
Robert Brijder
Lulu Qian (Eds.)

 123

LN
CS

 1
04

67

23rd International Conference, DNA 23
Austin, TX, USA, September 24–28, 2017
Proceedings

DNA Computing and 
Molecular Programming



Lecture Notes in Computer Science 10467

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Robert Brijder • Lulu Qian (Eds.)

DNA Computing and
Molecular Programming
23rd International Conference, DNA 23
Austin, TX, USA, September 24–28, 2017
Proceedings

123



Editors
Robert Brijder
Hasselt University
Diepenbeek
Belgium

Lulu Qian
California Institute of Technology
Pasadena, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66798-0 ISBN 978-3-319-66799-7 (eBook)
DOI 10.1007/978-3-319-66799-7

Library of Congress Control Number: 2017951307

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-8912-1735
http://orcid.org/0000-0003-4115-2409


Preface

This volume contains papers presented at DNA 23: The 23rd International Conference
on DNA Computing and Molecular Programming. The conference was held at The
University of Texas at Austin during September 24–28, 2017, and organized under the
auspices of the International Society for Nanoscale Science, Computation and Engi-
neering (ISNSCE). A workshop day, consisting of the Education Workshop and the
Synthetic Biology Workshop, was held on September 24, 2017. The DNA conference
series aims to draw together mathematics, computer science, physics, chemistry,
biology, and nanotechnology to address the analysis, design, and synthesis of
information-based molecular systems.

Papers and presentations were sought in all areas that relate to biomolecular com-
puting, including, but not restricted to: algorithms and models for computation with
biomolecular systems; computational processes in vitro and in vivo; molecular
switches, gates, devices, and circuits; molecular folding and self-assembly of nanos-
tructures; analysis and theoretical models of laboratory techniques; molecular motors
and molecular robotics; studies of fault-tolerance and error correction; software tools
for analysis, simulation, and design; synthetic biology and in vitro evolution; appli-
cations in engineering, physics, chemistry, biology, and medicine.

For DNA 23 we received 109 submissions: 23 Track A submissions, 10 Track B
submissions, and 76 Track C submissions. Each Track A and B submission was
reviewed by at least three reviewers, with an average of more than four reviews per
submission. The Program Committee accepted 16 submissions in Track A and 8
submissions in Track B. Also, 8 submissions in Track C were selected for both poster
and breaking-news short oral presentations. The papers accepted for Track A are
published in these conference proceedings.

In addition to the accepted submissions, the scientific program included invited
talks from David Doty, Eric Klavins, Cristopher Moore, Vincent Noireaux,
Yannick Rondelez, and Karin Strauss. The Education Workshop included talks from
Eric Klavins, Carlos Castro, and Brian Korgel, and The Synthetic Biology Workshop
included talks from Reinhard Heckel, Sri Kosuri, and James Diggans.

We thank all invited speakers and all authors who submitted their work to this
conference. Finally, we thank the members of the Program Committee and the addi-
tional reviewers for their hard work in reviewing the submissions and taking part in
post-review discussions.

July 2017 Robert Brijder
Lulu Qian
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Automated, Constraint-Based Analysis
of Tethered DNA Nanostructures

Matthew R. Lakin1,2,3(B) and Andrew Phillips4

1 Department of Computer Science, University of New Mexico,
Albuquerque, NM, USA
mlakin@cs.unm.edu

2 Center for Biomedical Engineering, University of New Mexico,
Albuquerque, NM, USA

3 Department of Chemical and Biological Engineering, University of New Mexico,
Albuquerque, NM, USA

4 Microsoft Research, 21 Station Rd, Cambridge CB1 2FB, UK
aphillip@microsoft.com

Abstract. Implementing DNA computing circuits using components
tethered to a surface offers several advantages over using components
that freely diffuse in bulk solution. However, automated computational
modeling of tethered circuits is far more challenging than for solution-
phase circuits, because molecular geometry must be taken into account
when deciding whether two tethered species may interact. Here, we tackle
this issue by translating a tethered molecular circuit into a constraint
problem that encodes the possible physical configurations of the compo-
nents, using a simple biophysical model. We use a satisfaction modulo
theories (SMT) solver to determine whether the constraint problem asso-
ciated with a given structure is satisfiable, which corresponds to whether
that structure is physically realizable given the constraints imposed by
the tether geometry. We apply this technique to example structures from
the literature, and discuss how this approach could be integrated with
a reaction enumerator to enable fully automated analysis of tethered
molecular computing systems.

1 Introduction

Molecular computing using solution-phase DNA circuits is a powerful method
for implementing nanoscale information processing systems. In particular, DNA
strand displacement has emerged as a proven method of engineering networks of
programmable computational elements [1,2] and a powerful theoretical frame-
work has built up around it [3,4]. In the computational modeling of DNA strand
displacement networks, the assumption that all components are freely diffusing
in bulk solution means that the physical conformations of interacting molecular
species may be neglected when enumerating the possible reactions. This assump-
tion is heavily exploited in existing modeling systems for solution-phase DNA
strand displacement networks, such as the DSD programming language [5] and
the associated Visual DSD software [6].
c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 1–16, 2017.
DOI: 10.1007/978-3-319-66799-7 1



2 M.R. Lakin and A. Phillips

However, the fact that any pair of components in a freely diffusing molecular
circuit may potentially diffuse into proximity and interact means that the entire
circuit must be designed so as to eliminate crosstalk from all possible unde-
sired interactions. Thus, even if the circuit is designed in a modular fashion,
each instance of a given module must be implemented using different nucleotide
sequences, which limits the scalability of circuits. Indeed, the largest DNA com-
puting circuit built to date is the “square root” circuit reported by Qian and
Winfree [7], which required 74 initial DNA species (excluding input signals) for
a total of 130 different DNA strands. Reducing the number of distinct molecu-
lar species required to implement complex computational systems is therefore a
crucial direction for future research in molecular computing.

Advances in the field of structural DNA nanotechnology, in particular, the
development of DNA origami [8] as a reliable method for building DNA tile
nanostructures [9], has raised the possibility of implementing molecular com-
puters using components that are tethered to a DNA origami tile surface. This
would enable nucleotide sequences to be shared between components that are
tethered far enough apart to not interact, which means that large-scale circuits
could be constructed using many copies of standardized components. Further-
more, tethering circuit components in close proximity increases the speed of
circuit computation because components do not need to diffuse in three dimen-
sions prior to interacting [10]. Indeed, several proposals for implementing mole-
cular computers using surface-bound DNA strand displacement networks based
on hairpin-opening reactions have been previously published [11,12]. A further
motivation for studying molecular circuits tethered to DNA tiles is that DNA
nanostructures show great promise as a vehicle to deliver theranostic molecular
devices to cells and tissues [13].

From a modeling perspective, however, the move to implementing molecular
computers using components that are tethered to a surface presents some chal-
lenges. In particular, tethering components to the surface at particular locations
makes it necessary to consider the geometry of the system when deciding whether
two components can actually interact with each other. For example, it might be
the case that two components contain complementary single-stranded domains,
but are tethered to the surface too far apart to actually be able to hybridize. In
certain cases it may be possible to derive simple expressions to compute whether
domains can interact [12], but this is not possible in the general case. Our pre-
vious work on modeling tethered strand displacement networks [14] avoided this
issue by relying on the programmer to specify which components could interact,
however, in many cases this requires additional biophysical calculations to be
made separately. Thus, in order to build an automated compiler for tethered
molecular circuits, we require an automated, general purpose method for com-
puting whether the geometry of two tethered molecular species permits them to
interact.

In this paper, we present an automated solution to the problem of reac-
tion enumeration in tethered strand displacement systems. We translate teth-
ered structures into sets of arithmetic constraints on variables that represent
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the physical locations of their components. If the constraint problem associated
with a given structure is satisfiable, it means that there is a plausible physical
configuration of the components that can be adopted by the system. Conversely,
if the constraint problem is unsatisfiable, there is no physical configuration of the
components that can produce that structure. By solving the constraints using an
off-the-shelf satisfaction modulo theories (SMT) solver, we obtain a procedure
that allows us to automatically detect whether a structure is physically plausi-
ble, given the constraints imposed by the tethers. To our knowledge, this is the
first fully automated procedure for analyzing molecular geometry in the context
of a tethered molecular computing system.

2 Localized Processes

In this section, we present our language of localized processes for representing
tethered DNA structures. Definition 1 extends the process calculus-based presen-
tation of DNA nanostructures from our previous work [15] with syntax for tethers
on strands that attach them to a surface (representing, e.g., a DNA origami tile)
at particular coordinates, and annotations to represent the physical coordinates
of different parts of the structure.

Definition 1 (Localized processes). The syntax of localized processes, P , is
expressed in terms of domain names a, b, . . ., bond names i, j, k, . . ., variables
x, y, z, . . ., and real-valued constants r ∈ R. Then, the grammar of localized
processes is as follows.

Coordinate c :: = x Variable

� r Real-valued constant

Tether t :: = tether Tethered

� ε Untethered

Position π :: = t(c1, c2, c3) Position with coordinates

Domain d :: = a Domain name

� a∗ Complemented domain name

(Un)bound domain o :: = d Free domain

� d!i Bound domain with bond i

Strand S :: = <π0 o1 π1 · · · πM−1 oM πM> Strand with M domains, M ≥ 1

Process P :: = (S1 | · · · | SN ) Multiset of N strands, N ≥ 0

We write strands(P ), bonds(P ), posns(P ), and vars(P ) for the sets of
strands, bonds, positions, and variables that occur in P , respectively. We consider
processes equal up to re-ordering of strands, renaming of bonds, and renaming
of variables, and we only consider processes that are well-formed, by which we
mean that each bond in bonds(P ) appears exactly twice and is shared between
complementary domains, and that each variable in vars(P ) appears exactly once.

We assume the existence of a predicate toehold such that toehold(a) returns
true if and only if a is a toehold domain. For convenience, we also write aˆ
iff toehold(a) holds. We also assume the existence of a function len such that
len(a) returns the length in nucleotides of the DNA sequence for the domain
name a (and thus returns a positive integer). We assume that these functions
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are also lifted to possibly-complemented domains d, so that f(a∗) = f(a), for
f ∈ {toehold , len}. Similarly, we lift the complementation syntax to possibly-
complemented domains, by defining (a∗)∗ = a.

Between each pair of domains on every strand, and on each strand terminus,
is a position that represents the location of that part of the structure in 3D
space. The position ε(cx, cy, cz), which we may abbreviate as simply (cx, cy, cz),
means that part of the structure is untethered and located at x-coordinate cx,
y-coordinate cy, and z-coordinate cz. (Each of the coordinates may be a vari-
able that can be assigned a value during the constraint solving procedure, or a
real-valued constant that represents a specific location.) Similarly, the position
tether(cx, cy, cz) represents a tether that attaches that part of the strand to the
underlying surface at the location (cx, cy, cz) where, typically, cz = 0 and cx and
cy are real-valued constants. In practice, we may elide certain positions from the
process syntax altogether, with the understanding that the physical position of
junction between the domains on either side (or the strand terminus, if at the
end of the strand) will be represented by a freshly generated position with syntax
(cx

†, cy
†, cz

†), where cx
†, cy

†, and cz
† are unique, freshly generated variables.

Fig. 1. Example of representing a tethered structure. (a) Secondary structure of a
three-stator transmission line after [11], with the three stators arranged in a straight
line. (b) Condensed version of the structure from (a), with all positions fully annotated.
Here, the q domains are the freshly generated domain names. (c) Calculus syntax rep-
resenting the initial structure from (a). (d) Calculus syntax representing the condensed
structure from (b).
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Note that we use the term “process” here for historical reasons. Although the
long-term goal of our work is to enable automated enumeration of interactions in
localized processes, in this paper we focus solely on the problem of analyzing the
geometry of a single state of the localized process, and we use the process syntax
solely as a means of representing the structure in question. Figure 1 presents
graphical and syntactic representations of the tethered system that will serve
as our running example throughout the paper—a three-stator transmission line
after [11].

3 Biophysical Model

Before we present our translation of localized processes into constraint sets, we
first present the assumptions about the biophysics of DNA that will underlie
the translation. Crucially, we will model double-stranded DNA duplexes as rigid
rods and single-stranded DNA as infinitely flexible, freely jointed chains. We
also assume that joints (nicks) between double-stranded duplexes are infinitely
flexible. We will neglect the thickness of DNA strands, and will also neglect the
length of the bonds between complementary bases by requiring the ends of the
two strands that make up a duplex to be positioned at exactly the same point
in space. In computing whether structural components may interact, we will
also not account for steric effects that could, for example, eliminate solutions to
the constraint problem that would require part of the structure to pass through
another to form a catenane. This model is clearly simplified, and we refer the
user to Sect. 7 for further discussion of these assumptions and how this model
might be made more realistic.

4 Condensing Localized Processes

When deriving geometric constraints from localized processes, we will model
every double-stranded duplex as a single rigid rod, as described in Sect. 3 above,
even when that duplex consists of multiple sequence domains. Thus, before con-
verting a localized process into a set of constraints we must first condense the
process by combining all domains on a given strand that represent a continuous
duplex into a single extended domain. To reduce the size of the resulting con-
straint problem, we will also condense continuous single-stranded regions into
extended domains. The condensing process is a straightforward binary relation
−→condense on localized processes that can be defined by the following rewrite
rules:

(<· · · πj d1!i1 πj+1 d2!i2 πj+2 · · ·> | <· · · πk d2
∗!i2 πk+1 d1

∗!i1 πk+2 · · ·> | P )
−→condense (<· · · πj q!i1 πj+2 · · ·> | <· · · πk q∗!i1 πk+2 · · ·> | P )

(<· · · πj d1!i1 πj+1 d2!i2 πj+2 · · · πk d2
∗!i2 πk+1 d1

∗!i1 πk+2 · · ·> | P )
−→condense (<· · · πj q!i1 πj+2 · · · πk q∗!i1 πk+2 · · ·> | P )

(<· · · πj d1 πj+1 d2 πj+2 · · ·> | P ) −→condense (<· · · πj q πj+2 · · ·> | P )
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where, in each case, q is a freshly-chosen domain name, for which we assume
that len(q) = len(d1) + len(d2). We also require that any position removed by
the condensing process has the form ε(x, y, z), that is, the position is untethered
and is specified solely by variables and not by constants. In the rule definitions,
these positions are referred to as πj+1 and πk+1. This condition essentially says
that no information is lost by discarding that position, because it was not previ-
ously constrained to a specific location in space. If this condition is violated, the
condensing process fails and we cannot proceed. However, for practical purposes
this is a reasonable condition to impose, since to our knowledge there are no
proposed or implemented designs for tethered molecular circuits that include a
tether part way along a DNA duplex.

Thus, a single condensing step takes two neighbouring bound domains, either
on two strands (the first rule) or on a single strand (the second rule), or two
neighbouring single-stranded domains on the same strand (the third rule) and
converts them into a single domain with a freshly-generated name (which avoids
conflicts with other domain names in the system) whose length is the sum of the
lengths of the two domains it replaces. If the domains were initially bound, they
remain so in the condensed version of the process. Furthermore, the coordinates
that represent the positions of the endpoints of the new bound domains are the
same as those that represented the endpoints of the neighbouring bound domains
that were replaced. Figure 1 presents an example of condensing, as applied to
our running example system.

It is not hard to see that the condensing process preserves well-formedness
of processes (since, in the first two rules, both occurrences of i2 are removed
and i1 connects two complementary domains in the resulting process), that it is
terminating (since every rule application removes a pair of neighbouring bound
domains) and that it produces a unique normal form when no more rule appli-
cations are possible (modulo the choice of freshly-named new domains that are
introduced).

Henceforth we will assume that all processes have been condensed via this
procedure, so that all duplexes are represented by a single domain on each bound
strand and all neighbouring single-stranded domains have been similarly col-
lapsed into a given domain. This ensures that all domain junctions in the process
correspond to points where the structure is flexible.

5 Geometric Constraints for Localized Processes

This section details the main technical contribution of the paper, where we
define a translation of a (condensed) localized process into a set of arithmetic
constraints that represent the possible geometry of the structure according to
the biophysical model outlined in the previous section. This set of constraints
will collectively encode the geometry of the structure, and our intention is that
the set structure represents an implicit conjunction, so that the set of constraints
is satisfied iff all constraints within the set are simultaneously satisfied (under
some mapping of variables to values).
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We will use a 3D Cartesian coordinate system that allows us to locate
each domain junction with respect to the surface to which the tethered com-
ponents are attached. For simplicity, we assume that all tethered components
are attached to the same surface, though that restriction could be straightfor-
wardly relaxed if we assume that there are no interactions between components
tethered to different surfaces. By convention, we will assume that the surface
(which could model, e.g., a DNA origami tile) lies in the z = 0 plane, and that
all components are tethered to the same side of the surface and protrude on the
positive z side. We now begin to define the different classes of constraints that
will make up the constraint-based representation of structure geometry. First, we
define constraints that represent the physical length of each domain in a process.

Definition 2 (Domain length constraints). For a localized process P we
define the corresponding domain length constraints, dlc(P ), as follows:

dlc(P ) =
⋃

S∈strands(P )

dlc(S)

where dlc(<π0 o1 π1 · · · πN−1 oN πN>) =
dlc(π0, o1, π1) ∪ dlc(π1, o2, π2) ∪ · · · ∪ dlc(πN−1, oN , πN )

and dlc(t(cx, cy, cz), o, t′(c′
x, c′

y, c′
z)) ={

{(c′
x − cx)2 + (c′

y − cy)2 + (c′
z − cz)2 = (len(a) × Lds)2} if o = a!i

{(c′
x − cx)2 + (c′

y − cy)2 + (c′
z − cz)2 ≤ (len(a) × Lss)2} if o = a.

In this definition, we must distinguish between single-stranded and double-
stranded domains. Thus, len(a) × Lds is the (fixed) length of a double-stranded
domain a and len(a) × Lss is the maximum extended length of a single-stranded
domain a. The constraints then specify the fixed distance between the two ends
of a double-stranded domain (which we model as a rigid rod) or the maximum
distance between the two ends of a single-stranded domain (which we model as an
infinitely flexible freely-jointed chain), in terms of the variables used to represent
the coordinates of each end of the domain. We now define the constraints that
encode hybridization between domains.

Definition 3 (Hybridization constraints). For a localized process P we
define the corresponding hybridization constraints, hc(P ), as follows:

hc(P ) =
⋃

i∈bonds(P )

hcP (i)

where hcP (i) = {cx = c′′′
x , cy = c′′′

y , cz = c′′′
z , c′

x = c′′
x, c′

y = c′′
y , c′

z = c′′
z}

and <· · · t(cx, cy, cz) a!i t′(c′
x, c′

y, c′
z) · · ·> ∈ strands(P )

and <· · · t′′(c′′
x, c′′

y , c′′
z ) a∗!i t′′′(c′′′

x , c′′′
y , c′′′

z ) · · ·> ∈ strands(P ).

As one of the key simplifications in our biophysical model, we assume that
the diameter of a DNA duplex is negligible. Thus, if the two (complementary)
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domains are hybridized, the 5’ end of one domain must be colocated with the
3’ end of the other, and vice versa. Note that, in the above definition, since
i ∈ bonds(P ) and since we assume that P is well-formed, it follows that there
exists precisely one pair of complementary domains connected via the bond i,
which will satisfy the side conditions.

Finally, we define constraints that situate the structure with respect to the
tile surface. This includes the constraints imposed by tethers, which anchor one
end of a domain at a fixed location on the tile surface, and constraints that
stipulate that no part of the structure may pass through the tile surface.

Definition 4 (Tile constraints). For a localized process P we define the cor-
responding tile constraints, tc(P ), as follows:

tc(P ) =
⋃

π∈posns(P )

tc(π)

where tc(tether(cx, cy, cz)) = {cz = 0}
and tc(ε(cx, cy, cz)) = {cz ≥ 0}.

Thus, positions on a strand where a tether appears (in practice this is typi-
cally at the end of the strand, though our model does not require this) are con-
strained to specific coordinates, with a z coordinate of 0. Non-tethered positions
are simply constrained to have a non-negative z coordinate, i.e., they cannot
be “below” the tile. We now combine the different kinds of constraint defined
above to create a constraint-based model that encodes the possible geometric
configurations of a localized process.

Definition 5 (Constraint-based biophysical models). For a condensed,
localized process P , we write MP for the full, constraint-based model, which is
defined as follows:

MP = dlc(P ) ∪ hc(P ) ∪ tc(P ).

Thus, all constraints from domain lengths, hybridization, and tethers are
unioned together to produce a single set of constraints that represents the pos-
sible geometric configurations of the structure of the localized process.

Definition 6 (Plausibility of localized processes). We say that a localized
process P is plausible iff its associated constraint set is satisfiable, that is, if there
exists a mapping from the variables to real numbers such that all constraints in
the constraint set are simultaneously satisfied when the mapping is applied. A
localized process that is not plausible is implausible.

If a localized process is implausible, this means there is no way to arrange
the domains in space to form the specified structure without breaking one or
more of the geometric constraints imposed by that structure. For example, in
the case of a tethered DNA circuit, this may mean that the tethered locations
of two components may leave them too far apart to interact with each other.
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Thus, we can enumerate reactions between tethered components while respecting
the tether geometry by checking plausibility of the localized process P that
represents the candidate product structure, i.e., by checking satisfiability of the
corresponding constraint problem MP .

6 Results

6.1 Prototype Implementation

We implemented a prototype system for checking satisfiability of constraint-
based geometric models using the Z3 SMT solver [16]. The prototype is written
in Python, and takes as input a localized process, expressed in the syntax from
Definition 1. This is then condensed and converted into the corresponding con-
straint problem (as defined in Definition 5) using the Z3 Python API which can
then be checked for satisfiability.

Our preliminary experiments represented domain positions using real-valued
variables, because Z3 includes a complete algorithm for solving non-linear con-
straints over real variables exactly [17]. However, while this algorithm is complete
it can be very computationally expensive, and even just changing the values of
certain constants within a constraint problem (without changing the structure of
the problem) can cause the time taken to solve the constraints to increase from
microseconds to many hours. Therefore, we adopted an alternative approach to
encode the constraints using floating-point variables, which can be represented
within Z3 as bit-vectors of a fixed width. This makes the time taken to solve the
constraints far more predictable, on the order of thirty seconds to one minute
depending on the particular problem. However, floating-point representations are
inexact, which introduces the possibility of constraints being incorrectly deemed
unsatisfiable if any of the required variable assignments cannot be represented
exactly using the floating-point representation in question. (The width of the bit
vector, and the numbers of bits used to represent the significand and exponent,
can be tuned to reduce numerical inaccuracy at the cost of increased compute
time to solve the constraints.) We addressed this issue by modifying our con-
straints slightly, by introducing a tolerance parameter ε, so that variables will
be considered equal if their values fall within that range. This addresses the
issue of numerical inaccuracy because, for a judicious choice of ε, it is highly
likely that there will be representable values within the tolerance range that
satisfy the constraints. To implement this (approximate) solving algorithm, we
simply modify the generated constraints in the model as follows, where e is an
arithmetic expression and c is a constant. Thus:

· e ⊕ c becomes e ⊕ (c − ε), for ⊕ ∈ {>,≥};
· e ⊕ c becomes e ⊕ (c + ε), for ⊕ ∈ {<,≤}; and
· e = c becomes {e ≥ (c − ε), e ≤ (c + ε)}.

This transformation from exact to inexact constraints causes the number of
constraints to double at most, and does not increase the number of variables
at all. Furthermore, the terms of the form c ± ε are constants that can be pre-
computed.
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6.2 Example

We tested our approach using an example taken from the repeater system on
hairpin-based circuits on DNA origami tiles [11], introduced in Fig. 1. We are
particularly interested in the reaction between two tethered species, i.e., when
the first stator hairpin has been opened, the freely diffusing fuel hairpin has
bound and opened, and the opened fuel hairpin is trying to bind to the sec-
ond stator hairpin, which is still closed. Because the stator hairpins share com-
mon nucleotide sequences, there are two possible interactions, which are shown in
Fig. 2(a) and (b). Figure 2(a) shows the desired interaction, where the opened fuel
hairpin binds to the second stator hairpin (S1), and Fig. 2(b) shows an undesirable
interaction, where the opened fuel hairpin binds to the third stator hairpin (S2).
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Fig. 2. Results on constraint-based structure modeling. (a) Illustration of the prod-
uct structure for a three-stator transmission line after [11], when S0 binds to S1, as
desired. (b) Illustration of the product structure for the undesirable interaction of the
three-stator transmission line, when S0 binds to S2. (c) Results from constraint-based
analysis of the transmission line system when all three stators are arranged in a straight
line (bird’s eye view shown in inset). Each bar shows the range of integer values of d for
which S0 can bind to S1 but not to S2, as required for correct signal transmission, for
various combinations of loop spacer (lsp) and tether spacer (tsp) domain lengths. (d)
Results from constraint-based analysis of the transmission line system when all three
stators are arranged in a 90◦ angle (bird’s eye view shown in inset), with data analysis
carried out as specified in part (c).
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In our presentation, every hairpin has a “loop spacer” domain (lsp), and every teth-
ered hairpin has a “tether spacer” domain (tsp). Adjusting the lengths of these
domains and the inter-stator distance (d) changes the possible behaviors of the
system, and the goal of our analysis is to find the parameter sets that enable cor-
rect signal transmission, i.e., so that the opened stator S0 can bind to S1, resulting
in the desired product structure shown in Fig. 2(a), but not to S2, which would
result in the undesired product structure shown in Fig. 2(b).

Results from constraint-based analysis of this example system with the sta-
tors arranged in a straight line are presented in Fig. 2(c). As described above,
we used a floating-point representation for our constraint variables, with an
8 bit exponent and an 8 bit significand. The ε value was 10−5. Values for Lds and
Lss were as used in previous work [12], that is, Lds = 0.34 nm and Lss = 0.68 nm.
The lengths of all toehold domains were 5 nucleotides and the lengths of all
long domains were 30 nucleotides. For each combination of loop spacer (lsp) and
tether spacer (tsp) lengths (5, 10, 15, and 20 nucleotides each) we used our pro-
totype system to construct the condensed, localized process representation of
the candidate structures formed by interactions between S0 and S1 and between
S0 and S2, convert them to our constraint representation, and test plausibility
of each using Z3, for values of the inter-stator distance (d) chosen at 1 nm inter-
vals ranging from 1 nm to 100 nm.1 Each bar in Fig. 2(c) represents the range
of d values for which S0 can bind to S1 but not to S2, as required for correct
signal transmission. Below the bar, the stators are close enough together that
S0 can bind directly to S2, and above the bar, the stators are so far apart that
S0 cannot even reach S1. These results show that the range of acceptable values
for d increases as the lengths of the lsp and tsp domains increase, as we would
expect.

We also analyzed a similar example system that used the same structures,
except that the three stator hairpins are arranged to form a 90◦ angle on the
tile surface. In the straight line system, we added extra constraints that all
y-coordinates equal zero, as this decreases solving time, but this was not done
for the 90◦ angle system. Hence, this example illustrates the applicability of our
approach to processes whose components occur in non-trivial geometric arrange-
ments. Results from constraint-based analysis of the 90◦ angle system are pre-
sented in Fig. 2(d). These results show that, for identical loop spacer (lsp) and
tether spacer (tsp) domain lengths, the maximum safe inter-stator distances are
the same in both the straight-line and 90◦ angle cases, but the minimum safe
distance is larger in the 90◦ angle case. This is because S2 can be reached diag-
onally from S0 when the stators are not arranged in a straight line. Thus, our
constraint-based analysis can determine the feasible range of inter-stator dis-
tances that enable correct signal transmission without skipping any stators in
the sequence, and thereby serves as a proof of concept for automated analysis of
tethered molecular circuits.

1 See the Supporting Information (available from the first author’s web page) for full
details of the examples and corresponding constraints.
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7 Discussion

The main contribution of this paper is the development of a constraint-based
methodology for automatically analyzing molecular geometry to determine if
certain interactions between species are possible, given the physical constraints
imposed by tethers that attach components to a surface (e.g., a DNA origami
tile) at specific locations. Our approach therefore offers a principled, general-
purpose alternative to the somewhat ad hoc rules adopted to handle molecular
geometry in other reaction enumerators, e.g., our strand graph system [15] or
the DyNAMiC Workbench [18].

7.1 Reaction Enumeration

The key advantage of our fully automated analysis is that it could be used in
the main loop of a compiler for tethered molecular reaction networks. In this
vein, Algorithm 1 presents a pseudocode algorithm for enumerating the state
space of a tethered molecular reaction network, in which our constraint-based
analysis of the plausibility of tethered molecular structures is used as a filter to
prevent the addition of a transition to the state space, even if the domains match,
if the reaction would yield a product process whose structure is implausible.
We note that, strictly speaking, the constraint-solving process is only required
for interactions between different parts of a single tethered structure since, for
bimolecular reactions where one or both of the reactants is not tethered, one may

Algorithm 1: Pseudocode algorithm for constructing the reachable state
space of a localized process. This pseudocode assumes the existence of sev-
eral functions: unprocessed states(S), which returns the set of states in S
that have not yet been processed by the algorithm; candidate reactions(P ),
which returns the set of possible reactions in the process P when con-
sidering only sequence complementarity and not molecular geometry; and
is plausible(P ), which decides whether the localized process P is geomet-
rically plausible, using our constraint-based technique.
begin

initialize state space S with localized process Pinit as the initial state;
mark state Pinit as unprocessed;
while unprocessed states(S) �= ∅ do

let Preactant be some element of unprocessed states(S);
for (Preactant A Pproduct) ∈ candidate reactions(Preactant) do

if is plausible(Pproduct) then
if Pproduct �∈ S then

add state Pproduct to S;

add transition (Preactant A Pproduct) to S;
mark state Preactant as processed;

end
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assume that the non-tethered species can diffuse and adopt any conformation
required to react.

7.2 Biophysical Model

The procedure outlined here is for computing whether two domains may bind,
and an extension of this problem would be to determine at what rate that binding
reaction may occur. In solution-phase systems, one approach to approximate
binding rates for particular domains is to use free energy models to compute
the free energy of a bound toehold domain, and then make the assumption
that binding rates of that domain are dominated by diffusion, which allows an
approximation of the off-rate to be computed. However, in tethered systems we
cannot necessarily assume that on-rates are primarily influenced by diffusion. An
alternative is to use the local concentration approach [19], which corresponds to
calculating the probability that the domains will be in a conformation such that
they may bind. It is possible that the output from the constraint solver could
be used to estimate the number of different coordinate variable instantiations
and hence the size of the parameter space in which the constraints are satisfied,
which one might be able to use to approximate the rate. This would require us to
consider not just the maximum possible extension of single-stranded domains,
but also the probability that they are extended to given lengths e.g., using a
worm-like chain biophysical model [19].

Indeed, the biophysical model that we have used in this paper is deliber-
ately simple, so that the structures can be compiled directly to tractable con-
straint problems. Some of our assumptions seem necessary for the technique to
work, such as the assumption that hybridized domains are co-localized in space,
because to do otherwise would require additional constraints on the angles of cer-
tain domains to ensure that they are parallel, which would greatly complicate the
constraint problems to be solved. Other assumptions, such as the condensing of
single-stranded domains, make sense as a simple optimization which reduces the
number of variables present in the constraint problem. An interesting direction
for future research will be to consider further optimizations that could speed up
the analysis of structures and enable larger structures to be analyzed: one pos-
sibility might be to prune constraints that arise from parts of the structure that
are not actually essential to determining whether the structure is plausible or
not, another might be to remove domain length constraints that are technically
redundant because the length of those domains has already been constrained
by hybridization to some other domain. The Z3 solver itself includes facilities
for the simplification of constraint problems, which could be directed in spe-
cific ways to optimize solving the type of problems produced by our translation
process. Another possibility might be to explore alternative methods for deciding
plausibility that do not involve SMT solving, e.g., employing sampling, search,
or genetic algorithms over the space of variable instantiations to try to find an
instantiation that satisfies all of the constraints. These alternative approaches
could enable larger constraint problems, corresponding to more sophisticated
molecular structures, to be tackled.
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While our biophysical model is clearly not suited to in-depth biophysical
investigations of nucleic acid dynamics, it is useful as a simplified model for
(automated) preliminary investigations, that can be used to rule out certain
designs and to guide more in-depth analyses, e.g., using coarse-grained sim-
ulation models [20]. The key advantage of an automated structural analysis
tool such as ours is that it may significantly reduce the number of iterative
experimental design cycles that must be carried out in order to successfully
implemented a tethered molecular circuit, thereby reducing wasted labour and
reagents expended on unsuccessful designs.

A fruitful avenue for further research will be to determine how much more
realistic our biophysical model can be made without sacrificing ease-of-use or
constraint solving performance. One possibility would be to include additional
constraints, e.g., to enforce a minimum extension on single-stranded domains,
or to require that the lengths of double-stranded domains must be within some
factor of the true value, to model slight fluctuations in the duplex structure.
(The latter constraint could be imposed at no extra cost because our floating-
point constraint expansion already includes an error term.) Another possibility
would be to constrain the angles that can be formed at the junctions between
domains, but this could adversely impact performance.

It would be an interesting future research direction to investigate whether
our biophysical model is conservative, in the sense that if two strands cannot
interact in our model, then they will not be able to interact in a more realistic
model. It seems likely that certain assumptions would need to be made for this
statement to be true, such as rigidity of the underlying origami tile. Furthermore,
the biophysical constants, such as the internucleotide distances, would need to
be chosen judiciously. It is worth pointing out that the converse may not hold,
i.e., our system may permit certain reactions that a more detailed model might
rule out, e.g., due to steric effects that might prevent the DNA from actually
adopting the required conformation.

7.3 Extensions

The discussion above is phrased entirely in terms of tethered structures, however,
similar techniques could be used in non-tethered but non-trivial DNA structures,
e.g., those studied in our previous work on strand graphs [15]. In this context,
we would simply pick an arbitrary position from the structure to serve as the
origin and would omit the tc(P ) term from Definition 5 (which would also remove
the constraints that prohibit negative z-coordinates). This would enable us to
use constraint solving to find reachable domain bindings in a complex DNA
nanostructure, with the caveat that issues such as potential steric hindrance
between strands would not be modelled. Existing free energy approaches allow
calculation of base-pairing probabilities [21] for nucleic acid nanostructures that
include certain restricted classes of pseudoknots in polynomial time. As before,
this thermodynamic model will be more physically accurate than our model,
as it is based on thermodynamic experiments at the individual base-pair level.
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However, our work could similarly be used as a precursor to a more detailed
analysis using free energy methods.

It is worth noting that, in all of the examples presented above, it is the case
that for any position tether(cx, cy, cz), then cx = rx, cy = ry, and cz = 0, for
some constants rx and ry. It is also the case that for any position ε(cx, cy, cz),
then cx = x, cy = y, and cz = z, for some variables x, y, and z. That is, the
locations of all tethers are fixed and are always in the z = 0 plane, and all
untethered domain junctions are completely free to vary (subject to the other
constraints). However, our approach is more general than this—in principle, we
could leave certain tether coordinates unspecified and let the constraint solver
search for satisfying instantiations. Thus, this work lays the foundation for the
development of further automated tools for tethered molecular computing sys-
tems, such as circuit synthesis tools that take a logic function as input and
return a layout for a molecular circuit that will implement that logic function
without crosstalk. In this context, our constraint-based system would be used
to determine the positioning and spacing of components that would be required
to make the products of the desired reactions plausible but the products of the
undesired reactions implausible. Ideally, any circuit synthesis algorithm of this
type would keep the constraint problems that must be solved as small as pos-
sible for maximum efficiency, and might use some kind of global optimization
procedure or genetic algorithm to converge towards a suitable design. We could
also allow non-zero z-coordinates for tether locations, which would correspond
to the underlying surface being a 3D nanostructure as opposed to a flat tile.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under grants 1525553, 1518861, and 1318833. The authors thank
Neil Dalchau and Rasmus Petersen for productive discussions.

References

1. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement
reactions. Nat. Chem. 3(2), 103–113 (2011)

2. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D.,
Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol.
8, 755–762 (2013)

3. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical
kinetics. PNAS 107(12), 5393–5398 (2010)

4. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg
(2009)

5. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit
design. JRS Interface 9(68), 470–486 (2012)

6. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design
and analysis tool for DNA strand displacement systems. Bioinformatics 27(22),
3211–3213 (2011)

7. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011)



16 M.R. Lakin and A. Phillips

8. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature
440, 297–302 (2006)

9. Tikhomirov, G., Petersen, P., Qian, L.: Programmable disorder in random DNA
tilings. Nat. Nanotechnol. 12, 251–259 (2017)

10. Bui, H., Miao, V., Garg, S., Mokhtar, R., Song, T., Reif, J.: Design and analysis
of localized DNA hybridization chain reactions. Small 13(12), 1602983 (2017)

11. Muscat, R.A., Strauss, K., Ceze, L., Seelig, G.: DNA-based molecular architecture
with spatially localized components. In: Proceedings of ISCA 13 (2013)

12. Dalchau, N., Chandran, H., Gopalkrishnan, N., Phillips, A., Reif, J.: Probabilistic
analysis of localized DNA hybridization circuits. ACS Synth. Biol. 4(8), 898–913
(2015)

13. Walsh, A.S., Yin, H., Erben, C.M., Wood, M.J.A., Turberfield, A.J.: DNA cage
delivery to mammalian cells. ACS Nano 5(7), 5427–5432 (2011)

14. Lakin, M.R., Petersen, R., Gray, K.E., Phillips, A.: Abstract modelling of tethered
DNA Circuits. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727,
pp. 132–147. Springer, Cham (2014). doi:10.1007/978-3-319-11295-4 9

15. Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based
computation. Theor. Comput. Sci. 632, 43–73 (2016)

16. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24
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Abstract. In chemistry, synthesis is the process in which a target com-
pound is produced in a step-wise manner from given base compounds.
A recent, promising approach for carrying out these reactions is DNA-
templated synthesis, since, as opposed to more traditional methods, this
approach leads to a much higher effective molarity and makes much
desired one-pot synthesis possible. With this method, compounds are
tagged with DNA sequences and reactions can be controlled by bringing
two compounds together via their tags. This leads to new cost optimiza-
tion problems of minimizing the number of different tags or strands to be
used under various conditions. We identify relevant optimization crite-
ria, provide the first computational approach to automatically inferring
DNA-templated programs, and obtain optimal and near-optimal results.

1 Introduction

The first instance where DNA has been used to execute an algorithm in order to
solve a combinatorial optimization problem dates back to 1994. In [1], Adleman
demonstrated how a small instance of the Hamiltonian Path Problem could be
solved using DNA sequences. Since then, DNA nanotechnology has been used as
a powerful tool for a wide variety of research and engineering questions. Examples
include polyhedral mesh rendering, where DNA sequences are designed such that
they fold into predefined complex three-dimensional structures [3], and design of
DNA-based molecular motors that can be used to transport cargo molecules [16].
Appealing features of DNA-based designs is their programmability, the inherent
concurrency, the predictability, and the fact that DNA sequences are relatively
cheap and easy to synthesize. The number of approaches utilizing DNA-based
chemistry as a source for the discovery and the design of novel drug-like mole-
cules has increased rapidly in recent years [7]. Basically all large pharmaceuti-
cal companies have already started utilizing this technology. DNA-based chem-
istry approaches include a method called DNA-templated organic synthesis [12],
where the goal is to synthesize an organic compound in a step-wise manner. In
an individual step of a synthesis plan [11], either two compounds are combined
(affixation reaction) or a single compound is modified (cyclization reaction). This
information can be captured in a rooted unary-binary tree, though often cycliza-
tion reactions can be ignored from a combinatorial point of view, making the tree
binary. Chemists are aiming at efficient synthesis (the yield of all reactions and
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therefore the yield of the overall process should be high) and one-pot synthesis
(for instance, avoiding complicated separation and purification processes based
on contaminating compounds that require subsequent extraction of a specific
product from a mixture of compounds).

In DNA-templated synthesis, the base compounds are “tagged” with DNA
sequences. These tags are used to bring the compounds in close vicinity (and
thereby react). This is done by adding a complementary DNA strand, called an
instruction strand, which is a concatenation of the complementary strands of
the two tags that are attached to the base compounds. In contrast to classical
synthesis approaches, DNA-templated synthesis allows for much lower concen-
trations of reactants due to the tagging, which leads to a dramatically increased
effective molarity. We refer to [8,12] for in-depth reviews and specifically [10,13]
for examples of successful, non-trivial, multi-step DNA-templated molecule syn-
theses.

The synthesis tree together with a specification of how to tag the base com-
pounds and according to which topological ordering of the tree the reactions
should be carried out defines a so-called DNA-templated program. While high-
level formalisms for DNA computational structures have been studied [4,14]
before, there are no prior attempts to automatically inferring DNA-templated
programs based on a given synthesis tree. In [2], graph rewriting approaches have
been used for verifying correctness of given DNA-templated programs, but nei-
ther were programs automatically inferred nor optimization questions answered.
With careful choice of tagging and topological ordering, it is possible to use the
same tags and strands repeatedly, which leads to the optimization problems we
consider. To avoid unintended interference, tags and strands that should be dif-
ferent must be some mimimum edit distance away from each other. If one uses
too many different tags or strands, these must be made longer in order to obtain
this, leading to higher production costs.

Another cost stems from the tagging of chemical compounds, which is a
somewhat sophisticated chemical procedure. Thus, while it is interesting to min-
imize the use of different tags and strands in general, it is also interesting just
to minimize the number of different tags used on the base compounds.

We present (i) optimal or near-optimal methods for minimizing the number
of strands, (ii) a somewhat more involved method for minimizing the number of
strands and subsidiarily the number of tags, (iii) a method for minimizing the
number of strands when only two different tags are allowed on base compounds,
but longer programs using blocking are allowed, and, finally, (iv) a generic ILP
formulation of the optimization problems which is then without time complexity
bounds.

2 Modeling DNA-Templated Synthesis

The goal of this section is to present a model for DNA-templated synthesis such
that we can work with these issues in a combinatorial manner. We identify some
basic operations and restrictions on how these can be applied, with the goals in
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mind. We would like to emphasize that we do not make any simplifying assump-
tions, preventing our solutions from leading to programs that can be realized
chemically. However, there could be other choices of computational units and
goals, and our focus is on presenting an initial model that is as simple as pos-
sible while still capturing the fundamental chemical intricacies. Our description
will lead to a definition of the input, available operations, constraints, and a
number of optimization objectives.

From a chemist, we get a synthesis tree, which we assume is binary, where
the leaves represent compounds. We refer to these as the base compounds. The
tree can be interpreted as a recipe in the following manner. Each leaf of the tree
represents an existing base compound. Now, we bring compounds to react in an
order respecting the tree structure. Thus, first the compounds corresponding to
two leaves are made to react, resulting in a new compound, which we refer to
as an intermediate compound. We keep going until we reach the root, and have
at that point produced our final target compound. The order of combining the
compounds should simply be a topological ordering of the tree. We draw the
trees with the root at the bottom, as it is usually done for synthesis trees, and
hope our fellow computer scientists can accept this normality.

We detail the operations below. Our textual description is complete and
self-contained, but it might be helpful to refer to the appendix for an example
program. In order for two compounds to react, they must be in close proximity,
and two compounds do not react if they are distant enough. To obtain proximity,
the compounds are equipped (tagged) with DNA sequences, and the compound
is at one of the two ends of the sequence. We refer to such a DNA sequence on
a compound as a tag and choose an orientation so that we can refer to the left
and right ends of a tag. Assume x and y are the tags of compounds X and Y ,
respectively, and X is at the right end of x and Y at the left end of y. If we add
the complementary strand of the concatenation of x and y, denoted xy, x and y
will attach to the x-part and y-part of xy, respectively, bringing X and Y close
together and the reaction of X and Y takes place. We refer to such a strand as an
instruction strand and the process as a react operation. In the above, and in the
rest of the paper, when we refer to a strand, it can always be thought of as the
concatenation of two tags. The resulting intermediate compound will lose one of
its tags in the process of the reaction and will thus afterwards be tagged with
either x or y in a deterministic fashion decided by the compounds, i.e., along
with the synthesis tree, a chemist will tell us, for every internal node, which of
the two tags from the child nodes will be the tag of the produced intermediate
compound. We say that the node inherits the tag from the child in question and
we may use a bold edge to indicate this. This annotated tree forms our input
from the chemist. Note that the compounds and what they become when they
react is not important to us; only the tags (and how they are attached) and
strands are relevant to our computation.

After a reaction has been carried out using the xy instruction strand, a
complementary release strand, xy, is added to release the compound, and, thus,
prepare for further reactions. We will not need to consider this in the algorithms,
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but technically, this is obtained by really using a strand x′y′ for the process,
where x′y′ is different from xy, but similar enough for the process to work, and
then the release is carried out using x′y′, such that x′y′ and x′y′ combine and
never react with anything else again. Thus, the reason the strand x′y′ must be a
little different from xy is to ensure that the later release it nearly 100% effective.
Similarly, if x is the tag on the resulting compound, after the release, we add the
complement of y in exact matching quantity so that they will combine with all
the y tags, now flowing freely in the pot, making them inert such that they can
be ignored in the remaining process. This necessary use of different but similar
strands further increases the need for a large edit distance between tags (when
viewed as sequences) as discussed earlier. Any mismatch in quantity will result
in a proportional drop in the yield.

We disallow simultaneous releases, since they lead to a low overall yield as
we explain now. Releasing two compounds using xy implies that one released
compound must be tagged with an x and the other with a y. Otherwise (that is,
if both compounds have the same tag), we cannot control subsequent operations.
But this implies the presence of free-flowing y strands and x strands from the
first and second reactions, respectively. These may attach to any later xy strand,
resulting in a reduced overall yield.

A final chemical possibility we shall use as an operation in one section is the
ability to temporary block a compound. A compound tagged with a strand x
can be blocked by adding a strand xy or yx, and can be released again in the
same manner as described above.

We use blocking in Sect. 3, but otherwise simply delay the release of com-
pounds while working on others, with the aim of producing a one-pot program.
Compounds, corresponding to the leaves, may be added gradually, but we do
not allow ourselves to produce compounds corresponding to subtrees separately
and add them later.

Our computational choices are the following. Given the annotated synthesis
tree, we must decide on tags for the leaves and a topological ordering, including
when to add, when to release, and in one algorithm also when to block and
which strand to block with. Recall that given tags on the leaves, the annotation
determines the tags on internal nodes. Since we most often use delayed release
to avoid interference, we will frequently label internal nodes with the instruction
strand, i.e., the sequence of two tags. The tag attached to the intermediate
compound produced at that node is always one of the tags the strand consists
of, and which one it is, is determined by the inheritance information provided
by the chemist.

In summary (Table 1), a program is a sequence of operations (tag, react,
release, block), where tag attaches a specified tag to a base compound, react
combines two intermediate compounds, release releases the resulting intermedi-
ate compound, and block blocks a compound. To be chemically feasible, left and
right input compounds to any react operation must have the compound placed
to the right and left, respectively, the react operations must form a topological
ordering of the tree, compounds (unreleased as well as possibly blocked) must
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Table 1. Operations of a DNA-templated program: note, that (i) the tag operation
allows for attaching the compound to the left or right end of the tag, (ii) the inheritance
for the react operation is given as input from the chemist, (iii) the release operation
assumes an addition of complementary tags in order to handle waste, (iv) the blocking
operation can bind the tagged compound to the left or right part of the added strand.

be released (unblocked) before they are used again, any block operation must
use a strand matching the compound tag to the left or right, all unreleased
(and blocked) compounds in the pot at any given time must be unreleased (and
blocked) with unique (at the time) strands, and if there are compounds in the
pot with the same tag, all but one must be unreleased or blocked.

This is implied by the above, but just for emphasis, we cannot use strands
of the form xx in a controlled process, so if we use τ different tags, we have at
most τ(τ − 1) different strands at our disposal.

We illustrate some of these restrictions now, using the smallest possible inter-
esting synthesis trees. First note that because compounds are at one end of a
tag, we cannot have an unreleased compound with an ab strand while using
ba at the root of the other subtree. This is because when we release using ab,
then (without loss of generality) the released compound is tagged with a and
the compound is at the right end. Thus, later, it must react with a compound
tagged with a b where the compound is at the left end. Thus, the strand from
that subtree would have to have the form xb for some x; see Fig. 1.

The reader may have wondered if the reverse sequence of x is any different
from x in a pot, or if xy could interfere with yx. Starting with the latter, breaking
the sequences into their nucleotides, α1α2 · · · αnα

β1β2 · · · βnβ
is different from

β1β2 · · · βnβ
α1α2 · · · αnα

, and they are not the reverse of each other. Obviously, x
cannot be distinguished from its reverse sequence in a pot. However, compounds
are attached to one of the ends, so everything has an orientation.

Finally, to give a clean initial presentation, we do not consider the option of
adding multiple strands simultaneously. Computationally it does not add any-
thing and for most problems where the objective is to use for smallest number of
different strands, it is counter-productive. However, in a lab, it could be desir-
able to know when this is an option. One could also lift the restriction of one-pot
synthesis. However, since this would lead to a multi-criteria problem, we prefer
to focus on the cleaner one-pot problem.
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Fig. 1. Illustration of disallowed strand assignments. Left: Using strands ab and ba
for two children requires the parent to be assigned either the strands aa or bb, which
will result in a reduced overall yield, as with a probability of 50%, the corresponding
compounds do not get in close proximity and therefore will not react. Right: Assume
one subtree is already computed and the compound has to be unreleased with the
complementary strand ab. The corresponding unrelease needs to make the waste inert
with a or b, depending on which tag is now flowing freely in the pot. However, due to
the disallowed simultaneous release of the other subtree, the release operation of the
last of the two subtrees would accidentally make tagged compounds inert.

Some of the algorithms in this paper and graphical illustrations of the chem-
ical processes can be inspected via a prototype implementation [9].

3 Minimizing the Number of Tags

In this section, our objective is to minimize the number of tags used on base
compounds (the leaves), and as our second priority, we want to minimize the
total number of tags used.

It turns out that, with appropriate blocking, it is always possible to arrive
at a program using only two tags on base compounds, and clearly, for any two
neighboring leaves with the same parent, the tags must be different. We refer
to the two tags as a and b. Using the following recursively defined function,⌈
Mnt(Root,0,0)

2

⌉
will compute the minimum number of tags needed to block inter-

mediate compounds when the basic compounds are tagged using only a and b.
Let ta and tb denote the subtrees of a tree t where the compound is tagged

with an a and b, respectively. We keep track of tags used with a and with b
separately, counting using ca and cb.

Mnt(t, ca, cb) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

max (ca, cb) if t is a leaf

min

⎛
⎜⎜⎜⎜⎝

max
(
Mnt(ta, ca, cb),
Mnt(tb, ca + 1, cb)

)
,

max
(
Mnt(ta, ca, cb + 1),
Mnt(tb, ca, cb)

)

⎞
⎟⎟⎟⎟⎠

otherwise
(1)

We discuss correctness and the derived program in the following (see the
appendix for a simple example calculation). First, we decide arbitrarily between
a and b for the final tag on the target compound that the root represents. If
we use only the two tags a and b on base compounds, then we can determine
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all tagging recursively, since the chemist has informed us, for each node in the
subtree, from which child we inherit the tag, i.e., if a node has a given tag, then
a specific child of that node must have the same tag, and then the other child
must be given the other tag (of the two tags a and b).

Since compounds have one of only two tags, any reaction involves both tags,
so anything else in the pot must be blocked. In algorithms to be presented later,
leaving them unreleased can also be an option, but in this particular case with
only two tags on compounds, this would lead to the disallowed simultaneous
release; see the earlier Fig. 1.

As a consequence, for any node with two non-leaf subtrees, we must decide
which subtree to synthesize first, and then block while we work on the other
subtree. In the subtree we synthesize first, we must block other compounds (cor-
responding to subtrees) recursively. We find the best subtree to block using the
minimization in the formula above. The first entry in the minimization corre-
sponds to first synthesizing and then blocking the subtree ta. This requires no
further resources while synthesizing that subtree, but while later synthesizing tb,
the compound from ta must be blocked using a tag that has not been used for
blocking subtrees on the way from the root to this node. Actually, when using
some tag x to block a, for instance, this can be done (unconstrained) as ax or
xa. Thus, each such tag x can be used twice, which accounts for the fraction 1

2

in the final result,
⌈
Mnt(Root,0,0)

2

⌉
.

The best values can be computed using dynamic programming. If the tree is
of height h, then each of the variables a and b in the expression can take on at
most h different values, so if the tree has size n, then O(nh2) is an upper bound
on the number of values to be computed and each value in a given node can be
computed in constant time from values in the node’s subtrees, so O(nh2) is also
an upper bound on the computation time. A program can easily be extracted
from the computed values by simply checking if the various minima are obtained
from the left or right. An example program is shown in the appendix.

4 Minimizing the Number of Strands

In this section, we consider the problem when it is undesirable to use blocking, so
that is disallowed, and our objective is to minimize the number of strands used.
We allow for an arbitrary number of tags. As any instruction strand requires
a unique complementary release strand, they will not be counted separately. It
turns out that it is necessary and sufficient to use S(t)−1 different strands, where
S(t) is the (Horton-)Strahler number [15] of the synthesis tree t. Referring to the
previous section, where we restricted ourselves to only using two different tags
on base compounds, the Strahler number many strands would not in general be
sufficient. The result in this section is accomplished without using blocking.

Definition 1. The Strahler number S(t) of a tree t is defined as follows: If t is
a leaf, then S(t) = 1, and if t has two subtrees tl and tr, then

S(t) = max(min(S(tl),S(tr)) + 1,max(S(tl),S(tr)))
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S(t) is also referred to as the register number, i.e., the minimum number of
registers required for evaluating a given arithmetic expression [6].

We are given a synthesis tree and information regarding from which child a
node inherits its tag. To explain the tagging, it is easiest for us first to reorder the
subtrees so that tags are inherited from subtrees according to a specific pattern.
By a layer in a tree, we denote all the nodes of the same distance from the root.
Given the synthesis tree, we order the subtrees such that when considering any
layers from the left to the right, the tag is inherited alternately either from the
left or from the right child, and we start by inheriting from the left; see bold
edges in Fig. 2.

a2b (4)

a1b (3)

a3b (2)

a3b (2)

a1b (3)

a3b (2)

a3b (2)

a1b (2)

a1b (2)

a2b (3)

a1b (3)

a2b (2)a1b (2)

a2b (2)

a2b (2)

s1

s2

s2

s2s3

s3

s4s3

s1

s2

s2s3

s1

s2s1

Fig. 2. Left: Illustration of the labeling algorithm that uses S(t) − 1 many strands
a1b, a2b, . . .. Note that this is only one of the possible labelings, since strands are
simply chosen from an available set, though we have consistently chosen the smallest
indexed ai available. The Strahler number is given in parenthesis. Right: Illustration
of the labeling algorithm for complete binary trees: s1, s2, . . . is an antipath of strands,
inheritance of tags is illustrated by bold lines.

Now, we explain how we label each node in our synthesis tree, excluding
the leaves that contain the base compounds. For the labeling, we use the set
I = {a1b, a2b, a3b, . . .}. This set contains strands that have pairwise different
tags as their first parts (ai) and identical tags as their second parts (b).

