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Foreword

Linear algebra is arguably one of the more interesting (and complex) domains that
students encounter in their first 2 years at university. The reasons for this include
both the nature of a typical first course in linear algebra and the vitality of linear
algebra beyond the first course. At the course level, linear algebra is one of the first
opportunities for students to wrestle with definitions and proofs. In comparison to
much of their prior mathematical experiences that emphasize procedural compe-
tency, linear algebra includes a rich array of new ideas, including linear indepen-
dence, span, linear transformations, eigen theory, vector spaces, invertibility, rank,
kernel, etc. These new concepts require students to carefully and consciously use
definitions and to prove fundamental statements related to these ideas, all of which
is something new for first-year university students. The extensive use of definitions
and reliance on theorems often gives the first course an abstract and theoretical
flavor, something that experts relish but which many students find distasteful.
Linear algebra is also one of the richest domains for making connections between
course concepts. For example, what many refer to as the invertible matric theorem
relates over a dozen equivalent concepts. Thus students must not only understand
the ideas themselves, but they must also develop reasons for how and why ideas are
related. It is no wonder then that the literature is replete with studies that examine
the challenges and difficulties that students encounter in linear algebra.

The importance of connections extends well beyond course-specific concepts.
Indeed, linear algebra is also a vital area of mathematics, both within the discipline
and across disciplines. For example, in differential equations, eigen theory plays an
essential role in understanding linear homogeneous systems, which then provide
useful tools for analyzing nonlinear systems. The concepts in linear algebra also
play important roles in more advanced mathematics, including functional analysis
and abstract algebra. Linear algebra also plays a vital role in other disciplines such
as physics, engineering, and economics.

Despite the growth of research focused on the learning and teaching of linear
algebra, there is still tremendous need for work that further examines students’
difficulties, the underlying reasons for these difficulties, and instructional sequences
and pedagogical approaches that have promise to promote student progress and
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deep understanding of the ideas in linear algebra and its widespread applicability.
This book makes a significant contribution in addressing these needs that span
research and practice. In terms of research, several of the chapters in this volume
illuminate particular theoretical developments about learning as they relate to linear
algebra, while other chapters offer a wide range of interesting and challenging
problems that promise to engage students and promote deep understanding of core
ideas. Just as these problems will be interesting for students, so will this volume be
for readers.

San Diego, USA Chris Rasmussen
San Diego State University
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Introduction

This book stems from the work of a Discussion Group (Teaching Linear Algebra)
that was held at the 13th International Conference on Mathematics Education
(ICME-13). The organizers of this Discussion Group (who are also the co-editors of
this volume) aimed to orchestrate a conversation that would highlight current efforts
regarding research and practice on teaching and learning of linear algebra from
around the world. Their ultimate goal was to initiate a multinational research project
on how to foster conceptual understanding of Linear Algebra concepts. This con-
versation was organized around a theme of problems and issues, with a particular
focus on mathematical problems that are productive for learning. Key questions and
issues discussed were as follows:

a. How can applications of Linear Algebra be used as motivation for studying the
topic?

b. What are the advantages of proving results in Linear Algebra in different ways?
c. In what ways can a linear algebra course be adapted to meet the needs of

students from other disciplines, such as engineering, physics, and computer
science?

d. How can challenging problems be used in teaching Linear Algebra?
e. In what way should technology be used in teaching Linear Algebra?
f. What is the role of visualization in learning Linear Algebra?
g. In what order (pictures, symbols, definitions, and theorems) should we teach

Linear Algebra concepts?
h. How can we educate students to appreciate the importance of deep under-

standing of Linear Algebra concepts?

While this rich list of questions was motivating, at the time of the 2-day meeting
at ICME, the conversations gave rise to a common theme focusing on problems and
issues in Linear Algebra instruction and ultimately the making of this book.

This volume offers insights into recent work related to the teaching and learning
of linear algebra across a range of countries and contexts, drawing on expertise of
mathematics educational researchers and research mathematicians with experience
teaching linear algebra. The 18 chapters of this book represent work from nine
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countries: Austria, Germany, Israel, Ireland, Mexico, Slovenia, Turkey, USA, and
Zimbabwe. Chapters share a thread of commonality in their focus on the use of
challenging problems or tasks that are supportive of student learning. The chapters
are organized in four sections: Chapters highlighting a theoretical perspective on the
teaching and learning of Linear Algebra, chapters based on empirical analyses
related to learning of particular content in linear algebra, chapters focusing on the
use of technology and dynamic geometry software, and chapters featuring examples
of challenging problems that experienced practitioners have found to be peda-
gogically useful.

Theoretical Perspectives Elaborated Through Tasks

The first three chapters in this volume focus on pedagogical aspects of Linear
Algebra theoretically. In his chapter, Guershon Harel builds on his instructional
framework, which is organized around notions of Duality, Necessity, and Repeated
reasoning (DNR). Specifically, he considers the role of cognitive and pedagogical
aspects of Linear Algebra through the lenses of two main DNR concepts, namely,
intellectual need and epistemological justification, and exemplifies them through a
variety of Linear Algebra tasks. Harel invites the mathematics community to reflect
on whether instruction that is organized around this theoretical viewpoint will have
an effect in advancing Linear Algebra students’ performance.

Continuing the theoretical conversation, Maria Trigueros’s chapter proposes a
teaching approach that builds on theory about Actions, Processes, Objects, and
Schema (APOS) through the use of several challenging modeling situations and
tasks designed to introduce some main linear algebra concepts. The results reveal
crucial moments as students develop new strategies, resulting in further under-
standing of the concepts.

Based on her work with research mathematicians, Sepideh Stewart believes that
creating opportunities to move between Tall’s (2013) Worlds of mathematical
thinking will encourage students to think in multiple modes of thinking and
increases their abilities in dealing with problems from different angles. In her
chapter, she proposes a set of Linear Algebra tasks designed to move learners
among Tall’s Worlds.

Analyses of Learners’ Approaches and Resources

The empirical analyses section of this book offers an exciting variety of findings
across populations and topic areas in linear algebra. Data is taken from populations
ranging from middle and high school students in Mexico to undergraduates in
North and Central America, to current teachers updating their certification through
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undergraduate coursework in Zimbabwe. Topics include systems of linear equa-
tions, matrix multiplication, determinants, vector spaces, eigenvectors, and
eigenvalues.

Asuman Oktac provides a synthesis of three previously unpublished thesis
studies examining student reasoning about systems of linear equations across
middle school, high school, and university contexts (Mora Rodríguez 2001; Cutz
Kantún 2005; Ochoviet Filguieras 2009). All three studies were conducted in
Mexico and written in Spanish. This chapter identifies points of commonality
across these studies and leverages a common theoretical framework, making these
findings available to an English-speaking audience.

John Paul Cook, Dov Zazkis, and Adam Estrup point to conceptual underpin-
nings entailed in matrix multiplication as motivation for analyzing how matrix
multiplication is introduced and motivated in 24 introductory linear algebra text-
books. This work provides a timely update to Harel’s (1987) textbook analysis and
expands the corresponding framework to include computational efficiency.
Additionally, this piece offers insight into the variety of ways current texts address
the issue of matrix multiplication, considers aspects of reasoning emphasized and
valued in each approach, and draws connections between textbook approaches and
current research on student reasoning.

The chapter by Cathrine Kazunga and Sarah Bansilal, as well as the chapter by
Lillias Mutambara and Sarah Bansilal, draws on data from a population of current
mathematics teachers who were part-time students at a Zimbabwean university to
meet new teacher certification requirements in the country. Their chapters provide
analyses of participants’ understanding of determinants and vector spaces,
respectively.

The chapter by David Plaxco, Michelle Zandieh, and Megan Wawro, and the
chapter by Khalid Bouhjar, Christine Andrews-Larson, Muhammad Haider, and
Michelle Zandieh both offer insights into student reasoning about eigenvectors and
eigenvalues in the context of inquiry-oriented instruction. The Plaxco et al. chapter
offers insights into student reasoning in a guided reinvention approach drawn from
classroom data, whereas the Bouhjar et al. chapter documents the effectiveness of
this approach by comparing written assessment data of students who learned
through this approach with students who learned the material in more standard
ways.

Dynamic Geometry Approaches

Three of the chapters in this book discuss ways that technology can influence the
learning of Linear Algebra. Hamide Dogan’s chapter compares learners who were
exposed to dynamic visual representations to those who were exposed to the tra-
ditional instructional tools. She found notable differences in the nature of the mental
schemes displayed by learners in the two groups. In addition, those students
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exposed to dynamic visual representations were able to use this geometry-based
knowledge to make sense of more abstract algebraic ideas. Melih Turgut’s chapter
uses the theory of semiotic mediation to describe how the tools and functions of a
dynamic geometric system affect student learning. In particular, he focuses on how
these tools mediated the evolution of student reasoning about linear transformations
from personal meanings based on work in R2 to new mathematical meanings in R3

and Rn. Ana Donevska-Todorova’s chapter takes a broader perspective in consid-
ering which technology-enhanced environments may best affect student learning of
different competencies. She suggests a nested model that illustrates how three
modes of thinking in linear algebra can be related to the design of tasks or teaching
environments.

Challenging Tasks with Pedagogy in Mind

The last six chapters of the book involve challenging tasks that illustrate the beauty
and usefulness of linear algebra and feature many applications. Barak Pearlmutter
and Helena Smigoc show how nonnegative factorization of data matrices can
motivate the study of basic Linear Algebra. They give a simple example stopping at
discussion points. Their chapter includes an example of factoring a data matrix of
module descriptors for 62 mathematics modules that were taught in their school.
The chapter by Avi Berman uses formulas on Fibonacci numbers, a proof of the
uniqueness of Lagrange polynomials, a periodicity two property of neural networks,
and a computer game on lights as examples of challenging problems that can be
used as motivation in teaching Linear Algebra. Franz Pauer describes a computa-
tional approach to teaching systems of linear equations. He gives an example of
electric circuits and concludes his chapter with geometric interpretation. Frank
Uhlig demonstrates his successful experience of holistic teaching and holistic
learning with a Linear Algebra example of plane rotation. David Strong suggests
how to motivate a course, how to motivate a chapter, and how to motivate an idea.
He describes many motivational applications including systems of equations, dis-
crete dynamical systems, QR factorization, traffic flow, and investments. Damjan
Kobal describes how basic linear algebra concepts can be used for a smooth
transformation from intuitive to abstract cognition and to deepen students’ under-
standing. The applications in his chapter include Brower fixed point theorem,
projective spaces, and barycentric and trilinear coordinates.

In its breadth of perspectives, this book offers a tremendous number of resources
on teaching linear algebra, while also bringing together a community of those
interested in pedagogical issues in linear algebra from around the world. It is our
intention to continue the work started with the ICME-13 Discussion Group on
Teaching Linear Algebra as we meet at other international conferences to further
these discussions.
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The Learning and Teaching of Linear
Algebra Through the Lenses of Intellectual
Need and Epistemological Justification
and Their Constituents

Guershon Harel

Abstract Intellectual need and epistemological justification are two central con-
structs in a conceptual framework called DNR-based instruction in mathematics.
This is a theoretical paper aiming at analyzing the implications of these constructs
and their constituent elements to the learning and teaching of linear algebra. At the
center of these analyses are classifications of intellectual need and epistemological
justification in mathematical practice along with their implications to linear algebra
curriculum development and instruction. Two systems of classifications for intel-
lectual need are discussed. The first system consists of two subcategories, global
need and local need; and the second system consists of five categories of needs:
need for certainty, need for causality, need for computation, need for communi-
cation, and formalization, and need for structure. Epistemological justification is
classified into three categories: sentential epistemological justification (SEJ), apo-
dictic epistemological justification (ASJ), and meta epistemological justification
(MEJ).

Keywords Intellectual need ⋅ Epistemological justification

DNR-based instruction in mathematics (DNR, for short; Harel, 1998, 2000, 2008a,
b, c, 2013a, b) is a theoretical framework for the learning and teaching of mathe-
matics—a framework that provides a language and tools to formulate and address
critical curricular and instructional concerns. DNR can be thought of as a system
consisting of three categories of constructs: premises—explicit assumptions
underlying the DNR concepts and claims; concepts—constructs defined and ori-
ented within these premises; and claims—statements formulated in terms of the
DNR concepts, entailed from the DNR premises, and supported by empirical
studies.

G. Harel (✉)
University of California, San Diego, USA
e-mail: harel@math.ucsd.edu

© Springer International Publishing AG 2018
S. Stewart et al. (eds.), Challenges and Strategies in Teaching Linear Algebra,
ICME-13 Monographs, https://doi.org/10.1007/978-3-319-66811-6_1
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The main goal of this paper is to discuss cognitive and pedagogical aspects of
linear algebra through the lenses of two central DNR concepts: intellectual need and
epistemological justification. As the above list of references indicates, DNR has
been discussed extensively elsewhere, and so in this paper we only reiterate briefly
the definitions of these concepts along with their essential constituent elements: the
concepts of ways of understanding and ways of thinking and four out of the eight
premises of DNR.

We begin in Sect. 1 with the concepts of ways of understanding and ways of
thinking. Following this, in Sect. 2, we discuss the four DNR premises. With these
concepts and premises in hand, we turn, in Sect. 3, to the definition of intellectual
need and epistemological justification. The fourth and fifth sections present,
respectively, more refined analyses into various categories of the latter two con-
cepts. The sixth, and last, section concludes with reflections and research questions.
In each section, the discussion is accompanied with observations made in teaching
experiments in linear algebra we have conducted during the years. In this respect,
this is a theoretical, not empirical, paper. That is, the purpose of the paper is to
theorize and illustrate the role and function of intellectual need and epistemological
justification and their constituent elements in the learning and teaching of linear
algebra.

To help the reader navigate through the various DNR terms introduced in this
paper, we end each section with a figure depicting the network of terms accrued up
to that section. Figure 1, for example, depicts the three categories of constructs
comprising DNR outlined in this introduction. The rest of the figures in the paper
will be expansions of this figure.

1 Ways of Understanding and Ways of Thinking

The notions of way of understanding and way of thinking have technical definitions
(see Harel, 2008c). However, for the purpose of this paper it is sufficient to think of
them as two different categories of knowledge, the first refers to one’s conceptu-
alization of “subject matter,” such as the way one interprets particular definitions,
theorems, proofs, problems and their solutions; and the second refers to “conceptual
tools,” such as deductive reasoning, empirical reasoning, attention to structure and
precision, and problem-solving approaches (e.g., heuristics). One of the central

DNR

Premises Concepts Claims

Fig. 1 DNR’s three
categories of constructs
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claims of DNR, called the duality principle, asserts that (a) one’s ways of thinking
impacts her or his ways of understanding; and, (b) it is the acquisition of appro-
priate ways of understanding that brings about a change and development in one’s
ways of thinking.

To illustrate, consider the following example. A mathematically mature student
who possesses definitional reasoning—the way of thinking by which one examines
concepts and proves assertions in terms of well-defined statements—is likely to
understand the concept of dimension of a subspace as intended—the number of
vectors in a basis of the subspace—but he or she would also realize that such a
definition is meaningless without answering the question whether all bases of a
subspace have the same number of vectors. Another student, for whom definitional
reasoning has not yet reached full maturity, may have the same understanding
without realizing the need to settle this question. Yet another student whose con-
ceptualization of mathematics is principally action-based (in the sense of APOS
theory),1 is likely to understand the concept of dimension in terms of a rule applied
to n-tuples. For such a student, the dimension of a span of a set of vectors in Rn

amounts to carrying out a procedure of, for example, setting up these vectors as the
columns of a matrix, row reducing the matrix, and determining, accordingly, the
number of pivot columns the matrix has. We observed each of these three con-
ceptualizations among students on various occasions, even in upper division linear
algebra courses. And scenarios corresponding to these three conceptualizations
have occurred throughout our teaching experiments when attention to a
well-defined concept was called for. For example, when the instructor concluded
that the projection matrix onto a subspace V of Rn is the matrix
P=WðWTWÞ− 1WT , where W is a basis matrix2 of V , there were a few students
who fully understood, and some even independently raised, the concern that P

1APOS theory (Arnon et al., 2014; Dubinsky, 1991) will be used to provide conceptual bases for
some of these observations. Given how widely this theory has been studied during the last three
decades, there is no need to allocate more than a brief illustration to the four levels of concep-
tualizations, action, process, object, and schema offered by the theory and used in this paper.
Briefly, consider the phrase “the coordinates of a vector of x with respect to a basis-matrix A in
Rn,” denoted by x½ �A. At the level of action conception, the learner might be able to deal with x½ �A
only in the context of a specific vector and a specific suitable basis-matrix, by following
step-by-step instruction to compute the respective coordinate vector. At the level of process
conception one is capable of imagining taking any vector x in Rn, representing it as a linear
combination of the columns of A, and forming a column vector whose entries are the coefficient
of, and are sequenced in the order they appear in, the combination. With this conceptualization,
the learner is able to carry out this process in thought and with no restriction on the vector x
considered. At the level of object conception, one is aware of the process of relating the two
coordinate vectors as a totality, for example, in finding the relation between two coordinate
vectors of x, one with respect to a basis-matrix A1, x½ �A1

, and one with respect to a basis-matrix
A2, x½ �A2

, whereby being able to express the relation in terms of a transition matrix S=A− 1
2 A1

between the two vectors. Among the ways of thinking that are essential to cope with linear
algebra, in particular, and mathematics, in general, are the abilities to construct concepts at the
levels of process conception and object conception, as it is demonstrate throughout the paper.
(See also Trigueros, this volume.)
2A matrix whose columns form a basis for a subspace.

The Learning and Teaching of Linear Algebra … 5



might be dependent on the choice of W . For most of the students, however, the
conclusion engendered no concern.

The implication of the second part of the duality principle is that students acquire
a particular way of thinking only by repeatedly dealing with specific ways of
understanding associated with that way of thinking. For example, students develop
definitional reasoning not by preaching but by repeatedly using definitions in the
process of mathematical argumentations and by dealing in a multitude of contexts
with the question whether a concept is well defined.

The examples of ways of thinking we have listed above are general—they
pertain to mathematics as a discipline. Different areas or sub-areas of mathematics,
however, can be branded by ways of thinking specific to them. The conceptual-
izations of matrix theory and the theory of general vector spaces share ways of
thinking (e.g., axiomatic proof schemes (Harel & Sowder, 1998) and structural
reasoning (Harel & Soto, 2016), and yet each is branded by a set of ways of
thinking unique to it. For example, while thinking in terms of row reduction and
block matrices is part of elementary matrix theory, it is often not applicable to
coordinate-free, vector spaces.

Problem-solving approaches are instances of ways of thinking (Harel, 2008c).
Therefore, “reasoning in terms of __ in solving problems” is an instance of a way of
thinking. For example, reasoning in terms functions, reasoning in terms of row
reduction, reasoning in terms of block matrices, reasoning in terms of linear
combinations are all problem-solving approaches, and hence are ways of thinking.
In our experience, the acquisition and application of such ways of thinking is
difficult for students. Consider, for example, reasoning in terms of block matrices
(known also as partitioned matrices) and linear combination. It is one thing
applying block-matrices rules to multiply matrices; it is another using block
matrices to represent and solve problems. Typically, students are able to perform at
the level of action conception (ala APOS theory) algebraic operations using block
matrices, but they experience major difficulties when block matrices are constructed
to represent relations and prove theorems. Consider the simple case of the product
Am× nxn×1 as a linear combination of the columns of A. We repeatedly observed
students having difficulties representing a common statement such as
“v1, v2, . . . , vk ∈ spanðu1, u2, . . . , umÞ⊆Rn

” in a matrix form: v1 v2 . . . vk½ �=
u1 u2 . . . um½ �Q for some Qm× k .
This difficulty manifested itself on numerous occasions, for example in com-

prehending the following proof of the theorem, “Any set of m linearly independent
vectors in an m-dimensional subspace H of Rn spans H”. The proof presented in
class was an elaboration of the following lines:

Let u1, u2, . . . , um be linearly independent vectors in H, and set U = u1 u2 . . . um½ �.
Let V = v1 v2 . . . vm½ � be a basis matrix of H. There exists a matrix Qm×m such that
U =VQ. Since the columns of U are linearly independent, Q is invertible, and so
UQ− 1 =V . Hence u1, u2, . . . , um span H.

We point to two obstacles students typically encounter in comprehending this
proof. The first revolves around the equation U =VQ; students indicate that they do
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not understand where the matrix Q came from, even after they are presented with an
explanation by their group mates or the instructor. A possible conceptual basis for
this difficulty is that the construction of Q requires performance at the level of
process conception (ala APOS theory), a form of abstraction known to be cogni-
tively demanding (Dubinsky, 1991). Specifically, one needs to construct, succes-
sively and in thought, each column of Q out of the coefficients of the expression
representing its corresponding column of U as a linear combination of the columns
of V (i.e., Qi = qi1 qi2 . . . qim½ �T , where Ui = ∑m

j=1 qijVi, i=1, 2, . . . ,m).
Even students who overcome this difficulty express discomfort with the claim that
the result UQ− 1 =V completes the proof. At the heart of this claim, and the
difficulty, is the fact that linear combination of linear combinations is a linear
combination—that since each vector in H is a linear combination of the columns of
V and each column of V is a linear combination of the columns of U, by UQ− 1 =V ,
ColU =H. Here too performance at the level of process conception seems essential,
in that one has to carry out this chain of relations in thought in order to fully bring
oneself to a firm conviction about the validity of the claim.

Figure 2 expands Fig. 1 to include the DNR constructs discussed in this section.

2 DNR Premises

DNR has eight premises; they are philosophical stands appropriated from existing
theories, such as the Piagetian theory of equilibration (Piaget, 1985), Brousseau’s
(1997) theory of didactical situation, and Aristotle. Relevant to this paper are four
of these premises; they are: the knowledge of mathematics premise, the knowing
premise, the knowledge-knowing linkage premise, and the subjectivity premise.
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Premises Concepts
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Understanding

Way of 
Thinking

Claims

Fig. 2 Two of the DNR
concepts: Ways of
understanding and ways of
thinking—
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The knowledge of mathematics premise states: knowledge of mathematics
consists of two related but different categories of knowledge: the ways of under-
standing and ways of thinking that have been institutionalized throughout history.3

The significance of this premise to mathematics instruction is that while knowledge
of and focus on ways of understanding is indispensable for quality teaching, it is not
sufficient. Mathematics instruction should also attend to ways of thinking. With this
instructional view one would teach, for example, row reduction not only as a tool to
solve systems of linear equations but be cognizant of and explicit about the value of
this tool in analyzing and answering theoretical questions. In accordance to the
duality principle stated earlier, the development of such a way of thinking is
facilitated by instruction that persistently models it in proving theorems and solving
problems, as the following episode illustrates.

The episode occurred in an elementary linear algebra class. The instructor
defined column rank and row rank. It turned out that the class as a whole dealt with
these concepts in an add-on Matlab component to the course (entirely not coordi-
nated with the instructional pace of the course), where the students have used the
fact that dimColA=dimRowA without proof. Before the instructor turned to prove
this statement, one of the students in the class exclaimed publically that she found
this fact fascinating—that for any array of numbers, “no matter what” (her words),
the maximum number of linearly independent columns equals the maximum
number of linearly independent rows. Then she added: “I kept thinking about it for
some time until I found why”. In response to the instructor’s question, “What was
the explanation you have found?” she said: “… by reducing the matrix into rref …
I always bring up rref … it helps me solve the homework problems”. Then she
proceeded by explaining how in rrefA the number of columns with a leading 1 is
necessarily equal to the number of rows with a leading 1, from which she concluded
that dimColA=dimRowA, using the previously proved facts that row reduction
preserves dependence/independence of the columns of A as well as RowA.

We posit that the instructor’s explicit and persistent effort to present row
reduction as a conceptual tool in proving theorems and solving problems con-
tributed to conceptualizations as the one articulated by this student.

The next two premises are inextricably linked; one is about knowing and the
other about the linkage between knowing and knowledge. The knowing premise
states: The means of knowing is the process of assimilation and accommodation.
According to Piaget (1985), disequilibrium, or perturbation, is a mental state when
one fails to assimilate. Equilibrium, on the other hand, is a state in which one
perceives success in assimilating. In Piaget’s terms, equilibrium occurs when one
has successfully modified her or his viewpoint (accommodation) and is able, as a
result, to integrate new ideas toward obtaining a solution of a problem (assimila-
tion). The knowing-knowledge linkage premise states: Any piece of knowledge
humans know is an outcome of their resolution of a problematic situation
(Brousseau, 1997; Piaget, 1985). This premise is an extension of the knowing

3For the philosophical foundations of this premise, see Harel (2008c).
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premise. While the knowing premise is about the mechanism of learning, the
knowing-knowledge linkage premise guarantees that row material for the operation
of that mechanism (i.e., a problematic situation from the engagement of which
knowledge is constructed) exist. Collectively, the last two premises constitute a
theoretical foundation for, respectively, the essentiality and viability of
problem-solving based curricula. Namely, these curricula are essential because the
only way to construct knowledge is by resolution to problematic situations (by the
knowing-knowledge premise); and they are viable because such situations exist (by
the knowing premise).

The implication for instruction of the view articulated by the last two premises is
the necessity principle, which states: For students to learn what we intend to teach
them, they must have a need for it, where ‘need’ refers to intellectual need. Rel-
evant to curriculum design, the necessity principle entails that new concepts and
skills should emerge from problems understood and appreciated as such by the
students, and these problems should demonstrate to the student the intellectual
benefit of the concept at the time of its introduction.

The problematic situations referred to in this premise may or may not be historic.
For example, matrices did not grow out of the need to solve systems of linear
equations, as typically is done in elementary linear algebra textbooks, but out of the
need to develop determinants (in 1848 by J.J. Sylvester). According to Tucker
(1993), “array of coefficients led mathematicians to develop determinants, not
matrices. Leibniz … used determinants in 1693 about hundred and fifty years
before the study of matrices …” (p. 5). Also, most problems studied in linear
algebra are not introduced in the context of the field in which they originated
initially. For example, Gauss elimination is typically introduced in textbooks in an
application-free context, but it initially emerged in the field of geodesy and for years
was considered part of the development of this field (Tucker, 1993).

The subjectivity premise states: Any observations humans claim to have made
are due to what their mental structure attributes to their environment. This premise
orients our interpretations of the actions and views of the learner. It cautions us—
teachers—that what might be problematic for one individual or a community may
not be so for others. A situation might trigger a mental perturbation with one person
and be accepted by another. To illustrate, we continue the discussion about the
concept of dimension we started in Sect. 1. In one of our teaching experiments, the
instructor deliberately defined “dimension” as the number of vectors in a basis
without first stating the theorem that all bases of a subspace have the same number
of vectors. Following this, he asked the students to discuss in their working groups
whether the definition is sound. A while later, when no productive response came
from the students, he made the task more explicit by asking whether there is a need
to establish a particular property of bases in a subspace for the definition to be
meaningful. None of the students found any fault with the definition as stated.
Following this, the instructor asked the class to comment on the following hypo-
thetical scenario:
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Two students, John and Mary, are asked to determine the dimension of a particular sub-
space of a vector space. John identifies a basis of the subspace, counts the number of its
elements, and reports that the dimension is 5. Mary identifies a different basis of the
subspace, counts the number of its elements, and reports that the dimension is 7.

While some of the students responded as expected—that there is a need to
establish that all bases of the subspace have the same number of vectors—aston-
ishingly, there were students who responded by saying something to the effect that
for John the dimension of the subspace is 5, and for Mary the dimension is 7.
Presumably, these students did not possess the definitional way of thinking, and so
the scenario described by their instructor did not cause them the desirable pertur-
bation—their response was an outcome of their current schemes.

The subjectivity premise also cautions us, teachers, that learners’ current ways of
thinking may lead them to independently generalize faulty knowledge from a
correct one. For example, student may, and typically do, erroneously conclude that
row reduction preserves the column space, as it does with row space. Furthermore,
often due to the level of robustness of certain ways of thinking students possess
counterexamples to such faulty generalizations may not be effective (Harel &
Sowder, 2007). For example, in our experience, students continue to hold this
generalization true even after they are shown counterexamples to the contrary [e.g.,
for any matrix whose entries are all 1s, ColA≠ColðrrefAÞ]. Many scholars (e.g.,
Confrey, 1991; Dubinsky, 1991; Steffe, Cobb, & Glasersfeld, 1988; Steffe &
Thompson, 2000) have articulated essential implications of the subjectivity premise
to mathematics curriculum and instruction, even if they have not given it an
axiomatic status as we do.

Figure 3 expands Fig. 2 to include the DNR constructs discussed in this section.
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Fig. 3 Three of the eight DNR premises and two of DNR foundational principles
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3 Intellectual Need and Epistemological Justification

With these premises at hand, we now present the definitions of intellectual need and
its associated concept, epistemological justification, as formerly introduced in Harel
(2013a), with minor modifications.

[Let] K be a piece of knowledge possessed by an individual or community, then,
by the knowing-knowledge linkage premise, there exists a problematic situation
S out of which K arose. S (as well as K) is subjective, by the subjectivity premise, in
the sense that it is a perturbational state resulting from an individual’s encounter
with a situation that is incompatible with, or presents a problem that is unsolvable
by, her or his current knowledge. Such a problematic situation S, prior to the
construction of K, is referred to as an individual’s intellectual need: S is the need to
reach equilibrium by learning a new piece of knowledge. Thus, intellectual need has
to do with disciplinary knowledge being created out of people’s current knowledge
through engagement in problematic situations conceived as such by them. One may
experience S without succeeding to construct K. That is, intellectual need is only a
necessary condition for constructing an intended piece of knowledge. Method-
ologically, intellectual need is observed when we see that (a) one’s engagement in
the problematic situation S has led her or him to construct the intended piece of
knowledge K and (b) one sees how K resolves S. The latter relation between S and
K is crucial, in that it constitutes the genesis of mathematical knowledge—the
perceived reasons for its birth in the eyes of the learner. We call this relation
epistemological justification.

Intellectual need and epistemological justification are two sides of the same coin
—they are different but inextricably related constructs. Their occurrence is entirely
dependent on one’s background knowledge. Consider the question: What is a
generator for the ideal of polynomials annihilating a given operator T over an n-
dimensional vector space? Clearly, such a question wouldn’t occur unless one
possesses a cluster of ways of understanding for the concepts: ideal, generator of an
ideal, operator annihilating ideal etc. Less trivial is the question, what ways of
thinking facilitate the emergence of such a question with an individual? Or put in
another way, how can we educate students to develop the habit of mind of asking
such questions? A critical claim of this paper is that attention to epistemological
justifications in generating definitions and proving theorems may pave the road to
such habit of minds, as we will see in the next sections.

Even if such a question is raised, its answer hinges upon one’s understanding
and appreciation of the most foundational concept of linear algebra: linear com-
bination. Thinking in terms of this concept and its derivative concepts of linear
independence and linear dependence, one may recognize that the ideal of poly-
nomials annihilating an operator T over an n-dimensional vector space is not empty,
since it contains an annihilator polynomial of degree n2. This may not end here if
this individual continues to ask: What is a generator for this ideal? And since the
degree of such a polynomial is not greater than n2, can it be n? Is there a polynomial
of degree n that annihilates T? If the search for an answer to this question leads the
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individual, independently or with the help of an expert, to Cayley-Hamilton The-
orem (“Any linear operator on a finite-dimensional vector space is annihilated by its
characteristic polynomial”), then by definition, the individual has constructed an
epistemological justification for the theorem. An epistemological justification for
the proof of the theorem—how the proof might be elicited—is a different matter.
Such a proof may require additional or different networks of ways of understanding
and ways of thinking.

It is important to highlight two points concerning intellectual need and episte-
mological justification. First, we iterate a point we made earlier, these constructs are
not historical; rather, they are pedagogical (and research) tools. Namely, the need
which has originally necessitated a particular concept may not—and is usually not
—the one used in a curriculum. For example, in one of our teaching experiment, the
concept of linear independence was necessitated through the question, When does
Gaussian Elimination lead to “loss” of equations (i.e., zero equations in a system
obtained through the application of elementary operations)?; and in another
experiment through the question, When does a consistent system of linear equation
have a unique solution? Historically, this concept emerged from generalizations of
spatial relationships by Grassmann (Li, 2008).
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Fig. 4 Two additional foundational DNR concepts: Intellectual need and epistemological
justification
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Second, while problems outside the fields of mathematics can serve as intel-
lectual need for particular mathematical concepts and ideas, as we know from
history, intellectual need is not synonymous with application. Cognitively, the term
“application” refers to problematic situations aiming at helping students solidify
mathematical knowledge they have already constructed or are in the process of
constructing. Intellectual need, on the other hand, aims at eliciting knowledge
students are yet to learn.

Figure 4 expands Fig. 3 to include the DNR constructs discussed in this section.

4 Categories of Intellectual Need

We offer two systems of classifications of intellectual need, each with a particular
role in curriculum development and instruction; in this paper, they are instantiated
in the context of the learning and teaching of linear algebra. The first system of
classification rests on the distinction between local need and global need; it pertains
to the structure of a mathematics curriculum. The second system of classification is
more refined, in that it identifies specific types of intellectual needs that emerge in
mathematical practice; they are: need for certainty, need for causality, need for
computation, need for communication, and need for structure. These two systems
of classifications will be discussed in turn in the next two sections. (For a discussion
on the cognitive origins of these needs, see Harel, 2013a.)

4.1 Local Need Versus Global Need

Consider an elementary course in linear algebra structured around a series of
investigations, each aimed at answering a particular central question. The course
begins with the question: (1) What is linear algebra? And it immediately discusses
one of its branches: systems of linear equations, both systems in which the
unknowns are scalars in a particular field (linear systems of scalar equations) and
systems in which the unknowns are functions (linear systems of differential equa-
tions). Attending first to linear systems of scalar equations, the course then pro-
gressively proceeds by investigating, in this order, the questions: (2) Why is the
focus on linear systems? (3) What exactly is the elimination process (which typi-
cally students are familiar with its basic form from their high-school mathematics)?
(4) Why does the process of elimination work? (5) Why are equations “lost” in the
elimination process? (6) Is there an algorithm to solve linear (scalar) systems?
(7) What does the reduced echelon form (rref) tell us about the solution set of a
system? This is a partial sequence of central questions aimed at helping the students
build a coherent global image of the purposes of the study of systems of linear
equations. Collectively, not individually, such questions represent a global intel-
lectual need for the study of a particular area of mathematics.
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An investigation into each of such questions generates specific problems man-
ifesting local intellectual need—the need for the construction of particular concepts
and ideas. A probe into some of the above questions, generate, for example, the
concepts of linear combination, equivalent systems, linear independence, and basis,
for the purpose of advancing the overarching investigation. To illustrate, consider,
for example, Question 4—Why does the process of elimination work? In
linear-algebraic terms, this question can be formulated as: Why elementary oper-
ations preserve the solution set of a system? A probe into the nature of these
operations elicits the need for the creation of concepts and ideas. It begins with the
following central idea:

Let S be an m× n system, with equations ε1, ε2, . . . , εm. For any m scalars c1, c2, . . . , cm,
any solution of system S is a solution of the equation εΣ = c1ε1 + c1ε1 + . . . + cmεm.

In turn, this idea elicits the foundational concept of linear combination (i.e., the
equation εΣ is a linear combination of the equations, ε1, ε2, . . . , εm), and with it, the
following conclusion, which gives rise to the concept of equivalent systems:

Given two systems S1 and S2 of the same size, if each equation of S1 is a linear combination
of equations of S2 and each equation of S2 is a linear combination of S1, then the two
systems have same solution set.

Thus,

Two systems of equal size are equivalent if each equation in one system is a linear
combination of the equations in the second system, and vice versa.

And so:

If two systems are equivalent, then they have the same solution set.
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These results, then, lay the foundation for the question under consideration
(Question 4), which now can be stated as: Do elementary operations preserve
equivalency?

The second half of the course turns to linear systems of differential equations
(i.e., Y ′ðtÞ=AYðtÞ, Yð0Þ=C) where eigen theory is then introduced through the
global need to investigate the question, How to solve such systems? This question
leads to local needs, as will be discussed in the next section.

Figure 5 expands Fig. 4 to include the DNR constructs discussed in this section.

4.2 Intellectual Need in Mathematical Practice

Based on cognitive and historical analyses, we offered in Harel (2013a) five cate-
gories of intellectual needs: (1) need for certainty, (2) need for causality, (3) need
for computation, (4) need for communication, and (5) need for structure.

The first two needs are complementary to each other: understanding cause brings
about certainty, and certainty might trigger the need to determine cause. The need for
certainty is the need to prove—to remove doubts. One’s certainty is achievedwhen one
determines, by whatever means he or she deems appropriate, that an assertion is true.
Theneed for causality,on the other hand, is the need to explain—to determine a cause of
a phenomenon, to understandwhatmakes a phenomenon the way it is. A student might
be certain that a particular assertion is true because a teacher or textbook said so or
because he or she verified the assertion empirically. The student might even reach
certainty on the basis of a proof, and yet lack an insight as to what makes the assertion
true—the proof may not be explanatory for her or him. In the next section, we will
discuss explanatory proofs in the context of epistemological justification.

The third need is the need for computation. It is the need to quantify or calculate
values of quantities and relations among them by means of symbolic algebra. For
example, the need to quantify the “size” of a solution set of a linear system Ax= b
may be addressed by the concept of rank: the smaller the rank of a matrix A is the
“larger” the solution set of a consistent system Ax= b becomes. Likewise, the need
to reduce the data storage of a digitized image without compromising significantly
the quality of the image through its electronic transmission may be responded to by
decomposing the matrix representing the gray values of the image into a particular
sum of rank-1 matrices, what is known as singular value decomposition (svd; see
below for more discussion on this decomposition).

The fourth need is the need for communication. This need consists in two
reflexive needs: the need for formulation—the need to transform strings of spoken
language into algebraic expressions—and the need for formalization—the need to
externalize the exact meaning of ideas and concepts and the logical justification for
arguments. It is common that students experience difficulties formalizing a math-
ematical statement into a symbolic form. For example, students may understand
that to find a least square solution to an inconsistent system Ax= b, one needs to
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replace b by b,̂ such that b ̂ is the “closest” to ColA. The challenge for students is
two-fold: first, they have to reformulate this goal into mathematical statements,
verbally or symbolically, such as b ̂∈ColA and b− b⊥̂ColA; and second they have
to express these statements in terms of equation-based expressions, b ̂=Ac for some
vector c and ATðb− bÞ̂=0. This latter step is typically challenging for students.
Likewise, students may have an intuitive idea of what dimension is—usually in the
context of 2- and 3-dimensional Euclidean spaces, but experience difficulty
understanding the formalization of their intuition into a well-defined mathematical
concept.

The fifth, and final, need is the need for structure. The common meaning of the
term structure is something made up of a number of parts that are held or put
together in a particular way. In mathematics the way these “parts” are held together
are relations one conceives among different objects. For example, the expression
Ab=0 constitutes a structure for a person when he or she is conceives it as a string
of symbols put together in a particular way to convey a particular meaning, such as
0 is a linear combination of the columns of A with the entries of b being the weights
of the combination; or b is orthogonal to the row space of A.

In mathematics, in general, the need for structure manifests itself as a need to
encapsulate (in the sense of APOS theory) occurrences of phenomena. For example,
one might encapsulate a series of empirical observations concerning products of
square matrices into the patterns, detðABÞ= detðAÞ detðBÞ or trðABÞ= trðBAÞ;
another may derive such patterns through deduction or may observe them empir-
ically but see a need to establish them deductively. In linear algebra, there is the
critical need to encapsulate different structures into a single representation: a vector
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space over the reals as a single representation of all n-tuples of real number, of all
polynomials of degree less or equal to n with real coefficients, of all m× n matrices
with real entries, etc. This process of encapsulation assumes, of course, that
members of each of these spaces are conceived as conceptual entities (in the sense
of APOS theory and Greeno, 1992)) in, respectively, an n-dimensional,
n+1-dimensional, and mn-dimensional vector space.

Figure 6 expands Fig. 5 to include the DNR constructs discussed in this section.

5 Categories of Epistemological Justification

We distinguish among three categories of epistemological justifications: sentential,
apodictic, and meta. While the distinction among these types of epistemological
justification is sufficiently clear, as we will now see, it should be noted that they are
not mutually exclusive.

5.1 Sentential Epistemological Justification

Sentential epistemological justification (SEJ) refers to a situation when one is aware
of how a definition, axiom, or proposition was born out of a need to resolve a
problematic situation. It is called so because it pertains to sentences with objective
and logical meaning. To illustrate, consider how linear algebra textbooks typically
introduce the pivotal concepts of “eigenvalue,” “eigenvector,” and “matrix diago-
nalization”. A widely used linear algebra textbook motivates these concepts by
saying that the concepts of “eigenvalue” and “eigenvector” are needed to deal with
the problem of factoring an n× n matrix A into a product of the form XDX − 1, where
D is diagonal, and that this factorization would provide important information about
A, such as its rank and determinant. Such an introductory statement aims at pointing
out to the student an important problem. While the problem is intellectually intrinsic
to its poser (a university instructor), it is most likely to be alien to a student in an
elementary linear algebra course, who is unlikely to realize from such a statement
the true nature of the problem, its mathematical importance, and the role the con-
cepts to be taught (“eigenvalue,” “eigenvector,” and “diagonalization”) play in
solving it.

One of the alternative approaches to this presentation, based particularly on
students’ intellectual need for computation, is through linear systems of differential
equations, which has been experimented successfully several times. In this
approach, one begins with an initial-value problem (e.g., a mixture problem)
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involving a sequence of rate of change functions, f ′1ðtÞ, f ′2ðtÞ, . . . , f ′nðtÞ, each is a
linear combination of the original position functions, f1ðtÞ, f2ðtÞ, . . . , fnðtÞ. This
leads to a linear system of differential equations of the form:

AYðtÞ=Y ′ðtÞ
Yð0Þ=C

�
ð1Þ

where A is a real square matrix. Students are asked to analogize system (*) to the
scalar case:

ayðtÞ= y′ðtÞ
yð0Þ= c

�
ð2Þ

At first, students’ typically propose a solution to system (1) that is symbolically
analogous to the solution of system (2), which they are familiar with from calculus;
that is, corresponding to the symbolic structure of yðtÞ= ceat, students offer
YðtÞ=CeAt (sic). A discussion of the meaning of the latter expression leads the
students to (a) revise the expression At into tA and (b) probe into the definition of
the concept of “e to the power of a square matrix.” This question is resolved by,
again, analogizing eB, where B is a square matrix, to eb where b is a scalar, resulting
in the definition, eB = ∑∞

i=0 ð1 ̸i!ÞBi.4 By considering the sizes of the matrices
involved in the product CetA in their proposed solution, students come to realize that
there is a need to perform a third revision, from YðtÞ=CetA to YðtÞ= etAC. Once the
students have verified that their revised proposed solution works, the instructor
returns to the solution in its expansion form, YðtÞ= etAC= ∑∞

i=0 ðti ̸i!ÞAiC, and
points out the following critical observation: If it so happens that there is a rela-
tionship between the condition vector C and the coefficient matrix A in the form of
AC= λC for some scalar λ, then the solution to system (1) would be easily com-
putable: YðtÞ= eλtC. This observation necessitates attention to the relation AC= λC,
and due to its perceived significance it deserves a name: C is called an eigenvector
of A and λ its corresponding eigenvalue. Thus, students learn a sentential episte-
mological justification for the emergence of these central linear algebraic concepts;
the concepts do not emerge out of the blue, as is typically the case in textbooks.

Following a few examples of solving system (1), the instructor (and in many
cases the students themselves) raises the question about the computability of the
solution in cases where the condition vector is not an eigenvector of the coefficient
matrix. This leads, in turn, to the observation that whenever the condition vector C
is a linear combination of eigenvectors of A, the solution is still easily computable:
YðtÞ= etAC= ∑k

i=1 aie
λi tvi, where C= ∑k

i=1 aivi and Avi = λivi.

4Questions concerning convergence are not discussed, though on rare occasions were raised by
students.
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With this background, the instructor turns to the special case where A has a basis
of eigenvectors, in which case the solution is easily computable for any choice of C.
For a more advanced linear algebra course, the proceeding discussion continues the
investigation of the computability of the solution to system (1), leading up in a long
journey to Jordan Theorem (and its related Canonical Form); namely, that
remarkably system (1) is always easily computable since each vector is a linear
combination of generalized eigen vectors.

We see here an example of how content presentation in linear algebra can be
structured in a way that students develop sentential epistemological justifications
for the birth of concepts through intellectual need, whereby students become
partners in knowledge development, not passive receivers of ready-made
knowledge.

5.2 Apodictic Epistemological Justification (AEJ)

The second category is apodictic epistemological justification (AEJ). This pertains
to the process of proving; hence, the term apodictic. It is when one views a par-
ticular logical implication, α⇒ β, in causality, or explanatory, terms—how α causes
β to happen; that is, how α explains the presence of β. Consider, for example, the
Spectral Theorem: Any n× n real symmetric matrix A is orthogonally diagonaliz-
able (i.e., A=VΛVT , where V is orthogonal and Λ diagonal). An apodictic epis-
temological justification of this assertion is present with a student when he or she
exhibits an understanding of how the combined features of being real and sym-
metric are “responsible” for the matrix to be orthogonally diagonalizable—how
specifically the absence of one of these features would derail the proof of the
assertion. The central characteristic of AEJ is that the student is aware of the role
that the various conditions in the hypothesis of an assertion play in its proof. The
student, however, does not necessarily cognizant of the way the proof was con-
ceived—that is a characteristic of the meta epistemological justification which we
will discuss in the next section.

AEJ is a way of thinking not addressed sufficiently in mathematics instruction. It
is acquired through repeated experience of probing into the specific role the con-
ditions comprising a hypothesis of an assertion play in the proof. We conjecture that
through the acquisition of this way of thinking students’ ability to produce proofs is
advanced. Consider the following episode.

In a matrix-based linear algebra course, a particular attention was paid to epis-
temological justifications (as well as to other ways of thinking—thinking in terms
of block matrices is one of them). At one point during the first half of the course, the
instructor presented what is known as the Basis Theorem.
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Let H be a p-dimensional subspace of Rn, and let v1, v2, . . . , vp be vectors in H.

1. If v1, v2, . . . , vp span H, then they are linearly independent.
2. If v1, v2, . . . , vp are linearly independent, then they span H.

As was the standard practice in this course, the students were asked to work in
groups on comprehending the theorem, not necessarily proving it. After about
12 min, the instructor initiated a classroom discussion about the theorem. One of
the students said something to the effect that she and her working mate thought that
for Claim (1) there is a need to express two facts: that H is a p-dimensional
subspace of Rn and that v1, v2, . . . , vp span H, and so, she continued, they let
U = u1 u2 . . . up½ � be a matrix basis for H and U =VA for some matrix A,
where V = v1 v2 . . . vp½ �. By this time, we should mention, the class as a
whole got accustom to the approach of representing relationship in terms of matrix
equations. After some further discussion, the instructor asked what other sufficient
conditions in Claim 1 has not been expressed. Another student in the class
responded that the fact that the columns of U are linearly independent hasn’t been
used. With help from the instructor to consider the sizes of the matrices involved in
the equation U =VA, one of students declared that A must be a square matrix (p× p)
and that since the columns of U are linearly independent A must be invertible (a fact
which was previously proved and used on several occasions during the course).
Following additional time for the students to collaborate on completing the proof,
one of the working groups came to the board and completed the proof, saying
something to the effect that since U =VA and A is invertible, V =UA− 1. And since
the columns of A− 1 are linearly independent, the columns of V are linearly inde-
pendent, as was required.

It is interesting and important to add that this student also indicated at the end of
his presentation that he used ideas he learned from the proof of the Dimension
Theorem (All bases of a subspace H of Rn have the same number of vectors), which
the instructor presented a week earlier. Indeed the proof just presented includes
considerations similar to those made in the proof of the Dimension Theorem. The
latter proof began by setting two basis matrices U = u1 u2 . . . uk½ � and
V = v1 v2 . . . vr½ �, aiming at showing that k= r. The similar considerations are
that since U and V are basis matrices, their columns span H, and therefore there
exist two matrices M and N such that U =VM and V =UN. By considering the
sizes of the matrices involved, it was concluded that M is an r × k matrix and N is a
k × r matrix. But since the columns of each of these matrices are linearly inde-
pendent, r≥ k and k≥ r, respectively, and hence k= r.

5.3 Meta Epistemological Justification (MEJ)

The third, and final, category is meta epistemological justification (MEJ). This
refers to a situation when one not only views a proof in explanatory terms but also
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one is aware of how the proof came into being. To illustrate, consider the Singular
Value Decomposition (SVD) Theorem. We reviewed the proof of this theorem in
five commonly used linear textbooks. In each case the proof is presented with
virtually no epistemological justification. Generally, the proof commences with the
observation that for any m× n real matrix A (without loss of generality, m≥ n), ATA
is symmetric, and then abruptly the textbook offer three ready-made matrices V , Σ,
and U for the decomposition A=UΣVT . In this presentation, even students who
fully understand the proof are unlikely to gain an insight as to how the proof might
have come into light—students are not partners in figuring out possible sources of
the proof ideas.

The following is an alternative presentation used in our classes. Its ultimate goal
was not just to prove the SVD theorem, but to help students acquire an MEJ for the
proof. Of course, the theorem itself was first necessitated through a suitable SEJ for
its statement. We introduced the theorem in the context of the need to reduce the
amount of data in transmitting a digitized image without affecting significantly the
quality of the image, by expressing the matrix representing the array of the gray
levels of the image’s pixels as a sum of rank-1 matrices, i.e.,
A= σ1u1v1T + σ2u2v2T +⋯+ σnunvnT , where σ1 ≥ σ2 ≥⋯≥ σn, and then curtailing
a certain number of addends in the tail of the sum.5 Following this, the proof
evolved through the MEJ outlined below:

1. At this stage of the course, the students have witnessed the utility of matrix
representations in solving problems and proving theorems (e.g., representing a
set of differential equations emerging from application problems, such as mix-
ture problems, in terms of matrix equations (see Sect. 5.1) or the Dimension
Theorem and Basis Theorem (see Sect. 5.2), and so the students seemed
receptive to the idea to represent the desired equation, A= σ1u1v1T +
σ2u2v2T +⋯+ σnunvnT , in the form of the matrix equation, A=UΣVT , where
U = u1 u2 . . . um½ �, ðΣÞij = σi if i= j and ðΣÞij =0 if i≠ j for 1≤ i, j≤m,
and V = v1 v2 . . . vn½ �.

2. Students were then told that we have here an equation with three unknowns, U,
Σ, and V , and that the goal is to try to eliminate one of the unknowns. We note
that students are well familiar with eliminating unknowns as a strategy to solve
equations, so this proposed approach by the instructor is unlikely to have been
foreign to them.

3. The instructor then wrote AT =VΣUT on the board and asked if they can offer an
idea as to how to eliminate one of the unknowns. After about 8 min of con-
sultation among students in their working groups, one of the students indicated
something to the effect that if U were orthogonal, it would be eliminated in the

5Of course other contexts can be used as SEJ for the SVD Theorem. The problem of transmitting a
digitized image is typically used in textbooks as an application of SVD; we, on the hand, used it as
an intellectual motivation (see the distinction between “application” and “intellectual need” in
Sect. 3).
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product ATA. But, he then added, “we do not know that U is orthogonal”. The
observation that the product of an orthogonal matrix and its transpose disappears
in computing various expressions was well familiar to students at this point of
the course; for example, in calculating the power of a diagonalizable matrix, and
in computing a UR-factorization using the Gram-Schmidt process.

4. The instructor then responded: “Let see what happens if we assume that the
unknown matrix U is orthogonal”. It is important to point out that this last
dialogue between one of the students and the instructor represents a significant
way of thinking in mathematical practice, that a desired mathematical result is
conditioned a priori by a particular hypothesis. The instructor then pursued the
student’s proposal to obtain, ATA=VðΣTΣÞVT =VΣ1VT , where Σ1 is a diagonal
matrix with σ12 ⋅ σ22, . . . , σn2 on its diagonal.

5. With no further responses from the students as to how to proceed, the instructor
drew students’ attention to the fact that ATA is symmetric, urging them to recall
a major result obtained previously in class about symmetric matrices. This,
pleasingly, prompted another student to offer taking the missing matrix V as an
orthogonal diagonalizing matrix of ATA, whose existence is guaranteed by the
Spectral Theorem.

6. None of the students raised the concern that the proposed V entails that the
eigenvalues of ATA must be non-negative. This concern was raised by the
instructor, which he then resolved by showing that indeed—remarkably—this
was the case. Thus, in collaboration with the students two of the three unknown
matrices V and Σ were successfully constructed.

7. These results then paved the path for the construction of U: that the first r
columns of U are necessarily ui = 1

σi
Avi, members of ColA and corresponding to

the r positive values σ1, σ2, . . . , σr (the singular values), and the rest are to be
any orthonormal vectors in ðColAÞ⊥ =NulAT . The fact that the vector ui = 1

σi
Avi

turned out to be orthonormal, as needed, fascinated some students.

Surely the reader is familiar with the proof of the SVD Theorem—and all the
other proofs, concepts, and ideas discussed in this paper, for that matter. Their
appearance in the paper aimed at demonstrating how they can be introduced from
the perspective of intellectual need and epistemological justification.

We conclude that students’ success in acquiring and applying desirable ways of
understanding and ways of thinking in our courses has been correlated with, and
therefore, attributed to, the persistent application of DNR-based instruction, with
particular attention to intellectual need and epistemological justification in their
various manifestations. A critical principle of this instruction, beyond the appli-
cation of the duality principle and the necessity principle we discussed earlier, is the
repeated-reasoning principle, which states: Students must practice reasoning in
order to internalize, organize, and retain ways of understanding and ways of
thinking. Research has shown that repeated experience is a critical factor in these
cognitive processes (Cooper, 1991). Repeated reasoning, not mere drill and practice
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of routine problems, is essential to the process of internalization—a conceptual state
where one is able to apply knowledge autonomously and spontaneously—and
reorganization of knowledge. The sequence of problems must continually call for
reasoning through the situations and solutions, and they must respond to the stu-
dents’ changing intellectual needs.

Consonant with the repeated-reasoning principle, we typically keep the number
of theorems presented in elementary linear algebra courses to a minimum, letting
students reason and re-reason about various relations and claims (e.g., in terms of
row reduction when relevant), rather than stating them as theorems ready to be
used. Once a claim is stated as a theorem and proved, there is little incentive for the
students to reason about the underlying ideas of its proof (Harel & Sowder, 1998).
It should be clear, however, that we are not advocating eliminating theorems from
the course; rather, we are advocating preserving the title “theorem” to truly
“non-trivial” assertions. For example, the claim “A system Ax= b is consistent iff an
echelon form of the augmented matrix A bj½ � does not have a row of the form
0 0 . . . 0 cj½ �, where c≠ 0 does not deserve the title theorem, for a brief
inspection of the meaning of such a row should be sufficient to conclude that the
system is inconsistent. On the other hand, the claim “Eigenvectors corresponding to
distinct eigenvalues are linearly independent” is relatively not trivial and so it
entitled to the label “theorem”. This pedagogical approach is generally antithetical
to the approach taken in many current linear algebra textbooks, where even simple
claims are stated as propositions or theorems (see for example, the “Invertible
Matrix Theorem” with its 25 logically equivalent statements in the widely used
linear algebra textbook by Lay, Lay, and McDonald (2016).

Figure 7 expands Fig. 6 to include the DNR constructs discussed in this section.

DNR
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Subjectivity
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Need

Classification 1

Local Need

Global Need

Classification 2

Need for 
Certainty

Need for 
Causality

Need for 
Computation

Need for 
Communication

Need for 
Formulation

Need for 
Formalization

Need for 
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Necessity

Repeated 
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Fig. 7 Classification of epistemological justification and the third foundational principle of DNR
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6 Summary

In this paper we theorized and illustrated the role and function of intellectual need
and epistemological justification and their constituents in the learning and teaching
of linear algebra. We presented two systems of classifications for intellectual need.
The first system consists of two subcategories, global need and local need; and the
second system consists of five categories of needs: need for certainty, need for
causality, need for computation, need for communication, and formalization, and
need for structure. We also presented a classification of epistemological justifica-
tion into three categories: sentential epistemological justification (SEJ), apodictic
epistemological justification (ASJ), and meta epistemological justification (MEJ).
The main constituent elements for intellectual need and epistemological justifica-
tion presented in this paper are the concepts of ways of understanding and ways of
thinking and four out of the eight premises of DNR: the mathematical knowledge
premise, the knowing premise, the knowledge-knowing linkage premise, and the
subjectivity premise. Figure 7 depicts this web of the DNR concepts discussed in
this paper. The three foundational principles that articulate best the essence of DNR-
based instruction are the duality principle, the necessity principle, and the repeated
reasoning principle, also depicted in Fig. 7.

The central focus of the paper, however, is the instantiations and role of this
network of DNR cognitive and epistemological concepts in the learning and
teaching of linear algebra. We illustrated how certain ways of thinking (e.g., def-
initional reasoning) play a critical role in the ways students understand fundamental
linear algebraic concepts (e.g., the concept of dimension and projection matrix),
claiming that the acquisition and internalization of desirable linear algebraic ways
of understanding and ways of thinking can only take place by positioning the
intellectual need of the student in the center of the instructional effort (the necessity
principle), by instruction being cognizant of and explicit about the role and function
of ways of thinking in solving problems (the duality principle), and by providing
the students with opportunity to reason repeatedly about problematic situations that
call for the application of such ways of understanding and ways of thinking (the
repeated-reasoning principle).

We also illustrated how successful students can be in linear algebra when such
an instructional approach is applied. We posited that a persistent instructional effort
to, for example, present row reduction and block matrices as conceptual tools to
represent and solve problems contribute to the emergence of sophisticated linear
algebraic conceptualizations among students (e.g., the proofs provided by students
for the theorem dimColA= dimRowA and the Basis Theorem).

The underlying approach of focusing on both ways of understanding and ways of
thinking, not only the former as is typically the case in traditional linear algebra
curricula, is the knowledge premise, which provides equal status to these two
categories of knowledge in the mathematics discipline. (For a fuller discussion, see
Harel, 2008c.) The focus on intellectual need and epistemological justification is
theoretically entailed from the knowing-knowledge linkage premise, which
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collectively assert that knowledge construction is (a) possible only through intel-
lectual perturbation and (b) that resolutions of such perturbations always exist for an
individual or community who possess suitable mental structures. Entailed from the
subjectivity premise is that intellectual need and epistemological justification, as
well as ways of understanding and ways of thinking, are not fixed; rather, their
origin and acquisition vary across individuals and communities. Furthermore, they
typically are not historical.

The various classifications of intellectual need aimed at addressing different roles
in curriculum development and instruction. While global need pertains to the
structure of a mathematics curriculum, as we have demonstrated through an outline
of a part of a DNR-based elementary course in matrix theory, local need pertains to
elicitation of specific concepts and ideas, as we have shown for the concepts of
linear combination, equivalent systems, linear independence, basis, eigen value,
eigen vector, and diagonalization.

Ways of understanding and ways of thinking emerge in a variety of mathe-
matical practices, when mathematicians encounter a need to be certain, to determine
cause, to compute, to communicate, and to structure. Humans seem to have been
endowed with cognitive primitive (pre-conceptualizations whose function is to
orient us to the intellectual needs we experience when we learn mathematics; see
Harel, 2013a), but in essence these are learned needs. We have illustrated the
difficulties students encounter in acquiring and applying some of these needs (e.g.,
the need to formulate the notion of “closest” in terms of linear algebraic equations
and the need formalize the intuitive concept of dimension).

Lastly, epistemological justification represents a higher level of mathematical
knowledge—not only does one possess a desirable way of understanding of a
particular concept, but also is being aware of how that concept was born out of a
need to resolve a problematic situation (sentential epistemological justification—
SEJ); not only does one understand the proof of an implication, but also under-
stands the proof in terms of cause (apodictic epistemological justification—AEJ);
and not only does one understand a proof of logical implications in terms of cause
but also is aware of how the construction of the proof might have come about (meta
epistemological justification—MEJ). We have demonstrated the application of each
of these categories of epistemological justification in the context linear algebra.

We hope that the analyses presented in this paper will generate interest on the
part of mathematics education researchers whose research focus is the learning and
teaching of linear algebra to test empirically the central theoretical claim made in
this paper: Does instruction that is organized around intellectual need and episte-
mological justification and their constituent elements, as were articulated in this
paper, result in advanced performance by students in linear algebra courses?
Elsewhere we discussed the development, application, and utility of DNR-based
curricula in linear algebra (Harel, in press a), complex numbers (Harel, 2013b),
geometry (Harel, 2014), proof (Harel & Sowder, 1998), and mathematical practice
(Harel, in press b; Harel & Soto, in press).
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Learning Linear Algebra Using Models
and Conceptual Activities

María Trigueros

Abstract In this chapter, an innovative approach, including challenging modeling
situations and tasks sequences to introduce linear algebra concepts is presented. The
teaching approach is based on Action, Process, Object, Schema (APOS) Theory.
The experience includes the use of several modeling situations designed to intro-
duce some of the main linear algebra concepts. Results obtained in several expe-
riences involving different concepts are presented focusing on crucial moments
where students develop new strategies, and on success in terms of student’s
understanding of linear algebra concepts. Conclusions related to the success of the
use of the approach in promoting student’s understanding are discussed.

Keywords APOS theory ⋅ Schemas ⋅ Systems of equations
Linear independence ⋅ Eigenvectors

Research on the teaching and learning of linear algebra (LA) has grown consid-
erably throughout the past two decades. During the last ten years, an innovative
approach to teach LA was developed and tested in a small university in Mexico.
Challenging modeling situations were designed to introduce students to most of the
abstract concepts of this discipline. Students approached these problems by using
their knowledge, but to fully respond to the questions posed, they needed something
else. At these moments APOS-based activities were introduced to foster the con-
struction of new concepts that may help students move forward when they go back
to work on the modeling situation. Through cycles of work on the modelling
problem and APOS—based activities, students reflect on their knowledge and
strategies and construct LA concepts that can be applied to the solution of new
mathematical and extra—mathematical problem situations. This approach has been
tested using several modeling situations designed so far. Results obtained have
helped to refine both the modeling situations and the accompanying sets of activ-
ities. Research on students’ learning while using these experiences has shown that

M. Trigueros (✉)
Instituto Tecnológico Autónomo de México, ITAM, México City, Mexico
e-mail: tigue@itam.mx

© Springer International Publishing AG 2018
S. Stewart et al. (eds.), Challenges and Strategies in Teaching Linear Algebra,
ICME-13 Monographs, https://doi.org/10.1007/978-3-319-66811-6_2

29



the approach is effective in fostering the construction of specific concepts. The
analysis of students’ learning when several modeling activities are used is the topic
of this chapter.

Data obtained from the use of three specific modeling activities related to
construction of systems of linear equations, linear independence and eigenvectors,
in classes taught by three different teachers during six semesters were analyzed.
Patterns in students’ strategies, the emergence of independent new important ideas,
students’ needs, and the influence of APOS-based activities and teachers’ guidance
were identified. The analysis focused on data indicating important transitions in
students’ work. These transitions were linked to the development of students’ LA
related Schemas that evidence students’ learning.

The research questions for this study are: Do the use of modeling situations
together with APOS—based activities promote the development of Schemas
associated to concepts involved in a first LA course? Is there a relation between
crucial moments, where students or teachers change their strategies, and learning?
What is the role of teachers and that of students’ engagement in relation to students’
learning?

1 A Brief Look at Some Antecedents

LA has been recognized as a difficult subject for students due mainly to the abstract
nature of the concepts of this discipline (for example, Dorier & Sierpinska, 2001).
The mathematics education community has proposed different didactic approaches
to improve its teaching and learning and work on different concepts has proved to be
effective (Gueudet, 2004; Oktaҫ & Trigueros, 2010; Wawro, Rasmussen, Zandieh,
Larson, & Sweeney, 2012). This chapter focuses mainly on the learning of three
important concepts, a summary of research results related to each of them follows.

Systems of linear equations (SLE) play a fundamental role in the possibility to
understand most of the concepts introduced in a first approach to LA and their rela-
tionship. It is well known that interpreting the solution set of a SLE is difficult for many
students, and that this obstacle becomes more difficult to overcome when all the vari-
ables in the system are not explicit in every equation. These difficulties have been
attributed to students’ lack of understanding of the concepts of variable, functions and
sets which play an important role in the construction of most of the mathematical
structures involved in the learning of LA (Dogan-Dunlap, 2006; Malisani & Spagnolo,
2009; Trigueros & Jacobs, 2008; Trigueros, Oktaç, & Manzanero, 2007; Ursini &
Trigueros, 1997). Interpretation of the solution set of a SLE has been related to the need
to relate different representation systems for SLE and to the use of different thinking
perspectives (Bardini & Stacey, 2006; Oktaҫ,’s chapter; Sierpinska, 2000). Other
studies underline the importance of constructing a coherent SLE Schema which would
encompass understandingof solutionmethods asProcesses, solution sets asObjects and
the relation of these structures to others that are constructed during a LA course
(Possani, Trigueros, Preciado, & Lozano, 2010; Trigueros et al., 2007).
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Linear combination (lc), linear independence (li) and linear dependence (ld) are
closely related abstract concepts that are very difficult for students to understand.
Although research on students learning of these concepts is limited, it has been
shown that their introduction by using geometric representations may be difficult
for students, particularly when they need to relate geometric and algebraic repre-
sentations, and when they need to use these concepts in the case of vector spaces
that cannot be represented geometrically (Dogan, 2010; Harel, 1999; Maracci,
2008). Modelling approaches, on the other hand, have proved to be more effective
(Trigueros & Lozano, 2010; Trigueros & Possani, 2013; Wawro et al., 2012).

Research on the learning of eigenvalues, eigenvectors and eigenspaces has shown
that their learning presents multiple obstacles for students, since they tend to con-
centrate in the procedures to handle them (Dogan, 2010). Using different repre-
sentations while teaching these concepts has proved to help students to make sense
of some of their properties (Gol Tabaghi, 2012; Stewart & Thomas, 2007; Thomas &
Stewart, 2011) while the use of models stimulates students’ understanding of these
concepts (Larson, Rasmussen, Zandieh, Smith, & Nelipovich, 2007, 2008; Salgado
& Trigueros, 2014). However, these studies have demonstrated the importance to
choose a modeling situation where the need to use these concepts is directly related
to the desired goal, and that, when the teaching is based on a theory of learning, it is
possible to help students to overcome the difficulties found in other studies.

2 Theoretical Framework

APOS Theory (Arnon et al., 2014) provides elements to model and describe the
construction of cognitive structures that are useful to infer students’ learning and to
design didactic materials to teach effectively. The basic structures used in APOS to
describe the construction of mathematical knowledge are Action, Process, Object
and Schema. It is considered that a student’s understanding of a concept starts with
performing Actions physically or mentally on previously constructed Objects.
When reflecting on those Actions students can interiorize them into Processes
which can be encapsulated into new Objects when they are perceived as a totality.
A Schema for a mathematical concept or topic is a structure which is constructed by
building conscious or unconscious relations and transformations among several
Actions, Processes, Objects and previously constructed Schema. In order to
describe the constructions involved in learning mathematical concepts, a model of
the needed construction is designed. This model is known as Genetic Decompo-
sition (GD) and it constitutes an attempt to predict the construction of concepts in
terms of the structures of the theory. This model needs to be validated or refined
with experimental data and can also serve as a basis for research and instructional
design. In APOS Theory Schemas are evoked by individuals in the solution of
problem situations. Schemas evolve continuously by the mechanisms of assimila-
tion and accommodation. The development of a Schema can be described by three
levels: Intra-, Inter- and Trans-, known as triad. These levels are characterized by
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the relations constructed among the structures that constitute the Schema or by the
assimilation or accommodation of new structures into it. Intra- level is characterized
by superficial relations among components of the Schema, in general being aware
that these elements appear together in specific problems. In inter-level, there is
awareness of transformation relations between the elements of the Schema, and in
Trans—level these relations are developed and the Schema is coherent in the sense
that it is possible for the individual to distinguish those problems where the Schema
can be applied form those where it cannot be applied. This study will focus mainly
on the construction of Schemas, since their development evidences students’
learning. Schemas considered in this chapter are the SLE Schema, the Schema for li
and ld (LID Schema) and that for eigenvalues and eigenvectors (Eigen Schema).
APOS theory includes in its framework methodological and didactical components.
The fist includes cycles of research where the GD is tested and refined until it is
validated. The second consists of what is called the ACE-cycle which consists of
collaborative work of students in teams during class hours on activities (A) de-
signed with the GD, whole group discussion with the teacher on the previous work
(C) and homework exercises (E).

Although modelling is not included in APOS theoretical framework it is con-
sistent with APOS structures (Trigueros, 2014). When students face a modelling
problem, they use the mathematical Schemas and other Schemas to approach the
problem they face. They take elements of those Schemas to choose variables, to
formulate hypothesis needed and to work with the situation. Through Actions and
Processes on some of the components of the Schema, and through coordination of
Processes, a mathematical model emerges. This mathematical model is encapsu-
lated into an Object. New Actions or Processes on it, and relations among the
components of the Schema contribute to its development and to the solution of the
modelling problem.

3 Methodology

This study focuses on data obtained during a five-year project designed to test a
specific methodology to introduce LA concepts to third semester university students
in a small private university in Mexico. Students’ work, together with the theo-
retical framework, were considered in the design and in the refinement of tasks
sequences that guided students’ reflection towards the definition and formalization
of concepts. Participating students’ majors were engineering, applied mathematics
and economics. The instructional approach used was based on APOS ACE-Cycle.
Different topics were introduced by posing open modeling situations for the stu-
dents to work on. Students worked collaboratively in teams of three students. Work
on the problems was intermingled with work on APOS-based activities designed
with a specific GD for each of the concepts. Detailed results about the construction
of these concepts along with students’ instances of the project have been published
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elsewhere (Possani et al., 2010; Salgado & Trigueros, 2014; Trigueros & Possani,
2013).

The analysis for this part of the project was performed by looking at the data
obtained from the use of at least three modeling situations during six one semester
courses taught by three different teachers. The selected data include groups where
modeling situations were used to teach SLE, li and ld, and eigenvectors and
eigenvalues. These topics were selected because they correspond to different
moments in the course. The courses started by the introduction of SLE, li and ld
concepts were introduced approximately at the middle of the course and eigen-
values and eigenvectors were introduced towards the end of the course. The
analysis of all the data obtained through class observation, students’ work and
interviews focused mainly on the commonalities associated with crucial moments
where students change their strategy and argue it with or without the help of the
teacher. We called these moments transitions and analyzed them in terms of the
Schemas mentioned above to have a general view of students’ learning. The data
were analyzed by the author and discussed with the teachers for validation. Initials
such as AT, or PB refer to the name and surname of the participating student.

The SLE Schema plays an important role in learning all the concepts included in
this study. Its development encompasses students’ learning throughout the whole
course. Table 1 shows the GD for those Schema used in this study, together with
the modeling activity used to introduce each of them.

4 Important Moments in Students’ Work

In what follows we describe briefly results obtained in the analysis of data. As
explained above, the focus of the description is on those transitions that can be
related to the specific development of Schemas together with aspects that limited
some students’ development.

4.1 Linear Systems of Equations

Every time this problem was used, students started by exploring the streets’ network
and trying to discover how cars can move around. After discussing possibilities, a
transition occurs. Several teams (average 5/10) focused their attention on inter-
sections as key in describing if a street can be closed:

AT: …so we need to name the streets and those will be our variables, I mean, the
number of cars that pass by them, and in this intersection, all the cars that come in
must go out.
GP: Yes…. Cars cannot appear or disappear from the whole network… we can
write this for each intersection as an equality.
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Table 1 Genetic decompositions and modeling problems

Concept Schema GD Modeling situation

Systems of
equations

Intra-SLE: Students identify variables, equations,
and equality as elements related in problems
dealing with solution of equations. Students can
manipulate variables in simple square SLE. They
have constructed equations through equality
relations among algebraic expressions and
solutions as Actions conducted to find specific
values that satisfy the equations. Relations among
equations are superficial, equations are related
because they appear in the same system. They are
not clear about the fact that solving a system of
equations means finding solutions that satisfy all
the equations. Even if they use this fact in their
procedures, they are not conscious of it
Inter-SLE: Students become aware that all
equations in systems may be satisfied by the same
solutions. They can accommodate the notions of
set and function in the Schema by considering
solution sets, and multiple solutions in terms of
functions. In making this accommodation they
start to think about the procedures used to solve
systems of equations as transformations of the
equations that, when used, help them to find
solutions. They relate equations with equality by
being aware that transformations of equations are
restricted to those that satisfy equality properties
and can find solution sets of different types of
systems. When a restriction is introduced students
are able to determine the conditions the restrictions
impose on the solution set of the system
Trans-SLE: Students can consider systems of
equations as a totality; they are aware that the
solution of the system may be found by
transforming the equations using properties of the
equality and that through these transformations
equations are changed but the solution set of the
system is conserved. Coherence of the schema is
demonstrated by students’ possibility to recognize
equivalent systems of equations and of the
invariance of their solution set under the
appropriate transformations

The following diagram (shown
in the results section and
Table 2 in Appendix) shows a
map of a sector of streets in the
downtown area of a city. The
traffic control center has
installed sensors to detect the
number of vehicles that transit
by the sector. In the figure the
arrows represent the direction
of each street. In each
intersection, we can consider
that there is a roundabout that
enables a continuous flux of
traffic around the sector.
Parking is not permitted. Can a
street be closed without
causing a traffic jam? What is
the minimum number of cars
that can be allowed to circulate
through a street, to avoid
traffic jams?

Linear
independence
and
dependence

Intra-LID: The set of linear combination, linear
independence and linear dependence vectors are
related to each other to solve specific problems
with vectors in Rn. Relation to SLE is considered
only in terms of a procedure, as a Process, to
determine li of sets of vectors
Inter-LID: The linear independence, linear
dependence, and linear combination Processes are

A group of three industries
produce goods to satisfy their
own demand (i.e. to satisfy the
demands of the industries in
the group) and to satisfy
external consumers demand.
Supposing that the quantity of
the good produced by each

(continued)
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Table 1 (continued)

Concept Schema GD Modeling situation

also related to Processes describing properties of li
and ld sets as Objects and to the generalization of
these properties to other vector sets, for example to
matrices of vectors in Zpn. Vectors sets can be
transformed by adding or removing vectors into li
or ld sets as needed in mathematical activity or in
applications. The relation to SLE is considered in
terms of properties of its solution set
Trans-LID: The Processes describing properties of
li and ld sets are coordinated and the resulting
Processes are encapsulated into Objects in such a
way that the Schema can be used to determine
when a set of vectors is li or ld, independently of
its elements, and what properties of sets are
conserved through different operations. Relations
to SLE and other LA concepts are understood in
terms of linear independence, that is, students can
compare sets and use properties of a set of vectors
in different spaces by determining which of them
correspond to li sets

industry satisfies the needs of
all the other industries, its own
demand and the consumers’
needs, and that you know the
production of the industries for
nine periods of internal and
external demand, how would
you find the fractions of the
production of each industry to
satisfy those demands? How
many data would you need to
respond the former question
and how would you chose
them? Can you use what you
found to predict the production
needed in the 6th and 10th
periods? (see Tables 3, 4 and 5
in Appendix)

Eigen-values,
eigen-vectors
and
eigen-spaces

Intra-Eigen: Eigenvalues and eigenvectors are
related to each other by considering that they are
always used together in the solution of specific
problems related to a matrix. Students can apply
Action or Processes to a given matrix to find its
eigenvalues. When applying the Actions to find
eigenvectors for a specific eigenvalue, the
eigenspace is not considered as such, but only as a
set of eigenvectors from which one is chosen
arbitrarily
Inter-Eigen: Eigenvalues, eigenvectors and
eigenspaces are considered as Processes and as the
result of a matrix transformation; the geometric
properties of eigenspaces are used in the solution
of problems
Trans-Eigen: Eigenvalues, eigenvectors and
eigenspaces are considered as the result of a
specific transformation. Properties such as li and ld
of sets of eigenvectors can be applied to specific
problems, relations of complex eigenvalues to
periodic functions are constructed. Coherence of
the Schema is demonstrated by students’
possibility to determine which problems are related
to it and which are not, and the invariance of the
Schema under changes in eigenvectors sets
corresponding to a matrix

In an economy, there are some
employed persons and some
unemployed persons at a
certain time. The number of
employed and unemployed
persons is considered as the
labor force for the economy
and can be considered
constant. If the probability that
an unemployed person finds a
job at any time and the
probability that an employed
person continues in a job at the
same period is known, find a
mathematical model that
describes the dynamics of
employment. According to
your model, what would be
expected to happen with the
number of employed and
unemployed persons in the
long term? (see Table 6 in
Appendix)
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The change of focus made it possible for students to select the appropriate
variables and to pose an important hypothesis. Not all students in the teams were
immediately convinced. This transition took long arguments from some members of
these teams to convince the others. Students were forced to think about and refine
their mathematical arguments until all team members agreed. Once this happened
students wrote one equation for each intersection and considered the resulting
model as a SLE. Students evoked the SLE Schema to bear with the problem and
could apply Actions or Processes on the SLE Object to solve the problem. Figure 1
shows the system posed by a team and some Actions they performed on it.

After group discussion, most teams understood the mathematical model pro-
posed by other students; however, we found that, in every instance, there were
students who did not make this transition. Results show that students who could not
engage with the problem evidenced a poor understanding of variables and their SLE
Schema consisted mainly of equations as equalities upon which they could perform
memorized Actions. They could not explain why procedures used in the solution of
systems work and found it very difficult to pose a system with many variables as
those presented by other students to the whole group.

Once systems proposed were discussed in the class, all teachers we observed
asked students to solve them. This was a difficult task for all students. Students who
demonstrated the construction of an Intra-SLE Schema could perform some Actions
on the systems’ equations. They were confused with so many equations and
unknowns. They showed they could use methods they had previously learned. This
implied they were able to assimilate more general problems to the SLE Schema and
to construct relations between variables, equations and solution set to consider
transformations of equations as related to equality and to find solutions that were
not considered as solution set. Some students in each group showed they had
constructed an Inter-SLE Schema. They could assimilate the problem to their SLE
Schema, and showed they had constructed Processes for solving this complex
system, but they were confused when tautological results were obtained when
applying these procedures. They showed they had constructed transformation
relations and could think of some solutions as sets. When these difficulties
appeared, teachers introduced APOS-based activities to help students reflect on
what SLE are; on solution methods and solution sets; on the interpretation of
equations, SLE and solution sets, and to construct Gauss method to solve and to
compare it to their original procedures. The analysis of students’ work and

Fig. 1 A system of equations
is proposed and manipulated
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interviews showed that some students who had evidenced difficulties at the
beginning, participated actively in discussions after finishing the activities.

When students went back to work with the model a transition took place. Stu-
dents expected to find multiple solutions for this system, which has more unknowns
than equations. Most students found the solution set for the SLE they had posed.
Each team had chosen different names for the variables, so solution sets did not
look the same. Recorded discussions of members of several teams evidenced that
another transition occurred at this moment:

PB: This solution is not unique… if all the equations for streets are satisfied, I mean
all of them at the same time… it says that you can chose any of those values and
you will have a solution, all the unknowns depend on two variables, although some
of them depend only on one… that is you can select different ways to go through the
streets and now we need to think about what street can be blocked or how many
cars should be the minimum possible that may be allowed to go through it…

RS: I would say the set of solutions contains many, an infinite number of solu-
tions… but I don’t know yet what we need to do to find out if we can block a street.

PB: What we should do, I guess… is, ah… is to check if all those variables can or
cannot take the zero value…the conditions … if we use zero cars for these vari-
ables, we can find where to close, and the number of cars must be positive…

We interpreted this as meaning that after work with the activities most students
accomodated function and sets as Processes into the SLE Schema. Many of them
manipulated functions in the solution set so that each unknown depended at most on
two variables and considered those functions as the result of transforming the
system of equations to find the simplest form of the solution set. Among these
teams, several considered parameters in the solution set as free variables and
referred to them, quite naturally, as functions of two different variables. This is an
important transition considering that the only functions these students had met
before were one variable functions. They extended their Schema for function to
include these two types of functions. This evidenced that these students’ SLE
Schema developed to an Inter-SLE level.

Interpretation of the solution set in terms of the problem constraints was an
obstacle for most students. It required students to change their focus. As the
example above shows, students needed to consider the joint variation of variables in
each function of the solution set. Frequently, students focused only in the solution
set as Process and did not take into account the restrictions involved in the context
of the modelling problem. When they did, they found it difficult to include the
restrictions into the solution set.

This transition is related to the development of the Schema to Trans-SLE level.
Students who considered and interpreted the solution set together with the
restrictions imposed by the nature of the streets’ network, could take restrictions
into account in their solution set and to interpret it in terms of the number of cars
circulating through the network being conserved. They were thus able to take a
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decision about the number of cars that could circulate through each street. Although
most of the students in the groups participating in the experience could solve and
interpret different types of systems of equations and to apply the SLE Schema to
different non- related modeling problems, only six or seven students in each group
interpreted and clearly explained the restrictions of the problem. These students
could use similar arguments in their solution of different problems that required the
use of restricted SLE.

It is important to underline that, both, the decision of the teachers to guide
students’ attention to the role of parameters in the solution of complex SLE through
APOS based activities and group discussion played an important role in the
development of students’ SLE Schema.

