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Abstract. The aim of this paper is to apply main theories of fuzzy
natural logic together with fuzzy GUHA method for a linguistic char-
acterization of relationships in data. Namely, we utilize the theory of
intermediate quantifiers, which provides mathematical interpretation of
natural language expressions describing quantity such as “Almost all”,
“Few” etc., to describe relationships in data using vague terms that are
natural in human expression. We provide an algorithm for computation
of truth degrees of expressions containing such quantifiers. Moreover, we
discuss some basic properties of intermediate quantifiers (contraries, con-
tradictories, sub-contraries and sub-alterns), which formulate the graded
Peterson’s square of opposition, and which can be used to infer new
expressions from existing ones.

Keywords: Fuzzy natural logic · Linguistic associations mining · Inter-
mediate quantifiers · Generalized square of opposition · Fuzzy GUHA

1 Introduction

The main objective of this paper is to apply the theory of intermediate quantifiers
(TIQ) which was in detail studied in our previous papers [1–4]. TIQ is one from
three main theories of Fuzzy natural logic (FNL) which was proposed based on
the concept of Natural logic [5]. The idea for this work is to use FNL and propose
mathematical model of specific human thinking that uses natural language.

FNL is a formal mathematical theory containing a model of the semantics of
natural language which includes three theories:

– the theory of evaluative linguistic expressions [6];
– the theory of fuzzy IF-THEN rules and approximate reasoning [7,8];
– the formal theory of intermediate quantifiers, generalized syllogisms and gen-

eralized square of opposition [1–4].
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At first, we put together the theory of evaluative linguistic expressions, which
provides formalization of the meaning of vague quantitative expressions of nat-
ural language, for example, extremely small, roughly medium, very big, very long,
etc., with the theory of generalized intermediate quantifiers.

At second, we apply Fuzzy GUHA method [9] and we introduce an algorithm
for a linguistic characterization of natural data using generalized intermediate
quantifiers. Fuzzy GUHA is a special method for automated search of association
rules from numerical data. Generally, obtained associations are in the form A ∼

B, which means that the occurrence of A is associated with the occurrence of
B, where A and B are formulae created from objects’ attributes. As proposed
by Hájek et al. [9], the original GUHA method allowed only Boolean attributes
to be involved. Some parts of their approach was independently re-invented by
Agrawal [10] many years later and is also known as the mining of association
rules or market basket analysis. A detailed book on the GUHA method is [11],
where one can find distinct statistically approved associations between attributes
of given objects. Fuzzy GUHA is an extension of a classical GUHA method for
fuzzy data. In this paper, we work with associations in the form of IF-THEN
rules composed of evaluative linguistic expressions, which allow the quantities
to be characterized with vague linguistic terms such as “very small”, “big”,
“medium” etc.

To measure the interestingness of a rule of the GUHA method, many numeri-
cal characteristics or indices have been proposed (see [12,13] for a nice overview).
As a supplement to them, we try to utilize the theory of intermediate quantifiers
to characterize the intensity of association, which allows us to use linguistic char-
acterizations such as “Almost all”, “Most”, “Some”, or “A few”. The novelty
of this approach is to use mathematical formal definitions of quantifiers which
could be use and apply in every model. As a result, we may automatically obtain
e.g. the following sentences from medical data:

– Almost all people, who suffer from respiratory diseases, suffer from asthma.
– Most people, who live in area affected by heavy industry, suffer from respira-

tory diseases.
– Most people, who smoke and suffer from respiratory diseases, also suffer from

ischemic disease of leg.

Then we plane to apply the theory of graded square of opposition, mainly
graded Peterson’s square of opposition, which was syntactically and semantically
studied in [4]. We will use definitions of contrary, contradictory, sub-contrary and
sub-alterns which defined graded Peterson’s square and will be used for an infer-
ence of new results. The similar approach based on applying of modern square of
opposition was proposed in [14]. The authors applied expressions such as “Most”,
“Few” and “Many” where, for example, “Most” is defined as contradiction with
“Many” which does not agree with new approach of Peterson (see [15], Chap. 2).