Recursively for a subtree t of the synthesis tree with ordered children as
described above, we first compute the subtree with the larger Strahler number.
In case of identical Strahler numbers, we choose the left subtree first. The strand
assignment is done as follows: In case the subtrees have identical Strahler numbers,
the subtree computed first will require a strand for the release operation. This
strand cannot be used for any operation in the other subtree. If the Strahler num-
bers are different, this constraint will not apply. However, in all cases, neighboring
operations need to use different strands. During the recursion, we keep track of the
set of forbidden strands (this set grows by one element for the right subtree in the
case of identical Strahler numbers) and the sibling reaction strand. Note that the
constraint for the sibling reaction only applies to the sibling reaction. The pseudo-
code is given in Algorithm 1 and an illustration with an example of the labeling for
a tree with Strahler number 4 is given in Fig. 2(Left). With regards to the number
of strands, it is clear that the forbidden set F grows with the Strahler number,



DNA-Templated Synthesis Optimization 25

Algorithm 1. Strahler Number Strands
Given: Synthesis tree t � ordered children according to text description

Set A = {a1b, a2b, . . . , aS(t)−1b} � A: set of strands with |A| = S(t) − 1
1: function AssignStrand(Tree t, Set F, Strand sibling) � F : forbidden strands
2: tl, tr ← LeftSubtree(t), RightSubtree(t)
3: if both tl and tr are base compounds (leaves) then
4: choose strand s from A \ (F ∪ {sibling})
5: else if one of tl and tr is a base compound (a leaf) then
6: tx ← argmaxti∈{tl,tr}S(ti) � tx is the non-leaf tree
7: s ← AssignStrand(tx, F, )
8: else
9: if S(tl) > S(tr) then

10: s ← AssignStrand(tl, F, )
11: AssignStrand(tr, F, s)
12: else if S(tl) < S(tr) then
13: sr ← AssignStrand(tr, F, )
14: s ← AssignStrand(tl, F, sr)
15: else � S(tl) = S(tr)
16: s ← AssignStrand(tl, F, )
17: AssignStrand(tr, F ∪ {s}, s)
18: assign s to t
19: return s
20: AssignStrand(t, ∅, )

so if it was not for the temporary restriction given by the sibling, we use S(t) − 1
strands. Recall that a leaf (with a compound) has Strahler number one, so the
smallest subtree we assign a strand to has Strahler number two. With regards to
the restriction, when the number of available strands is at least two, the temporary
restriction does not matter, since we still have a strand we can choose. Thus, the
only possible problem is when we recur from a tree with Strahler number three to
smaller subtrees. If the subtrees have different Strahler numbers, there is no prob-
lem, since the restriction is imposed on the smaller one. If they have the same
Strahler number, the sibling restriction coincides with the growing forbidden set,
so only one strand option disappears, and the one required strand can be found.

With regards to chemical feasibility, siblings have different strands by con-
struction, and b has its compound at the left and the compound coming from
the right subtree will always be tagged with b. The opposite holds for the ais,
so the strands listed in the internal nodes indicate instruction strands fulfilling
all requirements.

The upper bound just given is the interesting one. The lower bound that
S(t)−1 different strands are necessary follows directly from the equivalent result
for arithmetic expressions [6]; it is simply a matter of having to store at least
that many intermediate results.

Strahler examples, as the ones produced in this section, can be found in [9].
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5 Complete Binary Trees

The two problems of minimizing the number of strands used (Sect. 4) and min-
imizing the number of tags used under the constraint that all base compounds
are tagged by one out of two tags (Sect. 3) can both be solved optimally in an
efficient manner. In this section, we restrict the topology of the synthesis plan
to complete binary trees and present an approach that minimizes the overall
number of strands as well as bounds the overall number of tags to the optimal,
possibly plus one. We accomplish this without using blocking.

The approach will employ so-called antipaths [5], which is a sequence of
adjacent edges in a digraph, where every visited edge has opposite direction of
the previously visited edge; and we will need some further restrictions defined
below.

Definition 2. An antipath in a digraph is a finite sequence of edges (ui, uj)
having one of the following forms:

(u1, u2), (u3, u2), (u3, u4), . . . or (u2, u1), (u2, u3), (u4, u3), . . .

An antipath is called return-free if for any two successive edges (u, v) and (u′, v′),
{u, v, } �= {u′, v′} and non-overlapping if no edge is used twice.

In our construction, we will need return-free, non-overlapping antipaths as
long as possible (each edge will correspond to a strand) from digraphs with as
few vertices as possible (each vertex will correspond to a tag). The proof of the
theorem below is available in the full version of our paper.

Theorem 1. In a complete digraph Gn = (V,E) over n ≥ 2 vertices, the length
of a longest return-free, non-overlapping antipath is n(n − 1) if n is odd and
n(n − 2) + 1 if n is even.

As in all the other sections, we are given a synthesis tree and information
regarding from which child a node inherits its tag. We reorder subtrees with
regards to inheritance as in the previous section.

Separate from the tree structure, assume that we let each tag that we use
represent a vertex in a digraph. Thus, a directed edge in the digraph is an ordered
pair of tags, which we can interpret as a strand. We choose a longest antipath
s1, s2, s3, . . . in such a digraph, writing them as si for the ith strand. The number
of tags (equal to the number of vertices in the digraph) we use depends on how
long an antipath we need for the construction below.

First, we explain how we label each node in our synthesis tree, excluding the
leaves that contain the base compounds. The root is labeled s1 and, for ease of
the definition below, artificially assume that the root has a parent, and that we
moved left to get to the root. Moving from the root towards a leaf, we label each
node with the same label as its parent (below it in our illustrations) if we move
in the same direction as from the grandparent to our parent, and we label it
with the next label (index one larger) if we change direction; see Fig. 2(Right).
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Afterwards, the base compounds in the leaves can be tagged in the obvious man-
ner, tagging the left (right) leaf with the left (right) part of its parent’s strand.

From the labeled synthesis tree, we can define the program recursively. For
a given node, we first compute the subtree whose root has the strand with the
smallest index, leaving it unreleased while the other subtree is computed, after
which the first subtree is released and the instruction of the node is carried out.

We now argue that the labeling algorithm produces a chemically feasible
program. With regards to the reactions, due to the definition of the inheritance,
a simple inductive argument establishes that at any node, the two input com-
pounds stem from the left-most and right-most leaves of the subtree of the node.
Thus, the compounds are tagged with the correct orientation for a reaction. With
regards to the interference, the definition of the program explicitly states that
the subtree whose root is labeled with the smallest indexed strand is computed
first, and by the labeling algorithm, that strand is not used in the other subtree.
Thus, no release operation can unintendedly release more than one compound.

Theorem 2. The labeling algorithm uses the minimal number of strands and at
most one more than the minimal number of tags.

Proof. A complete binary tree of height h has Strahler number h+1, so we know
from Sect. 4 that h is the optimal number of strands. The maximal number of
direction changes from the root to the level next to the leaves is h − 1, so, since
the root is labeled s1, the maximal label index is 1 + (h − 1) = h.

Assume that it is somehow possible to make a program using the optimal
number of tags τ . Observe that we can make at most τ(τ − 1) different strands
from τ tags, so if τ is the optimal number tags, this must mean that this hypo-
thetical program uses at most τ(τ − 1) strands.

If we allow for τ + 1 tags in our program, we know from Theorem1 that an
antipath of length at least (τ + 1)(τ − 1) + 1 exists. Since we use the optimal
number of strands and (τ + 1)(τ − 1) + 1 ≥ τ(τ − 1) for any positive integer τ ,
the theorem follows. ��
We remark that the construction is actually optimal also with regards to the
number of tags in many cases. In fact, for all heights up to 25, we know that we
are optimal, except for the heights 10–12. An example argument that the method
is optimal for height 13 (in fact, the same argument works up to height 20) goes
as follows. We know we need 13 different strands. With 4 tags, we can make only
4 · 3 = 12 different strands, so 5 tags are necessary for any program, and with
5 tags we can find antipaths of lengths up to 5 · 4 = 20. Similarly, for height 9
(in fact, down to height 7), we need four tags to have enough strands, and with
four tags, we can make antipaths of lengths up to 4 · 2 + 1 = 9. It is the slightly
limited lengths of antipaths for an even number of tags that prevents us from
extending this optimality argument throughout the range 10–12.

Finally, the algorithm runs in linear time. The recursive definition of the
longest antipath one can extract from the theorem is constructive and easily
implemented in linear time in the number of strands needed for the synthesis tree
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algorithm, the labeling is a linear-time pre-order traversal, and the extraction of
the program is a linear-time depth-first traversal.

6 Concluding Remarks

For small synthesis trees, one might consider all possible programs, i.e., all topo-
logical orderings of the synthesis tree with optional blocking at any node. For all
such programs, one can find an optimal assignment of tags and strands. In the
full version of the paper, we specify an integer linear program that does that.

Directly related to the questions we consider, it would be interesting to settle
the near-optimality issue for complete binary trees, where we have provably
optimal results for heights up to 25, except for heights 10–12. It may be necessary
to loosen the constraint of using antipaths for the labeling slightly, but it requires
great care to still ensure correctness. Also in relation to the complete binary tree
algorithm, solutions could be used as the basis for solutions for trees that are not
complete. For instance, adding long paths to a complete binary tree need not
result in a higher cost in terms of number of tags and strands. It seems that for
trees in general, the largest induced complete binary tree is the key to the cost
and a formal extension from complete binary trees to trees in general exploiting
this kernelization-like idea would be nice.

A quite different direction is to explore concurrency. If one uses more tags
and strands than the bare minimum, some subtrees may become independent
and even one-pot synthesis could allow for concurrency. Trade-off results between
concurrency maximization and tag/strand minimization would be interesting.
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and DFF-7014-00041.

Appendix: DNA Program Example

We consider an example synthesis tree with four base compounds. The actual
names of the compounds is not used in any of our algorithms, but for illustration,
assume the base compounds are A, B, C, and D. Furthermore, we assume that
the tagged compound A reacts with the tagged compound B (A+B → E), and
that E will have the tag of B. The complete assumptions are

A + B → E,E will inherit the tag of B

C + D → F, F will inherit the tag of C

E + F → X,X will inherit the tag of E

and we demonstrate one possible program computing the target compound X
as a one-pot synthesis.

We first tag the base compounds A at the left end of the tag a and B at the
right end of the tag b. The tag a (respectively b) is depicted as a red (respectively
blue) line in the following.
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1 tag(A, a, left)

2 tag(B, b, right)

The state is as follows:

We add the complementary strand ba in order to bring A and B in close
vicinity and they react to produce E. In this process, A loses its tag.

3 react(ba)

We release the produced tagged compound E with the strand ba and E is
now tagged with b. The tag a is now unattached and we add the complementary
tag a such that in the subsequent operations, it can be ignored.

4 release(ba)

Since they are no longer relevant, we will not depict the inert strands in the
following.

In order to avoid unintended interference, we block the tagged compound E
with a strand bc (c shown in orange).

5 block(bc)
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We proceed with the base compounds C and D in a similar manner. Note
that C is tagged with a and D is tagged with b, i.e., adding them to the pot
in the beginning would have led to unintended interference. By adding ba, the
tagged compounds C and D react to produce F , and D loses its tag.

6 tag(C, a, left)

7 tag(D, b, right)

8 react(ba)

We then release the tagged compound F using the strand ba and pacify the
tag b.

9 release(ba)

The blocked tagged compound E is released with the strand bc.

10 release(bc)

Finally, the tagged compounds E and F are brought in close vicinity using
the strand ba, producing X, and F loses its tag.

11 react(ba)
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In the very last step, the target compound is released using strand ba, which
finalizes the synthesis.

12 release(ba)

The only non-inert tag is the tag attached to compound X, which makes it
chemically easy to extract the compound from the pot. The synthesis required
three different tags and two different strands (and their corresponding comple-
mentary tags and strands).

The given example also illustrates the minimization of the number of tags
for blocking, when assuming that only two tags on the compounds are used
(see Eq. 1), and the number of tags for blocking is to be minimized. Without
loss of generality, we choose the goal compound X to be tagged with b. Given
that decision, and given that we have restricted ourselves to using only two
different tags on the compounds, there are no further choices for tagging: The
tagging of all nodes in the tree is simply inferred as follows. The nodes A, C,
and F need to be tagged with an a, and B, D, and E with a b. In this exam-
ple, the subtree of the root X corresponding to A + B → E is synthesized
before the subtree corresponding to C + D → F . As we need to block the
result of the former synthesis, we need an additional tag for blocking for the
subtree E. With respect to Eq. 1, this corresponds to the recursive calculations
for the inference max(Mnt(E, 0, 0),Mnt(F, 1, 0)) (the choice to synthesize the
subtree C +D → F first would, in this specific example, lead to the same overall
result). This leads to the following base cases for the leaves: Mnt(A, 0, 0) = 0
and Mnt(B, 0, 0) = 0, and for the other subtree Mnt(C, 1, 0) = 1 and
Mnt(D, 1, 0) = 1. Obviously, Mnt(E, 0, 0) = 0 and Mnt(F, 1, 0) = 1, leading
to Mnt(X, 0, 0) = min(max(Mnt(E, 0, 0),Mnt(F, 1, 0)), . . .) = 1. Thus, only
one additional tag is needed for blocking.
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Abstract. RNA cotranscriptional folding refers to the phenomenon in
which an RNA transcript folds upon itself while being synthesized out
of a gene. The oritatami system (OS) is a computation model of this
phenomenon, which lets its sequence of beads (abstract molecules) fold
cotranscriptionally by the interactions between beads according to its
ruleset. We study the problem of reducing the ruleset size while main-
taining the terminal conformations geometrically same. We first prove
the hardness of finding the smallest ruleset, and suggest two approaches
that reduce the ruleset size efficiently.

1 Introduction

In nature, a one-dimensional RNA sequence folds itself autonomously and gives
rises to a highly-dimensional tertiary structure. It has been a challenging ques-
tion to predict the tertiary structure from a primary structure. Based on exper-
imental observations, researchers established various RNA structure prediction
models including RNAfold [15], Pknots [9], mFold [14] and KineFold [13] (Fig. 1).

Recently, biochemists showed that the kinetics—the step-by-step dynam-
ics of the reaction—plays an essential role in the geometric shape of the
RNA foldings [1], since the folding caused by intermolecular reactions is faster
than the RNA transcription rate [7]. By controlling cotranscriptional foldings,
researchers succeeded in assembling a rectangular tile out of RNA, which is
called RNA Origami [4]. This cotranscriptional folding was observed even at a
single-nucleotide resolution [12]. From this kinetic point of view, Geary et al. [3]
proposed a new folding model called the oritatami system (OS). An OS consists
of a sequence of beads (which is the transcript) and a set of rules for possi-
ble intermolecular reactions between beads. An OS folds its bead sequence as
follows: For each bead, the OS determines the best location that maximizes
the number of possible interactions using a lookahead of a few upcoming beads
and place the current bead at the location. Then it reads the next bead and
repeat the same procedure until there is no more bead to place. The lookahead
represents the reaction rate of the cotranscriptional folding and the number of
interactions represents the energy level. In OS, we call the secondary structure
the conformation, and the resulting secondary structure the terminal conforma-
tion. Figure 2 gives an analogy between RNA origami and oritatami systems.
c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 33–45, 2017.
DOI: 10.1007/978-3-319-66799-7 3
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Fig. 1. (Left) An example of an RNA tile generated by RNA Origami [4]. (Right) A
conformation representing the RNA tile in OS. The directed solid line represents a
path, dots represent beads, and dotted lines represent interactions.

beadinteraction

a

b

b

b b

bd

c e

(a, d), (c, e)

interaction rules

conformation

abbcbdbbe

⇒
transcript

RNA Origami Oritatami System
(A set of) Nucleotides Beads

Transcript
Sequence of beads
connected by a line

h-bonds between nucleotides Interactions
Cotranscriptional folding rate Delay
Resulting secondary structure Conformation

Fig. 2. An analogy between RNA origami and oritatami systems

Geary et al. implemented an OS counting in binary [2] and an OS simulating
a cyclic tag system [3]. Han et al. [5] implemented an OS to solve the DNF
tautology problem, and proved hardness of the OS equivalence problem. Han
et al. [6] proposed the problem of removing self-attracting rules, and proved
upper and lower bounds for number of required copies of bead types to remove
self-attracting rules.

Since an OS folds its transcript according to its own ruleset, with more rules,
it becomes more difficult to realize the system in experiments. In experiments,
biochemists studied methods that synthesize the desired structure using a smaller
number of basic components [10]. This motivates us to consider the problem of
reducing the size of the alphabet and the ruleset from a theoretical point of
view. Since an OS folds its transcript on the triangular lattice, it is important to
preserve its geometric properties including the transcript path and interactions
between beads while reducing the ruleset. Geary et al. [2] proved that given
a set of paths and a transcript, it is NP-complete to find a ruleset that folds
the transcript to the set of paths. Ota and Seki [8] proved that given a path,
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a transcript and a set of interactions, it is NP-complete to find a ruleset that
folds the transcript to the path according to the given interactions. However,
there is no research on reducing and optimizing the ruleset of a given OS while
preserving all its geometric properties.

We say that two OSs are isomorphic if both have the same geometric proper-
ties. We first prove that, given an OS, it is NP-hard to find the smallest ruleset
of an isomorphic OS in general. Then we propose two practical approaches to the
problem: (1) We propose the bead type merging method—merge two bead types
that have the same interaction with other bead types. (2) We propose represen-
tative fuzzy ruleset construction—a set of rulesets that results in the same set of
terminal conformations. We design efficient algorithms to find a representative
fuzzy ruleset from a given OS, reduce the size of the fuzzy ruleset by a modified
bead type merging, and construct a reduced ruleset from the fuzzy ruleset.

2 Preliminaries

Let Σ be a finite set of types of abstract molecules, or bead types. By Σ∗ (respec-
tively Σω), we denote the set of finite (one-way infinite) sequences of bead types
in Σ. A sequence w in Σ∗ can be represented as w = b1b2 · · · bn for some n ≥ 0
and bead types b1, b2, . . . , bn ∈ Σ, where n is the length of w and denoted by
|w|; in other words, a sequence w is a string over Σ. The sequence of length 0
is denoted by λ. For 1 ≤ i ≤ j ≤ n, the subsequence of w ranging from the i-th
bead to j-th bead is denoted by w[i : j], that is, w[i : j] = bibi+1 · · · bj . This
notation is simplified as w[i] when j = i, referring to the i-th bead of w. For
k ≥ 1, w[1 : k] is a prefix of w. We use w = w1 · w2, or simply w1w2 to denote
the catenation of two strings w1 and w2.

An undirected graph G = (V,E) consists of a finite nonempty set V of nodes
and a set E of unordered pairs of nodes of V . Each pair e = {u, v} of nodes in E
is an edge of G and e is said to join u and v. An weighted graph G = (V,E) is
a graph where each edge e = (u, v) has an assigned weight w(e). We denote an
edge between u and v with a weight w in a weighted graph by e = ({u, v}, w).

Oritatami systems fold their transcript, a sequence of beads, over the triangu-
lar lattice cotranscriptionally by letting nascent beads form as many hydrogen-
bond-based interactions (h-interactions, or simply interactions) as possible
according to a given set of rules. Let T = (V,E) be the triangular grid graph. A
directed simple path P = p1p2 · · · in T is a possibly-infinite sequence of pairwise-
distinct points (vertices). Let P [i] be the i-th point pi and |P | be the number of
points in P . A ruleset H ⊂ Σ ×Σ is a symmetric relation over the set of pairs of
bead types such that, for all bead types a, b ∈ Σ, (a, b) ∈ H implies (b, a) ∈ H.

A conformation instance, or configuration, is a triple (P,w,H) of
a directed path P in T, w ∈ Σ∗ ∪ Σω, and a set H ⊆{
(i, j)

∣
∣ 1 ≤ i, i + 2 ≤ j, {P [i], P [j]} ∈ E

}
of interactions. This is to be inter-

preted as the sequence w being folded while its i-th bead w[i] is placed on the i-th
point P [i] along the path and there is an interaction between the i-th and j-th
beads if and only if (i, j) ∈ H. Configurations (P1, w1,H1) and (P2, w2,H2) are
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congruent provided w1 = w2, H1 = H2, and P1 can be transformed into P2 by a
combination of a translation, a reflection, and rotations by 60◦ degrees. The set
of all configurations congruent to a configuration (P,w,H) is called the confor-
mation of the configuration and denoted by C = [(P,w,H)]. We call w a primary
structure of C. Let H be a ruleset. A rule (a, b) ∈ H is useful in the conforma-
tion C = [(P,w,H)] if there exists (i, j) ∈ H such that w[i] = a and w[j] = b
or vice versa. Otherwise, the rule is useless in the conformation. An interac-
tion (i, j) ∈ H is valid with respect to H, or simply H-valid, if (w[i], w[j]) ∈ H.
We say that a conformation C is H-valid if all of its interactions are H-valid.
For an integer α ≥ 1, C is of arity α if the maximum number of interactions per
bead is α, that is, if for any k ≥ 1,

∣
∣{i | (i, k) ∈ H}∣

∣ +
∣
∣{j | (k, j) ∈ H}∣∣ ≤ α and

this inequality holds as an equation for some k. By C≤α, we denote the set of all
conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own
ruleset. For a finite conformation C1, we say that a finite conformation C2

is an elongation of C1 by a bead b ∈ Σ under a ruleset H, written as
C1

H→b C2, if there exists a configuration (P,w,H) of C1 such that C2 includes
a configuration (P · p,w · b,H ∪ H ′), where p ∈ V is a point not in P and
H ′ ⊆ {

(i, |P |+1)
∣
∣ 1 ≤ i ≤ |P | − 1, {P [i], p} ∈ E, (w[i], b) ∈ H}

. This operation
is recursively extended to the elongation by a finite sequence of beads as follows:
For any conformation C, C

H→
∗
λ C; and for a finite sequence of beads w and a

bead b, a conformation C1 is elongated to a conformation C2 by w · b, written as
C1

H→
∗
w·b C2, if there is a conformation C ′ that satisfies C1

H→
∗
w C ′ and C ′ H→b C2.

An oritatami system (OS) is a 6-tuple Ξ = (Σ,w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), where H is a ruleset, δ ≥ 1 is a delay, and Cσ is an H-valid initial
seed conformation of arity at most α, upon which its transcript w ∈ Σ∗ ∪ Σω

is to be folded by stabilizing beads of w one at a time and minimize energy
collaboratively with the succeeding δ − 1 nascent beads. The energy of a con-
formation C = [(P,w,H)] is U(C) = −|H|; namely, the more interactions a
conformation has, the more stable it becomes. The set F(Ξ) of conformations
foldable by this system is recursively defined as follows: The seed Cσ is in F(Ξ);
and provided that an elongation Ci of Cσ by the prefix w[1 : i] be foldable (i.e.,
C0 = Cσ), its further elongation Ci+1 by the next bead w[i+1] is foldable if

Ci+1 ∈ argmin
C∈C≤α s.t.
Ci

H→w[i+1]C

min
{

U(C ′)
∣
∣
∣ C

H→
∗
w[i+2:i+k] C ′, k ≤ δ, C ′ ∈ C≤α

}
. (1)

Once we have Ci+1, we say that the bead w[i+1] and its interactions are sta-
bilized according to Ci+1. A conformation foldable by Ξ is terminal if none of
its elongations is foldable by Ξ. We use C = [(PσP,wσw,Hσ ∪ H)] to denote a
terminal conformation, where w is folded along the path P with interactions in
H. An OS is deterministic if, for all i, there exists at most one Ci+1 that satisfies
(1). Namely, a deterministic OS folds into a unique terminal conformation.

Figure 3 illustrates an example of an OS with delay 2, arity 2 and the rule-
set {(a, b), (b, f), (d, f), (d, e)}; in (a), the system tries to stabilize the first bead a
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Fig. 3. An example OS with delay 2 and arity 2. The seed is colored in red, and the
stabilized beads and interactions are colored in black. (Color figure online)

of the transcript, and the elongation in (a) gives 1 interaction. However, it is not
the most stable one since the elongation in (b) gives 2 interactions in total. Thus,
the first bead a is stabilized according to the location in (b). In (c), the system
tries to stabilize the second bead f , and the elongation in (c) gives 1 interaction
for the primary structure fe. However, the elogation in (d) gives 2 interactions
in total. Thus, the second bead f is stabilized according to the location in (d).
Note that f is not stabilized according to the location in (b), although the elon-
gation in (b) is used to stabilize the first bead a.

Conformations C1 and C2 are isomorphic if there exist an
instance (P1, w1,H1) of C1 and an instance (P2, w2,H2) of C2 such that P1 = P2

and H1 = H2. For two sets C1 and C2 of conformations, we say that two sets are
isomorphic if there exists an one-to-one mapping C1 ∈ C1 → C2 ∈ C2 such that
C1 and C2 are isomorphic. We say that two oritatami systems are isomorphic if
they fold the isomorphic set of foldable terminal conformations. A rule (a, b) is
useful in an OS if the rule is useful in one of the terminal conformations of the
system.

3 Hardness of Ruleset Optimization on Isomorphic
Oritatami Systems

We first define the ruleset optimization problem on isomorphic OSs.

Problem 1 (RSOPT-Isomorphic). Given an OS Ξ = (Σ,w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), find an isomorphic OS Ξ ′ = (Σ′, w′,H′, δ, α, C ′

σ =
[(Pσ, w′

σ,Hσ)]) where |H′| is minimum (See Fig. 4(a) and (c)).

We can think of the problem as follows: Suppose we are given a delay δ,
an arity α, a path Pσ, a set Hσ of interactions and a set {(Pi,Hi)}, where
Pi is a path and Hi is a set of interactions on Pi. Then, the problem is to
find a seed primary structure w′

σ, a transcript w′ and a smallest ruleset H′,
where the OS Ξ ′ = (Σ′, w′,H′, δ, α, C ′

σ = [(Pσ, w′
σ,Hσ)]) successfully folds the

set {[(PσPi, w
′
σw′,Hσ ∪ Hi)]} of terminal conformations (See Fig. 4(b) and (c)).

Before we tackle the problem, we revisit the following problem.
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Problem 2 (RSD-UniqConformation [8]). Given a finite conformation C =
[(P,w,H)], an alphabet Σ, an arity α, a delay δ, a seed Cσ = [(Pσ, wσ,Hσ)]1, and
a finite transcript w ∈ Σ∗, find a ruleset H such that C ′ = [(PσP,wσw,Hσ ∪H)]
is the unique terminal conformation of the OS Ξ = (Σ,w,H, δ, α, Cσ).

Ξ = (Σ, w, σ = [(Pσ, wσ, Hσ)])

C1 C2 C3

a a a

b b bc
c

c

d d

d
e e e

f f f

g g gh h hi i ij j j

C1 C2 C3

b b bc
c

c
e e e

c

(P1, H1)

δ = 2, α = 1

(P2, H2) (P3, H3)
(a) (b)

c c c c c c

c cb b

b

e e ee e e
b b b

wσ = ececce, w = bbcc, = {(b, e)}
(c)

Fig. 4. An Illustration of two representations of Problem 1. The seed is colored in red.
(Color figure online)

The problem is NP-hard when α, δ ≥ 2 or δ ≥ 3. Note that the RSD-
Isomorphic problem is different from the RSOPT-UniqConformation problem,
since we should minimize the ruleset size by using an arbitrary transcript. Now,
we propose another problem (Problem 3) and prove its hardness based on the
proof for the RSD-UniqConformation problem [8]. Then, we prove the hardness
of the RSOPT-Isomorphic problem using the hardness result of Problem3.

Problem 3 (RSD-Isomorphic). Given a path P , a set H of interactions, an
alphabet Σ, an arity α, a delay δ, a seed Cσ = [(Pσ, wσ,Hσ)], find a ruleset H
and a finite transcript w such that C = [(PσP,wσw,Hσ ∪ H)] is the unique
terminal conformation of the OS Ξ = (Σ,w,H, δ, α, Cσ).

Figure 5 illustrates difference among the RSD-UniqConformation, the RSD-
Isomorphic and the RSOPT-Isomorphic problems.

Lemma 1. The RSD-Isomorphic problem is NP-hard when α, δ ≥ 2 or δ ≥ 3.

Theorem 1. The RSOPT-Isomorphic problem is NP-hard when α, δ ≥ 2 or
δ ≥ 3.
1 In the original paper, the seed was defined by a single term σ.
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Fig. 5. An example of the three problems. Seeds are colored in red. (Color figure online)

4 Ruleset Reduction by Bead Type Merging

Since the RSOPT-Isomorphic problem is NP-hard in general, we consider a
poly-time heuristic for optimizing a ruleset efficiently. Because not all rules in a
ruleset are useful, we start with removing useless rules. For a deterministic OS,
it is sufficient to simulate the OS and find useless rules. The simulation takes
O(n · 5δ) time, where n is the length of the transcript.

Corollary 1. For a deterministic OS Ξ = (Σ,w,H, δ, α, Cσ = [(Pσ, wσ,Hσ)]),
we can remove useless rules in O(n · 5δ) time, where n = |w|.

For a nondeterministic OS, we show the hardness of the problem.

Theorem 2. For a nondeterministic OS Ξ = (Σ,w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]) and a rule r ∈ H, it is coNP-hard to determine whether or not r
is useful.

It is coNP-hard to identify and remove useless rules in general. Thus, we
propose a method to reduce the ruleset size regardless of usefulness of rules. For
two bead types a and b, suppose (a, c) ∈ H if and only if (b, c) ∈ H for all possible
bead types c. If we merge beads a and b and replace all b’s in the transcript and
the seed to a’s, it is straightforward to verify that the resulting OS is isomorphic
to the original OS. We formally define the problem of finding a smallest ruleset
based on the bead type merging.

Problem 4 (RSR-BTM-Isomorphic). Given a ruleset H ⊆ Σ × Σ of an OS,
find a minimum alphabet Σ′ and a ruleset H′ ⊆ Σ′ × Σ′, where there exists
a homomorphism h : Σ → Σ′ such that for each pair of bead types (x1, x2) ∈
Σ × Σ, (x1, x2) ∈ H ⇔ (h(x1), h(x2)) ∈ H′.
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For the RSR-BTM-Isomorphic problem, we construct a binary string xi for
each bead type σi, where xi[j] is 1 if (σi, σj) ∈ H and 0 otherwise. It is straight-
forward that if xi = xj , then σi and σj can be successfully merged. We run
radix sort for strings x1, x2, . . . , xt where t = |σ|. After the sorting, any set of
bead types corresponding to the same (consecutive) string can be successfully
merged. Since the length of the strings is t, the radix sort requires O(t2) time
using O(t) space.

Theorem 3. We can solve the RSR-BTM-Isomorphic problem in O(t2) time
using O(t) space, where t = |Σ|.

5 Ruleset Reduction by Fuzzy Ruleset Construction

The bead type merging only uses information from the ruleset, not the whole
OS. Note that we can remove or add some rules in the ruleset while maintaining
an OS isomorphic. Thus, we propose another more efficient heuristic that finds
a reduced ruleset from a set of rulesets for an isomorphic OS.

Given an alphabet Σ, we define a fuzzy ruleset to be a pair of a required
ruleset HP ⊆ Σ×Σ and a forbidden ruleset HN ⊆ Σ×Σ such that HP ∩HN = ∅.
Given an OS Ξ = (Σ,w,H, δ, α, Cσ), we say that a fuzzy ruleset (HP ,HN ) is a
representative fuzzy ruleset of the OS if Ξ ′ = (Σ,w,H′, δ, α, Cσ) is isomorphic
to Ξ for all H′ satisfying the following conditions:

1. If (a, b) ∈ HP , then (a, b) ∈ H′.
2. If (a, b) /∈ HN , then (a, b) /∈ H′.

Namely, if a fuzzy ruleset (HP ,HN ) is representative, then rules in HP should
be included in the ruleset, and rules in HN should be excluded from the rule-
set, which ensures that the system is isomorphic to the original system. These
conditions are obtained by the property of the cotranscriptional folding. When
we want to design an isomorphic system, we should keep the same location of
the stabilized beads and the same interactions. While stabilizing a bead x, the
bead and its δ −1 nascent beads choose a path Px that maximizes the sum sx of
interactions. Then, for any alternative path P ′

x where the bead is not stabilized
at the target location, we can arbitrarily assign interactions for P ′

x as long as
the sum s′

x of interactions does not exceed sx, as illustrated in Fig. 6.
We reduce the ruleset size in two phases: First, given an OS Ξ, we extract a

representative fuzzy ruleset from Ξ. Second, we modify the ruleset graph reduc-
tion in Sect. 4 and reduce the size of the fuzzy ruleset. Then, using the fuzzy
ruleset, we further reduce the ruleset size.

Problem 5 (FRS-Extraction). Given an OS Ξ = (Σ,w,H, δ, α, Cσ =
[(Pσ, wσ,Hσ)]), find a representative fuzzy ruleset (HP ,HN ) minimizing |HP |+
|HN |.
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sx =

Fig. 6. When we stabilize the bead x, suppose the path Px in (a) is the most stable one
with the sum of interactions sx = 4. Since the path P ′

x in (b), (c) and (d) stabilizes x
at the location different from Px, we may assign arbitrary interactions for these paths
as long as the sum s′

x of interactions does not exceed 4.

Theorem 4. The FRS-Extraction problem is NP-hard when α, δ ≥ 2 or δ ≥ 3.

Next, we design a heuristic algorithm for the FRS-Extraction problem.
Assume that an OS Ξ folds the set {Ci = [(PσPi, wσw,Hσ ∪ Hi)]} of t ter-
minal conformations. We assume that |w| = n, and |wσ| and |Hi|’s are bounded
to O(n). We first propose an algorithm for one terminal conformation C1, and
then apply the algorithm for all terminal conformations. We take the following
approach for the problem: First, for each point in Pσ or P1, we assign a dis-
tinct bead type to retrieve wσ and w. Second, we find conditions of the rules,
which are necessary and sufficient for an isomorphic OS. Third, we construct
a representative fuzzy ruleset from these conditions. Let P1 = p1p2 · · · pn and
Pσ = pn+1pn+2 · · · pn+m.

At first, let Σ = {κi | 1 ≤ i ≤ n + m} and assume that κi is placed at
pi. We run Algorithm 1, which returns three conditions that are necessary and
sufficient for an isomorphic OS. The required condition set P (the forbidden
condition set N) includes the set of rules that should be included in (excluded
from) the desired ruleset H. Later, the construction of a representative fuzzy
ruleset (HP ,HN ) starts from (P,N). The last output is the conditional rule-
set Hk = {(K ∈ Σ × Σ, s)}, which implies that the number of rules in K ∩ H
should not exceed s. The conditional ruleset has information of rules that are
not explicitly shown in the most stable elongation but prevent the path from
not following P1. Figure 7 illustrates Algorithm 1.

Lemma 2. Algorithm1 runs in O(5δδn) time using O(5δδn) space.

Since conditions in Hk are about the rules that are not explicitly shown in
the most stable elongation, there is no necessary rule that should be added to P
because of Hk. Thus, we construct a representative fuzzy ruleset (P,HN ), where
HN = N ∪ Nadd and Nadd satisfies conditions in Hk. We prove that minimizing
|HN | is NP-complete.
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Algorithm 1. ExtractConditionSets
Input: An arity α, a delay δ, a path Pσ for a seed, a path P1 for a transcript

and a set H1 of interactions
Output: A required condition set P , a forbidden condition set N and a

conditional ruleset Hk

1 Σ ← {κi | 1 ≤ i ≤ n + m}.
2 place κn+1, κn+2, . . . , κn+m to pn+1, pn+2, . . . , pn+m to form Cσ.
3 place κ1 to p1.
4 for i ← 2 to n do
5 place κi to pi.
6 calculate the sum si of the interactions that led κi to the position pi.
7 for each annotated neighbors pj of pi do
8 if {pi, pj} ∈ H1 then add (κi, κj) to P .
9 else add (κi, κj) to N .

10 for each unannotated path P ′ = p′
1p

′
2 · · · p′

δ where p′
1 �= pi is an unannotated

neighbor of pi−1 do
11 oj ← 0, K ← ∅
12 for j ← 1 to δ do
13 for each annotated neighbors pk of p′

j where pk has interactions less
than α do

14 if (κi+j−1, κk) ∈ P then oj ← oj + 1
15 else
16 if si = 1 then add (κi+j−1, κk) to N .
17 else add (κi+j−1, κk) to K.

18 if si �= 1 then add (K, si − oj) to Hk.

19 return P, N, Hk

Lemma 3. Given a set Hk ⊆ 2Σ×Σ × N, let Nadd ⊆ Σ × Σ be a set such that,
for all (Ki, si) ∈ Hk, |Ki| − |Ki ∩ Nadd| < si holds. Then, it is NP-complete to
find Nadd with the minimum size.

Since finding the minimum Nadd is NP-complete, we use 3 heuristics to create
Nadd. We assume that a condition (Ki, si) is in Hk.

1. While adding pairs to N to satisfy conditions in Hk, we add as few pairs as
possible, since more pairs in a negative condition set makes reduction harder.

2. We prefer (Ki, si) with the largest si, since we need to add more pairs to
satisfy that condition.

3. For a pair (κj , κk) ∈ Ki, we prefer a pair with the most frequent appearances
in all Ki’s, since adding the pair (κj , κk) helps satisfying all these conditions.

Based on these heuristics, we run Algorithm 2.
Lemma 4. Algorithm2 runs in O(5δδn(δ + log n)) time using O(5δδn) space.

Once we have a representative fuzzy ruleset (HP ,HN ), the next step is to
construct a reduced ruleset that satisfies conditions of the fuzzy ruleset. We
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(a) (b) (c)

si = 6 oj = 3

(d)

oj = 3
x x

x x

Fig. 7. An illustration of Algorithm 1. Beads in the elongation are represented by
disks, and beads already stabilized are represented by circles. Suppose the delay of
the system is 5 and the path in (a) is chosen to stabilize the first bead x, with the
sum of interactions si = 6. Rules for blue interactions in (a) are added to P . In (b),
interactions that should not exist are colored in red, and added to N . In (c), one path
that is not chosen is illustrated. This path has the basic strength of oj = 3 from rules in
P . The set of all 7 possible interactions that are not from P are shown in (d), colored
in brown. Rules for brown interactions are added to K, and (K, 3) is added to Hk,
representing that we can add no more than 3 rules among rules for brown interactions
to the ruleset. (Color figure online)

construct a fuzzy ruleset graph from (HP ,HN ) by adding positive edges for
rules in HP and negative edges for rules in HN .

• V = Σ
• For each pair of molecules (x1, x2) ∈ Σ × Σ,

• add ({x1, x2}, 1) to E if (x1, x2) ∈ HP ,
• add ({x1, x2},−1) to E if (x1, x2) ∈ HN .

Problem 6 (FRSR-BTM-Isomorphic). Given a representative fuzzy rule-
set (HP ,HN ) of an OS over an alphabet Σ, find a minimum alphabet Σ′ and a
ruleset H′ ⊆ Σ′ ×Σ′, where there exists a homomorphism h : Σ → Σ′ such that
for every (x1, x2) ∈ Σ × Σ, ((x1, x2) ∈ P ∧ (x1, x2) /∈ N) ⇔ (h(x1), h(x2)) ∈ H′.

Algorithm 2. ExtractFuzzyRuleset
Input: a conditional ruleset Hk

Output: A set Nadd

1 while Hk �= ∅ do
2 for each (Ki, si) with the largest si do
3 count the number occ(j,k) of appearances of (κj , κk) in all Ki’s.

4 for each (Ki, si) with the largest si do
5 while the condition does not hold do
6 find a pair (κj , κk) of bead types with the biggest occ(j,k).
7 add (κj , κk) to Nadd.

8 delete (Ki, si) from Hk.

9 return Nadd
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Lemma 5. The FRSR-BTM-Isomorphic problem is NP-complete.

Note thatwe reduce thevertex coloringproblemto theFRSR-BTM-Isomorphic
problem. We formally establish the function f from a fuzzy ruleset graph Gr =
(V,Er) to a graph Gc = (V,Ec) by the following rules: For all (vi, vj) ∈ V 2,
(vi, vj) ∈ Ec if and only if we cannot merge vi and vj . It requires O(n3) to con-
struct f(Gr) from Gr, when n = |V |. We establish the following lemma.

Lemma 6. For a fuzzy ruleset graph Gr = (V,Er), let Gc = f(Gr). Let v1 and
v2 be two mergeble nodes in V . Let G′

r (G′
c) be the graph resulting from Gr (Gc)

after merging v1 and v2. Then, G′
c = f(G′

r).

From Lemma 6, we know that any solution to the vertex coloring prob-
lem has its pair solution to the FRSR-BTM-Isomorphic problem. Therefore,
we can use approximation algorithms for the vertex coloring problem to find
approximate solutions for the FRSR-BTM-Isomorphic problem. One algorithm
is Welsh-Powell algorithm [11]. Once all vertices vi are ordered according
to their degrees di, the algorithm runs in O(n2) time and gives at most
maxi min{di + 1, i} colors.

In summary, we first extract necessary and sufficient conditions of rules from
the set of ruleset sizes by Algorithm 1. We accumulate P , N and Hc by running
Algorithm 1 for 1 ≤ i ≤ t, and then run Algorithm2 to construct a representative
fuzzy ruleset. We construct a fuzzy ruleset graph from the representative fuzzy
ruleset, and use an approximation algorithm for the vertex coloring problem
to find an approximate solution for the FRSR-BTM-Isomorphic problem. We
establish the following theorem.

Theorem 5. Using Algorithms 1 and 2, an approximation algorithm for the ver-
tex coloring problem, we can approximately solve the RSOPT-Isomorphic prob-
lem in O(5δδn(δ + log n + t) + n3) time using O(5δδn) space.

Note that the bead type modification for a given ruleset in Sect. 4 is a special
case of the FRSR-BTM-Isomorphic problem, where HP ∪ HN = Σ × Σ. There-
fore, the method proposed in Sect. 5 is at least as efficient as bead type merging
in the size of the reduced ruleset.

6 Conclusions

The oritatami system (OS) is a computational model inspired by RNA cotran-
scriptional folding, where an RNA transcript folds upon itself while being syn-
thesized out of a gene. One element of the OS is the ruleset, which defines
interactions between beads in the system, and it is crucial to reduce the rule-
set size for implementing a simpler OS in experiments. We have first defined
the concept of isomorphism of OSs. Then we have proved that it is NP-hard to
find the smallest ruleset of an isomorphic OS in general. We proposed the bead
type merging method and representative fuzzy ruleset construction to reduce
the ruleset size.
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There still are some open questions. For example, it is open to find approxi-
mate ratios of the proposed heuristic algorithms as well as to design an efficient
algorithm that removes useless rules. We can also consider a ruleset optimiza-
tion for a given path without considering the set of interactions, and a transcript
optimization for a given ruleset.
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Abstract. In molecular self-assembly such as DNA origami, a circu-
lar strand’s topological routing determines the feasibility of a design to
assemble to a target. In this regard, the Chinese-postman DNA scaffold
routings of Benson et al. (2015) only ensure the unknottedness of the
scaffold strand for triangulated topological spheres. In this paper, we
present a cubic-time 5

3
−approximation algorithm to compute unknotted

Chinese-postman scaffold routings on triangulated orientable surfaces
of higher genus. Our algorithm guarantees every edge is routed at most
twice, hence permitting low-packed designs suitable for physiological con-
ditions.

Keywords: DNA origami · Knot theory · Graph theory · Chinese post-
man problem

1 Introduction

Since the pioneering work of Ned Seeman in 1982 [29], DNA has emerged as
a versatile, programmable construction material at the nanoscale. Accordingly,
DNA-based polyhedra [3,4,13,16,30,33], periodic- [36] and algorithmic [28] crys-
tals, custom two- [2,27,34] and three-dimensional shapes [6,20] have since been
demonstrated in the lab. With the introduction of the experimentally robust
DNA origami technique [27], highly automated and well-abstracted derivative
design methods [3,33] have become prominent, enabling design and synthesis of
evermore complex three-dimensional geometries.

In the Chinese-postman-tour DNA origami design of triangulated topological
spheres by Benson et al. [3], the long circular scaffold strand is first routed on
the mesh skeleton and then held in place with hundreds of short staple strands.
Henceforth, double helices, comprised half-and-half from the scaffold and sta-
ples, constitute the edges of the mesh, while the set of nearby strand transitions
between edges form the vertices. However, the limitation of the method to topo-
logical spheres excludes simple but natural wireframes such as the nested cube
synthesized by Veneziano et al. [33]. Evident with the view of the nested cube as
a toroidal mesh, the class of higher-genus surfaces permits a much larger class
of spatially embedded wireframes to be designed.
c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 46–63, 2017.
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A fundamental topological constraint when employing a circular strand for
assembly is that the strand routing must be unknotted. In a recent paper,
Ellis-Monaghan et al. [8] have shown the scaffold routings of Benson et al. [3] can
be knotted on higher-genus surfaces. In Fig. 1, we present another example of
a knotted Chinese-postman-tour/Eulerian-tour routing on a triangulated torus.
We leave it to the reader to verify that the routing corresponds to a trefoil knot
on the torus. For higher-genus surfaces such as tori, a routing can also be knot-
ted or unknotted depending on how the surface is embedded in real space. For
instance, the Chinese-postman-tour/Eulerian-tour routing in Fig. 2 is knotted
if the embedding of the torus is knotted (as in Fig. 3), but is unknotted if the
embedding is standard. This can be verified by noting that the routing helically
follows the meridional (horizontal) direction.

In this work, we examine the problem of finding unknotted Chinese-postman
tours on the 1-skeleton of higher-genus triangulated surfaces. We present a cubic-
time approximation algorithm to compute unknotted Chinese postman tours on
such surfaces. Our algorithm further guarantees that the tour routes each edge
at most twice, thus allowing low-packed helix bundle designs suitable for low-salt
solutions [3,33].

Fig. 1. Left: a planar representation of the 1-skeleton of a torus mesh. The torus
is reconstructed, in a standard way, by glueing the horizontal boundaries together
and likewise glueing the vertical boundaries together. Right: a knotted routing as a
detached Chinese postman tour/Eulerian tour on the mesh skeleton. Note that since
the boundaries of the planar representation are identified for glueing, only one copy of
a boundary edge in the representation is visited by the Eulerian routing.

Fig. 2. Left: a planar representation of the 1-skeleton of a torus mesh. Right: a detached
Chinese postman tour/Eulerian tour on the skeleton which is unknotted in a standard
embedding of the torus, but is knotted in a knotted embedding of the torus. Note that
a column of the mesh is a repeatable unit and thus this construction naturally leads
to an infinite family of knotted and unknotted routings depending on the embedding
of the torus in R

3.
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2 Preliminaries and Problem Definition

Assuming familiarity with basic topology [23] and graph theory [19], we only
provide definitions to formally state our computational problem and prove our
claims.

2.1 Triangulated Surfaces

A surface is a topological space that is Hausdorff, second countable, and locally
homeomorphic to R

2. We exclusively consider compact, connected, orientable
surfaces, and for brevity refer to them as surfaces. Unless stated otherwise, a
surface is assumed to be without boundary. The classification theorem of (com-
pact, connected, orientable) surfaces states that any surface is homeomorphic to
either the sphere or the connected sum of g tori, for g ≥ 1. Surfaces without
boundary can be classified up to homeomorphism via the Euler characteristic:
χ(S) = 2 − 2g, where g is the genus. Intuitively, the genus of a surface is the
number of handles in that surface. For instance, a torus has genus one. A surface
of genus zero and no boundary components is a topological sphere. A topological
sphere with a single boundary component is called a topological disk. In practice
surfaces are usually approximated by triangulated meshes (c.f. Fig. 3), or more
formally by simplicial complexes.

Fig. 3. A triangulated surface (torus) embedded in R
3 in a knotted manner.

Let k be a positive integer and A = {v0, · · · , vk} be a set of points in R
n. We

say that v0, · · · , vk are affinely independent, if v0 − v1, · · · , v0 − vk are linearly
independent.1 A k-dimensional simplex, or simply a k-simplex, is the set σk =
[v0, · · · , vk] = {∑k

i=0 λivi ∈ R
n :

∑k
i=0 λi = 1, λ ≥ 0}. Note that a simplex is

completely determined by its set of vertices. We often call a 0-simplex a vertex,
a 1-simplex an edge and a 2-simplex a face. Given a simplex σA on a set A, any
non-empty subset T of A is also affinely independent and determines a simplex
σT called a facet of σA.

1 By convention, if k = 0, then v0 is affinely independent.
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A k-dimensional simplical complex is a finite collection Σ of simplices of
dimension at most k that satisfies the following conditions. First, if σ is in
Σ, then all the facets of σ are also in Σ. Second, if σ1, σ2 ∈ Σ, σ1 ∩ σ2 �=
∅, then σ1 ∩ σ2 is in Σ. Last, every point in Σ has a neighborhood that
intersects at most finitely many simplices of Σ. The i-skeleton of a simpli-
cial complex Σ is the union of the simplices of Σ of dimensions less than
or equal to i. If Σ is a simplicial complex and σ ∈ Σ then star(σ) :=
{μ ∈ Σ such that μ contains σ, or is a facet of a simplex which contains σ}.
We denote by |Σ| the set obtained by taking the union of all simplices of a
simplicial complex Σ, and equipped with the relative subspace topology of the
usual topology of Rn.

In this paper we only need 2-dimensional simplicial complexes. If Σ is a
2-dimensional simplicial complex then we denote by V (Σ), E(Σ) and F (Σ) the
set of vertices, edges and triangles of Σ, respectively. A simplicial surface S
is a simplicial complex consisting of a finite set of faces such that (1) Every
vertex in Σ belongs to at least one face in F (Σ) and (2) For every v in V (Σ),
|star(v)| is homeomorphic to a 2-disk. If Σ is a simplicial surface and in addition
there is a piecewise-linear embedding F : |Σ| −→ R

3 then we call (Σ,F) a
triangulated surface, or simply a mesh. Note that if Σ is a triangulated surface
then |Σ| is a topological surface embedded in R

3. Figure 3 shows an example
of a triangulated surface. The Euler characteristic of a mesh Σ is given by
χ(Σ) = |V (Σ)| − |E(Σ)| + |F (Σ)|.

2.2 Postman Tours and Knots

In this paper, we only consider finite, undirected, loopless graphs. By graph, we
mean a simple graph, reserving the term multigraph for graphs which can have
parallel edges. We denote a multigraph as G = (V,E), and use V (G) and E(G) to
refer to its vertices and edges, respectively. A walk W of length l ≥ 0 on a multi-
graph G = (V,E) is a sequence of vertices and edges (v0, e0, v1, e1, · · · , el−1, vl)
such that ei = [vi−1, vi] ∈ E(G). We say W visits or traces an edge e if e ∈ W .
A walk is said to be closed if v0 = vl. A path is a walk without repeated vertices
and a cycle is like a path except that v0 = vl. A trail is a walk with distinct
edges, and a trail is said to be closed if the walk is closed. A multigraph is said to
be connected if there is a walk between any two vertices. A connected cycle-free
graph is called a tree and more generally a cycle-free graph is called a forest.

A postman tour [7] is a closed walk which traces every edge at least once. The
length of a postman tour is the length of the walk. A Chinese postman tour is
a postman tour with minimum length. An Eulerian tour is a closed walk which
visits every edge exactly once. A multigraph which admits an Eulerian tour is
said to be Eulerian. A classical theorem of Euler [10] and Hierholzer [17] states
that a multigraph is Eulerian if and only if it is connected and does not contain
any odd-degree vertices. For an Eulerian multigraph, the notion of a Chinese
postman tour and an Eulerian tour coincide (see the planar representations of
Eulerian torus meshes and related routings in Figs. 1 and 2). In our work, we
only work with postman tours on (simple) graphs. Moreover, we mostly view
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a postman tour on a graph as being an Eulerian tour on a related multigraph.
In particular, the multiple traces of an edge by the postman tour are viewed
as visits of independent copies of the edge in the Eulerian multigraph [7]. For
further illustrations related to the concepts here, check the right most graph in
Fig. 6, a Chinese postman tour of this graph depicted on the right in Fig. 7 and
the related Eulerian multigraph shown on the left in Fig. 7.

An embedding of a multigraph G in R
3 is a representation of G in R

3 where
the vertices of G are represented by points on R

3 and the edges of G are rep-
resented by simple arcs on R

3 such that: (1) no two arcs intersect at interior
points to either of them, (2) the two vertices defining an edge e are associated
with the endpoints of the arc associated with e, and (3) there is no arc which
includes points that are associated with other vertices. Here we are interested
in multigraphs that are embedded on meshes. In particular, we are interested in
the 1-skeleton of a surface mesh M which corresponds to the embedded graph
G = (V,E), where V = V (M) and E = E(M).

A knot in R
3 is a (piece-wise) linear embedding of the circle S1 in R

3. Knots
are considered up to ambient isotopy, that is two knots are said to be ambient
isotopic if we can continuously deform one to the other without tearing or self
intersection. An unknot is a knot ambient isotopic to the standard circle on the
plane. Equivalently, an unknot is a knot that bounds an embedded piece-wise
linear disk in R

3 [24]. For a formal treatment of knot theory see [24,26]. Note
that the standard definition of a postman tour as presented above is purely
combinatorial and does not yet specify a curve to be analyzed as a knot. In the
next section, we introduce an interpretation of a postman tour as a knot which
permits any postman tour as a candidate solution for the unknotted Chinese
postman tour routing problem (c.f. Problem 1).

2.3 The Unknotted Chinese Postman Tour Problem

For a graph G embedded in R
3, suppose the embedding of a postman tour T on G

is the curve implied by the image of the vertex-edge sequence of the tour except
that the repeated edges are mapped to parallel but non-overlapping curves which
only meet at the endpoints. Consider the related Eulerian multigraph G′. Unless
G′ is a cycle, T repeats vertices, and hence the embedding of T either touches
or intersects itself at vertices. For formal treatment of T as a knot, we need to
make the embedding a simple curve while keeping the curve within the vicinity
of G. For this purpose, we define the notion of a detachment of a postman tour
embedding, which is simply a local unpinning of all the edge transitions at the
vertices, as follows.

Let T = (v0, e0, v1, e1, · · · , el−1, vl = v0) be a postman tour on a graph G
embedded in R

3. Construct a new graph Δ with vertex set {δ0, δ1, · · · , δl−1}
and edge set {α0, α1, · · · , αl−1}, where αi = [δi, δi+1], for 0 ≤ i ≤ l − 2,
and αl−1 = [δl−1, δ0]. Clearly, Δ is a cycle and has an Eulerian tour TΔ =
(δ0, α0, δ1, α1, · · · , αl−1, δl = δ0). Observe that while T might repeat vertices,
TΔ does not. Suppose we embed Δ as follows: (1) Each δi is at most a small
ε > 0 distance, in R

3, away from vi, (2) Each edge αi is embedded exactly like ei,
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except at its ends where it is incident to δi and δi+1 instead of vi and vi+1. Note
that by construction, all the vertices of Δ are at distinct locations. We call the
induced embedding on TΔ a detachment of T .2 A detachment of a postman tour
is simple and is thus a knot. We say that a detached postman tour is unknot-
ted if the detachment is an unknot. Recall Fig. 1 for an example of a knotted
detachment of a Chinese postman tour on the 1-skeleton of a torus standardly
embedded in R

3. We now state our problem as follows.

Problem 1. Unknotted Chinese postman tour problem (UCPT): Given
a triangulated oriented surface without a boundary and of genus g ≥ 1, find a
minimum length postman tour along its 1-skeleton which is detachable to an
unknot.

An example input instance of UCPT, a genus one triangulated mesh, is
shown on the left in Fig. 4. Next, we present a 5

3 -approximation algorithm for
UCPT, that is a postman tour with length at most two-thirds greater than
any unknotted Chinese postman tour, which moreover guarantees that no edge
is traced more than twice. Although the notion of detachment is important
for the consideration of all possible postman tours as solutions to UCPT, our
algorithm outputs non-crossing postman tours (c.f. Sect. 3.3 and Fig. 7) where
the detachments are clear without explicit construction.

Fig. 4. Left: A toroidal mesh. Right: A polygonal schema of the mesh.

3 A Cubic Time Algorithm for Finding Unknotted
Postman Tours

The main idea of our algorithm is to transfer the problem of finding an unknotted
Chinese postman tour on an arbitrary surface mesh to the case of finding such
a tour on the mesh’s cutting to a topological disk. After such cutting, we can
compute an unknotted Chinese postman tour on the disk, which then simply
lifts to an unknotted approximate Chinese postman tour on the surface mesh.
To be presented in detail in the subsequent sections, our algorithm, which we
name as the cut-and-route algorithm, proceeds along the following steps:
2 Detachments are also defined in the literature [11] for multigraphs without an asso-

ciated embedding.
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1. Cut the input surface mesh M to obtain a topological disk D where a re-gluing
of partnered boundary edges reconstructs M .

