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Abstract In this chapter, we document the reasoning students exhibited when
engaged in an instructional sequence designed to support student development of
notions of eigenvectors, eigenvalues, and the characteristic polynomial. Rooted in
the curriculum design theory of Realistic Mathematics Education (RME; Grave-
meijer, 1999), the sequence builds on student solution strategies from each problem
to the next. Students’ used their knowledge of how matrix multiplication transforms
space to engage in problems involving stretch factors and stretch directions. In
working through these problems students reinvented general strategies for deter-
mining eigenvectors, eigenvalues, and the characteristic polynomial.
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1 Background

A number of researchers have studied various aspects of student conceptions of
eigenvectors and eigenvalues (e.g., Gol Tabaghi & Sinclair, 2013; Salgado &
Trigueros, 2015; Sinclair & Gol Tabaghi, 2010; Stewart & Thomas, 2006; Thomas
& Stewart, 2011). This chapter focuses on aspects of student understanding relating
to the equation Ax ⃗= λx ⃗. Specifically, we introduce an instructional sequence from
the IOLA curriculum which is based on the instructional design theory of Realistic
Mathematics Education (RME; Gravemeijer, 1999). We document existing student
understanding and how it informs their approaches in this task sequence. These

D. Plaxco (✉)
Clayton State University, Morrow, GA, USA
e-mail: davidplaxco@clayton.edu

M. Zandieh
Arizona State University, Tempe, AZ, USA

M. Wawro
Virginia Tech, Blacksburg, VA, USA

© Springer International Publishing AG 2018
S. Stewart et al. (eds.), Challenges and Strategies in Teaching Linear Algebra,
ICME-13 Monographs, https://doi.org/10.1007/978-3-319-66811-6_8

175



examples also demonstrate the types of student understanding the curriculum makes
possible by engaging students in reflection on their own prior mathematical activity.

In previous work, members of our research team explored student understanding

of the equation Ax ⃗= λx ⃗ or A
x
y

� �
=2

x
y

� �
in which the students were told that A is

a 2 × 2 matrix and x ⃗ is a vector or
x
y

� �
is a vector in ℝ2 (Henderson, Rasmussen,

Sweeney, Wawro, & Zandieh, 2010; Larson, Zandieh, Rasmussen, & Henderson,
2009). Students who were in a linear algebra class but had not yet studied eigen-
theory interpreted the equations in a variety of ways such as concluding the
equation was only true if A = 2, concluding that det(A) = 2, carrying out the
multiplication to create a system of equations to solve for an x, y pair (or pairs), and
arguing that the way A acts on the vector must be the same as what multiplication
by 2 does to the vector. Students used a variety of symbolic, numeric, and geo-
metric interpretations as they discussed the equation in terms of a system of
equations, a linear transformation, or a vector equation. This is closely related to the
framework of Larson and Zandieh (2013) who described a similar set of interpre-
tations and representation used by students more broadly for the equation Ax ⃗= b.⃗
Building on this research, our team developed an instructional sequence for learning
eigenvalues and eigenvectors to mitigate issues that students might have with the
equation Ax ⃗= λx ⃗. Rather than approaching eigentheory instruction by beginning
with the equation Ax ⃗= λx ⃗, the sequence uses geometric notions of stretch factors
and stretch directions of a linear transformation.

The eigentheory instructional sequence consists of four tasks and is the third of
three units in the Inquiry-Oriented Linear Algebra curriculum (IOLA, iola.math.vt.
edu). Each unit was developed from the perspective of Realistic Mathematics
Education, which holds students’ mathematical activity at the center of mathe-
matical progress in the classroom (e.g., Freudenthal, 1991; Gravemeijer, 1999).
Students work on tasks in small groups and explain their group’s work to the rest of
the class. A role of the instructor is to serve as a broker between students’ math-
ematical activity and the mathematics of the mathematical community (Rasmussen,
Zandieh, & Wawro, 2009; Zandieh, Wawro, & Rasmussen, 2017). One aspect of
the role of the instructor is to introduce students to definitions and symbols used in
the mathematics community that align with the mathematical activity in which
students have already been engaged through their work on the tasks in the unit. In
other words, in this curriculum definitions such as eigenvector and eigenvalue and
symbols such as Ax ⃗= λx ⃗ are introduced only after the students have been working
with the tasks in ways that experts would recognize as appropriate to symbolize
with this expression.