In general, all students benefited from the experience. Most of them enriched
their SLE Schema by constructing relations between variables, equations, functions,
solution procedures and solution sets, with differences among them. We found that
persistent difficulties with variables limited students’ engagement in the solution of
the modelling situation. They could use some methods but could neither explain
them nor apply them to complex problems.

4.2 Linear Independence and Linear Dependence

Students explored the modeling situation by drawing diagrams to understand the
problem, find variables and relations among them. Several diagrams were used
throughout the experience, however, at some point there are teams (2/10) that drew
a specific diagram (essentially the same as that shown in Fig. 2a) which becomes a
crucial tool for students to think productively. We considered this the first transi-
tion. Students in these teams focused their attention in internal and external
demands for the whole system of industries, they drew them as arrows and used
variables to name them (Fig. 2b). They introduced the hypothesis of production
being equal to consumption, which is fundamental in finding a simple mathematical
model consisting of a SLE These students expressed this relation in terms of a
proportion of the total production demanded by each industry plus that of the
external sector for each industry. At first these students were not clear about the
meaning of the introduced parameters: This is the production of industry A, that
industry j needs for its production so that the external demand is satisfied. In class
discussion, most students were convinced of the usefulness of the diagram and the
proposed mathematical model. They all started using it in their own work. As in the
SLE experience, students bring the SLE Schema to bear with the situation. Those
students who correctly verbalized the problem but did not draw any diagram had
more difficulty in converting from their verbal representation of the situation to a
mathematical model they could work with.

During group discussion teachers asked students to compare the different pro-
posals and guided discussion towards the use of a simpler symbolization and to the
interpretation of the selected SLE model such as:

38 M. Trigueros



x1 = a11x1 + a12x2 +⋯+ a1nxn + e1

x2 = a21x1 + a22x2 +⋯+ a2nxn + e2

x3 = a31x1 + a32x2 +⋯+ a3nxn + e3

where it was clarified that xj is the production level for each industry in the
economy, aij is the number of units produced by industry i that is necessary to
produce one unit by industry j, that is, for each industry there is a unitary con-
sumption vector which consists of the necessary inputs per unit of production of the
industry, and ej is the external demand of product j. This presentation is similar to
that presented in textbooks as Leontief’s model, however, in these experiences
students developed the model by themselves and the focus was not on the SLE
itself.

Once a mathematical model was proposed, students asked for information to
work on it. It is interesting that some of the teachers always gave all students the
whole list of data organized in a table, but most of them followed the suggestion of
one teacher who asked students how many periods of data they needed and
accordingly selected from the whole list the number of periods solicited by students.
A transition occurred. Students decision was discussed among members of most
teams. Their attention was focused on the model, one for each industry, and on the
characteristics of the data. Students arguments led them to realize that unknowns of
the systems are the parameters aij. Many students showed difficulties to focus on the
coefficients of the equations as unknowns: they generally consider coefficients as
known constants. Comments as: What we have in the table are the xs isn’t it? … we
know those, then what we need to find are these as, the constants… I guess those
are unknowns, of the system for each industry…we don’t know them… appeared in
each instance and seem to be convincing to most students, but teams that persisted
in using productions as unknowns and data for the coefficients found inconsis-
tencies in the SLE’s solution set. Through these discussions many students
extended their notions of equations, and their conception of variables became
flexible when considering the possibility to decide which variables in the problem

Fig. 2 a Productive students’ diagram. b An algebraic strategy
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are the unknowns of the system. Their construction of the relation of the equation
Process or Object and unknowns Objects developed at the same time. Observations
show that most teams asked for three periods of data since the model for each
industry has three equations and three unknowns. Teachers selected different
periods for students that consisted of an ld set of data, considered as vectors, for
some teams and an li set for other teams. One or two teams, however, were not able
to make the selection and asked for the whole table, or guessed a number, without
reflection. These students’ Schemas didn’t show a development. They were usually
lost when trying to solve the systems.

Some teams solved the system by hand, others used the calculator or the com-
puter. Results obtained by students were compared in whole class discussion. Some
teams obtained the same unique solution while other teams obtained multiple
solutions, or unexpected numbers in the solution set. The teachers asked students to
explain what happened and, after some confusion, some students, only two or three
in each course, focused on data as the possible cause of the problem, this signalled a
new transition: We had different data and obtained the same solution, but others,
with different data obtain different solutions… all teams checked their work and no
mistakes were found. Several students became aware that the difference in solutions
was related to the data used. Teachers suggested to argument what caused the
differences. Some students focused both on the data used and the properties of SLE
demonstrating they were now considering SLE as Objects. They also used vectors
as Objects by referring to the data with comments such as … these data are all on
the same plane… or, In this set this vector is multiple of this other. Another
transition occurred when, in every experience, there was a student who explained…
when there is no unique solution, I can see that there is some redundant infor-
mation in the data that does not give useful information. Some of the information is
repeated somehow. The expression “redundant information” emerged as the cause
of differences found. This transition is linked to the students’ evoking a Schema that
related properties of vectors with the properties of SLE. A new Schema we called
the linear independence (LID Schema) appeared. In all cases teachers took
advantage of the “redundant information” idea in the introduction of APOS -based
activities to promote the construction of the concepts of lc, li and ld, and included
work on the sets of data used in the modelling problem to be worked in teams.

Work on activities favoured the development of the LID Schema and the for-
malization of new relations among sets of vectors. After working with these
activities most students showed the construction of an Intra-LID Schema; they were
convinced that a unique solution for SLE was related to li sets of vectors. After
more work with the mathematical model using the new concepts, teachers intro-
duced APOS-based activities to explore properties of li and ld sets of vectors, their
geometric representation, when possible, and their relation to solution of SLE.
Students applied these properties to find data-vectors that could be written as lc of
others in the whole data table. They concluded that there was “redundant infor-
mation” in those data and in some of its subsets and unique solution was related to
“no redundancy”, so they were li. This idea became a powerful tool in under-
standing these abstract concepts, it gave students a “concrete” meaning for them.
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After this discussion, students validated the model with different sets of data and
predicted demands for not given periods. Throughout these experiences students
were able to relate the LID Schema and the SLE Schema through accommodating
the new relations in each of them. All the students in this experience showed to
have constructed a LID Schema at least as an Intra- LID level of development and
more than a half demonstrated its construction at an Inter-LID level later in the
course by using it in other contexts, such as columns and rows of a matrix or
matrices, and to explain, for example, why li is needed for the inverse matrix to
exist. Some of the students who had shown difficulties with SLE were found to
have progressed in their understanding SLE’s solution sets. Others continued using
memorized algorithms and had difficulties making sense of other students’
arguments.

Although the production problem was difficult for students to interpret and work
with, every time it was used students developed powerful ideas, as “redundant
information” to make sense of the relation between data, vectors, and SLE. When
the concepts of lc, li and ld were formalized by using the APOS- based activities,
most students had already constructed them by themselves as Processes. Teachers
found APOS Theory to be “a guiding light” in understanding students’ suggestions
and in giving students freedom to use their own ideas which were later formalized
according to their needs.

4.3 Eigenvalues, Eigenvectors and Eigenspaces

Again, students explored the modelling problem presented. Students evoked once
more the SLE Schema and used ideas from economics courses and their common
sense and wrote a system, but faced new elements they had not met before: the
system depended on time. Students were confused, so teachers guided their
attention to a population model with one linear difference equation they had worked
with before. Students used the population model as example but needed some
guidance from teachers who generally decided to discuss with the whole group. It
was then that a student, at each instance, asked something as: Unknowns are
functions, if we write a linear system, do the same methods for solving systems
work? We considered this comment as signalling a transition. The attention of the
group changed from focusing on algebraic variables to functions that appeared as
variables in the model. In some instances, the discussion continued and other
students joined the discussion before teachers replied. Comments such as the fol-
lowing were registered:

CC: Ok, so it (referring to the system) should be for the employment, x at t plus one
is equal to q times x at t, plus p times y at t (the teacher writes on the board
xt+1 = qxt + pyt).
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ET: …. Are p and q the probabilities? They should add 1 and we have that 1 − q is
the probability that a person who was employed loses his job, and the same for
conserving the job but with the other… (The teacher writes yt+1 = (1 − q) xt +
(1 − p) yt),

Teacher: So, the model is this system? Can you interpret it?

In other instances, a team proposed the system, presented it to the whole group
and in both cases, students decided to use the proposed model and could interpret
the variables involved in it. However, even when the dependence of time was
introduced, students were using a SLE Schema, although they considered unknown
as functions.

Another transition occurs when students tried to find a solution to the system. In
every instance, students showed difficulties but, each time, some teams (2/10)
thought differently: I am confused… time appears twice… I mean the unknowns are
functions of time, but as in population, the equations involve two times… Two time
periods t and the next t + 1, how can we solve it, do we use exponential functions
as solutions as before? Students demonstrated that they were now aware of the
temporal relation both in unknowns and equations. These teams looked for specific
functions of time that could describe the behaviour of the number employed and
unemployed persons, and students made an analogy with the population model by
proposing an exponential solution. This transition changed again students’ attention
to focus in verifying this idea by substituting the exponential function in the system.
Students evoked two elements of the SLE Schema: the solution set and the matrix
form of a system of equations. Substitution was not easy, some teams used an
exponential matrix, others a solution of the form xn = knx0 Teachers usually sug-
gested trying the later.

Until this moment students had not considered the need to use vectors in the
solution of the system, the SLE equations they were using was clearly at the
Intra-SLE level, even though they clearly had two different unknowns: employed
and unemployed people. After facing some problems and asking the teacher several
teams went back to the dependence on time of the equations, but now considering
explicitly that time periods were the same for the employment and unemployment
equations since time was de independent variable of a function whose dependent
variable was a vector, even though they had not been introduced to this kind of
functions: It might be something like … (writes: xt = ktv)… t is the independent
variable, the vector (u, v) is a function of t, with that solution… Is v the vector of
initial conditions as in the population model?

Students went back to substitute the solution proposed. Their strategy consisted
of Actions needed in verifying that the solution proposed satisfied the SLE since the
original difference equations system was transformed into a SLE, the dependence
on time was not explicit in this system. In all instances, there were at least two
teams that used everything they had learnt about SLE in the solution process. These
students showed that their SLE Schema had developed to a Trans-SLE level by the

42 M. Trigueros



accommodation of different Processes, Objects and Schemas they had constructed
along the course and through restructuring the necessary relations among them.
They realized the system was homogeneous, and that it should have multiple
solutions, they wrote the system as Av− kv=0 and easily transformed it into the
matrix form A− kIð Þv=0 they realized both k and v were unknowns: …there are
two unknowns here, the vector v and the scalar k. They used the determinant of
matrix A− kIð Þ being zero to find the solution set of this SLE, together with
possible values of the parameter k.

Focusing on the SLE was an important transition. Students were looking for a
solution to the difference equation. In doing so, they realized they could concentrate
only on the SLE obtained when substituting the proposed function into the system
of difference equations, since the SLE solution would give them the clues to find the
solution set of the difference equations. In all the instances, several teams (3/10)
gave evidence of having constructed a Trans-SLE level Schema. They could write
the equation defining eigenvalues and eigenvectors, and to find eigenvalues and
eigenvectors without being introduced to them. Teachers discussed students’ work
in group discussion, formalized the definition of the new concepts by referring to
students’ work, and introduced APOS-based activities for students to interiorize
these concepts and analyse their properties. Teachers went back to the modelling
situation and asked students to interpret their findings in terms of the modelling
situation, in the context of specific probability values, which were provided for
guidance.

Students identified two eigenvalues and computed their corresponding eigen-
vectors. They found out that the system had multiple solutions in each case and that
those solutions could be considered as the span of each eigenvector. All this work,
mainly done independently by students, contributed both to the development of
students SLE Schema and to the construction of an eigenvalues, eigenvectors and
eigenspaces Schema (Eigen Schema) at an Intra-Eigen level.

Most students could interpret each solution independently but they did not know
which of them to use. Interpretation in terms of the problem was difficult for most
students although many teams drew graphs of solutions components and used them
to discuss the long- term behaviour of each of them. Teachers guided students in the
interpretation of the solution of the difference system of equations by showing to
them that a lc of the solutions was also a solution, and directed students’ focus to
the initial vector values as a basis for the space of solutions of the system. They
discussed the fact that, if initial conditions were known, they could find a unique
solution to the system. Evidence was found that some students, about 3 in each
course, constructed eigenvalues and eigenvectors as Objects, and that they devel-
oped at least an Inter-Eigen level Schema.

Learning Linear Algebra Using Models and Conceptual Activities 43



5 Discussion

Situating this study at a different analysis level, that of the results obtained from
multiple applications of the didactic approach, made it possible to find new evi-
dence of students’ learning. When looking back at the data and the reports written
for each of the experiences it was possible to detect specific moments when a clear
change in the way students were working or in the decisions of the teacher took
place. These transitions signal shifts in students’ attention to focus on some aspect
of the problem that becomes salient at that moment but was not detected before. All
transitions seem to appear when students are thinking mathematically and are thus
completely involved in the problem at stake. They have been found to happen both
when they are working with the modelling situation or with the activities designed
to construct and formalize new concepts. By turning their attention to new possi-
bilities students are able to develop their mathematical knowledge by discovering
new properties of the situation, or by being able to construct relations among
concepts they had not considered before to be linked to the problem. Most students
in this experience either did not show the conceptual difficulties described in the
literature, or could overcome them while working on the whole course.

Transitions can thus be related to moments where students accommodate new
structures in the evoked Schemas by bringing in new structures and restructuring
relations among Schema’s components. As a result, Schemas develop and learning
occurs, as described in the theoretical framework section. Transitions were related
to possibilities to extrapolate students’ previous knowledge, to imagine and inte-
riorize different Actions that can be performed on Objects, or to change the
approach in a way that opens new possibilities of using mathematics. It was always
possible to relate these moments to the emergence or development of students’
Schemas. It also permitted us to better understand how students learn when they
face challenges while learning abstract concepts.

This study shows that some common phenomena appear to be independent of
specific concepts the activities were designed to teach. Commonalities were also
independent of the groups and teachers involved in the experience. Students’
exploration strategies, emergent ideas and strategies, such as the idea of “redundant
or useful information” or the consideration of types of functions that were new for
students, appeared each time the modeling problems were used.

When students face new challenging situations, they need some time to explore
the problem from different perspectives in terms of their experience and previous
knowledge to handle them. It is clear from results obtained that students can
develop strikingly creative and imaginative ideas and strategies. Teachers’ guidance
appeared in the data to be essential to support students’ interest throughout the
course and to help students develop their own strategies to work on it. as can be
observed from the results discussed in this chapter.
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It was also found that spacing out work on the modelling activity to give
students’ time to work on APOS-based activities fosters both students’ ideas and
the constructions predicted by the GD. On the contrary to distractive nature one
may consider, these activities promoted reflection and new perspectives useful to
look at the problem.

6 Final Reflection

Students’ previous knowledge together with their attitude towards full participation
in team and individual work play an important role in their possibility to fully take
advantage of all the affordances offered by the modelling activities used in projects
such as the one described in this chapter.

It stands out from this and other similar innovative didactic projects (see Ber-
man’s chapter) that when students are challenged and have opportunities to think by
themselves, to argument and discuss freely and openly with others and with their
teachers they can come up with creative, interesting and intelligent ideas. These
ideas emerge from the need to better understand the problematic situation and to
convince others of their ideas (Harel’s chapter). Transitions detected demonstrate
that students can think mathematically and that this possibility results in develop-
ment of students’ Schemas, that is, in learning.

Teachers’ guidance and the development of complementary activities for stu-
dents play, at the same time, an important role in making deep learning possible.
Teachers’ intervention in discussing and comparing new ideas, to relate students’
work with conceptual activities an to formalize concepts involved in the work with
modelling situations are essential. All this work helps to underline the mathematical
potential of new ideas and strategies.

In the long term the use of these kind of projects helps to better understand
students’ needs, to identify transition moments and to find opportunities where they
can develop their Schemas. It also provides rich opportunities to explore the nature
of mathematics learning.

Acknowledgements Work funded by Asociación Mexicana de Cultura A.C. and ITAM.
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Appendix

A Possible Solution to the Traffic (SLE) Problem

The following diagram shows a map of a sector of streets in the downtown area of a
city. The traffic control center has installed sensors to detect the number of vehicles
that transit by the sector. In the figure the arrows represent the direction of each
street. In each intersection, we can consider that there is a roundabout that enables a
continuous flux of traffic around the sector. Parking is not permitted. Can a street be
closed without causing a traffic jam? What is the minimum number of cars that can
be allowed to circulate through a street, to avoid traffic jams? (Table 2).

A Possible Solution to Production Problem (li, ld)

A group of three industries produce goods to satisfy their own demand (to satisfy
the demands of the industries in the group) and to satisfy external consumers
demand. Supposing that the quantity of good produced by each industry satisfies
the needs of all the other industries, its own demand and the consumers’ needs and
that you know the production of the industries for nine periods of internal and
external demand, how would you find the fractions of the production of each
industry to satisfy those demands? How many data would you need to respond the
former question and how would you chose them? Can you use what you found to
predict the production needed for the 6th (Tables 3, 4 and 5).

A Possible Solution to Employment Problem (Eigen)

In an economy, there is a certain number of employed persons and a certain number
of unemployed persons at a certain time. The number of employed and unemployed
persons is considered as the labor force for the economy and can be considered
constant. If the probability that an unemployed person finds a job at any time and
the probability that an employed person continues in a job at the same period is
known. Find a mathematical model that describes the dynamics of employment.
According to your model, what would be expected to happen with the number of
employed and unemployed persons in the long term? (Table 6).
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Table 3 External demand for 9 months is millions of pesos

Industry/period 1 2 3 4 5 6 7 8 9

A 30 20 30 20 15 50 10 10 10
B 20 20 20 30 10 50 0 0 10
C 20 20 30 30 15 60 10 0 0

Table 5 Solution production problem

Model where unknowns are aij ‘s:
a11x1 + a12x2 + a13x3 + b1 = x1
a21x2 + a22x2 + a23x3 + b2 = x2
a33x1 + a32x2 + a33x3 + b3 = x3
Students chose how many data they need
The teacher selects the data from the
tables, data chosen can be when columns
are taken as vectors, li or ld
Where aij represents the necessary input
needed by an industry one to produce a
unit of the produce of the other industry
and bj represents the external demand for
each industry

A possible demand matrix (the first three columns
of production Table 4). 3 systems of equations
are needed, one for each industry. This matrix has
li columns but students can have matrices with ld
columns
53.515 36.967 40.47
40.47 34.847 37.15
57.202 39.687 53.422

Vector b corresponds to the external
demand of Table 4 corresponding to the
periods included in the matrix

For the first system: b=
30
20
20

0
@

1
A

Solving this system, the coefficients of the first
column of the production matrix are obtained.
The same procedure is repeated for the other
columns of the production matrix:

0.150027755 0.200020743 0.199952999
0.099945247 0.150024132 0.150049122
0.200102992 0.099862999 0.149984011

0
@

1
A

If data vectors are not li students find
either an infinite number of solutions or
nonsense solutions as the matrix due to
computer calculation errors:

0.85 − 0.2 − 0.2
− 0.1 0.85 − 0.15
− 0.2 − 0.1 0.85

0
@

1
A

Students can calculate production using several
methods, for example, the inverse matrix:

1.304448029 0.35031113 0.36874856
0.212030422 1.25835446 0.271952063
0.331873704 0.23046785 1.295229316

0
@

1
A

Table 4 Production for 9 months in millions of pesos

Industry/period 1 2 3 4 5 6 7 8 9

A 53.515 40.470 57.202 47.661 28.601 104.86 16.732 13.044 16.548

B 36.967 34.847 39.687 50.150 19.843 89.836 4.838 2.120 14.704

C 40.470 37.150 53.422 52.408 26.711 105.83 16.271 3.319 5.623
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Moving Between the Embodied, Symbolic
and Formal Worlds of Mathematical
Thinking with Specific Linear Algebra
Tasks

Sepideh Stewart

Abstract Linear algebra is made out of many languages and representations.
Instructors and text books often move between these languages and modes fluently,
not allowing students time to discuss and interpret their validities as they assume
that students will pick up their understandings along the way. In reality, most
students do not have the cognitive framework to perform the move that is available
to the expert. In this chapter, employing Tall’s three-world model, we present
specific linear algebra tasks that are designed to encourage students to move
between the embodied, symbolic and formal worlds of mathematical thinking. Our
working hypothesize is that by creating opportunities to move between the worlds
we will encourage students to think in multiple modes of thinking which result in
richer conceptual understanding.

Keywords Tall’s Worlds ⋅ Linear Algebra ⋅ Tasks
Moving between Tall’s Worlds

1 Introduction

Over the last decade, we have employed Tall’s (2004, 2008, 2010, 2013) frame-
work of embodied, symbolic and formal mathematical thinking along with
Dubinsky’s (Dubinsky & McDonald, 2001) Action, Process, Object and Schema
(APOS) theory to build a framework (Stewart & Thomas, 2009), namely the
Framework of Advanced Mathematical Thinking (FAMT). This framework (see
Fig. 1) has enabled us to investigate students’ conceptual understanding of major
linear algebra concepts (Hannah, Stewart & Thomas, 2013, 2014, 2015, 2016;
Stewart & Thomas, 2009, 2010; Thomas & Stewart, 2011). The natural blend
of these two learning theories provides an ideal platform to analyse students’
thinking in the context of primary concepts in linear algebra (e.g., vectors,
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linear combinations, linear independence, basis, span and eigenvalues and eigen-
values). Tall (2010) defines the worlds as follows: The embodied world is based on
“our operation as biological creatures, with gestures that convey meaning, per-
ception of objects that recognise properties and patterns … and other forms of
figures and diagrams” (p. 22). Embodiment can also be perceived as giving body to
an abstract idea. The symbolic world is based on practicing sequences of actions
which can be achieved effortlessly and accurately as operations that can be
expressed as manipulable symbols. The formal world is based on “lists of axioms
expressed formally through sequences of theorems proved deductively with the
intention of building a coherent formal knowledge structure” (p. 22). Dubinsky and
McDonald (2001) define action, which is somewhat external and requires either
explicit or from memory, step-by-step instructions and rules on how to perform a
certain task. Once an action is repeated and it is reflected upon by the individual, it
may be interiorized into a process. The individual can successfully think of a
process as an object, when he or she is able to “reflect on operations applied to a
particular process, becomes aware of the process as a totality, realizes that
transformations can act on it, and is able to actually construct such transforma-
tions. In this case, the process has been encapsulated to an object” (Asiala et al.,
1996, p. 11).

In this chapter I will present the results of some of the research that I have done
in regards to movements between the worlds as well as proposing a set of tasks that
may facilitate some potential movements between the worlds of mathematical
thinking in linear algebra.

Fig. 1 Framework of advanced mathematical thinking
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2 Moving Between the Worlds

Hillel (1997, p. 232), delineates three type of languages or levels of description in
linear algebra: “The language of the general theory (vector spaces, subspaces,
dimension, operators, kernels, etc.); The language of the more specific theory of Rn

(n-tuples, matrices, rank, solutions of the system of equations, etc.); The geometric
language of 2- and 3-space (directed line segments, points, lines, planes and geo-
metric transformations)”. He believes that these languages are interchangeable but
are definitely not equivalent, stating that “A vector (linear operator) in a
finite-dimensional vector space is represented as an n-tuple. A 2- or 3-tuple can be
represented as a geometric vector.” (p. 234). Dorier and Sierpinska (2001) add the
‘graphical’, ‘tabular’ and the ‘symbolic’ modes of languages to the above list. The
‘Cartesian’ and the ‘parametric’ representations of subspaces too, are part of a
typical linear algebra course. Of course, teachers and text books move between
these languages and modes very naturally and rapidly, not allowing students time to
discuss and interpret their validities. They assume that students will pick up their
understandings along the way, but the linguistic and epistemological studies show
how these assumptions are rather deceiving. Hillel (1997, p. 233) suggests that
“knowing when a particular language is used metaphorically, how the different
levels of description are related, and when one is more appropriate than the others is
a major source of difficulty for students”. As Duval (2000b, pp. 150–155, cited in
Duval 2006, p. 114) declares: “…in the classroom we have a very specific practice
of simultaneously using two registers. It is spoken in natural language, while it is
written in symbolic expressions as if verbal explanations could make any symbolic
treatment transparent”. Tall and Mejia-Ramos (2006, p. 3) declare that the word
‘world’ is carefully chosen and has a ‘special meaning’ in order to represent “not a
single register or group of registers, but the development of distinct ways of
thinking that grow more sophisticated as individuals develop new conceptions and
compress them into more subtle thinkable concepts”. As Dreyfus (1991a, p. 32)
declares “One needs the possibility to switch from one representation to another
one, whenever the other one is more efficient for the next step one wants to take…
Teaching and learning this process of switching is not easy because the structure is
a very complex one.” I hypothesis that most students do not have the cognitive
structure to perform the switch that is available to the expert. Duval (2006) noted
that to construct a graph, most students have no difficulties as they follow a certain
rule (Fig. 2), “but one has only reverse the direction of the change of register to see
this rule ceases to be operational and sufficient” (p. 113).
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2.1 Bridging the Embodied and Symbolic Worlds
of Mathematical Thinking

In a study by Thompson, Stewart, and Mason (2016), the authors conjectured that,
physics must “bridge” the embodied and symbolic worlds (Fig. 3). Their hypoth-
esize was that novice students struggle to embody the symbols and symbolically
express the embodiments. They believed that the physics instructor created a bridge
for his students to move between the embodied and symbolic worlds. He put several
connected support pillars in place, including classroom demonstrations of physical
phenomena, a student response system that allowed real-time communication with
the instructor, and peer instruction. The experienced instructor acted as a guide for
his novice students as they crossed uncharted territory. He often broke more
complex problems down into smaller, more manageable pieces. He noted the
importance of students creating visualizations on a regular basis. He believed:
“Sometimes students’ main obstacle to crossing the embodied-symbolic bridge is
simply a lack of mathematical knowledge. I wish I could guarantee that my students
had vector calculus when we were talking about some of this.” Students’
self-generated drawings on the final exam revealed gaps in students’ embodied
understanding even though their overall exam grades showed that they had a firm
grasp on how to symbolically solve related problems.

2.2 From Intuition to the Formal World of Mathematical
Thinking: A Geometric Topologist’s Thought Processes

In a study, we examined a geometer’s thought processes while teaching Algebraic
Topology over a semester (Stewart, Thompson, & Brady, 2017). We spent the
following semester coding his teaching journals which he wrote after each class and

Fig. 2 Difficulties going
from one register to another
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examined them in our weekly research meetings by asking the geometer further
questions. We noticed that he was able to confidently move between the worlds of
mathematical thinking (see Fig. 4). How do we train students to perform in the
same way?

2.3 The Importance of Visualization in Mathematics
Education

Many mathematics educators have long been fascinated by the power of visual-
ization for learning and teaching mathematics. For example, Tall and Vinner’s

Fig. 3 The process of embodying the symbolism and symbolizing the embodiment in physics
(Thompson, Stewart, & Mason, 2016, p. 1341)

Fig. 4 The three-lens view of homology theory (Stewart, Thompson, & Brady, 2017, p. XX)
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(1981) Concept image and Concept definition paper, has been a useful theoretical
standpoint for many researchers (over 1936 citations). Presmeg’s (2006) extensive
review of papers on research on visualization from the Psychology of Mathematics
Education (PME) Proceedings over the last 20 years, shows significant research
interest in visualization over many years. For example, Dreyfus (1991b) stated at his
plenary paper at PME-15: “It is therefore argued that the status of visualization in
mathematics education should and can be upgraded from that of a helpful learning
aid to that of a fully recognized tool for learning and proof” (Vol I: p. 33). Presmeg’s
review concluded with the statement that: “An ongoing and important theme is the
hitherto neglected area of how visualization interacts with the didactics of mathe-
matics. Effective pedagogy that can enhance the use and power of visualization in
mathematics education is perhaps the most pressing research concern at this period.”
Almost two decades later, her proposed list of 13 “Big Research Questions” on
visualization still remains unanswered. Some of her questions include: “How can
teachers help learners to make connections between visual and symbolic inscriptions
of the same mathematical notions? How may the use of imagery and visual
inscriptions facilitate or hinder the reification of processes as mathematics objects?
How may visualization be harnessed to promote mathematical abstraction and
generalization? What is the structure and what are the components of an overarching
theory of visualization for mathematics education?” (Presmeg, 2006, p. 227).
Although, there is some research in visualization in mathematics education, specific
research on visualization in linear algebra is scarce. Harel (1989, p. 49) investigated
the question, “Would an emphasis on the familiar geometric system lead students to
a better understanding of the vector space concept than an emphasis on a variety of
unfamiliar algebraic systems?” Harel (2000) specifically considers geometry in
linear algebra as an “intellectual need”. In terms of understanding linear algebra
concepts, Harel believes that “In the absence of a concept image that sustains the
concept definition, these [linear algebra] students are unable to retain the concept
definitions for a long period of time. Once the concept definition is forgotten, they
are unable to retrieve or rebuild it on their own.” (Harel, 1997, p. 109). In teaching
linear independence for example, pictures generated by Geogebra (Fig. 5), which are
dynamic, are vital in visualizing the linearly independent vectors (two vectors are on
the same plane, whereas the third one is not).

2.4 Living in the Formal World of Mathematical Thinking

The overarching aim of this case study was to investigate how mathematicians live
and dwell in the formal world of mathematical thinking and, at the same time,
communicate their knowledge to their students. We employed Tall’s (2013)
three-world model to guide this research and to help us understand more about
mathematicians as formal thinkers. Although, in theory we have some under-
standing of his formal world, in reality it is hard to know what actually happens in
this world. Our working research questions were:
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What are some of the features of the formal world of mathematical thinking?
Given that the mathematician is a formal thinker, how does he invite students to his
world and to what extent is he willing to help students to reach the higher level of
mathematical thinking? What are the pedagogical challenges faced by mathe-
matician in communicating formal mathematics to students?

The data for this study came from one of the research mathematician’s daily
reflections on his teaching of an abstract algebra course, which were made available
to the group after each class; the team members’ observation of the classes and their
comments; weekly discussion meetings of the whole group after reading each of
these reflections; the audio recordings of each meeting which were later transcribed
and mathematician’s reflections while working on a research paper. In addition a
student who was doing the abstract algebra course taking mathematician’s class,
also wrote her daily journals about the classes and made it available to the PI. The
main themes emerging from the data were: (a) pedagogical challenges of commu-
nicating the “greatness” of a concept (e.g. Galois Theory) to a beginner, (b) diffi-
culties of teaching very abstract concepts (e.g. Tensor products) which are hard to
explain or break down, (c) having a dynamical class while still being traditional,
(d) mediating the disconnect between desire for mathematical elegance and the
struggles of a student learning difficult material. Our preliminary qualitative data
analyses indicates the disparate thought processes of the mathematician and the
student, it was as if they described completely different classes and at times
operated in separate worlds of mathematical thought. The preliminary results of
investigating mathematician’s classes over two semesters and spending another two
semesters coding and discussing the data and writing conference papers has pro-
vided us with some insight into the formal world (Cook, Pitale, Schmidt, & Stewart,

Fig. 5 Using Geogebra to show 3 linearly independent vectors spanning the entire R3 (http://
www.alverno.edu/factorla/)
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2013, 2014; Stewart & Schmidt, 2017; Stewart, Schmidt, Cook, & Pitale, 2015). In
mathematician’s view: The air in the formal world is much thinner, but also much
clearer.

2.5 Linear Algebra in the Embodied, Symbolic and Formal
Worlds of Mathematical Thinking: Is There a Preferred
Order?

A number of recent studies in linear algebra have considered the relationship between
formal and other approaches and have demonstrated that developing teaching
approaches that promote formal ideas is valuable. For example,Wawro, Sweeney, and
Rabin, (2011) considered students’ concept images of the notion of subspace and
found that students made use of geometric, algebraic and metaphoric ideas to make
sense of the formal definition. In other work, Wawro, Zandieh, Sweeney, Larson, and
Rasmussen (2011) found that students’ intuitive ideas about span and linear inde-
pendence could be employed to assist them in developing the formal definitions.
However, it may not always be clear in which order—embodied, symbolic or
formal—the concepts could be introduced. In Tall’s view, “although embodiment
starts earlier than operational symbolism, and formalism occurs much later still, when
all three possibilities are available at university level, the framework says nothing
about the sequence in which teaching should occur” (Tall, 2010, p. 22). Tall explicitly
states that the order of the worlds for teaching purposes is not specified. The worlds of
mathematical thinking that teachers access to describe the concepts in their courses is
completely up to them and the goals of their course. According to Tall, each world
offers unique advantages for instruction. Mason’s (2002) view is similar because he
suggests that some instructors may prefer presenting examples before definitions,
whereas others prefer the reverse ordering. In the context of linear algebra, Harel
(1999, p. 612) believes a specific ordering of content is necessary: “The sequence in
which we present material to students and the way we introduce new concepts are
critical learning factors. When geometry is introduced before the concept has been
formed, the students view the geometry as the rawmaterial to be studied, they remain,
as a result, in the restricted world of geometric vectors, and do not move up to the
general case”. Although, the existing literature shows various studies on the role of
definitions, theorems, proofs, diagrams, and examples in pedagogy, carefully
designed studies that investigate the order in which these should be presented are
still scarce.

In a study by Hannah, Stewart, and Thomas (2014, 2015), the authors examined
two sections of a first year linear algebra course. The research questions (a sample) for
this study were: What is the best order (Embodied, Symbolic and Formal) to teach
linear algebra concepts? Does exposure to embodied understanding of linear algebra
concepts have an effect on students’ willingness to embrace the formal world? The
study examined the effect of teaching linear algebra concepts in the following eight
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different orders: ESF, EFS, SEF, SFE FES, FSE, FS, and SF. Figure 6 shows the order
that was implemented in one of the classes. The analysis of the data showed (Hannah,
Stewart, & Thomas, 2014) that students wanted to see examples (symbolic) of the
concepts. We found that student affect was much more positive when concepts were
first met in the embodied or symbolic worlds, but that once students have met all three
aspects of a concept (ESF) there seemed to be little difference in the level of under-
standing gained. One of the aims of the class was for students to appreciate for
themselves the power of formal world thinking, and that examples alone are often
insufficient. By the end of the course, student perspectives on formal aspects of
mathematics, definitions, theorems and proofs, were much more positive than at the
beginning of the semester. The challenges that faced during this pilot study included
being able to find the most effective order (using the ESF model) in which to teach
linear algebra concepts and, at the same time, teaching the course well. This study
needs to be followed up with less permutations of the worlds and less concepts.

3 Moving in and Between the Worlds of Mathematical
Thinking in Linear Algebra via Tasks

Based on the work by Duval (2006) and some of the research described in this
Chapter, theoretically we believe that movements between different worlds (em-
bodied, symbolic and formal) of mathematical thinking are beneficial. We
hypothesize that having the ability to move will be valuable to linear algebra
students. In this section we propose nine possible types of movements in embodied
and symbolic and formal worlds. In each case we propose a task to help learners to
travel from one world of mathematical thinking to another.

Fig. 6 The main concepts and the order in which they were taught
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3.1 Linear Algebra Tasks

We propose a set of nine possible linear algebra tasks that are designed strategically
to enable the learners to move between the worlds (see Table 1). The nine types of
movements are: Embodied to embodied, embodied to symbolic, embodied to for-
mal, symbolic to embodied, symbolic to symbolic, symbolic to formal, formal to
embodied, formal to symbolic, formal to formal. In Table 2 we will give a con-
ceptual analysis of each task. We anticipate that some of these movements would be
more difficult for students (e.g. embodied to formal).

3.2 Metaphorical View of the Possible Movements

Metaphorically, for novice students the worlds of mathematical thinking can be
thought of as isolated islands. In order to help students to live in all three worlds of
mathematics, our proposed tasks (see Table 1) can be thought of as boats carrying
students between the worlds. Other related metaphors in play could be the direction
of the wind and the intensity of the waves, and the speed of the boats (see Fig. 7).
The learners need guidance and navigation skills to travel to the other island, and
once they arrive to the next island they will need accommodation and pedagogical
support.

3.3 Concluding Remarks

Duval (2006) believes that students’ difficulties with comprehending mathematical
ideas is due to their lack of flexibility between moving between registers, as most
students do not have the cognitive structure to perform the switch that is available to
the expert. In his view, “changing representation register is the threshold of
mathematical comprehension for learners at each stage of the curriculum.” (p. 128).
Duval asks the question: “does such a register coordination come naturally to pupils
and students in the context of mathematical thinking?” (p. 115).

According to Ausubel, Novak, and Hanesian (1978, p. 117) “the learner is
simply required to comprehend the material and to incorporate it into his cognitive
structure.”

Vinner (1988) claims that “very often (and specially in mathematics) the cog-
nitive structure of the learner is not suitable for incorporating the new material. In
this case the cognitive structure has to undergo some changes, that is, to accom-
modate”. (p. 594)

He believes that acquisition of new mathematical concepts in more advanced
settings requires accommodation, since “a concept which seems quite simple to
the mathematician can be difficult for the student to accommodate” (p. 606).
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Lack of attention to accommodation will lead into situations where “certain con-
cepts are not conceived by the students the way we expected.” (p. 593).

We anticipate that by engaging in linear algebra tasks proposed in this chapter
students will be exposed to different ways of thinking about the concepts. Research
is needed to determine for a given concept what kind of accommodation is ideal and
ultimately the optimal pedagogy is. For example, how to accommodate for linear
algebra students when they arrive in a different world of mathematical thinking
would be of interest.
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Conceptions About System of Linear
Equations and Solution

Asuman Oktaç

Abstract Understanding of systems of linear equations permeates in the study of
several topics of importance in linear algebra, such as rank, range, linear
independence/dependence, linear transformations, characteristic values and vectors.
After giving an overview of the literature on the teaching and learning of systems of
linear equations, research results on student difficulties at different school and
university levels are presented, establishing relationships with the way this topic is
taught. The conceptions that students develop about ‘system’ and ‘solution’ are
discussed in synthetic-geometric and analytic contexts in two and three dimensional
spaces. Based on these observations, some pedagogical suggestions about planning
instruction on this topic are offered. Although the findings reported in this chapter
correspond to research undertaken in Mexico and Uruguay, they might be reflecting
a more general phenomenon related to conceptions that students develop in relation
with systems of linear equations and their solutions.

Keywords System ⋅ Linear equations ⋅ Modes of thinking

1 Introduction

Systems of linear equations constitute a topic of study at different school levels,
usually starting at the secondary level in many countries around the world.
Although the depth and methods of their study vary, they are considered important
mainly for two reasons. On the one hand the comprehension of systems of linear
equations constitutes an important step for further study in mathematics in general,
and Linear Algebra in particular; on the other hand many applications in the fields
of engineering and social sciences involve models that make use of this subject.

A review of literature reveals that despite the importance of this topic it has
not been extensively studied by mathematics educators. However examples of

A. Oktaç (✉)
Cinvestav-IPN, Mexico City, Mexico
e-mail: oktac@cinvestav.mx

© Springer International Publishing AG 2018
S. Stewart et al. (eds.), Challenges and Strategies in Teaching Linear Algebra,
ICME-13 Monographs, https://doi.org/10.1007/978-3-319-66811-6_4

71



difficulties experienced by students can be found within more general studies. For
example Sfard and Linchevski (1994a) mention that when in the process of solving
a system the variables “disappear” leading to expressions such as − 1= 4 or 0= 0,
the students interpret the situation as the system having no solution. The authors
explain this phenomenon in terms of a confusion that results from a lack of an
abstract entity (equation as object) that can be transformed by applying algebraic
manipulations on it. This gives rise to out-of focus (p. 289) use of mathematical
language and behavior.

The same authors (Sfard & Linchevski, 1994b) contend that only by considering
equations within a functional approach can the students attribute meaning to
expressions such as 0= 0 and realize that a system of linear equations can have
infinitely many solutions. In the case of systems with parametric equations the
student has to understand that each such equation represents a family of functions.
Another difficulty arising in this context is the confusion between the unknowns of
the system and the parameters, thinking that the solution set consists of those values
of the parameters which make the system true, as also reported in Stadler (2011).

In the next section we explain the theoretical framework that guided our study of
the concepts of system of linear equations and their solution and then we present the
aims of our research.

2 Theoretical Framework—Synthetic and Analytic Modes
of Thinking

Sierpinska (2000) distinguishes between three modes of thinking: synthetic-geo-
metric, analytic-arithmetic and analytic-structural, tension between these three
modes marking the historical development of Linear Algebra. According to her the
synthetic mode corresponds to geometrical objects as they are perceived by our
senses directly, such as thinking about lines in the plane. Analytic mode on the
other hand makes use of symbols and the person who is thinking in this mode has to
go through an interpretation in order to work with mathematical concepts; so in this
mode the interactions with objects is indirect. In the analytic-arithmetic mode the
equations that form a system can be solved using different methods and to interpret
the symbols as equations some background is necessary, whereas in the structural
mode the emphasis is on the properties of objects; in this mode one can ask for
example under what conditions a system has a unique solution. In the synthetic
mode the properties describe the object, whereas in the analytic mode the objects
are defined through specific relationships between mathematical elements.

Apart from characterizing the historical development of linear algebra concepts,
these three modes of thinking also appear in students’ reasoning while working on
different linear algebra problems. Sierpinska (2000) considers that all the three
modes of thinking are useful in different contexts and through their interaction a
better understanding of Linear Algebra concepts can be achieved. On the other
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hand, beyond consisting in ways of thinking, these modes also provide tools for
solving problems and points of view that help in comprehending different facets of
mathematical concepts.

Although they are both analytic, arithmetic and structural modes differ from each
other considerably. In the arithmetic mode the focus is on algorithms to solve
problems and arrive at answers that can consist in numbers, ordered pairs or
matrices for example. In the structural mode on the other hand the space becomes
an axiomatic system whose elements “lose their numerical substance” (Sierpinska,
2000, p. 233). The following example illustrates this difference:

Given two matrices A and B. The problem is to check if B is the inverse of A. One student
calculates the inverse of A using the well-known formula with the determinant and
co-factors, and compares the result with B. Another student multiplies A by B. To deal with
the inverse of a matrix, the first student uses a technique for computing the inverse. The
second student uses the defining property of the inverse. We shall say that the first argument
was analytic-arithmetic, while the second was analytic-structural. (p. 234)

As for the difference between the synthetic and analytic modes, Sierpinska
(2000) describes the reaction of a student who, when shown a figure with three
planes intersecting in a line, said that the respective system has a unique solution
that consists in the line that was common to all planes. The same kind of phe-
nomenon was also observed in our research group, as will be commented later in
this chapter. According to Sierpinska this kind of answer is due to a generalization
from two to three dimensions in a synthetic-geometric manner, instead of an ana-
lytic one. In her study when the student was able to interpret the question in an
analytic context, imagining the line as made up of infinitely many points, he gave
the correct answer.

However, according to Sierpinska (2000), synthetic-geometric and analytic-
structural modes are quite closely related, in their “independence from a coordinate
system” (p. 236) and being “based on properties, not calculations” (p. 236). It must
be added that these two modes of thinking are the most absent in current educa-
tional practices, analytic-arithmetic thinking reigning at all levels. One way to
promote reasoning by properties in students might be to place emphasis on struc-
tural argumentation in synthetic contexts at lower educational levels. The research
reported in this chapter brings to the front this aspect.

3 Aims of the Study

This chapter discusses the synthetic-geometric and analytic conceptions that stu-
dents develop at different school levels about the notions system of linear equations
and solution of a system of linear equations. Different positions that lines in a
two-dimensional plane or planes in a three-dimensional space can have with respect
to each other and the kinds of solution sets the respective systems have, provide a
context in which the mathematical activities are carried out.
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In our research group we have been studying the system of linear equations and
solution concepts from different perspectives, including how they are constructed,
associated difficulties in geometric and algebraic contexts as well as conceptions
that students might develop. The intention of this chapter is to bring to the attention
of an international audience insights from this data that has been collected in
Spanish about the learning of these notions. The data analyzed for this chapter was
collected over a ten year period with a fluctuating team of 3–7 researchers led by the
author of this chapter, which presents a reanalysis of portions of this data that allow
for insights into student understanding of systems of equations and their solutions
across three different settings. Each of these settings was analyzed previously by a
different student and relevant results from their work are cited. In addition, if a
piece of data was reported previously in another study, the data will be identified by
citing the thesis in which they appear first. Considering them together will also help
offer an interpretation from the viewpoint of the research project, as to the causes of
the obstacles experienced by students. It should be noted however that the inter-
pretations reported in this chapter belong to its author and do not necessarily reflect
the opinions of the authors of the theses in which the data appear, unless otherwise
indicated by a citation. The findings reported here form part of a larger ongoing
project about the understanding of Linear Algebra concepts in which different
theoretical approaches are being employed, such as mental constructions, intuition,
mathematical work spaces and representations. The framework used in this chapter
is that of modes of thinking (Sierpinska, 2000) and it is chosen to explain the
phenomena related to the learning of the notions in question. Although the reported
data comes from studies conducted in Mexico and Uruguay, the observations might
shed light on difficulties experienced by students in other parts of the world as well.

4 The Notions of System and Solution in Literature

Among the factors that have an influence on the conceptions that students develop
about the notions of system of equations and solution to a system of equations, is
their previously constructed knowledge about what an equation is and what a
solution to an equation is. The understanding of variables and their different uses in
turn has an impact on this knowledge (Borja-Tecuatl, Trigueros, & Oktaç, 2013). In
this section by considering the results reported by two studies, one conducted at the
middle school level and the other with undergraduate students, we get a glimpse
into the consequences of the lack of these prerequisite constructions.

Panizza, Sadovsky, and Sessa (1999) ask whether students can conceive an
equation with two unknowns on its own right, outside of a system of equations. The
six middle school students who participated in their study had worked previously
with equations with one unknown, linear functions and 2 × 2 systems, but not with
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a single equation in two unknowns. Five of them thought that an equation in two
unknowns has a unique solution, but adopted a strategy that they tried to generalize
from a method of solution for 2 × 2 systems. First they solved for one of the
unknowns, then they substituted this expression for that unknown in the same
equation, arriving at a tautology; at that point they could not give meaning to what
they obtained. Only one student who formed a linear function from the equation
was able to answer the question correctly. On the other hand when they were asked
to solve a system of two linear equations in two unknowns with a unique solution,
none of the students presented difficulties. They also said that a pair of numbers is a
solution of the system if it satisfies each equation. However, when after a pair of
students working together had found the unique solution to the system, they were
asked if it was a solution for one of the equations in particular, their answer was
negative; they contended that it was a solution “for both [equations] together,
because it is a system” (Panizza et al., 1999, p. 458). The students were also asked
specifically what would happen if they substituted the solution that they found in
the first equation of the system, to which they answered that the solution to the
system would not satisfy the equation. The authors conclude that “‘the equation
with two unknowns in a system’ is a different object than ‘the equation with two
unknowns’” for these students and that “the equation with two unknowns is not
recognized by the students as an object that defines a set of infinitely many pairs of
numbers” (p. 459). If students have difficulty interpreting the concept of equation, it
is more than likely that this will have repercussions on their conceptions about
systems that are made up of equations.

DeVries and Arnon (2004) observe that for some university students the solution
to an equation is the constant that appears on the right hand side of that equation,
since it gives the ‘result’. This is in line with what Kieran (1981) reports about a
meaning attributed to the equation sign. According to these authors other students
equate the notion of solution with the process of solving. They suggest from an
APOS Theory perspective that the construction of the concept of solution would
improve if it started with actions of substitution, in the sense that a number or a
tuple is a solution to an equation or to a system of equations, if when substituted
satisfies it. However this is usually not the approach taken in linear algebra courses,
focusing instead on solution methods such as Gauss-Jordan algorithms which turn
out to be difficult to interiorize, since it is hard to imagine their result without
actually going through the steps to arrive at the solution (DeVries & Arnon, 2004).

Knowledge constructed about the prerequisite notions of system and solution to
a system of equations permeates the understanding of students in subsequent years.
We now turn to explain the general method employed in our research and then to
examine how at different educational levels the topics under study are perceived by
students and how through time some conceptions persist, despite many years of
formal education.
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5 Method

As it was mentioned before, the three studies on systems of linear equations and
their solutions that were conducted in a sequence form part of a project that aims at
understanding student difficulties with different topics of Linear Algebra, viewed
from different perspectives. These studies in particular represent different phases
that correspond to our understanding of a phenomenon at different educational
levels. The modes of thinking approach in Linear Algebra (Sierpinska, 2000)
provided a rich tool for investigating and explaining student interpretations, ten-
dencies and ways of relating or avoiding particular ways of solving problems.

Our research on these topics started with a concern about university students’
comprehension of them in varying representational settings, in particular when
these settings interact with each other. The initial study was performed with seven
students who worked collaboratively on problems while we observed them and
registered their activity. The problems were designed with the purpose of identi-
fying difficulties in synthetic and analytic modes as well as in connecting them. As
a result of this first inquiry, we gained a general understanding about the matter and
designed a more comprehensive questionnaire to be applied to a larger group of
students.

Application of the new questionnaire and subsequent interviews with selected
students revealed in a detailed manner the characteristics of synthetic thinking about
systems of linear equations and their solutions when the equations represented lines
in the plane or planes in the space; it also allowed us to observe more closely how
the students interacted with synthetic and analytic modes when the question called
for both.

Subsequently we wanted to know what happens at lower educational levels,
namely at middle and high school, searching possible causes for the conceptions
observed at the university level. This study led us to discover pedagogical strategies
employed starting at the middle school level, which might explain partially where
the roots of the issue lie.

6 Systems of Linear Equations at Different
Educational Levels

In what follows we present the results of our study concerning the notions of system
of linear equations and solution of a system of linear equations at middle school,
high school and university levels. By doing that, we want to evidence the lasting
effect that the initial context in which these notions are introduced has, on the
conceptions that the students generate. We will see how, the way students first get
acquainted with these notions at middle school permeates in their understanding
throughout their studies up to university. It can be noted that although the popu-
lations are different, and they even come from different countries, the difficulties
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that they experience related to these notions are very similar. The particular studies
are presented in a chronological order; after we observed difficulties at the uni-
versity level we wanted to inquire into their origins and set up investigation at lower
educational levels. Although the questionnaire as a whole differed from one edu-
cational level to another because of the mathematical maturity of the students
involved and our level of understanding of the issues involved, some of the
questions that are examined in this chapter were essentially the same at all levels
and together they help explain a phenomenon related to the understanding of the
concepts involved as well as allow a comparison in terms of the characteristics of
their reasoning. In particular, the fact that the three modes of thinking presented in
the theoretical framework section appear in students’ reasoning at different levels
makes this approach especially suitable for a study undertaken at different educa-
tional levels and with students of different mathematical maturity.

6.1 University

In this section we present results concerning two groups of students coming from
different universities in Mexico. All of the students’ responses that appear in quotes
are translations from Spanish.

6.1.1 First Group

In this preliminary study we worked with seven students from a public university in
Mexico in a collaborative setting, asking them to solve some problems prepared
previously. All the students were in their third semester of the nutrition engineering
program; they had seen the topics of systems of equations and matrix algebra in
their first year of studies in the Mathematics I course, but they had not taken Linear
Algebra. They were chosen based on their interest in participating in the study.

The complete questionnaire applied to the students can be consulted in Appendix
1; here we will present the results from the first, second and fourth questions. First
part of the first question asked them to draw in the Cartesian plane two lines whose
equations were given and whose graphs coincided; in the second part they were
supposed to solve a system corresponding to the graph, but the question did not
specify the relationship between the graph and the system given algebraically. One
of the students who used a row reduction method and arrived at a row of zeroes
wrote: “The system of equations has no solution; because when solving we look for
the points in which they intersect, and since it doesn’t have a solution, it has
infinitely many solutions” (Mora Rodríguez, 2001, p. 76). In this seemingly con-
tradictory interpretation we can see two conceptions of solution: one as the point of
intersection geometrically and the other as the points that satisfy both equations. It
is as if the student is saying that since the system does not have the first kind of
solution (a point of intersection), than it should have the second kind. Another
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student, after arriving at 0 = 0 by substitution method said that the system had no
solution, since “when trying to solve it we don’t find the value for x and y” (p. 78).
Here we can observe the preconceived solution as a unique ordered pair and
difficulty in interpreting the tautology. Two other students working together used
the elimination method and arrived at 0 = 0, after which one of them explained that
“the system has an infinite solution, since when solving it you look for the point
where the equations intersect and in this case the graphs intersect at all of their
points” (p. 76). The other student on the other hand interpreted this result in the
following way: “the system has no solution which means that they are the same or
they are parallel” (p. 76). Two other students used determinants to solve the system
and came to the conclusion that since the determinant is zero and the graphs
coincide, there are infinitely many solutions. The remaining student made a mistake
and arrived at a unique solution and did not comment on it. The conception of
solution as an intersection point of two lines geometrically and as the ordered pair
that results from applying some solution method works out in the case of a system
with a unique solution, but fails otherwise. Furthermore lack of structural thinking
makes it difficult to interpret the arithmetic results that do not consist in an ordered
pair.

After the students worked on the problem, there was a discussion period in
which the answers were compared. The comments made by the students during this
discussion gave an idea of the conceptions that students have about solution as an
intersection point or an ordered pair that results from the solving process: “When
you solve a system of equations you always look for the intersection”; “When you
solve a system of equations you always look for the x and y values”; “It is the same
line and there is no solution because there are no x and y values”; “If it is the same
equation and you have only one line then it does not have a solution, because there
is no other line that intersects it”; “But when they ask you to solve it, how are you
going to solve it? We need to have two equations, right?”; “We cannot work with
the two equations because they are the same, that’s why we cannot find values for x
and y, so we cannot have a system” (Mora Rodríguez, 2001, pp. 78–79). Some of
these comments were made by students who had given the correct answer, which
shows that they have doubts about the process.

The second question of the questionnaire was similar to the first one, with the
exception that in this case the system corresponded to two parallel lines. After
graphing the lines and solving the associated system, the students arrived at 0 = 1;
trying to interpret this result, one student wondered: “Could this 1 be the distance
between the two lines?” (Mora Rodríguez, 2001, p. 83). Another student, who was
trying to reconcile the visual information with the expression he obtained, asked:
“Supposing that I don’t know how to graph; how can I conclude the same thing
with the analytic method?” (p. 84). Another student commented: “When there is no
point of intersection you arrive at an inconsistency” (p. 84). We can see in these
answers the attempts that students make in order to relate the geometric and analytic
aspects of the solution set, however the lack of an immediate interpretation of the
arithmetic result makes it difficult; actually the interpretation would require struc-
tural thinking based on properties of the objects involved.
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The fourth question of the questionnaire showed the case of three lines inter-
secting two at a time in the Cartesian plane, forming a triangle. All but one student
thought that there were three solutions to the system; the remaining student did not
give an answer. One student wrote down the equations of the lines. Afterwards,
using all three equations, he eliminated one of the unknowns and found the value of
the other one. Next he substituted that value in each of the three equations to solve
for the other unknown and thought that those three ordered pairs were the three
solutions that he was looking for. This was an incorrect generalization of a solution
method from a system with two equations to one with three equations. If he had
graphed those points perhaps he would have realized that they all lied on a straight
line and this did not coincide with the information given in the graph. However
when they started to discuss among themselves about the meaning of a solution,
three students forming a group came to the conclusion that the system had no
solution. They explained that at the beginning they thought about three systems
with a unique solution each, but they realized that the solution to the system should
be at the intersection of all three lines.

This preliminary study gave us an idea about the kinds of difficulties that stu-
dents might experience when learning the concepts of system and solution, as well
as the conceptions that they might develop. We were especially intrigued by the
answer of “three solutions” given by university students in the context of a graph
containing three lines intersecting two at a time and wondered about the causes; the
characteristics of the synthetic mode and its interpretation by the students seemed to
be involved. Considering that reasoning in terms of properties is an important skill
for university students to develop and that the synthetic mode provides opportu-
nities in this direction, based on these observations we decided to apply a more
extensive questionnaire to another group of university students in order to inquire
more deeply into their conceptions about the notions of system and solution.

6.1.2 Second Group

We applied a questionnaire to all the 27 students enrolled in an introductory Linear
Algebra course at a public university in Mexico, who were majoring in agricultural
engineering and were in their first year of studies.

The questionnaire (Appendix 2) consisted in four parts. In the first part (ques-
tions 1 and 2) we included figures that showed different configurations of lines in
two dimensions or planes in three dimensions and asked them to tell how many
solutions a corresponding system of equations would have. This time the figures
were presented without coordinate axes in order to focus on the properties of the
figures rather than providing elements to students that would allow them to find the
respective equations, as it had happened with the previous group. In this part
the questions were presented in a synthetic mode, asking for an answer in an
analytic mode. In the second part (question 3) we asked the students to come up
with a system that might represent the information given in each figure. This way
we wanted to see how the synthetic and analytic-arithmetic modes would be
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connected, employing properties related to the structural mode. The questions in the
third part (questions 4 through 7) gave specific conditions in terms of the number of
unknowns and solutions and asked if a system satisfying those conditions might
exist. Here the student could employ the synthetic and structural modes. In the
fourth part of the questionnaire (question 8) the students were asked to solve a
system of three equations in two unknowns, representative of the triangular for-
mation case mentioned earlier; the intention was to see what kinds of solution
methods would be used. In general we were interested in the students’ synthetic
arguments, elements of structural thinking involved in the synthetic mode and in
what ways the students could relate the synthetic mode to the analytic modes, both
arithmetic and structural.

According to the responses given to the questionnaire we divided the students
into three categories. In the first category there are 9 students whose answers
provided clues about their conceptions regarding systems of linear equations and
their solutions; only five of these students answered the questions concerning lines
as well as planes, the remaining four answered only the questions about lines. In the
second category there are 10 students whose answers to the first part were guided
by geometric elements of the figures such as angle, perimeter and distance that did
not have a direct relationship with what was being asked for. The third group
consisted of 8 students who did not answer or gave responses that had nothing to do
with the questions. The findings that we present here concern the first group of
students for the first part of the questionnaire; for the second and third parts the
second group is included as well.

In the first part of the questionnaire all 9 students said that there were three
solutions in the case where three lines intersecting two at a time were shown; in the
case of two parallel lines and one intersecting them, they thought there would be
two solutions. The following was a typical explanation in the case of “three solu-
tions”: “Since there are three points of intersection then each point represents a
solution for the system” (Cutz Kantún, 2005, p. 55). One student argued that the
three solutions are found by solving the equations corresponding to two lines at a
time. This reasoning resonates with the conception of a system as a collection of
equations that are made up of subsystems of two equations, similar to the one that
we will observe at the middle school level, result of relying exclusively on 2 × 2
systems in the initial teaching of the subject.

Four students thought that in the following case (Fig. 1) there is one solution,
arguing in the following way: “It is the region in which the two figures intersect
with each other” (Cutz Kantún, p. 43). One student thought that there are two
solutions, considering the end points where the planes touch each other.

Three students said there are three solutions in the case shown in Fig. 2. One
student said that there was no solution “because the three figures do not intersect at
any point” (p. 43). Given that this student had answered “three solutions” for the
case of three lines, his answer reflects a conception of solution as a single inter-
section point. The student who had said there were two solutions for Fig. 1, said
here there are 6 solutions, using the same argument. Apart from the conception of

80 A. Oktaç



solution as the point of intersection of two lines, this reasoning also shows that the
planes are being perceived as finite.

Another problem showed a line and the question specified that there were three
lines; one student answered that there were no solutions and wrote: “There is only
one line and there is no way to solve one equation without another, or there are
several lines that are united but even then they cannot be solved” (p. 46). Similar to
this response is the one where a student said there was no solution because there is
only one equation. Yet another student who thought that there is no solution
responded: “The line is only one, there is no other one intersecting it” (p. 62). This
kind of response is related to the conception of solution as a point or region of
intersection; if visually there is no intersection perceived, the case is associated to
one with no solution. Also in play is the impression that there must be more than
one equation in order for a solution to exist; this has to do with the solution methods
that students practice. In case of three coincident lines, what is perceived syn-
thetically might be very different from an analytic interpretation, where three
unidentical (but equivalent) equations might be associated to the same line.

For the same question, another student said that “since it is only one line, then
the solution would be unique” (p. 55). This student was perceiving the line syn-
thetically as one entity, instead of analytically as an object consisting of infinitely
many points. In the same line of reasoning another student commented the fol-
lowing: “the lines don’t intersect, in this case they only unite in a parallel way”
(p. 43) and considered that there is no solution.

The answers to the first part of the questionnaire indicate that figures given in a
synthetic mode provoke answers in a synthetic mode even if the question demands
an analytic answer, unless the student had the opportunity to practice different
situations involving the two modes and reflect on the connections between them.

In the second part of the questionnaire students had lots of difficulties in pro-
viding the systems; usually the type of solution set did not coincide with the visual

Fig. 1 Cutz Kantún (2005,
p. 244)

Fig. 2 Cutz Kantún (2005,
p. 245)
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information given in the figures. There was confusion about parallel objects (no
intersection) and objects that were coinciding. Some students used two unknowns
to represent the planes. The answers to this part show the difficulty in transiting
from a synthetic thinking to an analytic thinking. Although the answer is being
asked for in an arithmetic language, structural thinking has to be employed to arrive
at the result because of the properties of the mathematical objects involved.

In the third part of the questionnaire the correct response rate was very low; the
systems that were provided by students did not comply with the given conditions in
their majority. Some students even rejected the questions as plausible, arguing that
they needed as many unknowns as the number of equations. The highest rate
occurred in the case of some systems with unique solutions; part 4(a) had 7 correct
responses, part 5(a) had 3 correct responses and part 6(a) had one correct response.
Parts (b) combined of all four questions received 7 correct answers and part (c) had
only one correct answer. These findings indicate that students have difficulties in
making the visual information of the graphs correspond to the equivalent properties
of equations, which implies once more the lack of connection between the three
modes of thinking.

In the last question the solution methods varied greatly. One student solved the
equations two by two, arriving at the three points of intersection. Another student
added the three equations together, then formed a system with the resulting equa-
tion and the third equation, coming up with an ordered pair. Two students solved
the first two equations for x and substituted it in the third equation to find y. Another
student used matrices and row reduction, but could not interpret the result. Yet
another student solved each equation for x and then substituted it in the same
equation arriving at three tautologies. Three students solved for two equations and
reported the result that they obtained. One student solved two of the equations and
reported that the third equation is not compatible with the others, however did not
mention that the system has no solution. Only one student gave a correct answer,
solving two equations simultaneously and substituting the ordered pair in the third
equation, observing that it does not satisfy it and concluding that there is no
solution. It can be noted that the type of conception a student has of what a system
is and what a solution is plays a determining role on the success with this question.
A purely arithmetic thinking leads to applying some solution methods inappro-
priately, if it is not combined with structural reasoning.

Before the course started we had interviewed the instructor and in particular we
had mentioned that students in general thought that there are three solutions in the
case of the triangular configuration mentioned above. He had given us permission
to apply the initial questionnaire before the course started and to interview some of
the students when the course would be over. We shared the results of the ques-
tionnaire with him before he started the course. Afterwards we found out that during
the course he put special emphasis on the “three solution” problem to make sure
that the students would not commit the usual error.

As planned, after the course was completed five students were selected to be
interviewed based on their questionnaire results. The interview questions were
taken directly from the questionnaire with the exception of one question that was
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completely new. The intention was to inquire into the conceptions of students
regarding the notions of system and solution. The new question showed two lines in
a plane intersecting at one point, and asked if it was possible to draw another line so
that the system of equations represented by the figure would have (a) two solutions,
(b) three solutions and (c) no solution. Since in the questionnaire the students
thought that three lines showing three points of intersection represented three
solutions, we wanted them to reflect on the no solution case and we were curious
about the drawings that they might produce. It should be noted that the new
question had the intention to involve the student in the construction of a situation
based on the properties that it should satisfy, hence promoting structural thinking in
a synthetic context, rather than just observing a figure and giving an answer. This
way we hoped that the connections between the different modes of thinking would
be motivated more actively.

From the five students only one evidenced conceptions compatible with math-
ematical theory throughout the interview, in the sense that a system was viewed as
consisting of equations with a common solution set; other students repeated the
kinds of responses that were obtained from the questionnaire. Let’s first discuss the
findings for the new question.

One of the students produced the drawing shown in Fig. 3 for part (a) and a
triangular figure for part (b), as we expected. His arguments evidenced that he was
thinking that each pair of intersecting lines formed a system.

For part (c) he produced the drawing shown in Fig. 4 and said that he was
thinking of a line that should not touch any of the given lines. When the interviewer
asked what would happen when the lines are extended, the student said that he
would make sure not to extend them that much. The interviewer insisted by asking
if he was considering that the lines had finite length, to which the student responded
that in the Cartesian plane he could make sure that the two given lines stay in one
quadrant and the third line in another quadrant.

Another student read all the parts of the question and started commenting about
them in a mixed order. He said that three solutions would be impossible to obtain,
because in the case where the lines form a triangular shape there is no solution,
since there is no point of intersection to all the lines; he added that this case would
be an example of no solution. However something curious happened when he
considered part (a); he produced the drawing shown in Fig. 5. Probably because of
the instruction he received he had memorized that the case of three lines represented
no solution, but when the problem was changed he went back to his initial con-
ception. The interviewer tried to confront the student with the answers he gave to
the different parts of the question. After insisting for a while on the conflicting
answers, finally the student said that there is no solution in the figure he drew, but it
is not clear whether he really understood where the problem lied.

Two other students said that in part (c) since the two lines have a point of
intersection, the system already has a solution and it would be impossible to add
another line to result in a no-solution case. Only one student responded in a sat-
isfactory manner to all parts of the question.
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Four out of five students, when shown a figure similar to Fig. 1 but with three
planes intersecting in a line (question 2–8 in Appendix 2), responded that there is a
unique solution. One of those students explained his reasoning in the following
manner, showing how he was generalizing from two to three dimensions: “Rep-
resenting this graphically, since now they are planes, the point will not be seen as a
point, rather as a line” (Cutz Kantún, 2005, p. 128). This is an evidence of thinking
about the line as a synthetic object, as we also saw discussing Sierpinska’s (2000)
example. The remaining student said that the answer would be equal to the number
of points included in the line segment shown in the figure where the planes
intersect, but could not determine how many of those points there are.

When the students were asked to propose a system of equations representative of
the figures that showed three lines in different relative positions, different kinds of
difficulties emerged. Some students thought that they needed to use three unknowns
because there were three equations. Others said that they could come up with a
system if there were two lines instead of three. Some said that without the Cartesian
coordinates they could not find a system, although the interviewer clarified that they

Fig. 3 Cutz Kantún (2005,
p. 103)

Fig. 4 Cutz Kantún (2005,
p. 105)

Fig. 5 Cutz Kantún (2005,
p. 109)
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should concentrate on the relative positions of the lines and the type of solution set.
This also has to do with the fact that the questions were being presented in a
synthetic mode emphasizing the visual properties of objects, with the intention for
the students to reflect about the problems in an analytic-structural way, whereas the
students thought about them in an analytic-arithmetic way (Sierpinska, 2000)
emphasizing formulas and algorithms to find the equations.

From this discussion we can see that in general the underlying conception that
the students have of a system is one of a set of two equations in two unknowns that
are solved together, that is operating when they work on problems. The conception
of solution also fits this scheme, being identified geometrically as the point of
intersection of two lines, and algebraically as an ordered pair that satisfies both
equations that form a system. This “definition” of a system naturally leads to
affirming that three lines intersecting at three points represent a system with three
solutions. These conceptions are very persistent even after instruction.

As we had mentioned earlier, after obtaining these results we wanted to see what
happens at middle and high school levels with the teaching and learning of these
concepts, hoping that conducting a study at those levels might help identifying the
causes of the difficulties observed at the university level.

6.2 Middle School

At this school level the topic is usually introduced in the context of 2 × 2 systems,
that is two equations in two unknowns. Different solution methods are presented to
students: elimination, substitution and graphical, the last one in general receiving
less attention than the other two. Students are expected to practice their solution
skills with respect to these methods. Most often these systems have a unique
solution and students’ success is determined by their ability to arrive at that unique
ordered pair. Less common but still used in teaching are word problems where
students have to translate the given information to a system of equations and then
solve it.

Normally students at this level are not given the opportunity to experiment with
non-square systems and the conceptions generated in relation with the notion of
solution of system of equations is strongly influenced by this initial context. Let’s
consider the following question presented to a group of middle school students in
Uruguay who had studied the subject in the context described earlier (Fig. 6):

In the following figure three lines associated to a system of three first-degree
equations in two unknowns are graphed. How many solutions does this system
have? Justify your answer.

From the 22 students who answered the question, 12 responded that the system
has three solutions; 7 said it does not have a solution and 3 gave other kinds of
responses. Since the only kind of system with which these students had worked
previously was one with two equations in two unknowns, their answers reflect the
generalization that they had to apply to the case of a system of three equations in

Conceptions About System of Linear Equations and Solution 85



two unknowns. In some cases, as the responses of the 12 students indicate, this
generalization was based on the idea that the intersection point of two lines is a
solution to a system, no matter how many equations it is comprised of. It should be
mentioned that some students, when asked what it means for a pair to be a solution
to a system, correctly mention that it should satisfy all the equations in the system;
some declare that this system does not have a solution, but that considering the
equations two at a time, it does. This later kind of response indicates an attempt to
generalize the previous knowledge to the new case, conserving the essential aspect
—intersection of two lines as a solution—but combining it with the meaning of the
solution of a system of equations, as a general notion.

The above discussion provides us with some elements as to the conceptions that
the students generate for the concept of solution of a system of equations, in the
context of instruction based on 2× 2 square systems with emphasis on unique
solution. The tendency to equate ‘an intersection point of two lines’ in a geometric
context to ‘a solution of a system of equations in which those two lines are rep-
resented’ is very strong. Knowing this tendency can inform instructional design and
form the basis of pedagogical ideas for dealing with this topic.

Following this initial exploration a questionnaire (Appendix 3) was designed and
applied to two groups of middle school students after the topic of systems of linear
equations was covered. The questionnaire involved 18 questions, the first one
corresponding to the triangular configuration shown in Fig. 6. The last two ques-
tions asked what a system of equations is and what a solution to a system of
equations is for the student. Table 1 shows the number of students who answered in
one of the three ways the first question.

For students who responded that there are three solutions, the following
explanation was typical: “In my opinion it has three solutions, because the lines
intersect at three different points, which at least in systems of two equations indicate
the solution” (Ochoviet Filgueiras, 2009, p. 147). Another kind of answer reflects
the tendency to separate the bigger system into smaller 2 × 2 systems: “It has three
solutions but each one is for two equations” (p. 164).

Fig. 6 Ochoviet Filgueiras
(2009, p. 82)
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The sixth question in the questionnaire was the following: Can you put another
line in Fig. 7 so that the system of equations associated to all the lines has no
solution?

Some students, when they came to this question, answered it correctly and they
also realized that their response to the first question was wrong. Something in this
question made them reflect on the problem and on the meaning of a solution. One
student, who had given the response of three solutions, answered this problem
correctly; he explained what a system is and what a solution of a system is in the
following way, underlying the word ‘common’: “A set of 2 or more equations to
which you should find one (or more) common solutions” (Ochoviet Filgueiras,
2009, p. 159); “a solution of a system of equations is a common result of each one
of the equations that there is in that system” (p. 160). We should point out that this
question is practically the same as the extra question that was asked to the second
group of university students during an interview, who did not show this kind of
reflection. The difference is that those students had already constructed a conception
about these notions, whereas the middle school students were doing it while solving
this questionnaire. This shows the importance of designing situations that motivate
transitions between modes of thinking, allowing the students to make the necessary
connections.

Another question that had the same effect on some students was the following:
Can a system of three linear equations in two unknowns have (a) a unique solution?
(b) exactly two solutions? (c) exactly three? (d) infinitely many solutions? (e) no
solution? Explain each answer and illustrate it by means of a graphical represen-
tation. One student said that when she had to do it herself she realized that she had
given a wrong answer to the previous questions. This student also said that at the
beginning she was thinking about two lines whose intersection point is the solution
of the system as they had seen in class, which provoked her to give the answer of
three solutions to the first question.

Table 1 Types of response
to the triangle configuration
problem at the middle school
level

Answer to the first question Number of students

Three solutions 24
No solution 12
Other answers 12
Total 48

Fig. 7 Ochoviet Filgueiras
(2009, p. 159)
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Reflecting about this phenomenon, we note that the triangle configuration sys-
tem is presented in a synthetic-geometric mode, which provokes an intuitive
response in students; the visual clue of three intersection points is quite strong in
terms of associating them with intersection points as solution. Ochoviet Filgueiras
(2009) sustains that the fact that in the sixth problem (Fig. 7) the third line is not
given but it is the student who has to produce it provokes a more analytic thinking.

Some students used a synthetic reasoning to explain why a system of three linear
equations in two unknowns cannot have exactly two solutions, as one of the
questions demanded. One student drew the following graph and wrote “this is not a
line”, explaining it as follows: “A line either crosses at one point or all, infinitely
many, if it crossed at two, it would not be a line” (Fig. 8).

Students were asked to state what a system of equations is for them and what a
solution of a system of equations is. Some students who responded correctly to the
triangle figure stating that the corresponding system has no solution, gave defini-
tions that are in line with mathematical theory. For example one student said that a
system is “a set of two or more equations in which you cannot look for an indi-
vidual solution, but a common one for all” (Ochoviet Filgueiras, 2009, p. 143). The
same student said: “A solution for me is a result or pair that satisfies all the
equations that constitute the system at the same time” (p. 143). But this was not
always the case; in general what the students stated as a definition was not helpful
in guessing how the student would actually answer the remaining questions. There
were students who, although gave correct definitions, did not apply them when
answering the questions. And in the other direction some students who identified
the notion of solution with points of intersection of lines when they were asked for a
definition, responded the triangle configuration problem correctly, probably
because they had it clear that they were referring to the points that were common to
all the lines. This shows that teachers cannot rely on students citing definitions as an
indication of learning.

Some students, although they answered ‘three solutions’ to the triangular con-
figuration problem, in the algebraic context verified that there was no solution
common to all equations and hence the system had no solution. This shows the
influence of the mode in which the question is presented in how students reason
about the problem. A synthetic mode provokes an immediate, intuitive answer
based on the perceived properties of the figures, whereas an analytic mode can
motivate analytic thinking and the two modes would not necessarily be connected
by the student.

Fig. 8 Ochoviet Filgueiras
(2009, p. 141)
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6.3 High School

The situation reported above where three lines intersecting two at a time being
associated to a system of equations with three solutions was observed earlier in our
research group at the high school level (Eslava & Villegas, 1998). It was also
observed that many students interpreted geometrically the solution to a system of
equations as the intersection of two lines, sometimes one of the lines being a
coordinate axis.

The same questionnaire (Appendix 3) that was applied at middle school was also
applied at the high school level in Uruguay. Analytically, the same phenomenon
was observed when students, after completing instruction on general systems of
linear equations (with varying number of systems and number of unknowns) took
two equations at a time from a system with three equations, forming three smaller
systems and solved them separately, arriving at three solutions (Ochoviet Fil-
gueiras, 2009). These students had studied matrices, determinants and Cramer’s
method. We now present a Table 2 similar to the one for the middle school level,
showing the number of students who responded in a particular way to the first
problem of the questionnaire.

A phenomenon observed at the middle school level was witnessed here as well.
Several students who answer graphically that there are three solutions to the triangle
configuration problem, algebraically are conscious of the fact that in order to be a
solution an ordered pair has to satisfy all three equations, and if there is no such
pair, there is no solution to the system. As explained above, this kind of behavior
might indicate the separation of the synthetic and analytic modes of thinking
(Ochoviet Filgueiras, 2009). One student, in the geometric case reasons the fol-
lowing way: “This system has three solutions, since there are three intersection
points. The system gives us the intersection points” (p. 174). For the equivalent
problem given analytically she says: “This system does not have a solution, since
the x and y values for the first two equations don’t coincide with the ones for the
third” (p. 174). For this student, a solution is a point of intersection of two lines
synthetically and an ordered pair that satisfies all the equations analytically.

We also observed another phenomenon, noticed earlier at the university level,
where the lines in the plane are imagined as having a finite length, that is, what is
seen in the figure, a line segment, is what the line is. The same student mentioned in
the above paragraph, when asked if it is possible to have a system of three equations
in two unknowns with two solutions, produced the graph in Fig. 9.

Another student, knowing that the only possibilities for solutions for a system of
linear equations are unique solution, no solution and infinitely many solutions,
responded that the triangle configuration problem has infinitely many solutions,
since it obviously did not have a unique solution because of the three points of
intersection (more than one) and it was not the case of no solution, because there
were points of intersection (Ochoviet Filgueiras, 2009). The only remaining option
was infinitely many solutions.
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One student explained what a system is in the following way: “A set of equa-
tions that have unknowns, the system can have only one solution, none or infinitely
many” and what a solution is in the following way: “It is the point in which the
lines intersect if it has one solution, if it has infinitely many it is the same line. If it
doesn’t have any it is because the lines never intersect” (Ochoviet Filgueiras, 2009,
p. 147). This student responded correctly the triangle configuration problem.
Ochoviet Filgueiras explains that although the idea of a solution as an intersection
point prevails in these descriptions, the structural thinking in which the types of
solution sets are present and this interpretation is associated to the unique solution
case is what causes the student to give correct answers; geometric and structural
modes of thinking interact to give rise to a correct interpretation.

7 Discussion

Learning of a concept cannot be considered adequate if it only involves one type of
representational system (Duval, 2006). Similarly thinking about the objects of
Linear Algebra in only one mode restricts the understanding to only one aspect of
the structure. The notion of system of linear equations is representable in at least
two registers at lower dimensions that can be employed in designing problems
starting at the middle school level. Making connections between them is essential to
bring forth the characteristics of the mathematical objects involved. The findings
reported in this chapter point out to some important educational phenomena in this
direction, which have consequences for teaching practices as well as the concep-
tions that students develop as a result of the nature of the concepts involved and
didactical strategies that are employed in designing instruction.

Table 2 Types of response
to the triangle configuration
problem at the high school
level

Answer to the first question Number of students

Three solutions 7
No solution 6
Other answers 8
Total 21

Fig. 9 Ochoviet Filgueiras
(2009, p. 175)
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We have seen that starting with middle school where students are introduced for
the first time to the systems of linear equations and their solutions, they begin
developing a conception about systems consisting of two equations in two
unknowns that are solved together to give an ordered pair as a result. As a con-
sequence of this system conception, they associate the solution of a system with the
ordered pair obtained by solving two equations simultaneously, and relate it to the
intersection of two lines in the plane geometrically. Later they try to generalize
these two conceptions acquired in two-dimensional plane to three-dimensional
space, arriving at interpretations such as conceiving the line of intersection of
planes as a special point (unique solution). Another type of generalization consists
in thinking that a system should involve as many unknowns as equations. We posit
that the tendency to separate a system with three equations in two unknowns into
three square systems to solve them separately also has to do with these conceptions.
The interpretation of a solution as a point of intersection of two lines works per-
fectly well in the 2 × 2 context; however it becomes an obstacle when the context
changes.

We also observe that at all the educational levels that we studied, students were
coming from a heavily emphasized analytic-arithmetic background, which meant
algorithmic methods to solve systems of equations. The fact that only one student
out of five who were interviewed at the university level showed progress toward
understanding the meaning of a system of equations and was able to transit between
different modes of reasoning as the problems required it, is evidence that even after
a Linear Algebra course the first conceptions acquired in the context of 2 × 2
systems are difficult to modify and need specially designed instruction.

Ochoviet Filgueiras (2009) observed a middle school classroom when the topic
of systems of linear equations was introduced, and at the end of the first class the
following notion was institutionalized through interaction between the teacher and a
student: “the solution of the system is the pair of numbers where the lines intersect
each other” (p. 103). It is not surprising then, that the same student, when asked
how many solutions there were in the figure where the lines formed a triangle in the
plane, gave the following response: “three solutions: Because the lines intersect
three times forming three points (solutions)” (p. 104). Although the students
received instruction where the textbook and the teacher stated that a solution should
satisfy all the equations of a system, for these students “all the equations” meant “all
the two equations” and their conceptions were formed accordingly.

Synthetic-geometric, analytic-arithmetic and analytic-structural modes differ in
nature. In this chapter we focused especially on the synthetic thinking and ways to
promote its relationship with the structural mode, since these two modes are the
least favored ones in the educational system, and paradoxically, structural mode
being necessary for conceptual understanding. We detected the intuitive tendency
of students to generalize from two dimensions to three dimensions in a certain way,
if not guided in this process of discovery. We also saw that these intuitive gener-
alizations persist through years up to the university level, with consequences for
understanding the mathematics involved. We noted that the separation of the
synthetic and analytic ways of reasoning in the student’s mind can lead to
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inconsistent interpretations of different aspects of the notions involved, and because
of the difference in nature of these modes students are not likely to realize it. We
also point out the importance for teachers of noticing these phenomena, in order to
develop suitable strategies for dealing with them in the classroom and helping with
the learning process.

Further research on the topic might involve the conceptions related to parametric
equations in the space; the conceptions related to other notions in Linear Algebra
such as Linear Transformations within the framework of modes of thinking; how
synthetic thinking can be carried out in higher dimensions; furthering the under-
standing about the relationships and transiting between different modes in different
directions.

