEC 20000-1:2011. https://
www.iso.org/standard/51986.html. Accessed 21 March 2017

http://dl.acm.org/citation.cfm?id=2481674.2481683
http://dl.acm.org/citation.cfm?id=2481674.2481683
http://www.cogentex.com
http://www.gartner.com/smarterwithgartner/nueral-networks-and-modern-bi-platforms-will-evolve-data-and-analytics/
http://www.gartner.com/smarterwithgartner/nueral-networks-and-modern-bi-platforms-will-evolve-data-and-analytics/
https://arxiv.org/abs/1703.09902
https://arxiv.org/abs/1703.09902
https://www.iso.org/standard/51986.html
https://www.iso.org/standard/51986.html


Using Fuzzy Sets in a MonitorSI-Text 231

10. Kacprzyk, J.: Computing with words is an implementable paradigm: fuzzy queries,
linguistic data summaries, and natural-language generation. IEEE Trans. Fuzzy
Syst. 18, 451–472 (2010)
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2 Instituto Politécnico, Universidade do Estado do Rio de Janeiro,

Nova Friburgo, Brazil
ajs neto@uol.com.br

3 DECSAI, Universidad de Granada, Granada, Spain
carloscruz@decsai.ugr.es, verdegay@ugr.es, orestes@tesla.cujae.edu.cu

Abstract. In this paper a novel approach to design data driven based
fault diagnosis systems using fuzzy clustering techniques is presented. In
the proposal, the data was first pre-processed using the Noise Clustering
algorithm. This permits to eliminate outliers and reduce the confusion
as a first part of the classification process. Secondly, the Kernel Fuzzy
C-means algorithm was used to achieve greater separability among the
classes, and reduce the classification errors. Finally, it can be imple-
mented a step for optimizing the parameters of the NC and KFCM algo-
rithms. The proposed approach was validated using the iris benchmark
data sets. The obtained results indicate the feasibility of the proposal.

Keywords: Fault diagnosis · Fuzzy clustering · FCM algorithm · NC
algorithm · KFCM algorithm · Metaheuristics

1 Introduction

In current industries, there is a marked necessity to improve the processes effi-
ciency in order to produce with higher quality besides attending the environmen-
tal and industrial safety regulations [9]. In industries the faults in equipments
can have an unfavorable impact in the availability of the systems, the environ-
ment and the safety of operators. For such reason, the faults need to be detected
and isolated, being these tasks associated to the fault diagnosis systems [10].

Within the fault diagnosis methods there are those based on the process
historical data [7,15]. These approaches do not need a mathematical model, and
they do not require much prior knowledge of the process parameters [16]. These
characteristics constitute an advantage for complex systems, where relationships
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among variables are nonlinear, not totally known, and it is very difficult to obtain
an analytical model that describes efficiently the dynamics of the process.

By performing an analysis of the different techniques developed in the recent
years for control and fault diagnosis tasks, it is significative the increment in
the use of the fuzzy clustering methods [2,14]. Fuzzy clustering techniques are
very important unsupervised tools of data classification [8], that can be used
to organize data into groups based on similarities among the individual data.
Fuzzy clustering deals with uncertainty and vagueness that can be found in a
wide variety of applications. The main focus of all fuzzy clustering techniques is
to improve the clustering by avoiding the influence of the noise and outlier data.

The Fuzzy C-Means (FCM) algorithm [3], is one of the most widely used algo-
rithm for clustering due to its robust results for overlapped data. Unlike k-means
algorithm, data points in the FCM may belong to more than one cluster center.
FCM obtains very good results with noise free data but are highly sensitive to
noisy data and outliers [8]. Other similar techniques as, Possibilistic C-Means
(PCM) [12] and Possibilistic Fuzzy C-Means (PFCM) [13] interprets clustering
as a possibilistic partition and work better in presence of noise in comparison
to FCM. However, PCM fails to find optimal clusters in the presence of noise
[8] and PFCM does not yield satisfactory results when dataset consists of two
clusters which are highly unlike in size and outliers are present. Noise Clustering
(NC) [6], Credibility Fuzzy C-Means (CFCM) [4], and Density Oriented Fuzzy
C-Means (DOFCM) [11] algorithms were proposed specifically to work efficiently
with noisy data.

The clustering output depends upon various parameters such as distribution
of data points inside and outside the cluster, shape of the cluster and linear or
non-linear separability. The effectiveness of the clustering method highly relies
on the choice of the distance metric adopted. FCM uses Euclidean distance
as the distance measure, and therefore, it can only be able to detect hyper
spherical clusters. Researchers have proposed various other distance measures
like Mahalanobis and kernel based distance has been used as measures to detect
non-hyper spherical/non-linear clusters in the data and high dimensional feature
spaces respectively [17].

In this paper a new fault diagnosis methodology using fuzzy clustering tech-
niques is proposed. The methodology consists of two basic steps. First the pre-
processing of data to remove outliers is performed. To achieve this goal the NC
algorithm is used. Second, the classification process is developed. For this, the
Kernel Fuzzy C-Means (KFCM) algorithm is used to obtain a better separability
among classes and therefore the classification results are improved. Finally, an
optional step is used to optimize the parameters of the algorithms used in the
previous stages.

The main contribution of this paper is the obtaining of a methodology that
adequately combines fuzzy clustering algorithms to solve the drawbacks of this
type of technique when the data is affected by noise and outliers, and improving
the classification by using kernel tools.
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The organization of the paper is as follows: in Sect. 2 a description of the
new classification methodology using fuzzy clustering techniques is presented.
The Sect. 3 presents the experiment design and the data set used to validate the
proposed methodology. In Sect. 4 an analysis of the obtained results is presented.
Finally, the conclusions are posed.

2 Proposed Classification Methodology Using Fuzzy
Clustering

The classification scheme proposed in this work is shown in Fig. 1. In the first
step, a set of N observations (data points) X = [x1, x2, ..., xN ] are classified into
c + 1 groups or classes using the NC algorithm. The first c classes represent the
faults to be diagnosed, as well as the normal operation conditions of the process,
and they contain the data points to be used in the next step of the classification
methodology. The other remaining class contains the data points identified as
outliers by the NC algorithm, and they are not used in the next step.

In the second step, the Kernel Fuzzy C-Means (KFCM) algorithm is applied.
This algorithm receives the set of observations classified by the NC algorithm in
the c classes as a set of observations to be classified. The KFCM algorithm maps
these observations into a higher dimensional space in which the classification
process obtains better results. Finally, it can be implemented a final step for
optimizing the parameters of the NC and KFCM algorithms.

Fig. 1. Classification scheme using fuzzy clustering.

2.1 Fuzzy C-Means (FCM)

Different methods have been proposed for the fuzzy clustering. Among them,
the most common are the ones based on distance. One of these methods is the
Fuzzy C-Means (FCM) algorithm which uses the optimization criterion (1) to
group the data according to the similitude among themselves.

J (X;U,v) =
c∑

i=1

N∑

k=1

(μik)m (dik)2 (1)
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The fuzzy clustering allows to obtain the membership degrees matrix U =
[μik]c×N where μik represents the degree of fuzzy membership of the sample k
to the i−th class, which satisfies the following relationship:

c∑

i=1

μik = 1,∀k, i = 1, 2, ..., N (2)

In this algorithm, the similitude is evaluated by means of the distance func-
tion dik, represented by the Eq. (3). This function provides a measure of the dis-
tance between the data and the classes centers v = v1, v2, ..., vc, being A∈ �n×n

the norm induction matrix, where n is the quantity of measured variables.

d2ik = (xk − vi)
T A (xk − vi) (3)

The exponent m > 1 in (1), is an important factor that regulates the fuzziness
of the resulting partition. The measure of dissimilarity is the square distance
between each data point and the clustering center vi. This distance is weighted
by a power of the membership degree (μik)m. The value of the cost function J is
a measure of the weighted total quadratic error and statistically it can be seen
as a measure of the total variance of xk regarding vi.

The conditions for local extreme for the Eqs. (1) and (2) are derived using
Lagrangian multipliers [3]:

μik =
1

∑c
j=1 (dik,A/djk,A)2/(m−1)

(4)

vi =
∑N

k=1 (μik)m xk∑N
k=1 (μik)m

(5)

In Eq. (5) should be noted that vi is the weighted average of the data elements
that belong to a cluster, i.e., it is the center of the cluster i. The FCM algorithm
is an iterative procedures where N data are grouped in c classes. Initially, the
user should establish the number of classes (c). The centers of the c classes
are initialized in a random form, and they are modified during the iterative
process. In a similar way the membership degrees matrix U is modified until it
is stabilized, i.e. ‖Ut − Ut−1‖ < ε, where ε is a tolerance limit prescribed a priori,
and t is an iteration counter.

2.2 Noise Clustering (NC)

The main idea in the noise clustering algorithm is the concept of a “noise-
prototype”. A noise prototype is an universal entity which always will be at the
same distance from every point in the dataset.

Let vn be the noise prototype, and xk be the point in the feature space,
vn, xk ∈ �p. Then, the noise prototype is such that the distance dnk, i.e. the
distance of point xk from vn, is:

dnk = δ, k = 1, 2, ..., N (6)
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Although the definition mentioned above does not specify what the distance
δ is, it implies that all the points in the dataset are at the same distance from
the noise cluster, and thus defines the noise prototype.

The conventional FCM algorithm was re-formulated using this concept. Let
there be c good clusters in the dataset, and one noise cluster is added. Then, NC
reformulates FCM objective function as:

JNC (X;U,v) =
c+1∑

i=1

N∑

k=1

(μik)m (dik)2 (7)

where, the distances are defined by,

d2ik = (xk − vi)
T Ai (xk − vi) ,∀k, i = 1 .... c (8)

d2ik = δ2, for i = n = c + 1 (9)

By assuming that the distance δ is specified, after a minimization process μik

and vi given by Eqs. (4) and (5) are obtained again. In Eq. (5) must be observed
that: i = 1 .... c. The main difference in this formulation is that the constraint
on the membership values is now equivalent to:

0 ≤
c∑

i=1

μik ≤ 1, k = 1, 2, ..., N (10)

The noise distance δ is a critical parameter in this algorithm, and would be
different for different problems. The noise distance proposed by [5] is a simplified
statistical average over the non-weighted distances of all feature vectors to all
prototype vectors.

δ2 = λ

[∑c
i=1

∑N
k=1 (dik)2

Nc

]
(11)

where λ is the value of the multiplier used to obtain δ from the average of dis-
tances. Based on Eq. (11), δ can be calculated at each iteration of the algorithm.

2.3 Kernel Fuzzy C-Means (KFCM)

KFCM represents the kernel version of FCM. This algorithm uses a kernel func-
tion for mapping the data points from the input space to a high dimensional
space.

KFCM algorithm modifies the objective function of FCM using the mapping
Φ as:

JKFCM =
c∑

i=1

N∑

k=1

(μik)m ‖Φ(xk) − Φ(vi)‖2 (12)

where ‖Φ(xk) − Φ(vi)‖2 is the square of the distance between Φ(xk) and Φ(vi).
The distance in the feature space is calculated through the kernel in the input
space as follows:
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‖Φ(xk) − Φ(vi)‖2 = K(xk,xk) − 2K(xk,vi)
+K(vi,vi) (13)

If the Gaussian kernel is used, then K(x,x) = 1 and ‖Φ(xk) − Φ(vi)‖2 =
2 (1 − K(xk,vi)). Thus the Eq. (12) can be written as:

JKFCM = 2
c∑

i=1

N∑

k=1

(μik)m ‖1 − K(xk,vi)‖2 (14)

where K(xk,vi) = e−‖xk−vi‖2/σ2
.

Minimizing the Eq. (14) under the constraint shown in Eq. (2), yields:

μik =
1

∑c
j=1

(
1−K(xk,vi)
1−K(xk,vj)

)1/(m−1)
(15)

vi =
∑N

k=1 (μik)m K(xk,vi)xk∑N
k=1 (μik)m K(xk,vi)

(16)

3 Study Case and Experimental Design

The iris benchmark dataset from UCI Machine Learning Repository [1] is used
for the performance validation of the new classification proposal for fault diag-
nosis. This dataset presents three classes (setosa, versicolor, virginica) with 50
observations each one, and each class has four variables: sepal length, sepal width,
petal length, petal width. To the original dataset, 48 new observations were added
and evenly distributed among the classes in order to represent the possible out-
liers for each class. Figure 2 shows the iris dataset modified. The setosa class (in
blue circle) will be considered the normal operation state, while the versicolor
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Fig. 2. Modified iris data set
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Table 1. Experiments performed

Experiment Stage 1 Stage 2

1 - FCM

2 - KFCM

3 NC FCM

4 NC KFCM

(in red square) and virginica (in green diamond) classes will represent faults 1
and 2 respectively.

Table 1 presents the four experiments performed. In the first and the second
experiments, the step 1 of the proposed classification scheme was not applied.
In the first experiment the FCM algorithm was applied in the step 2, and in the
second experiment the KFCM algorithm was used. For the experiments 3 and
4 the NC algorithm was selected to be applied in the step 1, and the FCM and
KFCM algorithms are applied in the second step, respectively. The values of the
parameters used for the applied algorithms are: Number of iterations = 100, ε
= 10−5, m = 2, σ = 10 (only used for the KFCM algorithm) and λ = 0.01 (only
used for the NC algorithm), these values in the parameters are used in [11].

4 Analysis of the Results

A very important step in the design of the fault diagnosis systems consists on
verifying the quality of the performed task. The most used criterion for this
analysis is the confusion matrix (CM). The confusion matrix is an indicator that
allows to visualize the performance of the classifier in the classification process.
Each CMrs element of a confusion matrix for r �= s, indicates the number of
times that the classifier confuses a state r with a state s in a set of L experiments.
The results obtained from the application of the proposed methodology to fault
diagnosis in the modified iris data set are presented next.

4.1 Experiment 1

Figure 3 shows the classification results performed by the FCM algorithm for the
modified iris dataset.

Table 2 shows the confusion matrix for experiment 1 where NOC: Normal
Operation Condition, F1: Fault 1 and F2: Fault 2. The main diagonal is asso-
ciated with the number of observations successfully classified. Since the total
number of observations per class is known, the accuracy (TA), and the overall
error (E) can also be computed. The last row shows the average (AVE) of TA
and E. Note that the classification errors have significant values. These results
indicate the difficulty of the FCM algorithm to obtain satisfactory results in the
classification in the presence of outliers.
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Fig. 3. Classification results for experiment 1 using the FCM algorithm

Table 2. CM for experiment 1. (NOC: 66, F1: 66, F2: 66)

NOC F1 F2 TA (%) E (%)

NOC 52 6 8 78.79 21.21

F1 4 54 8 81.82 18.18

F2 2 35 29 43.94 56.06

AVE 68.18 31.82

4.2 Experiment 2

Figure 4 shows the classification results of the KFCM algorithm for the modified
iris dataset. As shown in Table 3, KFCM algorithm has similar difficulties to
FCM in the classification process in presence of outliers.
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Fig. 4. Classification results for experiment 2 using the KFCM algorithm
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Table 3. CM for experiment 2. (NOC: 66, F1: 66, F2: 66)

NOC F1 F2 TA (%) E (%)

NOC 52 5 9 78.79 21.21

F1 5 46 15 69.70 30.30

F2 2 6 58 87.88 12.12

AVE 78.79 21.21

4.3 Experiment 3

Stage 1
As shown in Fig. 5, the NC algorithm is able to classify the outliers (shown in
black color) in the first stage of the classification process. Table 4 shows that the
NC algorithm classifies as outliers 48 observations (O class). In addition, NC
algorithm obtains good results in the classification of the states NOC, F1 and
F2, although these results will not be used in the next step.

Stage 2
Figure 6 shows the classification results of the FCM algorithm after the outlier
data were removed in the first step.
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Fig. 5. Stage 1: Results of the outlier classification with NC algorithm.

Table 4. CM for experiment 3: Step 1. (NOC: 50, F1: 50, F2: 50, O: 48)

NOC F1 F2 O TA (%) E (%)

NOC 50 0 0 0 100 0

F1 0 44 6 0 88 12

F2 0 15 35 0 70 30

O 0 0 0 48 100 0

AVE 89.50 10.50
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Fig. 6. Stage 2: Classification results with the FCM algorithm.

After applying the algorithm FCM in the stage 2 to classify the observations
from the stage 1 the results are the same to those shown in Table 4. This is
because the main difference between NC and FCM algorithms is the capacity of
the former to classify outliers, therefore, when the data to classify are clean of
outliers the results are similar.

4.4 Experiment 4

Stage 1
The classification results of the stage 1 in this experiment are the same of the
experiment 3 (Fig. 5 and Table 4).

Stage 2
Figure 7 shows how the KFCM algorithm classifies the observations after the
outliers were eliminated in stage 1. Table 5 shows the confusion matrix, and
in this case better classification results are achieved compared with the FCM
algorithm, as result of the better separability of the classes due to the application
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Fig. 7. Stage 2: Classification with KFCM algorithm.
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Table 5. CM for experiment 4. (NOC: 50, F1: 50, F2: 50)

NOC F1 F2 TA (%) E (%)

NOC 50 0 0 100 0

F1 0 46 4 92 8

F2 0 6 44 88 12

AVE 93.33 6.67

of the kernel function. This experiment validates the main propose of this article,
i.e. the obtaining of a new classification approach to be applied in fault diagnosis
of industrial systems that adequately combines fuzzy clustering algorithms to
solve the drawbacks of this type of technique when the data is affected by noise
and outliers, and improving the classification process using kernel tools.

5 Conclusions

In the present paper a new classification scheme to fault diagnosis using fuzzy
clustering techniques is proposed. In the proposal, the NC algorithm is used in a
first stage of preprocessing data to remove the outliers, and the KFCM algorithm
is used in a second stage of data classification to make use of the advantages
introduced by the kernel function in the separability of the classes, in order to
obtain better classification results. Some experiments were performed and their
results show the feasibility of the proposal. A possible third stage could be used
to optimize the parameters of the used algorithms.
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Abstract. In the present paper, the apparatus of generalized nets is
used to describe the metaheuristic technique Bat algorithm. Generalized
nets are considered an effective and appropriate tool for description of
the logics of different optimization techniques. As a result, the developed
generalized net model executes the Bat algorithm procedures, conduct-
ing basic steps and performing optimal search. The paper elaborates on
the already proposed Universal generalized net model for description of
the population-based metaheuristic algorithms, which was used so far
to model the Cuckoo search, Firefly algorithm and Artificial bee colony
optimization, and is used here for modelling of Bat algorithm. It is shown
that the Bat algorithm can be described in terms of Universal general-
ized net model by only varying the characteristic functions of the tokens.
Thus, verification of the Universal generalized net model is performed.

Keywords: Generalized nets · Modelling · Metaheuristic · Bat
algorithm

1 Introduction

Metaheuristic is a top-level strategy that guides an underlying heuristic solving
of a given problem. Following Glover [1], “metaheuristics in their modern forms
are based on a variety of interpretations of what constitutes intelligent search”.

Evolutionary algorithms like Genetic Algorithms (GA) [2] and Evolution
Strategies [3], Ant Colony Optimization (ACO) [4], Particle Swarm Optimiza-
tion [5], Tabu Search [6], Dynamic Virtual Bats Algorithm [7], Gradient Evo-
lution Algorithm [8], Multi-objective Vortex Search, [9], Simulated Annealing
[10], Cuckoo search (CS) [11], Firefly algorithm (FA) [12], Artificial Bee Colony
(ABC) optimization [13], Estimation of Distribution Algorithms [14], Scatter
Search and Path Relinking [15], Greedy Randomized Adaptive Search Proce-
dure [16,17], Multi-start and Iterated Local Search [18], Guided Local Search
and Variable Neighborhood Search [19] are – among others – often listed as

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
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examples of classical metaheuristics, and they have individual historical back-
grounds and follow different paradigms and philosophies [20].

In the present paper, the authors were motivated to use the paradigm of Gen-
eralized nets (GNs) [21–24] for description of the mentioned above metaheuristic
algorithms. GNs can open opportunities for different online applications; search
for optimal conditions; learning on the basis of experimental data; control on the
basis of expert systems, etc. Until now, the apparatus of GNs has been used as a
tool for a description of parallel processes in several areas – economics, transport,
medicine, bioprocess, computer technologies, etc. [25]. The facility of obtaining
GN-models demonstrates the flexibility and the efficiency of generalized nets as
modelling tools in different fields – biology and biotechnology [26–29], medicine
[30,31], optimization [32,33], neural networks [34,35], expert systems [36–38],
e-learning [39], intercriteria analysis [40], pattern recognition [41].

So far, GNs have been used as a tool for modelling of various metaheuristics:
GAs [42], ACO [44], ABC optimization [46], etc. In [45], six modifications of
simple GA have been proposed with different user defined order of implementa-
tion of selection, crossover and mutation operators. The monograph [44] contains
detailed description of the process of ACO with thorough tests performed for the
multiple knapsack problem. In [43], the theory of GNs has been used to describe
the FA. The developed model executes the algorithm procedure performing basic
steps and realizes an optimal search.

In [46], a universal GN-model that describes the metaheuristics CS, FA and
ABC algorithm is proposed. This research contributes to the open problem,
defined in [22], namely “to present each of the artificial intelligence areas by
GNs”. Therefore, a universal GN-model that describes any nature-inspired meta-
heuristic algorithm is searched. The aim of this study is to verify the so-proposed
universal GN-model with the metaheuristic Bat algorithm (BA).

BA is a relative new metaheuristics based on the echolocation behaviour
of bats [47]. This algorithm was proposed by Yang [48,49]. The capability of
echolocation of microbats is fascinating as these bats can find their prey and
discriminate between different types of insects even in complete darkness. Yang
[49] formulates the BA by idealizing the echolocation behavior of bats. The
resulting algorithm is simple in concept and simultaneously powerful in imple-
mentation [50].

The paper is organized as follows. In The Sect. 2 the Bat algorithm is
described. In Sect. 3 a GN-model of Bat algorithm is presented. In Sect. 4 the
considered Bat algorithm is described by the universal GN-model proposed in
[46]. Some conclusions are discussed in Sect. 5.

2 Bat Algorithm

BA, as proposed by [48,49], is based on the following idealized rules:

– All bats use echolocation to sense distance, and they also “know” the differ-
ence between food/prey and background barriers.
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– Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness L0 to search for prey. They can automat-
ically adjust the wavelength (or frequency) of their emitted pulses and adjust
the rate of pulse emission r in the range of [0, 1], depending on the proximity
of their target.

– Although the loudness can vary in many ways, for example the loudness could
vary from a positive L0 to a minimum constant value Lmin.

The new solutions xi(t) and velocities vi(t) at time step t are given by [48,49]:

vi(t) = vi(t − 1) + (xi(t) − x∗)fi, (1)

xi(t) = xi(t − 1) + vi(t), (2)

fi = fmin + (fmax − fmin)β, (3)

where β ∈ [0, 1] is a random vector drawn from a uniform distribution, x∗ is
the current global best solution that is located after comparing all the solutions
among all the n bats, fi is used to adjust the velocity change.

For the local search part, once a solution is selected among the current
best solutions, a new solution for each bat is generated locally using random
walk [48,49]:

xnew = xold + ηLi(t), (4)

Objective function f(x), x = (x1, . . . , xd)
T

Initialize the bat population xi (i = 1, 2, . . . , n) and vi
Define pulse frequency fi at xi

Initialize pulse rates ri and the loudness Ai

while (t < Max number of iterations)

Generate new solutions by adjusting frequency, and update

velocities

and locations/solutions [equations (2) to (4)]

if (rand > ri)

Select a solution among the best solutions

Generate a local solution around the selected best solution

end if

Generate a new solution by flying randomly

if (rand < Ai & f(xi) < f(x∗))
Accept the new solutions

Increase ri and reduce Ai

end if

Rank the bats and find the current best x∗
end while

Post-process results and visualization

Fig. 1. Pseudo-code of the Bat algorithm.
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where η ∈ [−1, 1] is a random number, Li(t) is the average loudness of all the
bats at this time step.

The loudness Li(t) and the rate ri(t) of pulse emission have to be updated
accord-ingly as the iterations proceed:

Li(t + 1) = αLi(t),
ri(t + 1) = ri(0)[1 − exp(−γt)],

(5)

where α and γ are constants, whose choice requires some experimenting.
For any 0 < α < 1, 0 < γ, we have [48,49]:

Li(t) → 0, ri(t) → ri(0), as t → ∞. (6)

The loudness Li(t) and emission rates ri(t) will be updated only if the new
solutions are improved, which means that these bats are moving towards the
optimal solution.

The BA can be presented as pseudo-code, shown in Fig. 1.

3 Generalized Net Model of the Bat Algorithm

The GN-model, describing the Bat algorithm, is presented in Fig. 2. The token
α enters GN through place l1 with an initial characteristic:

“BA parameters: n, Ngen, A, r, Qmin, Qmax, d, Lb, Ub”,

where n is the population size; Ngen is the number of generations; A is the loud-
ness; r is the pulse rate; Qmin and Qmax are frequency minimum and maximum;
d is the number of dimensions; Lb and Ub are the lower and upper limit/bounds
of the search parameters.

The form of the first transition of the GN-model is

Z1 = 〈{l1}, {l2, l3}, r1,∨(l1)〉,

r1 =
l2 l3

l1 true true
.

The token α is splited in two new tokens ε and χ. In place l2 the token ε
obtains the characteristic:

“Q (velocities), v (frequency), Qmin, Qmax, A, r, Lb, Ub”,

where Q = zeros(n, 1) and v = zeros(n, d).
In place l3 the token χ obtains the characteristic:

“Sol (solution initialization)”,

where Sol = Lb + (Ub − Lb)rand(1, d).
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Fig. 2. Generalized net model of Bat algorithm

The token δ enters GN through place l4 with an initial characteristic:

“Fun (objective function f(x))”.

The form of the second transition of the GN-model is:

Z2 = 〈{l2, l3, l4, l7, l9}, {l5, l6, l7}, r2,∨(l2, l3, l4)〉,

r2 =

l5 l6 l7
l2 false true false
l3 true false false
l4 true false true
l7 true false false
l9 false false true

.

In place l5 the tokens χ and δ are combined in a new token γ with the
characteristic:

“Fitness (fitness function), Fun, Sol”,

according to Fitness(i) = Fun(Sol(i, :)).
In place l6 the token ε keeps the same characteristic:

“Q, v,Qmin, Qmax, A, r, Lb, Ub”.

In place l7 the token γ keeps the same characteristic:

“Fitness, Fun, Sol”.

The form of the third transition of the GN-model is

Z3 = 〈{l5, l6}, {l8, l9}, r3,∨(l5, l6)〉,

r3 =
l8 l9

l5 true false
l6 false true

.
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In place l8 the token γ obtains a characteristic:

“Fitness, Fun, Solbest (current best solution)”

according to
[fmin, I] = min(Fitness);
Solbest = Sol(I, :).

The token ε keeps the same characteristic:

“Q, v,Qmin, Qmax, A, r, Lb, Ub”

in place l9.
The form of the fourth transition of the GN-model is

Z4 = 〈{l8, l9, l12}, {l10, l11, l12}, r4,∨(l8, l9)〉,

r4 =

l10 l11 l12
l8 false false true
l9 false false true
l12 W12,10 W12,11 true

.

where:

– W12,11 =“End of the BA is reached”;
– W12,10 = ¬W12,11.

for i = 1:n

Qnew(i) = Qmin + (Qmax −Qmin)rand;

vnew(i, :) = v(i, :) + (Sol(i, :) − Solbest)Q(i);

Solnew(i, :) = Sol(i, :) + v(i, :);

Solnew(i, :) = checkbounds(Solnew(i, :), Lb, Ub);

if rand > r

Solnew(i, :) = Solbest + 0.001rand(1, d);

end if

Fitnessnew = Fun(Solnew(i, :));

if (Fitnessnew <= Fitness(i))&(rand < A),

Sol(i, :) = Solnew(i, :);

Fitness(i) = Fitnessnew;

end if

if Fitnessnew <= fmin,

Solbest = Solnew(i, :)

fmin = Fitnessnew

end if

end if

Fig. 3. Pseudo-code of the Bat algorithm.
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The token γ obtains the following characteristic:s:

– in place l10 – “Fitnessnew, Solnew”;
– in place l11 – “Fitnessfinal, Solfinal”;
– in place l12 – “Qnew, vnew, F itnessnew, Solnew”,

according to the source-code below (Fig. 3).
In this transition, a new solution (Solnew) is generated by adjusting frequency

and velocities and by flying randomly. If termination condition of the BA is
reached the final best solution is obtained (place l11), otherwise the next iteration
is performed (place l10 and second transition).

4 Bat Algorithm Described by the Universal
Generalized Net

Here, the universal GN-model, proposed in [46] is used for description of a Bat
algorithm. The GN-model is presented in Fig. 4.

l1 l2

l3

Z1

l5

l6

Z2

l4

l8

l9

Z3

l7 l10

l11

Z4

Fig. 4. Universal generalized net model of population-based metaheuristics

Concidering a Bat algorithm the token χ enters GN through place l1 with
an initial characteristic:

“Bat algorithm parameters – n,Ngen, A, r,Qmin, Qmax, and problem
parameters – objective function, d, Lb, Ub)”.

The form of the first transition of the GN-model is

Z1 = 〈{l1}, {l2, l3}, r1,∨(l1)〉,

r1 =
l2 l3

l1 true true
.

The token χ is split in two new tokens δ and τ . In place l2 the token δ obtains
the characteristic:
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“Initial population, Sol = Lb + (Ub − Lb)rand(1, d); objective function value”.

The token τ obtains in place l3 the characteristic:

“Algorithm parameters and problem parameters”.

The form of the second transition of the GN-model is

Z2 = 〈{l2, l3, l4, l10}, {l4, l5, l6}, r2,∨(l2, l3, l4, l10)〉,

r2 =

l4 l5 l6
l2 true false false
l3 true false true
l4 true true false
l10 true true false

.

In place l4, the tokens τ and δ are combined in a new token ν. The token ν
obtains the characteristic:

“Evaluated modified population; objective function value”.

Here, based on the Bat algorithm, modifications of the initially generated
solution are made (by adjusting frequency and velocities and by flying randomly)
in order to find a better solution in the search space.

In place l5, the token ν obtains the characteristic:

“New population (solution)”.

The token τ (from place l3) keeps the same characteristic in place l6.
The form of the third transition of the GN-model is

Z3 = 〈{l5, l6}, {l7, l8, l9}, r3,∨(l5, l6)〉,

r3 =
l7 l8 l9

l5 true false true
l6 true true true

.

The token ν is split in two new tokens ε and β. In place l7, token ε obtains
the characteristic:

“Ranked solutions with corresponded objective function values”.

In place l9, token β obtains the characteristic:

“Worst solutions”.

The token τ (from place l6) keeps the same characteristic in place l8.
Here, based on each solution performance and defined objective function, all

solutions are ranked.
The form of the fourth transition of the GN-model is:

Z4 = 〈{l7, l8}, {l10, l11}, r4,∨(l7, l8)〉,
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r4 =
l10 l11

l7 W7,10 W7,11

l8 W8,10 W8,11

.

where:

– W7,10 = W8,10 = “End of the Bat algorithm is not reached”;
– W7,11 = W8,11 = ¬W7,10.

The token ε keeps the characteristic:

“Ranked solutions (population) with corresponded objective function values”

in place l10. In the end of algorithm, in place l11, the token ε obtains a new
characteristic:

“Best solution and objective function”.

It is shown that the proposed universal GN-model (Fig. 4) could be used for
description of the considered here Bat algorithm. The Bat algorithm is mod-
elled only through variation of the characteristic functions of the tokens in the
GN-model.

5 Conclusion

In this paper, the generalized nets theory is used to describe the Bat algo-
rithm. A GN-model of the basic steps of Bat algorithm is proposed. Moreover,
a verification of the universal GN-model for description of the population-based
metaheuristic algorithms is presented. Up to now some of the population-based
algorithms, namely Cuckoo search, Firefly algorithm and Artificial bee colony
optimization, have been described by universal GN-model and shown to do so
only by a variation of the characteristic functions of the tokens in their GN-
models. As a further step, the universal GN-model is verified here with the
metaheuristic Bat algorithm for global optimization. It is shown that the Bat
algorithm can be modelled by the universal GN-model based on a slight variation
of the characteristic functions. This is achieved because of the specific peculiari-
ties, and especially the universality of the GN theory. Such characteristics allow
already developed models to be expanded and/or easily modified resulting in
a new model, as well as ensures the compatible and integral representation of
various heterogenous paradigms in uniform mathematical modelling terms.

Future work will include development of GN-models of other metaheuristic
algorithms as Evolutionary computation, Particle swarm optimization, Glow-
worm swarm optimization, Bacterial foraging, etc. In addition to the further
verification of the universal GN-model for description of the population-based
metaheuristic algorithms, research will focus on the possibility for the universal
GN-model to be transformed to any of the developed GN-models of different
metaheuristic algorithms using the hierarchical operator H5 [24].
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Abstract. In this paper, an integrated insurer’s portfolio, which con-
sists of a few layers of insurance and financial instruments, is numerically
analysed. A future behaviour of such a portfolio is related to stochastic
processes (like a random interest rate yield and uncertain catastrophic
losses), therefore the Monte Carlo (MC) approach is applied. A special
attention is paid to a problem of a share of catastrophe bonds in such
a portfolio and to an analysis of an influence of an additional layer—
an external (e.g. governmental) help. Some important measures of an
insurer’s risk (like a probability of his bankruptcy) are then numerically
analysed. In considered examples, apart from strictly crisp sets of para-
meters, also fuzzy numbers are used to model an imprecise information
concerning the possible external help.

Keywords: Risk process · Insurance portfolio · Catastrophe bond ·
Monte Carlo simulations · Probability of ruin · Governmental help ·
Fuzzy numbers

1 Introduction

Nowadays, the insurers face the problem of catastrophic losses, which are caused
by earthquakes, tsunamis and other natural catastrophes. Therefore, a problem
of an estimation and an analysis of a probability of an insurer’s ruin is even more
significant and urgent. Moreover, the insurers apply new, financial (or, simulta-
neously, financial and insurance) instruments, which are intended to lower this
probability. A catastrophe bond (or a cat bond in short) is an example of such
an instrument (see, e.g., [8,10,11]). However, an issuance of additional instru-
ments changes a whole structure of an insurer’s portfolio. Then, a classical risk
process, which describes the cash flows of an insurer, should be also generalized
to take into account these additional layers of the portfolio. This new formula of
the risk process requires more complex approaches and supplementary numerical
simulations in order to estimate the probability of an insurer’s ruin and other
statistics, which are important for an insurer.
c© Springer International Publishing AG 2018
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In this paper, we continue a work, which was started in [13,14]. Then, the
generalized form of the classical risk process for the insurer’s portfolio is con-
sidered. A cat bond, which is issued by an insurer, and an external help are
examples of the layers in such a portfolio. Contrary to the classical approach,
we also assume that there is dependency between time and money, i.e., one unit
of money, which is paid now, has other value than the same unit, which will
be paid in the future. In the following, cash flows for the insurer’s portfolio are
analysed using Monte Carlo (MC) simulations.

A contribution of this paper is fourfold. Firstly, a special attention is paid
to a problem of a share of catastrophe bonds in the portfolio. An optimum
level of the issued bonds is an important factor for the insurer. A larger share
minimizes a probability of his bankruptcy, but it also minimizes expected profits
of the insurer. Therefore a relevant numerical analysis is conducted. Secondly,
a structure of the portfolio is further developed and an additional layer—an
external (e.g., governmental or foreign) help—is incorporated. This next layer
changes the mentioned generalized form of the classical risk process in a new
way. Thirdly, we consider both a probabilistic and an imprecise approach to a
value of such a help. In this second case, fuzzy triangular numbers are used to
model this external help. Fourthly, in order to directly compare some important
risk factors for the insurer, a method of a reduction of an estimation error is
applied.

This paper is organized as follows. In Sect. 2, the generalized version of the
classical risk process is introduced. Also an applied model of an interest rate
(the one–factor Vasicek model) is recalled there. Some notes about a possible
optimization procedure, which maximizes the cash flow for an insurer and min-
imizes his probability of a ruin, are included in Sect. 3. Section 4 is devoted to
a numerical analysis of some examples, which are close to practical situations.
Section 5 concludes the paper with some final remarks.

2 Risk Reserve Process and Its Generalization

Traditionally, in the insurance industry, a risk reserve process Rt is defined as a
model of the financial reserves of an insurer depending on time t, i.e.

Rt = u + pt − C∗
t (1)

where u is an initial reserve of the insurer, p is a rate of premiums paid by the
insureds per unit time and C∗

t is a claim process, which is given by

C∗
t =

Nt∑

i=1

Ci (2)

where C1, C2, . . . are iid random values of the claims. These claims are tradition-
ally identified with the losses Ui, which are caused by the natural catastrophes,
so we have Ci = Ui. There are also models, where the claims are only some part
of the losses, e.g.,

Ci = αclaimZiUi , (3)
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so αclaim ∈ [0, 1], Zi ∼ U [cmin, cmax], and Zi, Ui are mutually independent vari-
ables. The parameter αclaim describes a deterministic share of the considered
insurer in the whole insurance market (for the given region) and the random
variable Zi models a random part of the claim Ci in the loss Ui. In this case,
a non-informative random distribution, i.e. a uniform distribution U [cmin, cmax]
(for 0 ≤ cmin ≤ cmax ≤ 1), is used. Then, we have a process of the losses, which
is given by

N∗
t =

Nt∑

i=1

Ui (4)

If the assumption (3) is applied, it can lead to a hedging problem (see, e.g., [13]).
A process of a number of the claims Nt ≥ 0 is usually driven by a homoge-

neous Poisson process (HPP), or a non-homogeneous Poisson process (NHPP).
In this paper, we assume that a cyclic intensity function

λNHPP(t) = a + b2π sin(2π(t − c)) (5)

is used to model NHPP of the number of the claims Nt. The parameters of (5),
which are applied in the following part of the paper, were estimated in [2],
based on the data from the United States, provided by the Property Claim
Services (PCS) of the ISO (Insurance Service Office Inc.). Then we have a =
30.875, b = 1.684, c = 0.3396. Also, using a method described in [2], the value of
the single loss Ui is further modelled by a lognormal distribution with parameters
μLN = 17.357, σLN = 1.7643.

Because a non-constant intensity function (5) is applied, then the premium
in (1) is fixed as a constant function for some deterministic moment T (see
also [14] for further details), so

p(T ) = (1 + νp)ECi

∫ T

0

λNHPP(s)ds (6)

where νp is a safety loading (or security loading) of the insurer, which is usually,
in practical situations, about 10%–20%.

In the following, we consider a more complex insurer’s portfolio, which con-
sists of an additional layer—a special financial instrument, which is known as a
catastrophe bond (or a cat bond, see, e.g., [8,10,11,14]) Therefore, the classical
risk process (1) has to be generalized into a more suitable form, so that the cash
flows related to the cat bond can be taken into account.

In general, when a catastrophe bond is issued, the insurer pays an insur-
ance premium pcb in exchange for a coverage, when a triggering point (usually
some catastrophic event, like an earthquake) occurs. The investors purchase an
insurance–linked security for cash. The above mentioned premium and cash flows
are usually managed by a SPV (Special Purpose Vehicle), which also issues the
catastrophe bonds. The investors hold the issued assets, whose coupons and/or
principal depend on the occurrence of the mentioned triggering point. If such a
catastrophic event occurs during the specified period, then the SPV compensates
the insurer and the cash flows for the investors are changed. Usually, these flows
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are lowered, i.e. there is full or partial forgiveness of the repayment of principal
and/or interest. However, if the triggering point does not occur, the investors
usually receive the full payment from a cat bond (see, e.g., [11,13,14]).

Taking into account the described cash flows of a catastrophe bond, the
classical risk process (1) should be written as

RT = FVT (u − pcb) + FVT (p(T )) − FVT (C∗
T ) + ncbf

i
cb(N

∗
T ) , (7)

where f i
cb(N

∗
T ) is a payment function of the single cat bond for the insurer and

pcb is an insurance premium. We assume, that pcb is proportional to both a part
αcb of a whole price of the single catastrophic bond Icb, and to a number of the
issued bonds ncb, so that pcb = αcbncbIcb.

Moreover, in our setting (which is contrary to the classical approach, see also
[13,14]), a value of money depending on time is taken into account. Therefore,
FVT (.) denotes a future value of the cash flow in (7). In the following, to calculate
this future value, the one–factor Vasicek model

drt = κ(θ − rt)dt + σdWt (8)

is applied. The parameters for (8) are fitted in [1], so we get κ = 0.1179, θ =
0.086565, σ2 = 0.0004.

We can also enrich the considered portfolio and add some other layers (i.e.
financial or insurance instruments), e.g. a reinsurance contract (see [14] for
a more detailed discussion). But, in this paper, we focus only on a governmental
(or, e.g., foreign), external help. We assume, that this help is supplied only if the
losses surpass some given minimal limit Ahlp, and only with a fixed probability
phlp (i.e. Pr(H = 1) = phlp and Pr(H = 0) = 1 − phlp, where H is a binomial
variable, which indicates, if this external fund is used or not). Then, a value of
this help can be modelled by some function f i

cb(N
∗
T ), e.g. by a constant value. If

this external fund is incorporated into the generalized risk process (7), we get a
new formula

RT = FVT (u − pcb) + FVT (p(T )) − FVT (C∗
T ) + ncbf

i
cb(N

∗
T )

+I(H = 1, N∗
T ≥ Ahlp)fhlp(N∗

T ) , (9)

where I(.) is an indicator function. Easily seen, such a help is treated as an
additional source of funds by the insurer, because it lowers the overall losses and
mitigates his expanses.

3 Optimization Goals

In a classical problem statement, an insurer is interested in a minimization of a
probability of his ruin. For the given moment T , a probability of a ruin at the
end of time interval T is given as

φ(T ) = Pr(RT < 0) . (10)
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Moreover, an insurer wants to maximize an overall cash flow for his portfolio,
which is described by the generalized risk process (7) or (9). Therefore, in the
following, we focus on an analysis of these two characteristics. Because of a
stochastic and uncertain nature of (7) and (9), the MC approach is used to
estimate an expected value of (7) or (9), namely ERT . In practical situations,
an insurer can be also interested in an overall optimization of his portfolio. Then,
both the probability of the ruin and the expected value of the future cash flows
can be combined in one optimization goal, e.g.,

max(ERT − αpen Pr(RT < 0)) , (11)

where αpen is some penalty factor, which is related to an occurrence of a ruin, and
the maximum is taken for selected parameters of the portfolio (see, e.g., [3] for
other approaches). In order to solve the problem (11), a stochastic optimization
procedure can be necessary (see, e.g., [5]).

4 Numerical Analysis

As it was mentioned in Sect. 2, to model the trajectory of the process RT , we
apply NHPP with the intensity function (5) for the lognormal catastrophic losses.
As for a payment function f(N∗

T ) for a holder of the considered cat bond, a
piecewise linear function is applied (see [8,10,11,14] for a necessary introduction
and an additional discussion), so

f(C∗
T ) = Fv

(
1 −

n∑

i=1

min(N∗
T ,Ki) − min(N∗

T ,Ki−1)
Ki − Ki−1

wi

)
(12)

where Fv is a face value of the cat bond, w1, . . . , wn > 0 are payoff decreases,
and 0 ≤ K0 ≤ K1 ≤ . . . ≤ Kn are the triggering points. We set Fv = 1 (i.e. one
monetary unit assumption is used), and

K0 = Qloss
NHPP−LN(0.75),K1 = Qloss

NHPP−LN(0.9) , (13)

where Qloss
NHPP−LN is x-th quantile of the cumulated value of the losses (for

the considered NHPP and the lognormal distribution of the single loss). The
payoff decrease is equal to w1 = 1 and one year time horizon is applied, so
T = 1. Then, if after one year, the cumulated value of losses surpasses K1, the
bond holder receives nothing. To find the price of such a catastrophe bond,
we apply the method introduced in [8,10,11,14]. It requires analytical for-
mulas and additional Monte Carlo simulations. Then, the mentioned price is
estimated as Icb = 0.809896 (see also [8,10,11,14] for a more detailed discus-
sion), so such a value will be used further in this paper. We also assume, that
u = Qloss

NHPP−LN(0.25), i.e. the initial reserve of the insurer is equal to 0.25-th
quantile of the cumulated value of the claims, and that αcb = 0.3 (so 30% of the
cat bond price is covered by the insurer) and νp = 0.1 (i.e. the safety loading
for the premiums is equal to 10%). For a better readability of results, the losses
(hence, the claims also) are scaled in millions of money units.
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4.1 Number of the Issued Cat Bonds

We start from an analysis of an influence of the number of the issued bonds
ncb on some key factors for the insurer, like a probability of his ruin. For a
larger share of the cat bonds in the portfolio, the potentially catastrophic losses
have lower impact on the insurer. This directly leads to the lower probability
of his bankruptcy. On the other hand, the larger share also reduces the overall
cash flows in the portfolio, even if the issued catastrophe bond will not be used
afterwards (because a fixed triggering point of this cat bond is not even achieved).
Hence, an issuance of the cat bonds works as an alternative way of a reinsurance
(see also [14] for a comparison of these two approaches). Therefore, the insurer
should choose an optimal level of the share of the catastrophe bonds in his
portfolio. It should be not too large (because it does not maximize the expected
insurer’s profits) and not too low (because it leads to the higher probability of
the bankruptcy at time T ). In [13,14] there is no such an exact analysis.

In order to compare simulated outcomes for different values of ncb, it is
necessary to minimize other possible sources of variability. Therefore, to reduce
a variance (and, furthermore, an estimation error), for an each value of ncb

the same set of n = 1000000 simulated trajectories is used. We also analyse
three possible kinds of dependencies between the claims and the losses, namely
Ci = Ui (which is denoted further as Example I), Ci = 0.5Ui (Example II, in
this case each claim is always equal to 50% of the loss) and Ci = ZiUi, where
Zi ∼ U [0, 1] (Example III, the loss is transformed to the claim using a standard
uniform distribution). Then, Example II reflects a situation, when the insurer
has 50% of a whole insurance market, and Example III means, that there is no
strict information about a level of such a share. Then, only a very general, non-
informative statistical approach can be used (see [13] for a different approach to
this problem).

Our analysis is done for a wide range of possible values of ncb, which allows
the insurer to directly compare his different possibilities in a construction of the
portfolio. The estimated averages of the final value of the portfolio R̄T , as a
function of ncb, are plotted in Fig. 1 (outcomes for Example I are denoted by
circles, for Example II—by squares, and for Example III—by rhombuses). They
are almost linearly decreasing functions, which behave in a very similar way.
However, an observed reduction of the estimated expected value is not very fast,
e.g. in Example I for ncb = 50 we have R̄T = 3487.55, and for ncb = 1600 (i.e.,
the share of the cat bonds in such a portfolio is 32 times higher than in the
previous case) we get R̄T = 3349.06 (only about 4% reduction).

It should be noted, that the averages R̄T in Example II and Example III are
very similar, but still they are not completely equal. It means, that even if an
expected value of the loss in Example III is the same as a deterministic part
of Ui in Example II, the outcomes are significantly different, which is rather in
contrary to an “intuitive thinking”.

Also the estimators of the ruin probabilities φ̂(T ) can be found in the similar
way, using numerical simulations (see Fig. 2, the relevant plots are labelled in
the same way, as previously). These probabilities are non-linearly decreasing
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Fig. 1. Estimated averages of the final value of the portfolio (in Example I–
Example III)
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Fig. 2. Estimated probabilities of the final ruin (in Example I–Example III)

functions of ncb. But now, the observed reduction for the increasing values of
ncb is more significant. In Example I, for ncb = 50 we have φ̂(T ) = 10.589%,
and for ncb = 1600 we get φ̂(T ) = 7.448% (almost 30% reduction of the ruin
probability).

Because R̄T and φ̂(T ) behave in a different way (linear vs. non-linear) as the
functions of ncb, then the outcomes, which are summarized in Figs. 1 and 2, can
be directly merged using the optimization function (11) (or other one). Then,
the optimal level of the issued cat bonds for the insurer can be directly found.
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4.2 Influence of the External Help

We further develop our analysis of the insurer’s portfolio and incorporate an
additional layer—the external help (see (9)). As it was mentioned, the payment
function for this help fhlp(N∗

T ) can be modelled in various ways. In this paper,
a function similar to a classical excess-of-loss policy is adopted. Then, we have

fhlp(N∗
T ) =

{
Bhlp − Ahlp if N∗

T ≥ Bhlp

N∗
T − Ahlp if Bhlp ≥ N∗

T ≥ Ahlp
, (14)

where Bhlp is a maximum limit for this help. Formulae (14) is, in some way,
similar to commonly used reinsurance contracts (see, e.g., [14]), but without
additional costs incurred by an insurer.

Let us suppose, that ncb = 1000, the claims are equal to the losses, phlp = 1
(i.e., the help is always available, if the minimum limit of the losses is surpassed),
and that Ahlp = Qloss

NHPP−LN(0.95), Bhlp = Qloss
NHPP−LN(0.99), so the minimal limit

for the external help is equal to 0.95-th quantile of the cumulated value of the
losses and the maximal limit is given by 0.99-th quantile. Such a set of the
parameters constitutes Example IV. Then, using simulations for the same set of
trajectories as in Example I, the relevant outcomes can be easily compared. The
average for the final value of the portfolio in Example IV is equal to 3598.21,
comparing to 3402.67 in Example I (about 5.75% more in Example IV). However,
a difference in the ruin probability is less visible—only about 0.01% (8.488% in
Example IV vs. 8.498% in Example I).

Of course, in practical situations, Ahlp and Bhlp can be given as imprecise
values, not as strictly precise information. For example, the minimum limit can
be stated as “about Qloss

NHPP−LN(0.95)”. Such inexact data can be modelled with,
e.g., fuzzy sets, in contrary to an application of real numbers (i.e., “exact” infor-
mation, see [6,7,9,11,13] for examples of applications of the fuzzy numbers in
some areas). Fuzzy sets can be also combined with a probabilistic approach, and
this leads to random fuzzy variables (see, e.g., [4] for a more detailed review).
Therefore, in the next case—Example V—we use triangular fuzzy numbers to
describe Ahlp and Bhlp, and analyse influence of such an assumption on the
simulated output. We restrict ourselves to the triangular fuzzy numbers, but
the presented further approach can be also used for other kinds of L–R fuzzy
numbers.

Let ã = [aL, aC , aR] denote a triangular fuzzy number, where aL is its left
end of a support, aR—its right end of a support, and aC—a core. Then, ã[α] =
[aL[α], aR[α]] is an α-cut of ã, if α ∈ [0, 1].

We assume that

Ãhlp = [Qloss
NHPP−LN(0.95)− 200, Qloss

NHPP−LN(0.95), Qloss
NHPP−LN(0.95)+200] (15)

(so, the minimum limit of the external help is 0.95-th quantile ±200), and, in
the same way,

B̃hlp = [Qloss
NHPP−LN(0.99)−200, Qloss

NHPP−LN(0.99), Qloss
NHPP−LN(0.99)+200] . (16)
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Then, simulations for consecutive α-cuts of Ãhlp and B̃hlp can be performed
to obtain an outcome (i.e. an approximation of a fuzzy number) for a desired
function f(x). During the MC simulations, α is changed from some starting value
α0 ≥ 0 up to an upper bound α1 ∈ (α0, 1] with an increment Δα > 0. After
an evaluation of the left and right end points of the different α-level sets of the
considered function of the output, i.e. [f̃L[α](x), f̃R[α](x)], the obtained intervals
are put on one another, so they form an approximation of a final fuzzy outcome
f̃(x). During this procedure, we should keep in mind, if f(x) is an increasing or
decreasing function of the fixed x, in order to select relevant left or right ends of
the α-cuts for Ãhlp and B̃hlp (see [11–13] for further details of this approach).

The estimated average of the final value of the portfolio forms a L–R fuzzy
number, which is almost a triangular fuzzy number (see Fig. 3, a plot labelled
with circles). Its support is equal to [3586.59, 3610.27] (respectively, 5.5% and
6.1% more than in Example I) and its core is given by the relevant value from
Example IV. A supplier of the external help can be also interested in an evalua-
tion of a probability of using such a help. This value can be directly estimated,
if the introduced approach is applied (see Fig. 4, a plot labelled with circles),
and it is also a L–R fuzzy number. Its support is equal to [4.65%, 5.141%] and
its core is given by 4.88%.

3500 3520 3540 3560 3580 3600
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0.6

0.8
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Fig. 3. Estimated averages of the final value of the portfolio (in Example V and Exam-
ple VI)

An average is an important measure, however, a practitioner can be also
interested in a more detailed analysis of other characteristics of the portfolio,
e.g., a statistical behaviour of its final value. An example of such a study can be
seen in Fig. 5, where a quantile plot for the final value of the insurer’s portfolio
is plotted. In this case, the quantiles for α = 0 of Ãhlp and B̃hlp are calculated,
using the approach described previously. Main differences between the portfolios
are seen in Fig. 5 only for lower ranks of the quantiles, e.g., for 0.01-th quantile
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Fig. 4. Estimated probabilities of using the external help (in Example V and Exam-
ple VI)

we have the final value of the portfolio −2722.21 versus −2247.15 (the difference
is equal to 475.06), and for 0.99-th quantile we have the final value 7224.41 versus
7224.56 (so the difference is only 0.15). Then, a major effect of the external help
is related rather to the “really catastrophic” events, which are statistically rare
(only about 5% cases).
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Fig. 5. Quantile plot of the final value of the portfolio (Example V)

In practical situations, we are not completely sure, if the external help will be
supplied, i.e., we have phlp ≤ 1. Therefore, we analyse a case (which is labelled
further as Example VI), when phlp = 0.5 (so, there is 50% chance, that the
external help can be used in a relevant situation) and all of the other parameters
are the same as in Example V. Then, the estimated average of the final value
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of the portfolio and the probability, if the external help is used, can be seen in
Figs. 3 and in 4 (plots labelled with squares). Easily seen, both of these fuzzy
numbers are shifted to a left hand side, and their supports are narrower than in
Example V.

5 Conclusions

In this paper, we focus on the analysis of the influence of the catastrophe bonds
and the external help on the behaviour of the integrated insurer’s portfolio.
In order to evaluate the probability of the ruin and other important factors
for the insurer, Monte Carlo simulations, together with the reduction of the
estimation error, are applied. Then, various scenarios for the insurer’s portfolio
with different parameters are analysed. The outcomes from these examples are
compared, using statistical measures. Apart from the crisp approach, the fuzzy
numbers are also used to model an imprecise information, like the borderline
limits of the external help.
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Abstract. Association rules and fuzzy association rules are vastly stud-
ied topics. Various measures for quantifying a quality of a (fuzzy) asso-
ciation rule were proposed in the past. In this article, we survey existing
and propose some new quality measures for the whole rule bases of fuzzy
association rules.

Keywords: Global measures · Fuzzy rules · Fuzzy associations · Data
mining · Rule bases

1 Introduction

Association rules belong to an exploratory part of data mining and pattern
recognition. Association rule is a formula of the form A ⇀ C, where A is called
antecedent and C is a consequent, and which denotes some implicative relation-
ship between A and C. Where the relationship is not directional, the rules have
the form A ∼ B. Also, other rule types were defined in the literature. Association
analysis is a process for automatic search of such rules in data. In this paper, we
focus on implicative association rules.

The first who come with the idea of association analysis was Hájek et al. in
the late 1960s. They formulated GUHA (General Unary Hypotheses Automa-
ton) method [1], a very general theory for pattern recognition and automatic
hypotheses formation. For a more recent survey, see [2] or a book treating its
part called Observational Calculi [3].

A very similar approach to the original GUHA method was independently re-
invented by Agrawal [4] in 1993. Fuzzification of association rules was proposed
later by many authors – a very good survey might be found in [5].

The so-called linguistic summaries, which were independently proposed by
Yager in [6] (even before Agrawal) and further developed by Kacprzyk [7], are
very closely related to fuzzy association rules. There is a significant overlap
between these two research directions. For example, support in association rules
is in fact degree of focus in linguistic summaries [8].

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7 24
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In all of the mentioned research, a lot of attention was given to measuring and
evaluating the quality of a single association rule A ⇀ C. However, there is not
much developed to measure the quality of a set of fuzzy association rules (linguis-
tic summaries) as a whole. There are some generalizations made for classification
rules to fuzzy classification rules in [9], but the case with fuzzy consequent is
not treated. Furthermore, some measures for sets of IF-THEN rules of fuzzy
inference systems are proposed in [10], but only with stress on interpretability.
Otherwise, there is not much done for measuring a quality of the sets of fuzzy
rules (fuzzy associations).

In this paper, we survey the work that was done so far, both for crisp and
fuzzy rules, and propose some generalizations. We believe that it is very useful
to measure the quality of a rule base as a whole. In certain contexts, the quality
may be understood as interpretability of the rules, whereas in other contexts, it
might be the coverage of data, i.e. how big part of data is summarized in the
rule base or what fraction of data is not described by the rules. There are many
different approaches for capturing the rule base quality, and we provide here a
varied set of measures that might be used and successfully implemented.

In this text, we concentrate on rule bases of fuzzy associations. We use lan-
guage that is usual for the audience focusing on association analysis. However,
we are convinced that a researcher in linguistic summaries might also benefit
from this survey.

Please note also that the word measure will be used in this study rather
loosely and not all measures presented and proposed here are fulfilling axioms
of measure in the mathematical sense.

Our contribution is organized in the following way. In Sect. 2 we provide
and review definitions of basic notions. Then in Sects. 3 through 6 we define
various measures of rule bases divided to different classes and finally in Sect. 7
we conclude.

2 Preliminaries

Let O = {o1, o2, . . . , oN}, N > 0, be a finite set of objects and A =
{a1, a2, . . . , aM}, M > 0, be a finite set of attributes. Dataset D is a mapping
that assigns to each object o ∈ O and attribute a ∈ A a degree D(a, o) ∈ [0, 1],
which represents the intensity of assignment of attribute a to object o. For fixed
D, we can treat the attribute a as a predicate, which assigns a truth value
a(o) ∈ [0, 1] to each o ∈ O. Similarly for each subset X ⊆ A of attributes, we
define a predicate X(o) by using a t-norm ⊗ as follows:

X(o) =
⊗

a∈X

a(o). (1)

T-norm ⊗ is a generalized logical conjunction, i.e. a function [0, 1]×[0, 1] → [0, 1]
which is associative, commutative, monotone increasing (in both places) and
which satisfies the boundary conditions α ⊗ 0 = 0 and α ⊗ 1 = α for each
α ∈ [0, 1]. Some well-known examples of t-norms are for α, β ∈ [0, 1] as follows:
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– product t-norm: αβ;
– minimum t-norm: min(α, β);
– �Lukasiewicz t-norm: max(0, α + β − 1).

Since we use X to represent a crisp set of attributes as well as a predicate with
fuzzy truth value, we need to define two types of cardinalities: |X| will represent
a cardinality of the crisp set X and |X|Σ will represent the sigma-count derived
from (1) as follows (Table 1):

|X|Σ =
∑

o∈O
X(o).

Table 1. A table representing an initial dataset D where eij = aj(oi).

a1 a2 . . . am

o1 e11 e21 . . . em1

o2 e12 e22 . . . em2

...
...

... . . .
...

oN e1N e2N . . . emN

Association rule is a formula A ⇀ C, where A ⊆ A is the antecedent and
C ⊆ A is the consequent. It is natural to assume A ∩ C = ∅. We have often also
|C| = 1. A finite set of association rules is called as rule base.

So far, a lot has been written about association rules and their properties
[1,4,5,11]. Both crisp and fuzzy association rules were considered. Especially,
the algorithms for automated extraction of interesting rules from data have been
developed in past research. These algorithms are mainly based on the traversal
through the search space where various combinations of antecedents and conse-
quents are examined. However, a fundamental problem of the search is how to
define and measure the interestingness of a rule. Perhaps the most commonly
known indicators of rule quality are the support and confidence, which are defined
for a fuzzy association rule A ⇀ C as follows:

supp(A ⇀ C) =
|A ∪ C|Σ

|O| =
1
N

∑

o∈O
A(o) ⊗ C(o), (2)

conf(A ⇀ C) =
|A ∪ C|Σ

|A|Σ =
∑

o∈O A(o) ⊗ C(o)∑
o∈O A(o)

. (3)

The search for fuzzy association rules is then driven by the user defined thresh-
olds suppt, conft ∈ [0, 1] and only rules with support and confidence above the
given thresholds are included into the resulting rule base.

There exist many other rule quality measures. An overview of them can
be found in [12]. Fuzzy generalization of other measures besides support and
confidence (e.g. lift, leverage or conviction) is discussed in [13,14].
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Although we set considerable constraints on the quality of obtained rules, it
is quite usual that the association rules extracting process ends up with a rule
base containing hundreds or thousands of rules. A natural question is then how
to measure the quality of the obtained rule base as a whole. Surprisingly, not so
much work has been done so far on that topic and this is where our paper tries
to fill the gap: in the subsequent sections, we try to outline several definitions of
rule base quality measures.

3 Statistical Characteristics of Rule Quality Measures

An obvious way to measure the differences between sets of rules is via various
statistics of known quality measures for particular rules. Let R = {r1, r2, . . . , rK}
be a rule base consisting of K > 0 association rules. Let q be a rule quality
measure. (For instance, q could be support, confidence, lift or any other measure.)
As long as the domain of q is a subset of real numbers, we can define, for any
rule base R, a vector QR = (q(r1), q(r2), . . . , q(rK)) and characterize the quality
of the rule base R by describing the distribution of values in QR, e.g. by:

– arithmetic mean and standard deviation;
– median and quartiles;
– minimum and maximum;
– graphically, by depicting a histogram of values in QR, or a box-plot.

Moreover, two rule bases R1 and R2 may be compared using the appropriate
two-sample statistical test to evaluate the significance of their difference. (Per-
haps the Wilcoxon rank sum test would be the most appropriate as it does not
require the values to be normal.)

4 Inference Driven Rule Base Measures

The utility from the base of association rules may be two-fold. The association
rules may be analyzed directly by the user, who may transform them into some
useful knowledge. Alternatively, the rule base may serve as an input to some
inference mechanism in order to perform automatic classifications or predictions
on unseen future data.

A set {y1, . . . , yK} of target attributes usually forms a (fuzzy) partition on O.
The rest of attributes (A � {y1, . . . , yK}) are considered as inputs. The process
of creation of rule base R usually assumes the set O of objects to be split into
two disjoint parts: training Otrain and testing Otest. The training set is used to
create the rule base, i.e. a set of rules A ⇀ {yk} for k ∈ {1, . . . , K}. (There exist
strategies of how to split the source dataset into training and testing parts, e.g.
cross-validation or leave-one-out strategy, see [15, Chap. 6.13] for more informa-
tion.) The testing part of objects can then be used to evaluate the quality of
predictions.
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Accordingly, to the target, we distinguish at least between two types of pre-
dictions: classification (a prediction of a categorical variable) and regression (a
prediction of a numerical variable).

In regression, the inference mechanism I employs some defuzzification
method to obtain a numeric value ŷ(o) as a result. The inferred ŷ(o) can be
compared with known y(o) (for each o ∈ Otest) by computing some error mea-
sure, e.g. root mean squared error,

RMSE =
√

1
|Otest|

∑

o∈Otest

(y(o) − ŷ(o))2,

or other such as absolute error, mean absolute error, or precision in the case of
classification [15, Chap. 6.12].

It might be computationally expensive to run the inference for all objects
in Otest, as pointed out in [16]. For that purpose, a similarity measure of rule
bases was proposed in [16]. It was shown there that the proposed similarity was
consistent with the difference in RMSE.

A similar investigation was done in [8], where the similarity between linguistic
summaries was proposed.

This leads us to a task how to evaluate a rule base without using it in the
inference mechanism I at all.

5 Rule Base Measures Based on Singe Rule Validity

In classification, we may use error measures designed for crisp classifiers and
generalize them for fuzzy rules as proposed by Holeňa in [9] who defines the
inaccuracy (also called Brier score) and imprecision based on cardinalities of
fuzzy subsets of O as follows:

Inacc = 1− |O+|Σ − |O−|Σ
|O| , Impr1 = 1− |O+|Σ

|O| , Impr2 = 1− |O+|Σ
|OR|Σ , (4)

where O+, O− and OR are fuzzy subsets of O such that:

– O+(o) is a degree in which a rule base R is valid for o,
– O−(o) is a degree in which a rule base R is not valid for o,
– OR(o) = max{A(o) : (A ⇀ C) ∈ R}.

Holeňa’s approach [9] requires a definition of arbitrary validity of rule
(A ⇀ C) ∈ R for object o ∈ O, denoted with (A ⇀ C)(o). Evaluation of
this notion is immaterial for his generalization, and the reader can imagine e.g.
fuzzy implication there. Accordingly to [9], three variants of rule base validity
were defined based on:

1. simultaneous validity of all covering rules,

O+ = {o ∈ O : OR(o) > 0 and ∀(A ⇀ C) ∈ R : A(o) ⊗ (A ⇀ C)(o) = A(o)},

O− = {o ∈ O : OR(o) > 0 and ∃(A ⇀ C) ∈ R : A(o) ⊗ (A ⇀ C)(o) < A(o)},
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2. the validity of the majority of covering rules,

O+ = {o ∈ O : OR(o) > 0 and
∑

(A⇀C)∈R

A(o) ⊗ (A ⇀ C)(o) >
∑

(A⇀C)∈R

A(o) ⊗ ¬(A ⇀ C)(o)},

O− = {o ∈ O : OR(o) > 0 and
∑

(A⇀C)∈R

A(o) ⊗ (A ⇀ C)(o) ≤
∑

(A⇀C)∈R

A(o) ⊗ ¬(A ⇀ C)(o)},

3. and the relative validity of covering rules,

O+(o) =

∑
(A⇀C)∈R A(o) ⊗ (A ⇀ C)(o)

∑
(A⇀C)∈R A(o)

,

O−(o) =

∑
(A⇀C)∈R A(o) ⊗ ¬(A ⇀ C)(o)

∑
(A⇀C)∈R A(o)

.

Note that the sets O+ and O− are always crisp in the first two cases, and fuzzy
in the third case. Crisp definitions of O+ and O−, called “Boolean” in [9], made
sense for crisp consequents in fuzzy classification. However, we propose here their
possible fuzzification using a concept of fuzzy equality:

4. the minimal validity of all covering rules, where

O+(o) = min
A⇀C

{
1 − |A(o) ⊗ (A ⇀ C)(o) − A(o)|},

O−(o) = 1 − O+(o)

if OR(o) > 0, and
O+(o) = O−(o) = 0

otherwise.

In this way, we can avoid unnatural crisp behavior when all rules have validity 1
and only one rule has validity 0.9 for a particular object. Similarly, we can fuzzify
the validity of the majority of covering rules to the validity of Σ-majority in the
following way:

5. the validity of Σ-majority of all covering rules, where

O+(o) = min

{
1,

∑
(A⇀C)∈R A(o) ⊗ (A ⇀ C)(o)

∑
(A⇀C)∈R A(o) ⊗ ¬(A ⇀ C)(o)

}
,

O−(o) = 1 − O+(o)

if OR(o) > 0, and
O+(o) = O−(o) = 0

otherwise.
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In addition to quality measures (4), we can use the variants of O+ and O−

to provide a novel definition of rule base support and rule base confidence:

rbsupp =
|O+|
|O| ,

rbconf =
|O+|

|O+| + |O−| .

Even other interestingness measures might be generalized to the rule bases.
However, it is not yet clear whether it is a reasonable direction. Further theo-
retical and empirical study would be appropriate here.

All of the above rule base quality measures might be used in rule base reduc-
tions. This leads to the last class of measures that were already used in rule base
reduction.

6 Coverage-Based Measures

Coverage-based measures quantify the amount of source data or volume of input
space that are in some way touched with the rules in the rule base.

A dataset coverage by antecedents introduced in [17] measures the fraction
of data, for which some antecedent of rules from given rule base gets fired:

acov(R) =
|OR|Σ

|O| . (5)

The probabilistic coverage, introduced in [18], estimates the pcov(R) proba-
bility of firing a rule from rule base R on random input. Let ι ∈ I represent an
input vector from an (infinite) space I of all possible inputs and let p(ι) repre-
sents a probability density function on I. (Obviously, O ⊆ I.) The rule base R
splits the input space I into two parts: I+ denoting inputs, for which there is a
rule in R that fires, and I− denoting the rest. Thus I = I+∪I− and I+∩I− = ∅.
The probabilistic coverage pcov(R) then equals to

pcov(R) = P (I+) =
∫

I+
p(ι)dι.

In [18], pcov(R) is simply estimated with

pcov(R) =
|O0

R|
|O| , (6)

where
O0

R = {o ∈ O : OR(o) > 0}.

Both acov(R) and pcov(R) were compared in [18]. Also, rule base reduction
methods based on these two coverage measures were empirically evaluated. Both
methods find in certain sense locally optimal subsets of rule bases and thus each
method was winning on different data sets. For more details see [17,18].
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7 Conclusion

We have surveyed, explored and generalized various rule base interestingness
and quality measures. We have omitted to discuss the interpretability measures
in [10], which are even in our broad discussion a little bit out of our scope.
We hope we have provided such measures that correlate with the quality of
inference mechanism, in which the measured rule base will be used, or that
somehow summarize the quality of particular rules in the base. Interpretability
for sure does not correlate with accuracy and is rather contrary to precision.

In the future, we would like to focus our research on the study of the prop-
erties of the rule base quality measures, to compare them, and to highlight their
similarities, differences, benefits and drawbacks. Also, an experimental studies
are needed here to obtain a feedback from real world applications.

We hope to inspire readers to further investigation of the various classes of
measures proposed here.

Acknowledgment. This work was supported by the NPU II project LQ1602
IT4Innovations excellence in science.

References
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5. Ralbovský, M.: Fuzzy GUHA. Ph.D. thesis, University of Economics, Prague (2009)
6. Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69–86

(1982)
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10. Gacto, M.J., Alcalá, R., Herrera, F.: Interpretability of linguistic fuzzy rule-based

systems: an overview of interpretability measures. Inf. Sci. 181(20), 4340–4360
(2011)

11. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB 1994, pp. 487–499. Morgan Kaufmann Publishers Inc., San
Francisco (1994)

12. Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM
Comput. Surv. (CSUR) 38(3), 9 (2006)



276 P. Rusnok and M. Burda

13. Burda, M.: Lift Measure for Fuzzy Association Rules, pp. 249–260. Springer Inter-
national Publishing, Cham (2015)

14. Burda, M.: Interest measures for fuzzy association rules based on expectations of
independence. Adv. Fuzzy Syst. 2014, 2 (2014)

15. Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco (2005)

16. Li, H., Dick, S.: A similarity measure for fuzzy rulebases based on linguistic gra-
dients. Inf. Sci. 176(20), 2960–2987 (2006)
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Abstract. In this paper a new method for Modular Granular Neural Network
(MGNN) optimization with a granular approach is presented. A Particle Swarm
Optimization technique is proposed to perform the granulation of information
with a fuzzy dynamic parameters adaptation to prevent stagnation. The proposed
fuzzy inference system seeks to adjust some PSO parameters such as w, C1 and
C2 to ensure that the parameters have adequate values depending on the current
behavior of the particles. The objective of the proposed PSO is design optimal
MGNN architectures. The modular granular neural networks are applied to
human recognition based on iris biometrics, where a benchmark database is used
and the objective function in this work is the minimization of the error of
recognition.

1 Introduction

The combination of two or more intelligent techniques have allow to generate powerful
intelligent systems overcoming limitations that each technique has individually [20,
21]. Nowadays, there are many works performing this kind of systems, where good
results have been shown. Techniques such as fuzzy logic [25], neural networks [7], data
mining [22], and granular computing [24], among others, have important parameters
that depending of their values the final results can be affected. To perform the correct
establish of parameters there are other important techniques known as optimization
techniques, among the most important are: Genetic Algorithm (GA) [8], Particle
Swarm Optimization (PSO) [11], Ant Colony Optimization (ACO) [5], Cuckoo
Optimization Algorithm (COA) [17], Harmony Search (HS) [6], Gravitational Search
Algorithm (GSA) [18], Bee Colony Optimization (BCO) [13]. In this paper different
intelligent techniques are combined such as neural networks, fuzzy logic and particle
swarm optimization. The proposed method was applied to human recognition based on
iris biometrics. Optimizing some parameters of MNN such as; number of sub modules,
percentage of information for the training phase and number of hidden layers (with
their respective number of neurons) for each sub module and learning algorithm, the
objective function the minimization of the error of recognition. This paper is organized
as follows: The basic concepts used in this work are presented in Sect. 2. Section 3,
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the general architecture of the proposed method is shown. Section 4 presents experi-
mental results and in Sect. 5, the conclusions of this work are presented.

2 Basic Concepts

In this section to understand the proposed method, the basic concepts used in this
research work are presented.

2.1 Modular Neural Networks

A Modular Neural Network (MNN) consists of several modules (artificial neural net-
works), where each module carrying out one sub-task of a global task and is based on
the principle of divide and conquers. Each module works independently in its own
domain and is build and trained for a specific subtask. The simpler subtasks are then
accomplished by a number of the specialized local computational systems or models
which are integrated together via an integrating unit [14]. The learning mode can be
supervised or unsupervised [21]. This kind of neural network has a wide application
area such as: pattern recognition, function approximation, clustering or time series
prediction [1].

2.2 Fuzzy Logic

The term fuzzy logic was introduced in 1965 by L. Zadeh. Fuzzy logic (FL) has the
ability to mimic the human mind to effectively employ modes of reasoning that are
approximate rather than exact. This technique is a useful tool for modeling complex
systems and deriving useful fuzzy relations or rules [15, 25]. The basic structure of a
fuzzy inference system consists of three conceptual components: a rule base, which
contains a selection of fuzzy rules, a database which defines the membership functions
used in the rules, and a reasoning mechanism that performs the inference procedure [3].
These intelligent techniques have been successfully applied in different areas such as
detection of edges, feature extraction, classification, and clustering [10, 12].

2.3 Granular Computing

L. Zadeh originally proposed Granular computing (GrC). A granule may be interpreted
as one of the numerous small particles forming a larger unit [23], these granules are
collections of entities that usually originate at the numeric level and are arranged
together due to their similarity, functional or physical adjacency, coherency, or the like
[9]. This concept has been applied in relevant fields such as bioinformatics, e-Business,
security, machine learning, data mining, cluster analysis, databases and knowledge
discovery [2, 16].
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2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was developed by Kennedy and Eberhart in 1995
[11], this optimization technique is based on the social behaviors of a flock of birds or a
schooling fish. This algorithm doesn’t have any leader in their group or swarm, unlike
other algorithms. The flocks achieve their best condition simultaneously through
communication among members who already have a better situation or position. The
member of the flock with better condition or position will inform it to its flocks and the
others will move simultaneously to that place. Particle swarm optimization consists of a
swarm of particles, where particle represent a potential solution [19].

3 Proposed Method

The proposed method consists in design optimal architectures of MGNNs using a PSO
with a fuzzy dynamic parameter adaptation to prevent stagnation. The main idea is to
find an optimal granulation of the information and optimal MGNNs architectures
minimizing the error of recognition. The optimization algorithms seeks an optimal
number of sub modules or granules, having as search space up to “m” sub modules or
granules, percentage of information for the training phase, number of hidden layers
(with their respective number of neurons) for each sub module and learning algorithm.
Figure 1 shows the architecture of proposed method for MGNNs optimization.

The minimum and maximum values used for the MGNNs optimization are shown
in Table 1. Those parameters are used to establish the search space of each opti-
mization technique, for this work, the database used is described later.

Fig. 1. Architecture of proposed method for MGNN optimization
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For the learning algorithm, 3 backpropagation algorithms are used to perform the
modular neural networks simulations: Gradient descent with scaled conjugate gradient
(SCG), Gradient descent with adaptive learning and momentum (GDX) and Gradient
descent with adaptive learning (GDA).

3.1 Particle Swarm Optimization with Fuzzy Dynamic Parameters
Adaptation

Particle swarm optimization has important parameters that help the convergence
towards an optimal result, for example: The w parameter can facility exploration and
exploitation depending of its value. The values of C1 and C2 are the cognitive and social
components that influence the velocity of each particle. While w is a decreasing value,
C1 and C2 have fixed values during an evolution. These parameters are usually ini-
tialized: to trial and error, depending of our experience or depending area of application.

The proposed PSO seeks to adjust these parameters depending of the actual popu-
lation behavior using a fuzzy inference system to obtain an update of w, C1 and C2 based
on number of iterations and actual w to avoid a stagnation in the result during a certain
number of iterations. The pseudocode of the proposed optimization is shown in Fig. 2,
where can be observed that before update velocity and position, the fuzzy inference
system update w, C1 and C2. In Table 2, the initial parameters for the PSO are shown.

Table 1. Values for MGNNs

Parameters of MNNs Minimum Maximum

Modules (m) 1 10
Percentage of data for training 20 80
Error goal 0.000001 0.001
Learning algorithm 1 3
Hidden layers (h) 1 5
Neurons for each hidden layers 20 300

Fig. 2. Pseudocode of PSO with fuzzy dynamic parameters adaptation
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The proposed fuzzy inference system to adjust parameters is shown in Fig. 3, this
fuzzy inference system has 2 inputs and 3 outputs. As inputs, iteration and actual w are
represented and as outputs C1, C2 and w are represented to update their values. The
range of each variable of the proposed fuzzy inference system are shown in Table 3, for
each variable 3 triangular membership functions are used with 9 fuzzy rules.

3.2 Iris Database

The database of human iris from the Institute of Automation of the Chinese Academy
of Sciences was used [4]. Each person has 14 images (7 for each eye). For this work,
only 77 persons were used. The image dimensions are 320 � 280, JPEG format.
Figure 4 shows examples of the human iris images from CASIA database.

Table 2. Initials parameters of the PSO

Parameter Number

Particles 10
Maximum iterations 30
C1 2
C2 2
w 0.8

Fig. 3. Fuzzy inference system for the PSO with dynamic parameters adaptation

Table 3. Range of variables for the fuzzy inference system

Variable Range

Iteration 1 to 10
Actual W 0.2 to 1.2
C1 1 to 2
C2 1 to 2
Update W 0.2 to 1.2
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4 Experimental Results

To compare with the proposed optimization, non-optimized trainings (MGNN archi-
tecture is randomly established) were also performed. 30 non-optimized trainings and
20 evolutions were performed. The achieve results are shown in this section.

4.1 Non-optimized Results

The 5 best non-optimized trainings are shown in Table 4. In training #25, the best
results is obtained, where using 69% of data for the training phase a 98.05 of recog-
nition rate is obtained. In Table 5, a summary of the results is shown.