In Units 1 and 2, the curriculum develops and explores various linear algebra
concepts and how they relate to each other. These include: linear combination,
span, linear independence, row reduction, systems of equations, linear transfor-
mations, and matrix operations. Unit 3 of the IOLA curriculum develops diago-
nalization and eigentheory. The first two tasks of Unit 3 are discussed in detail in

176 D. Plaxco et al.



Zandieh, Wawro, and Rasmussen (2017). We summarize that student activity in the
next section to help frame the story of this chapter, in which we share the third task
of the sequence. Task 3 focuses on student exploration of the relationships that an
expert would think of as being summarized by the equation Ax ⃗= λx ⃗. Our discussion
of Unit 3 Task 3 centers on examples of typical student responses from small group
discussions in two classes. We collected these examples from students’ work during
semester long implementations of the IOLA curriculum at two different universities.
Students working on this Task drew on their mathematical experience with Tasks 1
and 2 of Unit 3 as well as their work in prior units. In order to provide a sense of
how students in these two classes produced their responses, we briefly outline the
IOLA curriculum prior to this task and the types of activity in which students had
been engaging.

2 Students’ Prior Mathematical Activity

In general, the IOLA materials provide students with early and frequent opportu-
nities to interpret problem situations using systems of equations, vector equations,
and matrix equations, as well as to translate between these representations and
explain connections between them. Specifically, in Unit 1, which is about span and
linear independence, students have opportunities to represent travel scenarios (in-
volving vectors representing travel on a magic carpet and a hover board to par-
ticular locations) as vector equations (Wawro, Rasmussen, Zandieh, & Larson,
2013; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). Many students
convert these vector equations to systems of equations, and some who have pre-
vious experience in linear algebra represent the equations using an augmented
matrix or a matrix equation.

In Unit 2 of the IOLA curriculum, students represent geometric transformations
of Cartesian space as a matrix times an input vector and, subsequently, as a matrix
times a matrix of concatenated input vectors (Andrews-Larson, Wawro, & Zandieh,
2017; Wawro, Larson, Zandieh, & Rasmussen, 2012). This way of representing
transformations begins with students’ work with the “Italicizing N” task. In this
unit, students complete a series of tasks to determine matrices for various trans-
formations based on a description of the transformations’ effect on specific input
vectors. For instance, based on Fig. 1, students often generate the matrix equations
a b
c d

� �
0
3

� �
=

1
4

� �
and

a b
c d

� �
2
3

� �
=

3
4

� �
as they try to determine the matrix

A that acts on the pre-image “N” to produce an image of a larger, italicized “N.”
Some students represent these two equations as a product between the unknown

matrix and a matrix of concatenated input vectors:
a b
c d

� �
0 2
3 3

� �
=

1 3
4 4

� �
.

Students then rewrite these as systems of equations and solve for the variables a, b,
c, and d to determine the matrix of the transformation in the standard basis.

Stretch Directions and Stretch Factors: A Sequence Intended to … 177



Later, in Unit 2 Task 3, students explore the composition of linear transforma-
tions by representing the same transformation as before in two steps: one matrix
that stretches the “N” to make it taller and another matrix to take the taller “N” as
input and “italicize” it by shearing. The teacher builds from student work to assist
them in developing an understanding of the composition of linear transformations
as matrix multiplication through a substitution between the two equations. Finally,
Unit 2 culminates in a task that engages students in determining the matrices that
“undo” the three transformation matrices developed in Tasks 1 and 3, leading to the
formal definition of the inverse of a matrix and a linear transformation. Throughout
Unit 2, students are continually shifting between matrix equations and systems of
linear equations to solve for unknown values in a given matrix.