8 Didactical Suggestions

We suggest the inclusion of systems other than the 2 × 2 case when students are first
being introduced to this topic, emphasizing the meaning of a system and a solution
as well as exemplifying them in contexts such as 3 × 2 systems. We also suggest
addressing the case of systems with infinitely many solutions, such as the ones
composed of equivalent equations. Similarly, systems with different geometric
positioning that give rise to “no solution” should be treated in order not to give the
idea that the only way that no solution is obtained is when the lines or planes are
parallel. All these suggestions are also important in order to help generalizing the
two-dimensional situation to the three-dimensional space. 2 × 2 systems are too
restrictive in that the case where a point appears as an intersection point but is not a
solution cannot be exemplified (Ochoviet Filgueiras, 2009).

In order to help converge the synthetic and analytic interpretations of solution,
we suggest that activities that require transiting from one mode to another be
included in the design of instruction. In particular, activities where associations are
made between ‘line’ and ‘equation’, between ‘point that lies on all the lines’ and
‘point that satisfies all the equations’ (Ochoviet Filgueiras, 2009) would be ade-
quate. In particular we suggest providing students with the opportunity to pass from
a geometric representation to an algebraic one; usually students are comfortable
with drawing systems given as algebraic equations, but not vice versa. Here a
synthetic context might prove useful, placing the emphasis on the relative positions
of lines or planes, and the types of solution sets that can be obtained from the
respective systems. This might help in developing a structural viewpoint, empha-
sizing relations and properties.

When students work with systems of equations, we suggest that even when an
unknown such as x cancels during the solution process, it is kept as 0. x instead of 0.
So an expression like 0= 0 actually comes from 0x+0y=0, which is easier to
interpret in terms of the set of all ordered pairs that satisfy the equation. Similarly,
the expression 0x+0y=8 instead of 0= 8 shows in a clearer way that there is no
ordered pair that satisfies it.

92 A. Oktaç



The different modes of thinking provoke different kinds of conceptions in stu-
dents. For example in a drawing it might be immediate to see if there is a unique
intersection point or infinitely many, whereas in an analytic context some steps
might have to be taken before coming to a conclusion about the type of solution set
involved. Articulating these interpretations and different ways of reasoning can
motivate conceptions that take into account different aspects of the mathematical
objects involved.
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Appendix 1: Questionnaire Applied to the First Group
of University Students

1. (a) Draw the graphs of the following equations on the same coordinate system:
4y=3x− 5 and y= 6x− 10

8
(b) Compare the graphs and write down your comments.
(c) Use any method that you may know to solve the following system of

equations:

4y=3x− 5
y= 6x− 10

8

�

2. (a) Draw the graphs of the following equations on the same coordinate system:
y= 2x+3

4 and 12y=6x+10
(b) Compare the graphs and write down your comments.
(c) Use any method that you may know to solve the following system of

equations:

2x− 4y= − 3
− 6x+12y=10

�
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3. Solve the following system of equations:

hx+ y=1
4x− 2y= k

�

4. Given the following graphical representation of three lines, how many solutions
does the system represented by these graphs have?

5. Solve the following system of equations:

4x− 3y= − 1
2x+ y=4
x− 3y=3

8<
:

Appendix 2: Questionnaire Applied to the Second Group
of University Students

Part I. Question 1. Considering that in the first figure there are 2 lines in the plane
and in all the other figures there are 3 lines, determine the number of solutions of
the system of equations represented by each graph, what those solutions are and
explain how you found them.
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Question 2. Considering that in Fig. 7 there are 2 planes in the space and in all
the other figures there are 3 planes, determine the number of solutions of the system
of equations represented by each graph, what those solutions are and explain how
you found them.

Part II. Question 3. For one of the previous figures write a system of equations
that might represent it. (Although in the figures the coordinate axes were not
included, you should have in mind the positions of the lines and planes with respect
to each other).

Part III. Question 4. If it is possible, write a system of two equations in two
unknowns so that it has:

(a) a unique solution (b) no solution (c) more than one solution

If it is not possible, explain why.
Question 5. If it is possible, write a system of three equations in three unknowns

so that it has:

(a) a unique solution (b) no solution (c) more than one solution
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If it is not possible, explain why.
Question 6. If it is possible, write a system of three equations in two unknowns

so that it has:

(a) unique solution (b) no solution (c) more than one solution

If it is not possible, explain why.
Question 7. If it is possible, write a system of two equations in three unknowns

so that it has:

(a) a unique solution (b) no solution (c) more than one solution

If it is not possible, explain why.
Part IV. Question 8. Solve the following system of equations:

4x− 3y= − 12
2x+ y=4
x− 3y=3

8<
:

Appendix 3: Questionnaire Applied to the Middle and High
School Students

(1) The following figure shows lines associated to a system of three first degree
equations in two unknowns. How many solutions does the system have? Why?
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(2) The following figure shows lines associated to a system of four first degree
equations in two unknowns. How many solutions does the system have? Why?

(3) The following figure shows lines associated to a system of three first degree
equations in two unknowns. How many solutions does the system have? Why?

(4) Solve the following system of equations using the method you wish. Does the
system have a solution? If your response is negative explain why and if it is
affirmative indicate how many solutions there are and what they are.

x+ y=2
x− y=8
x+2y=4
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(5) Can a system of three first degree equations in two unknowns have

(a) a unique solution?
(b) exactly two solutions?
(c) and exactly three?
(d) Can it have infinitely many solutions?
(e) And no solution?

Explain each one of your answers and illustrate it by means of a graphical
representation.

(6) Can you put another line in the following figure so that the system of equations
associated to all the lines has no solution? Explain your answer.

(7) Can you put three more lines in the following figure so that the system of
equations associated to all the lines has a unique solution? Explain your answer.

(8) Can you put another line in the following figure so that the system of equations
associated to two lines has only two solutions? Explain your answer.

(9) Can you put another line in the following figure so that the system of equations
associated to all the lines has infinitely many solutions? Explain your answer.
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(10) Can you put two more lines in the following figure so that the system of
equations associated to all the lines has infinitely many solutions? Explain
your answer.

(11) Give a system of first degree equations whose unique solution is the ordered
pair 2, 1ð Þ. Explain how you did it.

(12) Can a system offirst degree equations have as a solution the ordered pair 2, 1ð Þ
and also other solutions? If your answer is negative explain why it is not
possible and if it is affirmative give an example explaining how you obtain it.

(13) Can you put another line in the following figure so that the system of
equations associated to them has the solution the ordered pair 3, 4ð Þ?
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(14) Can you put another line in the following figure so that the system of
equations associated to them has as its solutions only the ordered pairs
− 3, 2ð Þ and 2, − 1ð Þ? Explain your answer.

(15) Can you put another line in the following figure so that the system of
equations associated to them has among its solutions the ordered pairs
− 3, 2ð Þ and 2, − 1ð Þ? Explain your answer.

(16) Can a system of three first degree equations in two unknowns have

(f) a unique solution?
(g) exactly two solutions?
(h) and exactly three?
(i) Can it have infinitely many solutions?
(j) And no solution?
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Explain each one of your answers and illustrate it by means of a graphical
representation.1

(17) Explain what a system of equations is for you.
(18) Explain what a solution of a system of equations is for you.
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Rationale for Matrix Multiplication
in Linear Algebra Textbooks

John Paul Cook, Dov Zazkis and Adam Estrup

Abstract Although matrix multiplication is simple enough to perform, there is
reason to believe that it presents conceptual challenges for undergraduate students.
For example, it differs from forms of multiplication students with which Linear
Algebra students have experience because it is not commutative and does not
involve scaling one quantity by another. Rather, matrix multiplication is a multi-
plication in the sense of abstract algebra: it is associative and distributes over matrix
addition. Exposure to abstract algebra’s general treatment of multiplication, how-
ever, usually occurs after students have taken Linear Algebra. This elicits the
following question: How is matrix multiplication being presented in introductory
linear algebra courses? In response, we analyzed the rationale provided for matrix
multiplication in 24 introductory Linear Algebra textbooks. We found the ways in
which matrix multiplication was explained and justified to be quite varied. In
particular, two commonly employed rationalizations are somewhat contradictory,
with one approach (isomorphization) suggesting that matrix multiplication can be
understood from an early stage, while another (postponement) suggesting that it can
only be understood upon consideration of more advanced concepts. We also
coordinate these findings with the literature on student thinking in Linear Algebra.

Keywords Linear algebra ⋅ Matrix multiplication ⋅ Textbook analysis

1 Introduction

Matrix multiplication is foundational to many of the core concepts in introductory
Linear Algebra. Indeed, results concerning systems of linear equations, span, linear
(in)dependence, and linear transformations can all be (and often are) formulated in
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terms of matrix multiplication. This means that how conceptually coherent students
understanding of matrix multiplication is has broad implications for their potential
understanding of much of the Linear Algebra curriculum. Harel (1997), in his
commentary on the undergraduate Linear Algebra curriculum, argued that “un-
derstanding must imply knowing why, not just how” (p. 111, emphasis ours).
Matrix multiplication presents some conceptual challenges for students in this
regard. For example, matrix multiplication is fundamentally different than the
familiar multiplication of integers because it does not ‘multiply’ in the literal sense;
moreover, it is generally not commutative. Instead, matrix multiplication is a
‘multiplication’ in the sense of abstract algebra: it distributes over (matrix) addition
and is associative. This is an unfamiliar and non-intuitive idea for students who
have had no prior exposure to abstract algebra. These conceptual peculiarities—
along with the importance of matrix multiplication—bring to the fore the question
of what approaches are available for motivating and explaining matrix multipli-
cation to students. In other words, what rationale for matrix multiplication can be
provided to students to help them overcome the challenges associated with this
unfamiliar and non-intuitive operation?

One avenue of insight is to examine the rationale provided for matrix multi-
plication in introductory Linear Algebra textbooks. A quick glance at two popular
textbooks suggests that there is substantial variation in rationale. For example,
Kolman and Hill’s (2007) initial presentation of matrix multiplication defined the
matrix-matrix product AB using dot products of rows of A with columns of B.
Noting the differences between matrix addition and matrix multiplication, the
authors offered the following explanation:

One might ask why matrix equality and matrix addition are defined in such a natural way,
while matrix multiplication appears to be much more complicated. Only a thorough
understanding of the composition of functions and the relationship that exists between
matrices and what are called linear transformations would show that the definition of
multiplication given previously is a natural one. These topics are covered later in the book.
(Kolman & Hill, 2007, p. 24)

Kolman and Hill’s (2007) connection to linear transformation is made 5 chapters
after the above quote. Lay, Lay, and McDonald (2015), on the other hand, first
introduced matrix multiplication in terms of the matrix-vector product Ax, which
they defined as a linear combination of the columns of A. The authors justify the
need for, and importance of, this definition in the following way: “a system of linear
equations may now be viewed in three different but equivalent ways: as a matrix
equation, as a vector equation, or as a system of linear equations. … you are free to
choose whichever viewpoint is more natural” (p. 36). The connection to the
matrix-matrix product is made several sections later in the same chapter and
leverages the composition of linear transformations.

These two textbooks illuminate substantial differences in how matrix multipli-
cation can be introduced, both in terms of the order of presentation and the rationale
that is provided. Lay et al. (2015) go to considerable lengths to emphasize the utility
of the matrix-vector product in terms of linear combinations of vectors, then use
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linear transformations to mathematically justify the matrix-matrix product in the
first chapter of their text. On the other hand, Kolman and Hill (2007) define the
matrix-matrix product outright with a cursory reference to linear transformations,
the full treatment of which appears in Chap. 6. Moreover, there are drastic differ-
ences in the rationale these authors provided in their initial presentations of matrix
multiplication. Kolman and Hill asserted that the ability to view their initial defi-
nition as natural depends on a thorough understanding of concepts that occur much
later in the text and are presumably unfamiliar to students. In contrast, Lay et al.
(2015) explained their initial definition in terms of concepts that occur earlier in the
text and are presumably already familiar to students.

The contrast between the above examples provides impetus for the research
questions that guided this study: are other introductory linear textbooks just as
different? How else might matrix multiplication be motivated, justified, and
explained? To these ends, we documented and analyzed the rationale for the def-
inition(s) of matrix multiplication given in 24 introductory Linear Algebra text-
books. Our analysis revealed that there is indeed substantial variation in how matrix
multiplication is rationalized, and that these rationalizations (as in the excerpts
above) are not always entirely compatible. We conclude with a discussion of the
potential pedagogical implications by coordinating our findings with research on
student learning of matrix multiplication and, more generally, Linear Algebra.

2 Literature and Theory

Given that we are studying the presentation of matrix multiplication in textbooks,
we first review literature pertaining to textbook analyses, including Harel’s (1987)
analysis of Linear Algebra textbooks. In particular, we detail Harel’s framework for
classifying the means by which textbook authors bridge the gap between students’
existing knowledge and new content, which we operationalize in this study as a
means to classify and analyze the rationale that the textbook authors provide for
matrix multiplication. Research on student thinking in Linear Algebra appears later
in the discussion section, in which we coordinate the results of our investigation
with this body of literature.

2.1 Textbook Analysis as an Avenue of Insight
into Instruction

Researchers have argued that textbook analysis can provide insight into how par-
ticular content is presented in mathematics classrooms (e.g. Reys, Reys, & Chavez,
2004; Robitaille & Travers, 1992). Though there is no guarantee that classroom
instruction mirrors textbooks’ content presentation, we note that textbooks “help
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teachers identify content to be taught [and] instructional strategies” (Thompson,
Senk, & Johnson, 2012). Textbook analysis can thus be an efficient (though not
comprehensive) means of gathering insight into classroom instruction. Harel
(1987), for example, examined the differences in content presentation in Linear
Algebra textbooks in order to “examine existing approaches to teaching” (p. 29);
other textbook analyses that have been conducted at the undergraduate level include
calculus (Weinberg & Weisener, 2011), combinatorics (Lockwood, Reed, &
Caughman, 2016), and abstract algebra (Capaldi, 2012). Regarding the specific
goals of our study, differences in content presentation are particularly revealing
because of their potential influence on how students understand particular concepts
(Bierhoff, 1996). Such differences also reflect “how experts in the field … define
and frame foundational concepts” (Lockwood et al., 2016, p. 9) and can therefore
be useful for identifying key components of understanding these concepts.

2.2 Harel’s Framework for Textbook Analysis

Harel (1987) conducted an analysis of Linear Algebra textbooks and reported
differences in several respects; those particularly relevant to this study are differ-
ences in the sequencing of content and the justification provided for the introduc-
tory content. Our current study is distinct in two ways. First, Harel’s analysis
occurred nearly three decades ago (at the time of this writing), a period of time in
which impactful attempts at nationwide Linear Algebra curriculum reform—such as
the Linear Algebra Curriculum Study Group (Carlson, Johnson, Lay, & Porter,
1993; Harel, 1997)—were made. Presumably, these attempts, the broader changes
in mathematics education, and the passage of time precipitated a different landscape
of Linear Algebra textbooks than those studied by Harel. Second, Harel’s study
focused on general trends throughout entire textbooks (what might be called a
macroanalysis) and did not focus specifically on the different presentations of
matrix multiplication (though he did affirm the status of matrix arithmetic in
introductory Linear Algebra texts). Our current study, in contrast, focuses on the
presentation of one specific concept (a microanalysis).

Harel’s (1987) findings regarding sequencing of content and introductory con-
tent provide a useful framework with which to frame our analysis. Specifically, in
this paper we document the ways in which the different forms of matrix multipli-
cation are sequenced in order to gain insight into the structure of each textbook.
Additionally, we used his characterization of the means by which textbooks
rationalized their introductory content to classify the rationale for matrix multipli-
cation for the textbooks in our study. He termed his classifications isomorphization,
postponement, analogy, and abstraction.

• Isomorphization involves “[imposing] an isomorphism on two mathematical
structures where one of these structures is familiar to the student” (p. 31). In
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other words, isomorphization introduces students to a new concept in a way that
highlights how the new concept preserves the mathematical structure of a
familiar concept. Because the current study focuses on introductory textbooks,
we note that the term ‘isomorphism’ itself is not likely to be explicitly men-
tioned. As an example, Harel specified how some textbook authors motivated
matrix multiplication by showing how it preserves the composition of linear
transformations (we documented several cases of this exact use of isomor-
phization to justify the matrix-matrix product). Lay et al.’s (2015) rationale for
the matrix-vector product (from our introduction) is another example of iso-
morphization because it highlights the structural equivalencies between linear
systems, vector equations, and matrix equations.

• Postponement involves remarking on the necessity for and magnitude of a
particular concept for which, in the authors estimation, such considerations are
not yet clear to the student. Uses of postponement include cases for which the
authors are depending on future, currently unfamiliar, ideas to temporarily
justify the concept at hand. Kolman and Hill’s (2007) justification for the
matrix-matrix product (from our introduction) is an example of postponement
because they argue that understanding matrix multiplication depends on
understanding a future concept (linear transformations).

• Analogy is a technique used to demonstrate connections “between new ideas to
be learned and familiar ones that are outside the content area of immediate
interest” (Harel, 1987, p. 30). There are two types of analogies: mathematical, in
which connections are made with a familiar mathematical concept, and
real-world, in which connections are drawn between the new mathematical
concept and an application to a real-world problem where the concept is rele-
vant. Note that analogy is quite similar to isomorphization. Though we
acknowledge that these classifications are certainly not disjoint, we reserved
‘isomorphization’ for instances of literal mathematical isomorphism that
emphasize the preservation of mathematical structure; we used analogy for all
other comparisons.

• Abstraction is a very similar strategy in which students are first introduced to
general ideas in specific, familiar, and more concrete, situations. The most
common example of abstraction, Harel noted, is when an entire concept is
motivated by a small number of examples of that same general concept. For
example, demonstrating the utility of and justification for a result related to
matrix multiplication by initially focusing on specific cases with 2 × 2 matrices
would be a use of abstraction. The distinction between abstraction and analogy
is that abstraction invokes a specific example of the general concept to be
learned, whereas an analogy involves the comparison of two different (albeit
similar) concepts or situations.

In the following study being presented in this paper, we operationalized the
framework above to classify the rationale textbook authors used to explain and
motivate matrix multiplication.
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3 Methods

3.1 Textbook Selection

We narrowed our focus to introductory Linear Algebra textbooks because, as Harel
(1987) reported, introductory textbooks have a strong, foundational emphasis on
matrix arithmetic. We also restricted our search to textbooks written in English. To
ensure that we did not omit any English-language textbooks currently in widespread
use, we examined syllabi available online for introductory Linear Algebra courses
at more than 106 Research-1 universities around the United States, conducted
online searches of textbook provider websites, and examined the textbooks in our
own respective university libraries. Notably, among the 106 Research-1 Linear
Algebra syllabi that we examined, the most frequently appearing were Lay et al.
(2015) (43), Bretscher (2012) (10), Leon (2014) (8), Strang (6), Kolman and Hill
(5), Edwards and Penney (5), and Poole (4) (or previous versions of these text-
books). All other textbooks in our sample appeared 0, 1, or 2 times in this list. The
texts appearing 0 times were those that we included in our sample via searches of
online textbook provider websites or our own university libraries.

Furthermore,we focused on textbooks publishedwithin the past decade (at the time
of this writing, since 2006) to obtain a more accurate snapshot of how matrix
multiplication is being presented in today’s LinearAlgebra classrooms (thoughwe did
not exclude a textbook outside this range if we found evidence that it was in
widespread use). Additionally, we omitted textbooks for which Linear Algebra was
not the sole focus, such as those designed for courses inLinearAlgebra and differential
equations. Due to their propensity for introducing topics in very similar (if not
identical) ways, we included at most one textbook from each author in our sample.
Similarly, whenever possible, we examined the most recently published editions of
textbooks, omitting all other releases. In some cases, however, we were not able to
obtain access to the most recent edition and thus opted for the most recent edition
available (e.g. Andrilli&Hecker, 2010).Overall, our sample included 24 introductory
Linear Algebra textbooks. A complete list of the textbooks in our sample can be found
at the beginning of Sect. 4, and their corresponding bibliographic information can be
found in the “Bibliography of Textbooks” section following the references.

3.2 Procedure for Data Collection and Analysis

In order to explore and contextualize the entirety of the rationale that textbooks
presented for matrix multiplication, we decided that it was necessary to document
the various forms of matrix multiplication in each text along with how they were
sequenced before identifying, recording, and analyzing the associated rationale and
justification. The data collection process began with using the table of contents and
the index to identify the places where matrix multiplication appeared in each
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textbook, and then photocopying (or printing out) all pages in any section of a
textbook in which matrix multiplication was defined, exemplified, or discussed. To
ensure that our sample included all relevant presentations and discussions of matrix
multiplication, this process was independently repeated by another researcher
contributing to this project.

Next, we documented all forms of matrix multiplication featured in each text-
book, the order in which they appeared, and any rationale the authors provided for
the given forms. Our operational definition of rationale was broadly interpreted as
any explicit attempt by the textbook author(s) to mathematically or pedagogically
explain, justify, or demonstrate the purpose(s) or derivation of matrix multiplica-
tion. Each instance was classified using Harel’s (1987) framework (isomorphiza-
tion, postponement, analogy, abstraction); additional categories were created as
necessary for rationale that did not conform to these four classifications (we adapted
Harel’s framework to include one additional category, detailed below: computa-
tional efficiency). We note that use of one strategy did not preclude use of another:
as matrix multiplication is such a rich and connected concept, we allowed for the
possibility (or, perhaps, probability) that textbooks would employ multiple strate-
gies to communicate their rationale for this important concept. We also must
acknowledge that, because we did not examine every page of the textbooks in our
study, we cannot discount the possibility that we inadvertently omitted particular
subtleties related to the sequencing of and rationale for matrix multiplication in
certain textbooks. As such, the documentation in this paper should be regarded only
as affirmation that these types of rationale do indeed appear in the textbooks in
which they are cited and referenced. The absence of attribution of a type of rationale
to a particular textbook does not necessarily imply that the textbook in question
does not employ that type of rationale. For example, we will often use parenthetical
citations to provide examples of textbooks employing the rationale in question; a
citation like (e.g. Bretscher, 2012; Shifrin & Adams, 2010) means only that we
documented such rationale in Bretscher’s, and Shifrin and Adams’s respective
textbooks, not that these were the only texts in which this form of rationale
appeared.

We used constant comparison (Creswell, 2007, 2008) of textbook materials to
identify common themes across the data set, including common sequences for the
forms of matrix multiplication and commonalities in rationale both within and
across sequences. The final stage of our analysis—appearing in Sect. 5—was to
triangulate the rationale that textbooks provided for matrix multiplication with the
relevant literature on teaching and learning of Linear Algebra.

4 Results

There are many different, yet equivalent, forms of matrix multiplication (see, for
example, Carlson, 1993). During our analysis we used constant comparison
(Creswell, 2007, 2008) across textbooks to identify four primary forms of matrix
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multiplication that emerged prominently across the textbooks in our sample. In the
descriptions below,1 A is a m× n matrix with column vectors col1 Að Þ, . . . , coln Að Þ
in ℝ𝕞 and row vectors row1 Að Þ, . . . , rowm Að Þ in ℝ𝕟; x is a vector in ℝ𝕟 with
components x1, . . . , xn. Additionally, B is an n× p matrix with column vectors
col1 Bð Þ, . . . , colp Bð Þ in ℝ𝕟 and row vectors row1 Bð Þ, . . . , rown Bð Þ in ℝ𝕡. Up to
mathematical equivalence, these forms of matrix multiplication are:

• Ax as LCC: The matrix-vector product Ax as a linear combination of the
columns of A: Ax= x1col1 Að Þ+⋯+ xncoln Að Þ.

• Ax as DP: The matrix-vector product Ax as a dot product of the rows of A with

the column vector x: Ax=
row1 Að Þ ⋅ x

⋮
rowm Að Þ ⋅ x

2
4

3
5.

• AB as DP: The matrix-matrix product AB determined by dot products of row/
column vectors: AB is the matrix in which the entry in row i, column j (where
1≤ i≤m, 1≤ j≤ p) is given by: rowi Að Þ ⋅ colj Bð Þ.

• AB as [Acol(B)]: The matrix-matrix product2 AB as a matrix whose columns are
determined by the action of A on the columns of B:
AB= Acol1 Bð Þ ⋯j jAcolp Bð Þ� �

.

Early in our analysis, we noticed that the form of matrix multiplication that appears
first in a textbook affords necessary context for the rationale that the authors provide
(both for the initial form and those that follow). Thus, we sorted the textbooks into
three categories—based upon the form of matrix multiplication that was first
introduced—as a means of contextualizing the rationale:

• Sequence 1: initiating with Ax as LCC (Ax as a linear combination of the
columns of A);

• Sequence 2: initiating with Ax as DP (Ax as a dot product of the rows of A with
the column vector x); and

• Sequence 3: initiating with AB as DP (AB as a dot product of the rows of A with
the columns of B).

We found no evidence of any textbooks introducing matrix multiplication with the
remaining form of matrix multiplication (AB as Acol(B)), though it often appeared
after matrix multiplication had been presented in another way. Along these lines,
our analysis revealed additional variations in sequencing beyond these textbooks’
initial forms of matrix multiplication. For example, though 6 of the 9 textbooks in
Sequence 1 proceeded in a similar way, there were two additional variations with
respect to the order of the remaining forms, which we call Sequence 1a, Sequence
1b, and Sequence 1c (see Table 1). In Sequence 1b, Ricardo (2009), for example,

1Our descriptions given here are not necessarily identical to those given in each textbook but are
instead offered as summaries of these methods that are mathematically equivalent.
2Methods for multiplying using block/partitioned matrices, if formally addressed in a textbook,
typically appeared along with this form of the matrix-matrix product.

110 J. P. Cook et al.



proceeds in the following order (left to right in the table): (1) Ax as LCC, (2) Ax as
DP, (3) AB as DP, (4) AB as [Acol(B)]. In Sequence 1c, Beezer (2015) proceeds in
the following order: (1) Ax as LCC, AB as [Acol(B)], and (3) AB as DP. Tables 2
and 3 for Sequences 2 and 3 can be read similarly.

The 5 textbooks following Sequence 2 (initiating with Ax as DP) exhibited
considerably more variation.

The textbooks in Sequence 3 were also quite varied.
We now shift to documenting and analyzing the rationale—both mathematical

and pedagogical—that these textbooks offered for matrix multiplication and the
way in which they presented it. We found examples of all four of Harel’s (1987)
classifications of rationale: isomorphization, postponement, analogy (both mathe-
matical and real-world), and abstraction. We also documented examples in which a
form of matrix multiplication was introduced for the purposes of computational

Table 1 Textbooks in which Ax as LCC is the initial form of matrix multiplication

First Second Third Fourth Textbooks exhibiting this sequence

Ax as LCC Ax as DP AB as
[Acol(B)]

AB as DP Sequence 1a
Cheney and Kincaid (2012)
Lay et al. (2015)
Nicholson (2013)
Solomon (2014)
Spence, Insel, and Friedberg (2007)
Strang (2009)

AB as
DP

AB as [Acol
(B)]

Sequence 1b
Ricardo (2009)

AB as [Acol
(B)]

AB as
DP

– Sequence 1c
Beezer (2015)
Holt (2012)

Table 2 Textbooks in which Ax as DP is the initial form of matrix multiplication

First Second Third Fourth Textbooks exhibiting this sequence

Ax as DP Ax as LCC AB as
[Acol(B)]

AB as DP Sequence 2a
Bretscher (2012)

AB as DP AB as
[Acol(B)]

Sequence 2b
Hefferon (2008)
Leon (2014)a

AB as DP AB as
[Acol(B)]

– Sequence 2c
Shifrin and Adams (2010)

Ax as
LCC

AB as
[Acol(B)]

Sequence 2d
DeFranza and Gagliardi (2015)

aLeon (2014) makes brief reference in one sentence to AB as [Acol(B)] before presenting it in
terms of dot products, but we classify this textbook in Sequence 2b because AB as [Acol(B)] does
not feature prominently until much later
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efficiency, a classification occurring frequently enough amongst our sample to
warrant adapting Harel’s framework.

4.1 Isomorphization

We documented two distinct examples of isomorphization: (1) rationalizing the
matrix-vector product by identifying the advantages of equivalently reformulating
linear systems and/or vector equations as matrix equations, and (2) framing the
matrix-matrix product as an operation on matrices that preserves the composition of
the corresponding linear transformations. Each of these is explained in detail below.

4.1.1 Reformulating Linear Systems and/or Vector Equations
as Matrix Equations

Highlighting equivalencies between the matrix equation Ax = b and both systems
of linear equations and vector equations was particularly prominent across each of
the textbooks in Sequence 1; it also appeared in textbooks in Sequences 2 (e.g.
Bretscher, 2012; Leon, 2014; Shifrin & Adams, 2010) and 3 (e.g. Edwards &
Penney, 1988; Larson, 2016; Poole, 2014). It is important to note that the textbooks
in Sequences 1 and 2 typically invoked isomorphization to accompany their initial
definition of matrix multiplication, whereas the textbooks in Sequence 3 invoked
isomorphization for forms of matrix multiplication presented after their initial
treatment.

Table 3 Textbooks in which AB as DP is the initial form of matrix multiplication

First Second Third Fourth Textbooks exhibiting this sequence

AB as DP Ax as DP Ax as LCC – Sequence 3a
Larson (2016)

AB as
[Acol(B)]

Sequence 3b
Edwards and Penney (1988)
Kolman and Hill (2007)
Poole (2014)

– – Sequence 3c
Robinson (1991)
Venit, Bishop, and Brown (2013)

Ax as LCC Ax as DP – Sequence 3d
Anthony and Harvey (2012)

AB as
[Acol(B)]

Ax as DP Ax as LCC Sequence 3e
Anton and Rorres (2014)
Williams (2012)

Ax as LCC Ax as DP Sequence 3f
Andrilli and Hecker (2010)
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Indeed, a matrix equation preserves the algebraic structure of its corresponding
linear system and vector equation, allowing these authors to link the matrix-vector
product (in the form of a matrix equation) with a familiar idea (systems of linear
equations). The following excerpt (adapted from Lay et al. (2015, p. 36) typifies this
approach:

For example, the system

x1 + 2x2 − x3 = 4
− 5x2 + 3x3 = 1

ð1Þ

is equivalent to

x1
1
0

� �
+ x2

2
− 5

� �
+ x3

− 1
3

� �
=

4
1

� �
ð2Þ

As in Example 2, the linear combination on the left side is a matrix times a
vector, so that (2) becomes

1 2 − 1
0 − 5 3

� � x1
x2
x3

2
4

3
5=

4
1

� �
ð3Þ

Equation (3) has the form Ax = b. Such an equation is called a matrix
equation, to distinguish it from the vector equation such as is shown in (2).

Many textbooks called explicit attention to these equivalencies. Beezer (2015),
for instance, formulated this equivalence in terms of the solution(s), stating that
“every solution to a system of linear equations gives rise to a linear combination of
the column vectors of the coefficient matrix that equals the vector of constants”
(p. 175). Other such instances include the following:

• “By now we are comfortable with translating back and forth between vector
equations and linear systems. … Ax = b is a compact form of the vector
equation x1a1 + x2a2 = b, which in turn is equivalent to [a] linear system” (Holt,
2012, p. 63).

• “We can use these new concepts to understand a system of equations Ax = b.
If A and b are given, such a system challenges us to determine whether b is in
the span of the columns of A and, if so, to find the coefficients needed to express
b as a linear combination of the columns of A” (Cheney & Kincaid, 2012,
p. 42).
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• “For a linear equation with n unknowns of the form a1x1 + a2x2 +⋯+ anxn = b

if we let A= a1a2 . . . an½ � and x=

x1
x2
⋮
xn

2
664

3
775 and define the product Ax by

Ax= a1x1 + a2x2 +⋯+ anxn then the system can be written in the form Ax = b”
(Leon, 2014, p. 31).

• “We reiterate that a solution x of the system of equations Ax = b is a vector
having the requisite dot products with the row vectors Ai” (Shifrin & Adams,
2010, p. 39).

• “The initial purpose of matrix multiplication is to simplify the notation for
systems of linear equations” (Edwards & Penney, 1988, p. 35).

• “Then the matrix equation AX =B is equivalent to the linear system … Here is
further evidence that we got the definition of the matrix product right”
(Robinson, 1991, p. 10).

Many of these texts also argued that multiple representations afford flexibility with
respect to selecting a problem-solving approach. For example, Nicholson (2013)
stated that “a change in perspective is useful because one approach or the other may
be better in a particular situation … there is a choice” (p. 45). Strang (2009), noting
that a linear systems (rows) approach is easy to visualize for a 2 × 2 case but
exceptionally difficult (if not impossible) to visualize for higher dimensions, stated
that his “own preference is to combine column vectors. It is a lot easier to see a
combination of four column vectors in four-dimensional space, than to visualize
how four hyperplanes might possibly meet at a point. (Even one hyperplane is hard
enough …)” (p. 33, emphasis in original). Interestingly, these arguments align with
the arguments in the literature about the importance of being able to move flexibly
between multiple representations in Linear Algebra (e.g. Dorier, 2000; Harel, 1997;
Larson & Zandieh, 2013), which we discuss further in Sect. 5.

4.1.2 Framing the Matrix-Matrix Product in Terms of Preserving
the Composition of Linear Transformations

The second example of isomorphization involved framing the matrix-matrix pro-
duct in terms of preserving the composition of the corresponding linear transfor-
mations. Textbooks in Sequences 1 (e.g. Cheney & Kincaid, 2012; Holt, 2012) and
2 (e.g. Bretscher, 2012; Hefferon, 2008) invoked this rationale. Textbooks in
Sequence 3, on the other hand, typically treated linear transformations as tangential,
rather than interrelated, at this early stage, opting to delay more formal treatments
until later in the text.

The isomorphization approach in Sequences 1 and 2 typically proceeded as
follows: if TA: Rn →Rm is a linear transformation with m× n matrix A and
TB: Rp →Rn is a linear transformation with n× p matrix B, then the m× p matrix AB
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is defined so that it is the matrix of the linear transformation ð jA◦TBÞT : Rp →Rm;
that is, so that TA◦TBð Þ x ⃗ð Þ= ABð Þx ⃗, where x ⃗ is a vector in Rp. In their accompanying
explanations, the textbook authors attempted to make the equivalence between
composition of transformations and matrix multiplication clear:

• “When a matrix B multiplies a vector x, it transforms x into the vector Bx. If this
vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx). …
Thus A(Bx) is produced from x by a composition of mappings—the linear
transformations studied [previously]. Our goal is to represent this composite
mapping as multiplication by a single matrix, denoted by AB, so that A
(Bx) = (AB)x” (Lay, Lay, and McDonald, 2015, p. 96).

• “Because x was an arbitrary vector in Rn, this shows that TA ◦ TB is the matrix
transformation induced by the matrix Ab1,Ab2, . . . ,Abk½ �. This motivates the
following definition” (Nicholson, 2013, p. 57).

• “The definition of matrix multiplication was framed precisely to make this
equation valid” (Cheney & Kincaid, 2012, p. 152).

• “The matrix of the linear transformation T xð Þ=B Axð Þ is called the product of
the matrices B and A, written as BA” (Bretscher, 2012, p. 77, emphasis in
original).

• “The matrix representing g ◦ h has the rows of G combined with the columns of
H” (Hefferon, 2008, p. 226).

It is worth noting that, because matrix multiplication appeared early in most of
these textbooks, such an approach necessitated that linear transformations also be
treated early. Another approach centered on the similar task of finding one matrix C
such that A Bxð Þ=C xð Þ but without formally treating linear transformations first
(e.g. DeFranza & Gagliardi, 2015; Shifrin & Adams, 2010; Strang, 2009). This
alternative approach either avoided invoking linear transformations or made min-
imal references to them in passing (often with a note that a full treatment of linear
transformations would follow in a subsequent chapter/section). For example,
DeFranza and Gagliardi (2015) motivated matrix multiplication in a way that
strongly suggested the relevance of linear transformations, asking “is there a single

matrix which can then be used to transform the original vector
1
3

� �
to

4
1

� �
?”

(p. 30). Shortly thereafter, they remarked that “the notion of matrices as transfor-
mations is taken up again in Chap. 4” (p. 31). Several other textbooks—particularly
those in Sequence 3—also opted for this tangential reference to the importance of
linear transformations, presumably to provide some insight into the mathematical
structure of matrices and linear transformations without committing to a formal
treatment so early in the text (e.g. Anton & Rorres, 2014; Shifrin & Adams, 2010;
Williams, 2012). The methods that such textbooks employed for justifying the
associative law—which the above textbooks achieved by leveraging the
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associativity of composing linear transformations—utilized different strategies,
including analogy and abstraction (and are thus detailed in subsequent sections).

4.2 Postponement

We found examples of postponement across all three sequences. The textbooks
employing postponement in Sequences 1 (e.g. Beezer, 2015; Spence, Insel, &
Friedberg, 2007) and 2 (e.g. Bretscher, 2012; Shifrin & Adams, 2010) primarily did
so to explain the future utility of examining vector equations and linear combina-
tions of vectors (by means of characterizing the matrix-vector product as a linear
combination of column vectors). For example:

• “[This definition] is frequently the most useful for its connections with deeper
ideas like the null space and the upcoming column space” (Beezer, 2015,
p. 182).

• “We now make an observation that will be crucial in our future work: the matrix
product Ax can also be written as [a linear combination of the columns of A]”
(Shifrin & Adams, 2010, p. 53).

• “Note that the product Ax is the linear combination of the columns of A with the
components of x ⃗ as the coefficients … Take a good look at this equation,
because it is the most frequently used formula in this text. Particularly in the-
oretical work, it will often be useful” (Bretscher, 2012, p. 31).

Note that many of these textbooks also employed isomorphization, similar to
what we discussed in the previous section, in order to motivate linear combinations;
thus, these texts are attempting to justify the present importance of linear combi-
nations and vector equations (as an alternative viewpoint on linear systems) while
also emphasizing their future importance.

Postponement was particularly prominent amongst textbooks in Sequence 3 (e.g.
Anthony & Harvey, 2012; Kolman & Hill, 2007; Larson, 2016) as a means to
rationalize the matrix-matrix product AB in terms of the vector dot product (which,
for these textbooks, was the first appearing form of matrix multiplication). Many of
these textbooks contrasted the intuitive, component-wise approach of matrix
addition with matrix multiplication, the understanding or utility of which, they
asserted, depended on subsequent concepts:

• “Since matrices are added by adding corresponding entries and subtracted by
subtracting corresponding entries, it would seem natural to define multiplication
of matrices by multiplying corresponding entries. However, it turns out that
such a definition would not be very useful for most problems. Experience has
led mathematicians to the following more useful definition of matrix multipli-
cation” (Anton & Rorres, 2014, p. 29).

• “The most natural way of multiplying two matrices might seem to be to multiply
corresponding elements when the matrices are of the same size, and to say that
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the product does not exist if they are of different size. However, mathematicians
have introduced an alternative rule that is more useful. It involves multiplying
the rows of the first matrix times the columns of the second matrix in a sys-
tematic manner” (Williams, 2012, p. 71).

• “We now define the product of two matrices. From the way the other matrix
operations have been defined, you might guess that we obtain the product of two
matrices by simply multiplying corresponding entries. The definition of product
given below is much more complicated than this but also considerably more
useful in applications” (Venit, Bishop, & Brown, 2013, p. 90).

Considering the sequencing of these textbooks, the widespread use of postpone-
ment makes a certain amount of sense, as textbooks that have not yet discussed the
matrix-vector product or linear transformations upon the presentation of the
matrix-matrix product have fewer familiar concepts with which to justify their
definition. It should be noted, though, that postponement was only used as a
temporary (and not permanent) strategy: all of these textbooks eventually connected
matrix multiplication to linear transformations.

4.3 Analogy

We documented uses of both mathematical and real-world analogies. The mathe-
matical analogies focused on relating aspects of matrix multiplication to familiar
arithmetic domains (notably the real numbers and the integers). The real-world
analogies involved use of a practical real-world scenario to justify or explain the
formula for the matrix-matrix product AB.

4.3.1 Mathematical Analogy

Strang (2009) motivated the matrix-matrix product by expressing the desire for a
single matrix C such that A Bxð Þ=Cx, which was fairly common. What distin-
guishes his approach, however, is that he does not formally treat linear transfor-
mations until near the end of the textbook (Chap. 6), and thus is unable to use linear
transformations to justify the associativity of matrix multiplication. Instead, he used
the associativity of integer multiplication as an analogy: “When multiplying EAC,
you can do AC first or EA first. This is the point of an “associative law” like
3 × 4× 5ð Þ= 3× 4ð Þ×5. Multiply 3 times 20, or multiply 12 times 5. Both answers
are 60. That law seems so clear that it is hard to imagine it could be false” (p. 58).
The other instance of mathematical analogy involved comparison of the matrix
equation Ax= b to the real number equation ax= b. Edwards and Penney (1988),
for instance, wrote that “[the matrix equation Ax= b] is analogous in notation to the
single scalar equation ax= b in a single variable x” (p. 38). This technique was
typically used to justify the importance of the matrix equation Ax= b (and thus the
matrix-vector product) while also setting the stage for the importance of the inverse
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of a matrix (as a common method for solving both equations involves multiplication
on the left by the appropriate inverse element). Accordingly, some textbooks (e.g.
Bretscher, 2012) used the scalar equation ax= b in order to accentuate the impor-
tance of inverse matrices.

4.3.2 Real-World Analogy

We found examples of textbooks leveraging real-world scenarios to justify the
formula for the matrix-matrix product AB across Sequence 1 (e.g. Ricardo, 2009),
Sequence 2 (e.g. Bretscher 2012), and Sequence 3 (e.g. Andrilli & Hecker, 2010;
Larson, 2016; Williams, 2012). The scenario in Ricardo’s (2009) presentation was
typical: the textbook described two hypothetical universities, Alpha College and
Beta University, that plan to purchase the same computer equipment (in different
quantities). The following information about quantity and price of equipment is
provided in the following tables (adapted from Ricardo, 2009, p. 182):

Ricardo then demonstrated how to calculate the amount that Alpha College and
Beta University would spend if they purchase their equipment from Vendor 1,
which can be expressed as dot products of the respective rows (in the “Quantities”
table) with the Vendor 1 column (in the “Unit Prices in Dollars” table); for example,
25 1286ð Þ+5 399ð Þ+20 39ð Þ= $34, 925. These calculations, Ricardo noted, take the
same form as the matrix-vector product Ax. The same calculations are repeated for
Vendor 2 and are then summarized as a matrix-matrix product:

25 5 20
35 3 15

� � 1286 1349
399 380
39 37

2
4

3
5=

34925 36365
46792 48910

� �

Ricardo followed this scenario with a remark on the matrix-matrix product, noting
that “we can generalize this row-by-column operation in a natural way” (p. 183).
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As with use of postponement, the use of real-world analogy seems well-situated
for Sequence 3 because the sequencing of these textbooks afforded few mathe-
matical footholds to introduce the matrix-matrix product. The textbooks following
the other sequences, on the other hand, were able to leverage the matrix-vector
product en route to developing their characterizations of the matrix-matrix product,
lessening the need for real-world comparisons for justification.

4.4 Abstraction

We documented two distinct uses of textbooks explicitly employing abstraction, a
classification that we reserved for cases in which textbooks made direct comments
about the relationship between a specific example and its associated general con-
cept, representation, or formula. First, DeFranza and Gagliardi (2015), in the
absence of a formal treatment of linear transformations, used an argument with
2 × 2 matrices to justify that matrix multiplication is associative (i.e. that
A Bxð Þ= ABð Þx). This is a use of abstraction because it introduces students to and
justifies associativity in a particular situation in order to justify the associativity of
general matrix multiplication. Second, Shifrin and Adams’s (2010) presentation
focused explicitly on the matrix-vector product as a special case of the
matrix-matrix product, emphasizing that the matrix-matrix product “is a general-
ization of multiplication of matrices by vectors” (p. ix). In a similar way, Andrilli
and Hecker (2010) characterized the matrix-vector product as “a generalization of
the dot product of vectors” (p. 59). Though the focus of abstraction is different in
each case (the matrix-vector product and the vector dot product, respectively), both
of these examples frame the matrix-matrix product in terms of versions of matrix
multiplication that are more concrete and familiar. One possible reason for the lack
of documented cases of abstraction is that, as we noted in the introduction, matrix
multiplication is a notion for which students have little experiential basis, and thus
the capacity for connecting general concepts to their more familiar, concrete
instantiations is limited.

4.5 Computational Efficiency

We documented widespread use of the strategy of computational efficiency, which
we characterize as motivating a concept by explicitly highlighting its potential to
simplify procedures or calculations. Nearly all textbooks in Sequence 1—that had
initially defined the matrix-vector product in terms of linear combinations—cast the
dot product method as a means to expedite computing matrix multiplication (e.g.
Holt, 2012; Nicholson, 2013; Strang, 2009); we also documented this strategy in
Sequence 2 (e.g. Bretscher, 2012). Moreover, several textbooks in Sequence 1
coupled statements about computational efficiency with the theoretical importance
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of a linear combinations view (e.g. Beezer, 2015; Lay et al., 2015; Solomon, 2014).
For example:

• “We can define AB using dot products and ‘fast’ matrix-vector multiplication …

the column-wise description above is usually the best way to understand matrix
multiplication, but the dot-product formula gives a convenient way to compute
matrix products” (Solomon, 2014, p. 1.10).

Another argument appearing in favor of computational efficiency is the ability to
use this to calculate “an individual entry of the product, without calculating the
entire column that contains it” (Spence et al., 2007, p. 99). Other examples include:

• This formula enables us to compute any element in the dot product with one
simple dot product” (Cheney & Kinkaid, 2012, p. 192).

• “In some applications, we only need a single entry of the matrix product AB”
(Holt, 2012, p. 99).

• “It is useful to have a formula for the ijth entry of the product …” (Bretscher,
2012, p. 79).

Several textbooks—particularly those in Sequence 3—employed computational
efficiency to motivate their introduction of the matrix-matrix product as an action of
A on the columns of B (AB as [Acol(B)]) (e.g. Andrilli & Hecker, 2010; Anton &
Rorres, 2014; Kolman & Hill, 2007). Anton and Rorres (2014), for instance, stated
that that this form of matrix multiplication “has many uses, one of which is for
finding particular rows or columns of a matrix product AB without computing the
entire product” (p. 31). This recasting of certain forms of matrix multiplication
purely in terms of their capacity to streamline calculations certainly seems to
insinuate (or, in Solomon’s case, explicitly assert) that the dot product methods are
less conceptually illuminating for students, further demarcating the contrast in
rationale around which we framed this analysis.

5 Pedagogical Implications and Future Research

In this section we coordinate the results of our analysis with the literature on student
thinking in Linear Algebra in order to hypothesize which approaches might be
advantageous (or disadvantageous) for student learning. We acknowledge, how-
ever, that we are not positioned to comment definitively on the relative pedagogical
effectiveness of any particular content presentation, and thus any hypotheses
resulting from this coordination are offered tentatively as avenues for future
research.

We used an example of isomorphization (from Lay et al., 2015) and post-
ponement (from Kolman & Hill, 2007) in the introduction to highlight the potential
for variation in rationale regarding a central concept like matrix multiplication. As
we noted before, there is a subtle tension between these explanations for the initially
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presented form of matrix multiplication. On one hand, textbooks invoking iso-
morphization (to vector equations and linear systems) for their initial form of matrix
multiplication are attempting to frame matrix multiplication in terms of familiar
concepts, procedures, and ideas. On the other hand, textbooks invoking post-
ponement are (oftentimes explicitly) stating that the rationale for matrix multipli-
cation are currently unable to be easily understood. Informally, we might
characterize these two approaches as “this can be reasonably understood now using
familiar ideas” and “this can only be understood later using more advanced ideas.”
Our analysis indicates that this tension is indeed reflected amongst a substantial
number of other textbooks in our sample as well, particularly between textbooks in
Sequence 1 (Ax as LCC) and Sequence 3 (AB as DP). Some of these other text-
books also clearly delineated this tension. For example, recall Solomon’s (2014)
comment that “the column-wise description above is usually the best way to un-
derstand matrix multiplication, but the dot-product formula gives a convenient way
to compute matrix products” (p. 1.10) seems to suggest that the dot product
approach in Sequence 3 is less conceptually enlightening and should be used purely
for computation.

In addition to connecting matrix arithmetic to familiar notions like linear sys-
tems, the textbooks motivating matrix multiplication via isomorphization also did
so to emphasize the importance of viewing matrix multiplication in various ways.
We should note that it is possible that other textbooks outside of Sequence 1
similarly emphasized the importance of multiple representations; we are simply
noting that the textbooks in Sequence 1 made this focus explicit (see Sect. 4.1).
Such an approach seems to align with suggestions in the literature regarding the
importance of mastering multiple forms of representation in Linear Algebra (e.g.
Dorier, 2000). Harel (1997), for example, noted that “one of the most appealing
aspects of Linear Algebra—yet a serious source of difficulty for students—is the
‘endless’ number of mathematical connections one can (must) create in studying it.
Relationships between systems of linear equations, matrices, and linear transfor-
mations can be built in numerous ways, and problems about systems of linear
equations are equivalent to problems about matrices which, in turn, are equivalent
to problems about linear transformations” (pp. 111–-112). Specific to matrix
multiplication, Larson and Zandieh (2013) furthered this idea by identifying three
productive ways in which students should understand the matrix-vector product
Ax = b, each of which correspond to ways of understanding that emerged amongst
textbooks in our sample:

• viewing b as a linear combination of the columns of A (i.e. Ax as LCC),
• viewing the rows of Ax = b as the equations in a linear system (i.e. Ax as DP),

and
• viewing b as a linear transformation of the vector x.

Larson and Zandieh reiterated the importance of understanding all three viewpoints,
citing the Invertible Matrix Theorem—a set of equivalent conditions to determine
the invertibility of a matrix—as an example. The textbooks in Sequence 1 (and
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some in Sequence 2) appear to be well-positioned to emphasize and foster such
flexibility right from the initial definition of matrix multiplication. How alternative
emphases in the early stages regarding matrix multiplication might affect subse-
quent students’ understanding of subsequent concepts remains an unexplored
question in the literature. We also note that initiating with the matrix-vector product
and its different characterizations naturally extends to the matrix-matrix product and
can lead to flexible ways of conceptualizing the matrix-matrix product. For
example, understanding the matrix-vector product as an isomorphization of a linear
system can support understanding the matrix-matrix product as the structure needed
to support a change of variables (substitution) in the linear system. Similarly,
understanding the matrix-vector product as a linear transformation can support
viewing the matrix-matrix product as the composition of linear transformations. In
the same way that Harel (1997) and Larson and Zandieh (2013) argue in favor of
multiple ways of understanding the matrix-vector product, we propose that it is
similarly valuable to understand the matrix-matrix product in different ways.
Specific affordances of these ways of understanding could be explored in future
research.

Textbooks invoking postponement, particularly those in Sequence 3, typically
supplemented their rationale with (1) a real-world example, and/or (2) a brief,
tangential reference to linear transformations in order to justify the formula for
matrix multiplication. Regarding real-world examples, Harel (1987) argued that
such scenarios require the student to “distinguish between relevant and irrelevant
features,” which, in turn, might “weaken the anticipated motivational effect”
(p. 30). We argue that one particularly relevant feature of such scenarios is
potentially underemphasized: the appropriate arrangement of the arrays of infor-
mation (from which the matrices are constructed). Indeed, most textbooks pre-
senting a real-world scenario conveniently pre-arranged these arrays so that the
formula for the matrix-matrix product was immediately clear. While we acknowl-
edge that such application problems are intended as an introduction (and not as
examples that comprehensively embody the structure of matrix multiplication), we
question the effects of this convenient pre-arrangement because it partially sidesteps
the potential for students to identify and abstract the interplay between the row and
column vectors of the matrices in the product. Future research could explore how
students might be able to construct the relevant features of the mathematical
structure of matrix multiplication via such application problems.

Much of this discussion has focused on Sequences 1 and 3, largely because they
espoused drastically different initial approaches to matrix multiplication (isomor-
phization vs. postponement, respectively). We found far less consistency amongst
the 5 textbooks in Sequence 2. Their rationale for the matrix-matrix product, for
example, spanned all categories of rationale (isomorphization, postponement,
analogy, abstraction, and computational efficiency). Sequence 2 was, in some sense,
a hybrid of textbooks that were similar in approach to the other two sequences.
Bretscher (2012) and Leon (2014), for example, seemed to have more in common
with the textbooks in Sequence 1 (due to their early emphasis on Ax as a linear
combination of the columns of A, even though this was not their initial definition),
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and Shifrin and Adams (2010) and DeFranza and Gagliardi (2015) seemed to have
more in common with Sequence 3 (due to their limited emphasis in the early stages
on viewing Ax as a linear combination). Perhaps what Sequence 2 reveals most,
then, is that the approaches of Sequences 1 and 3 are not altogether pedagogically
incompatible. Indeed, a textbook making use of a definition in terms of dot products
first could very well afford ample focus to the linear combinations definition (e.g.
Bretscher, 2012; Leon, 2014). Thus, significant conclusions drawn from the
sequencing of matrix multiplication alone should be regarded cautiously and in
need of additional study. On a more general level, though, the fact that there are
apparent contradictions in the two most conspicuous methods of rationale for these
respective approaches does highlight the need for research to examine which
approach might be more pedagogically effective.

6 Conclusions

This study contributes to the literature in three important ways. First, the primary
contribution of this paper is our documentation and analysis of the ways in which
introductory, English-language linear algebra textbooks conceptualize and
sequence matrix multiplication. This analysis provided very specific information
about the four characterizations of matrix multiplication that expert mathematicians
believe to be the most important (Ax as LCC, Ax as DP, AB as DP, and AB as
[Acol(B)]). Particularly, we noticed that experts value fluency amongst these
multiple characterizations of matrix multiplication and often discussed unique
insights or abilities that each one offered (for example, Ax as LCC allows one to
reformulate the concept of span in terms of linear systems, and Ax as DP enables
one to calculate individual entries in a product). The order in which these char-
acterizations appeared often had significant implications for the way in which they
were rationalized. The textbook authors collectively employed a wide variety of
techniques to rationalize and explain matrix multiplication: each category of
rationale in Harel’s (1987) framework (in addition to computational efficiency)
appeared in our sample.

Second, we coordinated these findings with the literature on the teaching and
learning of Linear Algebra to hypothesize about ways of understanding matrix
multiplication that might be advantageous (or disadvantageous) for students to
have. In addition to highlighting productive avenues for future research, this
information can be used to inform a conceptual analysis, a description of “what
students might understand when they know an idea in various ways” (Thompson,
2008, p. 57). Conceptual analyses are particularly important in research on student
learning because, as noted by Thompson (2008), their uses include (1) devising
ways of understanding a particular concept that might be powerful for students, and
(2) characterizing the nature of student struggles with that concept. Conceptual
analyses can also be used to design and analyze student thinking in the context of
instructional sequences that aim to develop these powerful ways of understanding.
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Third, we have adapted Harel’s (1987) framework for analyzing rationale to
include a category for computational efficiency. Additionally, though it has been
used exclusively to study rationale for Linear Algebra concepts in Linear Algebra
textbooks, we suggest that its potential scope is much broader and extends beyond
textbook analysis. For example, the different types of rationale in this framework—
isomorphization, postponement, abstraction, analogy, and computational efficiency
—could also be used to analyze the rationale that an instructor provides for the
introduction of a new concept in a lecture setting. In this way, we anticipate that our
adaptation of Harel’s framework can be useful for future research.
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Misconceptions About Determinants

Cathrine Kazunga and Sarah Bansilal

Abstract In Zimbabwe, the topic determinant of matrices is usually covered as part
of the first-year linear algebra courses. In this study, we focused on Zimbabwean
teachers who were studying the topic at university while also teaching the topic to
their high school pupils at a different level. The study explored the misconceptions
displayed by 116 in-service mathematics teachers, with respect to determinants of
matrices. The participants responded to tasks based on determinants of matrices and
their applications. More than half of the participants struggled with finding the
determinant of the inverse of a matrix, transpose of matrices, and the application of
properties of determinants. The teachers exhibited many misconceptions, which
were mainly a result of the incorrect application of rules outside the domain in
which they were defined. The study suggests possible ways of teaching the concept
of determinant to reduce the possible misconceptions among the mathematics
teachers and their students. It is recommended that future course outlines of
in-service teachers’ programmes should include more formal learning opportunities
for teachers to develop a more conceptual understanding of the concept of deter-
minant of a matrix.

Keywords Linear algebra � Determinant of matrices
Undergraduate mathematics � In-service teachers � Misconceptions

1 Introduction

Globally, many mathematics education researchers have been concerned with
students’ difficulties related to the undergraduate linear algebra course (Dorier &
Sierpinska, 2001). There is agreement that teaching this course is a frustrating
experience for both teachers and students, and despite all the efforts to improve the
curriculum, the learning of linear algebra remains challenging for many students
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(Dorier & Sierpinska, 2001). In addition, Stewart and Thomas (2007), in their study
of university students on vector space, argued that students may cope with pro-
cedural aspects of the module where they apply algorithms and procedures when
solving systems of equations and manipulating matrices, but have difficulties with
the crucial ideas underpinning them.

Mathematics lecturers may benefit from learning about the common problems
experienced by students in learning matrix algebra concepts. By becoming more
informed about students’ problems, they could find ways of adjusting their
instructional techniques so that the learning opportunities could be improved.
Research on the demands of developing pedagogic content knowledge amongst
mathematics and science lecturers in higher education is limited (Bansilal, 2014;
Fraser, 2016; Major & Palmer, 2006). In her study with science lecturers, Fraser
(2016) reported that experienced science lecturers affirmed the importance of
anticipating students’ difficulties in their instructional practices, while Major and
Palmer (2006) noted that student learning was an important aspect reported by
faculty staff engaged on a professional development programme. Lecturers who are
interested in developing their understanding of the learning experiences of their
students would benefit from knowing more about misconceptions that are devel-
oped during the learning process. Furthermore, few studies have reported specific
misconceptions developed by students about the concept of determinants of
matrices (Aygor & Ozdag, 2012). This apparent dearth of research motivated us to
explore the misconceptions exhibited by in-service teachers in solving problems
involving determinants. Thus, the purpose of the study was to explore the mis-
conceptions of a sample of 116 mathematics undergraduate in-service teachers with
respect to determinants of matrices. It is hoped that the study will help mathematics
lecturers better understand the misconceptions encountered by students so that they
can anticipate student difficulties in matrix algebra regarding determinants of
matrices.

2 Literature Review

2.1 Conceptualising Determinant

The concept of determinant plays a vital role in linear algebra. The determinant can
be used to find area and volume of polygons and shapes in two dimensions and
three dimensions respectively, to find solution of systems of equations with n
unknowns and n equations, as one of the properties of invertible matrix theorem,
and it can be used in vector space to determine whether the vectors are linearly
independent or not. The determinant also can be used in the calculation of eigen-
values and eigenvectors which play a greater role in multivariate statistics and
non-linear differential equations. The determinant is used to find eigenvalues and
eigenvectors. Larson et al. (2008) and Rasmussen and Blumenfield (2007) call this
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way of finding eigenvalues and eigenvectors an eigenvector first approach. Hence,
determinants are an essential part of matrix algebra for solving systems of equations
and as part of curricula for Ordinary and Advanced level physics and Computer
Science (Todorova, 2012). In our study we explored misconceptions exhibited on
determinants when mathematics in-service teachers are taught it as a numerical
value of square matrix. Todorova (2012) points out that the study of determinants
may sometimes cause problems if the concept of determinant is interpreted solely as
a numerical characteristic (value) of a square matrix.

2.2 Origin of the Theory of Determinant

The theory of determinant in linear algebra emerged as a way of solving systems of
linear equations (Andrews-Larson, 2015; Dorier, 2000). Andrews-Larson (2015)
examined the possibility of using history to inform instruction considering linear
systems of equations and their solutions. The author asserted that theory of deter-
minant emerged separately in the 17th and 18th centuries in both Japan and Europe
after the ancient Chinese method of solving systems of equations. In 1693, a
Japanese mathematician Seki Kowa developed a version of determinant as part of a
method of solution nonlinear systems of equations. In 1750, a Swiss mathematician
Gabriel Cramer independently developed a way of specifying the solution to a
system of linear equations. Cramer generalised a method for their computation by
leveraging the combinatorics of cleverly superscripted but unspecified coefficients.
Andrews-Larson (2015) points out that Cramer obtained a general way of solving
system of equations with n linear equations and n unknowns which he framed using
combinatorics of the superscripts. He discovered that the n by n system of equa-
tions is solved by forming n fractions, each of which has n! terms in both the
numerator and the denominator. Cramer discovered the conditions necessary for
which the system of equations has a unique solution or no solution
(Andrews-Larson, 2015). The way in which Cramer structured the coefficients in
the notational system shaped the way in which the determinant was specified.
However, today we have Cramer’s rule, which is a familiar method used to solve
system of equations named after Cramer to recognise the credibility of his work. An
English mathematician James Joseph Sylvester coined the term ‘matrix’ in 1850,
and made use of determinants. Thus, determinants can be used as a tool to deter-
mine whether a system of equations is consistent or inconsistent. Andrews-Larson
(2015) argues that the inclusion of history to inform instruction when teaching
linear systems of equations and their solutions can enhance understanding.

Furthermore, Dorier (2000) provides a historical account and explains the
relationship between concepts of determinants and rank. He states that from around
1840 to 1879, within the theory of determinants, the concept of rank took shape. He
further points out that the concept of inclusive dependence was rapidly renamed
after Euler’s work connected to way of finding determinant of the augment matrix
of system of linear equations. Between 1840 and 1879 the concept of rank was,
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therefore, implicitly central to the description of the system of linear equations. The
theory of determinants made an analogous treatment of equation of dependence of
equations and n-tuples possible. Dorier stresses that a knowledge of historical
development provides the teacher and the researcher with a field of investigation
from which they can better understand the students’ difficulties and, more generally,
from which they can put some ‘meat’ onto the (bare bones) of the axiomatic
approach.

Selinski et al. (2014) used adjacency matrices to analyse students’ interpretation
of and connections between linear algebra concepts such as linear independence,
determinants, span, invertibility and null space. They asked students certain ques-
tions which required them to say whether it is true or false that an invertible matrix
has a determinant zero (singular matrix). The invertible matrix can also be described
in terms of determinant. The above-mentioned authors observed that the students
could connect some of the properties of the invertible matrix, including the
determinant issue. However, in a study conducted among school students,
Todorova (2012) found that they failed to make connections between the deter-
minant and the area of non-regular polygons using the dimensional GeoGebra
system. There is a connection between the invertible matrix and the determinant.
The determinant is also connected to vectors. If the determinant of a 3 � 3
invertible matrix say A is zero, then the column vectors of A are independent.

Todorova (2012) examined conceptual difficulties of students with respect to the
concept definition and various images of a determinant. As Todorova (2012) puts it,
most of the textbooks introduce the term ‘determinant’ clearly and students usually
have little or no difficulty in understanding the meaning of determinant (that it is
actually a number) and the procedure of obtaining this number. However, it is in
applying the concept to solve problems that they experience challenges. She offers
an approach for understanding the concept of determinant with visualisation in
GeoGebra. Todorova (2012) argues that it is possible to develop the concept of a
determinant using the dimensional GeoGebra system. Students could visualise the
connection between the determinant and area of plane shapes which could be at any
position in the Cartesian plane. She points out that the concept of determinant of a
3� 3 matrix can be defined using plane geometry figures and also as volume of
solids. The results of her study showed that students are able to think about the
concept of a determinant as a value of area of plane shapes and volume of solid
shapes but they have challenges with the concept in applying its definition to solve
problems involving irregular geometric figures. However, the students who par-
ticipated in her study were able to solve simple problems after the formal definition
was introduced but had challenges when solving problems that involved irregular
polygons.

Wawro (2014) adapted and extended the work of Selinski et al. (2014) using
adjacency matrices by emphasising that the centrality of ‘the determinant of A is
zero’ was higher than ‘the determinant of A is non-zero’. A deeper examination of
the involved argument revealed that the Selinski’s class reasoned about how
determinants connected to other concepts by focusing more on matrices with zero
determinants rather than non-zero determinants. Although the invertible matrix
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theorem has a determinant not equal to zero, students used ‘determinant equal to
zero’ more often throughout the semester as they reasoned about novel problems.
Thus, students in this study preferred the use of ‘singular matrix’ to ‘non-singular
matrix’.

Donevska-Todorova (2014) categorised thinking of determinants into three
modes of description, namely the geometric language or synthetic-geometric mode
of thought, the arithmetic language or analytic-arithmetic mode of thought, and the
algebraic language or analytic-structural mode of thought. In the first mode
(synthetic-geometric) determinants are viewed as oriented volumes and areas of
parallelepiped and parallelograms respectively spanned by vectors. In the arithmetic
language or analytic-arithmetic mode of thought determinants are viewed as the
sum of permutations. In the algebraic language or analytic-structural mode of
thought, determinants are viewed as functions satisfying three axioms (multilinear
form, norm and two equal rows in a matrix give a zero value for its determinant).
She elaborates that university- and further-level students viewed the axioms of
determinants according to the abstract or analytical structure mode of thinking. For
our study, the mathematics undergraduate in-service teachers were given tasks
based on the analytic-arithmetic mode of thinking.

Sierpinska (2000), who also conducted a study on students’ thinking in linear
algebra, concluded that students tend to think in practical rather than theoretical
ways. The study revealed that students are reluctant to move flexibly among the
three modes of reasoning in linear algebra ‘languages’: ‘visual geometric’ language,
‘arithmetic’ language and the ‘structural’ language. Sierpinska avoided the devel-
opment of the obstacle of formalism in students by assigning tutors to different
groups of students, instead of having one teacher teaching the whole class. This
author states that the development of linear algebra started as a process of thinking
analytically about the geometric space and argues that the familiar objects of
analytic thinking in linear algebra are vectors and matrices which have lost their
numeric substance. They are no more “boxes with numbers”, but units whose
internal structure is not of much interest in the reasoning. The author points out that
the theory of determinant and techniques for their calculation lose the prominent
position they hold in analytical-arithmetic thinking. She stresses that by teaching
the concept of determinant geometrically, the structure and properties of the linear
algebra objects can be illustrated (Sierpinska, 2000). The analytical-structural mode
is when students conceptualising matrices as either having or not having a deter-
minant equal to zero, and when they make use of properties of determinant, while
calculation determinant of square matrices as the analytical -arithmetic (Sierpinska,
2000). Sierpinska (2000) pointed out that in analytical-arithmetic thinking students
make use of formula to compute the determinant. Sierpinska concluded that it is
difficult to avoid the analytical-arithmetic thinking when solving determinants
problems.

Ndlovu and Brijlall (2016) point out that mathematics lecturers and teachers
need to focus on their students’ understanding of interrelationships between con-
cepts, rather than carrying out procedures. In schools, students construct mathe-
matical knowledge as isolated facts and assimilate rules cognitively as a list of
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unconnected actions. Ndlovu and Brijlall (2016) carried out an APOS (Action–
Process–Object–Schema) study with 31 pre-service teachers, five of whom were
interviewed. The researchers observed that most of the pre-service teachers did not
display evidence of conceptual understanding. They also observed that the pre-
service teachers understood the procedure of evaluating determinants but could not
explain the connection made between general statement of evaluating determinants
and its applicability to other contexts. Our study went a step further by exploring
the misconceptions exhibited by in-service teachers when solving problems
involving determinants and possible strategies that can be used to improve the
understanding of determinants.

The difficulties students encounter in linear algebra has been the focus of many
researchers (Stewart & Thomas, 2008). In our study, we focused on misconceptions
encountered by non-traditional mathematics undergraduate students. These are
students who carry out their studies through blocks during school holidays or
vacations. They differ from conventional students who pursue their studies full–
time. We consider a misconception as a conceptual construction, created by the
students, which is logical in relation to her/his current knowledge, but which is not
in line with specific mathematical knowledge (Confrey, 1990; Siyepu, 2013).
Aygor and Ozdag (2012) investigated misconceptions exhibited by 60 undergrad-
uate students while solving problems on matrices and determinants. Their results
revealed many misconceptions which are related to confusion between matrices and
the determinant of matrices. For example, some students took the relationship
det A ¼ � det B (that is the determinant of matrix A equal to minus one times the
determinant of matrix B) to mean A ¼ �B (that is, matrix A equals minus one times
matrix B). Some students also took the relationship det A ¼ k det B (that is,
determinant of matrix A is equal to k times determinant of matrix B) to mean
A ¼ k B (that is matrix A equals k times matrix B). Again some students took the
relationship det Aþ det B (determinant of matrix A plus determinant of matrix B)
to mean AþB (matrix A plus matrix B). Aygor and Ozdag (2012) point out that
misconceptions might cause students to perform badly in mathematics; hence,
curriculum materials should be made available to prevent, halt or reduce miscon-
ceptions (Aygor and Ozdag, 2012).

2.3 A Framework to Understand Matrix Algebra
Misconceptions

Errors, according to Lannin et al. (2007, pp. 44–45), should be taken as “oppor-
tunities for deepening one’s understanding and as important components of the
learning process”. The view that errors or misconceptions are part of the process of
learning, rather than something that should be eliminated, is supported by many
mathematics education researchers (Mahlabela, 2012). Smith, diSessa and
Roschelle (1993a, b) explain that misconceptions develop as part of the process of
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constructing productive knowledge and caution that conceptions are embedded in
complex systems, and are not single units of knowledge. This perspective makes it
“easier to understand how some conceptions can fail in some contexts and play
productive roles” in others. The crucial issue is where the conceptions are used and
how they are used, since that marks the difference between whether it is a pro-
ductive conception or a misconception. Smith et al. (1993a, b) argue that persistent
misconceptions can actually be understood as efforts made by learners to extend
their existing conceptions to other instructional contexts in which the conceptions
are not productive. Mahlabela (2012) explains that misconceptions often occur
when learners overgeneralise a concept from one domain to another, as put forward
by Nesher (1987, p. 38): “Misconceptions are usually an outgrowth of an already
acquired system of concepts and beliefs wrongly applied to an extended domain.”
Naidoo (2009) avers that misconceptions are fundamental in learning because
learners can create misconceptions in the sense-making process of knowledge
acquisition. In this chapter, we consider matrix algebra misconceptions as con-
ceptual constructions, created by the learners, which are logical in relation to their
current knowledge, but which are not in line with specific mathematical knowledge
(Confrey, 1990; Siyepu, 2013).

3 Methodology

A qualitative research approach was adopted to answer the research question.
Qualitative research methods involved the systematic collection, organisation and
interpretation of textual or verbal data (Cohen, Manion, & Morrison, 2011). The
participants of the studywere 116 in-service teacherswhowere enrolled in a course on
a part-time basis at a Zimbabwean university. The participants were non-traditional
students in the sense that they were mature teachers who were categorised as
unqualified mathematics teachers because their initial training was no longer con-
sidered sufficient. As part of a large-scale programme (funded by international aid
organisations in partnership with the Zimbabwean government), the unqualified
teachers attended in-service courses at local universities which were designed to
upgrade their qualifications. The design of the course was such that the participants
would complete the work usually done in an undergraduate three-year degree pro-
gramme except that the lectures were offered in two intensive block sessions for each
semester. The 116 in-service mathematics teachers who were studying matrix oper-
ations concepts in a linear algebra course agreed to participate in this study.

The data from the study was generated from the written responses of the 116
participant teachers to tasks based on determinants of matrices and its application
collected through activity sheets and interviews. The participants who were willing
to participate in the study signed the consent letter and they were given one and a
half hours to answer the six questions in an activity sheet. The purpose of the
research was to identify teachers’ misconceptions when answering questions
involving determinants. The actual tasks are presented in the results section.
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The participants were coded using tags ‘S1’, ‘S2’ and so forth up to ‘S116’. The
order did not have any significance, so that while enabling organisation of the data
the responses could not be linked in publications to the original participants.

We employed “interpretation analysis” to guide us in the data analysis process
(Gall, Borg, & Taylor, 2003, p. 562). According to Gall et al., interpretation
analysis is “the process of examining case study data closely in order to find
constructs, themes, and patterns that can be used to describe and explain the phe-
nomenon being studied” (2003, p. 562). In this setting, the process involved finding
patterns and themes within data to identify the misconceptions, and constituted
thematic analysis (Given, 2008). Hence, the data collected was arranged and sorted
to identify common themes, patterns, differences, and similarities that were used to
organise the presentation of the results (Cohen et al., 2011).

4 Results

We present the results for the different questions, followed by a description of
misconceptions or errors that were identified in the particular items.

4.1 Determinants of 3 � 3 and 4 � 4 Matrices

There were six sub-questions based on calculating the determinants of 3� 3 and
4� 4 matrices as well as the determinant of the transpose of a matrix. These are
shown in Table 1, together with the percentage of correct responses.

Table 1 shows that most participants were able to calculate the determinants of
3� 3 matrices correctly, with few presenting incorrect or blank responses. It was in
the calculation of the determinants for the 4� 4 matrix, D, that some misconcep-
tions emerged.

4.1.1 Incorrect Procedures for Calculating the Determinants of 4 � 4
Matrices

One common misconception about calculating the determinant of the 4� 4 matrix
related to the inappropriate application of the Sarrus rule (which is only used for
3� 3 matrices). There were 20 teachers who obtained the answer of zero when they
applied the Sarrus rule for 3� 3 matrices to an extended domain including 4� 4
matrices.

Another incorrect strategy used by 10 participants was to extend the method

used to find the determinant of a 2� 2matrix, (that is when A ¼ a b
c d

� �
then
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Aj j ¼ ad � bc). These participants ‘generalised’ the method, applying it to both
3� 3 and 4� 4 matrices by multiplying the entries of the diagonals and then
subtracting the results. This incorrect strategy is illustrated in Fig. 1, which shows
the response of S14.

Table 1 Results for items on finding determinants of matrices of different order

1. Consider the following matrices and find their determinants:

A ¼
1 2 3
2 5 3
1 0 8

0
@

1
A B ¼

1 2 0
�1 1 0
2 5 1

0
@

1
A

C ¼
2 3 1
5 3 4
�1 2 5

0
@

1
A D ¼

1 2 1 2
3 0 1 2
2 1 2 1
1 0 2 2

0
BB@

1
CCA

Percentage with correct answer (%)

1.1 A 64.7

1.2 B 74.1

1.3 C 61.2

1.4 D 8.6

1.5 CT 24.1

1.6 AT 24.1

Fig. 1 The response of S14
who found the difference
between the products of
entries on the diagonals
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4.1.2 Confusion Between the Transpose of a Matrix and Its
Determinant

From Table 1, it is seen that only 28 participants correctly calculated the deter-
minant of the transpose matrix (Q 1.5 and Q 1.6). The responses reveal a wide-
spread misconception (by 65 participants) that the determinant of a transpose matrix
is the same as the transpose matrix, that is, ATj j ¼ AT , as illustrated in Fig. 2,
through the response of S1.

The response of S1 presents the transpose of the matrix as the determinant of the
transpose matrix, suggesting that he sees the two as being equivalent.

4.2 Misconceptions About Properties of Determinants

There were 4 sub-questions where teachers were expected to apply properties of
determinants to work out the determinants. The results for these items appear in
Table 2.

Table 2 shows that 77 participants correctly calculated the determinant of the
square of a matrix (Q 2.1). However, some teachers took the determinant
A2
�� �� = 2 Aj j leading to the answer of 2(8) = 16.

For Question 2.2, 53 participants managed to find A�1
�� �� correctly. There were 25

participants who incorrectly applied the rule A�1 = 1
Aj jA to this situation. That is,

they presented the question as if they were asked to find A�1 which is equal to 1
Aj jA:

Fig. 2 The response of S1
who interpreted the
determinant of the transpose
of a matrix as being
equivalent to the transpose
matrix

Table 2 Results for questions based on determinants of related matrices

2 Suppose that A, B are matrices where Aj j ¼ 8 and Bj j ¼ 2: Find

Percentage with correct answer (%)

2.1 A2
�� �� 66.4

2.2 A�1
�� �� 45.7

2.3 BTj j 47.4

2.4 A�1BT
�� �� 25.0
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Furthermore, instead of using the matrix A, they substituted the value of Aj j = 8.
Hence their answer to A�1

�� �� was written as 1
8A = 1

8 � 8 ¼ 1. Therefore, these 25
participants showed confusion between the determinant of the matrix and the matrix
itself (for A as well as A�1); that is, they took A�1 = A�1

�� �� and A ¼ Aj j. Figure 3
illustrates this misconception from the work of S14.

There were a large number of participants (32) who incorrectly took the deter-
minant of A�1 to be equal to the determinant of A, that is A�1

�� �� ¼ Aj j; as illustrated
in the response of S19 which appears in Fig. 4.

For Question 2.3 there were 55 teachers who managed to find the determinant of
Bt given the determinant of B. Most of the participants with incorrect answers gave
the response 2T , which is actually not defined, since transpose as an operation can
only be carried out on a matrix and not on a number. The underlying misconception
is taking the determinant of the transpose of matrix as equal to the transpose of the
determinant of the matrix, BTj j ¼ Bj jT ; illustrated in Fig. 5, using the response of
S2.

For Question 2.4 only 29 teachers managed to find A�1BT
�� ��. It was found that

the incorrect responses for Questions 2.2 and 2.3 influenced the teachers in their
approach to Question 2.4; that is their incorrect approach to working out the
determinant of the inverse and the determinant of the transpose matrix led to
incorrect answers for Question 2.4 as well. There were many responses where the
equal sign was used inappropriately as an operator symbol or a “do something”
symbol (Kieran, 1981), instead of a sign denoting equivalence between two
expressions. This misuse of the equal sign is illustrated in Fig. 6 through the
response of S3. However, it is important to note that the misconception was not
confined to this question only but appeared in responses to other questions as well.

Fig. 3 Response of S14
showing a misinterpretation
of A�1

�� ��

Fig. 4 Response of S19 who
took the determinant of the
inverse of a matrix as equal to
the determinant of the matrix

Fig. 5 The response of S2 to
finding the determinant of the
transpose matrix
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4.3 Difficulties with Deducing Relationships Between
Determinants of Related Matrices

Teachers were presented with the determinant of a matrix and asked to find the
determinant when the columns were swopped (Q 3.1), of the matrix transpose (Q
3.2) and to apply the multilinear property of determinants (Q 3.3). These
sub-questions appear below, together with the percentage of participants who got
each answer correct.

Table 3 shows that less than 40% gave the correct responses for the three items,
indicating that they did not know the properties of the determinant of matrices.
Most participants could not deduce relationships such as det C = 3 det A, which
arises from the multilinear property of the determinant function
(Donevska-Todorova, 2014). Instead, many tried to find the determinant of matrices
B, C and D from scratch, using the variable entries as illustrated in Fig. 7.

There were 10 participants who incorrectly extended the method used to find the
determinant of a 2� 2 matrix by multiplying the entries of the diagonals and then
subtracting the results as shown in Fig. 8. These participants had the same mis-
conception illustrated earlier in Fig. 1.

We now consider the teachers’ responses to items which required working with
algebraic relationships arising from determinants of matrices with algebraic entries,
as shown in Table 4.

Table 4 shows that only 48 and 33 participants provided correct answers for
Questions 4.1 and 4.2 respectively. It is of interest that some participants had
managed to evaluate the determinant of the 3� 3 matrix in Question 2, yet they
were unable to evaluate the determinant of a matrix of the same size but one whose
entries included variables. The responses included some basic algebraic errors:
some participants (9) were unable to simplify the algebraic expression representing

the determinant; 18 wrote x2 ¼ 3
2 ! x ¼

ffiffi
3
2

q
; that is, they left out the negative value

of the square root �
ffiffi
3
2

q� �
; 13 participants left out the negative value of the square

root �
ffiffi
6
4

q� �
; that is; they took

ffiffiffiffiffi
x2

p
¼ x; three participants stopped at the equation

4x2 � 6 ¼ 0; that is, they did not solve for x. One wrote x2 ¼ 3
2 ! x ¼ 1 1

2, indi-
cating that x and x squared were seen as the same x (x2 ¼ x) which is not linear to
mathematical knowledge. Figure 9 includes the response of participant S5, illus-
trating this misconception.

For Question 4.2, there were 28 participants who could not simplify the alge-
braic expression representing the determinant, while 12 participants obtained the

Fig. 6 The response of S3 to
finding the determinant of the
square of a matrix
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correct expression for both determinants but did not continue to solve for x. They
left the answer as a quadratic expression 2x2 � 3x� 3 ¼ 0.

5 Discussion

The results showed that many of the teachers held various misconceptions about
determinants of matrices and their application. It was surprising that even though
these teachers teach the topic of matrix operations at school, 34 out of the 116
participants calculated the determinants of 2 � 2 matrices incorrectly. Eighty-eight
participants were not able to find the determinant of a 3 � 3 matrix. A further
concern is that many participants had problems with basic algebra. For example,
when working with determinants of matrix to find the unknown value, some par-
ticipants took

ffiffiffiffiffi
x2

p
¼ x and x2 ¼ x. These findings concur with those from Kazunga

and Bansilal’s (2015) study which found that many pre-service teachers have low
level engagement with most matrix algebra concepts. The participants also dis-
played misconception concerning the use of square and square root function. Many
participants used the equal sign inappropriately as an operator symbol or a ‘do
something’ symbol, which is a misconception often encountered in children
learning early algebra (Kieran, 1981).