Fig. 4. Examples of the human iris images from CASIA database

Table 4. The first 5 results (Non-optimized)

Training Images for training Persons per module Rec. Rate/Error

8 41%
(3, 7, 8, 9, 12 and 14)

Module#1(1 to 11)
Module #2(12 to 21)
Module #3( 22 to 25
Module #4(26 to 30)
Module #5(31 to 40)
Module #6(41 to 49)
Module #7(50 to 61)
Module #8(62 to 69)
Module #9(70 to 75)
Module #10(76 to 77)

93.51%
(576/616)

14 42%
(2, 4, 5, 6, 13 and 14)

Module #1(1 to 3)
Module #2(4 to 19)
Module #3(20 to 29)
Module #4(30 to 34)
Module #5(35 to 41)
Module #6(42 to 54)
Module #7(55 to 70)
Module #8(71 to 77)

96.27%
(593/616)

(continued)
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4.2 Optimized Results

The optimized results using the particle swarm optimization with the fuzzy dynamic
parameters adaption are shown and compared in this section. 20 evolutions were
performed. The 5 best results obtained by the proposed method are shown in Table 6.
In evolutions #14, #15 and #19, the best results are obtained, where using 75% of data
for the training phase a 99.57 of recognition rate is obtained. In Fig. 5, the convergence
of evolution #14 is shown. In Table 7, a summary of the optimized results is shown. It
can be observed that the best, the average and the worst recognition rate are better when
the proposed optimization is used.

Table 5. Summary of non-optimized results

Recognition Rate

Best 98.05%
Average 83.78%
Worst 43.56%

Table 4. (continued)

Training Images for training Persons per module Rec. Rate/Error

15 58%
(1, 3, 5, 6, 8, 9, 13 and 14)

Module #1(1 to 7)
Module #2(8 to 13)
Module #3(14 to 30)
Module #4(31 to 37)
Module #5(38 to 59)
Module #6(60 to 71)
Module #7(72 to 77)

94.59%
(437/462)

25 69%
(1, 2, 3, 4, 5, 6, 7, 11, 13 and 14)

Module #1(1 to 6)
Module #2(7 to 22)
Module #3(23 to 31)
Module #4(32 to 48)
Module #5(49 to 53)
Module #6(54 to 64)
Module #7(65 to 66)
Module #8( 67 to 77)

98.05%
(302/308)

30 64%
(1, 3, 5, 7, 8, 9, 10, 11 and 14)

Module #1(1 to 15)
Module #2(16 to 54)
Module #3(55 to 77)

92.99%
(358/385)
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Table 6. The first 5 results (Optimized results, PSO)

Ev. Images for training Number of neurons per
hidden layer

Persons per
module

Rec.
Rate/Error

2 79%
(1, 2, 3, 4, 5, 6, 8, 11, 12,
13 and 14)

70,106,172,120,177
100,158,170,148,39
192,113,97,100,118
124,230,136,148,241
204,67,53,213,196
109,101,220,124,77
26,198,130,205,156
88,241,166,37,66
177,146,57,110,166
126,77,184,47,209

Module #1(1
to 15)
Module #2(16
to 18)
Module #3(19
to 21)
Module #4(22
to 24)
Module #5(25
to 33)
Module #6(34
to 38)
Module #7(39
to 53)
Module #8(54
to 65)
Module #9(66
to 71)
Module #10
(72 to 77)

99.13%
(0.0087)

6 76%
(2, 3, 4, 5, 6, 7, 8, 9, 11,
13 and 14)

91,116,204,192,80
189,115,49,75,136
119,93,122,141,191
180,88,197,124,191
126,188,245,241,141

Module #1(1
to 21)
Module #2(22
to 36)
Module #3(37
to 55)
Module #4(56
to 73)
Module #5(74
to 77)

99.13%
(0.0087)

14 75%
(1, 3, 5, 6, 7, 8, 9, 10, 11
and 14)

231,136,170,77,66
34,130,108,141,25
115,64,43,139,102
42,38,101,86,97
194,149,72,108,81
102,22,148,214,51
212,78,60,216,38
168,138,192,99,231
132,173,129,112,170

Module #1(1
to 15)
Module #2(16
to 21)
Module #3(22
to 29)
Module #4(30
to 31)
Module #5(32
to 42)
Module #6(43
to 49)
Module #7(50
to 52)

99.57%
(0.0043)

(continued)
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Table 6. (continued)

Ev. Images for training Number of neurons per
hidden layer

Persons per
module

Rec.
Rate/Error

Module #8(53
to 64)
Module #9(65
to 77)

15 75%
(1, 2, 3, 5, 6, 8, 10, 11, 12,
13 and 14)

218,211,140,51,168
108,62,23,166,111
210,100,30,21,27
146,82,49,130,159
89,243,84,193
33,69,146,57,89
174,43,107,201,157

Module #1(1
to 15)
Module #2(16
to 17)
Module #3(18
to 31)
Module #4(32
to 43)
Module #5(44
to 55)
Module #6(56
to 71)
Module #7(72
to 77)

99.57%
(0.0043)

19 75%
(1, 2, 3, 4, 5, 6, 7, 8, 10,
11, and 14)

132,76,168,42,183
183,217,196,132,192
78,167,36,67,89
183,148,43,111,214
66,181,167,110,29
170,79,141,150,71
215,125,148,128,225
209,57,37,151,61
82,148,183,59
72,201,178,215,211

Module #1(1
to 15)
Module #2(16
to 20)
Module #3(21
to 32)
Module #4(33
to 37)
Module #5(38
to 41)
Module #6(42
to 48)
Module #7(49
to 63)
Module #8(64
to 69)
Module #9(70
to 74)
Module #10
(75 to 77)

99.57%
(0.0043)
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5 Conclusions

In this paper, a particle swarm optimization with a fuzzy dynamic parameter adaptation
was proposed. This parameter adaptation arises with the purpose of establishing the
most important parameters of the algorithm depending on the current behavior of the
particles to avoid stagnation in the result (best solution) during the iterations. The
optimization technique seeks to design MGNNs architectures and parameters such as
number of sub modules, percentage of information for the training phase, number of
hidden layers (with their respective number of neurons) for each sub module and
learning algorithm. Non-optimized trainings were performed where their MGNN
architecture was randomly established to compare with the results achieved by the
proposed optimization and visibly the results obtained by the optimization overcome
the non-optimized results. As future work a comparison with a simple PSO (without
fuzzy dynamic parameter adaptation) will be performed, and other designs of fuzzy
inference systems for the parameters adaptation will be proposed and compared.

Table 7. Comparison of optimized results

Recognition rate

Best 99.57%
Average 98.91%
Worst 98.27%

Fig. 5. Convergence of evolution #14 (PSO)
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Assessments of Service Departments

Ozlem Senvar(&)

Department of Industrial Engineering, Marmara University, Istanbul, Turkey
ozlemsenvar@gmail.com

Abstract. Customer orientation is a business strategy in the lean business
model that requires management and employees to focus on the changing
demands and requirements of the customers.Improved business performance can
be enhanced by .customer orientation. In this chapter, a systematic approach
based on hesitant fuzzy AHP is proposed to deal with incomplete information
due to the ambiguity to solve complex customer oriented multi criteria decision
making problem of performance assessments of service departments.

Keywords: Customer orientation � Hesitant Fuzzy AHP � Hesitant Fuzzy Sets

1 Introduction

Customer orientation was defined as a state-like variable that measure an employee’s
attitude toward a customer and customer needs [1]. It has been emphasized that
achieving customer orientation requires employees of a firm to understand which
departments are most important to their customers [2, 3]. It is possible to define
performance measurement as an essential element of effective planning, effective
control and decision making.

It can provide feedback information for revealing progress, enhancing motivation
and communication and diagnosing problems [4, 5]. From this standpoint, customer
oriented performance measurement can be stated as a multi criteria decision making
(MCDM) problem. Because of the imprecision in assessing the relative importance of
attributes and the performance ratings of alternatives with respect to attributes, fuzzy
multiple attribute decision-making (FMADM) techniques have been developed. It is
possible to say that imprecision arises from some reasons such as; unquantifiable
information, incomplete information, unobtainable information, partial ignorance, etc.
Classical multi-attribute decision making (MADM) or MCDM techniques cannot
effectively handle problems with such ambiguous information [5]. Fuzzy set theory can
capture this type of ambiguity. Hesitant fuzzy sets characterize fuzziness by setting out
all the possible values while assigning the membership degree of the elements of a set [6].
Linguistic hesitant fuzzy sets (LHFSs) have been used to represent qualitative prefer-
ences of the decision makers (DMs) and reflect their hesitancy and inconsistency. LHFSs
are suitable for managing situations where the DMs are hesitant and inconsistent and
decision making information takes the form of qualitative variables. HFSs are efficient so
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as to study imprecise, uncertain or incomplete information or knowledge [7]. Because of
their flexibility and efficiency, HFSs have attracted a great deal of attention [8]. Analytic
hierarchy process-hesitant group decision making (AHP-HGDM) is an extension of
AHP-group decision making (AHP-GDM). In AHP-HGDM, hesitant judgments that
each may include several possible values are used to indicate the original judgments
provided by the DMs. Generally, we assume that the hesitant judgments cannot be
aggregated or revised. It is possible to define them as hesitant judgments to describe the
hesitancy experienced by the DMs in decision making [9].

Singh [10] defined the marketing mix as a set of controllable variables that the firms
influence the buyers’ responses. The marketing mix has 4 elements which are price,
place, product and promotion. In the literature, there are studies such as [11–15]
emphasized that the 4 Ps’ model is able to adapt perfectly and to continue to be the
dominant paradigm in the new contexts. In this study, we handled the elements of
classical marketing mix 4 Ps approach as criteria.

Oztaysi et al. [16] developed a hesitant fuzzy AHP technique involving decision
makers’ linguistic evaluations aggregated by ordered weighted averaging (OWA) op-
erator and applied this technique to a multi-criteria supplier selection problem.
Kahraman et al. [6] proposed hesitant fuzzy AHP technique for the humanitarian
logistics warehouse location selection problem. Tuysuz and Simsek [17] developed
hesitant fuzzy sets-based AHP method for a cargo company in Turkey.

This study aims to propose an evaluation framework for customer oriented per-
formance rankings of departments (sales, delivery, quality, maintenance) of an orga-
nization via hesitant fuzzy AHP. To the best of our knowledge, customer oriented
MCDM has not been handled using hesitant fuzzy AHP, yet. Hesitant fuzzy AHP have
some advantages: Firstly, it deals with incomplete information due to the ambiguity. It
provides a systematic approach in order to solve complex problems [6]. Moreover, it is
flexible. According to the conditions of the organizations, new criteria can be included
or removed. Therefore, it is possible to say that this method is applied for the per-
formance evaluation problems [17]. The rest of the study is organized as follows:
Sect. 2 briefly explains hesitant fuzzy AHP. Section 3 presents the real case application
study with the results. For further directions, final section provides conclusion,
recommendations.

2 Hesitant Fuzzy AHP

In the proposed hesitant fuzzy AHP method, we first determine the main and
sub-criteria and the hierarchy for the problem, then make a multi-criteria evaluation of
the alternatives to illustrate how the proposed model is used to solve it. The steps of the
hesitant fuzzy AHP technique are given [6]:

Step 1. Construction of pairwise comparison matrices for criteria, sub-criteria and
alternatives and collection of customers’ evaluations using linguistic terms are
performed.

Step 2. The linguistic terms which are given in Table 2 are transformed into tri-
angular fuzzy numbers [18] and trapezoidal fuzzy numbers. These linguistic scales,
which are based on the AHP’s classical 1–9 scale, are given with their triangular and
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trapezoidal fuzzy number representations in Table 2. The scale in Table 1 is sorted
from the lowest (s0) to the highest (sg) assuming the customers’ evaluations are varied
between two terms i.e. si and sj such that s0 � si � sj � sg.

Each element (~akij) of the pairwise comparison matrix ~Ak is a fuzzy number cor-
responding to its linguistic term. The pairwise comparison matrix is given by;

~Ak ¼

1 ~ak12 . . . ~ak1n
~ak21 1 ~ak2n

. .
. . .

. ..
.

..

. ..
.

. . . ..
.

~akn1 ~akn2 1

2
6666664

3
7777775

ð1Þ

where (~akij) represents the k
th customers’ evaluation on comparison of ith element to jth

element.
Step 3. Examination of the consistency of each fuzzy pairwise comparison is

performed. For checking the consistency of the fuzzy pairwise comparison matrices,
pairwise comparison values are defuzzified by the graded mean integration approach
[19]. Assume that ~A ¼ ~aij

� �
is a fuzzy positive reciprocal matrix and A ¼ aij

� �
is its

Table 1. Linguistic scale for hesitant fuzzy AHP

Linguistic terms Order
number

Abbreviations Triangular
fuzzy numbers

Trapezoidal fuzzy
numbers

Absolutely high
importance

10 AHI (7,9,9) (7,9,9,9)

Very high
importance

9 VHI (5,7,9) (5,7,7,9)

Essentially high
importance

8 ESHI (3,5,7) (3,5,5,7)

Weakly high
importance

7 WHI (1,3,5) (1,3,3,5)

Equally high
importance

6 EHI (1,1,3) (1,1,1,3)

Exactly equal 5 EE (1,1,1) (1,1,1,1)
Equally low
importance

4 ELI (0.33,1,1) (0.33,1,1,1)

Weakly low
importance

3 WLI (0.2,0.33,1) (0.2,0.33,0.33,1)

Essentially low
importance

2 ESLI (0.14,0.2,0.33) (0.14,0.2,0.2,0.33)

Very low
importance

1 VLI (0.11,0.14,0.2) (0.11,0.14,0.14,0.2)

Absolutely low
importance

0 ALI (0.11,0.11,0.14) (0.11,0.11,0.11,0.14)
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defuzzified positive reciprocal matrix. If the result of the comparisons of A ¼ aij
� �

is

consistent, then it can imply that the result of the comparisons of ~A ¼ ~aij
� �

is also
consistent [20]. According to the graded mean integration approach, a triangular fuzzy
number ~A ¼ ðl; m; uÞ can be transformed into a crisp number by employing Eq. 2:

A ¼ lþ 4mþ u
6

ð2Þ

Step 4. Conflicts are identified and the evaluations are renewed. The evaluations of
the customers are checked for their closeness to each other. If the evaluations are not
close then customers are informed of the need to discuss the situation and renew their
evaluations. Closeness is the difference between order numbers of evaluations. The
difference cannot be more than 2.

Step 5. Fuzzy envelope approach, which was proposed by Liu and Rodriguez [21],
is used to combine customers’ evaluations.

The scale given in Table 2 is sorted from the lowest (s0) to the highest (sg). Assume
the customers’ evaluations vary between two terms i.e. si and sj. Then s0 � si � sj � sg.

The parameters a and d of the trapezoidal fuzzy membership function ~A = (a, b, c, d)
are computed using Eqs. 3 and 4. Notably, aiL refers to the minimum element of the ith

trapezoidal fuzzy set, aiM refers to the middle element of the ith trapezoidal fuzzy set.

Similarly, aiþ 1
M is the middle element of the ðiþ 1Þth trapezoidal fuzzy set. a j

M represents
the middle element of the jth trapezoidal fuzzy set and a j

R is the maximum element of the
jth trapezoidal fuzzy set.

a ¼ minfaiL; aiM ; aiþ 1
M . . .; a j

M ; a
j
Rg ¼ aiL ð3Þ

d ¼ maxfaiL; aiM ; aiþ 1
M ; . . .; a j

M ; a
j
Rg ¼ a j

R ð4Þ

b ¼
aiM ; if iþ 1 ¼ j

OWAw2 aiM ; . . .a
iþ j
2
M

� �
; if iþ j is even

OWAw2 aiM ; . . .a
iþ j�1

2
M

� �
; if iþ j is odd

8>><
>>:

ð5Þ

c ¼
ajþ 1
M ; if iþ 1 ¼ j

OWAw1 a j
M ; a

j�1
M . . .a

iþ j
2
M

� �
; if iþ j is even

OWAw1 a j
M ; a

j�1
M . . .a

iþ jþ 1
2

M

� �
; if iþ j is odd

8>>><
>>>:

ð6Þ

OWA operation requires a weight vector. Filev and Yager [22] defined the first and
second type of weights using a parameter which belong to the unit interval [0, 1]. The
first kind of weights W1 ¼ w1

1;w
1
2; . . .w

1
n

� �
is defined as;

w1
1 ¼ a2;w1

2 ¼ a2ð1� a2Þ; . . .w1
n ¼ a2ð1� a2Þn�2.
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The definition of the second kind of weights W2 ¼ w2
1;w

2
2; . . .w

2
n

� �
is

w2
1 ¼ an�1

1 ;w2
2 ¼ ð1� a2Þan�2

1 ; . . .w2
n ¼ 1� a1.

Here, a1 is
g� j�ið Þ
g�1 and a2 is

j�ið Þ�1
g�1 , where g is the number of terms in the evaluation

scale, j is the rank of highest evaluation and i is the rank of lowest evaluation value of
the given interval.

Step 6. The collaborative pairwise comparison matrix is created.

~C ¼

1 ~C12 . . . ~C1n
~C21 1 ~C2n

..

. . .
. ..

.

..

. ..
.

. . . ..
.

~Cn1 ~Cn2 1

2
666664

3
777775

ð7Þ

where ~cij ¼ ðcij; cijm1 ; cijm2 ; cijuÞ.
Since the fuzzy envelopes, obtained in the previous step are trapezoidal fuzzy

numbers, reciprocal values are computed with Eq. 8.

~cji ¼ 1
cij

;
1

cijm2
;
1

cijm1
;
1
cijl

� 	
ð8Þ

Step 7. Fuzzy geometric mean for each row (~ri) of the collaborative pairwise matrix
is calculated using Eq. 9.

~ri ¼ ½~ci1 � . . .� ~cin�
1
n ð9Þ

Step 8. The fuzzy weight (~wi) of each criteria (or alternative) is calculated using
Eq. 10.

~wi ¼ ~ri � ½~r1 � ~r2 � . . .� ~rn��1 ð10Þ

Step 9. The fuzzy performance scores of each alternative are computed. To this end,
steps 1–7 are repeated for each pairwise comparison matrix formed according to the
predetermined decision model. The final fuzzy score of each alternative is calculated
using Eq. 11.

~Si ¼
Xn

j¼1
~wj~sj; 8i ð11Þ

where ~Si is the fuzzy performance score of alternative i; ~wj is the weight of the criteria j,
and ~sj is the performance score of alternative i with respect to criteria j.

Step 10. The trapezoidal fuzzy numbers are defuzzified for determining the
importance ranking of the alternatives with Eq. 12 [23].

D ¼ cl þ 2cm1 þ 2cm2 þ cu
6

ð12Þ
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Step 11. The alternatives are ranked according to the defuzzified values and the
alternative with the greatest score is chosen.

3 Application

This study is a real case study for a multinational company’s Turkey branch. The
considered company supplies chemical products, hand and power tools, and etc. Most
of its customers are from automotive and construction sector. The motivation of the
company is to make good decisions for finding the convenient solutions for its cus-
tomers. In this study, a telephone survey was conducted among 238 clients that are
categorized from Marmara (E1), Aegean and Mediterranean (E2), Blacksea (E3),
Middle Anatolia, East Anatolia and South-East Anatolia (E4) regions of Turkey. Data
obtained from the survey are used for evaluating and ranking performances of
departments. Figure 1 illustrates the hierarchical structure of the problem. In this
structure, the components of the classical marketing mix 4 Ps are determined as the
criteria and the sub-criteria are the elements of each component. Maintenance, delivery,
quality and sales are the departments that are determined as alternatives. The main goal
of this study is to evaluate the performance of each department.

In this study, we handled the criteria, sub-criteria and alternatives which are given
in Table 2. The compromised pairwise comparisons of main criteria are presented in
Table 3. Using the OWA operations, HFLTSs are aggregated into trapezoidal fuzzy
sets as in Table 4. Table 5 presents geometric means, normalized weights and the
defuzzified weights of the main criteria. Tables 6, 7, 8 and 9 present the pairwise
comparison matrices of the sub-criteria with respect to the main criteria price, place,
product and promotion respectively. From Table 6, the trapezoidal fuzzy weights of the
sub-criteria with respect to price, are obtained as (0.084,0.092,0.113,0.226),
(0.508,0.703,0.897,1) and (0.058,0.096,0.113,0.156), respectively. From Table 7, the
trapezoidal fuzzy weights of the sub criteria with respect to place, are obtained as

Fig. 1. Hierarchical structure of the problem
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Table 2. Criteria, sub-criteria and alternatives

Elements of the problem Abbreviations

Expert 1 from Marmara Region E1
Expert 2 from Aegean and Mediterranean Regions E2
Expert 3 from Black sea Region E3
Expert 4 from Middle Anatolia, East Anatolia and South-East Anatolia E4
Price C1
Place C2
Product C3
Promotion C4
Cost of product C11
Demand of product C12
Competitiveness C13
Direct sales C21
Transport C22
Coverage C23
Channels C24
Internet sales C25
Warranties C31
Convenience C32
Design & features C33
Branding C34
Reliability C35
Customer relationship C41
Direct marketing C42
Advertising C43
Discount C44
Maintenance A1
Delivery A2
Quality A3
Sales A4

Table 3. Pairwise comparison of main criteria using HFLTS

Comparison of main
criteria w.r.t. goal

C1 C2 C3 C4

C1 EE Between WLI
and EE

Between ELI
and EHI

Between EHI
and ESHI

C2 — EE Between EHI
and ESHI

Between EHI
and ESHI

C3 — — EE Between EHI
and WHI

C4 — — — EE
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Table 4. Aggregated HFLTS scores

Comparison
of main
criteria w.r.t.
goal

C1 C2 C3 C4

C1 (1,1,1,1) (0.2,0,926,1.074,1) (0.333,1,1,3) (1,2.778,3.222,7)
C2 (1,0.931,1.08,5) (1,1,1,1) (1,2.778,3.222,7) (1,2.778,3.222,7)
C3 (0.333,1,1,1) (0.143,0.31,0.36,1) (1,1,1,1) (1,1,3,5)
C4 (0.143,0.31,0.36,1) (0.143,0.31,0.36,1) (0.2,0.333,1,1) (1,1,1,1)

Table 5. Geometric means, normalized weights and defuzzified weights of main criteria

Geometric means Normalized weights Defuzzified weights

C1 (0.508,1.266,1.364,2.141) (0.056,0.263,0.335,0.961) 0.369
C2 (1,1.637,1.83,3.956) (0.110,0.340,0.449,1) 0.448
C3 (0.467,0.746,1.019,1.968) (0.052,0.156,0.250,0.883) 0.291
C4 (0.253,0.423,0.6,1) (0.028,0.088,0.147,0.449) 0.158

Table 6. Pairwise comparison of sub-criteria using HFLTS w.r.t. price

Comparison of sub-criteria w.r.t.
price

C11 C12 C13s

C11 EE Between ALI and
VLI

Between EE and EHI

C12 — EE Between VHI and
AHI

C13 — — EE

Table 7. Pairwise comparison of sub-criteria using HFLTS w.r.t. place

Comparison of sub-
criteria w.r.t. place

C21 C22 C23 C24 C25

C21 EE Between
WLI and
ELI

Between
EHI and
ESHI

WHI ESLI

C22 — EE Between
ESHI and
VHI

Between
WHI and
ESHI

Between
ESLI and
ELI

C23 — — EE Between
WLI and
ELI

Between
ESLI and
WLI

C24 — — — EE Between
ELI and
EHI

C25 — — — — EE
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(0.046,0.14,0.264,0.669), (0.09,0.213,0.479,1), (0.016,0.038,0.078,0.209), (0.028,
0.055,0.114,0.412) and (0.067,0.278,0.446,1), respectively. From Table 8, the trape-
zoidal fuzzy weights of the sub criteria with respect to product, are obtained as
(0.115,0.244,0.446,1), (0.088,0.189,0.333,0.726), (0.059,0.144,0.253,0.551),
(0.032,0.107,0.196,0.369) and (0.02,0.064,0.111,0.369), respectively. From Table 9,
the trapezoidal fuzzy weights of the sub criteria with respect to promotion, are obtained
as (0.158,0. 413,0.546,1), (0.053,0.124,0.198,0.543), (0.091,0.246,0.332,0.778), and

Table 8. Pairwise comparison of sub-criteria using HFLTS w.r.t. product

Comparison of
sub-criteria w.r.t.
product

C31 C32 C33 C34 C35

C31 EE EHI Between EHI
and WHI

Between EHI
and ESHI

WHI

C32 — EE Between EE
and EHI

Between EHI
and WHI

Between WHI
and ESHI

C33 — — EE Between EE
and WHI

Between WHI
and ESHI

C34 — — — EE Between EE
and WHI

C35 — — — — EE

Table 9. Pairwise comparison of sub-criteria using HFLTS w.r.t. promotion

Comparison of sub-criteria
w.r.t. promotion

C41 C42 C43 C44

C41 EE Between WLI
and ELI

Between ELI
and EHI

ESHI

C42 — EE Between WHI
and ESHI

ESHI

C43 — — EE Between EHI
and WHI

C44 — — — EE

Table 10. Pairwise comparison of alternatives using HFLTS w.r.t. cost of product

Comparison of sub-criteria w.
r.t. cost of product

A1 A2 A3 A4

A1 EE Between VLI
and WLI

Between ESLI
and WLI

Between ESLI
and WLI

A2 — EE Between ALI
and VLI

Between WLI
and ELI

A3 — — EE Between EE
and WHI

A4 — — — EE
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Table 11. Trapezoidal fuzzy (global) weights of sub-criteria

Sub-criteria Weight

C11 (0.005,0.024,0.038,0.217)
C12 (0.028,0.179,0.314,0.961)
C13 (0.003,0.024,0.038,0.15)
C21 (0.005,0.048,0.119,0.669)
C22 (0.01,0.073,0.215,1)
C23 (0.002,0.013,0.035,0.209)
C24 (0.003,0.019,0.051,0.412)
C25 (0.008,0.095,0.2,1)
C31 (0.006,0.038,0.112,0.883)
C32 (0.005,0.029,0.083,0.641)
C33 (0.003,0.022,0.063,0.487)
C34 (0.002,0.017,0.049,0.326)
C35 (0.001,0.01,0.028,0.326)
C41 (0.004,0.036,0.08,0.449)
C42 (0.001,0.011,0.029,0.244)
C43 (0.003,0.022,0.049,0.349)
C44 (0.001,0.005,0.017,0.124)

Table 12. Weights of alternatives

Sub-criteria A1 A2 A3 A4

C11 0.015 0.018 0.047 0.039
C12 0.041 0.176 0.150 0.215
C13 0.003 0.023 0.023 0.027
C21 0.04 0.085 0.132 0.137
C22 0.026 0.237 0.102 0.065
C23 0.039 0.042 0.034 0.018
C24 0.073 0.078 0.066 0.034
C25 0.191 0.208 0.169 0.087
C31 0.157 0.168 0.141 0.073
C32 0.115 0.123 0.103 0.053
C33 0.087 0.093 0.078 0.04
C34 0.059 0.064 0.053 0.027
C35 0.056 0.06 0.051 0.026
C41 0.05 0.093 0.018 0.098
C42 0.025 0.026 0.037 0.047
C43 0.065 0.039 0.02 0.071
C44 0.022 0.024 0.02 0.01
Normalized total score 0.216 0.316 0.252 0.217
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(0.029,0.058,0.113,0.276), respectively. The next step is to obtain the pairwise com-
parison matrices of alternatives with respect to each sub-criterion. In our case, there are
17 matrices of such comparisons. Due to the space limitations we only present one of
them. Table 10 gives the pairwise comparison of alternatives using HFLTS with
respect to cost of product. Table 11 indicates the trapezoidal fuzzy weights of the
sub-criteria. Table 12 shows the defuzzified weights of sub-criteria and the final
weights of the alternatives with respect to sub-criteria. The alternative with the highest
normalized total score is the best alternative among the others. In Table 12, final
performance weights of the departments are given. It is possible to see from the results
of the study that according to the customers’ perspective, delivery department (A2)
exhibits the best performance according and they are satisfied with delivery processes
of the company. Consecutively, quality department (A3) has second place, sales
department (A4) has third place in the performance rankings. Finally, depending on
customers’ perspective, maintenance department (A1) has the worst performance.

4 Conclusion

Hesitant linguistic term sets provided the flexibility to reveal comparative linguistic
expressions by using context-free grammar. Hence, dealing with incomplete infor-
mation due to the vagueness of the criteria becomes easier. For further directions, this
systematic approach can be utilized to solve other decision making problems with the
same characteristics. Moreover, extensions of fuzzy sets such as intuitionistic fuzzy
sets, interval type-2 fuzzy sets, multi fuzzy sets, etc. can be handled in the considered
framework that we have established and can be compared with our results for obtaining
more managerial insights.
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Abstract. We present an image edge detection algorithm that is based
on the concept of ordered directionally monotone functions, which permit
our proposal to consider the direction of the edges at each pixel and
perform accordingly. The results of this method are presented to the
EUSFLAT 2017 Competition on Edge Detection.

Keywords: Edge detection · Image processing · Ordered directionally
monotonicity · Ordered directionally monotone functions

1 Introduction

The task of detecting the edges of objects in an image is complicated as the
notion of edge is not explicitly characterized. We understand an edge as a big
enough jump between the intensity of a pixel and those of its neighbours.

In the literature one can find many methods to detect edges [7,9,12] and
there exist different approaches to construct an edge detector. In our proposal
we follow the scheme given by Bezdek et al. in [3], in which the process is
composed by four phases: conditioning, feature extracting, blending and scaling.
Specifically, the edge detector presented in this paper consists of the following
steps:

(ED1) Smoothening the original image with a Gaussian filter;
(ED2) Obtaining the feature image using ordered directionally monotone

functions;
(ED3) Thinning the feature image using the Non-Maximum Suppression (NMS)

procedure;

c© Springer International Publishing AG 2018
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(ED4) Binarizing the feature image applying hysteresis to obtain the black and
white edge image.

Additionally, some edge detectors in the literature only consider the informa-
tion of the intensity changes between a pixel and its surroundings (see [1,4,9]),
whereas others also take into account the direction in which those intensities
change for each pixel (see [7,12]). This is also the case of this proposal. The edge
detector presented in this paper is based on ordered directionally monotone func-
tions, which enable to fusion information taking into account the most influential
direction for each point.

This paper is organized as follows. In Sect. 2 we recall some preliminary
notions and in Sect. 3 we present the concept of ordered directionally monotone
functions. In Sect. 4 we present the edge detection algorithm and we finish with
some conclusions.

2 Preliminaries

Let n ∈ N with n ≥ 2. We refer to points in [0, 1]n as x = (x1, . . . , xn) ∈ [0, 1]n

and denote 0 = (0, . . . , 0) and 1 = (1, . . . , 1). The order relation we consider on
[0, 1]n is the partial order, which is defined as follows: Let x,y ∈ [0, 1]n, we write
x ≤ y if xi ≤ yi for every i ∈ {1, . . . , n}.

Let Sn be the symmetric group of order n, i.e., the set of all permutation
operators of the set {1, . . . , n}. Let x ∈ [0, 1]n and σ ∈ Sn, we denote as xσ =
(xσ(1), . . . , xσ(n)).

The edge detection method we present in this work makes use of Choquet
integrals [8]. The Choquet integral is a generalization of the Lebesgue integral,
where instead of additive measures, fuzzy measures are used. Let us recall the
definition of fuzzy measure.

Definition 1. Let N = {1, 2, . . . , n}. A function m : 2N → [0, 1] is a fuzzy
measure if it satisfies the following properties:

(i) For all X,Y ⊆ N , if X ⊆ Y , then m(X) ≤ m(Y );
(ii) m(∅) = 0;
(iii) m(N) = 1.

Thus, we recall the definition of Choquet integral.

Definition 2 ([2,10]). Let m : 2N → [0, 1] be a fuzzy measure. The discrete Cho-
quet integral with respect to m is defined as the function Cm : [0, 1]n → [0, 1],
given, for all x = (x1, . . . , xn) ∈ [0, 1]n, by

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m (
A(i)

)
, (1)

where
(
x(1), . . . , x(n)

)
is an increasing permutation of x, i.e., x(1) ≤ . . . ≤ x(n),

with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of
indices of n − i + 1 largest components of x.
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The concept of overlap index is also used in this work, let us recall its defin-
ition.

Definition 3. Let U be a nonempty universe and denote FS(U) the set of fuzzy
sets over U . An overlap index is a function O : FS(U) × FS(U) → [0, 1] such
that

(O1) O(A,B) = 0 if and only if A and B have disjoint supports;
(O2) O(A,B) = O(B,A);
(O3) If B ⊂ C, then O(A,B) ≤ O(A,C) for all A ∈ FS(U).

Furthermore, we recall the notion of directional monotonicity [6], where
monotonicity is studied with respect to one ray (one vector in R

n).

Definition 4 ([6]). Let −→r = (r1, . . . , rn) ∈ R
n with −→r 	= −→

0 . A function
F : [0, 1]n → [0, 1] is said to be −→r -increasing if for all points x ∈ [0, 1]n and
for all c > 0 such that x + c−→r ∈ [0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn) .

Analogously, one can define the notion of −→r -decreasing function.

3 Ordered Directionally Monotone Functions

Directional monotone functions are monotone along some fixed direction, but
that direction does not vary on the point that is being considered. In the case of
ordered directionally monotone functions, the direction along which monotonoc-
ity is demanded depends on each particular point that the function takes as an
input. In this section we recall the definition and a result that provides conditions
under which the Choquet integral is ordered directionally monotone (see [5]).

Definition 5. Let F : [0, 1]n → [0, 1] and let −→r ∈ R
n with −→r 	= 0. F is said

to be ordered directionally (OD) −→r -increasing if for each x ∈ [0, 1]n, and any
permutation σ ∈ Sn with xσ(1) ≥ · · · ≥ xσ(n) and any c > 0 such that

1 ≥ xσ(1) + cr1 ≥ · · · ≥ xσ(n) + crn ≥ 0

it holds that
F (x + c−→r σ−1) ≥ F (x), (2)

where −→r σ−1 = (rσ−1(1), . . . , rσ−1(n)).
The concept of OD −→r -decreasing function can be defined analogously.

Theorem 1. Let m : 2N → [0, 1] be a fuzzy measure and let −→r = (r1, . . . , rn) be
a non-null real vector. Then the Choquet integral Cm : [0, 1]n → [0, 1] is an OD−→r -increasing function if and only if for each permutation τ ∈ Sn it holds that

n∑

i=1

rimτ (i) ≥ 0,

where mτ (1) = m({τ(n)}), and for each i ∈ {2, . . . , n}, mτ (i) = m({τ(n − i + 1),
. . . , τ(n)}) − m({τ(n − i + 2), . . . , τ(n)}).
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4 Edge Detection Using OD Monotone Functions

In this section we present an edge detection method that is based on OD
monotone functions.

From the four steps, (ED1)–(ED4), described in the Introduction, in this
work we focus on step (ED2): obtaining the feature image. We make use of
OD monotone functions to assign to each pixel of the image a value that repre-
sents the magnitude of the gradient vector at that position. This step is further
explained in Sect. 4.1.

Regarding the remaining steps of our edge detector, in (ED1) a Gaussian filter
with deviation σ = 1 is used. In (ED3) we use Kovesis’ MATLAB implementation
[11] of the Non-Maximum Suppression (NMS) algorithm, a thinning algorithm
presented in [7]. In (ED4) we use the automatic hysteresis algorithm in [13] to
obtain a black/white image.

4.1 Step (ED2): Obtaining the Feature Image

We work with grayscale images normalized to [0, 1] and to construct the feature
image we follow the following method:

(1) Consider a pixel a22 and its 3×3 neighbourhood as in Fig. 1. Then compute

d1 = |a22 − a11|, d2 = |a22 − a12|, d3 = |a22 − a13|, d4 = |a22 − a23|,
d5 = |a22 − a33|, d6 = |a22 − a32|, d7 = |a22 − a31|, d8 = |a22 − a21|,

(3)

i.e., the absolute values of the differences of intensities from the central pixel
a22 and its neighbours.

(2) Take σ ∈ Sn such that it sorts the values in (3) in a decreasing order, i.e.,

dσ(1) ≥ dσ(2) ≥ . . . ≥ dσ(8) ,

and set the vector −→r = (dσ(1) , . . . , dσ(8)).
(3) Apply Theorem 1 to compute the value of the pixel of the feature image

corresponding to the position of a22. This is done by using the values di for
1 ≤ i ≤ 8 in (1).

(4) Carry on (1), (2) and (3) taking now the next pixel until the process is
repeated for each pixel of the original image.

Our proposal takes into account the direction in which the differences increase
since when we sort the values in a decreasing way, the largest differences become
the ones that influence the most.

4.2 Fuzzy Measures

The Choquet integral in Theorem 1 that we use for constructing the feature
image needs a fuzzy measure. In this section we describe how fuzzy measures
can be built in terms of overlap indices (see [14]).
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ba

Fig. 1. a: 3 × 3 neighbourhood of pixel a22. b: Next central pixel, a23.

Let O be an overlap index and set the following fuzzy sets for each pixel:

A1 = {(A1(1) = dσ(1)), (A1(2) = 0), (A1(3) = 0), · · · , (A1(8) = 0)}
A2 = {(A2(1) = dσ(1)), (A2(2) = dσ(2)), (A2(3) = 0), · · · , (A2(8) = 0)}
A3 = {(A3(1) = dσ(1)), (A3(2) = dσ(2)), (A3(3) = dσ(3)), · · · , (A3(8) = 0)}

...
A8 = {(A8(1) = dσ(1)), (A8(2) = dσ(2)), (A8(3) = dσ(3)), · · · , (A8(8) = dσ(8))},

(4)
Then, the function m : 2N → [0, 1] given by

m(Ai) =
O(Ai, A8)
O(A8, A8)

for 1 ≤ i ≤ 8

is a fuzzy measure.
Note that the m varies from pixel to pixel, depending upon the information

that the neighbourhood of each pixel provides.

4.3 Edge Detection Algorithm

As it is stated above, the method presented in this paper is intended for grayscale
images and the images in the ED17 competition dataset1 are in color. Therefore,
first we convert them to grayscale images computing the mean of their three color
channels.

The reason to use p ≥ 1 in Step 5 is that the values obtained in the previous
step tend to be low and hence it is convenient to enlighten the result. For the
results the used value is p = 4.

The overlap index used for the results submitted to the Edge Detection com-
petition is given by:

O(A,B) =

√√√√ 1
n

n∑

i=1

(A(ui)B(ui))
2
.

1 http://irafm.osu.cz/edge2017/main.php.

http://irafm.osu.cz/edge2017/main.php
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Algorithm 1. Edge detection algorithm
Input: A grayscale image I and an overlap index, O.
Output: An edge image E in black and white

1: for each pixel (i, j) of I do
2: Consider its 3 × 3 neighbourhood (see Fig. 1).
3: Compute the absolute values of the 8 differences between I(i, j) and its 8 sur-

rounding pixels as in (3).
4: Proceed as in (ED2) (Sect. 4.1) with a fuzzy measure obtained as in Sect. 4.2 to

get the pixel (i, j) of the feature image E.
5: Set E(i, j) ← E(i, j)1/p, with p ≥ 1, to enhance the feature image.
6: end for
7: Use the NMS algorithm to thin E with Kovesis’ implementation [11].
8: Apply hysteresis to E to obtain a black and white image using the method in [13].

5 Conclusions

In this work we have presented an edge detection algorithm that is based on the
novel concept of ordered directionally monotone functions and which takes into
account the direction in which the intensity of the pixels varies at each point.

Acknowledgments. This work is supported by the research services of Universidad
Publica de Navarra and by the project TIN2016-77356-P (AEI/FEDER, UE).
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Abstract. In the paper the method of fuzzy clustering task for multi-
variate short time series with unevenly distributed observations is pro-
posed. Proposed method allows to process the time series both in batch
mode and sequential on-line mode. In the first case we can use the matrix
modification of fuzzy C-means method, and in second case we can use
the matrix modification of neuro-fuzzy network by T. Kohonen, which is
learned using the rule “Winner takes more”. Proposed fuzzy clustering
algorithms are enough simple in computational implementation and can
be used for solving of wide class of Big Data and Data Stream Mining
problems. The effectiveness of proposed approach is confirmed by many
experiments based on real data sets.

Keywords: Adaptive fuzzy clustering · Multivariate short time series ·
Unevenly distributed observations · Matrix neuro-fuzzy self-organizing
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1 Introduction

Clustering and segmentation task for time series has been well studied in the
context of Data Mining [1–4] and at present there are many different algorithms
for solving such tasks that are based on someone or other a priori assumptions.

However, there are situations when well-known and topical approaches for
solving this task are inoperative in practical applications.

One of such tasks is fuzzy clustering for short time series with unevenly
distributed in time observations [5]. The clustering task of incomplete time series
with missed or nonpresented observations is sufficiently close to this problem [6].

c© Springer International Publishing AG 2018
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The distinction of these tasks is fact that objects of clustering are not separate
observations. The object is the sample in total and the observations are recorded
in unevenly instants of time, and generated clusters are overlapped in such way
that each processed sample can belong to several classes [7,8]. At that it is
supposed also, that all processed information is given in the form of a fixed data
set, whose size is not changed in time.

The situation is essentially complicated if initial information is defined in
the form of multivariate time series (i.e. two-dimensional fields of observations-
features). The example of such two-dimensional data can be the electromagnetic,
thermoelectric and optical fields, the areas of air pollution and contamination of
water, the biomedical data sets and, first of all, the digital video signals, which
form a discrete two-dimensional fields.

In the connections with that, it seems appropriate the spreading of the fuzzy
clustering of short time series with unevenly distributed observations approach
[5] to the situation when the data are fed to the processing in online mode
in the form of multivariate information stream in the context of Data Stream
Mining [9].

2 Fuzzy Probabilistic Clustering of Multivariate Short
Time Series

Let an initial information is given in the form of the set of (q × n) matrices
X(k) = {xip(k)} (here i = 1, 2, . . . , n, n is a number of a separate observa-
tion of q-dimensional multivariate sequences in k-th sample), k = 1, 2, . . . , N ,
p = 1, 2, . . . , q - p-th coordinate of multivariate process), which contains N
(N > n) q-dimensional samples with unevenly distributed observations, at that
p-th component of X(k) can be presented in the form (1×n)-dimensional vector
xp(k) = (x1p(k), x2p(k), . . . , xnp(k))T . Unevenness of quantization can be pre-
sented as Δti = ti − ti−1 �= Δti+1 = ti+1 − ti, i.e. Δti �= const. The example of
such sample is shown in the Fig. 1.

Obviously, neither conventional Euclidean distance nor classical probabilistic
criteria cannot be used for the estimation of distance between two samples X(k)
and X(l). For the estimation of distance between one-dimensional time series
in [5] authors have introduced, so-called, PS-distance, which is based on the
presentation of these time series in the form of piecewise linear functions. In fact,
this PS-distance estimates a distinction of analyzed samples forms (obliquity).
At that, the distance between two time series, for example, xp(k) and xp(l) can
be written in the form

d2PS(xp(k), xp(l)) =
n−1∑

i=1

(
xi+1,p(k) − xip(k)

ti+1 − ti
− xi+1,p(l) − xip(l)

ti+1 − ti

)2

=
n−1∑

i=1

(
xi+1,p(k) − xip(k)

Δti+1
− xi+1,p(l) − xip(l)

Δti+1

)2

,

(1)

which is satisfied to all conditions for distance functions.
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Fig. 1. Multivariate time series with unevenly distributed observations

Using the distance (1) authors of [5] have proposed the fuzzy clustering
method, which is modified procedure of well-known fuzzy c-means algorithm
(FCM) [7] for processing of one-dimensional time series with unevenly distrib-
uted observations.

It is easy to see that the distance’s components (1) are in fact the first-order
differences of discrete signals xp(k) and xp(l), i.e. this components are tangents
of obliquity angles of piecewise linear functions:

Δxi+1,p(k) =
xi+1,p(k) − xip(k)

Δti+1
= tgαi+1,p(k), (2)

Δxi+1,p(l) =
xi+1,p(l) − xip(l)

Δti+1
= tgαi+1,p(l). (3)

Nevertheless, the time series, which are formed by differences, contains an
one point less than initial sample, i.e. they contain (n − 1) observations instead
n: Δx2p(k) = tgα2p(k),Δx3p(k) = tgα3p(k), . . . , Δxnp(k) = tgαnp(k).

In the result of first-order difference computing (it is operation like first
derivation in indiscrete (continuous) mode) the mean value of time series xp(k)
is deleted. In this way for recovering of initial time series by its first-order dif-
ferences it is necessary to add any initial observation into first-order differences
sequence, for example, xnp(k).



Adaptive Fuzzy Clustering 311

In this case a recovering of initial time series is performed by simple expres-
sion in the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn−1,p(k) = xnp(k) − Δxnp(k)Δtn,
xn−2,p(k) = xn−1,p(k) − Δxn−1,p(k)Δtn−1,
...
x1,p(k) = x2p(k) − Δx2p(k)Δt2.

(4)

Introducing (1 × n)-dimensional vector

x̃p(k) = (Δx2p(k),Δx3p(k), . . . , Δxnp(k), xnp(k))T

we can rewrite (1) in the conventional form

d2PS(xp(k), xp(l)) = ‖x̃(k) − x̃(l)‖2. (5)

In this case we return to the standard Euclidean distance between first-order
differences of the initial samples.

Further, using the distance (5) it is simply to implement any of fuzzy clus-
tering methods [8]. For using evaluation idea of distances between time series by
their first-order differences, let’s introduce into consideration q × n-dimensional
matrix

X̃(k) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Δx21(k) Δx31(k) · · · Δxnl(k) xnl(k)
... · · · · · · · · · ...
... · · · Δxip(k) · · · ...
... · · · · · · · · · ...

Δx2q(k) Δx3q(k) · · · Δxnq(k) xnq(k)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and spherical norm instead of Euclidean distance in the form

D2
PS(X(k),X(l)) = Tr(X̃(k) − X̃(l))(X̃(k) − X̃(l))T . (6)

This norm is an extension of distance (5) for matrix case. Based on the
distance (6) we can provide the fuzzy clustering of samples array X̃(1), X̃(2), . . . ,
X̃(N).

After that, using technics of probabilistic fuzzy cluster analysis let’s introduce
into consideration the objective function in the form

E(uj(k), C̃j) =
N∑

k=1

m∑

j=1

uβ
j (k)D2

PS(X̃(k), C̃j)

=
N∑

k=1

m∑

j=1

uβ
j (k)Tr(X̃(k) − C̃j)(X̃(k) − C̃j)T
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under constraints
m∑

j=1

uj(k) = 1 or
m∑

j=1

uj(k) − 1 = 0, k = 1, 2, . . . , N,

0 <
m∑

j=1

uj(k) < N, j = 1, 2, . . . ,m

where uj(k) is membership level of matrix X̃(k) to j-th cluster with matrix
centroid C̃j , m is number of clusters, which is set a priori, β > 1 is fuzzyfication
parameter, which defines border “blurring” between clusters.

The result of clustering is (N × m)-dimensional matrix U = uj(k), which is
called fuzzy partition matrix, and centroid matrices C̃j , j = 1, 2, . . . ,m.

Writing the Lagrange function in the form

L(uj(k), C̃j , λ(k)) =
N∑

k=1

m∑

j=1

uβ
j (k)Tr(X̃(k) − C̃j)(X̃(k) − C̃j)T

+
N∑

k=1

λ(k)

⎛

⎝
m∑

j=1

uj(k) − 1

⎞

⎠
(7)

(where λ(k) are undetermined Lagrange multipliers) and solving system of
Karush-Kuhn-Tucker equations
⎧
⎪⎨

⎪⎩

∂L(uj(k), C̃j , λ(k))/∂uj(k) = βuβ−1
j (k)Tr(X̃(k) − C̃j)(X̃(k) − C̃j)

T + λ(k) = 0,

∂L(uj(k), C̃j , λ(k))/∂λ(k) =
∑m

j=1 uj(k) − 1 = 0,

{∂L(uj(k), C̃j , λ(k))/∂C̃jip} = −2
∑N

k=1 uβ
j (k)(X̃(k) − C̃j) = 0

(where {∂L(uj(k), C̃j , λ(k))/∂C̃jip} -(q × n)-dimensional matrix, which is
formed by partial derivatives, 0 is matrix of the same dimensionality, which is
formed by zeros), we can obtain fuzzy clustering algorithm in the form [9]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

uj(k) = (Tr(X̃(k)−C̃j)(X̃(k)−C̃j)
T )

1
1−β

∑m
g=1(Tr(X̃(k)−C̃g)(X̃(k)−C̃g)T )

1
1−β

,

λ(k) = −
(∑m

g=1(βTr(X̃(k) − C̃g)(X̃(k) − C̃g)T )
1

1−β

)1−β

,

C̃j =
∑N

k=1 uβ
j (k)X̃(k)

∑N
k=1 uβ

j (k)
.

(8)

This algorithm is close to Bezdek’s clustering algorithm [7] when parameter
β = 2 and is its extension for matrix version:

⎧
⎨

⎩
uj(k) = (Tr(X̃(k)−C̃j)(X̃(k)−C̃j)

T )−1
∑m

g=1(Tr(X̃(k)−C̃g)(X̃(k)−C̃g)T )−1 ,

C̃j =
∑N

k=1 u2
j (k)X̃(k)

∑N
k=1 u2

j (k)
.

(9)

Due to the fact that matrices C̃j , j = 1, 2, . . . ,m are centroids of clusters,
which are formed by time series of first-order differences, for centroids recovering
of initial data C̃j it is necessary to use expression (4).
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3 Sequential On-Line Clustering of Multivariate Time
Series Based on Modified Neuro-Fuzzy Network
by T. Kohonen

The clustering methods (8), (9) are introduced in the assumption that all infor-
mation is given in the form of fixed data array X(1),X(2), . . . ,X(N) and is
not changed in time. However, if discrete fields X(k) are fed to the processing
in sequential mode in the form of data stream, we can use approaches of Data
Stream Mining, and first of all, adaptive methods [9,10].

The clustering neural networks, such as self-organizing maps of T. Kohonen
[11,12], are the best for sequential data processing. Such network allows to pro-
vide crisp stream partition of vector observations. When initial information is
fed in the form of (q × n)-dimensional matrix observations under conditions of
overlapping classes, we can use matrix neuro-fuzzy clustering network [13].

Using opportunity of the nonlinear programming recurrent algorithm by
Arrow-Hurwicz-Uzava for searching of Lagrangian saddle point (7), we can write
adaptive clustering procedure for multivariate time series with unevenly distrib-
uted observations in the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uj(k) = (Tr(X̃(k)−C̃j(k−1))(X̃(k)−C̃j(k−1))T )
1

1−β

∑m
g=1(Tr(X̃(k)−C̃g(k−1))(X̃(k)−C̃g(k−1))T )

1
1−β

,

C̃j(k) = C̃j(k − 1) − η(k){∂L(uj(k), C̃j , λ(k))/∂C̃jip}
= C̃j(k − 1) + η(k)uβ

j (k)(X̃(k) − C̃j(k − 1))

(10)

for arbitrary value of fuzzyfier β (here η(k) is learning rate parameter) and
{

uj(k) = (Tr(X̃(k)−C̃j(k−1))(X̃(k)−C̃j(k−1))T )−1
∑m

g=1(Tr(X̃(k)−C̃g(k−1))(X̃(k)−C̃g(k−1))T )−1 ,

C̃j(k) = C̃j(k − 1) + η(k)u2
j (k)(X̃(k) − C̃j(k − 1))

(11)

for β = 2.
It is easy to see that from the point of view of self-learning clustering network

by T. Kohonen, the second recurrent relations in (10) and (11) are matrix modi-
fication of learning rule “Winner takes more” (WTM) [11], where the multiplier
uβ

j (k) fulfills the role of neighborhood function.
Hence, the architecture of self-organizing map with (q × n)-dimensional

matrix input and m neurons can be used for solving task of multivariate time
series fuzzy clustering.

4 Simulation

For the efficiency confirmation of the proposed approach to clustering-
segmentation of short time series with unevenly distributed observations, the
task of clustering-segmentation of multivariate time series, which consist of three
sequences - energy consumption, dry bulb temperature and dew point tempera-
ture from the New England Pool region [14] was solved. Results of the proposed
approach allow increasing the quality of analysis and prediction of time series.
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Time series consists of 2400 observations. For clustering this multivariate
time series was divided by segments with 8 observations. For obtaining unevenly
distributed observations in each segment, the 3rd and 5th observations were
deleted from a data set.

Hence, according to (2) we obtain the data set in the form of the table
“object-properties” with 300 observations and 6 properties. A number of clusters
were m = 3 (morning, day and evening segments of energy consumption). All
clustering algorithms were tested by the same data set. Average mean class error
(MCE) was taken as the quality criterion of clustering results.

In the first experiment, we compared the performance of the clustering algo-
rithms in the problem of classification when instances of all the available classes
were present in the data set used for clustering, i.e., the number of classes was
known a priori and equal to 3. The data sets were divided into the training and
testing sets with 70% and 30% of data, respectively. For better performance of
the recursive clustering algorithms, the data sets were randomly shuffled. The
training sets were used for the initialization of the classifier through fuzzy clus-
tering, and the testing sets were used for the comparison of the classification
accuracy.

We used the learning rate η = 0.01 in the recursive procedures (10) and
(11), and the “fuzzifier” parameter was taken β = 2. We performed 10 iterations
for the batch clustering procedures, and 10 runs over the training data for the
recursive clustering procedures. The experiment was repeated 50 times, and
then average results were calculated. The final results are given in Table 1. They
represent the percentage of the incorrectly classified objects from the testing
data set.

Table 1. Results of clustering-segmentation of multivariate time series

Clustering procedures M{MCE}
Proposed fuzzy clustering algorithm (8) 8.5%(25)

Proposed adaptive fuzzy clustering algorithm (10) 7.2%(22)

Matrix modification of fuzzy clustering method 12.1%(35)

As it can be seen from the obtained results, the proposed fuzzy clustering
algorithms have the best quality of clustering (both batch and adaptive modes).
We can also see that the results of adaptive modes of clustering algorithms have
better quality than that of batch mode.

5 Conclusion

The adaptive fuzzy clustering approach of multivariate short time series with
unevenly distributed observations or incomplete time series with missed or non-
presented observations is proposed. For processing multivariate time series in
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batch mode we have proposed the matrix modification of fuzzy C-means method
and for processing in sequential on-line mode - matrix neuro-fuzzy self-organizing
network, which is learned using the rule “Winner takes more”. Proposed matrix
fuzzy clustering-segmentation algorithms for time series are enough simple in
computational implementation and can be used in machine learning, data stream
mining, big data processing tasks.
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Abstract. We discuss how to train and tune comparators aimed at
multi-similarity-based classification of compound objects. The proposed
approach is supported by a collection of techniques and algorithms for
construction and use of comparator networks. The described methodol-
ogy has been implemented as a software library and may be used for a
variety of future applications.

1 Introduction

Learning is one of the most important processes, which makes the analyti-
cal methods intelligent. Comparator networks are focused on recognition tasks,
which involve management, identification, classification and modelling of data
objects that are intrinsically compound and described by means of various types
of information. This approach is based on object similarities computed with
respect to single features, which are then combined into the final result. Pre-
cisely, the result of utilization of a network for an input object consists of rank-
ings based on its similarities to a set of so called reference objects. In this article
we propose some methods in the field of learning such types of networks, by
means of particular comparators and the overall network structures.

A comparator is a basic computational unit that models single aspect of
the similarity between objects reflecting physical phenomena, processes or sub-
systems. They usually are arranged into comparator networks that are capable
of aggregating and summarizing local information about similarity into a global
measure of proximity between data objects. This provides us the ability to solve
the problem at hand by decomposing it into simpler, localized steps that can be
processed quickly. Then, local results from elementary units can be aggregated
and processed in the network producing the overall, possibly generalized final
result.

The learning procedure in this field is the one, which makes the whole solution
better, easier and less time consuming. In the short term we can say about
tuning the network solution. The goal is to make the process of recognition

c© Springer International Publishing AG 2018
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with less comparison operations using few comparators on the one hand, but
with enough accuracy. This goal can be divided into various smaller tasks. The
first can be an increasing efficiency (by means of accuracy). The second task is
to make architecture of the network as easy as possible. It means removing of
comparators or moving them from layer to layer. In both cases the supervised
learning is helpful. Using already known results we can eliminate comparators
and then check if the final result is still good enough. Checking all possible
configurations is quite costly, that is why we should use here some heuristic
methods.

In the long term perspective, learning can be a way of adaptation of a solution
to a changing environment. The learning procedure should be repeated as many
times as we recognize that there are types of objects, which are not properly
handled by our solution. Such new objects collected from previous execution of
the learning process are the cases that can help the network to adapt to new
situations and to be more general.

The article is composed as follows: Sect. 2 describes the nature of learn-
ing in general and refers to some well known approaches that can be relevant.
Section 3 introduces the methodology of comparator networks. Section 4 contains
the main topic of this paper. It explains the usage of standard learning meth-
ods in the field of comparator networks. It describes step by step how to apply
some popular learning and what can be a target of such procedures. Section 5
presents a general case study, which shows how these methods can change the
solution with respect to efficiency, time and other factors. The example is based
on experiments reported in earlier publications, which, however, did not focus on
the aspects of learning. We can find there the results, which have been achieved
earlier, the short description of the methods used and new results after learning
has been applied. Section 6 contains summary, some discussion and the future
work.

2 Related Work

There are many learning methods and acquiring knowledge known in the decision
systems. Their division is based on many criteria. The main factor is a strategy
of learning and output, which is produced by the procedure [1].

The first widely described approach to machine learning is a supervised learn-
ing. The boundary condition is having proper data to use this procedure. The
method can be used only if there is possibility to construct learning and testing
sets. In practice, this assumption sometimes turns out to be too strong, which
prevents the use of this method. However, assuming possession of relevant data,
pre-processing is performed to improve data quality, remove duplicates, etc. Next
the learning set is constructed, which has a valid output for the given input ele-
ments. Thus, n pairs of input and output examples are obtained, by which the
algorithm approximates the function modeling the given phenomenon. The num-
ber of elements of the learning set is a 33% of the total quantity. Its elements
are selected randomly, so as to ensure the independence of selection of objects.
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The remained part of the initial set became the test set, which is necessary to
evaluate the learned function. The next step is to choose the supervised learning
technique (e.g. back propagation [2]).

A generalized supervised learning algorithm is shown in Fig. 1 in the form of
a UML activity diagram. The procedure described is repeated many times for
individual objects from the training set until the stop condition is met.

Fig. 1. The activity diagram (UML) of generalized supervised learning procedure

The second approach to learning that is complementary to the one described
previously is unsupervised learning. The method used for problems, for which
the test sets either do not exist or are difficult to construct. This method uses
knowledge derived directly from data. It involves detection, analysis and model-
ing. It boils down to the clustering analysis based on various criteria, including
the object similarity criteria. Discovering knowledge from the data allows to
identify features, with respect to which the grouping should be performed. The
problem of automatic grouping is a matter of high complexity. There is no single
universal grouping algorithm for each data type. In each case, one should use
the knowledge domain of the problem and select the algorithm individually. An
additional difficulty is the unknown number of groups to be created as a result
of the algorithm. However, there are certain conditions that a data group should
fulfill, i.e. homogeneity within each of groups and heterogeneity between groups.
The learning procedure is based on data availability, but without a decision-
making label. As a criterion for assessing the correctness of grouping, it is used
so-called grouping quality indicators [3].

Both in the literature and in practical applications there are known many
other approaches to machine learning. They are apart of a hybrid approach
that combines both of the above described cases or they are differing in one
of the fundamental parts of the algorithm. Examples of methods are: semi-
supervised learning, where learning can proceeds with a small sample of labeled
data and a large sample of unlabeled data, reinforcement learning where the
aim is to automatically acquire procedural knowledge based on interaction with
the environment. Indicators for learning may be in this case the reaction of the
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environment triggered by the algorithm. Another example could be transduction,
which is similar to supervised learning but the form of learning results is different.
In this case, this is not a function, but the output values derived from the
prediction based on input training data. A slightly different category of learning
is meta-learning. The idea here is to use different learning methods to verify a
set of hypotheses. Its purpose is to select the best learning method for the given
problem [4].

3 Comparator Networks

There are many ways to implement object recognition solutions. The method
considered in this paper is based on multi-similarity calculations, gathering
many aspects of the similarity between pairs of objects. The objects belong
to multi-dimensional space and are described by the similarity values between
input objects and reference objects, measured on the given set of features. The
result of the recognition is in a form of similarity vector, which shows the close-
ness between input object and reference points in the domain space. The units
responsible for single-feature calculations will be called comparators. The net-
works allowing to process input objects through the layers of multiple compara-
tors will be called comparator networks.

Comparator networks can play different roles depending on their settings.
They can serve as multi-stage classifiers whose purpose is to limit the reference
set of objects and identify the most probable candidate to be a final result.
The scenario of processing in such networks is to compute relatively simple
features at the first layers and to filter out the reference objects to only those
that are the most promising in the final perspective. Particular comparators can
be also specialized in recognition of different features based on the nature of sub-
objects. The idea is that the similarity of parts of objects can help in resolving
the similarity of the whole objects. Sometimes the knowledge only about parts
is not enough but it brings us closer to the solution and having some additional
domain knowledge the satisfactory result can be obtained.

From the mathematical perspective a comparator network can be interpreted
as a calculation of a function:

μrefout

net : X → [0, 1]|refout|, (1)

which takes the input object x ∈ X as an argument and refout is a reference set
for the network’s output layer. The target set of μrefout

net is the space of proximity
vectors. The proximity vector from the target space will be denoted by v . Such a
vector encapsulates information about similarities between a given input object
x and objects from the reference set ref , by ordering the reference set, i.e. taking
ref = {y1, ..., y|ref |}. In this way we get the value network’s function of:

μref
net(x) = 〈SIM(x, y1), ..., SIM(x, y|ref |)〉, (2)

where SIM(x, yi) is the value of global similarity established by the network for
an input object x and a reference object yi. Global similarity depends on partial



320 �L. Sosnowski and D. Śl ↪ezak

Fig. 2. General scheme of a comparator network in UML-like representation. Notation:
comji – comparators, Tj – translators. Symbols: oval – comparator, thick vertical line –
aggregator, rhombus – translator, encircled cross – projection module.

(local) similarities calculated by the elements of the network (unit comparators).
Through application of aggregation and translation procedures at subsequent
layers of the network these local similarities are ultimately leading to the global
one. Particular elements of the network have been described in detail in our
previous publications [5]. Only for remind reasons we put the scheme of the
comparators network with all possible elements on the Fig. 2.

4 Comparator Learning

The issue of constructing a reference set is an inseparable element of the design
of comparator-based solutions. It is a set of patterns, so it is important to get
it as good as possible. Optimization of this set is reduced to the problem of
grouping objects and operating in the reference set with only representatives of
the group.

Designation of a reference set can be performed if we have a set of object
instances. This procedure can be performed both for a fixed comparator and
for a fixed comparator network. The similarity function of objects in a cluster
is modeled by a comparator network (multiple local similarities). To perform
a learning procedure, the cross-validation method is used with leave-one-out
option, where self-organization of objects in clusters is performed.

A single iteration of learning has been presented in Fig. 3. The algorithm
starts with an empty reference set. In this case, the first input object becomes
automatically the one-element cluster and the representative of this cluster in
the reference set. Each iteration of the algorithm determines the proximity vector
relative to the current clusters representatives. If the returned vector is nonzero
with correspondingly high similarity values, then the input object is assigned to
the cluster represented by the reference object, for which the most similarity was
obtained. The applied method can indicate more than one cluster simultaneously,
which should result in cluster merging into one and selecting a new representative
of the newly created cluster.

If the proximity vector is returned as the zero one, the object creates a
new cluster and automatically supplying it. The size of the cluster corresponds
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Fig. 3. Activity diagram in UML notation performs one iteration in unsupervised learn-
ing of set of reference objects

to the parameters of comparators p, defining the minimum acceptable resem-
blance at the output of the individual comparators. Therefore, if you want to
get fewer clusters, automatically increase the tolerance for differences between
objects within one cluster, lower the value of p.

An analogous procedure is used for each successive element from the cross
validation set, until the object is exhausted. It should be noted that setting too
stringent quality criteria for a similarity may result in the creation of separate
clusters for each object. Conversely, if the parameter values set too low, it may
happen that all the objects are in one cluster.

Another example of learning the compound object comparator is the opti-
mization of the threshold parameter p. As defined in [6], the parameter p is
the minimum acceptable value of the similarity in the proximity vector of the
comparator. In order to automatically designate it, there should be uses the
supervised method, where the learning is based on the training set. For this
procedure we can use re-sampling method (with k at least 10). The data set is
divided into two subsets. The first is called the learning set, which consists of 1

3
of all elements, and the second is a testing set with quantity of 2

3 of all elements.
In the case of a single comparator, it is necessary to determine the limit value of
similarity, below which no correct solution is found. One of the available methods
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to use is so called simple local search. The starting point of the algorithm is 1.
The quality of the solution is determined by the function in a form:

feval(p) =
∑

x∈X

(frecall(x) − (1 − p)) (3)

where frecall : X → {0, 1} is a function returning 1 in case of achieving correct
decision label from training set for a pair of objects (x, y) or 0 otherwise.

The higher the value of function (3) is the better quality of the solution can be
achieved. Neighboring solutions are generated by modifying the parameter values
by a fixed constant, such as 0.01 (addition or subtraction). The stop condition
can be implemented as a monitoring of repetitive solutions. When the limit
value is exceeded, the quality of the solution will start to swing (increase then
decrease repeatedly). Upon detection of this phenomenon, processing should be
discontinued.

Another area of a potential usage of the learning methods is construction of
the network structure, by means of selecting features, which will be utilized by
comparators. This issue relates directly to the concept of the object, its features,
relationships and dependencies. Objects are defined by the description in the
ontology [7], which operates on concepts and relationships between them. It
specifies a set of features that can be used for network construction. The optimal
selection of features for a given problem is therefore the problem of searching for
minimal subsets of attributes, which can uniquely identify the objects or their
classes. Such minimal subsets of attributes can be referred to as reducts in the
rough set theory [8].

The process of selecting a network structure can be transformed into the
problem of determining the significance of features and in particular the possi-
bility of their elimination. The implementation was done by using evolutionary
algorithms [9]. The learning procedure assumes the existence of a set of features
for the processed objects (stored in the ontology). The task of the procedure
is to select a minimum number of features and to indicate the location of the
comparators in layers, ensuring that the network operates correctly with the
established types of local aggregators, translators, and the number of layers.

Individuals represent the various configurations of the network structure,
e.g. the comparator and its feature assigned to the particular layer. A single
chromosome is in a form: x = 〈(i, k)〉, where i is an identifier of the comparator
and k ∈ {0, 1, ..., n − 1}, where n is a cardinality of layers. Value k represents
the number of a single layer, where 0 stands for no assignment to any layer. The
order of the comparators in the layer is irrelevant due to concurrent processing.
The comparator can be assigned to at most one layer.

Processing begins with a random selecting of the population. Individuals
are randomized multiple times until a full population of correct individuals is
formed. An improper individual is the one that can not be used to construct
correct network, e.g. 〈(1, 0), ..., (n − 1, 0)〉. Population size is parameter of the
algorithm. In each iteration (called epoch) there are reproduction operations,
application of genetic methods, evaluation and succession. The scheme of the
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applied genetic algorithm is consistent with evolutionary methods described in
the literature. Reproduction was made with tournament selection, which accepts
the l parameter that indicates the number of individuals drawn to the tourna-
ment. The number of individuals created in the reproduction process is also
parameter of the algorithm. Reproduction creates a local population, on which
the cross-over and mutation operations are performed. Two individuals are ran-
domized to cross-over operation. The procedure involves randomly assigning a
cut-off point where the elements of the two chromosomes are replaced. From the
zero position to the drawn position, the genes of the first chromosome remain,
and from the drawn position to the end of the genes of the second chromosome.
This operation can, however, lead to the improper individual. In this case, an
individual with a higher adaptation ratio is returned at the output. The muta-
tion operation involves adding a random natural number to the current value
and executing modn, where n is the number of layers. Mutation is performed
with a certain probability for each chromosome gene. One of the most impor-
tant parts of the algorithm, individually adopted to the specifics of the network
od comparators is the evaluation function (population fit assessment). The fit
assessment values take into account both the final results of the recognition and
the cost of performing the calculations by the comparators. The last value is
calculated on the basis of the unit cost of the comparator’s execution and the
cardinality of reference set in given layer. The general form of the fit assessment
function is as follows:

fX(ch) =
∑

x∈X

frecall(x, ch) −
(∑n−1

i=1

∑m
j=1 fcost

ij ∗ |refi|
|C| ∗ |ref | − α

)
(4)

where ch is a chromosome representing a given network structure, X is a set of
input objects from a learning set, C is a set of all considered comparators in a
given problem, fcost

ij is the function of the unit cost of execution the comparator
with index j in the layer number i. Values of this function are from the interval
(0, 1), refi is a subset of the ref set occurring as a reference set in the layer
with index i, and α is a positive value close to zero. In this way, the value of
the penalty function (part in the second parenthesis (4)) is always less than 1,
which makes the elements identified more accurately than the simple structure
of the network, although the last element is important as well. In the given
formula, frecall expresses the performance of recognition for the individual from
the learning set. Succession is performed in the same way as reproduction, e.g.
using tournament selection. In this case both populations are combined and the
individuals are selected for the tournaments. The tournament is played as many
times as the size of the target population is. The population is also a parameter
of the method. The stop condition of the algorithm refers to the number of
epochs, for which there is no improvement in the solution.

5 Case Study

In this paper the automatic character recognition solution based on a compara-
tor network is described. We designed a comparator network with three layers
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representing particular contexts. The first layer covers features of a very gen-
eral nature. They can significantly reduce the cardinality of a reference set. The
second layer relates to an in-depth analysis of the image, which gets the final
answer (decision). The last layer in the classical way contains only an aggregator
that performs a synthesis of the previously obtained results. The reference set
consists of objects, which are images of characters grouped by different sizes and
font types. The cardinality of the reference set grows with the number of types
of recognized characters, languages, fonts, sizes, etc. In practice this is one of the
main problems that there is a plenty of data that needs an efficient procedure
to be preselected for further processing.

The described network has three comparators in the input layer: the font size,
pixels distribution and an axis of colors. The representations of objects used for
them are the following: the height of a character in pixels, a list of four quan-
tities of the black pixel for each quarter of image, a two-string pattern created
from the axis X and the axis Y of the image (in the middle) and represent-
ing pixel color changing. In the intermediate layer, there are four comparators:
Upper approximation, Quadrangulation, Coherent area, Multi axis of colors. The
first comparator compares images arising from the granulation process [10]. The
upper approximation is represented by granules, which are activated if and only
if there are black pixels inside. This means the comparison of images converted
to a very low resolution (m × n – granulation parameters) and represented by
an array of {0, 1} values (1 – activated, 0 – none).

Fig. 4. Reference objects prepared for comparisons by the quadrangulation comparator
with respect to their shapes (with granulation resolution parameters 1× 4, 2× 2, 2× 3
displayed in consecutive rows).

Another comparator deals with the comparison of the geometric shapes arisen
as a result of connection extremes points of subsequent granules (see Fig. 4). Fur-
ther action is to take contours and to calculate the surface area of quadrangles.
This value is required to calculate the final factor in a form of the quotient of
the surface area of the quadrangle to the area of the whole image. The third
comparator is prepared to compare coherent areas within objects. The last com-
parator in this layer (Multi axis of colors) compares string patterns created on
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the base of changing colors in the particular lines of image. There are two sepa-
rate representations: one for the horizontal lines and second for the vertical ones.
The string patterns have been created analogically to the one used in the input
layer, but using each line (not only the middle one). After generation the string
of signs for particular lines, the main pattern is created based on the signs, which
have changed (from the previous state). This is in a form of two lists of string
patterns to compare.

5.1 Results

First we have done the experiment with the manually designed network as we
described above. Input set consists of 93 randomly generated images with single
digit. The images contains different size and different font type. There was a
combination of font sizes {10, 14, 18, 24, 36, 48, 60} and types of fonts {Times
New Roman, Arial, Verdana, Courier}. Table 1 shows the achieved results. The
time needed for the recognition on quad core INTEL Core i7 4700 HQ processor
was 5661 ms.

Table 1. Results achieved for 93 digits performed for individual characters for all font
types and all processed font sizes with the manually designed comparator network.

Character Precision Recall F-score

0 0.91 1.00 0.95

1 0.94 1.00 0.97

2 1.00 1.00 1.00

3 1.00 1.00 1.00

4 0.87 1.00 0.93

5 0.80 1.00 0.89

6 1.00 1.00 1.00

7 0.91 1.00 0.95

8 0.88 1.00 0.93

9 1.00 1.00 1.00

ALL 0.92 1.00 0.96

After that we have used the learning procedure to determine best structure
of the network with keeping quality of the recognition. We have numbered the
comparators as: 1 – axis of colors, 2 – coherent area, 3 – quadrangulation, 4 – font
size, 5 – upper approximation, 6 – multi axis of colors, 7 – pixels distribution.
We have assigned the relative unit cost for each of them as follows: 1 – 0.1, 2 –
0.6, 3 – 1.0, 4 – 0.1, 5 – 0.3, 6 – 0.6, 7 – 0.2. We have used a learning structure
algorithm made with genetic algorithm. Firstly we have achieved the results
described with network structure and value of the fit assessment function. The
results are shown in Table 2.
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Table 2. Learned network structures ({1, 2, 3, 4, 5, 6, 7} – identifiers of comparators,
{0, 1, 2} – identifiers of layers, where 0 means no assignment to any layer)

Network structure Fit assessment value

1 -> 2, 2 -> 0, 3 -> 0, 4 -> 0, 5 -> 1, 6 -> 0, 7 -> 2 92.94796018367347

1 -> 2, 2 -> 2, 3 -> 0, 4 -> 2, 5 -> 1, 6 -> 0, 7 -> 2 92.9265316122449

1 -> 0, 2 -> 0, 3 -> 0, 4 -> 2, 5 -> 0, 6 -> 1, 7 -> 2 92.91076630612245

1 -> 1, 2 -> 1, 3 -> 2, 4 -> 0, 5 -> 2, 6 -> 2, 7 -> 2 92.870001

1 -> 2, 2 -> 2, 3 -> 0, 4 -> 2, 5 -> 2, 6 -> 1, 7 -> 2 92.9023479387755

1 -> 0, 2 -> 1, 3 -> 0, 4 -> 0, 5 -> 2, 6 -> 2, 7 -> 2 92.89632753061224

1 -> 2, 2 -> 2, 3 -> 2, 4 -> 0, 5 -> 0, 6 -> 1, 7 -> 0 92.90908263265307

1 -> 0, 2 -> 2, 3 -> 2, 4 -> 1, 5 -> 1, 6 -> 0, 7 -> 0 92.8938785510204

1 -> 2, 2 -> 0, 3 -> 0, 4 -> 2, 5 -> 1, 6 -> 0, 7 -> 2 92.94489895918367

1 -> 0, 2 -> 1, 3 -> 0, 4 -> 1, 5 -> 0, 6 -> 2, 7 -> 2 92.8869397755102

Table 3. Results achieved for networks structure in a form of: 1 -> 2, 2 -> 0, 3 -> 0,
4 -> 0, 5 -> 1, 6 -> 0, 7 -> 2 (first on the left), 1 -> 2, 2 -> 0, 3 -> 0, 4 -> 2, 5 ->
1, 6 -> 0, 7 -> 2 (in the middle), 1 -> 0, 2 -> 0, 3 -> 0, 4 -> 2, 5 -> 0, 6 -> 1, 7
-> 2 (on the right)

Digit Precision Recall F-score Precision Recall F-score Precision Recall F-score

0 0.91 1.00 0.95 0.91 1.00 0.95 0.91 1.00 0.95

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 0.91 1.00 0.95 0.91 1.00 0.95 0.91 1.00 0.95

8 0.86 0.86 0.86 0.86 0.86 0.86 1.00 1.00 1.00

9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALL 0.97 0.99 0.98 0.97 0.99 0.98 0.98 1.00 0.99

Testing the structures show that the time execution is much more shorter,
e.g. for network 1 -> 2, 2 -> 0, 3 -> 0, 4 -> 0, 5 -> 1, 6 -> 0, 7 -> 2 – 2692
ms, 1 -> 2, 2 -> 0, 3 -> 0, 4 -> 2, 5 -> 1, 6 -> 0, 7 -> 2 – 2781 ms, 1 -> 2,
2 -> 2, 3 -> 0, 4 -> 2, 5 -> 1, 6 -> 0, 7 -> 2 – 4125 ms, 1 -> 0, 2 -> 0, 3 ->
0, 4 -> 2, 5 -> 0, 6 -> 1, 7 -> 2 – 4723 ms, etc. Table 3 shows the results of
recognition for selected network structures.
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6 Summary

We discussed how to train and tune comparator networks aimed at multi-simila-
rity-based classification of compound objects. We introduced several techniques
aimed at intelligent construction and use of the considered networks, particularly
focused on validation whether all features used by the network units to compare
input and reference objects are needed to assure good performance.

Further research should be focused on development of a framework for tuning
aggregators. There is still place for learning on this area, both regarding the selec-
tion and the parameters of individual aggregators adapting various approaches
to reaching consensus between different sources of similarity-based object rank-
ings [11]. It is also possible to extend the environment for selecting features and
reference objects that can together serve as an optimal “spine” for compara-
tor network performance. With this respect, it is worth referring to feature and
object selection methods based on rough sets and fuzzy similarities [12].

Basic examples of experiments reported in this paper show that appropriate
methods of learning comparator network structures can lead to very interesting
results. The achieved simpler structures can recognize objects in shorter time
and with greater efficiency. Basically, the introduced techniques can detect that
some of comparators are not necessary in the final model.
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2. Szczuka, M., Ślȩzak, D.: Feedforward neural networks for compound signals. The-
oret. Comput. Sci. 412(42), 5960–5973 (2011)

3. Rutkowski, L.: Computational Intelligence: Methods and Techniques. Springer,
Heidelberg (2008)

4. Michalewicz, Z., Fogel, D.B.: How to Solve It - Modern Heuristics, 2nd edn.
Springer, Heidelberg (2004)

5. Sosnowski, �L.: Framework of compound object comparators. Intell. Decis. Technol.
9(4), 343–363 (2015)

6. Sosnowski, L., Szczuka, M.S.: Recognition of compound objects based on network
of comparators. In: Proceedings of FedCSIS 2016, Position Papers, pp. 33–40 (2016)

7. Staab, S., Maedche, A.: Knowledge portals: ontologies at work. AI Mag. 22(2),
63–75 (2001)

8. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40
(2007)

9. Dasgupta, D., Michalewicz, Z.: Evolutionary Algorithms in Engineering Applica-
tions. Springer, Heidelberg (1997)

10. Pedrycz, W., Skowron, A., Kreinovich, V.: Handbook of Granular Computing.
Wiley, Hoboken (2008)
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Abstract. By replacing the axiom m(x, x, t) = 1 for all x ∈ X, t > 0 in
the definition of a fuzzy pseudometric in the sense of George-Veeramani
with a weaker axiom m(x, x, t) = ϕ(t) for all x ∈ X, t > 0 where ϕ :
R

+ → (0, 1] is a non-decreasing function, we come to the concept of a
fuzzy ϕ-pseudometric space. Basic properties of fuzzy ϕ-pseudometric
spaces and their mappings are studied. We show also an application of
fuzzy ϕ-pseudometrics in the words combinatorics.

