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Abstract This study examines students’ reasoning about eigenvalues and eigen-
vectors as evidenced by their written responses to two open-ended response
questions. This analysis draws on data taken from 126 students whose instructors
received a set of supports to implement a particular inquiry-oriented instructional
approach and 129 comparable students whose instructors did not use this instruc-
tional approach. In this chapter, we offer examples of student responses that provide
insight into students’ reasoning and summarize broad trends observed in our
quantitative analysis. In general, students in both groups performed better on
the procedurally oriented question than on the conceptually oriented question.
The group of students whose instructors received support to implement the
inquiry-oriented approach outperformed the other group of students on the con-
ceptually oriented question and performed equally well on the procedurally oriented
question.
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Linear algebra is a mandatory course for many science, technology, engineering,
and mathematics (STEM) students. The theoretical nature of linear algebra makes it
a difficult course for many students because it may be their first time to deal with
abstract and conceptual content (Carlson, 1993). Carlson (1993) also posited that
this difficulty arises from the prevalence of procedural and computational emphases
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in students’ coursework prior to linear algebra, and that it might therefore be
difficult for students to connect new linear algebra topics and their previous
knowledge. To address this issue, researchers have developed instructional mate-
rials for Inquiry-Oriented Linear Algebra (IOLA; http://iola.math.vt.edu/) and
approaches to help students develop more robust, conceptual ways of reasoning
about core topics in introductory linear algebra (e.g. Andrews-Larson, Wawro, &
Zandieh, 2017; Wawro, Rasmussen, Zandieh, & Larson, 2013; Zandieh, Wawro, &
Rasmusen, 2017).

Instructors who were not involved in the development of these kinds of
research-based, inquiry-oriented instructional materials have been shown to
encounter challenges when implementing such materials (Johnson, Caughman,
Fredericks, & Gibson, 2013). Under an NSF-supported project Teaching
Inquiry-Oriented Mathematics: Establishing Supports (TIMES), Johnson, Keene,
and Andrews-Larson (2015) designed and implemented a system of instructional
supports based on research in instructional change in undergraduate mathematics
education, teacher learning, and professional development in settings ranging from
K-20 (e.g. Henderson, Beach, & Finkelstein, 2011). These supports included
sequences of student activities with implementation notes, a three-day summer
workshop, and weekly online workgroups during the semester instructors imple-
mented the materials in their teaching. This chapter examines differences in per-
formance and reasoning of students whose instructors received these supports
through the TIMES project (TIMES students) as compared to students whose
instructors did not receive these supports (Non-TIMES students). In particular, we
examine assessment data to identify differences in student performance and rea-
soning about eigenvectors and eigenvalues.

In this work we draw on data from an assessment that was developed to align
with four core introductory linear algebra topic areas addressed in the IOLA
instructional materials: linear independence and span; systems of linear equations;
linear transformations; and eigenvalues. and eigenvectors. In the assessment, there
were two questions that addressed eigenvalues and eigenvectors: question 8 and 9.
Question 8 was a procedurally oriented question related to the eigenvalue of a given
matrix and question 9 focused on conceptual understanding of the eigenvectors.
The research questions for this analysis are:

• How does the performance of students whose instructors received TIMES
instructional supports for teaching linear algebra compare to the performance of
other students?

• How did students reason about eigenvectors and eigenvalues in the context of
questions designed to assess aspects of students’ procedural and conceptual
understanding? How did reasoning differ for students of TIMES and
Non-TIMES instructors?
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1 Literature

Many have argued that the shift from predominantly computational and procedural
approaches to mathematics many students experience before college to more the-
oretical approaches causes a lot of difficulties for students as they transition to
university mathematics. Linear algebra is a course in which students struggle to
develop conceptual understanding (Carlson, 1993; Dorier & Sierpinska, 2001;
Dorier, Robers, Robinet, & Rogalski, 2000; Stewart & Thomas, 2009). Across the
literature on the teaching and learning of eigenvalues and eigenvectors, procedural
thought processes feature prominently. For example, Stewart and Thomas (2006)
pointed to ways in which students often learn about eigenvalues and eigenvectors,
where a formal definition is often linked to a symbolic presentation and its
manipulation. For the purpose of this paper, we will draw on the following formal
definition for eigenvectors and eigenvalues:

Suppose A is an n × n real-valued matrix and x is a non-zero vector in ℝn. We
say the vector x is an eigenvector of the matrix A if there is some scalar λ such that
Ax= λx. Further, in this case, we say that λ is the eigenvalue associated with the
eigenvector x.

Thomas and Stewart (2011) highlighted a difficulty students find when faced
with formal definitions for eigenvalues and eigenvectors: these definitions contain
an embedded symbolic form Ax= λxð Þ, and instructors often move quickly into
symbolic manipulations of algebraic and matrix representations such as trans-
forming Ax= λx to A− λIð Þx=0. Their findings that students struggle to make sense
of formal definitions, struggle to make use of geometric representations of eigen-
vectors, and exhibit procedural orientations toward eigenvectors suggest that such
treatments might not provide sufficient opportunities for students to make sense of
the reasons behind these symbolic shifts (Stewart & Thomas, 2009; Thomas &
Stewart, 2011).

In order to help students make sense of situations that might be modeled using
eigenvectors and eigenvalues, Salgado and Trigueros (2015) developed a problem
that tasked students with designing a mathematical model that describes the
employment dynamics of a population and its long-term behavior. While this
modeling problem does not foreground geometric interpretations, the researchers
also developed other activities to subsequently establish a relationship between the
algebraic and geometric interpretation of eigenvectors and eigenvalues. Drawing on
analysis of data from 30 undergraduate students, Salgado and Trigueros (2015)
argued that this instructional sequence supported students’ learning by helping
students link ideas about eigenvectors and eigenvalues to other previously learned
concepts.