Many of the misconceptions that were identified were related to the incorrect
application of rules outside the domain in which they were defined. Most of the
teachers applied the method of finding the determinant of 2� 2 matrices which
involve subtraction of the product of diagonal entries, to find the determinants of

Table 3 Questions based on determinants of matrices with algebraic entries and the percentage of
correct responses

3. Suppose the matrix A is such that Aj j ¼
a1 a2 a3
b1 b2 b3
c1 c2 c3

������
������ ¼ �2:

Given the following matrices:

B ¼
a3 a2 a1
b3 b2 b1
c3 c2 c1

0
B@

1
CA C ¼

a1 a2 a3
b1 b2 b3
3c1 3c2 3c3

0
B@

1
CA

D ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

0
B@

1
CA

.

Find their determinant:

Percentage with correct answer (%)

3.1 B 25.0

3.2. C 32.8

3.3 D 37.9
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3 � 3 and 4 � 4 matrices. This misconception was evident in the responses to
Question 1 as well as in Question 3. This tendency to overgeneralise a concept from
one domain to another has been observed in research about misconceptions.
Nesher’s (1987) view of misconceptions is that these are “usually an outgrowth of
an already acquired system of concepts and beliefs wrongly applied to an extended
domain” (p. 38). Smith et al. (1993a, b) argue similarly that misconceptions,
especially the widespread ones, are associated with some contexts where they are
used successfully and persistent misconceptions may be viewed as “efforts to
extend their existing useful conceptions to instructional contexts where they turn
out to be unproductive” (p. 61). In this context of calculating determinants, the

Fig. 7 The response of S4 to finding the determinant of the square matrix

Fig. 8 The response of S14 to show misconception 1 on determinant of square of matrix with
algebraic entries
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teachers overgeneralised the rule for 2� 2 matrices and extended it incorrectly to
the domain of 3� 3 and 4� 4 matrices. Another example of a misconception
related to an overgeneralisation was in Question 2.2, when the relationship
A�1 = 1

Aj jA was transformed into A�1
�� �� = 1

Aj j Aj j which will always be 1! The study

also found the misconception of A2
�� �� = 2. Aj j, which may possibly be an incorrect

extension of the derivative rule for powers of a variable to powers of matrix.
Researchers (Lannin et al., 2007; Naidoo, 2009; Smith et al., 1993a, b) have
emphasised that the development of misconceptions is fundamental in learning.
Instructors could design tasks that explore common misconceptions to help students
engage more deeply with the concepts. Interrogation of the misconceptions can
provide rich opportunities for students to question the domain under which certain

Table 4 Questions based on
application of determinant of
a matrix and percentage of
correct responses

4.1 Suppose that B ¼
1 x x
�x �2 x
x x 3

0
@

1
A, work out

what the value of x is, if det Bð Þ ¼ 0

4.2 Suppose that
x �1
3 1� x

����
���� ¼

1 0 �3
2 x �6
1 3 x� 5

������
������.

Now solve for x

Percentage with correct answer (%)

4.1 39.7

4.2 28.4

Fig. 9 The response of S5
who considered x2 ¼ x
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procedures can be applied and why they cannot apply in domains outside their
definition. It is hoped that the identification of these misconceptions can help
instructors to be more aware of them so that it can help inform the design of their
instructional programmes.

We also found that teachers were confused about operations of matrices and the
relationship with determinants. Some teachers assumed that the inverse of a matrix
A was the same as the determinant of A. The result of the inverse operation on a
matrix is another matrix while the result of the determinant operation is a number.
There was also confusion about whether the order of the operations on a matrix
made a difference. For example, many teachers took the determinant of the trans-
pose of a matrix to be equal to the transpose of the determinant of the matrix; that is,
raised to the power (exponent) T (i.e. det (AT) = (det A)T where the second
expression is not defined since the transpose of a number does not exist). Many
participants exhibited combinations of many misconceptions. For example, 25
teachers took A�1 as being equal to 1

Aj jA; which they simplified to 1
8A; and then took

A as Aj j = 8, hence getting 1
8 � 8 ¼ 1. The confusion indicates that the participants

had problems with their conceptual understanding and did not view the determinant
as more than a set of steps that lead to an answer. However, the determinant is more
than just a set of steps; it is actually a function with particular properties
(Donevska-Todorova, 2014). Students who have not moved past an operational
perspective to a functional perspective of a determinant will be limited to just
carrying out a set of calculations and will not be able to easily solve problems based
on properties of the determinant function.

A common finding that emerged across various questions, was that many
teachers considered the determinant of a matrix A as being the same as the matrix A
(i.e., det A = A). This was found in Questions 1.5 and 1.6 where participants took
the determinant of the transpose matrix as the transpose itself; that is, det AT = AT

Similarly, in Question 2.2, many participants assumed that det A and A were equal,
as well as that det A�1 = A�1. This confusion actually conflates a matrix which is an
array of numbers with a number (value of the determinant). Similar misunder-
standings were reported by Aygor and Ozdag (2012) who found that many students
took the relationship det A ¼ k det B, to mean A ¼ k B while some students took
the relationship det Aþ det B to mean AþB. Hence this confusion may be quite
widespread and instructors should be aware of this possibility when teaching the
concept.

As noted in an earlier section, the participants in this study were introduced to
determinants as a numerical value associated with a square matrix, which may have
limited their development of the concept. The review of the literature provided
some innovative ways in which students’ understanding can be improved.
Andrews-Larson (2015) suggests that including the history of determinant when
teaching determinants will enhance understanding. Students can also develop the
concept of a determinant using the GeoGebra or other dynamic geometry software,
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which can support connections between geometric and algebraic modes of
description (Donevska-Todorova, 2014). The use of visualisation approaches will
enable students to discover the multilinear properties of determinants as they double
or multiply by a scalar the x or y or both coordinates. In addition to the use of
visualisation and history in the linear algebra class, Dorier (2000) suggests the use
of the ‘practical’ approach rather than a theoretical treatment. He especially pro-
poses a ‘structural’ approach because most university students are practical-minded.
In a ‘practical’ approach students will be working on the applications of linear
algebra. It is important to note that it is not sufficient to use new methods on their
own to ensure that students grasp the properties of determinants of a matrix. Linear
algebra instructors will need to apply a variety of approaches such as using history,
visualisation and the practical approach as they teach determinants, while also
taking care to identify and deal with students’ misconceptions as they emerge
during the course.

6 Conclusion

In this study we set out to identify misunderstandings of the participant teachers
with respect to finding and applying determinants of matrices, an area which is
under-reported in the literature. We identified many misconceptions which do not
appear to have been reported in other studies. It is hoped that the identification of
such misconceptions can help mathematics educators who teach the topic of matrix
operations. If educators become more aware of their students’ misconceptions, they
will be in a stronger position to help their students. By anticipating such difficulties,
mathematics educators could plan instruction that could help the students to move
past such epistemological obstacles. They could also design rich exploratory tasks
which could use the misconceptions as a basis for in-depth discussion and inter-
rogation of the students’ understanding of the concept of determinant. This may
help to shift students’ understanding of determinant from seeing it as a set of steps
towards seeing it as a function which has various properties. Students’ miscon-
ceptions and the errors they make can be used productively as pedagogic tools to
help move students towards this deeper conceptual understanding. Furthermore, it
is hoped that this chapter has provided pertinent advice on how the current
in-service course within which our study was located can be improved. This will
ensure that future teacher participants can gain a deeper understanding of the
determinant and other concepts in linear algebra.
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Dealing with the Abstraction of Vector
Space Concepts

Lillias H. N. Mutambara and Sarah Bansilal

Abstract University mathematics students often find the content of linear algebra
difficult because of the abstract and highly theoretical nature of the subject as well
as the formal logic required to carry out proofs. This chapter explores some specific
difficulties experienced by students when negotiating vector space and subspace
concepts. Seventy-three in-service mathematics teachers’ responses to two items
testing the ability to prove that a given set is not a subspace and that a given set is a
subspace of a vector space were studied in detail. Follow-up interviews on the
written work were conducted to identify the participants’ ways of understanding.
The action–process–object–schema (APOS) theory was used to unpack the struc-
ture of the concepts. Findings reveal that the teachers struggled with the vector
sub-space concepts mainly because of prior non-encapsulation of prerequisite
concepts of sets and binary operations and difficulties with understanding the role of
counter-examples in showing that a set is not a vector subspace.

Keywords APOS � Vector subspace � Binary operations � Counter-example
Vector space

1 Introduction

Linear algebra is considered to be one of the most widely applicable subjects for
students in the field of mathematics in that it can be applied to many different
content areas, such as engineering and statistics, and can be studied for mathe-
matical abstraction. Salgado and Trigueros (2015) note that linear algebra has
become a compulsory course in many undergraduate degree programmes because
of its wide application in the different disciplines. However, when the students take
their first linear algebra course, they seem to encounter cognitive barriers. Almost
two decades ago, Dorier, Robert, Robinet, and Rogalski (2000) noted that the
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teaching of vector spaces had completely disappeared in the secondary schools and
the teaching had become less formal with no studies on algebraic structures. Some
criticisms voiced by students about linear algebra concern the use of formalism and
the lack of connections with what they already know, since this is not done at
secondary level. Dorier et al. (2000) elaborated that the formalism is experienced
when students need to learn new definitions, symbols, words and theorems. Stewart
and Thomas (2010) noted that many students in the first years cope well with the
procedural aspects of solving systems of linear equations but struggle to understand
the crucial concepts underpinning the material involving the study of vector space
concepts such as subspace, linear independence and spanning. Teachers often
complain that the students have limited skills in elementary Cartesian geometry,
and display an inconsistent use of the basic tools of logic or set theory (Dorier et al.,
2000). The authors further argued that the lack of prior knowledge in logic and
elementary set theory contribute much to the creation of errors in linear algebra.

Testing whether the axioms of vector spaces are satisfied or not requires an
understanding of the formalism of setting out proofs and arguments in mathematics.
Students need to make judgements about when to use a specific example and when
to use a general description in setting out proofs. An argument that one of the
axioms of a vector space is not satisfied requires a different kind of setup than
showing that a set satisfies the vector space axioms. Similarly, showing that a subset
W of a vector space V qualifies to be a subspace of V is qualitatively different from
the process of identifying a counter-example to show that W is not a subspace of V.
In the study on which this chapter draws, we explored some of these demands
associated with the concepts of vector spaces and subspaces as experienced by a
sample of 73 participants who may be considered as non-traditional undergraduate
students. The participants were practising teachers who had not attained an
undergraduate degree and were therefore considered as unqualified mathematics
teachers. They had enrolled in the undergraduate degree programme in order to
attain the qualification; hence this research was concerned with the difficulties
experienced by these teachers in developing an understanding of vector subspace.

The study was guided by the action–process–object–schema (APOS) theory
advocated by Dubinsky (1991). The following research questions underpinned the
study:

• How do the participant teachers respond to the conceptual demands of the
abstraction associated with vector space concepts?

• What APOS mental constructions can be inferred from the teachers’ written and
verbal responses to items based on vector space concepts?

We hope that the insights gained from this study will contribute to a deeper
understanding of some of the epistemological barriers faced by students when
studying vector spaces and that the results can be used to improve the design and
delivery of the in-service upgrading programme offered to unqualified Zimbabwean
teachers.
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2 A Review of the Literature

An APOS study was conducted by Ndlovu and Brijlall (2015) based on pre-service
teachers’ mental constructions of concepts when learning matrix algebra. The study
found that most of the pre-service teachers were operating at the action and process
level, with a few operating at the object level. The authors argue that the lack of
background knowledge of basic algebra schema hampered the teachers from
developing adequate schemas at the object level. Many pre-service teachers could
not manipulate numbers correctly when multiplying matrices and some of them
failed to use notation correctly. The goal of mathematics teaching is that students
understand mathematical concepts that are introduced to them or information that
they discover for themselves. Hiebert and Carpenter (1992) asserted that one of the
most widely accepted ideas in mathematics education is that students should
understand mathematics. In studying student’s conceptual understanding of a
subspace Britton and Henderson (2009) argued that the abstract ‘obstacle of for-
malism’ and the theoretical nature of linear of linear algebra are the root causes of
the difficulties experienced. They believed that lecturers teach students for proce-
dural rather than conceptual understanding and that students have poor background
knowledge of the concepts on proofs, logic and set theory. Their research was
conducted with 500 students who had completed a first-year course in linear algebra
and two calculus courses. One of the questions required the students to show that
V = tð1; 2; 3Þjt 2 Rf g is a subspace of R3. Results revealed that most of the stu-
dents could show that the set was non-empty but many were not able to prove that
the set was closed under addition. Some students chose particular vectors instead of
arbitrary vectors while many of them worked out the addition and then stated that
the sum belonged to the set V (without explicitly showing why it did). Some had
some misconceptions regarding the definition of a subspace and wrote solutions of
the form tð1; 0; 0Þ þ tð0; 2; 0Þ þ tð0; 0; 3Þ or statements such as “V spans R3 and
dim R3 = 3”. This showed that the students were mixing up concepts and showing
rote learning of the concepts on vector subspace. The researchers also noted that
students had problems with logic and set theory and with moving from abstract to
algebraic representation. The students also experienced problems with the logic
required to make the necessary proofs for problems on set theory. Hillel (2000)
argued that the different modes of representation used in linear algebra posed a
conceptual difficulty that is peculiar to linear algebra. The three different modes of
representation are the abstract, algebraic, and geometric mode. The abstract mode
uses the language of vector space, subspace, and linear span. The algebraic mode
uses the language and concepts relating to matrices, rank, solutions of systems of
equations, etc., while the geometric mode uses the language and concepts 2 and 3
dimensional space points, lines planes, etc. Hillel noted that students have diffi-
culties in moving from one mode to another, as well as within the same mode. For
example, the students within the geometric mode experienced challenges with the
description of a vector which emanates from seeing it as an arrow and a point.
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Britton and Henderson (2009) also noted that students experienced difficulties in
moving from the abstract representation in which the question was usually phrased,
to the algebraic representation which is required for the proof.

Wawro (2014) views reasoning as a valuable skill and part of the practice of
mathematics. Wawro, Sweeney, and Rabin (2011) noted that in order to attain such
reasoning skills, individuals should engage in mathematical activities of defining
mathematical concepts, problem solving, proving and making arguments with
justifications, as well as example generation. Wawro’s study (2011) focused on
students’ understanding of the concept of a subspace using Tall and Vinner’s
(1981) theory on concept image and concept definition. The authors found that the
students had varied definitions of the term ‘subspace’, and identified common
imagery for a subspace as a geometric object, part of a whole, and as an algebraic
object. They also noted that students had incorrect conceptions that Rk is a sub-
space of Rn for k\n. They concluded that the students struggled to understand
mathematical ideas—especially definitions—because of the cognitive conflicts
between the concept ‘image’ and concept ‘definition’. However in the study, the
definition helped the students to understand concepts and supported the develop-
ment of further mathematical ideas.

Dorier et al. (2000) maintain that the difficulties with proof and formalism in
understanding linear algebra are content specific. Uhlig (2002) asserts that some of
the problems can be reduced if the approach to the teaching of linear algebra is
changed from starting with definitions and lemmas to one that is exploratory in
nature and where proofs are built in from the beginning, for example, by starting
with a discussion about the solvability of linear equations before actually teaching
how to solve them.

Stewart and Thomas (2009) looked at students’ learning of basic linear algebra
concepts in terms of Tall’s (2008) three worlds of mathematics framework. They
identified a linguistic confusion between scalar multiple of a vector and scalar
product (dot product of vectors)—students considered the scalar k as a vector of the
form (k1; k2; k3). This showed unfamiliarity with recognising a vector and a scalar in
different representations.

Some difficulties in linear algebra are related to misconceptions and errors that
students can make. Several studies (Brodie, 2010; Luneta & Makonye, 2010;
Siyepu, 2013) observed that many students perform badly in their first years at
university mainly due to errors and misconceptions they inherit from their prior
knowledge, as part of their experience. Misconceptions are seen as incorrect
structures that students build, which is normally done repeatedly, and an error can
be a mistake (Luneta & Makonye, 2010). Cangelosi, Madrid, Cooper, Olson, and
Hartter (2013) reported that students memorise algebraic rules with no conceptual
understanding attached to the concepts. The students then have difficulties in
keeping track and applying the rules appropriately. They also found that language
and notation can also hinder or enhance students’ mathematical development.

Problems with theoretical and abstract concepts have been studied in different
areas of mathematics. Hazzan (1999) maintains that students attempt to reduce the
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level of abstraction of new concepts that they learn in an attempt to make the
concepts more mentally accessible so that they can work with them. Hazzan (1999)
distinguishes between three interpretations of abstraction level. First, there is the
interpretation of abstraction level as the strength of the relationships between the
mental object and the thinking person; that is, previous experiences and interactions
with the concept render it more familiar to the person. This view is consistent with
the definition given by Hershkowitz, Schwarz, and Dreyfus (2001) of abstraction as
“an activity of vertically reorganizing previously constructed mathematics into a
new mathematical structure”. The process of this vertical reorganization results in a
more abstract concept.

A second interpretation of abstraction level is the process–object cognitive
development path described in APOS theory. Although Hazzan (1999) does not
refer to action conceptions, her description of working with procedures canonically
is similar to the action conception in APOS theory which is evident when a stu-
dent’s working on a procedure is prompted by an external trigger or step-by-step
calculation.

A third interpretation of abstraction level is the degree of complexity of the
mathematical concept (Hazzan, 1999). Often students try to reduce abstraction by
considering a simpler entity; for example, they may replace a set by one of its
elements or they may ignore some of the properties of the object.

One of the complexities associated with abstraction is the logic and deduction
required to prove or disprove statements. Zaslavsky and Ron (1998) conducted a
study with 150 high school students who were given six mathematical statements
(four of which were false) and they were asked to identify the false statements and
say why they were false. They found that only one student generated four correct
counter-examples for the false statements. For each of the four false statements, at
least 33% were not able to determine that the statement was false. Two-thirds of the
students did not find it appropriate to use counter-examples to show that a statement
was false. However, there were many students who accepted a counter-example as
sufficient evidence for refuting a statement, but were unable to distinguish between
an example that satisfies the condition of a counter-example and one that does not
satisfy them. In an attempt to generate a counter-example, they either used a
counter-example to the converse statement or they used an example that satisfies the
statement. Bansilal’s (2015) study conducted with 48 pre-service student teachers
found similarly that most participants were unable to produce a counter-example to
show that the statement ‘Every real number is rational’ is not true. Thirteen par-
ticipants stated that it was not true, but only five were able to produce a relevant
counter-example. More than half the students were convinced that the statement
was true, which provided “confirming examples for their assertion by choosing real
numbers which were also rational” (Bansilal, 2015, p. 46).

Zaslavsky and Peled (1996) conducted a study with the aim of identifying
difficulties associated with the concept of binary operation regarding the associative
and commutative properties. The 103 participants (36 experienced teachers and 67
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student teachers) were given a false statement and asked to produce a
counter-example to convince a student that the statement was false. The results
showed that 41 participants produced some example, but only 15 produced at least
one correct example. Of the 62 participants who did not produce any example, 13
believed that the statement was true. Zaslavsky and Peled (1996) suggest that the
issue of order was a critical source of confusion. They maintain that both com-
mutativity and associativity deal with some sort of change in order. The first
property deals with change in order of the elements while the second (associativity)
involves change in the order in execution of the operations.

3 Theoretical Framework

We used the APOS theory as a framework to make sense of the data. According to
Arnon et al. (2014), APOS theory is based on the extension of Piaget’s (1965,
1973) principle of reflective abstraction that an individual learns mathematics by
applying certain mental mechanisms to build specific mental structures. According
to the APOS theory, the main mental mechanisms for building the mental structures
include interiorisation, coordination and encapsulation. The mental structures refer
to the action, process, object and schema. As actions are repeated and reflected on,
the student moves from relying on external cues to having internal control over
them. This is characterised by an ability to imagine carrying out the steps without
necessarily having to perform each one explicitly. Interiorisation is the mechanism
that makes this mental shift possible. Encapsulation occurs when an individual
becomes aware of a process as a totality upon which transformations can act. At this
stage the student can analyse properties of the object and compare objects arising
from the same process (Arnon et al., 2014).

Many actions, objects and processes are interconnected in the individual’s mind
and these will be organised to form a coherent framework called a schema. An
object can be assimilated by an existing schema, thus extending the span of the
schema. According to Piaget, schema development also passes through stages of
development. The intra level is the preliminary level and is characterised by ana-
lysing particular events or objects in an isolated manner in terms of their properties,
where explanations are local and not global and relationships between objects may
not be perceived. At the inter level, comparison and reflection upon properties of
objects lead to the establishment of relationships. The individual can coordinate two
different interpretations of the concept to mean the same thing. During the trans
stage, the student reflects upon and coordinates the relations and is aware of the
complete structure. Using these definitions, we now present a genetic decomposi-
tion of the vector space concept.
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3.1 Genetic Decomposition of the Vector Space Concept

We draw upon the work of Parraguez and Oktaç (2010) and Arnon et al. (2014) to
present a summarised description of the genetic decomposition of the vector space
concept. The construction of the vector space concept is developed as the coordi-
nation of the prerequisite concepts of set and binary operations. Hence we refer to
the set and binary operations schema as components of the vector space concept.

Set schema. At an action level, an individual conceives of a set when given a
specific listing or a particular condition of set membership. The action of gathering
and putting objects together in a collection according to some condition is interi-
orised into a process. This is encapsulated into an object when an individual can
apply actions or processes to the process, such as compare two sets, consider a set
to be an element of another and analyse properties of the set (Arnon et al., 2014).

Binary operation schema. A binary operation is a function of two variables
defined on a single set or on a Cartesian product of two sets. At an action level,
given a binary operation, an individual can take two specific elements of the sets
and apply the formula. The individual interiorises the action into a process that
takes two objects (elements) and acts on these to produce a new object (element)
that is the result of the binary operation. At the object level, an individual can
distinguish between two binary operations, check whether a binary operation sat-
isfies an axiom, and compare objects arising from two different binary operations
(Arnon et al., 2014).

Parraguez and Oktaç (2010) describe how these two schemas can be drawn
together to form the notion of vector space:

The objects that are sets with two kinds of operations (addition and multiplication by a
scalar) can be coordinated through the related processes and the vector space axioms that
involve both operations, to give rise to a new object that can be called a vector space
(Parraguez & Oktaç, 2010, p. 2116).

The concept of vector space further evolves in the individual’s mind as con-
nections are made between other actions, processes, objects and schemas. Initially,
for example, the student can verify different sets as being vector spaces or not, but
does not see the vector space structure inherent in all of them. Parraguez and Oktaç
(2010) describe this stage as being the Intra level in the development of the vector
space schema. As an individual’s conception deepens, a further stage called the
Inter level can be identified where the object of vector space starts having rela-
tionships with other concepts such as subspace, linear transformations, basis, etc.
When the student reflects upon these relations, through synthesis they can be
recognised as part of a whole structure that makes up a vector space schema. This
implies that the student is reasoning at the Trans level of the vector space schema
and the student can recognise and work with non-standard examples of vector
spaces and can invoke her/his schema when needed.
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This description emphasises the complexity of the construction of the vector
space concept which is built upon layers of abstraction. APOS theory developed
from the ideas of Piaget about reflective abstraction. Dubinsky (1991, p. 99)
explains that the “first part of reflective abstraction consists of drawing properties
from mental or physical actions at a particular level of thought”. This abstraction of
properties “is projected onto a higher plane of thought” where other actions can be
performed on the mental construction by drawing upon more powerful nodes of
thought (Ibid, p. 99). De Lima and Tall (2008, p. 4) explain that as concepts become
progressively more abstract, a parallel development occurs to compress these
concepts “to construct thinkable concepts”. These authors maintain that compres-
sion of knowledge is at the heart of mathematical thinking and the “process of
making links leads to a compression of knowledge from complicated phenomena to
rich concepts with useable properties and coherent links to other concepts” (De
Lima & Tall, 2008, p. 4). The construction of the vector subspace concept is
dependent upon a robust understanding of some prerequisite concepts. First, the
binary operation and set concepts are developed through to higher levels of
abstraction via the action–process–object path. The vector space concept is then
constructed by coordinating these layers and testing the different axioms, which
leads to an even higher layer of abstraction. As the vector space schema develops, at
each stage the previous layer is re-organised as increasing coordination and
coherence develop across the objects and relationships. The vector subspace con-
cept is built upon this schema—students will not be able to see the connections
between a vector space and a vector subspace if they have not developed the vector
space schema up to at least an inter level when they can see links and
inter-relationships between the various processes and objects.

4 Methodology

This study was conducted with 73 in-service mathematics teachers who did not have
degree qualifications and were therefore considered as unqualified in Zimbabwe.
The teachers were enrolled in a part-time in-service course at a Zimbabwean uni-
versity that was designed to upgrade their qualifications, so that they could attain
degrees. At the time of the study, the teachers had already completed a first course in
linear algebra and calculus and were engaged in a second course in linear algebra
that included the concepts of vector spaces, subspace, linear combinations, linear
independence, basis, dimension, linear transformation and diagonalisation, eigen-
values and eigenvectors as well as solving systems of linear differential equations.
However, it was noted that this module was taught concurrently with a module on
mathematical discourse and structures. This module introduces students to the
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concepts on sets and relations, operations and structures, logic, mathematical proofs,
and numbers. The design of the programme was such that the teachers would
complete the equivalent of an undergraduate three-year degree programme except
that the lectures were offered in two intensive block sessions for each semester.
These block release sessions, coinciding with the school and university holidays,
were very intensive with classes being held from 08:00 to 18:00 every day. This was
designed so that the teaching time over the block sessions was equivalent to that for
the full-time undergraduate degree, except that it was packed into the holiday period.

The data was collected from the teachers’ written responses to an activity sheet
consisting of nine items which were intended to probe their understanding of vector
spaces and vector sub-spaces. In this chapter we focus on the responses to two tasks
that were based on the vector space consisting of 2 � 2 matrices over the real field
R, and which were considered as having different levels of demand: one task
required the teachers to confirm that a subset is a vector space and the second
required them to show that a given set was not a subspace. Semi-structured inter-
views were conducted thereafter, with seven teachers who displayed different levels
of engagement with the written tasks. The purpose of the interviews was to develop
a deeper understanding of the ways in which the teachers responded to the tasks.
Some of the interview questions were common to all participants and probed their
experiences of the topic, while the rest of the questions were a follow-up to the
issues noted in their solutions. The interviews were audio-recorded and thereafter
transcribed verbatim.

The written responses of the teachers were analysed using themes suggested by
the genetic decomposition. These themes were then organised so that they could
serve as descriptors of cognitive difficulties experienced by teachers.

The two tasks based on the vector space of 2 � 2 matrices appear in Table 1,
together with comments.

Table 1 Research tasks

Item Comments

1. Let V be the vector space over of all 2 � 2
matrices over the real field R. Show that
W is not a subspace of V, where
W consists of all 2 � 2 matrices which
have a zero determinant

For this, teachers were expected to find a
counter-example to show that the set W is not
closed under vector addition

2. Show that the set of all M2�2 matrices of

the form
a 0
0 b

� �
is a vector space

For, this teachers could argue that since M2�2

is already a vector space, then it was only
required to show that the given subset formed
a vector subspace of M2�2. Alternatively,
teachers could show that the ten axioms for a
vector space were satisfied
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5 Results

The results are presented for Task 1 followed by Task 2. Note that T4, for example,
refers to Teacher 4 and that the terms ‘students’ and ‘teachers’ are used inter-
changeably in these descriptions since the participants were teachers who were also
students.

5.1 Results for Task 1

Task 1 required the teachers to generate a counter-example to show that the set of
2 � 2 matrices with a zero determinant is not a subspace. Task 1 was intended to
provide insight as to whether teachers were on the path of developing strong
schema of vector spaces. However, most teachers’ responses to this question
showed that they had considerable difficulties with the formal reasoning required to
present an argument why the set W did not fulfil the condition of being a subspace.
To do that they needed to understand how counter-examples function in the process
of rejecting conjectures (Bansilal, 2015; Zaslavsky & Ron, 1998).

The overall analysis for Task 1 showed that 16 (22%) of the teachers did not
attempt the question, while 15 (21%) had completely incorrect responses. These
teachers were quite lost in the task, There were 27 out of 73 (37%) of the teachers
who attempted to add two matrices with zero determinants and showed that the sum
had a zero determinant. Most of them proceeded to show the closure property of
multiplication, and made various conclusions, many of which were incorrect. We
now present more detail about some of the issues that emerged from the analysis of
the written responses and some interviews.

5.1.1 Engaged Comfortably at Higher Abstract Layers of Reasoning

Some teachers’ responses suggested that they were comfortable with the reasoning
required at the higher abstract layers. Seven students were able to present an example
that did not satisfy the closure condition for vector addition. An example of such a

response was that given by T6, who chose the two matrices: x ¼ 0 1
0 0

� �
and

y ¼ 1 0
1 0

� �
, and wrote (ii) xþ y 2 V : xþ y ¼ 0 1

0 0

� �
þ 1 0

1 0

� �
¼

1 1
1 0

� �
62 V .

She concluded that the determinant of the sum x + y was not zero, and hence did
not satisfy the condition, hence the set V was not a subspace. She demonstrated
understanding of the concept as she displayed a clear understanding of the deter-
minant of a matrix. The teachers’ approaches and coherent arguments showed that
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they were comfortable with coordinating the binary operation and set processes to
present arguments about why the subspace criteria were not fulfilled. These seven
teachers’ responses are aligned to that required by object-level reasoning about
vector spaces. The teachers were able to coordinate the binary operation process
and the set process and seem to have encapsulated the process into an object when
they presented the argument about why the subspace criteria were not fulfilled. This
supports Dubinsky’s (1991) contention that an individual operating at the object
level is able to take the process as a whole and create clear linkages between the
concepts. However, most other teachers were unable to demonstrate such ease with
the abstractions of the vector subspace concept and displayed different degrees of
uncertainty.

5.1.2 Tried to Show the Set Was a Subspace, Contrary
to the Instruction

The analysis identified some teachers who used examples to show that the set was a
subspace, despite the instruction to the contrary. For example, T4 did not attempt
Task 1. When probed in the interview, she explained her reasoning about why she
concluded that the set was a subspace. R stands for the researcher and T4 represents
Teacher 4. Note that the dialogue is capture verbatim and language errors have been
left unchanged.

R: I understand you did not attempt this question. What exactly does this
question requires us to do

T4: To find a matrix that gives determinant zero.
R: Oh OK, can you give an example of such a matrix?
T4:

(Writing down)
1 0
1 0

� �
det = 0.

R: So we have shown that it is not a subspace of the vector space.
T4:

No, no, no, we find another matrix; we can use a multiple
2 0
2 0

� �
. So the

closure property u + v =
3 0
3 0

� �
det = 0, satisfied therefore subspace.

R: What else? Are we done? The question said, “Show that it is not a subspace.”
Is the set not a subspace of the given set?

T4:
No, No, No take positive scalar k = 2 to give 2

1 0
1 0

� �
=

2 0
2 0

� �
det = 0

therefore subspace.

The excerpt above shows that T4 chose two vector elements whose sum
belonged to the set, and took the single example as evidence that the set was a
subspace. When probed further, she considered an example of a scalar multiple of a
vector which also satisfied the condition on the subset. She was aware of the
conditions that are needed to be satisfied by a subspace that is showing the closure
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property for addition and scalar multiplication. However, she was confused about
the role of examples in proving or disproving a statement. Taking an example
which satisfies a condition is not evidence that the condition is always true
(Bansilal, 2015). At first she may have thought that she was showing that it is a
subspace, which is why she then wanted to go on to the scalar multiplication
condition. The teacher was also not clear about the determinant of a matrix, and did
not view it as a function whose input is a matrix (Donevska-Todorova, 2014) but
seemed to take it as a detached calculation.

5.1.3 Used an Illustrative Example to Show that the Result
of the Binary Operations Belonged to the Set, But Concluded It
Was not a Subspace

T13 considered four matrices, v, u, s and t, each with zero determinants as shown in
Fig. 1.

T13 attempted to use two vectors and tried to show that the closure property of
addition and scalar multiplication was not satisfied. However, for the vector addi-
tion, the determinant of the sum that she obtained was not zero, but she concluded
that the sum belonged to W. The teacher made a computational error when trying to
add the two matrices. The scalar multiple had zero determinant and these results
were interpreted to mean that the set was not a subspace. The written response of
T13 reveals her difficulty in showing that the set is not a subspace—she was just
following procedures without understanding, which indicates action-level reason-
ing. Teaching students to engage in mathematics by applying a set of memorised

Fig. 1 Response of T13 for Task 1
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algorithms is seen as hindering their mathematical procedures (Foster, 2014). In an
attempt to better understand why she was struggling, she was interviewed. The
interview with T13 showed that she was still struggling to understand what the
question really asked for:

R: You are talking of two vectors, v and u, so why did you choose three vectors
for v and one vector for s in your solution?

T13: If the determinant is zero it is no longer a subspace. Maybe I confused
myself because I see now that I must get a non-zero determinant. So I will

choose matrix
1 1
1 1

� �
and matrix

2 1
1 2

� �
. A ¼ 1 1

1 1

� �
+

2 1
1 2

� �
=

3 2
2 3

� �
. Determinant is zero

R: So what can we do?
T13:

I have another matrix A =
4 1
1 2

� �
, det = 8 − 1 = 7. Choose another one; I

think so.
Then I will choose a negative scalar, will change for example

−2
1 1
1 1

� �
=

�2 �2
�2 �2

� �
and the determinant is zero. It doesn’t, no it

doesn’t work—it is a scalar multiple.

The interview responses showed her struggle to show that the set is not a
subspace. She stated that if the determinant [of the sum] is zero then it means that
the set is not a subspace. Two matrices were then chosen, one of which did not
belong to the set W since it did not have a zero determinant. She added the matrices
and said the determinant was zero, which was not true. She then rushed to attempt
to show the closure property of scalar multiplication, saying that a negative scalar
should provide the counter-example. In her written response she also used (−k) as
her scalar. Her ability to continue to use rules without reasoning is an indicator that
she was still operating at the action level of understanding.

5.1.4 Confused About the Role of the Counter-Example

Some teachers knew they needed to produce a counter-example, but seemed not to
know what the counter-example should show as shown in the written work of T39
appearing in Fig. 2.

He proceeded in a similar manner as explained in the interview by T4, except at
the end T39 tried to twist the result to imply that closure property of addition was
not satisfied on W. After adding the two matrices, he proceeded to find the
determinant which was equal to zero. He then concluded that it showed that the
resultant determinant was not equal to zero and concluded that it meant it could not
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be a subspace. However his logic was misguided. He chose two elements belonging
to the subset, added them and found that the determinant was 0, which does not
indicate anything significant in this case. This suggests that he knew he was looking
for a counter-example, but was not sure what the counter-example should show.

5.1.5 Not Able to Produce an Argument Around the Appropriate
Counter-Example

There were some teachers who presented an appropriate counter-example but
struggled to produce the accompanying argument about the counter-example as
shown in Fig. 3.

The response of T46 shows a counter-example produced by the teacher because
the determinant of the sum was not equal to zero but the teacher incorrectly con-
cluded that the sum belonged to the subset.

Fig. 2 Written response of T39 showing confused argument

Fig. 3 Response of T46 with a counter-example that was not recognised
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5.1.6 Chose an Inappropriate Counter-Example

Unlike the case of teachers such as T46 who were able to identify suitable
counter-examples, some teachers were unable to find an appropriate
counter-example. For example, one teacher, T47, whose response appears in Fig. 4,
elected two elements of W and assumed incorrectly that the determinant of the sum
was not equal to 0. Hence she seemed to know what was required but could not
identify the appropriate counter-example to fulfil her purpose. Note too that she did
not mention explicitly the determinant of the sum, suggesting that she had a limited
understanding of the determinant of a matrix and did not see it as a function which
acts on a matrix.

The response R47 above shows that she added two matrices belonging to W that
were made up of identical entries. The determinant of the sum was zero but T47
assumed that the determinant was not zero, allowing her to conclude that the set
was not a subspace. This shows that T47 knew what she wanted from her
counter-example but was not able to find the appropriate counter-example with the
required property. However other teachers were not even clear about what they
wanted to accomplish, as shown by T7 in Fig. 5.

5.1.7 Uncertain About What the Counterexample Should Do

Many teachers were not clear what the role of a counter-example is. The response
from T7 shows a matrix with elements 1, 2, 3 and 4 and the teacher shows that the

Fig. 4 Response of T47 of matrices with zero determinants

Fig. 5 Response of T7
showing uncertainty
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determinant of the matrix is not equal to zero. That is, he produces a 2 � 2 matrix,
u which does not belong to the given set, and then shows that the determinant of
u 6¼ 0.

5.1.8 General Confusion

Some of the teachers, such as T69 and T12, produced responses which were
unrelated to the questions, as shown in Figs. 6 and 7.

T69 incorrectly interpreted the problem and applied wrong procedures to solve
the problem. He used the aspect of finding linear independence and concluded that
it does not span the space. The answer given indicated that he saw some connection
between subspaces, linear independence and spanning, but was not clear about how
they are connected.

The response of T12 shows that he had considered a particular type of 2 � 2
matrices that have identical entries. These matrices belong to the given set, because
their determinants are zero. The sum of the matrices does satisfy the condition of
having a zero determinant, but the teacher was confused about what he was trying

Fig. 6 Written response of T69 showing linear independence

Fig. 7 Response of T12
trying to use row echelon
form
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to do. He seemed to be trying to show that the sum should be equal to the identity
matrix. He was also confused about equal matrices and brought in the aspect of
reducing to row echelon form. These misconceptions had accumulated in a number
of areas and emerged when the teachers were asked a question that required
object-level reasoning about a vector space.

5.1.9 APOS Insights from the Responses to Task 1

Some teachers, such as T46, showed some progress towards interiorisation of the
process of checking the subspace axioms, but struggled with articulating the
arguments about why the set was not a subspace. However, most of the teachers had
fundamental problems relating to the prerequisite schema for binary operations and
set. The teachers did not seem to have developed object-level conceptions of those
prerequisites and hence could not cope with the demands of the task which required
the teachers to identify that the closure property of the binary operation on the set of
2 � 2 matrices was not fulfilled. Showing that a condition is not fulfilled requires
sophisticated reasoning and arguments and this is not available to those who have
not moved past a process conception of all the axioms. Many of these teachers were
limited to carrying out procedures in a step-by-step manner. Dubinsky (1991)
asserts that the ability to carry out procedures is at the action level of the APOS
theory. The lack of the prerequisite construction of the set schema and binary
operation schema hampered the teachers in developing a sufficiently strong schema
for a subspace.

5.2 Results for Task 2

There were six teachers who went through each of the ten axioms and showed that
they were satisfied by the elements of the given set. Three (3%) students presented
totally incorrect responses, indicating that they had no idea of what was expected in
this task. It seemed that these had not reached the action level using the genetic
decomposition as they were still operating at the pre-action level. A further 12
(16%) of the students were able to identify and tried to prove some of the axioms,
indicating action-level engagement with the set of 2 � 2 matrices. Fifty-three
(73%) of the teachers attempted to show that the ten axioms for a vector space were
satisfied; however, most of them had problems identifying exactly what they
wanted to show for different axioms. There are some pertinent issues that emerged
in the analysis related to how the teachers solved the problem. We identified five
issues that emerged in the analysis of the responses to Task 2, and these issues are
discussed below.
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5.2.1 Difficulties in Recognizing What Needed to be Shown
for Particular Axioms

Task 2 was intended to provide insight as to whether the teachers had developed a
coherent vector space schema. However, some of them had problems identifying
exactly what they wanted to show, for example the response by T11 indicates the
teacher’s attempt at showing that the set is closed under vector addition (Fig. 8).

The response of T11 shows that the teacher found the sum of an element of V
and another arbitrary 2 � 2 matrix and then concluded that the sum belongs to V,
without considering whether it satisfied the condition for elements to be in the set,
similar to the finding reported by Britton and Henderson (2009) but which was for a
different vector space. On the choice of the set V, this student seemed to be
reproducing an example done in class. In terms of APOS, her actions of carrying
out the binary operation for addition had not been interiorized into a process.

5.2.2 Used Specific Elements to Illustrate Axioms

There were many teachers who considered specific elements from the set, and
showed that they satisfied the conditions of the axioms. The response from T8 in
Fig. 9 shows such a response.

Figure 9 shows that the teacher had tested the axioms for specific elements of V,
instead of considering generalised examples, an approach which was also identified
in the study by Britton and Henderson (2009), using a different vector space.
Furthermore, T11 was confused about the relationship between the property of
commutativity of the binary operation and that of closure because he concluded that
because u + v = v + u, it is true that u + v 2 V.

Fig. 8 Response of T11
using one element from the
set and another general 2 � 2
matrix
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5.2.3 Confused About the Inverse Element for Vector Addition

Some teachers were evidently confused about what the identities for the different
operations were. With respect to the additive inverse for vector addition, one tea-
cher tried to show existence of the inverse of the 2 � 2 matrix as shown in Fig. 10.

Teacher 8, whose response appears in Fig. 10, showed that the determinant of
the matrix is not zero which then implies that the inverse of the matrix exists.
However, the required element was the inverse element for vector addition.

5.2.4 Confused About the Identity for Scalar Multiplication

The teachers’ responses to Task 2 further showed that many of the teachers were
able to state all the ten axioms but were unable to prove some of them. The
responses showed that most of the teachers were unable to prove axiom ten which

Fig. 9 Response from T8 considering only specific elements

Fig. 10 Response from T8 showing confusion between identity for vector addition and existence
criterion for matrix inverse
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states that 8v 2 V , 1:v ¼ v—only six teachers managed to prove that the axiom
held. The teachers were not clear about what ‘1’ in the axiom referred to, in the
scalar multiplication 1.u when the vector elements were matrices. The most com-

mon misconception was taking the scalar 1 as the identity matrix that is
1 0
0 1

� �

which was shown by 44 teachers. One teacher, T20, took the identity matrix instead
of the scalar value 1, and then carried out matrix multiplication, as shown in
Fig. 11, hence he did not apply the scalar identity property.

In the interview, T7 revealed his confusion between the identity matrix and that
of the identity for scalar multiplication:

R: [Referring to a question in the activity sheet]. How do you show axiom 10
that 1.v = v?

T7:
The 1 is represented by the identity matrix which is

1 0
0 1

� �
:

R: What if I just multiply by the scalar 1?
T7: Aah no, it is not still correct but this 1 is an identity we are multiplying with

an identity, so this one must take the form of v.
R: So we cannot use the scalar 1?
T7: Yes 1 is a scalar. Here we are trying to show that eh… if we multiply a matrix

with its identity.
R: But it is possible to multiply by 1?
T7: It is very possible if v is not a matrix.

The above excerpt shows that T7 had a misconception about scalar multipli-
cation—he did not accept that it is possible to multiply a 2 � 2 matrix with a scalar
and he therefore replaced the identity for scalar multiplication with the identity
matrix I2 so that multiplication of the matrix v by I2 leaves v unchanged. This
shows confusion between scalar multiplication and matrix multiplication—showing
that the binary operation of scalar multiplication had not yet been interiorised.

Fig. 11 Response of T20
taking the identity matrix
instead of the scalar identity
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Some teachers tried to use the identity matrix, but did not even identify it

correctly. Two of them took
1 1
1 1

� �
as an identity matrix, as shown in the

response of T13 appearing in Fig. 12.

One teacher presented the matrix
0 1
1 0

� �
as the identity, while another wrote

a 0
0 b

� �
:
�1
ab

� �
; i.e. v� v�1 ¼ 1: There were other teachers who took the identity

element for scalar multiplication as the zero matrix. The widespread confusion and
misconceptions related to the identity for scalar multiplication mainly arising from
their weak background in set theory and the binary operations.

5.2.5 Confused About the Binary Operations

Confusion about the operation of vector addition was identified in the response by
T14, who took vector addition as pairwise multiplication of corresponding
elements.

The response in Fig. 13 shows that the teacher was aware that the property of
addition needs to be satisfied, but instead of adding the two matrices, corresponding
elements were multiplied. The teacher displayed the same misconception when he
tried to prove the commutative as well as the associative property of addition,
confirming that he had not developed even an action conception of the binary
operation for addition and this did not allow him to develop the necessary

Fig. 12 Response of T13
taking matrix with 1’s as the
scalar identity

Fig. 13 Response of T14 showing confusion between addition of matrices and pairwise
multiplication of corresponding elements
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construction for a strong vector space schema. Another teacher took the additive
identity as the identity matrix and wrote:

a 0
0 b

� �
þ 1 0

0 1

� �
¼ a 0

0 b

� �
:

Some of the students wrote u.0 = 1 for the additive identity.

5.2.6 APOS Insights

Only 6 (9%) of the students were able to move back and forth and managed to show
correctly that the given set was a vector space. This required the coordination of the
concepts of Set, and the two binary operations, to show that the axioms were
satisfied. In terms of the genetic decomposition, it is only these teachers who had
made progress towards the development of the vector space schema. Most other
teachers were waylaid at many different places, indicating uneven interiorisation of
some but not all concepts. Many students were able to state the axioms for the
distributive and associative property of scalar multiplication, and had challenges in
proving them, while many could not even state them. Teachers displayed a number
of misconceptions peculiar to the different axioms. The widespread confusion
between the identities and operations indicate that many of the teachers had not
developed even process conceptions of the binary operations, because they were
unable to carry out a binary operation if the two elements were not presented to
them. It can be seen here that the teachers were just following procedure without
understanding how some of the axioms are proved. In his research Harel (2000)
noted that students struggle to understand the vector space axioms. The students
whom he interviewed could not prove that for any A in a vector space V (−1)
A = −A. The students could not articulate the argument indicated in the axiom, but
Harel (2000) denoted that this proof was even done in class.

6 Discussion

The study attempted to uncover the conceptual difficulties that in-service teachers
experience when learning the vector space concepts. We also made an attempt to
understand some common misconceptions and errors that the students made. From
the responses of the teachers, it was evident that many of the teachers were
experiencing problems with the abstraction level of the vector space concepts with
its axiomatic approach as well as formalism required for communicating the
arguments.

Thomas (2011) posits that conceptual understanding, which is strictly related to
the goal of becoming mathematically competent, is evident when one is able to
solve problems in an unfamiliar situation. This is in line with Stewart and Thomas’s
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(2010) argument that many students experience difficulties when learning linear
algebra because of its abstract and epistemological nature. This meant that the
students in our study could not coordinate the set schema or the binary operation
schema and so they could not carry out the process of checking all the axioms, and
could not construct a robust proof. Some teachers were not clear about what the
elements of the subset in Task 1 were. Students who were unable to identify
elements of the set showed that they had not developed a conception of the set of
matrices beyond an action level. Furthermore, some also displayed a weak algebraic
background, as shown by teacher T13 in Fig. 1. This confirms some of the work
reported in the literature that students find the abstract nature of concepts of a vector
subspace challenging. The existence of different modes of representation con-
tributes to their difficulties. The question on the subspace is represented in algebraic
mode, whilst the definition of a subspace is phrased in abstract mode (Britton &
Henderson, 2009). This is in agreement with Hillel (2000) who conducted a study
on five experienced lecturers teaching concepts in linear algebra. He argued that the
lecturers themselves confused the students because they persistently moved within
the modes without explanations. The in-service teachers were unable to connect the
algebraic and abstract mode of representation. Similarly, Hazzan and Zaski (2005)
argue that abstractness of mathematics is complex because abstract concepts have
many facets, with some concepts being more abstract than others.

We found that the teachers had some misconceptions emanating from previous
concepts that they had encountered. Some teachers confused matrix addition with
pairwise multiplication of the matrix elements. Others confused the identity ele-
ments for the binary operations with the identity matrix. It appeared as if many
teachers did not understand that determinant is actually a function. This problem
regarding determinants has led students to improper usage of the symbolic math-
ematical language as seen, for example, by T13 writing det = 8 − 7 = 1. The
question is: determinant of what? It seems as if they do not understand that
determinant is actually a function. The definition is substantiated by
Donevska-Todorova (2014) who explains the determinant as a function. It may also
be that the teacher’s (T8) confusion about the existence of an inverse of a matrix (a
non-zero determinant) in Fig. 10 arose from the teacher’s misconception of the
determinant.

In terms of APOS theory, the responses produced by many showed that they did
not even have an action conception of binary operations. For example, the response
of T14 in Fig. 13 showed that the teacher struggled to carry out a binary operation.
It may be that for such teachers, the instructor may have moved too quickly to the
more abstract treatments of binary operations which required process or object
conceptions. However, APOS theory emphasises that a conception begins with an
external action. The action level is a very important building block upon which
other conceptions develop, and instructors must take care that enough attention is
paid to practising the binary operation using various vector spaces before moving
on to more complicated questions. Ndlovu and Brijlall (2015) argue similarly that
when abstract algebra is introduced via definitions and axioms only, it can become a
source of conceptual difficulty.
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The analysis revealed that many teachers were confused about the identity
elements for the binary operations. Teachers who struggled with identifying the
identity elements but were able to carry out the binary operations also illustrated
action conceptions, because they could only carry out operations on elements that
were presented to them. Action-level conceptions were seen to be limiting because
students could only carry out an operation in a step-by-step manner with the ele-
ments in front of them. In order to identify possible identity elements, then it is
necessary for the student to have moved past looking at the binary operation as a
step–by-step procedure (action) to one that has been interiorised (process) which
allows the student to imagine the result of the operation. Those who resorted to the
use of specific examples in Task 2 demonstrated action-level reasoning or to what
Hazzan (1999) calls ‘canonical procedures’. T8’s use of specific elements, as shown
in her response when attempting to show that the ten vector space axioms are
satisfied, indicates that she has not moved past an action conception because she
needs the comfort of the concrete matrices to carry out the vector addition
operations.

For Task 2, some teachers showed that certain actions had been interiorised into
processes as some of them were able to prove some of the nine axioms. However, it
was clear that not even a process-level engagement with binary operations was
sufficient to show that the axioms were satisfied. The response of T8 shows how the
teacher confused the commutativity property and the closure property.
Commutativity of operations and the distributive law requires that students are able
to compare the results arising from different binary operations, which requires
object-level reasoning.

Although some teachers demonstrated process-level engagement with the binary
operations, this was not sufficient in providing a justification that the set W was not
a vector subspace of V. The understanding of the role of examples in proving or
disproving a statement was crucial in this task. If one wants to prove that a proposal
does not hold, it is sufficient to produce one counter-example. However, if one
produces an illustrative example of a proposal it is not sufficient to prove that the
statement holds true. The responses of T39 (Fig. 2) and T4 (interview in Sect. 5.1.2)
show that they produced illustrative examples which satisfied the condition (added
two vector elements from a set W and showed that the sum belonged to W). The
statements are that given any two elements of the non-empty W, the sum belongs to
W and the scalar multiple of an element of W also belongs toW. To disprove this it is
sufficient to produce a counter-example for any of the statements. However, to prove
the statements, one would need to show that for any general elements each of the
statements is true. The issue of the determinant being zero seemed to have
caused some confusion in the minds of teachers such as T39 (in Fig. 2) who got
entangled in the argument. Zaslavsky and Ron (1998) as well as Bansilal (2015)
highlight the confusion experienced by students in distinguishing between an
example that satisfies the condition of a statement and a counter-example that
provides evidence that a statement does not hold. In Zaslavsky and Ron’s study, the
content was high school algebra and geometry and students struggled with using
examples and counter-examples appropriately. In our study, the content was the
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highly abstract vector space concepts and providing counter-examples required a
sound understanding of these concepts which explains why so many of the teachers
struggled with the first task.

Some participants, such as T4 in this study, argued that W was a subspace of V
contrary to what the question asked for. This was a similar response as those in the
study by Zaslavsky and Ron (1998) where they found that almost a third of the
students were not able to determine that certain statements were false. Similarly,
Bansilal (2015) reported that more than half the participants took the statement that
every real number is rational as true.

7 Conclusion

In this study we presented responses from 73 teachers who were enrolled in a linear
algebra course at a Zimbabwean university. The study attempted to unpack some of
the cognitive difficulties experienced by the teachers in negotiating the meaning of
the various vector space concepts. The study showed that many problems were
related to the teachers’ understanding of the underlying concepts of binary opera-
tions and sets. We found that many teachers were confused about the identity
elements for the binary operations and matrix operations. Further research is needed
to help us understand why and how students become confused about these different
operations, and to understand the extent of the difficulty in other vector spaces.
Furthermore, most teachers struggled with explaining why a given set did not form
a vector subspace because of the increased demand of using counter-examples
appropriately. Further research may help us understand how to set out the teaching
of proofs relating to when a subset of a vector space does not form a vector space. If
the teaching of proof relating to this and other properties and relationships could be
successfully scaffolded for students, they would be better prepared to deal with the
abstractness of these concepts.
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Stretch Directions and Stretch Factors:
A Sequence Intended to Support Guided
Reinvention of Eigenvector
and Eigenvalue

David Plaxco, Michelle Zandieh and Megan Wawro

Abstract In this chapter, we document the reasoning students exhibited when
engaged in an instructional sequence designed to support student development of
notions of eigenvectors, eigenvalues, and the characteristic polynomial. Rooted in
the curriculum design theory of Realistic Mathematics Education (RME; Grave-
meijer, 1999), the sequence builds on student solution strategies from each problem
to the next. Students’ used their knowledge of how matrix multiplication transforms
space to engage in problems involving stretch factors and stretch directions. In
working through these problems students reinvented general strategies for deter-
mining eigenvectors, eigenvalues, and the characteristic polynomial.

Keywords Linear algebra ⋅ Eigenvector ⋅ Eigenvalue
Realistic mathematics education ⋅ Inquiry oriented curriculum

1 Background

A number of researchers have studied various aspects of student conceptions of
eigenvectors and eigenvalues (e.g., Gol Tabaghi & Sinclair, 2013; Salgado &
Trigueros, 2015; Sinclair & Gol Tabaghi, 2010; Stewart & Thomas, 2006; Thomas
& Stewart, 2011). This chapter focuses on aspects of student understanding relating
to the equation Ax ⃗= λx ⃗. Specifically, we introduce an instructional sequence from
the IOLA curriculum which is based on the instructional design theory of Realistic
Mathematics Education (RME; Gravemeijer, 1999). We document existing student
understanding and how it informs their approaches in this task sequence. These
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examples also demonstrate the types of student understanding the curriculum makes
possible by engaging students in reflection on their own prior mathematical activity.

In previous work, members of our research team explored student understanding

of the equation Ax ⃗= λx ⃗ or A
x
y

� �
=2

x
y

� �
in which the students were told that A is

a 2 × 2 matrix and x ⃗ is a vector or
x
y

� �
is a vector in ℝ2 (Henderson, Rasmussen,

Sweeney, Wawro, & Zandieh, 2010; Larson, Zandieh, Rasmussen, & Henderson,
2009). Students who were in a linear algebra class but had not yet studied eigen-
theory interpreted the equations in a variety of ways such as concluding the
equation was only true if A = 2, concluding that det(A) = 2, carrying out the
multiplication to create a system of equations to solve for an x, y pair (or pairs), and
arguing that the way A acts on the vector must be the same as what multiplication
by 2 does to the vector. Students used a variety of symbolic, numeric, and geo-
metric interpretations as they discussed the equation in terms of a system of
equations, a linear transformation, or a vector equation. This is closely related to the
framework of Larson and Zandieh (2013) who described a similar set of interpre-
tations and representation used by students more broadly for the equation Ax ⃗= b.⃗
Building on this research, our team developed an instructional sequence for learning
eigenvalues and eigenvectors to mitigate issues that students might have with the
equation Ax ⃗= λx ⃗. Rather than approaching eigentheory instruction by beginning
with the equation Ax ⃗= λx ⃗, the sequence uses geometric notions of stretch factors
and stretch directions of a linear transformation.

The eigentheory instructional sequence consists of four tasks and is the third of
three units in the Inquiry-Oriented Linear Algebra curriculum (IOLA, iola.math.vt.
edu). Each unit was developed from the perspective of Realistic Mathematics
Education, which holds students’ mathematical activity at the center of mathe-
matical progress in the classroom (e.g., Freudenthal, 1991; Gravemeijer, 1999).
Students work on tasks in small groups and explain their group’s work to the rest of
the class. A role of the instructor is to serve as a broker between students’ math-
ematical activity and the mathematics of the mathematical community (Rasmussen,
Zandieh, & Wawro, 2009; Zandieh, Wawro, & Rasmussen, 2017). One aspect of
the role of the instructor is to introduce students to definitions and symbols used in
the mathematics community that align with the mathematical activity in which
students have already been engaged through their work on the tasks in the unit. In
other words, in this curriculum definitions such as eigenvector and eigenvalue and
symbols such as Ax ⃗= λx ⃗ are introduced only after the students have been working
with the tasks in ways that experts would recognize as appropriate to symbolize
with this expression.

In Units 1 and 2, the curriculum develops and explores various linear algebra
concepts and how they relate to each other. These include: linear combination,
span, linear independence, row reduction, systems of equations, linear transfor-
mations, and matrix operations. Unit 3 of the IOLA curriculum develops diago-
nalization and eigentheory. The first two tasks of Unit 3 are discussed in detail in
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Zandieh, Wawro, and Rasmussen (2017). We summarize that student activity in the
next section to help frame the story of this chapter, in which we share the third task
of the sequence. Task 3 focuses on student exploration of the relationships that an
expert would think of as being summarized by the equation Ax ⃗= λx ⃗. Our discussion
of Unit 3 Task 3 centers on examples of typical student responses from small group
discussions in two classes. We collected these examples from students’ work during
semester long implementations of the IOLA curriculum at two different universities.
Students working on this Task drew on their mathematical experience with Tasks 1
and 2 of Unit 3 as well as their work in prior units. In order to provide a sense of
how students in these two classes produced their responses, we briefly outline the
IOLA curriculum prior to this task and the types of activity in which students had
been engaging.

2 Students’ Prior Mathematical Activity

In general, the IOLA materials provide students with early and frequent opportu-
nities to interpret problem situations using systems of equations, vector equations,
and matrix equations, as well as to translate between these representations and
explain connections between them. Specifically, in Unit 1, which is about span and
linear independence, students have opportunities to represent travel scenarios (in-
volving vectors representing travel on a magic carpet and a hover board to par-
ticular locations) as vector equations (Wawro, Rasmussen, Zandieh, & Larson,
2013; Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012). Many students
convert these vector equations to systems of equations, and some who have pre-
vious experience in linear algebra represent the equations using an augmented
matrix or a matrix equation.

In Unit 2 of the IOLA curriculum, students represent geometric transformations
of Cartesian space as a matrix times an input vector and, subsequently, as a matrix
times a matrix of concatenated input vectors (Andrews-Larson, Wawro, & Zandieh,
2017; Wawro, Larson, Zandieh, & Rasmussen, 2012). This way of representing
transformations begins with students’ work with the “Italicizing N” task. In this
unit, students complete a series of tasks to determine matrices for various trans-
formations based on a description of the transformations’ effect on specific input
vectors. For instance, based on Fig. 1, students often generate the matrix equations
a b
c d

� �
0
3

� �
=

1
4

� �
and

a b
c d

� �
2
3

� �
=

3
4

� �
as they try to determine the matrix

A that acts on the pre-image “N” to produce an image of a larger, italicized “N.”
Some students represent these two equations as a product between the unknown

matrix and a matrix of concatenated input vectors:
a b
c d

� �
0 2
3 3

� �
=

1 3
4 4

� �
.

Students then rewrite these as systems of equations and solve for the variables a, b,
c, and d to determine the matrix of the transformation in the standard basis.
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Later, in Unit 2 Task 3, students explore the composition of linear transforma-
tions by representing the same transformation as before in two steps: one matrix
that stretches the “N” to make it taller and another matrix to take the taller “N” as
input and “italicize” it by shearing. The teacher builds from student work to assist
them in developing an understanding of the composition of linear transformations
as matrix multiplication through a substitution between the two equations. Finally,
Unit 2 culminates in a task that engages students in determining the matrices that
“undo” the three transformation matrices developed in Tasks 1 and 3, leading to the
formal definition of the inverse of a matrix and a linear transformation. Throughout
Unit 2, students are continually shifting between matrix equations and systems of
linear equations to solve for unknown values in a given matrix.

Unit 3 begins with a task that describes a transformation from ℝ2 to ℝ2 that
stretches vectors along two directions (represented by the linear equations
y = x and y = −3x) by the stretch factors 1 and 2, respectively (Zandieh et al.,
2017). Building upon the approaches developed during Unit 2, students often

produce the matrix equations
q r
s t

� �
1
1

� �
=

1
1

� �
and

q r
s t

� �
− 1
3

� �
=

− 2
6

� �
.

This typically leads to the development of a system of four equations with four
unknowns. Along with this activity, students are asked to sketch the result of the
transformation of the plane, which helps lead to a discussion about representing the
plane relative to a basis comprised of vectors in the stretch directions and con-
sidering the linear transformation relative to that basis. This in turn motivates a
change of basis, which instructors can readily represent with a commutative dia-
gram and the diagonalization equation, A = PDP−1.

Although students typically solve Unit 3 Task 1 using the equations above,
occasionally, students might represent their work using the equations
q r
s t

� �
1
1

� �
=1

1
1

� �
and

q r
s t

� �
− 1
3

� �
=2

− 1
3

� �
, in which the stretch factor is

explicitly written as a scalar on the right-hand side of the matrix equation. These
equations are what we are calling in this chapter “matrix times vector equals scalar
times vector” (mtv = stv) equations. Specifically, we use the mtv = stv label to

Fig. 1 Pre-image and image
in the italicizing N task
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denote representations of the eigen equation that use numbers and variables in
arrays of matrices and n-tuples. Although to the expert, these equations are simply a
more specified version of the generalized eigen equation Ax ⃗= λx ⃗, we want to
distinguish student use of different types of symbolizations to emphasize transitions
in their reasoning. As part of making this distinction we call the equation
q r
s t

� �
− 1
3

� �
=2

− 1
3

� �
an mtv = stv equation but call the equation

q r
s t

� �
− 1
3

� �
=

− 2
6

� �
an mtv = v equation. This choice may seem odd because

the equations are distinguished only by whether the scalar is multiplied by the
entries in the vector on the right-hand side of the equation. However, the equation
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
may initially appear to students to be simply another

example of equations such as
a b
c d

� �
0
3

� �
=

1
4

� �
that they encountered in Unit 2.

We see equations such as
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
as a fulcrum between the ideas

about linear transformations from ℝ2 to ℝ2 the students learned in Unit 2 and the
new ways of reasoning about mtv = stv and Ax ⃗= λx ⃗ equations that the students
need to learn in Unit 3.

In particular, mtv = v equations like
q r
s t

� �
− 1
3

� �
=

− 2
6

� �
connect to stu-

dents’ existing, concrete ways of thinking about linear transformations geometri-
cally and to the matrix equation notation Ax ⃗= b.⃗ Another important connection is
that mtv = stv equations can be converted into mtv = v equations and then rewritten
as a system of equations, which students use to solve for unknown variables.
Finally, mtv = stv equations can be used to support connecting these aspects of
linear transformations more formally with the general eigen equation. Thus, the
notation used in mtv = stv equations allows students to engage in specific, con-
textualized mathematical problem solving that is leveraged to support general
notions of eigenvectors and eigenvalues.

We have provided this outline highlighting prior tasks in the curriculum to
emphasize the types of thinking and solution strategies students in our courses
typically have available when they approach the problems in Unit 3 Task 3. Of
specific importance are their ways of representing transformations from ℝ2 to ℝ2 as
a matrix times a vector (or matrix of concatenated vectors) and translate to a system
of equations to solve for unknown values in these matrices and vectors, specifically
using the mtv = stv and A = PDP−1 equations.
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3 Discussing Task 3 and Results from Students’ Solutions

As stated in the introduction the overall learning goal for Task 3, which is com-
posed of three problems, is for students to explore the relationships involved in the
equation Ax ⃗= λx ⃗ and to develop intuitive notions of eigenvalue and eigenvector.
As with earlier tasks, we cast the problems in this task geometrically, in terms of
stretch factors and stretch directions, but we ask students to provide numeric
solutions, giving students the impetus to create and manipulate symbolic expres-
sions to find those numeric solutions. The three problems are ordered in increasing
level of difficulty. Having already asked students (in Task 1) to find a matrix given
stretch factors and stretch directions, we now recast this by switching which
information is given and which is requested, as follows:

P1. The matrix and the stretch directions are given and students are asked to find
the stretch factors.

P2. The matrix and the stretch factors are given and students are asked to find the
stretch directions.

P3. The matrix is given, and students are asked to find both the stretch factors and
the stretch directions.

In creating the Task, we have chosen to restrict the problems so that students
would work in ℝ2, i.e., with 2 × 2 transformation matrices (Fig. 2). This keeps the
systems small enough so that the students can realistically solve three of them
within a single 50–75 min class period and also ensures that students encounter
only linear and quadratic polynomials in their work.

This sequence is intended to allow students to develop a connection between the
problem statements, which are given in terms of stretch factors and stretch direc-
tions, and the general eigen equation Ax ⃗= λx ⃗. As discussed above, the mtv = stv
equation emerges from student work on the problems in the Task. At first the
equation is more of an expression by students of the fact that the transformation
matrix stretches or shrinks the stretch vector by the amount of the stretch factor. As
the Task progresses, students must use variables to represent unknown stretch

Fig. 2 Problem statements in Unit 3 Task 3
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factors and stretch directions. From this need, variations on the mtv = stv equation
emerge in students’ work. It is rare for students to use λ as the symbol for stretch
factors; symbols such as c or k are more common. It is not until their work in this
task is connected by the instructor to the broader mathematical community’s
eigenvector and eigenvalue conventions that students switch to the more common λ.
Thus, in this chapter, we use k or c in our generic discussions of student symbol-
izations to help emphasize that students are not yet familiar with the terminology or
common notation associated with eigenvectors and eigenvalues.

Because of their prior work in the unit, students are typically able to connect the
stretch direction and stretch factor language with matrix multiplication notation,
identifying how the product of a matrix and vector can come to represent a vector
being stretched under a transformation of a vector space. This is consistent with
student work in Unit 3 Task 1, in which students are asked to determine the matrix
of a transformation that stretches vectors along two given lines by respective fac-
tors. In the time between Unit 3 Task 1 and Unit 3 Task 3, the students will have
completed two lessons involved in developing notions of change of basis matrices
as a means for representing linear transformations that stretch along a basis of
stretch directions. This also provides students with the ability to incorporate the
equation A = PDP−1 into their work.

In Problem 2 (Fig. 2), students are given a different matrix and stretch factors
and are asked to find the corresponding stretch directions. They should notice that
there are infinitely many ways to describe the stretch direction for a given stretch
factor. Also, importantly, students are not able to merely calculate the product of the
matrix times a vector or the stretch factor times a vector as they may have before,
but instead must use a generalized stretch direction vector in their approach the
problem. Because of this, we conjecture that students are more likely than before to
write a matrix equation with the product of the stretch direction and stretch factor
on the right-hand side. Problem 3 only provides students with the matrix and asks
them to find both stretch directions and stretch factors. In this problem, students will
need to recognize that they cannot solve for any of the unknowns directly, but that
there are infinitely many solutions for the stretch direction. In addition, students’
work (specifically, on problem 3) can be leveraged here and later in Task 4 to
develop the idea of the characteristic polynomial and how finding its roots for a
given matrix is equivalent to determining the stretch factors of that matrix.

In the following subsections, we provide examples of common student
approaches to Problems 1–3. We have chosen the examples of student work based
on how representative they are of students’ approaches and also based on their
usefulness for being leveraged to support more general and formal ideas of
eigentheory.
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3.1 Finding Stretch Factors

As shown in Fig. 2, Problem 1 provides students with stretch directions and a given
matrix and asks them to find the stretch factor for each stretch direction. Students
initially realize they will need to find at least one vector that lies on the line
y = 1/2x and at least one vector that lies on the line y = −x. Two common choices are
2
1

� �
and

− 1
1

� �
, respectively. Students then determine the factor by which each of

these vectors is stretched when multiplied by the given matrix.
The first example of student work that we discuss (Fig. 3) exemplifies a typical

approach that we have seen after several implementations of the IOLA curriculum.
This group of students began by multiplying the given matrix A times the vectors
2
1

� �
and

− 1
1

� �
, which yielded the vectors

− 6
− 3

� �
and

− 9
9

� �
, respectively. This

is a form of the mtv = stv equation in which the scalar multiple is distributed into
the vectors on the right-hand side. From this, the students re-wrote the vectors on
the right-hand side of the equation as scalar multiples of the vectors on the left-hand
side of the equation. Although not written on their board, the students indicated in
class that they (correctly) interpreted their work to imply that the desired stretch
factors were 3 and −9.

In our second example, students leveraged the equation A=PDP− 1 (see
Fig. 4a). To do this, they relied on the knowledge that, for a given diagonalizable
matrix A, its stretch factors are the diagonal entries of D and its stretch directions, in
column vector form, are the respective columns of the matrix P. More specifically,
this group parameterized the matrix D with the unknown diagonal entries a and d,

determined the matrices P=
2 1
1 − 1

� �
and P− 1 =

1 ̸3 1 ̸3
1 ̸3 − 2 ̸3

� �
from the given

information, and substituted these matrices (and also the given matrix A) into the
equation A=PDP− 1. Following this, they multiplied the three matrices on the right
and set the resulting matrix equal to the given matrix for the transformation. This

Fig. 3 Most common
approach to Task 3 Problem 1
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allowed the students to solve for a and d by setting corresponding components of
the matrices equal to each other.

In the last approach we discuss, another student group also used the diagonal-
ization equation A=PDP− 1 (Fig. 4b). In particular, this group determined how to
use the given information in the diagonalization equation, manipulate the equation,
and solve for the matrix D. They wrote the diagonalization equation A=PDP− 1

with the given matrix A. They represented the stretch direction of y= 1
2 x and the

stretch direction y= − x as the column vectors
2
1

� �
and

1
− 1

� �
, respectively, and

they used that information to create matrix P and substitute it and P− 1 (we are not
sure how they computed the inverse) into the diagonalization equation (Fig. 4b, line
1). The students explained that they left multiplied by P− 1 and right multiplied by

P to solve for D (Fig. 4b, lines 2–3). The product P−1AP yields
− 3 0
0 9

� �

(Fig. 4b, line 4), which the students equated to D and interpreted in terms of stretch
factors and directions, namely that the transformation represented by A stretch
y= 1

2 x by − 3 and y= − x by 9.
Because the stretch directions are given in equation form, the students must

choose a single vector in each direction. This is consistent with and builds on the
students’ work in Unit 3 Task 1, which first introduced the notions of stretch
direction. As we saw in the first example, students are typically able to recognize that
they only need to multiply the given matrix times a vector along the stretch direction
and notice that the product is a scalar multiple of the original in order to answer the
question. As demonstrated, students sometimes write this as an mtv = stv equation
with the scalar factored out on the right-hand side (last row in Fig. 3). We have
found this to be less common in our implementation of the curriculum, with students
usually determining the stretch factors without explicitly factoring the right-hand
side. However, as we demonstrate in the next section, Problem 2 tends to support
students’ production of the mtv = stv equation with the scalar factored.

Fig. 4 Students’ work on Task 3 Problem 1 relying on PDP−1
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3.2 Finding Stretch Directions

In contrast to Problem 1, Problem 2 provides students with a matrix and two stretch
factors and asks them to find the stretch directions. Most groups use an mtv = stv
equation to generate a system of equations, while other groups use the equation
B = PDP−1. Figure 5 shows a very detailed version of student work using the

mtv = stv equation. This group used
a
c

� �
as a generic stretch direction vector that

is multiplied by the given matrix B on the left-hand side of the equation and the

given scalar, 3, on the right-hand side of the equation. The vector
b
d

� �
is their

generic vector that is multiplied by the matrix B on the left and scalar 2 on the right.
The group then used each of these matrix equations to generate a system of two
equations with two unknowns. The students combined like terms to convert each
system into standard form for systems with the variables on the left and a constant
(in this case 0) on the right-hand side of the equation. The students do not state on
the board why, but in each case they use the first of the two equations to write an
expression of one variable in terms of the other (a= 2

11 c and d = 5b) and then

convert these equations to a specific vector in each direction:
a
c

� �
=

2
11

� �
and

b
d

� �
=

1
5

� �
. The students even reference a connection to the B = PDP−1 rela-

tionship at the bottom of their work by listing a matrix, P, with the two vectors they
found as its column vectors.

Fig. 5 Problem 2 solved by converting mtv = stv into a system of equations
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Variations of this method include work similar to that in Fig. 6a, in which the
group only wrote the first of the system’s two equations on their boards. This is
sufficient since the two equations describe the same line and, thus, only one needs
to be considered. Figure 6a is also different than Fig. 5 in that the students used
x
y

� �
as their generic vector in each case and circled the results of y=11 ̸2x and

y=5x. In this way they seemed to be emphasizing the standard format for a line
through the origin where y is typically written in terms of x. This group also found a
particular vector in the direction of each line and multiplied that vector times the
original matrix to check that indeed was multiplied by 3 (or 2).

In Fig. 6b we see a unique variation on this strategy. These students chose a

vector
1
x

� �
, with 1 in the first component and therefore only one variable, relying

on the fact that any vector in the stretch direction will work. (Their strategy would

fail only if the eigenvector lies along the direction
0
1

� �
.) Because of the choice of

1
x

� �
each of their equations solves for a single value of x, e.g., x = 5.5 when the

scalar is 3. These students then converted their answer into a stretch direction stated

as a vector with integer values, e.g.,
2
11

� �
instead of

1
5.5

� �
. This method

emphasizes the stretch direction as a vector direction without stating it as the
equation of a line as in the circled part of Fig. 6a. We also point out here that the
groups whose work appears in Fig. 6 did not write the right-hand side of the
equation as a scalar times a vector, but instead distributed each stretch direction into
the vector on the right. This is a nontrivial distinction from other forms of the
mtv = stv equation, specifically because the students’ distribution of the stretch
factor into the stretch vector does not lend itself to the manipulation of a more

Fig. 6 Additional student work on Problem 2 using mtv = stv equations
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general Ax ⃗= kx ⃗ equation that could be used to lead to the equation A− kIð Þx ⃗=0 ⃗.
Accordingly, it is important for instructors to point out these distinctions and, if
necessary, draw out the connections during whole class discussion.

In Fig. 7 we see student work using B = PDP−1. Neither of these are resolved to
a final solution. The method using PDP−1 creates a more complicated matrix with
fractions (Fig. 7a). Resolving this equation into BP = PD creates simpler matrices
(Fig. 7b). Once these matrices are multiplied and set equal, the next step would be
to set the corresponding components of each of the resultant matrices equal. This
would create four equations that are identical to the systems of equations created
using the mtv = stv method. However, neither of these groups continued on the
white board beyond creating the two resultant matrices.

3.3 Finding Both Stretch Factors and Stretch Directions

Students are typically able to draw on a variety of their prior approaches to solve
Problem 3, which, in contrast to Problems 1 and 2, provides neither the stretch
directions nor the stretch factors of the transformation. Because of this, in order to
solve the problem, students must identify either the stretch factor or stretch direction
and then use one to solve for the other.

There are several ways in which students can find the stretch factors first. Two of
these are illustrated in Fig. 8. In each case students constructed an mtv = stv
equation with variables for both components of the eigenvector and a variable for
the eigenvalue. In Fig. 8a we see that one group set up proportions to generate a
single equation in terms of k. Although this group of students did not make it
explicit, the ratio is the slope of the line described by each equation. With the
proportion in terms of k, the students developed a quadratic equation. They may
have noticed in solving Problem 2 (or recognized because they are solving for a
single eigendirection) that both equations in the system of equations describe the

Fig. 7 Student work on Problem 2 using B = PDP−1
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same line and thus have the same slope. After solving the quadratic for the stretch
factor, the students were then able to determine the corresponding stretch directions,
one of which is shown on their whiteboard (Fig. 8a).

The other group opted to solve the first equation for y and substituted it into the
second equation (Fig. 8b). The second group then manipulated the resulting
equation into the equation x(c − 5)(c − 3) = 0. This group did not indicate whe-
ther the x-component in the stretch direction might be zero, but focused on solu-
tions for stretch factors. After determining the stretch factor values of 3 and 5, this
group substituted these values into the original system of equations and interpreted
the result of the substitution (the equations 2x = y and x = y) as stretch directions.
A single vector from each direction was then chosen for the two columns of the
matrix P.

The ways in which these two groups manipulated the system of equations can be
leveraged to support a discussion of the characteristic polynomial and the standard
manipulations used to calculate it. Specifically, it is helpful to juxtapose the two

systems of equations in Fig. 8a with the matrix equations
7 − 2
4 1

� �
a
b

� �
= k

a
b

� �

and
7− k − 2
4 1− k

� �
a
b

� �
=

0
0

� �
, as well as the more generalized equations Ax ⃗= kx ⃗

and A− kIð Þx ⃗=0 ⃗. We have found that this helps students to draw parallels between
the three pairs of symbolizations so that each can be used to make sense of the
other.

Furthermore, the instructor can draw on the Invertible Matrix Theorem to
motivate the need to calculate det A− kIð Þ and, in so doing, introduce the notion of
the characteristic polynomial. Such a discussion would begin with the instructor
pointing out (or supporting students to identify) the need for a nonzero vector as a
solution to the original eigen equation and therefore to the equation A− kIð Þx ⃗=0 ⃗.

Fig. 8 Two groups’ solutions to Problem 3
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Students can then use their knowledge of the equivalences in the Invertible Matrix
Theorem to discuss in class the properties of A − kI needed for A− kIð Þx ⃗=0 ⃗ to have
a nonzero solution. As part of this review, students should see that one such
property is det A− kIð Þ=0. The instructor can help students to see that the equation
det A− kIð Þ=0 is in fact the equation (or a variation of the equation) that they have
already used to calculate the stretch directions. In telling the students that the name
of this equation is the “characteristic equation”, the instructor serves as a broker
connecting the students’ mathematics to the mathematical terminology used by the
larger mathematics community (Rasmussen, Zandieh, & Wawro, 2009). More
generally the instructor may choose to leverage the student work to make con-
nections to the derivation of the standard method for calculating eigenvalues and
eigenvectors through the equation A− kIð Þx ⃗=0 ⃗.

Another method for solving this problem is to find the stretch directions first.
Figure 9a, b show one group’s work, which we have separated into two images. As
with the other groups, this group began with the mtv = stv equation and used it to
generate a system of equations. However, in each equation of the system, they
solved for the stretch factor, k, and set the remaining algebraic statements equal to
each other in an equation that reflects a proportion. The group then simplified this
equation to yield a quadratic in two variables: 4a2 − 6ab + 2b2 = 0. Factoring this
and drawing on the zero product property, the group was able to produce the two
equations b = 2a and b = a, which they recognized as the stretch directions.
Following this, the group found the corresponding stretch factors by selecting a
single vector along each stretch direction and continuing in a manner similar to their
approach to Problem 1.

Although the first two approaches are much more common, Fig. 10 illustrates a
unique approach that also incorporates the equation AP = PD, derived from the
equation A = PDP−1. The students’ work is difficult to parse because the students

Fig. 9 Student response to Problem 3 that uses mtv = stv approach

188 D. Plaxco et al.



did not show all of their work or denote implications. However, we can tell that the
group began by generating a generic system of equations from the matrix with
unknown stretch direction vectors and stretch factors (Fig. 10a). With this system,
the group was able to combine the two equations and factor the resulting equation
to yield 3(x − y) = c(x − y). The group then canceled the binomial (x − y) from
each side of the equation to produce c = 3. Although it is not written on their
whiteboard, this last step tacitly assumes that x − y ≠ 0.

Another aspect of the work in Fig. 10a is that it can be generalized to an
interesting fact about eigenvalues of 2 × 2 matrices. That is, if the column entries
add to the same number or (as in this case) subtract to opposite numbers then this
number (or one of the opposite numbers) will be an eigenvalue of the matrix. For
instance, in this case, the columns of the given matrix subtract to give 7− 4= 3 and
− 2− − 1ð Þ= − 3, yielding an eigenvalue of 3. Although students who develop
this approach will likely not try to generalize this fact, it might be helpful for
instructors to ask students to develop arguments for or against the generalizability
of this pattern.

In their work, the students interpreted c = 3 as the first of two stretch factors,

which they represented with the diagonal matrix
3 0
0 d

� �
in the matrix equation

AP = PD (Fig. 10d). The students in this group also generated another equation
from the system by substituting for c to generate 4x+ y= y 7x− 2y

x

� �
, which could

then be simplified (Fig. 10b). After substituting, the students were able to generate
the quadratic equation y2 = 3xy − 2x2.

Fig. 10 Group solution using a system of equations and AP = PD to finish Problem 3
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Importantly, because of the students’ prior work solving for stretch directions
and stretch factors, they recognized that the solutions to this quadratic correspond to

the components of the vector
x
y

� �
, representing the stretch directions of the

transformation. Furthermore, the students realized that, with stretch direction vec-
tors, the ratio of the components is important, rather than a specific value for x and
y. This understanding is reflected in the group’s substitution of 1 for y to produce
the equation 1 = 3x − 2x2, which the students are able to solve more readily as a
quadratic in one variable (x = 1 or ½). The group then interpreted the solutions of
this quadratic equation as x components in vectors with 1 in the y component
(Fig. 10c) and, more generally, as a ratio between x and y. Although there is no
written evidence that the group was aware of the implications, they chose a nonzero
y-value in the stretch direction vector. Their interpretation of these solutions is

shown in Fig. 10d where they substituted the vectors
1
2

� �
and

1
1

� �
into the col-

umns of the P matrix in the equation AP = PD. In this last step, the students used
this explicit form of the AP = PD equation to solve for the remaining stretch factor
of 5.

