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Abstract Intellectual need and epistemological justification are two central con-
structs in a conceptual framework called DNR-based instruction in mathematics.
This is a theoretical paper aiming at analyzing the implications of these constructs
and their constituent elements to the learning and teaching of linear algebra. At the
center of these analyses are classifications of intellectual need and epistemological
justification in mathematical practice along with their implications to linear algebra
curriculum development and instruction. Two systems of classifications for intel-
lectual need are discussed. The first system consists of two subcategories, global
need and local need; and the second system consists of five categories of needs:
need for certainty, need for causality, need for computation, need for communi-
cation, and formalization, and need for structure. Epistemological justification is
classified into three categories: sentential epistemological justification (SEJ), apo-
dictic epistemological justification (ASJ), and meta epistemological justification
(MEJ).

Keywords Intellectual need ⋅ Epistemological justification

DNR-based instruction in mathematics (DNR, for short; Harel, 1998, 2000, 2008a,
b, c, 2013a, b) is a theoretical framework for the learning and teaching of mathe-
matics—a framework that provides a language and tools to formulate and address
critical curricular and instructional concerns. DNR can be thought of as a system
consisting of three categories of constructs: premises—explicit assumptions
underlying the DNR concepts and claims; concepts—constructs defined and ori-
ented within these premises; and claims—statements formulated in terms of the
DNR concepts, entailed from the DNR premises, and supported by empirical
studies.
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The main goal of this paper is to discuss cognitive and pedagogical aspects of
linear algebra through the lenses of two central DNR concepts: intellectual need and
epistemological justification. As the above list of references indicates, DNR has
been discussed extensively elsewhere, and so in this paper we only reiterate briefly
the definitions of these concepts along with their essential constituent elements: the
concepts of ways of understanding and ways of thinking and four out of the eight
premises of DNR.

We begin in Sect. 1 with the concepts of ways of understanding and ways of
thinking. Following this, in Sect. 2, we discuss the four DNR premises. With these
concepts and premises in hand, we turn, in Sect. 3, to the definition of intellectual
need and epistemological justification. The fourth and fifth sections present,
respectively, more refined analyses into various categories of the latter two con-
cepts. The sixth, and last, section concludes with reflections and research questions.
In each section, the discussion is accompanied with observations made in teaching
experiments in linear algebra we have conducted during the years. In this respect,
this is a theoretical, not empirical, paper. That is, the purpose of the paper is to
theorize and illustrate the role and function of intellectual need and epistemological
justification and their constituent elements in the learning and teaching of linear
algebra.

To help the reader navigate through the various DNR terms introduced in this
paper, we end each section with a figure depicting the network of terms accrued up
to that section. Figure 1, for example, depicts the three categories of constructs
comprising DNR outlined in this introduction. The rest of the figures in the paper
will be expansions of this figure.

1 Ways of Understanding and Ways of Thinking

The notions of way of understanding and way of thinking have technical definitions
(see Harel, 2008c). However, for the purpose of this paper it is sufficient to think of
them as two different categories of knowledge, the first refers to one’s conceptu-
alization of “subject matter,” such as the way one interprets particular definitions,
theorems, proofs, problems and their solutions; and the second refers to “conceptual
tools,” such as deductive reasoning, empirical reasoning, attention to structure and
precision, and problem-solving approaches (e.g., heuristics). One of the central

DNR

Premises Concepts Claims

Fig. 1 DNR’s three
categories of constructs
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claims of DNR, called the duality principle, asserts that (a) one’s ways of thinking
impacts her or his ways of understanding; and, (b) it is the acquisition of appro-
priate ways of understanding that brings about a change and development in one’s
ways of thinking.

To illustrate, consider the following example. A mathematically mature student
who possesses definitional reasoning—the way of thinking by which one examines
concepts and proves assertions in terms of well-defined statements—is likely to
understand the concept of dimension of a subspace as intended—the number of
vectors in a basis of the subspace—but he or she would also realize that such a
definition is meaningless without answering the question whether all bases of a
subspace have the same number of vectors. Another student, for whom definitional
reasoning has not yet reached full maturity, may have the same understanding
without realizing the need to settle this question. Yet another student whose con-
ceptualization of mathematics is principally action-based (in the sense of APOS
theory),1 is likely to understand the concept of dimension in terms of a rule applied
to n-tuples. For such a student, the dimension of a span of a set of vectors in Rn

amounts to carrying out a procedure of, for example, setting up these vectors as the
columns of a matrix, row reducing the matrix, and determining, accordingly, the
number of pivot columns the matrix has. We observed each of these three con-
ceptualizations among students on various occasions, even in upper division linear
algebra courses. And scenarios corresponding to these three conceptualizations
have occurred throughout our teaching experiments when attention to a
well-defined concept was called for. For example, when the instructor concluded
that the projection matrix onto a subspace V of Rn is the matrix
P=WðWTWÞ− 1WT , where W is a basis matrix2 of V , there were a few students
who fully understood, and some even independently raised, the concern that P

1APOS theory (Arnon et al., 2014; Dubinsky, 1991) will be used to provide conceptual bases for
some of these observations. Given how widely this theory has been studied during the last three
decades, there is no need to allocate more than a brief illustration to the four levels of concep-
tualizations, action, process, object, and schema offered by the theory and used in this paper.
Briefly, consider the phrase “the coordinates of a vector of x with respect to a basis-matrix A in
Rn,” denoted by x½ �A. At the level of action conception, the learner might be able to deal with x½ �A
only in the context of a specific vector and a specific suitable basis-matrix, by following
step-by-step instruction to compute the respective coordinate vector. At the level of process
conception one is capable of imagining taking any vector x in Rn, representing it as a linear
combination of the columns of A, and forming a column vector whose entries are the coefficient
of, and are sequenced in the order they appear in, the combination. With this conceptualization,
the learner is able to carry out this process in thought and with no restriction on the vector x
considered. At the level of object conception, one is aware of the process of relating the two
coordinate vectors as a totality, for example, in finding the relation between two coordinate
vectors of x, one with respect to a basis-matrix A1, x½ �A1

, and one with respect to a basis-matrix
A2, x½ �A2

, whereby being able to express the relation in terms of a transition matrix S=A− 1
2 A1

between the two vectors. Among the ways of thinking that are essential to cope with linear
algebra, in particular, and mathematics, in general, are the abilities to construct concepts at the
levels of process conception and object conception, as it is demonstrate throughout the paper.
(See also Trigueros, this volume.)
2A matrix whose columns form a basis for a subspace.
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might be dependent on the choice of W . For most of the students, however, the
conclusion engendered no concern.

