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Abstract. A volatility forecasting comparative study between the most
popular original GARCH model and the same model defined based on
concepts of Ordered Fuzzy Numbers and Ordered Fuzzy Candlsticks is
presented. These approaches offer a suitable tool to handle both impre-
cision of measurements and uncertainty associated with financial data.
Therefore, they are particularly useful for volatility forecasting, since the
volatility is unobservable and a proxy for it is used (realised volatility). In
presented study, based on intra-daily data of the Warsaw Stock Exchange
Top 20 Index (WIG 20), one showed that based on the adjusted-R
squared and several prediction measurements, the fuzzy approach does
perform better than the original GARCH model and forecasts more pre-
cisely in both the in-sample and out-of-sample predictions.

Keywords: Volatility forecasting · Realized volatility · Ordered fuzzy
number · Kosinski’s fuzzy number · Ordered fuzzy candlestick · Ordered
fuzzy GARCH model · Financial high-frequency data

1 Introduction

Volatility refers to the price fluctuation over a period of time and as an important
parameter, volatility is widely applied in asset pricing, portfolio decisions, and
risk management through calculation of value at risk (VaR). In financial eco-
nomics, volatility is often defined as the standard deviation, although actually
volatility and standard deviation are not totally the same.

The two main types of volatility are implied volatility and realized volatility
(historical volatility). The implied volatility is the volatility implied by the mar-
ket price of the option based on an option pricing model. In other words, it is
the estimated volatility of a securities price and refers to the markets assessment
of future volatility. In contrast, realized volatility measures what actually hap-
pened in the past. It directly sums the realized log-returns in a given dimension.
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Therefore, more information can be acquired if higher frequency is used. In con-
nection with the development of information technology, data can be kept in
every hour, minute, and even in every second. The extreme high frequency is
called ultra high frequency data, which means that every tick is recorded for the
calculation of the realized volatility.

Volatility of financial time series is often characterized by some stylized
facts such as volatility clusters, persistence, leptokurtic data behavior and time-
varying volatility. A popular tools for dealing with time dependent volatility
in financial markets are models based on the autoregressive conditional het-
eroskedasticity (ARCH) model, proposed by Engle [4]. Providing a more flexible
structure, Bollerslev [1] introduced the Generalized ARCH (GARCH) model,
which combines the ARCH and autoregressive moving average (ARMA) mod-
els. The GARCH model estimates jointly a conditional mean and conditional
variance equation, and it is regularly used in studying the daily returns of stock
market data [6]. The conventional econometric approaches overlook the intrinsic
imprecise nature of volatility. Therefore, in the literature many contributions
have tried to apply methods based on artificial intelligence such as artificial
neural network [3,5,23], fuzzy rule systems [7,20], hybrid adaptive network-based
fuzzy inference system (ANFIS) [2,14,15] and fuzzy regression methods [16].

In this paper, one presents an approach where the Ordered Fuzzy GARCH
model is defined in the same way as original one, but the all components of equa-
tion are replaced by Ordered Fuzzy Numbers and rates of return are modeled by
Ordered Fuzzy Candlesticks. The use of them allows modeling uncertainty asso-
ciated with financial data based on high-frequency data. The empirical results
show the effectiveness of the proposed model are provided by modeling and
forecasting the volatility of the Warsaw Stock Exchange Top 20 Index (WIG
20) from January 4, 2010 through March 31, 2017, in comparison with original
GARCH model.

2 Fuzzy Background Concepts

2.1 Ordered Fuzzy Numbers (OFN)

Ordered Fuzzy Numbers (called also the Kosinski’s Fuzzy Numbers) introduced
by Kosiński et al. in series of papers [8–12] are defined by ordered pairs of
continuous real functions defined on the interval [0, 1] i.e.