Keywords: Fuzzy pseudometric · Fuzzy ϕ-pseudometric · Supratopol-
ogy · Cauchy sequences · Baire category theorem

1 Introduction

In 1942 K. Menger has introduced the concept of a statistical metric, see e.g. [11].
Basing on the concept of a statistical metric I. Kramosil and J.Michalek in [9]
introduced the notion of a fuzzy metric.

In 1994 George and Veeramani [2], see also [3], slightly modified Kramosil-
Michalek’s definition of a fuzzy metric. This modification allows more natural
examples of fuzzy metrics, in particular fuzzy metrics constructed from metrics;
besides George-Veeramani fuzzy metrics are more appropriate for the definition
and the study of the induced topological structure. In our work we generalize
George-Veeramani definition of a fuzzy metric by weakening one of their axioms
thus coming to a concept called a fuzzy ϕ-(pseudo)metric, where ϕ : R+ → [0, 1]
is a non-decreasing function such that limt→∞ ϕ(t) = 1. The motivation for such
generalizing of George-Veeramani’s definition will be presented in Remark 2.4.
In Sect. 2 we study some properties of fuzzy ϕ-(pseudo)metrics. Two differ-
ent topological-type structures on ϕ-(pseudo)metric spaces are discussed in
Sect. 3. In the fourth section we consider the sequential structure of fuzzy ϕ-
(pseudo)metric spaces, that is properties described by the behavior of sequences
in such spaces. Uniformly continuous mappings of fuzzy ϕ-pseudometric spaces
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are considered in Sect. 5. In particular, a certain version of Baire category the-
orem is established here. In Sect. 6 we construct a fuzzy ϕ-pseudometric on the
set of infinite words from a sequence of partial ordinary pseudometrics on this
set thus illustrating one of possible applications of fuzzy ϕ-pseudometrics.

2 Fuzzy ϕ-pseudometrics and Fuzzy ϕ-pseudometric
Spaces

Definition 1 (George-Veeramani [2,3]). A fuzzy pseudometric on a set X is a
pair (m, ∗) where ∗ is a continuous t-norm and m : X×X×R

+ → (0, 1], satisfies
the following conditions for all x, y, z ∈ X, s, t ∈ R

+ = (0,+∞):

(1FPM) m(x, y, t) > 0;
(2FPM) m(x, y, t) = 1 ⇐= x = y;
(3FPM) m(x, y, t) = m(y, x, t);
(4FPM) m(x, z, t + s) ≥ m(x, y, t) ∗ m(y, z, s);
(5FPM) m(x, y,−) : R+ → [0, 1] is continuous.

We get definition of a fuzzy ϕ-metric by replacing (2FPM) with a stronger axiom

(2FM) x = y ⇐⇒ m(x, y, t) = 1

While being fully “satisfied” with axioms (1FPM), (3FPM), (4FPM),
(5FPM), we suggest to replace axiom (2FPM) with a more general axiom
(2ϕFPM) where ϕ : (0,∞) → [0, 1] is a certain non-decreasing function. How-
ever, to be coherent, we have also to modify axiom (5FPM) by replacing it with
a stronger axiom (5ϕFPM). Motivations for these changes and some examples
are given below.

Definition 2. A fuzzy ϕ-pseudometric on a set X is a triple (m, ∗, ϕ), where
∗ is a continuous t-norm, ϕ : (0,∞) → [0, 1] is a nondecreasing function such
that limt→∞ ϕ(t) = 1 and m : X × X × R

+ → (0, 1] is a mapping satisfying the
following conditions for all x, y, z ∈ X, s, t ∈ R

+:

(1FPM) m(x, y, t) > 0;
(2ϕFPM) m(x, x, t) = ϕ(t) ≥ m(x, y, t) ∀x, y ∈ X;
(3FPM) m(x, y, t) = m(y, x, t);
(4FPM) m(x, z, t + s) ≥ m(x, y, t) ∗ m(y, z, s);

(5ϕFPM) function m(x, y,−) : R+ → [0, 1] is continuous and non-decreasing.

A fuzzy ϕ-pseudometric m is called a fuzzy ϕ-metric if m satisfies axiom:

(2ϕFM) m(x, y, t) = ϕ(t) ⇔ x = y;

The quadruple (X,m, ∗, ϕ) where (m, ∗, ϕ) is a fuzzy ϕ-pseudometric on X, is
called a fuzzy ϕ-pseudometric space.

We will usually abbreviate notations (m, ∗, ϕ) and (X,m, ∗, ϕ) and write just m
and (X,m) in case when it will not lead to misunderstanding.
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Remark 1. It is well-known that axiom (4FPM) combined with axiom (2FPM)
implies that fuzzy pseudometric m(x, y,−) is non-decreasing. On the other hand,
axiom (4FPM) combined with axiom (2ϕFPM) does not allow to conclude that
fuzzy ϕ-pseudometric m(x, y, ) is non-decreasing. Therefore, to be coherent, we
request this explicitly in the modified axiom (5ϕFPM).

Remark 2. We came to the idea to replace axiom (2FPM) by some weaker axiom
in the study of analytic problems in the theory of infinite words combinatorics.
While the tools of fuzzy pseudometrics on the whole seem to be useful in this
area, the “categoricity” of the axiom (2FPM) did not allow us to construct a
“full bodied” fuzzy pseudometric, which would give “satisfactory” information
about the distance between two infinite words. In order to solve this problem
we introduced the notion of a fragmentary fuzzy pseudometric that obtained
this name since they were constructed from “fragments” of ordinary metrics.
Fragmentary fuzzy pseudometrics inspired us to introduce and to study a more
general, and actually more natural concept of a fuzzy ϕ-pseudometric including
fuzzy fragmentary metrics as a special case.

Besides these “practical” reasons, we see justification of the axiom (2ϕFPM)
also from the “ideology” of “fuzzy mathematics”. Namely, constituting that a
distance between two equal objects should be the same for every t ∈ R

+ and
not be a subject of possible evaluation on each level t seems to be not natural in
the context of defining “distance” by fuzzy pseudometrics. In this concern, we
recall also the concept of an M -valued set, where an element need not be “fully
equal” to itself, see [7]. Note, also that limt→∞ m(x, x, t) = 1 for every x ∈ X.

Remark 3. The inequality m(x, x, t) ≥ m(x, y, t) ∀x, y ∈ X, that seems natural
and is important for the work, does not follow from the rest of the axioms.
Therefore we include it as a part of axiom (2ϕFPM). However, in case of the
minimum t-norm it can be proved, referring to axioms (4FPM) and (3FPM), as
follows: m(x, x, t) ≥ m(x, y, t) ∧ m(y, x, t) = m(x, y, t) ∧ m(x, y, t) = m(x, y, t).

Patterned after terminology used in the theory of fuzzy metric spaces we
introduce the corresponding “ϕ-versions”.

Definition 3 (cf [12]). A fuzzy ϕ-pseudometric is called fuzzy ultra ϕ-
pseudometric if for all x, y, z ∈ X, t, s ∈ R

+ m(x, y, t + s) ≥ min{m(x, z, t),
m(z, y, s)}.

Definition 4 (cf e.g. [5,13]). A fuzzy ϕ-pseudometric m on X is called strong
if it satisfies the following stronger modification of axiom (4FPM):

(4sFPM) m(x, z, t) ≥ m(x, y, t) ∗ m(y, z, t) for all x, y, z ∈ X and for all t > 0.

We justify this definition showing that (4sFPM) is indeed stronger than (4FPM):

Proposition 1. If m : X×X×R
+ → (0, 1] satisfies axioms (1FPM), (2ϕFPM),

(3FPM), (4sFPM) and (5ϕFPM), then it is a fuzzy ϕ-pseudometric.
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Proof. Referring to axioms (4sFPM) and (5ϕFPM) we get the following series
of inequalities: m(x, z, t+s) ≥ m(x, y, t+s)∗m(y, z, t+s) ≥ m(x, y, t)∗m(y, z, s),
which hold for any x, y, z ∈ X and any t, s ∈ R

+. �

Example 1. Let ϕ(t) = 1 for all t ∈ R
+. Then the fuzzy ϕ-pseudometric is just

the fuzzy pseudometric in the sense of George and Veeramani.

Example 2. Important fuzzy ϕ-pseudometric is defined by function ϕ(t) = t
1+t .

It is used in the definition of fragmentary fuzzy pseudometrics considered in
Sect. 6. By setting ϕk(t) = t

k+t for k > 0 we obtain a parametrized family
{ϕk(t) = t

k+t : k > 0} of ϕ-pseudometrics.

We modify the construction of the standard fuzzy metric given in [2] to
obtain a certain “optimal” fuzzy ϕ-pseudometric from a given pseudometric d :
X ×X → R

+ and a fixed function ϕ : R+ → (0, 1] such that limt→+∞ ϕ(t) = 1.

Proposition 2. Let d : X × X → R
+ be a pseudometric and ϕ : (0,∞) →

[0, 1] be a non-decreasing function such that limt→∞ ϕ(t) = 1. Then by setting
m(x, y, t) = t·ϕ(t)

t+d(x,y) we obtain a strong fuzzy ϕ-pseudometric for the product
t-norm, and hence also for any weaker continuous t-norm.

Proof. The validity of axioms (1FPM), (3FPM) and (5FPM) is obvious. To show
axiom (2FPM) notice that for every t > 0 m(x, x, t) = t·ϕ(t)

t+d(x,x) = ϕ(t). Finally,

to show axiom (4sFPM) notice that the inequality t·ϕ(t)
t+d(x,y) · t·ϕ(t)

t+d(y,z) ≤ t·ϕ(t)
t+d(x,z)

is equivalent to the following obvious inequality t · ϕ(t) · (t + d(x, z)) ≤ t2 + t ·
d(x, y) + t · d(y, z) + d(x, y) · d(y, z). �

One can easily prove the following modification of Proposition 2 in case when
the original pseudometric d is an ultra-pseudometric:

Proposition 3. Let d : X×X → R
+ be an ultra pseudometric and ϕ : (0,∞) →

[0, 1] be a non-decreasing function such that limt→∞ ϕ(t) = 1. Then by setting
m(x, y, t) = t·ϕ(t)

t+d(x,y) we obtain a strong fuzzy ϕ-pseudometric for the minimum
t-norm, and hence also for any other t-norm.

By revising definition of continuity for mappings of fuzzy pseudometric spaces
[2], we come to the following

Definition 5. A mapping f : (X,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) is called
continuous if for every ε ∈ (0, ϕ(t)), every x ∈ X and every t ∈ R

+ there
exist δ ∈ (0, ϕ(t)) and s ∈ R

+ such that m2(f(x), f(y), t) > ϕ2(t) − ε whenever
m1(x, y, s) > ϕ1(s) − δ.

Noticing that the composition g ◦ f : (X1,m1, ∗m1 , ϕ1) → (X3,m3, ∗m3 , ϕ3)
of two continuous mappings f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2), g :
(X2,m2, ∗m2 , ϕ2) → (X3,m3, ∗m3 , ϕ3) is continuous and that the identity map-
ping id : (X,m, ∗, ϕ) → (X,m, ∗, ϕ) is continuous, we get

Proposition 4. Fuzzy ϕ-pseudometric space as objects and their continuous
mappings as morphisms form a category FϕPMS.
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For strong fuzzy ϕ-pseudometrics the following stronger version of continuity
will be useful:

Definition 6 (cf [4]). A mapping f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) is
strongly continuous at a point x ∈ X1 if given ε ∈ (0, ϕ2(t)) and t ∈ R

+ there
exists δ ∈ (0, ϕ1(t)) such that m1(x, y, t) > ϕ1(t) − δ implies m2(f(x), f(y), t) >
ϕ2(t) − ε. A mapping f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) is strongly con-
tinuous if it is strongly continuous at each point x ∈ X.

3 Topological Structure of a Fuzzy ϕ-pseudometric Space

Let m : X × X × R
+ → (0, 1] be a fuzzy ϕ-pseudometric. Given a point x ∈ X,

t ∈ R
+ and ε ∈ (0, ϕ(t)), we define the ball with center x, at the level t and

radius ε as follows: B(x, ε, t) = {y | m(x, y, t) > ϕ(t) − ε}. It is clear that
t ≤ s =⇒ B(x, ε, t) ⊆ B(x, ε, s) and ε ≤ δ =⇒ B(x, ε, t) ⊆ B(x, δ, t).

In [2], [3] for a fuzzy pseudometric it is proved that the family B = {B(x, ε, t) |
x ∈ X, t ∈ (0,∞), ε ∈ (0, 1)} satisfies necessary conditions to be a base for
some topology Tm on X and just with this topology the space (X,m) is consid-
ered. Unfortunately, we do not have the analogous theorem in case of fuzzy
ϕ-pseudometrics. The problem is that one cannot guarantee that for every
y ∈ B(x, ε, t) there exists a ball B(y, δ, s) such that B(y, δ, s) ⊆ B(x, ε, t). There-
fore the collection of all balls B = {B(x, ε, t) | x ∈ X, t ∈ (0,∞), ε ∈ (0, ϕ(t)}
generally does not satisfy the criteria to be a base for a topology. However, we
use family B to construct two topological-type structures: a supratopology σm

and a topology τm, that can be useful for the study of fuzzy ϕ-pseudometric
spaces.

3.1 Supratopology σm induced by a fuzzy ϕ-pseudometric m

Let (X,m) be a fuzzy ϕ-metric space and let Bm be the collection of all open
balls. Further, let σm be the family of all unions of balls from Bm, that is

σm = {U ⊆ X : ∃Bm(ai, εi, ti), i ∈ I such that U =
⋃

i∈I
Bm(ai, εi, ti)}.

The family σm is obviously a supratopology, that is σm is invariant under taking
arbitrary unions, contains X and contains ∅ (as the union of the empty family
of balls). However, it may fail to be a topology, due to the reasons explained
above.

Below are some special cases when σm is closed under finite intersections,
that is σm indeed is a topology.

Theorem 1 [2]. Let ϕ(t) = 1 for all t ∈ (0,∞). Then for every B(x, ε, t) and
every y ∈ B(x, ε, t) there exists a ball B(y, δ, s) such that B(y, δ, s) ⊆ B(x, ε, t).
Thus B satisfies the criteria of a base of a topology and hence σm is a topology.

Theorem 2. If m : X ×X ×R
+ → (0, 1] is a strong fuzzy ultra ϕ-pseudometric,

then B(y, ε, t) ⊆ B(x, ε, t) for every y ∈ B(x, ε, t) and hence σm is a topology.
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Proof. Let y ∈ B(x, ε, t), then m(x, y, t) > ϕ(t) − ε. Now, let z ∈ B(y, ε, t).
Then m(x, z, t) ≥ m(x, y, t) ∧ m(y, z, t) ≥ (ϕ(t) − ε) ∧ (ϕ(t) − ε) and hence
z ∈ B(x, ε, t). �

One can easily verify the following two propositions:

Proposition 5. If (X,m) is a fuzzy ϕ-metric space, then the induced
supratopology σm is Hausdorff, that is for any two different points x1, x2 ∈ X
there exist t > 0 and ε ∈ (0, ϕ(t)) such that B(x1, ε, t) ∩ B(x2, ε, t) = ∅.
Proposition 6. A mapping f : (X1,m1, ∗m1 , ε1) → (X2,m2, ∗m2 , ε2) is con-
tinuous (in the sense of Definition 5) if and only if the mapping of the corre-
sponding supratopological spaces f : (X1, σm1) → (X2, σm2) is continuous (that
is ∀V ∈ σm2 ⇒ f−1(V ) ∈ σm1).

3.2 Topology τm Induced by a Fuzzy ϕ-pseudometric m

An alternative point of view on the topological structure of a fuzzy ϕ-
pseudometric space is given in the following definition:

Definition 7. Given a fuzzy ϕ-pseudometric space, a subset U ⊂ X is called
open if for every x ∈ U there exists B(x, r, t) such that B(x, r, t) ⊆ U .

One can easily see that τm is a topology. From the definitions it is clear that
τm ⊆ σm. However, note that an open ball need not be open in this space.

3.3 Subsets of a Fuzzy ϕ-pseudometric Spaces

3.3.1 Compactness
Having two topological structures induced by a fuzzy ϕ-pseudometric, a
supratopology σm and a topology τm, we must deal with two versions of com-
pactness in a fuzzy ϕ-pseudometric space: σm-compactness and τm-compactness.
Since τm ⊆ σm, a σm-compact space is τm-compact. However, we do not know
whether the converse is true. It is easy to notice that a compact subset in a fuzzy
ϕ-pseudometric space is closed in the supratopology σm.

3.3.2 Boundedness
As different from compactness, definition of boundedness does not depend upon
the choice of the induced topological structure.

Definition 8. A set A ⊆ X is called bounded if there exist t > 0 and r ∈
(0, ϕ(t)) such that m(x, y, t) > ϕ(t) − r for all x, y ∈ A. A set A ⊆ X is
called bounded on a level t or t-bounded if there exists r ∈ (0, ϕ(t)) such that
m(x, y, t) > ϕ(t) − r for all x, y ∈ A. A set A ⊆ X is called strongly bounded if
it is bounded on every level t > 0.

Patterned after the proof of Theorem 3.9 in [2] we easily get

Theorem 3. σm-compact subsets of a fuzzy ϕ-pseudometric space are strongly
bounded.
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3.3.3 Dense Subsets
Concerning density, being a topological property, we again have to distinguish
two cases.

Definition 9. A subset A of a fuzzy ϕ-pseudometric space (X,m) is called σ-
dense if it is dense in σm that is if each open ball B(a,r,t) has a nonempty
intersection with A: A ∩ B(a, r, t) �= ∅ ∀a ∈ X,∀r ∈ (0, ϕ(t)), ∀t > 0. A subset
A is called τ -dense if it is dense in topology τm

3.3.4 Closed Balls
By a closed ball with center x0 at the level t ∈ (0,+∞) and radius r ∈ (0, ϕ(t))
we call the set B̄(x0, t, r) = {x ∈ X : m(x, x0, t) ≥ r}. One can easily notice that
B̄(x0, t, r) is closed in the supratopology σm and that r′ < r ⇒ B̄(xo, r

′, t) ⊂
B(x0, r, t)

4 Sequences in Fuzzy ϕ-pseudometric Spaces

4.1 Three Types of Convergence in Fuzzy ϕ-pseudometric Spaces

Let (X,m) be a fuzzy ϕ-pseudometric space, (xn)n∈N be a sequence in this space
and x0 ∈ X. We say that (xn)n∈N σ-converges to x0 and write limσ

n→∞ = x0

if (xn)n∈N converges in the supratopology σm that is if for every open ball
B(x0, r, t) there exists n0 ∈ N such that xn ∈ B(x0, r, t) for all n ≥ n0. Given a
sequence (xn)n∈N and a point x0 ∈ X, we say that (xn)n∈N τ -converges to x0 and
write limτ

n→∞ = x0 if it converges in τm, that is if for every open set U containing
x0 there exists n0 ∈ N such that xn ∈ U for all n ≥ n0. Besides, the specificity
of the topological structure induced by fuzzy ϕ-pseudometrics provokes us to
introduce an “intermediate” version of convergence in such spaces. Namely, given
a sequence (xn)n∈N and a point x0 ∈ X, we say that (xn)n∈N τσ-converges to
x0 and write limτσ

n→∞ = x0 if for every open set U containing x0 and for every
B(x0, r, t) ⊆ U there exists n0 ∈ N such that xn ∈ B(x0, r, t) for all n ≥ n0.

From the definitions one can easily may be convinced in the following

Theorem 4. If limσ
n→∞ = x0, then limτσ

n→∞ = x0, and if limτσ
n→∞ = x0, then

limτ
n→∞ = x0.

Theorem 5. Let (X,m) be a fuzzy ϕ-pseudometric space and let (xn)n∈N be a
sequence in this space. Then limσ

n→∞xn = a if and only if limn→∞ m(a, xn, t) =
ϕ(t) for each t ∈ (0,∞).

Proof. Assume that limσ
n→∞xn = a. Given t ∈ (0,∞) and r ∈ (0, ϕ(t)), let

B(a, r, t) be the corresponding ball. Then we can choose n0 ∈ N such that
xn ∈ B(a, r, t) for all n ≥ n0, and hence m(a, xn, t) > ϕ(t) − r for all n ≥ n0.
Since r and t were taken arbitrary, we conclude that limn→∞ m(a, xn, t) = ϕ(t)
for every t > 0. Since, on the other hand, m(x, xn, t) ≤ ϕ(t), we conclude, that
limn→∞ m(x, xn, t) = ϕ(t).
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Assume now that limσ
n→∞xn �= a. Then there exist a ball B(a, r, t) such that

xn �∈ B(a, r, t) for infinitely many n ∈ N. However, this means that m(a, xn, t) ≤
ϕ(t) − r for infinitely many n ∈ N, and hence either limn→∞ m(a, xn, t) �= ϕ(t),
or limn→∞ m(a, xn, t) does not exist. �

From here and applying Theorem 4 we get

Corollary 1. Let (xn)n∈N be a sequence in a fuzzy ϕ-pseudometric space
(X,m). If limn→∞ m(a, xn, t) = ϕ(t) for a point a ∈ X, then limσ

n→∞xn =
limτσn→∞xn = limτ

n→∞xn = a.

4.2 Completeness of Fuzzy ϕ-pseudometric Spaces

Definition 10. A sequence (xn)n∈N in a fuzzy ϕ-pseudometric space is called a
Cauchy sequence if for each t ∈ (0,∞) and ε ∈ (0, ϕ(t)) there exists n0 ∈ N such
that m(xn, xm, t) > ϕ(t) − ε for all n,m ≥ n0.

One can easily notice that a σ-convergent sequence is Cauchy. A fuzzy ϕ-
pseudometric space is called complete if every Cauchy sequence in it σ-converges.

Example 3. One can easily see that a sequence (xn) converges in the standard
fuzzy ϕ-pseudometric md(x, y, t) = t·ϕ(t)

t+d(x,y) if and only if it converges in the
underlying crisp metric d(x, y). Hence a pseudometric space (X, d) is complete
if and only if the fuzzy ϕ-pseudometric (X,md) space is complete.

4.3 Fuzzy ϕ-pseudometric Version of a Baire Theorem

Impossibility to use intersection axiom for open sets in supratopology σm on
one hand, and the probable “non-openness” of open balls in topology τm make
it doubtful to get a full-bodied version of the Baire Category theorem, neither
in σm nor in τm. To overcome this obstacle, we introduce the concept of a
valuably open set and with its help get a certain restricted version of Baire
category theorem. An open set U of the space (X,σm) is called valuably open
if for every ball B(x0, r, t) having non-empty intersection with U there exists a
ball B(x1, r1, t1) ⊆ B(x0, r, t) ∩ U for some x1 ∈ B(x0, r, t), r1 ∈ (0, ϕ(t1)) and
t1 > 0.

Theorem 6. Let (X,m) be a complete fuzzy-ϕ-pseudometric space. The inter-
section of a countable family of dense valuably open sets in the supratopological
space (X,σm) is dense.

Proof. Let (X,m) be a fuzzy ϕ-pseudometric space and D1 ⊇ D2 ⊇ D3 ⊇
. . . Dn . . . be a sequence of valuably open dense subsets of this space. Further,
let U ⊆ X be an open subset of X. We have to prove that U ∩ (

⋂
n Dn) �= ∅.

Referring to Sect. 3.3.4 we choose an open ball B0 = B(x0, r0, t0) such that
B̄(x0, r0, t0) ⊆ U . Without loss of generality we may assume that r0 < 1, t0 < 1.
Since the set D1 is dense, D1∩B0 �= ∅, and since D1 is valuably open, we can find
B(x1, r1, t1) = B1 such that B̄(x1, r1, t1) ⊆ D1 ∩ B0. Without loss of generality
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we assume that r1 < 1
2 , t1 < 1

2 . Since the set D2 is dense, D2 ∩ B1 �= ∅, and
we can find B(x2, r2, t2) = B2 such that B̄(x2, r2, t2) ⊆ D2 ∩ B1. Without loss
of generality we assume that r2 ≤ 1

3 , t2 ≤ 1
3 . We continue such procedure by

induction and in the result obtain a sequence of points x0, x1, x2, . . . , xn, . . . and
a sequence of open balls B0(x0, r0, t0) ⊇ B1(x1, r1, t1) ⊇ B2(x2, r2, t2) ⊇ . . . ⊇
Bn(xn, rn, tn) . . . , where rn ≤ 1

n+1 , tn ≤ 1
n+1 .

We claim that the constructed sequence x0, x1, x2, . . . , xn, . . . is Cauchy.
Indeed let t > 0 and ε > 0 be given. First, by continuity of the t-norm,
find δ ∈ (0, 1) such that (1 − δ) ∗ (1 − δ) ≥ 1 − ε. Further, find n0 ∈ N

such that 1
n0

< t and 1
n0

< δ. Then for n, k ≥ n0 we have m(xn, xk, t) ≥
m(xn0 , xn, t) ∗ m(xn0 , xk, t) ≥ (1 − δ) ∗ (1 − δ) ≥ 1 − ε ∀n, k ≥ n0. Thus the
sequence x0, x1, x2, . . . , xn, . . . is Cauchy. Since the fuzzy ϕ-pseudometric space
(X,m) is complete this sequence σ-converges.

Let limσ
n→∞xn = a. Take some n ∈ N

+. Since all elements xk of this
sequence for k ≥ n are contained in the closed ball B̄n = B̄(xn, rn, tn), we
conclude that the limit is contained in B̄(xn, rn, tn) ∩ Dn−1 for all n ≥ 1. Hence
U ∩ (

⋂
n Dn) �= ∅, that is

⋂
n Dn is dense in X.

4.4 Sequentiality Properties of Fuzzy ϕ-pseudometric Spaces

Recall that a topological space (X,T ) is called sequential if its subset A is closed
whenever it contains the limits of all convergent sequence lying in this subset. It
is well-known and easy to prove, that each metric space is sequential. We extend
the concept of sequentially to the case of supratopological spaces and show here
that the supratopology induced by a fuzzy ϕ-pseudometric is sequential.

Theorem 7. Let (X,m) be a fuzzy ϕ-pseudometric space. Then the induced
supratopology σm is sequential.

Proof. Assume that A is a subset of the space (X,m) which is not closed. Then
its complement is not open and hence there exists a point a ∈ X \ A such that
for every t > 0 and every r ∈ (0, ϕ(t)) it holds B(a, r, t)∩A �= ∅. We fix t and for
every n ∈ N choose a point xn ∈ B(a, 1

n , t)∩A. From the construction it is clear
that {xn : n ∈ N} ⊆ A and limσ

n→∞xn = a �∈ A. The obtained contradiction
completes the proof. �

5 Uniform Continuity for Mappings of Fuzzy
ϕ-pseudometric Spaces

For a mapping of fuzzy ϕ-pseudometric spaces in a natural way we define the
property of strong uniform continuity, cf Definition 3.3. in [6].

Definition 11. A mapping f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) is called
strongly uniformly continuous if for every t ∈ R

+ ε ∈ (0, ϕ2(t)) there exists δ ∈
(0, ϕ1(t)) such that m1(x, y, t) > ϕ1(t) − δ implies m2(f(x), f(y), t) > ϕ2(t) − ε
for all x, y ∈ X1.
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Proposition 7. A mapping f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) is
strongly uniformly continuous if and only if for every t ∈ R

+ and every β > 0
there exists α > 0 such that 1

m1(x,y,t) − ϕ1(t) < α implies 1
m2(f(x),f(y),t)

−
ϕ2(t) < β.

Proof. Notice that the definition of a uniform continuity of the mapping
f : (X1,m1, ∗m1 , ϕ1) → (X2,m2, ∗m2 , ϕ2) means that for every t ∈ R

+

and for all ε ∈ (0, ϕ2(t)) there exists δ ∈ (0, ϕ1(t)) such that m1(x, y, t) >
ϕ1(t) − δ ⇒ m2(f(x), f(y), t) > ϕ2(t) − ε∀x, y ∈ X1. The last inequality can
be rewritten as 1

m1(x,y,t) < 1
ϕ1(t)−δ ⇒ 1

m2(f(x),f(y),t)
< 1

ϕ2(t)−ε∀x, y ∈ X1.
Now we can reformulate the definition of uniform continuity as follows: for
every t ∈ R

+ and for all ε ∈ (0, ϕ2(t)) there exists δ ∈ (0, ϕ1(t)) such that
1

m1(x,y,t) < 1 + δ
ϕ1(t)−δ := α ⇒ 1

m2(f(x),f(y),t)
< 1 + 1

ϕ2(t)−ε := β ∀x, y ∈ X1. To
complete the proof notice that equalities δ

ϕ1(t)−δ = α and 1
ϕ2(t)−ε = β establish

bijections between (0, ϕ1(t)) and R
+ and (0, ϕ2(t)) and R

+ respectively. �

Definition 12. Let (X,m, ∗, ϕ) be a fuzzy ϕ-metric space. A mapping f : X →
X is called contractive, if there exists k ∈ (0, 1) such that 1

m(f(x),f(y),t) − ϕ(t) ≤
k

(
1

m(x,y,t) − ϕ(t)
)

One can easily notice that a contractive mapping f : X → X is uniformly
continuous. In our further research we plan to study the problem of existence
and uniqueness of a fixed point for certain contractive mappings.

6 Fuzzy Ultra ϕ-metric on the Set of Infinite Words

In [1] we defined a fragmentary fuzzy metric on the set of infinite words as a
useful tool for the study of problems in words combinatorics. In this section we
show how the fragmentary fuzzy metric considered in [1] can be viewed as a
fuzzy ϕ-metric for a special chosen mapping ϕ.

Let X be the set of infinite words. We define a sequence {dn | n ∈
N ∪ {0}} of ultra pseudometrics on X as follows. Let x = (x0, x1, x2, . . .), y =
(y0, y1, y2, . . .) ∈ X and let χi(x, y) = 0 if xi = yi and χi(x, y) = 1 if xi �= yi.
We define: d0(x, y) = χ0(x, y); d1(x, y) = χ0(x, y) + χ1(x,y)

2 ; d2(x, y) =
χ0(x, y) + χ1(x,y)

2 + χ2(x,y)
22 ; . . . dn(x, y) =

∑n
i=0

χi(x,y)
2i ; . . .

Proposition 8. Every dn is an ultra pseudometric.

Proof. Obviously every χi(x,y)
2i is an ultra pseudometric. From here we con-

clude that every dn(x, y) is an ultra pseudometric by induction referring to the
following easily provable Lemma:

Lemma 1. Let d1, d2 : X × X → R
+ be ultra pseudometrics. Assume that

d1(x, y) ∈ {0} ∪ [a, 1] for any x, y ∈ X and that d2(x, y) ∈ [0, a
2 ]. Then d =

d1 + d2 : X × X → [0, 1] is an ultra pseudometric.
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Basing on this sequence of ultra pseudometrics we construct the sequence of
mappings on the set of all infinite words:
μ0(x, y, t) = t

t+1+d0(x,y) , μ1(x, y, t) = t
t+1+d1(x,y) , μ2(x, y, t) = t

t+1+d2(x,y) , . . .,
μn(x, y, t) = t

t+1+dn(x,y) , . . .

Further, we define the following family of mappings:
m0(x, y, t) = μ0(x, y, t); m1(x, y, t) = μ1(x, y, t) ∨ μ0(x, y, 1); m2(x, y, t) =
μ2(x, y, t) ∨ μ1(x, y, 2); . . .; mn(x, y, t) = μn(x, y, t) ∨ μn−1(x, y, n); . . .

From the construction it is clear that mn(x, z, t) ≥ mn(x, y, t) ∧ mn(y, z, t),
mn(x, y, t) ≤ mn+1(x, y, t), mn(x, y) ≤ mn(x, x) and mn(x, x) = n

n+1 for all
x, y ∈ X, t ∈ R

+ and n ∈ N.
Finally, we construct a mapping m : X × X × R

+ → [0, 1] as follows:

m(x, y, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m0(x, y, t) if 0 < t ≤ 1
m1(x, y, t) if 1 < t ≤ 2
m2(x, y, t) if 2 < t ≤ 3

. . .
mn(x, y, t) if n < t ≤ n + 1

. . .

We define mapping ϕ : (0,∞) → (0, 1] by setting ϕf (t) = t
t+1 . Obviously, ϕf

is non-decreasing and limt→+∞ = 1. Now, from the construction of the mapping
m one easily get

Proposition 9. m : X × X × R
+ → [0, 1] is a fuzzy strong ultra ϕf -metric.

We illustrate the shape in the initial interval (0, 3] of the fuzzy metric
m describing the distance between infinite words x = (x0x1x2...) and y =
(y0y1, y2...) on dependence of the values x0, x1, x2, y0, y1, and y2.

1. The case x0 = y0, x1 = y1, x2 = y2. Then m(x, y, t) = t
t+1 for t ∈ (0, 3].

2. The case x0 = y0, x1 = y1, x2 �= y2. Then

m(x, y, t) =

⎧
⎨

⎩

t
t+1 if 0 < t ≤ 2

2
3 if 2 < t ≤ 5

2
t

t+ 5
4

if 5
2 < t ≤ 3

3. The case x0 = y0, x1 �= y1, x2 = y2. Then

m(x, y, t) =

⎧
⎨

⎩

t
t+1 if 0 < t ≤ 1

1
2 if 1 < t ≤ 3

2
t

t+ 3
2

if 3
2 < t ≤ 3

4. The case x0 = y0, x1 �= y1, x2 �= y2. Then

m(x, y, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t
t+1 if 0 < t ≤ 1

1
2 if 1 < t ≤ 3

2
t

t+ 3
2

if 3
2 < t ≤ 2

4
7 if 2 < t ≤ 7

3
t

t+ 7
4

if 7
3 < t ≤ 3
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5. The case x0 �= y0, x1 = y1, x2 = y2. Then m(x, y, t) = t
t+2 for t ∈ (0, 3].

6. The case x0 �= y0, x1 = y1, x2 �= y2. Then

m(x, y, t) =

⎧
⎨

⎩

t
t+2 if 0 < t ≤ 2

1
2 if 2 < t ≤ 9

4
t

t+ 9
4

if 9
4 < t ≤ 3

7. The case x0 �= y0, x1 �= y1, x2 = y2. Then

m(x, y, t) =

⎧
⎨

⎩

t
t+2 if 0 < t ≤ 1

1
3 if 1 < t ≤ 5

4
t

t+ 5
2

if 5
2 < t ≤ 3

8. The case x0 �= y0, x1 �= y1, x2 �= y2. Then

m(x, y, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t
t+2 if 0 < t ≤ 1

1
3 if 1 < t ≤ 5

4
t

t+ 5
2

if 5
4 < t ≤ 2

4
9 if 2 < t ≤ 11

5
t

t+ 11
4

if 11
5 < t ≤ 3
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Abstract. In the paper is proposed a method for evaluation of the quality
assurance in universities and scientific organizations. The evaluation of the
quality is based on criteria, which measure different aspects of university
activities and consists of different sub-criteria. For the assessment the theory of
intuitionistic fuzzy sets is used. The obtained intuitionistic fuzzy estimations
reflect the degree of each criterion’ satisfaction, and non-satisfaction. We also
consider a degree of uncertainty that represents such cases wherein is no
information about sub-criteria of the current criterion. The generalized model
gives possibility for algorithmization of the methodology of forming the quality
evaluations is constructed. It provides the possibility for the algorithmization of
the process of forming the evaluation of the quality assurance in universities.

Keywords: Generalized nets � Intuitionistic fuzzy sets � University quality

1 Introduction

In a series of research papers, the authors have studied some of the most important
processes of functioning of universities, [5–12]. In particular, Generalized Nets, [1, 2],
are used to describe the process of student assessment, [5, 9, 10] where the assessments
can be represented in an intuitionistic fuzzy form. The concept of Intuitionistic Fuzzy
Set was delivered in [3, 4].

The purpose of the present paper is to offer a generalized net model with intu-
itionistic fuzzy assessments of the process of quality assurance in universities and
scientific organizations. The quality in higher education is related to teaching and
learning, including the learning environment and relevant links to research and inno-
vation [13]. The research is a continuation of previous investigations of the authors into
the modelling of a basic processes and functions of a typical university.
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2 Proposed Assessment Model

The evaluation of the quality assurance in higher education institutions and scientific
organizations is based on criteria, which measure different aspects of university
activities including teaching staff and academic potential, policy for quality assurance,
prestige, innovation, scientific activities and etc. The final assessment is provided in the
range from 0 to usually 100 points.

2.1 Determination of the Criterion Assessment

Let us consider a group of n criteria, the criteria are labeled as follows j ¼ 1; 2; . . .; n.
Every criterion consists of cj sub-criteria ij ¼ 1; 2; . . .; cj.

The assessment, which estimates a summative account of the j-th criterion, is formed
on the basis of a set of intuitionistic fuzzy estimations l j; v jh i of real numbers from the
set 0; 1½ � � 0; 1½ �, related to the respective sub-criteria. These intuitionistic fuzzy esti-
mations reflect the degree of satisfaction lj, or non-satisfaction mj, for each criterion.

The degree of uncertainty p ¼ 1� l� v represents such cases wherein the uni-
versity can not provide information on the criterion. Within the paper the ordered pairs
were defined in the sense of intuitionistic fuzzy sets.

Initially, when there has not been information obtained for the criterion’ assess-
ment, then the estimation l j

0; v
j
0

� �
is given by the initial values 0; 0h i. For k� 0, the

current (k)-st estimation of the j-th criterion is obtained on the basis of the previous
estimations according to the recurrence relation involved in the following formula (1),
j ¼ 1; 2; . . .; n.

hl j
k; m

j
ki ¼

k � 1ð Þ:l j
k�1 þmj

ij

k
;
k � 1ð Þ:m jk�1 þ n j

ij

k

* +
; ð1Þ

where:

– hl j
k�1; m

j
k�1i is the previous estimation of the j-th criterion on the basis of the

estimations of the already evaluated sub-criteria,

– mj
ij ; n

j
ij

D E
is the estimation of the ij sub-criterion of the j-th criterion, form

j
ij ; n

j
ij 2 [0, 1],

mj
ij + n j

ij � 1, and j = 1, 2, …, n, ij = 1, 2, …, cj.

– mj
ij and n j

ij are calculated according (2) and (3) in the following way:

mj
ij ¼

pij
p j
max

; if the sub - criterion ij is described,
0; if it is no information about sub - criteria ij

;

(
ð2Þ

n j
ij ¼

p j
max�pij
p j
max

; if the sub - criterion ij is described,
0; if it is no information about sub - criteria ij

(
; ð3Þ
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where:

– pij are the points for the description of the criterion ij,
– p j

max is the maximal possible number of points for the criterion ij.

Therefore, the degree of uncertainty, in this case, is equal to 1, when there is no
information about sub-criteria ij of the j-th criterion.

2.2 Determination of the Final Assessment for the University

The final assessment for the quality assurance in a university can be calculated
according (4) in the following way:

hl; mi ¼

Pn
j¼1

l j

n
;

Pn
j¼1

m j

n

* +
; ð4Þ

where:

– hl j; m ji is the estimation of the j-th criterion, j = 1, 2,…, n,
– n is the number of criteria in criteria system.

3 Generalized Net Model

The GN-model with intuitionistic fuzzy estimations of the quality assurance in uni-
versities (see Fig. 1) contains four transitions and fifteen places, collected in two groups
and related to the two types of the tokens that will enter respective types of places:

• a-tokens and c-places represent the criteria,
• b-tokens and e-places represent universities and their estimations.

For brevity, we shall use the notation a- and b-tokens instead of ak- and bl-tokens,
where k and l are numerations of the respective tokens.

Initially the a- and b-tokens remain, respectively, in places c3 and e4 with initial
characteristics:

xa0 = “Current criteria system for quality assurance of higher schools”,

xb0 = “Name and current status of the university uk, k = 1, 2, …, m”.
The new criterion/criteria system and new higher schools enter the net via place c1

and e1 respectively. These tokens have initial characteristics
“Criterion or new criteria system”
in place c1, and
“Name and current status of a university”
in place e1.

Generalized Net Modelling of the Intuitionistic Fuzzy Evaluation 343



The GN contains the following set of transitions:

A ¼ Z1; Z2; Z3; Z4f g;

and they represent, respectively:

• Z1 – The activities with criteria system;
• Z2 – Determination of the university for evaluation;
• Z3 – Process of evaluation of the criteria;
• Z4 – Process of evaluation of the sub-criteria.

The forms of the transitions are the following.

Z1 ¼ fc1; c4; c5g; fc2; c3; c4g; r1;_ðc1; c4; c5Þh i

where:

Wc
4;2 = “There is a criteria system with criteria than will be used for assessment of

the quality assurance”;

Z1

c4

Z2

Z3

e5

Z4

c1

c2

e3

e1

e2

e8 e10

e9

c5
c3

e4

e6

e7

Fig. 1. GN model with intuitionistic fuzzy estimations of the quality assurance in universities
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and Wc
4;3 = “There is a rejected criteria system”.

The a-token that enters place c4 (from place c1) unites with a-token (in place c4).
When the predicate Wc

4;2 has truth-value “True”, the token a-token in place c4 generates
new a-token that enters place c2 with characteristic

“Criteria system”
When the predicate Wc

4;3 has truth-value “True”, the token a-token in place c4
generates new a-token that enters place c3 with characteristic

“Rejected criteria system”.

Z2 ¼ fe1; e3; e4g; fe2; e3g; r2;_ðe1; e3; e4Þh i

where:

and We
3;2 = “The university for evaluation is determined”.

The b-token that enters place e3 (from place e1) unites with b-token (in place e3).
When the predicate We

3;2 has truth-value “True”, the b-token in place e3 generates new
b-token that enters place e2 with characteristic

“Name and current status of chosen university uk”.

Z3 ¼ fc2; e2; e7; e8; e9g; fc5; e4; e5; e6; e7; e8g; r3;_ð^ðc2; e2Þ; e7; e8; e9Þh i

where:

and
We

7;4 = We
7;5 = Wc

8;5 = “The final university’s assessment on all criteria is
evaluated”,

We
7;7 = ¬ We

7;5,
We

8;6 = “The criterion j for assessment is chosen”, for j = 1, 2, …, n,
We

8;8 = “There is at least one more evaluation criterion”.
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The a-token that enters place e8 (from place c2) do not obtains new characteristic.
When the predicate We

8;5 has truth-value “True”, the a-token from place e8 enters place
c5 without new characteristic.

The b-token that enters place e8 does not obtain new characteristic.
The b-token that enters place e6 (from place e8) obtains characteristic
“Criterion j, university uk”, for j = 1, 2, …, n, k = 1, 2, …, m.
The b-tokens that enter places e4 (from place e7) and e7 (from place e9) do not

obtain new characteristic.
The b-token that enters place e5 (from place e7) obtains characteristic
“Final assessment according formula (4), university uk”, for k = 1, 2, …, m.

Z4 ¼ fe6; e10g; e9; e10f g; r4;_ e6; e10ð Þh i

where:

andWe
10;9 = “The intuitionistic fuzzy estimations for all sub-criteria of the criterion

j is evaluated”,
We

10;10 = ¬ We
10;9.

The b-token from place that e6 enters place e10 without new characteristic.
The b-token that enters place e9 obtains characteristic
“Intuitionistic fuzzy estimation for criterion j is evaluated according formula (1)”.

4 Conclusion

In the present research the methodology of assessment the quality assurance in uni-
versities and scientific organizations with intuitionistic fuzzy estimations is given. The
constructed generalized model gives possibility for algorithmization of the methodol-
ogy of forming the quality evaluations related to learning and teaching in higher
education, innovations, and research and governance activities.

Acknowledgments. The authors are thankful for the support provided by the Bulgarian
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Abstract. Utility functions content parameters related to risk aversion
coefficients which represent natural extensions of utility function proper-
ties. They measure how much utility we gain (or lose) as we add (or sub-
tract) from our wealth. We set up these parameters for a person based on
her/his answers to a questionnaire constructed to identify individual risk
behavior. Calibration of such a questionnaire, and subsequently of util-
ity functions, is based on an expected utility maximization of different
alternatives of investment strategies. In the paper, we present question-
naire calibration methodology which we illustrate using absolute and
relative risk aversion coefficients of two selected utility functions which
have common, as well as different properties.

Keywords: Questionnaire · Utility function · Risk measurement ·
Calibration · Premium

1 Introduction

The term utility is the economist’s way of measuring pleasure or happiness and
how it relates to the decisions that people make. Utility measures the benefits
(or drawbacks) from consuming goods or services or from working. Although
utility is not directly measurable, it can be inferred from the decisions that
people make.

Our interest in utility theory was primarily inspired by the monographs [6,9],
where authors introduced a model for determination of maximal and minimal
premium in non-life insurance using personal utility functions. An alternative
approach to the utility theory can be found for example, in [4,5,10,11] or [14].

The most common way how to determine a personal utility function, are
responses to a suitably constructed questionnaire. Choice under uncertainty is
often characterized as the maximization of expected utility. If we intend to use
in practice this relatively simple model of risk measurement, we must consider
that seriousness and uncertainty of responses depend on the situation, the form
of questions asked, the time which the respondents have, and on many other
psychological and social factors. In other words, we need to calibrate various
parameters of our questionnaire to be able to capture personal utility functions

c© Springer International Publishing AG 2018
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DOI 10.1007/978-3-319-66827-7 32



How to Calibrate a Questionnaire for Risk Measurement? 349

of respondents as close as possible. There are several ways how to deal with this
problem. For example, we can utilize theory of fuzzy questionnaires, e.g. [1–3].
In the paper, we present alternative, simple and straightforward, methodology
of calibrating a questionnaire with a small number of questions based on two
selected utility functions, where parameters of the questionnaire are determined
using expected utility maximization, see [12,13].

2 Preliminaries

Firstly, we present a definition and basic properties of a utility function.

Definition 1 (Utility function). A function u(x) of the input x is a utility
function if

1. it is continuous,
2. it is quasi-concave, i.e. {x|u(x) ≥ k} is a convex set for each k ∈ R,
3. it is monotone, i.e. u(x) ≥ u(y) if x ≥ y, or strictly monotone, i.e. u(x) >

u(y) if x > y.

2.1 Risk Aversion Coefficients

The utility function has two key properties - a slope and concavity or convexity.
A higher curvature of u(x) represents a higher risk aversion or higher risk seeking.

If we can specify the relationship between utility and wealth in a function,
the risk aversion coefficient measures how much utility we gain (or lose) as we
add (or subtract) from our wealth. The first derivative of the utility function
according to wealth u′(x) should provide a measure of this, but it is specific to
an individual and cannot be easily compared across individuals with different
utility functions.

To get around this problem, K.J. Arrow and J.W. Pratt proposed that we
look at the second derivative of the utility function, which measures how the
change in utility (as wealth changes) itself changes as a function of wealth level,
and divide it by the first derivative to arrive at the Arrow-Pratt measure of
absolute risk aversion ARA defined as follows:

Let u(x) be a utility function and x > 0 be a wealth. Then the coefficient of
absolute risk aversion is given by

ARA(x) = −u′′(x)
u′(x)

. (1)

The advantage of this formulation is that it can be compared across different
persons with different utility functions to draw conclusions about differences in
risk aversion across people.

The following propositions express equivalence between the size of ARA and
approach to risk:
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– ARA(x) > 0 ⇔ the utility function expresses risk aversion approach to risk,
– ARA(x) < 0 ⇔ the utility function expresses risk seeker approach to risk,
– ARA(x) = 0 ⇔ the utility function expresses risk neutral approach to risk.

The Arrow-Pratt-De Finetti measure of relative risk aversion (RRA) or coef-
ficient of relative risk aversion is defined as follows.

Let u(x) be a utility function and x > 0 be a wealth. Then the coefficient of
relative risk aversion is given by

RRA(x) = −x · u′′(x)
u′(x)

. (2)

Following [8], we can explain a distinction between absolute and relative risk
aversion coefficient. An absolute risk aversion coefficient explains how we react
to absolute changes in wealth, whereas a relative risk aversion coefficient explains
how we react to proportional changes in wealth.

Decreasing ARA implies that the amount of wealth that we are willing to
put at risk increases as wealth increases, whereas decreasing RRA indicates that
the proportion of wealth that we are willing to put at risk increases as wealth
increases. With constant ARA, the amount of wealth that we expose to risk
remains constant as wealth increases, whereas the proportion of wealth remains
unchanged with constant relative risk aversion. Finally, we stand willing to risk
smaller and smaller amounts of wealth, as we get wealthier, with increasing
absolute risk aversion, and decreasing proportions of wealth with increasing rel-
ative risk aversion.

2.2 Expected Utility

Expected utility is calculated by the well-known formula

E [u (X)] =
n∑

i=1

u(xi) · pi, (3)

where X = (x1, x2, . . . , xn) is a vector of the possible alternatives, pi is the
probability of an alternative xi, i = 1, 2, · · · , n and u(x) : R → R is an increasing
continuous utility function.

The criterion of expected utility maximization corresponds to the preference
order �, for which

X � Y ≡ E [u(X)] � E [u(Y )] (4)

for a utility function u. The relation (4) means that among two alternatives X, Y
we prefer the alternative with a larger expected utility. If u(x) is monotone, the
rule (4) preserves monotonicity.

2.3 Maximal Premium Model

In general, our respondent has two alternatives - to buy insurance or not. Suppose
that he owns a capital w, which he values wealth by the utility function u.
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If he is insured against a loss X for a gross annual premium GP , he has a
certain situation and his decision to buy insurance gives him the utility value
u (w − GP ). If he is not insured, it means an uncertain situation for insured. In
this case, the expected utility is E [u (w − X)]. Based on Jensen’s inequality, we
get

E [u (w − X)] ≤ u (E [w − X]) ≤ u (w − GP ) . (5)

Since utility function u is an increasing continuous function, GP ≤ Pmax,
where Pmax denotes the maximum premium to be paid. This so-called zero
utility premium is the solution to the following utility equilibrium equation

E [u (w − X)] = u (w − Pmax) . (6)

2.4 Power and Exponential Utility Functions

Our goal is to determine the utility functions of potential clients of an insurance
company, therefore we consider that they are risk averse and we calibrate their
utility functions to reflect the risk aversion. To illustrate the calibration process,
we have chosen two well known families of utility functions, power and exponen-
tial functions. These functions have different absolute and relative risk aversion
coefficients
Power function is given by

u(x) =
x1−α

1 − α
if α > 1. (7)

The corresponding absolute risk aversion coefficient is given by

ARA(x)power =
α

x
, (8)

relative risk aversion coefficient is given by

RRA(x)power = α. (9)

Exponential function in the form

u(x) =
1
α

· (1 − exp(−α · x)) if α > 0. (10)

has the corresponding risk aversion coefficients defined as follows:

ARA(x)exp = α, (11)

RRA(x)exp = x · α, (12)
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3 Calibration of the Questionnaire and the Selected
Utility Functions

Forms of utility functions (7) and (10), mentioned above, are determined by the
coefficient α, which in general represents the approach to risk. For the purpose
of calibration of these utility functions, we can use a questionnaire like the one
defined in [7].

Questionnaire. Suppose that you are going to invest 17,000 euros and you have
a choice between four different investment strategies for a three-year investment.
Which of these alternatives would you prefer (A respondent has to choose only
one of the alternatives.)?

– Alternative A1: in the best case profit 1,700 euros (10.00 %),1 in the worst
case profit 550 euros (3.24 %).

– Alternative A2: in the best case profit 2,600 euros (15.29 %), in the worst case
zero profit (but no loss), (0.00 %).

– Alternative A3: in the best case profit 4,000 euros (23.53 %), in the worst case
loss 1,700 euros (−10.00 %).

– Alternative A4: in the best case profit 6,500 euros (38.53 %), in the worst case
loss 4,000 euros (−23.53 %).

The above mentioned questionnaire has three basic parameters, namely the
number of questions (N), probabilities associated with the best and the worst
case (pb, pw), and a fundamental investment (w). As a part of our calibration
process, we would like to find appropriate values for these parameters.

The number of questions in our questionnaire determines the number of risk
groups in our population we are able to identify. If we suspect that there is a
huge risk diversity among people in our population, we would like to increase
the number of questions. On the other hand, with too many question some indi-
viduals could face the Paradox of Choice being unable to choose an alternative.
We need to take account also time needed to respond to a questionnaire with
too many questions. In our opinion, the number of questions should be between
four and ten.

Probabilities do not seem to be present in the questionnaire. Without pro-
viding explicitly information about probability of the occurrence of the best or
the worst case in each question of the questionnaire such probability is implic-
itly set to be 0.5 or could be self-imposed by a respondent causing an error in
identification of her/his risk group. In order to avoid such situation we have to
provide these probabilities as a part of the questionnaire and they should be
the same for all alternatives. To minimize a possible problem of different under-
standing of provided values of the probability by respondents, we could add a

1 Percentage of possible profit or loss sequentially in all alternatives.
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referential trial with identical probabilities of random events. Feasible probabil-
ities are those allowing us to obtain at least one maximal expected utility for
each alternative.

The last parameter of the questionnaire, w, is strictly context dependent and
is set individually for each respondent based on her/his preferences. We included
it into our calibration process in order to eliminate infeasible triplets (N, pb, w).

In the paper, we illustrate the proposed calibration process mainly using
two triplets, namely (N = 4, pb = 0.8, w = 17,000) and (N = 4, pb = 0.8, w =
13,500).

In the next step of our calibration process we, for each (N, pb, w), evaluate
expected utilities for all alternatives and for some selected risk aversion coeffi-
cients α in the utility functions (7) and (10). On the basis of the Eq. (13), we
evaluate expected utilities and determine maximal expected utilities by

E[u(w,α)] = p · u(x1, α) + (1 − p) · u(x2, α) (13)

for the best case x1 and the worst case x2, for all alternatives, for each α.
Thus, we answer two questions:

1. How the expected utilities change if we change our fundamental investment
in the questionnaire?

2. How the expected utilities change if we change probabilities (the same for all
alternatives) of occurring the best and the worst case?

We start with analysis of the power utility function (7).
Using (7) and (13) the expected utility is given by

E[u(w,α)] = p · ((1 + ip
100 ) · w)1−α

1 − α
+ (1 − p) · ((1 + i1−p

100 ) · w)1−α

1 − α
, (14)

where

– ip - profit in the best case which occurs with the probability p,
– i1−p - profit or loss in the worst case which occurs with the probability 1− p.

Because the partial derivative ∂E[u(w,α)]
∂w is positive, with increasing fundamental

investment expected utilities increase, too. But, expected utility to be monotone
increasing according to α, we need to work with a fundamental investment sat-
isfying the condition w ≥ 1

1+
i1−p
100

.

Table 2 in Appendix shows expected utilities determined using the power util-
ity function with the same probability pb = 0.8 in all alternatives. From formula
(9), where RRApower = α, it is clear that a fundamental investment has not the
impact on maximal expected utility, so the maximal expected utility remains on
the same level of α. That means, the change of the fundamental investment does
not affect the choice of parameter α of the power utility function. The level of
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maximal expected utilities remains on the same level as is highlighted at Table 2,
i.e., to α = 3 corresponds the maximal expected utility of the alternative A4, to
α = 5 corresponds alternative A3, to α = 18 belongs alternative A2, and finally,
to α = 20 alternative A1 (in the case if we assume maximal α = 20).

From positive partial derivative ∂E[u(w,α)]
∂p , it is obvious that with increasing

probability p the expected utility increases, too (see Tables 3 and 4).
In the case of the exponential function (10), using the same parameters,

results are listed in Tables 5 and 6. It is obvious that a fundamental investment
impacts maximal expected utility in this case.

If we construct tables analogous to Tables 2 and 5 for different triples
(N, pb, w), we can then choose a triple providing us with a table which is the
most similar to the ideal solution, i.e., giving as a table with as good separation
of αs as possible. Table 1 illustrates the ideal solution assuming four alternatives
A1, A2, A3, A4 and α ∈ {1, 2, 3, . . . , 12}. Black cells represent maximal expected
utilities for Similarity between the ideal table and the table corresponding to a
triple (N, pb, w) is given as follows:

SIM(tableideal, table(N,pb,w)) =
# cells with matching colors
# alternatives × # levels of α

. (15)

Table 1. An ideal solution for four alternatives and α ∈ {1, 2, 3, . . . , 12}

α A1 A2 A3 A4

1
2
3
4
5
6
7
8
9
10
11
12

4 Maximal Premium

Once our questionnaire is calibrated we can use it to identify a utility function
of a respondent. Then, on the basis of individual personal utility functions, we
can determine maximum premium of our respondent - client of an insurance
company will be willing to pay for insurance of his wealth on the basis of the
following model.
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Our client has 17,000 euros and wants to insure his wealth worth 12,000
euros. The maximum premium Pmax is calculated using equilibrium Eq. (6) as
follows

Pmax = w − u−1 (E [u (w − X)]) . (16)

The previous function gives a maximum premium determined with respect to
the power utility function (7) as follows

Pmax
power = w − (

(w − X)1−α · p∗ + w1−α · (1 − p∗)
)1/(1−α)

, (17)

and with respect to the exponential function (10) as follows

Pmax
exp =

ln(1 − p∗ + p∗ · exp(αx))
α

, (18)

where p∗ is the probability of occurrence of insured event.
On the basic of maximal expected utilities using power function (7), we

can calibrate utility functions by aggregating of α s to maximum, average or
minimum as follows α = 3, α = 2.5 and α = 2, see Table 2. The Maximal
expected utilities and corresponding a for exponential utility function (10) of
the alternative A3 are given in Table 7 corresponding maximal gross annual
premium is described in Table 8.

Similarly, using maximal expected utilities evaluated by exponential function
(10), we can calibrate utility functions by aggregating of α s to maximum, average
or minimum, consequently α = 2, α = 1.5 and α = 1, see Tables 5 and 6.
Corresponding maximal gross annual premiums are described in Table 9.

The selection of maximal (minimal) α could be interpreted as focus on profits
(market share).

5 Conclusions

In this paper, we introduced methodology how to calibrate questionnaires aimed
for risk measurement, where parameters of the questionnaire are determined
using expected utility maximization and similarity to ideal solution. For simplic-
ity, we restricted ourselves to two basic families of utility functions - power and
exponential utility functions. A further generalization of the presented method-
ology will be the object of future research.

Acknowledgement. Jana Špirková has been supported by the Project VEGA
no. 1/0093/17 Identification of risk factors and their impact on products of the insur-
ance and savings schemes.
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Appendix2

Table 2. Expected utilities according to power utility function (7) with p = 0.8 and
w = 17,000 e

A1 A2 A3 A4

x1 1.870 1.960 2.100 2.350

x2 1.755 1.700 1.530 1.300

α Expected utility

2 −0.5417676006 −0.5258103241 −0.5116713352 −0.4942716858

3 −0.1468542974 −0.1387253581 −0.1334215603 −0.1316025619

4 −0.0531129349 −0.0489855239 −0.0474083611 −0.0508922003

5 −0.0216261081 −0.0195385907 −0.0194081802 −0.0240641956

6 −0.0093995620 −0.0083486432 −0.0086885586 −0.0130056075

7 −0.0042589103 −0.0037327835 −0.0041531599 −0.0076975207

..

.
..
.

..

.
..
.

..

.

10 −0.0004585870 −0.0003956201 −0.0005955985 −0.0021362131

11 −0.0002251476 −0.0001948224 −0.0003324839 −0.0014663374

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

17 −0.0000037796 −0.0000036229 −0.0000142122 −0.0001879100

18 −0.0000019532 −0.0000019283 −0.0000086842 −0.0001360248

19 −0.0000010138 −0.0000010340 −0.0000053344 −0.0000988139

20 −0.0000005284 −0.0000005582 −0.0000032912 −0.0000720071

Table 3. Maximal expected utilities for power utility function (7) of the alternative A4

p w = 1.35 w = 1.70 E[u(1.35)] E[u(1.70)]

α α

0.99 10 10 −0.0012378760 −0.0001551021

0.98 8 8 −0.0040690280 −0.00080904694

0.97 7 7 −0.0079685412 −0.0019957530

0.96 7 7 −0.0093087163 −0.0023311511

0.95 6 6 −0.0169412028 −0.0053443186

0.94 6 6 −0.0185613638 −0.0058550712

0.93 5 5 −0.0346051536 −0.0137506856

0.92 5 5 −0.0366030002 −0.0145440325

0.91 5 5 −0.0386008468 −0.0153373794

0.90 5 5 −0.0405387623 −0.0161307264

0.80 3 3 −0.2087725571 −0.1316025619

0.70 2 2 −0.6658316508 −0.5286415712

2 All computations were made with fundamental investments divided by 10,000.
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Table 4. Maximal expected utilities for power utility function (7) of the alternative
A3

p w = 1.35 w = 1.70 E[u(1.35)] E[u(1.70)]

α α

0.99 18 18 −0.0000311904 −0.0000006202

0.98 15 15 −0.0001477490 −0.0000058666

0.97 14 14 −0.0002799662 −0.0000139965

0.96 12 12 −0.0007407520 −0.0000587266

0.95 11 11 −0.0012830466 −0.0001280853

0.94 11 11 −0.0014196868 −0.0001417119

0.93 10 10 −0.0023818293 −0.0002993874

0.92 9 9 −0.0040249082 −0.0006370676

0.91 9 9 −0.0042672553 −0.0006753900

0.90 8 8 −0.0072339231 −0.0014417376

0.80 5 5 −0.0487809975 −0.0194081802

0.70 − − − −

Table 5. Expected utilities evaluated by the exponential utility function (10) with
p = 0.8, w = 17,000 e

A1 A2 A3 A4

x1 1.870 1.960 2.100 2.350

x2 1.755 1.700 1.530 1.300

α Expected utility

1 0.8421196221 0.8507765585 0.8587277239 0.8691983116

2 0.4875086673 0.4887262351 0.4893129997 0.4889345313

3 0.3320124220 0.3321816075 0.3321667948 0.3317525635

4 0.2498424572 0.2498655774 0.2498451037 0.2497076270

5 0.1999799036 0.1999829890 0.1999765524 0.1999386001

6 0.1666639888 0.1666643862 0.1666627810 0.1666529085

7 0.1428567748 0.1428568231 0.1428564579 0.1428539442

...
...

...
...

...

10 0.099999998917254 0.099999998926022 0.0999999954 0.0999999548

11 0.09090909074923 0.090909090740082 0.0909090900 0.0909090797

12 0.08333333330946 0.083333333306239 0.0833333332 0.0833333305
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Table 6. Expected utilities evaluated by the exponential utility function (10) with
p = 0.8, w = 13,500 e

A1 A2 A3 A4

x1 1.485 1.556 1.668 1.866

x2 1.394 1.350 1.215 1.032

α Expected utility

1 0.7691819288 0.7793693088 0.7897588479 0.8049481551

2 0.4733242579 0.4754747117 0.4769647210 0.4777275235

3 0.3292167186 0.3296675663 0.3298022929 0.3293299448

4 0.2492842098 0.2493779101 0.2493593029 0.2490795745

5 0.1998670281 0.1998862829 0.1998698106 0.1997561365

6 0.1666408921 0.1666447898 0.1666379173 0.1665966451

7 0.1428519951 0.1428527681 0.1428503876 0.1428360749

...
...

...
...

...

10 0.099999953908425 0.099999958602084 0.0999998897 0.0999993400

11 0.09090908107190 0.090909081766032 0.0909090616 0.0909088773

12 0.08333333121209 0.083333331279217 0.0833333254 0.0833332636

13 0.07692307646153 0.076923076454629 0.0769230748 0.0769230540

Table 7. Maximal expected utilities and corresponding α for exponential utility func-
tion (10) of the alternative A3

p w = 1.35 w = 1.70 E[u(1.35)] E[u(1.70)]

α α

0.99 18 18 −0.0000311904 −0.0000006202

0.98 15 15 −0.0001477490 −0.0000058666

0.97 14 14 −0.0002799662 −0.0000139965

0.96 12 12 −0.0007407520 −0.0000587266

0.95 11 11 −0.0012830466 −0.0001280853

0.94 11 11 −0.0014196868 −0.0001417119

0.93 10 10 −0.0023818293 −0.0002993874

0.92 9 9 −0.0040249082 −0.0006370676

0.91 9 9 −0.0042672553 −0.0006753900

0.90 8 8 −0.0072339231 −0.0014417376

0.80 5 5 −0.0487809975 −0.0194081802

0.70 − − − −
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Table 8. Maximal premium for A4 according to (7), p = 0.8, w = 17,000 e

α 3 2.5 2

p∗ Maximal premium (e)

0.001 89.06 59.46 40.70

0.002 176.73 118.40 81.21

0.003 263.05 176.83 121.53

0.004 348.05 234.76 161.65

0.005 431.78 292.19 201.58

...
...

...
...

0.1 5,144.02 4,179.56 3,290.32

0.2 7,363.28 6,478.72 5,513.51

...
...

...
...

0.9 11,754.69 11,698.62 11,620.25

1.0 12,000.00 12.000.00 12,000.00

Table 9. Maximal premium for A4 according to (10), p = 0.8, w = 17,000 e, and
w = 13,500 e

w 1.70 1.35

α 1 2 1.5 1

p∗ Maximal premium (e)

0.001 23.17 49.87 33.58 23.17

0.002 46.30 99.24 66.99 46.30

0.003 69.36 148.13 100.24 69.36

0.004 92.38 196.55 133.32 92.38

0.005 115.34 244.50 166.23 115.34

...
...

...
...

...

0.1 2,086.48 3,471.53 2,725.13 2,086.48

0.2 3,811.88 5,500.78 4,654.00 3,811.88

...
...

...
...

...

0.9 11,275.58 11,523.34 11,418.93 11,275.58

1.0 12,000.00 12,000.00 12,000.00 12,000.00
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Abstract. The present paper proposes a diagnosis support inference in
which input evidence are fuzzy sets. Diagnostic rules are formulated as
fuzzy focal elements in the Dempster-Shafer theory. An inclusion mea-
sure is used to evaluate matching knowledge with evidence and to calcu-
late belief of the diagnosis. Data simulated for two diagnostic situations
show that the method allow for using linguistic values as a diagnostic
information.

Keywords: Dempster-Shafer theory · Fuzzy sets · Diagnosis support

1 Introduction

The Dempster-Shafer theory of evidence [2,5] with fuzzy focal elements [6] can be
applied in medical diagnosis support [7]. This implementation uses crisp values
of symptoms, for instance measurements, as inputs for the diagnostic process.
However, many researchers nowadays work on possibility of introducing fuzzy
evidence in to a diagnostic inference (e.g. [4]). Such an approach to diagnosis sup-
port is reasonable and prospective since linguistic values, like “low”, “increased”
or “acute” are natural for symptoms description. Therefore, it should be inves-
tigated how to introduce these values as fuzzy inputs into the inference. To
this end, fuzzy inputs (i.e. evidence) should be matched to diagnostic rules (i.e.
knowledge). This matching is possible by means of similarity measures [1,3] that
compare membership functions in diagnostic rule premises to input functions.
Yet, in diagnosis support it is clear which membership function is a pattern
and which is an observation. The former is the membership function in a rule
premise, as it is a source of knowledge. The latter is used for an evidence rep-
resentation. Thus, a measure of inclusion of the latter to the former is probably
more accurate to evaluate belief in the diagnosis than a similarity factor. Once
the inclusion of the evidence in the premise is satisfactory, the conclusion of the
rule, i.e. the diagnosis, is confirmed. Thus, the inclusion should influence the
belief measure of the diagnosis [9]. In this way, beliefs of competitive diagnoses

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7 33
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can be determined and the final diagnosis can be chosen as the one with the
greatest belief.

Though fuzzy databases are not in everyday use, they will surely develop in
future. In the meantime, the proposed method can be also useful in following
problems:

– combining expert’s knowledge and data-driven rules
– comparing two databases to enable a knowledge transfer
– selecting training data for a knowledge-based system of a diagnosis support.

The present paper proposes a diagnosis support inference by means of the
Demster-Shafer theory extended for fuzzy focal elements [7]. Yager’s inclusion [8]
is chosen as an instance of the inclusion used in belief calculations. The concept
is demonstrated on simulated examples, yet they imitate real diagnosis support
circumstances that are experienced by the author.

2 Methods

The Dempster-Shafer theory extended for fuzzy focal elements preserves the
basic definition of the basic probability assignment (bpa) [2]:

m(f) = 0,
∑

si∈S,i=1,...,n

m(si) = 1, (1)

where S in the set of focal elements and si is the fuzzy focal element. The only
difference between (1) and the classical definition is that si are rule premises
including membership functions (mfs). The diagnostic rule is of the form:

s
(l)
i : IF Vj i sA(l)

j ∧ . . . ∧ Vk is A
(l)
k then Dl (2)

where (l) is the index of diagnosis, Vj , Vk, are linguistic variables and A
(l)
k their

linguistic values. The latter are represented by the μ
(l)
j (vj), μ

(l)
k (vk), mfs. The

focal element can be single - when it refers to one variable Vj , or complex when
it concerns several variables Vj , . . . , Vk. The belief in the diagnosis is calculated
as [9]:

Bel(Dl) =
∑

si∈S

I(s ⊂ s
(l)
i )m(si), (3)

where s denotes an observation (an evidence). If si is single then s is represented
by the single fuzzy set Ak defined by the μk(vk). When si is complex, also s
refers to several mfs μj(vj), . . . , μk(vk). Each of the latter functions are matched
with the premise using the inclusion operator. Let us choose the inclusion as [8]:

I(μ1(x), μ2(x)) = min
x

(μ̄1(x) ∨ μ2(x)) , (4)

where μ̄1(x) denotes the complement of μ1(x). If the si is single in (3), the
calculation of Bel is straightforward. If it is complex, then the conjunction of
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inclusion measure values for the appropriate mfs is used. Let us notice that the
intersection of mfs for the fuzzy rule premise (2) is related to different variables,
so indeed the inclusion for the complex premise is performed individually for
each variable. Thus, the minimum of inclusion measures is related to the global
minimum of mfs over all variables. These ensures that if mfs for s and si are
identical then Bel = 1. A a single empty intersection:

Ak ∩ A
(l)
k = ∅ =⇒ min

x
(μk(vk), μ

(l)
k (vk)) = 0 (5)

is sufficient for rejecting the si from the Bel calculation. When the empty sets
result from all intersections s ∩ si = ∅, i = 1, . . . , n, then Bel = 0.

The mfs in rules can be proposed by an expert or found from data. Similarly
the m values (1) can be determined. The evidence mfs are fuzzy inputs for the
diagnosis, which are expected to be introduced by a human diagnostician. These
functions are not necessarily defined by a user, it is enough if he/she choose a
linguistic value that will be linked to an appropriate shape of the function.

3 Simulated Data

The simulated diagnosis is based on three symptoms: V1, V2 and V3. Mfs of
symptoms relevant to low values are assigned to the D1 diagnosis and high
values to the D2. The symptoms V2 and V3 are correlated to model a situation
that often happens in the diagnosis. Four rules are formulated for Dl, l = 1, 2:

s
(l)
i : IF Vj is A

(l)
i then Dl, i = 1, 2, 3,

s
(l)
4 : IF V2 is A

(l)
2 and V3 is A

(l)
3 then Dl.

Samples of data are simulated, each of them includes 100 data sets. Every
data set contain 400 cases, i.e. 200 for each of two diagnoses. Each variable data
is generated for chosen parameters of the normal distribution N(x̄, σ), where
x̄ - mean, σ - variance. For the diagnosis D1 the v1 variable data are simulated
for v̄1 = 1, σ1 = 1; for v2: v̄2 = 1, σ2 = 2; for v3: v̄3 = 1, σ3 = 3. For the
D2 diagnosis vk values, k = 1, 2, 3 have the same parameters v̄k = 5, σk = 1.
The variables v2 and v3 are correlated and the correlation coefficient is r ≥ 0.2.
Normality of data is verified by the Matlab� Liliefors test.

Mfs that are built for focal elements, i.e. premises of the above mentioned
rules, are determined as Gaussian-like shapes:

μ
(l)
k (vk) = exp ((vk − v̄k)/(2σk)) , (6)

where k = 1, 2, 3 is the variable index, while l=1,2 is the index of the diag-
nosis. These functions are “knowledge” mfs.

Since the input mfs are needed, they are created from the simulated data.
Each time the mean and the variance of the sample is found and then put into
the (6) formula. These means and variances are generally different from the
original values assumed during simulation. The smaller is the number of cases in
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a sample, the greater is the difference. The following numbers of cases are taken
from the sample: 50, 100, 150 and 200. Hence, various shapes of mfs are obtained.
Obviously, more numerous case sets are concerned as more reliable data to create
mfs inputs.The input mfs are denoted as μ

(l)n
k (vk), where n = 50, 100, 150, 200.

The inclusion factors (4) were next calculated between the input mfs
and the mfs of the both diagnoses, i.e. I(μ(1)n

k , μ
(1)
k ) and I(μ(2)n

k , μ
(2)
k ), n =

50, 100, 150, 200. Values of the inclusion factors were tested for statistical differ-
ence of means. The hypothesis of different means was rejected with α = 0.05 for
n = 200 and α = 0.01 for n = 150, 200. Thus, the more numerous samples are
reliable data. Anyway, both for numerous or for scarce data mfs from assumed
v̄k, σk and from data-driven parameters are different. However, this difference
should not change an interpretation of symptoms.

Two bpas are considered for the focal elements. The first is uniform:
ml(s

(l)
i ) = 0.25, i = 1, . . . 4, l = 1, 2. It suits as an easy-to follow example of

calculations. The second bpa illustrates real diagnosis circumstances experienced
by the author: ml(s

(l)
1 ) = 0.3, m(s

(l)
2 ) = 0.25, ml(s

(l)
3 ) = 0.25, ml(s

(l)
4 ) = 0.2,

l = 1, 2. Such a distinction among single and complex focal elements appear when
the bpa is data-driven from a frequency of (crisp) symptom’s occurrence [6].
Complex focal elements for correlated variables are usually less significant.

4 Experiment

It is important to find out to what extent the shape of the input mfs may
influence the belief in the diagnosis. It is obvious that mfs input by a human
user will be roughly shaped. The same concerns the data driven input mfs.
Even if they are built for several measurements, the number of data in medical
diagnosis is usually low, so these mfs are approximated anyway. If the inclusion
measure value strongly depends on mfs shapes, the whole idea of the inference
could be ruined.

During the experiment simulated fuzzy inputs sk k = 1, 2, 3 are matched with
the fuzzy focal elements s

(l)
i i = 1, . . . , 4, l = 1, 2 from (2). These means that

the inclusion measure value (4) for input mfs μ
(l)n
k (vk), n = 50, 100, 150, 200 and

knowledge mfs μ
(l)
k (vk) are calculated. Afterwards, the Bel(D1) and Bel(D2)

values (3) are found. In this way it can be tested what is the influence of a mf
shape on the value of the inclusion measure and – in the following on the Bel
value.

The Figs. 1 and 2 show exemplary mfs for chosen samples of 50 and 200
cases, respectively. The both μ

(2)50
k (vk) and μ

(2)200
k (vk) do not vary much from

μ
(2)
k (vk), k = 1, 2, 3. The same occurs for μ

(1)50
1 (v1) and μ

(1)200
1 (v1). On the

other hand, differences between μ
(1)50
k (vk) and μ

(1)
k (vk) as well as μ

(1)200
k (vk) and

μ
(1)
k (vk) k = 2, 3 seem significant. Apparently, the shape is more influenced by

the variance than by the number of cases. Now, there is the question how these
shape changes influence Bel.
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Fig. 1. Mfs for the knowledge base in comparison to mfs for fuzzy inputs for 50-case
samples (μ

(1)50
k (vk) – solid, μ

(1)
k (vk) – dashed, μ

(2)50
k (vk) – dash-and-dotted, μ

(2)
k (vk) –

dotted line).

Fig. 2. Mfs for the knowledge base in comparison to mfs for fuzzy inputs for 200-case
samples (μ

(1)200
k (vk) – solid, μ

(1)
k (vk) – dashed, μ

(2)200
k (vk) – dash-and-dotted, μ

(2)
k (vk) –

dotted line).

Still, before it is evaluated, let us consider even more mfs changes. The means
of various variable distributions also influence mfs. Therefore, the input mfs are
shifted by the distance of one and next of two standard deviations towards the
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Fig. 3. Mfs in a knowledge base in comparison to mfs for fuzzy inputs with one-
standard-deviation shifts (μ

(1)200
k (vk) – solid, μ

(1)
k (vk) – dashed, μ

(2)200
k (vk) – dash-

and-dotted, μ
(2)
k (vk) – dotted line).

Fig. 4. Mfs in a knowledge base in comparison to mfs for fuzzy inputs with two-
standard-deviation shifts (μ

(1)200
k (vk) – solid, μ

(1)
k (vk) – dashed, μ

(2)200
k (vk) – dash-

and-dotted, μ
(2)
k (vk) – dotted line).

center, to model a disturbed diagnosis. Such changes of mfs for chosen 200-case
samples are illustrated in Figs. 3 and 4.

This time differences are clear and for the two-standard-deviation shift even
μ
(1)200
k (vk) and μ

(2)200
k (vk) are more similar to each other then to μ

(1)
k (vk)
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or μ
(2)
k (vk). This trial should test whether the rules are capable of responding

with low Bel, i.e. a doubtful diagnosis for dubious inputs.
After designing mfs and computation of inclusion measure values (4),

Bel(D1) and Bel(D2) are calculated. The Bel mean values and variances for
100 samples, evaluated for input mfs resulted from different number of cases,
without the shift and with the one-standard-deviation shift are in Figs. 5 and
6, respectively. The results are obtained for the uniform bpa (see Sect. 3). The
Bel(D1) value is calculated both for μ

(1)n
k (vk), k = 1, 2, 3 (the diagram denoted

“input D1, diag D1”) as well as for μ
(2)n
k (vk) k = 1, 2, 3 (input D2, diag D1),

n = 50, 100, 150, 200. The Bel(D2) is calculated in analogous way. It is observ-
able that Bel for diagnoses competitive to original (lower diagrams) are much
smaller (note 10−4 factor on vertical axes). On the contrary, for mfs with two-
standard-deviations shift, the Bel presented in Fig. 7 are almost equal or even
higher for the competitive diagnoses. This indicate that the method is sensitive
for a change of data.

Fig. 5. Means (bars in front) and variances of Bel values for mfs without shift. Mfs
determined for 50, 100, 150 and 200 data cases.

Dependencies are observable regardless the number of cases used for mfs
determination, hence a rough shape of input mfs should not influence the effec-
tiveness of the inference.

Results obtained for the bpa of the “real diagnosis” (see Sect. 3) are in Table 1.
It can be noticed that smaller number of cases in a sample causes greater
variance, but general conclusions from mean beliefs are the same. When mfs
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Fig. 6. Means (bars in front) and variances of Bel values for mfs with one-standard-
deviation shift. Mfs determined for 50, 100, 150 and 200 data cases.