The implication of the second part of the duality principle is that students acquire
a particular way of thinking only by repeatedly dealing with specific ways of
understanding associated with that way of thinking. For example, students develop
definitional reasoning not by preaching but by repeatedly using definitions in the
process of mathematical argumentations and by dealing in a multitude of contexts
with the question whether a concept is well defined.

The examples of ways of thinking we have listed above are general—they
pertain to mathematics as a discipline. Different areas or sub-areas of mathematics,
however, can be branded by ways of thinking specific to them. The conceptual-
izations of matrix theory and the theory of general vector spaces share ways of
thinking (e.g., axiomatic proof schemes (Harel & Sowder, 1998) and structural
reasoning (Harel & Soto, 2016), and yet each is branded by a set of ways of
thinking unique to it. For example, while thinking in terms of row reduction and
block matrices is part of elementary matrix theory, it is often not applicable to
coordinate-free, vector spaces.

Problem-solving approaches are instances of ways of thinking (Harel, 2008c).
Therefore, “reasoning in terms of __ in solving problems” is an instance of a way of
thinking. For example, reasoning in terms functions, reasoning in terms of row
reduction, reasoning in terms of block matrices, reasoning in terms of linear
combinations are all problem-solving approaches, and hence are ways of thinking.
In our experience, the acquisition and application of such ways of thinking is
difficult for students. Consider, for example, reasoning in terms of block matrices
(known also as partitioned matrices) and linear combination. It is one thing
applying block-matrices rules to multiply matrices; it is another using block
matrices to represent and solve problems. Typically, students are able to perform at
the level of action conception (ala APOS theory) algebraic operations using block
matrices, but they experience major difficulties when block matrices are constructed
to represent relations and prove theorems. Consider the simple case of the product
Am× nxn×1 as a linear combination of the columns of A. We repeatedly observed
students having difficulties representing a common statement such as
“v1, v2, . . . , vk ∈ spanðu1, u2, . . . , umÞ⊆Rn

” in a matrix form: v1 v2 . . . vk½ �=
u1 u2 . . . um½ �Q for some Qm× k .
This difficulty manifested itself on numerous occasions, for example in com-

prehending the following proof of the theorem, “Any set of m linearly independent
vectors in an m-dimensional subspace H of Rn spans H”. The proof presented in
class was an elaboration of the following lines:

Let u1, u2, . . . , um be linearly independent vectors in H, and set U = u1 u2 . . . um½ �.
Let V = v1 v2 . . . vm½ � be a basis matrix of H. There exists a matrix Qm×m such that
U =VQ. Since the columns of U are linearly independent, Q is invertible, and so
UQ− 1 =V . Hence u1, u2, . . . , um span H.

We point to two obstacles students typically encounter in comprehending this
proof. The first revolves around the equation U =VQ; students indicate that they do
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not understand where the matrix Q came from, even after they are presented with an
explanation by their group mates or the instructor. A possible conceptual basis for
this difficulty is that the construction of Q requires performance at the level of
process conception (ala APOS theory), a form of abstraction known to be cogni-
tively demanding (Dubinsky, 1991). Specifically, one needs to construct, succes-
sively and in thought, each column of Q out of the coefficients of the expression
representing its corresponding column of U as a linear combination of the columns
of V (i.e., Qi = qi1 qi2 . . . qim½ �T , where Ui = ∑m

j=1 qijVi, i=1, 2, . . . ,m).
Even students who overcome this difficulty express discomfort with the claim that
the result UQ− 1 =V completes the proof. At the heart of this claim, and the
difficulty, is the fact that linear combination of linear combinations is a linear
combination—that since each vector in H is a linear combination of the columns of
V and each column of V is a linear combination of the columns of U, by UQ− 1 =V ,
ColU =H. Here too performance at the level of process conception seems essential,
in that one has to carry out this chain of relations in thought in order to fully bring
oneself to a firm conviction about the validity of the claim.

Figure 2 expands Fig. 1 to include the DNR constructs discussed in this section.

2 DNR Premises

DNR has eight premises; they are philosophical stands appropriated from existing
theories, such as the Piagetian theory of equilibration (Piaget, 1985), Brousseau’s
(1997) theory of didactical situation, and Aristotle. Relevant to this paper are four
of these premises; they are: the knowledge of mathematics premise, the knowing
premise, the knowledge-knowing linkage premise, and the subjectivity premise.

DNR

Premises Concepts

Way of 
Understanding

Way of 
Thinking

Claims

Fig. 2 Two of the DNR
concepts: Ways of
understanding and ways of
thinking—
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The knowledge of mathematics premise states: knowledge of mathematics
consists of two related but different categories of knowledge: the ways of under-
standing and ways of thinking that have been institutionalized throughout history.3

The significance of this premise to mathematics instruction is that while knowledge
of and focus on ways of understanding is indispensable for quality teaching, it is not
sufficient. Mathematics instruction should also attend to ways of thinking. With this
instructional view one would teach, for example, row reduction not only as a tool to
solve systems of linear equations but be cognizant of and explicit about the value of
this tool in analyzing and answering theoretical questions. In accordance to the
duality principle stated earlier, the development of such a way of thinking is
facilitated by instruction that persistently models it in proving theorems and solving
problems, as the following episode illustrates.

The episode occurred in an elementary linear algebra class. The instructor
defined column rank and row rank. It turned out that the class as a whole dealt with
these concepts in an add-on Matlab component to the course (entirely not coordi-
nated with the instructional pace of the course), where the students have used the
fact that dimColA=dimRowA without proof. Before the instructor turned to prove
this statement, one of the students in the class exclaimed publically that she found
this fact fascinating—that for any array of numbers, “no matter what” (her words),
the maximum number of linearly independent columns equals the maximum
number of linearly independent rows. Then she added: “I kept thinking about it for
some time until I found why”. In response to the instructor’s question, “What was
the explanation you have found?” she said: “… by reducing the matrix into rref …
I always bring up rref … it helps me solve the homework problems”. Then she
proceeded by explaining how in rrefA the number of columns with a leading 1 is
necessarily equal to the number of rows with a leading 1, from which she concluded
that dimColA=dimRowA, using the previously proved facts that row reduction
preserves dependence/independence of the columns of A as well as RowA.

