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Abstract This chapter discusses current research regarding the teaching and
learning of concepts in linear algebra with the aid of (digital) resources. In par-
ticular, it looks into potential of digital resources to foster students’ competencies in
linear algebra. The aim of the chapter is to explain how technology-enhanced
teaching and learning environments may contribute to developing competencies in
multiple representations, visualization as well as procedural and conceptual
understanding. The chapter culminates with a suggested nested model of three
modes of thinking of concepts in linear algebra, which is suitable for designing
teaching and learning environments.
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1 Introduction

It seems that the question whether technologies could be used in mathematics
education is long behind us. This undoubtedly includes the teaching and learning of
linear algebra content. While historically some questions regarding the role of
digital and non-digital resources in linear algebra instruction have been addressed,
many remain unanswered. To give a sense of the scope of the remaining questions,
consider the following. What makes the use of a particular digital resource efficient?
What are the ideal qualities of technology-based materials for the teaching and
learning linear algebra and how can we measure these qualities? What are the
advantages of one type of software over another, for example, a Computer Algebra
System (CAS) versus a Dynamic Geometry System (DGS)? When and how should
each be applied? How can we best disseminate research-based materials and sustain
investigations about their values? Which new forms of digital support may increase
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the motivation, communication and collaboration in a linear algebra course, e.g.
flipped or inverted linear algebra classroom? These questions are still present and of
significance in the current debates. Rather than try to answer any one of these
questions in detail, this chapter presents a way to frame an examination of these
types of questions.

This chapter builds on the discussions on the teaching and learning linear algebra
in two relatively different groups at the 13th International Congress on Mathe-
matical Education (ICME13). Firstly, the topic study group (TSG43) about the uses
of technology in upper secondary mathematics education focused on the imple-
mentation of technologies from cognitive and epistemological perspectives, as well
as accessibility to and the roles of emerging technologies. It also studied interre-
lations between technology and specific mathematical contents. Secondly, one of
the key issues proposed within the discussion group (DG) for Teaching Linear
Algebra at the ICME13 was the incorporation of technology specifically in the
teaching of this subject. This chapter aspires to establish connections between the
perspectives deliberated within these groups. It describes a diversity of technologies
that can be used as a supplement to traditional educational media. The chapter
begins by considering how the development of particular students’ competencies
for linear algebra may be fostered by appropriate technology-based environments
such as CAS or DGS. The aim of the chapter is to suggest a model for multiple
representations of concepts that are important when designing efficient (digitally
based) environments in order to support the development of particular students’
competencies in linear algebra.

2 Theoretical Background

Discussions about technology utilization in university linear algebra courses started
with considerations of how “super calculators” or “commercial systems for both
numeric and symbolic computation” (Carlson, Johnson, Lay, & Porter, 1993, p. 45)
may be relevant for the content related knowledge of mathematics. In the last
twenty years, the discussions have continued by also considering the role of
technology for didactical purposes. For example, Day and Kalman (1999) point out
that computers could be efficient not only for “eliminating computational drud-
gery”, but also for providing interactive “environments for actively exploring
properties of mathematical structures and objects” (Day & Kalman, 1999, p. 12).
Rapid intensification of digitalization in general also parallels new educational
trends. Curricula have been re-oriented towards learning outcomes and competen-
cies. Similar to the principles and standards (NCTM, 2000) in the USA, there are
six general competencies for tertiary level of mathematics in Germany (the
numeration is used only for easier reading):
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(K1) bringing forward arguments and proofs,
(K2) problem solving,
(K3) mathematical modeling,
(K4) representing mathematical concepts,
(K5) interacting with symbols, formal and technical elements of mathematics and
(K6) communicating mathematically (Kultusministerkonferenz, 2012, pp. 14–17).