Schoenfeld (1995) used eigenpictures in the 2 × 2 case (“stroboscopic” pic-
tures) to show x and Ax at the same time by using multiple line segments in the x–y-
plane. He observed that graphical representations of eigenvalues and eigenvectors
got little attention in the literature and that a picture may benefit more than algebraic
presentations. It is also documented more generally in linear algebra that students
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struggle to coordinate algebraic with geometric interpretations (e.g. Larson &
Zandieh, 2013; Stewart & Thomas, 2010) and the students’ understanding of
eigenvectors is not always well connected to concepts of other topics of linear
algebra (Lapp, Nyman, & Berry, 2010).

To support students in developing a better understanding of the formal definition
and associated interpretations of the eigenvalues and eigenvectors, researchers have
developed a variety of instructional interventions (e.g. Gol Tabaghi & Sinclair,
2013; Salgado & Trigueros, 2015; Zandieh, Wawro & Rasmussen, 2017). This
paper examines student learning outcomes associated with a geometrically moti-
vated instructional approach (see Plaxco et al. 2018; Zandieh, Wawro & Ras-
mussen, 2017) when paired with TIMES instructional supports; the approach will
be described in the Study Design section.

2 Theoretical Framing

Researchers often make reference to conceptual understanding and procedural
understanding when discussing students’ reasoning about mathematical concepts
(Hiebert, 1986). Hiebert and Lefevre (1986) defined conceptual knowledge as a
“knowledge that is rich in relationships. It can be thought of as a connected web of
knowledge, a network in which the linking relatonships are as prominent as the
discrete pieces of information” (pp. 3–4). According to Hiebert and Lefevre (1986)
students have procedural knowledge if they can combine formal language and
symbolic representation systems with algorithms or rules in order to complete
mathematical tasks.

In this paper we also draw on Larson and Zandieh’s (2013) framework for
students’ mathematical thinking about matrix equations of the form Ax= b. This
framework details three important interpretations, relationships between geometric
and symbolic representations within each interpretation, and the complexity
entailed in shifting among interpretations. The three interpretations this framework
includes are (1) a linear combination interpretation, in which b is viewed as a linear
combination of the column vectors of the matrix A with x functioning as the set of
weights on the column vectors of A, (2) a system of equations interpretation in
which x is viewed as a solution and A is seen as a set of coefficients, and (3) a linear
transformation interpretation in which x is viewed as an input vector, b as an output
vector, and A as the matrix that transforms x into b.

We argue these interpretations are helpful for making sense of students’ rea-
soning, but that the framework may need to be modified or expanded to more fully
account for student reasoning in the context of eigenvalues and eigenvectors. In the
context of eigenvectors and eigenvalues, students need to coordinate a transfor-
mation interpretation with the equation Ax= λx, where the matrix A transforms the
vector x by stretching, shrinking, and/or reversing the direction of vector x. Addi-
tionally, students need to shift to a systems interpretation and consider when the
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equivalent system A− λIð Þx=0 has a non-trivial solution in order to make sense of
standard procedures for computing eigenvalues and eigenvectors.

3 Study Design

In previous work, we have developed an assessment aligned with the
inquiry-oriented linear algebra (IOLA) instructional materials used in the TIMES
project (Haider et al., 2016). This paper-and-pencil assessment consists of 9 items,
most of which include an open-ended response component. The assessment was
administered at the end of the semester, and students were allocated one hour to
complete the assessment.

In this analysis we examine assessment data from 126 students across six
TIMES instructors and 129 students across three Non-TIMES instructors from
different institutions in the US. Non-TIMES linear algebra instructors were selected
from either the same institutions as TIMES instructors or a similar institution (e.g.
preferably one from a similar geographic area, with similar size of student popu-
lation, with similar acceptance rate) to collect assessment data for comparison of
TIMES and Non-TIMES students. In this study, we focused on an in-depth analysis
of students’ reasoning on the assessment questions related to eigenvalues and
eigenvectors. Both items are shown in Fig. 1.

Fig. 1 Assessment items related to eigenvectors and eigenvalues (Question 9 was retrieved from
http://mathquest.carroll.edu and developed as part of an NSF-supported project entitled Project
MathVote: Teaching Mathematics with Classroom Voting. For related research, see Cline, Zullo,
Duncan, Stewart, & Snipes, 2013)
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The inquiry-oriented approach to learn eigenvalues and eigenvectors associated
with this study is characterized in detail elsewhere (Plaxco et al. 2018; Zandieh,
Wawro, & Rasmusen, 2017). Briefly described, this approach supports students in
first learning about eigenvalues and eigenvectors as a set of “stretch” factors and
directions that can be used to more easily characterize a geometric transformation.
Students work through a series of tasks, first aiming to find (using standard coor-
dinate systems) the image of a figure in a plane under a transformation that is easily
described in a non-standard coordinate system. Students then work to label points in
both the pre-image and the image using the standard and the more convenient
coordinate systems, find matrices that rename points from one coordinate system to
the other, and find matrices corresponding to the transformation described relative
to both coordinate systems. The instructor works to link this work to the matrix
equation A = PDP−1 and subsequent tasks aim to leverage this conceptual basis as
students learn more traditional computational methods associated with computing
eigenvalues and eigenvectors.

4 Methods of Analysis

To answer our research questions, our analysis has two main components. The first
component of our analysis is quantitative in nature, as we aim to compare learning
outcomes of students whose instructors received TIMES instructional supports to
those who did not. The second component of our analysis is qualitative in nature, as
we work to identify students’ ways of reasoning on both the more procedurally
oriented assessment item (Q8) and the more conceptually oriented item (Q9). We
follow Kwon, Rasmussen, and Allen’s (2005) approach for distinguishing assess-
ment items that are conceptually oriented from those that are procedurally oriented.
In particular we consider Q8 to be more procedurally oriented in that there is a
commonly taught procedure that students can directly invoke (with some inter-
pretation) to produce a correct answer to the question. There is no such standard
procedure for Q9, so we consider it to be more conceptually oriented. In our
qualitative analysis, we also look for similarities and differences that emerge from
considering the two groups.