Unit 3 begins with a task that describes a transformation from ℝ2 to ℝ2 that
stretches vectors along two directions (represented by the linear equations
y = x and y = −3x) by the stretch factors 1 and 2, respectively (Zandieh et al.,
2017). Building upon the approaches developed during Unit 2, students often

produce the matrix equations
q r
s t

� �
1
1

� �
=

1
1

� �
and

q r
s t

� �
− 1
3

� �
=

− 2
6

� �
.

This typically leads to the development of a system of four equations with four
unknowns. Along with this activity, students are asked to sketch the result of the
transformation of the plane, which helps lead to a discussion about representing the
plane relative to a basis comprised of vectors in the stretch directions and con-
sidering the linear transformation relative to that basis. This in turn motivates a
change of basis, which instructors can readily represent with a commutative dia-
gram and the diagonalization equation, A = PDP−1.

Although students typically solve Unit 3 Task 1 using the equations above,
occasionally, students might represent their work using the equations
q r
s t

� �
1
1

� �
=1

1
1

� �
and

q r
s t

� �
− 1
3

� �
=2

− 1
3

� �
, in which the stretch factor is

explicitly written as a scalar on the right-hand side of the matrix equation. These
equations are what we are calling in this chapter “matrix times vector equals scalar
times vector” (mtv = stv) equations. Specifically, we use the mtv = stv label to

Fig. 1 Pre-image and image
in the italicizing N task
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denote representations of the eigen equation that use numbers and variables in
arrays of matrices and n-tuples. Although to the expert, these equations are simply a
more specified version of the generalized eigen equation Ax ⃗= λx ⃗, we want to
distinguish student use of different types of symbolizations to emphasize transitions
in their reasoning. As part of making this distinction we call the equation
q r
s t

� �
− 1
3

� �
=2

− 1
3

� �
an mtv = stv equation but call the equation

q r
s t

� �
− 1
3

� �
=

− 2
6

� �
an mtv = v equation. This choice may seem odd because

the equations are distinguished only by whether the scalar is multiplied by the
entries in the vector on the right-hand side of the equation. However, the equation
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
may initially appear to students to be simply another

example of equations such as
a b
c d

� �
0
3

� �
=

1
4

� �
that they encountered in Unit 2.

We see equations such as
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
as a fulcrum between the ideas

about linear transformations from ℝ2 to ℝ2 the students learned in Unit 2 and the
new ways of reasoning about mtv = stv and Ax ⃗= λx ⃗ equations that the students
need to learn in Unit 3.

In particular, mtv = v equations like
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
connect to stu-

dents’ existing, concrete ways of thinking about linear transformations geometri-
cally and to the matrix equation notation Ax ⃗= b.⃗ Another important connection is
that mtv = stv equations can be converted into mtv = v equations and then rewritten
as a system of equations, which students use to solve for unknown variables.
Finally, mtv = stv equations can be used to support connecting these aspects of
linear transformations more formally with the general eigen equation. Thus, the
notation used in mtv = stv equations allows students to engage in specific, con-
textualized mathematical problem solving that is leveraged to support general
notions of eigenvectors and eigenvalues.

We have provided this outline highlighting prior tasks in the curriculum to
emphasize the types of thinking and solution strategies students in our courses
typically have available when they approach the problems in Unit 3 Task 3. Of
specific importance are their ways of representing transformations from ℝ2 to ℝ2 as
a matrix times a vector (or matrix of concatenated vectors) and translate to a system
of equations to solve for unknown values in these matrices and vectors, specifically
using the mtv = stv and A = PDP−1 equations.
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3 Discussing Task 3 and Results from Students’ Solutions

As stated in the introduction the overall learning goal for Task 3, which is com-
posed of three problems, is for students to explore the relationships involved in the
equation Ax ⃗= λx ⃗ and to develop intuitive notions of eigenvalue and eigenvector.
As with earlier tasks, we cast the problems in this task geometrically, in terms of
stretch factors and stretch directions, but we ask students to provide numeric
solutions, giving students the impetus to create and manipulate symbolic expres-
sions to find those numeric solutions. The three problems are ordered in increasing
level of difficulty. Having already asked students (in Task 1) to find a matrix given
stretch factors and stretch directions, we now recast this by switching which
information is given and which is requested, as follows:

P1. The matrix and the stretch directions are given and students are asked to find
the stretch factors.