A = (f, g) with f, g : [0, 1] → R as continuous functions. (1)

Functions f and g are called the up and down-parts of the Ordered Fuzzy
Number A, respectively. The continuity of both parts implies their images are
bounded intervals, say UP and DOWN, respectively. In general, the functions
f and g need not be invertible, and only continuity is required. If one assumes,
however, that these functions are monotonous, i.e., invertible, and add the con-
stant function of x on the interval [1−

A, 1+A] with the value equal to 1, one might
define the membership function
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μ(x) =

⎧
⎨

⎩

f−1(x) if x ∈ [f(0), f(1)],
g−1(x) if x ∈ [g(1), g(0)],

1 if x ∈ [1−
A, 1+A],

(2)

if f is increasing and g is decreasing, and such that f ≤ g (pointwise). In this way,
the obtained membership function μ(x), x ∈ R represents a mathematical object
which resembles a convex fuzzy number in the classical sense. The Ordered Fuzzy
Number and Ordered Fuzzy Number as a fuzzy number in classical meaning are
presented in Fig. 1.

Fig. 1. Graphical interpretation of OFN and a OFN presented as fuzzy number in
classical meaning

In addition, note that a pair of continuous functions (f, g) determines differ-
ent Ordered Fuzzy Number than the pair (g, f). In this way, an extra feature to
this object, named the orientation is appointed. Depending on the orientation,
the Ordered Fuzzy Numbers can be divided into two types: a positive orienta-
tion, if the direction of Ordered Fuzzy Number is consistent with the direction
of the axis Ox and a negative orientation, if the direction of the Ordered Fuzzy
Number is opposite to the direction of the axis Ox.

Furthermore, the basic arithmetic operations on Ordered Fuzzy Numbers
are defined as the pairwise operations of their elements. Let A = (fA, gA),
B = (fB , gB) and C = (fC , gC) are Ordered Fuzzy Numbers. The sum
C = A+B, subtraction C = A−B, product C = A ·B, and division C = A÷B
are defined by formula

fC(y) = fA(y) ∗ fB(y), gC(y) = gA(y) ∗ gB(y) (3)

where ∗ works for +, −, · and ÷, respectively, and where C = A ÷ B is defined,
if the functions |fB | and |gB | are bigger than zero.

This definition leads to some useful properties. The one of them is existence of
neutral elements of addition and multiplication. This fact causes that not always
the result of an arithmetic operation is a fuzzy number with a larger support.
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This allows to build fuzzy models based on Ordered Fuzzy Numbers in the form
of the classical equations without losing the accuracy. In a similar way, basic
functions such as log, exp, sqrt etc. can be defined (see [21]).

Moreover, a universe O of all Ordered Fuzzy Numbers can be identified with
C0([0, 1]) × C0([0, 1]), hence the space O is topologically a Banach space [11].
A class of defuzzification operators of Ordered Fuzzy Numbers can be defined,
as linear and continuous functionals on the Banach space O. Each of them has
a representation by a sum of two Stieltjes integrals with respect to functions ν1
and ν2 of bounded variation [13].

An example of a nonlinear functional is center of gravity defuzzification func-
tional (CoG) calculated at A = (fA, gA)

CoG(A) =

1∫

0

fA(s) + gA(s)
2

|fA(s) − gA(s)|ds

⎧
⎨

⎩

1∫

0

|fA(s) − gA(s)|ds

⎫
⎬

⎭

−1

(4)

provided
1∫

0

|fA(s) − gA(s)|ds �= 0. Center of gravity operator defined above is

equivalent to the center of gravity operator in classical fuzzy logic.

2.2 Ordered Fuzzy Candlesticks (OFC)

Concept of Ordered Fuzzy Candlesticks was proposed by the authors in [17–19].
Generally, in this approach, a fixed time interval of financial high frequency
data is identified with Ordered Fuzzy Number and it is called Ordered Fuzzy
Candlestick. The general idea is presented in Fig. 2. Notice, that the orientation
of the Ordered Fuzzy Number shows whether the Ordered Fuzzy Candlestick is
long or short. While the information about movements in the price are contained
in the shape of the f and g functions.

Fig. 2. Draft of general concept of Ordered Fuzzy Candlestick
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In previous own works listed two cases of construction of Ordered Fuzzy
Candlesticks. The first assumes that the functions f and g are functions of
predetermined type, moreover, the shapes of these functions should depend on
two parameters (e.g. linear, etc.). Then the Ordered Fuzzy Candlestick for given
time series can be defined as follows.