2. Remove one instance of the partnered edges of D and extract an embedded
subgraph H on D whose edges are in a one-to-one correspondence with M .

3. Find a non-crossing Chinese postman tour on H, which then maps to the
desired unknotted approximate Chinese postman tour on M .

3.1 Cutting a Surface to a Disk

Surface cutting is a problem that has been extensively studied due to its impor-
tance in surface parameterization and texture mapping [9,12]. For our algorithm,
we adopt the basic algorithm of Dey and Schipper [5] for computing a polygonal
schema. A polygonal schema [9] of a triangulated surface M is a topological disk
that consists of all faces of M . A polygonal schema can be obtained by cutting
a graph, called a cut graph, on the 1-skeleton of M . Dey and Schipper’s cutting
algorithm starts with topological disk D which consists of a single face f on the
surface M and keeps expanding D by gluing faces to its boundary. We present
it in Algorithm 1, named as Mesh2disk, for analysis within our cut-and-route
algorithm.

Mesh2disk is simply a breadth first search (BFS) on the dual graph implied by
the face-to-face adjacency list of M , and the BFS tree represents the connectivity
of the faces in D. For the torus mesh in Fig. 4, the first few rounds of face addition
are shown in Fig. 5 and the resulting polygonal schema is shown on the right in
Fig. 4. Next, we prove three lemmas useful for the analysis of the cut-and-route
algorithm.

Lemma 1. Mesh2disk outputs a topological disk D.

Proof. Let (f1, f2, f3, · · · , f|F (M)|) be the order in which the faces of M are
visited by Mesh2disk. Let Dj , for j = 1 to |F (M)|, be the simplicial complex after

Algorithm 1. Mesh2disk: Cutting a triangulated surface to a disk.
Input: A triangulated surface M given as a face-to-face adjacency list.
Output: A polygonal schema D of M .

1 s ← the first face, D ← an empty adjacency list, Q ← empty queue of faces;
2 Enqueue s to Q;
3 for all faces f ∈ M do Mark f as not visited;
4 while Q is not empty do
5 f ← dequeue from Q;
6 Mark f as visited;
7 for g neighbor of f in M do
8 if g is not visited then
9 Enqueue g to Q;

10 Append g to D[f ] and f to D[g];

11 return D;
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Fig. 5. Initial stages of Mesh2disk (Algorithm 1) constructing a polygonal schema of
the torus mesh in Fig. 4.

faces f1 through fi have been appended. We prove Dj is a disk by induction on j.
For the base case, D1 consists of a single face f1 and hence is a disk. Now assume,
Dj−1 is a disk. When fj is added to Dj by gluing edge-wise to fi for some i < j,
|V (Dj)| = |V (Dj−1)|+1, |E(Dj)| = |E(Dj−1)|+2 and |F (Dj)| = |F (Dj−1)|+1
(c.f. Fig. 5.) Hence, χ(Dj) = χ(Dj−1). The number of boundary components
remains the same. By the classification theorem of surfaces with boundary, Dj

is a disk. 	


Lemma 2. For the input-output pair (M,D) of Mesh2disk, |V (D)| = |F (M)|+2.

Proof. Following the notation of Lemma 1, the claim follows by observing that
Dj has one more vertex than Dj−1, for j ≥ 2, and a straightforward induction
on the number of faces of M . 	

Lemma 3. The algorithm Mesh2disk runs in O(|F (M)|) time.

Proof. Mesh2disk is simply BFS as implied by the face-to-face adjacency list
of M and thus takes O(|F (M)| + |E(M)|) time. By double counting of edges,
3|F (M)| = 2|E(M)|. The claim follows. 	

Each edge in the cut graph of a mesh determines exactly two boundary edges in
the polygonal schema [5,9]. The boundary edges on D always come in pairs and if
we glue all such pairs together we obtain the original mesh M . If e and e′ are two
boundary edges coming from the same edge in M , we say that e and e′ are partners.

3.2 Removing Duplicate Edges on Disk Boundary

In principle, we can construct a Chinese postman tour on the polygonal schema
D and map it back to an approximate Chinese postman tour on the input mesh
M . However, an attempt to build a Chinese postman tour directly on D can
repeat the cut graph edges on the mesh M three or four times since these edges
appear twice as boundary edges of D. To guarantee that no edge of the mesh is
traced more than twice, we instead find a Chinese postman tour on an embedded
subgraph H of D with the following properties:

1. For any two partnered edges in D, exactly one of the two edges is in E(H).
Thus, the edge set of H has a one-to-one correspondence with the edge set
of M .

2. H is a connected spanning subgraph of D, that is V (H) = V (D).
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After extracting such a spanning subgraph H, we can find a Chinese postman
tour on H, which then maps to an approximate Chinese postman tour on M
that visits the mesh edges at most twice. To extract H, we first identify two
types of faces of D. A face in D is said to be a peripheral face of type I if
it is bounded by only one boundary edge, and of type II if it is bounded by
two boundary edges; see the boundary edges in the left-most image in Fig. 6.
Our algorithm, named Declone and presented as Algorithm 2, runs through the
peripheral faces, identifying partnered edges and removing the clones along the
way. For the polygonal schema of the torus in Fig. 4, an intermediate output of
Delcone is shown in the center in Fig. 6 while the final output is shown on the
right.

Algorithm 2. Declone: Remove clone edges on a polygonal schema’s
boundary.
Input: A polygonal schema D of a surface mesh M .
Output: An embedded subgraph H of D with the two properties listed in

Sect. 3.2.
1 for all faces f ∈ D do
2 Mark f as not processed;
3 if f has a single boundary edge then append f to FI ;
4 else if f has two boundary edges then append f to FII ;

5 H ← D;
6 for all faces f ∈ FI do
7 if f is not processed then
8 a ← a boundary edge of f ;
9 Remove a from H;

10 Mark f as processed;
11 g ← the face which contains a’s partner;
12 while g has two boundary edges do
13 b ← the boundary edge in g different from a’s partner;
14 Remove b from H;
15 Mark g as processed;
16 g ← the face which contains b’s partner;
17 a ← b’s partner;

18 Mark g as processed;

19 for all faces f ∈ FII do
20 if f is not processed then
21 g ← f;
22 a ← a boundary edge of g;
23 while g is not processed do
24 b ← the other boundary edge of g;
25 Remove b from H;
26 Mark g as processed;
27 g ← the face which contains b’s partner;
28 a ← b’s partner;

29 return H
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Fig. 6. Left, the 1-skeleton of the polygonal schema D of the torus mesh. Middle
and right figures illustrate an intermediate output and the final output of Algo-
rithm Declone, respectively. In the left and middle figures, the dashed edges highlight
unprocessed type I peripheral faces while the dotted edges highlight unprocessed type
II peripheral faces.

To prove Declone’s output H satisfies the two properties listed in Sect. 3.2,
we first define a new graph X� which we refer to as the cut-dual.3 The cut-dual
is constructed by creating a vertex corresponding to each peripheral face in D,
and adding an edge between two vertices u and v if and only if u’s face contains
an edge which has a partner in v’s face. For clarity, we refer to the vertices
in X� through their corresponding faces in D. Note that X� has a maximum
degree two since a peripheral face has at most two boundary edges. Hence, X�

is a disjoint union of connected components, each of which is either a path or a
cycle. Each path starts and ends with a type I face but is otherwise composed
of type II faces. Analogously, each cycle is completely composed of type II faces.
With X� in mind, we now prove the following lemmas about Declone.

Lemma 4. Let e and e′ be two partner boundary edges in a polygonal schema
D of a surface mesh M , then exactly one of the two edges e or e′ is removed in
H. Hence, there is a one-to-one correspondence between E(H) and E(M).

Proof. To show that exactly one of the edges e and e′ is removed in H, consider
the peripheral faces f and g that contain the edges e and e′, respectively. By
construction of the cut-dual X�, f and g appear in the same path or the same
cycle component of X�.

Suppose f and g appear in a path P . Let s be the type I face of P appended
first to FI and let t be the other type I face in P . Suppose we orient P from s to
t. Declone (Line 6 to 19) processes the faces in P from s to t. Suppose, w.l.o.g,
f appears before g in the (oriented) P . If f = s, then e gets removed in Line 9,
but e′ is retained, whether g is a type II face (in the while loop), or it is a type I
face (outside the while loop.) If f �= s, then it gets processed in the while loop.
Once again, e gets removed (Line 14) and e′ gets retained whether we stay in
the while loop or exit it in the next iteration. Analogously, e′ gets removed and
e gets retained when g appears before f in P .

3 X� is the subgraph of the dual of M induced by the duals of the cut edges.
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Now suppose f and g appear in a cycle C of X�. Since C contains no type I
face, none of the faces in C are processed before the third for loop (Line 19). Let
s be the face of C which appears first in FII . Orient C from s outward based
on the selected edge a in Line 22. If f precedes g in the path along the oriented
C starting from s, then f gets processed before g and e is removed while e′ is
retained. If g precedes f , e′ is removed while e is retained. 	

Lemma 5. Declone computes a connected spanning subgraph H of the input D.

Proof. Since no vertex is deleted in H, V (H) = V (D). Hence, we only need to
show that H is connected. Further noting that only a subset of the boundary
edges of D get deleted, let us first analyze the state of the peripheral faces of
D. In particular, we first show that for any peripheral face f in D, at most one
boundary edge of f is deleted and the vertices of f remain connected in H.

Let u, v, w be the vertices of f and let a = {u, v}, b = {v, w}, c = {w, u} be
its edges. If f is a type I face, only one edge is a boundary edge and is potentially
removed. If indeed the edge, w.l.o.g suppose a, is removed, its endpoints u and
v remain connected through the path (u, c, w, b, v).

Now suppose f is a type II face, and w.l.o.g, assume that a and b are the
boundary edges. Let g and g′ be the two peripheral faces containing the partners
of a and b, respectively. Reconsider the cut-dual X� and the orientation of its
paths and cycles (see proof of Lemma 4.) In the oriented path or cycle, the order
is either (g, f, g′) or (g′, f, g). In the first case, b is removed while a is retained
while in the second case, the reverse holds. If a gets removed, then u and v
remain connected through the path (u, c, w, b, v) while if b is removed, v and w
are connected through (v, a, u, c, w).

We can now show that H is a connected graph. Since D is connected, there is
a walk W between any vertices u, v. For every boundary edge of D that appears
in W but is deleted in H, replace it with one of the paths described above. This
results in a new walk between u and v in H, and thus H is connected. 	

Lemma 6. Declone runs in O(|F (M)|) time.

Proof. Let p be the number of peripheral faces in D. Since the peripheral faces
are a subset of the faces of D, p ≤ |F (D)| = |F (M)|. The first for loop iterates
|F (D)| = |F (M)| times, each time consuming constant time. Note that checking
face incidence takes constant time since each face is incident to three other faces.
This also implies that the copy in Line 5 is linear in |F (M)|.

For the next two for loops, recall the proof in Lemma 4 and observe that each
peripheral face gets processed once, either in a path or a cycle of X�. Hence,
there are only p iterations of the total work done inside the while loops. The
book-keeping, edge-removal and partner-checking can all be done in constant
time, once again since each face is incident to three faces. 	
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3.3 Finding Non-crossing Chinese Postman Tours on the Polygonal
Schema

By Lemma 5, Declone outputs a connected spanning subgraph H of the polyg-
onal schema D. Since H is generally a non-Eulerian graph, cut-and-route pro-
ceeds by adding a minimal set of duplicate edges which converts H to an Eulerian
multigraph H ′ using Edmonds’ Blossom algorithm [7,19]. For the H graph shown
on the right in Fig. 6, the resulting Eulerian multigraph H ′ is shown on the left
in Fig. 7. To keep H ′ in the polygonal schema, the duplicate edges are added
in the interior side of the polygonal schema. In principle, we can then compute
an Eulerian tour on H ′ with Hierholzer’s algorithm [17,19], but such a tour can
generally have crossings, which complicates the analysis of the unknottedness of
the tour.

Fig. 7. Left, an Eulerian multigraph of H obtained by Edmonds algorithm. Right, a
non-crossing Chinese postman tour on H, which then maps to an unknotted postman
tour on the torus 1-skeleton.

To make the notion of crossing precise, note that a multigraph embedded on
an orientable surface induces a local cyclic rotational order (fixed either clock-
wise or counterclockwise) of the incident edges of vertices. We say two pairs of
consecutive edges in a closed-trail, all of which are incident to a common vertex,
cross if the two pairs interleave with respect to the cyclic order of edges around
the vertex. In other terms, a crossing is a quadruple of edges incident to a com-
mon vertex which can be grouped into two pairs according to their contiguity in
the closed trail such that cyclically visiting edges around the vertex one alter-
nates between the pairs. An Eulerian tour is said to be non-crossing if it does
not contain any two crossing pairs of consecutive edges. Visually, a non-crossing
Eulerian tour on a surface embedded multigraph can be drawn as a simple closed
curve on the surface. In this sense non-crossing Eulerian tours detach to simple
closed curves and are easier to analyze for unknottedness.

Abraham and Kotzig [1] as well as Grossman and Reingold [31] have shown
that all Eulerian multigraphs embedded on a plane admit non-crossing Eulerian
tours. More recently, Tsai and West [32] presented a technique to convert an
arbitrary Eulerian tour on a multigraph embedded on a plane to a non-crossing
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one by a vertex-local re-splicing of the tour at crossing pairs.4 Inspired by the
proof of Grossman and Reingold [31], we introduce a linear-time algorithm in
Lemma 7 to compute non-crossing Eulerian tours for multigraphs embedded on
orientable surfaces. Briefly, the algorithm first computes an initial non-crossing
closed-trail decomposition of the multigraph, and then iteratively resplices inde-
pendent closed trails at each vertex, finally yielding a non-crossing Eulerian tour.

For a more precise description, we need the additional notion of a transi-
tion system of an Eulerian multigraph. A transition system [11] of an Eulerian
multigraph is a set of partitions of edges, where each element of the set is a
grouping (partitioning) of the incident edges of a vertex into (unordered) pairs.
In a transition system, each edge is in two pairs corresponding to its’ pairings at
its’ two end-points. There is a bijection between transition systems and closed-
trail decomposition of Eulerian multigraphs [15]. In this setting, the pairs in the
partitions of the transition system correspond to consecutive edges in the trails
of the closed-trail decomposition. Given a transition system, we can compute the
closed-trail decomposition in linear time by directionally following the pairings.
The notion of non-crossing closed-trails extends naturally to closed-trail decom-
positions (and transition systems), in the sense that the closed trails are both
self non-crossing and mutually non-crossing.

Lemma 7. Let G be an Eulerian multigraph embedded on an orientable surface.
There is an O(|V (G)| + |E(G)|) algorithm to compute a non-crossing Eulerian
tour on G.

Proof. As an input, assume that the embedded multigraph G is given as an
adjacency list, describing for each vertex the list of the incident edges in the
rotation order. The algorithm proceeds as follows. We first obtain an initial
transition system by going through each vertex, and for each vertex, cycling
around the incident edges in the rotation order and pairing the first with the
second, the third with the fourth, etc. From this initial transition system, we
follow the pairings to compute an initial closed-trail decomposition. Next, for
each vertex, we again cycle through the incident edges of the vertex and every
instance where the current edge b is not in the same closed trail as the previous
edge a, we pair a with b and a’s old mate ap with b’s old mate bp.

To prove the algorithm computes a non-crossing Eulerian tour, it suffices
to prove that all edges are in the same non-crossing closed trail after all the
vertices have been processed. We prove all edge are in the same closed trail by
showing that after a vertex has been processed, we obtain a non-crossing closed-
trail decomposition where all the edges incident to that vertex are in the same
closed trail. After all vertices have been processed, this local criterion suffices to
ensure distal edges are in the same closed trail because G is connected. For an
alternative proof of the sufficiency of the local criterion, observe that since G is
Eulerian, it has some Eulerian tour T ′. Now suppose an edge e is in some closed

4 Although stated only for Eulerian multigraphs embedded on a plane, Tsai and West’s
proof also holds for Eulerian multigraphs embedded on any surface since the resplic-
ing occurs locally at vertices.
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trail T in the closed-trail decomposition. Starting from e, following the edges in
T ′, we see that all the edges in T ′ are also in T since consecutive edges in T ′

are incident to a common vertex. Since T ′ is an Eulerian tour, all the edges in
G are in T ′, and hence all edges in G are in T .

Hence, we just need to prove that after a vertex has been processed, we
obtain a non-crossing closed-trail decomposition where all the local edges are in
the same closed-trail. We prove this by induction on the incident edges of the
vertex. In particular, we prove, for a local rotation index j (which runs from one
up-to the degree of the vertex), the following two claims hold after the j-th edge
has been processed: (1) The closed-trail decomposition is non-crossing, (2) The
first j edges in the cyclic-order around the vertex are in the same closed-trail.

For the base case j = 1, (1) holds for the first processed vertex because
in the initially computed transition system (and correspondingly closed-trail
decomposition), the pairings are composed of neighboring edges and thus do not
cross any other pairings. For the remaining vertices, (1) holds by induction on
vertices. Claim (2) holds vacuously for j = 1.

Now suppose after the (j − 1)-th edge has been processed we have a non-
crossing closed-trail decomposition where all local edges are in the same closed-
trail. If the (j − 1)-th edge is in the same closed-trail as the j-th edge, nothing
changes after the j-th edge is processed and both (1) and (2) still hold. Now
suppose, j is not in the same closed-trail as j − 1. Let b be the j-th edge and let
a be the (j − 1)-th edge, and let ap and bp be the mates of a and b before the
re-pairing. To show that (1) holds, we only need to show that the new pairings
{a, b} and {ap, bp} do not cross any of the unaltered pairings or each other.
Indeed, the pairing {a, b} is between neighboring edges and cannot cross any
other pairing. To see that {ap, bp} does not cross any other pairings, first note
that bp comes before ap in the cyclic order around the vertex after a; that is, the
cyclic order O is of the form (· · · , a, b, · · · , bp, · · · , ap, · · · ). This follows because
{a, ap} does not cross {b, bp} by induction hypothesis. Now assume, for the sake
of contradiction that {ap, bp} crosses some other pairing {c, d} �= {a, b} at the
vertex. Note that exactly one of c or d must be in between bp and ap in O since
otherwise {c, d} would not cross {ap, bp}. Without loss of generality, suppose c is
the edge in between bp and ap in O. If d is between b and bp, then {c, d} crosses
{b, bp} and if d is between ap and a, then {c, d} crosses {a, ap}, in either case
contradicting the induction hypothesis. Hence, {c, d} does not cross {ap, bp} and
claim (1) holds. For claim (2), since a and b are now paired, we only need to
show that the re-pairing does not leave the edges from 1 to j − 1 in different
trails. This cannot be the case since breaking a closed trail at one pairing does
not disconnect its’ edges.

For the complexity, observe that, in both the computation of the initial
decomposition and main processing, every vertex is processed once and every
edge is checked at most twice. Hence, the O(|V (G)| + |E(G)|) time-complexity
follows if we can show all the internal operations cost constant time. The initial
pairing as well as re-pairing consumes constant time if we represent a transi-
tion system by maintaining, for each edge, the two mates of the edge at its
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two end-points. Checking whether two edges are in the same trail can be done
in constant time if we associate with each edge, a pointer to their trail within
the decomposition. That is, two pointers will point to the same trail if their
corresponding edges are in the same trail. The pointers can be initialized in
O(|E(G)|) time during the computation of the initial closed-trail decomposi-
tion. When re-pairing, updating the trail of a re-paired edge through its’ pointer
will simultaneously update the trails of all the edges in the same trail. 	


A non-crossing Eulerian tour of H ′, and correspondingly a non-crossing Chi-
nese postman tour of H, for our running example is shown on the right in Fig. 7.
Incorporating the algorithm presented in Lemma 7, cut-and-route outputs a non-
crossing Chinese postman tour T̂ on H which detaches to a simple closed curve
on the polygonal schema D. Noting that, by Lemma 4, T̂ is also a postman tour
on the input mesh M , we now have the following theorems.

Theorem 1. Cut-and-route outputs a postman tour which is detachable to the
unknot on the input mesh M .

Proof. Let C be the detached postman tour on M obtained by the cut-and-
route algorithm. We prove that C is unknotted. By construction, C lies on the
embedding of the polygonal schema D in R

3. There is a homeomorphism h which
maps the polygonal schema D, from its embedding in R

3, to the standard disk
on the plane. By homeo-morphism restriction, h maps C to a simple closed curve
C ′ on the plane. By the Jordan-Schönfflies’ theorem [26], C ′ bounds a disk D′.
The inverse of D′ under h is a disk on the embedding of D whose boundary is
C. A simple closed curve that bounds an embedded disk is an unknot. Hence, C
is unknotted. 	

Theorem 2. Cut-and-route outputs an unknotted postman tour that visits any
edge of the input mesh M at most twice. Moreover, it is a 5

3−approximation
algorithm for UCPT.

Proof. Let T̂ be the outputted non-crossing Chinese postman tour on H. The
first claim follows because a Chinese postman tour visits every edge at most
twice [7], and by Lemma 4, the edges of H are in one-to-one correspondence
with the edges of M .

For the second claim, observe that the set of edges added to H to construct
the Eulerian multigraph H ′ form a forest on a subset of V (H). Indeed, if such a
graph has a cycle, the edges in the cycle can be removed from H ′ while keeping
it Eulerian. With the cycle removed, an Eulerian tour on H ′ yields a postman
tour with less length than T̂ , thus contradicting the minimality of T̂ . By the
relationship between the number of vertices and number of edges of a forest,
there are at most |V (H)| − 1 extra edges in H ′. By Lemmas 2 and 5, |V (H)| =
|V (D)| = |F (M)| + 2. By double counting of edges, |F (M)| = 2

3 |E(M)|. Thus,
at most 2

3 |E(M)| + 1 edges are repeated. Since any Chinese postman tour visits
every edge, |E(M)| is a lower-bound on the optimal unknotted Chinese postman
tour. The approximation factor thus follows. 	
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Theorem 3. For an input mesh M , cut-and-route runs in O(|F (M)|3) time.

Proof. For the analysis, note the relations |V (H)| = |V (D)| = |F (M)| + 2,
|E(H)| = |E(M)| implied by Lemmas 2, 5 and 4. Also note that |V (H ′| = |V (H)|
and |E(H ′)| ≤ 2 ∗ |E(H)| from Edmonds’ algorithm [7,19] and the fact that
2|E(M)| = 3|F (M)| by double counting. Mesh2disk and Declone were shown to
run in O(|F (M)|) time in Lemmas 3 and 6. Edmonds’ algorithm to convert H
to the Eulerian counterpart H ′ runs in O(|V (H)|3) = O(|F (M)|3) time [7,19].
It is easy to check (c.f. Supplementary methods in [2]) that we can compute,
in no more than cubic time, the local rotation of edges at vertices for H (and
in turn of H ′) from the polygonal schema description and the deleted edges of
H. By Lemma 7, computing a non-crossing Eulerian tour on H ′, or equivalently
finding a non-crossing Chinese postman tour on H, takes O(|V (H ′)|+|E(H ′)|) =
O(F (M)) time. Hence, all the modules of cut-and-route run in no more than
cubic-time with respect to the number of faces of the input mesh M . 	


4 Conclusions and Future Work

Eulerian tours have previously featured in experimental and theoretical consider-
ations of DNA [3,8,18,25,35] and protein self-assembly [14,21]. Similarly, topo-
logical constraints have been implicitly considered in previous works [3,6]. Here,
we formally investigated an unknottedness constraint of a circular strand’s rout-
ing on triangulated higher-genus surfaces, mostly within the design-framework
of Benson et al. [3]. We presented a cubic-time algorithm to compute unknotted
approximate Chinese postman tours on such surfaces.

There are numerous theoretical questions available within the prescribed the-
ory of unknotted Chinese postman tours. In the specified setting, the complexity
of finding unknotted Chinese postman tours (UCPT defined in Sect. 2.3) on sur-
face meshes remains. Simultaneously, further improvements to the approxima-
tion with respect to the approximation factor and run-time can also be pursued.
More generally, UCPT on straight-line graph embeddings in R

3 can be studied
with an aim to design arbitrary non-manifold wireframe structures.

On the experimental side, it remains to be seen whether the current app-
roach is viable, especially with the implied generality. First, unknottedness, while
necessary, is likely insufficient for knotted surface embeddings such as the one
depicted in Fig. 3. As evident in such instances, an unknotted routing can still
have a self-threading of the strand through loops. Although it has been previ-
ously shown [22] that such self-threadings are attainable through careful design
of the folding pathway, such designs may be unlikely to fold purely from ther-
modynamic optimization.
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Abstract. DNA strand displacement cascades have proven to be a
uniquely flexible and programmable primitive for constructing molec-
ular logic circuits, smart structures and devices, and for systems with
complex autonomously generated dynamics. Limiting their utility, how-
ever, strand displacement systems are susceptible to the spurious release
of output even in the absence of the proper combination of inputs—so-
called leak. A common mechanism for reducing leak involves clamping
the ends of helices to prevent fraying, and thereby kinetically blocking
the initiation of undesired displacement. Since a clamp must act as the
incumbent toehold for toehold exchange, clamps cannot be stronger than
a toehold. In this paper we systematize the properties of the simplest of
strand displacement cascades (a translator) with toehold-size clamps.
Surprisingly, depending on a few basic parameters, we find a rich and
diverse landscape for desired and undesired properties and trade-offs
between them. Initial experiments demonstrate a significant reduction
of leak.

1 Introduction

DNA strand displacement is a powerful mechanism for molecular information
processing and dynamics [11]. A strand displacement reaction is the process
where two strands hybridize with each other and displace a pre-hybridized
strand. The displaced strand could then serve, in turn, as the displacing strand
for downstream strand displacement events. Through concatenation of strand
displacement reactions, a variety of programmable behaviors have been experi-
mentally achieved, such as performing logical computation [5], engineering mole-
cular mechanical devices [4], and implementing chemical reaction networks [1].
In strand displacement cascades, single-stranded DNA typically fulfills the role
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of signals that carry information, while pre-hybridized DNA complexes drive
their interaction (and are consequently called the fuels).

Although the DNA strand displacement mechanism has shown great promise
for programming molecular systems, the current scale of these systems remains
limited. The main obstacle is leak, which occurs when undesired reactions get
spontaneously triggered in the absence of triggering strand. Since leak results
from a spurious interaction of the fuel complexes, fuels are necessarily kept at
low concentration to reduce the leak reaction, which limits the general speed of
the cascade. Instead of seconds, complex cascades often take hours [5].

To combat leak, a number of approaches have been tested such as introducing
Watson-Crick mismatches [2,3], or adding a threshold species that can consume
the leaked signal at a faster rate than it propagates to downstream components
[5,8]. It is understood that leak occurs as a result of fraying at the end of a double
helix which exposes a nucleation point for spurious displacement. Adding 1 to 3
nucleotides as the clamp domains [5,8,9] has proven useful in reducing undesired
leak, since leak can only occur after the entire clamp and one or more additional
nucleotides that are adjacent to the clamp fray. Clamps, in some form, are now
commonly used in the majority of strand displacement systems.

Since longer clamps should better prevent fraying, and the probability of
spontaneously opening the end of double-stranded helix decreases exponentially
with the length of the clamp, we want to make the clamps as long as possible.
However, with clamp domains, the intended strand displacement reaction must
be a toehold exchange reaction, which limits the size of the clamp to that of
a toehold [12]. In this paper, we extend the size of clamp to its maximum—
toehold size—and generalize a design principle for strand displacement systems:
Every fuel has a toehold-size clamp, and every reaction is a toehold exchange
reaction. We consider the simplest kind of strand displacement cascade—a cas-
cade of translators (which are logically equivalent to repeater gates). In a single
translator, a signal strand serves as the input and through a series of strand
displacement reactions, an output signal strand is produced whose sequence is
independent of the input strand. Chaining single translators allows us to build
systems of translators. Such translator chains have been used in a molecular
automata system that can selectively target cellular surface [6]. Translators can
also be composed to perform logic OR computation through having two trans-
lators convert two different input signals to the same output signal. A catalytic
system can be constructed if a translator chain’s output is the same as its input.
Although translators are the simplest kind of strand displacement module, they
can already exhibit complex and useful behavior.

Our simple formulation allows rigorous formal arguments about leak reduc-
tion and other desired properties that affect the intended reaction pathway. We
prove that although every reaction is reversible, the system completion level
does not decrease arbitrarily with the depth of the cascade, which allows long
cascades to be constructed. We show that by adjusting two parameters which
define the length of the double-stranded region (N) in a fuel and the minimal
distance between two fuels (shift), a variety of schemes can be achieved, each
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with unique properties. We prove a tradeoff theorem which says that no scheme
satisfies all the properties we could want. Thus understanding the taxonomy of
schemes is necessary to make proper design choices.

To analyze properties of interest for the various schemes, we use a ther-
modynamic argument which assumes that “enthalpy” and “entropy” are the
dominating factors deciding whether a configuration is favorable or not. More
specifically, we assume the main contribution of enthalpy is the number of bound
toehold-size domains and that of entropy is the number of separate complexes.1

Thus when comparing two configurations, if the number of bound toehold-size
domains is the same while one configuration has n fewer separate complexes than
the other, then this configuration is considered unfavorable as it incurs n units
of entropic penalty relative to the other. Similarly, all else being equal, a config-
uration with n fewer bound toehold-size domains than another configuration is
unfavorable and has a relative enthalpic penalty of n units.2

Recently, a leak reduction method relying on increasing a redundancy para-
meter Nr has been proposed where leak requires binding of Nr separate fuels
(“NLD scheme” in [10]).3 However, in the NLD scheme, a leaked upstream sig-
nal can start a cascade which gains one unit of enthalpy for every downstream
strand displacement step. Thus to ensure the “leakless” property, the NLD sys-
tem needs to have enough entropic penalty to compensate for this enthalpic
driving force. In contrast, since every reaction is a toehold exchange reaction
in our toehold-size clamp design, a leaked upstream signal cannot be driven
by the enthalpy of forming new bonds downstream. Unlike the leak reduction
method of [10], which solely relies on the entropic penalty, our design has an
additional enthalpic penalty for leak, which scales as N/shift. Leak reduction
based on the additional enthalpic penalty could be preferable especially at high
concentrations, where the entropic penalty to leak is smaller. Note that high
concentration regimes are of particular interest because they result in faster
kinetics.

We also show that if the clamps in the NLD scheme are extended to toehold
size, the NLD scheme can be categorized into one class of the toehold-size clamp
design with the parameter N representing the length of double-stranded region

1 Although our use of the words enthalpy and entropy are meant to evoke the respec-
tive physical chemistry concepts, the mapping is not 1–1. We note especially that the
contribution of forming additional base pairs to the free energy has both substantial
enthalpic and entropic parts (which can be physically distinguished based on their
temperature dependence).

2 Roughly speaking, “one unit of enthalpic penalty” corresponds to an average of
l · 1.5 kcal/mol, where l is the length of the domain (typically 5–10 nucleotides for
a toehold). “One unit of entropic penalty” at concentration C M corresponds to
ΔG◦

assoc + RT ln(1/C) ≈ 1.96 + 0.6 ln(1/C) kcal/mol [7]. With these numbers, at
roughly 650 nM concentration, binding an additional l = 7 domain is equal to one
unit of entropy. At low concentrations the entropic penalty becomes dominant, while
the enthalpic penalty prevails at high concentrations.

3 Our length parameter N is related to the redundancy parameter of [10], but whereas
we count the number of short domains, they count the long domains.
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and shift representing the length of one long domain. According to the taxonomy
in this paper, the extended NLD scheme for any redundancy Nr has the prop-
erty that toehold occlusion [5,9] and spurious strand displacement—(partial)
displacement of a strand on a fuel by a spurious invader—cannot be avoided. In
this sense, the toehold-size clamp design principle has a broader design space,
allowing for more flexibility in balancing desired and undesired properties.

We conclude with an experimental demonstration of the toehold-size clamp
design with one set of parameters. Leak reduction compares positively both in
terms of the kinetic leak rate and the maximum amount of leak ever generated
with the previously proposed NLD schemes. (Although the absolute leak rate
is smaller for our scheme, the lower completion level due to toehold exchange
reaction reversibility results in an overall smaller “signal to noise ratio” compared
with the NLD schemes.)

2 Design Space of Toehold-Size Clamp Translators

2.1 System Description

We first introduce the conventions used in this paper. We use the domain level
abstraction for DNA strands. A domain represents a concatenation of DNA bases
treated as a unit, which can hybridize to or dissociate from a complementary
domain. Unlike the traditional representation that divides domains into two
classes where long domain indicates irreversible binding and short (toehold)
domain indicates reversible binding, here all the domains have equal length of
a toehold. As a result, if two strands are only held by a single domain, they
can dissociate (see Fig. 1a). We assume that all domains are orthogonal (no
cross-talk). Note that this is a strong assumption because the size of a domain is
restricted to that of a toehold and there are a limited number of distinct toeholds
that could be designed (see Discussion). The desired pathway consists entirely of
toehold exchange strand displacement reactions. Additionally, to capture leak,
we consider blunt-end strand displacement, which is not preceded by toehold
binding but rather is mediated by fraying at the ends of helices. We assume that
fraying cannot open a whole domain. The unique domains can be aligned in a
row, and their identity is represented as their horizontal position (i.e., numbering
on top of Fig. 1b). Domains aligned vertically have the same or complementary
sequence.

By a domain instance, we mean a particular domain on a particular complex.
In contrast, when we refer to a (domain) position, we mean all domain instances
that have the same or complementary sequences, and are drawn vertically aligned
in our figures.

Domain instances can be either single-stranded or double-stranded. Single-
stranded domain instances are subdivided into toehold and overhang types. Note
that toehold domain instances initiate the toehold mediated strand displace-
ment. Double-stranded domain instances are subdivided into left flank, clamp,
and unused. Specifically, clamps are the domain instances located at the right
end of a double-stranded helix, left flanks are the domain instances located at the
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Fig. 1. (a) Fundamental reaction steps we consider. (b) The conventions of the toehold-
size clamp design. (c) Desired reaction pathway of a 2-translator cascade (X → Y →
Z). In the presence of the input signal strand, after 4 elementary translation steps, the
signal strand X is translated to signal strand Z.

left end of a double-stranded helix (see Fig. 1b). The remaining domain instances
are unused. The name “clamp” comes from historical use, as structurally similar
domains were added to previous schemes to “clamp-down” the ends of helices to
reduce leak. Note that without the clamp domain on the second fuel in Fig. 1b,
the overhang of the first fuel can initiate blunt-end strand displacement.

The coloring of double-stranded domain instances refers to whether or not
there are toehold (orange) or clamp (gray) domain instances at the same position.
In particular, the color orange indicates that there is a toehold domain instances
at the same position If a domain position overlaps with both toehold and clamp
domain instances, it is colored in both orange and gray (e.g., see Fig. 2). If a
domain position does not have toehold or clamp domain instances, it is colored
in white.

2.2 Translator Design

A translator, composed of different fuels where each fuel is responsible for an
elementary translation step, can translate an input signal strand to an indepen-
dent output signal strand. When the input signal strand is present, it reacts
with the first fuel displacing the top strand, which then serves as the input to
trigger the downstream fuel (Fig. 1c). Note that the figure shows two translators,
of two fuels each (since Y is sequence independent from X, and Z is sequence
independent from Y ).

To design a translator system with toehold-size clamps, two parameters are
necessary and sufficient. We use the parameter N to represent the number of
the double-stranded domains in a fuel and the parameter shift to represent
the minimal distance between two single-stranded toeholds (see Fig. 1b). Since a
toehold-size clamp is in every fuel, shift should be between 1 and N . We illustrate
the diversity of schemes for N = 6 for all values of shift in Fig. 2.
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Fig. 2. The example schemes of translators with N = 6 and all values of shift. Every
domain instance is colored according to the domain types of the domain instances at
that position. The dashed red lines represent possible spurious strand displacement
events between different fuels. The dashed blue lines represent possible toehold occlu-
sion events when a toehold domain instance and an overhang domain instance exist in
the same position. (Color figure online)

Once the parameters N and shift are determined, the translator design and
the types of each domain instance can be assigned. Using 0 indexing, we start
from the 0th fuel which is responsible for the first elementary translation step
(e.g. Fig. 1c). The toehold domain instance of the 0th fuel is located at position
0. Since the length of the double-stranded domains in a fuel is N , the clamp
instance in this fuel lies at position N . To ensure that every desired reaction
is a toehold exchange strand displacement reaction (i.e., there is a clamp), the
number of overhang domain instances in a fuel should be shift − 1 (we write
overhang = shift − 1).

Generalizing these rules, the domain types of each domain instance in every
fuel can be determined. The position of the ith fuel (which is responsible for the
i + 1 elementary translation step) is shifted to the right by shift · i. Thus the
toehold domain instance in the ith fuel lies at the position shift · i; the left flank
domain instance lies at the position shift · i + 1; and the clamp domain instance
lies at the position shift · i + N . How many fuels do we need to compose a single
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translator? Recall that single translator consists of as many fuels as are necessary
to generate an output signal that is sequence independent of the input. Thus
the number of fuels per translator is �N+overhang

shift �, which can be equivalently
written as �N+shift−1

shift � = �N−1
shift � + 1.

2.3 Useful Lemmas

In subsequent sections, we prove properties of schemes based on their para-
metrization of N and shift. Many of our arguments rely on showing whether
regularly spaced positions with certain domain instances (such as toeholds) can
intersect with other regularly spaced positions or intervals with different domain
instances (such as overhangs). To simplify those arguments we first establish the
following claims.

Lemma 1. Let p, q, and r be natural numbers with p > 0 and r − q > 0.
∀i ∈ N,∃j ∈ N such that j · p+ q = i · p+ r if and only if r − q is a multiple of p.

Proof. Fix any i ∈ N. Suppose j ·p+q = i·p+r, for some j ∈ N. Then j = i+ r−q
p

and r − q must be a multiple of p. ��
Lemma 2. Let p, q, and r be natural numbers with p > 1 and r − q > 0.
∀i ∈ N,∃j ∈ N such that j ·p+q is contained in the interval [i·p+r, (i+1)·p+r−2]
if and only if r − q − 1 > 0 and r − q − 1 is not a multiple of p.

Proof. Call k · p + q a valid position, for any k ∈ N. Fix any i ∈ N. First we
consider the case when r − q − 1 = 0 (and thus r = q + 1). Consider any interval
[i ·p+r, (i+1) ·p+r−2] = [i ·p+q+1, (i+1) ·p+q−1]. Suppose by contradiction
that a valid position j · p+ q intersects the interval. Then we have the following:
(i) i · p + q + 1 ≤ j · p + q which simplifies to j ≥ i + 1

p and thus j ≥ i + 1 (since
j ∈ N). (ii) j · p + q ≤ (i + 1) · p + q − 1 which simplifies to j ≤ i + 1 − 1

p < i + 1.
Contradiction.

Finally, consider two cases when (r − q − 1) > 0: (1) (r − q − 1) is a multiple
of p. Then i · p + q + (r − q − 1) = i · p + r − 1 is a valid position and the next
valid position occurs at (i + 1) · p + r − 1. Thus there is no valid position in the
interval [i · p + r, (i + 1) · p + r − 2]. (2) (r − q − 1) is not a multiple of p. Let δ
be the remainder; 1 ≤ δ ≤ p − 1. Thus the smallest valid position larger than
i · p + q + (r − q − 1) occurs at i · p + r − 1 + δ. Since 1 ≤ δ ≤ p − 1, we know
that it falls in the interval [i · p + r, (i + 1) · p + r − 2]. ��

3 Thermodynamic Properties

An effective translator cascade ideally has a high signal-to-leak ratio, even at
thermodynamic equilibrium. We next show that by varying scheme parameters
N and shift, we vary the thermodynamic barrier to leak. We go on to show that
while every translator cascade scheme is reversible, there is a lower bound on
fraction of output signal when input is present, regardless of its depth.
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3.1 Thermodynamic Barrier to Leak in Translator Cascades

Suppose there is a hypothetical experiment implementing a single copy of every
fuel in a translator cascade of arbitrary depth, coupled with a single copy of a
downstream reporter. For any scheme, a downstream reporter is identical to a
fuel of that scheme but contains no overhang. Leak occurs when the top and
bottom strands of the reporter dissociate into separate complexes—in typical
experimental settings, this would increase a fluorescence signal used as a proxy
to measure the produced output. To give a barrier to leak based on N and shift,
we first develop some useful lemmas.

Lemma 3. If a position contains an overhang domain instance, then it does not
contain a clamp domain instance.

Proof. If shift = 1 there are no overhang domain instances and we are done.
Suppose shift > 1. The ith clamp domain instance lies at position i · shift + N .
The jth overhang domain instance lies at positions between j · shift +N +1 and
(j + 1) · shift + N − 1. Let r = N + 1, p = shift and q = N . By Lemma 2, the
position that has a clamp domain instance cannot intersect the position that has
an overhang domain instance since r − q − 1 = 0. ��
Lemma 4. Let ci and ci+1 be the positions of the clamp domain instances for
neighboring fuels i and i+1, respectively. Then positions in the (possibly empty)
interval [ci + 1, ci+1 − 1] contain overhang domain instances.

Proof. ci = i · shift + N and ci+1 = (i + 1) · shift + N . The overhang domain
instances for fuel i lie at positions between i·shift+N+1 and (i+1)·shift + N−1,
establishing the claim. (Note that if the interval is empty, then fuels do not have
overhangs and the claim in trivially true.) ��

For the purposes of the next argument, it is convenient to refer to domain
instances as either a top domain instance (if it occurs on a top strand), or a
bottom domain instance (if it occurs on a bottom strand). We will refer to a
double-stranded domain instance as a top domain instance that has a bond to a
bottom domain instance. A configuration is a matching between top and bottom
domain instances, where each match is one bond. Our arguments are based solely
on counting the maximum number of possible bonds, given certain constraints.
The barrier to leak implied by our result, even in the presence of pseudoknots,
is entirely enthalpic in nature since it assumes no entropic penalty for joining
two complexes into one.

Theorem 1. Given a translator cascade of arbitrary depth, a downstream
reporter, and no input signal, if M is its maximum possible number of bonds
then any configuration having the two strands of the reporter in distinct com-
plexes can have at most M − � N

shift� bonds.

Proof. Let M be the maximum possible number of bonds, of any configuration,
for the translator cascade with downstream reporter in the absence of input.
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Suppose the reporter complex is in the ith layer; then its toehold domain instance
is at position i · shift and the remainder of its domain instances lie in positions
between p = i · shift + 1 and q = i · shift + N .

Let L be any maximally bound configuration of top and bottom domain
instances in [0, p − 1], and let ML equal the number bonds in L. Let R be
the intended configuration (in the absence of input) of top and bottom domain
instances in [p, q]: all bottom domain instances of fuel j have a bond to a top
domain instance, also from fuel j, if their position is in [p, q] (and similarly for the
reporter). Let MR equal the number of bonds in R. Since there are no toehold
domain instances in [p, q], then that interval contains at least as many top as
bottom domain instances. Thus R is a maximally bound configuration of top
and bottom domain instances in [p, q], and ML + MR = M .

Let R′ be a maximally bound configuration of top and bottom domain
instances in [p, q] subject to no top domain instance in the reporter complex
being bound to a bottom domain instance in the reporter complex. Let MR′

be equal to the number of bonds in R′. For each position j ∈ [p, q], there are
two possibilities: (i) There is an excess of top domain instances, and thus one of
those can bind the reporter bottom domain instance, keeping the total number
of bonds in position j unchanged. (ii) There is an equal number of top and bot-
tom domain instances, and thus position j now has one fewer bond. Therefore,
the difference MR −M ′

R can be determined by counting the number of positions
in [p, q] with an equal number of top and bottom domain instances. Let p′ be the
maximal position containing a clamp domain instance where p′ < p. Note that
p′ must exist since in any translator design there is a clamp domain instance
at position N , and since p > N as otherwise the reporter would have domain
instances in common with the input signal. By Lemmas 3 and 4 every position
in [p′, q] has either overhang domain instances or clamp domain instances, but
not both. The same is true for positions in [p, q] and none of those positions
have instances of a toehold domain. Thus, the number of positions in [p, q] with
an equal number of top and bottom domains is exactly the number of clamp
domain instances in that interval. There is a clamp domain instance at position
q, and every position q − k · shift ≥ p, for k ∈ N. Since q − p + 1 = N , then
there are � N

shift� positions that have clamp domain instances in [p, q]. Therefore
MR − MR′ = � N

shift�. By (i) and (ii) above, every position in [p, q] has at least
one unbound top domain instance. Let R′′ be a reconfiguration of R′, in the
obvious way of swapping bonds, such that the reporter top strand forms its own
complex. Since MR′′ = MR′ , with MR′′ being equal to the number of bonds in
R′′, then M − MR′′ = � N

shift� establishing the claim. ��
This theorem implies that in the absence of input there is an enthalpic barrier

of � N
shift� bonds to separate the reporter strands from a maximally bound state.

In contrast, when the input is present, the signal can be propagated all the way
until the reporter, where separating the reporter strands incurs the loss of only
1 bond (breaking the bonding of the top and bottom clamp domains on the
reporter, which have no other binding partners). Thus by increasing N we can



The Design Space of Strand Displacement Cascades 73

enlarge the enthalpic barrier to leak without increasing the enthalpic barrier to
correct output.

3.2 Asymptotic Completion Level of Translator Cascades

With a cascade of effectively irreversible strand displacement reactions (not rely-
ing on toehold exchange), it is safe to assume that most of the input signal should
propagate through to the end. However, with a cascade of reversible reactions
such as those we necessarily obtain with toehold size clamps, it might seem that
the signal will decrease with the length of the cascade if the signal “spreads out”
across the layers. Does this mean that translators with toehold size clamps can-
not be composed into long cascades? In this section we prove a lower-bound on
the amount of final signal output by a chain of translators that is independent
of the length of the chain, which shows that long cascades are indeed feasible.

To analyze a system with a cascade of translators, we simplify each translator
reaction to be a bimolecular reversible toehold exchange reaction X+F �Y +W ,
where X is the input signal, F is the fuel, Y is the output signal and W is the
waste species. Assuming that the two toeholds in a toehold exchange reaction
(i.e., toehold and clamp domain instances in our nomenclature) have the same
thermodynamic binding strength, the net reaction of a translator has ΔGo ≈ 0
and the equilibrium constant of each reaction can be treated as 1. Thus for
a single translator, if the initial concentration for the reactants are [X]0 = α,
[F ]0 = 1, at chemical equilibrium, the concentration of output strand Y will be

α
α+1 .

We then ask how much output signal will be produced if multiple translators
are cascaded together. Suppose we can have the n-layer reaction system, where
each reaction represents a translator reaction:

X1 + F1 �X2 + W1

...

Xi + Fi �Xi+1 + Wi

...

Xn + Fn �Xn+1 + Wn

The system starts with all the fuels (Fi, i = 1, 2, . . ., n) at concentration
1 and X1 at α. If there is relatively little signal compared with fuel (we set
α < 1

2 ), the reactions are driven forward by the imbalance between Fi and Wi.
By conservation of mass, Fi + Wi = 1. Since Wi � α (we can’t produce more
waste than there was input), we get Fi = 1 − Wi � 1 − α. Thus, at chemical
equilibrium, for each reaction we have:

Xi+1

Xi
=

Fi

Wi
� 1 − α

α
.

Letting β = 1−α
α , we obtain a lower bound for Xi+1: Xi+1 � βXi.
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Since the total concentration of all signal strands is conserved, we have:

X1 + X2 + · · · + Xi + · · · + Xn+1 = α

(β−n + β−(n−1) + · · · + β−1 + 1) · Xn+1 � α

Since
0∑

i=−n

βi = β−n 1 − βn+1

1 − β
, the above equation can be simplified as

Xn+1 · β−n 1 − βn+1

1 − β
� α

Thus the concentration of Xn+1 is

Xn+1 � αβn(1 − β)
1 − βn+1

=
α( 1

α − 2)
1
α − 1 − 1

( 1
α −1)n

�
α( 1

α − 2)
1
α − 1

= α
1 − 2α

1 − α
.

This result indicates that increasing the number of reaction layers does not affect
the lower bound of the equilibrium concentration of the output signal. Therefore,
concatenating the translators composed of toehold exchange reactions can always
generate at least a constant fraction of signal independent of the number of
layers.

4 Kinetic Properties

Beyond thermodynamic properties, the kinetic properties of translator schemes
can vary depending on the choice of N and shift. In this section, we show that
schemes are susceptible to undesirable properties such as toehold-occlusion, spu-
rious strand displacement, or reconfiguration of fuels, to varying degrees. As we
will see, certain schemes preclude some of these phenomena entirely.

4.1 Toehold Occlusion

In strand displacement systems, reaction kinetics can be controlled by the
strength of a toehold [12]. Stronger toeholds can enable faster reaction kinetics;
however, if the toehold strength is too strong, toehold dissociation can become
a rate limiting step. This is problematic when overhangs of fuel can bind to
toeholds of other fuel, since fuel is typically present in high concentration. This
creates so-called toehold occlusion [5,9], which can significantly slow down the
intended reaction kinetics in the presence of input signal.

Theorem 2. Toehold occlusion is not possible in a translator scheme if and only
if N is a multiple of shift.

Proof. Toeholds are occluded when overhangs can bind to them. The toehold
domain instance of fuel i lies at position i · shift. Overhang domain instances of
fuel i lie at positions between i · shift + N + 1 and i · shift + N + shift− 1. The
claim follows by Lemma 2 (p = shift, q = 0 and r = N + 1). ��
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4.2 Spurious Strand Displacement

Spurious strand displacement events, even if they do not lead to leak of output
signal or dissociation of strands of any kind, are unproductive reactions that can
slow down the intended kinetics of the system. Spurious displacement occurs
when any proper prefix or suffix of a fuel’s double-stranded helix is displaced
by a spurious invader. A spurious invader of a fuel is any complex not equal
to its intended input strand. We partition our analysis into two categories: (i)
spurious displacement in the absence of input, and (ii) spurious displacement in
its presence.

Spurious Displacement in the Absence of Input. Spurious displacement
between fuels can become increasingly problematic with respect to the intended
kinetics of a cascade—since fuels involved in spurious displacement can be
unavailable for their intended reaction—as the concentration of the system is
increased.

We find it convenient to refer to specific top or bottom domain instances, as
in Sect. 3.1. We begin by looking at spurious displacement of bottom domain
instances which can only occur in positions containing toehold domain instances
as these are the only positions with bottom domains in excess.

Lemma 5. In the absence of input, spurious displacement of bottom domain
instances in a translator scheme is possible (i) in left flank domain instances if
and only if shift = 1 (i.e. the toehold domain instance can invade the left flank
domain instance, see Fig. 2), and (ii) in clamp domain instances if and only if
N is a multiple of shift.

Proof. (i) Left flank domain instances are offset of toehold domain instances by
1. By Lemma 1, setting p = shift, q = 0 and r = 1, it follows that r − q = 1 is a
multiple of p, and thus shift = 1, if and only if a domain position overlaps with
both a toehold domain instance and a left flank domain instance. (ii) Clamp
domain instances are offset of toehold domain instances by N . By Lemma 1,
setting p = shift, q = 0 and r = N , it follows that N = r − q is a multiple of
shift = p if and only if a domain position overlaps with both a toehold domain
instance and a clamp domain instance. ��

Now consider spurious displacement of top domain instances which can only
occur in positions containing overhang domain instances as these are the only
positions with top domain instances in excess.

Lemma 6. In the absence of input, spurious displacement of top domain
instances in a translator scheme is possible if and only if N −1 is not a multiple
of shift.

Proof. By construction, when shift = 1 there are no overhang domain instances
and therefore spurious displacement of top domain instances is not possible.
Assume shift > 1.
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We first establish that it is not possible to spuriously displace top domain
instances of clamp instances, because the positions of clamp domain instances
cannot intersect that of overhang domain instances, by Lemma 3.

Thus any displacement of top domain instances of a fuel must be a proper
prefix of its helix and therefore must include a left flank domain instance. Left
flank domain instances are offset by 1, relative to toehold domain instances.
Setting p = shift, q = 1 and r = N + 1 it follows from Lemma 2 that the
positions of left flank domain instances can intersect that of overhang domain
instances if and only if r − q − 1 = N − 1 is not a multiple of p = shift. ��

Spurious Displacement in the Presence of Input. A second type of spuri-
ous displacement is when a free signal strand (including the input), can act as a
spurious invader of a fuel other than its designed target. In this case, particularly
when the input concentration is significantly lower than fuel as is typical, signal
strands can become involved in numerous unproductive reactions thus slowing
(possibly significantly) signal propagation through every layer of the cascade.

Lemma 7. Spurious displacement between signal strands and fuels is not pos-
sible in a translator scheme if and only if shift ≥ N − 1.

Proof. Domain instances of signal strand i lie at positions between i · shift and
i·shift + N −1. Signal strand i is a spurious invader if it can displace any domain
instances on some fuel j > i. Signal strand i cannot displace the clamp domain
instance on fuel i, at position i·shift+ N , and therefore cannot displace the clamp
domain instance of fuel j, at position j · shift + N > i · shift + N . Suppose signal
strand i is a spurious invader of fuel j; it must invade a prefix of fuel j’s double-
stranded domain instances (its helix) which necessarily includes its left flank
domain instance at position j·shift+ 1. It follows that j·shift+1 ≤ i·shift+ N−1,
and thus shift ≤ N−2

j−i ≤ N − 2 since j > i. Finally, suppose signal strand i is
not a spurious invader of any fuel j > i; then it cannot displace the left flank
domain instance of fuel j, so j · shift + 1 > i · shift + N − 1 which implies
shift > N−2

j−i = N − 2 when j = i + 1. ��

Spurious Displacement with or Without Input. By Lemmas 5, 6, and 7
we have the following.

Theorem 3. Spurious displacement is not possible in a translator scheme if and
only if shift = N − 1.

4.3 Reconfiguration

Spurious strand displacements can be more complicated when multiple species
are involved. Some may result in the formation of complex multi-stranded struc-
tures. In this section, we show contrasting examples of possible reconfiguration
after spurious strand displacement. The first example requires a bimolecular
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reaction to undo, while unimolecular reconfiguration is sufficient for the sec-
ond. (To the first approximation, even at the “high” concentrations used here,
bimolecular reactions are relatively slower than unimolecular reactions.)

Consider the extreme case when shift = 1 in the absence of input signal. By
Lemma 5, we have shown that the left flank bottom domain instance can be
displaced by a toehold domain instance on the next fuel. Since shift = 1, the ith

left flank domain instance appears at position shift · i + 1 = i + 1, for all i ∈ N.
Therefore, multiple spurious displacement events could result in all of the bottom
domain instances of one fuel being displaced by toehold domain instances of other
fuels. This results in a free (unbound) bottom strand. To restore the original
configuration, a bimolecular reaction pathway is needed. Although the multiple
blunt-end displacement events to cause this reconfiguration are unlikely, once
formed, it requires a slow bimolecular reaction to undo. Figure 3a demonstrates
this pathway.

In other cases, spurious strand displacement seems unable to cause any major
reconfiguration problem. For example, when N = 5 and shift = 3 any reconfig-
uration can be undone via fast unimolecular steps. An example of a structure
that can form via spurious displacement in this scheme is shown in Fig. 3b.

These two examples suggest that there is likely a separation between schemes
with harmful spurious displacement and those in which spurious displacement
occurs but can be quickly undone. Formally differentiating the two cases is an
area for further research.

(a)

(b)

N = 5
shift = 3

N = 5
shift = 1

downstream

F0

F1

F2

F3

F4

downstream

F0

downstreamF0

downstream

F0.bottom

F1

F2

F3

F4

F0.top

Fig. 3. Examples of configurations reachable with spurious strand displacement.