Each of them is relevant for, and meets the goals of the teaching of linear
algebra. Though there are certainly no firm boundaries between them, the devel-
opment of one or more of them may be supported by meaningful implementation of
digital resources deployed during the teaching and learning processes. This could
be done through interactive explorations in modeling and problem solving, by
promoting understanding through the use of multiple representations or by reducing
systematic procedures when handling large data sets. Such students’ competencies
and the possible effects of technology on their development are the focus of this
chapter. An overview of the theoretical background precedes this description.

Investigating complex phenomena like mathematics education in the presence of
technology is challenging because of the fast pace of technological change and the
lack of specific theories for studying the teaching and learning a particular math-
ematical content, e.g. linear algebra, with digital aids. This has been explored in
recent literature (e.g. Donevska-Todorova & Trgalova, 2017; Turgut & Drijvers,
2017). This also appears as a new issue in the call for topic-working group 17 at the
10th conference of the European Society for Research in Mathematics Education
(CERME 10). A recent review (Drijvers et al., 2016) considered whether digital
technology improves students’ learning of a particular mathematical content (e.g.
geometry) through quantitative studies, and why it may be the case through qual-
itative studies focusing on the teacher as an important factor. Another survey paper
(Sinclair et al., 2016) stated seven ‘threads’ of contributions which affect the
teaching and learning geometry with technologies at different levels of education
including pre- and post compulsory. A question that comes out of this research is if
these ‘threads’ might also refer to the teaching and learning other mathematical
domains including linear algebra. I focus on two of the min particular.

The first ‘thread’, “developments and trends in the use of theories” (Sinclair
et al., 2016, p. 1) relates to whether the use of general theories about the teaching
and learning mathematics with digital equipment is adequate for a specific math-
ematical domain such as geometry, or linear algebra. In the absence of a particular
theoretical framework or apparatus for investigating the teaching and learning linear
algebra with digital resources, this chapter suggests connecting suitable theoretical
frameworks. In order to give the reader a sense of what is meant by a later cate-
gorization, a possible network that may consider three groups of theoretical
frameworks is:

(1) general theories on mathematics education,
(2) theories on technologies in mathematics education and
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(3) specific theories for the teaching and learning linear algebra (with or without
technological support).

The suggested groups of theories are certainly global and do not exclude other.
Nonetheless, they refer to the works of the TSG43 and the DG at the ICME13 and
are here meant to serve as examples. Exploited theoretical frameworks from each of
the groups have to be adjusted and linked for achieving the goals of the research of
teaching and learning linear algebra. General theoretical frameworks (1) which may
be useful in the sense of competencies may be the construct concept image-concept
definition (Tall & Vinner, 1981), regarding the competency K1. Further, the three
worlds of mathematical thinking (Tall, 2004) or the action-process-object-schema
(APOS) theory (Dubinsky & McDonald, 2001) is relevant for studying the
development of the competency K4. These frames directly relate to the above
consideration (‘thread’) about the underrepresentation of defining (K1)—versus
overemphasis of representing (K4) issues in technology-enhanced environments.
This already shows a natural bridge between the general theories (1) and the the-
ories associated to digital media (2).

Further on, the theory of semiotic mediation (Bartolini & Mariotti, 2008), also
used within the ICME13-TSG43, may be exploited for investigating exact effects of
particular tools (drag/drop, touch/move, hide/show, slide, zoom in/zoom out) on the
learning linear algebra (e.g. distinguishing scalar from vector operations, or refer-
ring geometric meaning to algebraic concepts, etc.). Studying historical and epis-
temological developments of the concepts in linear algebra is relevant for designing
technology-based teaching/learning environments and increasing their semiotic
potential for didactical purposes. Taking the multifaceted nature of concepts in
linear algebra such as analytic-arithmetic or synthetic-geometric, into consideration
may contribute the creation of environments to foster development of multiple
representations (K4). I come to this point in Sect. 3.3. Another theoretical frame-
work specific for technology-rich settings is instrumental genesis (Trouche, 2005),
which has a potential to facilitate arrangement of instruction of linear algebra,
among other, and to provide relevant data at interpersonal, classroom, resource or
institutional level of a multiple-level data analysis of communication and collab-
oration competencies (K6).