We posit that the instructor’s explicit and persistent effort to present row
reduction as a conceptual tool in proving theorems and solving problems con-
tributed to conceptualizations as the one articulated by this student.

The next two premises are inextricably linked; one is about knowing and the
other about the linkage between knowing and knowledge. The knowing premise
states: The means of knowing is the process of assimilation and accommodation.
According to Piaget (1985), disequilibrium, or perturbation, is a mental state when
one fails to assimilate. Equilibrium, on the other hand, is a state in which one
perceives success in assimilating. In Piaget’s terms, equilibrium occurs when one
has successfully modified her or his viewpoint (accommodation) and is able, as a
result, to integrate new ideas toward obtaining a solution of a problem (assimila-
tion). The knowing-knowledge linkage premise states: Any piece of knowledge
humans know is an outcome of their resolution of a problematic situation
(Brousseau, 1997; Piaget, 1985). This premise is an extension of the knowing

3For the philosophical foundations of this premise, see Harel (2008c).
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premise. While the knowing premise is about the mechanism of learning, the
knowing-knowledge linkage premise guarantees that row material for the operation
of that mechanism (i.e., a problematic situation from the engagement of which
knowledge is constructed) exist. Collectively, the last two premises constitute a
theoretical foundation for, respectively, the essentiality and viability of
problem-solving based curricula. Namely, these curricula are essential because the
only way to construct knowledge is by resolution to problematic situations (by the
knowing-knowledge premise); and they are viable because such situations exist (by
the knowing premise).

The implication for instruction of the view articulated by the last two premises is
the necessity principle, which states: For students to learn what we intend to teach
them, they must have a need for it, where ‘need’ refers to intellectual need. Rel-
evant to curriculum design, the necessity principle entails that new concepts and
skills should emerge from problems understood and appreciated as such by the
students, and these problems should demonstrate to the student the intellectual
benefit of the concept at the time of its introduction.

The problematic situations referred to in this premise may or may not be historic.
For example, matrices did not grow out of the need to solve systems of linear
equations, as typically is done in elementary linear algebra textbooks, but out of the
need to develop determinants (in 1848 by J.J. Sylvester). According to Tucker
(1993), “array of coefficients led mathematicians to develop determinants, not
matrices. Leibniz … used determinants in 1693 about hundred and fifty years
before the study of matrices …” (p. 5). Also, most problems studied in linear
algebra are not introduced in the context of the field in which they originated
initially. For example, Gauss elimination is typically introduced in textbooks in an
application-free context, but it initially emerged in the field of geodesy and for years
was considered part of the development of this field (Tucker, 1993).

The subjectivity premise states: Any observations humans claim to have made
are due to what their mental structure attributes to their environment. This premise
orients our interpretations of the actions and views of the learner. It cautions us—
teachers—that what might be problematic for one individual or a community may
not be so for others. A situation might trigger a mental perturbation with one person
and be accepted by another. To illustrate, we continue the discussion about the
concept of dimension we started in Sect. 1. In one of our teaching experiments, the
instructor deliberately defined “dimension” as the number of vectors in a basis
without first stating the theorem that all bases of a subspace have the same number
of vectors. Following this, he asked the students to discuss in their working groups
whether the definition is sound. A while later, when no productive response came
from the students, he made the task more explicit by asking whether there is a need
to establish a particular property of bases in a subspace for the definition to be
meaningful. None of the students found any fault with the definition as stated.
Following this, the instructor asked the class to comment on the following hypo-
thetical scenario:
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Two students, John and Mary, are asked to determine the dimension of a particular sub-
space of a vector space. John identifies a basis of the subspace, counts the number of its
elements, and reports that the dimension is 5. Mary identifies a different basis of the
subspace, counts the number of its elements, and reports that the dimension is 7.

While some of the students responded as expected—that there is a need to
establish that all bases of the subspace have the same number of vectors—aston-
ishingly, there were students who responded by saying something to the effect that
for John the dimension of the subspace is 5, and for Mary the dimension is 7.
Presumably, these students did not possess the definitional way of thinking, and so
the scenario described by their instructor did not cause them the desirable pertur-
bation—their response was an outcome of their current schemes.

The subjectivity premise also cautions us, teachers, that learners’ current ways of
thinking may lead them to independently generalize faulty knowledge from a
correct one. For example, student may, and typically do, erroneously conclude that
row reduction preserves the column space, as it does with row space. Furthermore,
often due to the level of robustness of certain ways of thinking students possess
counterexamples to such faulty generalizations may not be effective (Harel &
Sowder, 2007). For example, in our experience, students continue to hold this
generalization true even after they are shown counterexamples to the contrary [e.g.,
for any matrix whose entries are all 1s, ColA≠ColðrrefAÞ]. Many scholars (e.g.,
Confrey, 1991; Dubinsky, 1991; Steffe, Cobb, & Glasersfeld, 1988; Steffe &
Thompson, 2000) have articulated essential implications of the subjectivity premise
to mathematics curriculum and instruction, even if they have not given it an
axiomatic status as we do.

Figure 3 expands Fig. 2 to include the DNR constructs discussed in this section.

DNR

Premises

Mathematical 
Knowledge

Knowledge-Knowing Link

Subjectivity

Concepts

Way of 
Understanding

Way of Thinking

Claims

Duality

Necessity

Fig. 3 Three of the eight DNR premises and two of DNR foundational principles
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3 Intellectual Need and Epistemological Justification

With these premises at hand, we now present the definitions of intellectual need and
its associated concept, epistemological justification, as formerly introduced in Harel
(2013a), with minor modifications.

[Let] K be a piece of knowledge possessed by an individual or community, then,
by the knowing-knowledge linkage premise, there exists a problematic situation
S out of which K arose. S (as well as K) is subjective, by the subjectivity premise, in
the sense that it is a perturbational state resulting from an individual’s encounter
with a situation that is incompatible with, or presents a problem that is unsolvable
by, her or his current knowledge. Such a problematic situation S, prior to the
construction of K, is referred to as an individual’s intellectual need: S is the need to
reach equilibrium by learning a new piece of knowledge. Thus, intellectual need has
to do with disciplinary knowledge being created out of people’s current knowledge
through engagement in problematic situations conceived as such by them. One may
experience S without succeeding to construct K. That is, intellectual need is only a
necessary condition for constructing an intended piece of knowledge. Method-
ologically, intellectual need is observed when we see that (a) one’s engagement in
the problematic situation S has led her or him to construct the intended piece of
knowledge K and (b) one sees how K resolves S. The latter relation between S and
K is crucial, in that it constitutes the genesis of mathematical knowledge—the
perceived reasons for its birth in the eyes of the learner. We call this relation
epistemological justification.