5 Trade-Offs Between the Properties

We have shown that different choices of N and shift yield translator schemes
with varying thermodynamic and kinetic properties. By Theorems 2 and 3 we
have the following fundamental kinetic trade-off.
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Corollary 1. There is no translator scheme that avoids both toehold occlusion
and spurious displacement.

Thus, every translator scheme has some undesirable kinetic property. There
is a quantitative trade-off for the thermodynamic property of enthalpic barrier
to leak, given by Theorem 1, based on the ratio of N and shift. Schemes can also
have a trade-off between unfavorable kinetic and thermodynamic properties. By
Theorem 3, only schemes with shift = N − 1 can avoid spurious strand displace-
ment. However, by Theorem 1, these schemes only have a constant enthalpic
barrier to leak.

Corollary 2. A large enthalpic barrier to leak is incompatible with avoiding
spurious displacement.

In fact, schemes with the largest enthalpic barrier to leak also have the most
potential spurious interactions between fuels and signal strands. As an example
of this, compare the spurious interactions caused by the X input signal with
fuels, besides the initial fuel, as shift increases in Fig. 2.

In summary, there is no best translator scheme with respect to all thermo-
dynamic and kinetic properties studied here. Instead, the entire taxonomy we
develop informs the choice of translator scheme, and one should be chosen based
on the expected conditions of its planned use. For example, high concentration
conditions may be best served by a scheme with no toehold occlusion and a bal-
ance between its enthalpic barrier to leak and its potential number of spurious
displacement reactions.

6 Preliminary Experimental Verification

To experimentally test the kinetic leak reduction design strategy with toehold-
size clamps, we chose one of the parameter pairs N = 5 and shift = 3. This
combination has the desired property that (1) in the absence of the input signal
strand, leak requires at least two units of enthalpic penalty (breaking two bonds)
compared with the maximally bound state, and (2) even if spurious strand dis-
placement can occur, there exists a unimolecular reaction pathway that can
reverse the spurious interactions and restore the original configuration of the
system (see Sect. 4.3).

6.1 Leak Reduction with a Single Translator

We compare with the previously proposed leak reduction method (NLD scheme)
based exclusively on an entropic penalty [10]. More specifically, we choose two
NLD redundancy parameter values Nr = 1 and Nr = 2. For Nr = 1, the scheme
is the typical leaky translator (named SLD scheme). For Nr = 2, the scheme is
the previously described “leakless” translators (named DLD scheme).

In our experiments, every fuel is kept at 5 µM, which is 50–100 times larger
than the typical concentration used in strand displacement systems. Figure 4a
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compares the kinetic behaviors of SLD, DLD, and the toehold-size clamp design,
all in the absence of input signal. As expected, the leak rate in the SLD scheme
(measured at the first 20 min) is 30 times higher than that of the DLD scheme.
However, the DLD leak rate is still roughly 0.03 nM/min throughout the 10 h.
In contrast, after quickly generating 10 nM initial leak (which is hypothesized
to be caused by misfolded fuel structure or synthesis error of DNA strands),
the toehold-size clamp design does not show gradual leak at our experimental
setting.

In addition to kinetic measurements, we tested how much leak each design has
at thermodynamic equilibrium, which sets an upper bound of the total leak for
an isolated translator. To achieve thermodynamic equilibrium, fuels and reporter
are slowly annealed together. Figure 4b compares the total leak amount of these
designs. The toehold-size clamp design shows the least amount of leak even at
thermodynamic equilibrium.

DLD

SLD

Toehold size clamp

SLD DLD Toehold size clamp

(a) (b)

Fig. 4. Comparison of leak between the SLD, DLD and toehold-size clamp design
(N = 5, shift = 3) from (a) a kinetics and (b) a thermodynamic equilibrium perspec-
tive. Since leak is measured, the systems do not contain the input signal strands. To
measure leak at thermodynamic equilibrium, fuels and reporter are slowly annealed.
The concentrations for fuels are 5 µM. Reporter in the toehold-size clamp design is at
5 µM. Reporters in the SLD and DLD designs are at 6 µM. The reaction temperature
is 37 ◦C. See the sequences and methods in the full version of this paper.

6.2 Leak Reduction with Translator Cascade

Beyond a single translator, we wanted to know (1) how much leak (without input
signal) and (2) desired output signal (with input signal) a translator cascade can
generate with increasing number of translators.

Figure 5a shows that in the time period of the experiment, in the absence of
input signal strand, the translator cascades of 1 to 6 fuels (1 to 3 translators)
all show no apparent leak. In the presence of input signal, the completion level
decreases with the number of layers. However, as more layers are added, the
completion level does not decrease linearly, and indeed seems to approach an
asymptote, a behavior consistent with the theoretical prediction of Sect. 3.2.
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1         2          3         4         5         6 # fuels

reporter+F5+X5

reporter+F5+F4+X4

reporter+F5+F4+F3+X3

reporter+X6

reporter+F5+F4+F3+F2+X2
reporter+F5+F4+F3+F2+F1+X1

reporter+F5+F4+F3+F2+F1+F0+X0

no 
apparent

leak

input
added

(b)(a)

Fig. 5. Kinetics and thermodynamic equilibrium of translator cascades with the
toehold-size clamp design (N = 5, shift = 3). (a) Kinetic behaviour in the presence and
absence of input signal, for cascades of different length. (b) The total amount of leak
in the absence of input signal at thermodynamic equilibrium, for cascades of different
length. The concentrations of the reporter and the fuels are around 5 µM. The concen-
tration of each input is 2.5 µM. The reaction temperature is 37 ◦C. See the sequences
and methods in the full version of this paper.

Figure 5b studies the leak of translator cascades of varying depth at ther-
modynamic equilibrium. The leak at equilibrium increases as the number of
fuels increases. However, even if there are 6 fuels (3 translators), the total leak
concentration is still less than 3% of the fuel concentration.

These results suggest that the absolute leak concentration of the toehold-
size clamp design is significantly less than the previously proposed DLD design.
Nonetheless, the relative positive signal to background noise ratio of the toehold-
size clamp design is smaller than of the DLD design because of the significant
smaller completion level due to the reversibility of all displacement steps. Our
results suggest that the toehold-size clamp design could be preferable, especially
when a system requires absolutely smaller leak, such as when concatenating the
translators with downstream catalytic or auto-catalytic systems.

7 Discussion

In this work, we study schemes for constructing strand displacement systems
which utilize toehold size clamps to decrease leak. The full diversity of such
schemes for translators is accessible by varying two parameters N and shift. We
provide rigorous guarantees on the enthalpic barrier to leak as a function of
these parameters. We further prove that certain parameter values result in other
desirable properties like no spurious displacement, and no toehold occlusion. We
prove a tradeoff theorem which says that no scheme satisfies all desired proper-
ties; consequently, understanding the properties of the full assortment of schemes
helps to make the proper design choices. Since no single scheme can be judged
to be “best”, and tradeoffs are inherent, future work will also experimentally
compare different parameter sets in different experimental regimes.
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In contrast to previously reported methods for arbitrarily decreasing leak
which rely on entropic barrier arguments, we describe how the enthalpic barrier
to leak can be raised arbitrarily. The enthalpic barrier argument is particularly
germane for the high concentration regime where the entropy penalty for joining
complexes is smaller.

Our argument relies on the strong assumption that all domains are orthog-
onal. In reality, given the limited size of a domain (that of a toehold), as the
number of distinct domains increases, it is not possible to make all the domains
orthogonal. Nonetheless we note that in certain cases having the same sequence
in multiple domain positions seems to pose no problem. (For example, in schemes
where N is not a multiple of shift, all the clamp domain instances could have the
same sequences.) Future work could further explore how to assign the same
domains without undesired interactions and how the number of orthogonal
domains needed scales with the length of double-stranded region N .
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Abstract. The notion of entropy is shared between statistics and ther-
modynamics, and is fundamental to both disciplines. This makes statisti-
cal problems particularly suitable for reaction network implementations.
In this paper we show how to perform a statistical operation known
as Information Projection or E projection with stochastic mass-action
kinetics. Our scheme encodes desired conditional distributions as the
equilibrium distributions of reaction systems. To our knowledge this is
a first scheme to exploit the inherent stochasticity of reaction networks
for information processing. We apply this to the problem of an artificial
cell trying to infer its environment from partial observations.

1 Introduction

Biological cells function in environments of high complexity. Transmembrane
receptors allow a cell to sample the state of its environment, following which
biochemical reaction networks integrate this information, and compute decision
rules which allow the cell to respond in sophisticated ways. One challenge is that
receptors may be imperfectly specific, activated by multiple ligands with various
propensities. What algorithmic and statistical ideas are needed to deal with this
challenge, and how would these ideas be implemented with reaction networks?
We begin to address these questions. The two questions do not decouple because
the attractiveness of algorithmic and statistical ideas towards these challenges
is tied in with their ease of implementation with reaction networks. We are
interested in statistical algorithms that fully exploit the native dynamics and
stochasticity of reaction networks. To fix ideas, consider an example.

Example 1. Consider an artificial cell with two types of transmembrane receptors
R1 and R2 in an environment with three ligand species L1, L2, and L3 (Fig. 1).
Receptor R1 has equal sensitivity to ligands L1 and L3, and no sensitivity to L2.
Receptor R2 has equal sensitivity to ligands L2 and L3, and no sensitivity to L1.
This information can be summarized in a sensitivity matrix of nonnegative
rational numbers

c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 82–97, 2017.
DOI: 10.1007/978-3-319-66799-7 6
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Fig. 1. An artificial cell with two transmembrane receptors R1 and R2 and extracellular
ligands L1, L2, L3. R1 has equal sensitivity to both L1 and L3. R2 has equal sensitivity
to both L2 and L3. All sensitivities are nonnegative rational numbers.

S =

L1 L2 L3( )
R1 1 0 1
R2 0 1 1

The question of interest is how to design a cytoplasmic chemical reaction
network to estimate the numbers l1, l2, l3 of the ligands from receptor activa-
tion information. We assume that a prior probability distribution over ligand
states (l1, l2, l3) ∈ Z

3
≥0 is given. We further assume that this prior probability

distribution is a product of Poisson distributions specified by given Poisson rate
parameters q1, q2, q3 ∈ R>0 respectively. Lemma 2 provides intuition for the
product-Poisson assumption. The following questions concern us.

1 Given information on the exact numbers r1 and r2 of activation events of
receptors R1 and R2, obtain samples over populations (l1, l2, l3) of the ligand
species according to the Bayesian posterior distribution
Pr[(l1, l2, l3) | (r1, r2,Poisson(q1, q2, q3))].

2 Given information on the average numbers 〈r1〉 and 〈r2〉 of activation events
of receptors R1 and R2, obtain samples over populations (l1, l2, l3) of the
ligand species according to the Bayesian posterior distribution
Pr[(l1, l2, l3) | (〈r1〉, 〈r2〉,Poisson(q1, q2, q3))].

We investigate these questions for arbitrary numbers of receptors and ligands,
arbitrary sensitivity matrices S, and arbitrary product-Poisson rate parameters
q, and make the following new contributions:

– In Sect. 3, we precisely state our question in the general setting. In Sect. 4,
we illustrate our main ideas on Example 1.

– In Sect. 5.1, we describe a reaction network scheme Proj that takes as input a
sensitivity matrix S and outputs a prime chemical reaction network. Our pro-
posed reaction networks have the following merits that make them promising
candidates for molecular implementation. Implementing the reactions requires
only thermodynamic control and not kinetic control because the reaction rate
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constants need only be specified upto the equilibrium constant for the reac-
tions (Remark 1). Our scheme avoids catalysis, and so is robust to “leak
reaction” situations [21] (Remark 2).

– In Sect. 5.2, we address Question 1. We show that for each fixed S and q,
when the chemical reaction system is initialized as prescribed according to the
numbers ri of activation events of receptors, and allowed to evolve according
to stochastic mass-action kinetics, then the system evolves towards the desired
Bayesian posterior distribution (Theorem 3).

– In Sect. 5.3, we address Question 2. We show that for each fixed S and q,
when the chemical reaction system is initialized as prescribed according to
the average numbers 〈ri〉 of activation events of receptors, and allowed to
evolve according to deterministic mass-action kinetics, then the distribution
of unit-volume aliquots of the system evolves towards the desired Bayesian
posterior distribution (Theorem 6).

– In Sect. 6, we compare our scheme with other reaction network schemes that
process information. Exploiting inherent stochasticity and free energy mini-
mization appear to be the two key new ideas in our scheme.

– In Sect. 7, we discuss limitations and directions for future work, including
a reaction scheme for the expectation-maximization algorithm, a commonly
used algorithm in machine learning.

2 Background

2.1 Probability and Statistics

For n ∈ Z>0, following [15], D : Rn
≥0 × R

n
≥0 → R is the function

D(x || y) :=
n∑

i=1

xi log
(

xi

yi

)
− xi + yi

with the convention 0 log 0 = 0 and for p > 0, p log 0 = −∞. If x, y are probability
distributions then

∑n
i=1 −xi + yi = 0 and D is the same as relative entropy∑n

i=1 xi log
(

xi

yi

)
. When the index i takes values over a countably infinite set, we

define D by the same formal sum as above, and understand it to be well-defined
whenever the infinite sum converges in [0,∞]. For x ∈ R

k
>0, by Poisson(x) we

mean Pr[n1, n2, . . . , nk | x] =
∏k

i=1 e−xi
x

ni
i

ni!
. The following lemma is well-known

and easy to show.

Lemma 1. D(Poisson(x) ||Poisson(y)) = D(x || y) for all x, y ∈ R
k
>0.

The Exponential-Projection or E-Projection [15] (or Information-
Projection or I-Projection [6]) of a probability distribution q onto a set of distrib-
utions P is p∗ = arg minp∈P D(p || q). The Mixture-Projection or M-Projection
(or reverse I-projection) of a probability distribution p onto a set of distributions
Q is q∗ = arg minq∈Q D(p || q).
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2.2 Reaction Networks

We recall notation, definitions, and results from reaction network theory [1,10–
12,14]. For x, y ∈ R

k, by xy we mean
∏k

i=1 xyi

i , and by ex we mean
∏k

i=1 exi . For
m ∈ Z

k
≥0, by m! we mean

∏k
i=1 mi!.

Fix a finite set S of species. By a reaction we mean a formal chemical
equation

∑
i∈S

yiXi →
∑
i∈S

y′
iXi

where the numbers yi, y
′
i ∈ Z≥0 are the stoichiometric coefficients. This

reaction is also written as y → y′ where y, y′ ∈ Z
S
≥0. A reaction network is a

pair (S,R) where S is finite, and R is a finite set of reactions. It is reversible
iff for every reaction y → y′ ∈ R, the reaction y′ → y ∈ R. Fix n, n′ ∈ Z

S
≥0. We

say that n �→R n′, read n maps to n′ iff there exists a reaction y → y′ ∈ R
with yi ≤ ni for all i ∈ S and n′ = n + y′ − y. We say that n ⇒R n′, or
in words that n′ is R-reachable from n, iff there exist a nonnegative integer
k ∈ Z≥0 and n(1), n(2), . . . , n(k) ∈ Z

S
≥0 such that n(1) = n and n(k) = n′ and

for i = 1 to k − 1, we have n(i) �→R n(i + 1). A reaction network (S,R) is
weakly reversible iff for every reaction y → y′ ∈ R, we have y′ ⇒ y. Trivially,
every reversible reaction network is weakly reversible. The reachability class
of n0 ∈ Z

S
≥0 is the set Γ (n0) = {n | n0 ⇒R n}. The stoichiometric subspace

HR is the real span of the vectors {y′ − y | y → y′ ∈ R}. The conservation
class containing x0 ∈ R

S
≥0 is the set C(x0) = (x0 + HR) ∩ R

S
≥0.

Fix a weakly reversible reaction network (S,R). Let x = (xi)i∈S . The asso-
ciated ideal I(S,R) ⊆ C[x] is the ideal generated by the binomials {xy − xy′ |
y → y′ ∈ R}. A reaction network is prime iff its associated ideal is a prime
ideal, i.e., for all f, g ∈ C[x], if fg ∈ I then either f ∈ I or g ∈ I.

A reaction system is a triple (S,R, k) where (S,R) is a reaction network
and k : R → R>0 is called the rate function. It is detailed balanced iff
it is reversible and there exists a point q ∈ R

S
>0 such that for every reaction

y → y′ ∈ R:

ky→y′ qy (y′ − y) = ky′→y qy′
(y − y′)

A point q ∈ R
S
>0 that satisfies the above condition is called a point of

detailed balance.
Fix a reaction system (S,R, k). Then stochastic mass action describes a

continuous-time Markov chain on the state space ZS
≥0. A state n = (ni)i∈S ∈ Z

S
≥0

of this Markov chain represents a vector of molecular counts, i.e., each ni is
the number of molecules of species i in the population. Transitions go from
n → n + y′ − y for each n ∈ Z

S
≥0 and each y → y′ ∈ R, with transition rates

λ(n → n + y′ − y) = ky→y′
n!

(n − y)!
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The following theorem states that the stationary distributions of detailed-
balanced reaction networks are obtained from products of Poisson distributions.
It is well-known, see for example [23] for a proof.

Theorem 1. If (S,R, k) is detailed balanced with q a point of detailed balance
then the corresponding stochastic mass action Markov chain admits on each
reachability class Γ ⊂ Z

S
≥0 a unique stationary distribution

πΓ (n) ∝
{

e−q qn

n! for n ∈ Γ

0 otherwise

Deterministic mass action describes a system of ordinary differential
equations in concentration variables {xi(t) | i ∈ S}:

ẋ(t) =
∑

y→y′∈R
ky→y′ x(t)y (y′ − y) (1)

Note that every detailed balance point is a fixed point to Eq. 1. For detailed
balanced reaction systems, every fixed point is also detailed balanced. More-
over, every conservation class C(x0) has a unique detailed balance point x∗

in the positive orthant. Further if the reaction network is prime then x∗ is a
“global attractor,” i.e., all trajectories starting in C(x0) ∩ R

S
>0 asymptotically

reach x∗. (Recently Craciun [5] has proved the global attractor theorem for all
detailed-balanced reaction systems with a much more involved proof. We do not
need Craciun’s theorem, the special case which holds for prime detailed-balanced
reaction systems and is much easier to prove, suffices for our purposes.) The fol-
lowing Global Attractor Theorem for Prime Detailed Balanced Reaction Systems
follows from [12, Corollary 4.3, Theorem 5.2]. See [13, Theorem 3] for another
restatement of this theorem.

Theorem 2. Let (S,R, k) be a prime, detailed balanced reaction system with
point of detailed balance q. Fix a point x0 ∈ R

S
>0. Then there exists a point of

detailed balance x∗ in C(x0) ∩ R
S
>0 such that for every trajectory x(t) to Eq. 1

with initial conditions x(0) ∈ C(x0), the limit limt→∞ x(t) exists and equals x∗.
Further D(x(t) || q) is strictly decreasing along non-stationary trajectories and
attains its unique minimum value in C(x0) at x∗.

3 Problem Statement

We argue in the next lemma that a product of Poisson distributions is not an
unreasonable form to use as a prior on ligand populations. The ideas are familiar
from statistical mechanics as well as stochastic processes. We recall them in a
chemical context.

Lemma 2. Consider a well-mixed vessel of infinite volume with n species X1,
X2, . . . , Xn at concentrations x1, x2, . . . , xn respectively. Assume that the solution
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is sufficiently dilute, and that molecule volumes are vanishingly small. A unit vol-
ume aliquot is taken. Then the probability of finding the population in the aliquot
in state (m1,m2, . . . , mn) ∈ Z≥0 is given by the product-Poisson distribution∏n

i=1
e−xix

mi
i

mi!
.

Proof. We will first do the analysis for a finite volume V and then let V → ∞.
Consider a container of finite volume V, which contains species

X1,X2, . . . , Xn at concentrations x1, x2 . . . , xn. Consider a unit volume aliquot
within this particular container. The probability of finding a particular molecule
from the vessel within the unit volume aliquot is 1

V . The number of molecules
of species Xi in the vessel is V xi for i = 1 . . . n. Hence the probability of finding
mi molecules of species Xi in the aliquot is given by the binomial coefficient

(
V xi

mi

)(
1
V

)mi
(

1 − 1
V

)V xi−mi

.

We assume that the solution is sufficiently dilute, and that molecular sizes are
vanishingly small, so that the probability of finding one molecule in the aliquot
is independent of the probability of finding a different molecule in the aliquot.
This assumption leads to:

Pr(m1,m2, . . . , mn | x1, x2, . . . , xn) =
n∏

i=1

(
V xi

mi

) (
1
V

)mi
(

1 − 1
V

)V xi−mi

The RHS follows because for all i ∈ {1, 2, . . . , n}: the limit

lim
V →∞

V xi(V xi − 1) . . . (V xi − mi + 1)
V mimi!

[
(1 − 1/V ))V

]xi−mi/V

= e−xixmi
i /mi!

Fix positive integers nR, nL ∈ Z≥0 with nR ≤ nL denoting the num-
ber of receptor species and the number of ligand species respectively. Fix
q = (q1, q2, . . . , qnL

) ∈ R
nL
>0 denoting Poisson rate parameters for the product-

Poisson distribution Poisson(q) which we consider as a prior over ligand num-
bers. Following [24], we fix an nR × nL sensitivity matrix S with entries sij

in the nonnegative rational numbers Q≥0. The entry sij denotes the sensitivity
of the i’th receptor Ri to the j’th ligand Lj . The intuition is that when ligand j
encounters receptor i, the conditional probability that the receptor activates is
proportional to sij . So a high-sensitivity ligand will trigger a receptor more often
than a low-sensitivity ligand with the same concentration, with the number of
times they trigger the receptor in proportion to their corresponding entries in
the sensitivity matrix.

Our results in this paper will hold for a subclass of sensitivity matrices which
we term tidy. A sensitivity matrix S = (sij)nR×nL

is tidy iff for each receptor
Ri there exists a message vector mi ∈ Z

nL

≥0 such that Smi = ei where ei ∈ R
nR

is the unit vector with a 1 in the row corresponding to the i’th receptor. Every
time receptor Ri is activated, it will trigger a cascade leading to the synthesis
inside the cell of mij molecules of species Xj for j = 1 to nL. The intuition is
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that for j = 1 to nL, the “signal” species Xj is the cell’s internal representation
of the ligand Lj . Message vectors ensure that the difference in the numbers of
Xj ’s and the numbers of Lj ’s lies in ker S, so that the numbers of Xj ’s are a
feasible state of the world, consistent with the observations, though not the most
likely such feasible state.

Note that there could be multiple message vector sets {mi}i=1 to nR
, so the

cell need not choose the “correct” one. The task of figuring out the most likely
state of the environment will be left to the intracellular reaction network between
the X1,X2, . . . , XnL

molecules. The following questions concern us.

1 Given information on the exact numbers r = (r1, r2, . . . , rnR
) ∈ Z

nR

≥0 of recep-
tor activation events, obtain samples over populations l = (l1, l2, . . . , lnL

) ∈
Z

nL

≥0 of the ligand species according to the Bayesian posterior distribution
Pr[l | (r,Poisson(q1, q2, . . . , qnL

))].
2 Given information on the average numbers 〈r〉 = (〈r1〉, 〈r2〉, . . . , 〈rnR

〉) ∈ R
nR
>0

of receptor activation events (averaged over the surface of the cell, or time,
or both), obtain samples over populations l = (l1, l2, . . . , lnL

) ∈ Z
nL

≥0 of the
ligand species according to the Bayesian posterior distribution
Pr[l | (〈r〉,Poisson(q1, q2, . . . , qnL

))].

4 An Example

Before moving to the general solution, we illustrate our main ideas with an
example.

Example 2 (continues from p. 1). Consider the sensitivity matrix

S =

L1 L2 L3( )
R1 1 0 1
R2 0 1 1

and the point q = (q1, q2, q3) ∈ R
3
>0 from Example 1. To describe the reactions,

we compute a basis B for the right kernel of S. In this case, the vector (1, 1,−1)T

is a basis for the right kernel. (To be precise, we will view the right kernel as
a free group in the integer lattice, and take a basis for this free group. This
ensures not only that each basis vector has integer coordinates, but also that the
corresponding reaction network is prime, which we use crucially in our proofs.)

We describe a chemical reaction system (Proj(S,B), kq) as follows. There is
one chemical species Xi corresponding to each ligand Li, so that the species are
X1,X2, and X3. Each basis vector is written as a reversible reaction, with nega-
tive numbers representing stoichiometric coefficients on one side of the chemical
equation, and positive numbers representing stoichiometric coefficients on the
other side. So the vector (1, 1,−1)T describes the reversible pair of reactions
X1 + X2 � X3.

The rates kq of the reactions need to be set so that q is a point of detailed
balance. For this example, calling the forward rate k1 ∈ R>0 and the backward
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rate k2 ∈ R>0, the balance condition is k1q1q2 = k2q3 so that k1/k2 = q3
q1q2

. One
choice satisfying this condition is k1 = q3 and k2 = q1q2. Note that our scheme
requires only the ratio of the rates to be specified (Remark 1).

Solution to Question 1: Given r = (r1, r2) ∈ Z
2
≥0 interpreted as (r1, r2)T =

S(l1, l2, l3)T , we want to draw samples from the conditional distribution
Pr[(l1, l2, l3) | (r1, r2,Poisson(q1, q2, q3))]. The statistical solution is to mul-
tiply the Bayesian prior Poisson(q1, q2, q3) by the likelihood Pr[(r1, r2) |
(l1, l2, l3,Poisson(q1, q2, q3))], and normalize so probabilities add up to 1. The
likelihood is the characteristic function of the set

L = {l = (l1, l2, l3) ∈ Z
3
≥0 | SlT = rT }.

Note that S is tidy with message vectors m1 = (1, 0, 0)T and m2 = (0, 1, 0)T .
The reaction system (Proj(S, B), kq) which is X1+X2

q3−−−⇀↽−−−
q1q2

X3 here, is initialized

at n(0) = (r1, r2, 0) =
∑

i rimi, and allowed to evolve according to stochastic
mass-action kinetics with master equation:

ṗ(n, t) =p(n1 − 1, n2 − 1, n3 + 1, t)
(

q1q2
q3

(n3 + 1) − n1n2

)

+ p(n1 + 1, n2 + 1, n3 − 1, t)
(

(n1 + 1)(n2 + 1) − q1q2
q3

n3

)

where p(n, t) is the probability that the system is in state n at time t. We claim
that the steady-state distribution is the required Bayesian posterior. First note
that this reaction system has a detailed balanced point q, so it admits Poisson(q)
as a steady-state distribution. Since n(0) ∈ L, it is enough to show that L forms
an irreducible component of the Markov chain. Together we conclude that the
steady-state distribution will be a restriction of Poisson(q1, q2, q3) to the set L.

To obtain that L forms an irreducible component of the Markov chain, we
will crucially use the fact that we chose a basis of the free group to generate
our reactions, and not just a basis of the real vector space. This will allow us
to prove that the corresponding reaction network is prime, and hence that L
forms an irreducible component. Note, for example, that if we had chosen the
vector (2, 2,−2)T in the kernel instead of (1, 1,−1)T , that would have given us
the reaction 2X1 + 2X2 � 2X3 in which case L does not form an irreducible
component of the Markov chain since each reaction conserves parity of molecular
counts.

Solution to Question 2: Given 〈r〉 = (〈r1〉, 〈r2〉) ∈ R
2
>0 activation events of

receptors R1 and R2, with 〈r〉 interpreted as empirical average of S(l1, l2, l3)T

over a large number of samples of (l1, l2, l3), we want to draw samples from the
conditional distribution Pr[(l1, l2, l3) | (〈r1〉, 〈r2〉,Poisson(q1, q2, q3))]. Note that
we are conditioning over an event whose probability tends to 0 unless SqT = 〈r〉T

, so the conditional distribution needs to be defined using the notion of regular
conditional distribution [8]. As the number of samples goes to infinity, by the
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conditional limit theorem [8, Theorem 7.3.8, Corollary 7.3.5], this conditional
distribution converges to Poisson(x∗) where x∗ = (x∗

1, x
∗
2, x

∗
3) ∈ R

3
≥0 minimizes

D(x || q) among all x satisfying SxT = 〈r〉T . Because these results are stated
in the reference in much greater generality, to show that these results actually
apply to our case will need some technical work which is the content of Sect. 5.3.

To compute x∗, we allow (Proj(S, B), kq) = X1 + X2
q3−−−⇀↽−−−

q1q2
X3 to evolve

according to deterministic mass-action kinetics starting from x(0) = (〈r1〉,
〈r2〉, 0) =

∑
i〈ri〉mi.

⎛
⎝ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎞
⎠ =

(
x1(t)x2(t) − q1q2

q3
x3(t)

) ⎛
⎝−1

−1
1

⎞
⎠

Then the equilibrium concentration is the desired x∗ by Theorem 2. The
required sample can be drawn by sampling a unit aliquot, as in Lemma 2.

Our scheme suggests that the reactions are carried out in infinite volume,
which seems impractical. In practise, infinite volume need not be necessary
because the chemical dynamics of even molecular numbers as small as 50 mole-
cules are often described fairly accurately by the infinite-volume limit. Further,
our scheme suggests an infinite number of samples for this to work correctly,
which also looks impractical. However, the rate of convergence is exponentially
fast, so the scheme can be expected to work quite accurately even with a moder-
ate number of samples. Analysis beyond the scope of the current paper is needed
to explore the tradeoffs in volume and number of samples (also see Sect. 7).

5 Main

5.1 A Reaction Scheme

In this subsection, we present a reaction scheme Proj (short for projection) that
takes as input a matrix S with rational entries, and a basis B for the free group
Z

nL ∩ ker S and outputs a reversible reaction network Proj(S, B) that is prime.
The same scheme, appropriately initialized, serves to perform M-projection (as
we showed in [13]) and E-projection, as we show here.

Definition 1. Fix a matrix S = (sij)m×n with rational entries sij ∈ Q, and
a basis B for the free group Z

n ∩ ker S. The reaction network Proj(S, B) is
described by species X1,X2, . . . , Xn and for each b ∈ B the reversible reaction:∑

j:bj>0 bjXj �
∑

j:bj<0 −bjXj

Remark 1. Exquisitely setting the specific rates of individual reactions to desired
values requires a detailed understanding of molecular dynamics, and is forbid-
dingly difficult with current molecular technology. When we set rates, we will
only require that a given point remains a point of detailed balance. This is
equivalent to specifying the equilibrium constants of all the reactions. This is an
equilibrium thermodynamics condition, hence much less forbidding.
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Lemma 3. Fix a matrix S = (sij)m×n with rational entries sij ∈ Q, and a
basis B for the free group Z

n ∩ ker S. Then the reaction network Proj(S, B) is
prime.

Proof. [18, Corollary 1.15] establishes this when S is a matrix of integers. Scaling
the rational entries to make them all integers makes no difference to the kernel.

Remark 2. From [12, Theorem 5.2], prime reaction networks are free of catalysis.
Catalysts require care to implement. Ideally a catalyst should act as a switch,
so that its absence completely shuts off the catalyzed reaction. In practice, there
is always a “leak reaction” [21] even in the absence of the catalyst species.
Care needs to be taken that the timescales of the leak are much slower than
the timescales of the catalyzed reaction to get an acceptable approximation to
the final answer. It is therefore notable that our scheme is able to perform a
nontrivial computation even though it admits an implementation wholly free of
catalysis.

Example 3. Consider the reaction 2X � 0. On the state space Z≥0, this reaction
will preserve the parity of the initial number n0 of X. This is a case where the
intersection of a conservation class C(n0) with the state space does not equal
the reachability class Γ (n0). It turns out that these “non-benign” situations only
happen when the reaction network is not prime. We will use this property when
answering Questions 1 and 2, so we establish it now.

Definition 2. A weakly-reversible reaction network (S,R) is benign iff for all
n0 ∈ Z

S
≥0, the reachability class Γ (n0) = C(n0) ∩ Z

S
≥0 where C(n0) is the

conservation class of n0.

Lemma 4. Every prime reaction network is benign.

Proof. Let (S,R) be a prime reaction network. This means that the associated
ideal (xy − xy′

)y→y′∈R is prime. We define the associated lattice as

L =

⎧⎨
⎩

∑
y→y′∈R

ay→y′(y′ − y) | ay→y′ ∈ Z for all y → y′ ∈ R
⎫⎬
⎭ .

Note from [18] that L is saturated, i.e., if k ∈ Z and v ∈ Z
S are such that

kv ∈ L then v ∈ L
Suppose n0, n

′
0 ∈ Z

S
≥0 such that n′

0 ∈ C(n0) but n′
0 is not reachable from n0.

The condition n′
0 ∈ C(n0) means that there is a rational combination

n′
0 − n0 =

∑
y→y′∈R

by→y′(y′ − y)

This shows that for some sufficiently large integer M , the quantity M(n′
0−n0) ∈ L.

Since L is saturated, n′
0 − n0 ∈ L. Hence there is an integer combination

n′
0 − n0 =

∑
y→y′∈R

cy→y′(y′ − y).
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Since (S,R) is weakly-reversible, there is a path y′ ⇒R y for every y → y′ ∈ R,
and therefore there is a combination over nonnegative integers. This implies that
n0 ⇒R n′

0. Hence the network is benign.

5.2 Solution to Question 1

In this section we solve Question 1 using the reaction network Proj(S, B).
Fix an nL × nR tidy sensitivity matrix S = (sij)nR×nL

with non-negative
rational entries sij ∈ Q≥0, and message vectors {mi ∈ Z

nL

≥0}i=1,2,...,nR
, Poisson

rate parameter vector q ∈ R
nL

≥0, and number r ∈ Z
nR

≥0 of receptor activation events
observed. Fix a basis B for the free group Z

nL ∩ ker S. Let kq be a function of
rate constants for the reaction network Proj(S, B) such that q is a point of
detailed balance of the reaction system (Proj(S, B), kq). For example, the choice
kq(y → y′) = qy′

satisfies this requirement.

Theorem 3. Consider Stochastic Mass Action for the reaction system
(Proj(S, B), kq) from the initial state n(0) =

∑nR

i=1 rimi. Then the Bayesian Pos-
terior Pr[l | (r,Poisson(q))] is the stationary distribution of this Markov chain.

Proof. Let L =
{

l ∈ Z
nL

≥0 | SlT = rT
}

. The prior is Poisson(q) and the likelihood

is Pr[r | l] = Pr[SlT = rT ] which is the characteristic function on L. Therefore
from Bayes’ Theorem,

Pr[l | (r,Poisson(q))] ∝
{

e−q ql

l! for l ∈ L

0 otherwise

Since the reaction network Proj(S, B) is prime, by Lemmas 3 and 4, Proj(S, B)
is benign. By construction n(0) ∈ L, and so L is the reachability class Γ (n(0)).
Applying Theorem 1 to L = Γ (n0)

πL(l) ∝
{

e−q ql

l! for l ∈ L

0 otherwise

which is exactly the Bayesian Posterior Pr[l | (r,Poisson(q))].

In the following theorem, we show that our reaction scheme has computed
an E-Projection.

Theorem 4. Let P := {Probability measure P on Z
nL

≥0 | P (l) = 0 for all l /∈ L}.
Then Pr[l | (r,Poisson(q))] is the E-Projection of Poisson(q) on P.

Proof. Let P ∗ = arg minP∈P D(P ||Poisson(q)) be the E-projection of Poisson(q)
onto P. To minimize D(P ||Poisson(q)) with constraints

∑
l∈L P (l) = 1 and

P (l) = 0 for l /∈ L, write the Lagrangian

F (P, λ, μ) = D(P ||Poisson(q)(l)) + λ

(∑
l∈L

P (l) − 1

)
+

∑
l/∈L

μlP (l)
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At P ∗, ∂F
∂P (l) = 0 for all l ∈ Z

nL

≥0. That is, log
(

P ∗(l)
Poisson(q)

)
+ 1 + λ = 0 if l ∈ L

and P ∗(l) = 0 if l /∈ L. That is,

P ∗(l) ∝
{

Poisson(q)(l) for x ∈ L

0 otherwise

which is the Bayesian Posterior Pr[l | (r,Poisson(q))]

5.3 Solution to Question 2

In this subsection we solve Question 2 using the reaction network Proj(S, B).
We first characterize the Bayesian Posterior Pr[l | (〈r〉,Poisson(q))] as an E-
projection using a conditional limit theorem.

Definition 3. Fix 〈r〉 ∈ R
nR
>0 . Then P〈r〉 is the set of those probability measures

on Z
nL

≥0 such that if Y is a random variable distributed according to P ∈ P〈r〉
then the expected value S〈Y 〉T

P = 〈r〉T .

Theorem 5. Fix 〈r〉 ∈ R
nR
>0. Then Pr[l | (〈r〉,Poisson(q))] is a Poisson distrib-

ution, as well as the E-Projection arg minP∈P〈r〉 D(P ||Poisson(q)) of Poisson(q)
on P〈r〉.

Proof. We apply the Gibbs Conditioning Principle ([9, Theorem 7.3.8]) nR

times with a sequence of energy functions U1, . . . , UnR
which iteratively set the

expected values of the nR rows of S to the corresponding values from 〈r〉. The
intuition is that this is a formal way of doing Lagrange optimization.

To show that this result can be applied, we choose the space Σ as R
nL , the

initial distribution μ = μ0 as Poisson(q) on Z
nL

≥0 and 0 everywhere else, and

for i = 1 to nR, we define the function Ui : Σ → [0,∞) by Ui(n) = (Sn)i

〈ri〉 .

The sequence of Gibbs distributions are then defined by dμi+1
dμi

= e−βiUi(n)

Zβi

where Zβi
is the normalizing constant. It is easily checked that each of these

is a Poisson distribution since the Ui’s are linear functions. Since 〈r〉 ∈ R
nR
>0 ,

there is nonzero probability under μi−1 that (Sx)i < 〈ri〉 for all i. Hence for
i = 1 to nR it follows that μi−1({x | Ui(x) < 1}) > 0. The other condition
μi−1({x | U(x) > 1}) > 0 is true since under a Poisson distribution, (Sx)i can
take arbitrarily large integer values with nonzero probability. Since the μi are all
Poisson, β∞ = −∞ since Poisson distributions converge for arbitrarily small non-
negative values of rate parameters. Hence the assumptions of [9, Lemma 7.3.6]
are satisfied and we get to apply [9, Theorem 7.3.8] sequentially nR times and
conclude that the empirical distribution on the space Z

nL

≥0 converges weakly to
a Poisson distribution μnR

= Poisson(p∗) ∈ P〈r〉, which is also the E-projection
arg minP∈P〈r〉 D(P ||Poisson(q)).

Now fix an nL×nR tidy sensitivity matrix S = (sij)nR×nL
with non-negative

rational entries sij ∈ Q≥0, and message vectors {mi ∈ Z
nL

≥0}i=1,2,...,nR
, Poisson
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rate parameter vector q ∈ R
nL

≥0, and average number 〈r〉 ∈ R
nR
>0 of receptor

activation events observed. Fix a basis B for the free group kerS ∩ Z
nL . Let kq

be a function of rate constants for the reaction network Proj(S, B) such that q is
a point of detailed balance of the reaction system (Proj(S, B), kq). For example,
the choice kq(y → y′) = qy′

satisfies this requirement.

Theorem 6. Consider the solution x(t) to the Deterministic Mass Action ODEs
for the reaction system (Proj(S, B), kq) from the initial concentration x(0) =∑nR

i=1〈ri〉mi. Let x∗ = limt→∞ x(t). Then x∗ is well-defined, and the Bayesian
Posterior Pr[l | (r,Poisson(q))] equals Poisson(x∗). That is, one obtains samples
from the Bayesian Posterior by measuring the state of a unit volume aliquot of
the system at equilibrium.

Proof. Note that Poisson(x(0)) ∈ P〈r〉. Further the reaction vectors span the
kernel of S so we have x ∈ C(x(0)) ∩ R

nL
>0 iff Poisson(x) ∈ P〈r〉. By Theorem 5,

the distribution Pr[l | (r,Poisson(q))] equals Poisson(y) for some y ∈ R
nL
>0. Fur-

ther, it is an E-projection so that, among all Poisson distributions in P〈r〉, the
relative entropy D(Poisson(y) || q) is minimum. By Lemma 1, the E-projection
of {Poisson(x) | x ∈ C(x(0)) ∩ R

nL
>0} to Poisson(q) is the Poisson distribution of

the E-projection of C(x(0)) ∩ R
nL
>0 to q.

By Lemma 3, the reaction network Proj(S, B) is prime. Further the reaction
system (Proj(S, B), kq) is detailed balanced with q a point of detailed balance,
by assumption. Hence by Theorem 2, the limit x∗ is well-defined and is the
E-projection of C(x(0)) ∩ R

nL
>0 to q. Together we have Pr[l | (r,Poisson(q))] =

Poisson(x∗). We can sample from a unit aliquot at equilibrium due to Lemma 2.

6 Related Work

Various schemes have been proposed to perform information processing with
reaction networks, for example, [21,22] which shows how Boolean circuits and
perceptrons can be built, [20] which shows how to implement linear input/output
systems, [7] exploiting analogies with electronic circuits, [2] for computing alge-
braic functions, etc. Some of these schemes have even been successfully imple-
mented in vitro.

Each of these schemes has been inspired by analogy with some existing model
of computation. However, reaction networks as a computing platform has some
unique opportunities and challenges. It is an inherently distributed and sto-
chastic platform. Noise manifests as leaks in catalyzed reactions. We can tune
equilibrium thermodynamic parameters, but kinetic-level control is very diffi-
cult. In addition, one needs to keep in mind the tasks that reaction networks
are called upon to solve in biology, or might be called upon to solve in techno-
logical applications. Keeping these factors in mind, there is value in considering
a scheme which attempts to uncover the class of problems that is suggested by
the mathematical structure of reaction network dynamics.

In trying to uncover such a class of problems, we have looked to the ideas of
Maximum Entropy or MaxEnt [16] which form a natural bridge between Machine
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Learning and Reaction Networks. The systematic foundations of statistics based
on the minimization of KL-divergence (equivalently, free energy) go back to
the pioneering work of Kullback [17]. The conceptual, technical, and computa-
tional advantages of this approach have been brought out by subsequent workers
[4,6,15]. This work has also been put forward as a mathematical justification of
Jaynes’ MaxEnt principle. Our hope is that those parts of statistics and machine
learning that can be expressed in terms of minimization of free energy should
naturally suggest reaction network algorithms for their computation.

The link between statistics/machine learning and reaction networks has been
explored before by Napp and Adams [19]. They propose a deterministic mass-
action based reaction network scheme to compute single-variable marginals from
a joint distribution given as a factor graph, drawing on “message-passing”
schemes. Our work is in the same spirit of finding more connections between
machine learning and reaction networks, but the nature of the problem we are
trying to solve is different. We are trying to estimate a full distribution from par-
tial observations. In doing so, we exploit the inherent stochasticity of reaction
networks to represent correlations and do Bayesian inference.

One previous work which has engaged with stochasticity in reaction networks
is by Cardelli et al. [3]. They give a reaction scheme that takes an arbitrary finite
probability distribution and encodes it in the stationary distribution of a reaction
system. In comparison, we are taking samples from a marginal distribution and
encoding the full distribution in terms of the stationary distribution. Thus our
scheme allows us to do conditioning and inference.

In Gopalkrishnan [13], one of the present authors has proposed a molecu-
lar scheme to do Maximum Likelihood Estimation in Log-Linear models. The
reaction networks employed in that work are essentially identical to the reaction
networks employed in this work, modulo some minor technical differences. In
that paper, the reaction networks were used to obtain M-projections (or reverse
I-projections), and thereby to solve for Maximum Likelihood Estimators. In this
paper, we obtain E-projections, and sample from conditional distributions. The
results in that paper were purely at the level of deterministic mass-action kinet-
ics. The results in this paper obtain at the level of stochastic behavior.

7 Discussions

We have shown that reaction networks are particularly well-adapted to perform
E-projections. In a previous paper [13], one of the authors has shown how to per-
form M-projections with reaction networks. Intuitively, an E-projection corre-
sponds to a “rationalist” who interprets observations in light of previous beliefs,
and an M-projection corresponds to an “empiricist” who forms new beliefs in
light of observations.

Not surprisingly, these two complementary operations keep appearing as
blocks in various statistical algorithms. Our two schemes should be viewed
together as building blocks for implementing more sophisticated statistical algo-
rithms. For example, the EM algorithm works by alternating E and M pro-
jections [15]. If our two reaction networks are coupled so that the point q is
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obtained by the scheme in [13], and the initialization of the scheme in this paper
is used to perturb the conservation class for the M-projection correctly, then an
“interior point” version of the EM algorithm may be possible, though perhaps
not with detailed balance but in a “driven” manner reminiscent of futile cycles.

We have illustrated how E-projections might apply to the situation of an
artificial cell trying to infer its environment from partial observations. We are
acutely aware that our illustration is far from complete. A more sophisticated
algorithm would work in an “online” fashion, adjusting its estimates on the fly
to each new receptor activation event. This certainly appears within the scope
of the kind of schemes we have outlined, but more careful design and analysis is
necessary before formal theorems in this direction can be shown. Also we think
it likely that the schemes that will prove most effective will work neither purely
in the regime of the first scheme, nor purely in the regime of the second scheme,
but somewhere in between. How long a time window they average over, and how
large a volume is optimal, and how these choices tradeoff between sensitivity
and reliability, these are questions for further analysis.

One glaring gap in our narrative is that we require the internal species Xi

to be as numerous as the outside ligands Li. A much more efficient encoding of
ligand population vectors should be possible, drawing on ideas from graphical
models, so that the number of representing species need only be a logarithm of
the number of ligands being represented. Moreover it may be possible to perform
E and M projections directly on these graphical model representations.

Our constructions and results of Sect. 5.1 were carried out for arbitrary matri-
ces with rational number entries. We only used the assumption of “tidy” matrices
to set initial conditions in Theorems 3 and 6. If some other method of setting
initial conditions correctly is available, for example by performing matrix inver-
sions with a reaction network, then the technical condition of tidy matrices can
be dropped. In defence of the assumption that our sensitivity matrices are tidy,
it is not inconceivable that through evolution a biological cell would have evolved
its receptors so that the sensitivity matrix allows for simple meaningful messages
to be transmitted inside the cell. For example, if for each receptor, there exists at
least one ligand, that attaches to that receptor and no other, then the sensitivity
matrix is tidy, and all the messages are unit vectors.

Note that the mathematics does not require the restriction of the sensitiv-
ities sij to nonnegative rational numbers. We could have admitted negative
numbers, and all our results would go through.
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Abstract. Tile self-assembly is a formal model of computation captur-
ing DNA-based nanoscale systems. Here we consider the popular two-
handed tile self-assembly model or 2HAM. Each 2HAM system includes
a temperature parameter, which determines the threshold of bonding
strength required for two assemblies to attach. Unlike most prior study,
we consider general temperatures not limited to small, constant values.
We obtain two results. First, we prove that the computational complexity
of determining whether a given tile system uniquely assembles a given
assembly is coNP-complete, confirming a conjecture of Cannon et al.
(2013). Second, we prove that larger temperature values decrease the
minimum number of tile types needed to assemble some shapes. In par-
ticular, for any temperature τ ∈ {3, . . . }, we give a class of shapes of
size n such that the ratio of the minimum number of tiles needed to
assemble these shapes at temperature τ and any temperature less than
τ is Ω(n1/(2τ+2)).

1 Introduction

This work considers problems in a variation of DNA tile self-assembly, an app-
roach for precise control of nanoscale structures that uses DNA base-pair inter-
actions between four-sided DNA molecules first introduced by Seeman [23] and
formalized by Winfree [27] as the mathematical abstract Tile Assembly Model
or aTAM.

The wide range of complex and useful behaviors of the aTAM has since
been established, including the model’s ability to execute any algorithm [27] and
assemble desired shapes using few tile types [2,20,25]. Since then, dozens of tile
assembly models sharing traits with the aTAM have been studied, even giving
rise to a structural complexity theory for tile assembly models [28].

Two-Handed Assembly. One of the most popular models of tile self-assembly
is the two-handed tile assembly model (2HAM) [1,4,11,19], also referred to the
hierarchical [5,9] or polyomino [15] model. The 2HAM differs from the original
aTAM in its lack of a “seed”: in the aTAM, assembly is limited to single-tile
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addition to a growing seed assembly, while in the 2HAM, assembly may occur by
attachment of any two assemblies via bonds of sufficient strength. The difficulty
of experimentally enforcing seeded assembly [21] motivates the study of the
2HAM.

Temperature. A recurring question in many model variations, including the
2HAM, is the importance of temperature: the threshold of bonding strength
needed for attachment between assemblies. A long-standing open problem in tile
assembly concerns the capabilities of systems at the lowest temperature, where
one bond suffices for attachment [12,16–18]. Dynamically varied temperature
has also been studied as a mechanism for guiding assembly [14,26].

In the aTAM, systems at higher temperatures exhibit a greater range of
dynamics: behaviors that occur during the assembly process [6], and these addi-
tional behaviors can be used to reduce the tile complexity of some shapes: the
number of tile types needed to assemble the shape [24]. On the other hand, if
scaling (replacement of each tile by a square block of tiles) is permitted, then
these additional dynamics (and corresponding reductions in tile complexity) can
be recreated or simulated by lower temperature systems [10]. In contrast, higher
temperature 2HAM systems exhibit additional dynamics that cannot be simu-
lated by lower temperature 2HAM systems [8].

Our Results. This work considers whether the additional dynamics in higher tem-
perature 2HAM systems confer additional capabilities. We prove two results, one
complexity theoretic and the other combinatorial, that give positive evidence.

The first result (Sect. 3) affirms a conjecture from 2013 [4] regarding the
complexity of verifying that a system yields a unique specified terminal assembly.
The proof critically uses high-temperature dynamics to demonstrate that such
verification is coNP-hard.

The second result (Sect. 4) proves that for some shapes, higher temperatures
yield more efficient assembly. Specifically, the ratio between the tile complexities
of some shapes at temperature τ and any lower temperature is polynomial in
the shape size. Seki and Ukuno [24] achieved a similar result in the aTAM, but
for only a constant additive gap in tile complexity.

2 Definitions

Here we give a presentation of the two-handed tile assembly model (2HAM) and
associated definitions used throughout the paper.

2.1 Tiles and Assemblies

Tiles. A tile is an axis-aligned unit square centered at a point in Z
2, where

each edge is labeled by a glue selected from a glue set Π. A strength function
str : Π → N denotes the strength of each glue. Two tiles that are equal up to
translation have the same type.
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Assemblies. A positioned shape is any subset of Z2. A positioned assembly is a
set of tiles at unique coordinates in Z

2, and the positioned shape of a positioned
assembly A is the set of coordinates of those tiles.

For a given positioned assembly Υ , define the bond graph GΥ to be the
weighted grid graph in which each tile of Υ is a vertex and the weight of an edge
between tiles is the strength of the matching coincident glues or 0.1 A positioned
assembly C is said to be τ -stable for positive integer τ provided the bond graph
GC has minimum edge cut at least τ .

For a positioned assembly A and integer vector v = (v1, v2), let Av denote
the assembly obtained by translating each tile in A by vector v . An assembly
is a set of all translations Av of a positioned assembly A. A shape is the set of
all integer translations for some subset of Z2, and the shape of an assembly A
is the shape consisting of the set of all the positioned shapes of all positioned
assemblies in A. The size of either an assembly or shape X, denoted as |X|,
refers to the number of elements of any positioned element of X.

Combinable Assemblies. Informally, two assemblies are τ -combinable provided
they may attach to form a τ -stable assembly. Formally, two assemblies A and B
are τ -combinable into an assembly C provided there exists A′ ∈ A and B′ ∈ B
such that A′ ⋃ B′ is a τ -stable element of C.

2.2 Two-Handed Tile Assembly Model (2HAM)

A two-handed tile assembly system (2HAM system) is an ordered pair (T, τ)
where T is a set of single tile assemblies, called the tile set, and τ ∈ N is the
temperature. Assembly proceeds by repeated combination of assembly pairs to
form new τ -stable assemblies, starting with single-tile assemblies. The producible
assemblies are those constructed in this way. Formally:

Definition 1 (2HAM producibility). For a given 2HAM system Γ = (T, τ),
the set of producible assemblies of Γ , denoted PRODΓ , is defined recursively:

– (Base) T ⊆ PRODΓ

– (Recursion) For any A,B ∈ PRODΓ such that A and B are τ -combinable into
C, then C ∈ PRODΓ .

For a system Γ = (T, τ), we say A →Γ
1 B for assemblies A and B if A is

τ -combinable with some producible assembly to form B, or if A = B. Intuitively
this means that A may grow into assembly B through one or fewer combination
reactions. We define the relation →Γ to be the transitive closure of →Γ

1 , i.e.,
A →Γ B means that A may grow into B threw a sequence of combination
reactions.

1 Note that only matching glues have positive strength. The more general model of
“flexible glues” where non-matching glue pairs may also have positive strength has
been considered [7].
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Definition 2 (Terminal assemblies). A producible assembly A of a 2HAM
system Γ = (T, τ) is terminal provided A is not τ -combinable with any producible
assembly of Γ .

Definition 3 (Unique assembly). A 2HAM system uniquely assembles an
assembly A if for all B ∈ PRODΓ , B →Γ A.

3 Unique Assembly Verification in the 2HAM
Is coNP-Complete

Definition 4 (Unique assembly verification (UAV) problem). Given a
2HAM system Γ and assembly A, does Γ uniquely assemble A?

Adleman et al. [3] proved that the UAV problem in the aTAM is in P. Cannon
et al. [4] first considered the UAV problem in the 2HAM. They proved that the
problem is in coNP and conjectured that the problem is coNP-hard, suggested by
their proof of the same result for an extension of the model to three dimensions
(with cubic tiles). Here we confirm their conjecture, using high temperature to
overcome previous planarity “barriers”.

Theorem 1. The UAV problem is coNP-complete.

The reduction is from a problem involving grid graphs: graphs whose vertices
are a subset of Z

2 and two vertices are connected by an (undirected) edge if
they have distance 1. Itai, Papadimitriou, and Szwarcfiter [13] proved that the
following problem is NP-hard:

Definition 5 (Hamiltonian cycle problem in grid graphs). Given a grid
graph G, does G contain a Hamiltonian cycle?

We reduce from the complement of this problem.

Lemma 1. The UAV problem in the 2HAM is coNP-hard.

Proof. Consider a grid graph G = (V,E). From G we construct a tile system
ΓG and an assembly AG such that ΓG uniquely assembles AG if an only if G
has no Hamiltonian cycle. Without loss of generality, assume the leftmost and
rightmost vertices of G have x-values 0 and n, and the bottommost and topmost
vertices have y-values 0 and m, respectively. Construct a tile set TG from G as
described in Fig. 1 to yield the system ΓG = (TG, τ = |V |).

The system ΓG has a terminal assembly AG consisting of a 2(n+1)×2(m+1)
block of blue tiles connected to a 2(n−1)×2(m−1) block of red tiles, as shown
in Fig. 2. We also claim that this is the unique terminal assembly of ΓG if and
only if G has no Hamiltonian cycle.