P2. The matrix and the stretch factors are given and students are asked to find the
stretch directions.

P3. The matrix is given, and students are asked to find both the stretch factors and
the stretch directions.

In creating the Task, we have chosen to restrict the problems so that students
would work in ℝ2, i.e., with 2 × 2 transformation matrices (Fig. 2). This keeps the
systems small enough so that the students can realistically solve three of them
within a single 50–75 min class period and also ensures that students encounter
only linear and quadratic polynomials in their work.

This sequence is intended to allow students to develop a connection between the
problem statements, which are given in terms of stretch factors and stretch direc-
tions, and the general eigen equation Ax ⃗= λx ⃗. As discussed above, the mtv = stv
equation emerges from student work on the problems in the Task. At first the
equation is more of an expression by students of the fact that the transformation
matrix stretches or shrinks the stretch vector by the amount of the stretch factor. As
the Task progresses, students must use variables to represent unknown stretch

Fig. 2 Problem statements in Unit 3 Task 3
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factors and stretch directions. From this need, variations on the mtv = stv equation
emerge in students’ work. It is rare for students to use λ as the symbol for stretch
factors; symbols such as c or k are more common. It is not until their work in this
task is connected by the instructor to the broader mathematical community’s
eigenvector and eigenvalue conventions that students switch to the more common λ.
Thus, in this chapter, we use k or c in our generic discussions of student symbol-
izations to help emphasize that students are not yet familiar with the terminology or
common notation associated with eigenvectors and eigenvalues.

Because of their prior work in the unit, students are typically able to connect the
stretch direction and stretch factor language with matrix multiplication notation,
identifying how the product of a matrix and vector can come to represent a vector
being stretched under a transformation of a vector space. This is consistent with
student work in Unit 3 Task 1, in which students are asked to determine the matrix
of a transformation that stretches vectors along two given lines by respective fac-
tors. In the time between Unit 3 Task 1 and Unit 3 Task 3, the students will have
completed two lessons involved in developing notions of change of basis matrices
as a means for representing linear transformations that stretch along a basis of
stretch directions. This also provides students with the ability to incorporate the
equation A = PDP−1 into their work.

In Problem 2 (Fig. 2), students are given a different matrix and stretch factors
and are asked to find the corresponding stretch directions. They should notice that
there are infinitely many ways to describe the stretch direction for a given stretch
factor. Also, importantly, students are not able to merely calculate the product of the
matrix times a vector or the stretch factor times a vector as they may have before,
but instead must use a generalized stretch direction vector in their approach the
problem. Because of this, we conjecture that students are more likely than before to
write a matrix equation with the product of the stretch direction and stretch factor
on the right-hand side. Problem 3 only provides students with the matrix and asks
them to find both stretch directions and stretch factors. In this problem, students will
need to recognize that they cannot solve for any of the unknowns directly, but that
there are infinitely many solutions for the stretch direction. In addition, students’
work (specifically, on problem 3) can be leveraged here and later in Task 4 to
develop the idea of the characteristic polynomial and how finding its roots for a
given matrix is equivalent to determining the stretch factors of that matrix.

In the following subsections, we provide examples of common student
approaches to Problems 1–3. We have chosen the examples of student work based
on how representative they are of students’ approaches and also based on their
usefulness for being leveraged to support more general and formal ideas of
eigentheory.
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3.1 Finding Stretch Factors

As shown in Fig. 2, Problem 1 provides students with stretch directions and a given
matrix and asks them to find the stretch factor for each stretch direction. Students
initially realize they will need to find at least one vector that lies on the line
y = 1/2x and at least one vector that lies on the line y = −x. Two common choices are
2
1

� �
and

− 1
1

� �
, respectively. Students then determine the factor by which each of

these vectors is stretched when multiplied by the given matrix.
The first example of student work that we discuss (Fig. 3) exemplifies a typical

approach that we have seen after several implementations of the IOLA curriculum.
This group of students began by multiplying the given matrix A times the vectors
2
1

� �
and

− 1
1

� �
, which yielded the vectors

− 6
− 3

� �
and

− 9
9

� �
, respectively. This

is a form of the mtv = stv equation in which the scalar multiple is distributed into
the vectors on the right-hand side. From this, the students re-wrote the vectors on
the right-hand side of the equation as scalar multiples of the vectors on the left-hand
side of the equation. Although not written on their board, the students indicated in
class that they (correctly) interpreted their work to imply that the desired stretch
factors were 3 and −9.