There are also many authors who are interested in linguistic summarization
of data. In [16], authors showed the use of linguistic database summarizes intro-
duced by Yager in [17–20]. Later these approaches were considerably advanced
in [21,22] and implemented by Kasprzyk and Zadrożny [23].
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The paper is organized as follows. Firstly, the background information is
presented in Sect. 2 to provide basic definitions. As we want this paper to be
rather introductory, we omit (although precise, but quite complicated) defini-
tions, which can be found in detail elsewhere [1–4,6–8]. Section 3 motivates and
provides the need for a modified definition for the computation of truth values
of intermediate quantifiers. Section 5 provides some features of the quantifiers
and Sect. 4 presents an algorithm for fast evaluation of intermediate quantifiers
in data. Section 7 concludes the paper.

2 Background

Intermediate quantifiers, which form a transition between universal and exis-
tential generalized quantifiers, have been studied already for many years (cf.,
for example,[24,25]), are linguistic expressions of natural language, for example,
most, many, almost all, a few, a large part of, etc. This theory was further gener-
alized to the fuzzy approach (cf. [26]). Intermediate quantifiers are special fuzzy
generalized quantifiers of type 〈1, 1〉 (cf. [24,27,28]) which are isomorphism-
invariant (cf. [29], have extension property, and are conservative. The formal
theory of intermediate quantifiers using the fuzzy type theory (a higher-order
fuzzy logic) was introduced in [1]. Other mathematical models of some of these
quantifiers were suggested by several authors, for example Hájek, Pereira and
others [30–32].

Evaluative linguistic expressions are expressions of natural language, such as
very small, medium, extremely big, very short, more or less deep, quite roughly
strong, and will be used in definitions of intermediate quantifiers. Theory of
linguistic expressions is a special theory of higher order fuzzy logic introduced
in [6], which is based on the standard �Lukasiewicz MV-algebra.

�Lukasiewicz MVΔ-algebra is a tuple

L = 〈[0, 1],∨,∧,⊗,→, 0, 1,Δ〉, (1)

where [0, 1] is the interval of truth degrees, ∨ is a supremum, ∧ is an infimum, ⊕
is �Lukasiewicz conjunction, (a⊕b) = 0∨(a+b−1), → is �Lukasiewicz implication,
a → b = 1 ∧ (1 − a + b), 0 and 1 are zero and neutral elements, and Δ(a) = 1 if
a = 1, otherwise it is equal to zero.

A general model M is a model of a theory T denoted by M |= T if M (Ao) = 1
holds for all axioms of T .

3 The Original and the Modified Definition

The main goal of this section is to recall and explain the definition of the inter-
mediate quantifier which was proposed in our previous paper. The definition of
intermediate quantifier was introduced in higher order fuzzy logic. The aim of
this section is to apply intermediate quantifiers for an analysis and linguistic
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interpretation of natural data using proposed algorithm. Furthermore, we will
work with intermediate quantifiers defined in first order predicate fuzzy logic.

Please recall that Zadeh [33] defined a fuzzy set as a mapping from universe
of discourse U to a real interval [0, 1], i.e. F : U → [0, 1]. Unlike crisp sets,
where an object fully belongs or does not belong to a set, fuzzy sets enable an
object u ∈ U to belong partially to a set F in a degree F (u). We will denote it
by F ⊂∼ U . We work with a finite universe U in this paper, |U | = n. A fuzzy set
X is a subset of a fuzzy set Y , X ⊆ Y , if X(u) ≤ Y (u), for all u ∈ U . A size of
a fuzzy set X is |X| =

∑
u∈U X(u).