Correctness: G has cycle ⇒ No unique terminal assembly. Suppose G has a Hamil-
tonian cycle. Then there exists a producible assembly Cinner of red 3 × 3 blocks



102 R. Schweller et al.

Fig. 1. This tileset consists of a collection of 3 × 3 blocks and a single connector tile.
The center tile of each 3×3 block has bond strength of τ with its four neighbors. Each
corner tile bonds to its horizontal and vertical neighbors with �τ/2�, �τ/2� strength,
respectively. A blue block is constructed for every location in {0, . . . , n} × {0, . . . , m},
and a red block is constructed for locations in {1, . . . , n − 1} × {1, . . . , m − 1}. Red
and blue glues have strength τ , while green and yellow glues have strength 1 or 0 as
determined by the grid graph: gh

i,j and yh
i,j have strength 1 if (i, j) and (i, j − 1) are

vertices in G and strength 0 otherwise. The glues gv
i,j and yv

i,j have strength 1 when
(i, j) and (i − 1, j) are vertices in G and strength 0 otherwise. (Color figure online)

Fig. 2. For a given grid graph, the following assembly is the unique terminal assembly
if and only if no Hamiltonian cycle exists. (Color figure online)

corresponding to the interior of the cycle. By design, Cinner has exactly τ = |V | yel-
low and green glues exposed. Similarly, there exists a producible assembly Couter

of blue 3 × 3 blocks corresponding to the exterior of the cycle with τ = |V | yellow
and green glues in the same relative locations as those of Cinner. At temperature
τ , Cinner and Couter attach to form a large assembly that is not a subassembly of
the previously described terminal assembly. See Fig. 3 for such a pair combinable
Cinner and Couter and the grid graph they correspond to.
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(a) (b)

(c)

Fig. 3. (a) The input graph for the example reduction. If a Hamiltonian cycle exists,
then the producible assemblies consisting of Couter (c), the exterior of the cycle, and
Cinner (b), the interior of the cycle, are combinable with exactly τ strength.

Correctness: No unique terminal assembly ⇒ G has cycle. Now suppose that
ΓG = (TG, τ = |V |) does not have a unique assembly, i.e., there exists some
producible assembly X that cannot assemble further into AG (equivalently, is
not a subassembly of AG. The existence of X implies that there exists some
producible assembly R, consisting of red blocks, that is attachable to a producible
assembly of blue blocks by way of τ or more green and yellow glues. We first
use R to construct a second “cleaned-up” producible assembly R′ that is also
attachable to a producible assembly of blue blocks. We then show that R′ implies
a Hamiltonian cycle determined by its shape.

Consider modifying the assembly R in the following way. First, if R contains
the center tile for any 3 × 3 block of red tiles, add all missing tiles of the corre-
sponding block. Second, for all other blocks, remove all tiles of this block from
R. Call the resulting assembly of completed 3 × 3 blocks R′.

The assembly R′ has the following properties. First, R′ is producible. In par-
ticular, the removal of tiles from R as specified cannot disconnect the assembly.
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Second, R′ may attach to a producible blue assembly by way of yellow and green
glues summing to at least τ . This is the case because:

– No tile removed from R to yield R′ is a corner tile of a block, since the
presence of any corner tile of a block in a producible assembly implies that
the assembly also contains the center tile of the block (and so R′ contains all
tiles from such a block if R contained any corner tile of the block).

– Any exposed green or yellow glue of R used to attach to a blue assembly
remains an exposed glue in R′, as any such glue is adjacent to a 3 × 3 block
containing a blue (not red) center tile and so cannot be “covered” by the
addition of tiles to R to create R′.

We now use R′, an assembly that is producible and combinable with a blue
assembly through yellow and green glues, to generate a Hamiltonian cycle in G.
Consider the polyomino consisting of the collection of faces of G corresponding
to each 3 × 3 block in R′. Starting at some arbitrary corner of this polyomino,
walk its perimeter to generate a sequence of distinct points p0, . . . pr−1. Each
consecutive pair are adjacent in G, but points may or may not be in V .

For each consecutive pair pi, p(i+1) mod r ∈ V , the assembly R′ exposes
exactly 1 green or yellow glue on the side of the corresponding 3 × 3 block.
On the other hand, for any consecutive pair with either point not in V , no green
or yellow glues are exposed. Then since no location repeats and the total num-
ber of green and yellow glues must sum to at least τ (for attachment to a blue
assembly), the sequence must be a length-V permutation of V where consecutive
points are adjacent (and thus share an edge), implying that this permutation is
a Hamiltonian cycle of G. ��

4 Tile Complexity Gaps Between Temperatures

The tile complexity of a shape S at temperature τ is the minimum number of
tile types in a 2HAM system at temperature τ that uniquely assembles S. The
tile complexity gap of a shape S between two temperatures τ1 and τ2 is the ratio
of the minimum number of tile types in 2HAM systems at temperatures τ1 and
τ2 that uniquely assemble S. Here we give, for any distinct pair of temperatures,
an infinite family of shapes with large tile complexity gap at these temperatures.

We start by describing the construction for the special case of τ1 = 2 and
τ2 = 3, shown in Fig. 5. The shapes each consist of a base rectangle and all
gadgets of the form shown in Fig. 4 for some integer m ≥ 3.

The gadget has three horizontal sections with m locations where the vertical
bar connects with the base. At most m tiles are used for the left and right vertical
column (2m for the center column), and the height difference between any two of
the three horizontal sections is at most 2m − 1. There are m6 different gadgets,
since each section has m2 possible column locations.

Theorem 2. There exists a shape of size n with a tile complexity gap of
Ω(( n

log n )1/7) between τ = 2 and τ = 3.
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Fig. 4. A single gadget on the shape with m possible glue locations and m possible
heights for each vertical bar. Note the spacing between horizontal glues ensures that
the “hat” can not attach to the shape shifted because of the walls.

Fig. 5. The terminal assembly shape which consists of a rectangle used to seed all
possible gadgets to attach to the top.

Proof. Since there are Θ(m6) possible gadgets, and each gadget is Θ(m) tiles in
width, the width of the shape is Θ(m7) tiles. The base rectangle of the shape
is a Θ(log m) × Θ(m7) rectangle requiring Θ(log m) tile types. Thus, the shape
contains Θ(m7 log m) total tiles.

The remainder of the proof is dedicated to proving that (1) the shape can
be assembled at τ = 3 using O(m) tile types, and (2) requires Ω(m2) tile types
at τ = 2. Thus the tile complexity gap is Ω(m). Since the size of S is n =
Θ(m7 log m), Ω(m) = Ω(( n

log n )1/7).

The Tile Complexity at τ = 3 is O(m). All hat assembly can be assembled using
the same O(m) tile types at τ = 3 as follows. Each of the three horizontal sections
is built deterministically with m strength-1 glues exposed on the south side. The
two vertical columns connecting the sections are assembled nondeterministically
and may have any length from 2 to 2m. This means every possible configuration
is built (4m2 hats). The three columns are seeded from the base and expose a
strength-1 glue matching their respective section.

The hat can only attach if all three glues can match (columns and hat sec-
tions). The tiles for constructing the hat piece are shown in Fig. 6. Note the
spacing tiles in between each horizontal glue tile to ensure that the hat attaches
without shifting left or right (because of the enclosing walls). Such gadgets can
be assembled from 3(2m+1) tile types for the horizontal sections, and 2(4m−2)
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Fig. 6. Building the “hat” for the gadget nondeterministically. The single blocks rep-
resent a strength 1 bond and the three blocks a strength-3 bond.

tile types for the vertical connecting strips. The columns from the base use 4m
tiles. Since we use these same tiles for every gadget, the tile complexity is Θ(m).

The Tile Complexity at τ = 2 is Ω(m2). Assembling the hat using few tiles
at τ = 2 is difficult because only 2 of the 3 columns can ever be necessary for
attachment. Since the hat is built before attaching to the three columns, the
situation in Fig. 7(a) may occur, or similar situations with one of the other two
columns not attached. Since hat attaches in multiple parts, then the situation
in Fig. 7(b) may occur, or a similar situation with some parts translated. Thus
the same tile set cannot be used for the hats in all gadgets (Fig. 8).

Thus each section must be assembled with only one south glue placed in the
correct tile where the column attaches. Then m versions of that gadget are built
(for each column attachment location) so that the section with glue gi, where
1 ≤ i ≤ m, exposed can attach whenever glue gi is open on one of the columns.
In order for the section piece to not attach shifted (Fig. 7(b)), the column must
expose a corresponding glue for that horizontal position. This means for each
horizontal position, we need m distinct deterministic tiles so that we can expose
the correct gi glue at the top of the column to attach the correct section without
it being shifted. Thus, Ω(m2) tile types are required. ��

(a) (b)

Fig. 7. (a) Strength-1 glues at τ = 2 cannot be used, otherwise the hat may attach to
the wrong gadget. (b) The hat can not be attached in separate pieces if the sections are
the same for each gadget, since it may also attach shifted, and thus the walls prevent
the rest of the hat from attaching.
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Fig. 8. Generalizing the shape for any τ by utilizing τ hats with τ glues per section.

Theorem 3. For any τ1, τ2 ∈ {2, 3, . . . } with τ1 < τ2, there exists a shape of
size n with tile complexity gap Ω(n1/(2τ2+2)) between τ1 and τ2.

Proof. This follows from a similar analysis as the proof of Theorem 2. Since there
are τ2 sections of the hat piece, then there are Θ(m2τ2) gadgets, each of width
Θ(τ2m). So the width of the shape is Θ(τ2m2τ2+1), and the size of the shape is
n = Θ(m1/(2τ2+1) log τ2m). Following the same argument as given in the proof
of Theorem 2, Ω(m2) tile types are needed to assemble the gadget correctly for
any τ1 < τ2. ��

5 Conclusion

There are a number of interesting directions to extend this work. First, while
we have shown the UAV problem is coNP-complete, our reduction requires tem-
perature to scale linearly in the assembly size. Since many systems of interest
have small, and even constant temperature, we ask: does coNP-hardness hold
for constant, or even logarithmic temperatures? When the model is extended to
3D, the answer is “Yes” for temperature τ = 2 [4].

Our coNP-completeness result also pairs well with other recent results on
verification problems in two-handed models of verification. For instance, that
the unique shape verification or USV problem is coNPNP-complete [22]. Similarly,
in the more powerful staged assembly model, the UAV and USV problems are
coNPNP-hard and in PSPACE [22]. In this case, coNPNP-hardness is known to hold
even for τ = 2 and constant stages and bins (additional complexity measures in
the staged model), but characterizing the complexity as a function of the number
of stages remains open.
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Abstract. Biological nucleic acids have important roles as diagnostic
markers for disease. The detection of just one molecular marker, such as
a DNA sequence carrying a single nucleotide variant (SNV), can some-
times be indicative of a disease state. However, a reliable diagnosis and
treatment decision often requires interpreting a combination of markers
via complex algorithms. Here, we describe a diagnostic technology based
on DNA strand displacement that combines single nucleotide specificity
with the ability to interpret the information encoded in panels of single-
stranded nucleic acids through a molecular neural network computation.
Our system is constructed around a single building block—a catalytic
amplifier with a competitive inhibitor or “sink.” In previous work, we
demonstrated that such a system can be used to reliably detect SNVs
in single stranded nucleic acids. Here, we show that these same build-
ing blocks can be reconfigured to create an amplification system with
adjustable gain α. That is, the concentration of an output signal pro-
duced is exactly α times larger than the concentration of input added
initially, and the value of α can be adjusted experimentally. Finally, we
demonstrate that variable gain amplification and mismatch discrimina-
tion elements can be combined into a two-input neural network classifier.
Together, our results suggest a novel approach for engineering molecular
classifier circuits with predictable behaviors.

Keywords: DNA strand displacement · Linear classifier · Variable gain
amplifier · Neural network · microRNA · Competitive inhibition

1 Introduction

Competitive inhibition is used throughout biology as a means for tuning the
activity of enzymes and reshaping the response curves of signaling pathways or
gene regulatory networks. For example, a competitive decoy RNA can convert an
approximately linear relationship between the abundance of a small regulatory
RNA and its mRNA target into an effectively sigmoidal, threshold linear one
[1]. Similarly, inactivation of Notch by intracellular Delta ligand sets a threshold
for the interaction of Notch with Delta in neighboring cells. The resulting non-
linearity ensures that cells reliably settle into one of two distinct cell fates, acting
either as “senders” or “receivers” of the signal [2].
c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 110–121, 2017.
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Fig. 1. Catalytic amplification can be combined with competitive inhibition
to create a broad range of dynamic behaviors. Top: To qualitatively understand
the different behaviors that can be achieved, we use a minimal one-step model of catal-
ysis and inhibition. A catalyst (Target, T) can react with a substrate (Probe, P) to
produce a product (Fluorescent product, F). Alternatively, T can also be bound irre-
versibly to a competitive inhibitor (the Sink, S), a reaction that produces an unreactive
byproduct (waste, W). Bottom left: If the target has a strong kinetic preference for
the amplification pathway, the sink has only a minimal impact on the overall reaction.
In that limit, the target can convert all of the available probe to product. Bottom
middle: If the competitive inhibition pathway is kinetically preferred, the sink acts
as a threshold for the amplification reaction. If the initial concentration of the target
exceeds that of the sink, all sink molecules will be used up and the remaining target
molecules can trigger the amplification pathway. The gain is set by the amount of probe
that is available since all probe molecules will be converted to product. Conversely, if
the initial sink concentration is larger than the target concentration, all target mole-
cules are irreversibly bound and no amplification reaction occurs. This competitive
inhibition based on preferential binding of a target to a sink has been exploited to
create digital logic gates and SNV discrimination systems. Bottom right: When the
reaction rate constants for target binding to probe and sink are exactly the same,
amplification occurs but the gain of the reaction is determined by the ratio of the
initial concentrations of the probe to the sink. Importantly, the gain is independent of
the initial amount of the target. Such variable gain amplification units form the basic
building blocks for the molecular implementation of neural networks as shown here.
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Common to these examples is that the competitor acts as a kinetically pre-
ferred threshold; only once it is exhausted can the productive reaction proceed,
resulting in a non-linear relationship between the enzyme amount and prod-
uct production rate. The degree of non-linearity is directly determined by levels
of the different reactants, in particular the “threshold” concentration, and the
kinetic rate constants. By concatenating multiple such non-linear units it is pos-
sible to create complex signaling networks with robust, digital behaviors.

Intriguingly, the same core reaction network—a catalytic reaction in paral-
lel with a reaction that inhibits catalysis—responsible for producing non-linear
input output curves can also generate perfectly linear ones [3] (see also Fig. 1).
Specifically, when the catalyst has no kinetic preference between the inhibitor
and productive substrate, the reaction network acts as a variable gain ampli-
fier. That is, a given catalyst can undergo a fixed, but controllable number of
catalytic cycles before being inactivated. The amount of product produced is
a defined multiple (gain) of the initial amount of catalyst available; the gain
is determined by the concentration ratio between the productive substrate and
inhibitor (this parameter thus plays the role of the voltage in an electronic vari-
able gain amplifier). The result, though not the mechanism, is reminiscent of a
polymerase chain reaction with a fixed number of cycles.

The diversity of response functions that can be realized with competitive inhi-
bition systems make them an intriguing engineering target (Fig. 1). For exam-
ple, variable gain amplification or multiplication is a key ingredient of simple
neural network models where different weights (synaptic strengths) are associ-
ated with different inputs to a given neuron. Thus an experimental realization
of a fixed gain amplification system would enable the construction of molecular
neural networks. However the fine-grained, quantitative control over reactant
concentrations and rate constants required to achieve behaviors such as variable
gain amplification may be difficult to realize in a biological system. Moreover, it
may be challenging to create multiple, modular instances of the same motif, a
requirement for the construction of multi-input neural networks.

DNA strand displacement cascades provide an alternative technology for the
experimental realization of complex reaction pathways [4]. DNA strand displace-
ment is a competitive hybridization reaction where an incoming DNA strand
outcompetes an incumbent strand for binding to a complementary partner. The
strand displacement mechanism was introduced to the DNA nanotechnology
field by Yurke and co-workers as means to drive a DNA “tweezer,” a DNA-based
molecular motor, between an open and closed state [5]. Strand displacement is
typically initiated through binding of short complementary toehold sequences
and the reaction rate can be predictably tuned by controlling the length and
sequence composition of the toehold [6,7]. Multiple such reactions can be con-
catenated to create multistep reaction cascades where the strand released in one
strand displacement reaction acts as the input in a downstream reaction [8–10].

DNA strand displacement has already been used to create the key building
blocks required for implementing variable gain amplifiers, including sequence-
programmable catalytic amplification systems [8,10–12]. Moreover, competitive
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strand displacement was used by Li et al. [13] to convert differences in reaction
rate constants between two DNA inputs into differences at the reaction end
point, allowing them to build an SNV discrimination system. In recent work,
we showed that combining a competitive sink with a catalytic reaction could
result in quadratically better SNV discrimination than can be achieved with a
non-catalytic probe or reporter [14]. Finally, Qian and Winfree used catalytic
amplification together with competitive inhibition to create molecular logic gates
with strongly non-linear input-output relationships that could be composed into
multi-layered logic circuits [15] and neural networks [16].

Here, we build on these previous results to experimentally realize a DNA
strand displacement-based variable gain amplifier. We then combine two such
elements into a proof-of-principle neural network classifier that operates on two
inputs with sequences of biological microRNA (miRNA). For our two-input clas-
sifier, we chose input sequences that differ by a single nucleotide to demonstrate
that the expected output is produced even when very high specificity of reac-
tions is required. The neural network architecture we describe here is distinct
from the architecture used in prior work [16] in that neurons in the first layer
do not act as digital units but can assign an arbitrary weight to an input. More-
over, the specific DNA architecture used also differs from a previously proposed
alternative approach to implementing weighs in a neural network [17].

2 Results

2.1 DNA Implementation of a Variable Gain Amplifier

The catalytic probe PAMP is implemented with an entropy driven amplification
system as shown in Fig. 2A [12]. The inhibition system, or sink SDEG, is imple-
mented with a two stage cascade based on the same mechanism but using a
truncated fuel as seen in Fig. 2B [14]. For experimental convenience we chose to
incorporate a fluorophore quencher pair directly into the catalytic probe rather
than using the translation scheme introduced in Ref. [12].

Both the amplification and inhibition reactions initiate with a reversible toe-
hold exchange step; the activated probe or sink then react with their respective
fuel species. The fuel for the catalytic probe displaces both the signal and releases
the input. In contrast, the fuel for the sink cannot displace the input but rather
irreversibly traps it. The catalytic and inhibition reactions are designed to have
highly similar kinetics which is necessary to ensure that the gain is the same for
all input concentrations [3]. Outer toeholds (Fig. 2, orange) on both probe and
sink are identical by design. The inner toeholds (shown in pink for the ampli-
fication system, purple for the inhibition system) have different sequences to
minimize crosstalk but similar binding energy to still ensure similar kinetics. A
more detailed description and model of the sink can be found in Ref. [14].

2.2 Capturing Experimental Non-idealities

The model of Ref. [3] (see also Fig. 1) assumes that the amplifier is an ideal
catalytic system. However, all strand displacement catalytic systems will deviate
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Fig. 2. DNA implementation of a linear classifier circuit. (A) We use a fluores-
cently labeled entropy driven catalytic system [12] as the amplifier. Input I reacts with
the catalytic probe PAMP to form waste and an intermediate complex, Intermediate-P.
The latter then reacts with the fuel, Fuel-P to release the input I and also displace the
quencher-labeled waste strand to form the double-stranded fluorescent signal species
F . The input strand is then free to react with another amplifier complex PAMP and
repeat the catalytic cycle. (B) The sink is implemented with a two-stage reaction cas-
cade using components almost identical to the amplification system to ensure similar
kinetics. The sink SDEG is identical to the amplifier at the domain level. However, the
internal toehold sequence (purple) is distinct from that of the amplifier. The binding
energies of the inner toeholds are similar to ensure linearity of amplification. The fuel
species for the inhibition reaction, Fuel-S is designed not to release the input. More-
over, reaction with the sink does not result in a fluorescent signal. Sequences for all
components can be found in Ref. [14]. (Color figure online)

from this assumption in several ways. First, DNA strand displacement systems
exhibit “leak” whereby an output signal is produced even in the absence of
an input. In our own experiments, this issue is compounded because we did not
purify the DNA complexes. In practice, we thus expect that the final fluorescence
signal has two components

Finput = Fleak + α[I] (1)

where Fleak is the background signal due to the leak and the second term rep-
resents the increase in signal due to the intended amplification reaction.
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The gain α can be calculated from the initial concentrations of probe PAMP

and sink SDEG:

α =
[PAMP ]0

[SDEG]0 + [PAMP ]0
C

. (2)

The constant C is the maximum turnover of the amplification system without
any sink. This term reflects the experimental reality that strand displacement
catalytic systems have an intrinsically limited turnover. The experimentally esti-
mate this value, experiments can be performed with a large excess of probe PAMP

over the input I (and no sink). The effective turnover can then be calculated
from the final fluorescent signal reached in that experiment.

Using this equation and an estimate for C we can predictably tune the gain
α by, for example, changing the amount of sink SDEG we add to the system for
a fixed concentration of probe PAMP . We also note that the amount of input
should not exceed the amount of sink or probe to ensure proper operation.

2.3 Testing the Variable Gain Amplifier

To experimentally test our model, we designed two distinct variable gain sys-
tems using the sequences of miRNAs let-7a and let-7c as inputs. These miRNA
sequences differ in only a single nucleotide and we have previously used those
same sequences to demonstrate specificity of a strand displacement-based SNV
discrimination reaction [14]. Let-7 family miRNA have important roles in devel-
opment and at least eight different family members are found in humans [18]. For
our experiments, we used synthetic RNA oligonucleotides rather than biological
miRNA.

For the let-7a system, the measured maximum turnover was approximately
C = 30. We chose the initial concentrations [PAMP ]0 = 30 nM and [SDEG]0 =
9.3 nM to achieve a gain α = 2.9. We then performed experiments with five
different concentrations of the let-7a RNA input: one experiment with input
concentration of 1 nM, three with input concentration 2 nM and one with input
concentration 3 nM. The kinetics traces are shown on the left of Fig. 3A. As
expected, the signal is higher with more input, and the three repeats with 2nM
input show very similar kinetics, demonstrating good repeatability.

The net increment of signal due to the input is calculated by subtracting the
signal due to the leak reaction from the total signal in the presence of the input,
Finput−Fleak (Eq. 1). This net steady state increment is plotted as a function of
the input concentration on the right of Fig. 3A. We then fit the data to a straight
line, in order to obtain a value for the experimentally observed gain α (the slope
of the fitted line, Eq. 1). For our experiment, the slope was α = 2.86±0.06 which
agrees well with the target value of α = 2.9.

We then performed a similar set of experiments with the let-7c system, using
target gain α = 3.2 (C = 20, [PAMP ]0 = 30 nM, [SDEG]0 = 7.9 nM). The slope
of the fitted line is α = 3.13 ± 0.11 in good agreement with the set point value.
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Fig. 3. Experimental result of an amplifier with varying input concentra-
tions. (A) A DNA-based variable gain amplifier for an input with the let-7a RNA
sequence. In the experiment, the gain is set to α = 2.9. The input concentration varies
from 1 nM to 3 nM. The graph on the left shows the reaction kinetics traces from
a fluorescence time course experiment. The plot on the right shows the background-
subtracted final signal as a function of the input concentration. The value for the slope
2.86 ± 0.06 of a line fit to the data agrees well with the target value for the gain. (B)
A DNA-based variable gain (α = 3.2) amplifier for the let-7c RNA sequence. Kinetics
traces are shown on the left, background-subtracted end point values on the right. The
slope of the fitted line is 3.13 ± 0.11 in agreement with the target value.

2.4 Varying the Gain

Next, we wanted to test whether we could predictably vary the gain. To this
end, we performed experiments with varying amounts of sink SDEG while fixing
the input amount at 2 nM. For each experimental condition, we calculated the
expected value of the gain α using Eq. 2.

Figure 4A (left) shows the kinetics traces for a set of experiments performed
with the let-7a variable gain amplifier. On the right, background-corrected end-
point fluorescence levels are shown as a function of the expected gain α (the
target values are indicated next to the dots in the graph). If the predictions
made with Eq. 2 are correct in call cases, we should be able to fit all data to
a straight line with a slope that is equal to the amount of input. We found
that for the let-7a system the best fit to the data was obtained with a slope of
2.03 ± 0.09 nM in good agreement with the prediction.
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Performing a similar experiment with the let-7c system also resulted in good
agreement between data and model (Fig. 4B). The best fit to the data was
obtained with a slope of 1.99 ± 0.11 nM which agrees with the amount of input
we added (2 nM).
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Fig. 4. Varying the gain α for a fixed amount of input. In the experiments, α
is varied by changing the concentration of the sink (SDEG). (A) The figure on the left
shows the kinetics traces for a set of experiments performed with the let-7a variable
gain amplifier and different sink concentrations. The final signal increment due to the
input as a function of the gain α is shown on the right. The data can be fitted to a
straight line with slope 2.03 ± 0.09 nM which agrees well with input concentration of
2 nM. (B) Variable gain amplifier for let-7c. Kinetics traces for various values of the
gain are shown on the left, end points on the right. The slope of the linear fit of final
signal vs. gain is 1.99±0.11 nM which agrees with the real input concentration of 2 nM.

2.5 Classifier Design

Many problems in biology require classification of samples based on their gene
expression profiles. For example, a decision tree classifier based on miRNA
expression patterns can be used to identify cancer tissues of origin [19]. Although
reliable classification often requires considering many molecular inputs, even
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Fig. 5. A two-input neural network classifier composed of variable gain mod-
ules for inputs with sequences of let-7a and let-7c miRNAs. (A) A neural
network representation of a linear two-input classifier. Here, we only implement the
initial multiplication steps at the molecular level. (B) Fluorescence kinetics traces for
the let-7a amplifier. Each amplifier module is functionalized with a unique fluorophore
to allow independent analysis of both amplification reactions in the same test tube. (C)
Fluorescence kinetics traces for Let-7c amplifier. (D) Comparison of the expected and
experimental result. The experimental results are with in 5% of the expected result.
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classifiers based on comparing the levels of only two genes can be of clinical
relevance [20].

Here, we propose to build a simple two parameter classifier of the form

y = α1[RNA1] + α2[RNA2], (3)

where [RNA1], [RNA2] are the concentration of the input RNAs, α1 and α2 are
weights that can in principle be learned form labeled training samples and y is
the score used to determine the class by comparing its value to a threshold value.
A graphical representation of this system using a neural network representation
is shown in Fig. 5A.

2.6 A Linear Classifier Circuit

To create a two-input linear classifier or neural network, we combined the two
variable gain amplifier modules introduced above. The classifier we intended to
construct realizes the function y = 5.4 [let-7a] + 3.2 [let-7c]. We note that this
particular choice of parameters is arbitrary and does not reflect a biologically
relevant decision. However, this system still provides a good proof-of-principle
demonstration of the computational system.

The let-7a and let-7c RNA sequences are first premixed in tubes for each
sample and added to a mixture of let-7a (gain α1 = 5.4) and let-7c (gain α2 =
3.2) variable gain amplification systems. In this experiment, we use two different
fluorophores to read out the reactions for let-7a and let-7c. As a result, we can
observe the trace for each system in different channels (Fig. 5B, C) even though
the reactions occur in parallel in the same test tube. The advantage of such
a two-color setup is that it provides direct information about each sub-system
which simplifies troubleshooting.

A comparison of the expected result and the actual experimental data for
each combination of inputs is shown in Fig. 5D. The expected result is calculated
by plugging the input concentrations into the equation y = 5.4 [let-7a] + 3.2 [let-
7c]. The experimental result is obtained by converting the fluorescence signal in
each channel to a concentration using a calibration curve and then taking the
sum of the signals of let-7a and let-7c. Remarkably, the experimental results are
with in 5% of the expected result even though the sequences for let-7a and let-7c
differ only in a single position. This good agreement is a direct consequence of
the high specificity of the amplification mechanism [14].

3 Discussion

The work presented here demonstrates that variable gain amplifiers can be real-
ized using a simple DNA strand displacement-based reaction network. Moreover,
we showed that variable gain amplifiers can serve as multiplication elements that
assign specific weights to an input in a molecular classifier.

We experimentally built a neural network that computed the weighted sum of
two inputs. However, there a still several limitations to the experimental system
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presented here. First, rather than performing the summation at the molecular
level, we used two distinct fluorescent reporters to read out the two amplifica-
tion reactions individually and performed the summation in silico. This approach
has the advantage that we can obtain additional information about the opera-
tion of the individual variable gain units but has the disadvantage that not all
computation is performed in the test tube. Luckily, this limitation could eas-
ily be overcome by using entropy driven catalysts that produce identical single
stranded outputs in both amplifier units. A single fluorescent reporter triggered
by this output strand then provides a readout of the weighted sum of the inputs.
Because of the modularity of the amplifier design which completely decouples
input and output sequences, weights associated with any number of inputs could
be summed up by operating multiple amplifiers with distinct inputs but identical
outputs in parallel. To realize both negative and positive weights, two distinct
sequences could be used: all variable gain amplifiers associated with a positive
weight would release one type of output sequence while all amplifiers associated
with a negative weight would release the other sequence.

A second limitation comes from the fact that we did not experimentally
realize the activation function comparing the weighted sum of the inputs to
some threshold value in order to solve the classification problem. Again, this
limitation could be overcome through the use of “off-the-shelf” threshold units
such as those introduced in Refs. [14,15] or by connecting the outputs to a
consensus network [21].

Finally, we did not gel-purify the sink or entropy driven catalysts which con-
siderably increases leak reactions. Simply using purified complexes would reduce
the value of the leak constant and could also increase the intrinsic turnover, thus
aligning the behavior of the variable gain amplifier units even more closely with
that predicted for an ideal system.

Through this work, we experimentally demonstrated a novel primitive for
molecular computation and a path towards building a class of linear classifiers
or neural networks that has not yet been realized at the molecular level. Previous
work on the construction of digital logic circuits using closely related molecular
building blocks suggests that scaling up classifier size should be feasible [15]. In
the longer term, such classification systems could result in novel technologies for
analyzing biological samples, for example classifying patient samples based on
the expression level of micro RNA or messenger RNA in blood or other biological
liquids.

Acknowledgements. This work was supported through the NSF grant CCF-1317653
to GS.
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Abstract. In a self-organizing particle system, an abstraction of pro-
grammable matter, simple computational elements called particles with
limited memory and communication self-organize to solve system-wide
problems of movement, coordination, and configuration. In this paper,
we consider stochastic, distributed, local, asynchronous algorithms for
“shortcut bridging,” in which particles self-assemble bridges over gaps
that simultaneously balance minimizing the length and cost of the bridge.
Army ants of the genus Eticon have been observed exhibiting a similar
behavior in their foraging trails, dynamically adjusting their bridges to
satisfy an efficiency tradeoff using local interactions [1]. Using techniques
from Markov chain analysis, we rigorously analyze our algorithm, show
it achieves a near-optimal balance between the competing factors of path
length and bridge cost, and prove that it exhibits a dependence on the
angle of the gap being “shortcut” similar to that of the ant bridges.
We also present simulation results that qualitatively compare our algo-
rithm with the army ant bridging behavior. The proposed algorithm
demonstrates the robustness of the stochastic approach to algorithms
for programmable matter, as it is a surprisingly simple generalization of
a stochastic algorithm for compression [2].

1 Introduction

In developing a system of programmable matter, one endeavors to create a mate-
rial or substance that can utilize user input or stimuli from its environment to
change its physical properties in a programmable fashion. Many such systems
have been proposed (e.g., DNA tiles, synthetic cells, and reconfigurable modular
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robots) and each attempts to perform tasks subject to domain-specific capabili-
ties and constraints. In our work on self-organizing particle systems, we abstract
away from specific settings and envision programmable matter as a system of
computationally limited devices (which we call particles) which can actively
move and individually execute distributed, local, asynchronous algorithms to
cooperatively achieve macro-scale tasks of movement and coordination.

The phenomenon of local interactions yielding emergent, collective behavior
is often found in natural systems; for example, honey bees choose hive loca-
tions based on decentralized recruitment [3] and cockroach larvae perform self-
organizing aggregation using pheromones with limited range [4]. In this paper,
we present an algorithm inspired by the work of Reid et al. [1], who found that
army ants continuously modify the shape and position of foraging bridges—
constructed and maintained by their own bodies—across holes and uneven sur-
faces in the forest floor. Moreover, these bridges appear to stabilize in a structural
formation which balances the “benefit of increased foraging trail efficiency” with
the “cost of removing workers from the foraging pool to form the structure” [1].

We attempt to capture this inherent trade-off in the design of our algorithm
for “shortcut bridging” in self-organizing particle systems (to be formally defined
in Sect. 1.3). Our proposed algorithm for shortcut bridging is an extension of the
stochastic, distributed algorithm for the compression problem introduced in [2],
which shows that many fundamental elements of our stochastic approach can
be generalized to applications beyond the specific context of compression. In
particular, our stochastic approach may be of future interest in the molecular
programming domain, where simpler variations of bridging have been studied.
Groundbreaking works in this area, such as that of Mohammed et al. [5], focus on
forming molecular structures that connect some fixed points; our work may offer
insights on further optimizing the quality and/or cost of the resulting bridges.

Shortcut bridging is an attractive goal for programmable matter systems, as
many application domains envision deploying programmable matter on surfaces
with structural irregularities or dynamic topologies. For example, one commonly
imagined application of smart sensor networks is to detect and span small cracks
in infrastructure such as roads or bridges as they form; dynamic bridging behav-
ior would enable the system to remain connected as the cracks form and to shift
its position accordingly.

1.1 Related Work

When examining the recently proposed and realized systems of programmable
matter, one can distinguish between passive and active systems. In passive sys-
tems, computational units cannot control their movement and have (at most)
very limited computational abilities, relying instead on their physical structure
and interactions with the environment to achieve locomotion (e.g., [6–8]). A large
body of research in molecular self-assembly falls under this category, which has
mainly focused on shape formation (e.g., [9–11]). Rather than focusing on con-
structing a specific fixed target shape, our work examines building dynamic
bridges whose exact shape is not predetermined. Mohammed et al. studied the
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more relevant problem of connecting DNA origami landmarks with DNA nan-
otubes, using a carefully designed process of nanotube nucleation, growth, and
diffusion to achieve and maintain the desired connections [5]. The most signifi-
cant differences between their approach and ours is (i) the bridges we consider
already connect their endpoints at the start, and focus on the more specific goal
of optimizing their shape with respect to a parameterized objective function,
and (ii) our system is active as opposed to passive.

Active systems, in contrast, are composed of computational units which can
control their actions to solve a specific task. Examples include swarm robotics,
various other models of modular robotics, and the amoebot model, which defines
our computational framework (detailed in Sect. 1.2).

Swarm robotics systems usually involve a collection of autonomous robots
that move freely in space with limited sensing and communication ranges. These
systems can perform a variety of tasks including gathering [12], shape for-
mation [13,14], and imitating the collective behavior of natural systems [15];
however, the individual robots have more powerful communication and process-
ing capabilities than those we consider. Modular self-reconfigurable robotic sys-
tems focus on the motion planning and control of kinematic robots to achieve
dynamic morphology [16], and metamorphic robots form a subclass of self-
reconfiguring robots [17] that share some characteristics with our geometric
amoebot model. Walter et al. have conducted some algorithmic research on these
systems (e.g., [18,19]), but focus on problems disjoint from those we consider.

In the context of molecular programming, our model most closely relates to
the nubot model by Woods et al. [20,21], which seeks to provide a framework for
rigorous algorithmic research on self-assembly systems composed of active mole-
cular components, emphasizing the interactions between molecular structure and
active dynamics. This model shares many characteristics of our amoebot model
(e.g., space is modeled as a triangular grid, nubot monomers have limited com-
putational abilities, and there is no global orientation) but differs in that nubot
monomers can replicate or die and can perform coordinated rigid body move-
ments. These additional capabilities prohibit the direct translation of results
under the nubot model to our amoebot model.

1.2 The Amoebot Model

We recall the main properties of the amoebot model [2,22], an abstract model
for programmable matter that provides a framework for rigorous algorithmic
research on nano-scale systems. We represent programmable matter as a col-
lection of individual computational units known as particles. The structure of
a particle system is represented as a subgraph of the infinite, undirected graph
G = (V,E), where V is the set of all possible locations a particle could occupy
and E is the set of all possible atomic transitions between locations in V . For
shortcut bridging (and many other problems), we assume the geometric amoebot
model, in which G = Γ , the triangular lattice (Fig. 1a).

Each particle is either contracted, occupying a single location, or expanded,
occupying or a pair of adjacent locations in Γ (Fig. 1b). Particles move via a
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series of expansions and contractions; in particular, a contracted particle may
expand into an adjacent unoccupied location, and completes its movement by
contracting to once again occupy a single location.

Two particles occupying adjacent locations in Γ are said to be neighbors.
Each particle is anonymous, lacking a unique identifier, but can locally identify
each of its neighbors via a collection of ports corresponding to edges incident to
its location. We assume particles have a common chirality, meaning they share
the same notion of clockwise direction, which allows them to label their ports in
clockwise order. However, particles do not share a global orientation and thus
may have different offsets for their port labels (Fig. 1c).
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Fig. 1. (a) A section of the triangular lattice Γ ; (b) expanded and contracted particles;
(c) two non-neighboring particles with different offsets for their port labels.

Each particle has a constant-size, local memory that can read from for com-
munication by it and its neighbors, so a particle’s state (e.g., contracted or
expanded) is visible to its neighbors. Due to the limitation of constant-size mem-
ory, a particle cannot know the total number of particles in the system or any
estimate of it. We assume the standard asynchronous model from distributed
computing [23], where progress is achieved through atomic particle activations.
Once activated, a particle can perform an arbitrary, bounded amount of com-
putation involving its local memory and the memories of its neighbors, and can
perform at most one movement. A classical result under this model states that
for any concurrent asynchronous execution of activations, there is a sequential
ordering of activations producing the same result, provided conflicts that arise
in the concurrent execution are resolved. In our scenario, conflicts arising from
simultaneous memory writes or particle expansions into the same empty loca-
tion are assumed to be resolved arbitrarily. Thus, while many particles may
be activated at once in a realistic settings, it suffices to consider a sequence of
activations in which only one particle is active at a time.

1.3 Problem Description

Just as the uneven surfaces of the forest floor affect the foraging behavior of army
ants, the collective behavior of particle systems should change when Γ is non-
uniform. Here, we focus on system behaviors when the vertices of Γ are either
gap (unsupported) or land (supported) locations. A particle occupying some
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location in Γ can tell whether it is in the gap or on land. We also introduce
objects, which are static particles that do not perform computation; these are
used to constrain the particles to remain connected to certain fixed sites. In
order to analyze the strength of the solutions our algorithm produces, we define
the weighted perimeter p(σ, c) of a particle system configuration σ to be the
summed edge weights of edges on the external boundary of σ, where edges on
land have weight 1, edges in the gap have a fixed weight c > 1, and edges with
one endpoint on land and one endpoint in the gap have weight (1 + c)/2.

In the shortcut bridging problem, we consider an instance (L,O, σ0, c, α)
where L ⊆ V is the set of land locations, O is the set of (two) objects to be
bridged between, σ0 is the initial configuration of the particle system, c > 1
is a fixed weight for gap edges, and α > 1 is the accuracy required of a solu-
tion. An instance is valid if (i) the objects of O and particles of σ0 all occupy
locations in L, (ii) σ0 connects the objects, and (iii) σ0 is connected, a notion
formally defined in Sect. 2.1. An algorithm solves an instance if, beginning from
σ0, it reaches and remains (with high probability) in a set of configurations Σ∗

such that any σ ∈ Σ∗ has perimeter weight p(σ, c) within an α-factor of its
minimum value. The weighted perimeter balances in one function (using an
appropriate weight for the land and gap perimeter edges) the trade-off observed
in [1] between the competing objectives of establishing a short path between the
fixed endpoints while not having too many particles in the gap. We focus on
gap perimeter instead of the number of particles in the gap (which is perhaps
a more natural analogy to [1]) because (1) the shortcut bridges produced with
this metric more closely resemble the ant structures and (2) only particles on
the perimeter of a configuration can move, and thus recognize the potential risk
of being in the gap, justifying our focus on perimeter in the weight function.

In analogy to the apparatus used in [1] (see Fig. 3a), we are particularly inter-
ested in the special case where L forms a V-shape, O has two objects positioned
at either base of L, and σ0 lines the interior sides of L, as in Fig. 2a. However,
our algorithm is not limited to this setting; for example, we show simulation
results for an N-shaped land mass (Fig. 2b) in Sect. 5.

(a) (b)

Fig. 2. Examples of L, O and σ0 for instances of the shortcut bridging problem for
which we present simulation results (Sect. 5). Light (brown) nodes are land locations,
large (red) nodes are occupied by objects, and black nodes are occupied by particles.
(Color figure online)
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1.4 The Stochastic Approach to Self-organizing Particle Systems

In [2], we introduced a stochastic, distributed algorithm for compression in the
amoebot model; here we extend that work to show that stochastic approach is
in fact more generally applicable. The motivation underlying this Markov chain
approach to programmable matter comes from statistical physics, where ensem-
bles of particles reminiscent of the amoebot model are used to study physical
systems and demonstrate that local micro-behavior can induce global macro-
scale changes to the system [24–26]. Like a spring relaxing, physical systems
favor configurations that minimize energy. The energy function is determined by
a Hamiltonian H(σ). Each configuration σ has weight w(σ) = e−B·H(σ)/Z, where
where B = 1/T is inverse temperature and Z =

∑
τ e−B·H(τ) is the normalizing

constant known as the partition function.
For shortcut bridging, we introduce a Hamiltonian over particle system con-

figurations so that the configurations of interest will have the lowest energy, and
will design our algorithms to favor these low energy configurations. We assign
each particle system configuration σ a Hamiltonian H(σ) = p(σ, c), its weighted
perimeter. Setting λ = eB , we get w(σ, c) = λ−p(σ,c)/Z. As λ gets larger (by
increasing B, effectively lowering temperature), we increasingly favor configu-
rations where p(σ, c) is small and the desired bridging behavior is exhibited.
We prove (Theorem 1) that raising λ above 2 +

√
2 suffices for the low energy

configurations with small p(σ, c) to dominate the state space and overcome the
entropy of the system. That is, for λ > 2 +

√
2, low energy configurations occur

with sufficient frequency that we will find such configurations when we sample
over the whole state space. The key tool used to establish this is a careful Peierls
argument, used in statistical physics to study non-uniqueness of limiting Gibbs
measures and to determine the presence of phase transitions and in computer
science to establish slow mixing of Markov chains (see, e.g., [27], Chap. 15).

Compared to other algorithms for programmable matter and self-organizing
particle systems, stochastic methods such as the compression algorithm of [2]
and our shortcut bridging algorithm are nearly oblivious, more robust to failures,
and require little to no communication between particles. Because each of these
algorithms is derived from a stochastic process, powerful tools developed for
Markov chain analysis can be employed to rigorously understand their behavior.

1.5 A Stochastic Algorithm for Shortcut Bridging

We present a Markov chain M for shortcut bridging in the geometric amoe-
bot model which translates directly to a fully distributed, local, asynchronous
algorithm A. We prove that M (and by extension, A) solves the shortcut bridg-
ing problem: for any constant α > 1, the long run probability that M is in a
configuration σ with p(σ, c) larger than α times its minimum possible value is
exponentially small. We then specifically consider V-shaped land masses with an
object on each branch of the V , and prove that the resulting bridge structures
vary with the interior angle of the V-shaped gap being shortcut—a phenomenon
also observed by Reid et al. [1] in the army ant bridges—and show in simulation
that they are qualitatively similar to those of the ants (e.g., Fig. 3).
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(a)
(b)

Fig. 3. (a) In this image from [1], army ants of the genus Eticon build a dynamic bridge
which balances the benefit of a shortcut path with the cost of committing ants to the
structure. (b) Our shortcut bridging algorithm also balances competing objectives and
converges to similar configurations.

2 Background

2.1 Terminology for Particle Systems

For a particle P (resp., location �), we use N(P ) (resp., N(�)) to denote the
set of particles and objects1 adjacent to P (resp., to �). For adjacent locations �
and �′, we use N(� ∪ �′) to denote the set N(�) ∪ N(�′), not including particles
or objects occupying either � or �′.

We define an edge of a particle configuration to be an edge of Γ where both
endpoints are occupied by particles. When referring to a path, we mean a path
in the subgraph of Γ induced by the locations occupied by particles. Two par-
ticles are connected if there exists a path between them, and a configuration is
connected if all pairs of particles are. A hole in a configuration is a maximal
finite component of adjacent unoccupied locations. We specifically consider con-
nected configurations with no holes, and our algorithm, if starting at such a
configuration, will maintain these properties.

Let σ be a connected configuration with no holes. The perimeter of σ, denoted
p(σ), is the length of the walk around the (single external) boundary of the
particles. The gap perimeter of σ, denoted g(σ), is the number of perimeter
edges that are in the gap, where edges with one endpoint in the gap and one
endpoint on land count as half an edge in the gap. Note that an edge may appear
twice in the boundary walk, and thus may be counted twice in p(σ) or g(σ).

2.2 Markov Chains

Our distributed shortcut bridging algorithm is based on a Markov chain, so
we briefly review the necessary terminology. A Markov chain is a memoryless

1 The notion of a particle (resp., location) neighborhood N(P ) (resp., N(�)) has been
extended from [2] to include objects.
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stochastic process defined on a finite set of states Ω. The transition matrix P
on Ω × Ω → [0, 1] is defined so that P (x, y) is the probability of moving from
state x to state y in one step, for any pair of states x, y ∈ Ω. The t-step transition
probability P t(x, y) is the probability of moving from x to y in exactly t steps.

A Markov chain is ergodic if it is irreducible, i.e., for all x, y ∈ Ω, there
is a t such that P t(x, y) > 0, and aperiodic, i.e., for all x, y ∈ Ω, g.c.d. {t :
P t(x, y) > 0} = 1. Any finite, ergodic Markov chain converges to a unique
stationary distribution π given by, for all x, y ∈ Ω, limt→∞ P t(x, y) = π(y).
Any distribution π′ satisfying π′(x)P (x, y) = π′(y)P (y, x), for all x, y ∈ Ω,
(the detailed balance condition) and

∑
x∈Ω π′(x) = 1 is the unique stationary

distribution of the Markov chain (see, e.g., [28]).
Given a Markov chain and a desired stationary distribution π on Ω, the cel-

ebrated Metropolis-Hastings algorithm [29] defines appropriate transition prob-
abilities for the chain so that π is its stationary distribution. Starting at x ∈ Ω,
pick a neighbor y in Ω uniformly with some fixed probability (that is the same
for all x), and move to y with probability min{1, π(y)/π(x)}; with the remaining
probability stay at x and repeat. Using detailed balance, if the state space is con-
nected then π must be the stationary distribution. While calculating π(x)/π(y)
seems to require global knowledge, this ratio can often be calculated using only
local information when many terms cancel out. In our case, the Metropolis prob-
abilities are simply min{1, λp(x,c)−p(y,c)}; if x and y only differ by one particle
P , as is the case with all moves of our algorithm, then p(x, c) − p(y, c) can be
calculated using only local information from the neighborhood of P .

3 A Stochastic Algorithm for Shortcut Bridging

Recall that for the shortcut bridging problem, we desire for our algorithm to
achieve small weighted perimeter, where boundary edges in the gap cost more
than those on land. The algorithm must balance the competing objectives of
having a short path between the two objects while not forming too large of a
bridge. We capture these two factors by preferring small perimeter and small gap
perimeter, respectively. While these objectives may appear to be aligned rather
than competing, decreasing the length of the overall perimeter increases the gap
perimeter and vice versa in the problem instances we consider (e.g., Fig. 2).

Specifically, our Markov chain algorithm incorporates two bias parameters: λ
and γ. The value of λ controls the preference for having a small perimeter, while γ
controls the preference for having a small gap perimeter. In this paper, we only
consider λ > 1 and γ > 1, which correspond to favoring a smaller perimeter and
a smaller gap perimeter, respectively. Using a Metropolis filter, we ensure that
our algorithm converges to a distribution over particle system configurations
where the relative likelihood of the particle system being in configuration σ
is λ−p(σ)γ−g(σ), or equivalently, λ−p(σ,c) for c = 1 + logλ γ. We note λ is the
same parameter that controlled compression in [2], where particle configurations
converged to a distribution proportional to λ−p(σ). That work showed that λ > 1
is not sufficient for compression to occur, so we restrict our attention to λ >
2 +

√
2, the regime where compression provably happens.
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To ensure that during the execution of our algorithm the particles remain
connected and hole-free, we introduce two properties every movement must sat-
isfy. These properties help to guarantee the local connectivity structure in the
neighborhood of a moving particle doesn’t change; more details may be found
in [2]. Importantly, these properties maintain system connectivity2, prevent holes
from forming, and ensure reversibility of the Markov chain. These last two con-
ditions are necessary for applying established tools from Markov chain analysis.
Let � and �′ be adjacent locations in Γ , and let S = N(�)∩N(�′) be the particles
adjacent to both; we note |S| = 0, 1, or 2.

Property 1. |S| ∈ {1, 2} and every particle in N(�∪ �′) is connected to a particle
in S by a path through N(� ∪ �′).

Property 2. |S| = 0; � and �′ each have at least one neighbor; all particles in
N(�)\{�′} are connected by paths within this set; and all particles in N(�′)\{�}
are connected by paths within this set.

Importantly, these properties are symmetric with respect to � and �′ and can
be locally checkable by an expanded particle occupying both � and �′ (as in Lines
2–3 of the Markov chain process described below).

We can now introduce the Markov chain M for an instance (L,O, σ0, c, α) of
shortcut bridging. For input parameter λ > 2+

√
2, set γ = λc−1, and beginning

at initial configuration σ0, which we assume has no holes,3 repeat:

1. Select a particle P uniformly at random from among all n particles; let �
denote its location. Choose a neighboring location �′ and q ∈ (0, 1) uniformly.
Let σ be the configuration with P at � and σ′ the configuration with P at �′.

2. If �′ is unoccupied, then P expands to occupy both � and �′. Otherwise, return
to step 1.

3. If (i) |N(�)| �= 5, (ii) � and �′ satisfy Property 1 or Property 2, and (iii)
q < λp(σ)−p(σ′)γg(σ)−g(σ′), then P contracts to �′. Otherwise, P contracts
back to �.

Although p(σ) − p(σ′) and g(σ) − g(σ′) are values defined at system-level scale,
we show these differences can be calculated locally.

Lemma 1. The values of p(σ)− p(σ′) and g(σ)− g(σ′) in Step 3(iii) of M can
be calculated using information involving only �, �′, and N(� ∪ �′).

Proof. These values only need to be calculated if 3(i) and 3(ii) are both true.
By a result of [2], p(σ) − p(σ′) = |N(�′)| − |N(�)|, which is computable with only
local information.

Note g(σ) is also the number of particles that are on the perimeter and in
the gap, counted with appropriate multiplicity if a particle is on the perimeter
2 Since particles treat objects as static particles, the particle system may actually

disconnect into several components which remain connected through objects.
3 If σ0 has holes, our algorithm will eliminate them and they will not reform [2]; for

simplicity, we focus only on the behavior of the system after this occurs.
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more that once. Given a particle Q, let G(Q) be 1 if Q is in a gap location
and 0 if land; define G(�) for a location � similarly. Let δ(Q,σ) be the number
of times Q appears on the perimeter of σ. Then g(σ) =

∑
Q∈p(σ) G(Q)δ(Q,σ).

Define Δ(Q) = δ(Q,σ)− δ(Q,σ′). For particles not in {P}∪N(�∪ �′), Δ(Q) = 0
as the neighborhood of Q will be identical in σ and σ′. Because steps 3(i) and
3(ii) are true, inspection shows this implies Δ(P ) = 0. Then:

g(σ) − g(σ′) =
∑

Q∈N(�∪�′)

G(Q)Δ(Q) + δ(P, σ)(G(�) − G(�′)).

The second term above is calculable with only local information; for
Q ∈ N(� ∪ �′), to find Δ(Q) only Q’s neighbors in this set need to be consid-
ered. If Q is adjacent to � and not �′, Δ(Q) = −1 if it has two neighbors in
N(�), Δ(Q) = 1 if it has no neighbors in N(�), and Δ(Q) = 0 otherwise. If Q
is adjacent to �′ but not �, the opposite is true. If Q is adjacent to � and �′,
then Δ(Q) = 0 if Q has zero or two neighbors in N(� ∪ �′); Δ(Q) = 1 if Q has a
common neighbor with �′ but not �; and Δ(Q) = −1 if Q has a common neighbor
with � but not �′. In all cases Δ(Q), and thus g(σ) − g(σ′), can be found with
only local information. 	


The state space Ω of M is the set of all configurations reachable from σ0

via valid transitions of M. We conjecture this includes all connected, hole-free
configurations of n particles connected to both objects, but proving all such
configurations are reachable from σ0 is not necessary for our results. (The proof
of the corresponding result in [2] does not generalize due to the presence of
objects).

3.1 From M to a Distributed, Local Algorithm

While M is a Markov chain with centralized control of the particle system, one
can transform M into a distributed, local, asynchronous algorithm A that each
particle runs individually. The full details of this construction are given in [2],
and we give a high level description here. When a particle is activated, it ran-
domly chooses one of its six neighboring locations, checks if moving there is
valid, and locally determines how the move will affect the global weight func-
tion λ−p(σ)γ−g(σ). If the weight will increase, the particle performs the move;
otherwise the particle only moves with some probability less than 1.

Specifically, in Step 1 of M, a particle is chosen uniformly at random to be
activated; to mimic this random activation sequence in a local way, we assume
each particle has its own Poisson clock with mean 1 and becomes active after
some random delay drawn from e−t. During its activation, a contracted parti-
cle P occupying location � chooses a neighboring location �′ and a real value
q ∈ (0, 1) uniformly at random4, expanding into �′ if it is unoccupied, just as
in M. However, unlike in M, the expansion and contraction movements of P

4 Note only a constant number of bits are needed to produce q, as λ and γ are constants
and a particle move changes perimeter and gap perimeter by at most a constant.
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are necessarily split into two activations, since in the amoebot model a central
assumption is that a particle can perform at most one movement per activation
(see Sect. 1.2). Since P ’s two activations are not necessarily consecutive, P must
be able to resolve conflicts with any other particles that may expand into its
neighborhood before it becomes activated again and contracts. We accomplish
this by introducing a system of Boolean flags maintained by all expanded parti-
cles. If P is the only expanded particle in its neighborhood, it stores a boolean
flag f = TRUE in its memory; otherwise, it sets f = FALSE. When P is acti-
vated again (now occupying both � and �′), it checks its flag f . If it is FALSE,
P contracts back to �, since some other particle in its neighborhood activated
and expanded earlier. Otherwise, if f is TRUE, P checks the conditions in Step
3 of M and contracts either to � or �′ accordingly. This ensures that at most one
particle in a local neighborhood is moving at a time, mimicking the sequential
nature of particle moves during the execution of Markov chain M.

While this shows our Markov chain M can be translated into a fully local
distributed algorithm with the same behavior, such an implementation is not
always possible in general. Any Markov chain for particle systems that inher-
ently relies on non-local moves of particles or has transition probabilities relying
on non-local information cannot be executed by a local, distributed algorithm.
Additionally, most distributed algorithms for amoebot systems are not stochas-
tic; see, e.g., the mostly deterministic algorithms in [22,30].

3.2 Properties of Markov Chain M
We now show some useful properties of M. Our first two claims follow from
work in [2] and basic properties of Markov chains and our particle systems.

Lemma 2. If σ0 is connected and has no holes, then at every iteration of M,
the current configuration is connected and has no holes.

Lemma 3. M is ergodic.

As M is finite and ergodic, it converges to a unique stationary distribution, and
we can find that distribution using detailed balance.

Lemma 4. The stationary distribution of M is given by

π(σ) = λ−p(σ)γ−g(σ)/Z,

where Z =
∑

σ∈Ω λ−p(σ)γ−g(σ).

Proof. Properties 1 and 2 ensure that particle P moving from location � to
location �′ is valid if and only if P moving from �′ to � is. This implies for any
configurations σ and τ , P (σ, τ) > 0 if and only if P (σ, τ) > 0. Using this, the
lemma can easily be verified via detailed balance. 	

As referenced above, this stationary distribution can be expressed in an alternate
way using weighted perimeter.
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Lemma 5. For c = 1 + logλ γ, the stationary distribution of M is given by

π(σ) = λ−p(σ,c)/Z,

where Z =
∑

σ∈Ω λ−p(σ,c).

Proof. This follows immediately from the definition of p(σ, c). 	