To facilitate our quantitative analysis, we needed to score students’ responses to
the two assessment items. Specifically, we needed to develop a uniform system for
assigning a number of points to students’ responses that provide an overall
assessment of the quality of their response and the understanding reflected in that
response. Question 9a required students to select which subset of 6 possible options
were appropriate responses, so 1 point was awarded to each of the possible options
for correctly selecting or not selecting that option. Both Question 8 and Question 9b
were open-ended response questions, and both of these were scored on a scale of 0
to 3 points. Three points were awarded for a fully correct response, two points were
awarded for a mostly correct response (e.g. if a minor computational error was
made, 2 points would be assigned), one point was awarded if the student’s response

198 K. Bouhjar et al.



provided evidence of some knowledge or understanding relevant to the question,
and no points were awarded otherwise. A scoring scheme was developed to specify
what kinds of responses received how many points. In order to ensure consistency
among coders in how points were assigned, new examples were added to the
scoring guide throughout the scoring process. A condensed version of the scoring
scheme for assigning points to open-ended response questions can be found in
Appendix. Additionally, the Appendix includes some explanation of how this
scoring scheme aligns with our coding categories for how students reasoned, which
are described in greater detail below. Student work exemplifying common ways of
reasoning with explanation of points awarded are provided in the Findings section.

To ensure agreement regarding points assigned to each response, two researchers
looked at every student’s attempt and assigned a score independently before
comparing with each other. If the two researchers assigned a different score to a
particular student, they then discussed according to the codebook and agreed on a
common score for that student. If both researchers disagreed about a particular
score, then a third researcher was consulted to reach a consensus.

Once scores had been assigned to all student responses, descriptive statistics
were generated to examine the overall performance of students on the eigenvalue
and eigenvector questions and to compare TIMES students with Non-TIMES stu-
dents for both questions. We were unable to control for factors such as students’
mathematical background, major, and instructor’s teaching experience, so this is an
unavoidable limitation for our statistical analysis. However, we tried our best to
choose TIMES and Non-TIMES students either from the same school or from
similar schools. This helps us establish similarity of students in TIMES and
non-TIMES classes. Then, we compared the mean scores of TIMES and
Non-TIMES students using two-tailed t-tests to identify when differences of means
were statistically significant.

In order to facilitate our qualitative analysis of students’ reasoning, we examined
student responses to the open-ended portions of question 8 and question 9. As noted
before, we consider Q8 to be more procedurally oriented. After examining the data
several times and refining the categories of the students’ reasoning about item 8, we
sorted students’ responses into 5 broad categories: (1) reasoning about the deter-
minant, (2) reasoning about A− λI without computing a determinant, (3) other,
(4) students who explicitly indicated they did not know, and (5) students who left
the item blank. A student’s response was categorized as “reasoning about the
determinant” if he or she solved the characteristic equation, plugged the possible
given eigenvalue into the characteristic equation, or computed the determinant of
the A− 2I matrix and compared the result to 0. A students’ response was catego-
rized as “reasoning about A− λI” if he or she solved the system of linear equations
A− λIð Þx=0, considered the linear independence of the columns of A− λI, or
considered whether rref A− λIð Þ had any free variables.

In examining students’ responses to question 9, we found it helpful to distin-
guish responses that were conceptually aligned with the formal definition for
eigenvectors and eigenvalues from those that were not. We were specifically
interested in student reasoning that appropriately coordinated interpretations of
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A, x, and λ in the context of the matrix equation Ax= λx. In particular, we say a
student response “uses the eigen-concept” when there is evidence a student is
coordinating M, x, and λ in at least one of the following ways:

• Algebraically: The matrix M is a fixed matrix that transforms the (nonzero)
eigenvector x in a particular way, namely such that the resulting vector Ax is a
scalar multiple (λ) of x.

• Geometrically: this can be interpreted to mean that multiplying x by A has the
effect of

– stretching x in the same direction or opposite direction, or
– causing the resultant vector to lie along the same line as the vector x.

If a student drew on a transformation interpretation to make sense of Ax but did not
coordinate this appropriately with λx in one of the ways mentioned above, we did
not say that the student’s response used the eigen-concept.

We grouped students’ responses to question 9 into five categories: (1) responses
that used the eigen-concept, (2) responses that focused on the role of the matrix M
in a way that did not use the eigen-concept, (3) other, (4) responses in which the
student explicitly indicated he or she did not know, and (5) responses that were left
blank. There were two primary kinds of responses coded as focused on the role of
the matrix M in a way that did not use the eigen-concept. The first one is when
students focused on the role of the matrix M as a transformation, but without
specifying the particular way it will transform an eigenvector x. The second kind of
response is when students suggested specific matrices M that would satisfy par-
ticular equations (e.g “Mx= x if M = I”). While this is certainly a true statement, it
doesn’t include evidence of understanding the special relationship between a matrix
and its eigenvector(s).

After coding students’ responses to Q8 and Q9, we aggregated these responses
into tables, organized by the category assigned to each response and number of
points awarded. We also separated TIMES from Non-TIMES students in counting
the number of responses in these discrete categories. This allowed us to look for
patterns in which approaches were conceptually oriented, which approaches lent
themselves to arriving at correct answers, and differences in approaches taken by
TIMES and Non-TIMES students.

5 Findings

In order to answer our research question about how TIMES students compared to
Non-TIMES students, we first present our quantitative analysis of students’ per-
formance on the more procedurally-oriented question (Q8) and the more concep-
tually oriented question (Q9), separating students of TIMES instructors from
students of Non-TIMES instructors. We then summarize findings from our coding
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of students’ approaches to these same questions, providing examples of responses
that highlight important trends in student reasoning.