Intellectual need and epistemological justification are two sides of the same coin
—they are different but inextricably related constructs. Their occurrence is entirely
dependent on one’s background knowledge. Consider the question: What is a
generator for the ideal of polynomials annihilating a given operator T over an n-
dimensional vector space? Clearly, such a question wouldn’t occur unless one
possesses a cluster of ways of understanding for the concepts: ideal, generator of an
ideal, operator annihilating ideal etc. Less trivial is the question, what ways of
thinking facilitate the emergence of such a question with an individual? Or put in
another way, how can we educate students to develop the habit of mind of asking
such questions? A critical claim of this paper is that attention to epistemological
justifications in generating definitions and proving theorems may pave the road to
such habit of minds, as we will see in the next sections.

Even if such a question is raised, its answer hinges upon one’s understanding
and appreciation of the most foundational concept of linear algebra: linear com-
bination. Thinking in terms of this concept and its derivative concepts of linear
independence and linear dependence, one may recognize that the ideal of poly-
nomials annihilating an operator T over an n-dimensional vector space is not empty,
since it contains an annihilator polynomial of degree n2. This may not end here if
this individual continues to ask: What is a generator for this ideal? And since the
degree of such a polynomial is not greater than n2, can it be n? Is there a polynomial
of degree n that annihilates T? If the search for an answer to this question leads the

The Learning and Teaching of Linear Algebra … 11



individual, independently or with the help of an expert, to Cayley-Hamilton The-
orem (“Any linear operator on a finite-dimensional vector space is annihilated by its
characteristic polynomial”), then by definition, the individual has constructed an
epistemological justification for the theorem. An epistemological justification for
the proof of the theorem—how the proof might be elicited—is a different matter.
Such a proof may require additional or different networks of ways of understanding
and ways of thinking.

It is important to highlight two points concerning intellectual need and episte-
mological justification. First, we iterate a point we made earlier, these constructs are
not historical; rather, they are pedagogical (and research) tools. Namely, the need
which has originally necessitated a particular concept may not—and is usually not
—the one used in a curriculum. For example, in one of our teaching experiment, the
concept of linear independence was necessitated through the question, When does
Gaussian Elimination lead to “loss” of equations (i.e., zero equations in a system
obtained through the application of elementary operations)?; and in another
experiment through the question, When does a consistent system of linear equation
have a unique solution? Historically, this concept emerged from generalizations of
spatial relationships by Grassmann (Li, 2008).

DNR

Premises

Knowledge

Knowledge-Knowing Link

Subjectivity

Concepts

Way of 
Understanding

Way of Thinking

Intellectual Need

Epistemological 
Justification

Claims

Duality

Necessity

Fig. 4 Two additional foundational DNR concepts: Intellectual need and epistemological
justification
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Second, while problems outside the fields of mathematics can serve as intel-
lectual need for particular mathematical concepts and ideas, as we know from
history, intellectual need is not synonymous with application. Cognitively, the term
“application” refers to problematic situations aiming at helping students solidify
mathematical knowledge they have already constructed or are in the process of
constructing. Intellectual need, on the other hand, aims at eliciting knowledge
students are yet to learn.

Figure 4 expands Fig. 3 to include the DNR constructs discussed in this section.

4 Categories of Intellectual Need

We offer two systems of classifications of intellectual need, each with a particular
role in curriculum development and instruction; in this paper, they are instantiated
in the context of the learning and teaching of linear algebra. The first system of
classification rests on the distinction between local need and global need; it pertains
to the structure of a mathematics curriculum. The second system of classification is
more refined, in that it identifies specific types of intellectual needs that emerge in
mathematical practice; they are: need for certainty, need for causality, need for
computation, need for communication, and need for structure. These two systems
of classifications will be discussed in turn in the next two sections. (For a discussion
on the cognitive origins of these needs, see Harel, 2013a.)

4.1 Local Need Versus Global Need

Consider an elementary course in linear algebra structured around a series of
investigations, each aimed at answering a particular central question. The course
begins with the question: (1) What is linear algebra? And it immediately discusses
one of its branches: systems of linear equations, both systems in which the
unknowns are scalars in a particular field (linear systems of scalar equations) and
systems in which the unknowns are functions (linear systems of differential equa-
tions). Attending first to linear systems of scalar equations, the course then pro-
gressively proceeds by investigating, in this order, the questions: (2) Why is the
focus on linear systems? (3) What exactly is the elimination process (which typi-
cally students are familiar with its basic form from their high-school mathematics)?
(4) Why does the process of elimination work? (5) Why are equations “lost” in the
elimination process? (6) Is there an algorithm to solve linear (scalar) systems?
(7) What does the reduced echelon form (rref) tell us about the solution set of a
system? This is a partial sequence of central questions aimed at helping the students
build a coherent global image of the purposes of the study of systems of linear
equations. Collectively, not individually, such questions represent a global intel-
lectual need for the study of a particular area of mathematics.
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An investigation into each of such questions generates specific problems man-
ifesting local intellectual need—the need for the construction of particular concepts
and ideas. A probe into some of the above questions, generate, for example, the
concepts of linear combination, equivalent systems, linear independence, and basis,
for the purpose of advancing the overarching investigation. To illustrate, consider,
for example, Question 4—Why does the process of elimination work? In
linear-algebraic terms, this question can be formulated as: Why elementary oper-
ations preserve the solution set of a system? A probe into the nature of these
operations elicits the need for the creation of concepts and ideas. It begins with the
following central idea:

Let S be an m× n system, with equations ε1, ε2, . . . , εm. For any m scalars c1, c2, . . . , cm,
any solution of system S is a solution of the equation εΣ = c1ε1 + c1ε1 + . . . + cmεm.

In turn, this idea elicits the foundational concept of linear combination (i.e., the
equation εΣ is a linear combination of the equations, ε1, ε2, . . . , εm), and with it, the
following conclusion, which gives rise to the concept of equivalent systems:

Given two systems S1 and S2 of the same size, if each equation of S1 is a linear combination
of equations of S2 and each equation of S2 is a linear combination of S1, then the two
systems have same solution set.

Thus,

Two systems of equal size are equivalent if each equation in one system is a linear
combination of the equations in the second system, and vice versa.

And so:

If two systems are equivalent, then they have the same solution set.