3.1 Motivation

The general definition of the intermediate quantifier is defined as follows:

(Q∀
Evx)(B,A) := (∃z)((ΔΔΔ(z ⊆ B)&&&(∀x)(zx ⇒⇒⇒ Ax)) ∧∧∧ (Ev)((μB)z)), (2)

where A,B ⊂∼ U . The (μB)z represents a measure of the fuzzy sets z w.r.t. B

(which is supposed to be normal) and Ev is an evaluative expression. For our
application we use the evaluative linguistic expressions “extremely big”, “very
big” and “not small” which will be used for the definition of intermediate quan-
tifiers “Almost all”, “Most” and “Many”. Please recall, that the ⇒⇒⇒ is interprets
by �Lukasiewicz implication and &&& is interprets as �Lukasiewicz conjunction which
were defined above.

0

1

1

0.5

0.5 0.910.67 0.79

VeBi

0.970.75 0.86

ExBi

0.1 0.360.24

Sm ¬Sm

Fig. 1. Scheme of the construction of extensions of evaluative expressions in the context
[0, 1].

The motivation to apply evaluative linguistic expressions and some measure
can be explained using the following example: “Almost all people who are strong
smokers of cigarettes are later affected by cancer”. We suppose a non-empty fuzzy
set B in finite universe U which represents “people who are strong smokers of
cigarettes” and the fuzzy set A in U which represents the property “affected by
cancer”. The goal is to find the biggest fuzzy set z from the support B which
represents the intermediate quantifier “Almost all”. It means to find the fuzzy
set z ⊆ B ⊂∼ U which will be “extremely big” with respect the fuzzy set B.
Similarly we apply other evaluative linguistic expressions for the definitions of
“Most” and “Many”.
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Furthermore, by replacing of Ev in (2) by a specific evaluative linguistic
expression we obtain the definition of the concrete intermediate quantifier. For
example, by putting ExBi we understand that the fuzzy set z is “extremely big”
w.r.t. B and we obtain the definition of “Almost all”, the formula Bi Ve means
the fact that the fuzzy set z is “very big” w.r.t. B and we can define “Most”,
finally, by putting ¬¬¬(Sm ν̄νν) we understand that z is “not small” w.r.t. B which
holds for the quantifier “Many”. The precise definitions can be found in Table 1
below.

Table 1. A definition of special intermediate quantifiers

The general definition can be rewritten in the finite model as follows:

Qf (B,A) :=
∨

z⊆B

(
∧

u∈U

(
z(u) → A(u)

) ∧ f

( |z|
|B|

))

, (3)

where ∧ stands for infimum, ∨ for supremum, → for �Lukasiewicz implication,
and f : [0, 1] → [0, 1] is a non-decreasing function representing Ev .

The intermediate quantifier Qf is defined as a supremum over all fuzzy sets
z ⊆ B that maximizes the function of size of the set z (f(|z|/|B|)) together
with the infimum over all u ∈ U of the implication z(u) → A(u). Clearly larger
subsets z imply higher values of f(|z|/|B|) and lower values of the implication
z(u) → A(u). In [34], we have shown that the supremum is found for z that
makes both parts equal.

Such definition works well e.g. for the quantifier “Almost all” that is realized
using f corresponding to “extremely big”. More generally, the definition seems
non-problematic for such f that f(0.5) > 0.5. But consider such quantifier that
there exists some x < 0.5 such that f(x) > 0.5: this is the case for the “Many”
quantifier, for which the f function corresponds to “not small” so that even
f(0.36) = 1 (see Fig. 1).
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We are going to show that such quantifiers have high truth degrees regardless
of the content of fuzzy sets A and B, which is a feature that does not correspond
with reality. Consider e.g. a set B to be a set of participants of this conference
and A to be a set of people from Mars. Accordingly to Definition 3, a sentence
“Many participants of this conference are from Mars” would have the truth
degree greater than 0.64, which is obviously not desirable.

Let us firstly show, why it happens. Let us therefore consider such quantifier
that is realized using a function f (see Fig. 1) that f(0.36) = 1. Let B(u) = 1
and A(u) = 0 for each u ∈ U . For such fuzzy sets, the �Lukasiewicz implication
B(u) → A(u) equals 0. But accordingly to Definition 3, the truth value of the
quantifier equals to supremum over all z ⊆ B. Let us take such z ⊆ B that
z(u) = 0.36 for any u ∈ U . Then the implication z(u) → A(u) would equal 0.64
for all u and f

(
|z|
|B|

)
= f(0.36) = 1. For that z, the equation inside the outer

brackets in Definition 3 would be equal 0.64. Evidently, the supremum over all
z ⊆ B must be greater or equal to 0.64, hence also Qf (B,A) ≥ 0.64.