5.1 Overview of Differences in Student Performance

We highlight three central trends from our quantitative analysis. First, TIMES
students outperformed Non-TIMES on both items, with a strongly significant dif-
ference of means on the conceptual item. Second, both TIMES and Non-TIMES
students did better on the procedurally oriented item than on the conceptually
oriented item. Third, correlations between students’ performance on both the
conceptual and procedural items were weak for students in both groups, suggesting
that the two items assessed relatively different aspects of student understanding.
Note that the last trend is not part of answering our research questions, it is more of
a side observation that emerged from our quantitative analysis.

To compare the performance of TIMES students with Non-TIMES students, we
first computed the mean and standard deviation for question 8 (which was an
open-ended response question with a total of 3 points possible), question 9a (which
was a multiple-choice question) and 9b (which is also an open-ended response
question). To make a ‘cleaner’ comparison, we have separately included the mean
and standard deviation of part a and part b of question 9. Part a of item 9 is a
multiple-choice problem with six distractors, three of which are correct choices. Per
our grading scheme, students can earn a maximum of 6 points from part a, three
points by selecting three correct choices and three points by not selecting incorrect
choices, so chances of making a guess for correct answers are higher in 9a. We also
observed that the difference in performance of TIMES and Non-TIMES students on
9a was not statistically significant with the available sample size. However, ques-
tion 9b is open-ended and students can earn at most three points by providing a
complete and correct explanation. Therefore, we compared question 8 with question
9b as they are naturally comparable items.

The data presented in Table 1 show that on the procedurally oriented question
(Q8) the mean score of TIMES students (M = 1.98, SD = 1.24) was greater than
that of Non-TIMES students (M = 1.71, SD = 1.37), but this difference of means
was not statistically significant with the available sample size. Similarly, there was
not a statistically significant difference in means on question 9a. However, in
comparing the performance of students in both groups on question 9b (which is an
open ended response style question like question 8), we noticed that TIMES stu-
dents performed significantly better (M = 1.05, SD = 1.12) than the Non-TIMES
students (M = 0.54, SD = 0.86). The results of the t-test indicated that this dif-
ference of means was statistically meaningful, t(125) = 4.29, p < 0.001. In this
way, TIMES students outperformed Non-TIMES students on the conceptually
oriented question.

Overall, students performed better on the procedurally oriented question (Q8)
than the conceptually oriented question (Q9). We compared Q8 to Q9b and found
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that the difference of means for all students between Q8 (M = 1.85, SD = 1.31)
and Q9b (M = 0.79, SD = 1.03) was also statistically meaningful with p-value
(two-tailed) less than 0.001.

Since both problems we investigated in this study were related to eigenvectors
and eigenvalues, one might think that students’ performance on the two items
should be correlated. However, quantitative analysis revealed a positive but weak
correlation between students’ performance on the two questions; the Pearson cor-
relation coefficient was r = 0.30 for all students. Recall that a correlation coefficient
measures the degree of relationship between two variables and ranges from −1 to 1,
where the sign indicates the direction of the relationship and the distance from zero
indicates the strength of the relationship (e.g. 1 means the two variables are highly
correlated and 0 means there is very little or no correlation between the two vari-
ables). For TIMES students, the correlation between the two items was r = 0.36 as
compared to the correlation for Non-TIMES which was r = 0.22. This suggests two
things: first, that the two items measure different aspects of student understanding of
eigenvalues and eigenvectors. Second, it indicates that performance on the proce-
durally and conceptually oriented questions was more highly correlated for TIMES
students.

5.2 Trends in Student Reasoning on the Conceptually
Oriented Question

In this section, we provide our qualitative analysis of question 8, which we consider
to be the more procedurally oriented question. In particular, we highlight two
common approaches to this problem: approaches that involve reasoning about the
determinant, and approaches that involve reasoning about A− λI without computing
a determinant. The majority of students who reasoned about the determinant
responded correctly. Reasoning about A− λI was a less common approach but more
frequently observed among TIMES students. Importantly, TIMES students were
more often able to arrive at a correct answer by reasoning about A− λI than were
Non-TIMES students. Further, we argue that students who reasoned about A− λI

Table 1 Summary of results of quantitative analysis

Question All
students

TIMES
students

Non-TIMES
students

p-value
(two-tailed)

Q8
3 Points

Mean: 1.85
SD: 1.31

Mean: 1.98
SD: 1.24

Mean: 1.71
SD: 1.37

t(125) = 1.73
p = 0.08 > 0.05

Q9 (part a only)
6 Points

Mean: 3.73
SD: 1.68

Mean: 3.74
SD: 1.76

Mean: 3.71
SD: 1.61

t(249) = 0.56
p = 0.88 > 0.05

Q9 (part b only)
3 Points

Mean: 0.79
SD: 1.03

Mean: 1.05
SD: 1.12

Mean: 0.54
SD: 0.86

t(125) = 4.29
p < 0.001
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showed more evidence of conceptual understanding. A summary of our coding and
scoring of student responses is shown in Table 2.

Reasoning about the determinant was the most common approach observed in
students’ responses to question 8, and students who used this kind of approach
tended to do so without making conceptual errors.1 Overall, 146 out of 255 students
(57% of all students) responded to question 8 by reasoning about the determinant.
We note two interesting trends within those who used this approach distinguishing
TIMES from Non-TIMES students. First, more TIMES students who used deter-
minants in their response made computational errors (usually when factoring the
characteristic polynomial) than did Non-TIMES students—such errors are evi-
denced by 2-point responses in our coding. On the other hand, fewer TIMES
students using this approach made conceptual errors than did Non-TIMES students
—such errors are evidenced by 1-point responses in our coding. In the TIMES
instructional approach (previously described under study context), the standard
algorithm for finding eigenvalues and eigenvectors is intended to emerge in relation
to student-invented strategies on the third of fourth day of instruction in the unit, so
we conjecture Non-TIMES students may have spent more time practicing this
procedure in comparison to TIMES students.