Let {Xt : t ∈ T} be a given time series and T = {1, 2, . . . , n}. The Ordered
Fuzzy Candlestick is defined as an Ordered Fuzzy Number C = (f, g) which
satisfies the following conditions 1–4 (for long candlestick) or 1′–4′ (for short
candlestick).

1. X1 ≤ Xn.
2. f : [0, 1] → R is continuous and increasing on [0, 1].
3. g : [0, 1] → R is continuous and decreasing on [0, 1].
4. S1 < S2, f(1) = S1, f(0) = min

t∈T
Xt − C1, g(1) = S2 and g(0) is such that

the ratios Fg

A and Ff

B are equal.

1′. X1 > Xn.
2′. f : [0, 1] → R is continuous and decreasing on [0, 1].
3′. g : [0, 1] → R is continuous and increasing on [0, 1].
4′. S1 < S2, f(1) = S2, f(0) = max

t∈T
Xt + C2, g(1) = S1 and g(0) is such that

the ratios Ff

A and Fg

B are equal.

In the above conditions the center of Ordered Fuzzy Candlestick (i.e. added
interval) is designated by parameters S1, S2 ∈ [mint∈T Xt,maxt∈T Xt] and can
be compute as different kinds of averages (e.g. arithmetic, weighted or exponen-
tial). While C1 and C2 are arbitrary nonnegative real numbers, which further
extend the support of fuzzy numbers and can be compute e.g. as standard devi-
ation or volatility of Xt. The parameters A and B are positive real numbers,
which determine the relationship between the functions f and g. They can be
calculated as the mass of the desired area with the assumed density (see Fig. 2).
Numbers Ff and Fg are the fields under the graph of functions f−1 and g−1,
respectively. The examples of realizations of Trapezoid and Gaussian Ordered
Fuzzy Candlesticks are defined below and presented in Fig. 3.

Example 1. Trapezoid OFC. Suppose that f and g are linear functions in form

f(x) = (bf − af ) x + af and g(x) = (bg − ag) x + ag (5)

then the Ordered Fuzzy Candlestick C = (f, g) is called a Trapezoid OFC,
especially if S1 = S2 then also can be called a Triangular OFC.

Example 2. Gaussian OFC. The Ordered Fuzzy Candlestick C = (f, g) where
the membership relation has a shape similar to the Gaussian function is called
a Gaussian OFC. It means that f and g are given by functions

f(z) = σf

√
−2 ln(z) + mf and g(z) = σg

√
−2 ln(z) + mg (6)

where e.g. z = (1 − α)x + α, α close to zero.
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Fig. 3. Examples of Trapezoid and Gaussian OFC

Fig. 4. Example of empirical OFC

The second case of construction of Ordered Fuzzy Candlesticks assumes that
the functions f and g are defined in similar way as the empirical distribution in
the statistical sciences and it is called an Empirical OFC.

Let {Xt : t ∈ T} be a given time series and T = {1, 2, . . . , n}. The values
of parameters S1, S2 and C1, C2 are determined based on a time series Xt. The
new time series Yt is created from time series Xt by sorting in ascending. Next,
the two time series Y

(1)
t and Y

(2)
t are created as

Y
(1)
t = {Yi : i ∈ T ∧ Yi ≤ S1} t ∈ {0, 1, . . . ,K1}

Y
(2)
t = {Yi : i ∈ T ∧ S2 ≤ Yi} t ∈ {0, 1, . . . ,K2}

Now, based on these time series we define the two discrete functions on interval
[0, 1] with step dx = 1

M (i.e. M + 1 points) as
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Ψ1(k · dx) =

{
Y

(1)

� k
dx � − M−k

M C1 if k ∈ {0, 1, . . . ,M − 1}
S1 if k = M

Ψ2(k · dx) =

{
Y

(2)

K2−� k
dx � + M−k

M C2 if k ∈ {0, 1, . . . ,M − 1}
S2 if k = M

Then the empirical OFC is an Ordered Fuzzy Number C = (f, g) where the
functions f and g are continous approximation of functions Ψ1 and Ψ2, respec-
tively for long candlestick, whilst for short candlestick Ψ2 and Ψ1, respectively.
The example of realization of the Empirical OFC is presented in Fig. 4.