3.2 A Modified Definition

This unrealistic result is caused by the fact that we take the supremum over
all z such that z(u) ≤ B(u) for all u. That enables e.g. the requirement of
“36 % of objects in a set B” to be satisfied also by a universe of objects that
are all members of B in a 0.36 degree. We believe that the intuitive human
understanding of the linguistic “Many” quantifier is that the given condition is
satisfied by “not small number of elements”. Therefore, we propose an updated
definition of linguistic quantifiers:

Q′
f (B,A) :=

∨

z�B

(
∧

u∈U

(
z(u) → A(u)

) ∧ f

( |z|
|B|

))

. (4)

Please mind the difference to Equation (3), z � B, which is defined as follows:
z(u) ∈ {

0, B(u)
}
, ∀u ∈ U Note that � is more strict than ⊆, i.e.(X � Y ) ⇒

(X ⊆ Y ) for any fuzzy set X and Y . That is, the revised definition 4 takes a
supremum of a subset of possible z’s and therefore Q′

f (B,A) ≤ Qf (B,A).

4 The Algorithm

The Algorithm 1 obtains the membership degree of the quantifier for given fuzzy
sets A,B, and a function f representing the evaluative linguistic expression that
models the intensity of the quantifier, as discussed above. Note that B must not
be empty set.

Theorem 1. Let A,B be fuzzy sets on a non-empty finite universe U such that
|B| > 0 and let f : [0, 1] → [0, 1] be a non-decreasing function. Then Algorithm 1
finishes after a finite number of steps and returns a value of Q′

f (B,A) as defined
in Equation (4).
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Algorithm 1. Evaluation of Intermediate Quantifiers
1: function evaluateQuantifier(A, B, f)
2: n ← |U |; d ← 0; I ← new fuzzy set
3: for all u ∈ U do
4: d ← d + B(u)
5: I(u) ← min

{
1, 1 − B(u) + A(u)

}

6: end for
7: Create a sequence (u1, . . . , un) so that (I(u1), . . . , I(un)) is non-increasing
8: l ← 1; h ← n
9: while l ≤ h do

10: i ← (l + h)/2
11: if I(ui) ≥ f(i/d) then
12: l ← i + 1
13: else
14: h ← i − 1
15: end if
16: end while
17: if l > 1 then
18: α ← min{I(l − 1), f((l − 1)/d)}
19: else
20: α ← 0
21: end if
22: if l ≤ n then
23: β ← min{I(l), f(l/d)}
24: else
25: β ← 0
26: end if
27: return max{α, β}
28: end function

Proof. The first 6 steps set n = |U |, d = |B|, and create a fuzzy set I such that
I(u) = B(u) → A(u), for each u ∈ U . From the initial conditions we know that
n ≥ 1 and d > 0.

In step 7, a sequence (u1, . . . , un) is created so that the sequence of member-
ship degrees of the fuzzy set I, I(u1), . . . , I(un)), is non-increasing. Clearly for
any j ∈ {1, . . . , n}, if we define a fuzzy set zj as

zj(ui) :=

{
B(ui) if i ≤ j,

0 otherwise,

then zj � B and also
∧

u∈U

(
zj(u) → A(u)

)
=

∧
i≤j I(ui) = I(uj). Hence, in

order to obtain a value of Q′
f (B,A), it lasts to find

max
j∈{1,...,n}

{

I(uj) ∧ f

(
j

n

)}

.
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Instead of traversing through all j ∈ {1, . . . , n}, we perform a binary search in
steps 8–16 to find a least l such that I(ul) < f(l/d). Then the solution is either

β := I(ul) ∧ f

(
l

n

)

or α := I(ul−1) ∧ f

(
l − 1

n

)

,

i.e. Q′
f (B,A) = max{α, β} (see step 27).