Finally, specific theories for the teaching and learning linear algebra (3) as the
one referring to students’ difficulties with the unifying and general theory of linear
algebra and the obstacle of formalism (Dorier, 2000), multiple modes of description
(Hillel, 2000) and multiple modes of thinking (Sierpinska, 2000) may also be
valuable in the teaching of technology supported instruction. I elaborate these issues
more in detail also in Sect. 3.3 in relation to the competencies K1, K4 and K5.

Looking back to the survey the ‘thread’ “advances in the understanding of the
teaching and learning of definitions” (Sinclair et al., 2016, p. 2) in geometry sup-
ported with technology, may as well refer the insufficient number of studies directly
addressing key mathematical issues as defining concepts in linear algebra. This
issue about the defining mathematical concepts is in particular relevant for devel-
oping a competency of formal proving (K1). Further, depending on the way
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concepts in linear algebra are defined, e.g. analytically or geometrically, their
representations may also vary, which affects the development of the competency
K4. Finally, each definition of concepts in linear algebra uses a particular symbolic
and formal mathematical language that directly influences the growth of the com-
petency K5. I investigate the possibilities to strengthen mutual development of
these competencies and, based on chosen theories from (1) to (3), suggest a model
that I consider important when teaching or creating teaching/learning trajectories or
environments for concepts in linear algebra (in Sect. 3.3).

Research question

Drawing upon the theoretical concerns above, including (1)–(3), the main research
question that arises is: how could the development of students’ competencies in
linear algebra be facilitated by technology usage in instruction and learning?

By collecting, comparing, contrasting and synthesizing data for digital envi-
ronments suitable for gaining competencies in linear algebra, I provide insights to
each of the competencies briefly (in Sects. 3.1, 3.2 and 3.4), however set my focus
on the competencies K1, K4 and K5 (in Sect. 3.3).

3 Content Specific and Process Oriented Competencies
in Linear Algebra

This section offers some insights in some of the previously mentioned content
specific (or subject matter) and process oriented competencies for a tertiary level
mathematics K1–K6 with reference to linear algebra.

3.1 Defining, Proving and Understanding

The inverse treatment of axiomatic properties for defining, at tertiary level of linear
algebra, on the one hand and describing concepts, at upper secondary level of linear
algebra, on the other hand, signalizes possible obstacle for learning
(Donevska-Todorova, 2017b, p. 2). Sometimes concepts and their properties remain
to occur as separate mathematical objects in the students’ minds (Donevska-
Todorova, 2017b, p. 6). For example, while associativity is a defining property of
vector spaces at university level linear algebra, it is perceived as a characteristic of
the operation addition of vectors that are previously defined as classes of parallel
arrows with same length and orientation in upper high school. Although, there exist
some studies, which have considered descriptive (a posteriori) defining of concepts
after exploring properties with DGS (in addition to other media), in author’s
knowledge there are no studies on students’ deeper understanding of the need for
axioms and definitions for avoiding infinite regress and circularity (de Villiers,
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1998). The dependence of the development of deep conceptual understanding on the
definitions of concepts has seldom been in focus (e.g. Donevska-Todorova, 2015;
Hannah, Stewart, & Thomas, 2016). Based on semi-structured clinical interviews
with participating students in a linear algebra class, Bagley, Rasmussen, and Zandieh
(2015, p. 36) have found that all participating students think that “the result of
composition of a function and its inverse should be 1”. In a linear algebra context,
functions appear as linear transformations from one vector space into another,
preserving axiomatic properties as addition and scalar multiplication, but such
function conceptions have also rarely been directly examined. An exemplary study
about transformations in a Cabri-based environment has been undertaken by
Dreyfus, Hillel & Sierpinska, 1998. Another exemplary study (Donevska-Todorova,
2016), points out students’ difficulties about the introduction and understanding of
linear, bi-linear and multi-linear transformations on a real vector space which have
been discovered in pre-service teachers when working on discussing questions and
multiple-solution tasks. Many abstract mathematical concepts, function (in this
context linear transformation) among them, can be understood either operationally,
as processes, or structurally as objects but the operational and the structural aspects
do not replace, rather complement each other (Bagley, Rasmussen, & Zandieh, 2015,
p. 37). Yet, there are studies, which have discovered students’ predominant pos-
session of procedural versus conceptual understanding for example for concepts as
determinants and suggest that this discrepancy may be overcome with a possible
technology-based environment for a semiotic mediation (Donevska-Todorova,
2016, p. 10). The problem of defining concepts in linear algebra is certainly further
related to argumentation and proving. Students’ abilities for proving have been
examined, e.g. that a set is a subspace of a vector space (Britton & Henderson, 2009,
p. 963) however insufficiently from the aspect of technology facilitation.