3 Fuzzy Returns and Ordered Fuzzy GARCH Model

3.1 Original GARCH Model

In traditional volatility modeling, the most often, rates of return yt are computed
as a percentage logarithmic rates of return i.e.

rt = 100 · (log(Pt) − log(Pt−1)), (7)

where Pt is the daily closing stock price at time t, t = 1, . . . , T .
The Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

models proposed by Bollerslev [1] are used to capture the time varying behaviour
of variance. These models relate the unobserved volatility/variance of data to
the past variance and past observations. Hence, the conditional density of the
data is a normal distribution, but the occurrence of positive or negative extreme
data values depends on the past observations together with past volatility. The
standard GARCH(p,q) model for t = 1, . . . , T observations is defined as

rt =
√

htεt, (8)

ht = α0 +
p∑

i=1

αir
2
t−i +

q∑

j=1

βjht−j , (9)

where rt is the data with a conditional normal distribution, εt is a sequence of
independent and identically distributed random variables with zero-mean and
unit variance, ht is the conditional variance of εt. Scalars p and q are the lag
order for past returns and past conditional volatility in the GARCH model,
respectively, and (α0, αi, βj) for i = 1, . . . , p and j = 1, . . . , q are unknown
coefficients to be estimated. Sufficient conditions for positive variance ht at every
period are

α0 > 0, αi ≥ 0, βj ≥ 0,

p∑

i=0

+
q∑

j=1

< 1, i = 1, . . . , p, j = 1, . . . , q, (10)

where these restrictions also ensure a stationary variance process and the exis-
tence of a finite mean and variance of ht.
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The forecasts of the GARCH model are obtained recursively as the forecasts
of an ARMA model. If we consider the GARCH(1,1) model which is the GARCH
models under study at the forecast origin t, the 1-step ahead forecast of ht+1 is

ht+1 = α0 + α1r
2
t + βht. (11)

When calculating multistep ahead forecasts the volatility Eq. (8) can be rewritten
as r2t = htε

2
t .

3.2 Fuzzy Returns

In presented approach, the fuzzy percentage logarithmic rates of return are mod-
eled based on high-frequency data (tick-by-tick data) using concept of Ordered
Fuzzy Candlestick. Let Xti, i = 1, . . . , It be a time series of quotations of finan-
cial instrument for given fixed time interval t (e.g. day, week, month). The new
time series Rti is created from time series Xti as follows

Rti = 100 · (log(Xti) − log(Xt1)) i = 1, . . . , It (12)

Now, based on these time series the Ordered Fuzzy Candlestick R̃t = (fR̃t
, gR̃t

) is
defined and it is called fuzzy percentage logarithmic rate of return for given time
interval t. The example of time series Rti and associated with it the Gaussian
OFC is presented in Fig. 5.

Fig. 5. Example of time series Rti together with a Gaussian OFC associated with it

3.3 Ordered Fuzzy GARCH Model

Let R̃t, t = 1, . . . , T denote the sequences of fuzzy percentage logarithmic rates
of return. Notice, that R̃t are Ordered Fuzzy Numbers. Thanks to well-defined
arithmetic of OFN, the Ordered Fuzzy GARCH model can be defined as follows



488 A. Marsza�lek and T. Burczyński

R̃t =
√

H̃tε̃t, (13)

H̃t = Ã0 +
p∑

i=1

Ãi · R̃2
t−i +

q∑

j=1

B̃j · H̃t−j , (14)

where H̃t is the conditional variance of ε̃t and it is OFN. Scalars p and q are the
lag order for past returns and past conditional volatility in the GARCH model,
respectively, and (Ã0, Ãi, B̃j) for i = 1, . . . , p and j = 1, . . . , q are unknown coef-
ficients to be estimated, all are OFN. Moreover, ε̃t is a sequence of independent
and identically distributed fuzzy random variables with zero-mean and unit vari-
ance, in this sense, that for each x ∈ [0, 1] fε̃t

(x) and gε̃t
(x) are sequences of

independent and identically distributed real random variables with zero-mean
and unit variance. Notice, that for each x ∈ [0, 1] fR̃t