A less common approach to solve problem 8 was by reasoning about A− λI
without computing a determinant. Overall, 48 out of 255 students (19%) used such
a determinant-free approach to solve the problem. This approach was more com-
mon among TIMES students than among Non-TIMES students, and far more
TIMES students successfully responded to the problem in this way without con-
ceptual errors (evidenced by a score of 2 or 3 points in our grading scheme). Indeed,
70% (19 out of 27) of TIMES students who used this approach did so with without
conceptual errors whereas only 38% (8 out of 21) Non-TIMES students who used
this approach did so without conceptual errors. This indicates that more TIMES
students used a determinant-free approach to solving Q8, and those who used this
kind of approach did so correctly at higher rates than Non-TIMES students who
used the same approach.

Students whose responses were categorized as “other” showed little or no evi-
dence of understanding related to the definition or computation of eigenvectors and
eigenvalues. We noticed that twice as many Non-TIMES students as TIMES stu-
dents gave a response categorized as ‘other.’ However, TIMES and Non-TIMES
students left the item blank at similar rates, but a larger number of Non-TIMES

1We align our conceptions of conceptual and procedural errors with our definitions for conceptual
and procedural understanding. We refer to an error as conceptual when there is evidence that a
student does not understand an important underlying idea or relationship. We refer to an error as
procedural when a student incorrectly performs a step in a mathematical process that is not central
to the idea being assessed (e.g. an error in computation or algebraic manipulation). Examples of
conceptual errors include incorrectly interpreting the value of the determinant to decide if
something is an eigenvalue, or computing the determinant of A rather than the determinant of
A− λI. Examples of procedural errors include incorrectly factoring the characteristic polynomial
or making an error when row reducing A− λI.
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students explicitly mentioned that they “don’t know” or “have no clue” how to
solve this problem.

5.3 Examples of Student Reasoning on the Procedurally
Oriented Question

In this section we examine examples of common approaches identified in our
analysis of students’ responses to question 8. We provide two example responses
coded as ‘reasoning about the determinant’ and two example responses coded as
‘reasoning about A− λI without using the determinant.’ We highlight the use of
multiple representations in these responses, as well as connections between these
representations and the formal definition of eigenvectors and eigenvalues. Based on
these differences, we posit that responses coded as ‘reasoning about A− λI’ tend to
be more conceptually rich based on flexible use of multiple representations and
more explicit connections between these approaches and the formal definition of
eigenvectors and eigenvalues.

The two examples shown in Fig. 2 show typical responses to question 8 coded
as “reasoning about the determinant.” Response 2.a. was awarded full points
because the student correctly found the roots of the characteristic polynomial,
presumably noted that 2 was not one of those roots, and concluded that 2 is not an
eigenvalue. The response shown in 2.b. was awarded two out of three possible
points because the student made computational errors in finding the roots of the
characteristic polynomial that resulted in the student concluding that two was a root
of this polynomial and thus an eigenvalue. It is interesting to note that response 2.b.
does not explicitly set the characteristic polynomial equal to 0 in his or her written
response, but the work suggests that the student is trying to factor the polynomial in
a way consistent with finding the roots.

The two examples shown in Fig. 3 show typical responses to question 8 coded
as “reasoning about A− λI without using the determinant.”We note that in response
3.a., the student began with the equation Ax= λx, rewrote this as Ax− λx=0, and
then factored this to write A− λIð Þx=0. The student then computed the entries of
the matrix A− 2I, rewrote this as a homogeneous matrix equation which he or she
translated into a system of equations, correctly solved, and correctly concluded that
because the solution is the zero vector that 2 is not an eigenvalue of the given
matrix. Response 3.b. similarly considers the solution of A− λIð Þx=0 by rewriting
this matrix equation as a system of equations, substituting λ=2 into this system,
and finding the solution to this system to be when x=0 and y=0. However, this
student incorrectly concluded from this that 2 is an eigenvalue. Because this is a
conceptual error (thinking that finding only the trivial solution to A− 2Ið Þx=0
means that 2 is an eigenvalue of A), this response was awarded only one point.
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In alignment with Hiebert and Lefevre’s (1986) characterization of procedural
and conceptual knowledge, we claim that responses coded as reasoning about the
determinant correspond to a more procedural approach to this question. We note
that those who substituted 2 in the characteristic equation and those who noted that
det A− 2Ið Þ≠ 0 showed some procedural flexibility indicative of conceptual aspects
of their reasoning. We argue that responses coded as “reasoning about A− λI” show
more evidence of conceptual understanding of eigenvalues and eigenvectors than
do responses coded as “reasoning about the determinant.” Examples of responses
coded as “reasoning about A− λI without using the determinant” included repre-
sentation of the system being solved in order to determine whether or not 2 was an
eigenvalue of the given matrix, whereas the examples of responses coded as
“reasoning about the determinant” typically only included representation of the
computation to be executed to determine whether 2 is an eigenvalue. While this
doesn’t mean these students didn’t have a conceptual understanding of eigenvalues
and eigenvectors, there is not explicit evidence of this connection in their responses.
In addition, both examples of responses coded as “reasoning about A− λI” included
evidence that these students could comfortably transition between matrix equations
and systems of equations, a skill that has elsewhere been documented to be both
difficult for students and important for their understanding (Larson & Zandieh,
2013; Selinski, Rasmussen, Wawro, & Zandieh, 2014). This can be interpreted as
evidence of connectedness of ideas and representations—which others have argued

 (a) Response awarded three points (b) Response awarded two points   

Fig. 2 Responses to Q8 coded as “reasoning about the determinant”

(a) Response awarded three points  (b) Response awarded one points 

Fig. 3 Responses to Q8 coded as “reasoning about A− λI”
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to be the very definition of conceptual understanding (Vinner, 1997; Hiebert &
Lafebre, 1986).