DNR

Premises

Knowledge

Knowledge-Knowing Link

Subjectivity

Concepts

Way of 
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Fig. 5 First classification of intellectual need
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These results, then, lay the foundation for the question under consideration
(Question 4), which now can be stated as: Do elementary operations preserve
equivalency?

The second half of the course turns to linear systems of differential equations
(i.e., Y ′ðtÞ=AYðtÞ, Yð0Þ=C) where eigen theory is then introduced through the
global need to investigate the question, How to solve such systems? This question
leads to local needs, as will be discussed in the next section.

Figure 5 expands Fig. 4 to include the DNR constructs discussed in this section.

4.2 Intellectual Need in Mathematical Practice

Based on cognitive and historical analyses, we offered in Harel (2013a) five cate-
gories of intellectual needs: (1) need for certainty, (2) need for causality, (3) need
for computation, (4) need for communication, and (5) need for structure.

The first two needs are complementary to each other: understanding cause brings
about certainty, and certainty might trigger the need to determine cause. The need for
certainty is the need to prove—to remove doubts. One’s certainty is achievedwhen one
determines, by whatever means he or she deems appropriate, that an assertion is true.
Theneed for causality,on the other hand, is the need to explain—to determine a cause of
a phenomenon, to understandwhatmakes a phenomenon the way it is. A student might
be certain that a particular assertion is true because a teacher or textbook said so or
because he or she verified the assertion empirically. The student might even reach
certainty on the basis of a proof, and yet lack an insight as to what makes the assertion
true—the proof may not be explanatory for her or him. In the next section, we will
discuss explanatory proofs in the context of epistemological justification.

The third need is the need for computation. It is the need to quantify or calculate
values of quantities and relations among them by means of symbolic algebra. For
example, the need to quantify the “size” of a solution set of a linear system Ax= b
may be addressed by the concept of rank: the smaller the rank of a matrix A is the
“larger” the solution set of a consistent system Ax= b becomes. Likewise, the need
to reduce the data storage of a digitized image without compromising significantly
the quality of the image through its electronic transmission may be responded to by
decomposing the matrix representing the gray values of the image into a particular
sum of rank-1 matrices, what is known as singular value decomposition (svd; see
below for more discussion on this decomposition).

The fourth need is the need for communication. This need consists in two
reflexive needs: the need for formulation—the need to transform strings of spoken
language into algebraic expressions—and the need for formalization—the need to
externalize the exact meaning of ideas and concepts and the logical justification for
arguments. It is common that students experience difficulties formalizing a math-
ematical statement into a symbolic form. For example, students may understand
that to find a least square solution to an inconsistent system Ax= b, one needs to
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replace b by b,̂ such that b ̂ is the “closest” to ColA. The challenge for students is
two-fold: first, they have to reformulate this goal into mathematical statements,
verbally or symbolically, such as b ̂∈ColA and b− b⊥̂ColA; and second they have
to express these statements in terms of equation-based expressions, b ̂=Ac for some
vector c and ATðb− bÞ̂=0. This latter step is typically challenging for students.
Likewise, students may have an intuitive idea of what dimension is—usually in the
context of 2- and 3-dimensional Euclidean spaces, but experience difficulty
understanding the formalization of their intuition into a well-defined mathematical
concept.

The fifth, and final, need is the need for structure. The common meaning of the
term structure is something made up of a number of parts that are held or put
together in a particular way. In mathematics the way these “parts” are held together
are relations one conceives among different objects. For example, the expression
Ab=0 constitutes a structure for a person when he or she is conceives it as a string
of symbols put together in a particular way to convey a particular meaning, such as
0 is a linear combination of the columns of A with the entries of b being the weights
of the combination; or b is orthogonal to the row space of A.

In mathematics, in general, the need for structure manifests itself as a need to
encapsulate (in the sense of APOS theory) occurrences of phenomena. For example,
one might encapsulate a series of empirical observations concerning products of
square matrices into the patterns, detðABÞ= detðAÞ detðBÞ or trðABÞ= trðBAÞ;
another may derive such patterns through deduction or may observe them empir-
ically but see a need to establish them deductively. In linear algebra, there is the
critical need to encapsulate different structures into a single representation: a vector
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space over the reals as a single representation of all n-tuples of real number, of all
polynomials of degree less or equal to n with real coefficients, of all m× n matrices
with real entries, etc. This process of encapsulation assumes, of course, that
members of each of these spaces are conceived as conceptual entities (in the sense
of APOS theory and Greeno, 1992)) in, respectively, an n-dimensional,
n+1-dimensional, and mn-dimensional vector space.

Figure 6 expands Fig. 5 to include the DNR constructs discussed in this section.

5 Categories of Epistemological Justification

We distinguish among three categories of epistemological justifications: sentential,
apodictic, and meta. While the distinction among these types of epistemological
justification is sufficiently clear, as we will now see, it should be noted that they are
not mutually exclusive.

5.1 Sentential Epistemological Justification

Sentential epistemological justification (SEJ) refers to a situation when one is aware
of how a definition, axiom, or proposition was born out of a need to resolve a
problematic situation. It is called so because it pertains to sentences with objective
and logical meaning. To illustrate, consider how linear algebra textbooks typically
introduce the pivotal concepts of “eigenvalue,” “eigenvector,” and “matrix diago-
nalization”. A widely used linear algebra textbook motivates these concepts by
saying that the concepts of “eigenvalue” and “eigenvector” are needed to deal with
the problem of factoring an n× n matrix A into a product of the form XDX − 1, where
D is diagonal, and that this factorization would provide important information about
A, such as its rank and determinant. Such an introductory statement aims at pointing
out to the student an important problem. While the problem is intellectually intrinsic
to its poser (a university instructor), it is most likely to be alien to a student in an
elementary linear algebra course, who is unlikely to realize from such a statement
the true nature of the problem, its mathematical importance, and the role the con-
cepts to be taught (“eigenvalue,” “eigenvector,” and “diagonalization”) play in
solving it.