The competency about defining concepts, possibly with technological assistance
in visualizing and representing axiomatic properties, is connected to two other of
the above-mentioned competencies (K4 translations between multiple representa-
tions and K5 symbolic language and formal nature of linear algebra). I will revisit
this point in Sect. 3.3.

3.2 Computation, Symbol Manipulation and Programming

The historical evolution of technological devices starting with hand-held calculators
through graphical calculators to powerful CAS shows a quick ongoing expansion.
This growth has many possibilities and challenges for the teaching and learning of
linear algebra. A common agreement among researchers is that the usage of CAS
should be an integral part of mathematical instructions (e.g. Janetzko, 2016).
Development of competencies for programming besides those for computing or
symbol manipulation (K5) may be supported by CAS because of their embedded
powerful apparatus (e.g. Díaz et al., 2011). Manual solutions of systems of linear
equations (SLE), e.g., by the Gaussian elimination method, are meaningful both at
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school and university level. In particular, understanding the meaning of the solu-
tions sets, the structure and the algorithm are among the most important learning
goals. On the one hand, exercise and assessment tasks are usually suited to lead
towards achieving these goals without a technological support. On the other hand,
engagement in algorithm development and computer programming may contribute
in the development of spatial reasoning and coding capabilities (e.g. Francis, Khan,
& Davis, 2016) or development of undergraduate students’ proficiency, as a
combination of fluency and confidence, in a pillar of scientific inquiry having form
of simulation, optimization and modeling (Buteau, Muller, Marshall, Sacristán, &
Mgombelo, 2016). When solving SLE with large number of equations and
unknowns e.g. by students in economic studies, interpretations, rather than calcu-
lations of results is worth more. However, by implementing CAS calculators for
checking answers or performing single step direct calculations to compute, for
example a determinant, or an inverse of a matrix, Stewart and Thomas (2004) have
found that even enthusiastic students require sustained attention in a
technology-based learning environment. The efficiency in calculating inverse or
exponential matrices of large dimension (over a hundred), eigenvectors and
eigenvalues of matrices with real and complex entries have made CAS become an
integral part of contemporary mathematics (Caridade, Encinas, Martín‐Vaquero, &
Queiruga‐Dios, 2015). Digital image processing by the use of CAS in a Mathematic
Virtual Laboratory (MVL) developed on a Moodle platform has been suggested for
making some linear algebra concepts, as matrix operations and their properties,
more concrete and clearer to geological and industrial engineering students by
Caridade et al. (2015). The authors also envision possibility for similar resourceful
usage in high school mathematics. MATLAB,1 for example, is often perceived and
recommended as one of the most natural CAS for linear algebra as it has been
developed purposely for matrix operations (Dios, Martínez, Encinas, & Encinas,
2012; Jin & Bi, 2011). Its usage in instruction is however not straightforward for the
reason that, students have to be familiar with the programming language in
advance. A linguistic perception of mathematics includes syntactical, semantical
and pragmatic aspects of the algebraic language and it can easily be handled by a
CAS, nevertheless, students have difficulty to understand what a CAS does and how
its output is to be interpreted (Oldenburg, 2016). Some difficulties of engineering
students when CAS are sporadically used may be overcome by a user interface,
called CATO, for different CASs written in Java as Mathematica,2 Maxima3 or the
mathematical toolbox of MATLAB (Janetzko, 2016).