5.4 Trends in Student Reasoning on the Conceptually
Oriented Question

We now focus on responses to question 9, the conceptually oriented question.
Overall, students’ responses to this item were split somewhat evenly among
responses that used the eigen-concept, responses that focused on the role of the
matrix M without using the eigen-concept, and students who wrote that they did not
know or left the answer blank. However, TIMES students’ responses used the
eigen-concept at much higher rates than Non-TIMES students, and with greater
success. Table 3 highlights trends in the approaches of TIMES and Non-TIMES
students’ responses.

The most commonly observed response to Q9 involved using the eigen-concept,
with 99 out of 255 (39%) total responses coded in this way. This approach was
more common among TIMES students than Non-TIMES students (61/126 vs. 38/
129). Further, TIMES students who used this approach gave correct responses to
the question at higher rate than Non-TIMES students; the ratio of TIMES students
who used the eigen-concept in fully or mostly correct ways to those who used the
eigen-concept in mostly incorrect ways was 44:17 whereas that ratio for
Non-TIMES students is 18:20.

The second most commonly observed trend on Q9 involved responses that
focused on the role of the matrix M without using the eigen-concept. We noted
that students using this approach tended to be mostly or completely incorrect, and
that more Non-TIMES students than TIMES students used this approach (29/126
TIMES as compared to 40/129 Non-TIMES students). We noticed that 14/29 (48%)
of the TIMES students used this approach did so with some conceptual under-
standing but not using the eigen-concept; only 12/40 (30%) Non-TIMES students
also used this approach with some conceptual understanding but not using the
eigen-concept. We argue these responses indicated some conceptual understanding
because they drew on appropriate transformation interpretation of a matrix times a
vector. However, the understanding reflected in these responses was incomplete in
that the interpretation did not explicitly use the eigen-concept by coordinating that
interpretation with the result of that multiplication as corresponding to a scalar
times that same vector.

There was little difference between TIMES and Non-TIMES Students who used
approaches classified as ‘other.’ In this category, we saw no evidence of using the
eigen-concept. TIMES and Non-TIMES students indicated they did not know the
answer at similar rates, and more Non-TIMES students left the item blank than
TIMES students.
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5.5 Examples of Student Reasoning on the Conceptually
Oriented Question

As with Q8, we provide examples of common approaches identified in our analysis
of students’ responses to question 9. Specifically, we provide four examples of
responses coded as “using the eigen-concept” and two examples of responses coded
as “focusing on the role of the matrix M without using the eigen-concept.”
Responses 4.a and 4.b both used the eigen-concept by writing the equation Mx= λx
and suggesting values of λ (e.g. 1,−1,0) that corresponded appropriately to possible
outputs (Fig. 4).

Response 4.a was awarded full credit because the student linked this reasoning
to all three possible outputs, whereas response 4.b was awarded just 2 out of 3
possible points due to the omission of the 0 vector as a possible output. Many
students in our study who used the eigen-concept omitted the 0 vector as a possible
eigenvector. We suspect this may relate to a need to distinguish the eigenvalue of
zero from the equation Mx= λx having only the trivial solution when solving for the
vector x. Responses 4.c and 4.d used the eigen-concept in a slightly different way
than the previous examples. Rather than writingMx= λx and suggesting appropriate
values of λ, these students justified their selections of correct output vectors by
describing the role of M as stretching the vector x by a factor or in its direction.
Similar to the previous pair of examples, response 4.c was awarded 3 points for
correctly identifying all three vectors (and even explaining that vectors u and
v could not be reached by stretching x), whereas response 4.d was awarded just 2
points due to the omission of the 0 vector.

The next two examples presented in Fig. 5 show typical responses to question 9
that focused on the role of the matrix M without using the eigen-concept. Both

 (a) Response awarded three points  (b) Responses awarded two points 

(c) Response awarded three points  (d) Responses awarded two points 

Fig. 4 Responses to Q9 coded as using the eigen-concept
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responses focus on the role of the matrix M as a transformation that can transform
the vector x in many ways (not limiting to outputs that must lie along the same line
as x). Student 5.a’s response suggests that the student sees the matrix M not as a
fixed matrix that transforms the eigenvector in a particular way; the student sug-
gested different matrices that correctly produced various output vectors. The student
indicatedM could be the identity matrix I to produce x, − I (with a sign error in one
entry) to produce w, or the zero matrix to produce the zero vector. In addition, a
matrix M with generic entries was suggested as a transformation that can transform
x into vectors u and v.

Response 5.b. similarly focuses on the role of the matrix M, arguing it could
rotate x to produce u or v, “stretch reflect” to produce w, and that it could be the
identity matrix to “give back” x. This combination of what the student believes the
matrix could be indicates that the student did not use the eigen-concept. Responses
5.a and 5.b were both awarded 1 point because both were interpreting the matrix
M as a transformation and making some true statements, though in ways that did not
use the eigen-concept.

We argue that interpreting matrices as transformations is an important concept
that students need to make sense of eigenvectors and eigenvalues, but these
responses show how that alone is not enough to ensure students are using the
eigen-concept. Thinking one can choose values of the matrix M is in contrast with
the view that a given (fixed) matrix M transforms its eigenvector x in a particular
way such that the resulting vector Mx is a scalar multiple of x and thus lies along the
same line as the vector x. Indeed, the student whose work is shown in Fig. 5b. used
the term “stretch reflect,” which aligns partially with the geometric interpretation of
the eigenvectors and eigenvalues concept, but the student did not limit his or her
interpretation of outputs to those that appropriately correspond to eigenvectors; the
student saw “stretch reflect” as just one of many possible ways the matrix M could
transform its eigenvector(s).