One of the alternative approaches to this presentation, based particularly on
students’ intellectual need for computation, is through linear systems of differential
equations, which has been experimented successfully several times. In this
approach, one begins with an initial-value problem (e.g., a mixture problem)
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involving a sequence of rate of change functions, f ′1ðtÞ, f ′2ðtÞ, . . . , f ′nðtÞ, each is a
linear combination of the original position functions, f1ðtÞ, f2ðtÞ, . . . , fnðtÞ. This
leads to a linear system of differential equations of the form:

AYðtÞ=Y ′ðtÞ
Yð0Þ=C

�
ð1Þ

where A is a real square matrix. Students are asked to analogize system (*) to the
scalar case:

ayðtÞ= y′ðtÞ
yð0Þ= c

�
ð2Þ

At first, students’ typically propose a solution to system (1) that is symbolically
analogous to the solution of system (2), which they are familiar with from calculus;
that is, corresponding to the symbolic structure of yðtÞ= ceat, students offer
YðtÞ=CeAt (sic). A discussion of the meaning of the latter expression leads the
students to (a) revise the expression At into tA and (b) probe into the definition of
the concept of “e to the power of a square matrix.” This question is resolved by,
again, analogizing eB, where B is a square matrix, to eb where b is a scalar, resulting
in the definition, eB = ∑∞

i=0 ð1 ̸i!ÞBi.4 By considering the sizes of the matrices
involved in the product CetA in their proposed solution, students come to realize that
there is a need to perform a third revision, from YðtÞ=CetA to YðtÞ= etAC. Once the
students have verified that their revised proposed solution works, the instructor
returns to the solution in its expansion form, YðtÞ= etAC= ∑∞

i=0 ðti ̸i!ÞAiC, and
points out the following critical observation: If it so happens that there is a rela-
tionship between the condition vector C and the coefficient matrix A in the form of
AC= λC for some scalar λ, then the solution to system (1) would be easily com-
putable: YðtÞ= eλtC. This observation necessitates attention to the relation AC= λC,
and due to its perceived significance it deserves a name: C is called an eigenvector
of A and λ its corresponding eigenvalue. Thus, students learn a sentential episte-
mological justification for the emergence of these central linear algebraic concepts;
the concepts do not emerge out of the blue, as is typically the case in textbooks.

Following a few examples of solving system (1), the instructor (and in many
cases the students themselves) raises the question about the computability of the
solution in cases where the condition vector is not an eigenvector of the coefficient
matrix. This leads, in turn, to the observation that whenever the condition vector C
is a linear combination of eigenvectors of A, the solution is still easily computable:
YðtÞ= etAC= ∑k

i=1 aie
λi tvi, where C= ∑k

i=1 aivi and Avi = λivi.

4Questions concerning convergence are not discussed, though on rare occasions were raised by
students.
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With this background, the instructor turns to the special case where A has a basis
of eigenvectors, in which case the solution is easily computable for any choice of C.
For a more advanced linear algebra course, the proceeding discussion continues the
investigation of the computability of the solution to system (1), leading up in a long
journey to Jordan Theorem (and its related Canonical Form); namely, that
remarkably system (1) is always easily computable since each vector is a linear
combination of generalized eigen vectors.

We see here an example of how content presentation in linear algebra can be
structured in a way that students develop sentential epistemological justifications
for the birth of concepts through intellectual need, whereby students become
partners in knowledge development, not passive receivers of ready-made
knowledge.

5.2 Apodictic Epistemological Justification (AEJ)

The second category is apodictic epistemological justification (AEJ). This pertains
to the process of proving; hence, the term apodictic. It is when one views a par-
ticular logical implication, α⇒ β, in causality, or explanatory, terms—how α causes
β to happen; that is, how α explains the presence of β. Consider, for example, the
Spectral Theorem: Any n× n real symmetric matrix A is orthogonally diagonaliz-
able (i.e., A=VΛVT , where V is orthogonal and Λ diagonal). An apodictic epis-
temological justification of this assertion is present with a student when he or she
exhibits an understanding of how the combined features of being real and sym-
metric are “responsible” for the matrix to be orthogonally diagonalizable—how
specifically the absence of one of these features would derail the proof of the
assertion. The central characteristic of AEJ is that the student is aware of the role
that the various conditions in the hypothesis of an assertion play in its proof. The
student, however, does not necessarily cognizant of the way the proof was con-
ceived—that is a characteristic of the meta epistemological justification which we
will discuss in the next section.

AEJ is a way of thinking not addressed sufficiently in mathematics instruction. It
is acquired through repeated experience of probing into the specific role the con-
ditions comprising a hypothesis of an assertion play in the proof. We conjecture that
through the acquisition of this way of thinking students’ ability to produce proofs is
advanced. Consider the following episode.

In a matrix-based linear algebra course, a particular attention was paid to epis-
temological justifications (as well as to other ways of thinking—thinking in terms
of block matrices is one of them). At one point during the first half of the course, the
instructor presented what is known as the Basis Theorem.
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Let H be a p-dimensional subspace of Rn, and let v1, v2, . . . , vp be vectors in H.

1. If v1, v2, . . . , vp span H, then they are linearly independent.
2. If v1, v2, . . . , vp are linearly independent, then they span H.

As was the standard practice in this course, the students were asked to work in
groups on comprehending the theorem, not necessarily proving it. After about
12 min, the instructor initiated a classroom discussion about the theorem. One of
the students said something to the effect that she and her working mate thought that
for Claim (1) there is a need to express two facts: that H is a p-dimensional
subspace of Rn and that v1, v2, . . . , vp span H, and so, she continued, they let
U = u1 u2 . . . up½ � be a matrix basis for H and U =VA for some matrix A,
where V = v1 v2 . . . vp½ �. By this time, we should mention, the class as a
whole got accustom to the approach of representing relationship in terms of matrix
equations. After some further discussion, the instructor asked what other sufficient
conditions in Claim 1 has not been expressed. Another student in the class
responded that the fact that the columns of U are linearly independent hasn’t been
used. With help from the instructor to consider the sizes of the matrices involved in
the equation U =VA, one of students declared that A must be a square matrix (p× p)
and that since the columns of U are linearly independent A must be invertible (a fact
which was previously proved and used on several occasions during the course).
Following additional time for the students to collaborate on completing the proof,
one of the working groups came to the board and completed the proof, saying
something to the effect that since U =VA and A is invertible, V =UA− 1. And since
the columns of A− 1 are linearly independent, the columns of V are linearly inde-
pendent, as was required.

It is interesting and important to add that this student also indicated at the end of
his presentation that he used ideas he learned from the proof of the Dimension
Theorem (All bases of a subspace H of Rn have the same number of vectors), which
the instructor presented a week earlier. Indeed the proof just presented includes
considerations similar to those made in the proof of the Dimension Theorem. The
latter proof began by setting two basis matrices U = u1 u2 . . . uk½ � and
V = v1 v2 . . . vr½ �, aiming at showing that k= r. The similar considerations are
that since U and V are basis matrices, their columns span H, and therefore there
exist two matrices M and N such that U =VM and V =UN. By considering the
sizes of the matrices involved, it was concluded that M is an r × k matrix and N is a
k × r matrix. But since the columns of each of these matrices are linearly inde-
pendent, r≥ k and k≥ r, respectively, and hence k= r.