Students might not recognize that this approach would not generalize to matrices
with stretch directions that align with standard basis vectors—specifically eigen-
vectors that have zero in the component that the students set equal to 1. This being
said, the approach reflects an understanding that the stretch directions are
proportion-based, rather than fixed vectors. Although this group’s approach is not
as common as others, we find value in the types of conversations that such work can
introduce into whole-class discussion. We also value the diversity in student
approaches, whether they find the stretch factors first, the stretch directions first, or
some combination of the two.

4 Concluding Remarks

In this chapter, we have delineated the usefulness of student fluidity between the
eigen-equation in the various forms of matrix equations, systems of linear equa-
tions, and the equation Ax ⃗= λx ⃗. The tasks in Unit 3 were developed in such a way as
to build and extend work that students have previously done with Ax ⃗= b ⃗ equations
and their various equivalent forms. The examples of student responses to the three
problems in Unit 3 Task 3 that we provided in this chapter illustrate several
important types of reasoning that support a robust understanding of eigentheory.
Specifically, the task allows students to leverage their existing ways of representing
linear transformations with matrix equations composed of numbers and variables—
what we have denoted as mtv = stv or mtv = v equations. Students are then able to
interpret these matrix equations as systems of equations in order to shift their
reasoning towards developing approaches to solving equations of the form Ax ⃗= kx ⃗.
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As the task progresses, each subsequent problem varies which of the three com-
ponents (eigenvector, eigenvalue or both) are unknown. This was designed inten-
tionally to allow students to interpret the outcome of their activity in terms of stretch
directions and stretch factors based on their work on the previous problem, as well
as in Unit 3 Tasks 1–2. In this way, the students’ work with Unit 3 Task 3 is meant
to involve referential activity, a key component of the instructional design theory of
Realistic Mathematics Education (Gravemeijer, 1999).

Unit 3 Task 3 culminates in the instructor leveraging students’ solutions to
Problem 3 and generalizing their use of the mtv = stv and mtv = v equations. In
addition, the students we have worked with have begun to generalize the various
relationships in the eigen-equation beyond the specific 2 × 2 examples of the task.
This is meant to lead to an introduction and discussion of the characteristic poly-
nomial, with its standard derivation resulting directly from generalizing activity.
Furthermore, the instructor plays a crucial role as broker between the classroom and
broader mathematical community by connecting students’ work with stretch factors
and stretch directions with the more widely known terms of eigenvalues and
eigenvectors, respectively. Through this discussion, students’ activity is guided
toward a reinvention of eigentheory from a meaningful, problem-based approach.
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Examining Students’ Procedural
and Conceptual Understanding
of Eigenvectors and Eigenvalues
in the Context of Inquiry-Oriented
Instruction

Khalid Bouhjar, Christine Andrews-Larson, Muhammad Haider
and Michelle Zandieh

Abstract This study examines students’ reasoning about eigenvalues and eigen-
vectors as evidenced by their written responses to two open-ended response
questions. This analysis draws on data taken from 126 students whose instructors
received a set of supports to implement a particular inquiry-oriented instructional
approach and 129 comparable students whose instructors did not use this instruc-
tional approach. In this chapter, we offer examples of student responses that provide
insight into students’ reasoning and summarize broad trends observed in our
quantitative analysis. In general, students in both groups performed better on
the procedurally oriented question than on the conceptually oriented question.
The group of students whose instructors received support to implement the
inquiry-oriented approach outperformed the other group of students on the con-
ceptually oriented question and performed equally well on the procedurally oriented
question.

Keywords Eigenvalues ⋅ Eigenvectors ⋅ Linear algebra ⋅ Inquiry-oriented
instruction ⋅ Student thinking

Linear algebra is a mandatory course for many science, technology, engineering,
and mathematics (STEM) students. The theoretical nature of linear algebra makes it
a difficult course for many students because it may be their first time to deal with
abstract and conceptual content (Carlson, 1993). Carlson (1993) also posited that
this difficulty arises from the prevalence of procedural and computational emphases
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in students’ coursework prior to linear algebra, and that it might therefore be
difficult for students to connect new linear algebra topics and their previous
knowledge. To address this issue, researchers have developed instructional mate-
rials for Inquiry-Oriented Linear Algebra (IOLA; http://iola.math.vt.edu/) and
approaches to help students develop more robust, conceptual ways of reasoning
about core topics in introductory linear algebra (e.g. Andrews-Larson, Wawro, &
Zandieh, 2017; Wawro, Rasmussen, Zandieh, & Larson, 2013; Zandieh, Wawro, &
Rasmusen, 2017).

Instructors who were not involved in the development of these kinds of
research-based, inquiry-oriented instructional materials have been shown to
encounter challenges when implementing such materials (Johnson, Caughman,
Fredericks, & Gibson, 2013). Under an NSF-supported project Teaching
Inquiry-Oriented Mathematics: Establishing Supports (TIMES), Johnson, Keene,
and Andrews-Larson (2015) designed and implemented a system of instructional
supports based on research in instructional change in undergraduate mathematics
education, teacher learning, and professional development in settings ranging from
K-20 (e.g. Henderson, Beach, & Finkelstein, 2011). These supports included
sequences of student activities with implementation notes, a three-day summer
workshop, and weekly online workgroups during the semester instructors imple-
mented the materials in their teaching. This chapter examines differences in per-
formance and reasoning of students whose instructors received these supports
through the TIMES project (TIMES students) as compared to students whose
instructors did not receive these supports (Non-TIMES students). In particular, we
examine assessment data to identify differences in student performance and rea-
soning about eigenvectors and eigenvalues.

In this work we draw on data from an assessment that was developed to align
with four core introductory linear algebra topic areas addressed in the IOLA
instructional materials: linear independence and span; systems of linear equations;
linear transformations; and eigenvalues. and eigenvectors. In the assessment, there
were two questions that addressed eigenvalues and eigenvectors: question 8 and 9.
Question 8 was a procedurally oriented question related to the eigenvalue of a given
matrix and question 9 focused on conceptual understanding of the eigenvectors.
The research questions for this analysis are:

• How does the performance of students whose instructors received TIMES
instructional supports for teaching linear algebra compare to the performance of
other students?

• How did students reason about eigenvectors and eigenvalues in the context of
questions designed to assess aspects of students’ procedural and conceptual
understanding? How did reasoning differ for students of TIMES and
Non-TIMES instructors?
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1 Literature

Many have argued that the shift from predominantly computational and procedural
approaches to mathematics many students experience before college to more the-
oretical approaches causes a lot of difficulties for students as they transition to
university mathematics. Linear algebra is a course in which students struggle to
develop conceptual understanding (Carlson, 1993; Dorier & Sierpinska, 2001;
Dorier, Robers, Robinet, & Rogalski, 2000; Stewart & Thomas, 2009). Across the
literature on the teaching and learning of eigenvalues and eigenvectors, procedural
thought processes feature prominently. For example, Stewart and Thomas (2006)
pointed to ways in which students often learn about eigenvalues and eigenvectors,
where a formal definition is often linked to a symbolic presentation and its
manipulation. For the purpose of this paper, we will draw on the following formal
definition for eigenvectors and eigenvalues:

Suppose A is an n × n real-valued matrix and x is a non-zero vector in ℝn. We
say the vector x is an eigenvector of the matrix A if there is some scalar λ such that
Ax= λx. Further, in this case, we say that λ is the eigenvalue associated with the
eigenvector x.

Thomas and Stewart (2011) highlighted a difficulty students find when faced
with formal definitions for eigenvalues and eigenvectors: these definitions contain
an embedded symbolic form Ax= λxð Þ, and instructors often move quickly into
symbolic manipulations of algebraic and matrix representations such as trans-
forming Ax= λx to A− λIð Þx=0. Their findings that students struggle to make sense
of formal definitions, struggle to make use of geometric representations of eigen-
vectors, and exhibit procedural orientations toward eigenvectors suggest that such
treatments might not provide sufficient opportunities for students to make sense of
the reasons behind these symbolic shifts (Stewart & Thomas, 2009; Thomas &
Stewart, 2011).

In order to help students make sense of situations that might be modeled using
eigenvectors and eigenvalues, Salgado and Trigueros (2015) developed a problem
that tasked students with designing a mathematical model that describes the
employment dynamics of a population and its long-term behavior. While this
modeling problem does not foreground geometric interpretations, the researchers
also developed other activities to subsequently establish a relationship between the
algebraic and geometric interpretation of eigenvectors and eigenvalues. Drawing on
analysis of data from 30 undergraduate students, Salgado and Trigueros (2015)
argued that this instructional sequence supported students’ learning by helping
students link ideas about eigenvectors and eigenvalues to other previously learned
concepts.

Schoenfeld (1995) used eigenpictures in the 2 × 2 case (“stroboscopic” pic-
tures) to show x and Ax at the same time by using multiple line segments in the x–y-
plane. He observed that graphical representations of eigenvalues and eigenvectors
got little attention in the literature and that a picture may benefit more than algebraic
presentations. It is also documented more generally in linear algebra that students
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struggle to coordinate algebraic with geometric interpretations (e.g. Larson &
Zandieh, 2013; Stewart & Thomas, 2010) and the students’ understanding of
eigenvectors is not always well connected to concepts of other topics of linear
algebra (Lapp, Nyman, & Berry, 2010).

To support students in developing a better understanding of the formal definition
and associated interpretations of the eigenvalues and eigenvectors, researchers have
developed a variety of instructional interventions (e.g. Gol Tabaghi & Sinclair,
2013; Salgado & Trigueros, 2015; Zandieh, Wawro & Rasmussen, 2017). This
paper examines student learning outcomes associated with a geometrically moti-
vated instructional approach (see Plaxco et al. 2018; Zandieh, Wawro & Ras-
mussen, 2017) when paired with TIMES instructional supports; the approach will
be described in the Study Design section.

2 Theoretical Framing

Researchers often make reference to conceptual understanding and procedural
understanding when discussing students’ reasoning about mathematical concepts
(Hiebert, 1986). Hiebert and Lefevre (1986) defined conceptual knowledge as a
“knowledge that is rich in relationships. It can be thought of as a connected web of
knowledge, a network in which the linking relatonships are as prominent as the
discrete pieces of information” (pp. 3–4). According to Hiebert and Lefevre (1986)
students have procedural knowledge if they can combine formal language and
symbolic representation systems with algorithms or rules in order to complete
mathematical tasks.

In this paper we also draw on Larson and Zandieh’s (2013) framework for
students’ mathematical thinking about matrix equations of the form Ax= b. This
framework details three important interpretations, relationships between geometric
and symbolic representations within each interpretation, and the complexity
entailed in shifting among interpretations. The three interpretations this framework
includes are (1) a linear combination interpretation, in which b is viewed as a linear
combination of the column vectors of the matrix A with x functioning as the set of
weights on the column vectors of A, (2) a system of equations interpretation in
which x is viewed as a solution and A is seen as a set of coefficients, and (3) a linear
transformation interpretation in which x is viewed as an input vector, b as an output
vector, and A as the matrix that transforms x into b.

We argue these interpretations are helpful for making sense of students’ rea-
soning, but that the framework may need to be modified or expanded to more fully
account for student reasoning in the context of eigenvalues and eigenvectors. In the
context of eigenvectors and eigenvalues, students need to coordinate a transfor-
mation interpretation with the equation Ax= λx, where the matrix A transforms the
vector x by stretching, shrinking, and/or reversing the direction of vector x. Addi-
tionally, students need to shift to a systems interpretation and consider when the
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equivalent system A− λIð Þx=0 has a non-trivial solution in order to make sense of
standard procedures for computing eigenvalues and eigenvectors.

3 Study Design

In previous work, we have developed an assessment aligned with the
inquiry-oriented linear algebra (IOLA) instructional materials used in the TIMES
project (Haider et al., 2016). This paper-and-pencil assessment consists of 9 items,
most of which include an open-ended response component. The assessment was
administered at the end of the semester, and students were allocated one hour to
complete the assessment.

In this analysis we examine assessment data from 126 students across six
TIMES instructors and 129 students across three Non-TIMES instructors from
different institutions in the US. Non-TIMES linear algebra instructors were selected
from either the same institutions as TIMES instructors or a similar institution (e.g.
preferably one from a similar geographic area, with similar size of student popu-
lation, with similar acceptance rate) to collect assessment data for comparison of
TIMES and Non-TIMES students. In this study, we focused on an in-depth analysis
of students’ reasoning on the assessment questions related to eigenvalues and
eigenvectors. Both items are shown in Fig. 1.

Fig. 1 Assessment items related to eigenvectors and eigenvalues (Question 9 was retrieved from
http://mathquest.carroll.edu and developed as part of an NSF-supported project entitled Project
MathVote: Teaching Mathematics with Classroom Voting. For related research, see Cline, Zullo,
Duncan, Stewart, & Snipes, 2013)
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The inquiry-oriented approach to learn eigenvalues and eigenvectors associated
with this study is characterized in detail elsewhere (Plaxco et al. 2018; Zandieh,
Wawro, & Rasmusen, 2017). Briefly described, this approach supports students in
first learning about eigenvalues and eigenvectors as a set of “stretch” factors and
directions that can be used to more easily characterize a geometric transformation.
Students work through a series of tasks, first aiming to find (using standard coor-
dinate systems) the image of a figure in a plane under a transformation that is easily
described in a non-standard coordinate system. Students then work to label points in
both the pre-image and the image using the standard and the more convenient
coordinate systems, find matrices that rename points from one coordinate system to
the other, and find matrices corresponding to the transformation described relative
to both coordinate systems. The instructor works to link this work to the matrix
equation A = PDP−1 and subsequent tasks aim to leverage this conceptual basis as
students learn more traditional computational methods associated with computing
eigenvalues and eigenvectors.

4 Methods of Analysis

To answer our research questions, our analysis has two main components. The first
component of our analysis is quantitative in nature, as we aim to compare learning
outcomes of students whose instructors received TIMES instructional supports to
those who did not. The second component of our analysis is qualitative in nature, as
we work to identify students’ ways of reasoning on both the more procedurally
oriented assessment item (Q8) and the more conceptually oriented item (Q9). We
follow Kwon, Rasmussen, and Allen’s (2005) approach for distinguishing assess-
ment items that are conceptually oriented from those that are procedurally oriented.
In particular we consider Q8 to be more procedurally oriented in that there is a
commonly taught procedure that students can directly invoke (with some inter-
pretation) to produce a correct answer to the question. There is no such standard
procedure for Q9, so we consider it to be more conceptually oriented. In our
qualitative analysis, we also look for similarities and differences that emerge from
considering the two groups.

To facilitate our quantitative analysis, we needed to score students’ responses to
the two assessment items. Specifically, we needed to develop a uniform system for
assigning a number of points to students’ responses that provide an overall
assessment of the quality of their response and the understanding reflected in that
response. Question 9a required students to select which subset of 6 possible options
were appropriate responses, so 1 point was awarded to each of the possible options
for correctly selecting or not selecting that option. Both Question 8 and Question 9b
were open-ended response questions, and both of these were scored on a scale of 0
to 3 points. Three points were awarded for a fully correct response, two points were
awarded for a mostly correct response (e.g. if a minor computational error was
made, 2 points would be assigned), one point was awarded if the student’s response
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provided evidence of some knowledge or understanding relevant to the question,
and no points were awarded otherwise. A scoring scheme was developed to specify
what kinds of responses received how many points. In order to ensure consistency
among coders in how points were assigned, new examples were added to the
scoring guide throughout the scoring process. A condensed version of the scoring
scheme for assigning points to open-ended response questions can be found in
Appendix. Additionally, the Appendix includes some explanation of how this
scoring scheme aligns with our coding categories for how students reasoned, which
are described in greater detail below. Student work exemplifying common ways of
reasoning with explanation of points awarded are provided in the Findings section.

To ensure agreement regarding points assigned to each response, two researchers
looked at every student’s attempt and assigned a score independently before
comparing with each other. If the two researchers assigned a different score to a
particular student, they then discussed according to the codebook and agreed on a
common score for that student. If both researchers disagreed about a particular
score, then a third researcher was consulted to reach a consensus.

Once scores had been assigned to all student responses, descriptive statistics
were generated to examine the overall performance of students on the eigenvalue
and eigenvector questions and to compare TIMES students with Non-TIMES stu-
dents for both questions. We were unable to control for factors such as students’
mathematical background, major, and instructor’s teaching experience, so this is an
unavoidable limitation for our statistical analysis. However, we tried our best to
choose TIMES and Non-TIMES students either from the same school or from
similar schools. This helps us establish similarity of students in TIMES and
non-TIMES classes. Then, we compared the mean scores of TIMES and
Non-TIMES students using two-tailed t-tests to identify when differences of means
were statistically significant.

In order to facilitate our qualitative analysis of students’ reasoning, we examined
student responses to the open-ended portions of question 8 and question 9. As noted
before, we consider Q8 to be more procedurally oriented. After examining the data
several times and refining the categories of the students’ reasoning about item 8, we
sorted students’ responses into 5 broad categories: (1) reasoning about the deter-
minant, (2) reasoning about A− λI without computing a determinant, (3) other,
(4) students who explicitly indicated they did not know, and (5) students who left
the item blank. A student’s response was categorized as “reasoning about the
determinant” if he or she solved the characteristic equation, plugged the possible
given eigenvalue into the characteristic equation, or computed the determinant of
the A− 2I matrix and compared the result to 0. A students’ response was catego-
rized as “reasoning about A− λI” if he or she solved the system of linear equations
A− λIð Þx=0, considered the linear independence of the columns of A− λI, or
considered whether rref A− λIð Þ had any free variables.

In examining students’ responses to question 9, we found it helpful to distin-
guish responses that were conceptually aligned with the formal definition for
eigenvectors and eigenvalues from those that were not. We were specifically
interested in student reasoning that appropriately coordinated interpretations of
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A, x, and λ in the context of the matrix equation Ax= λx. In particular, we say a
student response “uses the eigen-concept” when there is evidence a student is
coordinating M, x, and λ in at least one of the following ways:

• Algebraically: The matrix M is a fixed matrix that transforms the (nonzero)
eigenvector x in a particular way, namely such that the resulting vector Ax is a
scalar multiple (λ) of x.

• Geometrically: this can be interpreted to mean that multiplying x by A has the
effect of

– stretching x in the same direction or opposite direction, or
– causing the resultant vector to lie along the same line as the vector x.

If a student drew on a transformation interpretation to make sense of Ax but did not
coordinate this appropriately with λx in one of the ways mentioned above, we did
not say that the student’s response used the eigen-concept.

We grouped students’ responses to question 9 into five categories: (1) responses
that used the eigen-concept, (2) responses that focused on the role of the matrix M
in a way that did not use the eigen-concept, (3) other, (4) responses in which the
student explicitly indicated he or she did not know, and (5) responses that were left
blank. There were two primary kinds of responses coded as focused on the role of
the matrix M in a way that did not use the eigen-concept. The first one is when
students focused on the role of the matrix M as a transformation, but without
specifying the particular way it will transform an eigenvector x. The second kind of
response is when students suggested specific matrices M that would satisfy par-
ticular equations (e.g “Mx= x if M = I”). While this is certainly a true statement, it
doesn’t include evidence of understanding the special relationship between a matrix
and its eigenvector(s).

After coding students’ responses to Q8 and Q9, we aggregated these responses
into tables, organized by the category assigned to each response and number of
points awarded. We also separated TIMES from Non-TIMES students in counting
the number of responses in these discrete categories. This allowed us to look for
patterns in which approaches were conceptually oriented, which approaches lent
themselves to arriving at correct answers, and differences in approaches taken by
TIMES and Non-TIMES students.

5 Findings

In order to answer our research question about how TIMES students compared to
Non-TIMES students, we first present our quantitative analysis of students’ per-
formance on the more procedurally-oriented question (Q8) and the more concep-
tually oriented question (Q9), separating students of TIMES instructors from
students of Non-TIMES instructors. We then summarize findings from our coding
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of students’ approaches to these same questions, providing examples of responses
that highlight important trends in student reasoning.

5.1 Overview of Differences in Student Performance

We highlight three central trends from our quantitative analysis. First, TIMES
students outperformed Non-TIMES on both items, with a strongly significant dif-
ference of means on the conceptual item. Second, both TIMES and Non-TIMES
students did better on the procedurally oriented item than on the conceptually
oriented item. Third, correlations between students’ performance on both the
conceptual and procedural items were weak for students in both groups, suggesting
that the two items assessed relatively different aspects of student understanding.
Note that the last trend is not part of answering our research questions, it is more of
a side observation that emerged from our quantitative analysis.

To compare the performance of TIMES students with Non-TIMES students, we
first computed the mean and standard deviation for question 8 (which was an
open-ended response question with a total of 3 points possible), question 9a (which
was a multiple-choice question) and 9b (which is also an open-ended response
question). To make a ‘cleaner’ comparison, we have separately included the mean
and standard deviation of part a and part b of question 9. Part a of item 9 is a
multiple-choice problem with six distractors, three of which are correct choices. Per
our grading scheme, students can earn a maximum of 6 points from part a, three
points by selecting three correct choices and three points by not selecting incorrect
choices, so chances of making a guess for correct answers are higher in 9a. We also
observed that the difference in performance of TIMES and Non-TIMES students on
9a was not statistically significant with the available sample size. However, ques-
tion 9b is open-ended and students can earn at most three points by providing a
complete and correct explanation. Therefore, we compared question 8 with question
9b as they are naturally comparable items.

The data presented in Table 1 show that on the procedurally oriented question
(Q8) the mean score of TIMES students (M = 1.98, SD = 1.24) was greater than
that of Non-TIMES students (M = 1.71, SD = 1.37), but this difference of means
was not statistically significant with the available sample size. Similarly, there was
not a statistically significant difference in means on question 9a. However, in
comparing the performance of students in both groups on question 9b (which is an
open ended response style question like question 8), we noticed that TIMES stu-
dents performed significantly better (M = 1.05, SD = 1.12) than the Non-TIMES
students (M = 0.54, SD = 0.86). The results of the t-test indicated that this dif-
ference of means was statistically meaningful, t(125) = 4.29, p < 0.001. In this
way, TIMES students outperformed Non-TIMES students on the conceptually
oriented question.

Overall, students performed better on the procedurally oriented question (Q8)
than the conceptually oriented question (Q9). We compared Q8 to Q9b and found
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that the difference of means for all students between Q8 (M = 1.85, SD = 1.31)
and Q9b (M = 0.79, SD = 1.03) was also statistically meaningful with p-value
(two-tailed) less than 0.001.

Since both problems we investigated in this study were related to eigenvectors
and eigenvalues, one might think that students’ performance on the two items
should be correlated. However, quantitative analysis revealed a positive but weak
correlation between students’ performance on the two questions; the Pearson cor-
relation coefficient was r = 0.30 for all students. Recall that a correlation coefficient
measures the degree of relationship between two variables and ranges from −1 to 1,
where the sign indicates the direction of the relationship and the distance from zero
indicates the strength of the relationship (e.g. 1 means the two variables are highly
correlated and 0 means there is very little or no correlation between the two vari-
ables). For TIMES students, the correlation between the two items was r = 0.36 as
compared to the correlation for Non-TIMES which was r = 0.22. This suggests two
things: first, that the two items measure different aspects of student understanding of
eigenvalues and eigenvectors. Second, it indicates that performance on the proce-
durally and conceptually oriented questions was more highly correlated for TIMES
students.

5.2 Trends in Student Reasoning on the Conceptually
Oriented Question

In this section, we provide our qualitative analysis of question 8, which we consider
to be the more procedurally oriented question. In particular, we highlight two
common approaches to this problem: approaches that involve reasoning about the
determinant, and approaches that involve reasoning about A− λI without computing
a determinant. The majority of students who reasoned about the determinant
responded correctly. Reasoning about A− λI was a less common approach but more
frequently observed among TIMES students. Importantly, TIMES students were
more often able to arrive at a correct answer by reasoning about A− λI than were
Non-TIMES students. Further, we argue that students who reasoned about A− λI

Table 1 Summary of results of quantitative analysis

Question All
students

TIMES
students

Non-TIMES
students

p-value
(two-tailed)

Q8
3 Points

Mean: 1.85
SD: 1.31

Mean: 1.98
SD: 1.24

Mean: 1.71
SD: 1.37

t(125) = 1.73
p = 0.08 > 0.05

Q9 (part a only)
6 Points

Mean: 3.73
SD: 1.68

Mean: 3.74
SD: 1.76

Mean: 3.71
SD: 1.61

t(249) = 0.56
p = 0.88 > 0.05

Q9 (part b only)
3 Points

Mean: 0.79
SD: 1.03

Mean: 1.05
SD: 1.12

Mean: 0.54
SD: 0.86

t(125) = 4.29
p < 0.001
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showed more evidence of conceptual understanding. A summary of our coding and
scoring of student responses is shown in Table 2.

Reasoning about the determinant was the most common approach observed in
students’ responses to question 8, and students who used this kind of approach
tended to do so without making conceptual errors.1 Overall, 146 out of 255 students
(57% of all students) responded to question 8 by reasoning about the determinant.
We note two interesting trends within those who used this approach distinguishing
TIMES from Non-TIMES students. First, more TIMES students who used deter-
minants in their response made computational errors (usually when factoring the
characteristic polynomial) than did Non-TIMES students—such errors are evi-
denced by 2-point responses in our coding. On the other hand, fewer TIMES
students using this approach made conceptual errors than did Non-TIMES students
—such errors are evidenced by 1-point responses in our coding. In the TIMES
instructional approach (previously described under study context), the standard
algorithm for finding eigenvalues and eigenvectors is intended to emerge in relation
to student-invented strategies on the third of fourth day of instruction in the unit, so
we conjecture Non-TIMES students may have spent more time practicing this
procedure in comparison to TIMES students.

A less common approach to solve problem 8 was by reasoning about A− λI
without computing a determinant. Overall, 48 out of 255 students (19%) used such
a determinant-free approach to solve the problem. This approach was more com-
mon among TIMES students than among Non-TIMES students, and far more
TIMES students successfully responded to the problem in this way without con-
ceptual errors (evidenced by a score of 2 or 3 points in our grading scheme). Indeed,
70% (19 out of 27) of TIMES students who used this approach did so with without
conceptual errors whereas only 38% (8 out of 21) Non-TIMES students who used
this approach did so without conceptual errors. This indicates that more TIMES
students used a determinant-free approach to solving Q8, and those who used this
kind of approach did so correctly at higher rates than Non-TIMES students who
used the same approach.

Students whose responses were categorized as “other” showed little or no evi-
dence of understanding related to the definition or computation of eigenvectors and
eigenvalues. We noticed that twice as many Non-TIMES students as TIMES stu-
dents gave a response categorized as ‘other.’ However, TIMES and Non-TIMES
students left the item blank at similar rates, but a larger number of Non-TIMES

1We align our conceptions of conceptual and procedural errors with our definitions for conceptual
and procedural understanding. We refer to an error as conceptual when there is evidence that a
student does not understand an important underlying idea or relationship. We refer to an error as
procedural when a student incorrectly performs a step in a mathematical process that is not central
to the idea being assessed (e.g. an error in computation or algebraic manipulation). Examples of
conceptual errors include incorrectly interpreting the value of the determinant to decide if
something is an eigenvalue, or computing the determinant of A rather than the determinant of
A− λI. Examples of procedural errors include incorrectly factoring the characteristic polynomial
or making an error when row reducing A− λI.
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students explicitly mentioned that they “don’t know” or “have no clue” how to
solve this problem.

5.3 Examples of Student Reasoning on the Procedurally
Oriented Question

In this section we examine examples of common approaches identified in our
analysis of students’ responses to question 8. We provide two example responses
coded as ‘reasoning about the determinant’ and two example responses coded as
‘reasoning about A− λI without using the determinant.’ We highlight the use of
multiple representations in these responses, as well as connections between these
representations and the formal definition of eigenvectors and eigenvalues. Based on
these differences, we posit that responses coded as ‘reasoning about A− λI’ tend to
be more conceptually rich based on flexible use of multiple representations and
more explicit connections between these approaches and the formal definition of
eigenvectors and eigenvalues.

The two examples shown in Fig. 2 show typical responses to question 8 coded
as “reasoning about the determinant.” Response 2.a. was awarded full points
because the student correctly found the roots of the characteristic polynomial,
presumably noted that 2 was not one of those roots, and concluded that 2 is not an
eigenvalue. The response shown in 2.b. was awarded two out of three possible
points because the student made computational errors in finding the roots of the
characteristic polynomial that resulted in the student concluding that two was a root
of this polynomial and thus an eigenvalue. It is interesting to note that response 2.b.
does not explicitly set the characteristic polynomial equal to 0 in his or her written
response, but the work suggests that the student is trying to factor the polynomial in
a way consistent with finding the roots.

The two examples shown in Fig. 3 show typical responses to question 8 coded
as “reasoning about A− λI without using the determinant.”We note that in response
3.a., the student began with the equation Ax= λx, rewrote this as Ax− λx=0, and
then factored this to write A− λIð Þx=0. The student then computed the entries of
the matrix A− 2I, rewrote this as a homogeneous matrix equation which he or she
translated into a system of equations, correctly solved, and correctly concluded that
because the solution is the zero vector that 2 is not an eigenvalue of the given
matrix. Response 3.b. similarly considers the solution of A− λIð Þx=0 by rewriting
this matrix equation as a system of equations, substituting λ=2 into this system,
and finding the solution to this system to be when x=0 and y=0. However, this
student incorrectly concluded from this that 2 is an eigenvalue. Because this is a
conceptual error (thinking that finding only the trivial solution to A− 2Ið Þx=0
means that 2 is an eigenvalue of A), this response was awarded only one point.
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In alignment with Hiebert and Lefevre’s (1986) characterization of procedural
and conceptual knowledge, we claim that responses coded as reasoning about the
determinant correspond to a more procedural approach to this question. We note
that those who substituted 2 in the characteristic equation and those who noted that
det A− 2Ið Þ≠ 0 showed some procedural flexibility indicative of conceptual aspects
of their reasoning. We argue that responses coded as “reasoning about A− λI” show
more evidence of conceptual understanding of eigenvalues and eigenvectors than
do responses coded as “reasoning about the determinant.” Examples of responses
coded as “reasoning about A− λI without using the determinant” included repre-
sentation of the system being solved in order to determine whether or not 2 was an
eigenvalue of the given matrix, whereas the examples of responses coded as
“reasoning about the determinant” typically only included representation of the
computation to be executed to determine whether 2 is an eigenvalue. While this
doesn’t mean these students didn’t have a conceptual understanding of eigenvalues
and eigenvectors, there is not explicit evidence of this connection in their responses.
In addition, both examples of responses coded as “reasoning about A− λI” included
evidence that these students could comfortably transition between matrix equations
and systems of equations, a skill that has elsewhere been documented to be both
difficult for students and important for their understanding (Larson & Zandieh,
2013; Selinski, Rasmussen, Wawro, & Zandieh, 2014). This can be interpreted as
evidence of connectedness of ideas and representations—which others have argued

 (a) Response awarded three points (b) Response awarded two points   

Fig. 2 Responses to Q8 coded as “reasoning about the determinant”

(a) Response awarded three points  (b) Response awarded one points 

Fig. 3 Responses to Q8 coded as “reasoning about A− λI”
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to be the very definition of conceptual understanding (Vinner, 1997; Hiebert &
Lafebre, 1986).

5.4 Trends in Student Reasoning on the Conceptually
Oriented Question

We now focus on responses to question 9, the conceptually oriented question.
Overall, students’ responses to this item were split somewhat evenly among
responses that used the eigen-concept, responses that focused on the role of the
matrix M without using the eigen-concept, and students who wrote that they did not
know or left the answer blank. However, TIMES students’ responses used the
eigen-concept at much higher rates than Non-TIMES students, and with greater
success. Table 3 highlights trends in the approaches of TIMES and Non-TIMES
students’ responses.

The most commonly observed response to Q9 involved using the eigen-concept,
with 99 out of 255 (39%) total responses coded in this way. This approach was
more common among TIMES students than Non-TIMES students (61/126 vs. 38/
129). Further, TIMES students who used this approach gave correct responses to
the question at higher rate than Non-TIMES students; the ratio of TIMES students
who used the eigen-concept in fully or mostly correct ways to those who used the
eigen-concept in mostly incorrect ways was 44:17 whereas that ratio for
Non-TIMES students is 18:20.

The second most commonly observed trend on Q9 involved responses that
focused on the role of the matrix M without using the eigen-concept. We noted
that students using this approach tended to be mostly or completely incorrect, and
that more Non-TIMES students than TIMES students used this approach (29/126
TIMES as compared to 40/129 Non-TIMES students). We noticed that 14/29 (48%)
of the TIMES students used this approach did so with some conceptual under-
standing but not using the eigen-concept; only 12/40 (30%) Non-TIMES students
also used this approach with some conceptual understanding but not using the
eigen-concept. We argue these responses indicated some conceptual understanding
because they drew on appropriate transformation interpretation of a matrix times a
vector. However, the understanding reflected in these responses was incomplete in
that the interpretation did not explicitly use the eigen-concept by coordinating that
interpretation with the result of that multiplication as corresponding to a scalar
times that same vector.

There was little difference between TIMES and Non-TIMES Students who used
approaches classified as ‘other.’ In this category, we saw no evidence of using the
eigen-concept. TIMES and Non-TIMES students indicated they did not know the
answer at similar rates, and more Non-TIMES students left the item blank than
TIMES students.
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5.5 Examples of Student Reasoning on the Conceptually
Oriented Question

As with Q8, we provide examples of common approaches identified in our analysis
of students’ responses to question 9. Specifically, we provide four examples of
responses coded as “using the eigen-concept” and two examples of responses coded
as “focusing on the role of the matrix M without using the eigen-concept.”
Responses 4.a and 4.b both used the eigen-concept by writing the equation Mx= λx
and suggesting values of λ (e.g. 1,−1,0) that corresponded appropriately to possible
outputs (Fig. 4).

Response 4.a was awarded full credit because the student linked this reasoning
to all three possible outputs, whereas response 4.b was awarded just 2 out of 3
possible points due to the omission of the 0 vector as a possible output. Many
students in our study who used the eigen-concept omitted the 0 vector as a possible
eigenvector. We suspect this may relate to a need to distinguish the eigenvalue of
zero from the equation Mx= λx having only the trivial solution when solving for the
vector x. Responses 4.c and 4.d used the eigen-concept in a slightly different way
than the previous examples. Rather than writingMx= λx and suggesting appropriate
values of λ, these students justified their selections of correct output vectors by
describing the role of M as stretching the vector x by a factor or in its direction.
Similar to the previous pair of examples, response 4.c was awarded 3 points for
correctly identifying all three vectors (and even explaining that vectors u and
v could not be reached by stretching x), whereas response 4.d was awarded just 2
points due to the omission of the 0 vector.

The next two examples presented in Fig. 5 show typical responses to question 9
that focused on the role of the matrix M without using the eigen-concept. Both

 (a) Response awarded three points  (b) Responses awarded two points 

(c) Response awarded three points  (d) Responses awarded two points 

Fig. 4 Responses to Q9 coded as using the eigen-concept
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responses focus on the role of the matrix M as a transformation that can transform
the vector x in many ways (not limiting to outputs that must lie along the same line
as x). Student 5.a’s response suggests that the student sees the matrix M not as a
fixed matrix that transforms the eigenvector in a particular way; the student sug-
gested different matrices that correctly produced various output vectors. The student
indicatedM could be the identity matrix I to produce x, − I (with a sign error in one
entry) to produce w, or the zero matrix to produce the zero vector. In addition, a
matrix M with generic entries was suggested as a transformation that can transform
x into vectors u and v.

Response 5.b. similarly focuses on the role of the matrix M, arguing it could
rotate x to produce u or v, “stretch reflect” to produce w, and that it could be the
identity matrix to “give back” x. This combination of what the student believes the
matrix could be indicates that the student did not use the eigen-concept. Responses
5.a and 5.b were both awarded 1 point because both were interpreting the matrix
M as a transformation and making some true statements, though in ways that did not
use the eigen-concept.

We argue that interpreting matrices as transformations is an important concept
that students need to make sense of eigenvectors and eigenvalues, but these
responses show how that alone is not enough to ensure students are using the
eigen-concept. Thinking one can choose values of the matrix M is in contrast with
the view that a given (fixed) matrix M transforms its eigenvector x in a particular
way such that the resulting vector Mx is a scalar multiple of x and thus lies along the
same line as the vector x. Indeed, the student whose work is shown in Fig. 5b. used
the term “stretch reflect,” which aligns partially with the geometric interpretation of
the eigenvectors and eigenvalues concept, but the student did not limit his or her
interpretation of outputs to those that appropriately correspond to eigenvectors; the
student saw “stretch reflect” as just one of many possible ways the matrix M could
transform its eigenvector(s).

(a) Response awarded one point (b) Response awarded one point 

Fig. 5 Responses to Q9 focused on the role of M without using the eigen-concept
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6 Discussion

We see this chapter contributing to the literature in three primary ways. First, we
document the effectiveness of a particular instructional approach that is detailed in
the literature (see Plaxco et al., 2018; Zandieh, Wawro, & Rasmusen, 2017).
Second, we document aspects of students’ reasoning about eigenvectors and
eigenvalues (including how students draw on a transformation interpretation in
ways that do and do not use the eigen-concept). Finally, we consider and discuss
links between conceptual and procedural understandings of eigenvectors and
eigenvalues documented in our study.

Our findings showed that both TIMES and Non-TIMES students in our study
performed better on the procedurally oriented assessment question than they did on
the conceptually oriented question. Further, TIMES students consistently showed
evidence of more robust conceptual understanding as compared to Non-TIMES
students, whereas procedural performance was similar between the two groups.
This is consistent with findings of previous studies examining student learning
outcomes in inquiry-oriented instructional settings at the undergraduate level (e.g.,
Kwon et al., 2005), though we are excited that this study was conducted on a larger
scale involving instructors not involved in the development of the curricular
materials. These findings are consistent with a broader body of literature docu-
menting the benefits of student-centered approaches to learning in undergraduate
mathematics (Freeman et al., 2014; Laursen Hassi, Kogan, & Weston, 2014). We
conclude our paper with a discussion of the kinds of conceptual understandings
observed in our analysis, and the insights these offer into what is entailed in a
conceptual understanding of eigenvectors and eigenvalues.

As mentioned in our theoretical framework, conceptual understanding has been
broadly defined by some in terms of the richness of connections among ideas
(Hiebert & Lafevre, 1986; Vinner, 1997). More recently, Star (2005) has argued
that conceptions of conceptual and procedural knowledge in mathematics education
are under-articulated in a way that promotes ideological rather than empirical
examination, and relationships between conceptual and procedural understandings
merit greater examination. With this in mind, we now reflect on the kinds of
conceptual understandings observed in our analysis, and discuss three different
kinds of connections we consider to be important aspects of students’ conceptual
understanding of eigenvectors and eigenvalues.

First, we consider the use of appropriate interpretations of a matrix times a vector
to be an important aspect of students’ understanding of eigenvalues and eigen-
vectors. On the conceptually oriented assessment question considered in this
chapter, this involved drawing on a transformation interpretation of the product of a
matrix M and its eigenvector x consistent with the characterization given by Larson
and Zandieh (2013). In our data, many students showed evidence of interpreting
Mx, the product of a matrix M and its eigenvector x, in ways that use the
eigen-concept. A smaller number of students interpreted Mx with a transformation
lens, but in a way that did not use the eigen-concept in that M was either thought of
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as a matrix that could change (to yield desired outcomes) or that the product of
M with the vector x could be anything. This is different from a transformation
interpretation that uses the eigen-concept by recognizing that the vector resulting
from the multiplication by a matrix with real-valued entries Mx needs to yield a
vector that is a scalar multiple of x, or that lies on the same line as x, or that points in
the same (or opposite) direction as x.

This leads to our second aspect of students’ understanding of eigenvalues and
eigenvectors: using the eigen-concept in the context of finding eigenvalues. While
many students showed evidence of using the eigen-concept in their response to the
conceptually oriented assessment item, relatively few showed evidence of using the
eigen-concept on the procedurally oriented question. Indeed, one could solve our
procedurally oriented assessment question by applying the standard procedure for
finding eigenvalues to arrive at the correct answer without explicitly using the
eigen-concept; the majority of students in both groups did just this, and most did so
without error. A far smaller number of students responded to the procedurally ori-
ented question by reasoning about A− λI without taking the determinant. We argue
this approach provided more evidence of conceptual understanding: providing and
converting between multiple representations (e.g. Ax= λx and A− λIð Þx=0, written
as matrix equations and systems of equations), linking those representations to the
eigen-concept, and offering reasons for their conclusion in terms of a matrix equation
or system of equations in their response. It is possible that a student who used the
standard procedure to determine if 2 is an eigenvalue on this problem also had a deep
conceptual understanding of how and why that procedure works; it is also possible
that a student who used the standard procedure knew this procedure only as a
sequence of steps to be executed without knowing how or why the procedure
worked. Further work is needed to tease out this distinction.

This leads to the final aspect of conceptual understanding of eigenvectors and
eigenvalues relevant to our analysis, which includes coordinating with the Invert-
ible Matrix Theorem (IMT). A standard procedure for finding eigenvalues and
eigenvectors draws on the argument that Ax= λx has a non-trivial (non-zero)
solution vector x for some scalar λ if and only if the equation A− λIð Þx=0 also has
a non-trivial solution; one can argue through the IMT that this happens when
det A− λIð Þ=0. As noted above, it was often unclear from the responses of students
who used the standard procedure whether they understood links among the equation
Ax= λx used in defining eigenvectors, the solution set of A− λIð Þx=0, and the
equivalencies in the invertible matrix theorem that lead to use of the determinant as
a tool for determining when the solution is non-trivial. However, among students
who did not use the determinant in their response to the procedurally oriented
question, there was a need to draw on equivalent ideas from the invertible matrix
theorem. In these responses, we observed students noting and leveraging the fol-
lowing relationships:

– A− λIð Þ is invertible if and only if A− λIð Þx=0 has a trivial solution. If
A− λIð Þx=0 has only the trivial solution, then λ is not an eigenvalue of the
matrix A.

212 K. Bouhjar et al.



– If the columns of A− λI are linearly dependent or one column is a scalar
multiple of the other (in the case of a 2 × 2 matrix), then A− λIð Þx=0 has
nontrivial solution so λ is an eigenvalue of the matrix A.

– If rref A− λIð Þ has no free variable then A− λIð Þx=0 has only the trivial
solution, which means λ is not an eigenvalue of the matrix A.

We argue that these kinds of responses from students who did not use the previ-
ously mentioned standard procedure offer insight into conceptual connections that
are both important and potentially natural for students to make as they come to
make sense of standard algorithms. Students who took a procedural approach to this
question typically used the determinant to decide if 2 was an eigenvalue of the
matrix, without representation of the rich set of coordinations involved in these
other responses, which relate interpretations of matrix equations and systems of
equations, equivalencies in the Invertible Matrix Theorem, and interpretations of
the eigen-concept.

Overall, students in our study correctly solved a procedural question related to
eigenvalues (as in Q8) at about twice the rate they offered an appropriate conceptual
understanding of Ax= λx (as in Q9). This suggests there is a disconnect between
students’ understanding of standard procedures for finding eigenvalues and the
formal definition of an eigenvector and eigenvalue, and that students are more able
to execute the standard procedure than draw on conceptual understandings aligned
with the formal definition. If standard instructional approaches begin by introducing
students to the definition of eigenvectors and eigenvalues using the equation
Ax= λx and its algebraic and geometric interpretations but students’ work is
dominated by execution of procedures such as the computation of roots of the
characteristic polynomial arising from det A− λIð Þ, many students may not ade-
quately connect their results in solving these kinds of problems with the equation
Ax= λx. This points to a need to push students to think more about core under-
standings as they connect to procedures rather than just assess students’ ability to
execute standard procedures. Indeed, many connections are needed to explain why
a standard procedure for finding eigenvalues and eigenvectors works and how it
connects to the formal definition of eigenvalues and eigenvectors. However, we
argue that there is little value in being able to compute eigenvectors and eigenvalues
without being able to appropriately interpret the meaning of the result of such
computations. The inquiry-oriented approach of the IOLA instructional materials
taken up by instructors who received TIMES instructional supports appears to be a
promising way of beginning to address this issue, but more work is needed to better
understand the ways in which students come to develop and coordinate the inter-
pretations needed for a robust understanding of eigenvectors and eigenvalues.
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Appendix: Grading Scheme for Assigning Points
to Open-Ended Response Questions 8 and 9b

Q # Points awarded and criteria

8 3 points:
Method 1: Full points were awarded to students who reasoned about the determinant
to arrive at the correct conclusion without making computational or conceptual errors.
Examples of this kind of reasoning are shown below.

(i) det A− λIð Þ=0 implies λ− 1ð Þ λ− 4ð Þ=0 implies λ=1 or λ=4 implies λ=2 is
not an eigenvalue for the matrix A.

(ii) det A− 2Ið Þ= − 2≠ 0 implies λ=2 is not an eigenvalue for the matrix A

(iii) det A− λIð Þ= 3− λ 2
1 2− λ

����
����= 3− λð Þ 2− λð Þ− 2= λ2 − 5λ+4. Substituting 2

in the characteristic equation gives 4− 10+ 4= − 2 implies λ=2 is not an eigenvalue
for the matrix A.
Method 2: Full points were awarded to students who reasoned about A− λI without
using the determinant to arrive at the correct conclusion without making any
computational or conceptual errors. Examples are shown below.

(i) A− 2Ið Þ x
y

� �
=0 implies x=0 and y=0 which is the trivial solution, so λ=2 is

not an eigenvector for the matrix A.

(ii) A− 2Ið Þ≅ 1 0
0 − 2

� �
, and the column vectors of this matrix are not linearly

dependent, so λ=2 is not an eigenvalue.
(iii) rref A− 2Ið Þ does not have a free variable, so λ=2 is not an eigenvalue.
(iv) The first column of A− 2Ið Þ is not a scalar multiple of the second column so

λ=2 is not an eigenvalue so λ=2 is not an eigenvalue.
2 points: Two points were awarded to students to students who take a conceptually
correct approach (either by reasoning about the determinant or by reasoning about
A− λI without using the determinant) but either

• made a computational error (e.g. factoring the characteristic polynomial
incorrectly) or

• did not offer a clear conclusion about whether 2 is an eigenvalue or not, or
• arrived at the correct conclusion without a full explanation of why

1 point: One point was awarded to students whose response included some evidence of
conceptual understanding, but who made a conceptual error (which might be
accompanied by a computational error).
0 points: No points were awarded to students who left the page blank, or whose
response: (i) gave no evidence of conceptual understanding, or (ii) said something like
“I don’t know.” Example of responses we considered to include no evidence of
conceptual understanding are “Yes, because A = PDP−1

” and “I say it is… because…
there are 2’s in the problem.”

(continued)
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(continued)

Q # Points awarded and criteria

9b 3 points: Three points were awarded to students whose response appropriately
coordinated with the eigen-concept, referenced (either by directly naming or by
explicitly referring to their work shown in 9a) all three correct vectors, and provided a
correct rationale for this selection.
2 points: Two points were awarded to students whose response provided at least two
correct explanations (e.g. Mx= λx is written and student writes that “an eigenvector
tells you the direction of stretching”) but did not identify and explicitly describe what
happens to all three correct vectors.
1 point: One point was awarded to students who either

(i) Provided one correct explanation (e.g. by either writing “Mx= λx” or “an
eigenvector tells you the direction of stretching”) and explicitly connected this
explanation to at most one correctly selected vector

(ii) Suggested components of M that would transform x into one of the given
choices, such as M = I, − I, or 0.

0 point: No points were awarded to responses that do not coordinate with the
eigen-concept, do not suggest components of M that would transform x into one of the
given choices, says I don’t know, or leaves the page blank. An example of student
response to question 9 which was awarded 0 point was “all are the same size.”
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Part III
Dynamic Geometry Approaches



Mental Schemes of: Linear Algebra Visual
Constructs

Hamide Dogan

Abstract This chapter is discussing the effect of instructional dynamic visual
modalities on learners’ mental structures. We documented the effects by comparing
the thinking modes, displayed on interview responses, of the learners who were
exposed to dynamic visual representations, to those who were exposed to the tradi-
tional instructional tools. The data came from twelve first-year linear algebra stu-
dents’ interview responses to a set of questions on the linear independence concept.
Our findings point to notable differences on the nature of the mental schemes that
learners displayed in the presence and the absence of the dynamic visual modes.

Keywords Linear algebra ⋅ Visualization ⋅ Thinking modes
Instructional modalities

1 Introduction

There are both empirical and theoretical publications on linear algebra education.
Some focuses on the embodied, symbolic and formal thinking both from a peda-
gogical perspective (Dogan, 2006; Dogan, Carrizales, & Beaven 2011; Gol Taba-
ghi, 2014; Salgado & Trigueros, 2015; Stewart & Thomas, 2009, 2010; Zandieh,
Wawro, & Rasmussen 2017), and from a perspective of the role of instructional
technologies in cognition (Dogan, 2004, 2013; Dogan-Dunlap, 2010; Mariotti,
2014). Others discuss further learning difficulties with basic linear algebra concepts
(Carlson, 1997; Dorier & Robert, 2000; Dorier, Robert, Robinet, & Rogalsiu, 2000;
Dorier & Sierpinska, 2001; Hillel & Sierpinska, 1994; Stewart & Thomas, 2009;
Thomas & Stewart, 2011). For relevant work, see Bouhjor et al., Chap. 9, Plaxco
et al., Chap. 8, and Turgut, Chap. 11 in this volume. Many of these publications
state that students have problems with the abstraction level of linear algebra
material. The high level of formalism in linear algebra seems to make learners have
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the feeling of lack of connection to what they already know in mathematics.
Additionally, axiomatic approach to linear algebra appears to give many students
the feeling of learning a topic that is unnecessary for their majors. Another area of
difficulty appears to be with the multiple representational approaches used in linear
algebra. Apparently, students have difficulty in recognizing different representations
of the same concept. Many lack logic and set theory knowledge (Carlson, 1997;
Dorier et al., 2000; Dorier & Robert, 2000; Dorier & Sierpinska, 2001; Hillel &
Sierpinska, 1994). Specifically, students’ lack of skills in elementary Cartesian
Geometry (Dorier & Sierpinska, 2001), and their inadequate set theory knowledge
(Dogan-Dunlap, 2010) seems to cause the majority of learning difficulties in linear
algebra courses. Dorier and Sierpinska (2001) argue that an understanding of linear
algebra requires a fair amount of cognitive flexibility. Dubinsky (1997) further adds
that:

It seems that mathematics becomes difficult for students when it concerns topics for which
there do not exist simple physical or visual representations. One way in which the use of
computers can be helpful is to provide concrete representations for many important
mathematical objects and processes (Dubinsky, 1997, p. 104).

Some researchers consider providing initial experiences via easily accessible
tools (concrete or visual) as the necessary means for a successful uncovering of
meanings behind abstract ideas (Dogan, 2004, 2006, 2013, 2014b; Dogan-Dunlap,
2010; Gol Tabaghi, 2014; Harel, 1987, 1989, 1997, 2000; Mariotti, 2014; Stewart
& Thomas, 2004). In fact, this very idea motivated us for our investigation. By
collecting data from three groups of differing instructional tools, we were able to
investigate the differences and similarities in their cognitive schemes. In this
chapter, in an attempt to shed light on the effect of visual representations, we
compare the modes of three groups of matrix algebra students. One group was fully
exposed to dynamic visual representations, both in lectures and as part of home-
work assignments. The second group was given traditional instructional means,
coupled with take-home assignments integrating dynamic visual representations.
The third group lacked any exposure to dynamic visual representations.

Besides the difficulties reported above, the changing demographics of the linear
algebra courses add challenges. In fact, due to advances in technologies, such as
digital computers, used widely in engineering schools linear and matrix algebra are
among the advanced mathematics courses attracting more and more students from
other disciplines (Torres & Dogan-Dunlap, 2006; Tucker, 1993). These students are
usually not prepared or at best ill-prepared for the high abstraction level of matrix
algebra courses. Since students are lost in much of the abstraction, even the simplest
ideas become difficult to comprehend. Thus it creates high stress, in turn “burn out”,
and as a result, high failure rates (Dogan, 2012, 2013, 2014b; Dogan-Dunlap, 2010;
Dorier et al., 2000; Sierpinska, Trgalova, Hillel, & Drayfus, 1999).

According to many researchers (Dubinsky, 1997; Harel, 1987, 1989, 1997,
2000) students can cope with abstraction if flexibility between representations of the
same concept is established. Abstraction might be successfully dealt with if concept
images (defined as all mental pictures, properties, and processes associated with the
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concept), and concept definitions [defined as a form of symbols used to specify the
concept (Hiebert & Lefevre, 1986)] are not contradicting one another. On the other
hand, others argue that multiple representations without inquiry may not provide
the cognitive support students need in coping with abstraction (Dogan, 2006, 2013;
Dogan-Dunlap, 2003; Dorier et al., 2000; Gardenfors & Johansson, 2005; Harel,
1997, 2000; NRC, 2000). Indeed, it has been reported that technology with inquiry
may provide the first-hand knowledge learners need to make better sense of the
second-hand knowledge (Wawro, Rasmussen, Zandieh, Sweeney, & Larson, 2012).
First-hand knowledge is defined as the knowledge obtained through direct expe-
rience, while the second-hand knowledge is defined as the knowledge obtained
from formal descriptions (Schwarz, Martin, & Nasir, 2005).

In addition to the wide range of computer activities implemented in many linear
algebra classrooms (Leon, Herman, & Faulkenberry, 1996; Roberts, 1996; Wicks,
1996), there has also been studies documenting student performances in the pres-
ence of technology-based activities (Dogan, 2004, 2013; Dogan-Dunlap, 2010,
2003; Gol Tabaghi, 2014). While some of these studies reporting learner’s diffi-
culties with geometric representations (Stewart & Thomas, 2009; Thomas &
Stewart, 2011), others documented the effect of dynamic geometry software on
one’s cognition of linear algebra topics such as linear transformations (Gol Tabaghi
& Sinclair, 2013) and eigenvealue and egenvector tasks (Gol Tabaghi, 2014;
Stewart & Thomas, 2009; Zandieh et al., 2017).

Leron and Dubinsky (1995), as an example, reported that as a result of writing
programs in ISETL [a programming language (Dautermann, 1992)] as solutions for
abstract algebra questions, a substantial increase was observed in students’ com-
prehension of abstract algebra concepts. ISETL allowed students, through the
inquiry process, to construct their initial understanding of the concepts, thus
facilitating the formation of the connections between the existing knowledge, and
newly introduced concepts. Another is a study by Sierpinska et al. (1999). They, in
their paper, shortly discussed the effect of Cabri (a dynamic geometry software) on
their students’ mental images of both linear combination and linear independence
ideas. Contrary to the findings of Leron and Dubinsky (1995), in abstract algebra
cognition, Sierpinska et al. (1999) reported no significant findings.

Moreover, Turgut (see Chap. 11 in this volume) documented their participants’
verbal signs used in their conversation while working with a dynamic geometry
software to discover properties of linear transformations. Gol Tabaghi (2014) talked
about how dragging in a dynamic geometry environment changes student’s
awareness, thus developing meanings for eigenvalues and eigenvectors. Also,
Bouhjar et al. (Chap. 9 in this volume) discussed the effect of two instructional
approaches with two separate groups (one traditional and the other, a computerized
program called TIMES). Their findings showed no significant difference in the two
groups’ performance on procedural questions. They stated however that the group
who went through the TIMES program outperformed the traditional group on
conceptual questions. For a description of TIMES, see Bouhjar et al., Chap. 9 in
this volume. Our work reported here is likewise comparing the effect of differing
instructional tools. Unlike the previous study’s focus (performance on procedural
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vs. conceptual questions), our focus is on the type of modes students displayed in
the presence and absence of dynamic geometric representations.

We investigated the particular area utilizing a set of structured clinical interviews
with 12 volunteers from three sections, with differing instructional means, of a
linear algebra course. In this chapter, we discuss the findings of our investigation
from this particular work.

Our research question was to document the effect of visual representations in
learners’ mental images. We investigated the potential effects by addressing the
following two tasks:

(1) The frequency of visual representations that occurred on student responses to
interview questions.

(2) The nature of these visual constructs (similarities and differences in the three
differing instructional groups).

2 Framework

Sierpinska’s (2000) framework on student thinking modes provided the analysis
tools for our investigation. Sierpinska (2000) reports three kinds of thinking modes
occurring in linear algebra courses. These are Synthetic-Geometric,
Analytic-Arithmetic, and Analytic-Structural. According to Sierpinska (2000), the
three thinking modes differ mainly in the representational types. Precisely,
Synthetic-Geometric category uses geometrical representations, and in this group,
objects are given readily through visual modes, but not defined (Sierpinska, 2000).
For instance, in this classification, a line or a plane may be considered as a
pre-given object with a recognizable shape located in space (Sierpinska, 2000). As
another example, consider the visual representations of a set of vectors in geometric
environments, in this scenario, the linear independence of these vectors can be
determined using the location of the vectors within the geometric systems.

Analytic modes, on the other hand, use numerical and algebraic representations.
In these modes, objects are defined. For instance, the formal definition of linear
independence uses an analytic mode (Sierpinska, 2000). Within the analytic cate-
gory, Sierpinska (2000) classifies the modes further into two separate groups. One
is the Analytic-Arithmetic, and the other is the Analytic-Structural mode. In con-
trast to the abstract, symbolic, and formal nature of the Analytic-Structural cate-
gory, Analytic-Arithmetic category considers objects on their computational
processes. For instance, with the Analytic-Structural classification, learners may
consider a set of vectors in connection with the vector space they are a member of,
and determine the set’s linear independence using the dimension of the vector
space. In the Analytic-Arithmetic modes, learners may proceed to the row reduction
processes, solely computational approaches, to address the linear independence
tasks. See Table 1 for more descriptions and sample indicators of each category.
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We should also add that we use the term “algebraic” interchangeably with the
term “structural” as in the analytic-structural mode since Sierpinska’s framework
appears to have been focusing mainly on the algebraic/symbolic representations in
her categorization of the Analytic-Structural types (2000).

3 Methodology

Data discussed in this chapter came from our work with twelve students enrolled in
the three sections of a first-year matrix algebra course at a Southwest University in
the US; one with minimum exposure to static geometric modes namely group C,
and the other two implementing, in varying intensity, interactive web-modules,
namely groups A and B. We used alphanumeric names to refer to the students
enrolled in the three sections. For instance “A12” is used for a student enrolled in
the section, A. We also used the terms “he” and “she” sporadically and inter-
changeably with no direct association to the gender of our participants.

Table 1 Thinking modes modified from Sierpinska (2000)

Mode of thinking Representations Indicators

Synthetic-geometric Graphical
representation provide
properties of objects
readily it describes an
object but not define it

Student is able to
determine whether
vectors whose graphs
are provided in R2 or R3

are linearly
independent or
dependent

Analytic modes Analytic-arithmetic Numerical
representation linear
combination defines the
object

Student is able to
construct matrix from
vectors, compute
row-reduced echelon
form and relate reduced
matrix to linear
dependence and
independence

Linear Combination Student is able to find/
use linear combination
of vectors and
determine linear
independence

Analytic-structural Objects are considered
in a system

Use of the dimension of
vector space in
determining linear
independence of
vectors
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3.1 Section Characteristics

In the three groups, topics were presented via lectures mainly through formal
definitions, theorems, and arithmetic computations. Section A however differed
from B markedly in that even though both sections assigned bi-weekly investigative
take-home tasks integrating online modules, section A integrated these modules
fully into its lectures as well. See Table 2 for a summary of the section
characteristics.

In the group C, the classroom lectures of the topics were similar for the most part
to that of section B. Topics were covered mainly via formal definitions, theorems,
and arithmetic computations. Even though it was not the intended approach for
section C, the instructor of this section regularly provided the static versions of the
graphical representations in the lectures. What set this section apart from the
groups, A and B, though, is the absence of the guided investigative interactive
web-based take-home assignments.

To summarize, looking at Table 2, one can observe that group B was exposed to
the dynamic visual representations solely via take-home assignments, and group C
was introduced to the static geometric modes only in its lectures. Group A, on the
other hand, is the only section that made use of the dynamic pictorial representa-
tions in both lectures and take-home assignments.

3.2 Web-Module and Companion Investigation

Throughout the semester, we administered seven guided investigative assignments
using a set of interactive online modules. The theme of the chapter, however, came
from data gathered right after an investigation on the linear independence relevant
ideas. This investigation was coupled with a web-module. Three separate snapshots
of the particular module can be seen in Fig. 1. In this figure, frame (a) shows a view
of the input boxes for vectors and scalars. Frames (b) and (c) depict, from two
separate angles, the geometric representations of various vectors (as line segments

Table 2 Characteristics of the three matrix algebra sections

Characteristics Groups
A B C

Same instructor √ √
Investigative assignments via web-modules √ √
Lectures integrating interactive web-modules √
Lectures integrating static geometric representations √
Lectures integrating formal definitions, theorems, and arithmetic
computations

√ √ √

Same textbook √ √ √
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with arrows) along with a few linear combinations (as dots). For instance, using the
module, one can consider a plane in connection with the 3-dimensional space.
Moreover, one can study vectors on their relative positions in the 1–3-dimensional
spaces formed by the linear combinations of the vectors. The current location of the
module can be found at Dogan (2014a).

As mentioned earlier, the online-based investigative homework was assigned
only to the groups A and B. This investigation required learners to use the particular
online module in Fig. 1. This was to address the mathematical tasks, on the solu-
tions of two separate vector equations, namely w= du+ ev+ lt for real numbers d,
e, l, and Au+Bv+Cw+Dt=0 for vectors, u, v, w, and t. While the first equation
was to address the linear combination ideas, the second was to bring up the linear
independence tasks. This investigation moreover asked students to compare and
contrast the solutions of the two equations for twelve different sets of vectors. This
task furthermore provided a detailed description of the web-module and an infor-
mative example. It guided learners via tasks that gradually became more abstract
and thought-provoking. That is, earlier vectors were numerical and easier to
observe their relative positions in visual environments. Latter vectors, however,
became increasingly symbolic. Thus, identifying linear relations among them
required not only the observation of the visual objects but also the use of more
formal and abstract though processes.

For example, on the frame (b) in Fig. 1, one can observe the module providing a
geometric representation of a linear combination of two vectors, u= ð1, 2, 3Þ
(upper left) and v= ð1, 0, 6Þ (lower right) resulting in the vector w= ð3, 4, 12Þ
(middle) (i.e. w=2u+ v). The dots seen in the frames (b) and (c) stand for the visual

Fig. 1 Module view
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forms of some of the linear combinations. Indeed, by tracing the dots, one can
easily verify the linear combination, w=2u+ v, visually.

To elicit more abstract thoughts, later in the investigation, the following strictly
symbolic vectors (u= a1, v= a5, t= a0, and w= a10) were given. As seen in Fig. 1,
this module includes only three input-boxes for the visual construction of linear
combinations. Thus, the fourth vector, w, can only be sketched as a line segment.
Hence, w’s potential linear connection to other vectors has to be observed via its
relative positions within the module’s geometrically constructed system.

To summarize, in this investigation, having learners work with two separate
equations involving vectors with solely numerical and symbolic representations, the
goal was to facilitate the formation of first-hand knowledge, which may become an
anchor for the mental construction of the more formal external ideas introduced
mainly via lectures (second-hand knowledge).

3.3 Interview Questions

Students volunteered for a set of one-on-one interviews. Interviews were conducted
right after the class coverage and the completion of the take-home assignment
discussed above. Each interview lasted about an hour, and each began with a set of
pre-determined questions, on the basic vector space concepts such as linear inde-
pendence, span and spanning set. We added new questions on an as-needed basis
for the clarification of the responses as well as to solicit further information on one’s
mental images. Pre-set questions were determined based on the most common
learning difficulties reported in the literature (Dogan, 2004, 2006, 2013, 2014b;
Dogan-Dunlap, 2010; Dorier et al., 2000; Gardenfors & Johansson, 2005; Harel,
1997, 2000; NRC, 2000; Sierpinska, 2000).

Each participant began the interview with a slightly modified version of the same
set of questions, provided on a sheet of paper. The modifications entailed negligible
changes mainly on the numerical values or the order in which the questions were
administered. These questions covered a range of topics from linear independence
to dimension ideas. Given on one such question sheet, questions 1 and 2, for
example, were general enough to get a glimpse of the modes students brought out
of their existing mental schemes of linear independence concept.

Question 1: Define the linear independence of a set of vectors.
Question 2: Give an example of a linearly dependent set of vectors.

Taken from the same question sheet, the question number 4, on the other hand,
was given to elicit primarily the mental structures displayed in the absence of the
numerical representations.

Question 4: Given a linearly independent set, u1, u2, u3, u4f g, in Rn.
Determine the linear (in)dependence of the set u1, u2, u3, u4f g. Explain.
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Also, there were questions to elicit the thinking modes used to make connections
between the linear independence ideas and the other relevant topics. Question 8 is
an example of this kind. Indeed, this question was given to document the modes
used to connect the nonzero solutions to the linear dependence ideas.

Question 8: Given the vector equation a1u1 + a2u2 + a3u3 = 0 with a solution,
a1 = 1, a2 = − 2, and a3 = 0. Determine the linear (in)dependence of the set,
u1, u2, u3f g. Explain your answer.

3.4 Analysis

A qualitative approach, namely the constant comparison method (Glaser, 1992) was
used to analyze the interview responses. The interviews were first videotaped, and
next transcribed. The analysis of the transcripts was conducted independently by
three raters following the Sierpinska’s framework (2000). The average rater cor-
relation is calculated to be about 75%. Each analysis focused on the identification
and classification of the modes as displayed on the interview responses. At this
point, we should note that some responses contained multiple modes. Thus these
responses were included in multiple categories. Furthermore, as a result of a con-
sensus among the three raters, we obtained a final list of nine categories. In fact, in
this chapter, we are utilizing the particular list to support our arguments on the
effect of visual representations in one’s mental structures (see Table 3).

The final list contains nine categories of thinking modes. See Table 3 for all nine
categories with their titles, and the frequency of responses in each class. The
category, “One vector comes out of a plane,” with the abbreviation “O” is one of
them. This category includes responses that make use of the geometric features of
linear objects such as planes, lines, and the relative positions of vectors on these
linear environments. The excerpt below is a representative of the types of responses
included in the particular category. It is easy to see that this excerpt belongs to the O
category. In fact, the phrases; “vectors either on the plane”, “go up”, and “another
dimension” are referring to a geometrically formed plane and a set of vectors
located on this plane.

Because I can’t, I can’t, I don’t think I can form, uh… I can do some like state a scalar, like
multiply this one times a scalar add it to this one to get it to go up like this…just ‘cause
these are on the same plane I want to think that they are gonna stay… when we look at the
collection they’re all just… since they are on a plane, they are just gonna form like this, or
somehow, other spots on these dots… but I don’t think they’ll jump up to the next… like
another dimension…

The particular response moreover contains phrases hinting to the mental struc-
tures that are little more computational. Thus, it was also considered for the cate-
gory, LCS. This category included responses where students refer to the linear
combination ideas with specific justifications. We indeed can observe this behavior
in the participant’s explicit mention of the arithmetic operations. The phrase, for
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instance, “I can do some like state a scalar, like multiply this one times a scalar add
it to this one to get it to go up like this” clearly indicates that, at the time, there were
thought processes at work, applying the vector operations of scalar multiplication
and addition. Looking at Table 3, one can see that the category with the most

Table 3 Number of responses in each category

Label Category Group
A

Group
B

Group
C

Total

O*+ One vector comes out of a plane
Vectors lie on the same plane
Scalar multiples of vectors on plane

62 34 45 141

LC*+ Linear combination just stated, no work
Linear independence definition
Matrix column dependence
Scalar multiple
Geometric and algebraic notions

152 23 37 212

LCS*
+^

Linear combination of vectors given
Algebraically
Geometrically
Operations on vectors

231 109 265 605

D* Vectors go in the same or different direction
Different vectors
Angle of vectors
Connected vectors

8 9 8 25

Z^* Zero vector
Algebraically adding vectors gives zero
vector
Geometrically tracing vectors reaches zero
vector
Set has a zero vector

28 0 13 41

(ZS)+^ Solution type
Unique/infinite
Matrix forms
Independent variable
Zero row/column

169 64 131 364

V*+ Vector space dimension
Number of vectors versus dimension of space
Plane versus Rn

Number of component of vectors
Basis vectors
Number of equations versus unknowns

133 89 124 346

E^ Row reduced echelon form 35 41 90 166
L* Overlapping

Lines collinear
Lines parallel

4 0 28 32

*Geometric categories, + algebraic, and ^ arithmetic categories
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number of responses is the LCS category (with 605 responses), followed by the
category, ZS, (with 364 responses).

Based on the framework of Sierpinska (2000), we argue that some or all
responses in the categories, O, LC, LCS, D, Z, V, and L can further be considered
as responses using Synthetic-Geometric modes. The categories, O, LC, LCS, Z, ZS,
V, and E, on the other hand, contain responses that display arithmetic or/and
algebraic modes. As mentioned earlier, many responses displayed multiple mental
constructs, and naturally, they were included in the multiple categories. For
example, the mode classes, O, LC, LCS, and V include responses referencing both
geometric and algebraic thought processes. The categories, D and L, however, are
the ones including responses with strictly geometric content, and the E category
contains strictly arithmetic responses.

4 Results

4.1 Comparison of Groups

Once categorizing the modes into the three main categories, we furthermore
computed the frequency of responses containing mixed and solo modes. Figure 2
provides a chart displaying the percent responses of these thinking modes. Looking
at the bars in the figure, one can easily verify that all three groups produced the
highest percentage of responses in the mix-use of the Geometric/Algebraic, and the
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Fig. 2 Percent of mixed/solo mode usage in groups
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mix-use of All Three modes followed by the mix-use of the Algebraic/Arithmetic
classifications.

An increasing behavior from the group A (28.10%) to the group C (35.76%) is
observed among the responses containing all three modes as well as the responses
containing strictly arithmetic modes (4.26% in group A; 11.11% in group B;
12.15% in group C). This predisposition, however, is reversed for the number of
responses displaying both Geometric (Synthetic-Geometric) and Algebraic
(Analytic-Structural) representations. That is, this time, the incline is from the group
C (27.80%) to the group A (42.21%). Figure 2 furthermore shows that the percent
responses in the mix-modes of geometric/arithmetic, strictly algebraic, and strictly
geometric categories are all very small, hence negligible.

One can then conjecture that the algebraic and geometric modes were not used
standalone but rather interweaved with other modes. Another word, all three groups
produced responses containing algebraic modes mixed with the arithmetic repre-
sentations at about same percentage. The mixing of the Analytic-Structural (alge-
braic) with the geometric modes, on the other hand, was at the highest frequency,
and more prominent in both groups A and B with a slightly higher quantity in the
group, A.

In short, comparing the percent responses from Fig. 2, group A followed by the
group B shows higher tendencies to incorporate the geometric entities with the
algebraic modes. Group C, on the other hand, displays tendencies to use arithmetic
modes unaccompanied, or all three modes simultaneously. Looking closely at the
manner in which these modes are used, we also identified drastically different
mental structures at work in each group. These differences seem to be more
prominent among the geometric modes. To be exact, in the groups A, and B, the
initial knowledge appeared to have been shaped mainly by the geometric objects.
Group C, on the other hand, revealed an initial knowledge, influenced mainly by the
numerical entities.

4.1.1 Nature of Modes in Group A

Group A’s geometric representations, for the most part, revealed dynamic features.
That is, during the interview, many participants in this group used external means
such as hand gestures, pencils, tables, and the interview room. Additionally, group
A provided descriptions closely paralleling the module features, seen in Fig. 1.

Excerpts below, taken from A21’s interview responses, for example, are
revealing the overall behavior of all the participants in the group. One can see that
in this excerpt, SA21 is providing a vivid geometric description of linear operations
as dots. SA21 furthermore is using hand gestures to describe the shape formed by
these dots, and furthermore using the formation to make arguments for the
dimension cases. Thus, the excerpts are verifying the close resemblance of his
mental forms to the web-module seen in Fig. 1. His use of hand gestures and
external, objects such as pencils and tables, further reinforces our observations.
Additionally, the phrase “… I can do some like state a scalar, like multiply this one
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times a scalar add it to this one to get it to go up like this…just ‘cause these are on
the same plane I want to think that they are gonna stay…” is indicating that in order
to make sense of the arithmetic features of vector operations, SA21 is using his
view of the geometric entities.

SA21: Let’s see… what, what I think is jumping at me is, this one is up here, just because
we can express these as a combination does not mean that we can get this one…[student is
talking about the vector u4 described in the question as sticking out of the plane] ‘cause this
is in a different location, so maybe it is, and I would say linearly independent because we
cannot…Because I can’t, I can’t, I don’t think I can form, uh… I can do some like state a
scalar, like multiply this one times a scalar add it to this one to get it to go up like this…just
‘cause these are on the same plane I want to think that they are gonna stay… when we look
at the collection they’re all just…since they are on a plane, they are just gonna form like
this, or somehow, other spots on these dots… but I don’t think they’ll jump up to the next…
like another dimension?… [student is moving the pencils/vectors on the table standing for a
plane to imply that linear combinations will stay on the same plane].

Among the responses classified as the Analytic-Algebraic modes, in group A, we
documented responses that were mostly referring to the linear combination ideas.
These modes were primarily intertwined with visual structures. That is, almost all
participants in group A interpreted the algebraic features of the linear dependence
ideas in the context of the geometric notion of “vectors being on a plane”. The
excerpts below are examples of such perspectives. Take the participant SA12’s
response (below) given to the question number 3 from his interview question sheet:

Question 3: Given the set u1, u2, u3, u4f g where the vectors u1, u2, u3 are on the
same plane, and u4 is not. Determine if the set u1, u2, u3, u4f g is linearly inde-
pendent. Explain your answer.

The phrase “R2 so then these vectors automatically become combination” clearly
indicates that SA12 understands the linear combination ideas based on his/her
experiences with the visually constructed spaces, in the interactive web-module
(Fig. 1). In another participant’s excerpt, namely SA22, one can see similar mental
structures being applied. Indeed, this participant’s notion of “vectors on a plane”
and “linear dependency” appears to be intertwined. As a matter of fact, this student
regularly used the two ideas interchangeably, throughout her interview. In the
particular excerpt, SA22 is undeniably incorporating a conditional statement similar
to: “vectors being on a plane implies that they are [linearly] dependent on each
other.”

SA12: Because in R2 you only need two vectors to form, two linearly independent vectors
to form any vector inside of R2 so then these vectors automatically become combination of
the first two, and then the same thing for R3 but with 3 vectors and the fourth one would
have to be a linear combination of the first three, if they are linearly independent…

SA22: well this three are on the same plane so this will be like if I gave the example from
the previous one. So these three are dependent of each other or they can be. No, they are
because they are on the same plane…

In the Analytic-Arithmetic category, there were no notable differences in the
type of and the manner in which the modes were applied by all three groups. The
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top two frequencies in the Analytic-Arithmetic category came from the modes
referring to the solution types (ZS), and the row reduced echelon matrix forms (E).
Moreover, we observed that many responses incorporated the two modes, E and ZS,
simultaneously.

The excerpts below are the sample representations of the line of reasoning
applied by the participants of the group, A. In his response, SA21, for instance, is
clearly focusing on the structure of the reduced echelon matrix forms (rref) and
connecting this to the linear independence ideas. Indeed, his thought process is
evident in the phrase: “if this [matrix] ends up in, in the identity, this [set] would be
linearly independent…” Another participant from the same group, SA24, is using
an analogous reasoning.

Distinctively, though, this participant first connects the matrix form to a solution
type, and next, the solution type ideas to the linear independence concept.

SA21: Well I know, like I would like try to get the RREF, row reduced. …and if this ends
up in, in the identity, this would be linearly independent…

SA24: True, because when I input the matrix in the calculator, it only showed that the only
solution was a = 0, b = 0 and c = 0, this meaning that it is linearly independent…

To summarize some of the notable characteristics of the mode use, this group
revealed an initial understanding primarily structured by the geometric entities.
Furthermore, many in group A tended to use this notion to make sense of the
algebraic and more abstract tasks. Thus, group A naturally produced the highest
percent responses mixing algebraic and geometric modes. This group, on the other
hand, showed the least preference for the arithmetic means.

4.1.2 Nature of Modes in Group B

As mentioned earlier, the groups, A and B, showed similar tendencies in their use of
geometric modes. Both groups provided descriptions paralleling the module views
(see Fig. 1). Contrary to group A, group B, however, revealed disconnects between
the intended aspects of the module features and their interpretations. Thus, they
differed in the nature of the geometry-based mental structures.

The following excerpt from SB15’s interview, for instance, shows that the
geometric notions formed by this student diverge notably from the intended features
of the web-module (Fig. 1). We should note that some portion of this excerpt came
from his responses to a question of whether a set of 4 vectors,
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is linearly independent. Even though the numerical values were given in this task,
this question appears to have evoked geometric modes in his/her mental processes.
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This behavior supports our hypothesis of Group B holding an initial knowledge
shaped by geometric means. To further elaborate our observations, in an attempt to
address the question, this student consistently referred to various geometric shapes
such as hexagons and spheres. These analogies do not closely resemble the linear
objects (lines and planes) provided by the web-module. His descriptions are fur-
thermore revealing the dynamic use of external tools such as pencils and the
interview room. In this excerpt, B15 talks about dots as well but, contrary to their
use in the group, A, this participant’s notion of dots appears to entail only the notion
of dimension ideas. In fact, with the dots, B15 focuses largely on how things from
higher dimensions “look like” in lower dimensions.

SB15: Then, as I go it would start getting hexagonal, so you’re just getting the slices of this.
So you’re getting 2-dimensional objects out of something 3-dimensional. Now, in R4, I
think of like… let’s say, I don’t know bubble gum or something, or like a sphere but in that
sphere on the inside it’s like a very thin sphere… where it’s hollow on the inside and on the
outside I mean there’s space. But in that little thin layer is 3-dimensional space. The fourth
dimension is either is like on the outside doing the same… that’s about it.… imagine,
okay… like right now we are in R3 [meaning the meeting room], right? You see me, I see
you, and everything. But… imagine… okay, wait… uh… I guess the way I would think of
it is let’s just call this flatland [referring to either the table or the floor of the room] right
here, and it’s from… I read a… I read something where it said, okay, imagine we’re trying
to pass a 3 dimensional shape into space, what would it look like?… So, I’m trying to pass
this pencil through here. The first thing, let’s say, it’s a perfect tip, it would be a little dot…

In the Analytic-Structural (Algebraic) category, most responses in this group
contained the terms similar to “one depends on the other” and “one is a linear
combination of the other.” Unlike the other two groups, this group used them
strictly verbally without providing any justifications. The excerpts below are the
cases of such instances. In the first phrase, for instance, SB6 is simply indicating
that “…this vector was a combination of another two vectors…then …it was
dependent.” In his response, B6 falls short on providing any concrete linear com-
bination to justify his answer. Overall, the responses of SB6 indicate that, at that
point, SB6’s initial understanding of linear dependency may have been formed
mainly in the context of superficial (with no substantial insights) linear combination
ideas. As a matter of fact, this is plainly laid out in her second excerpt. In this
excerpt, SB6 provides an argument for the following interview question sheet:

Interview Question: Given an nxm matrix, A, where ai2 = ai4 + 3ai5. Determine if
the set, A1,A2,A3, . . . ,Amf g is linearly independent (Here, Aj is the jth column of
A). Explain your answer.

Even though in this question, an explicit linear combination among the columns
of a matrix is given, it can be seen that SB6 is struggling to apply the explicitly
given linearity between the columns of the matrix to the corresponding set of
vectors. This may furthermore be interpreted as, at the time, SB6 lacking any
connection between matrices and vector sets.
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SB6: …yeah, I said something like this…this were…what I thought about it is, this is a set
of vectors and these two…I mean this vector was a combination of another two vectors…
then I think since it was a combination I said it was dependent…

SB6: …well, I don’t know how to…like…like if this is…because what I am saying here is
like in a matrix…one of the columns is equal to these two…so…but here it’s saying that…a
matrix, which is this one, this…this doesn’t mean that this is equal to…another column
within the same matrix…

Similar to the other two groups, many participants of the group, B, also did not
reveal any differences in their use of arithmetic modes. That is, this group’s
responses included ideas from the solution types (ZS) and the row reduced echelon
matrix forms (E). For example, the student, SB6, in the excerpt below, is revealing
one such behavior. Here, SB6 is focusing on the existence of free variables as the
indicators of non-trivial solution cases. Thus, this student is connecting the matrix
forms, he obtained from a row reduction processes, to the solution types, in turn
later in the interview, using this idea to infer about the linear independence of vector
sets.