The roles of CAS may also be observed as “multiply-linked graphical, numer-
ical, and symbolic manipulation utilities” (Heid & Edwards, 2001, p. 128).
Powerful technology-based mathematics packages as Mathematica or Maple4

1https://www.mathworks.com/products/matlab/.
2https://www.wolfram.com/mathematica/.
3maxima.sourceforge.net/.
4https://www.maplesoft.com/products/maple/.
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enable rich approaches for teaching and learning undergraduate linear algebra.
Their capabilities for performing exhausting calculations and symbolic manipula-
tions, e.g. solutions of (large) SLE or matrix multiplication, may transform or even
replace some classroom activities. In particular, their relevance for graphical, in
addition to the numerical and symbolic representations is connected to the com-
petencies (K4).

3.3 Visualization, Representation, Exploration
and Generalization

Students’ difficulties with a priory visualizations have already been noticed and
reported in research and an overemphasis of the visual potential of technologies in
improving conceptual understanding per se, is considered as a naïve attitude
(Lagrange, Artigue, Laborde, & Trouche, 2001, p. 7). Yet, it seems that a careful
implementation of an appropriate DGS with an integrated algebra in it, rather than a
CAS environment, may be helpful for visualizing and multiple-representing con-
cepts in linear algebra. While a pure synthetic-geometric approach may be quite
challenging the students to apprehend, building linear algebra on a coherent
multi-domain base, e.g. geometry, functional calculus and modern axiomatic may
be more beneficial. In this sense, appropriate DGE for concepts in linear algebra
may be of help and I try to elaborate how.

DGS have the potential for dynamic and simultaneous changes of multiple
representations. In continuation, I prefer a usage of rigorous terminology that is
specific to the research field of teaching and learning linear algebra. Namely,
instead of considering the “algebraic, geometrical and abstract presentation” (e.g.
Fig. 1 in Konyalioglu, Isik, Kaplan, Hizarci, & Durkaya, 2011, p. 4042), I use the
vocabulary different modes of description (Hillel, 2000) and modes of thought
(Sierpinska, 2000). Besides, a triple of distant components of linear algebra con-
cepts, the relations between which are not identified (Fig. 1) seems a bit
problematic.

The authors also suggest a teaching approach according to these components by
considering the “geometric presentation” for dimensions less than or equal to three,
while the “algebraic presentation” for dimensions greater that three (Konyalioglu
et al., 2011, p. 4042). In my opinion, there seems to be no reason why not con-
sidering the algebraic one also for dimensions less than or equal to three. Moreover,
the order: first, algebraic definition, second geometric meaning and third, abstract
representation (Konyalioglu et al., 2011, p. 4043) does not necessarily need to take
place in the teaching of linear algebra even in high school. On the contrary,
beginning with a geometrical context may foster students to deep intuitive thinking,
motivate explorations and therefore contribute to the development of alternative
competencies. Furthermore, the teaching of linear algebra at the university level
goes along with the nature of mathematics as a science, so the concepts are
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introduced by definitions through the abstract mode of description. Abstract con-
cepts gain their meaning in contexts and both the algebraic and the geometric
modes allow such concretizations. Therefore, a severe order in the introduction of
the concepts, as suggested by the authors above, is not a necessity. Similarly, to this
view, Dray and Manogue (2008) have suggested a geometric introduction for an
exemplary concept, the dot product of vectors, which may continue with
arithmetic-algebraic and culminate with analytic-structural aspects. This seems to
be a more natural sequence due to the primarily geometric introduction of vectors in
physics, lower-secondary mathematics and upper-secondary linear algebra and
because of the vector-input and scalar-output of the dot product. For empirical
results with this sequencing for the introduction of the dot product in a dynamic
geometry environment, see Donevska-Todorova (2015).