Theorem 1. Consider an execution of Markov chain M on state space Ω, with
λ > 2 +

√
2, γ > 1, and stationary distribution π, where starting configuration

σ0 has n particles. For any constant α > log(λ)

log(λ)−log(2+
√
2)

> 1, the probability
that a configuration σ drawn at random from π has p(σ, 1 + logλ γ) > α · pmin

is exponentially small in n, where pmin is the minimum weighted perimeter of a
configuration in Ω.

Proof. This mimics the proof of α-compression in [2], though additional insights
and care were necessary to accommodate the difficulties introduced by consid-
ering weighted perimeter instead of perimeter.

Given any configuration σ, let

w(σ) := π(σ) · Z = λ−p(σ)γ−g(σ) = λ−p(σ,1+logλ γ).

For a set of configurations S ⊆ Ω, we let w(S) =
∑

σ∈S w(σ). Let σmin ∈ Ω be
a configuration of n particles with minimal weighted perimeter pmin, and let Sα

be the set of configurations with weighted perimeter at least α · pmin. We show:

π(Sα) =
w(Sα)

Z
<

w(Sα)
w(σmin)

≤ ζ
√

n,

where ζ < 1. The first equality follows from Lemma 5; the next inequality follows
from the definitions of Z, w, and σmin. We focus on the last inequality.

We stratify Sα into sets of configurations with the same weighted perimeter;
there are at most O(n2) such sets, as the total perimeter and gap perimeter can
each take on at most O(n) values. Label these sets A1, A2, . . . , Am in order of
increasing weighted perimeter, where m is the total number of distinct weighted
perimeters possible for configurations in Sα. Let pi be the weighted perimeter of
all configurations in set Ai; since Ai ⊆ Sα, we have pi ≥ α · pmin.

We note w(σ) = λ−pi for every σ ∈ Ai, so to bound w(Ai) it only remains to
bound |Ai|. Any configuration with weighted perimeter pi has perimeter p ≤ pi,
and a result from [2] which exploits a connection between particle configurations
and self-avoiding walks in the hexagon lattice shows that the number of con-
nected hole-free particle configurations with perimeter p is at most f(p)(2+

√
2)p,

for some subexponential function f . Letting pmin denote the minimum possible
(unweighted) perimeter of a configuration of n particles, we conclude that

w(Ai) ≤ λ−pi ·
pi∑

p=pmin

f(p)
(
2 +

√
2
)p

≤ λ−pif ′(pi)
(
2 +

√
2
)pi

,
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where f ′(pi) =
∑pi

p=pmin
f(p) is necessarily also a subexponential function

because it is a sum of at most a linear number of subexponential terms. So,

w(Sα) =
m∑

i=1

w(Ai) ≤
m∑

i=1

f ′(pi)

(
2 +

√
2

λ

)pi

≤ f ′′(n)

(
2 +

√
2

λ

)α·pmin

,

where f ′′(n) =
∑m

i=1 f ′(pi) is a subexponential function because pi = O(n),
m = O(n2), and f ′ is subexponential. The last inequality follows because λ >
2 +

√
2 and pi ≥ αpmin by assumption. Finally, because w(σmin) = λ−pmin ,

w(Sα)
w(σmin)

≤ f ′′(n)

(
2 +

√
2

λ

)α·pmin

λpmin = f ′′(n)ζpmin ,

where ζ = λ
(

2+
√
2

λ

)α

< 1 whenever α > log(λ)

log(λ)−log(2+
√
2)

. We have pmin ≥ √
n

because any n particles must have perimeter at least
√

n. This suffices to show
there is a constant ζ < 1 and a subexponential function f ′′(n) such that

π(Sα) < f ′′(n)ζ
√

n,

which proves the theorem. 	

As we see in the following corollary, to solve an instance (L,O, σ0, c, α) of

the shortcut-bridging problem, one just needs to run algorithm M with carefully
chosen parameters λ and γ.

Corollary 1. The distributed algorithm associated with Markov chain M can
solve any instance (L,O, σ0, c, α) of the shortcut-bridging problem.

Proof. It suffices to run the distributed algorithm associated with M starting
from configuration σ0 with parameters λ > (2 +

√
2)

α
α−1 and γ = λc−1. Then it

holds that α > log(λ)

log(λ)−log(2+
√
2)

> 1, so by Theorem 1 the system reaches and
remains with all but exponentially small probability in a set of configurations
with weighted perimeter p(σ, c) ≤ α ·pmin, where pmin is the minimum weighted
perimeter of a configuration in Ω. 	


4 Dependence of Bridge Structure on Gap Angle

Specifically, we consider V-shaped land masses (e.g., Fig. 2a) of various angles.
We prove that our shortcut bridging algorithm exhibits a dependence on the
internal angle θ of the gap that is similar to that of the army ant bridging
process observed by Reid et al. [1]. When the internal angle θ is sufficiently
small, with high probability the bridge constructed by the particles stays close
to the bottom of the gap (away from the apex of angle θ). Furthermore, when
θ is large and λ and γ satisfy certain conditions (made explicit in Theorem 3),
with high probability the bridge stays close to the top of the gap. Both of these
results are proven using a Peierls argument and careful analysis of the geometry
of the gap. Due to space constraints, we merely state our main results and omit
the proofs, while noting that they are far from trivial.
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Theorem 2. Let λ > 2 +
√

2 and γ > 1. Then there exists θ1 such that for all
θ < θ1, the probability at stationarity of M that the bridge structure is strictly
above the midpoint of the gap is exponentially small in n, the number of particles.
In particular, θ1 = 2 tan−1

(
logλγ

(
λ/

(
2 +

√
2
))

/
√

3
)
.

Theorem 3. For each λ > 2 +
√

2 and γ > (2 +
√

2)4λ4, there is a constant
θ2 > 60◦ such that for all θ ∈ (60◦, θ2), the probability at stationarity of M that
the bridge structure goes through or below the midpoint of the gap is exponentially
small in n. In particular, θ2 = 2 tan−1

[
1

2
√
3

log(γλ−4)

log(2+
√
2)

− 1√
3

]
.

5 Simulations

In this section, we show simulation results of our algorithm running on a variety
of instances. Figure 4 shows snapshots over time for a bridge shortcutting a V-
shaped gap with internal angle θ = 60◦ and biases λ = 4, γ = 2. Qualitatively,
this bridge matches the shape and position of the army ant bridges in [1]. Figure 5
shows the resulting bridge structure when the land mass is N-shaped. Lastly,
Fig. 6 shows the results of an experiment which held λ, γ, and the number of
iterations of M constant, varying only the internal angle of the V-shaped land
mass. The particle system exhibited behavior consistent with the theoretical

(a) (b) (c) (d)

Fig. 4. A particle system using biases λ = 4 and γ = 2 to shortcut a V-shaped land
mass with θ = 60◦ after (a) 2 million, (b) 4 million, (c) 6 million, and (d) 8 million
iterations of Markov chain M, beginning in configuration σ0 shown in Fig. 2a.

(a) (b)

Fig. 5. A particle system using λ = 4 and γ = 2 to shortcut an N-shaped land mass
after (a) 10 million and (b) 20 million steps of M, beginning in σ0 of Fig. 2b.
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(a) (b)
(c)

Fig. 6. A particle system using biases λ = 4 and γ = 2 to shortcut a land mass with
angle (a) 30◦, (b) 60◦, and (c) 90◦ after 20 million iterations of M. For a given angle,
the land mass and initial configuration were constructed as described in Sect. 4.

results in Sect. 4 and the army ant bridges, shortcutting closer to the bottom of
the gap when θ is small and staying almost entirely on land when θ is large.

These simulations demonstrate the successful application of our stochastic
approach to shortcut bridging. Moreover, experimenting with variants suggests
this approach may be useful for other related applications in the future.
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Abstract. Self-assembly is the process in which small and simple com-
ponents assemble into large and complex structures without explicit
external control. The nubot model generalizes previous self-assembly
models (e.g. aTAM) to include active components which can actively
move and undergo state changes. One main difference between the nubot
model and previous self-assembly models is its ability to perform expo-
nential growth.

In the paper, we study the problem of finding a minimal set of fea-
tures in the nubot model which allows exponential growth to happen.
We only focus on nubot systems which assemble a long line of nubots
with a small number of supplementary layers. We prove that exponential
growth is not possible with the limit of one supplementary layer and one
state-change per nubot. On the other hand, if two supplementary layers
are allowed, or the disappearance rule can be performed without a state
change, then we can construct nubot systems which grow exponentially.

1 Introduction

Self-assembly is the process in which small and simple components assemble
into large and complex structures without explicit external control. The con-
cept of self-assembly arises from nature. For instance, mineral crystallization
and cell division in the embryo developing process can both be viewed as self-
assembly processes. As the size of a system approaches the molecular scale,
precise direct external control becomes prohibitively costly, if not impossible.
As a result, molecular self-assembly has become an important tool for molecu-
lar computation, nano-scale fabrication and nano-machines. DNA has received
much attention as a substrate for molecular self-assembly due to its combina-
torial nature and simple, predictable geometric structure. DNA self-assembly
has been used for many different applications including performing computa-
tion [3,22,30], constructing molecular patterns [8,12,20,21,24,37], and building
nano-scale machines [4,9,14,23,25,35].
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In many different applications, DNA strands first assemble into small struc-
tures called “tiles” which assembly according to simple rules [13]. The first
self-assembly model, abstract Tile Assembly Model (aTAM), is proposed by
Rothemund and Winfree [19,30]. Many tile systems have been designed under
aTAM, including systems that build counters [2,7] and squares [11,15,19],
perform Turing-universal computation [30], and produce arbitrary computable
shapes [16,26]. Many tile systems has also been successfully implemented in lab
experiments [3,6,21,31].

Compared to the self-assembly systems built in nano-technology, the nano-
components in nature are much more active: they sense and process environmen-
tal cues; upon interaction, their internal structures may change; they can both
passively diffuse and actively move. DNA has been used to build many different
active components including autonomous walkers [14,17,18,23,25,27,34], logic
and catalytic circuits [22,29,33,36], and triggered assembly of linear [10,28] and
dendritic structures [33]. It is a natural idea to use these active DNA components
in artificial self-assembly systems.

The nubot model [32] generalizes previous self-assembly models to include
active components which can actively move and undergo state changes. Rules
are applied asynchronously and in parallel in the model. One main difference
between the nubot model and previous self-assembly models is its ability to
perform exponential growth. It has been shown that there exists a set of nubot
systems that grow a line of length n in time O(log n) using O(log n) states [32].
The nubot model assumes that each monomer (nubot) can undergo an arbitrary
number of state changes. Also, the nubot model assumes that the structures
are rigid and do not deform even when two parts of the structure are moving
relative to each other using a movement rule. Although these assumptions can
be quite natural to some applications (e.g. robotics), implementing this model
at the molecular level is not an easy task.

In the paper, we study the problem of finding a minimal set of features in the
nubot model which allows exponential growth to happen. Previously, it has been
shown that nubot systems can still perform exponential growth even if the active
movement rules are disabled [5]. However, the construction relies very heavily on
the rigidity of structures. We consider the nubot model with the following two
restrictions. First, we consider nubot systems in which every monomer can only
make a certain number of state changes. Second, we only focus on nubot systems
which assemble a long line of nubots. All movements must be in the direction
parallel to the line. Only a fixed number of supplementary layer is allowed to
help the growth of the line. When we only look at this type of restricted nubot
system, even if the structure is not rigid enough, as long as the structure still
locally looks like a line, all of our system construction will still work. When the
state change is unlimited, it has been shown that one supplementary layer is
enough to allow exponential growth [32].

Our result: With the limit of one supplementary layer and one state-change per
nubot, we prove that exponential growth is not possible. The expected length at
time t is upper bounded by O(t). On the other hand, if two supplementary layers



A Minimal Requirement for Self-assembly of Lines in Polylogarithmic Time 141

are allowed, or the disappearance rule can be performed without a state change
(a more formal definition will be in Sect. 2), then we can construct systems which
grow exponentially and they are verified by a nubot simulator [1].

2 Model

2.1 The Nubot Model

In this subsection, we present a simplified description of the nubot model pro-
posed in [32]. The basic units of the system are called nubot monomers, which are
placed on a two-dimensional triangular grid, and thus the position can be repre-
sented as a 2-dimensional vector. To illustrate the relative position of adjacent
nubot monomers, we define a set of directions D = {NE,E,SE,SW,W,NW}.
More formally, let S be a finite set of monomer states, a nubot monomer, or
simply a nubot m is defined to be a pair (s,p), where s ∈ S and p is a grid
point.

These nubot monomers are connected via three types of bonds. One is a null
bond, another is a rigid bond, and the other is a flexible bond. More formally, a
bond b is a triple (m1,m2, t) where m1 and m2 are two adjacent nubot monomers,
and t is a ternary variable representing a bond type. Specifically, t = 0 represents
a null bond, t = 1 represents a rigid bond, and t = 2 represents a flexible bond.
In this paper, for all nubot system constructions, we only use rigid bonds.

A configuration is a set of nubots, their locations, and the set of all bonds
between every pair of adjacent nubots. A (connected) component is a maximal
set of adjacent monomers where every pair of monomers in the set is connected
by a path consisting of monomers bound by either flexible or rigid bonds.

Definition 1 (Rule). A rule (reaction) describes potential ways to change
the configuration, and is of the form (s1, s2, b,u) → (s′

1, s
′
2, b

′,u′), where
s1, s2, s

′
1, s

′
2 ∈ S, u,u′ ∈ D and b, b′are ternary variables of bonds.

The rule presentation above is slightly modified from what is used in the
nubot simulator [1]. When a rule is representated as the above form, it means
that whenever two nubots with states s1 and s2 are connected with each other
by a bond b, and the direction pointing from s1 to s2 is u , then the rule can be
applied to the two nubots. After the rule being applied, the nubot with state s1
and s2 changes their states to s′

1 and s′
2 respectively, the bond connecting them

changes to b′, and the direction pointing from s′
1 to s′

2 becomes u ′.
There are four types of rules: appearance, disappearance, movement and state

change. The formal definition of these rules are the following:

Definition 2 (Appearance). The appearance of a nubot models the attach-
ment of a nubot onto the main structure, and must be accompanied by a
bond. The appearance rule is denoted as (s1, empty, 0,u) → (s′

1, s
′
2, 1,u) or

(empty, s2, 0,u) → (s′
1, s

′
2, 1,u).
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Definition 3 (Movement). The movement rule is denoted as (s1, s2, 1,u) →
(s′

1, s
′
2, 1,u′) where u �= u′. The nubots with state s1 and s2 react with each other,

change their states, and change their relative position from u to u′. Furthermore,
a minimal set of nubots which must be moved together to avoid breaking bonds
(called the movable set) will also be moved. A more detailed description on how
to find the movable set can be found in [32].

While changing the relative position between the two nubots, we set the first
one as a pivot and move the second one and its movable set.

In the original nubot model, there is another type of movement rule called
agitation. Agitation can be applied to any nubot moving towards any direction.
In all of our system constructions, all bonds are rigid, thus agitation never affects
the system. In the impossibility proof, agitations can be simulated by movement
rules and do not add any power to the system. Therefore, for the rest of our
paper, we assume that agitation never happens, but our results still hold even if
we allow agitation.

Definition 4 (Disappearance). The disappearance models the detachment of
a nubot from the main structure. When the disappearance rule happens on a
nubot, it breaks all bonds with all the neighboring nubots and transitions to the
empty state. The disappearance rule is denoted as (s1, s2, b,u) → (s′

1, empty, 0,u)
or (s1, s2, b,u) → (empty, empty, 0,u).

Definition 5 (State change). A state change indicates the interactions of a
single nubot with its neighbor and is performed when the condition described
in a certain state change rule is satisfied. A state change rule is denoted as
(s1, s2, b,u) → (s′

1, s
′
2, b,u) where s1 �= s′

1 or s2 �= s′
2.

Appearance, disappearance or movement rules may include state change at
the same time. In this way, the neighboring nubots can perceive the information
and trigger other functions.

Definition 6 (Nubot system). A nubot system N = (c0,R) is a pair where
c0 is an initial configuration and R is a rule set.

A nubot system evolves as a asynchronous, continuous-time Markov chain.
Technically, if there are k rules which are able to be applied to the configuration
ci, then the probability of any rule being applied to ci is 1/k, and the time
needed for that chosen rule to be applied to ci is an exponential random variable
with expected value equal to 1/k.

2.2 Our Setting

In this subsection, we describe our restrictions to the original nubot system.
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Layered Nubot Model. In a layered nubot model, the goal is to construct
a line on the x -axis (y = 0). All nubots are only allowed to move along the
x -direction. The main layer denotes the line y = 0 on the triangular grid. The
line y = i is called a supplementary layer for every i �= 0. In an n-layered nubot
model, all nubot systems can only use the main layer plus n − 1 supplementary
layers. We also make an extra assumption that nubots on the main layer never
disappear and thus the growth is restricted to the main layer in our following
constructions.

In our work, we focus on 2-layered and 3-layered nubot models. For the
3-layered nubot model, our system construction only uses the layers y = 1
and y = −1. Although the line doubling construction in [5] is achieved by
breaking the nubot assembly into two pieces, since it is not possible to build
such structures in the 2 or 3-layered nubot models, the agitation won’t affect
the system once the configuration is disconnected. It is reasonable for us to make
an assumption that the nubot system is fully connected.

N -change and N ′-change nubot model. Basically, both the N -change and
N ′-change nubot model mean that every monomer can only undergo at most N
state changes. The only difference is on the disappearance rules.

The definition in the original nubot model does not directly tell us how
to implement multiple nubot-bond deletion in molecules. In the original nubot
model, when two nubots A and B react with each other, causing B to disappear,
B just goes away without any state change. However, in order to explain how to
cut the bonds, one explanation may be changing to a special state, which tries to
cut all bonds with adjacent nubots in practice. This does not affect the original
nubot model, since there is no limit on the number of state changes each nubot
can make. In this paper, we make a restriction that the only way for a nubot to
disappear is changing its state into a special state called a “waste state”.

Definition 7 (Waste state). A waste state W is a special state satisfying the
following properties: first in all disappearance rules, the nubot that disappears
must be in the waste state; second, nubots in waste states do not participate in
any reaction except disappearance; third, a nubot in the waste state can react
with all neighbors in all directions and disappear.

An N-change nubot model is a nubot model in which every nubot can undergo
at most N state changes, excluding the step of changing into the waste state.
This is the number of state changes calculated using the original nubot model.
An N ′-change nubot model is a nubot model in which every nubot can undergo
at most N state changes, including the step of changing into the waste state.
This is more restrictive, but seems to be a reasonable model unless the actual
implementation has a special way of deleting nubots.

In the rest of this paper, we use upper case letters to represent the nubots
on the main layer and lower case letters for the nubots on the supplementary
layer. The state change remaining for each nubot is represented as a subscript
of the name of state. Take A0 − B1 for example, 0 and 1 represent there is no
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state change left for the state A and 1 state change left for the state B on the
main layer.

Definition 8 (Reaction sequence). A reaction sequence, denoted as (ct)
∞
t=1,

is a series of configurations through time where c0 is the initial configuration of
the system, and ci is the configuration right after the i-th rule is applied to ci−1

for i > 0.

A reaction sequence is valid in a nubot system Γ if all rules (reactions) are
in the nubot system. A reaction sequence is proper in a nubot system Γ if it
is valid and for all valid reaction sequences starting from c0, all configurations
consist of exactly one connected component.

In N or N ′-change models, we assume that the initial (seed) configuration
of any nubot system consists of 2 nubots A, B on the main layer with 1 state
change left. Furthermore, any nubot is not allowed to appear on the main layer
to the left of A or to the right of B throughout the whole reaction sequence.
Therefore, the only way to increase the length of the line is to insert nubots in
the middle. We want to construct nubot systems in which the expected number
of total insertions is exponential in time.

3 Result

Considering a Markov process of one insertion site growing into 2k insertion
sites, we may classify the growing process into k stages, and note the expected
time of i-th insertion-site-growing step of any stage j as Tji, as shown in Fig. 1.

Let Xi be the total time consumed when the i-th insertion site is generated
in stage k:

X1 = T11 + T21 + · · · + Tk1

X2 = T11 + T21 + · · · + Tk2

X2k = T12 + T24 + · · · + Tk(2k)

(1)

Fig. 1. Tree view
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We define a regular system with the following property: there are O(1) steps
for one insertion site to grow into two insertion sites, regardless of how many
reactions happen initially. Namely, Tji = O(1) ∀j, i.

The next theorem shows that the expected time of max Xi is O(k)

Lemma 1. For any regular system, E
[
max

i
Xi

]
= O(k)

Proof. The proof that a line of length 2k can be constructed in O(k) time is
similar to the proofs in [32].

Let t be the max expected time for any configuration to generate a new
insertion site. For regular systems,

E [Tji] ≤ t, ∀j, i (2)

By Markov’s inequality,

Pr [Tji ≥ 2t] ≤ 1
2

(3)

By the definition of regular systems, if the configuration doesn’t generate an
insertion site at time 2t, we can wait for another 2t.

Pr [Tji ≥ 4t |Tji ≥ 2t] ≤ 1
2

(4)

Therefore,

Pr [Tji ≥ 2tm] ≤ 1
2m

(5)

Construct

X
′
1 = (Z11 + 2t) + (Z21 + 2t) + · · · + (Zk1 + 2t)

= Z11 + Z21 + · · · + Zk1 + 2kt
(6)

where Zji are geometric random variables with E[Zji] equal to 4t.
The C.D.F. of Zji

FZji
(u) = 1 − 2− u

2t (7)

so that we can bound Xi using X
′
i .

Using Chernoff bound,

Pr
[
X

′
i − 2kt > (1 + δ) × 2kt

]

= Pr [Z11 + Z21 + · · · + Zk1 > (1 + δ) × 2kt]

≤
(

1 + δ

eδ

)k
(8)

For M ≥ 0 and any j, i,

FZji
(M) ≤ FTji

(M)
⇒ Pr[Tji > M ] ≤ Pr[Zji > M ]

⇒ Pr[Xi > M ] ≤ Pr[X
′
i > M ]

(9)
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Consider max Xi and from Eqs. 8 and 9,

Pr [max Xi > (2 + δ) × 2kt]

≤Pr
[
max X

′
i > (2 + δ) × 2kt

]

≤2k ×
(

1 + δ

eδ

)k

≤e−0.2k, for δ ≥ 2

(10)

Therefore,
E[max Xi] = O(k) (11)

	


3.1 Upper Bound

Here, we show that exponential growth is possible if any of the restrictions
are slightly relaxed. More specifically, we construct nubot systems for both 2-
layered 1-change nubot model and 3-layered 1’-change nubot model which can
grow exponentially. Both systems constructed in this subsection use O(1) total
states and will grow exponentially to an unbounded final length.

Theorem 1. In 3-layered, 1’change nubot system, there exists a set of nubot
rules that allow nubots to grow exponentially to an infinite length of line using
O(1) states. Furthermore, time needed for the system to grow to length k is
O(log k). The complete set of rules are omitted due to space constraints.

Proof. Prove by construction:
The design of 3-layered 1’-change nubot which can grow exponentially

includes two sub-procedures, which we call lengthen lr and lengthen rl,
which are different from their directions of growing on the supplementary layer,
as shown in Fig. 2. The main function of them are to lengthen the main layer at
a constant rate. Although they are not the crucial steps of the ability to grow
exponentially, they provide a method to make the distance between insertion
sites far enough and guarantee that the growing processes of different insertion
sites do not interfere each other.

The procedure lengthen lr starts with two connected nubots A0 − B1 and
is to insert nubots, C1 − D0 inside them. In order to create space, a, b, c attaches
to A0 one by one. After that, B1 reacts with c, changes its state into B0 and
breaks bond with A0, forming a “bridge”, as described in step 2. Two movement
rules apply, one between A0 and a, the other between B0 and c so that A0 and
B0 are able to swing just like two “legs”. When they are separated, C1 and D1

may attach, as described in step 3.
Note that on the supplementary layer, b attaches to a, and c attaches to b.

When breaking the bridge, out algorithm is such that we intend that there are no
nubots staying on the supplementary layer without any connection to the main
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layer. Therefore, we choose c to be changed into a waste state. To do this, we
must let D know the connection of C instead of letting C know the connection
of D. More precisely, in the procedure we design, D1 detects the presence of C1,
connecting C1, and then changes its state to D0. D0 then turns c into a waste
state, breaking the original bridge, as shown in step 4 and 5. Note that we still
draw nubot c in the step 5 on the top of Fig. 2 because it is possible that another
nubot c attaches to b again after c is turned into a waste state. As a result, the
procedure lengthen lr leads to the configuration where C1 − D0 is inserted
between A0 and B0.

After that, lengthen rl, which is symmetric to lengthen lr, may be applied
to C1 − D0 and will insert A0 − B1. The configuration returns to step 1 of
lengthen lr and enables the main layer to keep growing, as shown in the lower
row of Fig. 2.

Fig. 2. Lengthen sub-procedure

The two sub-procedures mentioned above will be used to construct the final
design of 3-layered nubot model. Figure 3 shows the brief process. We present
the growing process in the following passage:

With the initial configuration of two nubots, A0 and B1, in order to create
space for insertion, a, b, c attaches to A0 one by one with the help of the upper
layer to connect with B1. After they are connected, B1 reacts with c, changes
its state to B0 and breaks the bond with A0, forming a “bridge”, as described
in step 2.

Two movement rules apply, one between A0 and a, the other between B0 and
c. When they are separated, C1 and D1 may attach, as described in step 3. After
C1 appears, e, f , g attaches to C1 one by one on the lower layer so as to reach
D1. On reaching, D1 reacts with g, changes its state to D0, indicating that there
is another bridge (on the lower layer) connecting two parts of the monomers, as
described in step 4.

At this moment, D0 is very important because the forming of D0 shows that
there are now 2 “bridges” both connecting A0 and B0. Because of the existence
of 2 bridges, D0 is able to destroy the upper layer by reacting with c and turning
c into waste state, as shown in step 5.
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Fig. 3. 3-layered 1’-change nubot system

After C1 and D0 are separated, E1 and F1 may attach. E1 detects the pres-
ence of F1, connecting F1, changing itself into E0, and turns e into a waste state,
which breaks the lower bridge, as shown in step 6 and 7.

Note that there are 2 potential insertion sites on the main layer at this
moment: one is C1 − E0 and the other is F1 − D0. Therefore, if we are
able to insert A0 − B1 into both of the insertion sites and make them operate
independently just like they are starting from step 1 in Fig. 3, they will grow
exponentially.

The last 2 rows illustrate how to insert A0 − B1 into the two insertion sites.
We use the sub-procedures, lengthen lr and lengthen rl, which is described
in Fig. 2 to complete these subtasks. Take the case of C1 − E0 for example,
lengthen rl, lengthen lr, and then lengthen rl are executed sequentially,
which insert C ′

0 − E′
1, C ′′

1 − E′′
0 , and finally A0 − B1, respectively, inside the

original insertion site. The similar approach is used in the case of F1 − D0. As
a result, the distance between each A0 − B1 is at least 3, which is far enough in
our design and guarantees that the growing process of one insertion site won’t
get stuck by others, and each of them is able to operate independently, which
leads to exponential growth.

Because the system constructed is a regular system, the theorem follows from
lemma 1. 	

Theorem 2. In 2-layered, 1-change nubot model, there exists a set of nubot rules
that allow nubots to grow exponentially to an infinite length of line using O(1)
states. Furthermore, time needed for the system to grow to length k is O(log k).

Proof. Prove by construction:
As shown in Fig. 4 and Table 1, we assume an initial configuration of two

nubots, A0 and B1. A0 − B1, as a potential insertion site, will start to open up
by forming a linkage through the supplementary layer (step 2). Once nubot B
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Fig. 4. 2-layered 1-change nubot system.

changes its state to E0, movement rules apply to nubot A and E will generate
2 empty spots on the main layer.

However, we try to generate an extra empty space on the main layer so that
another insertion site is able to form. We add an appear rule to the northeast
of nubot E (step 3). Contrary to the 1’-change system, we allow 2 state changes
in the auxiliary layer including the change into the waste state, so nubot s can
link to nubot r, and nubot r itself can change its state and break the bond with
nubot E (step 4), successfully generating an extra empty spot on the main layer.

Finally, nubots B, C attach to nubot A, nubot D attaches to nubot E, and
makes a rigid bond with nubot C by changing the state of nubot C (step 5 and
6). Nubot C then clears the nubots in the auxiliary layer by changing the state
of nubot r into waste state (step 7).

On the main layer, there are now two insertion sites, A0 − B1 and D1 − E0,
separated by C0. Step 8 to 14 describe the insertion of D1 − E0, basically it’s
the symmetric mechanism to step 1 to 7 explained above, initiating from the
opposite direction.

Because the system constructed is a regular system, the theorem follows from
lemma 1. 	


3.2 Lower Bound

In this subsection, we prove that nubot systems in 2-layered 1’-change nubot
model cannot grow exponentially, as stated in the following theorem.

Theorem 3. In any 2-layered 1’-change nubot system, the expected number of
nubots appearing on the main layer before time T is at most 3kT , where k is the
number of appearance rules.
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Proof. The proof essentially enumerates all reachable configurations and shows
that no configuration with 3 empty spots on the main layer will ever be gen-
erated. All nubot systems mentioned in the subsection are in the 2-layered 1’-
change nubot model.

In order to enumerate all configurations, we identify some special configu-
rations and classify these configurations into different sets. Eventually, we will
show that there is no way to generate 3 empty spots on the main layer starting
from any of these special configurations listed. All sets of special configurations
are listed in Fig. 5.

The set S1 contains all configurations in which two nubots A0 and B0 on
the main layer are connected by three nubots p, q, r on the supplementary layer.
Removing any of the three nubots p, q, r or any bond between them disconnects
the structure into two pieces. All nubots on the main layer left of A0 and right
of B0 are nubots that cannot make any further state changes. Notice that there
might be other nubots on the supplementary layer and between A0 and B0. We
call this structure A0 − p − q − r − B0 a bridge. The bonds between these
nubots can be either flexible or rigid. We divide configurations into different sets
depending on their bridge structures. All bridge structures are listed in Fig. 5.

Fig. 5. A configuration is in a particular set if it has the bridge structure described
in the figure. All bonds can be either rigid or flexible. The numbers written on each
nubot denote the number of state changes remaining.

Given a configuration set S and a positive number k, we also define a set
3-feasible(S, k) to be all valid sequence of configurations starting from configu-
rations in S and produces any configuration with three empty spots on the main
layer in k configuration changes.

Definition 9. 3-feasible(S, k) = {(ct)k
t=1 | c0 ∈ S and ck is the first configuration

with 3 empty spots on the main layer}, where S is a set of configurations.
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Table 1. Rules of exponential growth in the 2-layered 2’-change nubot model. The
notations (State1, State2, Bond, Direction, State1’, State2’, Bond’, Direction’) in this
table correspond to the definitions in Sect. 2.

No. State1 State2 Bond Direction State1’ State2’ Bond’ Direction’

1 A0 Empty 0 NW A0 p1 1 NW

2 p1 Empty 0 E p1 q1 1 E

3 q1 Empty 0 E q1 r1 1 E

4 E0 Empty 0 NE E0 s1 1 NE

5 A0 Empty 0 E A0 B1 1 E

6 E0 Empty 0 W E0 D1 1 W

7 B1 Empty 0 E B1 C1 1 E

8 s1 Empty 0 W s1 x1 1 W

9 x1 Empty 0 W x1 y1 1 W

Connect

10 C1 D1 0 E C0 D1 1 E

11 B1 r1 0 NE E0 r1 1 NE

12 A0 E0 1 E A0 E0 0 E

13 r1 s1 0 E r0 s1 1 E

14 E0 r0 1 NW E0 r0 0 NW

15 D1 y1 0 NW A0 y1 1 NW

16 p1 y1 0 E p1 y0 1 E

17 A0 y0 1 NE A0 y0 0 NE

Movement

18 E0 r1 1 NE E0 r1 1 NW

19 A0 y1 1 NW A0 y1 1 NE

20 A0 p1 1 NE A0 p1 1 NW

1 A0 p1 1 NW A0 p1 1 NE

22 E0 s1 1 NE E0 s1 1 NW

23 E0 s1 1 NW E0 s1 1 NE

Disappear

24 C0 r0 0 NE C0 Waste 0 NE

25 C0 y0 0 NW C0 Waste 0 NW

26 p1 p1 0 E Waste p1 0 E

27 s1 s1 0 W Waste s1 0 W

28 A0 r1 0 NW A0 Waste 0 NW

29 A0 r0 0 NW A0 Waste 0 NW

30 E0 y1 0 NE E0 Waste 0 NE

31 E0 y0 0 NE E0 Waste 0 NE

32 E0 r0 1 NE Waste r0 0 NE

33 A0 y0 1 NW Waste y0 0 NW
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Definition 10. A reaction sequence in 3-feasible(S, k) is a valid reaction
sequence of a nubot system Γ if the reaction from ci−1 to ci is a reaction in
Γ. A reaction sequence in 3-feasible(S, k) is a proper reaction sequence of a
nubot system Γ if it is valid and all valid reaction sequences of Γ starting from
state c0 do not cut the structure into two disconnected components.

Notice that starting from any special configuration in some set Si defined
in Fig. 5, any configuration sequence 3-feasible(Si, k) must eventually break the
bridge structure. This can be done in two ways: either making a nubot on the
bridge disappear or having two nubots on the bridge reacting with each other
and cut the bond between them. The former one requires a reaction R1 that
changes the nubot into a waste state. The latter one requires one of the reacting
nubots to change state (reaction R2) before the reaction, otherwise the cutting-
bond reaction may directly apply to the initial configuration c0 and cut the
structure into two disconnected components. Given a configuration sequence
3-feasible(Si, k), we call the first reaction which breaks the bridge structure and
the corresponding state change reaction (R1 or R2) breaking reactions. Notice
that the two breaking reactions can always happen consecutively. Furthermore,
if the reactions R1 and R2 can directly apply to the initial configuration c0,
disappearance rule/cutting bond may directly follow and the structure may still
become disconnected. Suppose that the first configuration that R1 or R2 may
apply is ci, then we define the critical reaction of the sequence 3-feasible(S, k)
to be the reaction from ci−1 to ci.

We show that for any 2-layered 1’-change nubot system, there will never be
three empty spots on the main layer simultaneously. Therefore, if there are k
appearance rules in the system, the expected rate at which appearance rules
happen on the main layer is at most 3k. The proof essentially enumerates all
configurations reachable from the initial configuration and thus is omitted due
to space constraints. 	
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Abstract. In contrast to electronic computation, chemical computa-
tion is noisy and susceptible to a variety of sources of error, which has
prevented the construction of robust complex systems. To be effective,
chemical algorithms must be designed with an appropriate error model in
mind. Here we consider the model of chemical reaction networks that pre-
serve molecular count (population protocols), and ask whether compu-
tation can be made robust to a natural model of unintended “leak” reac-
tions. Our definition of leak is motivated by both the particular spurious
behavior seen when implementing chemical reaction networks with DNA
strand displacement cascades, as well as the unavoidable side reactions
in any implementation due to the basic laws of chemistry. We develop
a new “Robust Detection” algorithm for the problem of fast (logarith-
mic time) single molecule detection, and prove that it is robust to this
general model of leaks. Besides potential applications in single molecule
detection, the error-correction ideas developed here might enable a new
class of robust-by-design chemical algorithms. Our analysis is based on
a non-standard hybrid argument, combining ideas from discrete analysis
of population protocols with classic Markov chain techniques.

1 Introduction

A major challenge in designing autonomous molecular systems is to achieve a
sufficient degree of error tolerance despite the error-prone nature of the chemical
substrate. While considerable effort has focused on making the chemistry itself
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more robust, here we look at the possibility of developing chemical algorithms
that are inherently resilient to the types of error encountered. Before designing
robust chemical algorithms, we must decide on a good error model that is relevant
to the systems we care about. In this paper we focus on a very simple and
general error model that is motivated both by basic laws of chemistry as well as
by implementation artifacts in strand displacement constructions for chemical
reaction networks. We begin by listing the types of errors we aim to capture.

Leaks due to Law of Catalysis. A fundamental law of chemical kinetics is that
for every catalyzed reaction, there is an uncatalyzed one that occurs at a (often
much) slower rate. By a catalytic reaction, we mean a reaction that involves
some species X but does not change its amount; this species is called a catalyst
of that reaction. For example, the reaction X + Y → X + Z is catalytic, and
species X is the catalyst since its count remains unchanged by the firing of this
reaction. By the law of catalysis, reaction X +Y → X +Z must be accompanied
by a (slower) leak reaction Y → Z. (A more general formulation of the law of
catalysis is that if any sequence of reactions does not change the net count of
X, then there is a pathway that has the same effect on all the other species,
but can occur in the absence of X (possibly much slower). Thus for example, if
X + Y → W and W → X + Z are two reactions, then there must also be a leak
reaction Y → Z. Formally defining catalytic cycles and catalysts is non-trivial
and is beyond the scope of this paper [1].)

Leaks due to Law of Reversibility. Another fundamental law of chemical
kinetics is that any reaction occurs also in the reverse direction at some (possibly
much slower) rate. In other words, reaction X+Y → Z+W must be accompanied
by Z + W → X + Y . (The degree of reaction reversibility is related to the free-
energy use, such that irreversible reactions would require “infinite” free energy.)

Leaks due to Spurious Activation in Strand-Displacement Cascades.
Arbitrary chemical reaction networks can in principle be implemented with DNA
strand displacement cascades [2,3]. Implementations based on strand displace-
ment also suffer from the problem of leaks [4]. The implementation of a reaction
like X + Y → Z + W consists of “fuel” complexes present in excess, that hold
Z and W sequestered. A cascaded reaction of the fuel complex with X and Y
results in the release of active Z and W . Leaks in this case consist of Z and W
becoming spuriously activated, even in the absence of active X or Y .

Importantly, for a catalytic reaction such as X + Y → X + Z, it is possible
to design a strand displacement implementation that does not leak the catalyst
X. This implementation would release the same exact molecule of X as was
consumed to initiate the process, as in the catalytic system described in [5].
Since fuels do not hold X sequestered, X cannot be produced in the leak process
(although Z can).

Modeling Reactions and Leaks. Note that in all cases above, we can guaran-
tee that a species does not leak if it is exclusively a catalyst in every reaction it
occurs in. This allows us some handle on the leak. In particular, we will ensure
that the species we are trying to detect (called D below) will be a catalyst in
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every reaction that involves it. Otherwise, there might be a leak pathway to
generating D itself—which is fundamentally irrecoverable.

We express the implementations below in the population protocol formal-
ism [6]. That is, we consider a system with n molecules (aka nodes), which
interact uniformly at random in a series of discrete steps. A population protocol
is given as a set of reactions (aka transition rules) of the form

A + B → C + D.

Note that unlike general reaction networks, population protocols conserve total
molecular count since molecules never combine or split. For this reason, com-
pared to general chemical reaction networks, this model is easier to analyze.

Given the set of reactions defining a protocol, we partition the species into
catalytic states, which never change count as a consequence of any reaction, and
non-catalytic, otherwise. Crucially, we model leaks as spurious reactions which
can consume and create arbitrary non-catalytic species. More formally, a leak is
a reaction of the type

S → S′,

where S and S′ denote arbitrary non-catalytic species. In the following, we do
not make any assumptions on the way in which these leak transitions are chosen
(i.e., they could in theory be chosen adversarially), but we assume an upper
bound on the rate at which leaks may occur in the system, controlled by a
parameter β.

Leak-Robust Detection. A computationally simple task which already illus-
trates the difficulty of information processing in such an error-prone system is
single molecule detection. Consider a solution of n molecules, in which a single
molecule D may or may not be present. Intuitively, the goal is to generate large-
scale (in the order of n) change in the system, depending on whether or not D is
present or absent. Our time complexity measure is parallel time, defined as the
number of pairwise interactions, divided by n. This measure of time naturally
captures the parallelism of the system, where each molecule can participate in
a constant number of interactions per unit time. Subject to leaks, our goal is
to design the chemical interaction rules (formalized as a population protocol)
to satisfy the following behavior. If D is present then it is detected fast, in log-
arithmic parallel time, and that the output is probabilistically “stable” in the
sense that sampled at a random future time the system is in the “detected con-
figuration” with high probability. By contrast, if D is absent, then the system
sampled at a random future time should be in the “undetected configuration”
with high probability. This basic task has several variations, for instance signal
amplification or approximate counting of D.

We first develop some intuition about this problem, by considering some
strawman approaches.

A first trivial attempt would be to have neutral molecules become “detectors”
(state T ) as soon as they encounter D, that is,

D + N → D + T.
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This approach suffers from two fatal flaws. First, it is slow, in that detection
takes linear parallel time. Second, it has no way from recovering from leaks of
the type N → T .

A second attempt could try to implement an epidemic-style detection of D,
that is:

D + N → D + T

T + N → T + T.

This approach is fast, i.e. converges in logarithmic parallel time in case D is
present. However, if D is not present, the algorithm converges to a false positive
state: a leak of the type N → T brings the system to an all-T state, despite the
absence of D. One could try to add a “neutralization” pathway by having T
turn back to N after a constant number of interactions, but a careful analysis
shows that this approach also fails to recover from leaks of the type N → T .

Thus, it is not clear whether leak-resistant detection is possible in population
protocols (or more generally chemical reaction networks). There has been con-
siderable work in the algorithmic community on diffusion based models, e.g. [7].
However, such results do not seem to apply to this setting, since leak models have
not been considered previously, and none of the known techniques are robust to
leaks. In particular, it appears that techniques for deterministic computation in
population protocols do not carry over in the presence of leaks. More generally,
this seems to create an unfortunate gap between the algorithmic community,
which designs and analyzes population protocols in leak-free models, and more
practically-minded research, which needs to address such implementation issues.

Contribution. In this paper, we take a step towards bridging this gap. We pro-
vide a general algorithmic model of leaks, and apply it to the detection problem.
Specifically, our immediate goal is to elucidate the question of whether efficient,
leak-robust detection is possible.

We prove that the answer is yes. We present a new algorithm, called Robust-
Detect, which guarantees the following. Assume that the rate at which leaks
occur is upper bounded by β/n � 1/n, and that we return the output mapping
(detect/non-detect) of a randomly chosen molecule after O(log n) parallel time.
Then the probability of a false negative is at most 1/e + o(1), and the proba-
bility of a false positive is at most β. (Note that as the total molecular count n
increases, the chance that a particular interaction involves D decreases linearly
with n. Thus the leak rate must also decrease linearly with n, or else the leaks
will dominate. Alternatively, we can view some fixed leak rate as establishing an
upper bound on the molecular count n, see below.)

Algorithm Description. We now sketch the intuition behind the algorithm
and its properties, leaving the formal treatment to Sects. 4 and 5. Fix a parameter
s ≥ 1, to be defined later. We define a set of “detecting” species X1, . . . , Xs,
arranged in consecutive levels. Whenever a molecule meets D, it moves to the
highest “alert” level, X1. Since leaks might produce this species as well, we decay
it gracefully across s levels. More precisely, whenever a molecule at level Xi

meets another molecule at level Xj , both molecules move to state Xmin(i,j)+1.
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A molecule which would move beyond level Xs following a reaction becomes
neutral, i.e. moves to species N . Nodes in state Xi with i < s turn N into Xi+1,
whereas molecules in state Xs also become neutral when interacting with N .

Analysis. Intuitively, the algorithm’s dynamics for the case where a single mole-
cule is in state D are as follows. The counts of molecules in state Xi tend to
increase exponentially with the alert level i, up to levels ≈ log n, when the count
becomes a constant fraction of n. However, once level log n is reached, these
counts decrease doubly exponentially. Thus, it suffices to set s = log n to obtain
that a fraction of at least (1 − 1/e) molecules are in one of the alert states Xi in
case D is present. It is not hard to prove that leaks cannot meaningfully affect
the convergence behavior in this case.

The other interesting case is when D is not present, but leaks may occur,
leading to possible false positives. Intuitively, we can model this case as one where
states X1 at the highest alert level simply are created at a lower rate β/n � 1/n.
A careful analysis of this setting yields that the probability of a false positive (D
detected, but not present) in this case is at most β, corresponding to the leak
rate parameter.

Our analysis technique works by characterizing the stationary behavior of
the Markov chain corresponding to the algorithm, and the convergence prop-
erties (mixing time) of this chain. For technical reasons, the analysis uses a
non-standard hybrid argument, combining ideas from discrete analysis of pop-
ulation protocols with classic Markov chain techniques. The argument proves
that the algorithm always stabilizes to the correct output in logarithmic parallel
time.

The analysis further highlights a few interesting properties of the algorithm.
First, if the detectable species D is present in a higher count k > 1, then the
algorithm effectively skips the first log k levels, and thus requires log(n/k) +
O(log log n) states. Second, it is not necessary to know the exact value of log n,
as the counts of species past this threshold decrease doubly exponentially.

Alternative Formulations. An alternative view of this protocol is as solving
the following related amplification problem: we are given a signal of strength
(rate) φ, and the algorithm’s behavior should reflect whether this strength is
below or above some threshold. The detection problem requires us to differentiate
thresholds set at β/n and 1/n, for constant β � 1, but our analysis applies to
more general rates.

Above, we have assumed that the leak rate decreases linearly with n, to
separate from the case where a single instance of D is present. However, it is
also reasonable to consider that the leak rate is fixed, say, upper bounded by a
constant λ. In this case, the analysis works as long as the number of molecules
n satisfies λ � 1/n.

Self-stabilization. Our algorithm is self-stabilizing in the sense that if the count
of D changes due to some external reason, the output quickly adapts (within
logarithmic parallel time). This is particularly interesting if the algorithm is used
in the context of a “control module” for a cell detecting D and the amount of
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D changes over time. Note that strawman solutions considered above cannot be
“untriggered” once D has been detected, and thus cannot adapt to a changing
input.

2 Related Work

There is much work on attempting to decrease error in the underlying chemical
substrate. A famous example includes kinetic proofreading [8]. In the context
of DNA strand displacement systems in particular, leak reduction has been a
prevailing topic [9]. Despite the importance of handling leaks, there are few
examples of non-trivial algorithms, where leaks are handled through computa-
tion embedded in chemistry. One algorithm that appears to be able to handle
errors is approximate majority [10], originally analyzed in a model where a frac-
tion of the nodes are Byzantine, in that they can change their reported state
in an adversarial way. Potentially due to its robustness properties, the approxi-
mate majority algorithm appears to be widely used in biological regulatory net-
works [11], and it was also one of the first chemical reaction network algorithms
implemented with strand displacement cascades [4].

Our algorithm can be viewed as a timed, self-stabilizing version of rumor
spreading. For analysis of simple rumor-spreading, see [12]. Other work include
fault-tolerant rumor spreading [13], push-pull models [7] and self-stabilizing
broadcasting [14]. A rumor-spreading formulation of the molecule detection prob-
lem is also considered in recent work [15], which relies on a different source
amplification mechanism based on oscillator dynamics. This protocol [15] is self-
stabilizing in a weaker (probabilistic) sense compared to the algorithms from
this paper and does not provide leak robustness guarantees.

3 Preliminaries

3.1 Population Protocols with Leaks

Population Protocols. We start from a standard population protocol model,
where n molecules (nodes) interact uniformly at random in a series of discrete
steps. In our formulation, in each step, a coin is flipped to decide whether the
current interaction is a regular reaction or a leak reaction. In the former case,
two molecules are picked uniformly at random, and interact according to the
rules of the protocol. In the latter case, a leak reaction occurs (see below).

A population protocol is given as a set of reactions (transition rules) of the
form

A + B → C + D,

(where some of A,B,C,D might be the same). We (arbitrarily) match the first
reactant (A) with the first product (C), and the second reactant (B) with the
second product (D), and think of A as changing state to C, and B as changing
state to D. If the two molecules picked to interact do not have a corresponding
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interaction rule, then they don’t change state and we call this a null interac-
tion. Population protocols are a special case of the stochastic chemical reaction
networks kinetic model (e.g., [16](A.4)).

Catalytic and Non-Catalytic Species. Given a set of reactions, we define the
set of catalytic species as the set of states which never change as a consequence
of any reaction. That is, for every reaction, the species is present in the same
count both in the input and the output of the reaction. For example, in the
reactions

A + C → B + C

A + B → A + D

we call C catalytic. Note that A acts as a catalyst in the second reaction, but its
count is changed by the first reaction, thus it is not overall catalytic. All species
whose count is modified by some reaction are called non-catalytic. Note that it
is possible that a species is never created, but disappears as a consequence of an
interaction. For example, in the reaction

L + L → A + B,

L is such as species. We define such species as non-catalytic, since their creation
is possible by the law of reversibility, and thus they can leak.

An Algorithmic Model of Leaks. A leak is a reaction of the type

S → S′

where S and S′ are arbitrary non-catalytic species produced by the algorithm.
Note that the input and output species of a leak may be the same (although in
that case the reaction is trivial). In the following, we make no assumptions on
the way in which the input and output of a leak reaction are chosen—we assume
that they are chosen adversarially. Instead, we assume an absolute bound on the
probability of a leak.

We assume that each reaction is either a leak reaction or a normal reaction,
which follows the algorithm. We formalize this as follows.

Definition 1. Given an algorithm, defined by a set of reactions, the set of cat-
alysts is the set of species whose count does not change as a consequence of any
reaction. A leak is a spurious reaction, which changes an arbitrary non-catalytic
species to an arbitrary non-catalytic species. The leak rate β/n is the probability
that any given interaction is a leak reaction.

3.2 The Detection Problem

In the following, we consider the following detection task: we are given a distinct
species D, whose presence or absence must be detected by the algorithm, in the
presence of leaks. More precisely, if the species D is present, then the algorithm
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should stabilize to a state in which molecules map to output value “detect”.
Otherwise, if D is not present, then the algorithm should stabilize to a state in
which molecules map to output value “non-detect”. To observe the algorithm’s
output, we sample a molecule at random, and return its output mapping. (Alter-
natively, to boost accuracy, we can take a number of samples, and return the
majority output mapping.) We require that species D are catalytic.

4 The Robust-Detect Algorithm

Description. As given in the problem statement, we assume that there exists
a distinguished species D, which is to be detected, and which never changes
state. Our algorithm implements a chain of detection species X1, . . . , Xs, for
some parameter s, each of which maps to output “detect”, but with decreas-
ing “confidence”. Further, we have a neutral species N , which maps to output
“non-detect”. We assume that the parameter s = �log n�, and that initially all
molecules are in state N . We specify the transitions below, and provide the
intuition behind them.

Algorithm 1

D + Xi → D + X1, ∀i ∈ {2, . . . , s}
D + N → D + X1

Xs + Xs → N + N

Xs + N → N + N

Xi + Xj → Xmin(i,j)+1 + Xmin(i,j)+1, ∀i, j ∈ {1, 2, . . . , s − 1}
Xi + N → Xi+1 + Xi+1, ∀i ∈ {1, 2, . . . , s − 1}

The intuition behind the algorithm is as follows. The “detecting” species
X1, . . . , Xs are arranged in consecutive levels. Whenever a molecule meets D, it
moves to the highest “alert” level, X1. Since leaks might produce this species
as well, we decay it gracefully across s levels. After going through these levels,
a molecule moves to neutral state N , in case it is not brought back either by
meeting D, or some molecule at a lower alert level. For this, whenever two of
these species Xi and Xj meet, they both move to level min(i, j)+1. This reaction
has the double purpose of both decaying the alert level of the molecule at the
lower level, and of bringing back the molecule with the higher alert level. Further,
whenever a molecule at level Xi meets a neutral molecule N , it advances its level
by 1. At the same time, neutral molecules are turned into detector molecules
whenever meeting some molecule at an alert level smaller than s.

Intuitive Dynamics. Roughly, the chain of alert levels have the property that,
for the first ∼ log n levels, the count roughly doubles with level index. At the
same time, past this point, counts exhibit a steep (doubly exponential) drop, so
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that a small constant fraction of molecules are always neutral. The presence of
D acts like a trigger, which maintains the chain in “active” state. The analysis
in the next section makes this intuition precise. These dynamics are illustrated
in Fig. 1.

Fig. 1. Steady state probabilities of the Robust-Detect algorithm for n = 104 mole-
cules. Three conditions are evaluated: (blue) 1 molecule of D is present and no leak
(leak parameter β = 0); (orange, red) no D is present but with worst-case leak for false-
positives (leak reactions Xi → X1 and N → X1) (orange: leak parameter β = 0.01, red:
leak parameter β = 0.1). (a) The probabilities of each level i. (b) The cumulative
probabilities of levels ≤ i, capturing the probability that a random molecule is in a
“detect” state. Note that it is enough to set the number of levels s = 14 = �log n�
to have both false positive and false negative error probabilities small, although for
smaller leak rates (β = 0.01) increasing s beyond log n can help better distinguish true
and false positives. Numerical probabilities are computed using Eqs. (1) and (2).

5 Analysis

Overview. We divide the analysis of the detection algorithm into two parts.
First, we derive stationary probabilities of the underlying Markov chain of tran-
sitions of particles, by solving recursively the equations following from the under-
lying dynamics. Later, we derive optimal bounds on the mixing time of this
Markov chain—that is we show that probability distribution of states at every
time t ≥ cn log n (for some constant c) is almost the same as the stationary
distribution.

Simplified Algorithm. For the purpose of analysis, let us consider a following
rephrasing of the detection algorithm: molecule states are D,X1,X2,X3, . . ., and
interactions are as follows:

Algorithm 2

D + Xi → D + X1,

Xi + Xj → Xmin(i,j)+1 + Xmin(i,j)+1.
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This algorithm uses infinite number of states, thus it is useful only for pur-
poses of theoretical analysis. However, it captures the behavior of the original
algorithm in the following way: if in Algorithm2 all states Xs+1,Xs+2, . . . are
collapsed to N , the transitions are equivalent to Algorithm1. However, formu-
lation of Algorithm2 is oblivious to parameter s, thus captures simultaneously
the dynamics of all possible instances of Algorithm 1.

5.1 Stationary Analysis

Let us consider an initial state when k ≥ 0 instances of state D are present, with
special attention given to k = 0 and k = 1. Those molecules do not change their
state.

We can imagine tracking a particular molecule through its state transitions,
such that its state can be expressed as a Markov chain. In the following, we will
focus on analyzing the stationary distribution of this Markov chain.

For any i ∈ {1, 2, . . . , s}, we let p�
i be the stationary probability that a

molecule chosen uniformly at random is in state Xi. We let p�
0 = k

n be the
(stationary) probability that the molecule is in the state D. Let p�

≤i = p�
0+. . .+p�

i

be the probability that a molecule is in any of the states D,X1, . . . , Xi.
Let us now analyze these stationary probabilities.

Stable State with No Leaks. We first analyze the simplified case where no
leaks occur. A molecule u is in one of states D,X1, . . . , Xi at time t, in two cases:

– It was in state D,X1, . . . , Xi at time t − 1, and did not get selected for a
reaction, which occurs with probability 1 − 2/n.

– It got selected for a reaction with element u′, and either u or u′ was in one
of states D,X1, . . . , Xi−1.

Hence, by stationarity, we get that

p�
≤i = p�

≤i

(
1 − 2

n

)
+

2
n

· (1 − (1 − p�
≤(i−1))

2).

From this we get that

1 − p�
≤i = (1 − p�

≤(i−1))
2,

which solves to

p�
≤i = 1 −

(
1 − k

n

)2i

. (1)

This gives us following estimates: if k ≥ 1, then p�
i ≈ 2i−1 k

n for i ≤ log(n/k).
Additionally, for i = log(n/k) + 1 + j, p�

i ≈ e−2j

. Thus, for i ≥ log(n/k) +
Θ(log log n) in all practicalities p�

i ≈ 0.
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To analyze the probability of detection when k = 1, we sum probabilities for
all i from 0 to s = �log n�

Pr[detect] =
s∑

i=0

p�
i = p�

≤s ≥ 1 −
(

1 − 1
n

)n

≥ 1 − 1
e
.