(x) and gR̃t
(x) can be

regarded as a original GARCH model.
The forecasts of the Ordered Fuzzy GARCH model are obtained in the same

way as for original model. If we consider the Ordered Fuzzy GARCH(1,1) model,
the 1-step ahead forecast of H̃t+1 is

H̃t+1 = Ã0 + Ã1R̃
2
t + B̃H̃t. (15)

The result of forecast is Ordered Fuzzy Number, which includes three kinds of
predictions:

– point forecast: given by value of a defuzzification operator, e.g. CoG,
– interval forecast: given by subset of support of the OFN,
– direction forecast: given by orientation of the OFN.

4 Empirical Results

The study attempts tomodeling and forecasting the future volatility of theWarsaw
Stock Exchange Top 20 Index (WIG 20), solely on the basis of past index prices.
For the case study we use the intra-daily quotations of WIG 20 index from January
4, 2010 through March 31, 2017.1 For forecasting, the parameters of proposed and
original GARCH model are estimated using data from January 4, 2010 through
December 30, 2016, under assumption of normal distribution.2 In order to select
best lag parameters for original GARCH model, the Bayesian information crite-
rion (BIC) were performed. According to BIC criterion the best specification for
original model was p = 1 and q = 1. The same values of parameters p and q was also
set to Ordered Fuzzy GARCH model. The out-of-sample forecast horizon covers
period from January 2, 2017 to March 31, 2017.

In the case of Ordered Fuzzy GARCH model, three models, in which the
fuzzy returns are modeled by using three kind of Ordered Fuzzy Candlesticks

1 Data has been retrieved from the site www.bossa.pl.
2 The estimation of parameters of proposed and original GARCH model was made by

using ARCH package for Python (https://pypi.python.org/pypi/arch/4.0) [22].

www.bossa.pl
https://pypi.python.org/pypi/arch/4.0
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(Trapezoid, Gaussian and Empirical) are considered. For each model, parameters
S1, S2 are computed as minimum and maximum of different kinds of averages
(arithmetic, weighted and exponential). The parameters C1, C2 are calculated
as a standard deviation and the parameters A and B are calculated as the mass
of the desired area with the exponential density.

To proxy for true variance, the daily realized volatility for the WIG 20 com-
puted by using dt-th mid-quote (tick-time sampling) is used, where dt is chosen
such that the average sampling duration is five minutes. Let rti, i = 1, . . . , It

denote the series of percentage logarithmic rates of return on day t (see (7)). The
realized volatility proxy is the estimator constructed using sums of intra-daily
squared returns

RVt =
It∑

i=1

r2ti. (16)

The overnight return is omitted, as is often done in the literature.
Volatility forecasts comparison was conducted for 1-step, 5-step and 22-step

ahead horizon in terms of adjusted-R squared, mean absolute error (MAE),
mean percentage error (MPE), root mean squared error (RMSE) and the Theil
inequality coefficient (TIC). These criteria are given as

MAE =
1
N

N∑

i=1

|σ2
i − σ̂2

i |, (17)

MPE =
1
N

N∑

i=1

|σ2
i − σ̂2

i |
σ2

i

, (18)

RMSE =

√
√
√
√ 1

N

N∑

i=1

(σ2
i − σ̂2

i )2, (19)

TIC =

√

1
N

N∑

i=1

(σ2
i − σ̂2

i )2

√

1
N

N∑

i=1

(σ2
i )2 +

√

1
N

N∑

i=1

(σ̂2
i )2

, (20)

where N is the number of observations, σ2
i is the actual volatility at period i,

measured as the realized volatility, and σ̂2
i is the forecast volatility at i. In the

case of fuzzy models these criteria are computed by using crisp values obtained
by using centre of gravity operator.