SB6: …when you have a…a matrix and it has a bunch of numbers and you can reduce it,
and if at the end you have any free variable…that means it is not a unique solution because
that free variable can be whatever…

To summarize the overall behavior of the group B’s participants, even though
the group’s initial knowledge was clearly shaped by the geometric entities, unlike
the group A, this group’s knowledge contained irrelevant features. Nevertheless,
many participants in this group, similar to group A, coupled algebraic and geo-
metric modes in their responses. Group B, in contrast, displayed notably higher
tendencies to apply arithmetic processes, and they did this in isolation.

4.1.3 Nature of Modes in Group C

In comparison to the groups, A and B, group C showed a drastically different
behavior. The responses in this group uncovered an initial knowledge that is shaped
mainly by the numerical entities. In fact, many in this group focused on the x, y, or
z components of vectors to make sense of the location of vectors or the dimension
of spaces. Thus, even though these responses were initially categorized as geo-
metric, they were revealing mental structures that are mostly numerical at its core.
Therefore, this group’s high percent on the use of all three modes (see Fig. 2) may
have been contaminated with their use of the numerical implications for the geo-
metric entities. In light of this fact, one may choose to re-label most of the responses
in this category under the category of the mix-use of Algebraic and Arithmetic.

Throughout the interview, a participant in the group C, SC6, for instance,
showed tendencies to interpret the various characteristics of vector spaces using the
components of vectors, rather than the geometric structures of span ideas, such as
lines and dots as seen in Fig. 1. Take the excerpt below. In this excerpt, SC6
interprets the vectors as having/not having a z-component (meaning nonzero/zero
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values). The student gave his response, on this excerpt, to a question similar to the
question number 3 stated above, for SA12, in the Sect. 4.1.1. The phrase “vectors
you always have to break them into components. You can’t add them when they’re
in terms of their length and their angle…” further reveals that SC6, at that point,
may not have held mental structures that could facilitate any connections between
arithmetic operations and their geometric counterparts. Indeed, at the time, SC6’s
initial knowledge appeared to have been, mostly, shaped by the numerical entities.
Throughout the interview, this participant and many in this group regularly used
similar knowledge to make sense of the geometric tasks.

SC6: Right, uh… with these two, because these three vectors, the one, this one, and this one
[forth vector described in the question as being off of a plane] are not co-planar, and these
two have no z component [referring to vectors described as being part of a plane] then I can
take the z component in this one [forth vector] which is the same as the z component on this
one, and the x components in the three of them, and the y components of three of them…

Group C, furthermore, applied its “vector component” ideas in their responses,
categorized as Analytic-Structural. In fact, this group used “vector component”
ideas, frequently, to justify their answers involving linear (in)/dependence ideas. In
the excerpt below, for instance, SC6 is applying his “vector components” view to
support his understanding of the linear operations and their geometric interpreta-
tions. Without a doubt, at the time, C6’s initial knowledge was heavily influenced
by the “vector component” features. In his interview responses, as a matter of fact,
C6 repeatedly justified the absence of the linear combinations of vectors, resulting
in the desired vector, by pointing to the differences in the component values of the
vectors. In her excerpt, this student, for example, provides an explanation to what
would occur as a result of the scalar multiple of a vector. This behavior is clearly
visible in the phrase “…the problem is the components between the two are not the
same…” Furthermore, with the statement, “I can’t change the orientation…” we
believe SC6 is considering geometric directions strictly in the context of the vector
component values.

SC6: …I can express all of my other vectors in terms of, of a separate one; a linear
combination of my other 2…but the problem is the components between the two are not the
same, multiplying it by a scalar would only… I can only make it longer or shorter, but I
can’t change the orientation….

Group C is, however, no different than the groups, A and B, when it comes to its
use of arithmetic processes. Likewise, in the Analytic-Arithmetic category, many in
this group used, repeatedly, the top two frequency producers. These are the solution
types (ZS), and the row reduced echelon matrix forms (E).

In the excerpt below, for instance, a participant from group C, SC3, is interpreting
the absence of the identity form as the indicator of the nontrivial solution types, in
turn, using this line of thinking to determine the linear dependence of vector sets.

SC3: okay let’s just go (student is writing new matrix thinking out loud) well this can be
because it can reduce completely if this goes, if this row what I understand, if this row is 0
and this goes I guess if turns out to be the answer is one zero zero (student writes new
identity matrix) this last row zero zero It can be linearly independent…
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4.2 Role of Visual Constructs

Table 4 summarizes the noteworthy similarities and differences, among the three
groups, in the manner in which modes were used. As seen on the table, only groups
A and B displayed initial mental structures that are shaped predominantly by the
geometric entities. Considering that these two groups were the only two who had
initial exposures to the dynamic geometric instructional representations, we con-
jecture that the particular visual instructional tools may have been the primary
influencing external factors in shaping their initial knowledge. In fact, group C’s
initial knowledge is a further testimony to that effect. That is, this group’s partic-
ipants displayed highly numerically structured initial mental forms. Also, recall that
the instructional dynamic web-based tasks were omitted from this group.

Dynamic visual instructional tasks, moreover, appeared to have encouraged the
two groups, A and B (highest percent being in the group A), to integrate their
geometric modes often with the abstract structures. Group C’s low percent
responses in the Geometry/Algebra mix-mode category further reinforces this
observation.

Last but not least, the effect of visual instructional modalities may have led to the
use of the external tools and gestures. As a matter of fact, throughout the interviews,
it was only the groups, A and B, who exhibited the various kinds of tools and
gestures. Once again, this behavior was lacking among the participants of group C.

Recall that group C was introduced to the static geometric sketches via its
lectures. These sketches appeared to have very little influence on the group’s initial
knowledge. Recall that group C displayed an initial knowledge dominated, for the
most part, by the numerical entities. Even though this group did include geometric
ideas in their responses, this behavior emerged only for the questions that were
inherently geometric. Even then, group C attempted to use their numerically shaped
initial knowledge.

Another distinctive behavior is observed among the participants of the groups, B
and C. The two groups exhibited a higher tendency to use arithmetic processes. In
light of the group A’s lower percent responses in this category, we, consequently,
conjecture that the absence of the dynamic visual representational tools, from its
lectures, may have resulted in the computational cognitive tendencies.

Table 4 Mode-use characteristics of the three groups

Characteristics Groups
A B C

Initial knowledge highly geometric √ √-
Initial knowledge highly arithmetic √
Gesture use √ √
Higher use of geometric features mixed with algebraic modes √ √
High arithmetic tendency √ √
√- stands for modes containing irrelevant characteristics
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5 Conclusion

We discussed the aspects of twelve matrix algebra students’ thinking modes from
their interview responses to the questions on linear independence. Interviews were
conducted right after the completion of an investigative assignment, using an
interactive online module. This module provided, mainly, the dynamic visual
representations. Interview responses were qualitatively analyzed using a framework
by Sierpinska (2000). We, furthermore, provided the comparisons of three separate
groups of a first-year matrix algebra course in the manners in which the modes were
applied.

To summarize our findings, notable differences were observed in the role of
visual instructional representations. The geometric instructional modalities
appeared to have shaped the initial knowledge of the groups, A and B. On the
contrary, the initial knowledge of group C revealed predominantly numerical
characteristics. Moreover, both groups A and B appeared to have used their initial
geometry-based knowledge to make sense of more abstract algebraic ideas.
Group C, on the other hand, showed tendencies to apply their numeric-based vector
component ideas to make sense of not only the abstract topics but also the geo-
metric concepts.

In conclusion, the prior introduction of dynamic geometric tasks, provided that
they are integrated both in-class and outside-class activities concurrently, may have
noteworthy benefits in structuring a strong supportive initial knowledge. Though, if
the geometric modes are introduced only as take home assignments (absent from
lectures), the effect may be tainted with the undesired outcomes such as the for-
mation of the irrelevant ideas as in the case of the group B.
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How Does a Dynamic Geometry System
Mediate Students’ Reasoning on 3D
Linear Transformations?

Melih Turgut

Abstract In this chapter, I discuss the integration of the Dynamic Geometry
System (DGS) with the teaching and learning of two (2D) and three-dimensional
(3D) linear transformations. To do this, certain tools and functions of the DGS, in
particular, the dragging, slider and grid functions, and the Rotate and move 3D
Graphics and ApplyMatrix construction tools of GeoGebra are focused on. Through
semiotic potential analysis, a task is designed for students’ construction of math-
ematical relationships among the characterization of the transformation matrix,
determinant of the transformation matrix, and area and volume of given and
transformed figures. A task-based clinical interview was conducted with a pair of
undergraduate linear algebra students. Data from video records, student production
and field notes was analysed within a semiotic lens with reference to the theory of
semiotic mediation. The results appear to confirm that the DGS can be considered
as an effective tool of semiotic mediation for characterizing 3D linear transfor-
mations. Such an approach to the data also provides a detailed understanding for
students’ reasoning steps from the use of artifact to creating mathematical meaning.

Keywords Semiotic mediation ⋅ Teaching-learning linear algebra
DGS ⋅ 3D linear transformations

1 Introduction

The notion of linear transformation is a core concept in linear algebra and is a
unique topic associated with the notion function. Even though undergraduate linear
algebra students have meaning1 for the notion of functions from high school,
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1Hereafter, the word meaning refers to ‘systems of practices related to the object’ (Godino,
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they cannot easily establish a connection among functions, transformations and
linear transformation (Bagley, Rasmussen, & Zandieh, 2015; Zandieh, Ellis, &
Rasmussen, 2012, 2013, 2017). One reason for this could be the introduction to
students of the notion of linear transformation through fundamental rules or with
matrix representation as researchers indicate (Turgut, 2017), and this could also
trigger students’ failure to construct mathematical meaning of non-linear transfor-
mations (Dreyfus, Hillel, & Sierpinska, 1998). Making connection between func-
tions, transformations and linear transformations can be considered as a type of
theoretical thinking (Sierpinska, 2005). However, by giving particular attention to
the instructor’s role, it is possible to provide an environment where students
establish a bridge between a matrix and the notion of transformation
(Andrews-Larson, Wawro, & Zandieh, 2017).

The integration of Digital Technologies (DT) to mathematics teaching has
received great attention by educators for the construction of mathematical meanings
within the socio-cultural theory perspective (Falcade, Laborde, & Mariotti, 2007;
Leung, Baccaglini-Frank, & Mariotti, 2013; Mariotti, 2013, 2014), where the
central role of DT is based on its mediator role. Researchers have exploited the
potential of DT to design a teaching-learning environment, as well as looking at
students’ learning in a mediation process. In order to talk about the interactions
among DT, mediator and mediation, a specific model comes across; the theory
of semiotic mediation (Bartolini Bussi & Mariotti, 2008). In my recent studies
(Turgut, 2015, 2017; Turgut & Drijvers, 2016), which are parts of an extensive
postdoctoral (design-based) research project, I refer to this theory to analyse the
semiotic potential of certain tools and the functions of the Dynamic Geometry
System (DGS) for students’ construction of key notions for learning linear algebra,
as well as to analyse the emergence of mathematical thinking.

The postdoctoral project was designed with two major steps; local instruction
theories (Gravemeijer, 2004) within two different contexts. The notion of linear
transformations is first acknowledged in the use of a specific DGS (GeoGebra) to
create an environment for students’ construction of mathematical connections
between the notion of function, transformation and linear transformation, as well as
for characterizing matrices for specific (geometric) transformations in ℝ2 and ℝ3.
For the first step, nine tasks (Didactic Cycle I) were designed to provide students
with an environment for transition to formal mathematics, where in the first eight
tasks of Didactic Cycle I, the students characterized relationships between func-
tions, matrices, linear transformations and lengths and areas of the figures in the
DGS. The second step of the project was to design a DGS environment (Didactic
Cycle II, including seven tasks) for students’ meaning making on linear combi-
nation, span, linear independency-dependency and basis notions. All sixteen tasks
were piloted within the same group of linear algebra students.

In this chapter, a case from the project will be presented, after the eight tasks in
Didactic Cycle I. The present case, which is the ninth task of Didactic Cycle I,
concerns the mediator role of the DGS in the learning and characterizing of 2D
and 3D linear transformations, and also the making of connection between them.
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First, certain tools and functions of the DGS for students’ construction of a
mathematical link among a 3× 3 transformation matrix, the determinant of the
matrix, and concepts of area and volume of given and transformed figures will be
analysed. Next, students’ reasoning within a semiotic lens will be considered.
Therefore, in this chapter, the focus is on the following research question: How does
the DGS mediate students’ reasoning on 3D linear transformations?

For this purpose, the next section contains the study’s theoretical framework, the
theory of semiotic mediation (Bartolini Bussi & Mariotti, 2008), while the third
section provides the methods employed and the mathematical context of the study.
The fourth section presents an analysis of the data triangulation coming from
interviews. The chapter ends with a conclusion section where certain limitations
and a number of doubts are addressed.

2 Theoretical Framework

The Theory of Semiotic Mediation (TSM) was adapted into the mathematics
classroom by Bartolini Bussi and Mariotti (2008), based on Vygotsky’s notion of
semiotic mediation embedded in social constructivism (Ernest, 2010). Following
Vygotksy, the TSM postulates an idea that mathematical meanings can be con-
structed when the teacher, as a mediator, intentionally uses an artifact2 for students
to accomplish a carefully-designed task in a social-communicative environment. In
other words, in the TSM, constructing knowledge can be considered as a kind of
‘instrumented activity’ in a social context (Mariotti, 2009). The TSM aims to
transform students’ personal meanings on a proposed topic into culturally-accepted
mathematical meanings through the employment of a task. Consequently, the
interpretation of a task is a kind of mediation process, and this process mainly
focuses on the emergence of signs that are attached to students’ learning. Along this
direction, the TSM is described within two main notions; the semiotic potential of
an artifact and the design of didactic cycles by the teacher.

The semiotic potential of an artifact means the evocative power of the proposed
artifact for students’ construction of mathematical meanings (Mariotti, 2009, 2013).
Therefore, the search for an artifact’s evocative power needs careful analysis, both
didactical and epistemological, and also a phenomenological way to elaborate
students’ (possible) utilization schemes when they use the artifact. The teacher then
needs a learning route considering the students’ pre-knowledge on key concepts,
the goal of the task, the personal senses and mathematical meanings emerging in the
use of the artifact, and the teacher’s role. In light of this route, the teacher designs
task sequences for future didactic intervention, where the teacher exploits the

2Here, the notion of an artifact has a general sense. Arzarello (2013) points out that an artifact
could be considered as ‘a material with its own physical and structural characteristics made for
specific tasks’ (p. 8).
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artifact as a tool of semiotic mediation. Application of didactic cycles could form a
story beginning from human-computer interaction to formal mathematics, and
within a semiotic perspective, from signs that show a relationship between the
artifact and the task to signs that show a relationship between the artifact and
progressive mathematics (Mariotti, 2012). The teacher’s role in the application of
didactic cycles is to orchestrate student learning. Therefore, the teacher should ask
carefully constructed questions to make students focus on the task, and he or she
should be aware of the production of signs and, specifically, the emergence of
shared mathematical meanings.

The teacher could search for three types of signs to understand students’
learning, where a complex semiotic source occurs while the students encounter the
artifact; (i) artifact signs (aS), (ii) mathematical signs (mS), and (iii) pivot signs
(pS). Artifact signs could appear in the students’ immediate use of the artifact,
which are commonly implicit and foster the students’ initial perceptions on the
artifact’s tools and/or their functions. Mathematical signs refer to signs that show
students’ mathematization, such as expressing a conjecture, a hypothesis or a
definition, which may be indicators of culturally-accepted mathematical meanings
within the task context. Pivot signs can be considered as potential polysemy for the
construction of an interpretative link between personal senses and mathematical
signs. Of course, a sign has broad meaning including different kinds of resources;
for example, words, mimics, sketches or gestures. For the sake of page constraint,
the focus will be on the (verbal) signs that appear in the discourse. For example, as
described in Bartolini Bussi and Mariotti (2008), when high school students interact
with a specific DGS (in that case Cabri®) to explore the effects of a unknown
macro,3 certain specific signs appear through a haptic sense; ‘it moves’, ‘it does not
move’, ‘point’, ‘point on the object’ and so on, can be considered as aS. Next,
students produce mathematical expressions for a function; ‘a relationship that links
two points’, which appears as mS. In addition, in the discourse composed by the
students and the teacher, ‘independent’ and ‘dependent’ appear, and these can be
classified as pS because they indicate a double relationship between the artifact
context (e.g., points are independent) and the mathematical context (e.g., inde-
pendent variable). However, it should be noted that no linear transition from aS to
mS exists. In some cases, no pS may appear in the context of the discussion.

3 Methodology

This chapter is part of an extensive design-based research (DBR) (Bakker & van
Eerde, 2015) project, which includes two sets of didactic cycles as local instruction
theories (Gravemeijer, 2004). As briefly mentioned in the introduction, there are

3A specific tool belongs to the Cabri environment. For an analysis of its semiotic potential, see
(Mariotti, 2009, 2013; Falcade et al., 2007).
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two different contexts; Didactic Cycle I (9 tasks) for learning linear transformations,
and Didactic Cycle II for learning linear combinations, span, linear
independency-dependency and basis. In Didactic Cycle I, Task 1 and 2 are designed
for the students’ invention of a transformation as a special function and transition to
the idea of linear transformation. Task 3 and 4 are for characterizing the transfor-
mation matrix (if it is invertible, zero, unit, and so on), but also for geometric
applications, such as stretching, shrinking or reflecting the figures. Task 5 is for the
reinvention of fundamental rules of linear transformations, and Task 6, 7 and 8 are
for characterizing isometric transformations in ℝ2. The task presented in this paper
is the final one (the ninth task) for students’ making connection with geometric
properties in ℝ2 and ℝ3 and matrix (linear) transformations.

A task-based clinical interview was conducted together with two students (A and
B, both females and 20 years old) who had exhibited average performance in
previous mathematical courses and, with respect to their GPAs, A had 76.30 and B
had 77.10 (in the range of 0–100). The students had received certain courses, such
as (2D & 3D) geometry, abstract mathematics and fundamental calculus with
general physics. In addition to regular class lectures, A and B had attended
implementation of eight previous tasks in Didactic Cycle I. Therefore, they had
experience in the geometric applications of linear transformations in the dynamic
geometry environment. In other words, they knew the role of the determinant (e.g.,
as area) of matrix transformation and how the determinant, and thereby matrix
entries, could affect lengths and areas of geometric figures in a specific DGS. In the
application of the tasks, they experienced the artifact GeoGebra; in particular,
certain specific tools and functions, such as dragging, slider, 3D rotate, measure and
ApplyMatrix tools and grid function on Algebra, 2D and 3D Graphics window, as
will later be discussed.

Data was collected through a task-based video recorded interview with a laptop
facing the students, with a separate camera focusing on the students’ working
environment. The experiment lasted about an hour and screen recorder software
was also used to capture the students’ employed techniques with the DGS. The data
(discourse was translated into English) was analysed through a semiotic lens
considering categories of signs in the TSM.

Because the TSM particularly shows students’ mathematical thinking process
with digital technologies, along the data analysis, I selected moments that were
mathematically rich based on students’ discussion and interaction with the DGS.
Next, specifically, I explored verbal signs that show students’ initial explorations
and observations reflecting their personal meanings on the situation, where I cat-
egorised them as an aS. Through exploring the situation, when they expressed a
proposition, a remark or conjectures showing their personal meanings returning to
(new) mathematical meanings, I categorised those as mS. When specific signs
appeared that indicate a corridor from aS to mS (but not exactly meaning aS or mS),
I categorised them as pS.
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3.1 Mathematical Context and Semiotic Potential of DGS

Generally speaking, a (geometric) transformation in Euclidean space can be defined
as mapping, from ℝn to ℝm by T :ℝn →ℝm for x1, x2, x3, . . . , xnð Þ→
T x1, x2, x3, . . . , xnð Þ (Lay, 2006), but if the output of this specific function are linear
expressions, then the representation can be expressed through matrices by the
following:

T :ℝn →ℝm,T x1, x2, x3, . . . , xnð Þ=
a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
⋮ ⋮ ⋮ ⋱ ⋮
am1 am2 am3 ⋯ amn

2
664

3
775

x1
x2
⋮
xn

2
664

3
775.

In short, for ∀w∈ℝn, T wð Þ=Aw, where A (i.e., coefficients) is a m× n and w is a
n×1 matrix. Consequently, because of matrix algebra, T satisfies two properties for
∀u, v∈ℝn and k∈ℝ

T u+ vð Þ= T uð Þ+ T vð Þ,
T kuð Þ= kT uð Þ.

�

The case m= n=3 is focused on (because of the DGS availability that will be
explained), since there is a real vector space ℝ3. In many textbooks, geometric
applications of linear transformations in ℝ2 are well-presented. However, an
emphasis on relationships between the determinant of matrix (and therefore linear)
transformations and associated geometric meanings in ℝ3 or ℝn seem to be missing.
Generally, during a course, students learn the role of the determinant of the matrix
transformation in ℝ2, and they may make over-generalizations on such a view to
higher dimensions. With respect to the linear transformation of figures and 3D
objects in ℝ3, there are two interrelated situations that could arise; (a) transforma-
tion of planar figures in ℝ3, and (b) entire transformation of 3D objects. In the first
case, the relationship between lengths and areas of figures is dependent on matrix
entries, but is different to that in ℝ2 because the determinant of a 3 × 3 matrix could
be zero when areas of the initial figure and construction4 could be non-zero. In the
second case, the determinant of the transformation matrix is a factor between
volumes of the initial 3D object and the construction. The main objective of this
chapter is to provide a DGS environment for students to construct the epistemo-
logical views expressed above, where it is considered that they would also make
generalizations to higher dimensional spaces. For the emergence of such views, it is
postulated that the DGS, in our case GeoGebra, has semiotic potential with the
following tools and functions for my specific purpose:

4Hereafter, the notion of construction referring to initial drawing’s (figure or a 3D object) matrix
transformation is used.
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– The Dragging tool in 2D and 3D windows has a core function in any DGS that
allows the user to draw and manipulate objects freely. At the same time, if the
user constructs an object through commands and tools of the DGS, initial figures
can be dragged. However, the constructed objects cannot be dragged; for details
see (Jones, 2000; Mariotti, 2000, 2014). Consequently, the dragging tool could
evoke for variation as well as co-variation between independent and dependent
objects, and also invites the user to establish conjectures and theoretical thinking
(Gol Tabaghi, 2014; Leung et al., 2013; Lopez-Real & Leung, 2006; Mariotti,
2014). In the context of this paper, the function of dragging is to explore the
relationship between the initial drawing and construction of objects by manip-
ulating free points or figures and to create an environment for students to make
conjecture on the relationships between the transformation matrix, its determi-
nant, lengths, areas and volumes.

– The Slider tool works with the function of dragging, but first it has to be
constructed. The user can assign a real number to the slider and can define such
a real number as a parameter connected to an equation, a figure or a compu-
tation. By dragging it, the movement of the slider would change the parameter,
and therefore, the equation, the position of the figure or even the computation. In
our case, if the sliders are defined as entries of a matrix, then because of the
movement of the sliders, not only is the transformation matrix affected, but also
the lengths, areas, and even the volumes. To summarize, consider the slider as
providing the user a sense of dynamic variation (Turgut & Drijvers, 2016) for
students’ conjecturing on the effects of matrix entries (and determinant value) on
the geometric properties of figures and 3D objects.

– The ApplyMatrix construction tool can be used through an ‘Input’ line.
However, in order to use this tool, the user needs a square matrix (2 × 2 or 3 × 3)
and a figure or an object on which to apply the matrix transformation. Conse-
quently, this provides an environment for students to observe different manip-
ulations of transformed figures or objects in 2D or 3D Graphics windows under
specific linear transformations, if the user assigns sliders as matrix entries.
Therefore, for our case, the dragging of free points and objects, and the
movement of sliders (connected to matrix entries), by the students would evoke
a meaning for constructing relationships among the concepts of the determinant
of the matrix, the transformation matrix and its entries, length, area and volume
of the objects.

– The Grid function can be activated through right-clicking, and provides the user
a Cartesian view by representing the coordinates of points. In our case, it
enables the user to compute lengths and areas of initial and construction objects
quickly.

– The Rotate and move 3D Graphics tools enable the user to move a Cartesian
system on the 3D Graphics window and provides the user with a sense of spatial
orientation (Turgut & Drijvers, 2016), where the user can explore the manip-
ulation of initial and transformed figures and objects from different perspectives.
Consequently, these tools could enable students to establish conjectures on
different views of objects under certain linear transformations.
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3.2 Description of the Task

The steps of the task are divided into two parts with each part being formulated as
follows:
Part I

Step I: Open GeoGebra and define three sliders (a, b, c) on the (2D) Graphics
window.
Step II: Using the sliders’ values, construct a 3 × 3 matrix, naming it

matrix 1 =
a 0 0
0 b 0
0 0 c

2
4

3
5.

Step III: Construct a triangle on the 3D Graphics window and apply matrix
transformation onto it. Calculate the lengths and areas of the initial and constructed
triangles. Drag the free points and move the sliders. Answer the following with your
partner:

1. What are the roles of sliders on the 3D Graphics window?
2. What is the relationship between the determinant of the matrix and the lengths

and areas of the different triangles?
3. Drag the sliders to make one slider equal to zero and the others non-zero.

Explore each possibility and explain why the construction triangle has a non-
zero area, although the determinant of the transformation matrix is zero.

Part II

Step IV: Open a new GeoGebra sheet and repeat the first and second steps.
Moreover, activate the grid function on the Graphics window.
Step V: Draw a pyramid defining the points on the x, y and z-axes on the 3D
Graphics window, and calculate the lengths, areas and volume of the pyramid.
Step VI: Apply matrix transformation to each surface of the pyramid and calculate
the construction’s lengths, areas and volume.
Step VII: Explore the lengths, areas of surfaces and volumes of the initial object
and construction. Discuss your observations with your partner.
Step VIII: Explain, what would happen if you have a 4× 4 or an n× n matrix?

Of course, a synergy exists between the phenomenological analyses expressed
above, the students’ pre-knowledge and the goals of the task. Here, in Steps I, II and
III, it is assumed that the students first comprehend the sliders’ role on the length
and areas of the figures and, because they will use ApplyMatrix command, they will
relate the case with plane matrix transformations. Exploring the different situations
through the dragging function and slider tool, they will notice that although the
determinant (of the transformation matrix) is zero, the construction has a non-zero
area. They will explore the situation and comprehend the relationship between the
determinant of the partitioned matrix in the transformation matrix, and lengths and
areas of the figures. Next, moving the case to three and higher dimensional contexts
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(Steps IV–VIII), the students will make reasoning on the dimensions of the length,
area and volume and rows of the transformation matrix. After this, they will make
connection between the determinant of the given matrix and volume. Exploring the
different cases, they will generate their results to higher dimensional spaces of ℝn,
where the teacher’s main role here is to orchestrate the students’ making connection
between characterization of the transformation matrix, area and volume notions,
and generating their results.

4 Emergence of Signs in the Students’ Reasoning on 3D
Linear Transformations

At the start of the interview, the teacher introduces the protocol of the task to the
students. The students then begin to follow the steps as described in Sect. 3.2,
where they first construct sliders and thereafter use the slider’s values as parameters,
forming the matrix (as ‘matrix1’ at the Algebra window in Fig. 1). They open the
3D Graphics window and draw a triangle defining one point on the z-axis, and two
points on the x-axis. Next, they compute the lengths and area of the triangle using
software tools and apply matrix transformation to the triangle using their experience
coming from eight previous tasks in Didactic Cycle I. By following all details in the
task steps, they finally obtain the following GeoGebra interface (Fig. 1), before they
explore the questions given in the third step of the task.

After this, the students together begin to explore questions in the third step of the
task. Interestingly, before exploring the role of the sliders, the students briefly look

Fig. 1 Students’ initial DGS interface
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for the construction (triangle) because, initially, the software assigned a = b =
c = 1 (as in Fig. 1). At that time, the following discussion took place:

38 T: … what happens when they all [meaning the sliders] equal 1?
39 A: [dragging sliders] Aha … [looking for the construction] …
40 T: What about the construction here?
41 A: Ha. They are overlapping, when they [meaning the sliders] are all 1.
42 B: Also, because the areas of the triangles are the same.
43 A: It is due to the determinant. Actually, it is due to the determinant of the

matrix transformation.
44 T: We will discuss that. Now, let’s focus on the questions in the task.

In this part of the discussion (#39, #41–43) specific signs appear. For example,
‘overlapping when they are all 1’ and ‘the areas of the triangles are the same’ can be
considered as aS. Such expressions by the students are not only signs that their
focus is on the sliders’ roles, but also an indicator that the semiotic potential of the
amalgam of the dragging, slider and ApplyMatrix construction tools evoke the
emergence of characterization regarding the students’ personal meanings of
the transformation of a triangle; the determinant of the transformation matrix gives
a relationship between the areas of the triangles (#42–43), due to their experience
coming from the previous task settings in Didactic Cycle I. Following this, the
teacher intervenes to focus on the questions. Thereafter, the students’ views on the
effects of the sliders emerge with interlacement of specific aS, pS, and mS.

82 A: Their roles are changing the determinant, so that the relationship between
the areas [meaning the areas of initial triangle and construction] changes.

83 B: It also changes the lengths, since the figure changes.
84 T: Ok, could you explore other sliders? For example, slider a …

85 A: I think the sliders are affected according to the axes. For example, here,
because it [slider a] is the first component [meaning the transformation
matrix’s first component], it affects the figure [meaning the construction]
along the x-axis. Similarly, b affects the figure along the y-axis, and c does
with respect to the z-axis.

86 T: How can you confirm this? Explore your assertions.
87 A: [B is dragging the slider b] … Why does it [the construction] not move?
88 B: … Let’s change the viewpoint [using Move and Rotate tool].
89 A: Others have effect, but b does not.

Initially, (#82–83), the students’ focus is still with the sliders, because they still
could not characterize the sliders’ roles explicitly, which is apparent from the
emergence of an aS, such as ‘changing the determinant’, ‘areas’, ‘lengths’, ‘figure
changes’ and ‘along x-axis’. However, the word ‘effect’ transforms to a pS (#85),
which indicates an interpretative link between the students’ personal meanings and
the case. In other words, ‘effect’ has a double relationship with artifact and
emerging mathematical notion, where finally, an mS appears when student A
conjectures for changes and movements through the semiotic potential of tools and
functions of the DGS, where she relates those ‘changes’ with the matrix’s entries.
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The teacher is aware that student A’s conjecture is correct, but is not valid for the
transformation of two-dimensional figures in ℝ3 and therefore asks the reason and
an explanation of the situation (#86). However, the students finally observe that the
construction does not move along the y-axis (#87–89).

For the next step, they explore the effect of dragging sliders with different a,
b and c values, and are surprised that slider b does not change (or move) the
construction, which contradicts their initial experience. The discussion on the issue
took a while:

103 B: … the construction triangle should move when I drag b.
104 A: We searched for a, it moves along the x-axis, also for c. Therefore, I also

expected the same. But it does not!
105 B: Why is it not moving? …

106 T: Let’s go back to the task’s steps. [Repeating the steps] …
107 A: [they are together checking the areas] … They are the same. Why?
108 B: … determinant … Aha.
109 A: But, it should be possible when the determinant equals 1.
110 B: Here, the determinant is not 1 …

… …

116 B: … Also, the lengths should change, but they remain. How is the length
independent from the transformation matrix?

Specific signs, such as aS, ‘move’, ‘x-axis’, ‘checking the areas’ and ‘lengths
should change’ still appear (#104–105, #107–110, #116). This also means that they
still did not express an explicit mathematical reason for slider b’s effect on the
construction. Another fact is that student B still thinks that the ‘transformation
matrix’ could affect the ‘lengths’ (#116). However, after reading the instructions to
be followed in the task, they immediately relate the situation with the determinant,
where the ‘determinant’ can now be acceptable as a pS (#107–110).

Through the students’ personal senses to the notion of determinant, they observe
a situation that contradicts their conjecture as they already expressed in #109 and
#116, while they explore the relationship between the determinant value and the
ratio of the areas:

133 A: … [B drags sliders] … Does the area [meaning the construction’s area]
change?

134 B: It depends on the determinant’s value. Let’s calculate it now …

135 A: We can find it like this [showing the paper] … Aha. The determinant is
different, but the areas are the same …

136 T: Could you follow the steps of the task? For instance, what do you think
about the third question in Step III?

137 A: But now the determinant is zero! Oops.
… …

146 A: Let’s make b = 0. … Actually, if any of a, b or c is equal to zero, then it
[meaning the determinant] will be zero again. …
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Some of the aS ‘change’ and ‘the areas’ show their personal meanings regarding
the situation (#135–146). However, they finally notice that the determinant does not
give the factor between the areas of drawing and construction (#135, #137). The
teacher reiterates the instructions in Step III to move beyond considering the pivot
role of the ‘determinant’. At this point, an mS appears, and student A expresses the
role of entries of the matrix where her explanation is independent from the dragging
of the sliders (#146).

Next, the students continue their exploration. However, the teacher asks the
students in which plane they initially draw the triangle to make them relate why
the construction does not move along the y-axis with the matrix entries and the
determinant. This evokes emergence of specific mathematical meanings:

170 B: [thinking] … let me explain my view. We drew the triangle on the plane
generated by the x and z-axes; consequently we don’t have any
y. Similarly, the change in b does not affect anything, other values affect.
But, although we drag the sliders, the areas are always the same. I still
cannot find the reason …

171 T: How do you find the relationship between the areas of the triangle?
172 A: Normally, the determinant gives the factor. … But it is like … For

example, we explored a two-dimensional object, but in a
three-dimensional environment. Is it because of this?

177 T: Then explain, for our triangles here [pointing the screen], what kind of
matrix determinant gives the relationship between the areas?

178 A: Two-dimensional …
179 B: A 2× 2 matrix.
180 T: Can you find such a2× 2 matrix … here?
185 A: Yes [pointing to the second row and the second column of the matrix], if

we can cancel like this.

Student B expresses her feelings about the situation, saying that no relationship
exists between slider b and movement on the y-axis, because of the plane where the
initial triangle was drawn (#170). However, this is a complete aS that interlaces
with ‘effect’, ‘move’ and so on. Such signs indicate the student’s immature
explanation, because B is manipulated by the steps of the task. Therefore, the
teacher exploits the pivotal role of the ‘determinant’ and again asks how they
analyse the relationship between the areas of drawing and construction (#171).
Student A immediately relates the situation with the dimensions of the objects and
notices that the zero-determinant issue could be due to drawing a ‘two-dimensional’
object in a ‘three-dimensional’ environment, which can be accepted as an mS
(#172). The teacher then guides the students to make a connection between the
situation with a planar figure’s transformation, the transformation matrix and the
areas (#177, #180). Student A easily finds that the partitioned matrix creates a
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relationship between the areas (#178–180, #185), which is a pS, because it opens a
door to exploration and emergence of mathematical meanings.

For the next step, the students calculate the partitioned matrix’s determinant for
different sliders’ values and to check their understanding. Finally, they express their
conclusions for the first part of the task, which explicitly show the evolution
whereby personal meanings transform into mathematical meanings:

192 A: … we never considered a three-dimensional matrix transformation, I
mean in ℝ3, but the figure was two-dimensional … We never
experienced anything and, because of this, it was surprising that
dragging b [meaning dragging slider] did not affect anything.

195 T: Can you generalize such a conclusion?
196 B: We should consider our working environment’s dimension [meaning the

plane or space] and the dimension of the constructed object. Then we
can observe variations and movements of the construction.

197 A: Yes. If we consider an n× n matrix, then manipulations of the
transformation can be observed in ℝn.

Student A expresses that they first worked on matrix transformations in ℝ3, but
at the same time, she constructs a geometric meaning of the transformation of
planar figures in ℝ3 (#192). While student A’s explanation is independent from the
transformation of triangles and can be acceptable as an mS, student B points out
‘variations and the movements of the construction’ (#196), which is an aS. This is a
sign that also indicates that student B’s focus is still on the ‘movements’. However,
student A generalizes the situation through conjecturing on the ‘n× n matrix’ and
‘ℝn

’, which are mS (#197) and ends the first part of the task.
At the beginning of the second part of the task, the students build sliders and

associated matrix. Thereafter, they activate the grid function on the 2D Graphics
window, and draw a pyramid on the 3D Graphics window. To follow the steps, they
next begin to calculate the lengths of the edges and areas of the surfaces on the
pyramid using Measure and Move and Rotate in the 3D tools. They apply matrix
transformation to each surface of the pyramid and they not only calculate the
lengths and areas of the surfaces, but also the volumes of the drawing and con-
struction. They then begin to drag the sliders to explore the steps of the task.
Figure 2 shows their working environment in the DGS.

As a next step, they explore the effects of the sliders on the DGS interface. In this
part, some aS also appear, such as ‘along x-axis’ and ‘move’. In this way, they
realize the effects of the sliders in three-dimensional space, where they also explore
negative values for the sliders. At this moment, an important aS ‘volume’ appears
which reflects the students’ observations from the artifact, coming from previous
experiences:
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261 A: … when we find the determinant, we will find the volumes, right?
262 T: How did you arrive at this conclusion?
263 A: It is a factor between them [meaning volumes]… We are asked to

explore the relationship between volumes… The determinant of the
matrix could give the relationship between volumes.

264 T: Why?
265 A: Because, there will be a transformation … I think, the determinant will

give the relationship between volumes … but … I don’t know how …

Using spatial perception and her view expressed before (#172), student A thinks
that there will be a relationship between the ‘determinant’ and ‘volume’ of the
construction, because it is asked for (#261). However, these are aS, because she
cannot express a mathematical reason (#261–265) of her view. However, this sit-
uation opens a door to explore different sliders’ values on the determinant and the
relationship between volumes. After this, they validate the conjecture of A for the
relationship between the determinant and volume employing and integrating their
experience from the first part, in which the mS appear as a collection of con-
structions of mathematical meanings:

285 B: Now the absolute value of the determinant is 4, the initial object’s
volume is 12, and also the transformation object’s volume is 48. It is
again validated … How did this happen? This is because, the object is
three-dimensional and all sliders effect along all the axes, since the
determinant value affects the volumes … If we consider a
two-dimensional thing in a three-dimensional environment, then the
transformation affects the areas.

… …

Fig. 2 Students’ DGS interface in the second part of the task
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290 A: It was different there because the space was ℝ3, but exact transformation
was as in ℝ2, just like the planar figures. This would be different, for
example, if we worked in ℝ4. I mean if we had a 4× 4 matrix, and again
if we worked with pyramids, then we would cancel one row and column
to relate the volumes, similar to the previous case.

… …

299 B: If you search for the direct effects of the determinant value on
higher-level geometric relationships between objects, you should note
that the dimension of the matrix and the dimensions of the objects need
to be the same.

… …

302 A: If we work in ℝ3, we use a 3 × 3 matrix… because a11, a22 and a33
[meaning transformation matrix’s entries] are slider values and other
entries are zero, the sliders directly affected the movements along the x,
y, z axes. Of course, all the zeros in the entries helped us to see such
relationships regarding movements and to calculate the determinant of
the matrix.

First, through the pivot roles of ‘volume’ and ‘determinant’, B explains the
relationship between the pyramid’s dimension and the sliders’ effects (#285).
Contrary to her initial views (e.g. #116, #170), an mS appeared where she finally
constructs meaning. This is because the sliders have a ‘three-dimensional’ effect,
and the ‘determinant’ gives the relationship between the volumes of the objects.
Student B also explains why, in the previous part, the transformation only ‘affects
the area’ of construction (#285), which is an mS. However, a progressive emer-
gence of an mS is observed (#290, #299, #302): (i) Student A generalizes the
situation to the space ℝ4, making connection between the volume of the 3D object
and the dimension (rows and columns) of the matrix; (ii) Student B points out
‘higher-level geometric relationships’ (meaning hyper-volume or hyper-area and so
on), and relates this with the dimension of the matrix and the dimension of the
object to observe ‘direct effects’; (iii) Student A constructs the meaning of the role
of given zeros in the entries of the transformation matrix, i.e., observed movements
are due to selecting the sliders’ values as the diagonal of the matrix, and conse-
quently, the sliders affect the objects along the axes.

In our case, the discussion orchestrated by the teacher yields a complex semiotic
chain (Bartolini Bussi & Mariotti, 2008), which shows synergy between specific
signs. The following figure (Fig. 3) is presented to represent the evolution of signs
and also to picture how students’ personal meanings transform into mathematical
meanings.
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5 Conclusions

This chapter focuses on the following research question: How does DGS mediate
students’ reasoning on 3D linear transformations? A task was designed in the
context of ℝ3 through analyzing the semiotic potential of certain tools and functions
of the DGS; in particular the dragging, slider, ApplyMatrix construction tool, rotate
and move 3D Graphics tools and grid function of GeoGebra. A task-based clinical
interview conducted with a pair of linear algebra students was analyzed within a
semiotic mediation perspective and, approaching the data in such a way provided
evolution of how the students’ personal meanings coming from phenomenological
experience, transformed into (new) mathematical meanings. The students’ initial
experiences were based on the matrix transformations in ℝ2 concerning the rela-
tionships between the lengths, areas of figures and determinant of the transforma-
tion matrix. In addition, within our case, they finally not only re-invented the role of
the determinant notion in linear transformations in ℝ3, but also generated their
results to ℝn.

Specifically, in the above process, the TSM perspective describes certain tools
and functions’ mediating role in the reasoning on 3D linear transformations and,
therefore, how the semiotic potential of certain tools and functions evoke the
emergence of aS, pS and mS that foster the students’ characterization and reasoning
on 3D linear transformations. Analysis of the data provides specific verbal signs
that attach to students’ meaning-making steps, first with the use of artifact, from
tools and functions of DGS use to higher-dimensional spaces, i.e.,
de-contextualization from the proposed artifact. Therefore, the present study con-
firms how certain tools and functions of a DGS might be used as effective tools of
semiotic mediation for teaching learning 3D linear transformations.

Moreover, the TSM perspective also shows the relationships between the task
and employed techniques in the students’ reasoning. Even though the following are

Fig. 3 A semiotic chain describes the emergence of signs in reasoning on 3D linear
transformations
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not linear, it can be expressed that the students first analysed the effects of the
sliders on the construction, and secondly they found that the sliders affect length,
but do not volume. They checked the matrix and related the determinant value by
comparing the areas of drawing and construction and also dragging initial points of
the figure. They finally related the dimension of the object and the transformation
matrix. In the following steps of the task, they established a relationship between
volume and determinant value. They conjectured on the case and generalized to
higher dimensional space ℝn. In such processes, the ApplyMatrix construction tool
command seems to have had a vague role. However, all actions on the interface
were due to it and such a role contributed to the students’ invention of a number of
key points, which are also discussed in a relevant paper (Turgut, 2017). However,
in my analysis, instrumentation (i.e., instrumental genesis) perspective (Trouche,
2004; Vérillon & Rabardel, 1995) of the ApplyMatrix construction tool was in
shadow, which can be discussed in a further setting to elaborate students’ utilization
schemes for designing new tasks.

Interrelation of the dragging and slider tools allowed students to explore different
(independent and dependent) cases and to establish conjectures, which were in line
with the dragging tool’s epistemic role as described in the literature (Falcade et al.,
2007; Gol Tabaghi, 2014; Leung, 2008; Lopez-Real & Leung, 2006). The slider’s
main role was in providing a dynamic variation that was similarly discussed in
(Sierpinska, 2000; Turgut & Drijvers, 2016). The students used the Rotate and
Move 3D Graphics tool a number of times to check the robustness (Jones, 2000) of
the figures and to change the viewpoint while they dragged the objects and sliders.
The grid function was used while the students calculated the volumes of the objects.
The last two were also indissoluble effects in the learning process that also appear in
(Turgut, 2017), but they did not have much potential comparison to others.

Although tools and functions of the DGS above worked well, one limitation is
that the students never mentioned the notion of similarity. Selecting integer values
on the sliders could form a similarity effect between the triangles on the 3D
Graphics window. The reason for this may be the students’ concentration on finding
the sliders’ effects on the construction. Reasoning to the similarity notion could
open a door to a notion of the three-dimensional similarity of objects and, in this
way, it would be possible for students to invent further characterizations. A second
limitation concerns the task setting, which is limited to a pair of students. The TSM
perspective emphasizes the role of interpersonal exchanges during mathematical
discussions. A classroom teaching experiment could provide a meaningful envi-
ronment for students to conceptualize shared mathematical meanings and to reflect
on students’ reasoning steps in a broader sense. These could be areas of interest for
future research.
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Fostering Students’ Competencies
in Linear Algebra with Digital Resources

Ana Donevska-Todorova

Abstract This chapter discusses current research regarding the teaching and
learning of concepts in linear algebra with the aid of (digital) resources. In par-
ticular, it looks into potential of digital resources to foster students’ competencies in
linear algebra. The aim of the chapter is to explain how technology-enhanced
teaching and learning environments may contribute to developing competencies in
multiple representations, visualization as well as procedural and conceptual
understanding. The chapter culminates with a suggested nested model of three
modes of thinking of concepts in linear algebra, which is suitable for designing
teaching and learning environments.

Keywords Linear algebra ⋅ Competencies ⋅ Nested model of three modes of
thinking ⋅ Technology

1 Introduction

It seems that the question whether technologies could be used in mathematics
education is long behind us. This undoubtedly includes the teaching and learning of
linear algebra content. While historically some questions regarding the role of
digital and non-digital resources in linear algebra instruction have been addressed,
many remain unanswered. To give a sense of the scope of the remaining questions,
consider the following. What makes the use of a particular digital resource efficient?
What are the ideal qualities of technology-based materials for the teaching and
learning linear algebra and how can we measure these qualities? What are the
advantages of one type of software over another, for example, a Computer Algebra
System (CAS) versus a Dynamic Geometry System (DGS)? When and how should
each be applied? How can we best disseminate research-based materials and sustain
investigations about their values? Which new forms of digital support may increase
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the motivation, communication and collaboration in a linear algebra course, e.g.
flipped or inverted linear algebra classroom? These questions are still present and of
significance in the current debates. Rather than try to answer any one of these
questions in detail, this chapter presents a way to frame an examination of these
types of questions.

This chapter builds on the discussions on the teaching and learning linear algebra
in two relatively different groups at the 13th International Congress on Mathe-
matical Education (ICME13). Firstly, the topic study group (TSG43) about the uses
of technology in upper secondary mathematics education focused on the imple-
mentation of technologies from cognitive and epistemological perspectives, as well
as accessibility to and the roles of emerging technologies. It also studied interre-
lations between technology and specific mathematical contents. Secondly, one of
the key issues proposed within the discussion group (DG) for Teaching Linear
Algebra at the ICME13 was the incorporation of technology specifically in the
teaching of this subject. This chapter aspires to establish connections between the
perspectives deliberated within these groups. It describes a diversity of technologies
that can be used as a supplement to traditional educational media. The chapter
begins by considering how the development of particular students’ competencies
for linear algebra may be fostered by appropriate technology-based environments
such as CAS or DGS. The aim of the chapter is to suggest a model for multiple
representations of concepts that are important when designing efficient (digitally
based) environments in order to support the development of particular students’
competencies in linear algebra.

2 Theoretical Background

Discussions about technology utilization in university linear algebra courses started
with considerations of how “super calculators” or “commercial systems for both
numeric and symbolic computation” (Carlson, Johnson, Lay, & Porter, 1993, p. 45)
may be relevant for the content related knowledge of mathematics. In the last
twenty years, the discussions have continued by also considering the role of
technology for didactical purposes. For example, Day and Kalman (1999) point out
that computers could be efficient not only for “eliminating computational drud-
gery”, but also for providing interactive “environments for actively exploring
properties of mathematical structures and objects” (Day & Kalman, 1999, p. 12).
Rapid intensification of digitalization in general also parallels new educational
trends. Curricula have been re-oriented towards learning outcomes and competen-
cies. Similar to the principles and standards (NCTM, 2000) in the USA, there are
six general competencies for tertiary level of mathematics in Germany (the
numeration is used only for easier reading):
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(K1) bringing forward arguments and proofs,
(K2) problem solving,
(K3) mathematical modeling,
(K4) representing mathematical concepts,
(K5) interacting with symbols, formal and technical elements of mathematics and
(K6) communicating mathematically (Kultusministerkonferenz, 2012, pp. 14–17).

Each of them is relevant for, and meets the goals of the teaching of linear
algebra. Though there are certainly no firm boundaries between them, the devel-
opment of one or more of them may be supported by meaningful implementation of
digital resources deployed during the teaching and learning processes. This could
be done through interactive explorations in modeling and problem solving, by
promoting understanding through the use of multiple representations or by reducing
systematic procedures when handling large data sets. Such students’ competencies
and the possible effects of technology on their development are the focus of this
chapter. An overview of the theoretical background precedes this description.

Investigating complex phenomena like mathematics education in the presence of
technology is challenging because of the fast pace of technological change and the
lack of specific theories for studying the teaching and learning a particular math-
ematical content, e.g. linear algebra, with digital aids. This has been explored in
recent literature (e.g. Donevska-Todorova & Trgalova, 2017; Turgut & Drijvers,
2017). This also appears as a new issue in the call for topic-working group 17 at the
10th conference of the European Society for Research in Mathematics Education
(CERME 10). A recent review (Drijvers et al., 2016) considered whether digital
technology improves students’ learning of a particular mathematical content (e.g.
geometry) through quantitative studies, and why it may be the case through qual-
itative studies focusing on the teacher as an important factor. Another survey paper
(Sinclair et al., 2016) stated seven ‘threads’ of contributions which affect the
teaching and learning geometry with technologies at different levels of education
including pre- and post compulsory. A question that comes out of this research is if
these ‘threads’ might also refer to the teaching and learning other mathematical
domains including linear algebra. I focus on two of the min particular.

The first ‘thread’, “developments and trends in the use of theories” (Sinclair
et al., 2016, p. 1) relates to whether the use of general theories about the teaching
and learning mathematics with digital equipment is adequate for a specific math-
ematical domain such as geometry, or linear algebra. In the absence of a particular
theoretical framework or apparatus for investigating the teaching and learning linear
algebra with digital resources, this chapter suggests connecting suitable theoretical
frameworks. In order to give the reader a sense of what is meant by a later cate-
gorization, a possible network that may consider three groups of theoretical
frameworks is:

(1) general theories on mathematics education,
(2) theories on technologies in mathematics education and
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(3) specific theories for the teaching and learning linear algebra (with or without
technological support).

The suggested groups of theories are certainly global and do not exclude other.
Nonetheless, they refer to the works of the TSG43 and the DG at the ICME13 and
are here meant to serve as examples. Exploited theoretical frameworks from each of
the groups have to be adjusted and linked for achieving the goals of the research of
teaching and learning linear algebra. General theoretical frameworks (1) which may
be useful in the sense of competencies may be the construct concept image-concept
definition (Tall & Vinner, 1981), regarding the competency K1. Further, the three
worlds of mathematical thinking (Tall, 2004) or the action-process-object-schema
(APOS) theory (Dubinsky & McDonald, 2001) is relevant for studying the
development of the competency K4. These frames directly relate to the above
consideration (‘thread’) about the underrepresentation of defining (K1)—versus
overemphasis of representing (K4) issues in technology-enhanced environments.
This already shows a natural bridge between the general theories (1) and the the-
ories associated to digital media (2).

Further on, the theory of semiotic mediation (Bartolini & Mariotti, 2008), also
used within the ICME13-TSG43, may be exploited for investigating exact effects of
particular tools (drag/drop, touch/move, hide/show, slide, zoom in/zoom out) on the
learning linear algebra (e.g. distinguishing scalar from vector operations, or refer-
ring geometric meaning to algebraic concepts, etc.). Studying historical and epis-
temological developments of the concepts in linear algebra is relevant for designing
technology-based teaching/learning environments and increasing their semiotic
potential for didactical purposes. Taking the multifaceted nature of concepts in
linear algebra such as analytic-arithmetic or synthetic-geometric, into consideration
may contribute the creation of environments to foster development of multiple
representations (K4). I come to this point in Sect. 3.3. Another theoretical frame-
work specific for technology-rich settings is instrumental genesis (Trouche, 2005),
which has a potential to facilitate arrangement of instruction of linear algebra,
among other, and to provide relevant data at interpersonal, classroom, resource or
institutional level of a multiple-level data analysis of communication and collab-
oration competencies (K6).

Finally, specific theories for the teaching and learning linear algebra (3) as the
one referring to students’ difficulties with the unifying and general theory of linear
algebra and the obstacle of formalism (Dorier, 2000), multiple modes of description
(Hillel, 2000) and multiple modes of thinking (Sierpinska, 2000) may also be
valuable in the teaching of technology supported instruction. I elaborate these issues
more in detail also in Sect. 3.3 in relation to the competencies K1, K4 and K5.

Looking back to the survey the ‘thread’ “advances in the understanding of the
teaching and learning of definitions” (Sinclair et al., 2016, p. 2) in geometry sup-
ported with technology, may as well refer the insufficient number of studies directly
addressing key mathematical issues as defining concepts in linear algebra. This
issue about the defining mathematical concepts is in particular relevant for devel-
oping a competency of formal proving (K1). Further, depending on the way
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concepts in linear algebra are defined, e.g. analytically or geometrically, their
representations may also vary, which affects the development of the competency
K4. Finally, each definition of concepts in linear algebra uses a particular symbolic
and formal mathematical language that directly influences the growth of the com-
petency K5. I investigate the possibilities to strengthen mutual development of
these competencies and, based on chosen theories from (1) to (3), suggest a model
that I consider important when teaching or creating teaching/learning trajectories or
environments for concepts in linear algebra (in Sect. 3.3).

Research question

Drawing upon the theoretical concerns above, including (1)–(3), the main research
question that arises is: how could the development of students’ competencies in
linear algebra be facilitated by technology usage in instruction and learning?

By collecting, comparing, contrasting and synthesizing data for digital envi-
ronments suitable for gaining competencies in linear algebra, I provide insights to
each of the competencies briefly (in Sects. 3.1, 3.2 and 3.4), however set my focus
on the competencies K1, K4 and K5 (in Sect. 3.3).

3 Content Specific and Process Oriented Competencies
in Linear Algebra

This section offers some insights in some of the previously mentioned content
specific (or subject matter) and process oriented competencies for a tertiary level
mathematics K1–K6 with reference to linear algebra.

3.1 Defining, Proving and Understanding

The inverse treatment of axiomatic properties for defining, at tertiary level of linear
algebra, on the one hand and describing concepts, at upper secondary level of linear
algebra, on the other hand, signalizes possible obstacle for learning
(Donevska-Todorova, 2017b, p. 2). Sometimes concepts and their properties remain
to occur as separate mathematical objects in the students’ minds (Donevska-
Todorova, 2017b, p. 6). For example, while associativity is a defining property of
vector spaces at university level linear algebra, it is perceived as a characteristic of
the operation addition of vectors that are previously defined as classes of parallel
arrows with same length and orientation in upper high school. Although, there exist
some studies, which have considered descriptive (a posteriori) defining of concepts
after exploring properties with DGS (in addition to other media), in author’s
knowledge there are no studies on students’ deeper understanding of the need for
axioms and definitions for avoiding infinite regress and circularity (de Villiers,
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1998). The dependence of the development of deep conceptual understanding on the
definitions of concepts has seldom been in focus (e.g. Donevska-Todorova, 2015;
Hannah, Stewart, & Thomas, 2016). Based on semi-structured clinical interviews
with participating students in a linear algebra class, Bagley, Rasmussen, and Zandieh
(2015, p. 36) have found that all participating students think that “the result of
composition of a function and its inverse should be 1”. In a linear algebra context,
functions appear as linear transformations from one vector space into another,
preserving axiomatic properties as addition and scalar multiplication, but such
function conceptions have also rarely been directly examined. An exemplary study
about transformations in a Cabri-based environment has been undertaken by
Dreyfus, Hillel & Sierpinska, 1998. Another exemplary study (Donevska-Todorova,
2016), points out students’ difficulties about the introduction and understanding of
linear, bi-linear and multi-linear transformations on a real vector space which have
been discovered in pre-service teachers when working on discussing questions and
multiple-solution tasks. Many abstract mathematical concepts, function (in this
context linear transformation) among them, can be understood either operationally,
as processes, or structurally as objects but the operational and the structural aspects
do not replace, rather complement each other (Bagley, Rasmussen, & Zandieh, 2015,
p. 37). Yet, there are studies, which have discovered students’ predominant pos-
session of procedural versus conceptual understanding for example for concepts as
determinants and suggest that this discrepancy may be overcome with a possible
technology-based environment for a semiotic mediation (Donevska-Todorova,
2016, p. 10). The problem of defining concepts in linear algebra is certainly further
related to argumentation and proving. Students’ abilities for proving have been
examined, e.g. that a set is a subspace of a vector space (Britton & Henderson, 2009,
p. 963) however insufficiently from the aspect of technology facilitation.

The competency about defining concepts, possibly with technological assistance
in visualizing and representing axiomatic properties, is connected to two other of
the above-mentioned competencies (K4 translations between multiple representa-
tions and K5 symbolic language and formal nature of linear algebra). I will revisit
this point in Sect. 3.3.

3.2 Computation, Symbol Manipulation and Programming

The historical evolution of technological devices starting with hand-held calculators
through graphical calculators to powerful CAS shows a quick ongoing expansion.
This growth has many possibilities and challenges for the teaching and learning of
linear algebra. A common agreement among researchers is that the usage of CAS
should be an integral part of mathematical instructions (e.g. Janetzko, 2016).
Development of competencies for programming besides those for computing or
symbol manipulation (K5) may be supported by CAS because of their embedded
powerful apparatus (e.g. Díaz et al., 2011). Manual solutions of systems of linear
equations (SLE), e.g., by the Gaussian elimination method, are meaningful both at
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school and university level. In particular, understanding the meaning of the solu-
tions sets, the structure and the algorithm are among the most important learning
goals. On the one hand, exercise and assessment tasks are usually suited to lead
towards achieving these goals without a technological support. On the other hand,
engagement in algorithm development and computer programming may contribute
in the development of spatial reasoning and coding capabilities (e.g. Francis, Khan,
& Davis, 2016) or development of undergraduate students’ proficiency, as a
combination of fluency and confidence, in a pillar of scientific inquiry having form
of simulation, optimization and modeling (Buteau, Muller, Marshall, Sacristán, &
Mgombelo, 2016). When solving SLE with large number of equations and
unknowns e.g. by students in economic studies, interpretations, rather than calcu-
lations of results is worth more. However, by implementing CAS calculators for
checking answers or performing single step direct calculations to compute, for
example a determinant, or an inverse of a matrix, Stewart and Thomas (2004) have
found that even enthusiastic students require sustained attention in a
technology-based learning environment. The efficiency in calculating inverse or
exponential matrices of large dimension (over a hundred), eigenvectors and
eigenvalues of matrices with real and complex entries have made CAS become an
integral part of contemporary mathematics (Caridade, Encinas, Martín‐Vaquero, &
Queiruga‐Dios, 2015). Digital image processing by the use of CAS in a Mathematic
Virtual Laboratory (MVL) developed on a Moodle platform has been suggested for
making some linear algebra concepts, as matrix operations and their properties,
more concrete and clearer to geological and industrial engineering students by
Caridade et al. (2015). The authors also envision possibility for similar resourceful
usage in high school mathematics. MATLAB,1 for example, is often perceived and
recommended as one of the most natural CAS for linear algebra as it has been
developed purposely for matrix operations (Dios, Martínez, Encinas, & Encinas,
2012; Jin & Bi, 2011). Its usage in instruction is however not straightforward for the
reason that, students have to be familiar with the programming language in
advance. A linguistic perception of mathematics includes syntactical, semantical
and pragmatic aspects of the algebraic language and it can easily be handled by a
CAS, nevertheless, students have difficulty to understand what a CAS does and how
its output is to be interpreted (Oldenburg, 2016). Some difficulties of engineering
students when CAS are sporadically used may be overcome by a user interface,
called CATO, for different CASs written in Java as Mathematica,2 Maxima3 or the
mathematical toolbox of MATLAB (Janetzko, 2016).

The roles of CAS may also be observed as “multiply-linked graphical, numer-
ical, and symbolic manipulation utilities” (Heid & Edwards, 2001, p. 128).
Powerful technology-based mathematics packages as Mathematica or Maple4

1https://www.mathworks.com/products/matlab/.
2https://www.wolfram.com/mathematica/.
3maxima.sourceforge.net/.
4https://www.maplesoft.com/products/maple/.
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enable rich approaches for teaching and learning undergraduate linear algebra.
Their capabilities for performing exhausting calculations and symbolic manipula-
tions, e.g. solutions of (large) SLE or matrix multiplication, may transform or even
replace some classroom activities. In particular, their relevance for graphical, in
addition to the numerical and symbolic representations is connected to the com-
petencies (K4).

3.3 Visualization, Representation, Exploration
and Generalization

Students’ difficulties with a priory visualizations have already been noticed and
reported in research and an overemphasis of the visual potential of technologies in
improving conceptual understanding per se, is considered as a naïve attitude
(Lagrange, Artigue, Laborde, & Trouche, 2001, p. 7). Yet, it seems that a careful
implementation of an appropriate DGS with an integrated algebra in it, rather than a
CAS environment, may be helpful for visualizing and multiple-representing con-
cepts in linear algebra. While a pure synthetic-geometric approach may be quite
challenging the students to apprehend, building linear algebra on a coherent
multi-domain base, e.g. geometry, functional calculus and modern axiomatic may
be more beneficial. In this sense, appropriate DGE for concepts in linear algebra
may be of help and I try to elaborate how.

DGS have the potential for dynamic and simultaneous changes of multiple
representations. In continuation, I prefer a usage of rigorous terminology that is
specific to the research field of teaching and learning linear algebra. Namely,
instead of considering the “algebraic, geometrical and abstract presentation” (e.g.
Fig. 1 in Konyalioglu, Isik, Kaplan, Hizarci, & Durkaya, 2011, p. 4042), I use the
vocabulary different modes of description (Hillel, 2000) and modes of thought
(Sierpinska, 2000). Besides, a triple of distant components of linear algebra con-
cepts, the relations between which are not identified (Fig. 1) seems a bit
problematic.

The authors also suggest a teaching approach according to these components by
considering the “geometric presentation” for dimensions less than or equal to three,
while the “algebraic presentation” for dimensions greater that three (Konyalioglu
et al., 2011, p. 4042). In my opinion, there seems to be no reason why not con-
sidering the algebraic one also for dimensions less than or equal to three. Moreover,
the order: first, algebraic definition, second geometric meaning and third, abstract
representation (Konyalioglu et al., 2011, p. 4043) does not necessarily need to take
place in the teaching of linear algebra even in high school. On the contrary,
beginning with a geometrical context may foster students to deep intuitive thinking,
motivate explorations and therefore contribute to the development of alternative
competencies. Furthermore, the teaching of linear algebra at the university level
goes along with the nature of mathematics as a science, so the concepts are
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introduced by definitions through the abstract mode of description. Abstract con-
cepts gain their meaning in contexts and both the algebraic and the geometric
modes allow such concretizations. Therefore, a severe order in the introduction of
the concepts, as suggested by the authors above, is not a necessity. Similarly, to this
view, Dray and Manogue (2008) have suggested a geometric introduction for an
exemplary concept, the dot product of vectors, which may continue with
arithmetic-algebraic and culminate with analytic-structural aspects. This seems to
be a more natural sequence due to the primarily geometric introduction of vectors in
physics, lower-secondary mathematics and upper-secondary linear algebra and
because of the vector-input and scalar-output of the dot product. For empirical
results with this sequencing for the introduction of the dot product in a dynamic
geometry environment, see Donevska-Todorova (2015).

3.3.1 A Nested Model of the Three Modes of Thinking
of Concepts in Linear Algebra

In contrast to the triple presentation of distant constituents of concepts in linear
algebra given above (Fig. 1) and because of a doctoral study (Donevska-Todorova,
2017a), I would rather suggest a nested model for presenting the modes of thinking.
I actually situate the algebraic and the geometric modes of description (Hillel, 2000)
and corresponding analytic-arithmetic and synthetic-geometric modes of thinking
(Sierpinska, 2000) as nested constituents of the analytic-structural mode (Fig. 2).
The prior two allow concretization of the abstractness of the concepts.

How does the nested model (Fig. 2) refer to the theoretical considerations (1)–
(3) and the competencies K1 to K6 in Sect. 2 exactly? In other words, how does the
nested model help in the analysis towards answering the posed research question? I
try to explain this through its nodes and arrows.

Starting form (1) general theories about mathematics education, the model allows
a development of a wider and deeper concept image for the concept definition (Tall &
Vinner, 1981) of a particular concept in linear algebra. For example, the node analytic-
arithmetic mode thinking in the model refers to thinking of vectors in as ordered
n-tuples, while the node geometric mode refers to vectors as equivalent classes of
arrows that are equal in length, orientation and direction. These two nodes show how
vectors as elements of vector spaces in an analytic-structural mode of thinking

Fig. 1 Abstract, algebraic,
and geometric presentations
of concepts in
linear algebra on Fig. 1 in
Konyalioglu et al. (2011,
p. 4042), Copyright (2018),
with permission from Elsevier
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perceive their concretization in a context (e.g. in R2 or R3). Perceiving these three
different concept definitions of a single concept (e.g. vectors) is enabled through
differentmodes of description (Hillel, 2000)which, likewise the correspondingmodes
of thinking (Sierpinska, 2000) belong to (3) specific theories for the teaching and
learning linear algebra.

Due to the importance of precise definitions of concepts in linear algebra, based
on which argumentations and formal proofs develop (competency K1), it may be
worthy to further utilize the nested model when aiming to also advance the com-
petency for multiple representing and symbol manipulating (modes of description
and language) of concepts (K4 and K5).

Looking at the nested model again, the arrows represent the relations and
interplays between the nodes. For example, translations from the geometric into the
arithmetic-analytic mode of thinking or the other way around, like visualization
from the arithmetic-analytic to the geometric mode of thinking and even general-
ization of concepts from 2D and 3D to nD may take place simultaneously (Fig. 2).
In particularly, this may come into focus in a DGE, which brings us to the use of
(2) theories about technologies in mathematics education.

Switching from one mode of thinking into another and vice versa may signifi-
cantly be stimulated, e.g. by the dragging tool in a DGE. Such devices could serve
as instruments of semiotic mediation (Bussi & Mariotti, 2008) in exploring multiple
modes of description. A digital simultaneous multiple-dynamic manipulation, in
contrast to single-static paper-pencil control could be achieved e.g.by means of
sliders which facilitate numerical variations. The numerical dependences repre-
sented by sliders allow transparency of the difference between scalars and vectors
which is typical for the content of linear algebra, e.g. for the teaching and learning
of linear combinations of vectors, linear (in)dependence of vectors, vector spaces,
linear transformations, bi- and multi-linear forms, etc. What makes a DGS toll a
specific instrument of semiotic mediation could deeply be observed by the

Fig. 2 Nested model of the three modes of thinking and description of concepts in linear algebra
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Vigotskian perspective for the transformation form inter- to intra-personal mental
processes (Falcade, Laborde, & Mariotti, 2007). Further on, geometric, and
simultaneously arithmetic-algebraic dependences could also be examined by the
dragging facilities of points or vectors and there already exist DGEs for such
purposes. For example, a recursive exploration space (Hegedus, Dalton, &
Moreno-Armella, 2007) can mediate a mental concept formation and therefore
participate in development of mathematical cognition (e.g. the concept of dot
product of vectors in Donevska-Todorova, 2017b). Students co-act with the envi-
ronment by exchanging their roles in switching from one into another mode of
description and thinking which modifies (though not negates) the paper, as a frozen
(Hegedus, Dalton, & Moreno-Armella, 2007) into the DGE as a fluid medium for
thinking of mathematical concepts (Donevska-Todorova, 2017b). This study shows
that the challenge of supporting the learning of abstract concepts or even com-
pletely abstract structures, e.g. vector space or subspace, by the DGS has by now
been approached to a certain degree by interactive dynamic artifacts for one or more
of their defining axiomatic properties.

3.4 Communication and Collaboration

A Spanish group of authors has been looking at generic, content-independent
competencies like team-working, self-learning, critical thinking, problem solving
and technical communication with the use of CAS Derive (García López, García
Mazario, & Villa Cuenca, 2011) and CAS Maxima in a later study (García, García,
Del Rey, Rodríguez, & De La Villa, 2014). They have concluded that both CAS
have allowed not only improvement of students’ academic performance but also
increase of students’ motivation, satisfaction, self-confidence and team working.
Bulgarian scholars have examined a combined, traditional and CAS-based envi-
ronment for an acquisition of competencies in higher education and have concluded
that it is helpful for action competencies related to emotional, social and
value-related components (Varbanova & Durcheva, 2016, p. 54).

Although communication and collaboration among students and instructors in a
technology-enhanced environment may be fostered and researched in relation to
CAS or DGS, the next subsection offers insights to possibilities for development of
these competencies (K6) from a bit different aspect.

3.4.1 Cyber Learning, Communication and Collaboration

One of the oldest functions of technology is the collection of data required for
teaching and learning processes. New Web 2.0 and 3.0 technologies allow for the
exchange of collected data, as well as time and place independent communication
and collaboration. Nevertheless, a first reaction to the teaching and learning of a
specific mathematical content, including linear algebra, through social networks for
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example, is a dose of skepticism. Social media may involve inaccurate information,
biased comments and unreceptive responses, yet an effortless search shows that
hundreds of groups called “Linear algebra” or similar, already exist and have
thousands of members on Facebook and Twitter. It is predictable that the number of
such groups will continue to grow. Research Gate, the largest academic social
network (Matthews, 2016), is another type of virtual resource that may or may not
serve teaching and learning beyond research purposes. There are also numerous
online forums and blogs, specifically related to linear algebra, YouTube tutorials
and courses with over millions of views (e.g. thirty four videos of the MIT
OpenCourseWare, Linear Algebra, Strang, 2005). Virtual teaching and learning
environments, for example, online classrooms, flipped classrooms, wikis (e.g.
GeoGebra Wiki and Wikispaces) could also be part of the repertoire for organizing
linear algebra courses. An inverted or flipped classroom used as a “one-time class
design to teach a single topic, as a way to design a recurring series of workshops,
and as a way of designing an entire linear algebra course” (Talbert, 2014, p. 361).
Love et al. (2014) found that students in a flipped linear algebra classroom had “a
more significant increase between the sequential exams compared to the students in
a traditional lecture section, while performing similarly in a final exam” (Love et al.,
2014, p. 317) and expressed conceptual understanding and joy (Love et al., 2014,
p. 323). A teaching and learning platform for linear algebra for engineers, created
according to the blended-learning-concept, has significantly improved students’
performance (Roegner & Seiler, 2012). The participating students in the project had
direct access to an online-script with visualizations, individualized homework
problems with an interactive training environment and automatic corrections. The
sustainability, further expansion, and dissemination of these projects, as well as the
development of other such platforms remain ongoing.

These plentiful and diverse educational innovations have the potential to become
a part of quality teaching and (in)formal learning of linear algebra after careful
research and documentation has been undertaken. There is still a lack of satisfactory
evidence that these innovative forms of instruction and learning guarantee devel-
opment of subject matter competencies. Even development of other non-content
specific competencies such as networked debating, blogging, and chatting, as well
as socio-cultural and anthropological aspects of formal and informal education in a
pure context of teaching and learning linear algebra need to be further examined
and documented. In the era of global digitalization, computer technologies have
high social legitimacy, but their educational legitimacy, remains an open research
question.

4 Discussion and Challenges Ahead

Alongside the evolution of technologies and the enlargement of classroom acces-
sibility, critical research suggests cautious implementation. Even in the late 90s,
Guin and Trouche (1998) pointed out complexities in teaching and learning
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situations which are brought by implementation of calculators. The above analysis
shows that the learning and understanding of the abstract nature of linear algebra
through axioms, definitions, theorems and structures does not become straightfor-
ward by a simple use of a CAS or a DGS. Though a rigorous systematization
regarding the research question would be difficult to establish, an attempt to show
which digital tool may facilitate the development of which competency and how it
may be researched is proposed in Table 1.

The initial ideas illustrated in Table 1 must be considered with some flexibility.
For example, a CAS environment may also be helpful for visualization and rep-
resentation, (K4), though the DGS with embedded algebraic features is seen as
having more potential for this purpose due to mutual dependence and invariant
properties which can be simultaneously investigated (are not always brought by the
software a priory but are additionally designed). This shows that a whole linear
algebra course does not necessarily have to be designed in a single, either CAS or
DGS environment. It could be the case that combining different technological tools
for facilitating the learning of particular concepts in a single course may also be
useful.

What has been considered as “smarter technologies, like computer software or
symbolic calculators [and] emerging technologies (Internet, etc.)” (Lagrange et al.,
2001, p. 3) fifteen years ago may seem history now. New emerging technological
devices such as touch and multi-touch (iPads, iPhones, etc.) open new questions for
further investigations.

5 Conclusion

This chapter has surveyed current literature on both technology-facilitated teaching
and the learning of linear algebra, taking the discussions in two ICME13 working
groups as starting viewpoints. The analysis focused on whether and how

Table 1 Technological tools for facilitating development of competencies in linear algebra

Competency Technology
based
environment

Connecting theories for research

Defining, proving, understanding
(K1)

CAS, DGS (1) General theories about
mathematics education
(2) Theories about technologies in
mathematics education
(3) Specific theories for the teaching
and learning of linear algebra

Computation, symbol
manipulation, programming (K5)

CAS

Visualization, representation,
exploration, generalization (K4)

DGS

Communication, collaboration
(K6)

CAS, DGS,
virtual
environments

Online classroom, inverted (flipped)
classroom, blended learning
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technology-enhanced environments could facilitate the development of students’
competency in linear algebra. From this analysis and regarding the research
question, it seems that CAS are more suitable for the development of competencies
such as symbol manipulation and programming (K5) (in Sect. 3.2) and DGS are
better for competencies such as visualization, representation, exploration, and
generalization (K4) (in Sect. 3.3). Both types of environments may be appropriate
for defining, proving and understanding (K1) (Table 1). In order to show how a
digitally based environment may be considered for fostering K1, K4 and K5, I have
suggested a nested model (Fig. 2). This model presents all three modes of
description and thinking that I consider important in instruction and in the design of
tasks or teaching environments. It is a visual presentation showing that the modes
are not dispersed one from another, rather connected. In particular, specifically
designed technologically-based environments may enable easier and more efficient
shifts between the modes, facilitating the development of competencies for defin-
ing, representing and understanding concepts in linear algebra.
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Part IV
Challenging Tasks with Pedagogy

in Mind



Linear Algebra—A Companion
of Advancement in Mathematical
Comprehension

Damjan Kobal

Abstract Linear algebra is considered a core subject with its specific cognitive and
teaching challenges at the very start of university mathematics teaching. By views
and experience of many students and teachers linear algebra ‘defines the change of
culture between secondary and university teaching’. Lots of educational research has
explored productive transitions to ‘higher levels of conceptualization’ symbolized by
linear algebra. We propose a rather different and simple perspective: linear algebra
might bemotivated and its basics successfully taught if presented as a tool for master-
ing diverse mathematical problems. Basic linear algebra concepts can be used for a
smooth transitions from intuitive to abstract cognition and to deepen student’s under-
standing. ‘Scholar-teacher’ can use rich linear algebra contents for guided learning
through exploration and discovery. We will present a few samples of challenging
mathematical problems where ‘linear algebra reasoning intuitively comes to rescue’
and gradually develops into a powerful and beautiful subject of its own value.

Keywords Intuitive · Abstract · Visualization · Linear · Geometric · Challenge

1 Introduction

Linear algebra is an important branch of mathematics, but, as for other subjects, it
is impossible to strictly define what is and what is not linear algebra. Maybe most
of the problems related to “change of ‘culture’ between secondary and university
teaching” (Dorier, Robert, & Sierpinska, 2000, p. 276) are a consequence of the
definition of linear algebra as a branch of mathematics that ‘explores vector spaces
and linear mappings between them’. As a study of vector spaces and linear mappings
linear algebra is surely completely new and an abstract subject to students who are
only used to high school (intuitive) mathematical thinking. The above definition
of linear algebra is appropriate for Mathematics Subject Classification—MSC and
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surely, the question of how to smartly teach these advanced subjects to students is
legitimate. But a global challenges of mathematical learning should point to another
direction.Namely, advanced linear algebra concepts can only be developed gradually.
A teacher should not be afraid to see and present linear algebra as ’the study of line-
like relationships’, which only gradually evolve into a sophisticated concepts of
‘vector spaces’ and ‘linear mappings between them’.

A lot has beenwritten about themyths of good (and bad) teaching (‘paradigms’)—
for ex. (Claudi, 2002, p. 3). Comprehensive views on ‘good teaching’ remain under-
standably general and talk in terms of ‘scholar-teacher’ (Fung & Siu, 2005, p. 3).
Good teaching practice always comprises of goodmathematics understanding aswell
as of profound sensitivity, skill and devotion for ‘complex aspects of teaching’. These
provide means for guided learning and motivate explorations leading to discoveries
and new knowledge.

In the following samples we describe some interesting mathematical and mathe-
matics teaching ideas which combine visual and analytical thinking, offer opportuni-
ties for motivated explorations and better comprehension, while providing cognitive
means for soft transition from concreteness and intuition to abstraction. As such,
the samples are not ‘carefully designed teaching units’ but mere backbone ideas,
which a ‘scholar-teacher’ will implement by filling up many fine details of the spe-
cific teaching environment. Presented mathematical ideas and mathematics teaching
accents are derived from empirically successful implementations through decades of
teaching experience.

If the given ideas and its almost trivial connection between ‘geometric mean-
ing’ and simple ‘vector concepts’ seem clear, it is much harder to fit these ideas
within formal concepts of linear algebra teaching. And maybe this is one of the
important causes for difficulties in transition to abstract (linear algebra) teaching.
Namely, teachers are (or have to be) more preoccupied by formal concepts and strict
following of the syllabus, then by the beauty and understanding of interconnected
mathematical concepts. It is a shame, that there are mathematics students, who have
passed tests of advanced linear algebra courses, but find themselves surprised and
amassed by simple and meaningful connections between linear algebra concepts and
simple intuitive geometric meanings (like those presented). Therefore, as we will
try to suggest the use of presented ideas within formal teaching concepts, we could
start with the suggestion, that it is never too late to emphasize simple and nice ideas
even to students, who are already familiar with advanced linear algebra concepts.
All ideas presented in this chapter of the book are similar in the sense that they show
elegant, powerful and easily understood meanings of (elementary linear algebra)
concepts, which, when understood, bring elegant solutions just by taking the right
(or alternative) perspective. As such they could probably be best used as motivation
for introduction of new (more abstract) concepts. Namely, rich concepts like for
example ‘length’, ‘direction’, ‘perpendicular’ should first be motivated and under-
stood through intuitive and geometrical comprehension in order to later successfully
build up the abstract notion of vector space.

Presented samples could be especially useful with prospective teachers to enhance
their sensitivity for comprehension and mathematical beauty.
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Linear algebra with its wide content spanning from very elementary geometric
insights to its deep abstract formulations is a challenge and a teaching opportunity
per se. Contemplating about teaching linear algebra, we should very seriously con-
sider famous Felix Klein sentence: I believed that the whole sector of Mathematics
teaching, from its very beginnings at elementary school right through to the most
advanced level research, should be organized as an organic whole (Klein, 1923).

2 Practitioner’s Agenda

The goal of this paper is to provide some concrete ideas and attitudes to practitioners,
that is to teachers of linear algebra, which have the potential to make the teaching
and learning of linear algebra a challenge that motivates rather than frustrates. At the
same time educational researchers could explore and compare the potential such an
approach has in relation to the pedagogical questions of teaching of linear algebra
and its applications.

We shall start with some very elementary problems, where only very basic (high
school) linear algebra concepts are used—or maybe we should say: introduced.

2.1 Four Points

The task is nicely presented and illustrated by the use of dynamic geometry software
(Kobal, 2016, Chap. 1.1.). Classical abstract formulation of the problem would be:

• Given any point A, how can we describe (in terms of point A) the (coordinates of)
points B, C and D, if ACBD is a square as in Fig. 1—left?

Quite standard solution of a university student, who is familiar with vector algebra
and knows somegeometry,would be given by intersections of a circle and appropriate
perpendicular lines, all centered at the (invisible) origin.

The ‘linear algebra solution’, which, by a given point A = (x, y), simply defines
the points B = (−x,−y),C = (−y, x) and D = (y,−x) is farmore straightforward
and conveys important content of coordinate system and vectors as well as it confirms
(or motivates) the basic scalar product property (Fig. 1—right) −→a ⊥ −→

b ⇐⇒ −→a ·−→
b = 0.
The idea could be used at several different levels of student’s mathematical back-

ground:

• If we start with dynamic interaction using ‘computer applet’ (Kobal, 2016, Chap.
1.1.) students can intuitively grasp important mathematical concepts even before
acquiring abstract notions of coordinate system with its origin, length, perpendic-
ularity, vectors, ... By the help of a sensitive teacher, already a primary school pupil
will be able to observe all the essential properties of ‘dependent moves...’ and thus
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A

B

C

D

A

B

C

D

Fig. 1 Points A, C , B and D are vertices of a square

build up motivation for rigorous definitions. By such dynamic explorations stu-
dents gain valuable intuitive insights and comprehension of ‘independent’ versus
‘dependent’ point, which leads to the understanding of abstract notion of ‘inde-
pendent’ versus ‘dependent’ variable. By visually attractive dynamic interaction
an abstract problem becomes an intuitive challenge.