Fig. 7. Means (bars in front) and variances of Bel values with two-standard-deviation
shift. Mfs determined for 50, 100, 150 and 200 data cases.

are shifted towards more dubious, the belief decrease, so for the two-standard-
deviation cases the beliefs Bel(D1) and Bel(D2) are almost equal. Hence, also
for this bpa the method is both resistant to rough fuzzy input and sufficiently
sensitive.
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Table 1. Bel values

nb of
cases in
sample

Input
D1 diag
D1 x̄± σ

Input
D2 diag
D2 x̄± σ

Input
D2 diag
D1 x̄± σ

Input
D1 diag
D2 x̄± σ

No shift 50 0.272 ± 0.025 0.467 ± 0.027 3.3e-4 ± 9e-5 3.5e-4 ± 1.8e-4

100 0.273 ± 0.018 0.477 ± 0.019 3.1e-4 ± 7e-5 3.2e-4 ± 1.7e-4

150 0.277 ± 0.014 0.480 ± 0.014 3.1e-4 ± 6e-5 3.0e-4 ± 1.3e-4

200 0.279 ± 0.012 0.483 ± 0.012 3.1e-4 ± 5e-5 3.0e-4 ± 1.0e-4

1 std shift 50 0.085 ± 0.018 0.229 ± 0.035 0.008 ± 0.002 0.041 ± 0.011

100 0.081 ± 0.013 0.228 ± 0.025 0.008 ± 0.002 0.041 ± 0.009

150 0.080 ± 0.010 0.228 ± 0.019 0.008 ± 0.001 0.041 ± 0.007

200 0.080 ± 0.009 0.229 ± 0.015 0.008 ± 0.001 0.042 ± 0.006

2 std shift 50 0.023 ± 0.010 0.066 ± 0.021 0.063 ± 0.015 0.122 ± 0.041

100 0.020 ± 0.007 0.064 ± 0.014 0.062 ± 0.011 0.107 ± 0.024

150 0.019 ± 0.005 0.063 ± 0.010 0.062 ± 0.008 0.101 ± 0.017

200 0.019 ± 0.005 0.063 ± 0.009 0.061 ± 0.007 0.097 ± 0.012

5 Discussion and Conclusions

The paper is the first proposition of the author to use the Dempster-Shafer theory
extended for fuzzy sets as a tool of reasoning with fuzzy evidence. An inference
is analogous to crisp inputs, but the inclusion factor is introduced to the belief
measure calculation. Using the inclusion instead of the similarity of fuzzy sets
appears more appropriate for matching evidence with knowledge in diagnostic
rules. In the diagnosis support we know which fuzzy set is a diagnostic pattern
and which is a representation of evidence. The latter is often imperfect, as its
membership function is input by a user or calculated from limited number of data
cases. Still, results of simulated diagnosis seem to be promising. Observable, but
not too significant changes in membership functions do not influence the correct
diagnosis. On the contrary, if membership functions on inputs are dubious, the
belief of the diagnosis is low. These trials indicate that the method is both
sufficiently robust and sensitive.

The method is here presented on simulation data. However, it is ready to
implement and test for real problems of medical diagnosis. Such an implemen-
tation is justified. Usually, mean values of blood pressure or glucose level are
considered during a diagnosis. It would be probably more correct to use mem-
bership functions describing the measurements instead.

Thorough tests of the method are planned in the nearest future. First of
all – for benchmark medical databases in which part of data will be replaced
by fuzzy numbers. It may be also interesting to use this method to evaluate a
generalization of knowledge by calculating beliefs for rules found for two data
sets. Such a test may help to avoid unjustified extrapolation of diagnoses for
symptom values that are not provided in training data.
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Abstract. As reaching the maximum consensus degree in the group
decision making problems is very important, many consensus reach-
ing processes have been proposed in the literature. An important step
within a consensus reaching process is the feedback mechanism, in which
the experts involved in the decision problem under consideration are
advised to modify their opinions in order to increase the level of consen-
sus achieved. Therefore, many different feedback mechanisms have been
proposed in the existing literature. The aim of this study is to present
three of them and analyze their strengths and weaknesses. To do so, an
illustrative example is provided.

Keywords: Consensus · Group decision making · Feedback mechanism

1 Introduction

In group decision making (GDM) problems several experts are gathering to rank
a set of alternatives by means of evaluating them. In particular, it is assumed
that there is a collection of feasible alternatives, X = {x1, x2, . . . , xn}, n ≥ 2, and
a group of experts, E = {e1, e2, . . . , em}, m ≥ 2. Each expert, based on her/his
expertise, tries to give a preference value for xi over xj . We assume in this study
that fuzzy preference relations are utilized to represent the experts’ preferences,
as they are the most common preference representation format [8,12,16,18].

The most important part of a GDM problem is the consensus reaching
process, which is defined as a negotiation process composed by several con-
sensus rounds, where, following the advice given by a moderator, the experts
accept to change their preferences [2,11]. The agreement degree achieved in each
round of the consensus reaching process is known by the moderator via the
computation of some consensus measures. Given the importance of obtaining an
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accepted solution by the whole group of experts, the consensus has attained a
great attention and it is the major goal of GDM problems [4,7,9,11,13].

In a consensus reaching process, to improve the consensus level achieved
among the group of experts, some recommendations have to be sent to the
experts. In the first consensus approaches developed [1,5,11,13], a moderator
was the person who provided the recommendations to the experts. The mod-
erator’s objective in each consensus round is to address the consensus reaching
process towards success by reaching the maximum consensus level that is possi-
ble and reducing the number of experts outside of the consensus. The drawback
of these consensus reaching processes based on the moderator is that she/he
can introduce some subjectivity in the process. To avoid it, consensus reaching
processes substituting the moderator’s actions by an automatic feedback mech-
anism were proposed [7,10,11,15,17]. These new approaches compute proximity
measures to assess the proximity between the individual experts’ preferences and
the collective one. They allow us to know which alternatives are the most con-
troversial, which preferences have the highest disagreement between the group,
how much they should change to influence the consensus degree, and so on. It
makes more effective and efficient the consensus reaching process.

Since the feedback mechanism is an important step within a consensus reach-
ing process, the aim of this study is to analyze some feedback mechanisms that
have been proposed in the literature in order to find out their strengths and
weaknesses. In particular, three different feedback mechanisms are analyzed in
this study. The first one is a basic feedback mechanism in which both consensus
and proximity measures are used to guide the consensus reaching process [10].
The second one is an adaptive feedback mechanism that adapts its behavior to
the agreement achieved in each discussion round [15]. The third one is a feedback
mechanism adjusting the amount of advice required by each expert depending
on her/his own importance level. These feedback mechanisms are analyzed as
they represented a novelty when they were proposed.

The rest of this study is set out as follows. Section 2 contains preliminar-
ies and some general considerations about GDM and consensual processes. In
Sect. 3, we introduce the three feedback mechanisms analyzed in this study. A
practical example is illustrated in Sect. 4, and an analysis of the three feedback
mechanisms is also provided. The last section contains some concluding remarks
and future studies.

2 Preliminaries

In this section, we review some basic concepts which are needed in the sequel.
For more details, see [10,15,17]. In whole paper, it is assumed that we have
m experts who decide about n alternatives. In addition, each expert expresses
his/her opinions using a fuzzy preference relation.

Definition 1. A fuzzy preference relation P on a set of alternatives X is a fuzzy
set on the Cartesian product X × X, i.e., it is characterized by a membership
function μP : X × X −→ [0, 1].
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Each value pij of the n × n matrix P = (pij) represents the preference degree
of the alternative xi over xj ; pij = 0.5 indicates indifference between xi and xj

(xi ∼ xj); when xi is absolutely preferred to xj we have pij = 1; and pij > 0.5
indicates that xi is preferred to xj (xi � xj). It is also assumed that pii = 0.5
∀i ∈ {1, . . . , n}. Since pii does not matter, it is usually written as ‘–’ instead of
0.5 [13].

Once the fuzzy preference relations have been given by the experts, two kinds
of measures can be computed [10]: consensus degrees, which are used to measure
the actual level of consensus in the process, and proximity measures, which give
information about how close to the collective solution every expert is.

The agreement achieved among all of the experts is calculated based on the
coincidence concept [6]. To do so, consensus degrees given at three different
levels of a fuzzy preference relation are determined [3]: pairs of alternatives,
alternatives and relation.

– For each pair of experts (ek, el) (k = 1, . . . ,m−1, l = k+1, . . . , m) a similarity
matrix, SMkl = (smkl

ij ), is defined as:

smkl
ij = 1 − |pkij − plij | . (1)

– A consensus matrix, CM = (cmij), is calculated by aggregating all the
(m − 1) × (m − 2) similarity matrices by using the arithmetic mean as the
aggregation function, φ. It should be noted that depending on the nature of
the GDM problem, different aggregation operators could be used:

cmij = φ(smkl
ij ), (k = 1, . . . ,m − 1, l = k + 1, . . . , m) . (2)

– After that the consensus matrix is computed, the consensus degrees are
obtained at three different levels of a fuzzy preference relation:
1. The consensus degree on pairs of alternatives (xi, xj), called cpij , is

defined to measure the consensus degree among all the experts on that
pair of alternatives. In this case, it is expressed by the element of the CM :

cpij = cmij . (3)

2. The consensus degree on alternatives xi, called cai, is defined to measure
the consensus degree among all the experts on that alternative:

cai =

∑n
j=1;j �=i(cpij + cpji)

2(n − 1)
. (4)

3. The consensus degree on the relation, called cr, expresses the global con-
sensus degree among all the experts’ opinions. It is computed as the aver-
age of all the consensus degrees for the alternatives:

cr =
∑n

i=1 cai

n
. (5)
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The consensus degree of the relation, cr, is the value used to control the consensus
situation. The closer cr is to 1, the greater the agreement among all the experts’
opinions.

Proximity measures are used to obtain the degree of agreement between each
individual expert’s preferences and the group ones. For this purpose, a collective
fuzzy preference relation is first calculated. The collective preference, P c = (pcij),
is computed by means of the aggregation of all individual preference relations,
{P 1, P 2, . . . , Pm} : pcij = φ(p1ij , p

2
ij , . . . , p

m
ij ), in which φ is an appropriate aggre-

gation operator. As one of the feedback mechanism analyzed in this study has
into account the importance level of each expert [17], the weighted arithmetic
average is used as φ in order to give more importance to the preferences given
by the most relevant experts. Therefore, at first we have to give a weight to each
of the experts.

The proximity measures are also computed at the three level of a fuzzy
preference relation:

1. Similarity measure on pairs of alternatives. The proximity measure of an
expert, ek, on the pair of alternatives, (xi, xj), to the group one, denoted as
ppkij , is computed as:

ppkij = 1 − |pkij − pcij | . (6)

2. Similarity measure on alternatives. The proximity measure of an expert, ek,
on the alternative, xi, to the group one, denoted as pak

i , is computed as:

pak
i =

∑n
j=1,j �=i(ppkij + ppkji)

2(n − 1)
. (7)

3. Similarity measure on the relation. The proximity measure of an expert, ek, on
his/her preference relation to the group one, denoted as prk, is computed as:

prk =
∑n

i=1 pak
i

n
. (8)

This measure structure will allow us to find out the consensus state of the
process at different levels. For instance, we will be able to identify which experts
are close to the consensus solution, or in which alternatives the experts are
having more trouble to reach consensus.

3 Description of the Feedback Mechanisms

In this section, we describe the main characteristics of the three feedback mech-
anisms that are analyzed in this study.

3.1 Basic Feedback Mechanism

The first feedback mechanism introduced is based on the consensus reaching
process presented in [10]. Here, the authors proposed a consensus approach pro-
viding tools to support the consensus processes in presence of incomplete infor-
mation. However, we are only interested in the feedback mechanism presented
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in this paper. In addition, in order to unify the methods in a way that analyzing
them together be more meaningful, we ignore the consistency part presented
in this paper. We denote this feedback mechanism as basic because it does not
consider other criteria and it is always applied in the same way.

This feedback mechanism is applied in two steps: (i) identification of the
preference values that should be modified, and (ii) generation of advice.

1. Identification of the preference values. The experts whose proximity measure
on the relation is lower than a satisfaction threshold, pr =

∑m
k=1 prk/m,

should change their opinions:

EXPCH = {k | prk < pr} . (9)

The alternatives that the above experts should consider to change, ALT , is
the set of alternatives whose proximity measure is lower than a satisfaction
threshold, pa =

∑m
k=1 pak

i /m, i.e.:

ALT = {(k, i) | ek ∈ EXPCH ∧ pak
i < pa} . (10)

Finally, the preference values for every alternative and expert that should be
changed are:

APS = {(k, i, j) | (k, i) ∈ ALT ∧ ppkij < pp} (11)

where pp =
∑m

k=1 ppkij/m.
2. Generation of advice. We must find out the direction of the change to be

recommended in each case, that is, the direction of change to be applied to
the preference degree pkij , with (k, i, j) ∈ APS. On the one hand, if pkij < pcij ,
then the expert should increase this preference degree. On the other hand,
if pkij > pcij , then the expert should decrease this preference degree. We also
assumed that the expert increases or decreases the preference value with a
value equal to 0.05.

3.2 Adaptive Feedback Mechanism

The second feedback mechanism described is based on the consensus reaching
process proposed in [15], where the authors presented an adaptive consensus
support model in a multigranular fuzzy linguistic context. Here, we adapt this
feedback mechanism to deal with fuzzy preference relations.

This feedback mechanism is adaptive because it distinguishes three levels of
consensus for searching the preferences: very low, low, and medium consensus.
Each level implies a different search policy to identify the preferences with low
agreement degree. The first level of consensus, the lowest level of agreement,
all experts will be advised to modify all the preferences values identified in
disagreement. If the level of consensus is greater, the search will be limited to
the preference values in disagreement of those experts furthest from the group. If
the global consensus degree, cr, is less than a consensus threshold γ, i.e. cr < γ,
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then a new consensus round is applied until the level of agreement is sufficient or
we reach the maximum number of consensus rounds. So, the system establishes
three different preference search procedure (PSp).

The adaptive search for preferences consists of two processes: (i) choose the
most suitable PSp, and (ii) apply the PSp. To choose the most suitable PSp,
two parameters θ1 and θ2 are fixed at the beginning of the consensus process.

– PSp for very low consensus, PSpV L, if: cr ≤ θ1; in which the level of pairs of
alternatives is considered.

– PSp for low consensus, PSpL, if: θ1 < cr ≤ θ2; in which the level of alternative
is considered.

– PSp for medium consensus, PSpM , if: θ2 < cr < γ; in which the level of
preference relation is considered.

After determining the PSp for each consensus level, each PSp finds out a set of
preferences, PREFECHk = {(i, j) | i, j ∈ {1, 2, . . . , n}, i 
= j}, to be changed
by each expert ek in the next discussion round.

1. The procedure for PSpV L to find out the set of preferences to be changed by
ek, PREFECHV L

k , is as follows.
– Computing ρ = cp as follows:

cp =
n∑

i=1

(
n∑

j=1,i �=j

cpij)/(n2 − n) . (12)

– The set of preference values PREFECHV L
k to be changed by each expert

ek is:

P = {(i, j) | cpij < ρ, i, j = 1, . . . , n} (13)
PREFECHV L

k = P . (14)

2. PSpL finds out the set of preferences to be changed by ek, PREFECHL
k , as

follows:
– The alternatives to be changed, Xch, are identified as:

Xch = {i | cai < cr} . (15)

– The pairs of alternatives to be changed are identified as:

P = {(i, j) | i ∈ Xch ∧ cpij < cp} . (16)

– The proximity of the alternatives that should be changed is computed for
all experts:

{pak
i | i ∈ Xch} ∀ek ∈ E . (17)

– Computing the proximity threshold, β, to identify the experts that will
be required to modify the identified pairs of alternatives:

β = pai =
m∑

k=1

pak
i /m . (18)
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– The sets of preference values that are required to be modified are:

PREFECHL
k = {(i, j) ∈ P | pak

i < pai} . (19)

3. For PSpM , computing the set of preferences which should be changed by ek,
PREFECHM

k is as follows:
– At first, (15)–(18) in PSpL are carried out.
– The proximity threshold to be used in identifying the experts required to

modify the identified pairs of alternatives in disagreement is computed as
follows:

{ppij =
m∑

k=1

ppkij/m | (i, j) ∈ P} . (20)

– The sets of preference values that are required to be modified are:

PREFECHM
k = {(i, j) ∈ P | pak

ij < pai ∧ ppkij < ppij} . (21)

After identifying the preferences which should be changed, the model will
suggest increasing or decreasing the current assessments like the first feedback
mechanism presented in this study.

3.3 Feedback Mechanism Based on Experts’ Importance

The third feedback mechanism presented is based on the consensus reaching
process introduced in [17]. This feedback mechanism is based on the impor-
tance degrees of the experts. In this way, it is assumed that those experts with
lower knowledge level on the problem will need more advice than others with
higher importance. Hence, according to the experts’ importance degree, they
are classified into three groups: (i) high-importance experts, Ehigh, (ii) medium-
importance experts, Emed, and (iii) low-importance experts, Elow. This classi-
fication is done via a fuzzy matching mechanism whose parameters depend on
the problem dealt with. Therefore, each group of experts is a fuzzy set charac-
terized by a membership function and two parameters λ1 and λ2 are established
as membership thresholds. In such a way, using the importance degree of each
expert, he/she can be classified in a particular group of experts. According to
it, three different advising strategies are defined.

1. Identify low-importance experts’ controversial preferences.
– Establishing a threshold, α1, as follows:

α1 =
n∑

i=1

(
n∑

j=1,j �=i

cpij)/(n2 − n) . (22)

– Identifying the pairs of alternatives, P , with a consensus degree smaller
than the threshold α1:

P = {(i, j) | cpij < α1} . (23)
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– The set of the controversial preferences, PCHk
low, that should be changed

by each expert ek ∈ Elow is:

PCHk
low = P . (24)

2. Identify medium-importance experts’ controversial preferences.
– Initially, the alternatives to be changed, XCH, are obtained:

XCH = {i | cai < α2} (25)

where α2 =
∑n

i=1 cai/n.
– The pairs of alternatives to be changed are:

P = {(i, j) | i ∈ XCH ∧ cpij < α1} . (26)

– The set of preference values, PCHk
med, that are required to be modified is:

PCHk
med = {(i, j) ∈ P | pak

i < β1} (27)

where, β1 =
∑m

k=1 pak
i /m, ek ∈ Emed.

3. Identify high-importance experts’ controversial preferences.
– The alternatives to be changed are:

XCH = {i | cai < α2} . (28)

– The pairs of alternatives to be changed:

P = {(i, j) | i ∈ XCH ∧ cpij < α1} . (29)

– The set of preference values that are required to be modified is:

PCHk
high = {(i, j) ∈ P | pak

i < β1 ∧ ppkij < β2} (30)

where, β2 =
∑m

k=1 ppkij/m, ek ∈ Ehigh.

Finally, after identifying all the controversial preferences, the generation of
advices is going on like the both previous methods.

4 Experimental Study

In this section, we highlight the main characteristics of the three feedback mech-
anism described in this study and show their advantages and drawbacks. To do
so, an illustrative example is solved by using them.

Let us suppose that four experts E = {e1, e2, e3, e4} provide the following
fuzzy preference relations over a set of four alternatives X = {x1, x2, x3, x4}:

P 1 =

⎛

⎜
⎜
⎝

− 0.90 0.80 0.90
0.10 − 0.70 0.80
0.20 0.30 − 0.60
0.10 0.20 0.30 −

⎞

⎟
⎟
⎠ P 2 =

⎛

⎜
⎜
⎝

− 0.10 0.30 0.20
0.90 − 0.80 0.90
0.70 0.40 − 0.50
0.80 0.10 0.70 −

⎞

⎟
⎟
⎠
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P 3 =

⎛

⎜
⎜
⎝

− 0.40 0.30 0.30
0.50 − 0.20 0.20
0.60 0.80 − 0.40
0.70 0.80 0.40 −

⎞

⎟
⎟
⎠ P 4 =

⎛

⎜
⎜
⎝

− 0.40 0.30 0.10
0.40 − 0.20 0.20
0.20 0.90 − 0.50
0.90 0.70 0.60 −

⎞

⎟
⎟
⎠

In addition, the following values of the parameters used in each feedback
mechanism are assumed:

– Each feedback mechanism is run for 8 discussion rounds.
– The following weights are established for each expert: e1 = 0.35, e2 = 0.25,

e3 = 0.20, and e4 = 0.20.
– In the adaptive feedback mechanism, θ1 is equal to 0.80, and θ2 is equal

to 0.83.
– In the feedback mechanism based on experts’ importance, λ1 and λ2 are

equal to 0.25 and 0.35, respectively. Therefore, the low important experts
are: [e3, e4]; the medium important expert is: [e2]; and the high important
experts is: [e1].

0 2 4 6 8

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

discussion round

cr

Basic feedback mechanism
Adaptive feedback mechanism
Feedback mechanism based on experts’ importance

Fig. 1. The values of the cr obtained in successive discussion rounds

Figure 1 shows the performance of the three feedback mechanisms quantified
in terms of the cr obtained in successive discussion rounds. Here, it should be
pointed out that the value corresponding to the discussion round 0 is the cr
obtained according to the initial fuzzy preference relations. Due to it, it is equal
in the three approaches. In addition, Tables 1, 2 and 3 shows both the number
of changes suggested to each expert and the total number of changes suggested
by the basic feedback mechanism, the adaptive feedback mechanism and the
feedback mechanism based on experts’ importance, respectively.

In the following, we analyze the performance of the three approaches based
on this example:
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Table 1. Basic feedback mechanism

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

Changes of e1 3 4 3 3 3 5 5 5

Changes of e2 3 2 0 2 0 0 0 0

Changes of e3 0 0 0 0 0 0 0 0

Changes of e4 0 0 4 0 0 0 0 3

Total changes 6 6 7 5 3 5 5 8

Table 2. Adaptive feedback mechanism

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

Changes of e1 8 8 7 5 3 2 0 0

Changes of e2 8 8 7 5 6 1 1 1

Changes of e3 8 8 7 5 0 0 0 0

Changes of e4 8 8 7 5 0 1 0 0

Total changes 32 32 28 20 9 4 1 1

– Basic feedback mechanism. In this approach, the improvement of the con-
sensus achieved among the experts remains constant through the discus-
sion rounds as it is always applied in the same way. However, this approach
presents a lower convergence to the consensus than the others two approaches.
As an advantage, it suggests a lower number of changes to the experts (see
Table 1). It facilitates that experts accept to change their preferences.

– Adaptive feedback mechanism. This approach presents a faster convergence
to the consensus. The most notable improvement is at the first rounds of
the discussion process. It is due to the consensus in this rounds is low and
many modifications are suggested to the experts. When the consensus is high,
lower changes are recommended, but the consensus continues increasing. The
disadvantage of this approach is that many changes are advised when the
consensus level is low (see Table 2) and, therefore, the experts could reject
them.

– Feedback mechanism based on experts’ importance. This approach also
presents a fast convergence to the consensus. Furthermore, it recommends
a low number of modifications to the most important experts (see Table 3).
Consequently, the most considerable experts’ opinions never will be strongly
modified during the consensus reaching process. However, it also suggests a
high number of changes to the low important experts during all the discus-
sion rounds and, therefore, they might reject them. In addition, there could
exists a limit scenario where the tyranny of the minority is accomplished if
the excellence group is very small inside the set of experts [17].
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Table 3. Feedback mechanism based on experts’ importance

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8

Changes of e1 1 1 1 0 0 2 0 0

Changes of e2 2 2 2 3 4 5 0 0

Changes of e3 12 12 12 12 12 12 12 0

Changes of e4 12 12 12 12 12 12 12 0

Total changes 27 27 27 27 28 31 24 24

5 Concluding Remarks

In this study we have introduced and analyzed three feedback mechanisms pro-
posed in the literature to highlight their main features. All of these approaches
overcome the problem of the moderator, giving the way to use an automatic
system to calculate and send customized advice to the experts if there is not
enough consensus. The adaptive feedback mechanism and the feedback mecha-
nism based on experts’ importance present a better performance as they advice
to the experts according to different criteria as the consensus level achieved and
the experts’ importance, respectively. As a consequence, they present a faster
convergence to the consensus than the basic feedback mechanism. However, they
also suggest many more modifications that the basic one.

We have shown an only one example to analyze the performance of each
feedback mechanism. It helps to understand the characteristics of each approach,
but, for a better comparison, more examples should be analyzed. Therefore, as
future study, we suggest to solve several GDM problems with different number
of experts and alternatives, and with different values of the parameters utilized
by each approach. In addition, the performance of other feedback mechanisms
as, for instance, the one based on the so called action rules [14], should be also
analyzed.

Acknowledgments. The authors would like to acknowledge FEDER funds under
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Abstract. In a group decision making problem the selection process is decisive
to find a solution. In these problems there is a widespread agreement to use fuzzy
preference relations to express different preferences about possible alternatives.
Previous papers have proposed different selection methods in this context. An
usual way is the use of a ranking method to obtain a classification of the alter-
natives. One of the methods used is based on two choice degrees: quantifier
guided dominance degree and quantifier guided non-dominance degree. This
paper presents a limited comparative study about the application of the two
previously cited quantifier guided choice degrees. By using statistical tools, it is
concluded that both choice degrees can offer significantly different rankings of
alternatives. In addition, it has been observed that the variability of the alterna-
tives in the ranking obtained by dominance choice degree is generally greater,
which may facilitate a better discrimination between different alternatives.

Keywords: Group decision making � Fuzzy preferences � Dominance choice
degree � Non-Dominance choice degree

1 Introduction

In a Group Decision Making (GDM) problem, a group of individuals must choose an
solution from several possibilities. These individuals, usually called experts, can express
their opinions by means of comparisons over all the possibilities, called alternatives.

A selection process is applied in order to obtain the final solution to the GDM
problem [1]. In this situation, different selection policies can be applied [2]. The aim of
this paper is to present a limited comparative study between two proposed [3] quantified
guided choice degrees of alternatives: a Quantified Guided Dominance Degree (QGDD)
and a Quantified Guided Non-Dominance Degree (QGNDD), both extend Orlovsky’s
non-dominance concept [4]. These choice degrees are used in the process for obtaining a
ranking of alternatives from the best to the worst according to experts’ opinions.

Different statistical tools are used in this study. A two-sample statistical test allows
us to establish whether the application of the two choice degrees is different. The
limited comparative study carried out is focused on the different ranking of alternatives
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obtained by choice degrees and the variability of these results. This behaviour is further
analysed in order to better discriminate between both choice degrees. In this process it
is needed the coefficient of variation.

The paper is structured as follows. In Sect. 2, we introduce essential concepts: the
GDM problem and the selection process. In Sect. 3 we describe the design of the
experiment used to develop our study. We present the results obtained in this study in
Sect. 4. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 The GDM Problem

A GDM problem consists in deciding the best alternative from a set of possible
alternatives X = {x1,…, xn} according to the preferences expressed by a group of
experts E = {e1,…,em}. Different preference methods were compared in [5], where it
was concluded that pairwise comparison methods are ‘better’ than non-pairwise ones.
There are different representation formats that experts may use to express their opin-
ions, but fuzzy preference relations are one of the most used [4, 6–8].

A fuzzy preference relation P on a finite set of alternatives X is characterised by a
membership function

lP : X � X ! 0; 1½ � with lP xi; xj
� � ¼ pij;

verifying

pij þ pji ¼ 18i; j 2 1; . . .; nf g:

If cardinality of X is small, the fuzzy preference relation may be denoted by the
matrix P = (pij), pij 2 0; 1½ � indicates the degree of preference for xi over xj; where 0 is
minimum and 1 is maximum.

Before a final solution can be obtained in a GDM problem, a process is applied
called the selection process [9–11]. This process supplies the final solution according to
the preferences expressed by the experts [7].

2.2 Selection Process

The selection process have two different steps [12, 13]: (i) aggregation of individual
preferences in a collective preference and (ii) exploitation of this collective preference.

Aggregation phase. In this phase a collective preference relation, PC = (pij
c), is

obtained by means of the aggregation of all individual fuzzy preference relations
{P1, P2,…,Pm}, and shown the global preference between every pair of alternatives (xi,
xj) according to the majority of experts’ opinions. Different families of aggregation
operators have been studied [14–21]. Among them, the Yager’s Ordered Weighted
Averaging (OWA) operator is the most widely used [20].
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The aggregation operation by way of a quantifier guided OWA operator, /Q, is
calculated as follows:

pcij ¼ /Q p1ij; . . .; p
m
ij

� �
¼

Xm
k¼1

wk � pr kð Þ
ij ;

where r is a permutation function such that

pr kð Þ
ij � pr kþ 1ð Þ

ij ; 8k ¼ 1; . . .;m� 1

and Q is a fuzzy linguistic quantifier [22] that indicates the concept of fuzzy majority
and it is used to obtain the vector of /Q, W = (w1,…,wn).

Exploitation phase. In this phase, the global information about the alternatives is
converted into a global ranking of them. The global ranking is calculated by applying
two choice degrees of alternatives to the collective fuzzy preference relation [23]: the
quantifier guided dominance degree and the quantifier guided non-dominance degree.

1. Quantifier guided dominance degree: For the alternative xi we obtain the quantifier
guided dominance degree, QGDDi, as follows:

QGDDi ¼ /Qðpcij; j ¼ 1; . . .; nÞ:

It is used to quantify the dominance that alternative xi has over all the others
alternatives in a fuzzy majority sense.

2. Quantifier guided non-dominance degree: For the alternative xi we deduce the
quantifier guided non-dominance degree, QGNDDi, through the expression:

QGNDDi ¼ /Qð1� psij; j ¼ 1; . . .; nÞ:

where psji ¼ max pcji � pcij; 0
n o

.

In this situation QGNDDi is used to quantify the degree in which each alternative is
not dominated by a fuzzy majority of the rest of alternatives.

Finally, the solution is obtained by applying one of these two choice degrees and
making a ranking of alternatives from the best to the worst according to the valuation
degrees.

3 Statistical Comparative Study: Experimental Design

In a GDM problem, the exploitation phase plays a fundamental role in order to solve
the decision problem. It is therefore worth conducting research to determine whether or
not the use of different choice degrees could affect the selection process. Furthermore,
if this was the case, the decision of one choice degree or another could prove to be an
important decision tool.
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In this paper the hypothesis that we are testing can be stated as follows:
The application of the QGDD and QGNDD choice degrees in GDM problems do

not produce significant differences in the final ranking of alternatives.
Although with the application of different choice degrees, different final ranking of

alternatives have been observed [3], no study on the subject has been presented to date.
To test the hypothesis above, fifty pairs of dominance and non-dominance degrees,

are obtained from fuzzy collective preference relations randomly generated for each
alternatives (n = 4, 6, 8), and therefore we ended having repeated measurements on a
single sample [24].

We have to analyse two related samples. The usual parametric test used in these
cases is the t test. However, this test requires for its application two conditions: the
assumption of normality and independence of the distribution of the difference scores
in the population from which the random sample of fuzzy preference relation is drawn.
On the one hand, we consider unrealistic in our context these assumptions, as no
evidence can be provided to support them. On the other hand, by not requiring these
stringent assumptions we can achieve greater generality with our conclusions. There-
fore, we conclude that nonparametric test are the most appropriate in our experimental
study [24–26].

In this context, continuous data and two related samples, the main nonparametric
tests available are the sign test and the Wilcoxon signed-rank test [24, 26–28]. The sign
test calculates the differences between two variables and classifies the differences as
positive, negative, or zero (tied). If two variables have the same distribution (null
hypothesis), the median of the differences between the two variable scores is zero, i.e. if
the null hypothesis is true we would expect about half the differences to be negative and
half to be positive. The null hypothesis is rejected if ‘too few’ differences of one sign
occur. An alternative test to apply in this context is the Wilcoxon signed-rank test, which
takes into account information from the sign of the differences and their magnitude so
that they are appropriately ranked in order of absolute magnitude. Since this test
incorporates more information about the data, it is more powerful than the sign test, and
therefore preferable to use in our limited study. For a more detailed information, see [29].

For a study that quantitatively describe information about the variability of the
QGDD and the QGNDD, we used the coefficient of variation (CV), also known as
relative standard deviation (RSD). CV is a measure of the dispersion of a data distri-
bution that is defined as the ratio between the standard deviation and the mean.

CV ¼ rY
�y

With

rY ¼
ffiffiffiffiffiffi
r2Y

q
; r2Y ¼ 1

N

XN
i¼1

yi � �yð Þ2; and �y ¼ 1
N

XN
i¼1

yi

where yi 2 y1; . . .; yNf g a set of numerical data for variable Y.
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The value of the CV is independent of the unit in which the measurement was
taken, so it is very useful to compare different distributions with different units or
different means [24].

The interpretation used in this study is as follows:
A higher value of CV implies greater data dispersion and greater variability, and,

in this situation, greater discrimination into classes.

4 Statistical Comparative Study: Experimental Results

4.1 Wilcoxon Signed-Rank Test: Experimental Results

A total of fifty pairs of degrees (QGDD & QGNDD) obtained from randomly generated
fuzzy collective preference relations for each one of the possible alternatives (n = 4, 6, 8),
and we ended having repeated measurements on a single sample.

In the following, we summarize the percentage of cases that were found to be sig-
nificantly different according to theWilcoxon matched-pairs signed-ranks statistical test.

We assume that two measures with test p-value under the null hypothesis lower
than or equal to 0.05 (a) will be considered as significantly different; we refer to it as
the test being significant and therefore we conclude that the hypothesis tested is to be
rejected.

Table 1, shows the percentage of tests with p-value lower than or equal to 0.05 (a)
for each one number of alternatives used in our experimental study.

In summary, we conclude that the hypothesis tested is to be rejected. Therefore, the
application of different choice degrees affects significantly the final ranking of
alternatives.

4.2 Descriptive Study: Experimental Results

For the rest of the study we generated randomly collective preference relations (PC) as
follows:

– 4 alternatives: 60 PC, 240 pairs of choice degrees.
– 6 alternatives: 40 PC, 240 pairs of choice degrees.
– 8 alternatives: 30 PC, 240 pairs of choice degrees.

Maintenance of the ranking of alternatives: Experimental results. Based on the
comparison of data obtained for QGDD and QGNDD Figure summarised the coinci-
dence in the first (best) alternative in both degrees and in other positions.

Table 1. Wilcoxon signed-ranks statistical test results

4 alternatives 6 alternatives 8 alternatives Global

p-value 0.00 0.00 0.00 0.00
% 100 100 100 100

A Statistical Study for Quantifier-Guided Dominance 387



As we can observe in Table 2, the coincidence in the first (best) alternative for both
choice degrees is greater than 60% but smaller than 80% in all cases.

Coefficient of variation (CV): Experimental results. For a collective preference
relation (PC), we can calculate QGDD and QGNDD values for each alternative, and
later obtain CV’s in both situations

For comparing the results, we use the difference:

CVQGDD � CVQGNDD

Results obtained are shown in next Table.

From Table 3 we can conclude that the dispersion is higher in QGDD than in
QGNDD.

To continue our study about the distribution of the differences between the QGDD
and QGNDD results, we define the variation rate as the ratio between CVQGDD -
CVQGNDD and CVQGNDD and express the results as percentages.

Variation Rate ¼ CVQGDD � CVQGNDD

CVQGNDD

Tables 4, 5 and 6 depicted in Figs. 1 and 2 shown the distribution of the variation
rate for each possible alternatives (n = 4, 6, 8).

Example. Let PC be a random collective preference relation for 4 alternatives:

PC ¼
0: 0:87615 0:97178 0:59443

0:12385 0: 0:52458 0:24997
0:02822 0:47542 0: 0:90911
0:40557 0:75003 0:09089 0:

0
BB@

1
CCA

Table 7 shows the quantifier guided degrees QGDDi and QGNDDi for this case in
which 4 alternatives have been considered.

Table 2. Coincidence first alternative in percentage

% 4 alt 6 alt 8 alt Global

1° 75 62,5 63,3 68
Other 25 37,5 36,7 32

Table 3. Differences between CV’s in percentages

% Global 4 alt 6 alt 8 alt

Negative 3 4 0 3
Positive 97 96 100 97

100 100 100 100
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Table 4. Distribution of the variation rate for 4 alternatives

Intervals Absolute frequency Relative frequency*100%

−50 – −25 1 2
−25 – 0 2 3
0–25 17 28
25–50 23 38
50–75 9 15
75–100 6 10
100–125 2 3

60 100 aprox

Table 5. Distribution of the variation rate for 6 alternatives

Intervals Absolute frequency Relative frequency*100%

0–30 14 35
30–60 19 48
60–90 6 15
90–120 0 0
120–180 0 0
180–210 0 0
210–240 1 3

40 100 aprox

Table 6. Distribution of the variation rate for 8 alternatives

Intervals Absolute frequency Relative frequency*100%

−15 – 0 1 3
0–15 1 3
15–30 9 30
30–45 10 33
45–60 4 13
60–75 5 17

30 100 aprox

Fig. 1. Distribution for 4 and 6 alternatives
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The final ranking of alternatives for both choice degrees is:

X1[X3[X4[X2

Then we compare the differences in the ranking of alternatives between QGDD and
QGNDD.

Fig. 2. Distribution for 8 alternatives

Table 7. Quantifier guided degrees QGDDi and QGNDDi

QGDDi Position QGNDD1 Position

QGDD1 2,44235 1 QGNDD1 3 1
QGDD2 0,89840 4 QGNDD2 1,74764 4
QGDD3 1,41276 2 QGNDD3 2,00729 2
QGDD4 1,24649 3 QGNDD4 1,99292 3
CVQGDD 0,38323 CVQGNDD 0,21976

Fig. 3. Ranking of alternatives
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As shown in Fig. 3, when normalizing these values the differences between the
alternatives are visually greater in the ranking of alternatives obtained with QGDD than
in the one obtained with QGNDD. To see it accurately, the ratio between two con-
secutive alternatives for each ranking is also included.

5 Conclusion

In this paper we have considered two choice degrees used in the selection process for
GDM problems, QGNN and QGNDD. We have presented a comparative experimental
study based on the use of the nonparametric Wilcoxon statistical test and the coefficient
of variation. The results has shown that the compared choice degrees produce signif-
icant different solutions, i.e. ranking of alternatives. The subsequent analysis of the data
allows us to conclude that the rankings of alternatives obtained by QGDD generally
present higher variability than the rankings obtained by QGNDD and, therefore, allow
a greater discrimination among the alternatives.

In future, we will address this problem from a theoretical point of view and we will
apply other statistical tools.
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Abstract. Every recommender system approach suffers the cold start
problem to a greater or lesser extent. To soften this impact, the more
common solution is to find the way of populating users profiles either
using hybrid approach or finding external data sources. In this paper,
we present a fuzzy linguistic approach that using bibliometrics aids to
soft or remove the necessity of interaction of users providing them with
personalized profiles built beforehand, thus reducing the cold start prob-
lem. To prove the effectiveness of the system, we conduct a test involving
some researchers, aiming to build their profiles automatically. The results
obtained proved to be satisfactory for the researchers.

Keywords: Recommender system · Cold start · Fuzzy linguistic mod-
eling · Digital library

1 Introduction

In the era of Big Data, the amount of information generated on every field in
the Web is growing constantly leading to the well known information overload
problem [6]. Recommender Systems (RSs) appear as a natural solution to this
problem providing personalized recommendations to their users filtering out the
non valuable information for them [9]. However, a key feature which defines a
recommender system are the user profiles that allow them to provide users with
recommendations that are suiting them better. One of the main problems RSs
have is the cold start problem, that is, when a user or item is new to the system
and nothing is known about him/her or it. This is a known problem that has
been addressed several times in the literature [23]. However, the importance
of providing a suitable solution to this problem is scaling due to the growing
presence in the Web of systems requiring personalization as well as real time
interaction.
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In the academic world, research is a field of main importance. It is an over
specialized field where each specialty is quite specific. In a previous work, we
presented REFORE, a quality-based fuzzy linguistic recommender system for
researchers [24] which main purpose was to aid researchers by keeping them
up-to-date regarding the new articles that might be relevant for them. In order
to solve the cold start problem, researchers must select the top 5 articles of
their profiles that show better the current research topics they are interested
on. Afterwards, they should provide them with a linguistic assessment of the
importance of each of them. Same process is required for the keywords that
define better his current research interest.

To deal with the cold start problem in most of the systems, it requires a
previous set up of the user profile done by users themselves, requiring time
and a fix and complete profile into the system [17]. REFORE was conceived as
a system which delivered to researchers every month an email with the most
relevant papers for them from this same month, working as a service to keep the
authors up-to-date on their research topics. However, the necessity of a previous
and good set up stopped new users to try the tool. Therefore, to reduce the cold
start problem removing the interaction of the user to the minimum is basic to
provide the system with a better acceptance degree among users. It will allow
us to expand REFORE to other possibilities such like being used without any
necessity of registration.

The proposed approach provides automatically profiles for users based on
their names by extracting the information from their historic research trajectory.
This profile is used by REFORE reducing the cold start problem impact that
forced users to provide all of this information beforehand.

The aim of this paper is to present a semi automatic fuzzy linguistic solution
for the cold start problem in REFORE. This solution that could be applied in
whatever bibliographic database from a University Digital Library allowing us
to open REFORE to a wider research community by reducing the necessity of a
previous profile set up done the users. The major innovations and contributions
of the solution include:

1. The provision of automatic profiles extracted from the authors name who
are using the system dealing with (incomplete information) and transforming
novelty, frequency and quality on users interest.

2. The ability of using the system within less than 1 min without the necessity
of registering on it, providing the researchers the possibility of obtaining the
more relevant publications for themselves.

3. The system uses fuzzy linguistic modeling to improve the user-system inter-
actions.

The paper is organized as follows: In Sect. 2 the background is presented,
that is the basis of recommender systems, fuzzy linguistic modeling and other
approach to the cold start problem; Sect. 3 presents the new method for the user
profile generation; Sect. 4 addresses the validation of the system, and Sect. 5
offers conclusions based on the study findings.
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2 Background

With this section we provide the needed background information to describe our
system. First, we will present a short description of recommender systems, then
a brief explanation of the cold start problem followed by a description of the
fuzzy linguistic modeling.

2.1 Recommender Systems

RSs produce personalized recommendations as output or guide users in a person-
alized way through a wide range of possible options [2]. Well known examples of
successful use of RSs are given in e-commerce [3,19], health [7] or learning [15]. In
order to do that, the system must have knowledge from users. This knowledge
can be obtained from different sources and has to be related directly or indi-
rectly with the recommendations provided by the system. That can be done in
an implicit way through the normal functioning of the system, i.e.: Ratings from
a movie, geographical proximity to a shop, preferences regarding tastes, etc., or
in a explicit way when users are required to provide the information manually to
the system [8]. Some systems, as for example some movie recommenders, force
users to fill some questionnaires or to rate certain selected movies before any
recommendation could be received in order to avoid the cold start problem.

Different categorizations have been proposed for recommender systems based
on the approach followed to generate recommendations, being the one who split
them on two categories the more extended: content-based and collaborative [9].
Content-based recommender systems are based on the similarity of an user pro-
file with an item profile, meanwhile in collaborative recommender systems the
recommendations are generated based on the ratings or behavior provided by
other similar users.

On the one hand, collaborative systems [10] use to perform better in some
domains adding diversity to the recommendations. However, those systems
required an important amount of information gathered from the users behav-
ior making them relatively weaker when dealing with the cold start problem. On
the other hand, content-based approaches [20] perform better with new users
where their taste is rapidly defined. They have the problem of lacking diversity
and serendipity. Each approach has advantages and disadvantages, the combi-
nation of the both in a hybrid system tend to mitigate the problems they have
[2], e.g.: content-based deal in a better way with the cold start problem, so
combining this approach with the collaborative benefits from the advantages of
the both. However these recommender systems tend to fail when little is known
about users information needs.

2.2 Cold Start Problem

Cold start problem is present in certain information systems where the lack
of knowledge affect the system purpose [23]. It is particularly present in recom-
mender systems where the basic functioning is based on the amount of knowledge
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accumulated over users or items [17]. We found two main variants: new user cold
start problem and new item cold start problem. Since most of the time recom-
mender systems use historical ratings as part of user profiles or item profiles, the
issue is present on the both sides.

Different approaches have been trying to deal with the cold start problem
with different results. On the one hand, hybrid recommendation approaches,
where the mix of different recommendation techniques are used in order to take
advantage of each other’s strengths [22]. E.g.: softening the problem of collabora-
tive filtering with content-based support [4,8]. On the other hand, since each new
item or user introduced in the system presents a problem, implicitly or explic-
itly populating profiles is a common solution. User profiles are enriched through
information either inferred through some technique or provided by users them-
selves, meanwhile item profiles are done through rich metadata descriptions or
accelerating the rating acquisitions [25]. E.g.: In [17], authors used the binary
classifier C4.5 [16] and Naive Bayes algorithm [21] in a previous phase to build
user profiles.

Le Hoan Son in [23] present a review of different algorithms and their effec-
tiveness against cold start. A classification into three groups is proposed:making
use of additional data sources, selecting the most prominent groups of analogous
users and enhancing the prediction using hybrid methods. Results showed a bet-
ter performing of the algorithm denominated new heuristic similarity model [18]
which belong to the second group and has no need of additional information.

The basic idea of the most of the solutions is to extract some information
not provided in the moment the user profile is set based on the rest of the
available information. e.g.: Clustering of users based on common characteristics
like geographical information, or adding information from an external source.

2.3 Fuzzy Linguistic Modeling

Information is not always able to be evaluated in a quantitative manner, in
some occasions it has to be assessed in a qualitative way. The fuzzy linguistic
modeling is based on the concept of linguistic variable [26] which has proven
good results for modeling qualitative information in many problems [14]. Some
classic solutions when it comes to fuzzy linguistic modeling are: classic fuzzy
linguistic modeling [1,26] and ordinal fuzzy linguistic modeling [5].

A typical problem when it comes to fuzzy linguistic modeling is the loss of
information that use to happen with approaches like classical and ordinal [26].
In [12] authors present the 2-tuple approach for fuzzy linguistic modeling. It
consists on a continuous model of representation of information that allows to
reduce the typical information loss.

Let S = {s0, ..., sg} be a linguistic term set with odd cardinality, where
the mid term represents an indifference value and the rest of the terms are
symmetrically related to it. We assume that the semantics of labels are given by
means of triangular membership functions and consider all terms distributed on
a scale on which a total order is defined [11]. If a symbolic method aggregating
linguistic information obtains a value β ∈ [0, g], and β /∈ {0, ..., g}, then an
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approximation function is used to express the result in S. β is represented by
means of 2-tuples (si, αi), where si ∈ S represents the linguistic label of the
information, and αi is a numerical value expressing the value of the translation
from the original result β to the closest index label, i, in the linguistic term set
(si ∈ S). This model defines Δ(β) = (si, α) and Δ−1(si, α) = β ∈ [0, g] as a set
of transformation functions between numeric values and 2-tuples.

In order to establish the computational model a definition of a negation,
comparison and aggregation operators is needed. Using the transformation func-
tions above described Δ and Δ−1 that avoid the loss of information, any of the
existing aggregation operators can be easily extended for dealing with linguistic
2-tuples [12].

When modeling the information a problem arises if different uncertainty
degrees on the phenomenon are perceived. In order to deal with that matter
an important parameter to determine known as the “granularity of uncertainty”
is needed, i.e., the cardinality of the linguistic term set S [13]. In [13] a multi-

Fig. 1. Linguistic hierarchy of 3, 5 and 9 labels.
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granular 2-tuple fuzzy linguistic modeling based on the concept of linguistic
hierarchy is proposed.

A Linguistic Hierarchy, LH, is a set of levels l(t,n(t)), where each level t is a
linguistic term set with different granularity n(t) from the remaining hierarchy
levels. The levels are ordered according to their granularity, i.e., a level t + 1
provides a linguistic refinement of the previous level t. We can define a level from
its predecessor level as: l(t, n(t)) → l(t + 1, 2 · n(t) − 1). A graphical example of
a three level linguistic hierarchy is shown in Fig. 1. Using this LH, the linguistic
terms in each level are the following:

– S3 = {a0 = Null = N, a1 = Medium = M, a2 = Maximum = MA}.
– S5 = {b0 = None = N, b1 = Low = L, b2 = Medium = M, b3 = High =

H, b4 = Maximum = MA}
– S9 = {c0 = None = N, c1 = V ery Low = V L, c2 = Low = L, c3 =

Slightly Low = SL, c4 = Medium = M, c5 = Slightly High = SH, c6 =
High = H, c7 = V ery High = V H, c8 = Maximum = MA}

In [13] authors remark that the family of transformation functions between
labels from different levels is bijective, guarantying that the transformations
between levels are produced without loss of information in a linguistic hierarchy.

3 Proposal Description

In this section we present an automatic academic profiles builder for users in
order to deal with the cold start problem using multi-granular fuzzy linguistic
modeling and bibliometrics. We work over REFORE, a recommender system for
researchers introduced in our previous work [24]. First, we will see the architec-
ture and approach followed. Then, we will go through the representation of the
information as well as the resources. We will conclude with profile formation of
the researchers.

3.1 System Concepts

The approach works based on the following concepts:

– Researchers does not want to spend time building a profile. However there is
a better predisposition to adjust one done beforehand.

– Cold Star problem is solved adding extra information from users from addi-
tional data sources. The system extracts all the necessary information from
Scopus based on the name of the researcher.

– Due to the nature of research itself, authors needs of information or investi-
gation interests are very specific.

– The use of bibliometric quality measures worked in REFORE [24] as part of
the recommendation approach. Authors tend to public their best works in
the best possible journals.
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– Novelty. To follow the hype. Authors will be more interested in topics related
with their last works.

– Frequency. The more recurrent topics from authors will mark an important
lines

– Authorship. Authors tend to be first authors in those works they lead.

REFORE profiles key needs for its correct functioning are two: keywords for
the main search and papers for the bibliometrics filters applied. The process
followed by the profile builder after a researcher name is introduced is shown on
Fig. 2 and consists on:

Fig. 2. Operating scheme

1. Query the Scopus API 1 for author information being papers the most impor-
tant.

2. Estimate the importance degree of the paper on the author profile. Details
explained below.

3. Extracting keywords from all the user papers weighted with the importance
of each.

3.2 Information Representation

In order to represent the information we stayed with the same linguistic hierarchy
defined in REFORE [24] but using only two levels. The concepts to asses in this
work are the following:

– The Importance degree of keywords for the users, which is assessed in S5.
– The Relevance degree of a paper for a user, which is assessed in S9.

We propose to use a linguistic hierarchy which linguistics term sets are:

1 https://dev.elsevier.com/scopus.html.

https://dev.elsevier.com/scopus.html
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– S5 = {b0 = None = N , b1 = Low = L, b2 = Medium = M , b3 = High = H,
b4 = Maximum = MA}

– S9 = {c0 = None = N , c1 = V eryLow = V L, c2 = Low = L, c3 =
SlightlyLow = SL, c4 = Medium = M , c5 = SlightlyHigh = SH, c6 =
High = H, c7 = V eryHigh = V H, c8 = Maximum = MA}
Level 1 is used to represent the importance degree of keywords (S1 = S9)

and for the predicted relevance degrees we use the level 2 (S2 = S5).

3.3 Profiles Construction

Author names are required in the format used for publishing. Afterwards, Scopus
API is used to look for authors profiles and retrieve them together with their
research history. The system performs a quick analysis on the papers splitting
user profiles in two: Papers and Keywords.

In REFORE, papers were split in two groups, selected and non-selected. This
classification was used for the filtering process. In order to provide the same
classification, the following characteristics have been considered to estimate the
individual importance degree of each one.

Given a paper P , Piu is the paper i from user u estimated aggregating the
following paper characteristics related to the user:

– Quality, given by the Impact Factor :

IFiu

{
IFiJ if J = ranked journal
0.4 Otherwise

(1)

where J is the source where the paper i from user u was published. We
consider authors tend to publish their better works in the best journals, giving
slightly less importance to conferences.

– Novelty, given by the publication date:

Noiu

{
Current Y ear − Y ear(Piu) ∗ 0.5 if Current Y ear − Y > 5

0.4 Otherwise
(2)

where Y ear(Piu) is the year when the paper Piu was published. We considered
that authors tend to be more interested on the research lines they are working
in the present.

– Authorship, given by the occupied position on the authors line in the paper:

Auiu

{
2 if Current Y ear − Y > 5

0.4 Otherwise
(3)

where being the first author in the list is considered as being the lead carrier
of work.

Before aggregating, all results are normalized within the interval [0, 1]. Dif-
ferent weights distribution are applied: 20% for the IF , 50% for No and 30%
the Au.
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Given the necessity of operating in the following steps with the linguistic
set of keywords which are expressed with labels from level 2 of our linguistic
hierarchy, that is S1 = S9, a linguistic transformation is needed. We followed
the representation model described in [12] to transform the aggregated values
to their linguistic labels belonging to the level 3 of our linguistic hierarchy, i.e.:
S1 = S9. Level 3 was chosen to allow users a bigger margin when reviewing the
papers profile.

On the other hand, keywords are used for the similarity estimation in
REFORE. In order to obtain the importance degree on each of them we applied
the linguistic weighted average (see Definition 1). The importance degree results
as the average of each keyword appearing on user papers, each keyword inherits
the importance degree of the paper it appears.

Definition 1. Linguistic Weighted Average Operator [24]. Let x = {(r1, α1),
. . . , (rn, αn)} be a set of linguistic 2-tuples and W = {(w1, α

w
1 ), ..., (wn, αw

n )} be
their linguistic 2-tuple associated weights. The 2-tuple linguistic weighted average
xw
l is:

xw
l [((r1, α1), (w1, α

w
1 ))...((rn, αn), (wn, αw

n ))] = Δ(
∑n

i=1 βi · βWi∑n
i=1 βWi

), (4)

with βi = Δ−1(ri, αi) and βWi
= Δ−1(wi, α

w
i ).

As above mentioned keywords are expressed withing the level 2 of the lin-
guistic hierarchy used. So in order to be used by REFORE a transformation
between level is performed.

4 Experiments and Approach Evaluation

In this section we present the evaluation of the proposed approach. Due to the
nature of REFORE, the system objective of this approach proposition is to
alleviate the cold start problem. No comparison with other approaches is possible
since no standard data set is used. Thus, in this study we only perform online
experiments, i.e., practical studies where a group of researchers indicate their
optimum profile. Users input is compared to the estimated one by our approach.

In order to test the effectiveness of the approach followed and after adjust-
ing the different parameters to the optimum weight, i.e.: Quality, novelty and
authorship, the experiment is performed over a set of users from REFORE. Other
approaches test the validity of their solutions for cold start problem through
evaluating recommendations, in this work we propose a direct evaluation of the
profiles by the own users. So our experiment consists on showing to the users the
profiles built for them together with the estimated importance values for each
paper and keyword. Afterwards, the user is inquired for the real ones.

For that purpose a section in REFORE was created for the test group (see
Fig. 3).

The test group consisted on 20 researchers with different profiles, going from
a more junior research profiles to senior ones. After loading their profiles from
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Fig. 3. Evaluation page

Scopus extracting papers and keywords, the system estimates their importance
degree following the steps indicated in Sect. 3 and shows them to the user.

When it comes to recommender systems, the most common measures for
accuracy are precision, recall or F1 [20]. However, in this work we left to users the
evaluation of their own estimated profile, so in order to measure how accurate the
system is mirroring user interests we use the Mean Absolute Error (MAE)
[10]. In particular, we defined it in a linguistic framework:

MAE = Δ(g ×
∑n

i=1 abs(Δ−1(pi, αpi) − Δ−1(ri, αri))
n

) (5)

with MAE ∈ S1 × [−0.5, 0.5], and where g is the granularity of the term set
used to express the relevance degree, i.e. S9, n is the the number of cases in the
test set, (pi, αpi) is the predicted 2-tuple linguistic value for paper or keyword i
and (ri, αri) the real one.

We evaluated both, papers and keywords separately, importance degree for
keywords and relevance degree for papers, obtaining the following MAE results:

– Keywords: 0.127
– Papers: 0.104

We observe that the profiles estimations generated with the proposed app-
roach are in line with the real users preferences, softening or removing the neces-
sity of their interaction with the system to establish a previous user profile.

5 Concluding Remarks

In this paper we propose a fuzzy linguistic approach based on bibliometrics to
deal with the cold start problem for researchers present in the REFORE system.

As we experienced in REFORE, the first barrier users find to use a recom-
mender system is the building of their own profiles. The idea of automatize the
profile construction will support the system as well as will enable the creation
of different system more oriented to real time interactions.

A user historic research record is retrieved from Scopus. The system split
keywords and the rest of meta-information from the papers from authors. After-
wards, the importance degree of each paper and keyword is obtained based on
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the idea of novelty, frequency and quality. We have applied the approach over
our previous recommender system REFORE in a real environment with satis-
factory results. Those results, showed that the approach performance was better
within the top 5 element of the each list, keywords and papers.

As future work, we consider to study the inclusion of the automatic profiling
on a real time recommender system for researcher with no need of previous
registration.

Acknowledgments. This paper has been developed with the FEDER financing under
Projects TIN2013-40658-P and TIN2016-75850-R
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Abstract. Besides control charts are used in many fields, they are important
because the process gives information about the product’s situation. Thanks to
control charts, necessary precautions are taken by noticing abnormal and normal
situations of process and/or product. It is considered that at this point the most
important and critical thing is that there will be loss of information about the
expert opinions. It can be said that this situation is more common especially for
the qualitative data. To prevent losses of data like this and so on and to trans-
form linguistic expressions into crisp data, it is needed to take advantage of
fuzzy logic that is commonly used recently. Although some studies about cre-
ating control charts by fuzzy sets have been done recently, all of them are done
only by using type 1 fuzzy sets. However, it is known that much of the data used
in daily life cannot be expressed by type 1 fuzzy number. Some data may be
more suitable for type 2 fuzzy numbers. In this study, type 2 fuzzy control charts
are obtained by using the methods of defuzzification and likelihood. The results
are compared with the classical control charts This study aims to use type 2
fuzzy sets in control charts as a new approach.

Keywords: Interval type 2 fuzzy control charts � Defuzzification � Likelihood

1 Introduction

Control charts are a tool that provides insight into the process, provides process
evaluation, and monitors the progress. Control charts consist of the center line, upper
and lower control limits obtained from the data. These limits allow to see changes in
the process and obtain information about abnormal situations of the process.

The control charts developed by Shewhart in the 1920’s at Bell Laboratories were
later used in a variety of fields [1]. Control charts have been developed in order to have
an idea about the product/process according to the product/process exhibited and to
check whether an unexpected situation has occurred in the process.

Classic control charts are used in many fields. Fuzzy control charts have also
recently been found, in literature. The use of fuzzy numbers in control charts is
especially advantageous for control charts for attributes. Properties such as color, smell,
cracks in a surface, brightness, etc. are quality features that cannot be expressed by any
measure or number. Besides the ability to measure attributes data with fuzzy numbers,
more than one quality characteristic can be used different from classical control charts,
and more flexible control limits can be created using expert opinions [2]. As a result of

© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7_37



available literature reviews, studies on fuzzy control graphs have been limited to type 1
fuzzy sets [2–10, 12–16].

Faraz and Shapiro have studied Xort-S charts in their work and have benefited from
LR-fuzzy numbers for this control chart [3]. Gülbay and Kahraman have identified the
UCL and LCL as type 1 fuzzy sets and compared data with fuzzy UCL and LCL.
Accordingly, results such as in control, rather in control, out of control and rather out of
control interpreted. So it is said that the fuzzy control charts are more flexible than
classical control charts [2]. Senturk, Erginel, in their study, have calculated the Xort, R
and S values and control limits as fuzzy sets. They used the a-cut method in the
decision phase [4]. Alaeddini et al. have drawn Xort control charts using triangular
fuzzy numbers and interpreted the results using clustering analysis [5]. Cheng has
calculated the average values from triangular fuzzy numbers. He has drawn two sep-
arate control graphs using the distance to the possibility and the necessity [6]. Using
LR-fuzzy numbers, UCL and LCL are also expressed as fuzzy sets. Then the fuzzy set
is interpreted according to the determined a–level [7]. In another study, Gülbay et al.
similarly used a-cut fuzzy control charts for linguistic data [8]. Shu and Wub have
found triangular fuzzy R and Xort values and compared each of the numbers in two
charts to see that they are in control or not [9]. Kaya and Kahraman have used
triangular and trapezoidal fuzzy numbers for process capability analysis [10]. In the
Asai study, he pointed out that fuzzy logic can be used in control charts for categorized
data [11]. Similarly, Woodall et al. and Laviolette et al. (1998) studied fuzzy control
charts using categorized data [12, 13] The linguistic terminology as a quality charac-
teristic is first used in Wang and Raz and Raz and Wang’s work [14, 15]. Kanagawa
et al. Developed Wang and Raz’s work to gain the literature on fuzzy probability and
fuzzy membership approaches [16].

Type 1 fuzzy numbers have been missing to identify linguistic expressions, while
type 2 fuzzy numbers have begun to be used. First, the type 2 fuzzy numbers generated
by Zadeh’s work in 1975 fuzzifing membership functions, has provided more realistic
and more relevant data [17]. In the accessible literature, there was no control chart
made with the type 2 fuzzy sets, which could better express the linguistic terms of the
expert opinions and the linguistic terms [18].

In this study, control charts are obtained with type 2 fuzzy numbers in which a
fuzzy number is represented by multiple membership degrees instead of a single
membership degree. The study includes creating control charts with the calculation of
defuzzification and likelihood using interval type 2 trapezoidal fuzzy sets.

The study is designed in the following order. In Sect. 2, arithmetic operations of
trapezoidal interval type 2 fuzzy sets arithmetic operations is mentioned. In Sect. 3,
deffuzzification and likelihood methods for trapezoidal interval type 2 fuzzy sets are
explained. In Sect. 4, defuzzification and likelihood approach are applied to fuzzy
control charts with trapezoidal interval type 2 fuzzy numbers. In Sect. 5, the results of
the approaches are compared and interpreted with a numerical example. Finally in
Sect. 6, concluding remarks are given.
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2 Interval Type 2 Fuzzy Sets

In this section, some information about interval type 2 fuzzy sets is given and some
arithmetic operations related to trapezoidal interval type 2 fuzzy sets are mentioned.

Zadah (1975) noted that type 2 fuzzy numbers differ from type 1 numbers in that
membership functions are fuzzy and shown as follows [17].

eeA ¼ x; uð Þ; leeA ðx; uÞ
����8x 2 X; 8u 2 Jx� 0; 1½ �; 0� leeA ðx; uÞ� 1

� �

where Jx symbolizes an interval [0,1]. If all leeA x; uð Þ ¼ 1, eeA is called an interval type 2

fuzzy set [19].eeAi ¼ aUi1; a
U
i2; a

U
i3; a

U
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i

� �
;H2

fAU
i

� �� �
; aLi1; a

L
i2; a

L
i3; a

L
i4;H1

fAL
i

� �
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is illustration of trapezoidal interval type 2 fuzzy set where amik is reference point of the

interval type 2 fuzzy set feAi , k = 1,2,3,4, m = U, L (U defines upper membership

function and L defines lower membership function) and 1 � i � n. Hj fAm
i

� �
2 ½0; 1�:

denotes the membership value of the element ai(j+1)
m , j = 1, 2, m = U, L and

1 � i � n.
Some arithmetic operations related to trapezoidal interval type 2 fuzzy sets are

given in following.

The addition operation between the trapezoidal interval type 2 fuzzy sets ffA1 andffA2 is defined as follow:
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The subtraction operation between the trapezoidal interval type 2 fuzzy sets ffA1 andffA2 is defined as follow:
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The multiplication operation between the trapezoidal interval type 2 fuzzy sets ffA1

and ffA2 is defined in Eq. (3) and the arithmetic operations between the trapezoidal

interval type 2 fuzzy sets feAi and the crisp value k is defined in Eq. (4):

ffA1 � ffA2 ¼ aU11 � aU21; aU12 � aU22; aU13 � aU23; aU14 � aU24;min H1
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3 Comparison Methods for Type 2 Fuzzy Sets

It is quite difficult to operate with type 2 fuzzy sets. For this reason, some defuzzifi-
cation methods for interval type 2 fuzzy sets have been developed. These methods
often define type 2 fuzzy set as a type 1 fuzzy set and then use one of the defuzzifi-
cation methods for type 1 fuzzy sets.

This section discusses the two approaches mentioned in the literature. In the fol-
lowing Chen and Lee’s likelihood approach and Kahraman et al.’s defuzzification
approach for interval type 2 fuzzy sets are given.

3.1 Chen and Lee’s Likelihood Approach

Chen and Lee proposed ranking method for type 2 fuzzy sets. The following equation
is likelihood of eAU

s � eAU
t [20].

P eAU
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Then the ranking values for upper and lower membership functions are defined as
follows:

Rank A
^m

i

� �
¼ 1

nðn� 1Þ
Xn
k¼1

pð eAm
s � eAm

t

� �
þ n

2
� 1

 !
ð6Þ

where m = U, L and n is a number of sets.
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Finally the ranking values of the interval type 2 fuzzy set feAi can be calculated by
following equation:

Rank eAi

� �
¼

Rank A
^U

i

	 

þRank A

^L

i

	 

2

ð7Þ

3.2 Kahraman et al.’s Defuzzification Approach

Kahraman et al. proposed ranking methods for triangular and trapezoidal interval type
2 fuzzy sets. (see Eq. (8)) [21].

DTraT ¼
aUi4�aUi1ð Þþ HU

1 �aUi2�aUi1ð Þþ HU
2 �aUi3�aUi1ð Þ

4 þ aUi1

� �
þ aLi4�aLi1ð Þþ HL

1 �aLi2�aLi1ð Þþ HL
2 �aLi3�aLi1ð Þ

4 þ aLi1

� �
2

ð8Þ

DTraT is abbreviation for the trapezoidal type 2 fuzzy sets.

4 Type 2 Fuzzy Control Charts

The advantage of using fuzzy sets is that linguistic values can represent numerical
values. Because of this advantage, fuzzy sets can be used in many areas, control charts
are one of these areas. In particular, the fuzzy approach is suitable for control graphs for
attributes where the data are linguistic, categorical and based on human opinion.

Classical control charts for attributes can be obtained for fraction rejected as
nonconforming to specifications, ember of nonconforming items, number of noncon-
formities and number of nonconformities per unit. For crisp values, control limits for
number of nonconformities are calculated by the following equations:

CL ¼ c ð9Þ

LCL ¼ c� 3
ffiffiffi
c

p
ð10Þ

UCL ¼ cþ 3
ffiffiffi
c

p
ð11Þ

where c is the mean of the nonconformities. In the literature, fuzzy control charts are
used for type 1 fuzzy sets. In this study, each sample is expressed as a type 2 trape-
zoidal fuzzy numbers
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In type 2 trapezoidal fuzzy case, the center line, fCL, given in Eq. (12)
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where m is the number of fuzzy samples.
After fCL is calculated, gUCL and gLCL are calculated as in Eqs. (13) and (14),

respectively
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The relationship between control limits, which are calculated as a type 2 trapezoidal
fuzzy sets, and data is determined by Chen and Lee’s approach. The relationship is
actually a probability value that allows two type 2 trapezoid fuzzy sets to be comparedwith
each other. In this study, the probability is designed to determine the uncontrolled situ-
ation and the rules have been developed accordingly. In other words, the likelihood that
the data is greater than the upper control limit and the likelihood that the lower control limit
is greater than the data are calculated. Decision rules and flowchart are shown in Fig. 1.

Fig. 1. Flowcharts and decision rules for type 2 fuzzy control charts
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Furthermore, control charts are drawn with type 2 trapezoidal fuzzy sets deffuzzified
by Kahraman and et al. Control limits, which are calculated as type 2 trapezoidal fuzzy
sets, and data are deffuzzified and then drawn as a classical control chart.

5 Numerical Example

Samples of 250 units are taken every 2 h to control number of nonconformities. Data
collected from 30 subgroups shown in Table 1 are crisp and in Table 2 linguistic
values. These data are transformed into type 2 trapezoidal fuzzy sets and operations are
done with type 2 trapezoidal fuzzy sets.

fCL, gLCL and gUCL are determined using Eqs. (12) and (14) and the type 2
trapezoidal fuzzy fCL, gLCL and gUCL calculated are given below.

fCL ¼ 18:13; 22:67; 26:93; 32:07; 0:63; 0:59ð Þ; 19:37; 23:67; 26:00; 30:30; 0:48; 0:45ð Þð Þ
gLCL ¼ 1:14; 7:10; 12:65; 19:29; 0:63; 0:59ð Þ; 32:57; 38:26; 41:30; 46:81; 0:48; 0:45ð Þð ÞgUCL ¼ 30:91; 36; 95; 42:50; 49:05; 0:63; 0:59ð Þ; 32:57; 38:26; 41; 30; 46:81; 0:48; 0; 45ð Þð Þ

Tables 3 and 4 are generated with the use of Eq. 3. Table 3 shows the likelihood
that the data is greater than the upper control limit and Table 4 shows the likelihood
that the lower control limit is greater than the data. In both tables, column, which is
expressed as the average likelihood (P), shows the calculation of Eq. (6) where n = 2.

Chen and Lee proposed ranking methods for fuzzy multiple attributes
group-decision making. In fuzzy multiple attributes group-decision making case, each
attribute is compared to all other attributes, so the ranking equation is formed as Eq. (6).
However, in this study, the fuzzy data is compared to the UCL or the LCL, so n = 2.

Figure 2a and b shows graphical results of Tables 3 and 4, respectively. Using
Tables 3 and 4, it is decided about the process by the rules in Fig. 2a. according to the
results, it is said that the data 4, 7, 11 and 14 are out of control; data 3, 17 and 30 are
rather out of control; data 1, 2, 6, 9, 12, 13, 19–26, 28, 29 are in control; the others are
rather in control.

Another method used in the study is the deffuzzification method for interval type 2
fuzzy sets. Trapezoidal type 2 fuzzy data and control limits are deffuzzified using
Eq. (8). Defuzzified data are given Table 5.

Table 1. Crisp value for numerical example

No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Crisp value 30 25 9 6 38 22 6 40 13 12 6 32 13 51 40
No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Crisp value 40 41 39 18 28 34 18 30 25 36 18 10 32 23 8
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Table 3. Chen and Lee’s likelihood value for data and UCL

No P eAU
i � eAU

UCL

� �
P eAL

i � eAL
UCL

� �
Av. P No P eAU

i � eAU
UCL

� �
P eAL

i � eAL
UCL

� �
Av. P

1 0,063 0,025 0,044 16 0,444 0,534 0,489
2 0,045 0,007 0,026 17 0,624 0,639 0,632
3 0 0 0 18 0,397 0,339 0,368
4 0 0 0 19 0,063 0,045 0,054
5 0,395 0,381 0,388 20 0,075 0,026 0,051
6 0 0 0 21 0,211 0,146 0,178
7 0 0 0 22 0,026 0 0,013
8 0,448 0,407 0,427 23 0,055 0 0,027
9 0 0 0 24 0,004 0 0,002
10 0 0 0 25 0,274 0,238 0,256
11 0 0 0 26 0 0 0
12 0,109 0,057 0,083 27 0 0 0
13 0 0 0 28 0,109 0,058 0,084
14 0,859 0,912 0,886 29 0 0 0
15 0,346 0,278 0,312 30 0 0 0

Table 2. Linguistic value for numerical example

No Between Approximately No Between Approximately

1 30 16 40
2 20–30 17 32–50
3 5–12 18 39
4 6 19 15–21
5 38 20 28
6 20–24 21 32–35
7 4–8 22 10–25
8 36–44 23 30
9 11–15 24 25
10 10–13 25 31–41
11 6 26 10–25
12 32 27 5–14
13 13 28 28–35
14 50–52 29 20–25
15 38–41 30 8
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Table 4. Chen and Lee’s likelihood value for data and LCL

No P eAU
LCL � eAU

i

� �
P eAL

LCL � eAL
i

� �
Av. P No P eAU

LCL � eAU
i

� �
P eAL

LCL � eAL
i

� �
Av. P

1 0 0 0 16 0 0 0
2 0,044 0,012 0,028 17 0 0 0
3 0,561 0,631 0,596 18 0 0 0
4 0,788 0,814 0,801 19 0,081 0,036 0,059
5 0 0 0 20 0 0 0
6 0,042 0,016 0,029 21 0 0 0
7 0,707 0,733 0,720 22 0,058 0,014 0,036
8 0 0 0 23 0 0 0
9 0,233 0,233 0,233 24 0 0 0
10 0,413 0,360 0,386 25 0 0 0
11 0,750 0,802 0,776 26 0,177 0,169 0,173
12 0 0 0 27 0,443 0,445 0,444
13 0,294 0,261 0,277 28 0 0 0
14 0 0 0 29 0,028 0,000 0,014
15 0 0 0 30 0,546 0,516 0,531

Fig. 2. (a) Average likelihood of comparing; (b) Average likelihood of comparing data and
upper control limit data and lower control limit
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The control chart is drawn by using the classic control graph method, after
defuzzification, it is shown in Fig. 3 for numerical example. Control limits are also
obtained by the defuzzification method.

According to deffuzzification method, data 4, 5, 7, 8, 11, 14–18 are out of control
and the others are in control.

Eventually, the control charts obtained with the crisp data were compared with the
other results. The Minitab program is used for the classic control chart and the results
are shown in Fig. 4.

It is shown that in Fig. 4, data 3, 4, 7, 8, 11, 14–17 and 30 are out of control and the
others are in control.

Finally, the comparison of the results of each method is summarized in Table 6.
Abbreviation for IC, RIN, ROC and OC express in control, rather in control, rather out
of control and out of control, respectively. Results of data 8, 11 and 15, which are

Fig. 3. Control charts with deffuzzified data

Table 5. Deffuzzification of data and control limits

No xi No xi No Xi

1 23,82 11 5,72 21 29,26
2 20,86 12 27,75 22 20,15
3 7,94 13 11,15 23 26,23
4 5,49 14 46,02 24 22,03
5 35,10 15 32,32 25 29,89
6 16,88 16 36,46 26 14,63
7 5,67 17 37,82 27 8,95
8 33,55 18 33,21 28 26,30
9 11,20 19 19,09 29 19,62
10 9,87 20 25,70 30 8,74
CL 19,14 LCL 7,68 UCL 30,58
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obtained with likelihood approach, are different from same data obtained with classical
control charts approach. Also for some data, the process control chart is stretched with
“rather in control” and “rather out of control” expressions On the other hand, results of
data 3, 5, 18 and 30, which are calculated with deffuzzification approach, are different
from same data calculated with classical control charts approach.

6 Conclusions

The starting point of this study is the lack of any control charts made with the interval
type 2 fuzzy sets in the accessible literature. For this reason, type 2 fuzzy control charts
have been obtained by using likelihood and defuzzification methods for interval

Table 6. Comparison of three approach

Sample No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Likelihood
approach

IC IC ROC OC RIC IC OC RIC IC RIC OC IC IC OC RIC

Deffuzification
method

IC IC IC OC OC IC OC OC IC IC OC IC IC OC OC

Clasic control
charts approach

IC IC OC OC IC IC OC OC IC IC OC IC IC OC OC

Sample No 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Likelihood
approach

RIC ROC RIC IC IC IC IC IC IC IC IC RIC IC IC ROC

Deffuzification
method

OC OC OC IC IC IC IC IC IC IC IC IC IC IC IC

Clasic control
charts approach

OC OC IC IC IC IC IC IC IC IC IC IC IC IC OC

Fig. 4. Classic c control charts for crisp data
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trapezoidal type 2 fuzzy sets and are clarified with a numerical example. Deffuzzifi-
cation method evaluates the process as “in control” and “out of control”, just like the
classical method. On the other hand, the likelihood approach evaluates the process as
more flexible and determines new expressions such as “rather in control” and “rather
out of control” for control charts.

In future studies, different trapezoidal interval type 2 fuzzy sets can be applied with
these methods and also different trapezoidal interval type 2 fuzzy set approaches can be
compared with the control charts methods applied in this study.
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Abstract. Linked Open Data (LOD) is a graph-based repository of data
that uses data representation format called Resource Description Frame-
work (RDF). The basic piece of RDF data is a triple subject-property-
object. LOD seen as a network of interconnected pieces of data cre-
ates an environment suitable for developing methods enabling learning
processes that rely on data integration. Application of frequentionistic-
based approaches to integrate data leads to identification of pieces of
information that are consistent and frequently used. An essential ele-
ment of such methods is the ability to identify similar pieces of data.
In reality, multiple sources of information use different vocabularies to
represent relations (properties) existing between data. That introduces
a challenge for data integration methods.

In this paper, we propose a simple approach to determine degrees
of equivalences between relations (properties) defined by different LOD
vocabularies. We process numbers of occurrences of matching pairs of
RDF triples in order to determine intervals representing lower and upper
levels of property equivalences. As the result, we obtain a graph of equiv-
alent properties where interval-based strength of edges represent degrees
of similarity between properties. A case study illustrating the details of
the approach and a validation experiment are included.

Keywords: RDF data · Property equivalence · Possibility theory

1 Introduction

One of the important contributions of the Semantic Web [1] is a graph-based form
of data representation called Resource Description Framework (RDF) [16]. RDF
data model treats each piece of information as an RDF triple: subject-property-
object [9,16]. The application of RDF for data representation has become a very
popular way of representing data on the web [13]. Over time, the term Linked
Open Data (LOD) has been used to describe the network of data sources that
use RDF triples for information representation [2].

LOD is beneficial for various semantic applications such as web search
engines, web browsers, information retrieval systems, and reasoning engines.
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LOD, and graph-based data formats, are suitable environments for development
of learning focused methods and approaches. An example could be a learning
process that involves continuous collecting and aggregating pieces of data. Fur-
ther, the accumulated data would be processed in order to identify importance
of individual pieces of data, and to determine strength of relations between
them. Assuming a simple frequentionistic approach, we can say that elements
and connections between data that occur more often become more pronounced
and ‘stronger’. For the case of LOD, an integration of data from multiple RDF
repositories poses a number of challenges regarding data processing and analy-
sis [7]. One of such challenges associated with diversity of LOD is multitude of
vocabularies used in the datasets. In order to manage interconnectivity between
pieces of data and diversity of relations between them, we postulate that con-
struction of a graph that includes degrees of equivalence between data relations
is an essential step in development of learning focused systems. We use the term
‘equivalence’ to comply with the terminology of LOD that defines two proper-
ties as equivalent it their semantics is the same. For LOD, an integration of data
from RDF repositories poses a number of challenges regarding processing and
analysis of data [7]. One of such challenges associated with the diversification of
LOD is a multitude of vocabularies used in the datasets.

In this paper, we propose a method that evaluates degrees of equivalence
between properties defined by different LOD vocabularies. The method uses a
simple approach to determine a number of occurrences of pairs of RDF triples,
subject-property-object, with the same subjects and objects. The obtained
occurrence numbers are processed and elements of possibility theory [5,15] are
used to express lower and upper limits of degrees of equivalences. The appli-
cation of possibility theory allows us to handle a number of difficulties when
dealing with real data sources: (1) inability to compare all pairs of properties;
(2) existence of inconsistency among pieces of data as the consequence of inco-
herent semantics or simple spelling errors; and (3) unregulated nature of posted
information resulting in unpredicted diversity of data semantics. The lower and
upper limits of equivalence are determined based on the available data. The
limits determine a range that potentially contains the most realistic degree of
equivalence. The method is used to evaluate equivalencies of properties defined
by three well-known RDF datastore – DBpedia [17], Wikidata [18], and YAGO
[19] – which define and use their own LOD vocabularies.