In our second example, students leveraged the equation A=PDP− 1 (see
Fig. 4a). To do this, they relied on the knowledge that, for a given diagonalizable
matrix A, its stretch factors are the diagonal entries of D and its stretch directions, in
column vector form, are the respective columns of the matrix P. More specifically,
this group parameterized the matrix D with the unknown diagonal entries a and d,

determined the matrices P=
2 1
1 − 1

� �
and P− 1 =

1 ̸3 1 ̸3
1 ̸3 − 2 ̸3

� �
from the given

information, and substituted these matrices (and also the given matrix A) into the
equation A=PDP− 1. Following this, they multiplied the three matrices on the right
and set the resulting matrix equal to the given matrix for the transformation. This

Fig. 3 Most common
approach to Task 3 Problem 1
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allowed the students to solve for a and d by setting corresponding components of
the matrices equal to each other.

In the last approach we discuss, another student group also used the diagonal-
ization equation A=PDP− 1 (Fig. 4b). In particular, this group determined how to
use the given information in the diagonalization equation, manipulate the equation,
and solve for the matrix D. They wrote the diagonalization equation A=PDP− 1

with the given matrix A. They represented the stretch direction of y= 1
2 x and the

stretch direction y= − x as the column vectors
2
1

� �
and

1
− 1

� �
, respectively, and

they used that information to create matrix P and substitute it and P− 1 (we are not
sure how they computed the inverse) into the diagonalization equation (Fig. 4b, line
1). The students explained that they left multiplied by P− 1 and right multiplied by

P to solve for D (Fig. 4b, lines 2–3). The product P−1AP yields
− 3 0
0 9

� �

(Fig. 4b, line 4), which the students equated to D and interpreted in terms of stretch
factors and directions, namely that the transformation represented by A stretch
y= 1

2 x by − 3 and y= − x by 9.
Because the stretch directions are given in equation form, the students must

choose a single vector in each direction. This is consistent with and builds on the
students’ work in Unit 3 Task 1, which first introduced the notions of stretch
direction. As we saw in the first example, students are typically able to recognize that
they only need to multiply the given matrix times a vector along the stretch direction
and notice that the product is a scalar multiple of the original in order to answer the
question. As demonstrated, students sometimes write this as an mtv = stv equation
with the scalar factored out on the right-hand side (last row in Fig. 3). We have
found this to be less common in our implementation of the curriculum, with students
usually determining the stretch factors without explicitly factoring the right-hand
side. However, as we demonstrate in the next section, Problem 2 tends to support
students’ production of the mtv = stv equation with the scalar factored.

Fig. 4 Students’ work on Task 3 Problem 1 relying on PDP−1
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3.2 Finding Stretch Directions

In contrast to Problem 1, Problem 2 provides students with a matrix and two stretch
factors and asks them to find the stretch directions. Most groups use an mtv = stv
equation to generate a system of equations, while other groups use the equation
B = PDP−1. Figure 5 shows a very detailed version of student work using the

mtv = stv equation. This group used
a
c

� �
as a generic stretch direction vector that

is multiplied by the given matrix B on the left-hand side of the equation and the

given scalar, 3, on the right-hand side of the equation. The vector
b
d

� �
is their

generic vector that is multiplied by the matrix B on the left and scalar 2 on the right.
The group then used each of these matrix equations to generate a system of two
equations with two unknowns. The students combined like terms to convert each
system into standard form for systems with the variables on the left and a constant
(in this case 0) on the right-hand side of the equation. The students do not state on
the board why, but in each case they use the first of the two equations to write an
expression of one variable in terms of the other (a= 2

11 c and d = 5b) and then

convert these equations to a specific vector in each direction:
a
c

� �
=

2
11

� �
and

b
d

� �
=

1
5

� �
. The students even reference a connection to the B = PDP−1 rela-

tionship at the bottom of their work by listing a matrix, P, with the two vectors they
found as its column vectors.