Probability of False Positives with Leaks. A useful side effect of the previ-
ous analysis is that we also get probability bounds for detection in the case where
D is not present, i.e. false positives. We model this case as follows. Assume that
there exists an upper bound λ on the probability that a certain reaction is a leak.
Examining the structure of the algorithm, we note that the worst-case adversar-
ial application of leaks would be if this probability is entirely concentrated into
leaks which produce species X1.

To preserve molecular count, we assume the following simplified leak model,
which is equivalent to the general one, but easier to deal with in the confines of
our algorithm.

Each reaction is a leak with probability λ = β/n, where β � 1 is a small
constant. If a reaction is a leak, it selects a molecule at random, and transforms it
into an arbitrary state. In this case, we will assume adversarially that all leaked
molecules are transformed into state X1. Notice that the assumption that β � 1
is required to separate this setting from the case where D is present in the
system, where the probability of producing state X1 is 2/n.

We continue with calculations of p�
0, p

�
1, . . . for the above formulation. Note

that the recurrence relation for p�
≤i, i ≥ 1 is changed as follows:

– If at that round there was no leak, the transition probabilities are as previ-
ously. This happens with probability 1 − β

n .
– If there was a leak, then the molecule either is selected as a leaked mole-

cule (this happens with probability 1
n · β

n ) or it was not selected as a leaked
molecule, but it was already in the proper state (probability β

n · n−1
n p�

≤i).

The recursive formulation gives

p�
≤i =

(
p�

≤i

(
1 − 2

n

)
+

2
n

(
1 − (1 − p�

≤(i−1))
2
)) (

1 − β

n

)
+

(
1
n

+
n − 1

n
p�

≤i

)
β

n
.

Which is equivalent to

1 − p�
≤i =

(
1 − β

n

)
(
1 − β

2n

) (1 − p�
≤(i−1))

2

leading to (using estimate (1 − β
n )/(1 − β

2n ) ≈ (1 − β
2n ))

p�
≤i ≈ 1 −

(
1 − β

2n

)1+2+...+2i−1

= 1 −
(

1 − β

2n

)2i−1

. (2)
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This gives us following estimates: p�
i ≈ 2i−2 β

n for i ≤ log(2n/β). Additionally,
for i = log(2n/β) + 1 + j, p�

i ≈ e−2j

. Thus, for i ≥ log(2n/β) + Θ(log log n) in
all practicalities p�

i ≈ 0.
This immediately implies that

Pr[detect] =
s∑

i=0

p�
i = p�

≤s ≤ 1 −
(

1 − β

2n

)2n

= 1 − 1
eβ

≈ β,

which means that the probability that a randomly chosen molecule is in detect
state when chosen uniformly at random is at most β.

Probability of False Negatives with Leaks. Under the same leak model, it is
easy to notice that the “best” adversarial strategy for our algorithm in case D is
present is to concentrate all leaks to create the neutral species N (or X∞ in case
of Algorithm 2). It is easy to see that this just decreases the total probability of
detect states by the leak probability λ = β/n. More formally, we compute once
again stationary probabilities. The recurrent relation is

p�
≤i =

(
p�

≤i

(
1 − 2

n

)
+

2
n

· (1 − (1 − p�
≤(i−1))

2)
) (

1 − β

n

)
+

β

n
· n − 1

n
p�

≤i.

Using estimate (1 − β
n )/(1 − β

2n ) ≈ (1 − β
2n ) we reach

p�
≤i =

(
1 − β

2n

)
(1 − (1 − p�

≤(i−1))
2).

Thus we have for the first log(n/k) levels the dampening factor of (1 − β/(2n))
per level (compared to the leakless case). It can be easily shown by induction
that (

1 − β

2n

)i (
1 − k

n

)2i

≤ p�
≤i ≤

(
1 − k

n

)2i

.

The estimates for p�
i follow from the leakless case, after taking into the

account the composed dampening factor:

Pr[detect] =
s∑

i=0

p�
i = p�

≤s ≥
(

1 − 1
e

)
·
(

1 − β

2n

)log n

= 1 − 1
e

− O
(

log n

n
β

)
.

Finally, we summarize the results in this section as follows:

Theorem 1. Assuming leak rate β/n for β � 1, Robust-Detect guarantees the
following.

– The probability of a false positive is at most β.
– The probability of a false negative is at most 1/e + O(β · (log n)/n).

Notice that these probabilities can be boosted by standard sampling
techniques.
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5.2 Convergence Analysis

We now proceed with an analysis of the convergence speed of the previously
described protocols. To avoid separate analysis for each of the aforementioned
cases (no leaks, false positives, false negatives) and to be independent from all
possible initializations of the algorithm, we first start with showing that, under
no leaks and with no D present, all states X1, . . . , Xc are quickly killed.

In this section, it is more convenient to use t to refer to the total number of
interactions, rather than parallel time. To convert to parallel time, one needs to
divide by n, the number of molecules.

Lemma 1. Assume arbitrary (adversarial) initial state in t = 0 and evolution
with no leaks (β = 0) and no D is present. For any c(n) ≥ 1, there is t = O(n ·
(c(n) + log n)) such that with probability 1 − 1/nΘ(1) (with high probability) there
is no molecule in any of the states X1,X2, . . . , Xc(n) after t interactions.

Proof. We assign a potential to each molecule, based on the state it is currently
in: Φ(Xi) = 3−i. We also define a global potential Φt as sum of all molecu-
lar potentials after t interactions. Observe, that when two molecules interact,
following rule Xi + Xj → Xmin(i,j)+1 + Xmin(i,j)+1, then there is:

Φ(Xmin(i,j)+1) + Φ(Xmin(i,j)+1) ≤ 2/3 · (Φ(Xi) + Φ(Xj)) ,

which can be interpreted that each interacting molecule loses at least 1/3 of its
potential. Since each molecule participates in an interaction with probability 2

n
in each round, the following bound holds:

E[Φt+1 − Φt|Φt] ≥ ·
∑

v

Pr(v interacts in round t) · 1
3
Φt(v) =

2
3n

Φt,

E[Φt+1|Φt] ≤
(

1 − 2
3n

)
Φt.

Substituting Φ0 ≤ n and fixing t ≥ 3
2n ln(n · 3c(n) · nΘ(1)) = O(n(c(n) + log n +

Θ(log n))) we have

E[Φt] ≤
(

1 − 2
3n

)t

· n ≤ e− ln(n·3c(n)·nΘ(1)) · n = 3−c(n) · 1
nΘ(1)

.

By Markov’s inequality, this means that there is no molecule in any of the states
X1,X2, . . . , Xc with probability at least 1−n−Θ(1), that is with high probability.

�

We mention one additional useful property of Algorithm2, that its actions on

population are decomposable with respect to levels. That is, define levelt(u) = i
if molecule u at time t is in state Xi, and levelt(u) = 0 if it is in state D.
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Observation 1. Let {u1, u2, . . . , un}, {v1, v2, . . . , vn}, {w1, w2, . . . , wn} be 3 dis-
joint populations each on n molecules, following evolution defined by Algorithm2.
Moreover, let their evolutions be coupled: at each time t, in each population the
corresponding molecules interact (i.e., the interaction is ui +uj, vi +vj, wi +wj

in the three populations for some i, j).
If ∀ilevel0(ui) = min(level0(vi), level0(wi)), then at any time t > 0 :

∀ilevelt(ui) = min(levelt(vi), levelt(wi)).

This observation can be naturally generalized to more than 3 populations. As
shown below, the observation implies that to analyze detection under noisy start,
we can decouple starting noise from detected particle and analyze evolution
under those two separately. Denote by pi(t) and p≤i(t) the probability for a ran-
domly picked molecule after t interactions to be in the state Xi or D,X1, . . . , Xi

respectively.

Theorem 2. Fix arbitrary leak model (i.e. no leaks, false-positives, false-
negatives) and arbitrary concentration of D. For any c ≥ 1, and t = Ω(n ·
(c + log n)), there is ∣∣p�

≤c − p≤c(t)
∣∣ ≤ 1/nΘ(1),

where p� is the stationary probability distribution of the identical process.

Proof. First, for simplicity we collapse all states Xc+1,Xc+2, . . . into N , since
it has no effect on p≤c distributions. Consider a population of size n, under no
leaks, no D, evolution. By Lemma 1, in τ = O(n·(c+log n)) steps it reaches all-N
state, regardless of initial configuration, with high probability. Thus evolution
of any population {ui}, under no leaks, with D present, is a coupling (as in
Observation 1) of following evolutions:

– initial configuration of population {ui}, with each D replaced with N ;
– for every timestep ti such that D interacted with Xi or N creating X1, we

couple a population with corresponding molecule set to X1 and every other
molecule set to N , shifted in time so its evolution starts at time ti.

Observe, that evolution of population of both types will reach all-N state in
τ steps, with high probability. Thus, conditioned on this high probability, the
configuration at any t ≥ τ is the result of coupling of all-N (result of evolution
of first type population) with possibly several configurations of the second type,
where at each timestep t′ ∈ [t − τ, t] such population was created independently
with some probability only depending on n and k. However, the coupling we just
described is invariant from the choice of t, as long as t ≥ τ . Thus, for any t1, t2 ≥
τ , there is |p≤c(t1) − p≤c(t2)| ≤ 1/nΘ(1). Since p�

≤c = limt→∞ 1
t

∑t
i=1 p≤c(i), the

claimed bound follows.
To take into account errors, we say that whenever there is a leak changing

state of molecule v to some state S at time t, we change state of v at that time
in all existing populations to N , and create new population where v has state S,
and all other molecules are in N state. The same reasoning as in the error-less
case follows, since switching molecules to N state it only speeds up convergence
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of populations to all-N state and since populations created due to leaks are
created at each step with the same probability depending only on n and error
model. �


6 Simulation Results

We simulated the Robust-Detect algorithm (Algorithm1) using a modified ver-
sion of the CRNSimulatorSSA Mathematica package [17]. Figure 2 shows the
shape of typical trajectories when there is one molecule in state D (k = 1),
compared with no molecules in state D (k = 0) but with the worst-case leak for
false-positives. Note that D is quickly detected if present, and if absent the sys-
tem exhibits random perturbations that are quickly extinguished and are clearly
distinguishable from the true positive case.

Fig. 2. Typical time-evolution of the Robust-Detect algorithm (Algorithm 1). Three
colors correspond to the three conditions described in Fig. 1: (blue) 1 molecule of D is
present and no leak (leak parameter β = 0); (orange, red) no D is present but with
worst-case false-positive leak Xi → X1 and N → X1 (orange: leak parameter β = 0.01,
red: leak parameter β = 0.1). All Xi states map to output value “detect”, and thus
we plot the sum of all their counts. (a) s = 14 layers, β = 0.1 (red). (b) s = 17 layers,
β = 0.01 (orange). See Fig. 1 for the corresponding steady state probabilities. Note
that with smaller leak (β = 0.01), it is possible to better distinguish true positives and
false positives by increasing the number of layers (from 14 to 17). In all cases there
are n = 104 molecules, and the initial configuration is all molecules in neutral state N .
Parallel time (number of interactions divided by n) corresponds to the natural model
of time where each molecule can interact with a constant number of other molecules
per unit time. (Color figure online)

7 Conclusions

We have considered the problem of modeling and withstanding leaks in chemical
reaction networks, expressed as population protocols. We have presented an
arguably simple algorithm which is probabilistically correct under assumptions
on the leak rate, and converges quickly to the correct answer.
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Beyond the specific example of robust detection, we hope that our results
motivate more systematic modeling of leaks, and further work on algorithmic
techniques to withstand them. As such errors appear to spring from the basic
laws of chemistry, their explicit treatment appears to be necessary. The authors
found it surprising that many of the algorithmic techniques developed in the
context of deterministically correct population protocols might not carry over to
implementations, due to their inherent non-robustness to leaks.

In future work, we plan to perform an exhaustive examination of which of
the current algorithmic techniques could be rendered leak-robust, and whether
known algorithms can be modified to withstand leaks via new techniques.
Another interesting avenue for future work is lower bounds on the set of com-
putability or complexity of fundamental predicates in the leak model. Finally,
we would like to examine whether our robust detection algorithm can be imple-
mented in strand displacement systems.

Acknowledgments. We thank Lucas Boczkowski and Luca Cardelli for helpful com-
ments on the manuscript.
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Abstract. Models of nucleic acid thermal stability are calibrated to a
wide range of experimental observations, and typically predict equilib-
rium probabilities of nucleic acid secondary structures with reasonable
accuracy. By comparison, a similar calibration and evaluation of nucleic
acid kinetic models to a broad range of measurements has not been
attempted so far. We introduce an Arrhenius model of interacting nucleic
acid kinetics that relates the activation energy of a state transition with
the immediate local environment of the affected base pair. Our model
can be used in stochastic simulations to estimate kinetic properties and
is consistent with existing thermodynamic models. We infer parameters
for our model using an ensemble Markov chain Monte Carlo (MCMC)
approach on a training dataset with 320 kinetic measurements of hairpin
closing and opening, helix association and dissociation, bubble closing
and toehold-mediated strand exchange. Our new model surpasses the
performance of the previously established Metropolis model both on the
training set and on a testing set of size 56 composed of toehold-mediated
3-way strand displacement with mismatches and hairpin opening and
closing rates: reaction rates are predicted to within a factor of three for
93.4% and 78.5% of reactions for the training and testing sets, respec-
tively.

1 Introduction

Although nucleic acids are commonly synthesized and applied in various set-
tings, it remains difficult to predict the kinetics of their interaction and con-
formational change. Accurate models of nucleic acid kinetics are desirable for
biological and biotechnological applications, such as understanding the vari-
ous roles of RNA within the cell and the design of sensitive molecular probes.
Within the field of molecular programming, hairpin motifs and toehold-mediated
strand displacement are commonly used to implement autonomous devices such
as DNA walkers and logic gates. Models of nucleic acid thermal stability have
been extensively calibrated to experimental data [4,16] and enable secondary
c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 172–187, 2017.
DOI: 10.1007/978-3-319-66799-7 12
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structure software such as RNAsoft, ViennaRNA, RNAstructure, NUPACK,
and mfold [3,12,26,27,29] to efficiently predict the equilibrium probabilities of
nucleic acid secondary structures. In comparison, a similar extensive calibra-
tion and evaluation of nucleic acid kinetic models has not been attempted so
far, despite the development of kinetic models and simulation software such as
Multistrand and Kinefold [7,9,21,22,25]. Of particular interest is a study by
Srinivas et al., which demonstrates that the Metropolis model of Multistrand is
incompatible with observations of toehold-mediated strand displacement [23].

We develop a nucleic acid kinetic model based on Arrhenius dynamics that
surpasses the performance of the Metropolis model. States in our continuous-
time Markov chain (CTMC) model correspond to non-pseudoknotted secondary
structures and each transition in the model corresponds to either the opening
or closing of a base pair. A key difference with the Metropolis model is the
use of activation energy, which depends on the immediate local environment
surrounding the affected base pair. To calibrate and evaluate the Arrhenius and
the Metropolis models, we compile a dataset of 376 experimentally determined
reaction rate constants that we source from existing publications and cover a
wide range of reactions, including hairpin closing and opening, bubble closing,
helix association and dissociation, toehold-mediated 3-way strand displacement,
and toehold-mediated 4-way strand exchange (see Fig. 1). To efficiently infer
parameters and to obtain posterior parameter distributions, we use an ensemble
Markov chain Monte Carlo (MCMC) approach. Similar to the Metropolis model,
our model is consistent with existing thermodynamic models and Gillespie’s
stochastic simulation algorithm can be used to estimate kinetic rate constants
for a variety of reactions. However, obtaining precise predictions using explicit
stochastic simulation is computationally expensive, making MCMC parameter
inference difficult. Instead we employ a reduced state space approach, enabling
reaction rate constants to be computed efficiently and exactly using a sparse

(a) (b)

+

(c)

+
TS

3

S

4

+
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4
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+ +

(e)

Fig. 1. Five types of reactions that we simulate and for which reaction rate constants
have been measured. (a) Hairpin closing and opening. (b) Bubble closing. (c) Helix
association and dissociation. (d) Toehold-mediated 3-way strand displacement. (e)
Toehold-mediated 4-way strand exchange.
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matrix representation. Our state space is based on ‘zipper models’ that were
investigated previously to model DNA hybridization [11].

Our results are encouraging and suggest that the new Arrhenius model is
applicable to a wide range of DNA dynamic interactions and can be efficiently
trained with our framework. The rest of this paper is organized as follows.
Section 2 describes preliminaries and the Metropolis kinetic model, Sect. 3 intro-
duces our Arrhenius kinetic model, Sect. 4 introduces our kinetic dataset, Sect. 5
introduces our inference framework, Sect. 6 describes our results comparing the
inferred parameters to the database of experimental measurements, Sect. 7 dis-
cusses the limitations of our approach and directions for future research, and in
Sect. 8 we describe details of the methods we used.

2 Preliminaries

In this section, we briefly discuss the type of reactions we are interested in
modeling, and we discuss the Metropolis kinetic model (Sect. 2.1).

WhenDNAstrands interact, base pairs formandbreak stochastically under the
influence of thermal noise, resulting in a highly stochastic back-and-forth dynamic
process. When two strands share a mutual base pair, we regard the strands as con-
nected and we define a complex to be a set of connected strands. A single complex
can have many different secondary structures. Similar to Kinfold [9] and Multi-
strand [20,21],wemodel the kinetics of interactingDNAstrands as aCTMC,where
the state space S is a set of non-pseudoknotted secondary structures. Transitions
between states correspond to the forming or breaking of a single base pair, which
may be called an elementary step. For example, in Fig. 2, state i can transition to
states h and j. The rate at which a transition triggers is determined by a kinetic
model, that is, the Metropolis or the Arrhenius model, and we distinguish between
unimolecular and bimolecular transitions. Because all transitions in our model are
reversible, we group transitions into pairs of forward and reverse reactions; a tran-
sition in themodel is called bimolecular if a complex grows or shrinks by one strand,
and is called unimolecular otherwise. As a result, successful helix association and
helix dissociationboth require at least onebimolecular transition to trigger, despite
the latter reaction being strictly first order.

Experimentally observable reactions involve pathways of multiple elemen-
tary step transitions, are also inherently reversible, and thus can be classified
similarly. We are interested in modeling both unimolecular and bimolecular reac-
tions. In a unimolecular reaction, a complex of strands is altered through the

kij

kji

khi

kihstate h state i state j

p0 = 1 p = 51 p0 = 0 p0 = 0 p = 41p = 51

Fig. 2. State i can transition to states h and j. See Sect. 5.1 for definitions of the
pointers p0 and p1.
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formation or disruption of base pairs, but all strands in the complex remain con-
nected. An example of a unimolecular reaction is hairpin closing (Fig. 1a), where
a DNA strand hybridizes itself and forms a hairpin loop. Another example of a
unimolecular reaction is bubble closing (Fig. 1b). Helix association (Fig. 1c) is a
bimolecular reaction. Toehold-mediated 3-way strand displacement (Fig. 1d) is
another example of a bimolecular reaction, where one of the strands in a duplex is
replaced by the invader strand. The duplex consists of an incumbent strand and
a complementary strand. In addition to the hybridized domain, the incumbent
strand also contains an unhybridized region called a toehold. The invading strand
binds to the toehold region of the substrate and then displaces the incumbent
strand via three-way branch migration. Another bimolecular example is toehold-
mediated 4-way strand exchange (Fig. 1e), where two duplexes simultaneously
exchange strands via four-way branch migration.

2.1 The Metropolis Kinetic Model

The Metropolis model is one of the kinetic rate models implemented in Multi-
strand [20,21]. The Multistrand model considers a finite set of strands in a fixed
volume (‘the box’) and defines the energy of a state as the sum of the standard
free energy for each complex and a volume-dependent entropy term. To ensure
that simulations converge to the Boltzmann distribution over the states at equi-
librium, the transition rates between any two adjacent states i and j must satisfy
detailed balance:

kij/kji = exp
{− (

ΔG0
box(j) − ΔG0

box(i)
)
/RT

}
(1)

where kij is the transition rate from state i to state j, ΔG0
box(i) is the free

energy of state i, R is the gas constant, and T is the temperature. For a state i
containing N strands and M complexes, the free energy is

ΔG0
box(i) =

M∑

c=1

ΔG0
complex(c) + (N − M)ΔG0

volume (2)

where ΔG0
complex(c) is the difference in Gibbs free energy of complex c rela-

tive to the reference state and standard buffer conditions ([Na+] = 1 M), and
ΔG0

volume = −RT ln u is the loss of entropy resulting from fixing the position
of a strand of concentration u relative to the standard concentration (1 M).
Unimolecular transition rates are given by

kij =

{
kuni if ΔG0

box(j) < ΔG0
box(i)

kuni exp
(

ΔG0
box(i)−ΔG0

box(j)
RT

)
otherwise

(3)

where kuni > 0 is the unimolecular rate constant (units: s−1). For bimolecular
transitions i → j where two previously unconnected strands form a mutual base
pair, the rate is given as

kij = kbiu (4)
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and the rate of dissociation for the bimolecular transition j → i is given by

kji = kbie
− ΔG0

box(i)−ΔG0
box(j)+ΔG0

volume
RT × M (5)

where kbi > 0 is the bimolecular rate constant (units: M−1s−1). We treat
θ = {ln kuni, ln kbi} as 2 free parameters in the model that we calibrate to
experimental measurements. We emphasize that the rate of dissociation, Eq. 5,
is independent of concentration u and ΔG0

volume, which follows from the defini-
tion of the free energy in a state (Eq. 2).

3 The Arrhenius Kinetic Model

In our Arrhenius kinetic model, the activation energy of each transition depends
on the immediate context of the closing or opening base pair. Our classification
incorporates some, but not all, factors that may affect the activation energy of
a transition. For example, the activation energy might depend on the strand
sequence, but modeling this dependence would increase the number of free para-
meters, and we anticipate to have insufficient experimental evidence to accu-
rately distinguish all relevant factors. However, we emphasize that transition
rates in the model still depend on the nucleotide sequence via the nearest neigh-
bor model of base pair stability that determines the free energy of a complex
(see Eqs. 3 and 5).

Consider a reaction where a base pair is formed or broken, and denote by
l, r ∈ C one half of the local context on either side of the base pair. Our model
differentiates between seven different half contexts

C = {stack, loop, end, stack+loop, stack+end, loop+end, stack+stack} (6)

stack                       loop                                               end stack+loop

loop+endstack+end stack+stack

r1
r1 r1 r1 r1

r1 r1 r1

r2 r2

r2

r2 r2

r2r2 r2 r2

Fig. 3. The right side of the red base pair forms one half of the local context. The
classification of the half context depends on the pairing status of the two bases r1 and
r2 (if they exist) immediately to the right side of the base pair: stack means r1 and
r2 form a base pair with each other, loop means that neither r1 nor r2 forms a base
pair, end means that neither r1 nor r2 exists, stack+loop means that both r1 and r2
exist and one of the bases forms a base pair with another base while the other does
not, stack+end means that only one of r1 or r2 exists and forms a base pair, loop+end
means that only one of r1 or r2 exists and it does not form a base pair, and stack+stack
means that both r1 and r2 exist and they both form base pairs with other bases. Stars
indicate the possible continuation of the strands, which may be connected to other
starred strands, provided the resulting complex is non-pseudoknotted.
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so that the set of local contexts is given by C ×C. The different half contexts are
shown in Fig. 3. The Arrhenius model is equal to the Metropolis model (Eqs. 3, 4
and 5), except that we now re-define kuni : C × C → R>0 and kbi : C × C → R>0

by setting

kuni(l, r) = klkr kl = Al exp (−El/RT ) kr = Ar exp (−Er/RT ) (7)

kbi(l, r) = αkuni(l, r) (8)

where Al, Ar are Arrhenius rate constants, El, Er are activation energies, and
α is a bimolecular scaling constant. We treat θ = {ln Al, El | ∀l ∈ C} ∪ {α} as
15 free parameters that we fit to data.

4 Dataset

We compiled a dataset of experimentally determined reaction rate constants,
extracting 376 reaction rate constants published in the literature. Each data
point in our dataset is annotated with a reaction temperature and the concen-
tration of Na+ and Mg2+ cations in the buffer. The dataset is partitioned into
a training set of size 320, which we call Dtrain, and a testing set with size 56,
which we call Dtest. The training set covers a wide range of observations, in
terms of both reaction types and half contexts. The testing set includes both
unimolecular and bimolecular reactions. An overview of our dataset is given in
Table 1.

Table 1. Dataset of experimentally measured reaction rate constants. The † sign indi-
cates that the experiment was performed without Na+ in the buffer, in which case our
model computes the free energy as if 50 mM [Na+] is present (in addition to Mg2+).

Dtrain [Na+] /M [Mg2+] /mM T / ◦C Source

Hairpin closing and opening 0.1 10–49 Fig. 4 of Bonnet et al. [6]

0.1–0.5 10–49 Fig. 6 of Bonnet et al. [6]

0.25 18–49 Fig. 3.28 of Bonnet [5]

0.137 20 Fig. 3 of Kim et al. [14]

Bubble closing 0.1 25–45 Fig. 4 of Altan-Bonnet et al. [2]

Association and dissociation 1.0 4–68 Fig. 6 of Morrison and Stols [17]

0.05† 4 30–55 Fig. 6a of Reynaldo et al. [19]

Toehold-mediated 3-way strand

displacement

0.05† 4 30–55 Fig. 6b of Reynaldo et al. [19]

0.05† 12.5 25 Fig. 3b of Zhang and Winfree [28]

Toehold-mediated 4-way strand

exchange

0.05† 12.5 25 Table 5.2 of Dabby [8]

Dtest

Hairpin closing and opening 0.137 10–60 Fig. 5a, b of Kim et al. [14]

Toehold-mediated 3-way strand

displacement with mismatches

0.05† 10 23 Fig. 2d of Machinek et al. [15]
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5 Modeling Framework

We augmented the Multistrand software [20,21] to implement the new Arrhenius
model using the full state space of all non-pseudoknotted secondary structures.
Given values for the 15 free parameters, a sufficient number of stochastic sim-
ulations could be run to estimate the models prediction for an experimental
reaction of interest. Unfortunately, obtaining low error bars on this estimate is
prohibitively slow, and thus is not feasible within the inner loop of parameter
inference procedures. To address this limitation, we developed a computational
framework in which we obtain fast, exact predictions for a feasible approximation
of the full Multistrand state space. Specifically, we use a reduced state space that
is a strict subset of the full state space, enabling sparse matrix computations of
mean first passage times, from which reaction rate constants are predicted. With
this computation in the inner loop, we used two methods for training the model.
The first is a maximum a priori (MAP) approach that optimizes a single set of
parameters, and the second is based on MCMC that produces an ensemble of
parameter sets. In the latter case, a posterior parameter probability density is
computed.

5.1 State Space

In this section, we describe our reduced state space. In the future, our aim is to
train the model using a larger set of non-pseudonotted secondary structures. In
either case, the number of states in the model directly affects the computational
cost of inference through the set of linear equations (Eq. 10 in Sect. 5.2) that is
solved for each reaction at each iteration of the parameter search. In this study,
the largest state space in the training data is toehold-mediated 4-way strand
exchange and contains 14,438 states.

In our reduced state space, base pairs are permitted to form if and only
if they occur in either the initial or final state of our simulation. For example,
during the simulation of duplex hybridization, only base pairs that are consistent
with the perfect alignment of the two strands are permitted to form. We further
prune the state space by only allowing base pairs to form or break at the edge
of a hybridized domain.

A separate state space Sr is constructed for each reaction r that we wish
to model (Fig. 1). Each state corresponds to a set of indices 〈p0, p1, ...〉 ∈ Sr,
where the indices indicate the begin and end points of the hybridized domains.
The maximum number of continuously hybridized domains is precisely defined
for each reaction r. For example, the state space for hairpin closing and opening
(Fig. 1a) and hybridization (Fig. 1c) only contain one hybridized domain. In such
cases, the state description requires only two indices, and the length of the
hybridized domain is given by p1 − p0. In Fig. 2, we show the pointers for the
states h, i, and j in the state space for hairpin closing and opening. In each
transition, one of the pointers is incremented or decremented. Specifically, state
i can transition to state h by incrementing p0 and it can transition to state j
by decrementing p1. We restrict 0 ≤ p0 ≤ p1 ≤ m, where m is the length of the
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stem in the closed state. If p0 = p1, then the domain is absent in the given state.
A full description of the state space is given in the online appendix.

5.2 Estimating Mean First Passage Times with Exact Solvers

Given a parametrized kinetic model, we describe how to compute the mean first
passage time of a CTMC with state space S using a sparse matrix representa-
tion. Let the mean first passage time t be the average time it takes to reach one
of a set of final states Sfinal from an initial state i0. For a first order reaction
r, the reaction rate constant is found as k̂r = 1

t . For a second order reaction,
the reaction rate constant is computed as k̂r = 1

t
1
u where u is the initial concen-

tration of the reactants in the simulation [20]. A bimolecular reaction may be
effectively first order or second order under the given conditions, depending on
the time scale of the unimolecular portion of the reaction pathway relative to the
overall reaction time. In our reaction kinetics dataset, all bimolecular reactions
are second order in the forward direction.

Let the random variable T final
i represent the time required to reach any state

in Sfinal starting in state i ∈ S, where T final
i = 0 for i ∈ Sfinal. The time required

to reach Sfinal starting in i is equal to the initial holding time in state i, which we
call hi, plus the time required to hit Sfinal starting in the next visited state. hi is
distributed exponentially with exit rate ki =

∑
j∈S kij . The probability to move

to state j is directly proportional to the transition rate, so that P(i → j) = kij

ki
.

Therefore, the mean first passage time is found as [24]

E[T final
i ] =

1
ki

+
∑

j∈S

kij

ki
E[T final

j ]. (9)

Multiplying Eq. 9 by the exit rate ki and applying ki =
∑

j∈S kij then yields

∑

j∈S

kij(E[T final
j ] − E[T final

i ]) = −1. (10)

Equation 10 permits a sparse matrix representation Kt = −1 for a rate matrix
K and solution vector t, where Kij = kij for i 	= j, Kii = −∑

j∈S kij , and
ti = E[T final

i ]. To compute first passage times for a distribution over initial states
Sinit rather than an individual state, the weighted average of the first passage
time is computed.

5.3 Estimating the Unnormalized Posterior Distribution of the
Parameters

Let θ be the set of parameters in a kinetic model. For a given experimentally
observable reaction r, the predicted reaction rate constant k̂r will deviate from
the experimental measurement kr. We define the error of the prediction to be the
log10 difference, εr = log10 kr − log10 k̂r. To produce a measure of likelihood for
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our parameter valuation, we assume εr is normally distributed with an unbiased
mean and variance σ2, so that εr ∼ N(0, σ2). We treat σ as a nuisance parameter.
For reaction r the likelihood function is given as

P(r|θ, σ) =
1√

2πσ2
exp

{
−

(
log10 kr − log10 k̂r

)2
/

2σ2

}
(11)

and the likelihood function over the set of training data is given as

P(Dtrain|θ, σ) =
∏

r∈Dtrain

P(r|θ, σ)

= exp

⎧
⎪⎨

⎪⎩
−

∑
r∈Dtrain

(
log10 kr − log10 k̂r

)2

2σ2
− n

2
log 2πσ2

⎫
⎪⎬

⎪⎭
(12)

where n is the number of observations in Dtrain. To define the probability of the
parameters given the data we need to assume prior distributions for θ and σ.
During preliminary fitting, a number of parameter values were found to be diver-
gent, which we explain as follows. For a fixed temperature T and a fixed local
context (l, r), there are many assignments of Al, El and Ar, Er that result in
nearly equal transition rates kuni(l, r) = AlAr exp {−(El + Er)/RT} (we expand
Eq. 7) that result in similar model predictions k̂r. This allows dissimilar valua-
tions for E and A to have nearly equal (log)likelihood scores (Eq. 12). The prob-
lem becomes even more apparent when we consider the intrinsic measurement
error on kr (for example, a standard deviation of 22% was reported by Machinek
et al. [15]), the limited range of temperatures (see Table 1) inherent to our obser-
vations, and the relative frequency of the different half contexts appearing in each
simulation (see the online appendix). In practice, kuni(l, r) is well constrained
for many different l, r ∈ C. As is common in data-fitting applications, we assume
a regularization prior that improves the stability of the estimation. We assume
that all parameters in θ are independent and identically Gaussian distributed
with mean 0 and variance 1

λ . In our inference, we use λ = 0.02, and the predic-
tive quality of the model does not change for minor adjustments to λ. For the
nuisance parameter σ, we use a non-informative Jeffreys prior [13]. Under these
assumptions, the posterior distribution is proportional to:

P(θ, σ|Dtrain) =
P(Dtrain|θ, σ)P(θ)P(σ)

P(Dtrain)
∝ P(Dtrain|θ, σ)P(θ)P(σ)

= P(Dtrain|θ, σ)
(

2π

λ

)− |θ|
2

exp
{

−λ‖θ‖22
2

}
1
σ

. (13)

In conclusion, the log of the posterior distribution is equal to the following equa-
tion, up to an additive constant not depending on the parameters

log P (θ, σ|Dtrain) ≈
−(n + 1) log σ − 1

2σ2

∑

r∈Dtrain

(log10 kr − log10 k̂r)2 − λ

2
‖θ‖22 (14)
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where the squared L2 norm in Eq. 14 is computed as ‖θ‖22 = α2 + | ln kuni|2 +
| ln kbi|2 for the Metropolis model and as ‖θ‖22 = α2 +

∑
l∈C | ln Al|2 +

∑
l∈C |El|2

for the Arrhenius model. Note that |θ| = 2 for the Metropolis model and |θ| = 15
for the Arrhenius model.

Our MAP approach seeks a unique parameter set that maximizes the nor-
malized log posterior of the dataset (Eq. 14). We use the Nelder-Mead optimiza-
tion method [18], a gradient-free local optimizer. For MCMC, we use the emcee
software package [10], that implements an affine invariant ensemble sampling
algorithm.

6 Results

Table 2 shows the performance of the Metropolis and the Arrhenius models with
the MAP and MCMC approaches. For details on computational settings for the
approaches see Sect. 8. The Arrhenius model fits the training data better than
the Metropolis model (for details see the online appendix, Figs. S3–S14), which is
unsurprising when considering the increase of adjustable parameters in the Arrhe-
nius model (2 vs. 15). However, the Arrhenius model also has better predictive
qualities for the testing set, as evidenced by the MCMC ensemble mean standard
deviation of

√
0.99 = 0.99 for the Metropolis model and

√
0.42 = 0.64 for the

Arrhenius model. The improvement in the prediction of the testing set is apparent
in Fig. 4, where both models predict the Machinek et al. study of toehold-mediated
3-way strand displacement with mismatches, and in predictions of opening and

Table 2. Performance of the Metropolis and the Arrhenius models on the training and
testing sets. The Mean Squared Error (MSE) is the mean of | log10 kr − log10 k̂r|2 over
r ∈ D. The Within Factor of Three metric shows the percentage of reactions for which
| log10 kr − log10 k̂r| ≤ log10 3. Initial is the initial parameter set of the MAP approach
(Sect. 8). MAP is the MAP inference method. Mode is the parameter set from the
MCMC ensemble that has the highest posterior on Dtrain. Ensemble is the MCMC
ensemble method where the reaction rate constant k̂r is averaged over all parameter
sets.

Mean Squared Within Factor

Error of Three

Dtrain Dtest Dtrain Dtest

Metropolis Initial .55 1.3 69.3% 33.9%

MAP .33 .94 79.0% 41.0%

Mode .33 .95 79.0% 41.0%

Ensemble .33 .99 79.6% 37.5%

Arrhenius Initial .59 1.3 71.2% 33.9%

MAP .14 .47 92.1% 73.2%

Mode .12 .40 92.8% 78.5%

Ensemble .12 .42 93.4% 78.5%
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Fig. 4. Model predictions (dashed lines) of reaction rate constants (y axis) for toehold-
mediated 3-way strand displacement with mismatches, experimental data (solid lines)
from Fig. 2d of Machinek et al. [15]. For the MCMC ensemble method, error bars
indicate the range (minimum to maximum) of 100 predictions (see Sect. 8). Arrows
indicate no mismatch. The mismatch in the invading strand affects the reaction rate.
The length of the toehold domain is ten, seven, and six nucleotides long for �, , and

, respectively.

closing rates for hairpin with short stems (1–2 nt) (Figs. S15 and S16 in the online
appendix). It is impressive that the models, when trained on a comprehensive
training dataset, can predict the results of experiments not seen during training.

There are two reasons for the superior performance of the Arrhenius model.
First, the presence of the temperature dependent activation energy allows the
Arrhenius model to better calibrate to measurements at varying temperatures.
On average, the reaction rate constants kuni(l, r) double in the Arrhenius model
between T = 25 ◦C and T = 60 ◦C (this follows from the parameter values in
which E[El + Er] = 3.32 kcal mol−1). A second factor is the relation between the
activation energy of a transition and the local context. In Fig. 5, the inferred distri-
bution of kuni(l, r) is given for all local contexts that occur in the model. Strikingly,
for many local contexts, the kuni(l, r) are narrowly distributed and often mutually
exclusive, indicating that our model captures intrinsic qualitative differences in
activation energy.

7 Discussion

A common problem for Arrhenius models in biophysics is that the limited range
of temperatures in experimental data can result in ambiguous parameter infer-
ence, and this is indeed the case for our model with the current data set. Despite
the generally narrow bands for the transition rates (Fig. 5a), the inferred A and E
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Fig. 5. Box plots of model features inferred by the MCMC ensemble method, using a
sample of 100 parameter sets. Edges of the box correspond to the first and third quartile
of the distribution. The whisker length is set to cover all parameter values in the sample,
or is limited to at most 1.5 times the box height with the outliers plotted separately. (a)
kuni and kbi for the Metropolis model. (b) kuni(l, r) at 25 ◦C for the Arrhenius model.
Combinations that do not occur in the model are not shown.

(a) (b)

Fig. 6. The Arrhenius model parameters inferred by the MCMC ensemble method. (a)
Box plots of the half context parameters. Edges of the box correspond to the first and
third quartile of the distribution. The whisker length is set to cover all parameter values
in the sample, or is limited to at most 1.5 times the box height with the outliers plotted

separately. (b) The Pearson correlation coefficients Rij =
cov(θi,θj)

σθi
σθj

, where cov(X, Y ) =

E[(X − E[X])(Y − E[Y ])] and σX =
√

E[(X − E[X])2]. (Color figure available online)
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parameters are poorly constrained, as is evident from the wide range in the para-
meter posterior probability distribution and correlation matrix (Fig. 6). Mathe-
matically, measurements at a single temperature only restrict ln Al + −El

RT rather
than Al and El independently, and a significant fraction of the measurements were
performed at constant temperature. If further mining of the existing experimental
literature does not resolve the issue, one solution would be to develop customized
experiments to calibrate the model further. Interestingly, the relative lack of corre-
lation between the parameters for different half contexts suggests that there could
be benefit in subdividing the half context categories further.

We envision further improvements to the model by adjusting the state space
and the thermodynamic energy model. For the state space, the requirement for
hybridizing strands to only engage in perfectly aligned base pairing is not realis-
tic, and we plan on using a state space generated directly from stochastic Multi-
strand simulations to avoid these problems. Our simulation depends on the model
of thermal stability implemented in the NUPACK software [27] and adjustments
to the thermodynamic model also could improve the quality of our predictions. For
example, hairpin closing rates are known to depend on the loop sequence, as open
poly(A) loops are more rigid than poly(T) loops [1]. The current thermodynamic
model does not incorporate this effect, and we avoid comparing the model to mea-
surements on poly(A) loop hairpins. Similarly, the initiation of branch migration
is known to have a significant thermodynamic cost, with one study measuring a
cost of 2.0 kcal mol−1 at room temperature [23]. This initialization cost is not yet
incorporated in NUPACK.

We have reported the initial results of our effort to develop accurate kinetic
models for nucleic acids. Our Arrhenius model surpasses the performance of the
Metropolis model, trained and evaluated on a wide range of experimental DNA
reaction rate constants. Although our current analysis focuses on DNA, we believe
our approach would also apply to RNA reaction kinetics.

8 Methods

We fit the Metropolis and Arrhenius kinetic models using the MAP approach to a
learn parameter set that maximizes Eq. 14. Using the MCMC approach, we max-
imize the same equation, but instead obtain an ensemble of parameter sets.

The MAP method is sensitive to the initial parameters, and for the Metropo-
lis model, we use kuni = 8.2 × 106 s−1 and kbi = 3.3 × 105 M−1s−1, following
known estimates for a one dimensional model of toehold-mediated strand displace-
ment [23]. For the Arrhenius model, we initialize Er = 3 kcal mol−1 for all r ∈ C
andwe initializeα andAr such that, atT = 23 ◦C, equally kuni(l, r) = 8.2×106 s−1

and kbi(l, r) = 3.3 × 105 M−1s−1 for all local contexts l, r ∈ C. For both models,
we initialize σ = 1.
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Results for the MCMC should generally depend less on the initial value of the
sets in the ensemble. To initialize the parameter assignment for each parameter set
in the MCMC ensemble, we realize random variables

Er ∼ U(0, 6) × kcal mol−1 Ar ∼ U(0, 104) × s−1/2 ∀r ∈ C
kuni ∼ U(0, 108) × s−1 kbi ∼ U(0, 108) × M−1s−1

α ∼ U(0, 10) × M−1 σ ∼ U(0, 1) (15)

where U(a, b) is the uniform distribution over (a, b). During the inference, the
parameters are not restricted to initialization bounds, and instead we only require
kuni, kbi, Al, α and σ to be positive.

In the emcee software [10], an ensemble of walkers each represents a set of para-
meters, which are updated through stretch moves. Given two walkers θ1 and θ2, a
new parameter assignment θ′

1 for the first walker is generated as

θ′
1 = Zθ1 + (1 − Z)θ2 g(Z = z) ∝

{
1√
z

if z ∈ [
1
a , a

]

0 otherwise
(16)

where g(z) is the probability density of Z. We use a = 2 (default value) and an
ensemble of 100 walkers. We only use the last step of each walker to make predic-
tions, which results in an ensemble of 100 parameter sets for each model.

For the MAP approach, we continue the inference until an absolute tolerance
of 10−4 is reached. For the MCMC approach, we continue the inference until 750
iterations are performed per walker.

We implemented our framework in Python. All experiments were run on a sys-
tem with 16 2.93GHz Intel Xeon processors and 64GB RAM, running openSUSE
42.1. On this system, each iteration takes less than 6 s.

Our framework and dataset, as well as an
online appendix that has a full description of the state space, more experimental
plots and analysis, and algorithms that underlie our framework, are available at
https://github.com/DNA-and-Natural-Algorithms-Group/ArrheniusInference.
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Abstract. Approximate Majority is a well-studied problem in the con-
text of chemical reaction networks (CRNs) and their close relatives, pop-
ulation protocols: Given a mixture of two types of species with an initial
gap between their counts, a CRN computation must reach consensus on
the majority species. Angluin, Aspnes, and Eisenstat proposed a simple
population protocol for Approximate Majority and proved correctness
and O(log n) time efficiency with high probability, given an initial gap
of size ω(

√
n log n) when the total molecular count in the mixture is n.

Motivated by their intriguing but complex proof, we provide simpler, and
more intuitive proofs of correctness and efficiency for two bi-molecular
CRNs for Approximate Majority, including that of Angluin et al. Key to
our approach is to show how the bi-molecular CRNs essentially emulate
a tri-molecular CRN with just two reactions and two species. Our results
improve on those of Angluin et al. in that they hold even with an initial
gap of Ω(

√
n log n). Our analysis approach, which leverages the simplicity

of a tri-molecular CRN to ultimately reason about bi-molecular CRNs,
may be useful in analyzing other CRNs too.

Keywords: Approximate Majority · Chemical reaction networks · Pop-
ulation protocols

1 Introduction

Stochastic chemical reaction networks (CRNs) and population protocols (PPs)
model the dynamics of interacting molecules in a well-mixed solution [1] or of
resource-limited agents that interact in distributed sensor networks [2]. CRNs are
also a popular molecular programming language for computing in a test tube [3,4].
A central problem in these contexts is Approximate Majority [2,5]: in a mixture of
two types of species where the gap between the counts of the majority and minor-
ity species is above some threshold, which species is in the majority? Angluin et al.
[6] proposed and analyzed a PP for Approximate Majority, noting that “Unfortu-
nately, while the protocol itself is simple, proving that it converges quickly appears
to be very difficult”. Here we provide a new, simpler analysis of CRNs for Approx-
imate Majority.

c© Springer International Publishing AG 2017
R. Brijder and L. Qian (Eds.): DNA 23 2017, LNCS 10467, pp. 188–209, 2017.
DOI: 10.1007/978-3-319-66799-7 13
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1.1 CRNs and Population Protocols

A CRN is specified as a finite set of chemical reactions, such as those in Fig. 1.
The underlying model describes how counts of molecular species evolve when
molecules interact in a well-mixed solution. Any change in the molecular com-
position of the system is attributable to a sequence of one or more interaction
events that trigger reactions from the specified set. The model is probabilistic
at two levels. First, which interaction occurs next, as well as the time between
interaction events, is stochastically determined, reflecting the dynamics of colli-
sions in a well-mixed solution [7]. Second, an interaction can trigger more than
one possible reaction, and rate constants associated with reactions determine
the relative likelihood of each outcome. For example, reactions (0’x) and (0’y)
of Fig. 1(c) are equally likely reactions triggered by an interaction involving one
molecule of species X and one of species Y . Soloveichik et al. [8]’s method for
simulating CRNs with DNA strand displacement cascades can support such
probabilistic reactions.

Angluin et al. [2] introduced the closely related population protocol (PP)
model, in which agents interact in a pairwise fashion and may change state
upon interacting. Agents and states of a PP naturally correspond to molecules
and species of a CRN. A scheduler specifies the order in which agents inter-
act, e.g., by choosing two agents randomly and uniformly, somewhat analogous
to stochastic collision kinetics of a CRN. The models differ in other ways. For
example, PP interactions always involve two agents, and as such correspond to
bi-molecular interactions, while the CRN model allows for interactions of other
orders, including unimolecular and tri-molecular interactions. Unlike CRNs, PP
interactions may be asymmetric: one agent is the designated initiator and the
other is the responder, and their new states may depend not only on their cur-
rent states but also on their designation. Also, while CRN reaction outcomes
may be probabilistic, PP state transition function outcomes are deterministic.
Nevertheless, probabilistic transitions can be implemented in PPs by leveraging
both asymmetry and the randomness of interaction scheduling [6,9].

Fig. 1. A tri-molecular and two bi-molecular chemical reaction networks (CRNs) for
Approximate Majority. Reactions (0’x) and (1’y) of Single-B have rate constant 1/2
while all other reactions have rate constant 1.
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1.2 The Approximate Majority Problem

Consider a mixture with n molecules, some of species X and the rest of species
Y . Here and throughout, we denote the number of copies of X and Y during a
CRN computation by random variables x and y respectively. The Approximate
Majority problem [6] is to reach consensus — a configuration in which all mole-
cules are X (x = n) or all are Y (y = n), from an initial configuration in which
x + y = n and the gap |x − y| is above some threshold. If initially x > y, the
consensus should be X-majority (x = n), and if initially y > x the consensus
should be Y -majority. We focus on the case when initially x > y since the CRNs
that we analyze are symmetric with respect to X and Y .

Angluin et al. [10] proposed and analyzed the Single-B CRN of Fig. 1(c).
Informally, reactions (0’x) and (0’y) are equally likely to produce B’s (blanks)
from X’s or Y ’s respectively, while reactions (1’) and (2’) recruit B’s to become
X’s and Y ’s respectively. (Angluin et al. described this as a population protocol,
using asymmetry, that provides 1/2 rates, and the randomness of the scheduler
to implement the random reactions (0’x) and (0’y).) When X is initially in the
majority (x > y initially), a productive reaction event (i.e., resulting in some
chemical changes) is more likely to be (1’) than (2’), with the bias towards (1’)
increasing as x gets larger. Angluin et al. showed correctness: if initially x − y =
ω(

√
n log n), then with high probability Single-B reaches X-majority consensus.

They also showed efficiency: with “high” probability 1 − n−Ω(1), for any initial
gap value x−y, Single-B reaches consensus within O(n log n) interaction events.
They also proved correctness and efficiency in more general settings, such as in
the presence of o(

√
n) Byzantine agents.

Doerr et al.’s [11] “median rule”protocol for stabilizing consensus with two
choices in a distributed setting involves rules that are identical to the interactions
of our tri-molecular protocol of Fig. 1(a). Their model differs somewhat from that
of CRNs in that interactions happen in rounds, in which each process (molecule)
initiates exactly one interaction with two other processes chosen uniformly at
random. They provide a simple and elegant analysis of the protocol, showing that
it achieves consensus with high probability in their model within O(log n) rounds.
They note that the consensus value agrees with that of the initial majority when
the initial gap is ω(

√
n log n). Doerr et al. did not analyze protocols in which

interactions involve just two processes.
Several others have subsequently and independently studied the problem;

we’ll return to related work after describing our own contributions.

1.3 Our Contributions

We analyze three CRNs for Approximate Majority: a simple tri-molecular CRN
whose reactions involve just the two species X and Y that are present initially,
and two bi-molecular CRNs, which we call Double-B and Single-B, that use an
additional “blank” species B – see Fig. 1. As noted earlier, the Single-B CRN
is the same as that of Angluin et al. The Double-B CRN is symmetric even in
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the PP setting, and was among the earliest CRN algorithms constructed with
strand displacement chemistry, by Chen et al. [12].

Our primary motivation is to provide the simplest and most intuitive proofs
of correctness and efficiency that we can, with the hope that simple techniques
can be adapted to reason about CRNs for other problems. A bonus is that our
results apply with high probability when the initial gap is Ω(

√
n log n), and thus

are a factor of
√

log n stronger than Angluin et al.’s results in this situation. We
do not concern ourselves with smaller initial gaps, but note that even with no
initial gap we can still expect efficiency, since the expected number of interaction
events until a gap of

√
n log n is reached is O(n log n). This would be true even if

there were no bias in favour of reaction (1’) as x, the majority species, increases.
We suspect that the complexity of Angluin et al.’s proof stems from the case
when the initial gap is small (o(

√
n log n)), and the fact that they show efficiency

with high probability, rather than expected efficiency for such an initial setup.
First, in Sect. 3 we analyze the tri-molecular CRN of Fig. 1(a). Intuitively,

its reactions sample triples of molecules and amplify the majority species by
exploiting the facts that (i) every triple must have a majority of either X or
Y , and (ii) the ratio of the number of triples with two X-molecules and one
Y -molecule to the number of triples with two Y -molecules and one X-molecule,
is exactly the ratio of X-molecules to Y -molecules.

We analyze the CRN in three phases. In the first phase we model the evolution
of the gap x − y as a sequence of random walks with increasing bias of success
(i.e., increase in x − y). Similarly, in the second phase we model the evolution
of the count of y as a sequence of random walks with increasing bias of success
(decrease in y). We use a simple biased random walk analysis to show that these
walks make forward progress with high probability, thereby ensuring correctness.
To show efficiency of each random walk, we model it as a sequence of independent
trials, observe a natural lower bound on the probability of progress, and apply
Chernoff bounds. In the third and last phase we model the “end game” as y
decreases from Θ(log n) to 0, and apply the random walk analysis and Chernoff
bounds a final time to show correctness and efficiency, respectively.

Then in Sect. 4 we analyze the bi-molecular CRNs of Fig. 1 by relating them
to the tri-molecular CRN. For the Double-B CRN, we show that with high prob-
ability, after a short initial start-up period and continuing almost until consensus
is reached, the number of B’s is at least proportional to y and is at most n/2, in
which case reaction events are reactions (1’) or (2’) with probability Ω(1). More-
over, blanks are in a natural sense a proxy for X + Y (an interaction between
X and Y ), and so reactions (1’) and (2’) behave exactly like the corresponding
reactions of our tri-molecular CRN. Essentially the same argument applies to
Single-B. We present empirical results in Sect. 5.

Our analysis of the tri-molecular protocol is quite similar to that of Doerr
et al.’s median rule algorithm, although the models of interaction are different.
We discuss the similarities in Sect. 6, as well as directions for future work.
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1.4 Related Work

Perron et al. [13] analyze Single-B when x + y = n and y ≤ εn. They use a biased
random walk argument to show that Single-B reaches consensus on X-majority
with exponentially small error probability 1− e−Θ(n). The results of Perron et al.
do not apply to smaller initial gaps. Mertzios et al. [14] showed somewhat weaker
results for Single-B when initially x − y ≥ εn (the main focus of their paper is
when interactions are governed by a more general interaction network). Cruise and
Ganesh [15] devise a family of protocols in network models where agents (nodes)
can poll other agents in order to update their state. Their family of protocols pro-
vides a natural generalization of our tri-molecular CRN and their analysis uses
connections between random walks and electrical networks.

Yet other work on Approximate Majority pertains to settings with differ-
ent assumptions about the number of states per agent, the types of interac-
tion scheduling rules, and possibly adversarial behaviour [9,11,14,16], or analyze
more general multi-valued consensus problems [10,11,17,18].

2 Preliminaries

2.1 Chemical Reaction Networks

Let X = {X1,X2, . . . Xm} be a finite set of species. A solution configuration c =
(x1, x2, . . . , xm), where the xi’s are non-negative integers, specifies the number
of molecules of each species in the mixture. Molecules in close proximity are
assumed to interact. We denote an interaction that simultaneously involves si

copies of Xi, for 1 ≤ i ≤ m, by a vector s = (s1, s2, . . . , sm), and define the order
of the interaction to be s1 + s2 + . . . + sm.

We model interacting molecules in a well-mixed solution, under fixed envi-
ronmental conditions such as temperature. The well-mixed assumption has two
important implications that allow us to draw on aspects of both CRN models
[1,3,19] and also PP models [2], aiming to serve as a bridge between the two.
The first, that all molecules are equally likely to reside in any location, supports
a stochastic model of chemical kinetics, in which the time between molecular
interactions of fixed order is a continuous random variable that depends only
on the number of molecules and the volume of the solution. The second, that
any fixed interaction is equally likely to involve any of the constituent molecules,
and is therefore sensitive to the counts of different species, supports a discrete,
essentially combinatorial, view of interactions reminiscent of, but more general
than, those in standard PP models. In the Appendix we compare our model with
that of Cook et al. [3].

In this paper we will only be interested in interactions of a single order (either
two or three). According to a stochastic model of chemical kinetics [1], at any
moment, the time until the next interaction of order o, what we refer to as an
interaction event, occurs is exponentially distributed with parameter

(
n
o

)
/vo−1,

where n denotes the total number of molecules and v denotes the total volume
of the solution. Accordingly, if n and v remain fixed, the expected time between
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interaction events of order o is vo−1/
(
n
o

)
and the variance is (vo−1/

(
n
o

)
)2. It fol-

lows that, if v = Θ(n), the time Tn for n interaction events has expected value
E[Tn] = Θ(no/

(
n
o

)
) = Θ(1) and variance Var[Tn] = Θ((no/

(
n
o

)
)2/n) = Θ(1/n).

By Chebyshev’s inequality, we have that:

P[|Tn − E[Tn]]| ≥ h
√

Var[Tn]] = P[|Tn − no/
(
n
o

)| ≥ h(no/
(
n
o

)
)/

√
n] ≤ 1/h2.

By setting h =
√

n we see that the time for n interaction events is O(1) with
probability at least 1 − 1/n. Thus we are led to use the number of interaction
events, divided by n, as a proxy for time.

When the solution is in configuration c = (x1, x2, . . . , xm) where
∑

i xi = n,
the well-mixed property dictates that the probability that a given interaction
event of order o is the particular interaction s = (s1, s2, . . . , sm) is λ(c, s) =[∏m

i=1

(
xi

si

)]
/
(
n
o

)
.