3.3.1 A Nested Model of the Three Modes of Thinking
of Concepts in Linear Algebra

In contrast to the triple presentation of distant constituents of concepts in linear
algebra given above (Fig. 1) and because of a doctoral study (Donevska-Todorova,
2017a), I would rather suggest a nested model for presenting the modes of thinking.
I actually situate the algebraic and the geometric modes of description (Hillel, 2000)
and corresponding analytic-arithmetic and synthetic-geometric modes of thinking
(Sierpinska, 2000) as nested constituents of the analytic-structural mode (Fig. 2).
The prior two allow concretization of the abstractness of the concepts.

How does the nested model (Fig. 2) refer to the theoretical considerations (1)–
(3) and the competencies K1 to K6 in Sect. 2 exactly? In other words, how does the
nested model help in the analysis towards answering the posed research question? I
try to explain this through its nodes and arrows.

Starting form (1) general theories about mathematics education, the model allows
a development of a wider and deeper concept image for the concept definition (Tall &
Vinner, 1981) of a particular concept in linear algebra. For example, the node analytic-
arithmetic mode thinking in the model refers to thinking of vectors in as ordered
n-tuples, while the node geometric mode refers to vectors as equivalent classes of
arrows that are equal in length, orientation and direction. These two nodes show how
vectors as elements of vector spaces in an analytic-structural mode of thinking

Fig. 1 Abstract, algebraic,
and geometric presentations
of concepts in
linear algebra on Fig. 1 in
Konyalioglu et al. (2011,
p. 4042), Copyright (2018),
with permission from Elsevier

Fostering Students’ Competencies in Linear Algebra … 269



perceive their concretization in a context (e.g. in R2 or R3). Perceiving these three
different concept definitions of a single concept (e.g. vectors) is enabled through
differentmodes of description (Hillel, 2000)which, likewise the correspondingmodes
of thinking (Sierpinska, 2000) belong to (3) specific theories for the teaching and
learning linear algebra.

Due to the importance of precise definitions of concepts in linear algebra, based
on which argumentations and formal proofs develop (competency K1), it may be
worthy to further utilize the nested model when aiming to also advance the com-
petency for multiple representing and symbol manipulating (modes of description
and language) of concepts (K4 and K5).

Looking at the nested model again, the arrows represent the relations and
interplays between the nodes. For example, translations from the geometric into the
arithmetic-analytic mode of thinking or the other way around, like visualization
from the arithmetic-analytic to the geometric mode of thinking and even general-
ization of concepts from 2D and 3D to nD may take place simultaneously (Fig. 2).
In particularly, this may come into focus in a DGE, which brings us to the use of
(2) theories about technologies in mathematics education.

Switching from one mode of thinking into another and vice versa may signifi-
cantly be stimulated, e.g. by the dragging tool in a DGE. Such devices could serve
as instruments of semiotic mediation (Bussi & Mariotti, 2008) in exploring multiple
modes of description. A digital simultaneous multiple-dynamic manipulation, in
contrast to single-static paper-pencil control could be achieved e.g.by means of
sliders which facilitate numerical variations. The numerical dependences repre-
sented by sliders allow transparency of the difference between scalars and vectors
which is typical for the content of linear algebra, e.g. for the teaching and learning
of linear combinations of vectors, linear (in)dependence of vectors, vector spaces,
linear transformations, bi- and multi-linear forms, etc. What makes a DGS toll a
specific instrument of semiotic mediation could deeply be observed by the