Fig. 5 Problem 2 solved by converting mtv = stv into a system of equations
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Variations of this method include work similar to that in Fig. 6a, in which the
group only wrote the first of the system’s two equations on their boards. This is
sufficient since the two equations describe the same line and, thus, only one needs
to be considered. Figure 6a is also different than Fig. 5 in that the students used
x
y

� �
as their generic vector in each case and circled the results of y=11 ̸2x and

y=5x. In this way they seemed to be emphasizing the standard format for a line
through the origin where y is typically written in terms of x. This group also found a
particular vector in the direction of each line and multiplied that vector times the
original matrix to check that indeed was multiplied by 3 (or 2).

In Fig. 6b we see a unique variation on this strategy. These students chose a

vector
1
x

� �
, with 1 in the first component and therefore only one variable, relying

on the fact that any vector in the stretch direction will work. (Their strategy would

fail only if the eigenvector lies along the direction
0
1

� �
.) Because of the choice of

1
x

� �
each of their equations solves for a single value of x, e.g., x = 5.5 when the

scalar is 3. These students then converted their answer into a stretch direction stated

as a vector with integer values, e.g.,
2
11

� �
instead of

1
5.5

� �
. This method

emphasizes the stretch direction as a vector direction without stating it as the
equation of a line as in the circled part of Fig. 6a. We also point out here that the
groups whose work appears in Fig. 6 did not write the right-hand side of the
equation as a scalar times a vector, but instead distributed each stretch direction into
the vector on the right. This is a nontrivial distinction from other forms of the
mtv = stv equation, specifically because the students’ distribution of the stretch
factor into the stretch vector does not lend itself to the manipulation of a more

Fig. 6 Additional student work on Problem 2 using mtv = stv equations
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general Ax ⃗= kx ⃗ equation that could be used to lead to the equation A− kIð Þx ⃗=0 ⃗.
Accordingly, it is important for instructors to point out these distinctions and, if
necessary, draw out the connections during whole class discussion.

In Fig. 7 we see student work using B = PDP−1. Neither of these are resolved to
a final solution. The method using PDP−1 creates a more complicated matrix with
fractions (Fig. 7a). Resolving this equation into BP = PD creates simpler matrices
(Fig. 7b). Once these matrices are multiplied and set equal, the next step would be
to set the corresponding components of each of the resultant matrices equal. This
would create four equations that are identical to the systems of equations created
using the mtv = stv method. However, neither of these groups continued on the
white board beyond creating the two resultant matrices.

3.3 Finding Both Stretch Factors and Stretch Directions

Students are typically able to draw on a variety of their prior approaches to solve
Problem 3, which, in contrast to Problems 1 and 2, provides neither the stretch
directions nor the stretch factors of the transformation. Because of this, in order to
solve the problem, students must identify either the stretch factor or stretch direction
and then use one to solve for the other.

There are several ways in which students can find the stretch factors first. Two of
these are illustrated in Fig. 8. In each case students constructed an mtv = stv
equation with variables for both components of the eigenvector and a variable for
the eigenvalue. In Fig. 8a we see that one group set up proportions to generate a
single equation in terms of k. Although this group of students did not make it
explicit, the ratio is the slope of the line described by each equation. With the
proportion in terms of k, the students developed a quadratic equation. They may
have noticed in solving Problem 2 (or recognized because they are solving for a
single eigendirection) that both equations in the system of equations describe the

Fig. 7 Student work on Problem 2 using B = PDP−1
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same line and thus have the same slope. After solving the quadratic for the stretch
factor, the students were then able to determine the corresponding stretch directions,
one of which is shown on their whiteboard (Fig. 8a).

The other group opted to solve the first equation for y and substituted it into the
second equation (Fig. 8b). The second group then manipulated the resulting
equation into the equation x(c − 5)(c − 3) = 0. This group did not indicate whe-
ther the x-component in the stretch direction might be zero, but focused on solu-
tions for stretch factors. After determining the stretch factor values of 3 and 5, this
group substituted these values into the original system of equations and interpreted
the result of the substitution (the equations 2x = y and x = y) as stretch directions.
A single vector from each direction was then chosen for the two columns of the
matrix P.