(a) Response awarded one point (b) Response awarded one point 

Fig. 5 Responses to Q9 focused on the role of M without using the eigen-concept
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6 Discussion

We see this chapter contributing to the literature in three primary ways. First, we
document the effectiveness of a particular instructional approach that is detailed in
the literature (see Plaxco et al., 2018; Zandieh, Wawro, & Rasmusen, 2017).
Second, we document aspects of students’ reasoning about eigenvectors and
eigenvalues (including how students draw on a transformation interpretation in
ways that do and do not use the eigen-concept). Finally, we consider and discuss
links between conceptual and procedural understandings of eigenvectors and
eigenvalues documented in our study.

Our findings showed that both TIMES and Non-TIMES students in our study
performed better on the procedurally oriented assessment question than they did on
the conceptually oriented question. Further, TIMES students consistently showed
evidence of more robust conceptual understanding as compared to Non-TIMES
students, whereas procedural performance was similar between the two groups.
This is consistent with findings of previous studies examining student learning
outcomes in inquiry-oriented instructional settings at the undergraduate level (e.g.,
Kwon et al., 2005), though we are excited that this study was conducted on a larger
scale involving instructors not involved in the development of the curricular
materials. These findings are consistent with a broader body of literature docu-
menting the benefits of student-centered approaches to learning in undergraduate
mathematics (Freeman et al., 2014; Laursen Hassi, Kogan, & Weston, 2014). We
conclude our paper with a discussion of the kinds of conceptual understandings
observed in our analysis, and the insights these offer into what is entailed in a
conceptual understanding of eigenvectors and eigenvalues.

As mentioned in our theoretical framework, conceptual understanding has been
broadly defined by some in terms of the richness of connections among ideas
(Hiebert & Lafevre, 1986; Vinner, 1997). More recently, Star (2005) has argued
that conceptions of conceptual and procedural knowledge in mathematics education
are under-articulated in a way that promotes ideological rather than empirical
examination, and relationships between conceptual and procedural understandings
merit greater examination. With this in mind, we now reflect on the kinds of
conceptual understandings observed in our analysis, and discuss three different
kinds of connections we consider to be important aspects of students’ conceptual
understanding of eigenvectors and eigenvalues.

First, we consider the use of appropriate interpretations of a matrix times a vector
to be an important aspect of students’ understanding of eigenvalues and eigen-
vectors. On the conceptually oriented assessment question considered in this
chapter, this involved drawing on a transformation interpretation of the product of a
matrix M and its eigenvector x consistent with the characterization given by Larson
and Zandieh (2013). In our data, many students showed evidence of interpreting
Mx, the product of a matrix M and its eigenvector x, in ways that use the
eigen-concept. A smaller number of students interpreted Mx with a transformation
lens, but in a way that did not use the eigen-concept in that M was either thought of
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as a matrix that could change (to yield desired outcomes) or that the product of
M with the vector x could be anything. This is different from a transformation
interpretation that uses the eigen-concept by recognizing that the vector resulting
from the multiplication by a matrix with real-valued entries Mx needs to yield a
vector that is a scalar multiple of x, or that lies on the same line as x, or that points in
the same (or opposite) direction as x.

This leads to our second aspect of students’ understanding of eigenvalues and
eigenvectors: using the eigen-concept in the context of finding eigenvalues. While
many students showed evidence of using the eigen-concept in their response to the
conceptually oriented assessment item, relatively few showed evidence of using the
eigen-concept on the procedurally oriented question. Indeed, one could solve our
procedurally oriented assessment question by applying the standard procedure for
finding eigenvalues to arrive at the correct answer without explicitly using the
eigen-concept; the majority of students in both groups did just this, and most did so
without error. A far smaller number of students responded to the procedurally ori-
ented question by reasoning about A− λI without taking the determinant. We argue
this approach provided more evidence of conceptual understanding: providing and
converting between multiple representations (e.g. Ax= λx and A− λIð Þx=0, written
as matrix equations and systems of equations), linking those representations to the
eigen-concept, and offering reasons for their conclusion in terms of a matrix equation
or system of equations in their response. It is possible that a student who used the
standard procedure to determine if 2 is an eigenvalue on this problem also had a deep
conceptual understanding of how and why that procedure works; it is also possible
that a student who used the standard procedure knew this procedure only as a
sequence of steps to be executed without knowing how or why the procedure
worked. Further work is needed to tease out this distinction.

This leads to the final aspect of conceptual understanding of eigenvectors and
eigenvalues relevant to our analysis, which includes coordinating with the Invert-
ible Matrix Theorem (IMT). A standard procedure for finding eigenvalues and
eigenvectors draws on the argument that Ax= λx has a non-trivial (non-zero)
solution vector x for some scalar λ if and only if the equation A− λIð Þx=0 also has
a non-trivial solution; one can argue through the IMT that this happens when
det A− λIð Þ=0. As noted above, it was often unclear from the responses of students
who used the standard procedure whether they understood links among the equation
Ax= λx used in defining eigenvectors, the solution set of A− λIð Þx=0, and the
equivalencies in the invertible matrix theorem that lead to use of the determinant as
a tool for determining when the solution is non-trivial. However, among students
who did not use the determinant in their response to the procedurally oriented
question, there was a need to draw on equivalent ideas from the invertible matrix
theorem. In these responses, we observed students noting and leveraging the fol-
lowing relationships:

– A− λIð Þ is invertible if and only if A− λIð Þx=0 has a trivial solution. If
A− λIð Þx=0 has only the trivial solution, then λ is not an eigenvalue of the
matrix A.
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– If the columns of A− λI are linearly dependent or one column is a scalar
multiple of the other (in the case of a 2 × 2 matrix), then A− λIð Þx=0 has
nontrivial solution so λ is an eigenvalue of the matrix A.