Fig. 2 Nested model of the three modes of thinking and description of concepts in linear algebra
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Vigotskian perspective for the transformation form inter- to intra-personal mental
processes (Falcade, Laborde, & Mariotti, 2007). Further on, geometric, and
simultaneously arithmetic-algebraic dependences could also be examined by the
dragging facilities of points or vectors and there already exist DGEs for such
purposes. For example, a recursive exploration space (Hegedus, Dalton, &
Moreno-Armella, 2007) can mediate a mental concept formation and therefore
participate in development of mathematical cognition (e.g. the concept of dot
product of vectors in Donevska-Todorova, 2017b). Students co-act with the envi-
ronment by exchanging their roles in switching from one into another mode of
description and thinking which modifies (though not negates) the paper, as a frozen
(Hegedus, Dalton, & Moreno-Armella, 2007) into the DGE as a fluid medium for
thinking of mathematical concepts (Donevska-Todorova, 2017b). This study shows
that the challenge of supporting the learning of abstract concepts or even com-
pletely abstract structures, e.g. vector space or subspace, by the DGS has by now
been approached to a certain degree by interactive dynamic artifacts for one or more
of their defining axiomatic properties.

3.4 Communication and Collaboration

A Spanish group of authors has been looking at generic, content-independent
competencies like team-working, self-learning, critical thinking, problem solving
and technical communication with the use of CAS Derive (García López, García
Mazario, & Villa Cuenca, 2011) and CAS Maxima in a later study (García, García,
Del Rey, Rodríguez, & De La Villa, 2014). They have concluded that both CAS
have allowed not only improvement of students’ academic performance but also
increase of students’ motivation, satisfaction, self-confidence and team working.
Bulgarian scholars have examined a combined, traditional and CAS-based envi-
ronment for an acquisition of competencies in higher education and have concluded
that it is helpful for action competencies related to emotional, social and
value-related components (Varbanova & Durcheva, 2016, p. 54).

Although communication and collaboration among students and instructors in a
technology-enhanced environment may be fostered and researched in relation to
CAS or DGS, the next subsection offers insights to possibilities for development of
these competencies (K6) from a bit different aspect.

3.4.1 Cyber Learning, Communication and Collaboration

One of the oldest functions of technology is the collection of data required for
teaching and learning processes. New Web 2.0 and 3.0 technologies allow for the
exchange of collected data, as well as time and place independent communication
and collaboration. Nevertheless, a first reaction to the teaching and learning of a
specific mathematical content, including linear algebra, through social networks for
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example, is a dose of skepticism. Social media may involve inaccurate information,
biased comments and unreceptive responses, yet an effortless search shows that
hundreds of groups called “Linear algebra” or similar, already exist and have
thousands of members on Facebook and Twitter. It is predictable that the number of
such groups will continue to grow. Research Gate, the largest academic social
network (Matthews, 2016), is another type of virtual resource that may or may not
serve teaching and learning beyond research purposes. There are also numerous
online forums and blogs, specifically related to linear algebra, YouTube tutorials
and courses with over millions of views (e.g. thirty four videos of the MIT
OpenCourseWare, Linear Algebra, Strang, 2005). Virtual teaching and learning
environments, for example, online classrooms, flipped classrooms, wikis (e.g.
GeoGebra Wiki and Wikispaces) could also be part of the repertoire for organizing
linear algebra courses. An inverted or flipped classroom used as a “one-time class
design to teach a single topic, as a way to design a recurring series of workshops,
and as a way of designing an entire linear algebra course” (Talbert, 2014, p. 361).
Love et al. (2014) found that students in a flipped linear algebra classroom had “a
more significant increase between the sequential exams compared to the students in
a traditional lecture section, while performing similarly in a final exam” (Love et al.,
2014, p. 317) and expressed conceptual understanding and joy (Love et al., 2014,
p. 323). A teaching and learning platform for linear algebra for engineers, created
according to the blended-learning-concept, has significantly improved students’
performance (Roegner & Seiler, 2012). The participating students in the project had
direct access to an online-script with visualizations, individualized homework
problems with an interactive training environment and automatic corrections. The
sustainability, further expansion, and dissemination of these projects, as well as the
development of other such platforms remain ongoing.