2 Background

2.1 Related Work

Property alignment, which is crucial for data integration tasks in LOD has
received a significant attention of many researchers. Different techniques have
been used to address the task. In the schema-based (profile-based) method [3],
information about a label, domain and range is utilized. In this approach, a
similarity of property is acquired via string matching using different similarity
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measures such as Jaccard similarity coefficient, cosine similarity or WordNet
based methods processing words that occur in the property names.

In the instance-based approach (also called schema-independent) [6,11] the
content of instances that belong to classes and the properties that appear in these
instances are consulted. Some researchers used a mixture of these techniques. For
example, [14] uses four different basic measures, including a string edit distance, a
WordNet based method, a profile, and an instance based technique to determine
a level of similarity between properties.

The closest to the method proposed here is the approach presented in [6,
10]. The authors utilize the concept of equivalent properties that is defined by
OWL. However, there are some differences between their method and the method
described here. In [6], the authors analyze the results of statistical processing of
number of matching subject-object tuples for a pair of investigated properties
<p1, p2>. A degree of equivalence is calculated as the ratio of a number of pairs
of RDF triples with the same subject and object that have <p1, p2> as their
properties to a number of RDF triples that have p1 and p2 as their properties but
they only have matching subjects. We start with instances of a given class c from
DBpedia, for example Person and find instances – via the property owl:sameAs
– from Wikidata and YAGO. For each pair of owl:sameAs instances, we find
all RDF triples with the same object from both datastores. This decreases the
search space and increases effectiveness of the approach.

2.2 Possibility Theory

Introduced by [15] and fully developed by [5] possibility theory is a suitable vehi-
cle to handle incomplete information. Even if similar to the probability theory it
differs in using two sets of functions: possibility and necessity measures, instead
of just one measure as in the probability theory. Here, we present the basic def-
initions and concepts that are used in our approach for similarity evaluation.
More information on possibility theory can be found in [4,8].

Let us assume a finite set of states, S. A possibility distribution function is:

π(s) : S →< 0, 1 > (1)

that s represents a current state of knowledge. Possibility theory appraises what
elements of S are plausible and what elements are not, what is ‘normal’ and
what is not. The state s is expressed to be impossible as:

π(s) = 0 (2)

or totally possible (plausible):
π(s) = 1 (3)

This allows for expressing complete knowledge, when some state s0 is possible
π(s0) = 1, and other states s are impossible π(s0) = 0. Total ignorance is
expressed as π(s0) = 1 for all s from S. Therefore, degrees of possibility and
necessity for a given subset of states Ssub can be computed as below: possibility:

Π(Ssub) = sups∈Ssub
π(s) (4)
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necessity:
N(Ssub) = infs/∈Ssub

1 − π(s) (5)

The duality of possibility-necessity is:

N(Ssub) = 1 − Π(S′
sub) (6)

where S′ represents the complement of S. Possibility measures satisfy the
basic property of:

Π(Sa
sub ∪ Sa

sub) = max(Π(Sa
sub),Π(Sb

sub)) (7)

while necessity measures satisfies the dual property:

N(Sa
sub ∩ Sa

sub) = min(N(Sa
sub), N(Sb

sub)) (8)

3 Property Equivalence Evaluation

3.1 Concept

The proposed process of identifying a degree of equivalence between properties
from different vocabularies and data repositories is based on the idea of using
triples representing well-know entities. Hereafter, we use the term objects instead
of entities in compliance with the RDF terminology. In a nutshell, we compare
definitions of the well-know subjects, denoted reference subjects, with the defin-
itions of the same subjects from different data repositories. Based on the result
of that comparison, we evaluate a degree of equivalence of properties that exist
in the subjects’ definitions. The principle idea seems simple, however the core of
our approach lays in a way how we process the results for a given property. We
are interested in the lower and upper boundaries of degree of equivalence, i.e.,
in necessity and possibility values of equivalence.

3.2 Phase I: Direct Evaluation

In the first phase of the approach, we compare reference subjects with subjects
from other RDF data-stores: A, B, C, and so on. Figure 1 is an illustration of
the process we follow. Let us consider two data-stores: reference and A. The
triples taken from them are compared: if both subject and object of a triple
from reference match the subject and object of a triple from A, we assume that
properties of these triples are potentially equivalent.

Let Sref is a set of K subjects from the reference data-store:

Sref = {s1ref , . . . , skref , . . . sKref , }. (9)

Based on this set, we create a set of unique properties existing in Sref :

Pref = {p1ref , . . . , prref , . . . , pRref}. (10)
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Fig. 1. Comparison of triples from different data-stores

For a given property pref (for simplicity of notation, let us drop the superscript),
we select all subject from Sref that contain this property. Such a set of subjects
with pref is called Spref

, and its cardinality is |Spref
| = N .

For every subject spref
from Spref

, we find an equivalent subject sA from the
data-store A using the property owl:sameAs. Also, we identify all triples that
have sA as their subjects. Among them, we look for triples

sA − ptA − otA,pA
(11)

such that
orpref

= otA,pA
(12)

where orpref
is the object in the triple

sref − prref − orpref
(13)

from Sref , Fig. 1. That means that if the triples represented by Eqs. 11 and 13
have the same subjects and objects, then we can assume that prref and ptA are
equivalent. At the current development stage, the similarity of objects orpref

and
otA,pA

is determined during a simple string matching process. We envision that
in the future, we will apply more advanced methods for determining similarity
between objects. We keep track how many times we encounter matching pairs
of triples. We store this number of occurrences as M(prref , ptA).

Once such a process is finished for all subjects spref
from Spref

, we obtain mul-
tiple pairs <pref , pA> together with their number of occurrences M(pref , pA).

Without loss of generality, let us assume that we deal with Q such pairs for
the property pref :

M(pref , p1A)
. . .

M(pref , pqA)
. . .

M(pref , pQA)

(14)
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We can say that M ’s represent numbers of occurrences of triples supporting a
statement that: pref is equivalent to p1A, pref is equivalent to pqA . . . , and pref is
equivalent to pQA. These numbers are used to determine a degree of equivalence
of pref and pqA.

To determine the necessity value, we take a number of times when sub-
jects/objects of triples from reference and A match, and divide it by a number
of triples in reference with the property pref . The formula is:

NEQ(pref ,p
q
A) =

M(pref , pqA)
Total

(15)

where Total is a number of triples with pref . The possibility is determined
when a maximum possible number of matching pairs <pref , pqA> is taken into
consideration. The formula is:

ΠEQ(pref ,p
q
A) =

Total − SUM

Total
(16)

where
SUM =

∑

i=1,...,q−1,q+1,...,K

M(pref , piA) (17)

represents a number of the found matching pairs different than <pref , pqA>.
Using a simple arithmetics, we can demonstrate that ΠEQ(pref ,p

q
A) is always

larger or equal than NEQ(pref ,p
q
A).

3.3 Phase II: Indirect Evaluation

In the previous phase, we determine the values of necessity and possibility based
on the comparison of triples from other data stores, for example A and B, to the
triples from the reference data-store, i.e., we obtain equivalence values for ‘pairs’
reference-A and reference-B. In the phase II, we determine values of equivalence
between triples from non-reference data-stores, i.e., for pairs A-B.

As before, i.e., without loss of generality, we assume we have the following
numbers of occurrences for a number of pairs <pref , pqA> and <pref , pjB>:

M(pref , p1A) M(pref , p1B)
. . .

M(pref , pqA) M(pref , prB)
. . .

M(pref , pQA) M(pref , pRB)

(18)

Let us pick up two pairs, again for simplicity we omit superscripts, and
determine a degree of equivalence for the properties pA and pB. We have two
values of occurrences for each pair:

M(pref , pA) M(pref , pB) (19)
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The calculations of necessity and possibility are done in reference to the property
– pA or pB – that provides a larger value of M(pref , . . . ). We use two simple
equations:

larger = argmax(M(pref , pA),M(pref , pB)) (20)

to identify an index of property with a larger value of M , and

smaller = argmin(M(pref , pA),M(pref , pB)) (21)

to find an index of the property with a smaller value of M .
The calculations follow the pessimistic and optimistic views regarding num-

bers of matching pairs of triples. In the worst case scenario, we assume that
M(pref , psmaller) is at its maximum – there are no more matching pairs for such
a pair of properties, and that we found a minimum number of matching pairs
for <pref , plarger>. As the result, we denote the value of necessity as:

NEQ(pA,pB) =
M(pref , psmaller)

Total − SUMlarger
(22)

with
SUMlarger =

∑

i=1,...,q−1,q+1,...,S

M(pref , pilarger). (23)

As before Total is a number of triples with the property pref , while SUMlarger

represents a total number of matching pairs for all other properties excluding
plarger. The possibility, on the other hand, is seen as an optimistic scenario. We
assume that all triples from the data-store A that do not have matching triples
from the reference data-store can potentially be matched to triples with the
property psmaller.

The formula is:

ΠEQ(pA,pB) =
Total − SUMsmaller

Total − SUMlarger
(24)

with
SUMsmaller =

∑

i=1,...,r−1,r+1,...,J

M(pref , pismaller) (25)

that represents a total number of matching pairs for all other properties exclud-
ing psmaller.

In general, the values of SUMlarger and SUMsmaller could be such that
ΠEQ(pA,pB) becomes more than 1. Thus, we modify the original equation to

ΠEQ(pA,pB) = min{1.00,
T otal − SUMsmaller

Total − SUMlarger
}. (26)

Using a simple arithmetics we can demonstrate that ΠEQ(pq
A,pr

B) is always larger
than NEQ(pq

A,pr
B) as long as:

M(pref , psmaller)
M(pref , plarger)

<
M(pref , psmaller) + SUMlarger

M(pref , plarger) + SUMsmaller
(27)
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4 Case Study and Experiment

4.1 Wikidata as Reference Source

The equivalence evaluation process uses a set of reference subjects. As it has been
indicated earlier, RDF triples with these subjects provide a set of properties that
are treated as the base against which we compare other properties.

In our case study, we use three data-stores: Wikidata, DBpedia and YAGO.
In order to illustrate the proposed approach, we evaluate equivalences of two
wikidata properties: P569 (dateOfBirth) and P106 (occupation). The obtained
values of M(pwiki, p

q
dp) and M(pwiki, p

r
yago) are shown in Table 1.

Table 1. Equivalent properties – frequency of occurrence of RDF triples with a given
property from Wikidata (left column), and frequency of occurrence of properties from
DBpedia (centre column) and YAGO (rigth column) that match the Wikidata property.

wikidata.org dbpedia.org yago-knowledge.org

for .../P569 (dateOfBirth) M(P569, ponto/birthDate) = 7974 M(P569, pwasBornOnDate) = 10091

N = 23629 M(P569, pprop/birthDate) = 7037 M(P569, pen/birthdate) = 2641

M(P569, others) = 11 M(P569, others) = 4

for .../P106 (occupation) M(P106, ponto/occupation) = 1768 M(P106, pen/occupation) = 2772

N = 34576 M(P106, pprop/occupation) = 983 M(P106, ptype) = 1325

M(P106, others) = 248 M(P106, others) = 246

4.2 Property Matching: Wikidata-DBpedia

Let us start with evaluating equivalence of the property P569 (dateOfBirth)
from Wikidata in respect to properties from DBpedia. As we can see in Table 1,
there are two properties from DBpedia: ponto/birthDate and pprop/birthDate that
have large values of M(P569, p...)’s. In the table, there is also the value of
M(P569, others) representing a cumulative number of matches to other proper-
ties. The similar situation is for the property P106 (occupation). The calculated
values of necessity and possibility for both Wikidata properties are presented in
Table 2.

Table 2. Necessity and possibility values for Wikidata and DBpedia properties.

ponto/birthDate pprop/birthDate

P569 NEQ = 0.3375 NEQ = 0.2978

ΠEQ = 0.7017 ΠEQ = 0.6621

ponto/occupation pprop/occupation

P106 NEQ = 0.0511 NEQ = 0.0284

ΠEQ = 0.9644 ΠEQ = 0.9417

http://wikidata.org
http://dbpedia.org
http://yago-knowledge.org
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As it can be seen, the necessity values for the property P569 are higher than
for P106. A quick look at the M values in Table 1 explains this. There are more
occurrences of P106, and smaller number of triples with matching subjects and
objects – M(P106, p...)’s. The values of possibilities are higher for P106 – this
means that a better process of identifying matching pairs of subject-object would
potentially lead to less uncertainty.

4.3 Property Matching: Wikidata-YAGO

In a very similar way, the calculations are done for determining equivalence
between P569 (birthDate) and P106 (occupation) and YAGO ’s properties. The
necessity and possibility values of equivalence are in Table 3. As before, the
necessity values for the property P569 are higher than for P106, while the values
of possibilities are higher for P106.

Table 3. Necessity and possibility values for Wikidata and YAGO properties.

pwasBornOnDate pen/birthdate

P569 NEQ = 0.4271 NEQ = 0.1118

ΠEQ = 0.8881 ΠEQ = 0.5728

pen/occupation ptype

P106 NEQ = 0.0802 NEQ = 0.0383

ΠEQ = 0.9546 ΠEQ = 0.9127

4.4 Property Matching: Dbpedia-YAGO

Finally, we evaluate levels of equivalence between DBpedia properties and YAGO
properties. Based on the values from Table 1 and the approach presented in
Sect. 3.3, we obtain the estimated equivalence values, Table 4. The table con-
tains values for all possible combinations between two properties from DBpedia
and two from YAGO. The levels of uncertainty are the lowest for the pairs
<pwasBornOnDate : ponto/birthDate> and <pwasBornOnDate : pprop/birthDate>. As
in the previous cases, the values for the properties related to occupation indicate
high uncertainty, i.e., low confidence in the obtained results.

As we can see in all presented cases, the values of necessity and possibility
are very much dependent on available data and quality of a comparison process.
However, despite a simple method used to determine numbers of matching RDF
triples, the proposed approach of processing these numbers is capable of calcu-
lating ranges of degree of equivalence between properties.
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Table 4. Necessity and possibility values for DBpedia and YAGO properties.

pwasBornOnDate pen/birthdate

ponto/birthDate NEQ = 0.3800 NEQ = 0.1593

ΠEQ = 0.7902 ΠEQ = 0.8162

pwasBornOnDate pen/birthdate

pprop/birthDate NEQ = 0.3354 NEQ = 0.1688

ΠEQ = 0.7455 ΠEQ = 0.8651

pen/occupation ptype

ponto/occupation NEQ = 0.0536 NEQ = 0.0397

ΠEQ = 1.0000 ΠEQ = 0.9464

pen/occupation ptype

pprop/occupation NEQ = 0.0298 NEQ = 0.0311

ΠEQ = 0.9464 ΠEQ = 1.0000

4.5 Visualization of Results

The calculations presented above can be visualized as a graph where nodes are
properties and edges between them represent equivalence relations. Each edge
is labeled with an interval [N,Π] representing a range of degrees of equivalence.
The graph is shown in Fig. 2. It includes relations calculated in the phase I of the
approach (solid lines), and the equivalence values obtained indirectly – phase II
– represented as dashed lines.

Fig. 2. Property equivalence graph

4.6 Validation Experiment

A set of validation tests has been performed to determine capabilities of the pro-
posed method. For this purpose, we have selected a set of subjects from a single
class Person from DBpedia. We have run SPARQL queries at DBpedia, Wiki-
data and YAGO endpoints to extract RDF triples representing the same subject
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using owl:sameAs property. The obtained set contains 50,000 RDF triples of the
category Person from DBpedia, and additional 100,000 equivalent entities from
the datastores Wikidata and YAGO.

For the evaluation purposes, we use values of necessity calculated only for the
matching pairs of properties. We introduce a threshold value α. If the necessity
value calculated for a pair of properties is larger than α, we conclude the equiv-
alence pair is found. We have created a ‘reference set of equivalent properties’.
This set contains pairs of properties from DBpedia and Wikidata that have been
identified by experts as equivalent; the properties of each pair are connected
by a special relation owl:equivalentProperty. The pairs we found are compared
with the pairs in the reference set to determine such data mining performance
measures as precision, recall, and F1 [12]. The experiments are done with values
of α changing from 0.00 to 1.00, Fig. 3.

Fig. 3. Performance evaluation: equivalence of DBpedia and Wikidata properties

5 Conclusion

RDF data repositories that constitute Linked Open Data (LOD) create an oppor-
tunity to develop methods that enable data integration and their full utilization.
Further, those methods can be seen as the base for developing algorithms suitable
for learning and knowledge extraction.

One of important components enabling data integration is related to deter-
mining equivalence of different properties used by RDF stores. The approach
presented here evaluates the upper and lower limits of property equivalences.
The approach utilizes elements of possibility theory to estimate these limits. It
is able to cope with imprecision and uncertainty caused by inability to compare
all possible pairs of properties in a comprehensive and thorough way. The ulti-
mate goal is to construct a graph of properties (relations) where edges represent
degrees of equivalence, Fig. 2. Analysis of such a graph would lead to discovering
relations of different types between properties.
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Abstract. The Successive Likelihood Index Method establishes the
degree of liability, and therefore the corresponding compensation, of the
various errors that have caused an accident. From an expert judgment,
the successive likelihood index of each error is calculated by a weighted
arithmetic mean of their opinions. In this work we have considered other
averaging functions for aggregating this information and we have studied
their behavior. In particular, we have studied in detail the case of power
means applied to the accident of the oil tanker Aegean Sea.

Keywords: Weighted power means · Success Likelihood Index · Aegean
Sea

1 Introduction

From the World War II, the reliability analysis techniques have been widely used,
in order to reduce the incidence rate of severe accidents in many circumstances.
Initially, these techniques were focused on technical aspects of the design and qual-
ity of the machinery. However, some investigations proved that human error was
the most common cause of failures in a lot of situations (see, for instance, [1,4,18]).
Thus, for instance, IEEE published a report about human reliability in 1972. From
then, a large number of studies about the incorporation of human factors in risk
assessment have been developed (see, for instance, [2,8,9,11,13,21]).

Among the proposed human reliability analysis methods, the Success Likeli-
hood Index Method (SLIM) [20] is one of the most widely used. This method was
derived from multi-attribute utility theory. It was initially investigated by the U.S.
Nuclear Regulatory Commission in 80 ages, as a method for using expert judg-
ments to estimate human error probabilities in nuclear power plants [10]. From
it, the Success Likelihood Index Methodology was developed and evaluated by
Brookhaven National Laboratory, as a method of obtaining human reliability esti-
mates from expert judges. A detailed description of this method can be seen in [6].
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It is proven to be a simple an flexible decision-analytic approach [14,15] and it
has been studied, compared and combined with other approaches in several more
recent papers (see, for instance, [5,19]). It is based on the idea that the success
likelihood of a task depends on the combined effects of a set of performance shap-
ing factors. The way to do this combination of the effects is given by a weighted
arithmetic mean. However, there are a lot of different ways of aggregating these
effects by means of different aggregation functions [3].

Thus, our main purpose is to analyze the behavior of these indexes in accor-
dance to the aggregation function considered for combining the different effects.
In particular, we have focused in some specific functions such as the power means
family.

This work is organized as follows. In the following section we recall some
definitions and results concerning aggregation functions and we are going to
introduce the SLIM. Section 3 is devoted to analyze the differences between the
obtained output for the real data of a famous accident. In Sect. 4 we continue the
study of the influence of the parameters in a more general environment. Finally,
in Sect. 5 we provide some conclusions and open problems.

2 Preliminaries

2.1 SLIM

The steps of SLIM described in [6], following the description of the method given
at [10], are:

1. Constitution of the group of experts and first approach to the case analysis.
2. Definition and selection of the performance shaping factors for the case of

analysis.
3. Assignment of weighting factor for each performance shaping factor.
4. Scoring of each performance shaping factor.
5. Calculating of the success likelihood index.
6. Conversion of the index in human error probability.

According to [19], the first step establishes criteria to choose experts and give
the experts and in-depth description to ensure that all experts share a common
understanding of the given task. Then they identify the relevant performance
shaping factors (PSF) to the event of interest. Any of them is denoted by PSFi

for i = 1, . . . , n. Then, a weight (wi with 0 ≤ wi ≤ 1) is associated to any PSFi.
Once this is done, it is necessary to score each PSFi for each task Tj , with
j = 1, . . . ,m with a value from 1 to 9, depending on the PSF characteristics.

Usually, this information is summarized by means of a table, which describes
the tasks and the PSFs with their weights and scores. Thus, it is easier to obtain
the Success Likelihood Index (SLI) associated to any task j, which is usually
defined by means of the weighted arithmetic mean as follows:

SLIj =
n∑

i=1

wiTij (1)
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for any j ∈ {1, 2, . . . ,m, where Tij is the scale rating of task j on the i-th PSF.
The conversion of the SLI in human error probability (HEP) is giving by

means of the following formula:

LogP = a · SLI + b (2)

where P represents the probability and a and b are values such that they are
calculated from the SLIes of two tasks where the HEP is already known.

In order to better understand the method we are going to consider it for a
famous and unfortunate accident.

Example 1. Aegean Sea was a double-bottom Greek-flagged oil tanker. On
December 3, 1992, it was en route to Repsol refinery in A Coruña, Spain when
it suffered an accident off the Galician coast. This accident caused the cargo of
crude oil to be spilled. Then, it affected the coast resulting in ecosystem damage,
as well as damage to the fishing and tourist industries in the region. As the ship
had successfully passed all required tests and revisions, a detailed study of the
causes of the accident was given by the Spanish authorities.

Table 1 shows the human performance factors and their associated weights,
which can vary from 0% to 100% and the sum of all of them has to be 100%.
In order to apply the SLIM, it is also necessary to describe the tasks and their
associated scores with respect to any PSF. This information is described in
Table 2. Both tables are based on specialist opinion in this accident [12].

After defining the weight for any PSF and their corresponding scores for any
task, it is possible to obtain one SLI per task by applying (1). Thus, for example,

SLI1 =
9∑

i=1

wiTi1 = (0.1509)3 + (0.1132)2 + · · · + (0.0566)2 = 3.45 (3)

Analogously, we can obtain the associated indexes for the remaining tasks.
They are shown in Table 3.

When we consider the average mark of experts, most people would use arith-
metic mean, or perhaps its weighted version in order to associate the opinions
with the degree of importance. While this procedure is certainly the simplest and
most intuitive averaging function, its use is often not warranted: for instance, in
some Olympic sports the judges’ marks are trimmed before averaging them.

The study of average (also called means) is very rich in both mathematical
and practical sense. Arithmetic means and power means are classic functions for
combining several values into a single value. This process is called aggregation.
At the next subsection we will present the most relevant properties using formal
definitions, following the notation of [3].

2.2 Averaging Functions

Let us briefly recall the main definition related to aggregating functions and, in
particular, averaging functions. A detailed studied about these kind of functions
can be found in [3,7].
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Table 1. PSF values

PSFs wi (%)

Meteorology (PSF1) 15.09

Methods (PSF2) 11.32

Overconfidence (PSF3) 11.32

Risk perception (PSF4) 13.21

DUS

Fatigue (PSF5) 7.55

Stress (PSF6) 9.43

Communication

Pilot (PSF7) 18.87

Company (PSF8) 7.55

Routine (PSF9) 5.66

Table 2. Scores for the tasks

PSFs Tasks (Tj)

Finished maneuver Lack of reaction Deficient communication Absence of pilot

PSF1 3 4 7 7

PSF2 2 4 5 6

PSF3 3 6 5 2

PSF4 3 5 5 5

PSF5 5 2 8 7

PSF6 4 2 6 7

PSF7 3 5 2 1

PSF8 8 8 2 7

PSF9 2 5 4 2

Table 3. SLIM table

Tasks (Tj)

Finished maneuver Lack of reaction Deficient communication Absence of pilot

SLI 3.45 4.57 4.77 4.64

Definition 1. An aggregation function is a function of n > 1 arguments that
maps the (n-dimensional) cube onto an interval I = [a, b], f : In → I, with the
properties

1. f(a, a, . . . , a) = a and f(b, b, . . . , b) = b for any a, b ∈ I.
2. x ≤ y implies f(x) ≤ f(y) for all x, y ∈ I

n.
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As we mentioned, typically in SLIM I = [1, 9]. In this methodology, the way
to combine the different scores is by means of the weighted arithmetic mean.
This is a particular case of aggregation function, the averaging functions.

Definition 2. An aggregation function f has averaging behavior if for every
x ∈ I

n it is bounded by

min(x) ≤ f(x) ≤ max(x) (4)

Definition 3. An aggregation function f is said to be idempotent if for every
t ∈ I the output for input (t, t, . . . , t) is f(t, t, . . . , t) = t.

Because of monotonicity of f , idempotency is equivalent to averaging behav-
ior.

An example of averaging function is the weighted arithmetic mean, which is
the function

Mw(x) =
n∑

i=1

wixi (5)

where w = (w1, . . . , wn) is a weighting vector, that is, wi ∈ [0, 1] for any i =
1, 2, . . . , n and

∑n
i=1 wi = 1.

The weighted arithmetic mean has a lot of interesting properties: it is an
additive function, it fulfills the Jensen inequality, it is a kernel aggregation func-
tion, it is a shift-invariant function, etc. However, it is not the only interesting
averaging function. Thus, given a weighting vector w,

– the weighted geometric mean is the function

Gw(x) =
n∏

i=1

xwi
i ,∀x ∈ I

n (6)

– the weighted harmonic mean is the function

Hw(x) =

(
n∑

i=1

wi

xi

)−1

,∀x ∈ I
n (7)

We have that
Hw(x) ≤ Gw(x) ≤ Mw(x), (8)

for any vector x ∈ I
n and weighting vector w and the equality is obtained if and

only if x = (t, t, . . . , t).
A further generalization of the arithmetic mean is a family called power

means (also called root-power means), defined by

Definition 4. Given a weighting vector w and r ∈ R, the weighted power mean
is the function

Mw,[r](x) =
{

(
∑n

i=1 wix
r
i )

1/r if r �= 0
Gw(x) if r = 0

(9)
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The family of weighted power means is augmented to r = −∞ and r = ∞
by using the limiting cases

Mw,[−∞](x) = lim
r→−∞ Mw,[r](x) = min(x), (10)

Mw,[∞](x) = lim
r→∞ Mw,[r](x) = max(x). (11)

However min and max are not themselves power means. The limiting case of the
weighted geometric mean is also obtained as

Mw,[0](x) = lim
r→0

Mw,[r](x) = Gw(x). (12)

Of course, the family of weighted power means includes the following special
cases Mw,[1](x) = Mw(x) and Mw,[−1](x) = Hw(x). Another special case is the
weighted quadratic mean

Mw,[2](x) = Qw(x) =

√√√√
n∑

i=1

wix2
i . (13)

The main properties of weighted power mean are:

– The weighted power mean Mw,[r] is a strictly increasing aggregation function,
if all wi > 0 and 0 < r < ∞;

– Mw,[r] is a continuous function on [0,∞)n;
– Mw,[r] is an asymmetric idempotent function (symmetric if all wi = 1

n );
– Mw,[r] is a homogeneous function, i.e., Mw,[r](λx) = λMw,[r](x) for all x ∈

[0,∞)n and for all λ ∈ R;
– Weighted power means are comparable: Mw,[r](x) ≤ Mw,[s](x) if r ≤ s; this

implies the geometric-arithmetic mean inequality;
– Mw,[r] has absorbing element (always a = 0) if and only if r ≤ 0 (and all

weights wi are positive);
– Mw,[r] does not have neutral element.

3 Generalized SLIM Case Study Application

Applying this classic root-power means to the experts’ mark of the Aegean Sea
accident, we observe the results given at Table 4. For r = 1, we obtain the
weighted arithmetic mean, Mw, which is the default formula used by SLIM.

Graphically, this information is represented in Fig. 1.
We can see as depending on the selected averaging function, the importance

of the human errors vary considerably. For instance, for the case of the weighted
geometric mean (r = 0), the most relevant error is “Deficient communication”,
but for the weighted quadratic mean (r = 2), this critical error changes to
“Absence of pilot”. We can also notice that this error, the “Absence of pilot”, is
the one which is more affected by the choice of the aggregation function.
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Table 4. The SLI for each task varies depending on the power means

r Tasks

Finished maneuver Lack of reaction Deficient communication Absence of pilot

Minimum 2 2 2 1

−10.00 2.37 2.39 2.29 1.18

−9.00 2.41 2.44 2.32 1.20

−8.00 2.46 2.49 2.36 1.23

−7.00 2.51 2.57 2.42 1.27

−6.00 2.57 2.67 2.49 1.32

−5.00 2.64 2.81 2.60 1.39

−4.00 2.72 3.00 2.75 1.50

−3.00 2.81 3.25 2.98 1.68

−2.00 2.92 3.57 3.32 2.01

Hw −1.00 3.05 3.93 3.78 2.66

Gw 0.00 3.22 4.27 4.30 3.68

Mw 1.00 3.45 4.57 4.77 4.64

Qw 2.00 3.77 4.82 5.15 5.26

3.00 4.15 5.05 5.44 5.63

4.00 4.56 5.25 5.67 5.87

5.00 4.94 5.45 5.86 6.03

6.00 5.29 5.64 6.02 6.15

7.00 5.57 5.81 6.16 6.24

8.00 5.81 5.97 6.29 6.31

9.00 6.02 6.12 6.39 6.38

10.00 6.18 6.26 6.49 6.43

Maximum 8 8 8 7
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Fig. 1. Different power means provide different SLI for each task.
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4 Generalized SLI Method for the Weighted Power Mean

As we could see for the previous case study, there are important difference in
accordance to the chosen weighted power mean. We could think these differences
are caused by the differences among the different weights and their relationship
with the different scores. But this is not the real reason, as we will see along this
section.

Proposition 1. Let w = (w1, w2, . . . , wn) be a weighting vector and let
(T1j , T2j , . . . , Tnj) be the vector in ([1, 9] ∩ Z)n representing the scores for the
task Tj. If Tij = Tkj for any i, k ∈ {1, 2, . . . , n} then the success likelihood index
for this task based on any weighted power mean is equal to T1j.

Proof. Since (9), we are going to consider two cases, depending on the values
of r. Moreover, we are going to denote by SLI

[r]
j the SLI associated to the

task j with respect to the weighted power mean Mw,[r]. Thus, for any task j,
we have that if r = 0, SLI

[0]
j = Gw(Tj). Thus, if we apply (8) we have that

SLI
[0]
j ≤ Mw(Tj) =

n∑

i=1

wiTij =
n∑

i=1

wiT1j = T1j

n∑

i=1

wi = T1j and also that

SLI
[0]
j ≥ Hw(Tj) =

(
n∑

i=1

wi

Tij

)−1

=

(
1

T1j

n∑

i=1

wi

)−1

= T1j .

Otherwise, if r �= 0, we have that SLI
[r]
j = Mw,[r](Tj) =

(
n∑

i=1

wiT
r
ij

)1/r

=

(
T r
1j

n∑

i=1

wi

)1/r

= T1j . �

Thus, if the scores are constant, the SLI coincides with them for any task
and it is the same for any value of r. In order to analyse the behavior for the
same mean with a different variability, we are going to consider three different
cases: when there is no with no variability in the scores, when an intermediate
variability is present, and when the maximum variability is obtained with the
same mean. A statistical study of this outputs will help to decide which weighted
power mean represents the best choice for a given problem. The original idea of
this method of comparison may be found in [17].

Thus, we have considered the case n = 100 with three different tasks,
which are shown in Table 5. In this table we have also considered three
different kind of weighting vectors: w = (1/100, 1/100, . . . , 1/100), w′ =
(100/5050, 99/5050, . . . , 1/5050) and w′′ = (1/5050, 2/5050, . . . , 100/5050).

As we could see previously, the SLIes for any task depend on the considered
weighted power mean used to calculate them. The values for these indexes for
any r ∈ [−100, 100] are given in Figs. 2, 3 and 4, for the weighting vectors w, w′

and w′′, respectively.
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Table 5. PSF values, weights, tasks and scores for the experimental study

PSFs wi (%) w′
i (%) w′′

i (%) Variability

No Medium High

Tasks

T1 T2 T3

PSF1 1 1000/505 10/505 5 3 1

PSF2 1 990/505 20/505 5 3 1

...
...

...
...

...
...

...

PSF50 1 510/505 500/505 5 3 1

PSF51 1 500/505 510/505 5 7 9

PSF52 1 490/505 520/505 5 7 9

...
...

...
...

...
...

...

PSF100 1 10/505 1000/505 5 7 9
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Fig. 2. SLI versus r-power mean for the weighting vector w

We can see as, in all the studied cases, if the variability is increasing, the
influence of the value of r is greater. Moreover, we can see the differences are
significant.

Moreover, if we consider these data as a sample of possible scores under dif-
ferent situations, we can apply the Wilcoxon test for any pair of tasks. Then, we
have found evidences of significant differences (p-value < 0.05) for any weighting
vector, as it is detailed in Table 6.

Thus, it is clear that the choice of the power mean is an essential step for
determining the values of the SLIes and therefore it should be done after a
detailed study about the most appropriate for each situation.
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Fig. 3. SLI versus r-power mean for the weighting vector w′
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Fig. 4. SLI versus r-power mean for the weighting vector w′′

Table 6. P-values for Wilcoxon tests

T1 − T2 T1 − T3 T2 − T3

w 5.3 · 10−4 5.6 · 10−8 1.0 · 10−9

w′ 2.2 · 10−8 2.1 · 10−9 6.4 · 10−10

w′′ 4.5 · 10−3 5.0 · 10−3 1.4 · 10−9
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5 Conclusion

In this paper we have analyzed the behavior of the SLIes produced by a family
of averaging function, the power mean. After the study of a real case, we have
simulated different conditions, to illustrate how the outputs cannot be considered
statistically equivalent and therefore, the choice of the parameter value r becomes
a critical step in the use of the power means as a tool for the success likelihood
index method.

Thus, this work extends the SLIM for a wider family of averaging function,
instead of just for the weighted arithmetic mean, in order to be able to consider
the most appropriate function based on its specific properties.

This study can be enlarged by analyzing the behavior of other type of aver-
aging functions, in a similar way as the done in [16] and also to study if the
choice of a different aggregation function could make sense in some scenarios.
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Abstract. In the paper is extended two dimensional intercriteria analy-
sis over intuitionistic fuzzy data to three dimensional and will be dis-
cussed possibility for application of this analysis as an illustration of the
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1 Introduction

The concept of intercriteria analysis was introduced in [4,7]. The intercriteria
analysis is based on the apparatus of the Index Matrices (IMs, [4]) and of Intu-
itionistic Fuzzy Sets (IFSs, [3]).

The paper is a continuation of the papers [1,6,7,9–13,16] and we for the first
time discuss the possibility, the data, that will be processed by three dimensional
intercriteria analysis, to be intuitionistic fuzzy pairs (IFP, see [8]) or more general
intuitionistic fuzzy data, saved in 3D-intuitionistic fuzzy index matrix (3D-IFIM,
[19]).

2 Basic Definitions

2.1 Short Notes on Intuitionistic Fuzzy Pairs

Let us started with some remarks on Intuitionistic Fuzzy Logic from [3,8]. The
IFP is an object with the form 〈a, b〉, where a, b ∈ [0, 1] and a + b ≤ 1, that

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7 40
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is used as an evaluation of some object or process. Its components (a and b)
are interpreted as degrees of membership and non-membership, or degrees of
validity and non-validity, or degree of correctness and non-correctness, etc. Let
us have two IFPs x = 〈a, b〉 and y = 〈c, d〉.

Let us have two IFPs x = 〈a, b〉 and y = 〈c, d〉. In [8] were defined following
operations:

¬x = 〈b, a〉
x&y = 〈min(a, c),max(b, d)〉

x ∨ y = 〈max(a, c)),min(b, d)〉
x + y = 〈a + c − a.c, b.d〉
x.y = 〈a.c, b + d − b.d〉

x@y = 〈a+c
2 , b+d

2 〉.
and relations

x < y iff a < c and b > d
x > y iff a > c and b < d
x ≥ y iff a ≥ c and b ≤ d
x ≤ y iff a ≤ c and b ≥ d
x = y iff a = c and b = d.

2.2 Short Remarks on Index Matrices

The concept of Index Matrix (IM) was discussed in a series of papers and col-
lected in [4].

Definition of 3D-Extended Index Matrix (3D-EIM). Let X be a fixed
set of objects (real numbers, numbers 0 or 1, logical variables, propositions or
predicates, intuitionistic fuzzy pairs (IFPs), function and etc.). Let I be a fixed
sets of indices and

In = {〈i1, i2, ..., in〉|(∀j : 1 ≤ j ≤ n)(ij ∈ I)} and I∗ = ∪
1≤n≤∞

In.

By 3D-extended IM (3D-EIM) [4,17], with index sets K,L and H (K,L,H
⊂ I∗) and elements from the set X we denote the object :

[K,L,H, {aki,lj ,hg
}] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hg l1 . . . lj . . . ln

k1 ak1,l1,hg

... ak1,lj ,hg
. . . ak1,ln,hg

...
... . . .

... . . .
...

ki aki,l1,hg
. . . aki,lj ,hg

. . . aki,ln,hg

...
... . . .

... . . .
...

km akm,l1,hg
. . . akm,lj ,hg

. . . akm,ln,hg

|hg ∈ H

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where K = {k1, k2, . . . , km}, L = {l1, l2, . . . , ln} ,H = {h1, h2, . . . , hf}, and for
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ g ≤ f : aki,lj ,hg

∈ X .
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In [4,17,19], different operations, relations and operators are defined over
IMs. For the needs of the present research, we will introduce the definitions of
some of them. With 3D−EIMR we denote the set of all 3D-EIMs with elements
real numbers, with 3D −EIM{0,1} – the set of all (0, 1)-3D-EIMs with elements
0 or 1, with 3D − EIMP – the set of all 3D-EIMs with elements – predicates
and , with 3D − EIMIFP – the set of all 3D-EIMs with elements – IFPs.

We can define the evaluation function V that juxtaposes to this 3D-EIM a
new one with elements – IFPs 〈μ, ν〉, where μ, ν, μ + ν ∈ [0, 1]. The new IM,
called Intuitionistic Fuzzy IM (IFIM), contains the evaluations of the variables,
propositions, etc., i.e., it has the form

V ([K,L,H, {aki,lj ,hg
}]) = [K,L,H, {V (aki,lj ,hg

)}]
= [K,L,H, {〈μki,lj ,hg

, νki,lj ,hg
〉}]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

hg ∈ H l1 . . . ln
k1 〈μk1,l1,hg

, νk1,l1,hg
〉 . . . 〈μk1,ln,hg

, νk1,ln,hg
〉

...
... . . .

...
ki 〈μki,l1,hg

, νki,l1,hg
〉 . . . 〈μki,ln,hg

, νki,ln,hg
〉

...
... . . .

...
km 〈μkm,l1,hg

, νkm,l1,hg
〉 . . . 〈μkm,ln,hg

, νkm,ln,hg
〉

|hg ∈ H

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where for every 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ g ≤ f : V (aki,lj ,hg
) = 〈μki,lj ,hg

,
νki,lj ,hg

〉 and 0 ≤ μki,lj ,hg
, νki,lj ,hg

, μki,lj ,hg
+ νki,lj ,hg

≤ 1.

Aggregation Operations over 3D-EIM. Let the 3D-EIM A = [K,L,H,
{aki,lj ,hg

}] be given, where K,L,H ⊂ I∗, and let k0 /∈ K, l0 /∈ L, h0 /∈ H. Let
◦ : X × X −→ X and ∗ : X × X −→ X .

Let

◦ ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{“ + ”, “ × ”, “average”, “max”, “min”}, if A ∈ 3D − EIMR,

{“max”, “min”}, if A ∈ 3D − EIM{0,1}

{“ ∧ ”, “ ∨ ”}, if A ∈ 3D − EIMP
or A ∈ 3D − EIMIFP

In the case of 3D−EIMIFP , in aggregation operations can participate aggre-
gating pair operations (◦, ∗) whose elements are applied respectively on the first
and second element of IFP, where

(◦, ∗) ∈ {(min,max)(min, average), (min,min), (average, average),
(average,min), (max,min)}.

Therefore when A ∈ 3D − EIMIFP , operations “(◦, ∗)” are defined for the
intuitionistic fuzzy pairs 〈a, b〉 and 〈c, d〉, elements of A by

〈a, b〉(◦, ∗)〈c, d〉 = 〈◦(a, c), ∗(b, d)〉.
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In all other cases, we use only one operation (◦).
In [18] were defined aggregation operations. We will recall the following def-

inition:
(◦) − αH-aggregation

α(H,◦)(A, h0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lj h0

k1 ◦
1≤g≤f

ak1,l1,hg

k2 ◦
1≤g≤f

ak2,l2,hg

...
...

km ◦
1≤g≤f

akm,ln,hg

| lj ∈ L

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

l1 l2 . . . ln

k1 ◦
1≤g≤f

ak1,l1,hg
◦

1≤g≤f
ak1,l2,hg

. . . ◦
1≤g≤f

ak1,ln,hg

k2 ◦
1≤g≤f

ak2,l1,hg
◦

1≤g≤f
ak2,l2,hg

. . . ◦
1≤g≤f

ak2,ln,hg

...
...

...
. . .

...
km ◦

1≤g≤f
akm,l1,hg

◦
1≤g≤f

akm,l2,hg
. . . ◦

1≤g≤f
akm,ln,hg

.

3 Three Dimensional Intercriteria Analysis Applied over
Intuitionistic Fuzzy Data

In this section we extended two-dimensional intercriteria analysis from [12]
applied over intuitionistic fuzzy data to three dimensional.

Let us have the set of objects O = {O1, O2, ..., On} that must be evaluated
by criteria from the set C = {C1, C2, ..., Cm} in the index hg ∈ H for 1 ≤ g ≤ f ,
where H is the third fixed scale and hg is its element. For example, index set H
can be interpreted as a time-scale and its elements hg – as time-moments.

Let us have an 3D-EIM

A =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hg O1 · · · Oi · · · Oj · · · On

C1 aC1,O1,hg
· · · aC1,Oi,hg

· · · aC1,Oj ,hg
· · · aC1,On,hg

...
...

. . .
...

. . .
...

. . .
...

Ck aCk,O1,hg
· · · aCk,Oi,hg

· · · aCk,Oj ,hg
· · · aCk,On,hg

...
...

. . .
...

. . .
...

. . .
...

Cl aCl,O1,hg
· · · aCl,Oi,hg

· · · aCl,Oj ,hg
· · · aCl,On,hg

...
...

. . .
...

. . .
...

. . .
...

Cm aCm,O1,hg
· · · aCm,Oi,hg

· · · aCm,Oj ,hg
· · · aCm,On,hg

|hg ∈ H

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where for every p, q (1 ≤ p ≤ m, 1 ≤ q ≤ n):
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(1) Cp is a criterion, taking part in the evaluation,
(2) Oq is an object, being evaluated.
(3) aCp,Oq,hg

is a variable, formula or aCp,Oq,hg
= 〈αCp,Oq,hg

, βCp,Oq,hg
〉 is an

IFP, that is comparable about relation R with the other a-objects, so that for
each i, j, k, g: R(aCk,Oi,hg

, aCk,Oj ,hg
) is defined. Let R be the dual relation

of R in the sense that if R is satisfied, then R is not satisfied and vice versa.
For example, if “R” is the relation “<”, then R is the relation “>”, and vice
versa.

For each index hg (1 ≤ g ≤ f) let Sμ
k,l,g be the number of cases in which

〈αCk,Oi,hg
, βCk,Oi,hg

〉 ≤ 〈αCk,Oj ,hg
, βCk,Oj ,hg

〉

and
〈αCl,Oi,hg

, βCl,Oi,hg
〉 ≤ 〈αCl,Oj ,hg

, βCl,Oj ,hg
〉,

or
〈αCk,Oi,hg

, βCk,Oi,hg
〉 ≥ 〈αCk,Oj ,hg

, βCk,Oj ,hg
〉

and
〈αCl,Oi,hg

, βCl,Oi,hg
〉 ≥ 〈αCl,Oj ,hg

, βCl,Oj ,hg
〉

are simultaneously satisfied.
Let Sν

k,l,g be the number of cases in which

〈αCk,Oi,hg
, βCk,Oi,hg

〉 ≥ 〈αCk,Oj ,hg
, βCk,Oj ,hg

〉

and
〈αCl,Oi,hg

, βCl,Oi,hg
〉 ≤ 〈αCl,Oj ,hg

, βCl,Oj ,hg
〉,

or
〈αCk,Oi,hg

, βCk,Oi,hg
〉 ≤ 〈αCk,Oj ,hg

, βCk,Oj ,hg
〉

and
〈αCl,Oi,hg

, βCl,Oi,hg
〉 ≥ 〈αCl,Oj ,hg

, βCl,Oj ,hg
〉

are simultaneously satisfied. We can see, that Sμ
k,l,g + Sν

k,l,g ≤ n(n−1)
2 for each g,

so that 1 ≤ g ≤ f.
Now, for every k, l, g, such that 1 ≤ k < l ≤ m, n ≥ 2 and g is fixed, we

define

μCk,Cl
= 2

Sμ
k,l

n(n − 1)
, νCk,Cl

= 2
Sν

k,l

n(n − 1)
.

Hence,

μCk,Cl,hg
+ νCk,Cl,hg

= 2
Sμ

k,l,g

n(n − 1)
+ 2

Sν
k,l,g

n(n − 1)
≤ 1.

Therefore, 〈μCk,Cl,hg
, νCk,Cl,hg

〉 is an IFP.
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Now, we can construct the IM

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

hg C1 · · · Cm

C1 〈μC1,C1,hg
, νC1,C1,hg

〉 · · · 〈μC1,Cm,hg
, νC1,Cm,hg

〉
...

...
. . .

...
Cm 〈μCm,C1,hg

, νCm,C1,hg
〉 · · · 〈μCm,Cm,hg

, νCm,Cm,hg
〉

|hg ∈ H

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

that determines the degrees of correspondence between criteria C1, . . . , Cm.
Let apply aggregation operation to the 3D-IM R = [K,K,H, {aki,lj ,hg

}]
(K,H ⊂ I∗) and let h0 /∈ H. Let ◦ : X × X −→ X and ∗ : X × X −→ X .

Let
〈◦, ∗〉 ∈ {〈min,max〉, 〈max,min〉, 〈average, average〉}.

Follow [18] we used aggregation operations as follows:
(◦) − αH-aggregation

α(H,◦)(R, h0) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ki h0

k1 ◦
1≤g≤f

ak1,k1,hg

k2 ◦
1≤g≤f

ak2,k2,hg

...
...

km ◦
1≤g≤f

akm,km,hg

| ki ∈ K

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

k1 k2 . . . km

k1 ◦
1≤g≤f

ak1,k1,hg
◦

1≤g≤f
ak1,k2,hg

. . . ◦
1≤g≤f

ak1,km,hg

k2 ◦
1≤g≤f

ak2,l1,hg
◦

1≤g≤f
ak2,l2,hg

. . . ◦
1≤g≤f

ak2,km,hg

...
...

...
. . .

...
km ◦

1≤g≤f
akm,k1,hg

◦
1≤g≤f

akm,k2,hg
. . . ◦

1≤g≤f
akm,km,hg

.

Therefore, finally, R obtains the form

R =

hg C1 · · ·

C1 〈 ◦
1≤g≤f

μC1,C1,hg
, ∗
1≤g≤f

νC1,C1,hg
〉 · · ·

...
...

. . .

Cm 〈 ◦
1≤g≤f

μCm,C1,hg
, ∗
1≤g≤f

νCm,C1,hg
〉 · · ·
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· · · Cm

· · · 〈 ◦
1≤g≤f

μC1,Cm,hg
, ∗
1≤g≤f

νC1,Cm,hg
〉

. . .
...

· · · 〈 ◦
1≤g≤f

μCm,Cm,hg
, ∗
1≤g≤f

νCm,Cm,hg
〉

,

where 〈◦, ∗〉 ∈ {〈min,max〉, 〈max,min〉, 〈average, average〉}.
If the pair 〈◦, ∗〉 = 〈min,max〉 is used in this aggregation operation, then

we obtain pessimistic forecast of intercriteria correlation coefficient values. With
pair 〈◦, ∗〉 = 〈max,min〉, then optimistic evaluations are acquired. With pair
〈◦, ∗〉 = 〈average, average〉, we obtain the averaged estimate of the intercriteria
correlation coefficients.

4 Conclusion

In the presented research, a three dimensional intercriteria analysis over intu-
itionistic fuzzy data is discussed. Intercriteria Analysis can be applied over intu-
itionistic fuzzy data to determine possible correlations between the pairs of cri-
teria. In a next research of the authors, the above described constructions will
be extend to the case of 3-dimensional multilayer IMs and will be applied to
practical data.

In future, follow [14,15] for the Kendall rank correlation coefficient between
two IFSs, we will present another approach to 3-dimensional intercriteria analysis
applied over intuitionistic fuzzy data.
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Abstract. We develop an approach to the concept of bornology in the
framework of many-valued mathematical structures. It is based on the
introduced concept of an M -bornology on an L-valued set (X,E), or an
LM -bornology for short; here L is an iccl-monoid, M is a completely
distributive lattice and E : X × X → L is an L-valued equality on the
set X. We develop the basics of the theory of LM -bornological spaces
and initiate the study of the category of LM -bornological spaces and
appropriately defined bounded “mappings” of such spaces.

Keywords: Bornology · L-valued set · Bounded L-fuzzy set · Fuzzy
function · LM-valued bornology

1 Introduction and Motivation

1.1 Bornologies and Bornological Spaces

In order to apply the conception of boundedness to the case of a general topo-
logical space, Hu S.T. introduced the notions of a bornology and a bornological
space [10,11]. A bornology on a set X is a family B ⊆ 2X such that

(1B)
⋃{U | U ∈ B} = X;

(2B) if U ⊆ V and V ∈ B then U ∈ B;
(3B) if U, V ∈ B then U ∪ V ∈ B.

The pair (X,B) is called a bornological space and the sets belonging to B are
called bounded. Given bornological spaces (X,BX) and (Y,BY ), a mapping f :
(X,BX) → (Y,BY ) is called bounded if f(A) ∈ BY for every A ∈ BX .

Remark. In the original definition of bornology instead of axioms (1B) the
following axiom [(1′B)] ∀x ∈ X ⇒ {x} ∈ B was used. It is easy to see that
under assumption of axiom (2B), axiom (1B) is equivalent to axiom (1′B).

Important examples of bornological spaces (X,B) are: a metric space and
its bounded subsets; a topological space and its relatively compact subsets; a
uniform space and its totally bounded subsets.

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
DOI 10.1007/978-3-319-66827-7 41
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At present the theory of bornological spaces is developed in various directions.
Most of the research involving bornologies is done in the context of topological
linear spaces and topological algebras, see e.g. [8,22], that is in cases when the
underlying set, besides topology, is endowed with an algebraic structure. How-
ever, a notable research work, is being done in the field of bornologies without
referring to the algebraic structure of the underlying set. General bornological
spaces play a key role in research of convergence in hyperspaces [2,3,15], in
optimization theory [5] and in study of topologies on function spaces [4,17].

The principal aim of this work is to make a contribution to bornological theo-
ries in “Fuzzy Mathematics”, that is in the context of many-valued mathematical
structures. At present there are only few works dealing with this problem, see
[1,18,24,25]. It is quite different from the situation in “Fuzzy Topology”, which is
a very well developed area of theoretical mathematics and besides has important
applications to other fields of mathematics, (see e.g. [13,16], etc.).

1.2 L-bornologies or Bornologies on L-power-sets

An L-bornology on a set X, where L is a complete infinitely distributive lattice,
was defined in [1] as a subset B of the family LX such that

(1LB)
∨{B | B ∈ B} = 1LX ;

(2LB) if A ≤ B and B ∈ B then A ∈ B;
(3LB) if A,B ∈ B then A ∨ B ∈ B.

The pair (X,B) is called an L-bornological space.
In [1] also a stronger version of the axiom (1LB) was considered:

(1′LB) ∀x ∈ X ⇒ χ{x} ∈ X, where χ{x} is the characteristic function of {x}.
The corresponding structure B is called a strong L-bornology. In case when 1L

is an isolated element in L, L-bornology and strong L-bornology are equivalent.

1.3 M-valued Bornologies on Powersets

An alternative approach to the problem of fuzzification of the concept of bornol-
ogy was presented in [24,25]. An M -valued bornology on a set X where M is a
complete frame, is a mapping B : 2X → M such that

(1MB) ∀x ∈ X ⇒ B({x}) = 1M where 1M is the top element of M ;
(2MB) if A ⊆ B then B(A) ≥ B(B);
(3MB) for every A,B ⊆ X it holds B(A ∪ B) ≥ B(A) ∧ B(B).

The pair (X,B) is called an M -valued bornological space.
In this paper we consider the concept of an M -valued bornology on the L-
power-set of a set X defined as a mapping B : LX → M satisfying conditions
analogous to the properties (1MB) – (3MB). Thus this approach is the “roof”
for the approaches sketched above. However, having an intention to develop our
approach in the sufficiently general framework, we will assume that, instead of
an ordinary set X, we deal with a many-valued set, that is a set endowed with a
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many-valued equality. As an additional incentive to develop our approach in the
framework of many-valued sets we consider the role of many-valued sets in the
theory of fuzzy topologies: just in this framework many interesting results and
examples are obtained, in particular applications in other fields see e.g. [13].

The paper has the following structure. After recalling in Sect. 2 basic concepts
needed in the paper, in Sect. 3, we introduce the concept of an M -bornology on
an L-valued set, or an LM -bornology for short, and discuss some properties of
LM -bornologies. Our next aim is to develop, what can be called, the categorical
basics of the theory of LM -valued bornological spaces. This problem is being
considered in Sect. 5. However, to approach this problem, we have first to dis-
tinguish the class of potential morphisms for this category. Our LM -bornologies
are defined on L-valued sets and just fuzzy functions are used as “natural”
morphisms between L-valued sets. Therefore, before introducing the category of
LM -bornological spaces and bounded fuzzy functions in Sect. 5, we present a
brief introduction in the theory of fuzzy functions in Sect. 4.

2 Prerequisites: The Context of the Work

2.1 Lattices and Iccl-Monoids

In this work, two objects, L and M, will play the fundamental role. By L =
(L,≤L,∧L,∨L) we denote a complete lattice that is a lattice in which arbitrary
suprema (joins) and infima (meets) exist. In particular, the top 1L and the
bottom 0L elements in L exist and 0L �= 1L. A lattice (L,≤L,∧L,∨L) is called
infinitely distributive or a frame if ∧ distributes over arbitrary joins:
α∧L (

∨
iβi) =

∨
i (α ∧L βi) ∀α ∈ L, ∀{βi : i ∈ I} ⊆ L.

In the sequel we usually omit the subscript L in notation of ≤,∧,∨.
By an integral commutative complete lattice monoid or iccl-monoid for short,

following [12], we call a tuple (L,≤,∧,∨, ∗) where (L,≤,∧,∨) is a complete
lattice and (L, ∗) is a commutative associative monoid such that

(1cl) ∗ is monotone: α ≤ β =⇒ α ∗ γ ≤ β ∗ γ for all α, β, γ ∈ L;
(2cl) ∗ distributes over arbitrary joins:

α ∗ (∨
i∈I βi

)
=

∨
i∈I(α ∗ βi) ∀α ∈ L, and ∀{βi | i ∈ I} ⊆ L;

(3cl) α ∗ 1L = α ∀α ∈ L.

In an iccl-monoid a further binary operation �→, residuation, is defined:
α �→ β =

∨{λ ∈ L | λ ∗ α ≤ β} ∀α, β ∈ L. Residuation is connected with
operation ∗ by Galois connection, see [6]: α ∗ β ≤ γ ⇐⇒ α ≤ (β �→ γ).

By M we denote a complete completely distributive lattice (M,≤M ,∧M ,∨M )
whose bottom and top elements are 0M and 1M respectively. Actually we use not
the original definition of complete distributivity, see e.g. [6, Definition I-2-8], but
its characterization given by G.N. Raney [21]. Namely, given a complete lattice
M and β, α ∈ M following [21], see also [6, Excercise IV-3-31], we introduce the
so called “wedge below” relation � on M :
β � α ⇐⇒ (if K ⊆ M and α ≤ ∨

K then ∃γ ∈ K, β ≤ γ) .
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As shown by G.N. Raney [21] a lattice M is completely distributive if and
only if relation � has approximation property, that is α =

∨{β ∈ M | β �
α} for every α ∈ M. Moreover, relation � has the following properties [6,21]:

(� 1) β � α implies β ≤ α;
(� 2) γ ≤ β � α ≤ δ implies γ � δ;
(� 3) β � α implies that there exists γ ∈ L such that β � γ � α.

Let M0 = {α ∈ M |α � 1M}. Obviously 1M ∈ M0 iff 1M is not isolated in M ,
that is 1M �= ∨{α|α � 1M}.

2.2 L-relations, L-valued Equalities and L-valued Sets

Given sets X,Y and an iccl-monoid L, by an L-relation between X and Y we
call a mapping R : X × Y → L. In case X = Y , an L-relation E : X × X → L
is called an L-valued equality if it is reflexive, that is E(x, x) = 1L for every
x ∈ X; symmetric, that is E(x, y) = E(y, x) for all x, y ∈ X; transitive, that is
E(x, y)∗E(y, z) ≤ E(x, z) for all x, y, z ∈ X. A pair (X,E), where E : X×X → L
is an L-valued equality on X, is called an L-valued, or a many-valued, set.1

A fuzzy set A in an L-valued set (X,E) is called extensional [12,14] if
A(x) ∗ E(x, x′) ≤ A(x′) ∀x, x′ ∈ X. The smallest extensional fuzzy set e(A)
in (X,E) that is larger than A or equal to A (A ≤ e(A)) is called the
extensional hull of A. Explicitly the extensional hull of A can be defined by
e(A)(x) =

∨
x′∈X (E(x, x′) ∗ A(x′)) , (see e.g. [12,14]). In particular, identifying

an element x0 with the characteristic function χ{x0}, we get the extensional hull
of the point x0, sometimes called a fuzzy singleton: e(x0)(x) = E(x0, x).

3 M -bornologies on L-valued Sets

3.1 LM-bornologies: Basic Definitions

Definition 1. By an M -bornology on the L-valued set (X,E), or just an LM -
bornology on (X,E) for short, we call a mapping B : LX → M satisfying the
following conditions:

(1LMB) ∀ α ∈ M0 ∃U ⊆ LX such that
∨
U = 1L and B(U) ≥ α ∀U ∈ U;

(2LMB) A ≤ B ⇒ B(A) ≥ B(B) ∀ A,B ∈ LX ;
(3LMB) B(A ∨ B) ≥ B(A) ∧ B(B) ∀ A,B ∈ LX ;
(4LMB) B(e(A)) = B(A).

The triple (X,E,B) is called an LM -bornological space.

Remark (1) The value B(A) is interpreted as the degree of boundedness of
a fuzzy set A ∈ LX in the LM -bornology B.
1 The concepts called here an L-relation and L-valued equality under different names

and with different degrees of generality appear in many papers, see e.g. [26,27], etc.
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(2) The axioms (2LMB) and (3LMB) together are equivalent to the axiom
(3∧LMB) B(A ∨ B) = B(A) ∧ B(B) for all A,B ∈ LX .
However, we prefer to split axiom (3∧LMB) into two separate axioms.

(3) In case when the relation E is crisp, condition (4LMB) is trivial. In particu-
lar, if besides M=2 is the two-element lattice, then our definition reduces to
the definition of an L-bornology considered in Subsection 1.2. On the other
hand, if L =2 and E is still crisp, then we come to the definition of an
M -valued bornology considered in Subsection 1.3. Finally, in case if both
lattices are two-element, L = M = 2, we obtain definition of a bornology,
Subsection 1.1.

An LM -bornology is called strong, if it satisfies a stronger version of (1LMB):
(1′LMB)

∨{U | U ∈ LX ,B(U) = 1M} = 1L. If 1M is an isolated element in M,
the concepts of an LM -bornology and a strong LM -bornology are equivalent.

3.2 Lattice of LM-bornologies

We introduce a partial order relation � on the set B(L,M,X,E) of all LM -
bornologies on an L-valued set (X,E) by setting for B1,B2 ∈ B(L,M,X,E):

B1 � B2 ⇐⇒ B1(A) ≥ B2(A) ∀A ∈ LX ,

and say in this case that B1 is coarser than B2, and B2 is finer than B1. We show
that the partially ordered set B(L,M,X,E �) is a complete lattice.

By setting B⊥(A) = 1M for all A ∈ LX we get the coarsest LM -bornology
on an L-valued set (X,EX), that is B⊥ is the bottom of B(L,M,X,E,�) . We
define the finest element in B� as follows. Let S ⊆ X and λ ∈ L. We define a
fuzzy set Sλ : X → L by setting Sλ(x) = λ if x ∈ S and Sλ(x) = 0L otherwise.
Then B� defined by

B�(A) =
{

1M if ∃S ⊆ X, |S| < ℵ0,∃λ ∈ L such that A ≤ e(Sλ);
0M otherwise.

is the finest LM -bornology on (X,E), that is the top of B(L,M,X,E,�).
Further, given a family {Bi : LX → M | i ∈ I} of LM -bornologies, we define

�i∈IBi =: B0 : LX → M by setting B0(A) =
∧

i∈I Bi(A).
One can easily see that the mapping �i∈IBi : LX → M thus obtained is an

LM -bornology on (X,E). Besides, from the construction it is clear that �i∈IBi

is the lower upper bound of the family Bi, i ∈ I, in B(L,M,X,E,�).
This already guarantees that the family B(L,M,X,E,�,�) of LM -

bornologies is a complete join semi-lattice. Notice however, that the pointwise
supremum

∨
i(Bi(A)) of the family {Bi : LX → M | i ∈ I} need not be an LM -

bornology (axiom (3LMB) may be violated). Therefore the infimum � of the
family {Bi : LX → M | i ∈ I} in the partially ordered set B(L,M,X,E,�,�)
is defined by �i∈IBi = � {B ∈ B(L,M,X,E,�,�) | B � Bi ∀i ∈ I} .
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3.3 Decomposition of an LM Bornology into Level L-bornologies

Given an LM -bornology B : LX → M on a set (X,E) and α ∈ M , let Bα = {A ∈
LX | B(A) ≥ α}. One can easily see that the family Bα is an L-bornology Sect. 1.2
on the set (X,E). Further, since in a completely distributive lattice every element
is the supremum of a family of wedge-below elements, the family of α-levels
{Bα | α ∈ M} of an M -bornology is lower semi continuous, in the sense that
Bα =

⋂{Bβ | β � α, β ∈ M} for every α ∈ M. In particular, B0M = LX since
0M � 0M . In the special case when M = [0, 1] is the unit interval with the “less”
ordering <, we have Bα =

⋂{Bβ | β < α} for every α > 0M , and B0M = LX .
Thus every LM -bornology can be characterized by its lower semi-continuous
decomposition into level L-bornologies.

3.4 Construction of an M-bornology from a Family of L-bornologies
on an L-valued Set

As opposite to the previous subsection, we present here a construction of an
LM -bornology from an indexed family of crisp L-bornologies.

Let M = (M,≤,∧,∨) be a complete completely distributive lattice, and let
K be a subset of M , such that K is �-approximative, that is λ = sup{α ∈ K |
α � λ} for each λ ∈ L.

Since M is completely distributive, we conclude that K satisfies the �-
interpolation property, that is α � β, α, β ∈ L,⇒ ∃γ ∈ K,α � γ � β. In
particular, one can take K = M or K = CP(M), where CP(M) is the set of all
coprimes of the lattice M . (Note that 0M need not belong to the family K since
0M is the supremum of the empty family.) Further, let a non-increasing family of
L-bornologies on an L-valued set X be given {Cα | α ∈ K} such that e(A) ∈ Cα

whenever A ∈ Cα. Given A ∈ LX we define B(A) =
∨{α ∈ K | A ∈ Cα}.

Proposition 1. The mapping B : LX → M defined above is an LM -bornology.

Proof. Since every Cα is an L-bornology, and hence
∨ Cα = LX , axiom (1LMB)

for B is ensured by the properties of the set K. To show the validity of axiom
(2LMB) let A ≤ B; A,B ∈ LX . Then B(A) =

∨{α ∈ K | A ∈ Cα} ≥ ∨{α ∈
K | B ∈ Cα} = B(B). To verify axiom (3′LMB) let A,B ∈ LX and assume that

B(A) =
∨

{α ∈ K | A ∈ Cα} := λ, B(B) =
∨

{α ∈ K | B ∈ Cβ} := μ

for some λ, μ ∈ L, but there exists ν � λ ∧ μ, ν ∈ K such that B(A ∨ B) ≤ ν.
By the properties of the set K we can find α ∈ K such that ν � α � λ ∧ μ.

Then A ∈ Cα and B ∈ Cα, and hence A ∨ B ∈ Cα. However this means that
B(A ∨ B) ≥ α The obtained contradiction shows that B(A ∨ B) ≥ B(A) ∧ B(B).
The validity of (4LMB) for B follows from the validity of the corresponding
axiom for Cα. �

Proposition 2. Bα =
⋂{Cβ | β ∈ K, β � α} for every α ∈ M .
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Proof. The inclusion Bα ⊇ ⋂{Cβ | β ∈ K, β � α} is clear from the construction
of the LM -bornology B. Conversely, if A �∈ Bα, then there exists β � α, β ∈ K
such that A �∈ Cβ . Hence A �∈ ⋂{Cβ | β ∈ K, β � α}. �

Given a family of L-bornologies {Cα | α ∈ K} on an L-valued a set (X,E), let
the M -bornology B : LX → M be defined as above. We define a new family of L-
bornologies {C̄α | α ∈ M} by setting C̄α :=

⋂{Cβ | β � α, β ∈ K}, where K ⊆ M
is �-approximative. Further, let an B̄ : LX → M be constructed from this family
as above, that is B̄(A) =

∨{α ∈ M | A ∈ C̄α} for every A ∈ LX . Then for every
α ∈ L B̄α =

⋂
β�α,β∈M C̄α =

⋂
γ�β,γ∈K

(⋂
β�αCβ

)
=

⋂
γ�α,γ∈KCγ = Bα, and

hence B̄ = B.
In order to define a category with LM -bornological spaces as objects we

have to specify its morphisms. Since our general framework for LM -bornologies
is formed by L-valued sets, we take so called fuzzy functions as morphisms for
the category of LM -bornological spaces. The reason is that fuzzy functions are
well coordinated with L-valued equalities and can be interpreted as morphisms
between L-valued sets. In case of ordinary sets, a fuzzy function between them
in a natural way can be interpreted as an ordinary function. Therefore, before
touching in Sect. 5 the categorical aspects of LM -bornological spaces, we give a
brief introduction into the theory of fuzzy functions in the next section.

4 Fuzzy Functions

The concept of a fuzzy function was (independently) introduced in [7,9]. Further
fuzzy functions were studied and applied by different authors, see [19,20,23], etc.

Definition 2. An L-relation R : X × Y → L is called a fuzzy function from an
L-valued set (X,EX) to an L-valued set (Y,EY ) if

(1ff) R(x, y) ∗ EY (y, y′) ≤ R(x, y′) ∀x ∈ X, ∀y, y′ ∈ Y ;
(2ff) EX(x, x′) ∗ R(x, y) ≤ R(x′, y) ∀x, x′ ∈ X, ∀y ∈ Y ;
(3ff) R(x, y) ∗ R(x, y′) ≤ EY (y, y′) ∀x ∈ X, ∀y, y′ ∈ Y.

For a fuzzy function we use notations both R : X × Y → L and R : (X,EX) →
(Y,EY ) giving preference to the one which is more convenient in the context.

Remark 1. Let EX and EY be ordinary equalities =X and =Y on the sets X
and Y respectively. Then an ordinary function f : X → Y can be realized as a

fuzzy function Rf : (X, =X) → (Y,=Y ) by setting Rf (x, y) =
{

1L if f(x) = y
0L otherwise.

Composition of L-relations R : X × Y → L and S : Y × Z → L is the
L-relation S ◦ R : (X,EX) → (Z,EZ) defined by (S ◦ R)(x, z) =

∨
y∈Y (R(x, y) ∗

S(y, z)). In [9,23], it is shown that composition of two fuzzy functions is a fuzzy
function and that EX : (X,EX) → (X,EX) is the identical morphism. Thus we
obtain:



M -bornologies on L-valued Sets 457

Proposition 3. [9,23] L-valued sets as objects and fuzzy functions as mor-
phisms constitute a category denoted FSET(L).

Definition 3. [20,23] Given a fuzzy function R : X × Y → L we define its
measure of its soundedness by μ(R) =

∧
x

∨
yR(x, y). A fuzzy function R is called

sound if μ(R) = 1.
Given L-valued sets (X,EX) and (Y,EY ) and a fuzzy function R : X × Y →

L, we define its degree of surjectivity by σ(R) =
∧

y

∨
xR(x, y). A fuzzy function

R is called surjective if σ(R) = 1.

If R : (X,EX) → (Y,EY ), S : (Y,EY ) → (Z,EZ) are fuzzy functions, then
μ(S ◦ R) ≥ μ(R) ∗ μ(S) and σ(S ◦ R) ≥ σ(R) ∗ σ(S) [23]. Hence, composition of
sound functions is sound and composition of surjective functions is surjective.

Let R : X × Y → L be a fuzzy function. Then referring to the generalization
of the Zadeh’s extension principle [28], we come to the following definition:

Definition 4. [9,23] The forward power-set operator R→ : LX → LY induced
by the fuzzy function R is defined by R→(A)(y) =

∨
x (R(x, y) ∗ A(x)) ∀A ∈

LX , ∀y ∈ Y. Fuzzy set R→(A) ∈ LY is called the image of the fuzzy set A under
the L-relation R : X × Y → L.

The backward power-set operator R← : LY → LX induced by the fuzzy func-
tion R is defined R←(B)(x) =

∨
yR(x, y) ∗ B(y) ∀B ∈ LY , ∀x ∈ X. Fuzzy set

R←(B) ∈ LX is called the preimage of the fuzzy set B ∈ LY under L-relation
R : X × Y → L.

Proposition 4. [20,23] Let R : (X,EX) → (Y,EY ) be a sound fuzzy function.
Then:

(1) R→ (∨
i∈I(Ai)

)
=

∨
i∈I R→(Ai) ∀{Ai | i ∈ I} ⊆ LX ;

(2) R→(A1 ∧ A2) ≤ R→(A1) ∧ R→(A2) ∀A1, A2 ∈ LX ;
(3) R← (∧

i∈IBi

)
=

∧
i∈I(R

←Bi).
(4) R← (∨

i∈IBi

)
=

∨
i∈I(R

←Bi) ∀{Bi : i ∈ I} ⊆ LY

(5) A ≤ R←(R→(A) ∀A ∈ LX ;
(6) If R is surjective and B is extensional, than R→(R←(B) = B;
(7) If R is surjective then R→(λX) = λX for each λ ∈ L.

5 Category FBORN (L,M) of LM -bornological Spaces

5.1 Bounded Fuzzy Functions of LM-bornological Spaces

Definition 5. A fuzzy function R : (X,EX ,BX) → (Y,EY ,BY ) is called
bounded if BY ◦ R→ ≥ BX .

Explicitly the boundedness of a fuzzy function R : (X,EX ,BX) → (Y,EY ,BY )
means that BY (R→(A)) ≥ BX(A) for every A ∈ LX . Since composition of two
bounded fuzzy functions is obviously bounded and the identical fuzzy function
EX : (X,EX ,BX) → (X,EX ,BX) is bounded, we get.
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Proposition 5. LM -bornological spaces and bounded fuzzy functions form a
category which will be denoted FBORN(L,M).

Since composition of sound fuzzy functions is sound, we can distinguish a useful
subcategory FSBORN of the category FBORN whose objects are the same
as in FBORN and whose morphisms are sound fuzzy functions.

When studying properties of categories of LM -bornologies the construction
of LM -bornologies from LM -bornology bases will be useful.

Definition 6. Let L be a subset of LX closed under finite unions and extensional
hulls. A mapping C : L → M is called an LM -bornology base if

(1LMBB) ∀ α ∈ M0 ∃U ⊆ L such that
∨
U = 1LX and C(U) ≥ α ∀U ∈ U;

(2LMBB) C(A ∨ B) = C(A) ∧ C(B) ∀A,B ∈ L;
(3LMBB) C(e(A)) = C(A) ∀A ∈ L.
The proofs of the following statements are straightforward and we omit them:

Proposition 6. Let C : L → M be an LM -bornology base on X. By setting
BC(A) =

∨{C(D) : D ∈ L, A ≤ D} we obtain an LM -bornology BC : LX → M .
Besides BC is the finest LM -bornology such that BC(A) ≥ C(A) for all A ∈ L.
Theorem 1. Let (X,EX ,BC) be an LM -bornological space, where C : L →
M is a base for LM -bornology BC. Then a fuzzy function R : (X,EX ,BC) →
(Y,EY ,BY ) is bounded if and only if BY (R→(A)) ≥ BC(A) for every A ∈ L.

5.2 Preimages of LM-bornologies and Initial LM-bornologies
Induced by Families of Sound Fuzzy Functions

Theorem 2. Let R : (X,EX) → (Y,EY ,BY ) be a sound fuzzy function and let
L := {A = R←(D) | D ∈ LY }. Then CX = BY ◦ R← : L → M is a base for
an LM -bornology BX on (X,EX). Besides BX is the coarsest LM -bornology for
which the fuzzy function R : (X,EX ,BX) → (Y,EY ,BY ). is bounded.

Sketch of the proof. In order to verify axiom (1LMBB) for the mapping CX =
BY ◦ R← : L → M let α ∈ M0 and take a family V = {Vξ | ξ ∈ Ξ} ⊆ LY such
that

∨
ξ Vξ = 1LX and BY (Vξ) ≥ α ∀ξ ∈ Ξ. Let U = {Uξ | Uξ = R←Vξ, Vξ ∈ V},

then CX(Uξ) ≥ α for all ξ ∈ Ξ. Moreover, referring to the soundedness property
of R one can show that the family U is an (extensional) cover of the set (X,E).

The proof of the axiom (2LMBB) follows easily from the definition of CX .
Finally we establish (3MLBB) by applying the general easily provable fact that
for every B ∈ LY the preimage R←(B) is extensional.

The fact that BX is the coarsest LM -bornology for which R : (X,EX ,BX) →
(Y,EY ,BY ) is bounded is clear from our construction. �
We call the LM -bornology BX constructed above the preimage of the LM -
bornology BY under fuzzy function R : (X,EX) → (Y,EY ,BY ) and denote it
by R←(BY ).

From the previous theorem we easily can prove the existence of the initial
LM -bornology induced by a family of functions:
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Theorem 3. For every family Ri : (X,EX) → (Yi, EYi
,BYi

) of sound fuzzy
functions, there exists the initial LM -bornology on (X,EX), that is the coars-
est LM -bornology BX for which all fuzzy functions Ri : (X,EX ,BX) →
(Yi, EYi

,BYi
) are bounded.

We can summarize the above results as follows:

Theorem 4. Every source Ri : (X,EX) → (Yi, EYi
, BYi

), i ∈ I has a unique
initial lift Ri : (X,EX ,BX) → (Yi, EYi

, BYi
), i ∈ I in the category FSBORN

(L,M) of sound LM -valued bornological spaces. In particular, products exist in
the category FSBORN(L,M).

5.3 Images of LM-bornologies and Final LM-bornologies Induced
by a Family of Fuzzy Functions

Let (X,EX ,BX) be an LM -bornological space, (Y,EY ) be an L-valued set and
let R : (X,EX ,BX) → (Y,EY ) be a sound fuzzy function. We define a mapping
BY : LY → M by setting BY = BX ◦ R← : LY → M , or explicitly BY (B) =
BX(R←(B)) for every B ∈ LY . It is clear that BY : LY → M satisfies property
(2LMB), because this property holds for the LM -bornology BY : LY → M .
Property (3LMB) for BY : LY → M can be established referring to Proposition
4. Noticing that the image R→(A) of a fuzzy set A ∈ LX is extensional, and
applying property (4LMB) for BX : LX → M we can establish the validity of
the property (4LMB) for BY : LY → M .

So, the mapping BY := R→(BX) = BX ◦ R→ constructed above satisfies the
properties (2LMB), (3LMB), (4LMB) of an LM -bornology on the L-valued set
(Y,EY ).

To establish property (1LMB) we additionally assume that R : (X,EX) →
(Y,EY ) is surjective. In this case we fix α ∈ M0 and referring to the axiom
(1LMB) of the LM -bornology BX find a family of L-fuzzy sets U ⊆ LX such
that BX(U) ≥ α for every U ∈ U and

∨ {U | U ∈ U} = 1LX . For every U ∈ U let
VU = R→(U) and let V = {Vu | U ∈ U}. Then, since R : (X,EX ,BX) → (Y,EY )
is surjective by Proposition 4, we have

∨
(VU | U ∈ U} =

∨
(R→U | U ∈ U} =

R→ (
∨

(U | U ∈ U}) = R→(1LX ) = 1LY ,
Since, by definition of BY , for every VU ∈ V it holds BY (VU ) = BX(U) ≥ α,

the validity of axiom (1LMB) for BX is established. We summarize the obtained
results in the following.

Theorem 5. BY =: R→(BX) is the finest LM -bornology for which the sound
surjective fuzzy function R : (X,EX ,BX) → (Y,EY ,BY ) is bounded.

Let now R : (X,EX) → (Y,EY ,BY ) be an arbitrary fuzzy function. Then the
constructed LM -bornology R→(BX) may not satisfy axiom (1LMB). Therefore,
to get the finest LM -fuzzy topology B′

Y : LY → M , for which R : (X,EX ,BX) →
(Y,EY ,B′

Y ) is bounded, we must “strengthen” the mapping R→(BX) by the
finest LM -fuzzy topology B�

Y on (Y,EY ) and define B′
Y = R(→)BX � B�

Y . Now
one can easily prove the following.
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Theorem 6. B′
Y = R→(BX) � B�

Y is an LM -bornology on the L-valued set
(Y,EY ). Besides it is the finest LM -bornology on (Y,EY ) for which fuzzy func-
tion R : (X,EX ,BX) → (Y,EY ,B′

Y ) is bounded.

Let now {Ri : (Xi, EXi
,BXi

) → (Y,EY ) | i ∈ I} be a family of fuzzy func-
tions. For every i ∈ I let Bi

Y
′ : LY → M be the LM -bornology induced by the

fuzzy function Ri : (Xi, EXi
,BXi

) → (Y,EY ). Further, let BY := �i∈IR
→
i (BXi

) :
LY → M . Analyzing the construction, we can conclude that BY is the finest
LM -bornology on the L-valued set (Y,EY ) for which all fuzzy functions Ri are
bounded.

Applying the terminology of the category theory we get the following

Theorem 7. Every sink {Ri : (Xi, EXi
,BXi

) → (Y,EY ) | i ∈ I} in the category
FBORN(L,M) has a single final lift Ri : (Xi, EXi

,BXi
) → (Y,EY ,BY ), i ∈ I.

In particular, coproducts exist in the category FBORN(L,M).