In such a form the problem could be used as an example to illustrate the use of xy-
coordinate system and to better understand geometrical interpretation of the position
of a point (x, y) in the (R2) plane. Also, the same approach could be used just before
introducing the most elementary notion of ‘plane vectors’ in xy-coordinate system.
In both cases, understanding the geometrical content of x and y coordinates shifting
and/or adding ‘minus’, while considering a position of a point, is essential for good
initial comprehension of coordinate system concept.

(x,y)

(−x,−y) (−y,x) (y,−x) (y,x)

Studentswill gain essential understanding that coordinates have in defining ‘direc-
tion’, which is a prerequisite for vector comprehension.

• In many places around the globe already high school students learn the basics
of ‘plane and space vectors’ together with its coordinate (i.e. R2 and R

3 vectors)
and simple ‘scalar product’ notion. Others do that in basic college mathematics
classes. The sample could be used at this stage as a nice example and illustration
of these basic vector and scalar product notions. Namely, it shows the power, that
already primitive notion of high school ‘plane vectors’ and scalar product formula
(a, b) · (c, d) = a · c + b · d holds.
The idea also nicely illustrates the ‘intuitive protocol’ of constructing (two) per-
pendicular vectors (inR2) by ‘shifting the two coordinates and adding one minus’:
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(x,y) (y,x)
(−y,x)

(y,−x)

• As mentioned, the idea could also be used as almost trivial but meaningful (R2)
illustration of vectors and its relation to (Rn , Euclidean) coordinates and scalar
product in a more advanced abstract vector space setting.

• Because of its intuitive accessibility and abstractmeaning the problem is especially
suitable for prospective teachers. Firstly, to help them understand these concepts
themselves and secondly, to suggest and give them ideas to be used in their later
teaching practice.

2.2 Triangle on the Top of a Square

The task is nicely presented by the use of dynamic geometry software (Kobal, 2016,
Chap. 1.2.).

• Having a square and an equilateral triangle sitting on a top of a square (Fig. 2—
left), what is the radius and where is the center of the circle going through the
bottom two and the top corner of the obtained ‘house’ shape?

As in problem2.1, the same idea can be formulated differently. Above formulation
is as intuitive as possible. Teachers should be aware, that formal notations, as given
below, too often distract weaker students. Thus, in order to develop also the neces-
sary rigorous vocabulary, formal notations should only be developed gradually. This

A B

CD

E

S

Fig. 2 An equilateral triangle on a top of a square
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−→a

−→
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−→c
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−→e
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−→a
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−→c

−→
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−→e
−→
f

A B

CD

E

S

Fig. 3 Vectors of an equilateral triangle on a top of a square

gradual transition from ‘intuitive to formal’ is essential for a successful transition
from secondary to university teaching.

Given a square ABCD with a side a and an equilateral triangle DCE sitting on the
top of the given square ABCD (Fig. 2—right), where is the center S and what is the
radius of the circle circumscribed to the triangle ABE?

Even advanced students often find complicated solutions (using trigonometry or
advanced elementary geometry calculations), but very few use the most simple and
intuitive insight, which give an immediate and aesthetic solution:

Focused on Figs. 2 and 3, we might ask several questions leading to the solution:

– Observing the paths between corners of the shape on Fig. 2, how many different
paths (vectors) do you get?

– What can you say about the vectors? How different are they?
– What can you tell about the vectors −→a ,

−→
b , −→c ,

−→
d , −→e and

−→
f on Fig. 3—left?

– Can you draw a triangle, which you get, if triangle DCE is moved (pushed down)
for vector

−→
d ?

– If S is a point, where E is moved by vector
−→
d , what can you say about the vectors−→

SE ,
−→
SA and

−→
SB (Fig. 3—right)?

Therefore, the circle circumscribed to ABE has its center in S and radius a.
The idea could be best used:

• As a challenge and task just after the (elementary) geometric notion of a vector
(defined by direction and length) is introduced.

• Or, if and when we consider geometric transformations (i.e. translation) of a plane.
• Or, in a yet more intuitive setting, when students are only familiar with very basic
geometric notions like ‘equilateral triangle’. We can use just informal ‘translation’
in the form of ‘push down’ as visualized in dynamic applet (Kobal, 2016, Chap.
1.2.). Obtaining such an elegant and easy solution can be a good motivation to
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introduce the notion of ‘a push in a certain direction for a certain distance’, which
is a prelude to a more formal definition of a vector.

2.3 Midpoints of a Quadrilateral

The task is nicely presented by the use of dynamic geometry software (Kobal, 2016,
Chap. 1.3.).

• The midpoints of the sides of a quadrilateral form a parallelogram.

True! The statement is often used and proved at different levels, but too often the
problem is not adequately motivated and not the right emphasis is given. In mathe-
matics teaching too often the proofs are given without students reaching the point of
cognitive puzzlement. In this problem, as well as in many others, students should be
challenged, maybe alongside tasks and questions as follows:

– Draw a quadrilateral. Draw the quadrilateral with vertices at the midpoints of the
sides of your quadrilateral.

– Oh..., you drew a special one. You seem to obtain a parallelogram. Can you draw
another one, so that you would get a more general quadrilateral?

– Is this a good/bad luck or ...?

After students reach ‘a parallelogram hypothesis’ themselves, we should lead them
step by step to essential realizations of the proof. For example, we could proceede as
follows: Drawing any quadrilateral ABCD, means choosing points (sequentially) A,
B, C and D. Choosing a point A does not tell anything yet about the quadrilateral
shape. In perspective, it only means we chose an initial point (the origin). After
having a point A, choosing a point B is equivalent of choosing a vector −→a = −→

AB.
Choosing a point C is the same as choosing (for example) a vector

−→
b = −→

BC . And
finally, choosing a point D is the same as choosing (for example) a vector−→c = −→

AD.
Therefore, a choice of any quadrilateral ’is equivalent’ to a choice of three vectors
(Fig. 4).

It is now a straightforward calculation to obtain
−→
EF = −−→

HG = 1
2 (

−→a + −→
b ). It

is a review task to also get
−−→
EH = −→

FG = 1
2 (

−→c − −→a ). But at this point students

should be challenged to understand, that
−→
EF = −−→

HG, suffices for the conclusion
of the quadrilateral EFGH to be a parallelogram. At this initial stage of vector
understanding, this is exactly what should be emphasized, namely, a ‘vector’ carries
much more information than a ‘segment’.

The idea could be best used:

• As a challenge and task just after the (elementary) geometric notion of a vector
(defined by direction and length) is introduced.
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2.4 Regular Octagon?

The task is nicely presented by the use of dynamic geometry software (Kobal, 2016,
Chap. 1.4.).

• Draw a square andmidpoints of its sides. Connect the fourmidpoints to its opposite
corners. Is the octagon, which we obtain (see Fig. 5—left), regular?

Prove/disprove of the ‘regular octagon hypothesis’ is a nice example of advance-
ment from ‘intuitive/geometric linearity’ to ‘algebraic linearity’ and can be obtained
by two conceptually different but in essence similar ways of elementary ‘linear alge-
bra thinking’.

2.4.1 Linear Functions in a Standard Plane Coordinate System

It is a nice high school (if not primary school) task to position the given square
within a standard coordinate system (for example as seen in Fig. 5—middle). The
two sketched lines passing through the two pairs of points (−2, 2), (2, 0) and
(0, 2), (2,−2) are obtained as a routine task. The two lines are given by equations
y = 1 − 1

2 x and y = 2 − 2x (linear functions f (x) = 1 − 1
2 x and f (x) = 2 − 2x)

respectively. The intersection B of the two lines is calculated as ( 23 ,
2
3 ). By similar

arguments we obtain A = (1, 0). Since the two vertices A and B are not equidistant
from the octagon’s center of symmetry, which is obviously at the origin, the octagon
is NOT regular.

The idea and such a solution could and should be used:

• As a challenge and task soon after the (elementary) concept of linear function is
introduced. It could easily be done at the secondary mathematics level.

Fig. 4 Midpoints of a
quadrilateral

−→a

−→
b

−→c

A B

C

D

E

F

G

H
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1
2

1

2

O

B

A −→a

−→
b

B

AO

Fig. 5 Regular octagon?

2.4.2 Vectors

Of course, we could proceed by the use of position vectors in a standard plane
coordinate system, or, as we sketch in the next lines, by choosing two (independent)
vectors −→a and

−→
b , starting at the center O , as seen on Fig. 5—right.

This approach requires some very basic vector routine to define the correct linear
combination of vectors associated to appropriate paths. We can reach point A by
going different paths from O . For example:

λ
−→a = −−→

b + μ(
−→a + 2

−→
b )

By the use of linear independence of vectors −→a and
−→
b we find λ = μ = 1

2 and we
know that point A can be reached by 1

2
−→a from point O . Similarly we travel two

different paths to reach point B:

1

2
−→a + λ(2

−→
b − −→a ) = −→a + μ(

−→
b − 2−→a )

Since −→a and
−→
b are linearly independent, we get a linear system of two equations

with two unknowns:

−λ + 2μ = 1

2
2λ − μ = 0

Finding solutions λ = 1
6 and μ = 1

3 we get B as 1
3 (

−→a + −→
b ) from O . Since |−→a | =

|−→b |, it is a simple high school vector exercise to conclude that |−→
OB| =

√
2
3 |−→OA|.

Therefore, the two octagon’s vertices A and B are not equidistant from the center
and the octagon is NOT regular.
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The idea and such a solution could and should be used:

• Asa challenge and task soon afterwe introduce ‘linearly independent vectors’. This
is usually done in the first year of university studies or already in more advanced
secondary schools. It is useful if students are reminded of the other solution, which
is based on linear function understanding. Students should be able to see, that both
approaches basically describe the same ‘geometric facts’.

3 Basics and Advanced Topics

Weproceedbyusingquite elementary linear algebra conceptswithin intuitive settings
of some more advanced mathematical topics.

3.1 Fixed Point Theorem

It seems quite a naive and ambitious idea to try to (non-trivially) visualize concepts
as advanced as Brouwer fixed point theorem with the most elementary mathematical
knowledge.With very basic linear algebra thinking, which formally only requires the
understanding of linear function f (x) = k · x + n, one can solve a highly non-trivial
challenge. The below presented problem offers motivation and visual understanding,
which easily engages students of all levels and offers many interesting issues to
discuss. The problem is well illustrated by dynamic geometry software (Kobal, 2016,
Chap. 2.1.) and by ‘hands on task’ as follows:

• Take any picture or a map and its identical but sized down copy, putting the small
over the big one (see Fig. 6—left).

• Is there a point where the same place on both maps coincide?
• Can you find a positioning of the small map on the big one, so that one could find
such a point? Could there be more than one such point?

‘Proportional vertical lines’ define points on the two maps with identical ‘lon-
gitudes’ (Fig. 6—right). At the points, where the two ‘vertical lines’ intersect, the
longitude (x-coordinate) of the two maps coincide (Fig. 7—left). Similarly, ‘pro-
portional horizontal lines’ define points on the two maps with identical ‘latitudes’
(y-coordinates), and where the two ‘horizontal lines’ intersect, the latitudes (y-
coordinate) of the two maps coincide. The intersection of the ‘line defining equal
longitudes’ and ‘line defining equal latitudes’ gives the unique point where the same
place on both maps overlap (Fig. 7—right).

If above visualizations and especially the use of dynamic geometry software
(Kobal, 2016, Chap. 2.1.) is intuitively persuasive, it can be a nice and useful exercise
to explicitly calculate the fixed point and to demonstrate the power of (very basic)
linear algebra. In essence it is just a routine task of finding lines (linear functions)
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Fig. 6 Small over a big map

Fig. 7 Points with equal longitudes and latitudes

defined by points and slopes and calculating their intersections. We suggest for
example the following concrete calculations (within standard coordinate system).

Let the ‘big square map’ be defined by the three vertices (0, 0), (10, 0), (10, 10).
Find the coinciding point, if the small (scaled down copy) square map is positioned
to have three points at

1. (1, 1), (5, 1), (1, 5)
2. (2, 1), (5, 2), (1, 4)
3. (u, v), (u, v) + (k, h), (u, v) − (h,−k)

As said, we just need some basic ‘linear algebra’ thinking that involves propor-
tionality, coordinate system and linear functions understanding.
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1. In the first case we have the line x = a on the big map corresponding to the line
x = 2a

5 + 1 on the small map. Therefore the two lines overlap for x = 5
3 , and

since the positioning of the small map on the big one is x − y symmetric, the
coinciding point is ( 53 ,

5
3 ).

2. In the second case we see that a line x = a passing through point (a, 0) on
the big map, corresponds to the line with slope −3 passing through the point
(2, 1) + ( 3a10 ,

a
10 ), which is y = −3x + 7 + a. The two lines intersect at (a, 7 −

2a). Therefore, all the points on the line y = 7 − 2x have the same longitude on
the big and on the small map. Similarly, a line y = b passing through point (0, b)
corresponds to the linewith slope 1

3 passing through the point (2, 1) + (− b
10 ,

3b
10 ),

which is y = 1
3 x + 1

3 + b
3 . The two lines intersect at (2b − 1, b). Therefore, all

the points on the line y = x
2 + 1

2 have the same latitude on the big and on the
small map. The intersection of the two lines ( 2610 ,

18
10 ) is therefore the overlapping

point on both maps.
3. General case requires careful calculations with analogous argumentation.

The idea could be used:

• As a challenge and task for motivated students with very little formal mathe-
matical knowledge. Namely, above formal expressions like ‘longitude’ and/or x-
coordinate could be exchanged with very intuitive descriptions like ‘how far to the
East’. And above arguments, especially if illustrated by dynamic applet (Kobal,
2016, 2.1.) are very persuasive and basically use no formal mathematical knowl-
edge. As such they might be a good motivational tool to introduce ‘coordinates’
and ‘lines’, which providemeans for calculating exact position of the ‘fixed point’.

• As a challenge and task for motivated students already familiar with ‘linear func-
tion’. For them the above described solution would be a good use of the new linear
function concept, giving them interesting application of ‘formal linear (function)
equations’. Maybe we should emphasize, that linear functions (see also Sect. 2.4)
are usually not classified as ‘linear algebra chapter’. Nevertheless, linear function
and especially the presented use of it, surely belongs to ‘the study of line-like
relationships’, which are the essence of linear algebra.

• As an illustration of more advanced linear algebra concepts. Positioning the origin
into the center of the (big) square, we could define the appropriate map by rotation
composed by scalar multiplication and translation. Finding the fixed point, would
then mean finding the fixed point of the obtained composition (affine) map.

In a way, the third approach would be a simplification of the second one. But sticking
to the main emphasis of our chapter, the first two given approaches are more intuitive
and build up on geometric understanding. As such they present a desired transition
from elementary geometric and intuitive to more abstract linear algebra concepts.
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3.2 An Introduction to Projective Spaces

The idea of a projective plane and its intuitive visualization of extended z = 1 plane
within three dimensional spaceR3 is awonderful (linear algebra) subject to introduce
students to more advanced mathematical content. At the same time students acquire
deeper understanding of basic linear algebra concepts.

Let us sketch the main cognitive steps in building up a well motivated (and well
known) intuitive visualization of a projective plane.

• Simple discussion about the visualization of a plane z = 1 in regular R3 space.
• Every point in the plane z = 1 can be associated with the line including the point
and the R3 origin.

• The concept of (one dimensional) vector (sub)space is over-viewed and associated
with a line corresponding to a point.

• Avoiding ‘horizontal vectors’ (x, y, 0), every one dimensional subspace
L {(x, y, z)} gives a unique point in our plane z = 1.

• Every point in a plane z = 1 can be represented by one dimensional subspace.
Which one? (Uniformity!)

• Every point in a plane z = 1 can be represented by a vector in R
3. Which one?

(Not uniform choice!)
• Every one dimensional subspace inR3 represents a unique point in ‘extended plane
z = 1’. ‘Directions’. i.e. L {(x, y, 0)} with no intersection with plane z = 1 are
added as ‘intuitively self-explanatory points in given directions’ at infinity.

• Points in ‘extended plane z = 1’ (projective plane) are given by homogeneous
coordinates (x, y, z).

Such an intuitive visualization of a concept can surely be a nice introduction
to a robust and abstract definition of a ‘projective space’ as ‘ ... the space of one-
dimensional vector subspaces of a given vector space’. As in other given examples,
such a discussion could lead to enhancement of ‘spacial orientation’ and improve
the understanding of elementary R

3 linear algebra concepts (points, lines, planes),
while providing means to characterize previously only intuitive points ‘at the edge
of a plane’—as direction. We believe such intuitive and inter-connecting ideas are
inspiring for students and are essential for good (teaching of) mathematics. It is to
make students say: J’ai compris, c’est ça la mathématique: c’est d’imaginer! (Now
I understand, that is the real mathematics: to imagine!). Such was a sigh of a 14-year
old student understanding the beauty and the power of well presented concept of
barycentric coordinates and its application, within Emma Castelnuovo presentation
of her teaching at ICME-1 in Lyon in 1969 (Castelnuovo, 1969, p. 192).

Therefore, the idea could be used:

• As a project-exercise after students are familiar with basicR3 (vector) linear alge-
bra. It could be done even in a very elementary level without using the terminology
of ‘one dimensional vector spaces’ (using just vectors/lines—passing through the
origin).
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• ‘Projective spaces’ as otherwise classical chapter of linear algebra is usually intro-
duced later in the university studies within more advanced mathematics classes or
for mathematics majors. Presented idea is a very useful exercise and motivation to
bring students from elementary and intuitiveR3 linear algebra to the more abstract
subject of projective spaces.

• The idea could be used in combination with ‘barycentric’ and/or ‘trilinear’ coor-
dinates (discussed in the following).

3.3 Barycentric Coordinates

It is a wonderful ‘abstract visualization’ challenge to introduce the idea of a tri-
angle (equilateral for start) as a form of coordinate system in a sense of carefully
and intuitively introduced barycentric coordinates. The concept we need, is just (an
extension of) ‘linearity’. The readers are warmly invited to carefully read the above
mentioned presentation ofEmmaCastelnuovo (Castelnuovo, 1969). The presentation
is an inspirational proof of how a charismatic teacher with a profound understanding
of mathematical subject (‘scholar-teacher’) can bring average students to unimagin-
ably deep understanding and what is even more important, can make students enjoy
mathematics. The barycentric coordinates, even if proved by Emma Castelnuovo to
be accessible already to 14-years old students, might be an extensive chapter of study
with many interesting ‘synapses’ to other linear algebra and mathematical ‘neurons’.

Let us just state the very intuitive definition of barycentric coordinates and some
very basic but beautiful ideas, which, when presented to students, should be intro-
duced gradually and with great sensitivity. Starting with a given triangle as the basis
of orientation, an (ordered) triple of numbers represents the point in a plane (of a
triangle) defined as a ‘center of mass’, where the three ‘masses/numbers are placed to
the vertices’... It is very intuitive to understand, that the new coordinates are ‘homo-
geneous’. Intuitive meaning of so described barycentric coordinates has also very
easy to understand geometric description. Starting with an equilateral triangle and
any point within a triangle (this notion can of course be extended to any triangle and
to points ‘outside’ of a triangle), we draw parallel lines to the triangle sides, passing
through the given point. We obtain three ‘smaller equilateral triangles’, which we
denote by p, q and r (which shall mean lengths of sides of respective triangles) and
three parallelograms as seen on Fig. 8—left.

Putting some notation on our figure and drawing a segment from a vertex A over
our point P to the opposite side as seenonFig. 8—middle,weget somevery important
conclusions. Sides of a triangle are nicely ‘decomposed’ as AB = q + r + p, BC =
r + p + q and CA = p + q + r and by using similarity, we easily conclude that
BD
DC = r

q and AT
T D = q+r

p . Therefore, point D is a center of gravity of masses q and r
positioned in vertices B and C respectively, and our point T is the center of gravity
of masses p, q and r positioned in vertices A, B and C respectively.

Therefore, considering the obvious nature of ‘homogeneity’ of barycentric coor-
dinates, and placing any (positive) values p, q and r , for which p + q + r = 1, at
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Fig. 8 Geometric visualization of barycentric coordinates

the vertices of an equilateral triangle with a side of length 1, we see, that the center
of gravity is given by point P with barycentric coordinates (p, q, r) and with a very
intuitive position in a triangle, as seen on Fig. 8—right.

This nice notion of barycentric coordinates which is based solely on a very simple
(primary school) ‘linearity’ and/or ‘proportionality’, has awonderful ‘extension’ into
the ‘high school level linearity’.

The idea could be used:

• As an interesting problem-exercise for smart kids. Have only to be familiar with
‘basic triangle geometry’. Pupils use ‘linear algebra’ thinking before they know
that ’linear algebra’ exists.

• As an interesting problem-exercise for high school students. Gives an alternative
understanding of a concept of ‘coordinate system’, where the position of a point
is determined relatively to a given triangle. Students use ‘linear algebra’ thinking
without knowing it.

• As a simple and intuitive example of otherwise abstract concept of projective
coordinates/spaces, for advanced university students.

3.4 Trilinear Coordinates

Focusing our attention on Fig. 8—right, it is quite straightforward to notice, that a
position of a point P within our triangle could also be described as a position in a
triangle, of which the distances to (appropriate) sides of a triangle are in the ratio of
(p, q, r). Therefore, the position within a triangle could be given by the distances
from the triangle’s sides. It is obvious, that only two such distances suffice, and that
the same information can be given by three homogeneous coordinates.

But don’t these coordinates of points in plane look like ‘projective coordinates’
of a projective plane discussed in Sect. 3.2? Might this construction of coordinates
by the use of a triangle in fact give some kind of ‘projective plane coordinates’? If
so, how could these (x, y, z) coordinates (giving the ratio of distances to triangle’s
sides) be connected to one dimensional vector spacesL {(x, y, z)} spanned over R3

vectors?



294 D. Kobal

Answers to these questions are quite easy and give rise to the use of (slightly more
advanced) vector part of linear algebra. As mentioned for barycentric coordinates,
it is not too difficult to do it in general for any triangle. In the case of trilinear
coordinates it is even more natural and easy to understand, that a position in a plane
is well defined, if we give its two distances to the appropriate triangle’s sides (or
lines containing them). It is also more natural to talk about negative distances, where
positive distance from a line is defined by the ‘triangle’s side’. And as we will see,
the proof that ‘trilinear coordinates’, given by homogeneous distances from lines
containing triangle’s sides (i.e. the triple (x, y, z) give the ratio of the distances), are
in fact projective coordinates in a ‘projective plane’, is an inspiring and easy exercise
in basic vector linear algebra.

We start with any triangleΔABC with standard notation: A, B,C are the vertices
and a, b, c are triangle’s (opposite) sides. With va , vb and vc we denote the respective
heights. Let T be any point within our triangle.

Drawing lines parallel to the sides of a triangle, passing through point T , we
obtain three triangles, which are similar to triangle ΔABC (Fig. 9—left):

ΔABC ∼ ΔC1C2T ∼ ΔB2T B1 ∼ ΔT A1A2

If we denote the distances of a point T from respective triangle’s sides by da , db and
dc, it is easy to use similarity to obtain the following equalities:

AC1 = c · db
vb

; C1C2 = c · dc
vc

; C2B = c · da
va

and C1T = b · dc
vc

(1)

which are equivalent to

AC1

c
= db

vb
; C1C2

c
= dc

vc
; C2B

c
= da

va
and

C1T

b
= dc

vc
(2)

Of course, by XY we denote the length of a respective segment XY . Since c =
AC1 + C1C2 + C2B and by our equations (1) we have

1 = da
va

+ db
vb

+ dc
vc

(3)

Now let us place our triangle ΔABC on a plane within our regular R3 space.
Imagine the heights va , vb and vc are ‘rigidly dropped down’ below the triangle
ΔABC plane as straight links, but flexibly attached at the respective vertices of the
triangle. Conclude, that there is a unique point/node in R

3 space below our plane
where the three ‘hanging links’ can be joined. We name this point O (for origin).
Switching to the basic vector concept we can now say that vectors

−→
OA,

−→
OB and

−→
OC

are uniquely defined and are of respective lengths va , vb and vc.



Linear Algebra—A Companion of Advancement … 295

T

A

B

C

A2

B1

C2
C1

A1

B2

da

dc

db

−→e1 −→e2
−→e3

A B

C

O

Fig. 9 Trilinear coordinates as projective plane coordinates

If we define (Fig. 9—right) −→e1 , −→e2 and −→e3 to be the unit vectors in respective
directions by

−→
OA = va · −→e1 , −→

OB = vb · −→e2 and
−→
OC = vc · −→e3 , we have a basis

{−→e1 ,
−→e2 ,

−→e3 } for R3 vector space (with O as origin).
Now let us express the point T , i.e. the vector

−→
OT with basis {−→e1 ,

−→e2 ,
−→e3 }.

−→
OT = −→

OA + AC1 ·
(−→
OB − −→

OA
)

c
+ C1T ·

(−→
OC − −→

OA
)

b

=
(
1 − AC1

c
− C1T

b

)
· −→
OA + AC1

c
· −→
OB + C1T

b
· −→
OC

=
(
1 − db

vb
− dc

vc

)
· −→
OA + db

vb
· −→
OB + dc

vc
· −→
OC

= da
va

· −→
OA + db

vb
· −→
OB + dc

vc
· −→
OC

= da
va

· va · −→e1 + db
vb

· vb · −→e2 + dc
vc

· vc · −→e3
= da · −→e1 + db · −→e2 + dc · −→e3

In rows 3. and 4. we used equations (2) and (3). Obviously, the point T , given by
trilinear coordinates (da, db, dc), is the the same as the point given by projective plane
coordinates (da, db, dc) rising fromL {(da, db, dc)} (over the basis {−→e1 ,

−→e2 ,
−→e3 }).

Note: Point T couldwell be outside the given triangle. In such case some distances
of T to the lines containing triangle sides would be negative.

The idea could be used:

• As an interesting problem-exercise for smart kids. We could avoid ‘sophistication’
of projective spaces and vector algebra and just intuitively introduce ‘orientation in
a plane relative to a given triangle’, where points are determined by distances to the
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given triangle’s sides. ‘Homogeneous coordinates’ could be introduced intuitively
as a triple determining the ratio of appropriate distances from triangle’s sides.

• The idea could be best used with students already familiar with projective space,
or at least with students understanding projective plane and the concept of homo-
geneous coordinates. Otherwise, the presented proof that trilinear coordinates
are just a special case of (projective) homogeneous coordinates is only a nice
practical exercise, which will enhance students understanding of elementary R

3

vector algebra.

3.5 Barycentric Versus Trilinear Coordinates and
Applications

We conclude the discussion about ‘projective/barycentric/trilinear’ coordinates by
rather simple observation, that in the case of equilateral triangle barycentric and tri-
linear coordinates are the same and by giving two challenging (application) problems
with inspiringly beautiful solutions. These might be an encouragement for teachers
and students. Namely, sophisticated problems are solved by smart use of simple but
contentwise sophisticated linear algebra thinking. This was wonderfully illustrated
by already mentioned Emma Castelnuovo presentation (Castelnuovo, 1969).

Challenge 1: A fragile glass stick, when dropped, randomly breaks into (exactly)
three pieces. If many such sticks are dropped, and of each stick’s three pieces we
try to form a triangle, of how many a triangle could be formed? One quarter? One
third? One half? Of more than half? (In high school or college vocabulary: What is
the probability that a stick breaks into three pieces that could form a triangle?)

It is an enlightening exercise to see, that ‘different breaks’ of a stick are well
presented by trilinear (or barycentric) coordinates of a triangle, and that exactly points
with all three coordinates smaller than 1

2 (within an equilateral triangle of height 1)
represent ‘breaks’ that allow triangle forming. Therefore only points within a triangle
with vertices at the midpoints of the original triangle’s sides are acceptable and we
conclude that we will be able to form a triangle only ‘every fourth time’.

Challenge 2: We have three (unmeasured) containers. The first, which is full of
water, of 12 l, the second of 9 l and the third of 5 l are empty. Could (without any
additional containers) the 12 l of water be split on half?

The problem is elegantly described and solved by trilinear coordinates. We start
with an equilateral triangle with a side 12 (total quantity of water) and with sketched
‘coordinate lines’ (Fig. 10—left). The distance from ‘C-12’ side denotes the quantity
of water in the 12 l container. The distance from ‘C-9’ and ‘C-5’ sides respectively
denote the quantities of water in 9 l and 5 l containers. For example, the top vertex
of our triangle has coordinates (12, 0, 0) and tells us, that all the water is in the
‘C-12’ container. Since the other two containers only hold 9 l and 5 l, we get the
‘permissible region’ sketched with pentagon on Fig. 10—left. Since the containers
are not measured, we can control the moves within the pentagon only by ‘hitting
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Fig. 10 Quantities in three containers represented by trilinear coordinates

the edge of the pentagon’, which means ’filling up’ one of the containers. From the
starting point (12, 0, 0) we can only move to points (3, 9, 0) or to (7, 0, 5), which
means we fill up the second or the third container respectively.

Moving in direction ‘top down-right’ means pouring from ‘C-12’ to ‘C-5’ con-
tainer, moving in direction ‘top down-left’ means pouring from ‘C-12’ to ‘C-9’
container and moving in direction ‘left-right’ means pouring from ‘C-9’ to ‘C-5’
container. The solution to the problem is therefore given by sequence of eight pour-
ing indicated byvectors onFig. 10—right: (12, 0, 0) to (7, 0, 5) to (7, 5, 0) to (2, 5, 5)
to (2, 9, 1) to (11, 0, 1) to (11, 1, 0) to (6, 1, 5) to (6, 6, 0).

The ideas could be used:

• As interesting problems-exercises for smart kids, who only have to be familiar with
‘basic triangle geometry’. If barycentric and trilinear coordinates were introduced
intuitively, as mentioned above, it is a revealing recognition, that in the case of
equilateral triangle the two coordinates yield the same ‘orientation in a triangle’s
plane’. And the two challenges provide an appealing use of the concept.

• As examples for students already familiar with projective spaces, showing a nice
elementary and intuitive use of the concept.

4 Conclusion

Teaching mathematics has always been about good presentation of good ideas. Lin-
ear algebra offers many wonderful and smart mathematical ideas, which combine
visual and analytical thinking, which offer a smooth transition from concreteness to
abstraction and which appear on crossroads of all mathematical fields. This is a great
challenge and a valuable opportunity, which a devoted teacher should not miss.
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A Computational Approach to Systems
of Linear Equations

Franz Pauer

Abstract Wepresent a purely algebraic/computational approach to systems of linear
equations. It requires only a little previous knowledge. We define a system of linear
equations as a task, discuss how to specify the input and output data and elucidate
the basic ideas to solve the system. Geometric interpretations of systems of linear
equations (for the case of two or three unknowns) are postponed to the last section.
Firstly, because precise geometric reasoning is not simple but quite demanding,
secondly, most applications need systems of linear equations with more than three
variables.

Keywords System of linear equations · Elementary transformation
Echelon form Gaussian elimination · Implicit form of a line

1 Introduction

Themain topic of a basic linear algebra course is systems of linear equations. Despite
several advantages of geometric reasoning in the plane or in the space, there are two
objections to the geometric approach:

– Interesting applications in science, engineering, and economics need systems of
linear equations with (much) more than 3 unknowns (e.g. electric circuits, inter-
polation by polynomials of degree ≥3, linear optimization, etc.).

– Geometry might appear simple, but precise geometric reasoning is quite
demanding.

We propose an algebraic/computational approach to systems of linear equations
which requires only a little previous knowledge. We define a system of linear
equations as a task, discuss how to specify the input and output data and elucidate
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the basic ideas to solve the system. The question of how we can describe an infinite
solution set by a finite set of data leads naturally to the consideration of other cen-
tral topics of linear algebra: vector spaces, linear combination, bases, dimension,. . ..
These results can subsequently be used for a geometrical interpretation of systems
of linear equations.

The theory of (systems of) linear equations is particularly suitable to introduce
algorithmic thinking. First the problemmust be defined, this includes the specification
of the input and output data. Then the basic strategy to solve the problem has to be
exhibited and the structure of the algorithm must be explained. Finally the details of
the algorithm should be presented.

In Sect. 2 systems of linear equations with at most 2 unknowns are defined and
solved. For this section no particular previous knowledge is necessary. In Sect. 3 we
define general systems of linear equations and introduce their matrix form (which
was already used in Chinese mathematics more than 2100 years ago, see for example
Gabriel (1996), Chapter A.2). Then we show by two examples that linear equations
(with more than 3 unknowns) are very useful in different fields of application of
mathematics. In Sect. 5 we indicate how to describe an infinite solution set by finitely
many data. In Sects. 6–9 the ideas of how to solve systems of linear equations are
described. The basic idea is the strategy of equivalence transformations. Then we
look for tools to transform a system without changing its solution set. After having
identified a sufficiently wide class of systems of linear equations which can be solved
without a single calculation we explain how an arbitrary system can be transformed
to an equivalent one in this class. In the last sectionwe give a geometric interpretation
of systems of linear equations and their solution sets.

I have used this approach for many years in a course of linear algebra for first-
year students of computer science, physics, and mathematics (including prospective
teachers), see Pauer (2007). By this contribution I want to share with the readers my
experience of teaching.

2 Prelude: Linear Equations in High School

A linear equation with one unknown is the following task: Given are (real) numbers
a and c. Find all numbers x such that a · x = c. Such a number is a solution of the
linear equation.

If a = 0 and c = 0 then all numbers are solutions.
If a = 0 and c �= 0 then there are no solutions.
Now we assume that a �= 0. If two numbers are equal, then so are their products

with the same number. Hence a · x = c iff x = a−1 · a · x = a−1 · c. Thus a−1 · c is
the unique solution.

A linear equation with two unknowns is the following task: Given are numbers a,
b and c. Find all pairs of numbers (x, y) such that a · x + b · y = c. Such a pair of
numbers is a solution of the linear equation. The equation is homogeneous iff c = 0.
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If a = 0, b = 0 and c = 0 then all pairs of numbers are solutions.
If a = 0, b = 0 and c �= 0 then there are no solutions.
Now we assume that a �= 0 or b �= 0.
First we consider the homogeneous equation given by a and b. Since
a · b + b · (−a) = 0 the pair (b,−a) is a solution. For all numbers t we have

a · (t · b) + b · (t · (−a)) = t · (a · b + b · (−a)) = t · 0 = 0

hence all pairs (t · b, t · (−a)) = t · (b,−a) are solutions too.
On the other hand, if (x, y) is a solution and a �= 0 resp. b �= 0 then

(x, y) = −(y/a) · (b,−a) resp. (x, y) = (x/b) · (b,−a). Hence

{ t · (b,−a) | t ∈ R }

is the set of all solutions of the homogeneous equation.
Note that the set of all solutions is infinite but we can describe it by a single pair

of numbers. Note also that we can solve the equation without a single calculation.
If the equation is not homogeneous we observe that

• a · x + b · y = c and a · x ′ + b · y′ = c imply a · (x ′ − x) + b · (y′ − y) = 0.
The difference of two solutions is a solution of the corresponding homogeneous
equation.

• a · x + b · y = c and a · u + b · v = 0 imply a · (x + u) + b · (y + v) = c.
The sum of a solution and a solution of the corresponding homogeneous equation
is again a solution.

Therefore if (x, y) is a solution then any other solution (x ′, y′) can be written as
a (componentwise) sum of (x, y) and a solution of the corresponding homogeneous
equation: (x ′, y′) = (x, y) + (x ′ − x, y′ − y).

If a �= 0 then obviously (c/a, 0) is a solution. If b �= 0 then obviously (0, c/b) is
a solution. Therefore the set of all solutions is

{ (r, s) + t · (b,−a) | t ∈ R } ,

where (r, s) is any solution of the equation, for example (c/a, 0) or (0, c/b). Note
that the set of all solutions is infinite but we can describe it by only two pairs of num-
bers: one arbitrarily chosen solution and one non-zero solution of the corresponding
homogeneous equation. Note also that we needed only one calculation to solve the
equation, namely the division c/a or c/b.

Example Find all pairs of numbers (x, y) such that 1.28 · x + 4.17 · y = 1.97! Since
1.97/1.28 = 1.5390625 the set of all solutions is

{ (1.5390625, 0) + t · (4.17,−1.28) | t ∈ R } .
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A system of two linear equations in two unknowns is the following task: Given
are numbers a1, a2, b1, b2 and c1, c2. Find all pairs of numbers (x, y) such that
a1 · x + b1 · y = c1 and a2 · x + b2 · y = c2. Such a pair of numbers is a solution of
the system of linear equations.

The system is homogeneous iff c1 = 0 and c2 = 0.
We shortly say: Solve the system

a1 · x + b1 · y = c1
a2 · x + b2 · y = c2.

We say that two systems of linear equations are equivalent iff they have the same
set of solutions. It is easy to verify that the following systems are equivalent to the
system above:

•

a2 · x + b2 · y = c2
a1 · x + b1 · y = c1

“We can swap the two equations.”
• Let s, t be non-zero numbers.

s · a1 · x + s · b1 · y = s · c1
t · a2 · x + t · b2 · y = t · c2

“We can multiply the equations by non-zero numbers.”
•

a1 · x + b1 · y = c1
(a2 ± a1) · x + (b2 ± b1) · y = c2 ± c1

“We can add (subtract) one equation to (from) the other one.”

It is easy to verify that by performing a sequence of these actions (swap two equations,
multiply one equation by a non-zero number, add (subtract) one equation to (from)
the other one) we obtain an equivalent system of one of the following types:

•
a′
1 · x + b′

1 · y = c′
1

0 · x + 0 · y = 1

In this case there are no solutions.
•

1 · x + 0 · y = c′
1

0 · x + 1 · y = c′
2
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In this case there is exactly one solution, namely (c′
1, c

′
2).•

a′
1 · x + b′

1 · y = c′
1

0 · x + 0 · y = 0

In this case there are infinitely many solutions, namely all solutions of the linear
equation with two unknowns given by a′

1, b
′
1 and c′

1.

Note that the way to reach one of this types is not unique. The order in which the
above-mentioned actions are performed depends on the given system and on the taste
of the person solving the system of equations.

Example We transform the system

2 · x + 3 · y = 4
5 · x + 6 · y = 7

successively to

4 · x + 6 · y = 8
5 · x + 6 · y = 7

,
4 · x + 6 · y = 8
1 · x + 0 · y = −1

,
1 · x + 3

2 · y = 2
1 · x + 0 · y = −1

,

0 · x + 3
2 · y = 3

1 · x + 0 · y = −1
,

0 · x + 1 · y = 2
1 · x + 0 · y = −1

, and
1 · x + 0 · y = −1
0 · x + 1 · y = 2

.

Hence all these systems have only one solution, namely (−1, 2).

3 What is a System of Linear Equations?

A system of linear equations is the follwing task: Given are numbers Ai j and bi with
indices 1 ≤ i ≤ m and 1 ≤ j ≤ n. Search for a “good description” of the set of all
n-tuples (x1, . . . , xn) of numbers fulfilling the constraints

A11x1 + A12x2 + · · · + A1nxn = b1
A21x1 + A22x2 + · · · + A2nxn = b2

...
...

...

Am1x1 + Am2x2 + · · · + Amnxn = bm

.

This set is called the solution set of the system of linear equations, its elements
are solutions.
The system of linear equations is homogeneous iff b1 = · · · = bm = 0. The n-tuple
(0, . . . , 0) is always a solution of a homogeneous system of linear equations.
The solution set of a inhomogeneous system of linear equations may be empty or
may contain only one n-tuple or may be an infinite set. Clearly, in the latter case we
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cannot write down all solutions. We show in the next section how to overcome this
problem and define what we expect as a “good description” of the solution set.

Many lectures on linear algebra start with matrix algebra, a topic which is on the
one hand easily comprehensible for first-year-students and which on the other hand
facilitates speaking about systems of linear equations.As soon as students are familiar
with basic notions and notations of matrix algebra (i.e. addition and multiplication
of matrices and the corresponding calculation rules like distributive laws, associative
laws, ...), we can define systems of linear equations in the following very short form:

Given are a matrix A with m rows and n columns and a column b with m entries.
Search for a “good description” of the set of all columns x with n entries such that

A · x = b .

This set is called the solution set of the system of linear equations, its elements are
solutions. We write S(A, b) := {x | A · x = b } for the solution set of the system of
linear equations given by A and b.

This “matrix form” of systems of linear equations is useful to implement systems
of linear equations in a programming language, since the input data are just a matrix
and a column. A “good description” of the solution set means in this context to
specify reasonable output data.

It is little-known that thematrix form of a system of linear equations is historically
the earlier one. More than 2100 years ago in China systems of linear equations
in matrix form (motivated by problems arising from commerce) were solved by
calculations withmatrices. Hence Peter Gabriel calls “Fang-Cheng-Algorithm”what
nowadays is known as “Gaussian Elimination”, see Gabriel (1996, Chapter A.2).

4 Two Examples of Systems of Linear Equations

Systems of linear equations occur in nearly every field of application of mathematics,
see e.g. Meyer (2000). Here are two examples:

Example 1 Melting alloys
An alloy containing bi grams of the metal Mi for 1 ≤ i ≤ m shall be produced. The
alloy is produced by combining appropriate quantities of the alloys L1, . . . , Ln of
the metals M1, . . . , Mm , where 1 gram of the alloy L j contains Ai j grams of the
metal Mi . How many grams of L1, . . . , Ln have to be melted to obtain the desired
alloy? (We assume that the mass of the metals does not change during the melting
process).

Melting x1, . . . , xn grams of the alloys L1, . . . , Ln yields an alloy with

Ai1x1 + Ai2x2 + · · · + Ainxn

grams of Mi , 1 ≤ i ≤ m. Hence we have to find n-tuples (x1, . . . , xn) such that

Ai1x1 + Ai2x2 + . . . + Ainxn = bi , 1 ≤ i ≤ m .
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Example 2 Electric circuits
In the following electric circuit the voltagesU1 andU2, and the electric resistances

R1, R2, R3, R4, R5 are known. Compute the electric currents I1, I2, I3, I4, I5 through
the resistances R1, R2, R3, R4, R5.
Voltages are given in Volts, currents in Ampères and resistances in Ohms. Hence we
consider Ri , Ii ,Ui as numbers.
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We have to choose (arbitrarily) a direction of the electric current in each wire
between two vertices.
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Then, using Ohm’s law, Kirchhoff’s law for nodes, and Kirchhoff’s law for
meshes, we transform this problem into a system of linear equations:
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Kirchhoff’s law for nodes yields
I1 + I5 = I2 + I4
I2 = I1 + I3
I3 + I4 = I5

Kirchhoff’s law for meshes yields
I1 · R1 + I2 · R2 = U1

I2 · R2 + I3 · R3 = I4 · R4

I4 · R4 + I5 · R5 = U2

Thus we search for all 5-tuples (I1, . . . , I5) such that

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 −1 1
−1 1 −1 0 0
0 0 1 1 −1
R1 R2 0 0 0
0 R2 R3 −R4 0
0 0 0 R4 R5

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

I1
I2
I3
I4
I5

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
U1

0
U2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

5 How to Describe an Infinite Solution Set by Finitely
Many Solutions

It is not possible to describe any infinite set by finitely many of its elements. This is
only possible, if there is some additional information or structure on this set. Solution
sets of systems of linear equations have two important properties:

1. The problem of describing the solution set of any system of linear equations can
be reduced to that of describing the solution set of homogeneous ones. More
precisely: if v is any solution of the system given by a matrix A and a column
b, then its solution set S(A, b) consists of all sums of v with a solution of the
corresponding homogeneous system of linear equations (given by A and 0), i.e.

S(A, b) = {v + w | w ∈ S(A, 0)} .

This easily follows from
A · (v + w) = A · v + A · w = b + 0 = b.

2. If x and y are solutions of the homogeneous system of linear equations given by
A, then for all numbers c and d the column cx + dy is a solution too.
This follows easily from calculation rules for matrices:
A · (cx + dy) = c(A · x) + d(A · y) = 0 + 0 = 0.
More generally, if the columns w1, . . . , wk are solutions and c1, . . . , ck are ar-
bitrary numbers, then the linear combination c1w1 + · · · + ckwk is a solution
too.

Now we are able to state more precisely what a “good description” of the so-
lution set means: compute one solution v ∈ S(A, b) and a basis of S(A, 0), i.e.



A Computational Approach to Systems of Linear Equations 307

finitely many solutions w1, . . . , wk of the corresponding homogeneous equation
such that any element of S(A, 0) can uniquely be written as a linear combination
c1w1 + · · · + ckwk of w1, . . . , wk . Then

S(A, b) = {v + c1w1 + · · · ckwk | c1, . . . , ck numbers} .

One can show that the number k is uniquely determined, it is called the dimension
of the solution set.

This could be the starting point to speak about vector spaces, vectors, linear
combinations, bases, dimension, . . . in a course on linear algebra. In the context of
linear equations vectors are columns and vector spaces are non-empty sets of columns
which are closed under addition andmultiplication by numbers, for example solution
sets of systems of homogeneous linear equations.

In general, vector spaces are sets together with an “addition” and a “multiplication
with numbers (or scalar multiplication)”, such that certain calculation rules hold.
Vectors are (by definition) elements of vector spaces. Note that for the following it is
not necessary to know that any vector space has a basis, since there is an algorithm
which effectively computes a basis of the solution set of homogeneous systems of
linear equations and thus shows (in the best way) that a basis exists.

The notion linear combination enables another interpretation of systems of linear
equations. If A is a matrix with n columns and y is a column with n entries, then

A · y = y1A−1 + · · · + yn A−n ,

i.e. the matrix product A · y is a linear combination of the columns of A. Here A− j

denotes the jth row of A. The task “Find a column y such that A · y = b” is therefore
equivalent to the task “Write b as a linear combination of the columns of A”.

6 The Strategy to Solve Systems of Linear Equations

If you cannot solve a problem directly then move on to an easier problem which has
the same solution set as the former one. Repeat this until you arrive at a problem
which you can solve.

This is a basic strategy in mathematics. More than 2200 years ago it was suc-
cessfully applied by Greek mathematicians to compute the greatest common divisor
gcd(a, b) of two positive integers a and b, i.e. the greatest integer which divides a
and b. The key observation for the euclidean algorithm (for a > b) is:

gcd(a, b) = gcd(a − b, b) .

This follows from the fact that any common divisor of a and b is also a divisor of
a + b and of a − b. As long as the two numbers are different we replace the greater
one by the difference of the greater and the smaller one. As soon as the two numbers
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are equal we know gcd(a, b). This case occurs after at most a steps. For example:

gcd(355, 213) = gcd(213, 142) = gcd(142, 71) = gcd(71, 71) = 71 .

The same strategy is used to solve systems of linear equations. We replace the
given system by another system of linear equations, which has the same solution
set. Such a system of linear equations is called equivalent to the first one, and the
replacement is called an equivalence transformation.

7 Elementary Transformations

We now try to transform the given system of linear equations by several equivalence
transformations to a systemwhich is easy to solve, i.e. wherewe need no further com-
putations to obtain one solution and a basis of the solution set of the corresponding
homogeneous system. But to this end we have to answer two questions:

1. How can we transform a system of linear equations into an equivalent one?
2. What is the goal of the transformation process, i.e. which systems of linear

equations are easy to solve?

The answer to question 2 is given in the next section. To answer question 1 we
recall that a matrix P with m rows and m columns is invertible if there is a matrix
Q such that P · Q = Im , where Im is the identity matrix. Then we write P−1 for
Q and call it the inverse matrix of P . Recall that A is a matrix with m rows and n
columns and b ist a column with m entries. The key observation is the following: if
P is invertible, then

S(A, b) = S(P · A, P · b).

This is true since A · x = b implies (P · A) · x = P · b and (P · A) · x = P · b im-
plies A · x = P−1 · (P · A) · x = P−1 · (P · b) = b. Hence, if P is an invertible ma-
trix we get an equivalent system of linear equations by replacing A and b by P · A
and P · b.

The matrices obtained in the following way are obviously invertible:

1. Replace in Im one row by the sum of this row and another one.
2. Swap two rows of Im .
3. Multiply one row of Im with a non-zero number.

We call these matrices elementary matrices.

Example The matrices
⎛
⎝
1 0 1
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝
1 0 0
0 3 0
0 0 1

⎞
⎠ .
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are elementary matrices, the inverse matrices of them are

⎛
⎝
1 0 −1
0 1 0
0 0 1

⎞
⎠ ,

⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠ ,

⎛
⎝
1 0 0
0 1

3 0
0 0 1

⎞
⎠ .

If P is an elementary matrix, then we obtain the product P · A in one of the
following ways:

1. Replace one row of A by the sum of this row and another one.
2. Swap two rows of A.
3. Multiply one row of A with a non-zero number.

We say that we have obtained P · A by an elementary transformation from A. The
systems of linear equations given by A and b and by P · A and P · b are equivalent,
i.e. elementary transformations are equivalence transformations.

Assume that m = n and suppose that by several elementary transformations we
transform A to the identity matrix Im and b to b′. Then the only column x with
Im · x = b′ is b′. Thus b′ is also the only element of S(A, b).

But by far not all matrices can be transformed by elementary transformations to
the identity matrix. Thus even in the case m = n it cannot be the unique goal of our
transformation process.

8 The Easy Case: Systems in Echelon Form

First we reflect which systems of linear equations can be solved without any com-
putation. A matrix A with m rows and n columns has reduced row echelon form iff
the following conditions hold:

(1) If all entries in a row of A are zero, then the same is true for all rows below.
(2) The first non-zero entry in each row is called pivot and is 1.
(3) The pivot in the (i+1)-th row is in a column to the right of the pivot in the i-th

row.
(4) A pivot is the only non-zero entry in its column.

A matrix in reduced row echelon form has the shape

⎛
⎜⎜⎜⎝

0 . . . 0 1 ∗ . . . ∗ 0 ∗ . . . ∗ 0 ∗ . . .

0 . . . . . 0 1 ∗ . . . ∗ 0 ∗ . . .

0 . . . . . . . . . . 0 1 ∗ . . .
...

⎞
⎟⎟⎟⎠ ,

where the stars can be arbitrary numbers.
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Let ei be the i-th standard column, i.e. the column with 1 in the i-th row and 0 in
the other rows.
Suppose that A has reduced row echelon form. Then its columns with pivots are by
definition standard-columns. If A has r pivots, then among the columns of A are the
standard columns e1, e2, . . . , er . If A has more than r rows, then all entries in the
rowswith indices r + 1, . . . ,m are 0. Recall fromSect. 5 that finding a solution of the
system of linear equations given by A and bmeans to write b as a linear combination
of the columns of A. This is not possible if one of the entries bi of b with i > r is not
zero. Hence in this case there is no solution. Otherwise, since b = b1e1 + · · · + brer
it is easy to write b as a linear combination of columns of A: if the column-indices
of the pivots are p1 < p2 < . . . < pr then ei is the pi -th column of A. Hence the
column x with xpi = bi , 1 ≤ i ≤ r , and x� = 0 for the other indices �, is a solution.

By similar considerations we get a basis of the solution set of the homogeneous
linear equation given by A: Let q1, q2, . . . , qn−r be the indices of columns without
pivot. The columns

w j :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
−A1q j

0
...

0
1
0
...

−Arq j

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

1 ≤ j ≤ n − r , where the numbers −A1q j , . . . ,−Arq j are in the rows with indices
p1, . . . , pr and 1 is in the row with index q j , are a basis of S(A, 0).

Example
Find all 5-tuples (x1, . . . , xn) such that

x2 + 3x3 + 2x5 = −1

x4−x5 = 2

In matrix-form: Find all columns x with 5 entries such that
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(∗) A · x :=
(
0 1 3 0 2
0 0 0 1 −1

)
x =

(−1
2

)

Since

0 · A−1 + (−1) · A−2 + 0 · A−3 + 2 · A−4 + 0 · A−5

= (−1) ·
(
1
0

)
+ 2 ·

(
0
1

)
=

(−1
2

)
,

⎛
⎜⎜⎜⎜⎝

0
−1
0
2
0

⎞
⎟⎟⎟⎟⎠

is a solution.

Recall that A− j denotes the j-th column of A. Then

1 · A−1 = 0,

−3 · A−2 + 1 · A−3 = 0 and

−2 · A−2 + 1 · A−4 + 1 · A−5 = 0

hence

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎝

0
−3
1
0
0

⎞
⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎝

0
−2
0
1
1

⎞
⎟⎟⎟⎟⎠

are solutions of the system of homogeneous

linear equations. Moreover they are a basis of its solution set which has dimension 3.
Therefore the solution set of the system (*) is

{

⎛
⎜⎜⎜⎜⎝

0
−1
0
2
0

⎞
⎟⎟⎟⎟⎠

+ c1

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠

+ c2

⎛
⎜⎜⎜⎜⎝

0
−3
1
0
0

⎞
⎟⎟⎟⎟⎠

+ c3

⎛
⎜⎜⎜⎜⎝

0
−2
0
1
1

⎞
⎟⎟⎟⎟⎠

| c1, c2, c3 ∈ R}

= {

⎛
⎜⎜⎜⎜⎝

c1
−1 − 3c2 − 2c3

c2
2 + c3
c3

⎞
⎟⎟⎟⎟⎠

| c1, c2, c3 ∈ R}.

It is important to realize that we can solve systems of linear equations in reduced
row echelon form without any calculation! We only have to assign the entries of A
and b to the right places in the columns describing the solution set.
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9 Gaussian Elimination

The section before suggests to try to transform any system of linear equation by
elementary transformations to a system which has reduced row echelon form. It is
easy to see that this is always possible. Starting with the first column of A, the matrix
is transformed step-by-step into reduced row echelon form.

For example: If the entry A11 is not zero, then multiply the first row by 1/A11.
Then add to the i-th row the −Ai1-fold (new) first row, 2 ≤ i ≤ m. This yields a
matrix whose first column is the first standard-column. If A11 = 0 but there is a
non-zero entry in the i-th row of the first column, then swap the first and i-th row of
A and continue as above. If all entries of the first column are 0 then move on to the
second column.

In several Computeralgebra-Systems there are commands to transform a matrix
A to a matrix which has reduced row echelon form. For example, in Maple 18 this
can be done by the command with(LinearAlgebra): ReducedRowEchelonForm(A).
From the reduced row echelon form we can directly read off the solutions.

Instead of a detailed description of the process of transformation we present an
example. Since the elementary transformations for A and b must be the same ones
it is reasonable to write A and b as one (extended) matrix (A|b).

A :=
⎛
⎝
0 2 3 −1
2 4 6 0
2 6 9 −1

⎞
⎠ , b :=

⎛
⎝
2
4
6

⎞
⎠

(A|b) =
⎛
⎝
0 2 3 −1 2
2 4 6 0 4
2 6 9 −1 6

⎞
⎠ →

⎛
⎝
2 4 6 0 4
0 2 3 −1 2
2 6 9 −1 6

⎞
⎠ →

→
⎛
⎝
1 2 3 0 2
0 2 3 −1 2
2 6 9 −1 6

⎞
⎠ →

⎛
⎝
1 2 3 0 2
0 2 3 −1 2
0 2 3 −1 2

⎞
⎠ →

→
⎛
⎝
1 0 0 1 0
0 2 3 −1 2
0 2 3 −1 2

⎞
⎠ →

⎛
⎝
1 0 0 1 0
0 2 3 −1 2
0 0 0 0 0

⎞
⎠ →

→
⎛
⎝
1 0 0 1 0
0 1 3

2 − 1
2 1

0 0 0 0 0

⎞
⎠

One solution is

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠. A basis of S(A, 0) is

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0
− 3

2
1
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−1
1
2
0
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠. Hence
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S(A, b) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
0
1
0
0

⎞
⎟⎟⎠ + c1

⎛
⎜⎜⎝

0
− 3

2
1
0

⎞
⎟⎟⎠ + c2

⎛
⎜⎜⎝

−1
1
2
0
1

⎞
⎟⎟⎠ | c1, c2 ∈ R

⎫⎪⎪⎬
⎪⎪⎭

.

10 Geometrical Interpretation

Asolution of an equationwith 2 (resp. 3) unknowns is a pair (resp. a triple) of numbers
and not a point in the plane (resp. space). In order to describe points by pairs (resp.
triples) of numbers we have to choose a coordinate system in the plane (resp. space).
Then the points can be identified with their pairs (resp. triples) of coordinates, the
plane can be identified with R2 and the space with R3.

Of course we have an intuitive conception of lines in Rn . But we have to give an
exact definition (which corresponds to our intuition) too.

A line through 0 and through a point P �= 0 inRn is the setR · P := { t · P | t ∈ R}
of all scalar multiples of P . Formulated in the language of vector spaces: A line
through 0 in Rn is a one-dimensional vector subspace of Rn .

The line through two different points P and Q in Rn is the set

Q + R · (Q − P) := { Q + t · (Q − P) | t ∈ R } .

Hence a line is given by one of its points and by a non-zero point of its parallel line
through 0. Such a representation of a line is called a parameter form. It is not unique,
we may choose instead of Q any other point of the line and instead of Q − P any
non-zero scalar multiple of Q − P .

R · (Q−P)

P+R · (Q−P)

0

Q−P

P

Q

This definition admits a geometric interpretation of one-dimensional solution sets
of systems of linear equations in n unknowns: if this system is homogeneous its set
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of solutions is a line through 0. If the system is not homogeneous, its solution set is
a line parallel to the solution set of the corresponding homogeneous system.

In particular, if (a, b) �= (0, 0) the set of solutions of the linear equation
a · x + b · y = c is the line through ( c·a

a2+b2 ,
c·b

a2+b2 ) (or through ( c
a , 0) if a �= 0) par-

allel to the line R · (−b, a).
A system of linear equations whose solution set is a line is called an implicit form

of this line. Implicit forms are not unique: all systems of linear equations equivalent
to the given one are implicit forms of this line too.

If the implicit form of a line in Rn is given, we can write it in parameter form by
solving this system of linear equations.

If (q1, . . . , qn) + R · (r1, . . . , rn) is a parameter form of a line, an implicit form
can be written down directly (we assume for simplicity that rn �= 0): Obviously

rnx1 − r1xn = 0, . . . , rnxn−1 − rn−1xn = 0

is an implicit form of the line R · (r1, . . . , rn). Since (q1, . . . , qn) must be a solution
we get the system

rnx1 − r1xn = rnq1 − r1qn, . . . , rnxn−1 − rn−1xn = rnqn−1 − r1qn

as an implicit form of (q1, . . . , qn) + R · (r1, . . . , rn).

Example A parameter form of the line through (0, 1, 2) and (−2, 3, 1) is
{(0, 1, 2) + t · (2,−2, 1) | t ∈ R }. An implicit form is the system

2x3 − x1 = 2 · 2 − 0 = 4,−2x3 − x2 = −2 · 2 − 1 = −5·

Consider points P1, P2 which are not both elements of a line through 0. A plane
in Rn through 0 and through points P1, P2 is the set { t1 · P1 + t2 · P2 | t1, t2 ∈ R } of
all linear combinations of P1 and P2. Formulated in the language of vector spaces:
A plane through 0 in Rn is a two-dimensional vector subspace of Rn .

The plane in R
n through three points P , Q and R, which are not all elements of

one line, is the set

{ R + t1 · (R − P) + t2 · (R − Q) | t1, t2 ∈ R } .

Hence a plane is given by one of its points and by its parallel plane through 0. This
representation of a plane is called a parameter form. Hence a two-dimensional set
of solutions of systems of linear equations in n unknowns is a plane in R

n which is
parallel to the set of solutions of the corresponding homogeneous system.

The solution set of one linear equation with three unknowns

a · x + b · y + c · z = d

with (a, b, c) �= (0, 0, 0) (we assume c �= 0) is the plane (we assume c �= 0)
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{ (0, 0, d/c) + t1 · (−c, 0, a) + t2 · (0,−c, b) | t1, t2 ∈ R }.

If a plane in R3 is given in parameter form

{ (r1, r2, r3) + t1 · (u1, u2, u3) + t2 · (v1, v2, v3) | t1, t2 ∈ R } ,

then an implicit form of this plane is

a · x + b · y + c · z = a · r1 + b · r2 + c · r3 ,

where (a, b, c) is a solution (unique up to a non-zero scalar multiple) of the homo-
geneous system of linear equations with three unknowns

u1 · x1 + u2 · x2 + u3 · x3 = 0 , v1 · x1 + v2 · x2 + v3 · x3 = 0 .

In general, an affine subspace ofRn is a non-empty subset Z := {P +U |U ∈ V },
where P is a point and V is a vector subspace ofRn . The dimension of Z is by defini-
tion the dimension of V , i.e. the number of vectors in a basis of V . Affine subspaces
of dimension 0, 1, 2 are points, lines and planes respectively. In the previous sections
we have shown that solution sets of systems of linear equations are affine subspaces.
The geometric formulation of “solve a system of linear equations” therefore is “de-
termine a parameter form of an affine subspace given in implicit form”.

The geometric problem “Three planes in R
3 are given. Compute their intersec-

tion!” can easily be solved if the three planes are given in implicit form, i.e. if we
know linear equations whose solution sets are the given planes. Then we solve a
system of three equations in three unknowns and get either no solution or one of the
following affine subspaces as solution set: a point, a line, or a plane.

It would not be reasonable to solve a system of linear equations in the following
way: Determine first the solution sets of each single equation and then determine
their intersection. Then we would get much more information than we need, since
we are only interested in common solutions.

It is easily seen that this type of approach is not efficient if we consider another
problem: consider two polynomials f := x9 − 3x8 − 5x6 + 4x5 − 2x4 − 7x3 +
x2 − 3 and g := x8 − 3x7 + 2x5 − 2x4 − 2x3 + 8x − 1. There is no chance to de-
termine in reasonable time the zero set of f or of g alone. But it is easy to determine
the set of common zeros of f and g. Using the Euclidean algorithm for polynomials,
computeralgebra-systems easily compute gcd( f, g) = 1. Thus we see that there are
no common zeros.

There is one special case for which systems of linear equations can be solved
graphically: a system of two equations with two unknowns. Since we already know
that the solution of one equation with two unknowns is a line, it is sufficient to
determine two solutions of each equation to draw the solution sets in the plane (after
the choice of a coordinate system). If there is exactly one intersection point of these
two lines, its coordinates can be read off. But this approach yields not much insight
in the general case and has no practicable generalization to three or more variables.
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Nonnegative Factorization of a Data Matrix
as a Motivational Example for Basic Linear
Algebra

Barak A. Pearlmutter and Helena Šmigoc

Abstract We present a motivating example for matrix multiplication based on

factoring a data matrix. Traditionally, matrix multiplication is motivated by applica-

tions in physics: composing rigid transformations, scaling, sheering, etc. We present

an engaging modern example which naturally motivates a variety of matrix manipu-

lations, and a variety of different ways of viewing matrix multiplication. We exhibit

a low-rank non-negative decomposition (NMF) of a “data matrix” whose entries are

word frequencies across a corpus of documents. We then explore the meaning of the

entries in the decomposition, find natural interpretations of intermediate quantities

that arise in several different ways of writing the matrix product, and show the utility

of various matrix operations. This example gives the students a glimpse of the power

of an advanced linear algebraic technique used in modern data science.

Keywords Nonnegative matrix factorization (NMF) ⋅ Topic modeling ⋅ Data

mining ⋅ Matrix multiplication

1 Introduction

Examples are an essential part of teaching any mathematical subject. They serve a

range of purposes, from checking understanding and deepening knowledge to giv-

ing a broader view of the subject and its applications. There are an abundance of

examples available in the literature, covering every topic of any basic linear alge-

bra course. However, it is not so easy to find examples that give an insight into the

current development of the subject and are at the same time accessible to students.

As the applications of linear algebra are rapidly expanding, and several new devel-
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opments in the subject are motivated by applications, examples showcasing current

applications of the subject are of particular interest.

Because of its utility in other domains, linear algebra is a classical subject rou-

tinely taught to students not majoring in mathematics. It is a prerequisite not just for

advanced mathematics but also for undergraduate degrees in Engineering, Physics,

Computer Science, Biology, Chemistry, Business, Statistics, and the like. Those stu-

dents in particular benefit from learning from examples, and appreciate seeing inter-

esting applications of the material they are learning. The benefits of using models to

introduce mathematical concepts has been studied Lesh & English, 2005, and models

focusing on different concepts from linear algebra are available (Possani, Trigueros,

Preciado, & Lozano, 2010; Salgado & Trigueros, 2015; Trigueros & Possani, 2013).

While very simple examples are essential when introducing a topic, examples of

applications presented in classrooms often seem contrived. For example, students’

knowledge of economics and agriculture is sufficiently sophisticated that simple lin-

ear examples of acreage under cultivation invite criticism. On the other hand, it is

impossible to bring to the classroom, for instance, deep applications of linear alge-

bra in genetics (Ponnapalli, Saunders, Van Loan, & Alter, 2011), since most likely

neither the instructor nor the students have the necessary background to really under-

stand how they work. To quote Stewart and Thomas (2003),

While it is true that linear algebra can simplify the solution to many problems, this is only

true for those who are very familiar with the subject area. In contrast, the first year university

student has a long way to go before being able to see the whole picture.

The press is full of stories about data science: analysis of large corpora of data.

Some of these lend themselves naturally to use as motivating examples for various

concepts in linear algebra. For example, the Netflix challenge can be viewed as a

problem in matrix completion, where a company was highly motivated to recover a

low rank decomposition of an almost entirely incomplete matrix of movie ratings.

We present less abstract example, in which matrix multiplication is explicated by

examination of a nonnegative decomposition of a term-by-document matrix. This

particular example vividly illustrates various views of matrix multiplication (as com-

position of linear functions; as a sum of outer products of columns with rows; and as a

table of inner products of rows with columns), while using only primitive concepts.

It also previews and motivates a variety of more advanced concepts (the general

algebraic concept of factoring, the notion of rank, approximation and norms, itera-

tive numeric algorithms, constraints like element-wise non-negativity, and column-

stochastic matrices), helping sketch the outlines of richer material covered in more

advanced courses.

Although intuitive and implemented by a very short algorithm, the technique dis-

cussed (NMF) is far from a toy: it has enjoyed a myriad of accessible and engaging

applications (Asari, Pearlmutter, & Zador, 2006; Helleday, Eshtad, & Nik-Zainal,

2014; Niegowski & Zivanovic, 2014; O’Grady & Pearlmutter, 2008; Ray & Bandy-

opadhyay, 2016; Smaragdis & Brown, 2003; Wilson, Raj, Smaragdis & Divakaran,

2008). For this reason, the example we present serves to give a taste of an inter-

esting and accessible application of linear algebra. Although briefly presented in
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this document for the sake of completeness, we do not suggest attempting to derive

the method in the classroom, leaving that too as motivation for the pursuit of more

advanced study.

The mathematical notation used below is standard. For example, ei denotes the

vector of appropriate size with i-th entry equal to one and other entries equal to

zero. The “discussion point” boxes are intended to be illustrative, and can be used

for classroom discussion, project-based learning, or as the basis for assignments.

2 Term-by-Document Matrix: A Small Example

Numeric data organised in a tabular format is something we are all familiar with in

our daily lives. Everyone can understand a spreadsheet whose rows are indexed by

products, columns by month, and whose entries contain sales. These are the matrices

that students entering a linear algebra course have already seen. In data science,

tabular data of this sort is known as a “data matrix”.

A data matrix of interest in library science is a tabulation of word frequencies by

documents. Rows are indexed by words, columns by documents, and the entries of a

matrix are the number of times a given word appears in a given document. This par-

ticular kind of data matrix is sometimes called a term-by-document matrix. Although

this matrix completely ignores the actual arrangement of words within each docu-

ment (i.e., it is a bag-of-words model), it still contains sufficient information to allow

interesting structure to be discovered.

There are several ways in which matrices and matrix multiplication can be intro-

duced in the classroom. Term-by-document matrices can be one of the examples

given to the class, starting with a small example that can be given on a board. In

the classroom we can show a pre-prepared example, which can be built on by an

assignment in which students have the freedom to chose the documents they want

to consider. Since the search function in browsers automatically counts the num-

ber of times a word appears on a page, such an assignment is not necessarily time

demanding.

Here we present an example where the documents are the Wikipedia entries for

the four most venomous animals in the world (Box Jellyfish1
, King Cobra2

, Marbled
Cone Snail3, Blue-Ringed Octopus4

) and we consider only five terms (venom, death,

danger, survive, Madagascar). This gives us Table 1.

1
https://en.wikipedia.org/wiki/Box_jellyfish.

2
https://en.wikipedia.org/wiki/King_cobra.

3
https://en.wikipedia.org/wiki/Conus_marmoreus.

4
https://en.wikipedia.org/wiki/Blue-ringed_octopus.

https://en.wikipedia.org/wiki/Box_jellyfish
https://en.wikipedia.org/wiki/King_cobra
https://en.wikipedia.org/wiki/Conus_marmoreus
https://en.wikipedia.org/wiki/Blue-ringed_octopus
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Table 1 Term-by-document matrix of the four most venomous animals

Documents

Jellyfish Cobra Snail Octopus

Terms venom 32 44 1 18

death 9 3 0 2

danger 6 4 0 4

survive 2 0 0 1

Madagascar 0 0 2 0

Going from the table to the matrix

A =

⎛
⎜
⎜
⎜
⎜
⎝

32 44 1 18
9 3 0 2
6 4 0 4
2 0 0 1
0 0 2 0

⎞
⎟
⎟
⎟
⎟
⎠

we can lead the discussion in several directions. A representative set of questions

is given below. The questions are of course trivial to answer without referring to

matrices. The simplicity of the questions makes it easy for students to understand

the corresponding matrix operations and motivates them to think about extensions

to more involved tasks.

Discussion Point: Determine the frequency of terms appearing in the first doc-

ument, in the third document, in the first or third document. What is the fre-

quency of terms in all the documents together?

The above questions can all be answered using multiplication of a matrix by a

column vector.

A

⎛
⎜
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

32
9
6
2
0

⎞
⎟
⎟
⎟
⎟
⎠

A

⎛
⎜
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

1
0
0
0
2

⎞
⎟
⎟
⎟
⎟
⎠

A

⎛
⎜
⎜
⎜
⎝

1
0
1
0

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

33
9
6
2
2

⎞
⎟
⎟
⎟
⎟
⎠

A

⎛
⎜
⎜
⎜
⎝

1
1
1
1

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

95
14
14
3
2

⎞
⎟
⎟
⎟
⎟
⎠

On this small example matrix multiplication, while illustrative, does not help with

efficiency of obtaining an answer. However, we can lead the students to think further.
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Discussion Point: Can you think about other questions about the set of doc-

uments that can be answered using matrix multiplication? (E.g., differences

in word frequencies.) How would one extract information from very large

datasets? (This is for the computer science students in the class: strategies

for assembling, representing, storing, and operating upon a very large data

matrix.)

At this point the students can appreciate that in order to get the information
5

about

the terms in the i-th document we need to multiply A by ei, to find the information

about the terms in documents i, j and k we need to multiply A by ei + ej + ek, or

equivalently, add Aei, Aej, and Aek. We can view the matrix A as a transformation

that takes information about documents (i, j, k) to information about terms (Aei, Aej,

Aek).

words
A

⟵ documents

Furthermore, we can remark that this transformation obeys certain rules

A(ei + ej + ek) = Aei + Aej + Aek

which can be developed into the definition of linearity. We continue the discussion

by presenting the transpose matrix.

AT =
⎛
⎜
⎜
⎜
⎝

32 9 6 2 0
44 3 4 0 0
1 0 0 0 2
18 2 4 1 0

⎞
⎟
⎟
⎟
⎠

Discussion Point: Which documents contain the third term, the fifth term, the

third or the fifth term?

AT

⎛
⎜
⎜
⎜
⎜
⎝

0
0
1
0
0

⎞
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

6
4
0
4

⎞
⎟
⎟
⎟
⎠

AT

⎛
⎜
⎜
⎜
⎜
⎝

0
0
0
0
1

⎞
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

0
0
2
0

⎞
⎟
⎟
⎟
⎠

AT

⎛
⎜
⎜
⎜
⎜
⎝

0
0
1
0
1

⎞
⎟
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

6
4
2
4

⎞
⎟
⎟
⎟
⎠

5
The “information” here can be viewed as histograms over either documents or terms, which is

something the students should be comfortable with.
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Students can see the similarity with the discussion above. To find out how the i-th
term is featured in documents we need to multiply ei by AT

.

documents
AT

⟵ words

Further questions can be discussed in this framework, touching upon elemen-

tary ideas not routinely discussed in the first course on linear algebra, such as non-

negativity and sparsity.
6

Discussion Point: Note that the term Madagascar only appears in the third

document. Can we draw any conclusions from this?

Discussion Point: If we were to make a table that includes all the terms that

appear in at least one of the four documents, would we expect most of the

entries in the matrix to be equal to zero? Why?

Discussion Point: Note that all the elements in the matrix are non-negative

integers. Can you think of any other tables with only non-negative integers?

How about tables containing only non-negative real elements? Can you think

about any other conditions on the entries that are imposed naturally in a par-

ticular setting?

Discussion Point: In class, we usually label the rows and columns of a matrix

with successive integers: 1,… , n. These are generally used as “nominal num-

bers”, meaning only their identities are important—like building numbers,

course numbers, or social security numbers. And when we write
∑n

i=1, what

we usually mean is really
∑

i∈rows
. We can change most of our formulas to use

this convention. But in actual applications, as in the example here, often the

rows and columns have natural labels: names of chemicals, words, documents,

people, months, cities, etc. When this holds, we can use these labels instead

of numbers as indices. And we can freely rearrange the rows and columns,

keeping their labels, while still representing the same underlying mathemati-

cal object: the same matrix.

This point is illustrated by a term-by-document matrix, which has rows labeled by

terms and columns labeled by documents. Let us look at another example. The two

tables below contain movie ratings given by four users to five movies:

6
Sparsity is of particular importance in computer science, where it impacts the representation and

manipulation of both matrices and graphs.
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Table 2 Labeling rows and columns

Alice Becky Cindy Dora
Alien 4 1 4 5

Animal House 1 5 4 2
Beetlejuice 2 2 5 3

Jaws 5 1 5 5
Life of Brian 1 5 5 1

Becky Cindy Dora Alice
Animal House 5 4 2 1
Life of Brian 5 5 1 1
Beetlejuice 2 5 3 2

Jaws 1 5 5 5
Alien 1 4 5 4

Discussion Point: Compare the two tables. Do they contain the same informa-

tion? Can you figure out the principle behind the ordering of rows and columns

on the left and on the right?

3 Matrix Factorization

Students are familiar with the idea of factoring an integer as a product of prime

numbers. Writing 6 = 3 × 2 gives us some information about the number 6. Another

example is factoring a polynomial. Writing x4 − 10x3 + 35x2 − 50x + 24 as (x −
1)(x − 2)(x − 3)(x − 4) uncovers useful information. Both prime factor decomposi-

tion and factoring a polynomial are in general hard to do. Given two integers it is

straightforward to find their product, but there is no known efficient algorithm for

integer factorization.

This concept can, in some sense, be extended to matrices. Given a matrix, we

want to write it as a product of two (or more) “simpler” matrices. There are several

ways this can be done. A wide range of factorizations of matrices are used in appli-

cations, where—depending on the application—different properties of the factors

are desired. An example that can be presented in the classroom is given below. The

matrix

A =
⎛
⎜
⎜
⎜
⎝

2 −1 1 2
−1 1 −2 −1
1 −2 5 1
2 −1 1 2

⎞
⎟
⎟
⎟
⎠

can be factored in several ways:
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A = 1
21

⎛
⎜
⎜
⎜
⎝

1 1 −1 1
−1 0 0 3
2 −1 0 1
1 1 1 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

7 0 0 0
0 3 0 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

3 −3 6 3
7 0 −7 7

−10 3 1 11
1 6 2 1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1 1
−1 0
2 −1
1 1

⎞
⎟
⎟
⎟
⎠

(
1 −1 2 1
1 0 −1 1

)

=
⎛
⎜
⎜
⎜
⎝

2 −1 0 0
−1 1 0 0
1 −2 1 0
2 −1 0 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

1 0 −1 1
0 1 −3 0
0 0 0 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

The students may not have the mathematical tools to develop the factorizations

above, but we can ask them to check their correctness, and to explore properties of

the factors.

Demands from applications frequently impose conditions on the factors that are

too strong to be satisfied exactly. For example, not every matrix can be written as a

product of a column by a row. Or more generally, not every matrix can be written as

a product of two low rank matrices. If we are unwilling to relax the conditions, we

need to resort to approximate factorizations. Let us consider the matrix

A =
⎛
⎜
⎜
⎜
⎝

1 1 1 1.01
1 1 1.01 1
1 1.01 1 1

1.01 1 1 1

⎞
⎟
⎟
⎟
⎠

.

Using elementary tools one can check that A cannot be written as a product of a

column and a row.

Discussion Point: Can we find a matrix that is close to the matrix A that can

be written as a product of a column by a row?

Students are likely to come up with the following solution:

A1 =
⎛
⎜
⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1
1
1
1

⎞
⎟
⎟
⎟
⎠

(
1 1 1 1

)
,

and we may present another one:
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A2 =
⎛
⎜
⎜
⎜
⎝

1.0025 1.0025 1.0025 1.0025
1.0025 1.0025 1.0025 1.0025
1.0025 1.0025 1.0025 1.0025
1.0025 1.0025 1.0025 1.0025

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1
1
1
1

⎞
⎟
⎟
⎟
⎠

(
1.0025 1.0025 1.0025 1.0025

)
.

Discussion Point: Which solutions is better? What does it mean for a matrix

B to be close to A?

This question could be an introduction to the concept of matrix norms.

Factorizations of matrices have been developed that are used in applications, with

the aim of uncovering hidden structure. We present a factorization that requires the

factors to be non-negative and of a given low rank r. Those conditions are too strong,

so the factorization will not be exact. This means that given a matrix V , we obtain

matrices W and H so that the matrix ̂V = WH is in some sense close to V .

V ≈ W
H

Non-negative matrix factorization, or NMF (Lee & Seung, 1999; Paatero & Tap-

per, 1994; Wang & Zhang, 2013), is a class of techniques for approximately factoring

a matrix of non-negative numbers into the product of two such matrices: given an

entry-wise non-negative n × m matrix V , find two entry-wise non-negative matri-

ces W and H, of sizes n × r and r × m, such that V ≈ WH. (Even after a value for r
has been chosen, and an appropriate measure of similarity of two matrices has been

chosen, there can be many possible solutions. However, popular NMF algorithms

empirically usually find good solutions, a phenomenon which has been the subject

of considerable analysis (Donoho & Stodden, 2004).)

Let us look at the nonnegative matrix factorization of the matrix that corresponds

to the left side of Table 2:

A =

⎛
⎜
⎜
⎜
⎜
⎝

4 5 4 1
5 5 5 1
5 3 2 2
4 2 1 5
5 1 1 5

⎞
⎟
⎟
⎟
⎟
⎠

First we take r to be equal to one. That means that we want to approximate A by a

product of a nonnegative column and a nonnegative row. The algorithm returns the

following result:
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W1 =

⎛
⎜
⎜
⎜
⎜
⎝

7.137
8.214
6.398
5.974
6.155

⎞
⎟
⎟
⎟
⎟
⎠

H1 =
(
0.6709 0.4898 0.406 0.381

)

A − W1H1 =

⎛
⎜
⎜
⎜
⎜
⎝

−0.7885 1.504 1.102 −1.72
−0.511 0.977 1.665 −2.13
0.7077 −0.1334 −0.5976 −0.4378

−0.008175 −0.926 −1.426 2.724
0.8703 −2.015 −1.499 2.655

⎞
⎟
⎟
⎟
⎟
⎠

Taking r = 2 we get:

W2 =

⎛
⎜
⎜
⎜
⎜
⎝

6.968 1.086
7.908 1.364
3.763 3.558
0.5117 6.448

0 7.197

⎞
⎟
⎟
⎟
⎟
⎠

H2 =
(
0.5171 0.6379 0.5707 0
0.6658 0.1897 0.1095 0.7133

)

A − W2H2 =

⎛
⎜
⎜
⎜
⎜
⎝

−0.3256 0.3496 −0.09564 0.2257
0.002296 −0.3033 0.337 0.02677
0.6857 −0.07508 −0.5374 −0.5376
−0.5576 0.4506 0.001623 0.4004
0.2088 −0.365 0.2117 −0.1333

⎞
⎟
⎟
⎟
⎟
⎠

Discussion Point: Compare A − W1H1 and A − W2H2. Can you find a non-

negative factorization of A for r = 4?

Let us have a closer look at W2 and H2. Recall that the rows of W2 correspond to

movies, and the columns of H2 correspond to users.

Discussion Point: Can we give sensible labels to the columns of W2, or equiv-

alently, the rows of H2.

Note that the highest values in the first column of W2 correspond to movies Alien and

Jaws, while the highest values in the second column correspond to movies Animal

house and Life of brian. Based on this, we may agree to label the first column “Hor-

ror”, and the second column “Comedy”. The rows of H2 are labeled correspondingly.

Values in H2 can now be interpreted in the following way. Cindy likes both horror
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and comedy movies, Dora and Alice prefer horror movies, and Becky likes comedy,

but not horror movies. Matrix factorization uncovered genre for our movies.

In the context of the small example, we can look at V as a transformation from

“movies” to “people”. Now we have the third notion appearing: “genres”. The matrix

H can be seen as a transformation that takes movies to genres, and W takes genres

to people.

people

V
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

W
⟵ genres

H
⟵ movies

We may remark to the students that they are justified in finding this example a bit

contrived. The is example is too small (and also made up) to be very convincing. We

give a larger example based on term-by-document matrix later in the chapter.