The ways in which these two groups manipulated the system of equations can be
leveraged to support a discussion of the characteristic polynomial and the standard
manipulations used to calculate it. Specifically, it is helpful to juxtapose the two

systems of equations in Fig. 8a with the matrix equations
7 − 2
4 1

� �
a
b

� �
= k

a
b

� �

and
7− k − 2
4 1− k

� �
a
b

� �
=

0
0

� �
, as well as the more generalized equations Ax ⃗= kx ⃗

and A− kIð Þx ⃗=0 ⃗. We have found that this helps students to draw parallels between
the three pairs of symbolizations so that each can be used to make sense of the
other.

Furthermore, the instructor can draw on the Invertible Matrix Theorem to
motivate the need to calculate det A− kIð Þ and, in so doing, introduce the notion of
the characteristic polynomial. Such a discussion would begin with the instructor
pointing out (or supporting students to identify) the need for a nonzero vector as a
solution to the original eigen equation and therefore to the equation A− kIð Þx ⃗=0 ⃗.

Fig. 8 Two groups’ solutions to Problem 3
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Students can then use their knowledge of the equivalences in the Invertible Matrix
Theorem to discuss in class the properties of A − kI needed for A− kIð Þx ⃗=0 ⃗ to have
a nonzero solution. As part of this review, students should see that one such
property is det A− kIð Þ=0. The instructor can help students to see that the equation
det A− kIð Þ=0 is in fact the equation (or a variation of the equation) that they have
already used to calculate the stretch directions. In telling the students that the name
of this equation is the “characteristic equation”, the instructor serves as a broker
connecting the students’ mathematics to the mathematical terminology used by the
larger mathematics community (Rasmussen, Zandieh, & Wawro, 2009). More
generally the instructor may choose to leverage the student work to make con-
nections to the derivation of the standard method for calculating eigenvalues and
eigenvectors through the equation A− kIð Þx ⃗=0 ⃗.

Another method for solving this problem is to find the stretch directions first.
Figure 9a, b show one group’s work, which we have separated into two images. As
with the other groups, this group began with the mtv = stv equation and used it to
generate a system of equations. However, in each equation of the system, they
solved for the stretch factor, k, and set the remaining algebraic statements equal to
each other in an equation that reflects a proportion. The group then simplified this
equation to yield a quadratic in two variables: 4a2 − 6ab + 2b2 = 0. Factoring this
and drawing on the zero product property, the group was able to produce the two
equations b = 2a and b = a, which they recognized as the stretch directions.
Following this, the group found the corresponding stretch factors by selecting a
single vector along each stretch direction and continuing in a manner similar to their
approach to Problem 1.

Although the first two approaches are much more common, Fig. 10 illustrates a
unique approach that also incorporates the equation AP = PD, derived from the
equation A = PDP−1. The students’ work is difficult to parse because the students

Fig. 9 Student response to Problem 3 that uses mtv = stv approach
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did not show all of their work or denote implications. However, we can tell that the
group began by generating a generic system of equations from the matrix with
unknown stretch direction vectors and stretch factors (Fig. 10a). With this system,
the group was able to combine the two equations and factor the resulting equation
to yield 3(x − y) = c(x − y). The group then canceled the binomial (x − y) from
each side of the equation to produce c = 3. Although it is not written on their
whiteboard, this last step tacitly assumes that x − y ≠ 0.

Another aspect of the work in Fig. 10a is that it can be generalized to an
interesting fact about eigenvalues of 2 × 2 matrices. That is, if the column entries
add to the same number or (as in this case) subtract to opposite numbers then this
number (or one of the opposite numbers) will be an eigenvalue of the matrix. For
instance, in this case, the columns of the given matrix subtract to give 7− 4= 3 and
− 2− − 1ð Þ= − 3, yielding an eigenvalue of 3. Although students who develop
this approach will likely not try to generalize this fact, it might be helpful for
instructors to ask students to develop arguments for or against the generalizability
of this pattern.