– If rref A− λIð Þ has no free variable then A− λIð Þx=0 has only the trivial
solution, which means λ is not an eigenvalue of the matrix A.

We argue that these kinds of responses from students who did not use the previ-
ously mentioned standard procedure offer insight into conceptual connections that
are both important and potentially natural for students to make as they come to
make sense of standard algorithms. Students who took a procedural approach to this
question typically used the determinant to decide if 2 was an eigenvalue of the
matrix, without representation of the rich set of coordinations involved in these
other responses, which relate interpretations of matrix equations and systems of
equations, equivalencies in the Invertible Matrix Theorem, and interpretations of
the eigen-concept.

Overall, students in our study correctly solved a procedural question related to
eigenvalues (as in Q8) at about twice the rate they offered an appropriate conceptual
understanding of Ax= λx (as in Q9). This suggests there is a disconnect between
students’ understanding of standard procedures for finding eigenvalues and the
formal definition of an eigenvector and eigenvalue, and that students are more able
to execute the standard procedure than draw on conceptual understandings aligned
with the formal definition. If standard instructional approaches begin by introducing
students to the definition of eigenvectors and eigenvalues using the equation
Ax= λx and its algebraic and geometric interpretations but students’ work is
dominated by execution of procedures such as the computation of roots of the
characteristic polynomial arising from det A− λIð Þ, many students may not ade-
quately connect their results in solving these kinds of problems with the equation
Ax= λx. This points to a need to push students to think more about core under-
standings as they connect to procedures rather than just assess students’ ability to
execute standard procedures. Indeed, many connections are needed to explain why
a standard procedure for finding eigenvalues and eigenvectors works and how it
connects to the formal definition of eigenvalues and eigenvectors. However, we
argue that there is little value in being able to compute eigenvectors and eigenvalues
without being able to appropriately interpret the meaning of the result of such
computations. The inquiry-oriented approach of the IOLA instructional materials
taken up by instructors who received TIMES instructional supports appears to be a
promising way of beginning to address this issue, but more work is needed to better
understand the ways in which students come to develop and coordinate the inter-
pretations needed for a robust understanding of eigenvectors and eigenvalues.
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Appendix: Grading Scheme for Assigning Points
to Open-Ended Response Questions 8 and 9b

Q # Points awarded and criteria

8 3 points:
Method 1: Full points were awarded to students who reasoned about the determinant
to arrive at the correct conclusion without making computational or conceptual errors.
Examples of this kind of reasoning are shown below.

(i) det A− λIð Þ=0 implies λ− 1ð Þ λ− 4ð Þ=0 implies λ=1 or λ=4 implies λ=2 is
not an eigenvalue for the matrix A.

(ii) det A− 2Ið Þ= − 2≠ 0 implies λ=2 is not an eigenvalue for the matrix A

(iii) det A− λIð Þ= 3− λ 2
1 2− λ

����
����= 3− λð Þ 2− λð Þ− 2= λ2 − 5λ+4. Substituting 2

in the characteristic equation gives 4− 10+ 4= − 2 implies λ=2 is not an eigenvalue
for the matrix A.
Method 2: Full points were awarded to students who reasoned about A− λI without
using the determinant to arrive at the correct conclusion without making any
computational or conceptual errors. Examples are shown below.

(i) A− 2Ið Þ x
y

� �
=0 implies x=0 and y=0 which is the trivial solution, so λ=2 is

not an eigenvector for the matrix A.

(ii) A− 2Ið Þ≅ 1 0
0 − 2

� �
, and the column vectors of this matrix are not linearly

dependent, so λ=2 is not an eigenvalue.
(iii) rref A− 2Ið Þ does not have a free variable, so λ=2 is not an eigenvalue.
(iv) The first column of A− 2Ið Þ is not a scalar multiple of the second column so

λ=2 is not an eigenvalue so λ=2 is not an eigenvalue.
2 points: Two points were awarded to students to students who take a conceptually
correct approach (either by reasoning about the determinant or by reasoning about
A− λI without using the determinant) but either

• made a computational error (e.g. factoring the characteristic polynomial
incorrectly) or

• did not offer a clear conclusion about whether 2 is an eigenvalue or not, or
• arrived at the correct conclusion without a full explanation of why

1 point: One point was awarded to students whose response included some evidence of
conceptual understanding, but who made a conceptual error (which might be
accompanied by a computational error).
0 points: No points were awarded to students who left the page blank, or whose
response: (i) gave no evidence of conceptual understanding, or (ii) said something like
“I don’t know.” Example of responses we considered to include no evidence of
conceptual understanding are “Yes, because A = PDP−1

” and “I say it is… because…
there are 2’s in the problem.”

(continued)
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(continued)

Q # Points awarded and criteria

9b 3 points: Three points were awarded to students whose response appropriately
coordinated with the eigen-concept, referenced (either by directly naming or by
explicitly referring to their work shown in 9a) all three correct vectors, and provided a
correct rationale for this selection.
2 points: Two points were awarded to students whose response provided at least two
correct explanations (e.g. Mx= λx is written and student writes that “an eigenvector
tells you the direction of stretching”) but did not identify and explicitly describe what
happens to all three correct vectors.
1 point: One point was awarded to students who either

(i) Provided one correct explanation (e.g. by either writing “Mx= λx” or “an
eigenvector tells you the direction of stretching”) and explicitly connected this
explanation to at most one correctly selected vector

(ii) Suggested components of M that would transform x into one of the given
choices, such as M = I, − I, or 0.

0 point: No points were awarded to responses that do not coordinate with the
eigen-concept, do not suggest components of M that would transform x into one of the
given choices, says I don’t know, or leaves the page blank. An example of student
response to question 9 which was awarded 0 point was “all are the same size.”
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