5.3 Meta Epistemological Justification (MEJ)

The third, and final, category is meta epistemological justification (MEJ). This
refers to a situation when one not only views a proof in explanatory terms but also
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one is aware of how the proof came into being. To illustrate, consider the Singular
Value Decomposition (SVD) Theorem. We reviewed the proof of this theorem in
five commonly used linear textbooks. In each case the proof is presented with
virtually no epistemological justification. Generally, the proof commences with the
observation that for any m× n real matrix A (without loss of generality, m≥ n), ATA
is symmetric, and then abruptly the textbook offer three ready-made matrices V , Σ,
and U for the decomposition A=UΣVT . In this presentation, even students who
fully understand the proof are unlikely to gain an insight as to how the proof might
have come into light—students are not partners in figuring out possible sources of
the proof ideas.

The following is an alternative presentation used in our classes. Its ultimate goal
was not just to prove the SVD theorem, but to help students acquire an MEJ for the
proof. Of course, the theorem itself was first necessitated through a suitable SEJ for
its statement. We introduced the theorem in the context of the need to reduce the
amount of data in transmitting a digitized image without affecting significantly the
quality of the image, by expressing the matrix representing the array of the gray
levels of the image’s pixels as a sum of rank-1 matrices, i.e.,
A= σ1u1v1T + σ2u2v2T +⋯+ σnunvnT , where σ1 ≥ σ2 ≥⋯≥ σn, and then curtailing
a certain number of addends in the tail of the sum.5 Following this, the proof
evolved through the MEJ outlined below:

1. At this stage of the course, the students have witnessed the utility of matrix
representations in solving problems and proving theorems (e.g., representing a
set of differential equations emerging from application problems, such as mix-
ture problems, in terms of matrix equations (see Sect. 5.1) or the Dimension
Theorem and Basis Theorem (see Sect. 5.2), and so the students seemed
receptive to the idea to represent the desired equation, A= σ1u1v1T +
σ2u2v2T +⋯+ σnunvnT , in the form of the matrix equation, A=UΣVT , where
U = u1 u2 . . . um½ �, ðΣÞij = σi if i= j and ðΣÞij =0 if i≠ j for 1≤ i, j≤m,
and V = v1 v2 . . . vn½ �.

2. Students were then told that we have here an equation with three unknowns, U,
Σ, and V , and that the goal is to try to eliminate one of the unknowns. We note
that students are well familiar with eliminating unknowns as a strategy to solve
equations, so this proposed approach by the instructor is unlikely to have been
foreign to them.

3. The instructor then wrote AT =VΣUT on the board and asked if they can offer an
idea as to how to eliminate one of the unknowns. After about 8 min of con-
sultation among students in their working groups, one of the students indicated
something to the effect that if U were orthogonal, it would be eliminated in the

5Of course other contexts can be used as SEJ for the SVD Theorem. The problem of transmitting a
digitized image is typically used in textbooks as an application of SVD; we, on the hand, used it as
an intellectual motivation (see the distinction between “application” and “intellectual need” in
Sect. 3).
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product ATA. But, he then added, “we do not know that U is orthogonal”. The
observation that the product of an orthogonal matrix and its transpose disappears
in computing various expressions was well familiar to students at this point of
the course; for example, in calculating the power of a diagonalizable matrix, and
in computing a UR-factorization using the Gram-Schmidt process.

4. The instructor then responded: “Let see what happens if we assume that the
unknown matrix U is orthogonal”. It is important to point out that this last
dialogue between one of the students and the instructor represents a significant
way of thinking in mathematical practice, that a desired mathematical result is
conditioned a priori by a particular hypothesis. The instructor then pursued the
student’s proposal to obtain, ATA=VðΣTΣÞVT =VΣ1VT , where Σ1 is a diagonal
matrix with σ12 ⋅ σ22, . . . , σn2 on its diagonal.

5. With no further responses from the students as to how to proceed, the instructor
drew students’ attention to the fact that ATA is symmetric, urging them to recall
a major result obtained previously in class about symmetric matrices. This,
pleasingly, prompted another student to offer taking the missing matrix V as an
orthogonal diagonalizing matrix of ATA, whose existence is guaranteed by the
Spectral Theorem.

6. None of the students raised the concern that the proposed V entails that the
eigenvalues of ATA must be non-negative. This concern was raised by the
instructor, which he then resolved by showing that indeed—remarkably—this
was the case. Thus, in collaboration with the students two of the three unknown
matrices V and Σ were successfully constructed.

7. These results then paved the path for the construction of U: that the first r
columns of U are necessarily ui = 1

σi
Avi, members of ColA and corresponding to

the r positive values σ1, σ2, . . . , σr (the singular values), and the rest are to be
any orthonormal vectors in ðColAÞ⊥ =NulAT . The fact that the vector ui = 1

σi
Avi

turned out to be orthonormal, as needed, fascinated some students.

Surely the reader is familiar with the proof of the SVD Theorem—and all the
other proofs, concepts, and ideas discussed in this paper, for that matter. Their
appearance in the paper aimed at demonstrating how they can be introduced from
the perspective of intellectual need and epistemological justification.

We conclude that students’ success in acquiring and applying desirable ways of
understanding and ways of thinking in our courses has been correlated with, and
therefore, attributed to, the persistent application of DNR-based instruction, with
particular attention to intellectual need and epistemological justification in their
various manifestations. A critical principle of this instruction, beyond the appli-
cation of the duality principle and the necessity principle we discussed earlier, is the
repeated-reasoning principle, which states: Students must practice reasoning in
order to internalize, organize, and retain ways of understanding and ways of
thinking. Research has shown that repeated experience is a critical factor in these
cognitive processes (Cooper, 1991). Repeated reasoning, not mere drill and practice
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of routine problems, is essential to the process of internalization—a conceptual state
where one is able to apply knowledge autonomously and spontaneously—and
reorganization of knowledge. The sequence of problems must continually call for
reasoning through the situations and solutions, and they must respond to the stu-
dents’ changing intellectual needs.