In their work, the students interpreted c = 3 as the first of two stretch factors,

which they represented with the diagonal matrix
3 0
0 d

� �
in the matrix equation

AP = PD (Fig. 10d). The students in this group also generated another equation
from the system by substituting for c to generate 4x+ y= y 7x− 2y

x

� �
, which could

then be simplified (Fig. 10b). After substituting, the students were able to generate
the quadratic equation y2 = 3xy − 2x2.

Fig. 10 Group solution using a system of equations and AP = PD to finish Problem 3
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Importantly, because of the students’ prior work solving for stretch directions
and stretch factors, they recognized that the solutions to this quadratic correspond to

the components of the vector
x
y

� �
, representing the stretch directions of the

transformation. Furthermore, the students realized that, with stretch direction vec-
tors, the ratio of the components is important, rather than a specific value for x and
y. This understanding is reflected in the group’s substitution of 1 for y to produce
the equation 1 = 3x − 2x2, which the students are able to solve more readily as a
quadratic in one variable (x = 1 or ½). The group then interpreted the solutions of
this quadratic equation as x components in vectors with 1 in the y component
(Fig. 10c) and, more generally, as a ratio between x and y. Although there is no
written evidence that the group was aware of the implications, they chose a nonzero
y-value in the stretch direction vector. Their interpretation of these solutions is

shown in Fig. 10d where they substituted the vectors
1
2

� �
and

1
1

� �
into the col-

umns of the P matrix in the equation AP = PD. In this last step, the students used
this explicit form of the AP = PD equation to solve for the remaining stretch factor
of 5.

Students might not recognize that this approach would not generalize to matrices
with stretch directions that align with standard basis vectors—specifically eigen-
vectors that have zero in the component that the students set equal to 1. This being
said, the approach reflects an understanding that the stretch directions are
proportion-based, rather than fixed vectors. Although this group’s approach is not
as common as others, we find value in the types of conversations that such work can
introduce into whole-class discussion. We also value the diversity in student
approaches, whether they find the stretch factors first, the stretch directions first, or
some combination of the two.

4 Concluding Remarks

In this chapter, we have delineated the usefulness of student fluidity between the
eigen-equation in the various forms of matrix equations, systems of linear equa-
tions, and the equation Ax ⃗= λx ⃗. The tasks in Unit 3 were developed in such a way as
to build and extend work that students have previously done with Ax ⃗= b ⃗ equations
and their various equivalent forms. The examples of student responses to the three
problems in Unit 3 Task 3 that we provided in this chapter illustrate several
important types of reasoning that support a robust understanding of eigentheory.
Specifically, the task allows students to leverage their existing ways of representing
linear transformations with matrix equations composed of numbers and variables—
what we have denoted as mtv = stv or mtv = v equations. Students are then able to
interpret these matrix equations as systems of equations in order to shift their
reasoning towards developing approaches to solving equations of the form Ax ⃗= kx ⃗.
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As the task progresses, each subsequent problem varies which of the three com-
ponents (eigenvector, eigenvalue or both) are unknown. This was designed inten-
tionally to allow students to interpret the outcome of their activity in terms of stretch
directions and stretch factors based on their work on the previous problem, as well
as in Unit 3 Tasks 1–2. In this way, the students’ work with Unit 3 Task 3 is meant
to involve referential activity, a key component of the instructional design theory of
Realistic Mathematics Education (Gravemeijer, 1999).

Unit 3 Task 3 culminates in the instructor leveraging students’ solutions to
Problem 3 and generalizing their use of the mtv = stv and mtv = v equations. In
addition, the students we have worked with have begun to generalize the various
relationships in the eigen-equation beyond the specific 2 × 2 examples of the task.
This is meant to lead to an introduction and discussion of the characteristic poly-
nomial, with its standard derivation resulting directly from generalizing activity.
Furthermore, the instructor plays a crucial role as broker between the classroom and
broader mathematical community by connecting students’ work with stretch factors
and stretch directions with the more widely known terms of eigenvalues and
eigenvectors, respectively. Through this discussion, students’ activity is guided
toward a reinvention of eigentheory from a meaningful, problem-based approach.
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