5 The Graded Square of Opposition

Let us start with a motivation example. Assume we know that “Almost all
people, who are strong smokers of cigarettes, are later affected by cancer” is
true, for example, in the degree 0.75. The question is: what is possible to infer
from that information?

We stem our analysis on graded Peterson’s square of opposition, which is
based on basic formulae with quantifiers defined in Table 1.

The Peterson’s square shows the properties contraries, contradictories, sub-
contraries and subalterns. The idea of classical definitions (see [4]) was adopted
and extended for fuzzy case with generalized definitions as follows:

– two formulas P1 and P2 are contraries if M (P1)⊗M (P2) = 0 holds for every
model M |= T ,

– two formulas P1 and P2 are sub-contraries if M (P1) ⊕ M (P2) = 1 holds for
every model M |= T ,

– P1 and P2 are contradictories1 if both M (ΔΔΔP1) ⊗ M (ΔΔΔP2) = 0 as well as
M (ΔΔΔP1) ⊕ M (ΔΔΔP2) = 1 hold for every model M |= T .

– The formula P2 is a subaltern of P1 in T if M (P1) ≤ M (P2) holds true in
every model M |= T . We will call P1 a superaltern of P2.

Based on that, a graded Peterson’s square of opposition with intermediate
quantifiers may be presented:

1 Applying of delta connective in this definition we solve the problem � ¬¬¬(∀x)(Bx ⇒⇒⇒
Ax) ≡ (∃x)(Bx&&&¬¬¬Ax) then M (¬¬¬A �≡ O) = 1 since O := (∃x)(Bx ∧∧∧ ¬¬¬Ax).
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The straight lines mark contradictories, the dashed lines contraries and
the dotted lines sub-contraries. The arrows indicate the relation superaltern–
subaltern.

We can observe that, for example, if we know that “Almost all people, who
are strong smokers of cigarettes, are later affected by cancer” is true in the degree
0.75, then, by the position of “Almost all”, we can infer that “Few people, who
are strong smokers of cigarettes, are later affected by cancer” is true at most in
degree 0.25.

Table 2. Example of rules obtained from the Iris dataset

Rule No Antecedent (B) Consequent (A)

#1 Very small sepal length&&& very small petal length ⇒ Small petal width

#2 Small sepal length&&& small petal length ⇒ Small petal width

#3 Small sepal length ⇒ Small petal length

#4 Small sepal length ⇒ Medium sepal width

#5 Small petal width ⇒ Medium sepal width

#6 Medium sepal width ⇒ Small petal width

#7 Medium sepal width ⇒ Very small sepal length

6 Example

To illustrate the use of intermediate quantifiers on real data, we have applied the
GUHA method [9] on a commonly known Anderson’s Iris dataset [35,36], which
captures some morphologic variations of iris flowers. GUHA is an automated
method for obtaining association rules from data, similarly to Agrawal’s mar-
ket basket case analysis [37], which was discovered independently many years
later. Some of the rules obtained from Iris data can be found in Table 2. Table 3
summarizes the membership degrees of intermediate quantifiers applied to that
rules.

6.1 An Explanation of Contraries

Applying of the relationships between the quantifiers we will comment the results
in Table 2 and Table 3.

A main role here plays the presupposition. In classical logic, it is the require-
ment (∃x)(Bx). In fuzzy logic, we generalize the presupposition as (∃x)(zx&&& z′x)
where z, z′ ⊆ B. We can observe from Table 3, for example, “Almost all irises
with sepal length small have petal length small” is true in the degree 0.995 and
its negative quantifier “A few irises with sepal length small have not petal length
small” is true in the degree 0.242. We conclude that both quantifiers are con-
traries. It means that 0 ∨ (0.995 + 0.242 − 1) = 0.237 and finally applying by
presupposition we have 0.237 ⊗ 0.516 = 0 ∨ (0.237 + 0.516 − 1) = 0.
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Table 3. Membership degrees of quantifiers “all”, “almost all”, “most”, “many”,
“exists” applied to the rules from Table 2, and their interpretation within the graded
Peterson’s square