The formula for matrix multiplication, A = BC,

aij =
m∑

k=1
bikckj

can be intimidating to students.

From the point of view of our example, where the rows of V are indexed by

“movies” and the columns by “people”, we can write down the same formula in

the following way:

v̂
movie,person

=
∑

g∈genre

w
movie,g hg,person

The entry in the matrix ̂V that represents a rating of a chosen “movie” to a chosen

“person” is computed by summing up the product of how much the person likes

genre g and how much the movie is in genre g, over all genres. This process can be

depicted graphically:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̂V
∙

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

H
⎤
⎥
⎥
⎦

On the other hand we may notice that ̂V is the sum of rank one matrices, each of

them giving the contribution of a particular genre.
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⎡
⎢
⎢
⎢
⎢
⎢
⎣

̂V

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
∑

g

⎡
⎢
⎢
⎢
⎢
⎢
⎣

W∙,g

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
Hg,∙

]
.

This is written as:

V =
r∑

g=1
(g-th column of W) ⋅ (g-th row of H)

=
∑

g∈genres

Ratings Matrix for genre g

= sum of rank-one per-genre matrices

This interpretation reinforces the power of the nonnegative matrix factorization.

From a bundle of documents, it singles out a particular genre in way that agrees with

our intuition in a surprisingly strong way.

Let us go back to the example of movie ratings discussed earlier. We have approx-

imated our matrix A by W2H2. Below this product is written as a sum of two rank

one matrices:

W2H2 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

6.968 1.086
7.908 1.364
3.763 3.558
0.5117 6.448

0 7.197

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
0.5171 0.6379 0.5707 0
0.6658 0.1897 0.1095 0.7133

)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

6.968
7.908
3.763
0.5117

0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
0.5171 0.6379 0.5707 0

)

+

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1.086
1.364
3.558
6.448
7.197

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
0.6658 0.1897 0.1095 0.7133

)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

3.603 4.445 3.977 0
4.089 5.045 4.514 0
1.946 2.4 2.148 0
0.2646 0.3264 0.292 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0.7227 0.2059 0.1189 0.7743
0.9084 0.2588 0.1495 0.9732
2.368 0.6747 0.3897 2.538
4.293 1.223 0.7064 4.6
4.791 1.365 0.7883 5.133

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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Supplementary Advanced Material

To minimize the Frobenius norm, ‖V − WH‖F, a surprisingly simple method

is available. Two updates can be iterated

H ∶= H ⊙ (WTV ÷ WTWH)
W ∶= W ⊙ (VHT ÷ WHHT )

where ⊙ denotes elementwise multiplication and ÷ denotes elementwise divi-

sion. Typically after each update of W its columns are normalized to unit sum.

An enormous number of variations and embellishments of the basic NMF algorithm

have been developed, with applications ranging from astronomy to zoology.

4 Example using Module Descriptors

We give an example of factoring a data matrix involving a corpus of documents:

module descriptors for 62 mathematics modules that were taught in the School

of Mathematics and Statistics, University College Dublin (UCD) in 2015. Module

descriptors are relatively short documents that give overviews of the courses. Here

are two representative examples of module descriptors.

Numbers and Functions
This module is an introduction to the joys and challenges of mathematical reasoning

and mathematical problem-solving, organised primarily around the theme of prop-

erties of the whole numbers. It begins with an introduction to some basic notions of

mathematics and logic such as proof by contradiction and mathematical induction.

It introduces the language of sets and functions, including injective surjective and

bijective maps and the related notions of left-, right- and 2-sided inverses. Equiv-

alence relations, equivalence classes. It covers basic important principles in com-

binatorics such as the Principle of Inclusion-Exclusion and the Pigeonhole Princi-

ple. The greater part of the module is devoted to number theory: integers, greatest

common divisors, prime numbers, Euclid’s algorithm, the Fundamental Theorem of

Arithmetic, congruences, Fermat’s theorem, Euler’s theorem, and arithmetic modulo

a prime and applications. The module concludes with some topics from elementary

coding theory / cryptography such as the RSA encryption system.
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Groups, Rings and Fields
This course will be an introduction to group theory, ring theory and field theory. We

will cover the following topics: definition and examples of groups, subgroups, cosets

and Lagrange’s Theorem, the order of an element of a group, normal subgroups and

quotient groups, group homomorphisms and the homomorphism theorem, more iso-

morphism theorems, definitions of a commutative ring with unity, integral domains

and fields, units, irreducibles and primes in a ring, ideals and quotient rings, prime

and maximal ideals, ring homomorphisms and the homomorphism theorem, poly-

nomial rings, the division algorithm, gcd for polynomials, irreducible polynomials

and field extensions. Time permitting, we may cover the Sylow theorems, solvable

groups and further examples of groups.

This set was chosen because the example was developed for the first linear algebra

classes at UCD. All the students in those classes were quite familiar with the chosen

set of documents, which they need to navigate each semester when choosing and

registering for their modules. The number of documents is large enough that we can

make a case for needing a computer to help navigate them, but small enough that we

can exert some manual control and can be familiar with the entire corpus.

All the words that appear in any of the 62 documents were collected. So-called

stop words (common words like “and”, “the”, and the like), and all the words that

appeared fewer than four times, were removed. Words were also down-cased and

stemmed, so for example the terms Eigenvalue and eigenvalues are deemed equiva-

lent. This resulted in a 290 × 62 matrix V of word counts. Below we show some of

the data, starting with lists of the most and the least frequent words.

Using the standard Octave (Eaton, Bateman, Hauberg, & Wehbring, 2015) pack-

age for NMF, the entry-wise nonnegative matrix V is factored as

V ≈ WH,

where W is an entry-wise non-negative 290 × r matrix and H is an entry-wise non-

negative r × 62 matrix. We will see that factoring a matrix in this way reveals a

particular structure of the matrix which reveals something about the content of the

original documents. Different values for r are used below, and we will see how the

information that we obtain changes as we increase r.

For easier interpretation, the entries in each column of W have been permuted

so that they appear in descending order, and the term corresponding to each row is

shown. (Recall the discussion about labelling rows and columns at the end of Sect.

2.) We also present a few columns of the matrix H for r = 3.
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Table 3 Most and least frequent words

Most Frequent Words

word count

function 117
theorem 75
linear 72
matrix 66
theory 58
equation 53
mathematical 52
mathematics 52
understand 49
science 48
problem 44

Least Frequent Words

addition advanced arguments background behaviour
classify column computation constrained construct
continuous definite depth described directional
double elimination engineering evaluate expressions
flow foundations general importance independence
induction integrate interpret introduces known
manipulate max maxima min minima
nash nullity numerical original possible
prime quadratic range related riemann
row sample search significant solid
special stock sum sylow together
uncountable variety

5 Discussion

Following on from the discussion around the small example presented above, the

students understand how the frequency of the terms across all documents is com-

puted. This gives an easy and automated way to derive the most and least frequent

words, given in Table 3. While in small example shown the most and least frequent

words could easily be found by hand, this is impractical when the matrix becomes

large.

Discussion Point: Consider different columns of the matrix W for r = 2, 3
given in Tables 4 and 5. What do you observe?

Already in the case when r = 2, we can see some regularity in the way the terms are

grouped into columns. For example, it makes sense that the terms function, deriva-
tive, differential, integral appear in the same column. In the second column we see

the terms group, ring, isomorphism, homomorphism, sylow, subgroups, quotient,
cauchy appearing together.

The factorization is perhaps the most informative for the choice r = 3, so let us

take a closer look at this case. The terms in the matrix W are grouped in such a

sensible way that we can challenge the students to give them titles. Those students

who’ve read ahead a little may suggest Abstract Algebra for the first column, while

most should find Calculus appropriate for the second, and Linear Algebra for the

third. Things become a little less clear when we consider the matrix W for r = 4
(Table 6).
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Table 4 W-matrix, r = 2
function 23.0
linear 11.1
matrix 11.0
equation 9.9
derivative 9.4
calculus 7.8
differential 6.5
solve 6.1
problem 5.9
mathematical 5.3
science 5.2
compute 5.1
variable 4.7
applications 4.7
integral 4.6

group 17.9
theorem 15.0
theory 6.9
ring 6.6
understand 4.0
structure 3.3
example 3.0
number 2.9
isomorphism 2.7
concepts 2.6
homomorphisms 2.5
sylow 2.3
subgroups 2.3
quotient 2.2
cauchy 2.2

Table 5 W-matrix, r = 3

group 18.1
theorem 14.8
theory 6.8
ring 6.7
understand 3.9
structure 3.4
number 3.0
example 2.9
isomorphism 2.6
homomorphisms 2.6
concepts 2.5
sylow 2.3
subgroups 2.3
applications 2.2
quotient 2.2
cauchy 2.1
time 2.1
finite 2.1
algebraic 2.1
permitting 2.0

function 27.1
derivative 11.1
calculus 9.2
equation 6.3
differential 5.8
integral 5.7
problem 5.5
variable 5.3
graph 4.8
limit 4.6
solve 4.5
mathematics 4.3
calculate 3.9
applications 3.8
science 3.5
introduction 3.5
mathematical 3.5
method 3.4
polynomial 3.4
differentiation 3.3

matrix 19.1
linear 14.9
space 9.5
vector 8.7
algebra 7.1
basis 6.5
equation 6.4
compute 5.7
system 4.9
rank 3.5
complex 3.5
product 3.4
number 3.3
mathematical 3.3
science 3.3
solve 3.2
dimensional 3.0
eigenvalues 2.9
set 2.8
eigenvectors 2.7
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Table 6 W-matrix, r = 4

group 20.5
theorem 11.3
ring 6.7
theory 4.8
structure 3.9
isomorphism 3.0
homomorphisms 2.9
applications 2.7
sylow 2.6
subgroups 2.6
quotient 2.6
algebra 2.3
algebraic 2.2
time 2.1
permitting 2.1
finite 1.9
lagrange 1.8
special 1.7
construct 1.5

function 25.2
derivative 11.7
calculus 8.4
equation 6.7
differential 6.3
problem 5.8
variable 5.5
graph 4.9
solve 4.8
limit 4.3
applications 4.2
integral 4.1
calculate 4.1
polynomial 3.7
differentiation 3.4
science 3.3
mathematics 3.2
introduction 3.2
inverse 3.0

matrix 19.3
linear 14.8
space 9.0
vector 8.7
algebra 7.1
basis 6.5
equation 6.4
compute 5.7
system 4.8
rank 3.6
product 3.4
solve 3.1
science 3.1
complex 3.0
eigenvalues 2.9
dimensional 2.9
eigenvectors 2.8
number 2.7
mathematical 2.6

theorem 9.0
understand 8.7
question 6.3
complex 6.1
number 5.6
example 5.6
concepts 5.4
mathematical 5.2
function 5.1
cauchy 4.9
theory 4.6
integral 3.8
demonstrate 3.8
correctly 3.4
method 3.4
series 3.3
write 3.3
set 3.3
sequence 3.3

Table 7 H-matrix, r = 3
Module Names

Numbers and
Functions

Linear Algebra with
Applications to Economics

Groups, Rings,
and Fields

Differential Equations
via Computer Algebra

0.03.00.01.0
1.00.00.01.0
0.00.02.00.0

Discussion Point: What are the advantages and disadvantages of choosing r
to be small or big?

While higher values of r will make ̂V closer to V , they can make it more difficult to

interpret the results. An informed choice of r, dependent on the needs of the applica-

tions, needs to be made. This problem of “model complexity” has been the subject

of a great deal of research in Statistics and Machine Learning.

Discussion Point: In the r = 3 case, we were able to give titles to columns of

the matrix W. Those titles could be called “topics”. The rows of W are indexed

by “words” and the columns by “topics”. For the multiplication WH to make

sense we need to have the rows of H marked by “topics”. Let us look at the

matrix H given in Table 7 to see if this makes sense.
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Representative columns given for the matrix H agree with our prediction that the

first row corresponds to Abstract Algebra, the second row to Calculus and the third

row to Linear Algebra. For example, the course Linear Algebra with Applications to
Economics has the only nonzero entry in the third row, while the course Differential
Equations via Computer Algebra has the only nonzero entry in the second row.

6 Conclusion

While this is a black box experiment for the students, they are able to appreciate the

result and understand the emergence of the topics in an example. The NMF algorithm

yields this topic analysis, helping us appreciate the strengths of the method. If we

want to bring the discussion further, it can be pointed out how this class of algorithm

is used to decompose speech and music into phonemes and notes (Asari et al., 2006;

O’Grady and Pearlmutter, 2008; Smaragdis & Brown, 2003), in speech denoising

(Wilson et al., 2008) and recognition (Hurmalainen, 2014), in chemistry (Siy et al.,

2008) and biomedical sciences (Helleday et al., 2014; Ortega-Martorell, Lisboa, Vel-

lido, Julià-Sapé, & Arús, 2012; Paine et al., 2016; Ray & Bandyopadhyay, 2016), in

the analysis of the cosmic microwave background radiation (Cardoso, Delabrouille,

& Patanchon, 2003), etc.

The example presented above can be adapted for classroom needs in various ways.

An aspect not discussed here is the potential to turn some of the above ideas into

student projects. We are aware that the computational aspects of this may be a big

stumbling block, so we are developing a web-based tool to make it easy for students

to analyse a set of document in this way. We see a potential for interdisciplinary

projects, where students are charged with the task of analyzing a large body of doc-

uments on a particular subject, and use linear algebra to reach some conclusions.

In collaboration with Miao Wei,
7

we have created an end-to-end interactive

browser-based implementation of the processing pipeline discussed above (taking

documents as input and processing them through stemming, the construction of a

term-by-document matrix, NMF, and visualization of the resulting factor matrices),

which is being made available online.
8
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Motivating Examples, Meaning and Context
in Teaching Linear Algebra

David Strong

Abstract In this chapter I examine how we as authors and instructors can move
beyond the what and how of the ideas that we teach and more effectively address
the why. l discuss the need for-and give several instances of-relevant and thought-
provoking examples that can better motivate the various concepts of linear algebra
and simultaneously pique the interest of our students in those concepts.

Keywords Motivation · Meaning · Context

1 Introduction

Linear algebra textbooks often present and develop a new concept without paying
much attention to motivation, real-life meaning or context. It is fairly standard for a
section in a textbook to consist of a few definitions, a couple of theorems and their
proofs, and a few somewhat contrived examples or applications in which the given
ideas are illustrated. Textbooks typically do a good jobwith thewhat and the how, but
not as well with thewhy. Often it isn’t until subsequent sections that students begin to
understand the importance and use of the ideas learned in the previous sections.While
this is sometimes the inherent nature ofmathematics, it doesn’t usually have to be this
way. Instead, we (textbook authors and course instructors) have a golden opportunity
to simultaneously motivate the need for the ideas and motivate the students to want
to learn about those ideas. If students care, they will learn. In this chapter we discuss
howwe can better address thewhy through relevant and thought-provoking examples
to better motivate the need for the ideas taught in the course and to simultaneously
pique the interest of the student.

We begin in Sect. 2 by discussing two examples that I typically present at the
beginning of an introductory linear algebra course to motivate many of the ideas that
my students will learn in the course. In Sect. 3 we discuss examples for motivating a
smaller collection ideas, for example as contained within a chapter. We follow this in
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Sect. 4 with a discussion on motivating specific concepts by showing those concepts
in action before formally introducing them. In Sect. 5 we discuss how includingmore
context for and meaning of linear algebra concepts can increase and enrich learning.
Section6 contains some closing thoughts.

2 Examples to Motivate the Entire Course

Mathematics was born and continues to evolve in our attempt to understand and
manipulate the world around us. At the heart of mathematics is its usefulness in
countless applications, past, present and future.

When I teach a mathematics course that is more naturally application-oriented
(linear algebra, calculus, differential equations, numerical analysis, etc.), early in the
semester I like to briefly explore with my students five to ten pertinent real world
examples to provide some motivation and context for the ideas that they will see
in the course. Referring to those same examples throughout the semester also adds
some nice continuity to the course and helps students better interconnect the various
ideas they learn. Of course, throughout the semester the students will see other
applications and examples, as well as more theoretical examples and homework
problems in which the ideas are explored at a more abstract level. But I find it very
effective to initially motivate the ideas with meaningful and interesting real world
problems. The problems are the “hook” that catches a student’s attention and gets
him or her interested in wanting to learn more. It’s like watching a 2min preview of
a film and consequently wanting to see the film in its entirety.

Below I share two examples that my students and I discuss on the first or second
day. In Sect. 2.1 is an example of a matrix as an array of coefficients, and in Sect. 2.2
is an example of a matrix as an operator on a vector.

2.1 A Matrix as an Array of Coefficients: A Nickel and Dime
Problem

While the following example is a bit contrived to keep it sufficiently simple, it still
manages to motivate a plethora of ideas that will arise during a typical introductory
linear algebra course. I usually give this example on the first day of class.

Suppose that you will choose a certain number of nickels and dimes, and that you
must satisfy one or two or all three of the conditions below:

1. You have six coins.
2. You have five times as many dimes as nickels.
3. You have 75 cents.

I ask my students to come up with the number of coins needed to satisfy the
seven possible combinations of conditions, as listed below. Of course I don’t give
my students the solutions listed in the final column.



Motivating Examples, Meaning and Context in Teaching Linear Algebra 339

Problem 1 2 3 4 5 6 7
Conditions 1 2 3 1, 2 1, 3 2, 3 1, 2, 3

Students will often initially devote as little time as possible to finding a solu-
tion, which in this case means they simply try to guess solutions. This works well
enough for the first three problems and typically for the fourth, which has solution
(1, 5). Problems 5 and 6 have solutions (−3, 9) and ( 1511 ,

75
11 ), respectively. These

are solutions only if we allow negative and fractional numbers of coins, thus they
are solutions which students probably won’t simply guess. Consequently, a system-
atic way of solving the system of equations is needed. Moreover, once solutions are
found, one should determine if they are relevant to the real-life problem.

My students and I begin this exercise at the end of the first day of class, and we
complete our discussion at the beginning of the second day. Between class meetings,
students have time to try to do more than merely guess solutions. Some do and
some don’t, but during the first few minutes of Day 2 we collectively realize that we
need a more reliable and systematic way of dealing with these problems: language,
equations, processes for working with the equations, etc.

Some students come up with the following equations to describe the conditions:

n + d = 6
5n − d = 0
5n + 10d = 75

, that is,

⎡
⎣
1 1
5 −1
5 10

⎤
⎦

[
n
d

]
=

⎡
⎣
6
0
75

⎤
⎦ . (1)

(By Day 2 students may not yet have seen the matrix-vector form of this problem,
but this is a simple enough transition.) Of course having these equations makes
solving Problems 4–7 more doable, but how to do so is still not necessarily obvious.
Additionally, there are several other observations and issues that arise in or are
motivated by this problem. Too many to discuss on Day 1, they come up throughout
the semester as the related ideas are introduced. If I were using this as an introductory
example in a linear algebra textbook, Imight simply list these issues and observations.
When I use this as an in-class example, my students and I discover them together.

• There is more than one way to use the equations to solve this problem. One can
solve for one unknown in terms of another, substitute that into another equation,
and so on. Or one can add a multiple of one equation to another. Either way, the
goal and result are the same: one unknown has been eliminated from an equation.

• If using the substitution approach, it doesn’t really matter what form the equations
are in, but if adding a multiple of one equation to another, it’s more helpful to have
the equations in standard form, as above in (1).

• Either of these methods works fine when there is a unique solution, but what if
there is no solution—how do we recognize that there is no solution? (Not being
able to find a solution of course doesn’t necessarily mean there is no solution.)

• Sometimes solutions are valid mathematically, but don’t make sense in the real
world, such as fractional or negative amounts of coins.
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• Visualization is useful, and plotting the three lines makes it clear how many solu-
tions there are: 0, 1 or ∞. But what about in higher dimensions, i.e. when there
are more than two or three unknowns and we cannot visualize the equations? Is
there some process we can use regardless of the number of unknowns?

• The more restrictions (equations) we are trying to satisfy, the more “difficult” it
is for there to be a solution. While not completely obvious at this stage, students
get an introduction to the typical (albeit with exceptions) relationship between the
number of equations m and the number of unknowns n:

m vs. n Equations Solutions Example with n = 2
m > n “Too many” 0 Three lines: do not intersect at any point
m = n “Just right” 1 Two lines: intersect at one point
m < n “Not enough” ∞ One line: every point on line is a solution

• Another fact that is not yet obvious based on only this problem, but that is first
observed while working this problem: if there is more than one solution, then there
is an infinite number of solutions.

• A question that arises at this point: if there are “too many” equations, i.e. more
equations than unknowns, is it possible to have a solution, or perhaps even an
infinite number of solutions?

• When there is no solution, or when there is an infinite number of solutions, or
when there is one solution but where the number of equations �= the number of
unknowns, is there a process with which we can determine whether there is a
solution, and if so, how many, and if more than one, what those solutions are?

Of course (asmuch as students sometimes canbe annoyedby it)GaussianElimination
can help us address all of these issues.

Not only does the above coins example motivate and give rise to a number of
ideas both simple and deep, other ideas that are introduced later in the course are
also motivated or illustrated by this easy first-day example in (1), including:

• Pivots, pivot rows, pivot columns, etc.
• Linear combinations, span, column space, linear independence:

– In Ax = b in (1), can we build b out of the columns of A; that is, is b in the
span of the columns of A?

– Do the columns of A span all of R3?
– What conditions are necessary for the columns of A to span R3?
– What conditions are sufficient for the columns of A to span R3?
– If b can be built out of the columns of A, is there more than one way to do so,
and if so, is this a “good” thing or “bad” thing?

• A “best” solution, if there is not an exact solution:

– What does a “best” solution even mean?
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– Building a vector b̂ that is as close to the desired vector b using the given vectors,
e.g. the columns of A.

– Projecting a vector onto the column space of a matrix or onto some other col-
lection of vectors.

• Changing right hand side values possibly changes existence and/or the number
(0 or 1 or ∞) of solutions and the values of the solution(s):

– Is it possible to have a solution with three equations and two unknowns? Could
we change, for example, the 75 in the third equation in (1) and end up with a
modified problem for which there is a solution?

– In general, is it possible that an overdetermined system (m > n) has a solution?
– Even more generally, is each of the three numbers of solutions 0, 1 and ∞
possible for each of the three cases m < n, m = n and m > n?

Even onDay 1, students already knowmost of what they need to, and already have
a lot of experience and intuition, in order to work with this problem and contemplate
many of the above issues. One idea with which they will likely not yet be familiar
with is thematrix-vector version of the problem and the corresponding vector version
of the problem, that is, that (1) is equivalent to

n

⎡
⎣
1
5
5

⎤
⎦ + d

⎡
⎣

1
−1
10

⎤
⎦ =

⎡
⎣
6
0
75

⎤
⎦ . (2)

As building vectors from other vectors is a core part of linear algebra, I’m a proponent
of introducing this view of systems of linear equations as early as possible.

Of course we don’t explore all of the above on Day 1 or 2, but the students see
that there are many interesting and important questions yet to be answered. My twin
goals are to cultivate student curiousity and to create a bit of a challenge for them,
both of which ultimately encourage my students to care and to want to learn more.
And of course there are several other good motivating first-day examples that could
accomplish the same purpose. I also like to return to this example in my end-of-
semester review to point out all of the ideas that we’ve learned that are evident in
this one problem.

2.2 A Matrix as an Operator: Discrete Dynamical Systems

A second fundamental concept I like to introduce as early in the course as possible
is the idea of a matrix as an operator. The discrete predator-prey problem is a great
introduction to matrices as operators.

Consider the predator-prey problem
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Wk+1 =
√
3

2
Wk + 1

2
Rk

Rk+1 = −1

2
Wk +

√
3

2
Rk

that is,

[
W
R

]

k+1

=
[ √

3
2

1
2

− 1
2

√
3
2

] [
W
R

]

k

≈
[
0.866 0.500

−0.500 0.866

] [
W
R

]

k

(3)

in which Wk and Rk are the number of wolves and rabbits in a certain habitat in
month k. So if initially there are, say in 100s of wolves and rabbits,

[
W
R

]

0

=
[
3
4

]
,

i.e. 300 wolves and 400 rabbits, then after one month there would be

[
W
R

]

1

≈
[
0.866 0.500

−0.500 0.866

] [
3
4

]
≈

[
4.60
1.96

]
,

i.e. 460 and 196 wolves and rabbits, and so on as summarized in the following table.

k 0 1 2 3 4 5 6 . . . 11 12
Wk 3.00 4.60 4.96 4.00 1.96 −0.60 −3.00 . . . 0.60 3.00
Rk 4.00 1.96 −0.60 −3.00 −4.60 −4.96 −4.00 4.96 4.00

This example doesn’t introduce as many ideas as the coins example. But it does
motivate the ideas ofmatrices as operators, linear transformations, rotationalmatrices
and complex eigenvalues/vectors, among others (Figs. 1 and 2).

Fig. 1 The two populations
each month, plotted as
vectors
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Fig. 2 The two populations
each month, plotted
independently as functions
of month

Along with the above predator-prey problem, I like to give a second example of
a matrix acting on vectors, one in which the parameters don’t fit the predator-prey
problem, but that more nicely introduce other ideas. Given

A =
[
1.5 1
0.5 1

]
and x =

[−3
7

]
, (4)

if we repeatedlymultiply x by A, as done in the above discrete predator-prey problem,
what happens to the resulting vectors? Where xk = Akx, we find (rounded to one
decimal place).

k 0 1 2 3 4 5 . . . 50 51 52
xk −3.0 2.5 9.3 20.6 42.3 85.2 . . . 3.0E15 6.0E15 1.2E16

7.0 5.5 6.8 11.4 21.7 42.8 1.5E15 3.0E15 6.0E15

Some ideas and issues that arise more clearly in this second example include:

• Eigenvectors: What is this vector that seems to be resulting from repeated multi-
plication by A? It seems to be a multiple of the vector (2, 1).

• Eigenvalues: It seems that after a while, each subsequent vector is about twice the
previous one. How is that value related to matrix A?

• Why is it that in the first “matrix as an operator” example (3) the vectors x0, x1,
x2, ... rotate around the origin while the vectors in the second example (4) do not?

Of course most of the beauty and usefulness of eigenvalues and eigenvectors
cannot be fully appreciated with an introductory example or two. Still, rather than
simply introducing these ideas in a context-less setting, we can give examples in
which these ideas naturally arise, thus hopefully making students more curious about
understanding what they are observing in those examples.
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Fig. 3 Projecting vector b
onto the column space of A

3 Examples to Motivate a Chapter

In addition to “bigger” examples that motivate or introduce a wide array of linear
algebra ideas, it is also helpful to movitate a smaller collection of ideas, for example,
as organized into a chapter, say with a good beginning-of-the-chapter example.

Chapters in textbooks are typically built around a common theme. For example, a
chapter on least squaresmight include the introduction and development of properties
of vectors, orthogonality, orthogonal projections, projecting a vector onto the column
space of a matrix, the least squares solution, and the extension of these ideas to
functions. Rather than simply jumping into the chapter and assuming students care
about vectors, orthogonality and projecting a vector onto others, we might begin by
giving a simple example or problem to solve, perhaps the coins problem (1) or perhaps
a simple data fitting problem, say trying to fit a straight line to three non-collinear
points, which would result in a system of the same dimensions as (1).

By this time, students will be familiar with trying to build one vector out of others,
such as the right hand side in (1) using the two columns of the coefficient matrix A.
It is easy to show that for (1) this cannot be done exactly (Fig. 3). So how do we do
so as well as possible?

Because these vectors are from R3, this can all be easily visualized: we are trying
to get to the point “on the floor” (in the column space of A) that is closest to the
point/vector b in Ax = b. So how can you tell which point/vector “on the floor”
is closest to b? It’s the point b̂ directly “underneath” point/vector b. What does
“underneath” mean? It means we want to find b̂ so that b − b̂ is perpendicular to Col
A (See Fig3). The rest, as they say, it just details. But without getting into details at
this point, we (that is, the students) can see the need to understand certain things in
order to work this problem: vectors, orthogonality (including in higher dimensions),
projecting one vector onto a collection of others, and so on. They have a reason to
care about the ideas about to be explored in the coming chapter.

One caveat for beginning-of-chapter examples: my experience with students is
that problems that are too “real-life” and too complex, while interesting, can be a
bit overwhelming. Thus, I prefer beginning each chapter with an interesting and
important real-world example (or at least a sufficiently simplified version of one)
that the student could actually work by the time he/she has completed the chapter,
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perhaps including the beginning-of-chapter example as a problem in the final section
of the chapter or in the chapter review exercises.

4 Examples to Motivate Individual Concepts: Using an
Idea Before Formally Introducing It

In addition to the “course-motivating” and “chapter-motivating” examples, some-
times the best motivation for why we care about a certain idea is to simply see the
idea in action. When appropriate, why not do so before we have formally presented
the idea, as a way to motivate the need for that idea, as well as to pique the student’s
interest in that idea? This doesn’t replace any pertinent derivation of those ideas,
theorems, proofs, etc. Indeed, hopefully it gives the student a reason to care about
that derivation, the theorems and proofs, etc.: “I’ve seen the usefulness of a particular
idea, and now I’m curious to learn more about it.” Below I give a few of the ideas
that could be shown in action before formally introducing them.

4.1 Matrix Inverse

Often the idea of an inverse, that A−1A = I , is presented as yet another in a long line
of ideas to learn and be tested on, rather than something that will help us solve and
better understand important and interesting problems. Why not simply demonstrate
the usefulness of matrix inverses in order to motivate our desire to learn more about
them? For example, given the system

[
1 2
3 4

] [
x1
x2

]
=

[
5
6

]
,

if we multiply both sides on the left by

[−2 1
3
2 − 1

2

]
then we would have

[−2 1
3
2 − 1

2

] [
1 2
3 4

] [
x1
x2

]
=

[−2 1
3
2 − 1

2

] [
5
6

]

⇒
[
1 0
0 1

] [
x1
x2

]
=

[−4
9
2

]

⇒
[
x1
x2

]
=

[−4
9
2

]

Students’ interest in this “mystery” matrix hopefully creates an interest to learn more
about it, especially since it appears to be an alternative to Gaussian Elimination for
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solving Ax = b. Students can see the usefulness of a matrix inverse, as well as of
the identity matrix, rather than simply being told to learn and care about them, even
though they have not yet been formally introduced to them.

We could give the following analogy to motivate both the idea and notation of
A−1:

ax = b
x = b

a

Ax = b
x = A

b

Of course dividing a matrix by a vector is not defined (students may not have
previously known this, but will now), so we can correctly rewrite our ideas above as

ax = b
a−1ax = a−1b

1x = a−1b
x = a−1b

Ax = b
A−1Ax = A−1b

Ix = A−1b
x = A−1b

In either the “mystery” matrix or the analogy approach, hopefully the student is
curious to knowmore about inverses, including how to find them. Themore textbooks
and instructors can show students how mathematics naturally arises (ideas, notation,
language, etc.) the better, as students will more naturally learn and care about the
ideas.

Even before getting into the details, there are a number of questions that arise
from just this simple example. For example: Does every matrix A have an inverse?

• What would that mean if that were true? Every system Ax = b would have a
unique solution. Is this the case? Of course not.

• What if m < n? There will be non-pivot columns in A and thus one or more free
variables, so if there is a solution it will not be unique; consequently if m < n it
would not make sense for a matrix to have an inverse.

• What if m > n? There will be non-pivot rows in A and thus there may not be a
solution, depending on what b is; consequently if m > n it would not make sense
for a matrix to have an inverse.

• So for a matrix to have an inverse, it must be square. So do all square matrices
have inverses? No. So how can you tell if a square matrix has an inverse, and how
do you find its inverse? Both are good questions.

4.2 Other Examples

There are other ideas which can be demonstrated before giving their formal definition
or getting into their details. I list a few involving matrix factorizations.

• QR-factorization. Prior to explaining how to find the QR-factorization of amatrix,
for example, in a section on the Gram-Schmidt process or in a section on matrix
factorizations, it’s easy enough to give an example in which we use A = QR to
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more easily solve the problem Ax = b. Of course there are other uses of the QR-
factorization, but at this point the student has at least one reason to want to learn
more about it and how to find it. This is also a good motivation for orthogonality
of vectors, as well as the idea of normalizing a vector.

• LU -factorization. Similar to the QR-factorization, to illustrate its use and help
students appreciate its usefulness, we could give an example using A = LU to
solve Ax = b. The LU -factorization is also another nice reminder of the usefulness
of elementary matrices.

• Diagonalization A = XDX−1. There are all sorts of uses, both theoretical and
computational, for the diagonalization of a matrix. The easiest initially might
simply be to point out, for example, that if

[
8 −1

−2 7

]
=

[
1 1
2 −1

] [
6 0
0 9

] [
1 1
2 −1

]−1

then

[
8 −1

−2 7

]10

=
[
1 1
2 −1

] [
6 0
0 9

]10 [
1 1
2 −1

]−1

=
[
1 1
2 −1

] [
610 0
0 910

] [
1 1
2 −1

]−1

.

So students have at least one reason to care about this factorization, even if they
won’t appreciate its more important uses until later. Of course the question then is
how exactly we come up with this or any of the other factorizations.

5 Context and Meaning

In addition to examples for motivation of ideas and students, context and meaning
for those ideas can further increase student interest and add additional layers to their
understanding. I discuss two familiar examples below for homogeneous solutions.

5.1 Significance of a Homogenous Solution: Traffic Flow

As illustrated in Fig. 4, suppose you have the following intersections in an area of a
certain part of a city, with the given numbers of cars entering and exiting this area at
different points. How many cars would be travelling these interior one-way streets
in the six specified directions?

From this we get the equations corresponding to traffic flow at each intersection
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Fig. 4 The flow of cars
within one part of a town,
given the number of cars
entering and exiting this part
of town

x1 + 400 = x2 + 700

x2 + 700 = x3 + x6
x3 + 800 = x4 + 700

x4 + x6 = x5 + 600

x5 + 800 = x1 + 700

which leads to

Ax =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0 0
0 1 −1 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 1
1 0 0 0 −1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

300
−700
−100
600
100

⎤
⎥⎥⎥⎥⎦

(5)

From this we find one possible way of expressing the general solution

x =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

300
0
600
700
200
100

⎤
⎥⎥⎥⎥⎥⎥⎦

+ c1

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

+ c2

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

−1
−1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

There are various observations that we could make, but I want to focus on the
homogeneous part of the solution. Let’s call the two homogeneous solutions in (6)
v1 and v2. What does each represent? It’s easy (and perhaps lazy, or perhaps our
students “can’t handle the truth”) to simply say that v1 and v2 are solutions to the
homogeneous problem Av = 0, where A is the coefficient matrix in (5). While true,
it doesn’t give any meaning to these vectors.

Vector v1 tells us that if we change x5 in x, the values of x1 through x4 must also
change by the same amount in order to satisfy (5), that is, if we still want have the
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same number of cars entering and exiting this part of town, as given in Fig. 4. So
with the same number of cars entering and exiting town, these interior intersections
could perhaps handle more cars, in the proportions described by v1. We could have
a similar discussion about x6 and v2: if we were to increase x6, we would need an
equal decrease in x3 and x4 in order to have the same number of cars entering and
exiting this part of town.

We have focused on x5 and x6 because they are the free variableswithwhich v1 and
v2 naturally arise. However, we can also focus on other unknowns, perhaps equally
well called variables in this discussion. For example, if x1 were to increase, then an
equal increase in x2 through x5 would be needed to still satisfy the given conditions.
Thus, one could say that x1 could have been the free variable rather than x5, and
indeed this is true. Students usually think that the free variables that naturally arise
resulting from a particular process for finding the general solution are necessarily the
free variables. They think that somehow the unknowns x1, x2, ... are “designated” to
be the dependent variables and that the other unknowns, in this case x5 and x6, are
automatically “designated” to be the free variables. Of course this happens because
of the way we do Gaussian Elimination with pivoting. In the end, it generally doesn’t
matter which variables are free. For example, and more interestingly, since the value
for x3 is non-zero in both v1 and v2, if we were to increase x3 by 1, then we would
either need to increase the values of x1, x2, x4 and x5 or else increase x4 by 1 and
decrease x6 by 1. In other words, there are different ways we could compensate for
a change in x3. The same is true for x4.

This observation about x3 (or x4) leads to a more general observation. It is easy
to see that v1 + v2 = (1, 1, 0, 0, 1, 1) is also a homogenous solution. So what does
this mean? If we change any one of x1, x2, x5 or x6, we need to change the others by
the same amounts.

At this point the observent student notices that these three vectors v1, v2 and
v1 + v2 are connected to what is shown in the figure: each corresponds to one of the
three closed loops seen in the figure. The most natural solutions of the homogenous
problem are those that correspond to the closed loops. (Other linear combinations of
these are also homogeneous solutions, but they are not as naturally connected to the
closed loops in the diagram.)

We’re also observing that v1 and v2 generate a vector space. Depending on what
students have learned thus far, this might be their first experience with vector spaces
(which tend to seem vague and pointless to students when presented in an abstract,
theoretical way) in general and nullspaces in particular. Students are also getting an
introduction to the idea that a vector space can have more than one basis: in this
example, it is natural to think of v1 and v2 forming the basis for Nul A, but of course
any two linearly independent linear combinations of v1 and v2 also form a basis for
Nul A. In the context of certain problems, like this one, this fact might be important.

While it might be simpler and “cleaner” to describe the homogenous solution in
a theoretical way, I find it more useful and motivating to have some meaning and
context for it. It is not necessary (indeed, it is probably distracting) to have this
discussion for every single problem which has a non-trivial homogeneous solution,
but it is helpful to do so initially and in other examples where appropriate.
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There are other issues and questions that arise in this traffic problem, thus I like to
use it as another one of my five to ten recurring beginning-of-the-course examples.
A few other issues and questions include:

• Does the number of cars entering and exiting this part of town uniquely determine
the number of cars travelling along the six given paths?

• What if fewer or more of the unknown values were specified?
• Would changing certain given values result in there being no solution?
• Is it possible to have more cars within this part of town without having more cars
entering and exiting it? That is, it is possible for x1 + . . . + x6 to be larger with
the same specified right hand side?

• For a different configuration of traffic flow, in particular, with more closed loops,
how would the solutions to the homogeneous problem be related to the closed
loops?

5.2 Significance of a Homogenous Solution: Investments

Consider a second example inwhich the homogenous solution hasmeaning. Suppose
we are to divide $10,000 into three investments, which have return rates of 5, 10,
and 25%, and that we want a total annual return of $2000. This yields the equations

x1 + x2 + x3 = 10,000
0.05x1 + 0.10x2 + 0.25x3 = 2,000

(7)

which has a general solution of

⎡
⎣
x1
x2
x3

⎤
⎦ =

⎡
⎣
2,500
0

7,500

⎤
⎦ + c

⎡
⎣

−3
4

−1

⎤
⎦ .

In this problem, the homogenous solution (−3, 4,−1) describes the reallocation of
resources needed in order to meet the given conditions. There are different ways
to invest, and (−3, 4,−1) tells us the proportions and directions of change in the
three investments needed to still satisfy the two given conditions. For example, a
decrease in the third investment requires a decrease of three times that amount in the
first investment and an increase in the second investment of four times that amount.
Again, the homogenous solution is more than simply a solution to Av = 0.
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6 Final Thoughts

If a student wants to learn, he or she will. There are many motivations for students
in a mathematics course: grades, past success, their own standards of excellence,
competition, the fun of the problem solving, the beauty of the ideas, and relevance
of what they are learning. People often don’t like to do hard things, but they are
much more willing (indeed, even excited) to do something difficult if there is a good
reason for doing it. We unapologetically expect students to have a certain amount of
self-discipline and self-motivation in learning mathematics, and quite rightfully so.
Indeed,mathematics courses sometimes necessarily serve as a “weeding out” process
to help steer students toward other, lessmathematicalmajors and career paths. But the
abstract, sometimes context-less nature of mathematics, while part of its power and
beauty, can also be one of the obstacles to student learning, even for mathematically
strong students who certainly should be studying mathematics or a related field. This
is exasperated by the fact that many students who study linear algebra are “applied
mathematicians” from other fields: physics, biology, chemistry, business, computer
science, etc. and often don’t think like and are not as motivated in the same ways as
a pure mathematician. Ultimately, one way in which we can simultaneously increase
student interest and enrich their learning is with better motivation for the ideas being
taught, including with examples that precede and motivate those ideas, along with
more context and richer meaning for those ideas.
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Exemplified Through One Example from
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Abstract Here we discuss ways to teach and learn holistically. The holistic method
encourages student curiosity and respects student input fully, however qualified. A
teacher’s holistic approach leads to open discussions and deep learning in class.
Using the students’ innate desire to understand drives the course of such a class. The
teacher’s role is to guide and adjust the course as the subjectmatter, experience, and—
in mathematics courses—as the algebraic, geometric and logic rules of mathematics
dictate. Holistic Teaching respects and adheres to the ‘necessity principle’ of learning
and it applies the ‘holistic management principle’ that is successfully used for many
other complex systems to achieve a comprehensive teaching and learning experience
for both teachers and students. Teaching holistically is exemplified by one extended
in-class study of how to measure angles inRn from first principles of both Geometry
and Linear Algebra.
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1 Introduction

This exposition gives an outline of “Holistic Teaching andLearning”, philosophically
and in practice.

It is based on the author’s experience of teaching mathematics to diverse students
at all levels over 48years, at seven universities, on two continents, and specifically at
Auburn University for the last 32years. Early teaching assignments in my 2nd year
at the University of Cologne in Germany have given me a precious perspective on the
educational process, both of teaching and of learning, combined into one process.
As a very young student-teacher, just 20years old, I experienced that I learned best
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when I taught and what I taught. I was happiest in mathematics classes that were
not taught in the strict ‘Definition-Lemma-Proof-Theorem-Proof-Corollary’ lecture
style, but rather loosely presented and occasionally left questions unanswered. And
more specifically, I liked it when teachers went out on limbs of discovery and sharing.
Courses that explained the historic and current developments of a subject’s notions
sat best with me; when and where—in a way—the teacher shared her or his whole
knowledge and the desires and gaps therein. Conversely I was slightly uncomfortable
in courses that were built on drilling us to remember proofs and theorems, facts, tricks
and formulas because I did not feel nurtured or helped with my inner personal needs
and my own desire to grasp and understand the subject matter wholly.

The development of this, my so called ‘Holistic Teaching and Learning’ method,
took time. It was influenced by having the chance of teaching in both systems, the
hierarchical lectures culture and in more interactive academic settings. Helped by
these experiences I have learned to understand and synthesize both into one, namely
into the ‘Holistic Teaching and Learning’ approach to education. First I will explain
the general twofold framework for thismethodwhich canbeused in every educational
effort from first grade through graduate school and in driver’s education etc. as well.
This is followed by one detailed in-class example from sophomore mathematics.

2 The Framework of ‘Holistic Teaching and Learning’

Holistic Teaching and Learning applies to and is useful in almost any educational
environment and for many subject areas. It has two foundations: one lies in satisfying
our students’ need to know and another is to approach teaching and learning asmirror
images of each other and to view the educational process as a whole; thus the name.

Over time I learned of the ‘necessity principle’ of teaching as it affects our cog-
nitive development and individual learning. For a detailed introduction and history
of this principle see e.g. (Harel, 2013). It has become obvious now that my way of
teaching had become—unknowingly at first—well aligned with this aspect of mod-
ern educational research. As a student I had experienced the big difference between
two types of mathematics classes: One where we had to remember definitions, for-
mulas, theorems and their proofs and had to repeat what we were taught; and another
that taught concepts, explored proofs and helped us understand the subject matter
from within, as well as giving us broad and deep subject knowledge. When using an
openminded interactive approach as a teacher, students will engage. The exchange of
ideas, insights and questions then becomes bidirectional between me as teacher and
my students; information passes back and forth. Even multidirectional if we include
the textbook and student to student interactions. By fostering my students’ desire to
learn and letting the subject matter develop organically in class, students take control
of their own intellectual and cognitive growth. Therewith they can take ownership of
their field of studies. When students feel free and are encouraged to ask questions,
they begin to sort things out in their own personal ways of thinking and seeing, and
thereby they truly learn. This questioning, exploring and understanding, including
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occasional mis-understandings, builds up mature thinkers and knowledgable indi-
viduals. Formulas and theorems become appendages to genuine comprehension. We
all seemingly gain and retain knowledge best if we are motivated and eager to know
and if we are encouraged to ask ‘why’ and ‘how’ frequently. When the ‘necessity
principle’ of learning is respected it bears fruit. Every student’s natural intellectual
need is to try and understand how and why a subject, any subject, and our knowledge
about it has come about. True problem solving then gives students an intellectual
purpose to engage with mathematics in a new, complete way of learning. Adhering
to the necessity principle in teaching thus drives a course and transforms students
from learners into knowers.

Over time again, I also realized that incorporating the necessity principle alone
into my teaching was not all that had occurred in my classes. A change of attitude
inside of me had come about through interactive teaching. I had found little use
for intellectual or knowledge supremacy when teaching. As I desired to interact
more freely back and forth with students over mathematics, I needed to become
nonjudgmental and eagerly follow any student’s insight, thought path, or proof as it
was shared in class. This called for courage and superb subject knowledge on my
part in order to steer the process through any pitfalls of logic, geometry, arithmetic
or theory that might occur. Likewise for a student it is highly demanding to discuss
mathematics and to present ideas and derivations or a proof of his or her own making
and then to share his or her thoughts and explain in public. To succeedwith education,
I believe that both teacher and students have to bare themselves, to open up their
thought processes and minds freely and tussle with the problems that arise, all while
considering themselves as (near) equals in spirit. For me the educational process has
become one of sharing spirit and soul. Unconsciously I had incorporated this leveling
duality, the intertwinement of teaching and learning as one whole into my own
teaching: As I shared my knowledge with the students I learned to accept their input
on an equal footing, guided by and judging for mathematical and logical correctness
only.

This is my personal wholeness principle of education. The holistic approach to
teaching and learning extends subject-wise even further, namely to the whole of
mathematics and related fields as subject matter and all of their histories as grounds
for possible class consideration and questioning.
Teaching holistically is fraught with perils and uncertainties. For example, how does
one answer a calculus class student who asks

How would anyone ever think of inserting a zero in the form of −f (x)g(x + h) + f (x)g(x +
h) into the numerator f (x + h)g(x + h) − f (x)g(x) of the difference quotient for the product
of two functions f · g?

other than to obtain a limits-based proof of the product rule of differentiation? As a
teacher I am often not prepared, and anyone else may not be fully prepared either
for all the questions that may arise. However, this uncertainty is very beneficial to
students; yet it only occurs in holistic teaching environments. Complete openness,
deep mastery of the subject, refined listening ability all around make for a good
learning environment. And when I fail or stumble as a teacher, the class usually
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comes alive, other minds take over and unconventional deep discussions and learning
take place.

Natural systems and nature itself have been recognized for centuries as being
complex rather than just complicated systems. Much of human knowledge is com-
plicated, consisting of many part and steps; yet the educational transfer of human
knowledge is one intrinsically complex whole. Personal growth and learning can-
not be reduced to parts and steps at all, refer to the “Outlook" section at the very
end. Complex systems of nature have been recognized as such and described and
studied extensively since the Enlightenment period, starting possibly with Goethe.
They were first systematized in Alexander von Humboldt’s ‘Kosmos’ (von Hum-
boldt 1845–1862). As human growth in general and our education and teachings
in particular are complex problems, a holistic approach as outlined above beckons.
Eventually I recognized that I had been influenced in my teachings by Allan Savory’s
general ‘Holistic Management’ concept (Savory, 1998) and that I had used holistic
methods, unknowingly again, out of necessity all along.

Following both the necessity and the holistic principles of teaching and learning
benefits our students and the teacher as well. It requires experience, courage and
compassion that are well spent on the young.

3 Details of My Methodology, Using an Example from
Linear Algebra

One of the simplest ways to channel students into a holistic approach to learning and
to life in general is to ask them:

Who will teach your children?
Who of you will know Mathematics well enough to explain it in the future when I
am old and retired? Who among you will eventually be able to add to Mathematics
through original research and problem solving?
How can the entities of math and science be understood and kept alive in our culture
and society unless future generations are taught?
Who will understand and be able to transmit how and why math’s very nature forces
certain properties, tools and understandings onto the modern world, such as the math
behind cell phones, of google searches, of GPS, of wind turbine design, of molecular
chemistry, of surveillance techniques, of large data and so forth?

Whenever I teach a graduate or undergraduate mathematics class I am guided by
the two underlying principles and I approach teaching, learning andmath holistically.
I teach interactively with constant give and take between all members of the class
and during most any class hour. More involved exploratory class sessions occur five
to eight times during our 15week semesters. These sometimes arise spontaneously
and at other times are planned in advance.

I personally love to teach pure, applied and numerical math courses at all levels
that involve Linear Algebra and Matrices. Matrix Theory is the area of my own
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research and expertise. To start off a semester of sophomore Linear Algebra, for
example, I write out the linearity equation for functions on the very first day:

f (au + bv) = af (u) + bf (v) .

Here f is a function that maps n-vectors such as u, v and au + bv to m-vectors
f (u), f (v) and f (au + bv), respectively, and a and b denote scalars. We discuss real
n-space and m-space naively and I introduce the task of our class on Linear Algebra
as studying all linear functions f between vector spaces.

No more, no less and, deceivingly, sounding simple enough.

Then I recall the spaces of continuous functions and of differentiable or integrable
functions from Calculus. I ask the class how to define these function spaces and to
explain that they are spaces and why they are. Soon it becomes clear that differen-
tiation and integration are linear operators or functions on their respective spaces
since

(af + bg)′(x) = af ′(x) + bg′(x) and∫
(af (x) + bg(x))dx = a

∫
f (x)dx + b

∫
g(x)dx .

As I and the students discuss these question, I mention that linear functions are the
backbone (jointly with physics, chemistry, biology, computer science and engineer-
ing) of our whole modern technological world.

Linear functions and their representation as matrices govern much of our inter-
connected internet lives: They help in search engines, with GPS computations, in
automatic control and on and on as they are well suited and adaptable for numerical
computations and inside algorithms. Linear functions act asmathematical ‘atoms’ for
modern industry and technology. Linear functions and their matrix representations
are nowadays used everywhere in computer number crunching, i.e., they are indis-
pensable in our modern day computer revolution and for our dependencies thereon.

That piques the interest of the class on day one. I then lead the class—with many
open ended questions and the student answers discussed and possibly used—through
the discovery and proof finding process that each linear transformation f from R

n to
R

m can be represented by the action of an m by n matrix A on vectors in Rn.
Thereafter we study the classical subjects of Linear Algebra such as equations,

linear dependence, span, bases etc. for many weeks. This first half of my first Linear
Algebra course is pepperedwith quick or extended discovery sessions for the students
who, on different days, are asked questions such as

Are there equations that nobody can solve, not even Einstein, if he were alive?
How many solutions can a linear system Ax = b have? How can we tell?
What distinguishes a uniquely solvable system of linear equations from one with
many solutions or one with none?
Which sets of vectors are linearly independent? How can one check?
What relations are there between the coordinate vectors of one point in R

n, but for
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different bases?
How can we translate one basis coordinate vector to another coordinate vector for
the same point in space but with respect to a different basis?
What is the difference between a foreign language dictionary and a basis change
matrix?
and so forth.

Here students learn to discover and form judgments and reasoned opinions in
mathematical terms and they begin to argue openly and freely through mathematical
statements. They start to understand the concepts and necessity of ‘rigor’ and ‘proof’
in mathematics, as well as of subject specific mathematical concepts.

A chance of teaching important linear algebraic concepts, anew and more deeply
opens up in the second half of the course. After basis change effects on matrix
representations have been observed, and some, but not all matrices have been found
diagonalizable via eigenvector bases, it is time to explore the following question:

What determines angles and how are they measured in R
n?

The concept of angle precedes our study of orthogonality and a deeper analysis of
bases and of special matrices such as symmetric, hermitian, normal and orthogonal
matrices that fills out the rest of the semester. On one hand, the concept of angles
and their measurement must be understood for comprehending mathematics and to
live and move in this world. And on the other hand, a thorough angle definition
itself offers a wonderful means to re-introduce vectors and discuss and learn about
vector spaces and linear transformations anew on a deeper, more conceptual and
also more concrete level. This helps the class to see and understand special linear
transformations and matrices in their own intrinsic light later on and renders them
more palatable and useful for analysis and applications. A sure win-win situation for
teacher and students alike.
Here my startup questions typically are:

“What is an angle in R
n? How does it come about? What geometric objects of

R
n define an angle?

This usually generates reflected student answers such as:

Take 3 non-collinear points in space, say O, A and B. Look at the plane spanned by
O, A and B. Assume that O is the vertex or corner of the angle.
Move, rotate and tilt the plane to make it coincide with the ground plane R

2.
Draw the points out on paper, and there it is, the space angle ∠(AOB) contained
between the rays OA and OB.

Students can generally construct the equivalence between an angle in n-space and
its representation in R2. An angle is a planar object after all, defined by three points
A, O, and B in space (Fig. 1). To visualize that a general two dimensional plane
in R

n is and behaves just like our ordinary drawing paper or the black- or white-
board involves mental abstraction. Students are best left alone for a short interval
to discuss, develop and perform this labor by themselves through discussions and
teamwork with their peers.
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Fig. 1 A generic angle in n-space

To allow for this exchange, I usually step out of class and walk the hallways for a
minute or two or three, while they work through the process in accordance with the
holistic management approach to teaching. Occasionally I enter back in to learn their
progress or to ask further questions until they are done and reasonably clear about the
equivalence by and among themselves. My students usually succeed without many
prompts due to the mathematical maturity level that they have reached towards the
end of the course when they have been holistically taught.

Once the generic R2 situation of angles in n-space is understood, we can use the
geometry and trigonometry of R2 to study the angle between the rays OA and OB
that emanate from O.

This picture raises further questions:
How can we measure the three angles α, β and the difference angle α − β in R

2

as labeled in Fig.2?
Does anyone remember trigonometry? What does trigonometry do in this realm?
How are the elementary trig functions defined?

After drawing the coordinate axes onto the angle plot above, my students may
recognize the role for sine and cosine here. As the trig functions are based on the
unit circle, this leads us to the intersection of the unit circle with the rays from O to
A and O to B, respectively, as drawn below.

At first, students might be unable to correlate the points Ã and B̃ on the unit circle
marked by small + signs in Fig. 3 with the given points O, A and B. I wait until the
class notices that these two points Ã and B̃ are the unit vectors for the rays from O
to A and from O to B, respectively. Thus as vectors

Ã = (cos(α), sin(α)) = A

‖A‖ and B̃ = (cos(β), sin(β)) = B

‖B‖ .
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Fig. 2 An angle in 2-space

o 1

1

α

α β

β
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A = (Cos(α), sin(α))

B = (Cos(β), sin(β))

Α

Β

Fig. 3 The angle with the coordinate axes and the unit circle drawn in the plane

What is really needed, though, is a measure of the angle α − β between OA and
OB, or : What is cos(α − β) given cos(α) and cos(β)?

Students now may recall the addition formula for cosine, i.e., cos(α + β) =
cos(α) cos(β) − sin(α) sin(β), and also that cos(−γ ) = cos(γ ) because cosine
is an even function, while sin(−γ ) = − sin(γ ) since the sine function is odd.

Thus simple algebraic manipulations relate the cosine of the desired angle α − β

between OA and OB to the given sine and cosine coordinates of the two associated
unit vectors:
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cos(∠(AB)) = cos(α − β) = cos(α + (−β))

= cos(α) cos(−β) − sin(α) sin(−β)

= cos(α) cos(β) + sin(α) sin(β) .

However: What does this cosine formula have to do with our original angle problem,
where the angle is determined by the rays OA and OB and the coordinates of A and B?
How does cos(α − β) relate to the vector coordinates of A and B and vice versa?
To find an answer we must scrutinize the formula

cos(α − β) = cos(α) cos(β) + sin(α) sin(β)

while at the same time looking at

(cos(α), sin(α)) = A/‖A‖ and (cos(β), sin(β)) = B/‖B‖ .

After staring long enough at these three formulas, the cosine of the angle α − β

between OA and OB appears as a dot product · of two vectors. In fact, cos(α − β) is
the dot product of the unit vectors (cos(α), sin(α)) and (cos(β), sin(β)) that point
from O to Ã and from O to B̃ in Fig. 3, respectively. Thus

cos(∠(AB)) = cos(α − β) = cos(α) cos(β) + sin(α) sin(β)

= (cos(α), sin(α)) · (cos(β), sin(β))

= A

‖A‖ · B

‖B‖ = A · B

‖A‖ ‖B‖ . (∗)

This is the dot product cosine formula. It measures angles in R
2 in terms of their

defining vector coordinates. Formula (*) is the standard coordinates based angle
measure and it generalizes verbatim to angles in Rn.

But we are not done yet if we want to understand holistically and appropriately
at our knowledge level:

How does the cosine addition formula cos(α + β) = cos(α) cos(β) − sin(α) sin(β)

come about?

This question can lead us back to our middle or high school days. But instead we
can study this question by returning to the very first week of class, namely to linear
transformations and their standardmatrix representations. Let us follow the following
lines of inquiry while viewing Fig. 4:

Is rotating the plane around the origin O a linear transformation of R2 or not?
If so, what is its standard matrix representation?

Here we use the original linearity condition f (au + bv) = af (u) + bf (v). Con-
sider two nonzero vectors au and bv ∈ R

2 with a, b ∈ R and u, v ∈ R
2 and the

diagonal au + bv ∈ R
2 of the parallelogram that au and bv form.
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Fig. 4 Counterclockwise rotation by β of the unit vector (cos(α), sin(α)) around 0 in R2

How does a planar rotation Rβ around the origin O by the angle β change this
parallelogram?

The rotated sides and the parallelogram’s diagonals form another parallelogram
that is congruent to the original one since planar rotation does not change shapes.
Therefore Rβ(au + bv) = aRβ(u) + bRβ(v), i.e., the linearity condition holds for
Rβ . Thus any rotation Rβ around the origin by an angle β is a linear function. And
therefore Rβ can be represented as a 2 by 2 matrix.

What is the standard matrix representation of the counterclockwise rotation Rβ of
the plane R

2 by β around O?

From class week one, the standard matrix representation of any linear transfor-

mation R
2 → R

2 contains the images of the standard unit vectors e1 =
(
1
0

)
and

e2 =
(
0
1

)
of R2 in its columns. Thus

Rβ =

⎛
⎜⎜⎜⎜⎝

...
...

Rβ

(
1
0

)
Rβ

(
0
1

)

...
...

⎞
⎟⎟⎟⎟⎠

2,2

.

What are the images of the two unit vectors ei of R2 under counterclockwise rotation
by β?

By inspection Rβ

(
1
0

)
=

(
cos(β)

sin(β)

)
and Rβ

(
0
1

)
=

(− sin(β)

cos(β)

)
. And thus
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Rβ =
(
cos(β) − sin(β)

sin(β) cos(β)

)
.

The most recent picture shows the typical situation for angle addition: If we rotate
the point (cos(α), sin(α)) by β counterclockwise around the origin O, it moves to
(cos(α + β), sin(α + β)).

How does the 2 by 2 matrix representation of Rβ map the vector
(cos(α), sin(α))T ∈ R

2?

(
cos(α + β)

sin(α + β)

)
= Rβ

(
cos(α)

sin(α)

)
=

(
cos(β) − sin(β)

sin(β) cos(β)

) (
cos(α)

sin(α)

)
=

=
(
cos(α) cos(β) − sin(α) sin(β)

cos(α) sin(β) + sin(α) cos(β)

)
.

And thus we have derived both trigonometric addition formulas (for sine and cosine)
in one formula by using matrix times vector multiplication and elementary Linear
Algebra.

This angle example takes about 1 hour of holistic, highly interactive class time.
It prepares my students to study orthonormal bases and Gram-Schmidt orthogo-

nalization, as well as orthogonal and unitary matrices such as Householder matrices
and Givens rotations.

Then we can apply our freshly gained angle and rotation insights to symmet-
ric and hermitian matrices and—sometimes—we still have time left to deduce the
Schur Normal Form of square matrices that is sparse and achieved by orthogonal
similarities.

The whole program for teaching elementary Linear Algebra holistically as out-
lined above, leading us from linear transformations to special matrices assumes a
15week semester with 3 class hours per week (at 50 min each), with 3 to 4 in-class
tests and review sessions before each test. When taught holistically, this class often
acts as the transformational class, the springboard that ensures my students’ success
in their subsequent science and engineering curricula.

4 Results and Conclusions

All in all, in my classes I encourage students to think about and discuss all aspects of
the subject area. I explain what came before and led to the current class and also what
may be important to retain for future learning and in applications. I encourage my
students to question and learn responsibly and holistically everything that pertains
to the subject, similarly to how I have detailed one example from elementary Linear
Algebra here. I teach Calculus, Numerical Analysis, Matrix Theory etc. all guided
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by the same holistic approach. In all of my classes we use free explorations and
interactive discussions. We think jointly and individually and share our minds. I aim
for full awareness and mastery of each day’s subject and full consciousness of the
subject as a whole, both in my students and reflexively in me. On ideal days my
students and I learn from each other and teach each other.

In a holistically taught class the actual teaching style adjusts itself from day to day
as the subject matter and area warrant and as the students require. In math courses
there will be Definition-Theorem-Lemma proving days; as well as practical example
solving days; and also days where students, randomly chosen, will solve problems on
the board, often four problems with four students on the board at the same time; and
at other times interactive and exploratory days; and so forth. This freedom of means
to teach and learn is one triple benefit of teaching holistically, namely for students,
for the teacher and for spreading the comprehension, general understanding, love
and mastery of our subject.

Holistic Teaching and Learning works best with class sizes of around 30 students
and in rooms with black- or white-boards. I have also taught large auditorium classes
of 80 to over 300 students holistically. These are typically accompanied by smaller
group recitation and exercise sessions which again are best built on and taught from
both holistic principles.However, in large auditoriumclasses not all student questions
can be answered as easily and comprehensively as they can in smaller classes. Yet
for best results, large classes will benefit from adopting the holistic teaching and
learning principles.

Generally it takes around 2weeks until a class becomes comfortable with the two
founding principles of holistic teaching and accepts its premises. In holistically taught
courses we generally cover and students learn around 10% more subject matter and
they do so more deeply than can be achieved in parallel, more hierarchically taught
classes on the same subject. The reason is that when studying a subject built on
its inherent concepts, student confusion is minimized. A concept once learnt and
understood will be recalled and reinforced by applications while an “applications
first” approach to teaching often leads to widespread confusion and wasted class
time. Not surprisingly, students in my classes tend to be asked and often act as tutors
for friends and dorm neighbors that take the same course in parallel, but with different
faculty. This indicates that our class is soon ahead of parallel classes and that my
students understand the subject matter well enough to be willing to try and test their
own understandings and can explain, help and teach their friends how to approach
and solve new homework problems. Sometimes they even bring these problems back
to our class for us to examine, discuss and solve.

I have never taught where learning assessments or student tracking were estab-
lished, thus I have no usable statistics data on ‘Holistic Teaching and Learning’.
Except anecdotally, when I meet former students by chance at the swimming pool,
at a restaurant or at graduation time and I repeatedly hear that my class was one of
their most demanding, but overall the most valuable lesson of their course of studies.

If interested, I suggest to try and learn more about the ‘necessity principle’ and
the ‘holistic principle’ of teaching by searching the internet for these terms, as well
as look up Jean Piaget (1985, 1977, 1960) and Guershon Harel (2013) for the roots of
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the necessity principal in teaching, and Allan Savory (1998) and Jan Smuts (2010) or
André Voisin (1988) for the holistic principle that originated in nature and agronomy
studies. I have been familiar with many of these authors’ works over the years, but I
have not used nor did I revisit any specific references when writing this paper.

This paper is, however, a continuation and evolution of my earlier thoughts and
notes from a decade ago on the need for conceptual teaching and how to structure a
holistically taught first Linear Algebra course, see (Uhlig 2002a, b, c, 2003).

5 Outlook

This paper is unlike any other paper in the current and recent educational literature. It
points to a ‘wicked problem’ that institutions, corporations and complex human en-
deavors routinely face when they mature as organizations. For a different but similar
assessment of the inherent benefits of approaching complex situations holistically as
we have done here for Mathematics, see (Wendell, 2001) for example. I have learned
of his writings about science only very recently, but they seem to apply equally well
to the ‘wicked problem’ that education finds itself in today.

Over the last few decades educational research has become more and more reduc-
tionally ‘scientific’ and less a part of the human arts or philosophy. Hypotheses are
now proposed and class tested. And assessment statistics and numerical data have
taken over the field of educational research and are shaping our ways of teaching.
Thoughts and reflections on education, as well as philosophical debates on the prin-
cipals of teaching have in turn been more and more dismissed, have been forgotten
and have become near un-publishable while experiments and reductional fixes fill
educational journals.

‘No child left behind’ like test results and analyses have driven our recent edu-
cational efforts. In the process, our desired ‘scientific’ learning outputs have been
defined too narrowly and too trivially. Consequently teaching itself has veered off
its fundamental task to give students tools for learning and achieving subject mas-
tery and conceptual understanding. In fact, competent teaching and deep learning
has become almost secondary in schools and colleges as faculty are trying to obtain
positive teaching evaluations for tenure and promotions.

But education is too complex to be solved by popularity contests at the end-of-
semester evaluation time.

Narrowly defined tests produce reductional insights into a few educational pa-
rameters of learning. Yet the whole of educating our young is a complex natural
process that defies being measured or described by 12 or 20 or any finite number
of parameters. As long as we continue to declare ‘educational success’ according
to ‘good’ statistical data as ‘good’ teaching, unintended social consequences will
occur in society, for both the young and the mature. In this sense, how to assess
the quality of education is a ‘wicked problem’. To name a few of recently lost ef-
fects of education, our schools are alienating and losing more and more students,
schools and colleges provide less and less life guidance and fewer tools for under-
standing the world around us and therefore they have become increasingly irrelevant
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to millennials, for example, if not even noxious. Our GPA statistics and drug and
incarceration statistics are following each other nicely and they reflect one devas-
tating image of what is wrong. Could this be mere coincidence or maybe human
induced?We are relying on reductionist ’best solutions’ with vicious and unintended
consequences, where a holistic approach to educating our young could and should
be followed instead.

Education as a whole, andMathematics specifically, is an art and not a technology
or a craft that can be learned from formulas or equations. If teaching is treated,
measured and applied machine-like, society will logically continue to suffer badly
from a slew of unthought-of consequences.

Further and differing thoughts on these issues have also been expressed byMichael
Fried (2014).

Leading youths from adolescence to adult life (in Latin the verb ‘e-ducere’ means
‘to lead out of’), i.e., the education of the young as a complex natural process of
the society of man and woman. As such, education can only be rightfully assessed
and performed holistically. The holistic management context of education is the
‘necessity principle’. This is so because a student’s desire to learn and understand
alone drives her or his educational progress.

No student interest—no education.
The ‘holistic management principle’ then guides the breadth of our educational

efforts in class. And thus it completes the framework of teaching in a wholesome and
adequate way for this complex problem that humanity has faced since antiquity and
before, namely how to transfer our current knowledge base to the next generations.
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Using Challenging Problems in Teaching
Linear Algebra

Abraham Berman

Abstract We present examples of interesting problems that hopefully make the
learning and the teaching of linear algebra enjoyable. The problems are on matrix
multiplication, rank, determinants, eigenvalues and eigenvectors, and matrices and
graphs. The problem solving strategies used include “look for invariants”, “check
parity” and “define an energy function”.

Keywords Teaching through problem solving · Teaching problem solving
Teaching linear algebra

1 Introduction

A pleasant way to teach mathematics, in general, and linear algebra, in particular, is
TtPS—Teaching through Problem Solving.

Fi and Degner (2012) defineTtPS as “pedagogy that engages students in problem
solving as a tool to facilitate students learning of important mathematics subject
matter and mathematical practices”. Teaching through problem solving should not
be confused with, the related but different, teaching problem solving, e.g. (Polya,
2004; Schoenfeld, 1985).

The example studied in Fi and Degner (2012) is from high-school mathematics
but the idea of TtPS is also relevant to university courses. In his book On linear
algebra problems Zhang (1996) says that “working problems is a crucial part of
learning mathematics”. Halmos opens his linear algebra problem book (Halmos,
1995) by asking “Is it fun to solve problems, and is solving problems a good way to
learn?” and replies “the answer seems to be yes provided the problems are neither
too hard nor too easy.”

In this paper I discuss some of my favorite problems that I have used in teaching
linear algebra in more than 40 years. I hope they are neither too hard nor too easy.
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Some of them were given, as motivation, before the related material was taught.
Some were chosen in order to relate the material to topics that were taught earlier or
would be taught later. I must confess that I do not know or do not remember the origin
of the problems. They and many other problems appear in my textbook (Berman,
2002) (see also, Carlson, Johnson, Lay, & Porter, 2002; Halmos, 1995; Matousek,
2010; Prasolov, 1994; Zhang, 1996).

2 Impossible Tasks

The aim of impossible tasks is to educate the students that the answer to a “find”
problem may be “this is impossible”.

Problem 1 Find matrices A, B such that

AB − B A = I.

Solution It is impossible to find real (or complex) matrices A, B since

trace(AB − B A) = 0.

It is, however, possible over Z2, where −1 = 1. For example

(
0 0
1 0

) (
0 1
0 0

)
−

(
0 1
0 0

) (
0 0
1 0

)
=

(
1 0
0 1

)
.

Remarks

1. The natural place for Problem 1 is after the concept of a trace has been introduced
and it was shown that trace(AB) = trace(B A). However, if time permits, it can
be given to students that are not familiar with the concept of trace, and used to
guide them to develop the concept.

2. The fact that trace(AB) = trace(B A), even when AB �= B A, is important.
Later in the course it will be shown that this follows from the fact that if AB is n ×
n and B A is m × m, n ≥ m, then

�AB(t) = tn−m�B A(t). (1)

(Here �X (t) denotes the characteristic polynomial of a matrix X). Notice that
comparing the coefficient of tn−m in both sides of (1) gives a short and elegant
proof of the Cauchy–Binet formula.
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3. The Z2 example can be given with appropriate explanation, even if the course
does not cover finite fields.

4. If we want to consider matrices as finite dimensional operators, it is possible to
give an example of infinite dimensional operators A and B such that the commu-
tator AB − B A is the identity:

Au(x) = d

dx
u(x), Bu(x) = xu(x)

ABu(x) = u(x) + x
d

dx
u(x), B Au(x) = x

d

dx
u(x)

(AB − B A)u(x) = I u(x).

Problem 2 Nine coins are arranged in 3 rows and 3 columns. In the middle (2, 2)
position the “head” side is up. In all other positions the coins are “tail” side up:

T T T
T H T
T T T

.

A legal operation is turning over all the coins in one row or in one column. Use only
legal operations so that all the coins show “heads” up:

H H H
H H H
H H H

.

Solution Replacing T by −1 and H by 1 we want to use only legal operations to
replace the rank 2 matrix

⎛
⎝−1 −1 −1

−1 1 −1
−1 −1 −1

⎞
⎠

by the rank 1 matrix

⎛
⎝1 1 1
1 1 1
1 1 1

⎞
⎠ ,

but the legal operations do not change the rank.
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Remarks

1. A solution that does not use the concept of rank and thus can be given to high
school students is to consider the four coins at the right upper part:

T T
H T

.

The number of heads in this part is odd and remains odd after any sequence of
legal operations.

2. A linear algebraic version of the solution in Remark 1 is to observe that

det

(−1 −1
1 −1

)
�= 0 but det

(
1 1
1 1

)
= 0.

3. The solution strategy in both solutions is to “look for invariants” i.e., rank in the
first solution and parity or nonsingularity, in the second.

Problem 3 A legal operation on a realmatrix ismultiplying a rowby−1 ormultiply-
ing a column by −1. Prove that from any real matrix one can get by legal operations,
a matrix in which all the row sums and all the column sums are nonnegative.

Solution Consider the sum of all the entries at the matrix.

Remark Problem 3 is not an impossible task problem. It is brought here because it
looks similar to Problem 2 but is much more challenging. It is also an opportunity to
teach “problem solving”. A helpful strategy in problems of dynamical systems is to
associate a numerical function (called Energy function or Lyapunov function) and
see what happens with the function. Here, the sum of all the entries is such a function.
If a legal operation is performed on a row or a column where the sum of the entries is
negative, the total sum increases. Since the number of matrices that can be obtained
using legal operations is finite, this means that one must be able to obtain a matrix
in which all row sums and all column sums are nonnegative. A similar strategy is
used in Problem 11.

3 Fibonacci Numbers

Problem 4 The Fibonacci sequence is defined by

f1 = 1, f2 = 1, fn = fn−1 + fn−2; n ≥ 3.

1, 1, 2, 3, 5, 8, 13, . . . ,

Prove that
sn ≡ f 2n − fn−1 fn+1 = (−1)n+1; n ≥ 2.
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Solution

sn = det

(
fn fn−1

fn+1 fn

)
= det

(
fn fn−1

fn + fn−1 fn−1 + fn−2

)
= det

(
fn fn−1

fn−1 fn−2

)

= −det

(
fn−1 fn−2

fn fn−1

)
= −sn−1.

Problem 5 Show that fn = 1√
5

[(
1+√

5
2

)n

−
(

1−√
5

2

)n]
.

Solution

(
fn

fn−1

)
=

(
1 1
1 0

)n−2 (
1
1

)
.

To compute

(
1 1
1 0

)n−2

we diagonalize thematrix A =
(
1 1
1 0

)
. Its eigenvalues areϕ =

1+√
5

2 and 1 − ϕ and

(
λ

1

)
is an eigenvector corresponding to λ, for λ ∈ {ϕ, 1 − ϕ}.

Thus,

A = 1√
5

(
ϕ 1 − ϕ

1 1

) (
ϕ 0
0 1 − ϕ

) (
1 −(1 − ϕ)

−1 ϕ

)
and

(
fn

fn−1

)
= 1√

5

(
ϕ 1 − ϕ

1 1

) (
ϕn−2 0
0 (1 − ϕ)n−2

) (
ϕ

ϕ − 1

)

= 1√
5

(
ϕ 1 − ϕ

1 1

) (
ϕn−1

−(1 − ϕ)n−1

)
= 1√

5

(
ϕn −(1 − ϕ)n

ϕn−1 −(1 − ϕ)n−1

)
.

Remark In this problem the need for diagonalization is clear, since we have to
compute a general power of A. This is more convincing than the need to compute,
say A10, which can be done by calculating A2, A4 and A8.

Problem 6 Show that the set of infinite sequences {ai }, where a1, a2 ∈ R and

an = an−1 + an−2; n ≥ 3,

is a two dimensional real vector space.

Solution The set is a subspace of the vector space of sequences. Denote
{a1, a2, . . . ; ak = ak−1 + ak−2; k ≥ 3} byS(a1, a2). A possible basis isS(1, 1)—the
Fibonacci series; and S(1, 3) = {1, 3, 4, 7, 11, . . . , }—the Lucas sequence.

Remark Using this notation

S(0, 1) = {Fn−1}, S(1, 2) = {Fn+1}
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it follows that
Ln = Fn−1 + Fn+1.

4 The Vandermonde Matrix

This section is about the Vandermonde determinant formula and two of its applica-
tions.

Problem 7 Show that the determinantV (x1, x2, . . . , xn) of theVandermondematrix

⎛
⎜⎜⎜⎝
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
... · · · ...

1 xn x2
n · · · xn−1

n

⎞
⎟⎟⎟⎠

is
∏

1≤i< j≤n(x j − xi ).

Solution The polynomial V (x1, x2, . . . , xn−1, x) is a polynomial of degree n − 1 in
x . The coefficient of xn−1 isV (x1, x2, . . . , xn−1). V (x1, x2, . . . , xn−1, xn) vanishes at
x = x1, x = x2, . . . , x = xn−1. So it is equal to V (x1, x2, . . . , xn−1)(xn − x1)(xn −
x2) . . . (xn − xn−1). The result follows by induction on n.

Problem 8 Let x1, x2, . . . , xn be distinct numbers and let y1, y2, . . . , yn be n num-
bers. Prove that there is a unique polynomial P of degree n − 1 such that P(xi ) = yi ;
i = 1, . . . , n.

Solution Let P(x) = a0 + a1x + · · · + an−1xn−1. We want to show that the coeffi-
cients ai are defined by a system of n equations in n unknowns ai :

⎛
⎜⎜⎜⎝
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
... · · · ...

1 xn x2
n · · · xn−1

n

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0

a1
...

an−1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

y1
y2
...

yn

⎞
⎟⎟⎟⎠ .

The system has a unique solution since V (x1, x2, . . . , xn) �= 0.

Problem 9 Use the Vandermonde determinantal formula to prove that eigenvectors
that correspond to distinct eigenvalues are linearly independent.

Solution Let Avi = λivi ; vi �= 0; i = 1, . . . , k, λ1, . . . , λk distinct.
We have to show that v1, . . . , vk are linearly independent. Let

a1v1 + · · · + akvk = 0. (2)
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We want to show that
a1 = · · · = ak = 0.

Multiply (2) by A, A2, . . . , Ak−1:

λ1a1v1 + · · · + λkakvk = 0

...

λk−1
1 a1v1 + · · · + λk−1

k akvk = 0;

(
a1v1|a2v2| · · · |akvk

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 λ1 · · · λk−1
1

1 λ2 · · · λk−1
2

...
...

1 λk · · · λk−1
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

Since V (λ1, . . . , λk) �= 0,
(
a1v1|a2v2| · · · |akvk

) = 0. Since vi �= 0, ai = 0 for all
i = 1, . . . , k.

Remark There are of course other proofs. It is always nice to give several proofs,
when possible.

5 Graphs and Matrices

Problem 10 At each vertex of a graph there is a bulb. The states of the bulbs change
every time unit according to the following majority rule.
If at time t , a light bulb has more neighbors that are “on”, it will be “on” at time
t + 1, if it has more “off” neighbors, it will be “off”. In case of a tie, its state does
not change.

Prove that for every graph and for any initial states, from some t , the states of the
lights at time t + 2 are the same as their states at time t (Fig. 1).

Solution Let N be the adjacency matrix of G. Let A = N + 1
2 I . Let

x(t)i =
{
1 if light i is on at time t

−1 if light i is off at time t.

The signs vector of Ax(t) is the same as the signs vector of x(t + 1). Thus,
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Fig. 1 Periodicity 2

f (t) ≡ x(t + 1)T Ax(t) = max
yi ∈{±1} y

T Ax(t) = x(t)T Ax(t + 1)

f (t + 1) = x(t + 2)T Ax(t) ≥ x(t)T Ax(t + 1) = f (t).

f can attain only a finite number of values, so from some t , f (t + 1) = f (t). Thus,
x(t + 2) = x(t).
Remarks

1. The interplay between matrices and graphs is one of the important features of
linear algebra and should be mentioned at an early stage of the course. Problem
10 was offered to the students after they had been asked to show, in an homework
problem, that the number of walks of length k, from vertex i to vertex j, in a graph
G is N k

i j , where N is the adjacency matrix of G. The linear algebra requirement
for the problem is to know that (AB)T = BT AT , so the problem can be given
early in the course. Similar to Problem 3, the strategy used in the solution is
considering a Lyapunov function. Here the function is

f (t) = x(t + 1)T Ax(t) .

2. An extension of the problem to infinite graphs is studied in Moran (1995).

Fig. 2 All lights “on”
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Problem 11 At each vertex of a graph there is a bulb and a knob. Pressing a knob
activates it and its neighbors (Fig. 2).

Prove that for each graph one can start from all lights “off” and move to all lights
“on”.

Solution Let A = N + I . We have to prove that the system

Ax = e

is solvable over Z2. Suppose it is not. Then
(

A | e) is equivalent to a matrix in which
the last row is

(
0 · · · 0 1

)
. Thus, there is an odd number of rows of A such that in

the corresponding submatrix, each column has an even number of 1’s.
The same is true for the corresponding principal submatrix. This implies that the
total number of 1’s in the principal submatrix is even, but this principal submatrix is
symmetric, its diagonal entries are 1 and its order is odd, so the total number of 1’s
is odd. Contradiction.

Remark This problem is a known computer game. One can google FIVER to see a
special case. The strategy used in the solution is parity checking. This strategy was
used in the second solution to Problem 2.

6 Suggested Research

I was lucky to have excellent students. Many became very successful in the high tech
industry. Some of them credited learning through challenging problems for their high
tech success. Of course, they wanted to please me. I was pleased but would like to
know if the compliment is justified.TtPS in elementary and high school was studied,
e.g. (Fi & Degner, 2012; Lester, 1994). In a recent doctoral thesis (Klinstern, 2016),
Klinstern compares the way that teachers pose or choose problems for their teaching
to the way this is done by TA’s in the university. It is interesting to study the effect
of using TtPS at the university level. How does it affect motivation, attitude, grades
and knowledge? Is it time consuming? Is it good only for some students?
One of the ideas suggested in the discussion group on teaching linear algebra in
ICME 13, was to identify research topics that could be studied jointly by researchers
from different countries. I want to conclude the paper by suggesting “the effects of
using challenging problems in teaching linear algebra” as such a topic.
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