Tables 1 and 2 contain in-sample and out-of-sample prediction results respec-
tively. Different panels present different horizons, i.e., daily (h = 1), weekly (h = 5),
monthly (h=22).Thenumber inboldmeans it is the best one of every row. It is easy
to see that no matter it is in-sample or out-of-sample, the all of proposed Ordered
Fuzzy GARCH models performs better than original GARCH model. The perfor-
mance of fuzzy models constructed based on Gaussian and Empirical OFC are sim-
ilar, model with Trapezoid OFC is worse but still better than original one. It is
worth pointing out that over 85% predictions obtained by original GARCH model
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Table 1. Comparison of the in-sample performance between the models

Horizon Criterion GARCH OFGARCH T OFGARCH G OFGARCH E

h = 1 adj. R2 0.3256 0.3994 0.3997 0.4482

MAE 0.6698 0.5135 0.4285 0.4403

MPE 0.9349 0.6328 0.4736 0.5234

RMSE 1.1469 1.0276 0.9929 0.9557

TIC 0.3471 0.3239 0.3385 0.3175

overestimated 87.41% 77.8% 66.71% 72%

h = 5 adj. R2 0.195 0.3995 0.3997 0.2426

MAE 0.7172 0.5138 0.4288 0.4942

MPE 1.0196 0.6328 0.4737 0.6094

RMSE 1.2534 1.0286 0.9939 1.1281

TIC 0.3834 0.3239 0.3386 0.3816

overestimated 86.34% 77.75% 66.69% 71.76%

h = 22 adj. R2 −0.0591 0.3996 0.3998 0.0921

MAE 0.7905 0.5171 0.4312 0.5601

MPE 1.2139 0.6365 0.476 0.7688

RMSE 1.345 1.0334 0.9986 1.234

TIC 0.4252 0.3243 0.339 0.4383

overestimated 85.85% 78% 66.94% 74.91%

Table 2. Comparison of the out-of-sample performance between the models

Horizon Criterion GARCH OFGARCH T OFGARCH G OFGARCH E

h = 1 adj. R2 0.0798 0.155 0.152 0.1175

MAE 0.4699 0.3775 0.3137 0.3129

MPE 0.7091 0.5544 0.4223 0.4236

RMSE 0.5339 0.4549 0.3879 0.3912

TIC 0.2465 0.22 0.2025 0.2056

overestimated 85.93% 76.56% 67.19% 68.75%

h = 5 adj. R2 0.0831 0.0932 0.1014 0.0951

MAE 0.4712 0.3875 0.3183 0.3171

MPE 0.7349 0.5897 0.4512 0.4541

RMSE 0.5351 0.4687 0.399 0.3956

TIC 0.2464 0.2271 0.209 0.2077

overestimated 87.5% 78.13% 65.63% 65.63%

h = 22 adj. R2 −0.012 –0.01 −0.0134 −0.0161

MAE 0.5468 0.4217 0.3473 0.3546

MPE 0.8711 0.6533 0.4977 0.5221

RMSE 0.6309 0.5037 0.4378 0.4425

TIC 0.2817 0.2452 0.231 0.229

overestimated 85.94% 76.56% 64.06% 67.19%
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are overestimated, whereas for fuzzy models it is less than 68%. Figure 6 presents
the out-of-sample prediction graphs for originalGARCHmodel andOrderedFuzzy
GARCH model based on Gaussian OFC (crisp forecast) on background of forecast
in form of Ordered Fuzzy Numbers. Notice, that for fuzzy model it is easy to obtain
other forecasts by using different defuzzification operators.

Fig. 6. Daily, WIG 20 index realized volatility, original GARCH and Ordered Fuzzy
Gaussian GARCH out-of-sample forecasts

5 Conclusion

Volatility forecasting plays a central role in several financial applications like
asset allocation and hedging, option pricing and risk analysis. This paper inves-
tigated a volatility forecasting problem in the complex uncertain environment.
The representation of fuzzy rates of return using concept of the Ordered Fuzzy
Candlesticks was described. Moreover, the Ordered Fuzzy GARCH model using
well-defined arithmetic of Ordered Fuzzy Numbers in the same way as original
GARCH model was defined. A numerical example based on WIG 20 index was
given to demonstrate the potential of the Ordered Fuzzy GARCH approach to
the problem of volatility forecasting, providing more accurate results than origi-
nal GARCH model in statistical terms. For the future work, the proposed model
should be compare with other fuzzy approaches or more sophisticated GARCH-
type models and then should be applied to financial decision making problems
related to volatility such as option pricing and risk modeling.
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