5.4 Subcategories of the Category FSBORN(L,M)

Category. FSBORN(L,2) Let M be the two-element lattice 2 = {0, 1} and
let E : X × X → L be an L-valued equality on X. Then the L2-bornology on a
set X is just a family B ⊆ LX such that (1 L2)

∨{A | A ∈ B} = 1LX ; (2 L2)
B ≤ A,A ∈ B ⇒ B ∈ B; (3 L2) A1, A2 ∈ B ⇒ A1 ∨ A2 ∈ B (4 L2) e(A) = A.

Now, let BORN(L, 2) be the subcategory of FSBORN(L, 2) whose objects
are L2-bornological spaces such that L is endowed with the crisp equality
and whose morphisms are fuzzy functions Rf : (X, =X ,BX) → (Y,=Y ,BY )
determined by ordinary functions f : X → Y (see Remark 1) and such that
BY (f(A)) ≥ BX(A). The category BORN(L, 2) thus obtained is actually the
category of L-bornological spaces, see Subsection 1.2.

Category. FSBORN(2,M ) Let L = 2 be the two-element lattice. Then 2X

is just the family of all subsets of a set X. Further, let X be considered with
the crisp equality =. Then the 2M -bornology on X is a mapping B : 2X → M
such that (1 2M) B({x}) = 1M for every x ∈ X; (2 2M) A ⊆ B ⇒ B(B) ≤
B(A) ∀A,B ∈ B; (3 2M) B(A ∩ B) ≥ B(A) ∧ B(B) ∀A,B ∈ B.

Now, let BORN(2,M) be the subcategory of FSBORN(2,M) whose
objects are 2M -bornological spaces and whose morphisms are fuzzy functions
Rf : (X, =X ,BX) → (Y,=Y ,BY ) determined by ordinary functions f : X → Y
and such that BY (f(A)) ≥ BX(A). The category BORN(L, 2) thus obtained is
actually the category of M -valued bornological spaces, see Subsection 1.3.

Acknowledgement. The authors are grateful to an anonymous referee for pointing
out some misprints and other minor defects noticed in the first version of the paper.
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Rodabaugh, S.E., Klement, E.P., Höhle, U. (eds.) Applications of Category Theory
to Fuzzy Sets, pp. 33–72. Kluwer Academic Press (1992)
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24. Šostak, A., Uļjane, I.: Bornological structures in the context of L-fuzzy sets. In: 8th
Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT
2013), Atlantis Premium Proceedings, pp. 481-488 (2013)
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Abstract. The implicative fuzzy associative memories (IFAM) is a tool
used to store patterns in a database and to recall desired pattern upon
a presentation. The original IFAM model has been later updated to sim-
plify the weight matrix construction. As a result of this improvement,
model internally contains only significant values. This article describes
how sparse matrix used to capture model’s weight matrix can be used
to reduce memory-space consumption.

Keywords: IFAM · Weight matrix · Sparse matrix · Implicative fuzzy
associative memory

1 Introduction and Motivation

In this contribution, we present a continuation of our research of lattice-based
models of implicative fuzzy associative memories (IFAM). We have previously
discovered that the weight matrix representing model’s internal memory can
be obtained using more simplified way than for general IFAM models. Here we
are going to present that the weight matrix captured using sparse matrices can
significantly reduce memory consumption of the whole IFAM model.

Generally, associative memories are memory models with an ability to store
submitted patterns and recall them latter upon presentation, even for damaged,
noisy, or incomplete inputs. The first presentation of associative memory mech-
anism has been introduced using matrix associative memories [1,3]. Fuzzy app-
roach has been introduced by Kosko’s Fuzzy Associative Memories (FAM) [4] as
a single-layer feedforward neural net containing nonlinear matrix-vector product.
FAM has been later extended to increase a storage capacity (e.g. [6]). Another
important improvement has been done by adding so-called learning implication
rules [5,7], that afterwards leads to implicative fuzzy associative memory (IFAM)
with implicative fuzzy learning.

In [2], theoretical background of IFAM was discussed and examples that
demonstrate the ability of IFAM to work with incomplete and noisy information

c© Springer International Publishing AG 2018
J. Kacprzyk et al. (eds.), Advances in Fuzzy Logic and Technology 2017,
Advances in Intelligent Systems and Computing 643,
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were given. The model of IFAM presented there stores patterns using two internal
matrices – weight matrix W and bias matrix θ. Based on [2], we have done a
theoretical research justifying that IFAM uses the notion and properties of a
fuzzy preorder relation [8]. This leads to discovering requirements to be fulfilled
by input data to ensure insensitivity to a certain type of noise. Another result
of this work was an improvement of a learning process to obtain weight matrix
W . This model will be referred as r-IFAM. Further, following research [9] has
shown another ability to reduce the content of the weight matrix W to contain
only binary {0; 1} values. This model will be referred as b-IFAM.

Theoretically, IFAM models work well. However, from the application point
of view, IFAM models are internally very memory consuming. When applied in
image processing (that means when database patterns to be learned are images),
the weight matrix size W contains (number of pixels)2 elements, what becomes
a very high number even for images with small resolution. Nevertheless, our
extension of r-IFAM and b-IFAM models shows potential how the total occupied
size in memory by weight matrix can be reduced using sparse matrices.

The paper organization is as follows: in the second section we introduce pre-
viously published IFAM later used in our experiments; the third section explains
the sparse matrix term and its properties; in the fourth section we present results
of our experiments of usage sparse matrices together with IFAM models; the last,
fifth section, states conclusion.

2 IFAM Evolution

This section describes the evolution of our research over IFAM. For application
purposes we demonstrate the behavior in the field of image processing. So, we
have a database of grayscale image patterns {x1, . . . ,xp}, each is converted from
matrix representation to a n-dimensional vector of pixels with values in [0; 1].

2.1 Implicative Fuzzy Associative Memory – IFAM

By default, implicative fuzzy associative memory finds a fuzzy relation that
connects corresponding finite set of inputs with given finite set of outputs. By
associativity we mean an ability to represent an association between an input
and an output.

As mentioned before, the default IFAM model has been taken from [2]. There
presented, fuzzy associative memory is a one level neural network endowed with
Pedrycz’s neurons with thresholds, whose input-output relation is represented by

yi =
p∨

j=1

(wi,j t xj) ∨ θi, i = 1, . . . ,m, (1)

where all elements are from [0, 1], t is a t-norm, W = (wi,j) is a connecting fuzzy
relation or (in terms of neural networks) is a n × n synaptic weight matrix, θ is
a threshold (bias), n represents the length of data and p represents the number
of constituent input patterns.
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The weight matrix W of IFAM is in the form using the adjoint to t
implication →:

wi,j =
p∧

k=1

(xk
j → yk

i ), (2)

where (xk,yk), k = 1, . . . , p, are couples of input-output patterns.
Another part of the model is the bias vector calculated as:

θi =
p∧

k=1

xk
i . (3)

For further research we aim at the autoassociative fuzzy implicative memory
model. The model is based on the �Lukasiewicz t-norm a t b = max(0, a + b − 1),
and the adjoint implication a → b = min(1, 1 − a + b). By autoassociativity we
mean that the input-output patterns are the same objects (images).

Such autoassociative IFAM defined by W and θ returns output image y for
the input given by x in accordance with (1).

2.2 Reduced IFAM – r-IFAM

The first research was inspired by the ability of the IFAM to process the noisy
input. Let x̃ is an eroded version of the input image x, that is x̃ ≤ x. In [2]
there has been claimed that IFAM is able to remove (or at least suppress) the
eroded noise of x̃, what obviously cannot be true for “zero-eroded” x̃. We have
investigated minimum requirements of x̃ allowing successful retrieval of x from
IFAM.

In [8], we have built a bridge between IFAM model and fuzzy preorder with
eigen sets claiming that IFAM with the weight matrix is a fuzzy preorder relation.
Then, if images in an input (learning) database represent normal fuzzy sets, we
have achieved following (for this contribution related) conclusions:

– each constituent input image xk, k = 1, . . . , p, can be retrieved using the
simpler version of (1), i.e.

yi =
p∨

j=1

(xk
j t wij), i = 1, . . . , n, (4)

which does not involve bias θ;
– each constituent input image xk, k = 1, . . . , p, can be retrieved, if the synaptic

weight matrix W is equal to Qr, for which holds (see [8] for details about core
elements):

Qr(x, y) =

⎧
⎪⎨

⎪⎩

xy
i , if xy is a core element for x,

1, if x = y,

0, otherwise .

(5)
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Both results are important. The first one states that we can omit θ bias matrix
without impact at the result. The second one is more important. It states that
(a) when the weight matrix is not calculated, but is constructed according to
(5), it is tremendously saving computational complexity (already proved in [8]);
(b) as the weight matrix might contain mostly 0 values, it might be also saving
memory occupation complexity.

2.3 Binary IFAM – b-IFAM

We had continued our research in this field aimed at IFAM retrieval mechanism
according to two related systems of fuzzy equations - [9]. We have extended the
idea of ‘binary skeleton’ and have obtained new results, which generally lead to
more simplified version of weight matrix W containing now only binary values
{0; 1}. The weight matrix equals to Qb and is now obtained as

Qb(x, y) =

{
1, if xy is a core element for x and xy

i = 1,

0, otherwise .
(6)

As a result, Qb contains less non-zero values than Qr, so this approach again
decreases required memory used to store IFAM model.

3 Sparse Matrix Application

Experiments created over theoretical background typically need implementation
in some environment using a programming language. There are several com-
mon approaches applicable to store matrix values across different programming
languages. Generally, to store matrix, two dimensional array structure can be
used. When declaring such structure, both dimensions of the structure must be
known and set. The runtime environment then allocates memory for the whole
structure at once. A weight matrix of IFAM model is very large. If dataset image
dimension is n×m, weight matrix W will contain (n×m)2 elements. For a quite
small image 200 × 200 pixels the weight matrix W contains 16 × 108 elements.
If every element takes 32b (typical value of “float” data type), the whole weight
matrix will occupy 6GB of RAM. Even if less consuming data type is used, it is
very hard to fit even 1Mpx image into nowadays computer available RAM.

Simple solution might be found in a usage of sparse matrices. Simply say, a
sparse matrix allocates memory for an element only if its value differs from a
default value (a default value is typically set to 0). For the case when matrix
contains mostly default values and only low number of elements has different
value, this approach reduces significantly required memory space.

On the other hand, the sparse matrix may have a disadvantage in perfor-
mance. If a weight matrix is created as a whole structure (first approach), it can
be very simply and quickly accessed. As an internal structure of sparse matrix is
more complex, it’s usage will very probably cause some performance hit. Also,
sparse matrix representation creates some memory space overhead to capture
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knowledge about the occupied cells. A size of such overhead depends on the
internal sparse matrix implementation, and is a typically a trade off between
speed an overhead – larger overhead improves processing speed. Simply say, for
our case we need 2 × n + (mn ) memory cells to store one element. That means,
the sparse matrix will reduce total occupied memory size only if it has filled less
than 50% elements with non-default value.

In our contribution, we have done implementation of sparse matrix approach
for weight matrix W to prove if it can significantly decrease required memory
space and therefore increase resolution of images which are used as an IFAM
dataset.

4 Experiments

Original implementations of r-IFAM and b-IFAM algorithms were done in Mat-
lab programming environment. However, to work with sparse matrices, some
more “common” programming environment has been used and all the aforemen-
tioned IFAM approaches were implemented in C# programming language. The
image dataset remains the same as for r-IFAM and b-IFAM publications. We
have dataset of 48 images rescaled to different resolutions. To fulfill r/b-IFAM
requirement let every image is a normal fuzzy set, all of them has been adjusted
to fulfill this condition. The simple results are presented in Table 1. This input
set contained up to 48 random grayscale images with resolution 40 × 30 pixels.
The model has been progressively learned from 1 up to 48 patterns. After 1, 5,
10, 20 and 48 learned patterns we have measured mean error (that is a simple
difference between relayed pattern and model response), utilization of weight
matrix (that is how many elements of weight matrix contain non-zero value in
comparison of full weigh matrix size) and total required learning time.

The results are quite surprising.
Firstly, the standard IFAM model is much more susceptible to obtain degen-

erated artifacts. Generally, the more images in the learning dataset, the lower
quality of the reconstructed images is obtained. However, the reconstruction
quality of IFAM model decreases much faster then for the r-IFAM or b-IFAM
model. It should be expected that as IFAM’s weight matrix is the most complex,
it should preserve the most information for recall. However, as can be also seen
in Fig. 1, the IFAM mode (first row in the figure) is the fastest loosing the quality
of reconstructed image.

Secondly, the memory space saved by an usage of sparse matrix is tremen-
dous. As can be seen in Table 1, the utilization of weight matrix is extremely
low and growing up very slowly. For a comparison, for 120 × 90 image, the full
weight matrix of IFAM model contains 116,640,000 elements. The reduced IFAM
(r-IFAM) model needs only 172,744 elements. The binary IFAM model (b-IFAM)
needs only 14,113 elements.

At last, the surprise in processing time did not occur. As the IFAM model uses
fixed double array structure for weight matrix, it is (for bigger sets) the faster
solution than implementations based on sparse matrix. Here we can state, that
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Table 1. Comparison of IFAM, r-IFAM and b-IFAM models. Mean error is average
error between input pattern and result. W utilization is % of non-default values in
weight matrix. Learning time is time needed to learn the model in seconds on i7 CPU.

Dataset size IFAM type Mean error W utilization Learning time (s)

1 IFAM 0.00000 1.000% 0.472

r-IFAM 0.00000 0.166% 0.266

b-IFAM 0.00000 0.084% 0.263

5 IFAM 0.28398 1.000% 4.343

r-IFAM 0.01977 0.499% 3.955

b-IFAM 0.00107 0.085% 3.968

10 IFAM 0.37813 1.000% 13.569

r-IFAM 0.10136 0.916% 14.625

b-IFAM 0.02049 0.106% 14.586

20 IFAM 0.46044 1.000% 47.064

r-IFAM 0.17696 1.582% 58.622

b-IFAM 0.11328 0.182% 55.984

48 IFAM 0.49981 1.000% 248.260

r-IFAM 0.24735 3.664% 324.147

b-IFAM 0.11982 0.233% 312.966

for patterns with a small resolution the standard approach should be preferred
(from the computation point of view), however, for higher resolution patterns
the sparse-matrix based solution might be the only way how the IFAM weigh
matrix can be fitted into memory.

Fig. 1. Example of result disruption of different models according to number of learning
dataset. Dataset image size 120 × 90 pixels. Dataset size from left to right: 1, 3, 6, 11.
Models from top to down: IFAM, r-IFAM, b-IFAM.
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The Fig. 1 shows comparison of results obtained after recall of input image
from learning dataset. Again, it is obvious that the more learned images, the
lower is the quality of the recall. However, again, it is obvious that the recall
quality of IFAM model decreases more than for r-IFAM or b-IFAM models.

5 Summary

We have presented a result from an application point of view of previous research
made in the field of implicative fuzzy associative memories. In our previous
research we have improved IFAM model by updating the way of weight matrix
construction. According to those changes, a sparse matrix become a good tool to
capture weight matrix values in the memory. The results show that the usage of
sparse matrix for weight matrix can significantly reduce required memory space.
Moreover, for the tested set, the reduced and binary IFAM models show better
performance (in the meaning of learning/recalling patterns) than the original
IFAM model.

Acknowledgment. This research was supported by the project “LQ1602
IT4Innovations excellence in science”.
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Abstract. In this paper we propose new type of intuitionistic fuzzy
modal-like operators generated by the application of the power mean.
We study some of their properties and establish some relations between
them.
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1 Introduction

Following [1,2], we give the definitions of the basic concepts and of the basic
operations, relations and operators over IFSs.

Let us have a fixed universe X and its subset A. The set

A∗ = {〈x, μA(x), νA(x)〉 | x ∈ X},

where
0 ≤ μA(x) + νA(x) ≤ 1 (1)

is called IFS and the mappings μA : X → [0, 1] and νA : X → [0, 1] represent the
degree of membership (validity, etc.) and non-membership (non-validity, etc.),
respectively.

The mapping πA : X → [0, 1], given for x ∈ X, by

πA(x) = 1 − μA(x) − νA(x)

is called degree of uncertainty or hesitancy degree.
Further, we accept the premise that for every element x ∈ X, we can view

the range of theoretically possible values of μA(x) as [μA(x), 1 − νA(x)], and for
νA(x) as [νA(x), 1 − μA(x)],

We remind that the modal operators (necessity) and ♦ (possibility) are
given by:

(A) = {〈x, μA(x), 1 − μA(x)〉|x ∈ X}; (2)

c© Springer International Publishing AG 2018
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♦(A) = {〈x, 1 − νA(x), νA(x)〉|x ∈ X}. (3)

For the last five years, there has been a renewed interest in modal operators
see e.g., [3,5,6]. Further we will make use of the following definition:

Definition 1 ([4]). A power mean of two non-negative numbers x, y is given
by:

Mp(x, y) =
(

xp + yp

2

) 1
p

(4)

Some special particular cases are given by:

M−∞(x, y) deff= min(x, y)

M∞(x, y) deff= max(x, y)

M0(x, y) =
√

xy,

the last obtained as the limit when p → 0.

2 The Modal-Like Operators Generated
by the Power Mean

Making note that the possible values that μA(x) can take are in the interval
[μA(x), 1 − νA(x)], and νA(x) in the interval [νA(x), 1 − μA(x)], we can rewrite

(A) and ♦(A) as

(A) = {〈x, μA(x),M∞(νA(x), 1 − μA(x))|x ∈ X};

♦(A) = {〈x,M∞(μA(x), 1 − νA(x)), νA(x)〉|x ∈ X}.

Now, we are ready to propose the following operators:

Definition 2. We define the operator “Mp-necessity” by

Mp
(A) = {〈x, μA(x),Mp(νA(x), 1 − μA(x))〉|x ∈ X}; (5)

and the operator “Mp-possibility” by

♦Mp
(A) = {〈x,Mp(μA(x), 1 − νA(x)), νA(x)〉}|x ∈ X}. (6)

The definition is correct since from the properties of the power mean we have
Mp(x, y) ≥ Mq(x, y) for p ≥ q and,

ν
Mp (A)

=
(

νA(x)p + (1 − μA(x))p

2

) 1
p

≤ max(νA(x), 1 − μA(x)) ≤ 1

and hence μ
Mp

(A) + ν
Mp

(A) ≤ 1;

μ♦Mp (A) =
(

μA(x)p + (1 − νA(x))p

2

) 1
p

≤ max(μA(x), 1 − νA(x)) ≤ 1

and hence μ♦Mp (A) + ν♦Mp (A) ≤ 1.
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Definition 3 (c.f. [1, p. 18, (2.9)]). The negation of an intuitionistic fuzzy set
A denoted by ¬A is given by

¬A = {〈x, νA(x), μA(x)〉|x ∈ X}.

Theorem 1. For the newly defined operators we have:

¬ Mp
(¬A) = ♦Mp

(A)

¬♦Mp
(¬A) = Mp

(A),

The property

Mp
(A) ⊆ A ⊆ ♦Mp

(A)

is also preserved.

Proof. We have ¬A = {〈x, νA(x), μA(x)〉|x ∈ X}, hence

Mp
(¬A) = {〈x, νA(x),Mp(μA(x), 1 − νA(x))〉|x ∈ X} = ¬♦Mp

(A)

Thus,
¬ Mp

(¬A) = ¬¬♦Mp
(A) = ♦Mp

(A)

The second relation is proved similarly.
For the third we have to observe that: μ

Mp (A)
= μA ≤ μ♦Mp (A) and

ν♦Mp (A) = νA ≤ ν
Mp (A)

, and, hence,

Mp
(A) ⊆ A ⊆ ♦Mp

(A)

Remark 1. It is noteworthy that for p �= ∞, the other properties of the modal
operators are not preserved:

♦Mp
♦Mp

(A) �= ♦Mp
(A)

Mp Mp
(A) �= Mp

(A)

This is indeed so, due to the fact that

ν
Mp Mp (A)

≥ ν
Mp (A)

and
μ♦Mp♦Mp (A) ≥ μ♦Mp (A),

where in the general case the inequality is strict.

Theorem 2. For some of the other properties to be fulfilled additional require-
ments have to be requested, for instance for every two IFS A,B and p ≥ 0 we
have:

Mp
(A ∩ B) = Mp

(A) ∩ Mp
(B) ⇔ A ⊆ B ∨ B ⊆ A

♦Mp
(A ∪ B) = ♦Mp

(A) ∪ ♦Mp
(B) ⇔ A ⊆ B ∨ B ⊆ A
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Proof. We obtain sequentially:

Mp
(A ∩ B) = Mp

{〈x,min(μA(x), μB(x)),max(νA(x), νB(x))|x ∈ X}
= {〈x,min(μA(x), μB(x)), Mp(max(νA(x), νB(x)), 1 − min(μA(x), μB(x)))|x ∈ X}

On the other hand,

Mp
(A) ∩ Mp

(B)

= {〈x,min(μA, μB),max(Mp(1 − μA, νA),Mp(1 − μB , νB))|x ∈ X}
We have to show that if A ⊆ B or B ⊆ A then

Mp(max(νA, νB), 1 − min(μA, μB))

= max(Mp(1 − μA, νA),Mp(1 − μB , νB))

Let A ⊆ B. Then, min(μA, μB) = μA and νA = max(νA, νB), hence

(1 − μA)p ≥ (1 − μB)p

(νA)p ≥ (νB)p

and thus,
(1 − μA)p + (νA)p ≥ (1 − μB)p + (νB)p

which completes the proof.
The other property is proved in the same manner.

Remark 2. The condition A ⊆ B ∨ B ⊆ A is significant in securing the desired
property. Consider IFS A = {〈x, 0.2, 0.1〉|x ∈ X} and B = {〈x, 0.5, 0.5〉|x ∈ X}.
We have for p = 1

M1(A ∩ B) = {〈x, 0.2, 0.65〉}
and, on the other hand,

M1(A) ∩ M1(B) = {〈x, 0.2, 0.5〉}
and thus the property is not fulfilled.

Further we introduce another modal-like operator.

Theorem 3. The operator ♦
p

: IFS(X) → IFS(X) given by

♦
p
(A) = {〈x,Mp(μA(x), 1 − νA(x)),Mp(νA(x), 1 − μA(x))〉|x ∈ X}; (7)

is well defined for p ≤ 1.

Proof. For p = 1, we have μ ♦
p

(A) + ν ♦
p

(A) = 1. Hence, for q < p we will

have μ ♦
q

(A) + ν ♦
q

(A) ≤ 1.
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Remark 3. For this operator it is fulfilled:

¬ ♦
p
(¬A) = ♦

p
(A) (8)

Theorem 4. The three operators satisfy (for p ≤ 1) the following relation

Mp
(A) ⊆ ♦

p
(A) ⊆ ♦Mp

(A) (9)

Proof. We have
μ

Mp (A)
≤ μ ♦

p
(A)

= μ♦Mp (A)

and also
ν♦Mp (A) ≤ ν ♦

p
(A)

= ν
Mp (A)

.

Thus, (9) is fulfilled.

Remark 4. It is clear that ♦
p

is in some way very similar to the operator Fα,β ,

since it also increases the value of both the membership and non-membership
degrees. In particular, we have to solve the following system of equations in order
to find the explicit connection:{

μ + α(1 − μ − ν) = Mp(μ, 1 − ν)
ν + β(1 − μ − ν) = Mp(ν, 1 − μ)

(10)

For instance, it is easy to verify that ♦
1

= F 1
2 , 12

. However, for different values
of p, it becomes more difficult to find the solution in simple form.

Further, a way of extending the above operators inspired by the extended
modal operator Fα,β is by making them dependent on two parameters α ∈ [0, 1]
and β ∈ [0, 1]. For example, we may introduce the following operator:

♦
p;α,β

(A) = {〈x, αMp(μA(x), 1−νA(x)), βMp(νA(x), 1−μA(x))〉|x ∈ X} (11)

There are many more ways to introduce such operators as in (11). In such a
way it may even be possible to extend ♦

p;α,β
(A) to values of p greater than 1,

with an appropriate restriction on the parameters α and β.

3 Conclusion

In near future, we will study in more details the properties of the introduced
intuitionsitic fuzzy modal-like operators. Their relation to the existing extended
modal operators and their possible use in decision making processes, involving
results from the application of InterCriteria Analysis (ICrA), will be investigated.

Acknowledgement. The present research has been supported by the Bulgarian
National Science Fund under Grant Ref. No. DFNI-I-02-5 “InterCriteria Analysis: A
New Approach to Decision Making”.
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Abstract. In this paper we revisit the topic of orderings between intu-
itionistic fuzzy pairs and then provide a more general point of view in
their introduction. This would allows us to use less strict orderings in
producing similarity scores for objects whose evaluations are in the form
of intuitionistic fuzzy pair.
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1 Introduction

There are many orderings defined on intuitionistic fuzzy pairs. We refer the inter-
ested reader to [1,5,6], for some examples. Further we will focus on a previous
idea of ours where the �µ ordering between intuitionistic fuzzy pairs was intro-
duced [3]. We revisit the idea and after making some observations we provide a
general approach to introducing orderings. This is implemented with the help of
the power mean. It is possible to use other means as well as the main property
of any mean applied to two numbers is to produce a value which lies between
the minimal and the maximal number. However, in the current paper we focus,
for simplicity, on the power mean.

Further we remind some of the definitions we will require.

Definition 1 (cf. [2]). An intuitionistic fuzzy pair (IFP) is an ordered couple
of real non-negative numbers 〈a, b〉, with the additional constraint:

a + b ≤ 1. (1)

This concept is very important in practice since many methods implement-
ing intuitionistic fuzzy techniques produce estimates in the form of IFPs. The
first component usually signifies validity, similarity, agreement, while the second
signifies falsity, distance, disagreement, etc. In order to choose between two IFPs
an ordering (or another ranking method) must be used.

c© Springer International Publishing AG 2018
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The classical partial ordering is given by:

Definition 2 (cf. [1,2]). Given two IFPs: u = 〈u1, u2〉 and v = 〈v1, v2〉, we say
that u is less or equal to v, and we write:

u ≤ v,

iff {
u1 ≤ v1

u2 ≥ v2.
(2)

It is easily seen that ≤ is only partial ordering, since it is evident that it
is transitive, reflexive and antisymmetric but there exist u and v, for which
conditions (2) are not satisfied. For instance, the pairs 〈0.3, 0.4〉 and 〈0.4, 0.5〉
are not comparable under the above ordering.

We now turn our attention to the power mean and how it can be used to
introduce different orderings.

Definition 3 ([4, p. 198]). A power mean of two non-negative numbers x, y is
given by:

Mp(x, y) =
(
xp + yp

2

) 1
p

(3)

Special cases of the power mean are the following: M−∞(x, y) = min(x, y),
M0(x, y) =

√
xy, M∞(x, y) = max(x, y).

Another important property of the power mean is the following [4, p. 198]:

Mp(x, y) ≤ Mq(x, y) for p ≤ q.

Further, we will require the following definition.

Definition 4. We will say that a partial ordering �i is stricter than partial
ordering �j, when u �i v, implies u �j v, but not vice versa.

2 The Proposed Power Mean Orderings and Some
Results

It is not hard to see that (2) can be rewritten as{
u1 ≤ v1

min(u2, 1 − u1) ≥ min(v2, 1 − v1)

which rewritten with the help of the power mean becomes{
u1 ≤ v1

M−∞(u2, 1 − u1) ≥ M−∞(v2, 1 − v1).
(4)
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The ordering defined in [3] given by u �µ v for two IFPs u = 〈u1, u2〉 and
v = 〈v1, v2〉, which is given by{

u1 ≤ v1

u2(1 − u1) ≥ v2(1 − v1).
(5)

can be restated with the help of the power mean to its equivalent as{
u1 ≤ v1

M0(u2, 1 − u1) ≥ M0(v2, 1 − v1).
(6)

As can be seen from the above we have obtained two of the existing orderings
only with the help of the power mean and different values of p.

This gives us the idea to introduce an ordering �µ;Mp
.

Definition 5. Given u = 〈u1, u2〉 and v = 〈v1, v2〉 we shall say that u is first
component biased power mean based with value p less or equal to v and write
u �µ;Mp

v if {
u1 ≤ v1

Mp(u2, 1 − u1) ≥ Mp(v2, 1 − v1).
(7)

The fact that we are only applying the power mean to the second components
of the IFPs for these orderings is due to the practical implementations of our
current algorithm since the first component is accepted as degree of similarity
and is presumed precisely evaluated, while the second has a level of imprecision
tied to it. It is, of course, entirely possible to consider similar ordering with
respect to the second elements and even to both but this is out of the scope of
the current paper.

Below we consider some of the properties of these orderings.

Remark 1. In the case �µ;M∞ the partial ordering degenerates to complete, since
we are now only comparing the first elements of the pairs as the second inequality
becomes equivalent to the first.

Theorem 1. Let p ≥ 0. Then we have �µ;M−∞ is stricter than �µ;Mp
.

Proof. From (4) we have min(u1, v1) = u1 and min(u2, v2) = v2. Hence,{
1 − u1 ≥ 1 − v1

u2 ≥ v2

Thus, we have {
(1 − u1)p ≥ (1 − v1)p

(u2)p ≥ (v2)p,

Adding the left and right hand sides we get

(1 − u1)p + (u2)p ≥ (1 − v1)p + (v2)p
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Therefore,
((1 − u1)p + (u2)p)

2
≥ (1 − v1)p + (v2)p

2
and lastly,

(
((1 − u1)p + (u2)p)

2

) 1
p

≥
(

(1 − v1)p + (v2)p

2

) 1
p

.

which is exactly Mp(u2, 1 − u1) ≥ Mp(v2, 1 − v1), and therefore, we have that
�µ;M−∞ implies u �µ;Mp

v.
The reverse is not true, as for instance

〈0.45, 0.51〉 �µ;M1 〈0.47, 0.52〉
but they are not comparable under the standard ordering.

It is clear that any �µ;Mp
is stricter than �µ;M∞ . In some sense, it seems

likely that larger values of p relax the strictness of the ordering, e.g., �µ;Mq
is

stricter than �µ;Mp
, for all q < p. However, at present we have no definitive

proof of that claim and it is not unlikely that counterexamples can be found.
We provide only the following partial result which is easy to prove.

Theorem 2. The ordering u �µ;M0 v is stricter than �µ;M1 v.

Proof. We already saw that if u, v are IFPs, then u �µ;M−∞ v implies both
u �µ;M0 v and u �µ;M1 v. Let us suppose that this is not the case. Hence, we
have: {

u1 ≤ v1

u2 ≤ v2.
(8)

By assumption u �µ;M0 v, which means:

u2(1 − u1) ≥ v2(1 − v1)

This is equivalent to

u2 ≥ v2
1 − v1
1 − u1

(9)

We need to prove that:

u2 + 1 − u1 ≥ v2 + 1 − v1

This will be true according to (9) if

v1 − u1 + v2
1 − v1
1 − u1

− v2 ≥ 0

The last is equivalent to

v1 − u1 − v2

(
1 − 1 − v1

1 − u1

)
≥ 0
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which is

(v1 − u1)
(

1 − v2
1 − u1

)
≥ 0

But we have v1 ≥ u1, so this inequality will be true if 1 − v2
1−u1

≥ 0, i.e.,
1 − u1 − v2 ≥ 0. Returning to (8), we see that

1 − u1 ≥ 1 − v1,

and using (1) we obtain

1 − u1 − v2 ≥ 1 − v1 − v2 ≥ 0

This completes the proof.

Definition 6. For two IFPs u and v let us call the set of P ⊂ R their ordering
base iff for every p ∈ P .

u �µ;Mp
v or v �µ;Mp

u

Theorem 3. For any two IFPs u and v there exists an ordering base P , which
is non-empty.

Proof. Since either u1 ≤ v1 or v1 ≤ u1, we have that at least �µ;M∞ is a member
of P .

Corollary 1. From Theorem 2 it follows that if 0 ∈ P , then 1 ∈ P .

All of the above considered partial orderings can be used in defining relations
between intuitionistic fuzzy sets (IFSs). Indeed, the relation between two IFSs
A and B,

A ≤ B,

is generated by the standard partial order between IFPs ≤, or in the above
notation �µ;M−∞ . This is not surprising, considering the fact that we can think
of the IFS as collections of IFPs which are labelled by elements of a universe
set X. Thus, results concerning orderings over IFPs can be easily transferred to
IFS theory.

3 Conclusion

In the present work we have proposed a new consistent way of introducing partial
orderings between IFPs. In future work we will investigate orderings generated by
other generalized means (e.g. Lehmer’s, Gini’s, etc.) and study their properties.

Acknowledgment. Work presented here is supported by Program for career develop-
ment of young scientists, BAS, Grant number DFNP-123/2016 “Finding approximate
matching of string or parts of biomedical signals with defined models with the help of
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Abstract. In this paper, we propose and analyze a fuzzy SIR model
with an asymptotic transmission rate. Specifically, the fuzziness is due
to the consideration of the disease transmission rate, additional death
due to disease and rate of recovery from infection as fuzzy sets. Fur-
ther, a comparative study of the equilibrium points of the disease for
the classical and fuzzy models are performed. We study the fuzzy basic
reproduction number for groups of infected individuals with different
virus loads and compare with a basic reproduction number for the clas-
sical model. Finally, a program based on the basic reproduction value Rf

0

of disease control is suggested and the numerical simulations are carried
out to illustrate the analytical results.

Keywords: SIR model · Fuzzy expected value · Fuzzy basic reproduc-
tion number · Stability

1 Introduction

Epidemiological models have recently begun to explore the part of treatment
functions within their dynamic equations. The central idea is that as the num-
ber of infectious individuals I, increases, society’s resources are organized to
counter the potential spread of the infection. Hence a treatment function T (I)
is suggested, where T (I) works to restore infectious individuals and hence to
reduce the value of the time derivative dI

dt . Wang [13] includes the piecewise
linear treatment function into an SIR model. Zhang and Liu [14], Li et al.
[5], and Hu et al. [4] involve the same treatment function as Wang [13] but
apply it in different settings. Zang and Liu use an SIS model. Li et al. consider
with an SIR model with saturated incidence rate. Barros et al. [2], Barros and
Bassanezi [1], and Bassanezi and Barros [3] proposed a new approach to treat an
ecological model using fuzzy parameters in differential equations that describes
the dynamical system. In this case, the solution of the set of equations is found
to be so-called fuzzy expected value. The recent study on fuzzy parameter done
in [6,7,9] described interval valued parameter set in a harvested prey-predator
model and an epidemic model with fuzzy parameters which they have studied

c© Springer International Publishing AG 2018
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for computer network. Recently, Mondal et al. [8] have studied the dynamical
behavior of an epidemic model with fuzzy transmission and Verma et al. [12]
have studied the Fuzzy epidemic model for the spread of influenza virus and its
possible control.

The organization of this paper is as follows: Sect. 2 deals with the develop-
ment of the mathematical model where the parameters β, ε and Υ are fuzzy
set. We analyze the fuzzy system and interpretation of SIR fuzzy model and
presents the existence and stability analysis of the fuzzy model system. In Sect. 3,
we present a new definition of the fuzzy basic reproduction value which is differ-
ent from the classical model and provides some conditions for the disease control
in fuzzy epidemic system. In Sects. 4 and 5, we give some numerical simulations
to verify our results and conclusion.

2 Proposed Fuzzy Model

In the SIR model, it has been described that the dynamics of directly transmit-
ted disease with interaction between susceptible and infected individuals in the
absence of vital dynamics (i.e., the rates of birth and mortality are not consid-
ered). In this section, we propose a fuzzy SIR model. Following is the system of
differential equations describing the proposed model.

dS

dt
= Λ − βSI − μS

dI

dt
= βSI − (μ + ε + Υ )I (1)

dR

dt
= ΥI − μR,

and S + I + R = 1, with S(0) = S0, I(0) = I0, R(0) = R0.

A fuzzy SIR model corresponding to Eq. (1) describe as follows:

dS

dt
= Λ − β(σ)SI − μS

dI

dt
= β(σ)SI − (μ + ε(σ) + Υ (σ))I (2)

dR

dt
= Υ (σ)I − μR,

The parameter Λ, β, μ, ε, Υ are positive constants. S is the proportion of suscep-
tible individuals, I is the proportion of infected individuals and R who have been
removed from the possibility of infection through full immunity at each instant,
fuzzy number β is the transmission coefficient of the disease, fuzzy number ε
is the additional disease rate, and fuzzy number Υ is the rate of recovery from
infection, Λ is the influx of individuals into the susceptible and μ is the natural
death rate, σ is the virus load.
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2.1 Analysis of the Fuzzy System

In this section, we study the concepts of contact rate β(σ), additional death rate
ε(σ), recovery rate from Υ (σ) and virus-load Γ (σ). Towards the end, we provide
an analysis and interpretation of the proposed fuzzy model.

We assume that the population in this fuzzy model is given by the infected
individuals and disease-induced mortality as the function of the accessible virus.
Let β = β(σ) be the chance of transmission to turn out in a meeting between a
susceptible and an infected individuals with the amount of virus σ. Then there
will be the maximum chance of disease transmission when the virus-load is max-
imum. Following [2], fuzzy membership function of the transmission parameter
β(σ) is given by

β(σ) =

⎧
⎨

⎩

0 if σ < σm
σ−σm

σ0−σm
if σm ≤ σ ≤ σ0

1 if σ0 < σ < σM .

From above, it is clear that if the virus-load is low then the disease transmission
will be negligible and that there is a minimum virus-load σm is required. More-
over, there should be a certain amount of virus say, σ0, where the transmission
rate is maximum and equal to unity. Again, the amount of virus is always limited
by σM for each disease. The diagram for membership function of β(σ) is given
in Fig. 1.

Fig. 1. Membership function of β = β(σ).

The addition death rate can also be assumed to be a fuzzy number as it occurs
due to the infection of the disease. When the disease transmission is negligible
for low virus load. There is no transmission of disease due to infection, say Υ0.
Also, it is an increasing function of σ. When the amount of virus is at its highest
level, i.e., σ0 < σ, the death will be higher. We assume that maximum value of
the additional death is (1 − η), (η ≥ 0). In view of this, the fuzzy membership
function of ε(σ) is given by

ε(σ) =
{

(1−η)−ε0
σ0

σ + ε0 if 0 ≤ σ ≤ σ0

1 − η if σ0 < σ,
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Fig. 2. Membership function of ε = ε(σ).

where 0 < ε0 < 1, is the lowest additional death rate. The diagram for member-
ship function of additional death rate ε(σ) is given in Fig. 2.

Now, Υ = Υ (σ) is the recovery rate from infection. The higher the virus load,
the longer it will take to recover from infection, i.e., it is a decreasing function
of σ. Thus the fuzzy membership function of Υ (σ) is given by

Υ (σ) =
{

(Υ0−1)
σM

σ + 1 if 0 ≤ σ ≤ σM ,

where Υ0 > 0 is the lowest recovery rate. The diagram for membership function
of additional death rate Υ (σ) is given in Fig. 3.

Fig. 3. Membership function of Υ = Υ (σ).

We also assume that the virus load of the studied group Σ may be different
for different individuals and so, Σ can be viewed as a linguistic variable with
classification given by an expert according to the studied group. Each classifi-
cation is modeled by a fuzzy number whose membership function is given as
under.

Γ (σ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if σ < σ̂ − δ
σ−σ̂+δ

δ if σ̂ − δ ≤ σ ≤ σ̂
−σ−σ̂−δ

δ if σ̂ < σ ≤ σ̂ + δ
1 if σ > σ̂ + δ.
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Fig. 4. Membership function of Σ = Σ(σ).

Here the parameter σ̂ is a central value and δ gives the dispersion of each one of
the fuzzy sets assumed by σ. For a fixed σ̂, Γ (σ) can has a linguistic meaning,
given by an expert, such as weak, medium and high. The diagram for membership
function of Σ is given in Fig. 4.

3 Existence, Stability Analysis and Bifurcation
of the Fuzzy Model

In this section, we study the existence and stability analysis of the non-negative
equilibrium point of the fuzzy model (2). Further, we also study the bifurcation
of the same. We refer all these theorem motivated by this paper [11].

For the following equation of fuzzy model (2), we have

dS

dt
= Λ − β(σ)SI − μS

dI

dt
= βSI − (μ + ε(σ) + Υ (σ))I

dR

dt
= Υ (σ)I − μR,

There are two non-negative equilibrium point of fuzzy model system (2). The
existence and the stability conditions for them are as follows.

(i) The disease free equilibrium point E1 = (Λ
μ , 0, 0) exists on the boundary of

the first octant.
(ii) The nontrivial equilibrium E∗(S∗, I∗, R∗) exists if and only if there is a

positive solution to the following set of equations.

dS

dt
= 0,

Λ − β(σ)SI − μS = 0,

dI

dt
= 0,

β(σ)SI − (μ + ε(σ) + Υ (σ))I = 0,
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dR

dt
= 0,

Υ (σ)I − μR = 0.

Thus there are two equilibrium points E1 = (Λ
μ , 0, 0) and E∗ =

(
μ+ε(σ)+Υ (σ)

β(σ) , Λ(σ
μ+ε(σ)+Υ (σ) − μ

β(σ) , 1 − S − I
)
.

For the two equilibrium points one for disease free and another for endemic
in epidemiology, we have the following.

Theorem 1. The system has a disease-free equilibrium (Λ
μ , 0, 0) and a

unique endemic equilibrium
(

μ+ε(σ)+Υ (σ)
β(σ) , μ

β(σ) (R0 − 1), 1 − S − I
)
, where

R0 = β(σ)Λ
μ(μ+ε(σ)+Υ (σ)) is the basic reproduction number. The endemic equilibrium

exists only when R0 > 1.

Theorem 2. The disease-free equilibrium (Λ
μ , 0, 0) is locally asymptotically sta-

ble when R0 < 1 and unstable when R0 > 1.

Now, in order to study the behavior of solution near the equilibrium points,
we need to compute the variational matrix of the fuzzy model system (2). Let
V (S, I,R) be the variational matrix of the fuzzy model system (2) at the point
(S, I,R). Then

V =

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ ,

where

a11 = β(σ)I − μ,

a12 = −β(σ)S,

a13 = 0,

a21 = β(σ)I,

a22 = β(σ)S − (μ + ε(σ) + Υ (σ)) ,

a23 = 0,

a31 = 0,

a32 = Υ (σ),
a33 = −μ.

Thus for E1, the eigenvalues are −μ and
(

β(σ)Λ
μ − (μ + ε(σ) + Υ (σ))

)
. There-

fore, the equilibrium point E1 is asymptotically stable provided β(σ)Λ <
μ (μ + ε(σ) + Υ (σ)). Also, E1 is a saddle point if β(σ)Λ > μ (μ + ε(σ) + Υ (σ)).

The stability study of the proposed fuzzy model shows that E1 is unsta-
ble while E∗ is asymptotically stable for β(σ)Λ < μ (μ + ε(σ) + Υ (σ)).
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Now, consider σ∗ such that β(σ∗)Λ = μ [μ + ε(σ∗) + γ(σ∗)] is the bifurcation
value. Then

σ∗ =
σ0 σm σMΛ +

(
μ2 + μ ε0 + μ

)
σ0 σM (σ0 − σm)

σ0 σMΛ − μ [σM (1 − η − ε0) + (γ0 − 1)σ0] (σ0 − σm)
,

where σm ≤ σ∗ ≤ σ0 (Fig. 5).

Fig. 5. Bifurcation diagram.

Theorem 3. For the virus load σ = σ∗, the value of bifurcation parameter of
the proposed fuzzy model (2) the model has only one unstable equilibrium E1 if
σ < σ∗ and it has an asymptotically equilibrium E∗ if σ > σ∗.

3.1 Fuzzy Basic Reproduction Number

The basic reproduction number R0 is obtained through the analysis of the stabil-
ity of the trivial equilibrium point. For the classical SIR model, R0 = βΛ

μ(μ+ε+Υ ) ,
and R0(σ) is not a fuzzy set as it can be greater than 1. However, the maximum
value of R0(σ) is Λ

μ(μ+ε(σ)+Υ (σ)) . Thus ε0R0(σ) ≤ 1, whereby ε0R0(σ) is a fuzzy
set and hence FEV [ε0R0(σ)] is well-defined. In view of this, we introduce the
fuzzy basic reproduction number as under.

Definition 1. The fuzzy basic reproduction number is given by

Rf
0 =

1
ε0

FEV [ε0R0(σ)] ,

where R0(σ) = β(σ)Λ
μ(μ+ε(σ)+Υ (σ))

Now, from the Definition of fuzzy expected value,

FEV [ε0R0(σ)] = sup
0≤α≤1

inf [α, k(α)] , (3)

where k(α) = μ {u : ε0R0(σ) ≥ α} = μ(X) is a fuzzy measure.
Further, to obtain FEV [ε0R0(σ)], we have to define a fuzzy measure μ. For this
purpose, the possibility measure is given by

μ(X) = sup
σ∈X

Γ (σ), X ⊂ R. (4)
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From FEV [ε0R0], it is clear that β(σ)Λ
μ(μ+ε(σ)+Υ (σ)) is not decreasing with σ,

whereby the set X is an interval of the form [σ′, σM ], where σ′ is the solution of
the following equation.

ε0
β(σ)Λ

μ (μ + ε(σ) + Υ (σ))
= α. (5)

Thus

k(α) = μ [σ′, σM ] = sup
σ′≤σ≤σM

Γ (σ) (6)

where, k(0) = 1 and k(1) = Γ (σM ).
This measure indicates that the infectivity of a group is the one presented by

the individual belonging to the group with the maximal infectivity. Now, in order
to determine FEV [ε0R0] we assume that the amount of the virus load Σ of a
group of individuals is a linguistic and is divided into three classes: “weak (Σ−)”,
“medium (Σ+

−)” and “strong (Σ+)”. Each classification is a fuzzy number based
on the values σm, σ0 and σM that come into view in the definition of β (Fig. 6).

Fig. 6. Classification of linguistic variables.

Case (a) Weak virus load (Σ−) is defined for σ̂ + δ < σm. As σ̂ + δ < σ′, we
have FEV [ε0R0] = 0 < ε0 ⇔ Rf

0 < 1, which makes it possible to conclude that
the disease will be extinct.

Case (b) Strong virus load (Σ+) is defined for σ̂ − δ > σ0 and σ̂ + δ < σM .
Thus from (3), we have

k(α) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if 0 ≤ α < ε0
Λ

μ(μ+ε(σ̂)+Υ (σ̂)) ,

Γ (σ′) if ε0
Λ

μ(μ+ε(σ̂)+Υ (σ̂)) ≤ α < ε0
Λ

μ(μ+ε(σ̂+δ)+Υ (σ̂+δ)) ,

0 if ε0
Λ

μ(μ+ε(σ̂+δ)+Υ (σ̂+δ)) ≤ α ≤ 1.
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Obviously, if δ > 0, k is continuous and decreasing function with k(0) = 1
and k(1) = 0. Hence FEV [ε0R0] is the fixed point of k and

ε0
Λ

μ (μ + ε(σ̂) + Υ (σ̂))
< FEV [ε0R0] < ε0

Λ

μ (μ + ε(σ̂ + δ) + Υ (σ̂ + δ))
.

or

Λ

μ (μ + ε(σ̂) + Υ (σ̂))
< Rf

0 <
Λ

μ (μ + ε(σ̂) + Υ (σ̂))
,

or that, Rf
0 > 1, which indicates that the disease will be endemic.

Case (c) Medium virus load Σ+
− is defined for σ̂ − δ > σm and σ̂ + δ < σ0.

Therefore again from (3),

k(α) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if 0 < α ≤ ε0
β(σ̂)Λ

μ(μ+ε(σ̂)+Υ (σ̂)) ,

Γ (σ′) if ε0
β(σ̂)Λ

μ(μ+ε(σ̂)+Υ (σ̂)) < α ≤ ε0
β(σ̂+δ)Λ

μ(μ+ε(σ̂+δ)+Υ (σ̂+δ)) ,

0 if ε0
β(σ̂+δ)Λ

μ(μ+ε(σ̂+δ)+Υ (σ̂+δ)) < α ≤ 1 .

Similar to Case (b), we have

β(σ̂)Λ
μ (μ + ε(σ̂) + Υ (σ̂))

< Rf
0 <

β(σ̂ + δ)Λ
μ (μ + ε(σ̂ + δ) + Υ (σ̂ + δ))

.

Thus in any case, we have

ε0
β(σ̂)Λ

μ (μ + ε(σ̂) + Υ (σ̂))
< FEV [ε0R0] < ε0

β(σ̂ + δ)Λ
μ (μ + ε(σ̂ + δ) + Υ (σ̂ + δ))

or

β(σ̂)Λ
μ (μ + ε(σ̂) + Υ (σ̂))

<
FEV [ε0R0]

ε0
< ε0

β(σ̂ + δ)Λ
μ (μ + ε(σ̂ + δ) + Υ (σ̂ + δ))

or

R0(σ̂) < Rf
0 < R0(σ̂ + δ).

As the function R0(σ) = β(σ)Λ
μ(μ+ε(σ)+Υ (σ)) is an increasing and continuous function.

According to the Intermediate Value Theorem [10], there exists a unique σ̄, with
σ̂ < σ̄ < (σ̂ + δ) such that

Rf
0 = R0(σ̄) > R0(σ̂),

or that, there exists only one virus load (σ̄) such that the basic reproduction
number R0 and the fuzzy basic reproduction number Rf

0 coincide. Furthermore,
the average number of secondary cases (Rf

0 ) is higher than the number of sec-
ondary cases R0(σ̂) due to the medium amount of infection.
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3.2 Disease Control in Fuzzy Epidemic System

In this section, we analyze the control of the estimation of the disease in the
population using the fuzzy basic reproduction number Rf

0 = R0(σ̄). In the
proposed fuzzy system, spread of disease depend not only on the variable σ but
also on the transmission coefficient β, additional disease rate ε as well as the rate
of recovery Υ . In the following, we describe some of the following cases about
the existence and stability of the disease in the system. It is to be pointed out
here that the proposed fuzzy system represents a family of systems depending
on the parameter σ. In order to simplify these family of systems by a unique
system of equations with the same outcome, our result shows that there is one
value of σ, i.e., the bifurcation value σ∗.

(i) Weak amount of infection: In this case, σ̄ < σ̂ + δ ≤ σm, whereby the
fuzzy basic reproduction number Rf

0 is zero and the disease will be vanish
in the population.

(ii) Medium amount of infection: In this case,
• if σ∗ > σ, then fuzzy basic reproduction number Rf

0 is less than the unity
and the system will be free from disease; and

• if σ∗ < σ, then fuzzy basic reproduction number Rf
0 is greater than the

unity and the system will become endemic in the population.
(iii) Strong amount of infection: In this case, σ̄ > σ̂ > σ̂ + δ ≥ σ0, whereby

the fuzzy basic reproduction number Rf
0 (σ) > 1 and the disease will invade.

Now, the assumption of Rf
0 is related to control policies to stop the spread

of influenza;
(1) Rf

0 can be reduced by increasing σm (or, increasing σ∗).
(2) Since, σ̄ ∈ (σ̂, σ̂ + δ), if the amount of median virus load is very less

then the value of Rf
0 can reduce. For example, by using the medicine or

separation of infected individuals (decreasing δ).

4 Numerical Simulation

In this paper we use an iterative method to solve the numerical simulation. For
numerical simulation we consider the parameter value β(σ) = 0.3, Λ = 1.2,
μ = 0.2, γ(σ) = 0.2, ε(σ) = 0.1.

Fig. 7. Dynamical behavior of the system with β(σ) = 0.3, μ = 0.2, ε(σ) = 0.1.
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5 Conclusion

In this paper we have studied theoretically an SIR epidemic model both in
crisp and fuzzy system. Numerical methods are employed to solve the system
and the behavior of the SIR models with respect to time are observed which is
illustrate in Fig. 7. The stability of the system can also be observed from Fig. 7.
Interestingly, the fuzzy basic reproduction number Rf

0 is a function of disease
spreading virus, while in case of crisp system basic reproduction number is not
a direct function of virus. Thus it may be considered that fuzzy model is more
flexible and balanced than the crisp system.
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Abstract. Processing of spatial data can benefit from the use of fuzzy
inference systems, and such systems have been proposed to deal with
the map overlay problem for gridded data. The development of fuzzy
inference system for solving spatial problems poses specific challenges
due to the type of data and specific properties of the spatial context. In
this contribution, we take into account that a spatial dataset can exhibit
a big variety in different areas and determine the most possible ranges for
the variables in the rulebase system in a more appropriate and dynamic
way. In addition, we show how the construction and application of a
rulebase can be modified in order to handle this changed definition of
the most possible ranges.

Keywords: Fuzzy inference · Gridded data · Parameter ranges

1 Introduction

The use of spatial data plays a big role in many fields of research. Spatial data is
a broad term that covers all data that carries a spatial aspect; this usually relates
to real world locations using coordinates and appropriate projections. Examples
of such data are in fields such as environmental research and climatic research,
referring to data on e.g. concentration of different pollutants, temperature or
humidity. There are different representation models for spatial data [6,7]; the
two main models are feature based models and raster based models. Feature
based models allow for the representation of real world entities, such as locations,
roads or areas using basic geometric structures. However, for representing e.g. a
numerical property that has a different value on different locations, a different
model is required. Such a property theoretically has a precise value on every
location but as this is impossible to represent, the models used for this therefor
need to approximate the real situation. Most commonly used are raster-based
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models, also known as grid-based models. A raster or grid is overlayed with the
region of interest and partitions it in a number of cells. These cells tend to be
chosen to be regular, usually square or rectangular, but use of irregular shapes is
possible (e.g. partitioning a country in its provinces). With every cell, a value that
is considered representative is associated: for a property such as temperature,
this will be a weighted average; for a property such as population, this will be
a sum. The size of the cells determines the resolution: a grid consisting of cells
that represent areas of 1 km × 1 km has a much higher resolution than a grid
with cells that represent 5 km × 5 km and thus can capture much more detail
regarding the spatial distribution of the property.

In many analysis, it is necessary to combine data stemming from different
sources: in epidemiology for example, temperature can be combined with humid-
ity and salinity to identify areas where certain bacteria can thrive [4]; air pol-
lution data can be combined with population data to determine the exposure
of people to pollutants [2,3]. This requires overlaying the different datasets, an
operation which is called a map overlay; for current algorithms to combine spa-
tial data, we refer to [1,5]. Geographic Information Systems (GIS) help the users
to do this, by already correctly georeferencing the data. However, overlaying dif-
ferent datasets poses several challenges, particular for gridded data. A method
using artificial intelligence, in particular a rulebase system, to perform the map
overlay on gridded data was developed; this concept was presented in [9], the
resulting algorithm in [10]. In this contribution, attention will go to optimizing
the definitions of the antecedents of this rulebase system, by allowing the variable
spaces to be different for each datapair in both training set and data set.

The next section explains the map overlay problem for grids in more detail;
Sect. 3 details how the map overlay problem is translated into a rulebase. The
methodology to define antecedents is elaborated on in Sect. 4, along with its
impact on rulebase construction and application. The article finishes with con-
cluding remarks in Sect. 5.

2 Map Overlay Problem for Grids

A raster or grid allows for the modelling of a numeric property by partitioning
the region of interest into a number of cells, thus discretizing the two-dimensional
space. The defintion of the raster used is dependent on many factors, ranging
from the way data are gathered, the way models generate the data, the represen-
tation deemed most practical for typical applications or even historical factors.
When performing a map overlay, researchers intend to combine data from dif-
ferent sources, and as such the representation of this data may differ. In the
case of grids, this can result in incompatible grids: grids where there is not a
one-to-one mapping between the grid cells, as shown on Fig. 1. This can be as
one grid is shifted compared to the other, or because it uses a different cell size;
it could be rotated, or any combination of those. Note that this is not a problem
of coordinate transformation: the grids are already georeferenced and located in
the correct spot; they are just defined differently. In order to perform a map
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Fig. 1. Illustration of the map overlay problem for ill-aligned grids: how to relate the
hashed area with the shaded area?

Fig. 2. Examples of underlying distributions that can result in the same value for a
grid cell: if the value associated with the features in each of the above cells is the same,
the value of the grid cell will be the same.

overlay of grids, the common approach is to remap one grid onto the other (this
is called regridding), in order to achieve a one-one mapping of the cells. This is a
non-trivial step, as the underlying distribution of the data in a grid is not known:
at the level of the grid, the cell is the smallest unit. Whether the data inside the
grid is in reality localized in one area (e.g. in the case of pollutions sources: a
single factory), along lines (e.g. for pollution sources: roads) or uniform over the
region is not known. This is illustrated on Fig. 2, while the map overlay problem
for gridded data is illustrated on Fig. 1.

As such, assumptions are made to perform this remapping. Most commonly
used approaches assume either a uniform distribution in each grid cell, resulting
in areal weighting; a smooth distribution over the region of interest, requiring
spatial smoothing; or a spatial statistical correlation [1,8]. In [9], we proposed
solving the map overlay problem using proxy data in combination with a fuzzy
inference system. Proxy data is known data that has a spatial correlation with
the data of the grid that is remapped onto the other grid: the proxy data holds
additional information on the spatial distribution and can help to improve the
regridding process. The algorithm was presented in [10]. In the next section, the
translation of the problem to a rulebase system will be considered.



496 J. Verstraete and W. Radziszewska

3 From Map Overlay to Rulebase

3.1 Parameters

As mentioned in [9], the regridding problem can be considered a problem of
spatial disaggregation onto on irregular grid whose cells partition the cells of the
input (Fig. 3). As such, we consider here the problem of spatial disaggregation
of an input grid A onto an output grid B.

Fig. 3. Remapping the data from the shaded area can be done by performing a spa-
tial disaggregation into the numbered segments. The appropriate cells can later be
combined to form the output gridcells (e.g. the hashed cell).

The cells of a grid X will be denoted xi, with associated values f(xi). For the
discussion, it is assumed that we dissagregate a grid A representing data that is
cumulative: redistributing the data of a cell ai means dividing it in portions that
sum up to the value f(ai). In the rulebase approach, proxy data C is used to help
provide information on the underlying distribution; C is assumed to also be a
gridded dataset, but the approach can be modified to work with a feature-based
datasets as proxy data.

The disaggregation problem of A into B basically means finding values wbi

such that

∀bi ∈ B,∃aj ∈ A,wbi ∈ [0, 1] : f(bi) = wbi × f(aj)

∀aj ∈ A : f(aj) =
∑

bi∈B|bi∩aj �=∅
wbi × f(bi)

The second condition is equivalent to

∀aj ∈ A : 1 =
∑

bi∈B|bi∩aj �=∅
wbi

The rulebase approach determines these values wi by considering proxy data,
translated into antecedents.

IF (property of C relating to wbi) IS high AND ...
THEN wbi IS high

IF (property of C relating to wbi) IS low AND ...
THEN wbi IS low
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This rulebase will be executed for every output cell bi, so for every weight
wbi that needs to be determined. The first task here is to define the parameters
of the rulebase system; these will match a property of C relating to wbi . Note
that the grid C does not have to match grid A or grid B, and it does not have
to be a partitioning of either of those. To define a property that relates C to the
underlying distribution of A, it is possible to use the definition of the geometries
of the cells. If C for example holds similar data as A, but e.g. from a different
source, the amount of overlap of the cells of C, combined with the value of
those cells, can serve as an indication for the distribution of the data. Other
examples are possible; using overlap, distance, topology or other operations and
combinations. In this article, we consider the aforementioned example of overlap
and will denote the property that relates to bi as g(bi):

xi = g(bi) =
∑

cj∈C

S(cj ∩ bi)
S(cj)

× f(cj) (1)

where S() is the notation of the surface area, cj ∩ bi is the notation for the
geometry created by the intersection of the geometries of cj and bi and f(cj) is
the notation of the value associated with cj . Once a parameter for use in the
antecedent is defined, the construction of the rulebase using training dataset can
be started.

3.2 Rules

Construction of a rulebase from examples has been described in [11], and starts
from a partitioning of the input spaces and output space. The examples are taken
from a training set; this is a set that has known values for input as well as output
parameters. The input parameter in our case study is the value-weighted overlap
of cells of C with the target cell bi. Typically, and also in our case study, it is
therefor first necessary to find the domain of most possible values. An obvious
choice for this is to calculate the value for all datapairs in the training set, and
use the minimum and maximum of these to define the range, Fig. 4 illustrates
which cells are used to calculate the value of the hashed cell. The training set
will consist of input grid, output grid and proxy grid, denoted A′, B′ and C ′,
with elements respectively a′

j , b
′
i and c′

k.

x− = min
b′
i∈B′

g(b′
i) (2)

x+ = max
b′
i∈B′

g(b′
i) (3)

The linguistic terms high, low and medium will be defined over the interval
[x−, x+] as shown on Fig. 5. The output parameters yi are the weights, and by
definition they are in the range [0, 1]. The construction of the rulebase from
datapairs is done by constructing a rule for each datapair (xi, yi) yielding the
rule:



498 J. Verstraete and W. Radziszewska

Fig. 4. The shaded area indicates all the values that will be considered for determining
the minimum and maximum possible range for the hashed grid cell.

Fig. 5. Example of a natural partitioning to define the fuzzy sets for the linguistic
terms for low, medium and high in the range [x−, x+].

IF x IS Lx
j THEN y IS Ly

k

Here, x and y are the names of the variables for which xi and yi are the values
and Lx

j , respectively Ly
k the best matching linguistic term defined on the domain

of the variable. The rule has a weight which is assigned the lowest membership
grade of any of the values in the antecedent or consequent of the rule for its
considered membership term. In the last stage of the rulebase construction,
duplicate rules are removed and only those with the highest weights are kept.

3.3 Spatial Aspects and Impact

Consider the dataset on Fig. 6. The datapairs are of the form (xi, yi), with xi

as defined above and yi as the weight. In particular, consider the datapairs that
stem from cell a1 which disaggregated into two cells b11 and b12 . If the value of
C is assumed to be 1, then the calculated value g(bi) reverts to the amount of
overlap; the overlap with C is graphically illustrated by the shaded area. The
training dataset has values for xb11

, xb12
and for the output yb11 and yb12 (the

output values are not illustrated on the figure and are arbitarily chosen for the
example):

(xb11
, yb11 ) = (0.1, 0.2)

(xb12
, yb12 ) = (0.2, 0.8)
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Fig. 6. Example used to explain the impact of the range selection.

The cell b11 just slightly overlaps with C, as indicated by the shaded area on
Fig. 6, resulting in xb11

= 0.1 and xb12
= 0.2. Both of these evaluate to LOW,

using the linguistic terms defined on Fig. 5 and the values x− and x+ defined
as in Eqs. 2 and 3. At the same time, the output values are ybi1 = 0.2 and
ybi2 = 0.8, as this is how the data is distributed; these evaluate to LOW and
HIGH. Following the algorithm, these two datapairs would yield the rules:

IF x IS LOW y IS LOW
IF x IS LOW y IS HIGH

The differences between the evaluation of x will cause the rules to have dif-
ferent weights, and this in favour of the second rule, which is the more consistent
one considering the connection between grids C and A.

Similarly, examples can be found that will add the rules

IF x IS LOW y IS LOW
IF x IS HIGH y IS HIGH

and

IF x IS HIGH y IS LOW
IF x IS HIGH y IS HIGH

This means that the rulebase constructed will have four rules that are not
distinguishing enough, causing difficulties in differentiating values and resulting
in outcomes that have a high uncertainty. Even applying the same datapairs as
input to this rulebase results in evaluations that make the output value match
with both HIGH and LOW, causing the system to have to consider all results
and after aggregation yielding a solution that has higher uncertainty.

The origin of the problem is the fact that the range of most possible value
was chosen too wide. For the datapair in the first example, it is impossible that
either xb11

or xb12
are greater than 0.3, as the total weighted overlap of a1 with

C is 0.3. The biggest possible value is 1, which occurs in cell b32 . The choice of
the range [0, 1] is not suitable for this datapair and causes the construction of
rules that are less effective at solving the problem.

4 Customizing the Most Possible Ranges

4.1 Local Most Possible Range

If the grids are examined closer, grid C is used to help steer the underlying
spatial distribution of the data. As such, higher values in C, indicate high values
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in A but the actual definition of high should not be so strictly interpreted: the
connection between C and A is only required locally, and should be considered
relative for all cells of B that form the partitioning of the same cell in A. High
as such would have to refer to “the highest of those cells involved”. In order
to solve this problem in the rulebase creation and application, it is necessary to
change the definition of the most possible ranges. Considering the original spatial
datasets, the issue arises as the minimum possible range was chosen as the lowest
possible value that occurs, while the maximum was the highest possible value
that occurs. While this is true for the entire grid, the spatial dataset can exhibit
quite a different local behaviour. As such we can consider first defining the most
possible range individually for a given datapair, by limiting the area from which
this minimum and maximum are considered. For a given output cell bi, one could
consider all the cells that are within a given distance, or even more individual,
all the cells that are covered by the same input cell aj . Both these options are
illustrated on Fig. 7.

x−
b′
i
= min

b′
j∈B′|b′

j∩a′
k ∈A′ �=∅

g(b′
i) where b′

i ∩ a′
k �= ∅

x+
b′
i
= max

b′
j∈B′|b′

j∩a′
k ∈A′ �=∅

g(b′
i) where b′

i ∩ a′
k �= ∅

As a result, a given datapair (xbi , ybi) will have its own range for xbi : [x−
bi
, x+

bi
].

The range for the output variable ybi in this example can be shared between all
datapairs, and remains [0, 1].

)b()a(

Fig. 7. Two examples to illustrate the cells considered for determining the minimum
and maximum possible range for the hashed cell. These cells are indicated by the
shaded area: (a) using those cells that overlap the same input, (b) using the cells that
overlap a given neighbourhood.

In order to apply the rulebase with the algorithm in [11], all datapairs need
to have the same most possible range for a variable. It is possible to define a
common range, and rescale every value of xbi to match this common range. As
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an arbitrary choice, the range [0, 1] was selected; the scaled function that will be
used determine values as input for the rulebase is g′(bi) and is defined as:

g′(bi) =
xbi − x−

bi

x+
bi

− x−
bi

(4)

Using this definition, the rulebase construction method can be applied as
in the previous section. A special case can be added for the situation where
x−
bi

= x+
bi

, but this is trivial. The same example on Fig. 6, the two datapairs
(xb11

, yb11 ) = (0.1, 0.2) and (xb12
, yb12 ) = (0.2, 0.8) will now first have to be

rescaled. This yields:

g′(b11) =
xb11 − x−

b11

x+
b11

− x−
b11

=
0.1 − 0.1
0.2 − 0.1

= 0

g′(b12) =
xb12 − x−

b12

x+
b12

− x−
b12

=
0.2 − 0.1
0.2 − 0.1

= 1

In an example where there would be more than two cells partitioning the
input cell aj , other cells can have values that differ from 0 or 1. This trans-
formation of the input variable results in two new datapairs that will be used
for the rulebase construction: (0, 0.2) and (1, 0.8). These datapairs will evaluate
respectively to (LOW, LOW) and (HIGH, HIGH), yielding the rules:

IF x IS LOW y IS LOW
IF x IS HIGH y IS HIGH

While it still is possible for different rules to be constructed, such rules will
stem from datapairs that are inconsistent with the general assumption on the
relation between A and C; rather than from side-effects caused by the definitions
used.

4.2 Estimated Most Possible Range

The above approach for determining the range is defined by means of the calcu-
lated values for neighbouring cells. However, given that the most possible range
is a property which is connected to the output cell for which the value is cal-
culated, a most possible range can be calculated rather than derived from the
parameter values of neighbouring cells. This is the most difficult approach, as
the calculated range has to be defined in an appropriate way for all the output
cells. For the ongoing example of the value-weighted overlap, a suitable range
will be proposed.

Consider the an output grid B and a proxy grid C. The spatial distribution of
gridded data is not known, and therefor this is also the case for the data in grid
C. The different options for the spatial distribution of the data in this grid can
therefor help to determine the limits. The value-weighted overlap, which is used
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as the value in the rulebase, matches the assumption that data in the gridcells
of C is uniformly distributed. However, a different distribution, as illustrated on
Fig. 8a can be considered: the underlying spatial distribution of grid C is such
that it lies outside of the cell bi that is considered (shaded cell on Fig. 8a). This
is only possible for cells ck that have a partial overlap with bi; what remains is
the value-weighted overlap of the cells of C that are fully contained (hashed cell
on Fig. 8a). Such a distribution effectively results in the lowest possible value for
the parameter for bi.

x−
b′
i
=

∑

cj∈C|cj⊂bi

S(cj ∩ bi)
S(cj)

× f(cj)

=
∑

cj∈C|cj⊂bi

f(cj)

Similarly, the spatial distribution of the data in the cells of C could be such
that it maximizes the amount of data mapped in the considered cell bi. This is
illustrated on Fig. 8b. The underlying spatial distribution of the partially over-
lapping cells is in this case such that the data is fully contained in the considered
cell bj ; the maximum therefore is the sum of all overlapping cells (all nine cells
that overlap with the shaded cell on Fig. 8b).

x+
b′
i
=

∑

cj∈C|cj∩bi �=∅
f(cj)

This range the benefit that it effectively evaluates the value (value-weighted
overlap) against the realistically possible values. On the other hand, the property
has its limits: when there are no partially overlapping cells between bj and C,
the value will evaluate to the maximum. Similarly, when the cells of C are very
big compared to those of B, the range may be skewed too much towards high
values, resulting in the evaluation of the value of bj to be rather low.

If we consider as an example that all cells of the proxy grid in Fig. 8 have an
associated value 1, then for the shown shaded output cell b′

i, the most possible
range would be defined by the values:

x−
b′
i
=

∑

cj∈C|cj⊂bi

f(cj) = 1

x+
b′
i
=

∑

cj∈C|cj∩bi �=∅
f(cj) = 9

Estimated ranges are more difficult to construct than local parameters, and
are more prone to unforeseen side-effects. However, a properly defined estimated
range can capture an expert’s interpretation on how grids relate to one another
in much more advanced ways. It is difficult to illustrate the estimated ranges on
a simple example as the one on Fig. 6; for this small example it would perform
similar as to the global range, but this does not illustrate the benefits.
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)b()a(

Fig. 8. Interpretation of the estimated minimum and maximum, as respectively con-
tained cells (a) and overlapping cells (b).

Using estimated ranges to construct and evaluate a rulebase is similar to using
local ranges and require the rescaling of the value as mentioned in Sect. 4.1. The
assessment whether or not the rules generated from the examples are consistent
with the assumed connection with the proxy data is more difficult than when
using local ranges.

5 Conclusion

In this article, we presented a way of using variable most-possible ranges in both
the construction and application of fuzzy rulebase systems. The use of variable
most-possible ranges allow for the fuzzy rulebase to still differentiate between
values when there are local differences between the datapair, an aspect that
becomes very tangible and literal when dealing with spatial data. In addition
to showing how such local ranges can be used in fuzzy rulebase systems, we
also constructed two categories of variable most-possible ranges. The first is
similar in concept to the typical partitioning of the input space of the variable,
but limiting it to a subset of the datapairs. The second effectively computes
a most-possible range for the given variable, using specific algorithms designed
for the application. Small examples were used to illustrate the impact in the
construction of the rulebase.
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Abstract. In a previous paper by Bou et al., the minimal modal logic
over a finite residuated lattice with a necessity operator � was charac-
terized under different semantics. In the general context of a residuated
lattice, the residual negation ¬ is not necessarily involutive, and hence
a corresponding possibility operator cannot be introduced by duality. In
the first part of this paper we address the problem of extending such a
minimal modal logic with a suitable possibility operator �. In the sec-
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1 Introduction

Theoretical studies of fuzzy or many-valued modal logics have attracted an
increasing attention in the last years, both following general and foundational
approaches e.g. in [4,9,14,15], as well as focusing on particular families of fuzzy
logics, mainly those based on Gödel logic [6–8,10,11], �Lukasiewicz logic [3,12]
or more recently on Product logic [17].

In particular, in [4] the authors study in depth minimal modal logics with
a necessity operator � (and canonical truth-constants) over a finite residuated
lattice, considering different classes of many-valued Kripke frames and getting
complete axiomatizations with respect to them.

In the first part of this paper, Sect. 2, we address the problem of extending
those minimal modal logics with a possibility modal operator �. Note that in the
c© Springer International Publishing AG 2018
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Advances in Intelligent Systems and Computing 643,
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general context of a residuated lattice, if the residual negation ¬ is not involutive,
then � and � are not dual in the usual sense (� is not definable as ¬�¬).

In the second part, in Sect. 3 we define suitable axiomatic extensions of the
above fuzzy bi-modal logics, and then in Sect. 4 we define a logic to reason about
fuzzy preferences, generalising to the many-valued case one of the preference
modal logics considered by van Benthem et al. in [1].

2 The Minimal Bimodal Logic of a Finite Residuated
Lattice

We start from basic definitions in [4], with which we assume the reader cer-
tain familiarity. Through the following sections, we will be assuming A =
(A,∧,∨,�,→, 0, 1) to denote a finite (bounded, integral, commutative) resid-
uated lattice, and we will consider its canonical expansion Ac by adding a new
constant a for every element a ∈ A (canonical in the sense that the interpre-
tation of a in Ac is a itself.) The logic associated with Ac will be denoted by
Λ(Ac), and its logical consequence relation |=Ac is defined as follows: for all sets
Γ ∪ {ϕ} ⊆ Fm of formulas built in the usual way from a set of propositional
variables V in the language of residuated lattices (possibly including constants
from {a : a ∈ A}),

Γ |=Ac φ ⇐⇒ ∀h ∈ Hom(Fm,Ac), if h[Γ ] ⊆ {1} then h(φ) = 1, (1)

where Hom(Fm,Ac) denotes the set of evaluations of formulas on Ac.
In order to introduce the minimum bimodal logic over Ac, let us consider the

modal language MFm being the expansion of Fm with two modal operators �
and �. Kripke-style semantics for the bimodal logic is defined as follows.

Definition 1. An A-Kripke model is a triple M = 〈W,R, e〉 where

– W is a set of worlds,
– R : W × W → A, is an A-valued accessibility relation between worlds,
– e : W × V → A is the evaluation of the model, and it is uniquely extended to

formulas by letting e(w, a) = a for every a ∈ A, e(w,ϕ�ψ) := e(w,ϕ)�e(w,ψ)
for any propositional connective � in the language,1 and

e(w,�ϕ) :=
∧

w∈W

{R(v, w) → e(w,ϕ)}, e(w,�ϕ) :=
∨

w∈W

{R(v, w)&e(w,ϕ)}.

We let BMA denote the class of all A-Kripke models.

Observe that the above values are always well-defined because the lattice is finite.
We say that, in a Kripke model M, a formula ϕ follows from a set of

premises Γ , and write Γ �M ϕ, whenever for any v ∈ W such that e(v, γ) = 1

1 For the sake of clarity, we use the same symbol (e.g. �, →) both as syntactic con-
nective in the language MFm and as the corresponding algebraic operation.
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for all γ ∈ Γ , it holds that e(v, ϕ) = 1 too. Whenever we have a class of models
C, we will write Γ �C ϕ meaning that ϕ follows from Γ in all the models of the
class.2

As usual, in any deductive system used along this article (including the ones
defined in the above lines), we will omit writing ∅ whenever the set of premises
is empty, and simply write � ϕ.

2.1 Axiomatization

In this section we present a modal axiomatic system over a finite residuated
lattice A, as an extension of the axiomatic modal system presented in [4, Defin-
ition 4.6], called Λ(Fr,Ac), and that will be shown to be complete with respect
to �BMA

defined above.
Before proceeding to the definition of the axiomatic system, observe that a

sort of symmetric version of the axiom (Axa) in [4, Propsition 3.10] is valid in all
A-Kripke models. Namely, for every a ∈ A,

�BMA
�(ϕ → a) ↔ (�ϕ → a).

This follows immediately from the fact that in any residuated lattice A, for
any X ∪ {a} ⊆ A, it holds that

∧
x∈X

{x → a} =
∨

x∈X

{x} → a whenever the

corresponding inf. and sup. exist (which is our case since the algebra is finite).
It looks then natural to consider that formula as a member of the axiomatic

system, and as we prove below, this one is indeed the only formula referring to �

that we need to consider in order to get a complete axiomatic system for �BMA
.

Definition 2. Let BMA be the deductive system given by:

1. The axiomatic basis of Λ(Fr,Ac), i.e.:
- an axiomatic basis for Λ(Ac)
- modal axioms for �:

�1, (MD) (�ϕ ∧ �ψ) → �(ϕ ∧ ψ), (Axa) �(a → ϕ) ↔ (a → �ϕ)
2. The axiom schemata

(��a) �(ϕ → a) ↔ (�ϕ → a), for each a ∈ A
3. The rules of the basis for Λ(Ac) and the Monotonicity rule:

(Mon) from ϕ → ψ derive �ϕ → �ψ

We will denote by �BMA
the corresponding notion of proof, and by Th(BMA)

the set of theorems of the logic BMA, i.e. Th(BMA) = {ϕ ∈ MFm : �BMA
ϕ}.

In order to prove completeness of the previous logic with respect to
the relation �BMA

we will resort to the usual canonical model construction.
However, we need to define a canonical model different from the one used
2 This logical consequence is usually referred to as the local modal logic arising from

a class of Kripke models, in contrast with the global one that considers truth in the
whole model. It is out of the scope of this work to introduce and study the global
modal logic over residuated lattices.
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in [4, Lemma 4.8] in order to capture the behaviour of the � operator. Before
doing so, let us state a useful lemma that will allow to move from deductions in
the modal logic BMA to deductions in the underlying propositional logic Λ(Ac).

Lemma 1. For any Γ ∪ {ϕ} ⊆ MFm, Γ �BMA ϕ iff Th(BMA) ∪ Γ �Λ(A) ϕ.3

Proof. Right-to-left direction is immediate, since BMA expands Λ(Ac). The
other direction is easily proved by induction on the length of the proof of ϕ from
Γ , observing that the rule (Mon), the only new inference rule added to Λ(Ac)
in doing the modal expansion, only applies to theorems of the logic. ��

If Γ ��BMA
ϕ, the previous result allows us to obtain a non-modal homomor-

phism h that evaluates to 1 the formulas in Γ and all theorems of BMA, and does
not do the same for ϕ. This is the reason behind the definition of the canonical
model that follows.

Definition 3. The canonical Kripke model of BMA is the A-valued model
Mc = 〈W c, Rc, ec〉 where:

– W c := {h ∈ Hom(MFm,A) : h(Th(BMA)) = {1}},
– Rcvw :=

∧
ψ∈Fm

(v(�ψ) → w(ψ)) ∧ (w(ψ) → v(�ψ)),

– ec(v, p) = v(p), for any propositional variable p.

As usual, the key fact in using the previously defined model to prove com-
pleteness is that it enjoys the so-called truth lemma, ensuring that the behaviour
of ec coherently extends to all formulas.

Lemma 2 (Truth lemma). For any v ∈ W c and any modal formula ϕ, it
holds that ec(v, ϕ) = v(ϕ).

The previous lemma can be proved by structural induction, the only non
trivial cases being the formulas beginning by a modality. One of the inequalities
(for both modalities) is easy to prove, as shown next.

Lemma 3. For any formula ϕ ∈ Fm, and any v ∈ W c, the following hold:
1. v(�ϕ) �

∨
w∈W c

{Rc(v, w) � w(ϕ)},
2. v(�ϕ) �

∧
w∈W c

{Rc(v, w) → w(ϕ)}.