These plentiful and diverse educational innovations have the potential to become
a part of quality teaching and (in)formal learning of linear algebra after careful
research and documentation has been undertaken. There is still a lack of satisfactory
evidence that these innovative forms of instruction and learning guarantee devel-
opment of subject matter competencies. Even development of other non-content
specific competencies such as networked debating, blogging, and chatting, as well
as socio-cultural and anthropological aspects of formal and informal education in a
pure context of teaching and learning linear algebra need to be further examined
and documented. In the era of global digitalization, computer technologies have
high social legitimacy, but their educational legitimacy, remains an open research
question.

4 Discussion and Challenges Ahead

Alongside the evolution of technologies and the enlargement of classroom acces-
sibility, critical research suggests cautious implementation. Even in the late 90s,
Guin and Trouche (1998) pointed out complexities in teaching and learning
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situations which are brought by implementation of calculators. The above analysis
shows that the learning and understanding of the abstract nature of linear algebra
through axioms, definitions, theorems and structures does not become straightfor-
ward by a simple use of a CAS or a DGS. Though a rigorous systematization
regarding the research question would be difficult to establish, an attempt to show
which digital tool may facilitate the development of which competency and how it
may be researched is proposed in Table 1.

The initial ideas illustrated in Table 1 must be considered with some flexibility.
For example, a CAS environment may also be helpful for visualization and rep-
resentation, (K4), though the DGS with embedded algebraic features is seen as
having more potential for this purpose due to mutual dependence and invariant
properties which can be simultaneously investigated (are not always brought by the
software a priory but are additionally designed). This shows that a whole linear
algebra course does not necessarily have to be designed in a single, either CAS or
DGS environment. It could be the case that combining different technological tools
for facilitating the learning of particular concepts in a single course may also be
useful.

What has been considered as “smarter technologies, like computer software or
symbolic calculators [and] emerging technologies (Internet, etc.)” (Lagrange et al.,
2001, p. 3) fifteen years ago may seem history now. New emerging technological
devices such as touch and multi-touch (iPads, iPhones, etc.) open new questions for
further investigations.

5 Conclusion

This chapter has surveyed current literature on both technology-facilitated teaching
and the learning of linear algebra, taking the discussions in two ICME13 working
groups as starting viewpoints. The analysis focused on whether and how

Table 1 Technological tools for facilitating development of competencies in linear algebra

Competency Technology
based
environment

Connecting theories for research

Defining, proving, understanding
(K1)

CAS, DGS (1) General theories about
mathematics education
(2) Theories about technologies in
mathematics education
(3) Specific theories for the teaching
and learning of linear algebra

Computation, symbol
manipulation, programming (K5)

CAS

Visualization, representation,
exploration, generalization (K4)

DGS

Communication, collaboration
(K6)

CAS, DGS,
virtual
environments

Online classroom, inverted (flipped)
classroom, blended learning
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technology-enhanced environments could facilitate the development of students’
competency in linear algebra. From this analysis and regarding the research
question, it seems that CAS are more suitable for the development of competencies
such as symbol manipulation and programming (K5) (in Sect. 3.2) and DGS are
better for competencies such as visualization, representation, exploration, and
generalization (K4) (in Sect. 3.3). Both types of environments may be appropriate
for defining, proving and understanding (K1) (Table 1). In order to show how a
digitally based environment may be considered for fostering K1, K4 and K5, I have
suggested a nested model (Fig. 2). This model presents all three modes of
description and thinking that I consider important in instruction and in the design of
tasks or teaching environments. It is a visual presentation showing that the modes
are not dispersed one from another, rather connected. In particular, specifically
designed technologically-based environments may enable easier and more efficient
shifts between the modes, facilitating the development of competencies for defin-
ing, representing and understanding concepts in linear algebra.
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