Consonant with the repeated-reasoning principle, we typically keep the number
of theorems presented in elementary linear algebra courses to a minimum, letting
students reason and re-reason about various relations and claims (e.g., in terms of
row reduction when relevant), rather than stating them as theorems ready to be
used. Once a claim is stated as a theorem and proved, there is little incentive for the
students to reason about the underlying ideas of its proof (Harel & Sowder, 1998).
It should be clear, however, that we are not advocating eliminating theorems from
the course; rather, we are advocating preserving the title “theorem” to truly
“non-trivial” assertions. For example, the claim “A system Ax= b is consistent iff an
echelon form of the augmented matrix A bj½ � does not have a row of the form
0 0 . . . 0 cj½ �, where c≠ 0 does not deserve the title theorem, for a brief
inspection of the meaning of such a row should be sufficient to conclude that the
system is inconsistent. On the other hand, the claim “Eigenvectors corresponding to
distinct eigenvalues are linearly independent” is relatively not trivial and so it
entitled to the label “theorem”. This pedagogical approach is generally antithetical
to the approach taken in many current linear algebra textbooks, where even simple
claims are stated as propositions or theorems (see for example, the “Invertible
Matrix Theorem” with its 25 logically equivalent statements in the widely used
linear algebra textbook by Lay, Lay, and McDonald (2016).

Figure 7 expands Fig. 6 to include the DNR constructs discussed in this section.
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6 Summary

In this paper we theorized and illustrated the role and function of intellectual need
and epistemological justification and their constituents in the learning and teaching
of linear algebra. We presented two systems of classifications for intellectual need.
The first system consists of two subcategories, global need and local need; and the
second system consists of five categories of needs: need for certainty, need for
causality, need for computation, need for communication, and formalization, and
need for structure. We also presented a classification of epistemological justifica-
tion into three categories: sentential epistemological justification (SEJ), apodictic
epistemological justification (ASJ), and meta epistemological justification (MEJ).
The main constituent elements for intellectual need and epistemological justifica-
tion presented in this paper are the concepts of ways of understanding and ways of
thinking and four out of the eight premises of DNR: the mathematical knowledge
premise, the knowing premise, the knowledge-knowing linkage premise, and the
subjectivity premise. Figure 7 depicts this web of the DNR concepts discussed in
this paper. The three foundational principles that articulate best the essence of DNR-
based instruction are the duality principle, the necessity principle, and the repeated
reasoning principle, also depicted in Fig. 7.

The central focus of the paper, however, is the instantiations and role of this
network of DNR cognitive and epistemological concepts in the learning and
teaching of linear algebra. We illustrated how certain ways of thinking (e.g., def-
initional reasoning) play a critical role in the ways students understand fundamental
linear algebraic concepts (e.g., the concept of dimension and projection matrix),
claiming that the acquisition and internalization of desirable linear algebraic ways
of understanding and ways of thinking can only take place by positioning the
intellectual need of the student in the center of the instructional effort (the necessity
principle), by instruction being cognizant of and explicit about the role and function
of ways of thinking in solving problems (the duality principle), and by providing
the students with opportunity to reason repeatedly about problematic situations that
call for the application of such ways of understanding and ways of thinking (the
repeated-reasoning principle).

We also illustrated how successful students can be in linear algebra when such
an instructional approach is applied. We posited that a persistent instructional effort
to, for example, present row reduction and block matrices as conceptual tools to
represent and solve problems contribute to the emergence of sophisticated linear
algebraic conceptualizations among students (e.g., the proofs provided by students
for the theorem dimColA= dimRowA and the Basis Theorem).

The underlying approach of focusing on both ways of understanding and ways of
thinking, not only the former as is typically the case in traditional linear algebra
curricula, is the knowledge premise, which provides equal status to these two
categories of knowledge in the mathematics discipline. (For a fuller discussion, see
Harel, 2008c.) The focus on intellectual need and epistemological justification is
theoretically entailed from the knowing-knowledge linkage premise, which
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collectively assert that knowledge construction is (a) possible only through intel-
lectual perturbation and (b) that resolutions of such perturbations always exist for an
individual or community who possess suitable mental structures. Entailed from the
subjectivity premise is that intellectual need and epistemological justification, as
well as ways of understanding and ways of thinking, are not fixed; rather, their
origin and acquisition vary across individuals and communities. Furthermore, they
typically are not historical.

The various classifications of intellectual need aimed at addressing different roles
in curriculum development and instruction. While global need pertains to the
structure of a mathematics curriculum, as we have demonstrated through an outline
of a part of a DNR-based elementary course in matrix theory, local need pertains to
elicitation of specific concepts and ideas, as we have shown for the concepts of
linear combination, equivalent systems, linear independence, basis, eigen value,
eigen vector, and diagonalization.

Ways of understanding and ways of thinking emerge in a variety of mathe-
matical practices, when mathematicians encounter a need to be certain, to determine
cause, to compute, to communicate, and to structure. Humans seem to have been
endowed with cognitive primitive (pre-conceptualizations whose function is to
orient us to the intellectual needs we experience when we learn mathematics; see
Harel, 2013a), but in essence these are learned needs. We have illustrated the
difficulties students encounter in acquiring and applying some of these needs (e.g.,
the need to formulate the notion of “closest” in terms of linear algebraic equations
and the need formalize the intuitive concept of dimension).

Lastly, epistemological justification represents a higher level of mathematical
knowledge—not only does one possess a desirable way of understanding of a
particular concept, but also is being aware of how that concept was born out of a
need to resolve a problematic situation (sentential epistemological justification—
SEJ); not only does one understand the proof of an implication, but also under-
stands the proof in terms of cause (apodictic epistemological justification—AEJ);
and not only does one understand a proof of logical implications in terms of cause
but also is aware of how the construction of the proof might have come about (meta
epistemological justification—MEJ). We have demonstrated the application of each
of these categories of epistemological justification in the context linear algebra.

We hope that the analyses presented in this paper will generate interest on the
part of mathematics education researchers whose research focus is the learning and
teaching of linear algebra to test empirically the central theoretical claim made in
this paper: Does instruction that is organized around intellectual need and episte-
mological justification and their constituent elements, as were articulated in this
paper, result in advanced performance by students in linear algebra courses?
Elsewhere we discussed the development, application, and utility of DNR-based
curricula in linear algebra (Harel, in press a), complex numbers (Harel, 2013b),
geometry (Harel, 2014), proof (Harel & Sowder, 1998), and mathematical practice
(Harel, in press b; Harel & Soto, in press).
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