Proof. We prove the first inequality, the other can be proved analogously. Apply-
ing the definition of Rc(v, w) and the monotonicity of � in any residuated lattice,
it is possible to prove the following inequality for any v, w ∈ W c:

Rc(v, w) � w(ϕ) =
∧

ψ∈Fm

(v(�ψ) → w(ψ)) ∧ (w(ψ) → v(�ψ)) � w(ϕ)

� (w(ϕ) → v(�ϕ)) � w(ϕ) � v(�ϕ).

Since this holds for any world w, we have
∨

w∈W c

{Rc(v, w) � w(ϕ)} � v(�ϕ). ��
3 We do not detail this issue here due to lack of space and interest, but for the interested

reader, it should be clear that the language from the right side of this equivalence
counts with an extended -countable- set of variables that capture the modal formulas.
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As for the converse inequalities, it is worth to first prove a powerful technical
lemma (cf. [16, Lemma 6.12]) that generalizes and provides a more modular and
scalable proof of the truth lemma compared to that in [4, Lemma 4.8]

Lemma 4. Let v ∈ W c and ϕ ∈ Fm be such that for all w ∈ W c it holds that
Rc(v, w) � w(ϕ). Then v(�ϕ) = 1.

Proof. For the sake of a clearer notation, let σ : Fm → Fm be given by

σ(ψ) = (v(�ψ) → ψ) ∧ (ψ → v(�ψ)).

In this way, we have that Rcvw =
∧

ψ∈Fm w(σ(ψ)). Now, observe that by
definition, Rc(v, w) � w(ϕ) if and only if

for all a ∈ A, if a � Rcvw then a � w(ϕ). (2)

By hypothesis, this holds for each w ∈ W c. Unfolding all the definitions, this
means that for any w ∈ Hom(Fm,A) such that w(Th(BMA)) = {1}, and for
any a ∈ A, if a � w(σ(ψ)) for all ψ ∈ Fm then a � w(ϕ). Clearly, we can now
formulate this fact in terms of the propositional consequence relation |=A:

Th(BMA) ∪ {a → σ(ψ) : ψ ∈ Fm} |=Ac a → ϕ. (3)

Since the propositional logic is finitary, then for each a ∈ A there is a finite set
of formulas Σa,4 such that (3) holds iff

Th(BMA) ∪ {a →
∧

ψ∈Σa

σ(ψ)} |=Ac a → ϕ.

Let Σ :=
⋃

a∈A Σa, which is clearly finite. Since |=Ac

∧
ψ∈Σ

σ(ψ) → ∧
ψ∈Σa

σ(ψ),

we have for each a ∈ A, Th(BMA) ∪ {a → ∧
ψ∈Σ

σ(ψ)} |=Ac a → ϕ, from where

Th(BMA) |=Ac

∧

ψ∈Σ

σ(ψ)) → ϕ,

by taking for each h ∈ Hom(Fm,A) such that h(Th(BMA), ) = 1, the constant
a = h(

∧
ψ∈Σ σ(ψ)) in the deduction above.

We can now successively apply completeness of Λ(A) w.r.t |=A, Lemma 1,
(Mon) rule and then Lemma 1 and non-modal completeness again to get

Th(BMA) |=Ac �(
∧

ψ∈Σ

σ(ψ)) → �ϕ.

To conclude the proof it suffices to check that v(�(
∧

ψ∈Σ σ(ψ)) = 1. By
axiom (MD), v(�(

∧
ψ∈Σ σ(ψ)) = v(

∧
ψ∈Σ �σ(ψ)), so we only need to check

4 Note that for a finite set of formulas Θ,
∧

θ∈Θ

θ is a formula in the language too.
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v(�σ(ψ)) = 1 for each σ ∈ Σ. This is proved by the following chain of equalities:

v(�σ(ψ)) =v(�((v(�ψ) → ψ) ∧ (ψ → v(�ψ))))

=v(�(v(�ψ) → ψ) ∧ �(ψ → v(�ψ)))

=v((v(�ψ) → �ϕ) ∧ (�ϕ → v(�ψ)))

=(v(�ψ) → v(�ϕ)) ∧ (v(�ϕ) → v(�ψ)) = 1. ��
We have now the two main pieces to provide a clear proof of the truth lemma.

Proof of Lemma 2. Let us prove the converse inequalities of Lemma 3. Let
ϕ = �ψ for some ψ. Since we already know that e(v,�ψ) � v(�ψ), to prove the
equality is enough to prove that for all a ∈ A, if a � e(v,�ψ) then a � v(�ψ).
Thus, let a ∈ A be such that

a � e(v,�ψ) = inf{Rc(v, w) → e(w,ψ) : w ∈ W c}.

By the induction hypothesis, it is enough to prove that a � Rc(v, w) → w(ψ)
for all w ∈ W . By residuation, Rc(v, w) � a → w(ψ), and so,

Rc(v, w) � w(a → ψ) for all w ∈ W c.

Lemma 4 implies that v(�(a → ψ)) = 1. Then, by axiom (Axa) we get that
a → v(�ψ) = 1, and so, a � v(�ψ).

In a very similar way we can prove the analogous result for �. Let ϕ = �ψ
for some ψ. To check that e(v,�ψ) � v(�ψ) is enough to prove that for all
a ∈ A, if a � e(v,�ψ) then a � v(�ψ). Thus, let a ∈ A be such that

a � e(v,�ψ) = sup{Rc(v, w) � e(w,ψ) : w ∈ W c}.

By induction, this is equivalent to a � Rc(v, w) � w(ψ) for all w ∈ W . By
residuation, Rc(v, w) � w(ψ) → a, and so,

Rc(v, w) � w(ψ → a) for all w ∈ W c.

From Lemma 4, we know that v(�(ψ → a)) = 1. Then, by axiom (��a) we get
that v(�ψ) → a = 1, and so, a � v(�ψ). ��

Completeness of BMA is now a corollary of the Truth Lemma and Lemma 1.

Theorem 1 (Completeness of BMA). For any Γ ∪ {ϕ} ⊆ MFm, Γ �BMA
ϕ

iff Γ �BMA
ϕ.

Proof. Soundness was already justified before Definition 2. Concerning complete-
ness, let Γ ��BMA

ϕ. From Lemma 1, there is a homomorphism h from MFm
into A evaluating to 1 all theorems of BMA and all elements in Γ , and such
that h(ϕ) < 1. Then, h is by definition a world of the canonical model of BMA.
Using the truth lemma, we know that ec(h, γ) = h(γ) = 1 for all γ ∈ Γ , while
ec(h, ϕ) = h(ϕ) < 1, and so, the canonical model serves to prove that Γ ��BMA

ϕ.
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3 Some Useful Axiomatic Extensions

It is reasonable to ask ourselves whether some interesting frame and model con-
ditions can be characterized by means of adding some axiom schemata to the
system BMA. While a systematic study of these properties is far from being
developed in the context of modal fuzzy logics, we can still obtain some results
for particularly interesting conditions. Motivated by the application to prefer-
ence modelling in Sect. 4, we will study the classes of transitive, reflexive and
symmetric models, and also the class of models whose accessibility relation is
crisp (i.e., evaluated only on {0, 1}).

Even though most of the literature addresses fuzzy relations as those evalu-
ated over the interval [0, 1], there is no motivation for that restriction in general,
and most of the conventions, notions and results known for fuzzy relations are
preserved in the more general context of relations evaluated over bounded inte-
gral residuated lattices (i.e., those where there exists a top and bottom elements
that coincide with the usual constants 0 and 1). From this reflection, the defini-
tion of reflexive, �-transitive and symmetric A-Kripke models is immediate: an
A-Kripke model M is:

R: Reflexive when R(v, v) = 1 for all v ∈ W .
S: Symmetric when R(v, w) = R(w, v) for any v, u ∈ W .
T: �-Transitive when R(v, w) � R(w, u) � R(v, u) for any v, u, w ∈ W .

If P denotes one or more of the previous conditions, we will denote by (P)BMA

the class of A-Kripke models satisfying the conditions from P. It is not hard
to see that the well-known modal axioms that characterize the previous frame
conditions in classical modal logic also characterize their corresponding many-
valued counterpart defined above.

Proposition 1. Let X be one or more of the following pairs of axiom schematas:

– (T�) : �ϕ → ϕ and (T�) : ϕ → �ϕ (reflexivity)
– (B�) : ��ϕ → ϕ and (B�) : ϕ → ��ϕ (symmetry)
– (4�) : �ϕ → ��ϕ and (4�) : ��ϕ → �ϕ (transitivity)

Then let (X)BMA be the axiomatic extension of BMA with the axioms from X,
and let P be the model conditions corresponding to the axioms in X. Then, for
any Γ ∪ {ϕ} ⊆ MFm, Γ �(X)BMA

ϕ iff Γ �(P)BMA
ϕ.

Proof. Soundness is easy to check in all three cases. Concerning completeness,
it is just necessary to take into account that the canonical model for (X)BMA

is defined in the same way as the one for BMA but taking into account the new
equations arising from the additional axioms in the definition of the worlds of
the model (that now need to validate them). Under this consideration, reflexivity
follows immediately from the definition of Rc(v, v). Indeed,

Rc(v, v) =
∧

ψ∈Fm

(v(�ψ) → v(ψ)) ∧ (v(ψ) → v(�ϕ),
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and due to the reflexivity axioms (T�) and (T�) it follows that Rc(v, v) = 1.
As for symmetry, assume towards a contradiction that for some v, w ∈ W c,

Rc(v, w) �� Rc(w, v). By definition, this means that there is some formula ϕ such
that Rc(v, w) �� (w(�ϕ) → v(ϕ)) ∧ (v(ϕ) → w(�ϕ)), and thus, at least one of
the following situations must hold:

(1) Rc(v, w) �� w(�ϕ) → v(ϕ),
(2) Rc(v, w) �� v(ϕ) → w(�ϕ).

It is easy to show that any of the previous conditions leads to a contradiction
with the symmetry axioms. For if (1) were to hold, necessarily we would also
have Rc(v, w) �� w(�ϕ) → v(��ϕ) due to axiom (B�), but this contradicts the
definition of Rc(v, w) (since Rc(v, w) � w(ψ) → v(�ϕ) for all ψ). The second
possible situation (2) is handled in the same way by resorting to axiom (B�).

The case of �-transitivity is a bit more cumbersome but equally simple.
Assume towards a contradiction that there are some v, w, u ∈ W c for which
Rc(v, w) � Rc(w, u) �� Rc(v, u). Then, by definition of Rc(w, u), there is some
formula ϕ such that Rc(v, w) � Rc(w, u) �� (v(�ϕ) → u(ϕ)) ∧ (u(ϕ) → v(�ϕ).
As above, there are two possible cases:

(1’) Rc(v, w) � Rc(w, u) �� (v(�ϕ) → u(ϕ)) or
(2’) Rc(v, w) � Rc(w, u) �� (u(ϕ) → v(�ϕ).

We can again show that none of the previous conditions can hold. We will
show the first one, the other is done analogously (using the dual (4�) axiom).
Observe that by Axiom (4�), together with the fact that → is decreasing in the
first component, (1’) implies that Rc(v, w) � Rc(w, u) �� (v(��ϕ) → u(ϕ)) =∧

z∈W c(Rc(v, z) → z(�ϕ)) → u(ϕ). In particular (resorting again to the anti-
monotonicity of →), letting z = w, we get Rc(v, w) � Rc(w, u) �� (Rc(v, w) →
w(�ϕ)) → u(ϕ) By the residuation law it follows Rc(v, w) � (Rc(v, w) →
w(�ϕ)) �� Rc(w, u) → u(ϕ) and thus, we get the contradictory statement
w(�ϕ) �� Rc(w, u) → u(ϕ). ��

Interestingly enough, the previous completeness results allow us to charac-
terize the class of models with fuzzy �-preorders (i.e. reflexive and �-transitive
models) with axioms (T�,T�) and (B�,B�). However, if we further add axioms
(4�, 4�) we do not get an axiomatization of the class of models with a universal
relation (i.e., for which R(v, w) = 1 for all v, w), in contrast with what happens
in the classical case.

This lack of expressibility can be solved, when the underlying truth-value
algebra A enjoys certain nice properties, by combining the previous axiomatic
extensions with a system complete with respect to the models whose accessibility
relation is crisp, i.e. evaluated only over {0, 1}, Indeed, it is possible to provide
such an axiomatic system whenever A is subdirectly irreducible (SI),5 with the
same approach that the one followed in [4]. For the sake of simplicity, we will

5 For the interested reader, see eg. [5] for an insight on the importance of this kind of
algebras.
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focus in this paper in the particular case of A being a linearly ordered residuated
lattice, which is always a SI residuated lattice. The key idea is the fact that any
(finite) SI residuated lattice A, and so, any linearly ordered one, has a unique
coatom k, i.e. a unique element k < 1 such that, for any a ∈ A, if a < 1 then
a � k. Since it coincides almost exactly with the proof of [4, Theorem 4.22], we
do not detail here the proof of the following result.

Theorem 2. Let A be a finite linearly ordered residuated lattice, and CA be the
class of crisp A-Kripke models. Define the logic CBMA as the extension of BMA

with the axiom schemata

– (�k) �(k ∨ ϕ) → (k ∨ �ϕ),

and let �CBMA denote the corresponding notion of proof. Then, for any Γ ∪{ϕ} ⊆
MFm, Γ �CBMA

ϕ iff Γ �CA
ϕ.

As a direct corollary we get the following result.

Corollary 1. Let S5BMA be the axiomatic extension of BMA with the axioms
(T�), (T�), (B�), (B�), (4�), (4�) and (�k), and consider the class UA of uni-
versal A-Kripke models. Then, if A is a finite linearly ordered residuated lattice,
for any Γ ∪ {ϕ} ⊆ MFm, we have Γ �S5BMA

ϕ iff Γ �UA
ϕ.

4 Modelling Fuzzy Preferences

In this section, as a matter of illustrating application, we show how the logical
machinery developed in the previous sections can be used to devise a logical
framework to represent and reason with fuzzy preferences.

We take as starting point van Benthem et al.’s work [1] where, among other
logics, the authors consider a basic (classical) modal logic of weak and strict
preference interpreted in ordered models of possible worlds, provide a complete
axiomatization, and show how global preferences between propositions can be
defined by lifting the world ordering to an ordering between sets of worlds.
Actually they consider different possibilities to define such global preferences
based on (crisp) preference models, i.e. structures M = (W,�, e), where � is
preorder on the set of worlds and e is a valuation. The language contains two
modal operators, a global S5 modality A and a S4 modality �, where Aϕ reads
that ϕ is true in all the worlds, while �ϕ reads that ϕ is true in all the worlds
that are more preferred (in the sense of �) than the current world. Then, one
possibility to encode that “ψ is weakly preferred to ϕ” is by the formula

ϕ �∀∃ ψ := A(ϕ → �ψ),

to be interpreted as expressing that for any world where ϕ is true, there is a
more preferred world where ψ holds.

In what follows we show how the above framework can be faithfully gener-
alised to deal with both fuzzy propositions and preferences, taking values in a
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linearly ordered finite residuated lattice A. The reason to restrict ourselves to
linearly ordered algebras A is due to the need of using a global modal operator,
for which we only have an axiomatization in such a case, see previous section.

Thus, for modelling preferences we consider a language PFm expanding
MFm with two additional unary operators A and E, which will the role of
global operators. The intended semantics is given by the class of reflexive and
�-transitive A-Kripke models, that we will call A-preference models.

Definition 4. An A-preference model P is a triple P = 〈W,R, e〉 such that

– W is a set of worlds,
– R : W × W → A is an A-valued fuzzy pre-order, i.e. a reflexive and �-

transitive relation between worlds,
– e : W × V → A is a A-evaluation of variables that is uniquely extended to

formulas of PFm as in Definition 1 for the propositional connectives and
operators � and �, and for the new operators is extended as follows:

e(v,Aϕ) =
∧

w∈W

{e(w,ϕ)} e(v,Eϕ) =
∨

w∈W

{e(w,ϕ)}.

We will denote by PA the class of A-preference models, and use �PA
with the

analogous meaning it had for A-valued Kripke models in the previous sections.
After the work developed in the previous sections, it is very natural the way

to provide an axiomatic system complete with respect to �PA
.

Theorem 3 (Completeness). Let PA be the deductive system given by:

– The axioms and rules of (T4)BMA for the � and � operators
– The axioms and rules of S5BMA for the A, E operators
– The inclusion axiom schematas: Aϕ → �ϕ, �ϕ → Eϕ

Denoting by �PA
its corresponding notion of proof, then for any Γ ∪{ϕ} ⊆ PFm,

we have Γ �PA
ϕ iff Γ �PA

ϕ.

Proof. Soundness is a simple exercise. As for completeness, analogously to the
approach to prove completeness for the minimal bimodal logic BMA in Sect. 2,
one can build a corresponding canonical model Pc = (W c, Rc

1, R
c
2, e

c), with
W c := {h ∈ Hom(PFm,A) : h(Th(PA)) = 1} and this time with two accessi-
bility relations Rc

1 and Rc
2, one for the pair of operators (�,�) and another for

the operators (A,E). By Proposition 1, it follows that Rc
1 is a fuzzy �-preorder

(it is reflexive and �-transitive), while Rc
2 is a crisp equivalence relation. The

corresponding truth-lemma (analogous to Lemma 2) shows that if Γ ��PA
ϕ there

is world v0 ∈ W c for which e(v0, γ) = 1 for all γ ∈ Γ and e(v0, ϕ) < 1. Note that
this does not prove yet the claim of the theorem, since Rc

2 is not guaranteed to
be the universal binary relation on W c. So a bit more elaboration is needed.

Due to the inclusion axioms, it is immediate to see that Rc
1(v, w) � Rc

2(v, w)
for any pair of worlds, so in particular

if Rc
1(v, w) > 0 then Rc

2(v, w) = 1. (4)
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At this point, we can consider the submodel Pc
v0

generated by v0 with respect to
R2, i.e., the model whose universe is W c(v0) = {w ∈ W c : R2(v0, w) = 1}, whose
relations are the restrictions of Rc

1 and Rc
2 to W c(v0), and whose evaluation

of variables is the same. We only need to check that the truth-evaluations in
the submodel (in the worlds from W c(v0)) and in the original model are the
same. Note that Rc

2 on W c(v0) is total. This can be proved by induction on the
complexity of the formula, being immediate for the cases concerning non-modal
connectives. As for the modal operators, first observe that for any u,w ∈ W ,
if u ∈ W c(v0) and w �∈ W c(v0) it follows that Rc

2(u,w) = 0 (since Rc
2 is an

equivalence relation), and hence Rc
1(u,w) = 0 as well. Then, for any u ∈ W c(v0):

ec
v(u,�ϕ) =

∧
w∈W c(v0)

{Rc
1(u,w) → ec(w,ϕ)} =

∧
w∈W c

{Rc
1(u,w) → ec(w,ϕ)},

ec
v(u,Aϕ) =

∧
w∈W c(v0)

ec(w,ϕ) =
∧

w∈W c:Rc
2(u,w)=1

ec(w,ϕ).

A similar argument can be done for � and E. This concludes the proof, since
the resulting model Pc

v0
is an A-preference model in which there is a world v0

satisfying Γ and not ϕ. ��
From the above, in the frame of the PA logic one can represent the (weak)

preference of a proposition ψ over another ϕ by the expression A(ϕ → �ψ).
This preference between propositions actually enjoys the properties of a fuzzy
�-preorder, which justifies in a sense the meaningfulness of this choice. Indeed,

– Reflexivity: A(ϕ → �ϕ) is valid in PA, since ϕ → �ϕ, i.e. axiom (4�), is
valid in PA.

– �-Transitivity: one can show that

A(ϕ → �ψ) � A(ψ → �χ) → A(ϕ → �χ) (5)

is also a valid formula in PA. Namely, this follows by first showing that the
following formula expressing a form of monotonicity for � holds true in PA:

A(ϕ → ψ) → A(�ϕ → �ψ).

This leads to A(ψ → �χ) → A(�ψ → ��χ), but since ��χ → �χ holds
true, we get A(ϕ → �ψ) � A(ψ → �χ) → A(ϕ → �ψ) � A(�ψ → �χ), and
by axiom K for A, it follows the validity of

A(ϕ → �ψ) � A(�ψ → �χ) → A(ϕ → �χ),

that directly allows us to show the validity of (5).

5 Conclusions

In this paper we have been concerned with completing the notion of the minimal
modal logic over a finite residuated lattice (and with truth-constants) from [4] to
get a full-fledged modal logic with both a necessity and a possibility operators.
The gain in expressibility has been used, as a matter of example, to define a
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many-valued counterpart of a modal logic studied in [1] to reason about prefer-
ences between propositions in such a many-valued setting. As for future work,
there are several interesting open research issues that are left open, among them:

– axiomatization of modal expansions of logics arising from varieties generated
by a finite residuated lattice, probably without resorting to canonical truth-
constants;

– better understanding of the expressibility of general frame/model conditions
in residuated lattice-based modal logics;

– deepening on the axiomatization of the logic arising from crisp Kripke models
over non SI residuated lattices;

– general study of a larger set of preference relations definable in the many-
valued context introduced in this work, along the line of [1,13].
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4. Bou, F., Esteva, F., Godo, L., Rodŕıguez, R.: On the minimum many-valued modal
logic over a finite residuated lattice. J. Logic Comput. 21(5), 739–790 (2011)

5. Burris, S., Sankappanavar, H.P.: A course in Universal Algebra. The Millennium
(2012). update edition

6. Caicedo, X., Metcalfe, G., Rodriguez, R., Rogger, J.: Decidability of order-based
modal logics. J. Comput. Syst. Sci. (2016, in Press)
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Abstract. The aim of supervised classification algorithms is to assign
objects/items to known classes. Before carrying out the final assignment,
many classification algorithms obtain a soft score (probability, fuzzy, pos-
sibility, cost...) between each item and each class. In order to improve this
final decision, we build a bipolar probabilistic model that considers some
extra information about the dissimilarity structure between the classes.
We present here some improvements for several supervised classification
algorithms such as random forest, decision trees and neural networks for
binary classification problems.

Keywords: Supervised classification models · Bipolar models · Soft
information

1 Introduction

Classification is one of the most important topics in statistics since the begin-
ning of supervised learning algorithms. It is possible to find a huge number of
supervised classification algorithms and applications based on the problem, type
of data, characteristics or efficiency [20,21].

In a supervised classification scheme, the main aim is to classify a set of items
into classes based on a training sample that is used to train the algorithm. Once
the algorithm has been trained, the algorithm classifies the new items into some
of the known classes. Nevertheless, we should differentiate in many classification
algorithms between the internal learning process that assigns a score (probability,
fuzzy, possibility) to the pair (item, class) and the final decision (this item belong
to this class) that is made from the former.

In this paper, we are going to model this soft information that appears in
many classification algorithms into a bipolar way with the main aim of fixing
some of the deficiencies in the learning process and improving the classification
performance. We will focus on several algorithms such as CART [6], Random

c© Springer International Publishing AG 2018
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Forest (RF) [7] and Neural Networks [26,31] but other classification algorithms
could also benefit from our approach.

For the experimental analysis we firstly fit these three algorithms and com-
pute the estimated probabilities of belonging to each class in the training step.
The negative probability is calculated once a dissimilarity matrix (which we shall
introduce later) has been found, and eventually both positive and negative prob-
abilities are aggregated to achieve a final bipolar probability for each class. The
final decision is given, in a usual way, by taking into account this new probability
value.

The suitability of the proposed bipolar approach is evaluated for each algo-
rithm in the framework of standard classification. Specifically, our new method
is tested on 10 datasets selected from the KEEL dataset repository [3], and it
is supported by a proper statistical analysis, as suggested in the literature (see
e.g. [9,12,13]).

The remainder of this paper is organized as follows. Section 2 describes the
base idea of bipolar knowledge. Then, in Sect. 3 we introduce the probabilistic
bipolar models in the frame of supervised classification problems. Two aggre-
gation functions are proposed to provide the final bipolar decision. Finally, the
experimental framework along with the respective experimental analysis are pre-
sented in Sects. 4 and 5. We summarize the paper with the main concluding
remarks in Sect. 6.

2 Bipolar Knowledge

Human beings have the ability and the propensity to reason and make decisions
on the basis of positive and negative affects. In other words, information or
alternatives are usually judged not only in terms of plausibility or utility, but
also attending to their intrinsic positive or negative character, as when people
make decisions by weighing up the good (pros) and bad (cons) sides of the
available alternatives and choosing that with the best balance between those
sides or poles. Due to the presence of two poles, this human judgment feature is
usually referred to as bipolarity.

In recent years, many authors (see for instance [5,10,24,25]) have emphasized
the relevance of introducing a bipolar approach in soft knowledge representation
formalisms as fuzzy logic [34] or possibility theory [11] in order to enhance their
expressive and representational power. On the other hand, our knowledge about
our own methods of reasoning has been a fruitful source of inspiration in the
development of artificial intelligence (AI) since its foundation in the middle of
last century. In fact, important areas of this discipline have been closely con-
cerned with the replication of some mental capacities of the human beings, like
playing chess or proving theorems.

For example, expert systems and decision support systems replicate the
human ability to make correct decisions in many fields of activity (such as med-
ical care, advertising, control tasks, disaster management, etc.) based on explicit
knowledge about these realities. In the same way, machine learning and data
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mining techniques (see e.g. [18]) have found a wide success by trying to replicate
the human ability to discover patterns and to learn from examples or experi-
ence (usually assumed to be contained in databases). However, it is important
to remark that this success would have not been possible without finding some
inspiration in our understanding of how humans manage to solve problems in
these fields and neither without the development of formal models enabling an
effective representation of this knowledge either. In consonance with these ideas,
in this paper we propose to introduce a bipolar approach in the framework of soft
rule-based classification systems, as e.g. fuzzy classification systems or random
forests.

3 Probabilistic Bipolar Models in Supervised
Classification Problems

Given a classification scheme, let us denote by {C1, . . . , Ck} the set classes, and
let us denote by X = {x1, . . . , xn} the set of items that has to be classified. Most
of the classification users focus on the final result of the classification process,
only considering the final class to which an item x ∈ X has been classified. In
this sense, classifiers are usually viewed as functions

C : X −→ {C1, . . . , Ck}.

As we say in the introduction most classification process goes through many
steps to arrive to the final decision, and the soft information appears in a natural
way in intermediary steps. Taking into account this, let us going to denote by a
probabilistic classifier C as a function

C : X −→ [0, 1]k.

The probabilistic classifiers gives us for each object x, a probability vector
C(x) = (p1, . . . , pk) where pi represents the probability given by the algorithm
to which object x belongs to the class Ci. Obviously, in a probabilistic scheme we
could impose that

∑k
i=1 pi = 1. Let us note that many classical algorithms can

be addressed in this class if we gather the information given by the algorithm in
a intermediary step.

The output that we take from a probabilistic classifier and the structure and
relationships that exist among classes can be used to represent the knowledge in a
bipolar way. In this work, we are going to consider that the vector of probabilities
given by a probabilistic classifier is the positive information that we have for an
item x. So let us denote by p+ =

(
p+1 , . . . , pkk

)
= (p1, . . . , pk). Obviously, for each

item x, we have
∑k

i=1 p+i = 1.
Let us represent by p−

i the probability of item x to belong a dissimilarity
class of Ci and by D = (di,j) the dissimilarity matrix, where di,j represent the
degree dissimilarity between classes Ci and Cj . Let us observed that for any
dissimilarity matrix D, dii = 0 for all i = 1, . . . , k, and this matrix is in general
non symmetric.



Improving Supervised Classification 521

In this work, we built the negative probabilities from this dissimilarity mea-
sure and from the positive probabilities. As we have previously mentioned, the
negative probability represents the probability of belongings to a dissimilar class,
so the following equation holds.

p−
i =

k∑

r=1

dir p+r

Remark 1. Let us note that the negative probability represents the probability
of membership to a dissimilar class, and then this probability does not come
from a probability distribution.

Once we have defined for each class and for each item, the positive and neg-
ative information, in this work we propose an aggregation process to transform
the pair (p+i , p−

i ) into one probability that we have called bipolar probability pbii .
Once these probabilities are obtained for all items and for all classes, we will
assign an object x to the class in which the maximum bipolar probability is
reached. In this sense a crisp bipolar classifier Cbi : X −→ {C1, . . . , Ck} can be
built from a probabilistic one C, in the following way:

From now on, the key process is the manner on how to aggregate the positive
and negative information in order to build this bipolar probability. In this work
we have considered two aggregation models that will be shown with more detail.

Let us note that this is our first bipolar approach, but other ways for dealing
with positive and negative information will be explored in future works.

In a classification problem, let X = {x1, . . . , xn} be the set of items and
let {C1, . . . , Ck} be the set of classes. If C is a probabilistic classifier and D a
dissimilarity matrix between the set of classes, it is possible to built (as we have
explained previously) for each item xl, the vector of positive probabilities p+l =
(p+,l

1 , . . . , p+,l
k ) and the vector of negative probabilities p−l = (p−,l

1 , . . . , p−,l
k ).

Without lost of generality, we will denote by p+ = (p+1 , . . . , p+k ) and by p− =
(p−

1 , . . . , p−
k ) the positive and negative probability vector respectively for a given

item xl. The question now is how to aggregate for a given class Ci the values p+i
p−
i into one. Obviously different ways of aggregation will give different bipolar

classifiers. In this work we have studied two, that we define below.

Definition 1. Let p+i , p−
i be the positive and negative probability of one item

into one class Ci, we define the additive bipolar probability of the object x into
class Ci as

pbipadi = Max{0, p+i − p−
i }.

Previous model presents an additive aggregation of positive and negative
information. A pbipadi > 0 represent the positive gap between the probability of
belonging to the class Ci and the probability of belong to a dissimilar class of Ci.
A value zero of pbipadi gives an idea that, for the item i, there are more negative
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indications than positive and thus the bipolar classifier should not assign the
item to this class.

In the following definition, we present an alternative way to aggregate the
positive and negative information into one that we have called logistic bipo-
lar probability according to the usual notation of the exponential aggregation
function used.

Definition 2. Let p+i , p−
i be the positive and negative probability of one item

into one class Ci, we define the logistic bipolar probability of the object x into
class Ci as

pbiplogi =

⎧
⎨

⎩
1 − e

− p
+
i

p
−
i if p−

i > 0
1 otherwise

To conclude this section, the bipolar classifier is defined from the bipolar
probability.

Definition 3. Given a probabilistic classifier C : X −→ [0, 1]k over an universe
X. And given a dissimilarity matrix D that permits to built for each item x the
bipolar information (p+, p−) =

(
(p+1 , p−

1 ), . . . , (p+k , p−
k )

)
from the probabilistic

classifier C(x)(p1, . . . , pk). The crisp bipolar classifier is defined as follow:

Cbip(x) = Cr if and only if pbipr = Max{pbipj ; j = 1..k}.

where pbip is the bipolar probability result of aggregation the vectors p+ and p−.

From now on, we will denote by Cbipad to the additive bipolar classifier built
from the probabilistic classifier C, and by Cbiplog we will denote the logistic
bipolar classifier.

4 Experimental Framework

This section is aimed to analyze the behaviour of our bipolar knowledge repre-
sentation approaches when applied on recognized classifiers such as CART [6],
Random Forest [7] and Neural Networks [26,31].

We firstly present the real world classification datasets selected for the exper-
imental study. Next, we briefly describe the different classifiers and also the con-
figuration of the GA that we will use in the experimental analysis. Finally, we
present the statistical analysis used to evaluate the results.

4.1 Data Sets

We have selected a benchmark of 10 datasets from the KEEL dataset repository
[3], which are publicly available on the corresponding web site, including general
information about them, partitions for the validation of the experimental results
and so on.
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A 5-folder cross-validation model was considered in order to carry out the
different experiments. That is, the considered datasets have been split into 5
random partitions of data, each one with 20% of the patterns, and we employ a
combination of 4 of them (80%) to train the system and the remaining one to
test it.

Table 1 summarizes the properties of the selected datasets, showing for each
dataset the number of examples (#Ex.), the number of attributes (#Atts.),
type (Real/Integer/Natura) and the imbalance ratio once the dataset has been
transform into a binary classification problem.

Table 1. Summary description for the employed datasets.

Id. Data-set #Ex. #Atts. (R/I/N) #IR

aut Autos 159 25 (15/0/10) 2.58

con Contraceptive 1473 9 (6/0/3) 3.43

fla flare 1066 25 (15/0/10) 2.58

eco ecoli 336 7 (7/0/0) 3.34

gla Glass 214 9 (9/0/0) 2.05

lin Lymphography 148 18 (3/0/15) 1.43

shu Shuttle 2175 9 (0/9/10) 5.44

thy Thyroid 720 21 (6/0/15) 18.1

yea Yeast 1484 8 (8/0/0) 5.1

car Car 159 25 (15/0/10) 3.5

We must point out that the thyroid dataset presents a high IR, because
of its previous multiclass imbalance distribution. We consider that fact as an
opportunity to asses our bipolar approaches when dealing with high imbalance
datasets.

4.2 Algorithms Considered as Base Classifier

We have selected three well known classifiers for our first experiment. On one
hand, we have considered the CART [6] algorithm because of its simplicity,
on the other hand we have chosen a more complex rule based classifier such
as Random Forest [7] as well as one of the most powerful machine learning
parametric algorithms, Neural Networks [26,31].

For the learning process, we have used the following configuration of the GAs
used for the learning of dissimilarity structures, that provided a solution in a
feasible amount of time. We indicate the values that have been considered for
the parameters of the evolutionary tuning of our bipolar proposal:

– Population Size: 50 individuals.
– Number of iterations: 20
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– Mutation Chance: 0.01.
– Elitism: About 20% of the population size.

4.3 Statistical Test for Performance Comparison

In this paper, we use some hypothesis validation techniques in order to give
statistical support to the analysis of the results. We will use non-parametric
tests because the initial conditions that guarantee the reliability of the para-
metric tests cannot be fulfilled, which implies that the statistical analysis loses
credibility with these parametric tests [9].

Specifically, we employ the Wilcoxon rank test [32] as a non-parametric sta-
tistical procedure for making pairwise comparisons between two algorithms. For
multiple comparisons, we use the Friedman aligned rank test, since it is recom-
mended in the literature [9,12,13] to detect statistical differences among a group
of results, and the Holm post-hoc test [17] to find the algorithms that reject the
equality hypothesis with respect to a selected control method.

The post-hoc procedure allows us to know whether a hypothesis of compari-
son of means could be rejected at a specified level of significance α. Furthermore,
we compute the adjusted p-value (APV) in order to take into account that mul-
tiple tests are conducted. In this manner, we can compare directly the APV
with respect to the level of significance α in order to be able to reject the null
hypothesis.

These tests are suggested in the studies presented in [9,12,13], where it is
recommended their use in the field of machine learning. A complete description
of these tests with many considerations and recommendations and even the
software used to run this analysis can be found on the website: http://sci2s.ugr.
es/sicidm/.

To analyse the suitability of our bipolar proposal we want to show empirically
whether our methodology enhances the results of the base classifier without the
bipolar tuning step. In this sense, for each base classifier we have two aggregation
functions.

Therefore, the main aim is to compare, for each classifier, the perform reached
by the three approaches: Classifier without tuning, Classifier + additive bipolar
and Classifier + logistic bipolar.

5 Experimental Results

This section is aimed to show the capacity of enhancement of our two new bipolar
approaches with respect to the base algorithms which this final decision tuning
method are applied to.

This experimental analysis is carried out by training the base classifier in
such a way that the best parameters for each training set will be selected in
terms of the kappa statistic. It means, we are selecting the optimal base classi-
fier configuration among the grid of parameters considered. We have selected a
bootstraped training with 25 samples.

http://sci2s.ugr.es/sicidm/
http://sci2s.ugr.es/sicidm/
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Once the classifier is trained, we ran the GA in order to find the best dissim-
ilarity structure for this training set. Finally, the predictions in test data for the
three models (base classifier, base classifier + Additive bipolar tuning and base
classifier + logistic bipolar tuning) are computed.

This experimental study has been carried out using R Software. Specifically,
we used the caret package [19] for the classifiers training and the genalg package
[33] to run the GA.

Results are grouped, for each base algorithm, in pairs for training and test,
where the best global result for each dataset in test is stressed in bold-face.

We observe from the results of Tables 2, 3 and 4 the general good behaviour
of the bipolar tuning method, at least in one of the aggregation approaches, since
it enhances the performance of the initial base algorithms.

Table 2. Results in train and test achieved by the genetic bipolar approaches applied
to the CART algorithm.

CART CARTbipAdd CARTbipLog

Tr. Tst Tr. Tst Tr. Tst

aut 0.730 0.738 0.730 0.738 0.730 0.738

car 0.793 0.724 0.793 0.733 0.793 0.733

con 0.328 0.241 0.337 0.295 0.339 0.298

eco 0.714 0.598 0.714 0.598 0.714 0.598

fla 0.584 0.529 0.595 0.530 0.595 0.530

gla 0.714 0.531 0.714 0.531 0.714 0.531

lin 0.659 0.514 0.659 0.514 0.659 0.514

shu 0.995 0.993 0.995 0.993 0.995 0.993

thy 0.890 0.823 0.890 0.823 0.890 0.823

yea 0.521 0.436 0.524 0.447 0.524 0.447

Mean 0.693 0.613 0.695 0.620 0.695 0.621

When the bipolar method is applied to the CART classifier, see Table 2,
improvements are achieved in 4 out of 10 datasets and very similar results are
reached by both aggregations. By contrast, for the RF classifier it is clear that
the additive aggregation of both positive and negative information outperforms
the logistic approach.

In case of NNet, as we can see from the results of Table 4, in general terms
the logistic aggregation seems to reach better results than the additive one.

Statistical Analysis. In order to detect significant differences among the
results of the different approaches, we carry out the Friedman aligned rank test.
This test obtains a low p-value for all the three algorithms, which implies that
there are significant differences between the results. For this reason, we can apply
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Table 3. Results in train and test achieved by the genetic bipolar approaches applied
to the RF algorithm.

RF RFbipAdd RFbipLog

Tr. Tst Tr. Tst Tr. Tst

aut 1.000 0.760 1.000 0.787 1.000 0.779

car 1.000 0.796 1.000 0.805 1.000 0.804

con 0.868 0.235 0.884 0.252 0.884 0.259

eco 1.000 0.578 1.000 0.581 1.000 0.580

fla 0.646 0.549 0.672 0.571 0.673 0.575

gla 1.000 0.666 1.000 0.701 1.000 0.691

lin 0.986 0.684 1.000 0.702 1.000 0.677

shu 1.000 0.996 1.000 0.995 1.000 0.995

thy 1.000 0.885 1.000 0.899 1.000 0.883

yea 1.000 0.503 1.000 0.495 1.000 0.491

Mean 0.950 0.665 0.956 0.679 0.956 0.673

Table 4. Results in train and test achieved by the genetic bipolar approaches applied
to the NNet algorithm.

NNet NNetbipAdd NNetbipLog

Tr. Tst Tr. Tst Tr. Tst

aut 0.686 0.568 0.703 0.610 0.703 0.610

car 0.992 0.954 0.995 0.948 0.995 0.949

con 0.254 0.235 0.382 0.271 0.388 0.285

eco 0.662 0.555 0.693 0.581 0.692 0.581

fla 0.597 0.589 0.626 0.595 0.633 0.589

gla 0.568 0.442 0.647 0.476 0.645 0.480

lin 0.895 0.759 0.905 0.744 0.906 0.745

shu 0.962 0.955 0.980 0.966 0.981 0.965

thy 0.856 0.628 0.933 0.813 0.941 0.817

yea 0.518 0.467 0.558 0.529 0.562 0.528

Mean 0.699 0.615 0.742 0.653 0.745 0.655

a post-hoc test to compare our methodology against the remaining approaches.
Specifically, a Holm test is applied using the best approach (the one with the
lower ranking) as control method and computing the adjusted p-value (APV).
The statistical analysis, shown on Table 5, reflects that the bipolar method out-
performs the base classifier with a high level of confidence for all the algorithms
considered.
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Table 5. Average rankings of the algorithms (Aligned Friedman), associated p-values
and Holm test APV for each algorithm.

Algorithm Ranking CART Ranking RF Ranking NNet

“Ref” 21.9 22.2 23.4

“BipAdd” 12.35 9.45 11.9

“BipLog” 12.25 14.85 11.2

p-val 0.0271 0.0255 0.0295

Holm APV 0.0284* 0.0024* 0.0038*

Table 6. Wilcoxon test to compare the bipolar tuning approaches (R+) against the
base classifier (R−).

Comparision R+ R− Ex. p-val Asymp. p-val

CARTbipAdd vs. CART 44.5 10.5 0.094 0.074

CARTbipLog vs. CART 44.5 10.5 0.094 0.074

RFbipAdd vs. RF 51.0 4.0 0.013 0.014

NNetbipAdd vs. NNet 50.0 5.0 0.019 0.019

NNetbipLog vs. NNet 48.0 7.0 0.037 0.032

The statistical analysis, which is carried out by means of a Wilcoxon test, see
Table 6, clearly reflects the superiority of our new methodology with an accept-
able p-value. In case of RF, only the additive aggregation could be considered
better than the reference in statistical terms.

6 Discussion and Final Remarks

In this paper we have presented a bipolar knowledge representation-based clas-
sifier, a proposal to tune the classification given by any classification algorithm.
In order to do so, we have presented a GA based method to find the optimal
dissimilarity structure between the classes and also two new approaches for the
aggregation of both positive and negative information.

Along the experimental study, we have learned several lessons:

– The bipolar method allows to improve the results of the three base machine
learning algorithms considered in this work.

– Both additive and logistic aggregations outperform the results of the base clas-
sifier in case of CART and NNet, and only the additive aggregation method
enhances the behaviour of RF in statistical terms.

– Comparing the two different aggregation methods, there is no clear winner,
in fact it is highly dependent on the base algorithm considered as well as on
the dataset of application.
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These results allow us to conclude that our new methodology is a suitable
solution to confront binary classification problems by incorporating the bipo-
lar knowledge representation framework to the soft information given by any
algorithm.
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8. Cordon, O., del Jesús, M.J., Herrera, F.: A proposal on reasoning methods in

fuzzy rule-based classification systems. Int. J. Approximate Reasoning 20(1), 21–
45 (1999)

9. Demsar, J.: Statistical comparisons of classifiers over multiple datasets. J. Mach.
Learn. Res. 7, 1–30 (2006)

10. Dubois, D., Prade, H.: An introduction to bipolar representations of information
and preference. Int. J. of Intell. Syst. 23(8), 866–877 (2008)

11. Dubois, D., Prade, H.: A bipolar possibilistic representation of knowledge and
preferences and its applications. In: Fuzzy Logic and Applications, vol. 3849, pp.
1–10 (2006)
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Abstract. Edge detection plays an essential role in many computer
vision tasks, but there is limited literature on the fusion of multi-
scale edge strength measurements. In this paper, we extend an edge
detector using both isotropic and anisotropic Gaussian kernels in multi-
scale space to obtain the multiscale anisotropic edge strength measure-
ments (AESMs). Subsequently, we propose a fusion scheme of multiscale
AESMs based on geometric mean. This scheme inherits the merits of the
isotropic/anisotropic Gaussian kernel based method and suppress the
scale-space diffusion at the same time. Experimental results on example
images in the EUSFLAT Edge Detection Competition dataset illustrate
that the proposed method outperforms the widely used Canny method
and the state-of-the-art isotropic/anisotropic Gaussian kernel method.

Keywords: Edge detection · Anisotropic gaussian kernel · Multiscale
edge measurement fusion

1 Introduction

Edges are fundamental image features and play an essential role in many com-
puter vision tasks, such as noise reduction, image segmentation, object tracking
and active contour detection [4]. The output binary edge line is usually defined as
the one-pixel wide centerline of edge areas where the intensity exhibits significant
discontinuities. Over the past several decades, edge detection has received great
attention and various methods have been developed, including differentiation-
based methods [2,5,9,10], machine learning methods [3], fuzzy transform meth-
ods [7], etc.

However, there are several obstacles that make edge detection still a chal-
lenging problem. First, the image sometimes contains noise and textures that
also have significant local contrast and will lead to spurious detection results.
Secondly, some edges may be situated adjacent to other structures, like par-
allel edges and thin ridges, which will decay the edge strength measurement.
Moreover, the width and the steepness of the edge areas are highly variable.
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In order to deal with these problems, anisotropic scale space representations and
fusion of multiscale edge strength measurements (ESMs) have gained attention.
Bao et al. [1] detected edges using scale multiplication and improved the pio-
neering work of Canny [2]. However, in their work only two scales are considered.
Lopez-Molina et al. [5] proposed an edge detector based on restricted multiscale
Sobel operators. Because of the inherent isotropy of the Sobel operator, this
detector shows a limited performance for adjacent edges. Shui and Zhang [9]
proposed an isotropic/anisotropic Gaussian kernel (IAGK) based edge detector
that can improve both the noise robustness and the detection of irregular edges
compared with Canny’s method. Zhang et al. [10] further developed this method
with automatic calculation of the anisotropic factor under the principles of high
signal-to-noise ratio, fine localization and high edge resolution. However, edges in
images usually exhibit multiscale characteristics. The edges with narrow width
are suitable to be detected at fine scales, while the ones with large width are
suitable to be detected at coarse scales. Unfortunately, all the aforementioned
methods show problems when they are applied in multiscale space. If we use an
edge detector with a small scale, wide edges will produce a weak response. More-
over, this kind of small scale edge detector is not noise-robust. If we employ a
large scale edge detector, the diffusion effect will cause strong responses for non-
edge structures. Besides, this will also lead to more serious interference between
adjacent structures. To our knowledge, an effective fusion scheme of multiscale
ESMs is still lacking.

With the purpose of tackling the fusion of multiscale ESMs, in this paper,
after elaborating related works in Sect. 2, we further extend the detector based
on isotropic and anisotropic Gaussian kernel in multiscale space to obtain the
multiscale AESMs. We also propose a fusion scheme for multiscale AESMs in
Sect. 3. Experimental results on example images in the EUSFLAT Edge Detec-
tion Competition dataset are given in Sect. 4, while the conclusions are presented
in Sect. 5.

2 Related Work

Shui and Zhang [9] proposed an edge detector based on an IAGK. It attains noise
reduction while maintaining a high edge resolution. It also employs a directional
anisotropic Gaussian (DAG) kernel, which can be written as

g(x;σ, ρ, θ) =
1

2πσ2
exp

(
− 1

2σ2
xT R−θ

[
ρ2 0
0 ρ−2

]
Rθx

)
, (1)

with

Rθ =
[

cos θ sin θ
− sin θ cos θ

]
,

where the superscript T denotes the transpose, x = [x, y]T is the two dimen-
sional planar coordinate, σ2(σ > 0) represents the scale, θ ∈ [0, π[ denotes the
orientation and ρ ≥ 1 is the anisotropy factor. Note that this kernel reduces to
an isotropic Gaussian kernel when ρ = 1.
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From Eq. (1), the directional derivative of the anisotropic Gaussian kernel is
derived as

g′(x;σ, ρ, θ) = −ρ2[cos θ, sin θ]x
σ2

g(x;σ, ρ, θ) . (2)

Since a single directional derivative of the anisotropic Gaussian kernel can
only extract the intensity variation along the specific orientation, a family of
kernels combining all possible orientations needs to be used to measure the
intensity variation in all orientations. Because of the effect of edge stretch, the
ESMs obtained by both isotropic and anisotropic Gaussian kernels should be
fused to produce the final ESM.

3 Proposed Method

We first modify the DAG kernel in Eq. (1) by employing a new anisotropy factor
ϕ instead of the original ρ:

g(x;σ, ϕ, θ) =
1

2πϕσ2
exp

(
− 1

2σ2
xT R−θ

[
1 0
0 ϕ−2

]
Rθx

)
, (3)

where ϕ ≥ 1 and the other arguments are the same as Eq. (1). Note that the
function in Eq. (3) is different from the corresponding forms in [6,9,10]. Equa-
tion (3) can better show the relationship between the scales in the x and y
direction, while the conventional ones bind the two scales together with the ρ in
Eq. (1). Thus the formula in Eq. (3) can be used more explicitly in multiscale
space. Similarly, the directional derivative of the anisotropic Gaussian kernel is
derived from Eq. (3) as follows

g′(x;σ, ϕ, θ) = − [cos θ, sin θ]x
σ2

g(x;σ, ϕ, θ) . (4)

Note that the revised directional derivative of the anisotropic Gaussian kernel
in Eq. (4) is also different from Eq. (2). Conventionally, in order to reduce the
effect of scale decay, the edge detection filter is normalized by making the sum
of the positive and negative part of the kernel be 1, respectively. Since the sum
of the positive part of the kernel is equal to that of the negative part, and the
sum of each part can be calculated as

C =
∫ +∞

0

(∫ +∞

−∞
g′(x;σ, ϕ, θ) dy

)
dx =

1√
2πσ

, (5)

the normalized directional derivative of the anisotropic Gaussian kernel is given
by

ĝ′(x;σ, ϕ, θ) = −
√

2π
[cos θ, sin θ]x

σ
g(x;σ, ϕ, θ) . (6)
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Considering that a digital image is a discrete signal in the integer lattice, the
directional derivative of the anisotropic Gaussian kernel should be discretized.
We can get both the discrete Gaussian function and the normalized directional
derivative of the anisotropic Gaussian kernel by sampling the formulae in Eqs. (3)
and (6) in the 2D integer coordinate Z

2:

g(m;σj , ϕk, θp) =
1

2πϕkσ2
j

exp
(

− 1
2σ2

j

mT RT
p

[
1 0
0 ϕ−2

k

]
Rpm

)

ĝ′(m;σj , ϕk, θp) = −
√

2π
[cos θp, sin θp]m

σj
g(m;σj , ϕk, θp) , (7)

with

Rp =
[

cos θp sin θp

− sin θp cos θp

]
,

θp = (p − 1)π/P, p = 1, 2, 3, ..., P,

where m = [m,n]T ∈ Z
2 represents the 2D image coordinate, σj ∈

Σ {σ1, σ2, ..., σJ} with 0 < σ1 < σ2 < ... < σJ , ϕk ∈ Φ {ϕ1, ϕ2, ..., ϕK} with
ϕk ≥ 1 and θp ∈ Θ {θ1, θ2, ..., θP } with θp ∈ [0, π[ denote the square root of
scale, anisotropy factor and orientation, respectively.

Therefore, a family of discrete normalized directional derivative of the
anisotropic Gaussian kernels combining all possible scales, anisotropy factors
and orientations are used to filter the image to obtain all the ESMs:

E(m;σj , ϕk, θp) = |I ∗ g′(m;σj , ϕk, θp)| , (8)

where ∗ denotes the convolution operation, | | represents the absolute value and
I stands for the intensity image.

Shui and Zhang [9] has pointed that the directional derivative of the an-
isotropic Gaussian kernel produces edge stretch effect while the isotropic one
does not. It means that the anisotropic edge filters can produce large responses
for edges and some non-edge structures. We also note that compared with
anisotropic filters, isotropic ones produce smaller but comparable ESM for edge
structures. From the definition of geometric mean we can infer that if one number
in the list is nearly zero, the geometric mean of the list is nearly zero. If all the
number in the list are large, the geometric mean of the list is also large. Hence,
in order to reduce the edge stretch effect of anisotropic ESM while enhancing
the isotropic ESM, the isotropic ESM and anisotropic ESM are fused using their
geometric mean. As a result, the ESM for a specific scale is given by:

Es(m;σj) =
√

Em(m;σj) · Ei(m;σj) , (9)

with

Em(m;σj) = max
ϕk∈Φ

max
θp∈Θ

E(m;σj , ϕk, θp)

Ei(m;σj) = max
θp∈Θ

E(m;σj , 1, θp) . (10)
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With respect to the fusion of multiscale ESMs, we note several properties
of the multiscale edge filters. First, small scale edge filters can produce large
responses for almost all edges. But their responses for valleys between neigh-
boring edges are nearly zero. Secondly, compared with small scale edge filters,
some selected large scale filters can produce larger responses for not only edges
but also valleys between neighboring edges. Thus, the maxima of the multiscale
ESMs show large values for both edges and some valleys. Besides, if we set the
minimum of the scale set Σ in Eq. (7) large enough, most of the noise points and
thin textures can be suppressed. But thin edges will be maintained because the
anisotropic edge filters have a high edge resolution. Considering the properties
of geometric mean again, we also fuse the multiscale ESMs using the geometric
mean. In this way, the response of valleys can be suppressed while the response
of edge structures are maintained. Thus the fused multiscale ESMs is obtained
by

Ef (m) =
√

Em(m) · Ei(m;σ1) , (11)

with

Em(m) = max
σj∈Σ

Es(m;σj) . (12)

In the procedure of the postprocessing, non-maxima suppression [8] is first
applied to the fused ESM Ef (m). For each pixel, the fused ESM and direction
are used in the non-maxima suppression procedure. If the fused ESM at either
side of the current position is less than the fused ESM at the pixel in the gradient
direction, the pixel intensity is retained; otherwise, the intensity of the current
position would be set to zero.

Subsequently, double threshold and hysteresis segmentation [2] are employed
to produce the binary edge map. The hysteresis processing requires an upper
threshold and a lower threshold. The upper threshold is specified in terms of the
percentile of the histogram of the contrast equalized edge map while the ratio
of the lower threshold to the upper threshold is selected as 0.4. Segmentation of
edge pixels is realized in two steps. All the pixels in the maxima set whose ESM
exceeds the upper threshold are first labelled as strong edge pixels. The pixels
whose ESM between the upper threshold and the lower threshold are labelled as
weak edge candidates. For each of those candidates, if there is a path to connect
it with a strong edge pixel, it is considered as a real weak edge pixel. Hence both
the strong and weak edge pixels form the binary edge map.

4 Experimental Validation

To evaluate the performance of the proposed scheme, we apply our method to
example images, which are referred to as Ex1, Ex2 and Ex3, in the EUSFLAT
Edge Detection Competition dataset. They all have the resolution of 1024 ×
1024×3. We also compare our method with two selected edge detectors, i.e., the
widely used Canny method [2] and the state-of-the-art IAGK based method [9].
For a fair comparison, the same postprocessing procedures are applied to all the
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(a) (b)

Fig. 1. The edge ground truth of image Ex3 and the detection result of the proposed
method. (a) Ground truth; (b) Edge detection result.

methods. In addition, experiments are conducted with either the recommended
parameters mentioned in the original papers or optimally tuned ones. In this
paper we adopt the widely used F -measure to get a quantitative performance
evaluation:

Fη =
PREC · REC

ηPREC + (1 − η)REC
(13)

with
PREC =

TP
TP + FP

and REC =
TP

TP + FN
, (14)

where TP, FP and FN are the percentages of true positives, false positives and
false negatives, respectively, and η is a control parameter with the value of 0.5
in this paper.

As shown in Table 1, the proposed method outperforms the Canny method
and IAGK based method in all cases. The acceptable values of F -measure mean
that most of the edges have been extracted. However, in Fig. 1 we can note that
shadows usually lead to spurious edges. This is because they also have significant
local intensity variation, i.e., they also have the properties of edges. We should
note that this kind of spurious edges is subjective to users, since some other
users may consider them as real edges.

Table 1. Values of the F -measure for different selected methods and example images.

Method Ex1 Ex2 Ex3

Canny 0.8759 0.8795 0.8047

IAGKs 0.8669 0.9075 0.8035

Proposed 0.8857 0.9097 0.8227
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5 Conclusions

In this paper, in order to fuse the ESMs in multiscale space, we have further
extended the edge detector based on isotropic/anisotropic Gaussian kernels in
multiple scale space to obtain the multiscale AESMs. Afterwards we proposed a
fusion scheme of multiscale AESMs based on the geometric mean. Experimental
results on example images in the EUSFLAT Edge Detection Competition dataset
show that the proposed method outperforms the widely used Canny method and
the state-of-the-art IAGK based method.

References

1. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multipli-
cation. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1485–1490 (2005)

2. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal.
Mach. Intell. 8(6), 679–698 (1986)

3. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE Trans.
Pattern Anal. Mach. Intell. 37(8), 1558–1570 (2014)

4. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature
detection. Neurocomputing 149, 736–751 (2015)

5. Lopez-Molina, C., De Baets, B., Bustince, H., Sanz, J., Barrenechea, E.: Multiscale
edge detection based on Gaussian smoothing and edge tracking. Knowl.-Based
Syst. 44, 101–111 (2013)

6. Lopez-Molina, C., Vidal-Diez De Ulzurrun, G., Baetens, J.M., Van Den Bulcke, J.,
De Baets, B.: Unsupervised ridge detection using second order anisotropic Gaussian
kernels. Sig. Process. 116, 55–67 (2015)
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Abstract. Multi-criteria decision analysis (MCDA) in the fuzzy environment
needs not only in implementation of functions of fuzzy variables but also
inevitably leads to ranking fuzzy quantities. The use of simplification and
defuzzification methods at different stages of fuzzy MCDA (FMCDA) results in
a loss of information and does not meet the concept of fuzzy decision analysis
that “the decision taken in the fuzzy environment must be inherently fuzzy”. In
this contribution, a new approach to FMCDA is suggested, in which fuzzy
criterion values and fuzzy weight coefficients are considered as fuzzy numbers
(FNs) of a general type. Ranking alternatives is based on a novel methodological
approach, fuzzy rank acceptability analysis (FRAA), for ranking FNs, whose use
within FMCDA forms the fuzzy multicriteria acceptability analysis (FMAA)
and implements a consistent approach to fuzzy decision analysis providing both
ranking alternatives and the degree of confidence for each alternative to have the
corresponding rank. Properties of FRAA ranking and integration of FRAA with
a fuzzy extension of MAVT (FMAVT) as an example are considered and dis-
cussed along with the overestimation problem, which can arise when imple-
menting FMCDA. The outcomes of FMAVT application for analysis of a
multicriteria problem within the case study on land-use planning are considered
and compared with the results by (classical) MAVT method.

Keywords: Multi-criteria decision analysis � Fuzzy numbers � Fuzzy
preference relations � Ranking fuzzy numbers � Fuzzy acceptability analysis �
Fuzzy MCDA � Fuzzy MAVT � Overestimation problem �Multicriteria land-use
planning

1 Introduction

In many situations, uncertainties are related to imprecision and vagueness provided by
experts’ elicitation of objective values and subjective judgments [1–4]. In such cases,
the use of fuzzy set theory within decision analysis and, specifically in multi-criteria
decision analysis (MCDA), provides a suitable approach to handling three main
MCDA problematiques: choice, ranking, and sorting [5, 6].
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The treatment and analysis of uncertainties by using fuzzy sets not only need
dealing with fuzzy models and functions of fuzzy variables, but inevitably implies the
comparison and ranking of fuzzy quantities (in most cases, ranking of fuzzy numbers,
FNs). In fuzzy MCDA (FMCDA) [2, 4], ranking of fuzzy quantities is the key stage
within all types of multicriteria problems. In addition, ranking of FNs is considered as
one of the key problems of fuzzy sets theory [7] and has been extensively investigated
in different directions [3, 7–11].

The management of uncertainties by fuzzy modeling implies that “in situations
where fuzzy sets are a suitable way of representing uncertainty, the decision taken must
be inherently fuzzy” [12]. Taking into account the indicated concept, this contribution
aims at developing an approach to FMCDA providing ranking alternatives along with a
fuzzy measure (degree of confidence) for each alternative to have the corresponding
rank. This approach to FMCDA, fuzzy multicriteria acceptability analysis (FMAA), is
based on original approach to ranking FNs, fuzzy rank acceptability analysis (FRAA)
[13]. FRAA, as an analytical method, can be based on different fuzzy preference
relations and extends the idea of stochastic multicriteria acceptability analysis, SMAA
[17], which uses Monte Carlo simulations, and Probabilistic MAA, ProMAA [18].

This paper is structured as follows. Section 2 revises briefly different fuzzy con-
cepts, including FNs, fuzzy preference relations, ranking FNs, introduces fuzzy rank
acceptability indices (FRAIs) and FRAA approach to ranking FNs. Section 3 intro-
duces the fuzzy multicriteria acceptability analysis (FMAA), considers the overesti-
mation problem when implementing FMCDA, and introduces FMAVT–FMAA
methods. The case study on land-use planning is considered in Sect. 4 along with
comparison and discussion of the results by several MCDA methods. Eventually,
Sect. 5 concludes this paper.

2 Preliminaries

This section fixes basic notions of fuzzy numbers (FNs), fuzzy preference relations, and
fuzzy ranking, and introduces fuzzy rank acceptability analysis (FRAA), which is a
basis for fuzzy multicriteria acceptability analysis (FMAA) in FMCDA.

2.1 Fuzzy Numbers: Comparison and Ranking

Definition 1. A FN Z is a convex normal and restricted fuzzy set in R with a con-
tinuous or upper-continuous membership function lZ(x).
It means that there exist two real numbers, c1 and c2, c1 � c2, such that:

Z ¼ x; lZðxÞð Þ : lZðxÞ[ 0 x 2 c1; c2ð Þ; lZðxÞ ¼ 0; x 62 c1; c2½ �f : ð1Þ

F denotes the set of FNs according to (1).

Remarks. If c1 = c2 = c, Z = c is a singleton and lZ(c) = 1. The condition lZ(c1) =
Z(c2) = 0 is, strictly speaking, not necessary and is often used for convenience,
stressing the most often usage of FNs in applications.
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Definition 2. For FN Z 2 F and a ∊ (0, 1]. An a-cut of Z is defined as [19]:

Za ¼ Aa; Ba½ � ¼ x 2 R : lZðxÞ� af g: ð2Þ

For a = 0, consider [A0, B0] = [c1, c2] (according to (1)), then FN Z can be iden-
tified with the family of intervals

Z ¼ Aa; Ba½ �f g ða 2 ½0; 1�Þ: ð3Þ

For FNs Zi ¼ f½Ai
1; Bi

1�g and Zj ¼ f½Aj
1; Bj

1�g; according to standard fuzzy arith-
metic [3, 22]:

Zij ¼ Zi � Zj ¼ Aij
1; Bij

1
� �� � ¼ Ai

1 � Bj
1; Bi

1 � Aj
1

� �� �
: ð4Þ

In this contribution, comparison of two FNs is based on their difference Zij by using
fuzzy preference relation.

Definition 3. Fuzzy preference relation R is a fuzzy relation on F� F : R ¼
ððZi; ZjÞ; lRðZi; ZjÞÞ; where membership function lR(Zi, Zj) (ε [0, 1]) indicates the
degree of preference Zi over Zj.

An important property of a fuzzy preference relation R is reciprocity, often used in
ranking methods [8, 15]:

lR Zi; Zj
� � ¼ 1� lR Zj; Zi

� �
: ð5Þ

Note that from (5): lR(Z, Z) = 0.5.

Definition 4. Let R be a fuzzy preference relation on F� F. For any Zi; Zj 2 F; their
fuzzy ranking is defined as:

Zi<Zj if lR Zi; Zj
� �� 0:5; Zi � Zj if lR Zi; Zj

� �
[ 0:5;

and Zi 	 Zj if lR Zi; Zj
� � ¼ 0:5:

ð6Þ

To simplify further presentations, the following denotations are also used for fuzzy
preference relation R(Zi, Zj) 
 (Zi � Zj) 
 (Zj � Zi):

lij ¼ lR Zi; Zj
� � ¼ lR Zi � Zj

� � ¼ lR Zj � Zi
� �

: ð7Þ

Note also that the symbols � , � used here for notational purposes are different from
the symbols <; 4; which are associated with ranking FNs.

Basic axioms or requirements, which specify the reasonable properties of ordering
FNs by ranking method M have been presented in [9, 14, 16] (below, the 5 main
axioms are considered):

A1 (reflexivity): For any finite subset A of S and A 2 A; A>A by M: on A;

A2 (antisymmetry): For an arbitrary finite subset A of S and ðA; BÞ 2 A2; if A<B
and B<A by M on A; we should have A	B by M on A;
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A3 (transitivity): For an arbitrary finite subset A of S and ðA; B; CÞ 2 A3; if A<B
and B<C by M on A; we should have A<C by M on A;

A4 (distinguishability): For an arbitrary finite subset A of S and ðA; BÞ 2 A2; if inf
supp (A) > sup supp (B), we should have A<B by M on A:
A5 (absence of rank reversal): Let S and S

0
be two arbitrary finite sets of FNs in

which method M can be applied, and A and B are in S\ S
0
; then: A ≻ B by M on S

0

iff A � B by M on S.

The main classes of fuzzy ranking methods (apart of linguistic approaches) have
been presented in [3, 9, 10] and include Defuzzification based ranking methods;
ranking methods based on the distance to a reference set; and ranking methods based
on pairwise comparison.

In this contribution, the new fuzzy multi-criteria approach, FMAA (fuzzy multi-
criteria acceptability analysis), is based on the FRAA (fuzzy rank acceptability anal-
ysis) that belongs to latter type of the indicated methods for ranking FNs and can use
different preference relations. In our proposal, the Yuan’s [8] fuzzy preference relation
is considered.

2.2 Yuan’s Fuzzy Preference Relation

The Yuan’s fuzzy preference relation [8], RY(Zi, Zj), with the fuzzy measure lY(Zi, Zj),
which presents the degree preference of FN Zi over Zj, is based on the assessing
difference Zij = Zi − Zj, Zij = {[Aa, Ba]}. For evaluation of lY(Zi, Zj), the value SY

+(Zij)
is assessed by the expression

Sþ
Y Zij
� � ¼ Z 1

0
Bah Bað ÞþAah Aað Þð Þda; ð8Þ

where h(x) is the Heaviside function and can be interpreted as a “distance of the
positive part of FN Z = Zij to the axis OY”. Adjusted “total area” under membership
function of FN Zij is assessed as

SY Zij
� � ¼ Sþ

Y Zij
� �þ Sþ

Y Zji
� �

: ð9Þ

For Yuan’s fuzzy preference relation, RY(Zi, Zj), lY(Zi, Zj) is defined as follows:

lij ¼ lY Zi; Zj
� � ¼ Sþ

Y Zij
� �

=SY Zij
� �

; SY Zij
� �

[ 0; ð10Þ

where Sþ
Y and SR are assessed according to (8), (9); for singletons Zi = ci, Zj = cj,

cij = ci − cj:

lij ¼ lR Zi; Zj
� � ¼ 1 if cij [ 0

� �
; 0 if cij\0
� �

; 0:5 if cij ¼ 0
� �� �

: ð11Þ

Yuan’s preference relation satisfies the reciprocity property (5). Consider (without
proof) the following kind of distinguishability property, which is important for com-
parison of input and output FNs within fuzzy modeling.
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Definition 5. For two FNs, Zi ¼ ½Ai
_; B

i
_�; i = 1, 2, we use the denotation Z2 E Z1 if

A2
_ �A1

_ and B2
_ �B1

_ for all a 2 ½0; 1�: ð12Þ

Lemma 1. If Z2 E Z1; then Z2 4 Z1 for Yuan’s preference relation.
The Yuan’s preference relation satisfies all the main axioms for ranking FNs,

A1–A5 [10]. The detailed analysis of Yuan’s preference relation and its comparison
with the integral preference relation [20, 21], which is intransitive but can be con-
sidered as the closest to Yuan’s one, is presented in [22].

2.3 Fuzzy Rank Acceptability Indices

Let Z ¼ fZi; i ¼ 1; . . .; ng � F be a finite set of FNs.

Definition 6. Fuzzy rank statement (FRS) is a statement of the type:

Fik ¼ Zi; kð Þ ¼ Zi has a rank kf g; i; k ¼ 1; . . .; n; ð13Þ

i.e., k − 1 FNs from the set Z can be considered as exceeding Zi in the sense of the
chosen ranking, and Zi can be considered as exceeding remaining n − k FNs. The
following model is suggested for formalization of FRSs [20, 21].

First, FRS, Fik, is considered as an element of the fuzzy set Z� Nn; Nn ¼
f1; . . .; ng; the membership function on the fuzzy set Z� Nn; l(Fik), is provided
below. Second, the following model is suggested for formalization of FRSs with the
use of fuzzy relation R(Zi, Zj) 
 (Zi � Zj) 
 (Zj � Zi):

Fi1 ¼ ^n
j6¼i

Zi � Zj
� �� 	

; ð14Þ

Fi2 ¼ _n
l6¼i

Zi � Zlð Þ ^n
j6¼i; j 6¼l

Zi � Zj
� �
 �

; ð15Þ

Fik ¼ _
ðl1\l2\���\lk�1Þ
ls 6¼i; s¼1;...;k�1

^k�1

s¼1
Zi � Zlsð Þ ^n

j6¼i; j6¼ls;
s¼1;...;k�1

Zi � Zj
� �0

B@
1
CA

0
B@

1
CA

8><
>:

9>=
>;; ð16Þ

Fin ¼ ^n
j6¼i

Zi � Zj
� �� 	

: ð17Þ

Definition 7. Fuzzy rank acceptability index (FRAI), l(i, k), is defined as a fuzzy
measure of FRS Fik, l(i, k) = lR(Fik), i.e., an index (degree of confidence), which
describes acceptability of FN Zi with a rank k (for a given fuzzy preference relation R).
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FRAIs can be assessed based on the classical approach to assessing the measure of
logical expressions (14)–(17) and the notations (7) [20, 21]:

lði; 1Þ ¼ l Fi1ð Þ ¼ ^n
j 6¼i

lij; ð18Þ

lði; 2Þ ¼ l Fi2ð Þ ¼ _n
l 6¼i

lli ^n
j6¼i; j6¼l

lij


 �
; ð19Þ

lði; kÞ ¼ l Fikð Þ ¼ _
ðl1\l2\���\lk�1Þ
ls 6¼i; s¼1;...;k�1

^k�1

s¼1


 �
llsi ^ ^n

j 6¼i; j 6¼ls;
s¼1;...;k�1

lij

0
B@

1
CA

0
B@

1
CA; ð20Þ

lði; nÞ ¼ l Finð Þ ¼ ^n
j 6¼i

lji: ð21Þ

Note that the model for FRSs are consistent with (mathematical) intuition and can
be further processed within fuzzy and probabilistic approaches to their evaluation.

2.4 Fuzzy Rank Acceptability Analysis

The fuzzy rank acceptability analysis (FRAA) is an approach to ranking FNs that
represents a systematical implementation of the concept of fuzzy decision analysis that
“the decision taken in the fuzzy environment must be inherently fuzzy” [12].

Let Z ¼ fZi; i ¼ 1; . . .; ng � F be a finite set of FNs and R = R(Zi, Zj) a fuzzy
preference relation with a membership function lij = lR(Zi, Zj). Using FRAIs l(i,
k) = lR(Fik), the matrix M = {l(i, k)}, i, k = 1,…,n, can be built and used by decision
makers to choose the most appropriate FNs/alternatives within a decision problem.

The analysis of matrix M by using a simple implementation of the FRAA approach
within a choice problem is similar to the use of stochastic, SMAA [17], and proba-
bilistic ProMAA [18], MCDA methods. Here, a systematic approach to FRAA is
considered.

Definition 8. A FN Zm from a set Z ¼ fZi; i ¼ 1; . . .; ng � F has a FRAAR rank k,
denoted by r(Zm) = k, if it has the maximal FRAI for that k:

lRðm; kÞ ¼ max
i¼1;...;n

lRði; kÞ; 1�m; k� n: ð22Þ

The following properties of FRAA ranking based on Yuan’s preference relation,
FRAAY, have the place [22].

Lemma 2. Let for a set of FNs Z ¼ fZi; i ¼ 1; . . .; ng and preference relation R,
Zn ≺ Zn−1≺���≺Z1 without violation of transitivity (i.e., for all 1 � k<m � n, Zm ≺
Zk), then, Zk has the FRAAR rank k: r(Zk) = k, k = 1,…,n.
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Proposition 1. FRAAY ranking and ranking by Yuan’s preference relation coincide,
and FRAAY ranking satisfies axioms A1–A5.

Despite the results of ranking FNs by FRAAY and by Yuan’s preference relation RY

coincide, FRAA provides a measure/degree of confidence for each rank based on
FRAIs ensuring a greater clarity and reliability within ranking FNs and presents a
consistent approach to fuzzy ranking and fuzzy decision analysis.

To demonstrate the possibility and advantages of FRAA ranking, the following
example is provided. Consider the sets RS1, RS2, and RS3 (relatively stable ranking) of
triangular FNs (23)–(25) (Fig. 1).

RS1 : Z1 ¼ ð1; 2; 6Þ; Z2 ¼ ð0; 3; 4:3Þ; Z3 ¼ ð0:5; 2:5; 4:5Þ; ð23Þ

RS2 : Z1 ¼ ð1; 2; 4:7Þ; Z2 ¼ ð0; 3; 4:3Þ; Z3 ¼ ð0:5; 2:5; 4:5Þ; ð24Þ

RS3 : Z1 ¼ ð1; 2; 4:7Þ; Z2 ¼ ð0; 2:71; 4:3Þ; Z3 ¼ ð0:5; 2:5; 4:5Þ: ð25Þ

In Table 1, ranking FNs
by FRAAY and centroid
index, CI (defuzzification
based method) [3, 9] is pre-
sented. According to
Table 1, ranks of FNs for the
three sets by FRAAY com-
pletely differ from CI rank-
ing method, which is, in
contrast to FRAAY ranking,
insensitive to changing FNs
of the sets RS1, RS2, and
RS3.

3 Fuzzy Multicriteria Acceptability Analysis

The concept of fuzzy multicriteria acceptability analysis (FMAA) is the implementation
of FRAA within FMCDA. Such an approach to FMCDA provides both ranking
alternatives and degree of confidence for each rank based on FRAIs.

FMAA can be implemented in different FMCDA methods. In this proposal, inte-
gration of FMAA with MAVT, FMAVT–FMAA method, is introduced.

Fig. 1 Fuzzy numbers of the set RS2.

Table 1 Ranking FNs of the sets RS1, RS2, and RS3 (27)–(29) by the two methods

Ranking method RS1: Ranks RS2: Ranks RS3: Ranks
1 2 3 1 2 3 1 2 3

FRAAY Z1

0.536
Z2

0.517
Z3

0.517
Z2

0.517
Z3

0.517
Z1

0.519
Z3

0.516
Z2

0.501
Z1

0.501
CI Z1 Z3 Z2 Z1 Z3 Z2 Z1 Z3 Z2
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In the beginning, consider implementation of FMAA for an FMCDA method in a
general case and discuss the problem of overestimation [26], which can arise at some
steps of FMCDA models application.

3.1 FMCDA and the Overestimation Problem

In a general case, an MCDA/MADM method is based on evaluation of an entire/overall
criterion V and can be presented by a model

V aið Þ ¼ F ai; w; a; pð Þ; ða; w; pÞ 2 U, ð26Þ

here F(.) is a function for determination of the overall criterion V, a = (a1,…,an) is a
vector of alternatives, ai = (Ci1,…,Cim), Cik is the criterion value of the alternative ai
for criterion k, i = 1,…,n, k = 1,…,m; w = (w1,…,wm) presents a vector of weight
coefficients, p is a set of model parameters, and U is a set of restrictions and coupling.

Integration of FMAA with the fuzzy extension of MCDA model (26), where cri-
terion values and weight coefficients are FNs, is based on implementation of FRAA for
the set of FNs Z = {Zi = V(ai), i = 1,…,n}. Corresponding differences of overall
values/FNs, Zij = Zi − Zj, are presented by the expression

Zij ¼ F ai; w; a; pð Þ � F aj; w; a; p
� �

: ð27Þ

The following methodological approach to implementation of FMAA based on the
expression (27) should be pointed out.

Each weight coefficient wk, k = 1,…,m (and, in a general case, criterion values of
alternatives) occurs in the expression (27) at least two times. Thus, due to dependent
variables/FNs in the components of the formula (27), the overestimation problem
should be taken into account [23].

To present briefly the overestimation problem within fuzzy modeling, consider the
following expressions (here all the variables are positive FNs):

ZO ¼ wa� wb; ZT ¼ wða� bÞ; ð28Þ

Analysis of the indicated formulas (O and T mean overestimation and transformation
correspondingly), leads to the following outcome: in a general case, supp(ZT) � supp
(ZO). Thus, model ZO leads to an overestimation.

For fuzzy extensions of classical additive MAVT model [24], the transformation of
the source expression as for ZT in (28) can be implemented. For some other MCDA
methods with more complicated expressions F(.) (26), e.g., for TOPSIS and PRO-
METHEE [6], there is no such a simple transformation, and corresponding transfor-
mation method(s) (reduced or/and general/extended transformation methods) [23]
should be used.

There may be two points of view concerning implementation and justification of
the two approaches within FMCDA:

– Model-O, when no approach to avoid overestimations is used, and
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– Model-T, where transformations of the source expression(s) at the steps of FMAA
implementation (as for the case (28)) or/and a transformation method(s) [23] are
implemented.

Authors recommend using Model-T approach. For research purposes, taking into
account pros and cons concerning Model-O and Model-T approaches, we implement
below both models within the case study analysis.

3.2 Implementation of FMAA in FMCDA

Implementation of FMAA within FMCDA is considered here on a fuzzy extension of
additive MAVT (multi-attribute value theory) model [5, 6, 24] as an example.

For additive MAVT, expression (26) has the following form:

V aið Þ ¼
Xm

k¼1
wkVk aikð Þ; wk [ 0;

Xm

k¼1
wk ¼ 1; ð29Þ

where Vk(x) is a partial value function, and wk is a weight coefficient (reflecting a
scaling factor) for criterion k, k = 1,…,m; V(ai) is interpreted as an overall value of the
alternative ai, i = 1,…,n, within additive MAVT.

Implementation of FNs, fuzzy logic, linguistic variables and other methods of fuzzy
sets theory has been widely used in fuzzy MCDA, see, e.g., an comprehensive survey
[25]. However, there are only several works, where MAUT/MAVT models in a fuzzy
environment are mentioned [26, 27], and no consistent extensions of fuzzy
MAVT/MAUT are discussed.

In FMAVT, criterion values for alternative i and criterion k, aik, and weight
coefficients, wk, are considered as FNs of a general type, i = 1,…,n, k = 1,…,m, and
overall (fuzzy) value V(ai) is determined according to (29) based on implementation of
functions of FNs.

The recommended approach for assigning fuzzy weight coefficients wj in FMAVT
is a modification [23] of the Swing weighting (scaling) process for MAVT [5, 24],
F-Swing.

Ranking FNs Z = {Zi = V(ai), i = 1,…,n}, where A = {ai} is a set of alternatives,
can be implemented by different ranking methods, including defuzzification ones [3, 9].
Here, FMAVT is extended to FMAVT–FMAA based on implementation of FRAA to
the set of FNs Z.

FRAA approach (22), (18)–(21) is based on assessing fuzzy measures lij =
R(Zi, Zj) (7), where lij is a function of the difference Zij = Zi −Zj. In this contribution,
Yuan’s fuzzy preference relation R is used according to (10). There may be two distinct
approaches to determination of Zij within FMAVT–FMAA.

Within Model-O approach, {Zi = V(ai), i = 1,…,n} are assessed according to (29),
and Zij, i, j = 1,…,n is determined directly as Zij = Zi −Zj:

ZijðOÞ ¼
Xm
k¼1

wkVk aikð Þ
 !