#1 #2 #3 #4 #5 #6 #7

All B ⇒ A 1.000 0.954 0.491 0.000 0.000 0.000 0.000

All B ⇒ not A 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Presupposition of all 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Almost all B ⇒ A 1.000 0.995 0.879 0.753 0.193 0.000 0.000

Almost all B ⇒ not A 0.433 0.242 0.242 0.246 0.005 0.005 0.582

Presupposition of almost all 0.134 0.516 0.516 0.516 1.000 0.702 0.000

Most B ⇒ A 1.000 1.000 0.998 0.906 0.509 0.005 0.005

Most B ⇒ not A 0.927 0.491 0.491 0.491 0.034 0.034 0.883

Presupposition of most 0.000 0.018 0.018 0.018 1.000 1.000 1.000

Many B ⇒ A 1.000 1.000 1.000 1.000 1.000 1.000 0.973

Many B ⇒ not A 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Presupposition of many 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exists B ⇒ A 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Exists B ⇒ not A 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Presupposition of exists 0.000 0.000 0.000 0.000 0.000 0.000 0.000

6.2 An Explanation of Sub-contraries

From Table 3 we also observe that the quantifiers K and G are sub-contraries.
For example, “Many irises with medium sepal width have its sepal length very
small” is true in the degree 0.973 and “Many irises with medium sepal width have
not its sepal length very small” is true in the degree 1 then M (K) ⊕ M (G) =
1 ∧ (1 + 0.973) = 1.

6.3 An Explanation of Sub-alterns

We can observe that “All irises with both sepal and petal small length have its
petal width small” is true in the degree 0.954. It means that “All” is superaltern
of “Almost all” which is superaltern of “Most” and etc. For example, “Almost
all irises with both sepal and petal small length have its petal width small” is
true in the degree 0.995 and “Most irises with both sepal and petal small length
have its petal width small” is true in the degree 1. Similarly, we can analyze
negative quantifiers. “Almost all irises with both sepal and petal small length
have not its petal width small” is true in the degree 0.242 and “Most irises with
both sepal and petal small length have not its petal width small” is true in
the degree 0.491. Finally we conclude that the property of contradictories for
classical quantifiers with presupposition is trivially fulfilled while contradictories
of others quantifiers will be studied in prepared paper.
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7 Conclusion

The main objective of this paper was to introduce a modified definition of gen-
eralized intermediate quantifiers. We have proposed an algorithm based on the
theory of intermediate quantifiers and applied it together with the fuzzy GUHA
method on real data. We have found linguistic associations which were analyzed
using expressions of natural language such as “Almost all”, “Most” and “Many”.
We have also demonstrated an application of graded Peterson’s square of oppo-
sition, which yields the possibility to infer new information from the results that
were found before. We plan to apply the theory of syllogistic reasoning to be
able to infer even more, in the future.

Acknowledgment. The paper has been supported by the project “LQ1602
IT4Innovations excellence in science”.
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9. Hájek, P.: The question of a general concept of the GUHA method. Kybernetika

4, 505–515 (1968)
10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-

ings 20th International Conference on Very Large Databases, pp. 487–499, Chile,
AAAI Press (1994)
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23. Kacprzyk, J., Zadrożny, S.: Linguistic summarization of data sets using association
rules. In: Proceedings of FUZZ-IEE’03, St. Louis, USA, pp. 702–707 (2003)

24. Westerst̊ahl, D.: Quantifiers in formal and natural languages. In: Gabbay, D.,
Guenthner, F. (eds.)Handbook of Philosophical Logic, vol. 4, pp. 1–131. D. Reidel,
Dordrecht (1989)

25. Westerst̊ahl, D.: Aristotelian syllogisms and generalized quantifiers. Studia Logica:
Int. J. Symbolic Logic 48, 577–585 (1989)
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