�
Xm
k¼1

wkVk ajk
� � !

ð30Þ
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For Model-O, as in the case of expression (28), overestimation has the place. Within
Model-T approach, Zij is determined as

ZijðTÞ ¼
Xm
k¼1

wk Vk aikð Þ � Vk ajk
� �� �

: ð31Þ

4 Application of FMAVT–FMAA to a Case Study
on Land-Use Planning

In this section, FMAVT–FMAA is implemented in a case study on multicriteria
land-use planning (the choice of an area for housing development) [28]. Within this
case study, 11 criteria are used. On the first stage, taking into account a set of constrains
imposed by experts/stakeholders (distance to rivers, lakes, roads, forest, household
centers, and some other objects of the vector map of land-use), a conjunctive screening
process based on six criteria is implemented (with the use of GIS-functions for building
buffer zones and overlays) to exclude inappropriate areas. On the second stage, five
criteria (C1 - distance from stockyards (maximize), C2 - distance from ecologically
adverse objects (maximize), C3 - level of radioactive contamination (minimize), C4 -
general qualitative assessment of the local landscape/site quality (maximize), C5 – total
expenses (minimize)) are used within the MCDA problem created by experts [28]. The
performance table and weight coefficients by F-Swing method are represented in
Figs. 2 and 3. The results of ranking alternatives for FMAVT–FMAA and MAVT (29)
are presented in Table 2.

Fig. 2 Performance table: housing development case study
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Within this case study, criterion values and weight coefficients are considered as
trapezoidal FNs symmetrical regarding the mean value (centroid index [3]), which is
used as corresponding value in MAVT. For FMAVT–FMAA, the Model-O and
Model-T are assessed along with the FRAIs (as the degree of confidence that corre-
sponding alternative has rank k). Non-linear partial value functions for all the criteria
are used.

For the considered case study and different models suggested for its analysis, ranks
of alternatives according to MAVT and FMAVT–FMAA as well for Model-O and
Model-T coincide for alternatives A1, A2, and A3, and differ for A4 and A5. However,
the degrees of confidence for ranks of alternatives A4 and A5 are close to 0.5, and it
means these alternatives may be considered as equivalent with the ranks 1 and 2.

The indicated approaches to multicriteria analysis (MAVT and FMAVT–
FMAA-T/O) are, in fact, different and can lead to different outcomes. Further analy-
sis of the case study on housing development at the stage of sensitivity analysis
demonstrates difference in ranking alternatives by Model-O and Model-T when
changing partial value functions for FMAVT–FMAA.

Comparison of the output results according to MAVT and FMAVT (in general, by
a classical MCDA method and its “fuzzy analogue”) presents a methodological
problem. There may be several approaches/recommendations to “solve” or analyze
such a problem. One of them is discussed below.

In the case of FMAVT and MAVT, the mean value (centroid index) for fuzzy
weight coefficients, used in FMAVT, can be used in MAVT (this may be justified
within swing approach for most cases, when the change of ranges for all criterion

Fig. 3 Setting criterion weights with the use of F-Swing method

Table 2 Ranking alternatives by FMAVT–FMAA-T/O methods and MAVT

Method/alternative A1 A2 A3 A4 A5

FMAVT–FMAA-T 5 (0.622) 3 (0.634) 4 (0.622) 1 (0.506) 2 (0.506)
FMAVT–FMAA-O 5 (0.602) 3 (0.578) 4 (0.602) 2 (0.508) 1 (0.508)
MAVT 5 3 4 2 1
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values may be considered as insignificant); partial value functions for MAVT can be
built not in local, but in a global scale/range [3] taking into account the range of left and
right points for supports of fuzzy criterion values.

– The developed version of FMAVT–FMAA model and corresponding computer
system has the following features:

– Experts can set for criterion values and weight coefficients the following types of
fuzzy numbers: singleton, triangular, trapezoidal, and piecewise-linear (the last type
of FNs can be used for approximation of any input FN with non-linear membership
function);

– Different types of partial value functions may be used: linear, piecewise-linear, and
non-linear/exponential;

– Implementation of value function sensitivity analysis (changing value function by
mouse with effective representation of changing the matrix of FRAIs and ranking
alternatives);

– Graphical and table demonstration of the output results.

After analysis of this and several other scenarios, we can conclude that FMAVT–
FMAA approach demonstrates adequate results for examined case studies and may be
considered as a validated MCDA method for uncertainty treatment and analysis.

5 Conclusions

This contribution presents a consistent approach to ranking both FNs and alternatives
within fuzzy MCDA (FMCDA), which is in full agreement with the basic concept of
fuzzy decision analysis that in fuzzy environment decision taken should be inherently
fuzzy.

Original approach to ranking FNs, FRAA (fuzzy rank acceptability analysis), which
is based on fuzzy rank acceptability indices (FRAIs), allows using different fuzzy
preference relations for ranking FNs and provides a degree of confidence for each rank
obtained, and FMAA (fuzzy multicriteria acceptability analysis) as an embedding of
FRAA into MCDA have been introduced and discussed.

FMAA has been integrated with the fuzzy extension of MAVT into FMAVT–
FMAA method, which allows using FNs of a general type for criterion values and
weight coefficients, and no defuzzification method is implemented within FMAVT–
FMAA. Comparison of FMAVT–FMAA outputs with results for classical MAVT
method has been discussed along with the overestimation problem, which arises within
FMCDA.

FRAA/FMAA concept is in agreement with human intuition and has a rational and
consistent interpretation with corresponding analogues in probability theory. In addi-
tion, FRAIs can be rapidly calculated without complexity for users/experts even if they
do not go into the details of the algorithms.

The use of FRAA for ranking FNs and its implementation in MCDA can be fruitful
for uncertainty treatment and decision analysis as well as an adjustment of FRAA
concept to other types of fuzzy sets.
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A Portfolio of Minimum Risk in a Hybrid
Uncertainty of a Possibilistic-Probabilistic Type:

Comparative Study
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Abstract. We investigate a minimum risk portfolio model under con-
ditions of a hybrid uncertainty of a possibilistic-probabilistic type with
weak and strong triangular norms (t-norms) describing the interaction of
fuzzy factors of the model. For the case of the weakest t-norm, a formula
for variance is derived, which makes it possible to estimate the risk of
the portfolio. An equivalent crisp analog of the model is constructed and
demonstrated on a numerical example.

Keywords: Minimum risk portfolio · Hybrid uncertainty · Weakest t-
norm · Strongest t-norm · Possibility · Necessity · Expected possibility ·
Crisp second moments

1 Introduction

The work investigates the behavior of a set of investment opportunities under
conditions of hybrid uncertainty of a possibilistic-probabilistic type with extreme
t-norms describing the interaction of fuzzy factors in the minimum risk portfolio
model. To this end, a mathematical model of a minimum risk portfolio, depend-
ing on the type of t-norm, has been developed, equivalent crisp analogues have
been constructed. Based on the results, we study a set of feasible portfolios and
construct sets of quasi-efficient portfolios.

To handle the uncertainty of probabilistic type in decision-making process we
use a principle based on an expected possibility, which completely corresponds
to the classical approach of Markowitz. As a result, we have possibilistic function
that represents portfolio return. Uncertainty of possibilistic type is removed by
imposing requirements on the possibility/necessity of fulfilling an investor’s con-
straints on an acceptable level of portfolio return which follows the usual practice
(not only in the financial area). We use indirect method in order to build equiv-
alent crisp analogue which in turn is a problem of mathematical programming
that can be solved by a set of classical approaches.

The work develops the results from [1,2] in which a similar problem was
solved in min-related environment. In the present work we investigate the case
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when all fuzzy parameters of the model are mutually TW -related, that is we use
the weakest (drastic) t-norm in order to aggregate fuzzy information. After that
we make comparative analysis of these two results.

2 Necessary Concepts and Notations

We introduce a number of definitions and concepts from the possibility theory
following [3–5]. Let (Γ , P(Γ ), τ) and (Ω, B, P) be possibility and probability
spaces, where Ω is a sample space with ω ∈ Ω, Γ – a pattern space with elements
γ ∈ Γ , B – σ-algebra of events, P(Γ ) is the discrete topology on Γ , τ ∈ {π, ν},
π and ν – measures of possibility and necessity, respectively, and P – probability
measure, E1 – number line.

Definition 1. Fuzzy random variable Y (ω, γ) is a real function Y : Ω×Γ → E1

σ-measurable for each fixed γ, where

μY (ω, t) = π{γ ∈ Γ : Y (ω, γ) = t}
is called its distribution function.

It follows from Definition 1 that the distribution function of a fuzzy random
variable depends on a random parameter, that is, it is a random function.

Definition 2. Let Y (ω, γ) be a fuzzy random variable. Its expected value E[Y ]
is a fuzzy variable with possibility distribution function

μE[Y ] (t) = π{γ ∈ Γ : E [Y (ω, γ)] = t},

where E is the expectation operator

E [Y (ω, γ)] =
∫

Ω

Y (ω, γ) P (dω).

In this case, the distribution function of the expected value of a fuzzy random
variable is no longer dependent on a random parameter and is therefore deter-
ministic. We define second central moment following [6]. Let X and Y be fuzzy
random variables.

Definition 3. A covariance of fuzzy random variables X and Y is defined as:

cov (X,Y ) =
1
2

∫ 1

0

(
cov

(
X−

ω (α) , Y −
ω (α)

)
+ cov

(
X+

ω (α) , Y +
ω (α)

) )
dα, (1)

where X−
ω (α) , Y −

ω (α) , X+
ω (α) , Y +

ω (α) are left and right boundaries of α-level
sets of fuzzy variables Xω and Yω.

Definition 4. A variance of a fuzzy random variable Y is

D [Y ] = cov(Y Y ).
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The expected value, variance and covariance of fuzzy random variables deter-
mined in such way inherit basic properties of the corresponding characteristics
of real-valued random variables.

LR-type distributions are often used to model fuzzy numbers [7].

Definition 5. Z(γ) is called an LR-type fuzzy variable, if its distribution func-
tion has the form

μZ (t) =

⎧⎪⎪⎨
⎪⎪⎩

L
(

m−t
d

)
, for t < m,

1, for m ≤ t ≤ m,

R
(

t−m
d

)
, for t > m.

where L(t) and R(t) are shape functions.

In this case Z(γ) is written, as a rule, in the form Z =
[
m,m, d, d

]
LR

, where
m ≤ m are left and right limits of tolerance (modal) interval, d > 0, d > 0 –
coefficients of fuzziness.

We use triangular norms and conorms (t-norms and t-conorms) as an instru-
ment for aggregation of fuzzy information that extends min and max operations,
laid in actions on fuzzy sets and fuzzy variables [8,9].

In particular, in this work we consider two extremal t-norms: TM (x, y) =

min(x, y) and TW (x, y) =
{

min{x, y}, if max {x, y} = 1,
0, otherwise.

TM is called the strongest t-norm and TW – the weakest t-norm, since for
any arbitrary t-norm T and ∀x, y ∈ [0, 1], the inequality holds:

TW (x, y) ≤ T (x, y) ≤ TM (x, y).

One of the main properties of t-norms is their ability to control uncertainty
(“fuzziness”) growth, which is obvious, for example, when performing arithmetic
operations on fuzzy numbers: when adding two fuzzy numbers of LR-type using
the strongest t-norm TM corresponding coefficients of fuzziness are summed,
therefore uncertainty is growing. With the help of t-norms other than TM we
can have slower growth of fuzziness. The extreme cases of triangular norms
which are considered in the work give us boundaries for control of fuzziness
in our minimum risk portfolio model. Following [10], we introduce the notion of
mutual t-relatedness of fuzzy sets and fuzzy variables. It is used as an instrument
for constructing joint possibility distribution functions.

Definition 6. Fuzzy sets A1, . . . , An ∈ P (Γ ) are called mutually T -related, if
for any index set {i1, . . . , ik} ⊂ {1, . . . , n} , k = 1, . . . , n, we have

π (Ai1 ∩ . . . ∩ Aik) = T (π (Ai1) , . . . , π (Aik)) ,

where

T (π (Ai1) , ..., π (Aik)) = T (T (...T (T (π (Ai1) , π (Ai2)) , π (Ai3)) , ...) , π (Aik)) .
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We can transfer the notion of mutual T-relatedness of fuzzy sets on fuzzy
variables.

Definition 7. Fuzzy variables Z1(γ), . . . , Zn(γ) are called mutually T -related,
if for any index set {i1, . . . , ik} ⊂ {1, . . . , n} , k = 1, . . . , n, we have

μZi1 ,...,Zik
(ti1 , . . . , tik) = π {γ ∈ Γ : Zi1 (γ) = ti1 , . . . , Zik (γ) = tik} =

π
{
Z−1

i1
{ti1} ∩ . . . ∩ Z−1

ik
{tik}}=T

{
π
(
Z−1

i1
{ti1}) , . . . , π (Z−1

ik
{tik})} , tij ∈ E1.

3 Expected Portfolio Return Under Conditions
of Hybrid Uncertainty

In conditions of hybrid uncertainty of possibilistic-probabilistic type, the return
on an investment portfolio can be represented as a fuzzy random function

RP (w,ω, γ) =
n∑

i=1

Ri (ω, γ) wi, (2)

that is, it is a linear function of portfolio’s capital shares wi. Here Ri (ω, γ) are
fuzzy random variables with a shift-scale representation [5]:

Ri (ω, γ) = ai (ω) + σi (ω) Zi(γ), (3)

which model the profitability of individual financial assets.
Further in this work we assume that in the representation (3) fuzzy variables

Zi(γ) are mutually TW -related, and ai (ω), σi(ω) are random offset and scale
factors.

For a better intuitive understanding of such a representation of a fuzzy ran-
dom variable, imagine a situation where some financial expert is asked to esti-
mate return of a certain financial asset. Both the return and its estimation by the
expert are uncertain quantities. We will assume that the uncertainty, determined
by market conditions, has a probabilistic nature. On the other hand, uncertainty
of expert’s estimation is described by some possibility distribution. This model
seems quite plausible if we assume that the degree of fuzziness of the expert
depends mainly not on the true value of the estimated variable, but on the scale
of its variability.

Under the assumptions made, the possibility distribution of portfolio
return (2) takes the following form [9,11]

Rp (w,ω, γ) =
[
mRp

(w,ω) ,mRp
(w,ω) , dRp

(w,ω) , dRp
(w,ω)

]
LR

, (4)

where
mRp

(w,ω) =
∑n

i=1
(ai(ω) + σi(ω),mi) wi,

mRp
(w,ω) =

∑n

i=1
(ai(ω) + σi(ω)mi) wi,
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dRp
(w,ω) = max

i=1,...,n
{σi (ω) diwi}, dRp

(w,ω) = max
i=1,...,n

{σi (ω) diwi}.

To remove the uncertainty of probabilistic type, in accordance with our
selected approach, it is necessary to identify the possibility distribution of the
mathematical expectation of the function Rp (w,ω, γ), that is, to calculate its
parameters. Therefore, the expected portfolio return for a fixed w would be a
fuzzy variable. This is shown by the following theorem.

Theorem 1. Let the conditions (2)–(4) are fulfilled, then the expected portfolio
return is characterized by the following possibility distribution:

R̂p (w, γ) = E[Rp (w,ω, γ)] =
[
E

[
mRp

(w,ω)
]
, E

[
mRp

(w,ω)
]
, E

[
dRp

(w,ω)
]
,

E
[
dRp

(w,ω)
]]

LR
= [mR̂p

(w) , mR̂p
(w) , dR̂p

(w) , dR̂p
(w)],

where mR̂p
(w) =

∑n
i=1 (âi + σ̂imi) wi, mR̂p

(w) =
∑n

i=1 (âi + σ̂imi) wi,

dR̂p
(w) = E

[
max

i=1,...,n
{σi (ω) diwi}

]
, dR̂p

(w) = E

[
max

i=1,...,n
{σi (ω) diwi}

]
,

âi = E [ai(ω)] , σ̂i = E [σi(ω)] .

Proof of Theorem 1 follows from the results obtained in [5,9,11]. Note that
functions dR̂p

(w) and dR̂p
(w) can be calculated in explicit form only for simple

probability distributions of random components ai (ω) and σi(ω) [5] and this is
due to the large amount of computation. To reduce the amount of computation
and solve problems of this type, we can use stochastic programming methods,
in particular, the stochastic quasigradient method.

In accordance with the classical Markowitz approach [12] and with the help
of [6], we can construct a risk function for the portfolio and include its expected
return in the system of constraints. Since the expected portfolio return in the
case of fuzzy random data is fuzzy, the uncertainty of possibilistic type can be
removed by imposing requirements on the possibility/necessity of fulfilling an
investor’s constraints on an acceptable level of expected portfolio return. In this
case, the model of feasible portfolios by Markowitz in case of hybrid uncertainty
can be represented in the following form

Fp =

⎧⎪⎨
⎪⎩

τ
{

R̂p (w, γ) R md

}
≥ α,∑

wi = 1,
w ∈ En

+,

where En
+ = {w ∈ En : wi ≥ 0}, R̂p (w, γ) – expected portfolio return, R – crisp

relation {≥, =}; α ∈ (0, 1],md – acceptable level of expected portfolio return
allowable by an investor. In general, relation R can be fuzzy, too [13].

The following theorem makes it possible to construct an equivalent crisp
analogue of the feasible portfolios model FP .



556 A. Yazenin and I. Soldatenko

Theorem 2. Let in the constraint model Fp τ = π, R is ‘=’. Then, with pos-
sibility not less than α, the level of the expected portfolio return md admits the
following estimate:

∑n

i=1
(âi + σ̂imi) wi − E

[
max

i=1,...,n
{σi (ω) diwi}

]
∗ L−1 (α) ≤ md

≤
∑n

i=1
(âi + σ̂imi) wi + E

[
max

i=1,...,n

{
σi (ω) diwi

}]
∗ R−1 (α) .

Proof. In accordance with the definition of LR-type fuzzy variable distribution
of portfolio’s expected return has the following form:

μR̂p
(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

L

(
mR̂p

(w)−t

dR̂p
(w)

)
, t < mR̂p

(w) ,

1, mR̂p
(w) ≤ t ≤ mR̂p

(w) ,

R

(
t−mR̂p

(w)

dR̂p
(w)

)
, t > mR̂p

(w) .

The left boundary of its α-level set can be found from the relation:

L

(
mR̂p

(w) − t

dR̂p
(w)

)
= α,

from which, after simple transformations, we have

R̂−
p (w,α) = mR̂p

(w) − dR̂p
(w) ∗ L−1 (α) .

Similarly, we find the right boundary R̂+
p (w,α). Suppose that the joint dis-

tribution R̂p (w, γ) and md is defined by the strongest t-norm TM . Then the

possibilistic inequality τ
{

R̂p (w, γ) = md

}
≥ α is equivalent to the following

system of deterministic inequalities [14–16]:

R̂−
p (w,α) ≤ md ≤ R̂+

p (w,α) .

After expanding R̂−
p (w,α) and R̂+

p (w,α) we obtain condition of the Theorem.

Note 1. It is easy to build an equivalent crisp analogue under the assumption
that the joint distribution R̂p (w, γ) and md is defined by the weakest t-norm TW .
Although in this case the form of the obtained result will be more cumbersome
and thus we will omit it in the present work.

Corollary 1. If in the condition of Theorem 1 the relation R is ‘≥’, then we
get the following estimate of the expected portfolio return level:

∑n

i=1
(âi + σ̂imi) wi + E

[
max

i=1,...,n

{
σi (ω) diwi

}]
∗ R−1 (α) ≥ md.
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In the classical portfolio theory by Markowitz, the expected return on the port-
folio is limited by the minimum and maximum of the expected returns of its
individual assets. It is possible to obtain a relative analogue of a similar esti-
mate for our case (with the possibility of at least α):

Corollary 2. Under the condition of Theorem 1 the following inequalities for
the expected portfolio return level hold:

min
i=1,...,n

(âi + σ̂imi) − E

[
max

i=1,...,n
{σi (ω) diwi}

]
∗ L−1 (α) ≤ md

≤ max
i=1,...,n

(âi + σ̂imi) + E

[
max

i=1,...,n

{
σi (ω) diwi

}]
∗ R−1 (α) .

Proof. This automatically follows from the fact that
∑n

i=1
(âi + σ̂imi) wi ≥ min

i=1,...,n
(âi + σ̂imi)

∑n

i=1
wi = min

i=1,...,n
(âi + σ̂imi) ,

∑n

i=1
(âi + σ̂imi) wi ≤ max

i=1,...,n
(âi + σ̂imi)

∑n

i=1
wi = max

i=1,...,n
(âi + σ̂imi) .

4 Portfolio Risk Assessment Under Conditions
of Hybrid Uncertainty

In this work we define the variance of a fuzzy random variable in the context
of t-norm TW that describes the interaction of fuzzy factors. For this, we use
formula (1) from [6] which takes the following form

Dp (w) =
1
2

∫ 1

0

(
D

[
R−

p (w,ω, α)
]
+ D

[
R+

p (w,ω, α)
])

dα, (5)

where R−
p (w,ω, α) and R+

p (w,ω, α), are the left and right boundaries, respec-
tively, of the α-level set of portfolio return Rp(w,ω, γ):

R−
p (w,ω, α) =

∑n

i=1
(ai(ω) + σi(ω)mi) wi − max

i=1,...,n
{σi (ω) diwi} ∗ L−1 (α) ,

R+
p (w,ω, α) =

∑n

i=1
(ai(ω) + σi(ω)mi) wi + max

i=1,...,n

{
σi (ω) diwi

} ∗ R−1 (α) .

We have:

D
[
R−

p (w,ω, α)
]

=
n∑

i=1

w2
i D [ai(ω) + σi(ω)mi] + D

[
max

j=1,...,n

{
σj (ω) djwj

}]

× (
L−1 (α)

)2
+ 2

∑
1≤i<j≤n

wiwjcov
(
(ai (ω) + σi (ω) mi) ,

(
aj (ω) + σj (ω) mj

))

−2L−1 (α)
n∑

i=1

wicov

(
(ai (ω) + σi (ω)mi) , max

j=1,...,n

{
σj (ω) djwj

})
,
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D
[
R+

p (w,ω, α)
]

=
n∑

i=1

w2
i D [ai(ω) + σi(ω)mi] + D

[
max

j=1,...,n

{
σj (ω) djwj

}]

× (
R−1 (α)

)2
+ 2

∑
1≤i<j≤n

wiwjcov ((ai(ω) + σi(ω)mi) , (aj (ω) + σj (ω) mj))

+2R−1 (α)
n∑

i=1

wicov

(
(ai(ω) + σi(ω)mi) , max

j=1,...,n

{
σj (ω) djwj

})
.

After substituting the found variances of the left and right boundaries into (5),
we obtain:

Dp (w) =
1
2

n∑
i=1

w2
i (D [ai (ω) + σi (ω) mi] + D [ai (ω) + σi (ω)mi])

+
1
2
D

[
max

j=1,...,n

{
σj (ω) djwj

}]∫ 1

0

(
R−1 (α)

)2
dα

+
1
2
D

[
max

j=1,...,n

{
σj (ω) djwj

}] ∫ 1

0

(
L−1 (α)

)2
dα

+
∑

1≤i<j≤n

wiwj

(
cov

(
(ai (ω) + σi (ω)mi) ,

(
aj (ω) + σj (ω)mj

))

+cov ((ai (ω) + σi (ω) mi) , (aj (ω) + σj (ω)mj)))

+
∑n

i=1
wi

(∫ 1

0

R−1 (α) dα cov

(
(ai(ω) + σi(ω)mi) , max

j=1,...,n

{
σj (ω) djwj

})

−
∫ 1

0

L−1 (α) dα cov

(
(ai (ω) + σi (ω) mi) , max

j=1,...,n

{
σj (ω) djwj

}))
.

If in fuzzy random variables all random parameters of distributions are inde-
pendent and fuzzy components are represented by symmetrical fuzzy numbers
of LR-type, i.e. S (t) = L (t) = R (t) ,∀t ≥ 0 and mi = mi = mi, di = di =
di, i = 1, . . . , n, then the variance formula has the form:

n∑
i=1

w2
i

(
D [ai(ω)] + D [σi(ω)] m2

i

)
+D

[
max

j=1,...,n
{σj (ω) djwj}

] ∫ 1

0

(
S−1 (α)

)2
dα.

(6)
Let us obtain as an example a formula for variance when the shift and scale

coefficients ai (ω) and σj (ω) have specific distribution – uniform on [0,1]. We use
the variance property, according to which it is equal to the difference between
the second moment and the square of the first moment:

D [X] = E
[
X2

] − (E [X])2 . (7)

In accordance with [5], we have for E
[
maxi

{
σj (ω) djwj

}]
(we denote it EMax):

EMax
(
dw

)
=

∑n

i=1

(
dw

)n−i+1

(i)

(n − i + 1) (n − i + 2)
(
dw

)
(i+1)

. . .
(
dw

)
(n)

,
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where
(
dw

)
(1)

(
dw

)
(2)

, . . . ,
(
dw

)
(n)

is an ordered ascending permutation of ele-

ments
{
d1w1, d2w2 . . . , dnwn

}
. It is easy to show in a similar way that the second

moment E
[(

maxi

{
σj (ω) djwj

})2]
is given by the following formula:

EMax2
(
dw

)
=

∑n

i=1

2
(
dw

)n−i+2

(i)

(n − i + 2) (n − i + 3)
(
dw

)
(i+1)

. . .
(
dw

)
(n)

.

Substituting everything in (7), we obtain the variance. Similarly, we can con-
struct D

[
maxi

{
σj (ω) djwj

}]
.

If we denote

ESMax(dw) = E

[
σi (ω) max

j=1,...,n

{
σj (ω) djwj

}]
,

variance formula finally becomes:

Dp (w) =
1
2

n∑
i=1

w2
i

(
1
12

(
m2

i + m2
i

)
+

1
6

)

+
1
2

(
EMax2

(
dw

) − (
EMax

(
dw

))2) ∫ 1

0

(
R−1 (α)

)2
dα

+
1
2

(
EMax2 (dw) − (EMax (dw))2

)∫ 1

0

(
L−1 (α)

)2
dα

+
∑n

i=1
wi

(∫ 1

0

R−1 (α) dα mi

(
ESMax(dw) − 1

2
EMax

(
dw

))

−
∫ 1

0

L−1 (α) dα mi

(
ESMax(dw) − 1

2
EMax (dw)

))

and formula (6) with its corresponding assumptions:

1
12

n∑
i=1

w2
i

(
m2

i + 1
)

+
(
EMax2 (dw) − (EMax (dw))2

) ∫ 1

0

(
S−1 (α)

)2
dα.

5 An Example of Minimum Risk Portfolio and Model
Calculations

The model of minimum risk portfolio under conditions of a hybrid uncertainty
of a possibilistic-probabilistic type has the form:

Dp(w) → min, (8)

w ∈ Fp. (9)

We will carry out numerical calculations and compare the results in case
of the strongest and weakest t-norms in a possibility-necessity context. With
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the assumptions made earlier on the elements of the distributions and with all
fuzzy variables having symmetrical triangular forms with S (t) = max{0, 1 −
t}, the equivalent crisp analogues of the minimum risk portfolio (8)–(9) take
the following forms (depending on the context) when all fuzzy parameters of
distributions are mutually TW -related:

1
12

n∑
i=1

w2
i

(
m2

i + 1
)

+
1
3

(
EMax2 (dw) − (EMax (dw))2

)
→ min, (10)

Fp =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

∑n
i=1 (mi + 1)wi + EMax (dw) ∗ (1 − α) ≥ md, (in possibility context)

1
2

∑n
i=1 (mi + 1)wi − EMax (dw) ∗ α ≥ md, (in necessity context)

∑
wi = 1,

w ∈ En
+.

(11)

In the case when all fuzzy parameters are mutually min-related, we have the
following equivalent crisp analogues of the model (8)–(9):

1
12

n∑
i=1

w2
i

(
m2

i + 1 +
1
3
d2i

)
→ min, (12)

Fp =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

∑n
i=1 (mi + 1 + di(1 − α))wi ≥ md, (in the possibility context)

1
2

∑n
i=1 (mi + 1 − diα)wi ≥ md, (in the necessity context)∑

wi = 1,
w ∈ En

+.

(13)

Consider a model example for n = 2. Let Z1 = [0.3; 0.3; 3.5; 3.5]SS , Z2 =
[2.8; 2.8; 1.5; 1.5]SS , α = 0.65. Figure 1 illustrates the sets of investment oppor-
tunities calculated from (10)–(13).

Fig. 1. Dependence of the minimum risk of portfolio on its expected return for min-
related parameters in necessity context (a) and possibility context (d), for TW -related
parameters in necessity context (b) and possibility context (c).
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Curves (b) and (c) on Fig. 1 show solutions of the problem (10)–(11) in
necessity and possibility contexts, respectively, and curves (a) and (d) – solutions
of the problem (12)–(13) in necessity and possibility contexts, respectively.

On the figure, the x-axis is the expected portfolio return, and the y-axis is the
risk of the portfolio. As one can see from Fig. 1 TW -related regions are narrower
thus less “fuzzy” which is consistent with properties of TW -related calculus of
fuzzy variables.

Figures 2 and 3 show behavior of investment opportunities curves from Fig. 1
depending on α-level. Two extreme cases are shown: when α is almost zero
(Fig. 2) we see that necessity curves for TM and TW start to coincide and when
α = 1 (Fig. 3) than the same behavior transitions to possibilities curves.

Fig. 2. Behavior of investment opportunities curves when α = 0.01.

Fig. 3. Behavior of investment opportunities curves when α = 1.
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6 Conclusion

The following generalizations and amplifications obtained results [1,2] are
described: a mathematical model of the minimum risk portfolio was constructed
under the conditions of hybrid uncertainty of possibilistic-probabilistic type in
the possibility-necessity context; a formula was obtained for the portfolio risk
estimation. For this purpose, we derived a formula for the variance of the port-
folio in the context of t-norm TW describing the interaction of fuzzy factors. An
equivalent crisp analog of the minimum risk portfolio model is constructed. The
approach is demonstrated on a model example for the case when its probabilistic
parameters are independent and distributed according to a uniform law on [0,1]
and fuzzy factors are symmetrical fuzzy numbers.

Results of methods for finding quasi-efficient portfolios for different t-norms
in the possibility-necessity context were compared on a numerical example.

References

1. Yazenin, A.V.: Possibilistic-probabilistic models and methods of portfolio opti-
mization. In: Batyrshin, I., Kacprzyk, J. et al. (eds.) Studies in Computa-
tional Intelligence, vol. 36, pp. 241–259. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-36247-0 9

2. Xu, J., Zhou, X.: Fuzzy-Like Multiple Objective Decision Making. Studies in
Fuzziness and Soft Computing, vol. 263. Springer, Berlin (2011). doi:10.1007/
978-3-642-16895-6

3. Nahmias, S.: Fuzzy variables in a random environment. In: Gupta, M.M., Ragade,
R.K., Yager, R.R. (eds.) Advances in Fuzzy Sets Theory and Applications, pp.
165–180. NHCP, Amsterdam (1979)

4. Puri, M.L., Ralescu, D.A.: Fuzzy Random Variables. J. Math. Anal. Appl. 114,
409–422 (1986). doi:10.1016/0022-247X(86)90093-4

5. Yazenin, A.V.: Basic Concepts of Possibility Theory: A Mathematical Appara-
tus for Decision-making Under Hybrid Uncertainty Conditions. Fizmatlit Publ.
Moscow (2016). (in Russian)

6. Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random vari-
ables and their applications. Fuzzy Sets Syst. 120, 487–497 (2001). doi:10.1016/
S0165-0114(99)00060-3
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Abstract. This paper proposes the combination of discrete wavelet transform
(DWT) and fuzzy logic to classify the fault type in underground distribution cable.
The DWT is employed to decompose high frequency component from fault signal
with the mother wavelet daubechies4 (db4). The maximum coefficients detail of
DWT from phase A, B, C and zero sequence for post-fault current waveforms are
considered as an input pattern of decision algorithm. Triangle-shaped S-shaped
and Z-shaped membership function with maximum, medium, minimum, and zero
are used to create a function for the input variable. Output variable of fuzzy are
designated as values range 1 to 10 which corresponding with type of fault. The
obtained average accuracy results shown that the proposed decision algorithm is
able to classify the fault type with satisfactory accuracy.

Keywords: Fuzzy logic � Fault type � Underground distribution system

1 Introduction

In the literature for transmission line and underground cable protection [1–28], based on
the transient-based techniques, the application of wavelet transform is used [2, 3, 8, 9]. In
previous research works [8], the division algorithm between the maximum coefficients of
DWT at ¼ cycle of phase A, B, C is performed. The obtained results were compared to
identifying the phase with fault appearance so that the types of fault can be analysed.

In recent years, the artificial intelligence has been often employed for fault diag-
nosis for power system [10–16] due that the algorithm can give precise results. Based
on studied research papers related to fault classification in transmission and distribution
system in the literature, the fuzzy logic is one of algorithm that is interested in previous
decade [18–27]. In [28], the decision algorithm using the combination of DWT and
fuzzy logic to identify of fault type on single circuit transmission line was presented.
The combination of DWT and back-propagation neural network have been compared
with the proposed decision algorithm in [28]. The obtained results seen that the pro-
posed decision algorithm can be identified the fault type with highly satisfactory more
than the other. Paper [29] presents the proper input pattern of fuzzy logic algorithm for
fault type classification in underground cable.
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Paper [30] is checked for all types of fault taking into account the fundamental
components of voltage and current collected from the sending end. In [31], the results
of investigation into a new fault classification and location technique are presented by
using EMTP software. Paper [32] presents a new algorithm for fault detection and
classification using discrete wavelet transform (DWT) and back-propagation neural
network (BPNN) based on Clarke’s transformation on parallel transmission. In [33], a
novel scheme using wavelet technique for classification of faults in TS is proposed.
However, all of the above paper, researchers mostly have used several algorithms to
classifying the fault type in overhead transmission line but not for classifying in
underground distribution system.

The goal of this paper is to classify the fault type in underground distribution cable
using the combination of the DWT and fuzzy logic. The system under this study is
from Metropolitan Electricity Authority (MEA) that is a part of Thailand’s 115 kV
underground distribution systems. The locations of fault including the fault type and
fault inception angles are varied to study the behavior of the fault. The ATP/EMTP is
employed to simulate the fault signals. In addition, the results from the proposed
algorithm are compared with the comparison coefficient technique and probabilistic
neural network.

2 Simulations

The ATP/EMTP [8] is employed to simulate fault signals, at a sampling rate of
200 kHz. The system employed in case studies are chosen based on the underground
distribution system as illustrated in Fig. 1. In addition, a cross-sectional view of a cable
is shown in Fig. 2. To avoid complexity, the fault resistance is assumed to be 10 X.
Fault patterns in the simulations are performed with various changes of system
parameters as follows:

• Fault types are single line to ground, double lines to ground, line to line, and
three-phase fault.

• Fault locations are from 1 to 5 km (each step = 1 km) of the underground cable
length measured from the sending end

• Fault inception angles on the phase A voltage waveform are varied from 0° to 150°
with a step of 30°

Fig. 1. The system used in simulation studies [8].
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3 Decision Algorithm

The proposed decision algorithm in this paper can be divided into 2 processes. First
process, the fault detection decision algorithm must be detected using the discrete
wavelet transform to classifying between fault condition and normal condition. For
next process, after fault condition can be detected, the fault type decision algorithm will
be classifying the type of fault using the fuzzy logic.

With several trial and error processes, the fault detection decision algorithm [8] on
the basis of computer programming technique is constructed as shown in Fig. 3. Fault
detection decision algorithm is processed using positive sequence current signal. By
considering the Fig. 3, fault signals are imported to analyse the high frequency tran-
sient components using mother wavelet daubechies4 (db4) in the wavelet toolbox. The
Clark’s transformation matrix is employed for calculating the positive sequence and
zero sequence of currents. After applying the DWT to the positive sequence currents,
the comparison of the coefficients from each scale is under investigation. Coefficients
obtained using DWT of signals are squared so that the abrupt change in the spectra can
be clearly found. This sudden change is used as an index for the occurrence of faults.
The fault detection decision algorithm has been proposed that if coefficients of any
scales are change around five times before an occurrence of the faults, there are faults
occurring in underground cable.

After the fault detection process, the comparison of the coefficients from first scale
that can detect fault is considered as input variables for the next process in order to
classify the types of fault. Before the fault type decision algorithm process, a structure
of the fuzzy logic consists of 4 inputs and 1 output as illustrated in Fig. 4. By observing
Fig. 4, it can be observed that, in first stage, the maximum coefficients detail (phase A,
B, C and zero sequence of post-fault current signals) of DWT at the first peak time that
can detect fault, after that define value range 0 to 1 by normalized, is performed as
input variables.

R1R2

R3

R4 R5

R1 = 0 mm

R3 = 38.5 mm

R2 = 17 mm

R4 = 41 mm

R5 = 44.5 mm

Ground surface

1 m

0.28 m 0.28 m

Fig. 2. The configuration of cable in simulation studies [8]
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Fig. 3. Flowchart for fault detection [8].
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For the next stage, triangle-shaped S-shaped and Z-shaped membership functions
are used to create a function for the input variable. In addition, a term of the number of
fuzzy sets has 4 terms and linguistic variable has 4 levels such as maximum, medium,
minimum, and zero are designed by Z-shaped, triangle-shaped, triangle-shaped, and
S-shaped respectively as shown in Fig. 5. Output variable of fuzzy are designated as
values range 1 to 10 which corresponding with type of fault as shown in Table 1.

Finally, for this paper, the fuzzy inference rules are based on the principles of fuzzy
logic in the form of IF-THEN. The IF statement is called the condition (antecedent),
which is the input of fuzzy while the THEN is called the consequent, which is the
output of fuzzy.

According to the fault type can be calculated using proposed decision algorithm,
the various case studies were performed with various types of faults at each location on
the distribution underground cable including the variation of fault inception angles and
locations on each distribution cable in order to verify the decision algorithm capability.
The total number of the case studies is 200 sets. The average accuracy of proposed
decision algorithm is shown in Table 2. By considering the data in Table 2, it can be
seen that the proposed algorithm gives results with satisfactory accuracy.

Fig. 4. Structure of fuzzy logic for classifying the fault type in case of maximum coefficients
detail of DWT (Case 1).
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Fig. 5. Membership functions of input variable for classifying the fault types in case of
maximum coefficients detail of DWT (Case 1).
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Table 1. Rules of fuzzy logic

Output of
fuzzy logic

Rules of the module Classification of fault
type

Types
of faultILP1;maxðpostÞ ILP2;maxðpostÞ ILP3;maxðpostÞ ILP4;maxðpostÞ

1 MAX ZERO ZERO MAX Phase A to ground
fault

AG

2 ZERO MAX ZERO MAX Phase B to ground
fault

BG

3 ZERO ZERO MAX MAX Phase C to ground
fault

CG

4 NOT
ZERO

NOT
ZERO

ZERO MAX Phase A and phase B
to ground fault

ABG

5 MED MED ZERO MED Phase A to phase B
fault

AB

5 MED MED MIN MED Phase A to phase B
fault

AB

6 NOT
ZERO

ZERO NOT
ZERO

MAX Phase C and phase A
to ground fault

CAG

7 MED ZERO MED MED Phase C to phase A
fault

CA

7 MED MIN MED MED Phase C to phase A
fault

CA

8 ZERO NOT
ZERO

NOT
ZERO

MAX Phase B and phase C
to ground fault

BCG

9 ZERO MED MED MED Phase B to phase C
fault

BC

9 MIN MED MED MED Phase B to phase C
fault

BC

10 NOT
ZERO

NOT
ZERO

NOT
ZERO

ZERO Three phase fault ABC

Table 2. Percentage of average accuracy for fault types

Classification of the fault types Number of case studies Proposal algorithm

AG 20 85%
BG 20 80%
CG 20 85%
ABG 20 80%
CAG 20 80%
BCG 20 80%
AB 20 100%
CA 20 80%
BC 20 100%
ABC 20 100%
Average 88%
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4 Conclusion

This paper proposed the combination of the discrete wavelet transform and fuzzy logic
algorithm to classify the fault type in underground distribution cable. The proposed
decision algorithm in this paper can be divided into 2 processes. First process, the fault
detection decision algorithm must be detected using the DWT to classifying between
fault condition and normal condition. Fault detection decision algorithm is processed
using positive sequence current signal. The DWT with Daubechies4 (db4) is employed
to decompose high frequency components from fault signals. The obtained results can
be summarized that the fault detection decision algorithm can be detected the fault
condition with average accuracy 100%. For next process, the fault type decision
algorithm can be classifying the type of fault using the fuzzy logic. The maximum
coefficients detail of DWT is considered as the input variables in constructing a fuzzy
logic decision algorithm. By performing many simulations, the obtained results shown
that the proposed decision algorithm can classify the fault type with average accuracy
88.00%.
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Abstract. This paper aims to investigate switching capacitor bank of the
115 kV Nong Chok substation under the Electricity Generating Authority of
Thailand (EGAT). The substation comprises of 3 steps capacitor banks with
reactive power of 48 Mvar in each step. In case study, the substation is
downscaled to be an experimental unit with 415 V and 5 Mvar in each step in
laboratory. Inrush currents, the behavior of transient signals, that occurs when
capacitors are switched into the system are studied and analyzed. To reduce the
effect of switching capacitors, current limiting reactors connected in series with
the capacitors are proposed. In addition, a zero-crossing circuit is designed to
control switching angle of the capacitors, since it has a significant effect on the
inrush currents. The results of experiment are compared with two case studies:
switching capacitors without integrated 7% of reactors and switching capacitors
with integrated 7%. It can be summarized that the switching capacitor without
integrated reactors has inrush currents change based on the switched angles of
the capacitors. However, the switching capacitor with integrated reactors gives
inrush current values are almost approximate in each angles of switching and
they are lower the case of the switching capacitor without integrated reactors.
Nevertheless, reactor integration into the system leads to high current values at
the steady states.

Keywords: Capacitor bank � Inrush current � Reactor � Switching

1 Introduction

Nowadays, we need to consume a lot of electrical energy for daily activity but some of
the power systems, distributing and transmitting the electrical energy to the consumers,
have unsuitable power factors resulting in low efficiency. Thus, a capacitor bank is one
of the systems used to enhance the power system efficiency. Many research articles
present that capacitor bank installation to an electrical system provides many benefits,
for instance power factor correction, voltage support, reduction of harmonic distortion
effect in transmission systems and increase of active power transfer capacity [1–3].
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The investigation of efficiency improvement of power systems by integrating different
types of capacitor bank units is presented in K. Tilakul [4] and C. Rivera [5] works.
A capacitor bank comprises of capacitor units connected in series and parallel inside an
enclosed bank. However, capacitor bank switching has a negative effect on power
system operation which is inrush currents, overvoltage transience and harmonic
problems, hence electrical equipment damage.

The inrush current from switching can be very high during short periods, which
leads to the failure of electrical equipment operation. To limit the inrush current,
J. C. Das [6] and Mirza Softić [7] present a power factor controller. Thyristors are used
to control the power factor of the capacitor banks that are connected in series. Results
indicate that this technique is effective and reliable. The installation of an electromag-
netic relay with solid-state transient limiter into a capacitor bank is proposed [8–10].
There are two operation modes by using a thyristor to address any transient overvoltage
and inrush current problems: limiting mode and bypass mode, which have a very simple
structure and reliable performance [8]. Due to an increased voltage stress of a thyristor
switch, paper [9] uses IGBT to turn-on and turn-off a switch without an inrush current at
the voltage zero-crossing. IEEE Std C37 [11] proposes guidelines for shunt power
capacitor bank and filter capacitor bank protection, aiming for many shunt capacitor
installations and designs. Software simulation is used to investigate inrush current for
single and back-to-back capacitor banks, revealing that the pre-insertion resistor tech-
nique can significantly reduce transient [12].

In this paper, switching capacitor bank of the 115 kV Nong Chok substation under
the Electricity Generating Authority of Thailand (EGAT) is studied. The substation is
downscaled to be an experimental unit in laboratory to study and analyze inrush
currents. After that, current limiting reactors connected in series with the capacitors are
installed to reduce the effect of switching capacitors.

2 Experimental Setup

The experimental model is set to simulate the 115 kV Nong Chok substation under the
Electricity Generating Authority of Thailand (EGAT). A single line diagram of the
capacitor bank system is shown in Fig. 1. The substation comprises of 3 steps capacitor
banks with reactive power of 48 MVar in each step. The experimental test set is
downscaled from 115 kV to 415 V in laboratory. In addition, the size of capacitors and
other equipment is determined by using per unit calculation. Hence, the total capacity
power is 15 MVar, 5 MVar in each step, with ungrounded wye for internal connection.
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The experimental setup receives a voltage of 415 V from a variable voltage
transformer used to step up the voltage of the power supply in the laboratory. The
voltage and current measured at phase A by a power factor controller are evaluated and
processed, after that it sends a signal to the switching capacitors with the magnetic
contactors K1, K2, and K3. The operation of the experimental test set is divided into
two parts: a power circuit and a control circuit.

Figure 2(a) shows a schematic diagram of the power circuit of the experimental test
set. The busbars of the power circuit receive a 3-phase voltage of 415 V three phase via
a main circuit breaker. There are two main circuits connected with them. Firstly, the
415-line voltage of phase A is changed to 230 V by a step down voltage transformer in
order to supply the control circuit (power factor controller) and a thermal ventilation
system (a cooling fan). Next, the switching of the capacitor bank in each step consists
of a HRC fuse, a magnetic contactor, a 7% reactor and a capacitor.

KT5A

EGAT

115 kV
MEA

3x48 Mvar 121 kV
CAPACITOR BANK

Fig. 1. The single line diagram of the capacitor bank system in the Nong Chok substation
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A schematic diagram of the control circuit of the capacitor bank system in the
experimental test set is shown in Fig. 2(b) The control system comprises the power
factor controller used to control the switching capacitor in each step. The power factor
controller obtains current and voltage values from the current transformer (CT) and
potential transformer (PT). The power factor of the system is calculated from these
values to compare with the power factor value set inside the program. After that, the
capacitor in each step is closed or opened with the magnetic contactor by using on/off
signals from the power factor controller.

Fuse 16A

K1 K2 K3

Reactor 7%

Capacitor bank
10kvar

MCB 6A

Cooling fan

MCB 6A N

L

Transformer
400/230V

L1

L2
Fuse 6A

MCCB 32A

CT ratio 30/5A

415V

A
B
C

(a) a schematic diagram of the power circuit of the experimental test set 

Fig. 2. The operation of the experimental test set (a) a schematic diagram of the power circuit of
the experimental test set (b) a schematic diagram of the control circuit of the capacitor bank
system
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3 Experimental Results

The inrush currents from switching capacitors into the experimental setup are measured
by using a Fluke 435 power quality meter. There are two case studies: switching
capacitors without integrated 7% of reactors and switching capacitors with integrated
7%. In these studies, a zero-crossing detection is installed to control the angle of
switching capacitors.

Figure 3(a) gives the schematic diagram of switching capacitors without integrated
7% of reactors. For inrush current measurement, current clamps are installed between
magnetic contactors (K1, K2, and K3) and capacitors, while voltage probe installation
is set between HRC fuses and the magnetic contactors. For experiment, the test set is
supplied from the three-phase voltage of 415 V in the laboratory via a main circuit
breaker (32 A, MCCA). The capacitor in each step (1st, 2nd, and 3rd steps respec-
tively) is switched by using the power factor controller to deliver signals to the
magnetic contactors K1, K2, and K3. Electrical parameters including the inrush cur-
rents are recorded by the power quality meter and results are presented in Table 1.
Figure 4 depicts the current and voltage waveforms of switching capacitor bank
without integrated 7% of reactors at the phase angles of 0° and 90°.

L N L1 L2 K L

Power Factor Controller

1 2 3

K1

K1 K1

Red Green Red Green Red GreenK2

K2K2 K3

K3

K3

Green   =   C-Bank “ON”
Red       =   C-Bank “OFF”

(b) a schematic diagram of the control circuit of the capacitor bank system 

Fig. 2. (continued)

578 S. Yoomak et al.



For the schematic diagram of switching capacitors with integrated 7% of reactors as
depicted in Fig. 3 (b), the measurement equipment setting and measurement remain the
same case of the switching capacitors without integrated 7% of reactors. In this model,
the 7% of reactors are integrated between the magnetic contactors and capacitors in
order to reduce effects of the inrush currents; the results are shown in Table 2 and the
current and voltage waveforms of the switching capacitors are shown in Fig. 5.

Fluke 435 power quality 
meter

Capacitor bank
5kvar

Zero crossing
K1 K2 K3

Fuse 16A

MCCB 32A

A
B
C

415V

Power Factor 
Controller

(a) switching capacitors without integrated 7% of reactors 

Fig. 3. The schematic diagram of switching capacitors (a) switching capacitors without
integrated 7% of reactors (b) switching capacitors with integrated 7% of reactors
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Fluke 435 power quality 
meter

Capacitor bank
10kvar

Reactor 7%

Zero crossing
K1 K2 K3

Fuse 16A

MCCB 32A

A
B
C

415V

Power Factor 
Control ler

(b) switching capacitors with integrated 7% of reactors 

Fig. 3. (continued)

Table 1. Results of inrush current in the case of switching capacitors without integrated 7% of
reactors

Phase
angle
(degree)

1st step 2nd step 3rd step

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

0 −69.98 179 8.12 41.56 161 8.93 −21.37 127 9.23
45 −85.06 336 8.35 52.98 225 8.95 37.60 190 9.09
90 −197.60 712 8.57 −176.52 554 8.97 132.31 595 9.21

135 68.28 350 8.74 52.30 204 9.00 34.59 189 9.05
180 75.21 204 8.21 53.28 194 8.97 22.39 154 9.12

225 −82.92 377 8.32 56.01 194 9.07 33.91 168 9.14
270 197.66 698 8.78 182.76 688 8.88 146.67 611 9.25
315 −82.95 307 8.67 54.38 270 8.98 −36.05 242 9.32
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(a) switching capacitors at 0° phase angle in step 1 

(b) switching capacitors at 90° phase angle in step 1 

(c) switching capacitors at 0° phase angle in step 2 

(d) switching capacitors at 90° phase angle in step 2 

Fig. 4. Current and voltage waveforms of switching capacitor bank without integrated 7% of
reactors (a) switching capacitors at 0° phase angle in step 1(b) switching capacitors at 90° phase
angle in step 1(c) switching capacitors at 0° phase angle in step 2(d) switching capacitors at 90°
phase angle in step 2(e) switching capacitors at 0° phase angle in step 3(f) switching capacitors at
90° phase angle in step 3
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(e) switching capacitors at 0° phase angle in step 3 

(f) switching capacitors at 90° phase angle in step 3 

Fig. 4. (continued)

Table 2. Results of inrush current in the case of switching capacitors with integrated 7% of
reactors

Phase
angle
(degree)

1st step 2nd step 3rd step

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

Inrush
current
(A)

Steady
state
period
(ms)

Current
(A)

0 95.87 79 12.56 91.08 48 14.58 −90.45 39 15.92

45 −95.68 74 12.56 −91.98 53 14.40 −90.92 48 15.90
90 97.98 84 12.45 94.56 68 14.38 92.86 63 15.89
135 −96.45 71 12.57 −91.25 58 14.39 −92.14 52 15.75

180 96.05 64 12.61 −91.09 51 14.39 −91.00 49 15.84
225 97.66 81 12.49 93.87 65 14.40 91.85 55 15.90

270 96.78 73 12.56 −93.56 61 14.14 −91.94 56 15.86
315 95.98 68 12.60 92.87 60 14.19 91.00 51 15.94
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(a) switching capacitors at 0° phase angle in Step 1 

(b) switching capacitors at 90° phase angle in Step 1 

(c) switching capacitors at 0° phase angle in Step 2 

(d) switching capacitors at 90° phase angle in Step 2 

Fig. 5. Current and voltage waveforms of switching capacitor bank with integrated 7% of
reactors (a) switching capacitors at 0° phase angle in Step 1 (b) switching capacitors at 90° phase
angle in Step 1 (c) switching capacitors at 0° phase angle in Step 2 (d) switching capacitors at 90°
phase angle in Step 2 (e) switching capacitors at 0° phase angle in Step 3 (f) switching capacitors
at 90° phase angle in Step 3
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4 Conclusions

This paper aims to study capacitor bank switching transients in a substation by using an
experimental test unit. To reduce the effect of switching capacitors, current limiting
reactors connected in series with the capacitors are proposed. The results of the
switching capacitors without integrated 7% of reactors (see Table 1) show that the
inrush current values obtained from the experimental setup have change based on the
switched angles of the capacitors. Switching of angles at 90 and 270 degrees causes the
maximum inrush current value when comparing with another angles. By contrast, the
angles of 0 and 180 degrees give the minimum inrush current value.

For the results of the switching capacitors with integrated 7% of reactors (see
Table 2), it can be noticed that inrush current values are almost approximate in each
angles of switching capacitors and lower than the inrush currents of the former case.
The 7% reactors connected in series with the capacitors increase in an inductance value
per a phase, resulting in decreased inrush current values and short periods of time for
steady states. However, 7% reactor integration into the experimental setup allows for
high current values at the steady states.

Acknowledgments. This authors wish to gratefully acknowledge financial support for this
research (No. KREF045507) from the King Mongkut’s Institute of Technology Ladkrabang
Research fund, Thailand.

(e) switching capacitors at 0° phase angle in Step 3 

(f) switching capacitors at 90° phase angle in Step 3 

Fig. 5. (continued)
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Abstract. This paper presents an approach to applying stochastic
orderings to evaluate classification algorithms for low quality data. It dis-
cusses some known stochastic orderings along with practical notes about
their application to classifier evaluation. Finally, a new approach based
on fuzzy cost function is presented. The new method allows comparing
any two classifiers, but does not require a precise definition of the cost
function. All proposed methods were evaluated on real life medical data.
The obtained results are very similar to those previously reported but
comparatively much weaker assumptions about costs values are adopted.

Keywords: Classification · Loss function · Stochastic ordering · Low
quality data · Fuzzy random variable

1 Introduction

As long as machine learning algorithms are becoming more and more popular
and their area of application is simultaneously expanding, we are facing a wide
range of newly arising problems. One of them is the evaluation of algorithms
concerning real-life conditions with some unusual restrictions.

A typical binary classification problem’s goal is to find a model f : X → Y
assigning the categories from Y = {0, 1} to lists of attributes mapped by Y :
Ω → Y and X : Ω → X , respectively. These kinds of models can be evaluated
by widely known evaluation functions such as: accuracy, precision, recall as well
as F1-score.
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Unfortunately, not every classification problem matches the definition above
[1–4]. For instance, in some medical diagnostic problems, the physician is not
always able to collect all the data needed for the diagnosis due to the time and
money investment this constitutes [5,6]. In such situations we may want to eval-
uate classifiers similarly to the way real-life doctor’s decisions are evaluated. We
thus, take into account the data quality, the level of uncertainty, and allow the
possibility of receiving a “not available” (NA) value as the output of the classi-
fication model. In turn, this prevent the use of mentioned evaluation functions
so another solution must be found.

One of the proposed approaches is to introduce the cost function matching
model outcomes (projected as true positive, true negative, etc.) with the cost
of the real-life consequences they can contribute to [7]. Although this solution
works, the selection of cost matrix values is subjective with possibly divergent
opinions held by experts. Furthermore, some small changes in the cost matrix
values may cause significant changes in the final classification result (lack of
robustness). Another problem related especially to medical decision evaluation
is that costs of individual decisions may not be known. For example, for each
patient the cost of false–negative may be different depending on his or her other
medical conditions [8].

Another idea to study the performance of such classification algorithms is to
apply stochastic orderings. This method was proposed in [9,10] and it fits into
the situation presented. It will be presented and extended in following sections.

The remainder of the paper is organised as follows. In Sect. 2 we present
basic notions regarding cost function and stochastic orders. Section 3 describes
an evaluated dataset as well as results for three stochastic order based classifier
evaluation methods. In Sect. 4 we present details of our proposed approach as
well as some analysis of obtained results. Conclusions and further work appear
in Sect. 5.

2 Basic Notions

Let Y be the output space of the models and let Δ : Y × Y → R be the loss
(cost) function used to find the best classifier. The main goal of the loss function
is to penalise wrong outcomes in order to enable finding the best model as the
model with the minimal loss. It means, that loss function values usually become
positive when the predictions do not match reality.

There also exists a dual definition of the loss function called reward func-
tion which we will use in this paper to match the common stochastic orderings
literature. It’s a simple opposite to the loss function which means the greater
value of the reward function is, the more relevant outcomes are. Therefore, the
best model can be found at its maximum. We can associate the random variable
reward U

(X,Y)
Δ,f : Ω → R with the model f using the definition as follows:

U
(X,Y)
Δ,f = −Δ(Y(ω), f(X(ω)) ∀ω ∈ Ω. (1)
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Table 1. Cost function (matrix) for example binary classification (a) and its extension
to uncertain classification (b).

predicted
benign malignant

actual
benign TN: 0 FP: 2.5

malignant FN: 5 TP: 0

(a)

predicted
benign malignant NA

benign TN: 0 FP: 2.5 N0: 1
malignant FN: 5 TP: 0 N1: 2

(b)

Let X,Y : Ω → R be two random variables defined on the same probability
space (Ω,A, P ). From many available kinds of stochastic orderings, of most
interest from classification performance evaluation point of view are [11]:

1. Dominance in the sense of expected utility [12]. Given an increasing function
u : R → R, X dominates Y wrt u (denoted X �u Y ) if

EP (u(X)) ≥ EP (u(Y )) . (2)

2. First order stochastic dominance [13]. X dominates Y (denoted X �1st Y ) if

∀x∈R P (X > x) ≥ P (Y > x) . (3)

It is well known that X �1st Y if and only if X �u Y , for all increasing utility
functions u : R → R.

3. Statistical preference [14]. X is statistically preferred to Y (denoted X �sp Y )
if

P (X > Y ) ≥ P (Y > X) . (4)

Based on this we can present the notion of the (�,Δ)–domination proposed
by Couso and Sánchez [9].

Definition 1. Let f1 : X → Y and f2 : X → Y be the classification models
and � be any stochastic ordering. f1 (�,Δ)–dominates f2 if

U
(X,Y)
Δ,f1

� U
(X,Y)
Δ,f2

. (5)

Example 1. Let us consider the binary classification problem which refers to
determination whether the tumor is malignant (M) or benign (B). Let X be the
random vector of attributes and Y – the outcome. Let the cost matrix be given
as in Table 1a.

According to the definition of the reward function we have:

P (U (X,Y)
Δ,f > c) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if c < −5,
1 − P (Y = M,f(X) = B), if−5 ≤ c < −2.5,
P (Y = f(X)), if−2.5 ≤ c < 0,
0, if c ≥ 0.

(6)



Practical Notes on Applying Generalised Stochastic Orderings 589

The equation above together with Definition 1 lead to the conclusion that f1
(�1st,Δ)–dominates f2 if and only if:

P (Y = M,f1(X) = B) ≤ P (Y = M,f2(X) = B), (7)

P (Y = f1(X)) ≥ P (Y = f2(X)). (8)

Moreover, this stays true for any cost matrix for which

Δ(Y = M,f(X) = B) ≥ Δ(Y = B, f(X) = M) ≥ Δ(Y = f(X)) . (9)

This means that (�1st,Δ)–dominance does not depend on actual cost values but
only on their order.

Example 2. Let us consider again the binary classification problem from Exam-
ple 1 with the same cost matrix. We can distinguish following cases:

P (U (X,Y)
Δ,f1

> U
(X,Y)
Δ,f2

) = P (f1(X) = B, f2(X) = M), if Y = B, (10)

P (U (X,Y)
Δ,f1

> U
(X,Y)
Δ,f2

) = P (f1(X) = M,f2(X) = B), if Y = M. (11)

According to the (10) and (11) and Definition 1, f1 (�sp,Δ)–dominates f2 if
and only if:

P (Y = f1(X),Y 	= f2(X)) ≥ P (Y = f2(X),Y 	= f1(X)). (12)

Example 3. Let consider medical classification problem for 10 patients, cost
matrix from Example 1 and three diagnostic models f1, f2 and f3. Actual diag-
noses and predictions are given in Table 2. We can easily calculate that

P (Y = f1(X)) = 0.8 P (Y = M,f1(X) = B) = 0.1 (13)
P (Y = f2(X)) = 0.6 P (Y = M,f2(X) = B) = 0 (14)
P (Y = f3(X)) = 0.7 P (Y = M,f3(X) = B) = 0.2 (15)

According to Example 1, f1 (�1st,Δ)–dominates f3. Unfortunately, models f1
and f2 are incomparable with the respect to (�1st,Δ) criterion.

Moreover, according to Example 2,

P (U (X,Y)
Δ,f1

> U
(X,Y)
Δ,f2

) = 0.3 P (U (X,Y)
Δ,f2

> U
(X,Y)
Δ,f1

) = 0.1 (16)

P (U (X,Y)
Δ,f1

> U
(X,Y)
Δ,f3

) = 0.1 P (U (X,Y)
Δ,f3

> U
(X,Y)
Δ,f1

) = 0 (17)

thus f1 (�sp,Δ)–dominates f2 as well as f1 (�sp,Δ)–dominates f3.

3 Application of Stochastic Orderings to Low Quality
Data Classification Performance Evaluation

Definitions and examples presented in Sect. 2 referred to binary classification
problem. However, as it was mentioned in the Introduction, there exist real-life
problems, where the classification can be uncertain and the outcome may take
the NA value. In this section we are going to apply concepts from Sect. 2 to this
particular case.
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Table 2. Diagnoses for patients from Example 3.

Diagnosis Patients

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

actual Y(ω) B B B B B M M M M M

model f1(X(ω)) B B B B M M M M M B

model f2(X(ω)) B M M M M M M M M M

model f3(X(ω)) B B B B M M M M B B

3.1 Medical Data

We base our evaluation on test dataset from recent research on application of
aggregation operators to incomplete data classification [2]. Original study group
consists of 388 patients diagnosed and treated for ovarian tumor in the Division
of Gynecological Surgery, Poznan University of Medical Sciences, between 2005
and 2015. Among them, 61% were diagnosed with a benign tumor and 39% with
a malignant one. Moreover, 56% of the patients had no missing values in the
attributes required by diagnostic models, 40% had a percentage of missing values
in the range (0%, 50%], and the remainder had more than 50% missing values.
The test set consists of patients with real missing data and some proportion of
patients with a complete set of features. As a result, the test set consisted of 175
patients. Patients with more than 50% missing values were excluded from the
study. The dataset partition is presented visually in Fig. 1.

0%0%

training set test set

level of missing data (0%, 50%] (50%, 90%]

initial dataset

Fig. 1. The division of the dataset. Patients with more than 50% missing values were
not included in the experiment. Source [2].

During the research over 4000 different classification strategies were evalu-
ated. Among them 130 were selected into test phase. Our evaluation was per-
formed on outcomes returned by those classifiers on real life test set. For all
classifiers it was assumed that no diagnosis may be returned. For more informa-
tion regarding dataset we refer the reader to original paper [2].

3.2 Expected Utility

One of the methods of dealing with evaluation of the algorithms based on incom-
plete data is to insert an additional column to the cost matrix as it was proposed
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in [2]. Then, the loss function may be defined as a sum of costs of all outcomes
given by the algorithm. Unfortunately, it’s hard to assume that one type of mis-
take is a certain number of times worse than the other. We also can’t say, that
every patient has the same loss for every mistake. These make the costs only
intuitive and as long as their small changes lead to different final results, we
can’t be sure that these final results are the best solutions for the patients.

Table 6 presents some selected best classifiers based on this criterion from the
dataset described in previous subsection. As can be seen this comparison method
is very useful and straightforward. It offers easy to interpret linear order that
facilitates selection of the best classifier. The main drawback of this approach
concerns the uncertain and subjective selection of cost function. It possible that
small change to cost matrix causes significant changes to classifier order and this
kind of behaviour is not desired.

3.3 First Stochastic Dominance

To define first of discussed relations, let f be the classifier and Δ the loss function
which can be described by the cost matrix similar to one from Table 1b. As the
precise cost values do not matter as long as the ordering is saved, let’s only
assume that the Δ always fulfil (18–21).

Δ(Y = M,f(X) = B) ≥ Δ(Y = B, f(X) = M) (18)
Δ(Y = B, f(X) = M) ≥ Δ(Y = M,f(X) = NA) (19)

Δ(Y = M,f(X) = NA) ≥ Δ(Y = B, f(X) = NA) (20)
Δ(Y = B, f(X) = NA) ≥ Δ(Y = f(X)) (21)

Then, analogously to the Example 1, we can conclude, that classifier f1 (�1st

,Δ)–dominates f2 if and only if:

Pf1(TP ) + Pf1(TN) ≥ Pf2(TP ) + Pf2(TN), (22)
Pf1(TP ) + Pf1(TN) + Pf1(N0) ≥ Pf2(TP ) + Pf2(TN) + Pf2(N0), (23)

1 − Pf1(FN) − Pf1(FP ) ≥ 1 − Pf2(FN) − Pf2(FP ), (24)
1 − Pf1(FN) ≥ 1 − Pf2(FN). (25)

where TP , TN , N0, FP , FN are clarified in Table 1b.
Let’s take the dataset described in Sect. 3.1 with (�1st,Δ)–dominance rela-

tion. Based on the conditions (22–25), we can define a stochastic ordering inside
this set. The only change, applied to make this relation irreflexive as well as
to avoid cycles, is that the condition greater than instead of greater or equal to
must be fulfilled in at least one of (22–25).

Then, we get the strict partial order which allows us to find maximal elements
in the set and as we know they are always better than dominated ones, they can
be use as an output to further considerations.

Figure 2a and Table 6 shows the maximal elements from the medical classifiers
set along with their costs calculated according to the cost matrix from Table 1b
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and the information if they are the only ones in the chains they are included
or not.

Unfortunately, the number of maximal elements is about one-quarter of all
models (33 of 130) so this method couldn’t help in determining the best classifier
but still it can be used as a very effective process of pre-selection.

3.4 Statistical Preference Stochastic Dominance

In traditional binary classification, Definition 1 leads to the conclusion that
(�sp,Δ)–domination depends only on the bigger number of true outcomes given
by one of the classifiers. In uncertain classification with possibility of NA the
problem becomes more complicated. For example, for Y = M there are three
cases when P (U (X,Y)

Δ,f1
> U

(X,Y)
Δ,f2

):

– f1(X) = M and f2(X) = NA,
– f1(X) = M and f2(X) = B,
– f1(X) = NA and f2(X) = B.

Similarly, for Y = B, P (U (X,Y)
Δ,f1

> U
(X,Y)
Δ,f2

) when:

– f1(X) = B and f2(X) = NA,
– f1(X) = B and f2(X) = M ,
– f1(X) = NA and f2(X) = M .

Summarising the cases above, we can say that in uncertain classification f1
(�sp,Δ)–dominates f2 if the number of times when f1 gives proper output while
f2 doesn’t or f1 gives NA while f2 is wrong is bigger than the number of opposite
situations.

Table 3. Diagnoses for patients from Example 4.

Diagnosis Patients

ω1 ω2 ω3 ω4 ω5

actual M M M M M

model f1 M M NA B B

model f2 B B M NA NA

model f3 NA NA B M M

Example 4. Let’s consider medical classification problem for five patients and
three diagnostic models f1, f2 and f3 with actual diagnoses and predictions given
in Table 3. We can easily notice, that f2 has three better predictions than f1, f3
has three better predictions than f2 and finally f1 has three also better predictions
than f3. It means, that f2 (�sp,Δ)–dominates f1, f3 (�sp,Δ)–dominates f2 as
well as f1 (�sp,Δ)–dominates f3.
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The previous example shows that in this case statistical preference based
dominance relation makes cycles possible to appear while comparing models. It
means, that we can compare each pair of classifiers, but it can be impossible
to find the maximal elements in the set with (�sp,Δ)–dominance relation, so
the another approach to evaluate the models using this dominance should be
defined.

To evaluate models in this case we propose method based on PageRank
algorithm [15]. This algorithm is generally used to rate values of the websites
by looking how many other sites have reference links to them and how high
are the rates of these linking sites. The more links from sites with high rate,
the better. All computations are performed on matrix representing graph, where
sites are vertices and links are the directed edges pointing to the linked sites.
In our situation, models are treated as vertices, the directed edge points to the
dominating model and all computations are preserved.

AB C

D

E FG

H

I

J K L

M

(a)

A

B

C

D

E

F

G

H

I

J

K

L

M

(b)

Fig. 2. Graphs showing domination relation for First Stochastic Dominance (a) and
Statistical Preference (b) for selected classifiers.

The final score presented in Table 6 is the percentage of time spent in partic-
ular classifier vertex while making random PageRank walk. Figure 2 shows the
original statistical preference graph for selected best classifiers along with their
costs calculated according to the cost matrix from Table 1b.

4 Proposed Approach

4.1 Idea

As can be seen from previous section, each presented method has it own strengths
and weaknesses. On the one hand, total cost method gives linear order between
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all classifiers at the expense of the need to provide concrete numerical cost values.
On the other hand, First Stochastic Dominance requires only to know whether
one classification outcome is better than other. But this leads to a situation
where there are many models that cannot be compared. Application of Statistical
Preference results with hard to interpret structure. Although application of Page
Rank algorithm gives linear order it is still hard to justify such approach and
interpret particular values.

Our aim is to propose a method that retains the ability to compare nearly all
classifiers, while imposing the least restrictions on the cost of particular, possibly
uncertain, decision. As a starting point we chose the First Stochastic Dominance
comparison method, which is highly intuitive and easy to interpret. It can be
viewed as a total cost method applied for all possible cost functions [16]. Since,
experts are often unable to give precise numerical costs, we propose to model
them as fuzzy numbers interpreted, in epistemic way (see [17]), as family of
nested confidence sets

Δ̃ : Y × Y → FN (R) . (26)

As will be shown further in this Section, this will enable comparison of all clas-
sifiers with respect to any stochastic dominance.

This approach has one additional benefit. Previously cost values were inde-
pendent of particular patient and were based only on actual and predicted diag-
nosis. In real life medical scenario this is not always true. For some patients even
proper diagnosis may lead to bad outcome and vice versa. Thanks to this app-
roach actual cost corresponding to diagnosis may vary depending on particular
patient conditions as we interpret fuzzy number in epistemic way.

4.2 Definitions

Similarly as in previous sections, for any classification model f we can define
reward fuzzy random variable

Ũ
(X,Y)
˜Δ,f

: Ω → FN (R) (27)

as a opposite of cost value:

Ũ
(X,Y)
˜Δ,f

= −Δ̃(Y(ω), f(X(ω))) ∀ω ∈ Ω . (28)

According to the epistemic interpretation, the reward fuzzy random variable
should be also understood in terms of confidence sets.

We will use the Extension Principle based stochastic order proposed by Couso
and Dubois [16] for comparing fuzzy sets of random variables. Let π

˜X(X) be the
degree of possibility that X is the random variable underlain by the fuzzy random
variable X̃

π
˜X(X) = inf

ω∈Ω
μ
˜X(ω)(X(ω)) . (29)
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Fig. 3. Fuzzy cost values from Example 5.

Then for any stochastic order � the degree of possibility of dominance between
fuzzy random variables X̃ and Ỹ can be defined as:

Π(X̃ � Ỹ ) = sup
X,Y :X�Y

min(π
˜X(X), π

˜Y (Y )) . (30)

Now we are ready to define our proposed approach to classification model
comparison.

Definition 2. Let f1 : X → Y and f2 : X → Y be the classification models. The
degree in which f1 dominates f2 with respect to stochastic order � and fuzzy cost
function Δ̃ is defined as

�f1 � f2� ˜Δ =
Π(Ũ (X,Y)

˜Δ,f1
� Ũ

(X,Y)
˜Δ,f2

)

Π(Ũ (X,Y)
˜Δ,f1

� Ũ
(X,Y)
˜Δ,f2

) + Π(Ũ (X,Y)
˜Δ,f2

� Ũ
(X,Y)
˜Δ,f1

)
. (31)

Such definition, in contrast to simple �f1 � f2� = Π(Ũ (X,Y)
˜Δ,f1

� Ũ
(X,Y)
˜Δ,f2

), ensures
some desired properties such as �f1 � f2� + �f2 � f1� = 1 or �f � f� = 0.5.
Moreover, normalisation allows to limit the impact of incomparable random vari-
ables when stochastic ordering is a partial preorder. If there are more than two
classifiers, we can order them according to maximal degree of being dominated
by any other classifier defined for each fi:

p
˜Δ,�(fi) = max

all classifiers f
f �=fi

�f � fi� ˜Δ (32)

When applied stochastic ordering � is a total preorder, then this criterion coin-
cides with the selection of the model f that minimises Π(Ũ (X,Y)

˜Δ,f
� Ũ

(X,Y)
˜Δ,fi

) – the
possibility of being dominated by some (arbitrary) model fi. Thus (31–32) can
be seen as a generalisation of that criterion to partial preorders for which not
necessarily max(Π(Ũ (X,Y)

˜Δ,f1
� Ũ

(X,Y)
˜Δ,f2

),Π(Ũ (X,Y)
˜Δ,f2

� Ũ
(X,Y)
˜Δ,f1

)) = 1.

Example 5. Let’s try to examine the situation from Example 3 using the pro-
posed approach. In the example we will use fuzzy cost function Δ̃ with costs
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defined on Fig. 3. The kernels of fuzzy cost values are the same as costs from
Example 1.

Domination degrees are presented in Table 4. Using criterion from (32) we
can obtain the following order: f1 (0.3), f2 (0.7) and f3 (0.75). Hence, f1 is
definitely the best model for given problem.

Let us now look in more detail at the situation of f1 and f2 models. They were
incomparable according to classical First Stochastic Dominance order. Thanks to
proposed approach, we still are able to find out which one is better. According
to (30) we need to find random variables X and Y that maximise given formula
and for which X �1st Y holds. Optimal random variables are given in Table 5.
It is easy to observe that for patients for which f1 outcome was worse then that
of f2 costs are swapped to keep the X �1st Y property.

4.3 Evaluation

We evaluated this approach on the same medical data set as the original classifier
comparison strategies. The procedure was following:

1. Extend fuzzy cost function from Example 5 to cover “NA” cases
2. For each pair of classifiers (fi, fj):

(a) Test whether fi dominates fj , if so, return 1 (full dominance)
(b) Try to solve the problem numerically using Nelder and Mead and BFGS

methods [18]
(c) Return the highest value found

3. Normalise the dominance degrees according to (31)
4. For each classifier fi calculate value of p

˜Δ,�(fi)

More details on evaluation procedure including data pre– and post–processing
can be found on GitHub repository.1

Table 4. Degree of domination for classification models from Example 5.

f1 f2 f3

f1 0.5 0.7 0.75

f2 0.3 0.5 0.34

f3 0.25 0.66 0.5

Graph on Fig. 4 presents selected best classifiers with the lowest p
˜Δ,�(fi)

value. Significant domination degrees (≥0.5) are depicted as arrows pointing
from dominating to dominated element. There are 3 classifiers that are not

1 https://github.com/bikol/stochastic-orders-evaluation.

https://github.com/bikol/stochastic-orders-evaluation
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Fig. 4. Graph showing domination degrees (�f1 �1st f2�) obtained with proposed
approach for selected classifiers.

Table 5. Costs that maximise degree of domination �f1 � f2� ˜Δ.

Patients

Cost ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

actual Y(ω) B B B B B M M M M M

model f1 0 (B) 0 (B) 0 (B) 0 (B) 2.5 (M) 0 (M) 0 (M) 0 (M) 0 (M) 3.33 (B)

model f2 0 (B) 3.33 (M) 2.5 (M) 2.5 (M) 2.5 (M) 0 (M) 0 (M) 0 (M) 0 (M) 0 (M)

Table 6. Summary of various evaluation methods. Shortcuts in header stand for:
DEC – Decisiveness, ACC – Accuracy, SEN – Sensitivity, SPC – Specificity.

Model DEC ACC SEN SPC Cost �1st �sp p
˜Δ,�1st

A 0.949 0.886 0.902 0.878 70 0 0.961 0.567

B 0.966 0.876 0.902 0.864 72 0 1.051 0.571

C 0.971 0.876 0.900 0.867 72 0 5.401 0.592

D 0.971 0.871 0.900 0.858 74.5 1 2.293 1.000

E 0.971 0.865 0.918 0.843 75.5 0 2.176 0.675

F 0.931 0.877 0.917 0.861 76 0 0.773 0.713

G 1.000 0.857 0.885 0.846 77.5 0 3.159 0.904

H 0.943 0.885 0.857 0.897 78 1 2.796 0.835

I 0.971 0.859 0.900 0.842 79.5 1 0.727 1.000

J 0.920 0.901 0.826 0.930 80 0 7.462 0.815

K 0.920 0.894 0.848 0.913 80 0 3.186 0.814

L 0.874 0.895 0.909 0.890 80 0 0.583 0.706

M 1.000 0.851 0.731 0.902 100 1 2.739 0.900
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significantly dominated. Those models should be considered as potential candi-
dates for choosing. In Table 6 one can see that those models have the lowest and
very similar values of p

˜Δ,�(fi) which should be used as a final criteria for model
selection.

One can see that all comparison methods gave similar results. However, there
are few interesting cases which will be discussed here. First one is model J, the
best model according to statistical preference. However, this is not confirmed by
other methods. The reason of such behaviour is that statistical preference based
method, in contrast to other ones, does not take into account the difference in
weight between false negatives and false positives. Therefore its results are more
similar to those obtained with accuracy.

Second interesting case concerns classifiers D and E. D is being domi-
nated according to First Stochastic Dominance while E is not. This contrasts
with the fact that D performs better on other performance measures listed in
Table 6 (except sensitivity). Such situation occurred because model C classifies
all patients exactly the same as D, except one for which it gives better response
(C dominates D, see Fig. 2a). One may say that C is a strictly better version of
D. Therefore D should not be chosen as the best classifier. However, this is not
true for model E so it still may be considered as a the candidate.

5 Discussion and Further Work

This paper presents an approach to applying stochastic orderings to evaluate
classification algorithms for low quality data. We discussed some known sto-
chastic orderings along with practical notes about their application to medical
diagnosis support problem. The difficulties that have arisen were our motivation
to propose new approach based on fuzzy cost function. The new method allows
to compare any two classifiers, but does not require precise definition of the cost
function.

All proposed methods were evaluated on real life medical data that comes
from recent study on application of aggregation operators to supporting ovar-
ian tumor diagnosis [2]. We were able to obtain results very similar to those
previously reported but adopting much weaker assumptions about costs values.
This is especially important in this specific problem because as there are still no
reliable information on how to estimate costs in medical diagnostics.

Our proposed approach allows to associate numerical metric to each classifier
(similarly as in total cost method). This is very useful as it enables the use of
this method in more complex evaluation and learning procedures such as cross
validation.

As future research we want to evaluate the stability of domination degrees
while we slightly change fuzzy cost values. Such stability is very problematic
in classical total cost method, where even small changes in costs may lead to
big changes in obtained classifier order. As a second line of further research we
want to investigate other approaches to fuzzify First Stochastic Dominance based
classifier evaluation method such as application of linguistic quantification.
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