Some interaction events lead to an immediate change in the configura-
tion of the solution, while others do not. The change (possibly null) aris-
ing from an interaction can be described as a (possibly unproductive) reac-
tion event. Formally, a reaction r = (s, t) = ((s1, s2, . . . , sm), (t1, t2, . . . , tm))
is a pair of non-negative integer vectors describing reactants and products,
where, for productive reactions, at least one i, si �= ti. Reaction r is applica-
ble in configuration c = (x1, x2, . . . , xm) if si ≤ xi, for 1 ≤ i ≤ m. If
reaction r occurs in configuration c, the new configuration of the mixture is
c′ = (x1 − s1 + t1, x2 − s2 + t2, . . . , xm − sm + tm). In this case we say that the
transition from configuration c to configuration c′ is realized by reaction r and
we write c →r c′. Each reaction r has an associated rate constant 0 < kr ≤ 1,
specifying the probability that the reaction is consummated, given the interac-
tion specified by the reactant vector is satisfied, so the probability that reaction
r = (s, t) occurs as the result of an interaction event in a configuration c is just
krλ(c, s).

A chemical reaction network (CRN) is a pair (X ,R), where X is a finite set
of species and R is a finite set of productive reactions, such that, for all reactant
vectors s, if R(s) is the subset of R with reactant vector s, then

∑
r∈R(s) kr ≤ 1.

To ensure that all interactions have a fully specified outcome, we take as implicit
in this formulation the existence, for every reactant vector s, including all possi-
ble interactions of order o, of a non-productive reaction with rate constant 1 −∑

r∈R(s) kr.

2.2 CRN Computations

Next we describe how the mixture of molecules evolves when reactions of a CRN
(X ,R) occur. For the CRNs that we analyze, there is some order o such that
for every reaction (s, t) of R, s1 + s2 + . . . sm = t1 + t2 + . . . tm = o. Thus the
number n of molecules in the system does not change over time. We furthermore
assume that the volume v of the solution is fixed and proportional to n.

A random sequence of interaction events triggers a sequence of (not necessar-
ily productive) reaction events, reflected in a sequence of configurations that we
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interpret as a computation. More formally, a computation of the CRN (X ,R),
with respect to an initial configuration c0, is a discrete Markov process whose
states are configurations. The probability of a transition, via a reaction event,
from configuration c to configuration c′ is just the sum of the probabilities of all
reactions r such that c →r c′.

2.3 Analysis Tools

We will use the following well-known property of random walks, Chernoff tail
bounds on functions of independent random variables, and Azuma’s inequality.

Lemma 1 (Asymmetric one-dimensional random walk [20] (XIV.2)).
If we run an arbitrarily long sequence of independent trials, each with success
probability at least p, then the probability that the number of failures ever exceeds
the number of successes by b is at most (1−p

p )b.

Lemma 2 (Chernoff tail bounds [21]). If we run N independent trials,
with success probability p, then SN , the number of successes, has expected value
μ = Np and, for 0 < δ < 1,

(a) P[SN ≤ (1 − δ)μ] ≤ exp(− δ2μ
2 ), and

(b) P[SN ≥ (1 + δ)μ] ≤ exp(− δ2μ
3 ).

Lemma 3 (Azuma’s inequality [22]). Let Q1, . . . , Qk be independent ran-
dom variables, with Qr taking values in a set Ar for each r. Suppose that the
(measurable) function f : ΠAr → R satisfies |f(x) − f(x′)| ≤ cr whenever the
vectors x and x′ differ only in the rth coordinate. Let Y be the random variable
f(Q1, . . . , Qk). Then, for any t > 0,

P[|Y − E[Y ]| ≥ t] ≤ 2 exp
(

− 2t2/

k∑

r=1

c2r

)
.

3 Approximate Majority Using Tri-molecular Reactions

In this section we analyse the behaviour of the tri-molecular CRN of Fig. 1(a).
We prove the following:

Theorem 1. For any constant γ > 0, there exists a constant cγ such that,
provided the initial molecular count of X exceeds that of Y by at least cγ

√
n lg n,

a computation of the tri-molecular CRN reaches a consensus of X-majority, with
probability at least 1 − n−γ , in at most cγn lg n interaction events.

Recall that we denote by x and y the random variables corresponding to the
molecular count of X and Y respectively. We note that the probability that an
interaction event triggers reaction (1) (respectively, reaction (2)) is just

(
x
2

)
y/

(
n
3

)

(respectively,
(
y
2

)
x/

(
n
3

)
). Hence, the probability that an interaction even triggers
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one of these (a productive reaction event) is xy(x + y − 2)/(2
(
n
3

)
), and the

probability that such a reaction event is reaction (1) is (x − 1)/(x + y − 2) ≥
x/(x + y), provided x ≥ y.

We divide the computation into a sequence of three, slightly overlapping and
possibly degenerate, phases, where cγ , dγ and eγ are constants depending on γ:

phase 1 cγ/2
√

n lg n < x − y ≤ n(dγ − 2)/dγ . It ends as soon as y ≤ n/dγ .
phase 2 eγ lg n < y < 2n/dγ . It ends as soon as y ≤ eγ lg n.
phase 3 0 ≤ y < 2eγ lg n. It ends as soon as y = 0.

Of course the assertion that a computation can be partitioned in such a way
that these phases occur in sequence holds only with sufficiently high probability.
To facilitate this argument, as well as the subsequent efficiency analysis, we
divide both phase 1 and phase 2 into Θ(lg n) stages, defined by integral values
of t and s, as follows:

– A typical stage in phase 1 starts with x ≥ y + 2t
√

n lg n and ends with
x ≥ y + 2t+1

√
n lg n, where lg cγ ≤ t ≤ (lg n − lg lg n)/2 + lg((dγ − 2)/(2dγ)).

– A typical stage in phase 2 starts with y ≤ n/2s and ends with y ≤ n/2s+1,
where lg dγ ≤ s ≤ lg n − lg lg n − lg eγ − 1.

Our proof of correctness (the computation proceeds through the specified
phases as intended) and our timing analysis (how many interaction events does
it take to realize the required number of productive reaction events) exploit the
simple and familiar tools set out in the previous section, taking advantage of
bounds on the probability of reactions (1) and (2) that hold throughout a given
phase/stage:

(a) [Low probability of unintended phase/stage completion]. The relative prob-
ability of reactions (1) and (2) is determined by the relative counts of X and
Y . This allows us to argue, using a biased random walk analysis (Lemma 1
above), that, with high probability, there is no back-sliding; when the com-
putation leaves a phase/stage it is always to a higher indexed phase/stage
(cf. Corollaries 1, 2 and 3, below).

(b) [High probability of intended phase/stage completion within a small number
of productive reaction events]. Within a fixed phase/stage the computation
can be viewed as a sequence of independent trials (choice of reaction (1)
or (2)) with a fixed lower bound on the probability of success (choice of
reaction (1)). This allows us to establish, by a direct application of Cher-
noff’s upper tail bound Lemma 2, an upper bound, for each phase/stage, on
the probability that the phase/stage completes within a specified number of
productive reaction events (cf. Corollaries 4, 5 and 6, below).

(c) [High probability that the productive reaction events occur within a small
number of molecular interactions]. Within a fixed phase/stage the choice
of productive reaction events, among interaction events, can be viewed as
a sequence of independent trials with a fixed lower bound on the probabil-
ity of success (the interaction corresponds to a productive reaction event).
Thus our timing analysis (proof of efficiency) is another direct application
of Chernoff’s upper tail bound (Lemma 2) (cf. Corollary 7, below).
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Lemma 4. At any point in the computation, if x − y = Δ then the probability
that x − y ≤ Δ/2 at some subsequent point in the computation is less than
(1/e)Δ2/(2n+2Δ).

Proof. Since x − y > Δ/2 up to the point when we first have x − y ≤ Δ/2, it
follows that x ≥ n/2 + Δ/4 and y ≤ n/2 − Δ/4. We can view the change in
x−y resulting from productive reaction events as a random walk, starting at Δ,
with success (an increase in x−y, following reaction (1)) probability p satisfying
p ≥ 1/2 + Δ/(4n).

It follows from Lemma 1 that reaching a configuration where x − y ≤ Δ/2
(which entails an excess of Δ/2 failures to successes) is less than ( 1

1+Δ/n )Δ/2

which is at most (1/e)Δ2/(2n+2Δ).

Corollary 1. In stage t of phase 1, x−y reduces to 2t−1
√

n lg n with probability
less than 1/n22t−2

.

Lemma 5. At any point in the computation, if y = n/k then the probability that
y > 2n/k at some subsequent point in the computation is less than (2/(k−2))n/k.

Proof. Since y ≤ 2n/k up to the point when we first have y > 2n/k, we can view
the change in y resulting from productive reaction events as a random walk,
starting at n/k, with success (a decrease in y, following reaction (1)) probability
p satisfying p ≥ 1 − 2/k.

It follows from Lemma 1 that reaching a configuration where y > 2n/k (which
entails an excess of n/k failures to successes) is less than (2/(k − 2))n/k.

Corollary 2. In stage s of phase 2, y increases to n/2s−1 with probability less
than (2/(2s − 2))n/2s

.

Corollary 3. In phase 3, y increases to 2eγ lg n with probability less than
(2eγ lg n/(n − 2eγ lg n))eγ lg n.

Lemma 6. At any point in the computation, if x−y = Δ ≤ n/2 then, assuming
that x−y never reduces to Δ/2, the probability that x−y increases to 2Δ within
at most λn productive reaction events is at least 1 − exp(− (λ−2)Δ2

λ(2n+Δ) ).

Proof. We view the choice of productive reaction as an independent trial with
success corresponding to reaction (1), and failure to reaction (2). We start with
x−y = Δ and run until either x−y = Δ/2 or we have completed λn productive
reactions. By Lemma 2, the probability that we complete λn productive reactions
with fewer than λn/2+Δ/2 successes, which is necessary under our assumptions
if we finish with x − y < 2Δ, is at most exp(− (λ−2)Δ2

λ(2n+Δ) ).

Corollary 4. In stage t of phase 1, assuming that x − y never reduces to
2t−1

√
n lg n, the probability that x − y increases to 2t+1

√
n lg n within at most

λn productive reaction events is at least 1 − exp(− (λ−2)22t lg n
3λ ).
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Lemma 7. At any point in the computation, if y = n/k then, assuming that
y never increases to 2n/k, the probability that y decreases to n/k − r within
f(n) > 2r productive reaction events is at least 1 − exp(−Θ(f(n)).

Proof. We view the choice of productive reaction as an independent trial with
success corresponding to reaction (1), and failure to reaction (2). We start with
y = n/k and run until either y = n/k − r or we have completed f(n) productive
reaction events. (We assume, by Lemma 5, that y < 2n/k, and so p > 1 − 2/k,
throughout.)

By Lemma 2, the probability that we complete f(n) productive reactions with
fewer than (f(n) + r)/2 successes, which is necessary under our assumptions if
we finish with y > n

k−r , is at most

exp(−f(n)(k − 2)/2 − (f(n) + r)/2]2

2f(n)(k − 2)/k
),

which is at most exp(−Θ(f(n)), when f(n) > 2r.

Corollary 5. In stage s of phase 2, assuming that y never increases to n/2s−1,
y decreases to n/2s+1, ending stage s, in at most λn/2s productive reaction
events, with probability at least 1 − exp(−Θ(λn/2s)).

Corollary 6. In phase 3, assuming that y never increases to 2eγ lg n, y
decreases to 0, ending phase 3 (and the entire computation), in at most λ lg n
productive reaction events, with probability at least 1 − exp(−Θ(λ lg n)).

The following is an immediate consequence of Lemma 2:

Lemma 8. If during some sequence of m interaction events the total probability
of all productive reactions is at least p then the probability that the sequence gives
rise to fewer than mp/2 productive reaction events is no more than exp(−mp/8).

Corollary 7.

(i) The λn productive reaction events of each stage of phase 1 occur within
(8/3)dγλn interaction events, with probability at least 1 − exp(−λn/4).

(ii) The λ(n/2s) productive reaction events of stage s of phase 2 occur within
(16/3)λn interaction events, with probability at least 1 − exp(−λn/2s+2).

(iii) The λ lg n productive reaction events of phase 3 occur within (8/3)λn lg n
interaction events, with probability at least 1 − exp(λ lg n/4).

Proof. It suffices to observe the following lower bounds on the probability that
an interaction event triggers reaction (1) in individual phases/stages:

(i) in phase 1, x > y ≥ n/dγ , so this probability is greater than 3/(4dγ);
(ii) in stage s of phase 2, x > n(1 − 2s−1) and y ≥ n/2s+1 ≥ (lg n)/2, so this

probability is at least 3/2s+3;
(iii) in phase 3, x ≥ n − lg n and y ≥ 1, so this probability is at least 3/(4n).
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Finally, we prove Theorem 1 using the pieces proved until now.

Proof (of Theorem 1).

(i) [Correctness]. It follows directly from Corollaries 1 and 4 (respectively, 2 and
5, 3 and 6) that phase 1 (respectively phase 2, phase 3) completes in the
intended fashion, within at most λn lg n (respectively, λn, λ lg n) productive
reaction events, with probability at least 1− exp(−Θ(cγ lg n)) (respectively,
1 − exp(−Θ(λn/dγ)), 1 − exp(−Θ(λ lg n))).

(ii) [Efficiency]. It is immediate from Corollary 7 that the required number of
productive reaction events in phases 1, 2 and 3 occur within Θ(λn lg n)
interaction events, with probability at least 1 − exp(−Θ(λ lg n)).

4 Approximate Majority Using Bi-molecular Reactions

Here we show correctness and efficiency of the Double-B and Single-B CRNs,
essentially by showing that both CRNs respect the more abstract tri-molecular
CRN of the previous section.

4.1 The Double-B CRN

Theorem 2. For any constant γ > 0, there exists a constant cγ such that,
provided (i) the initial molecular count of X and Y together is at least n/2, and
(ii) the count of X exceeds that of Y by at least cγ

√
n lg n, a computation of

Double-B reaches a consensus of X-majority, with probability at least 1 − n−γ ,
in at most cγn lg n interaction events.

Comparing with Theorem 1, it becomes clear that the role of the molecule
B is simply to facilitate a bimolecular emulation of the tri-molecular CRN. The
sense in which Double-B can be seen as emulating the earlier tri-molecular CRN
is that we can analyse its behaviour using exactly the same three phases (and
the same sub-phase stages) that we used in our tri-molecular analysis.

Correctness of the Emulation. We measure progress throughout in terms
of the change in the molecular counts x̂, defined as x + b/2, and ŷ, defined as
y + b/2, noting that reaction (0’) leaves these counts unchanged and reactions
(1’) and (2’) change x̂ and ŷ at exactly half the rate that the corresponding
tri-molecular reactions (1) and (2) change x and y. In each phase, we note that
the relative probability of reaction (1’) to that of (2’), equals or exceeds the
relative probability of reaction (1) to that of (2) in the tri-molecular CRN, and
we argue that the total probability of reactions (1’) and (2’) is at least some
constant fraction of the total probability of reactions (1) and (2). This allows us
to conclude that Double-B reaches the same conclusion as the tri-molecular CRN,
using at most twice as many productive reaction events as the tri-molecular CRN
to complete each corresponding phase/stage.
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Efficiency of the Emulation. We argue that the productive reaction events
needed to carry out the emulation of the tri-molecular CRN occur within a num-
ber of interaction events that is at most some constant multiple of the number
of interaction events needed to realize the required productive reaction events in
the tri-molecular CRN.

This argument is made most simply by setting out bounds on b, the mole-
cular count of molecule B that, with high probability, hold after the first Θ(n)
interaction events, and continue to hold thereafter.

Our bounds are summarized in Lemma 9 below. The proof, a straightforward
application of Chernoff bounds, is in the Appendix. In the interests of simplicity,
the bounds we provide here are not the tightest possible, but are sufficient for
us to conclude immediately that the probability of reactions (1’) and (2’) of
Double-B are each at most a constant factor smaller than those of reactions (1)
and (2) in the corresponding phases/stages of the tri-molecular CRN.

Lemma 9. Let I be any interval of n/64 interaction events of a computation of
Double-B. Let x0, xe, xmin and xmax, the initial, final, minimum and maximum
values of x in the interval I (similarly, for y and b). Then for any constant
γ > 0, there exists a constant fγ such that, if y0 ≥ fγ lg n, the following bounds
hold with probability at least 1 − 1/nγ :

(a) [Upper bounds] If b0 ≤ 15n/32 then be ≤ 15n/32 and bmax ≤ n/2.
(b) [Lower bounds] Even if b0 = 0, be ≥ ye/265. Furthermore, if b0 ≥ y0/265

then bmin ≥ ymax/292.

The efficiency of Double-B follows similarly from the earlier analysis of the
tri-molecular CRN presented in Corollary 7. There we observed that it sufficed to
bound from below the probability of reaction (1). For the corresponding analysis
of Double-B, we observe that in all corresponding phases/stages the probability
of reaction (1’) is up to a constant factor the same as that of reaction (1). This
follows immediately from the upper bound (n/2) on b, which ensures that the
molecular count of X is at least n/4, and the lower bound (y/292) on b, which
ensures that the molecular count of B is at least a constant fraction of that of
Y . The constant eγ that is used in demarking the end of phase 2 and the start
of phase 3 will now depend on the constant fγ of Lemma 9, in order to ensure
that this lower bound on b holds throughout phase 2 with high probability.

4.2 The Single-B CRN

Here, we study the behaviour of Single-B, originally proposed by Angluin et al. [10]
and shown in Fig. 1(c):

Theorem 3. For any constant γ > 0, there exists a constant cγ > γ such that,
provided (i) the initial molecular count of X and Y together is at least n/2, and
(ii) the count of X exceeds that of Y by at least cγ

√
n lg n, a computation of

the Single-B CRN reaches a consensus of X-majority, with probability at least
1 − n−γ , in cγn log n interactions.
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Comparing the Double-B and Single-B CRNs, we notice that the only difference
is that reaction (0’) is replaced by probabilistic reactions (0’x) and (0’y) which
are equally likely and thus on average, have no effect on x̂ and ŷ. An advantage of
Single-B is that B-majority consensus is never reached1. The analysis of Single-B
proceeds in phases that are essentially the same as for Double-B, except for the
need to account for drift in the gap x̂ − ŷ caused by fluctuations in the number
of (0’x) vs (0’y) reactions. For example, this drift may cause x̂− ŷ to initially dip
lower when Single-B executes than it does when Double-B executes. To address
this, we show in Lemma 10 that, despite the drift, the gap will remain at least
(cγ − γ)/2

√
n lg n with all but exponentially small probability, and accordingly

we change the definition of phase 1 to be:

phase 1. (cγ −γ)/2
√

n lg n < x̂− ŷ ≤ n(dγ −2)/dγ . It ends as soon as ŷ ≤ n/dγ .

Further minor adjustments, described in Appendix A.3, do not require any fur-
ther changes to the definitions of phases and stages.

Lemma 10. Starting from x̂ − ŷ ≥ cγ

√
n lg n, where cγ > γ, x̂ − ŷ reduces to

(cγ − γ)
√

n log n within n reaction events with probability less than 1/n(γ2).

Proof. Starting from x̂− ŷ ≥ cγ

√
n lg n, the probability that x̂− ŷ increases is at

least as much as the probability that it decreases. As a worst case scenario, we can
view the changes in x̂− ŷ as an unbiased random walk which starts at cγ

√
n lg n.

Let Q1, . . . , Qr denote independent random variables where 0 ≤ r ≤ n taking
values in set Ar = [1,−1]. The Qr satisfy the conditions of Azuma’s inequal-
ity (Lemma 3) with cr = 2, the expected change

√
n (assuming an unbiased

random walk), and function Y = f(Q1, . . . , Qn) = max1≤r≤n |∑r
i=1 Qi| which

gives us the maximum translation distance over n reaction events. Now, using
Azuma’s inequality, we can infer that P[|Y − √

n| ≥ γ
√

n lg n] ≤ 1/nγ2
. Thus

in our unbiased random walk the maximum distance from the origin is at most
γ
√

n lg n with high probability.

5 Empirical Results

Figure 2 illustrates the progress of computations of each of our CRNs in each
of the three phases, on a single run. In the first phase, the gap x − y (red
line) increases steadily. Once the gap is sufficiently high, phase 2 starts and the
count of y for the tri-molecular CRN, and ŷ for the bi-molecular CRNs, decrease
steadily. In the last phase, as the counts of y and ŷ are small, there is more
noise in the evolution of y and ŷ, but they do reach 0. Figure 3 compares time
(efficiency) and success rates (probability of correctness) of the three CRNs to
reach consensus, as a function of the log of the initial count n of molecules, or
the log of the volume. The plots show that time grows linearly with the log of the
1 We note that although the B-majority consensus is reachable in the Double-B CRN,

the probability of such an event is easily shown to be very small (i.e., nΩ(− lg(n))).
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Fig. 2. The gap x − y (red line) and minority (count y for tri-molecular CRN and ŷ
for bi-molecular CRNs) (blue line), as a function of time, of sample runs of the (a)
tri-molecular, (b) Double-B, and (c) Single-B CRNs. The initial count is n = 106,
the initial gap x − y is 2

√
n lg n and parameters cγ , dγ and eγ are set to 2, 8, and 2

respectively. The vertical dotted lines demark transitions between phases 1, 2 and 3.
(Color figure online)

Fig. 3. Comparison of the time (left) and success rate, i.e., probability of correctness
(right) of Single-B, Double-B and the tri-molecular CRN for Approximate Majority.
Each point in the plot is an average over 5,000 trials. The initial configuration has no
B’s and the imbalance between X’s and Y ’s is

√
n ln n. Plots show confidence intervals

at 99% confidence level.

molecular count, and the success rate is close to 1 for large n. A fit to the data
of that figure shows that the expected times of the tri-molecular, Double-B and
Single-B CRNs grow as 3.4 ln n, 2.4 ln n, and 4.0 ln n respectively. For n ≥ 100,
the tri-molecular CRN has at least 99% probability of correctness and the bi-
molecular CRNs have at least 97% probability of correctness. These probabilities
all tend to 1 as n gets larger.

6 Discussion

As noted earlier, Doerr et al. [11] analyse what they call the median rule con-
sensus protocol, which bears strong resemblance to our tri-molecular CRN for
approximate majority. The median rule protocol assumes rounds of n concurrent
interactions, with each of n participating processes initiating one interaction that
involves two additional processes chosen uniformly at random. The result of each
such round is very similar to what is accomplished in one time unit of the CRN
or PP models, in which a sequence of n random interactions occur. Accordingly
there are strong similarities between our analysis and theirs. For example, our
analysis is staged in a way that allows us to assume that interactions within
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each stage are driven by essentially the same population sizes. Note however
that in our CRN model, unlike the Doerr et al. model, there may be molecules
that participate in no interaction within a given unit of time. This difference
becomes evident in our end game analysis, which requires Θ(n log n) time units
to ensure that, with high probability, the few remaining Y interact and thus are
converted to X’s. In contrast, the end game is completed in O(1) rounds with
high probability in the Doerr et al. model. More significant differences between
the Doerr et al. model versus the CRN and PP models arise when the initial gap
x−y is small, a case that we do not analyze and that appears to be significantly
harder to handle in the CRN model.

There are several ways in which we can extend our results. Angluin et al. [10]
analyze settings in which (i) some agents (molecules) have Byzantine, i.e., adver-
sarial, behaviour upon interactions with others, (ii) some molecules are “acti-
vated” (become eligible for reaction) by epidemic spread of signal, and (iii) there
are three or more species present initially and the goal is to reach consensus on
the most populous species (multi-valued consensus). We believe that our tech-
niques can be generalized to these settings.

Other generalizations are motivated by practicalities of molecular systems.
When a CRN is “compiled” to a DNA strand displacement system, it may be that
the DNA strand displacement reaction rate constants closely approximate, but
are not exactly equal to, the CRN reaction rates. It could be helpful to describe
how the initial gap needed to guarantee correct and efficient computations for
Approximate Majority with high probability depends on the uncertainty in the
rate constants. Also, our techniques may be useful for proving correctness of
the Chen et al. strand displacement implementation of Double-B [12], which
involves so-called fuel species and waste products in addition to molecules that
represent the species of the CRN. Third, it could be useful to analyze variants
of the CRNs analyzed here, or other CRNs, in which some or all of the reactions
are reversible. For example, if the blank-producing reaction (0’) of Double-B
is made reversible, the modified CRN is still both correct and efficient, while
having the additional nice property that a stable state with neither X-consensus
nor Y -consensus cannot be reached, even with very low probability. On the other
hand, some caution needs to be applied when reversing reactions. For instance,
making reactions (0’x) and (0’y) of Single-B reversible can lead to a system that
fluctuates around a state with an equal number of Xs and Y s, and some ratio
of Bs. This would happen when the rate of reversed reactions (0’x) and (0’y) is
greater or equal to the rate of reactions (1’) and (2’). Again, we believe that our
analyses can easily generalize to these scenarios.

A Appendix

In this appendix we (1) relate our CRN model to that of Cook et al. [3], (2) prove
our lower and upper bounds on the number of B molecules in the Double-B CRN,
and (3) prove the lemmas which make the analysis of Single-B parallel to that of
the tri-molecular CRN.
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A.1 Relationship Between Our CRN Model and that of Cook et al.

Other CRN models define reaction probabilities and computation time somewhat
differently than we do, but these differences can easily be reconciled. For example,
in the model of Cook et al. [3], if k′

r is the rate constant associated with reaction
r = (s, t) of order o and the system is in configuration c = (x1, x2, . . . , xm), then
the propensity, or rate, of r is

ρr(c) = k′
r[

m∏

i=1

(xi!/(xi − si)!)]/vo−1.

If ρtot(c) =
∑

r ρr(c) for all reactions r of order o, then the probability that
a reaction event is reaction r is ρr(c)/ρtot(c), and the expected time until a
reaction event occurs is 1/ρtot(c). (In this model, reaction rate constants can be
greater than 1, and may depend not only on the number of reactants of each
species, but also on other properties of a species such as its shape, capturing
the fact that the likelihood of different types of interactions may not all be the
same.)

If in our model we set kr = k′
r

∏m
i=1 si! for each productive reaction, and nor-

malize by
∑

r kr if necessary to ensure that
∑

r∈R(s) kr ≤ 1 (adjusting the under-
lying time unit accordingly), a straightforward calculation shows that, when in a
given configuration c, the probability that a reaction event is a given reaction r
is the same in our model and that of Cook et al.2 See the example of Fig. 4. Also,

2 Here is the calculation for the probability conversion.

ρr(c) = k′
r.[

m∏

i=1

(xi!/(xi − si)!)]/vo−1

= k′
r.[

m∏

i=1

si!].[
m∏

i=1

(
xi

si

)
]/vo−1

= [

(
n

o

)
/vo−1]k′

r[
m∏

i=1

si!].[
m∏

i=1

(
xi

si

)
]/

(
n

o

)

= [

(
n

o

)
/vo−1]kr[

m∏

i=1

(
xi

si

)
]/

(
n

o

)
,

where

kr = [k′
r[

m∏

i=1

si!]. (1)

We can interpret the last of these expressions for ρr(c) as the product of three terms.
The first term, namely

(
n
o

)
/vo−1, corresponds to the (normalized) average rate of an

interaction of order o. The last term, namely [
∏m

i=1

(
xi
si

)
]/
(

n
o

)
, is the probability that

the reaction of order o has exactly the reactants of r. The middle term kr depends
on the si’s, but could also model situations where different types of interactions have
different rates, e.g., if some molecular species are larger than others. Normalizing the
kr’s by

∑
kr yields rate constants for our model.
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Fig. 4. (a) A CRN specified with respect to the Cook et al. model. The reaction rates
when the system is in configuration (3, 3) are k′

r1 = 18/v2 and k′
r2 = 12/v2. The

reaction probabilities are ρr1((3, 3)) = 3/5 and ρr2((3, 3)) = 2/5. (b) The mapping
of the CRN of part (a) to our model by changing the rate constants (using Eq. 1 of
footnote 2) and normalizing by

∑
kr. The probability that a reaction event is r1 is

(18/14)/(30/14) = 18/30, and the probability of r2 is 12/30. Thus, reaction probabili-
ties are preserved exactly.

the expected time until the next reaction event differs between the models by a
constant factor that is independent of c. Conversely, to convert from our model
to that of Cook et al., divide our rate constant kr by [

∏m
i=1 si!] (and multiply

all rate constants by the same constant factor in order to adjust time units as
needed).

A.2 Bounds on b, the Molecular Count of B, in the Double-B CRN

Here we provide a proof of Lemma 9, omitted from Sect. 3. We note that the prob-
ability that an interaction event in the interval I triggers reaction (0’) (respec-
tively, reaction (1’), reaction (2’)) is just xy/

(
n
2

)
(respectively, xb/

(
n
2

)
, yb/

(
n
2

)
).

In the following, we simplify calculations by replacing
(
n
2

)
with n2/2.

Upper Bounds on b. Note that reaction (0’) has probability at most
(n/2)(n/2)/(n2/2) = 1/2, so at most n/64 new B molecules are produced by
reaction (0’) over interval I, in expectation, and at most n/32 are produced,
with probability 1 − exp(Θ(n)). Thus, bmax ≤ bmin + n/32.

Given this, we can clearly assume that bmin ≥ 14n/32, since otherwise bmax

(and, of course be) is less than 15n/32. Thus x + y ≤ 18n/32 throughout the
interval, and so reaction (0’) has probability at most (18n/64)2/(n2/2) which
is less than 1/6. Hence fewer than 2(n/64)/6 = n/192 new B molecules are
produced by reaction (0’) over interval I, in expectation, and fewer than n/175
are produced, with probability 1− exp(Θ(n)) (here we use a Chernoff upper tail
bound). Assuming b0 ≤ 15n/32, it follows that bmax < b0 +n/175 < n/2, and so
x + y > n/2 throughout interval I.

It follows that the total probability of reactions (1’) and (2’) is at least
(n/2)(14n/32)/(n2/2) = 14/32 throughout interval I, which means that at least
(14/32)(n/64) > n/148 B molecules are consumed by these reactions, in expec-
tation, and at least n/160 are consumed, with probability 1 − exp(Θ(n)), over
the course of interval I (here we use a Chernoff lower tail bound). Thus, with
probability 1 − exp(Θ(n)), the net change in b is less than n/175 − n/160 < 0,
and so be < b0 ≤ 15n/32. We note that this upper bound holds with probability
1 − exp(−Θ(n)), which is stronger than in the statement of the lemma.
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Lower Bounds on b. Note that x − y is not changed by reaction (0’), and by
Lemma 4, it never reaches (x0−y0)/2 through reactions (1’) and (2’). Therefore,
bmax ≤ n/2, it follows that x+ y ≥ n/2 and hence x ≥ n/4. We will use this fact
throughout.

We first show that even if b0 = 0, be ≥ ye/292. Since bmax ≤ n/2 it follows
that reaction (2’) has probability at most ymaxbmax/(n2/2) ≤ ymax/n. Thus
reaction (2’) increases y from its minimum value ymin by at most ymax/64, in
expectation, and by at most ymax/32, with high probability, over the course of
interval I. Here, the high probability follows from the fact that ymax ≥ y0 ≥
fγ lg n = Ω(log n), and application of a Chernoff tail bound. Thus, ye ≤ ymax ≤
ymin + ymax/32 and so

ymin ≥ (31/32)ymax = Ω(log n). (*)

Now suppose that
bmax > (1/16)ymin. (**)

Thus we also have that bmax = Ω(log n), by (*). Since x+y ≤ n, reactions (1’)
and (2’) together have probability at most nbmax/(n2/2), and so these reactions
reduce b from its maximum value bmax by at most bmax/32, in expectation, and
by at most bmax/16, with high probability, over the course of interval I. Here,
the high probability follows from the fact that bmax = Ω(log n), and application
of a Chernoff tail bound. Thus, with high probability,

be ≥ (15/16)bmax. (***)

Then,

be ≥ (15/16)bmax by (***)
> (15/16)(1/16)ymin by (**)
≥ (15/16)(1/16)(31/32)ymax by (*)
> ymax/18 ≥ ye/18.

On the other hand, suppose that

bmax ≤ (1/16)ymin. (****)

Since reaction (0’) has probability at least xminymin/(n2/2) ≥ ymin/(2n), reac-
tion (0’) increases b by at least ymin/64, in expectation, and at least ymin/128,
with high probability, over the course of interval I. Since reactions (1’) and
(2’) together have probability at most nbmax/(n2/2) ≤ n(ymin/16)/(n2/2) by
(****), we know that together they decrease b by at most ymin/512, in expec-
tation, and at most ymin/256, with high probability, over the course of interval
I. Here, the high probability follows from the fact that ymin = Ω(log n) by (*),
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and application of a Chernoff tail bound. Thus the net change in b is at least
ymin/128 − ymin/256, with high probability. Also,

ymin/128 − ymin/256 = ymin/256
≥ (31/32)(1/256)ymax by (*)
> ymax/265.

So, be > ymax/265 ≥ ye/265, even if b0 = 0.
Finally, assume that b0 ≥ y0/265. Let b′

max be the maximum value of b
between b0 and bmin in the course of interval I. By an argument similar to the
one used for equation (***), with high probability, we get

bmin ≥ (15/16)b′
max ≥ (15/16)b0 (*****)

Therefore, we have

bmin ≥ (15/16)b0 by (*****)
≥ (15/16)y0/265
≥ (15/16)ymin/265
> (15/16)(31/32)ymax/265. by (*)

and so b > y/292 throughout interval I.

A.3 Adjustments Required for the Proof of Single-B

Here we describe additional adjustments to the proof of correctness and efficiency
of the tri-molecular CRN that are needed to account for changes to random
variables x̂ and ŷ due to reactions (0’x) and (0’y). Note that reactions (0’x)
and (1’) increase x̂ by 1/2 and decrease ŷ by 1/2, while reactions (0’y) and (2’)
decrease x̂ by 1/2 and increase ŷ by 1/2.

First, in the proof of the upper (n/2) and lower (y/292) bounds on b in
Lemma 9, we simply adjust the probabilities of a change in x̂ or ŷ to account
for reactions (0’x) and (0’y). (We remark that we are able to provide tighter
lower and upper bounds on b with respect to variable y, i.e., y

2α ≤ b ≤ 2αy,
where α ≥ 20, and b = Ω(log n), for the Single-B CRN - details omitted.) Then,
utilizing the lower bound on b, Lemma 11 shows that the ratio of total probability
of reactions (0’x) and (1’) to that of reactions (0’y) and (2’) is lower than the
ratio of the probability of reaction (1) to that of reaction (2) in the tri-molecular
CRN by at most a small constant. Therefore, the analysis of phase 1 of Single-B
parallels that of the tri-molecular CRN.

Lemma 11. At any point in the computations, assuming that x̂− ŷ ≥ Δ/2, the
probability that x̂ − ŷ increases is at least 1/2 + Θ(Δ/n).
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Proof. Let p denote the probability of a success (x̂ − ŷ increases) and q denote
the probability of a failure (x̂− ŷ increases). So, given that x ≤ n, and y/292 < b,
we have that

(1)
q

p
=

1/2xy + yb

1/2xy + xb
≤ 1 − (x̂ − ŷ)b

1/2xy + xb
≤ 1 − (Δ/2)b

x(1/2y + b)
≤ 1 − Θ(Δ/n),

(2) q + p = 1.

It follows from Eqs. 1 and 2 that p ≥ 1/2 + Θ(Δ/4n).

Similarly, we can revise Lemmas 5 and 7 (and their related corollaries) to
make the analysis of phases 2 and 3 of Single-B also parallel to those of the
tri-molecular CRN–see Lemmas 12 and 13.

Lemma 12. At any point in the computation, if ŷ = n/k then the probability
that ŷ > 2n/k at some subsequent point in the computation is less than (1 −
Θ(1))n/k.

Proof. Let p denote the probability of a success (ŷ decreases) and q denote the
probability of a failure ( ŷ increases). So, assuming that x ≤ n, x̂− ŷ ≥ n−n/4k,
and y < 292b, we can compute the ratio q/p on a reaction event as follows.

q

p
=

1/2xy + yb

1/2xy + xb
≤ 1 − (x̂ − ŷ)b

1/2xy + xb
≤ 1 − (n − 4n/k)b

n(1/2y + b)
≤ 1 − Θ(1).

By Lemma 1, we conclude that reaching a configuration where y > 2n/k (which
entails an excess of n/k failures to successes) is less than (1 − Θ(1))n/k.

Lemma 13. At any point in the computation, if ŷ = n/k then, assuming that
ŷ never increases to 2n/k, the probability that ŷ decreases to n/k − r within
f(n) > Θ(r) reaction events is at least 1 − exp(−Θ(f(n)).

Proof. The proof is completely parallel to the proof of Lemma 7. We only need to
compute the probability of a success (ŷ decrease). By Lemma 12, q/p = 1−Θ(1).
So, considering p + q = 1, it’s straightforward to obtain p ≥ 1

2 + Θ(1).

Finally, we employ Lemma 8 to complete the proof of efficiency. Using the
upper bound on b, which confirms that x ≥ n/4 and the lower bound on b, which
confirms b ≥ y/292, we can conclude that the total probability of reactions (0’x),
(0’y), (1’), and (2’) is at least some constant fraction of the total probability
of reactions (1) and (2) in tri-molecular CRN. Therefore, the total number of
interactions in Single-B is at most some constant multiple times the required
number of interactions in the tri-molecular CRN.
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Abstract. How smart can a micron-sized bag of chemicals be? How can
an artificial or real cell make inferences about its environment? From
which kinds of probability distributions can chemical reaction networks
sample? We begin tackling these questions by showing three ways in
which a stochastic chemical reaction network can implement a Boltz-
mann machine, a stochastic neural network model that can generate a
wide range of probability distributions and compute conditional prob-
abilities. The resulting models, and the associated theorems, provide a
road map for constructing chemical reaction networks that exploit their
native stochasticity as a computational resource. Finally, to show the
potential of our models, we simulate a chemical Boltzmann machine to
classify and generate MNIST digits in-silico.

1 Introduction

To carry out complex tasks such as finding and exploiting food sources, avoiding
toxins and predators, and transitioning through critical life-cycle stages, single-
celled organisms and future cell-like artificial systems must make sensible deci-
sions based on information about their environment [1,2]. The small volumes of
cells makes this enterprise inherently probabilistic: environmental signals and the
biochemical networks within the cell are noisy, due to the stochasticity inherent
in the interactions of small, diffusing molecules [3–5]. The small volumes of cells
also raises questions not only about how stochasticity influences circuit function,
but also about how much computational sophistication can be packed into the
limited available space.

Perhaps surprisingly, neural network models provide an attractive architec-
ture for the types of computation, inference, and information processing that cells
must do. Neural networks can perform deterministic computation using circuits
that are smaller and faster than boolean circuits composed of AND, OR, and
NOT gates [6], can robustly perform tasks such as associative recall [7], and can
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Fig. 1. In a micron-scale environment, molecular counts are low and a real (or syn-
thetic) cell will have to respond to internal and environmental cues. Probabilistic infer-
ence using chemical Boltzmann machines provides a framework for how this may be
achieved.

naturally perform Bayesian inference [8]. Furthermore, the structure of biochemi-
cal networks, such as signal transduction cascades [1,9,10] and genetic regulatory
networks [11–15], can map surprisingly well onto neural network architectures.
Chemical implementations of neural networks and related machine learning
models have also been proposed [16–20], and limited examples demonstrated [21–
24], for synthetic biochemical systems.

Most previous work on biochemical neural networks and biochemical infer-
ence invoked models based on continuous concentrations of species representing
neural activities. Such models are limited in their ability to address questions of
biochemical computation in small volumes, where discrete stochastic chemical
reaction network models must be used to account for the low molecular counts.
The nature of biochemical computation changes qualitatively in this context. In
particular, stochasticity has been widely studied in genetic regulatory networks
[25], signaling cascades [26], population level bet hedging in bacteria [27], and
other areas [28,29] – where the stochasticity is usually seen as a challenge limit-
ing correct function, but is occasionally also viewed as a useful resource [30]. Our
work falls squarely in the latter camp: we attempt to exploit the intrinsic stochas-
tic fluctuations of a formal chemical reaction network (CRN) to build natively
stochastic samplers by implementing a stochastic neural network. This links to
efforts to build natively stochastic hardware for Bayesian inference [31,32] and to
the substantial literature attempting to model, and find evidence for, stochastic
neural systems capable of Bayesian inference [33,34].

Specifically, we propose CRNs that implement Boltzmann machines (BMs), a
flexible class of Markov random fields capable of generating diverse distributions
and for which conditioning on data has straightforward physical interpretations
[8,35]. BMs are an established model of probabilistic neural networks due to their
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analytic tractability and connections to spin systems in statistical physics [36]
and Hopfield networks in computer science [7]. These networks have been studied
extensively and used in a wide range of applications including image classification
[37] and video generation [38]. We prove that CRNs can implement BMs and that
this is possible using detailed balanced CRNs. Moreover, we show that many of
the attractive features of BMs can be applied to our CRN constructions such as
inference, a straightforward learning rule and scalability to real-world data sets.
We thereby introduce the idea of a chemical Boltzmann machine (CBM), a chem-
ical system capable of exactly or approximately performing inference using a sto-
chastically sampled high-dimensional state space, and explore some of its possible
forms.

2 Relevant Background

2.1 Boltzmann Machines (BMs)

Boltzmann machines are a class of binary stochastic neural networks, meaning
that each node randomly switches between the values 0 and 1 according to a
specified distribution. They are widely used for unsupervised machine learning
because they can compactly represent and manipulate high-dimensional prob-
ability distributions. Boltzmann machines provide a flexible machine learning
architecture because, as generative models, they can be used for a diverse set of
tasks including data classification, data generation, and data reconstruction.
Additionally, the simplicity of the model makes them analytically tractable.
The use of hidden units (described below) allows Boltzmann machines to repre-
sent high order correlations in data. Together, these features make Boltzmann
machines an excellent starting point for implementing stochastic chemical com-
puters.

Fix a positive integer N ∈ Z>0. An N -node Boltzmann machine (BM) is
specified by a quadratic energy function E : {0, 1}N → R

E(x1, x2, . . . , xN ) = −
∑

i<j

wijxixj −
∑

i

θixi (1)

where θi ∈ R is the bias of node i, and wij = wji ∈ R is the weight of the
unordered pair (i, j) of nodes, with wii = 0. One may specify a BM architec-
ture, or graph topology, by choosing additional weights wij that are to be set to
0. In this paper, we will use N (i) = {j s.t. wij �= 0} to denote the neighborhood
of i. From a physical point of view, we are implicitly using temperature units kBT
for energy, which we will continue to do throughout this paper. A BM describes
a distribution P (x) over state vectors x = (x1, . . . , xN ) ∈ {0, 1}N ,

P (x) =
1
Z

e−E(x) with Z =
∑

x′∈{0,1}N

e−E(x′). (2)

Nodes of a BM are often partitioned into sets V and H of visible and
hidden, respectively. Nodes in V represent data, and auxiliary nodes in H allow
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more complex distributions to be represented in the visible nodes. An imple-
mentation of a BM is a stationary stochastic process that samples from this
distribution in the steady state. A BM can be implemented in silico using the
Gibbs sampling algorithm [39], which induces a discrete time Markov chain
(DTMC) on the state space {0, 1}N in such a way that the stationary distribu-
tion of this Markov chain corresponds to the distribution P (x). In each round,
one node i ∈ {1, . . . , N} is chosen at random for update. For any two adjacent
configurations x and x′ which differ only at node i—i.e., xi = 1−x′

i and xj = x′
j

for all j �= i—we set the transition probabilities Tx→x′ of the DTMC so that

Tx′→x

Tx→x′
=

P (x)
P (x′)

=
e−E(x)

e−E(x′) = e(θi+
∑

j∈N(i) wijxj)(xi−x′
i). (3)

Any function Tx→x′ can be chosen so long as (3) is satisfied. One common choice
is Tx→x′ = 1/(N(1 + eE(x′)−E(x))), where the factor 1/N represents the proba-
bility of choosing node i.

A Boltzmann machine is also an inference engine. One can do inference on
P (x) by conditioning on the values of a subset of the nodes. Suppose nonempty
node subsets U and Y form a partition of the nodes {1, 2, . . . , N}, and fix u ∈
{0, 1}U . To obtain samples from P (y | u) where y ∈ {0, 1}Y , one clamps every
node i ∈ U to the state ui while running Gibbs sampling, i.e., one does not allow
these nodes to update. Clamping nodes to an input state is the same as specifying
the input data for a statistical model. Steady state samples y ∈ {0, 1}Y of this
procedure are draws from the distribution P (y | u).

Boltzmann machines can be used to learn a generative model from unlabeled
data. After specifying the architecture, one then proceeds to find the weights,
wij , and biases, θi, that maximize the likelihood of the observed data according
to the model, using gradient descent from a random initial parameterization.
This reduces to a very simple a two-phase Hebbian learning rule where weights
on active edges are strengthened in a “wake phase” during which the network is
clamped to observed data and are weakened in a “sleep phase” during which the
network runs free [8,35]. Given a target distribution Q(x), this gradient descent
corresponds to calculating the gradient of the Kullback-Leibler divergence from
P to Q, DKL(Q ||P ) =

∑
x Q(x) log Q(x)

P (x) , with respect to the parameters θi and
wij :

dθi

dt
= −∂DKL

∂θi
= 〈xi〉Q − 〈xi〉P and

dwij

dt
= −∂DKL

∂wij
= 〈xixj〉Q − 〈xixj〉P (4)

where 〈·〉P and 〈·〉Q denote expected values with respect to the distributions P
and Q respectively. When hidden units are present, the distribution Q (which
is defined on visible units only) is extended to hidden units based on clamping
the visible units according to Q and using the conditional distribution P (y|u) to
determine the hidden units.
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2.2 Chemical Reaction Networks (CRNs)

Fix a finite set S = (S1, S2, . . . , SM ) of M species. A reaction r is a formal
chemical equation

M∑

i=1

μi
rSi →

M∑

i=1

νi
rSi, (5)

abbreviated as r = μr → νr where μr, νr ∈ N
S are the stoichiometric coefficient

vectors for the reactant and product species respectively, and N = Z≥0. A reac-
tion rate constant, kr ∈ R>0, is associated with each reaction. In this paper,
we define a chemical reaction network (CRN) as a triple C = (S,R, k) where
S is a finite set of species, and R is a set of reactions, and k is the associated
set of reaction rate constants.

We will denote chemical species by capital letters, and their counts by lower
case letters; e.g., s1 denotes the number of species S1. Thus the state of a stochas-
tic CRN is described by a vector on a discrete lattice, s = (s1, s2 . . . sM ) ∈ N

S .
The dynamics of a stochastic CRN are as follows [40]. The probability that a
given reaction occurs per unit time, called its propensity, is given by

ρr(s) = kr

M∏

i=1

si!
(si − μi

r)!
if si ≥ μi

r and 0 otherwise. (6)

Each time a reaction fires, state s changes to state s + Δr, where Δr = νr − μr

is called the reaction vector, and the propensity of each reaction may change.
Viewed from a state space perspective, stochastic CRNs are continuous time
Markov chains (CTMCs) with transition rates

Rs→s′ =
∑

r s.t. s′=s+Δr

ρr(s) (7)

and thus their dynamics follow

dP (s, t)
dt

=
∑

s′ �=s

Rs′→sP (s′, t) − Rs→s′P (s, t), (8)

where P (s, t) is the probability of a state with counts s at time t. Equivalently,
they are governed by the chemical master equation,

dP (s, t)
dt

=
∑

r∈R
P (s − Δr, t)ρr(s − Δr) − P (s, t)ρr(s). (9)

A stationary distribution π(s) may be found by solving dP (s,t)
dt = 0 simultane-

ously for all s; in general, it need not be unique, and even may not exist. Given
an initial state s0, π(s) = P (s,∞) is unique if it exists. For that initial state,
the reachability class Ωs0 ⊆ N

M is the maximal subset of the integer lattice
accessible to the CRN via some sequence of reactions in R. We will specify a
CRN and a reachability class given an initial state as a shorthand for specifying
a CRN and a set of initial states with identical reachability classes.



Chemical Boltzmann Machines 215

2.3 Detailed Balanced Chemical Reaction Networks

A CTMC is said to satisfy detailed balance if there exists a well-defined func-
tion of state s, E(s) ∈ R, such that for every pair of states s and s′, the transition
rates Rs→s′ and Rs′→s are either both zero or

Rs→s′

Rs′→s
= eE(s)−E(s′). (10)

If the state space Ω is connected and the partition function Z =
∑

s∈Ω e−E(s) is
finite, then the steady state distribution π(s) = 1

Z e−E(s) is unique, and the net
flux between all states is zero in that steady state.

There is a related but distinct notion of detailed balance for a CRN. An
equilibrium chemical system is constrained by physics to obey detailed balance
at the level of each reaction. In particular, for a dilute equilibrium system, each
species Si ∈ S has an energy G[Si] ∈ R that relates to its intrinsic stability, and

kr+

kr−
= e−∑M

i=1 Δi
r+

G[Si] = e−ΔGr+ , (11)

where Δi
r+ is the ith component of Δr+ = νr+ − μr+ , and we have defined

ΔGr+ =
∑N

i=1 Δi
r+G[Si]. Any CRN for which there exists a function G satisfying

(11) is called a detailed balanced CRN. To see that the CTMC for a detailed
balanced CRN also itself satisfies detailed balance in the sense of (10), let s′ =
s + Δr+ and note that (6) and (11) imply that

ρr+(s)
ρr−(s′)

= eG(s)−G(s′) with G(s) =
M∑

i=1

siG[Si] + log(si!), (12)

for all reactions r+. Here, G(s) is a well-defined function of state s (the free
energy) that can play the role of E in (10). If there are multiple reactions that
bring s to s′, they all satisfy (12), and therefore the ratio Rs→s′/Rs′→s satisfies
(10) and the CTMC satisfies detailed balance.

It is possible to consider non-equilibrium CRNs that violate (11). Such sys-
tems must be coupled to implicit reservoirs of fuel molecules that can drive the
species of interest into a non-equilibrium steady state [41–43]. Usually – but
not always [44,45] – the resultant Markov chain violates detailed balance. In
Sect. 3.1, we shall consider a system that exhibits detailed balance at the level
of the Markov chain, but is necessarily non-equilibrium and violates detailed
balance at the detailed chemical level.

Given an initial condition s0, a detailed balanced CRN will be confined to
a single reachability class Ωs0 . Moreover, from the form of G(s), the stationary
distribution π(s) on Ωs0 of any detailed balanced CRN exists, is unique, and is
a product of Poisson distributions restricted to the reachability class [46],

π(s) =
1
Z

e−G(s) =
1
Z

M∏

i=1

e−siG[Si]

si!
, (13)
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with the partition function Z =
∑

s′∈Ωs0
e−G(s′) dependent on the reachability

class. Note that this implies that the partition function is always finite, even for
an infinite reachability class.

3 Exact Constructions and Theorems

3.1 Clamping and Conditioning with Detailed Balanced CRNs

In a Boltzmann machine that has been trained to generate a desired probability
distribution when run, inference can be performed by freezing, also known as
clamping, the values of known variables, and running the rest of the network to
obtain a sample; this turns out to exactly generate the conditional probability.
A similar result holds for a subclass of detailed balanced CRNs that generate a
distribution, for an appropriate notion of clamping in a CRN. Imagine a “demon”
that, whenever a reaction results in a change in the counts of one of the clamped
species, will instantaneously change it back to its previous value. If every reaction
is such that either no clamped species change, or else every species that changes
is clamped, then the demon is effectively simply “turning off” those reactions.
More precisely, consider a CRN, C = (S,R, k). We will partition the species into
two disjoint groups Y = Sfree and U = Sclamped, where Sfree will be allowed
to vary and Sclamped will be held fixed. We will define free reactions, Rfree,
as reactions which result in neither a net production nor a net consumption of
any clamped species. Similarly, clamped reactions, Rclamped are reactions which
change the counts of any clamped species. The clamped CRN will be denoted
C|U=u to indicate the the species Ui ∈ U have been clamped to the values ui.
The clamped CRN is defined by C|U=u = (S,Rfree, kfree), that is, the entire set
of species along with the reduced set of reactions and their rate constants. In
the clamped CRN it is apparent that the clamped species will not change from
their initial conditions because no reaction in Rfree can change their count.
However, these clamped species may still affect the free species catalytically. If
the removed reactions, Rclamped, never change counts of non-clamped species,
then C|U=u is equivalent to the action of the “demon” imagined above.

We use Eq. 13 to prove that clamping a detailed balanced CRN is equiva-
lent to calculating a conditional distribution, and to show when the conditional
distributions of a detailed balanced CRN will be independent. Together, these
theorems provide guidelines for devising detailed balanced CRNs with interest-
ing (non-independent) conditional distributions and for obtaining samples from
these distributions via clamping.

We will need one more definition. Let C be a detailed balanced CRN with
reachability class Ωs0 for some initial condition s0 = (u0, y0). Let Γs0 be the
reachability class of the clamped CRN C|U=u0 with species U clamped to u0

and species Y free. We say clamping preserves reachability if ΩY
s0|U=u0

= ΓY
s0

where ΩY
s0|U=u0

= {y s.t. (u0, y) ∈ Ωs0} and ΓY
s0

= {y s.t. (u0, y) ∈ Γs0}. In
other words, clamping preserves reachability if, whenever a state s = (u0, y) is
reachable from s0 by any path in C, then it is also reachable from s0 by some
path in C|U=u0 that never changes u.



Chemical Boltzmann Machines 217

Theorem 1. Consider a detailed balanced CRN C = (S,R, k) with reachabil-
ity class Ωs0 from initial state s0. Partition the species into two disjoint sets
U = {U1, . . . , UMu

} ⊂ S and Y = {Y1, . . . , YMy
} ⊂ S with Mu +My = M = |S|.

Let the projection of s0 onto U and Y be u0 and y0. The conditional distribu-
tion P (y | u) implied by the stationary distribution π of C is equivalent to the
stationary distribution of a clamped CRN, C|U=u starting from initial state s0
with u0 = u, provided that clamping preserves reachability.

Proof. We have G(u, y) =
∑Mu

i=1 uiG[Ui] + log(ui!) +
∑My

i=1 yiG[Yi] + log(yi!).
Let the reachability class of C|U=u be Γs0 , its projection onto Y be ΓY

s0
, and

ΩY
s0|U=u0

= {y s.t. (u0, y) ∈ Ωs0} with ΩY
s0|U=u0

= ΓY
s0

. Then, the conditional
probability distribution of the unclamped CRN is given by

P (y | u) =
π(u, y)∑

y′∈Γ Y
s0

π(u, y′)
=

e−G(u,y)

∑
y′∈Γ Y

s0
e−G(u,y′) . (14)

Simply removing pairs of forward and backward reactions will preserve detailed
balance for unaffected transitions, and hence the clamped system remains a
detailed balanced CRN with the same free energy function. We then readily see
that the clamped CRN’s stationary distribution, πc(y|u) is given by

πc(y|u) =
e−G(u,y)

Zc(u)
with Zc(u) =

∑

y′∈Γ Y
s0

e−G(u,y′) . � (15)

The original CRN and the clamped CRN do not need to have the same initial
conditions as long as the initial conditions have the same reachability classes.
However, even if the two CRNs have the same initial conditions, it is possible
that the clamping process will make some part of ΩY

s0|U=u0
inaccessible to C|U=u,

in which case this theorem will not hold.

Theorem 2. Assume the reachability class of a detailed balanced CRN can be
expressed as the product of subspaces, Ωs0 =

∏L
j=1 Ωj

s0
. Then the steady-state

distributions of each subspace will be independent for each product space: π(s) =∏L
j=1 πj(sj), where s = (s1, . . . , sL) and πj is the distribution over Ωj

s0
.

Proof. If Ωs0 is decomposable into a product of subspaces Ωj
s0

, with j = 1...L,
then each subspace involves disjoint sets of species Y j = {Sj

1, . . . , S
j
Mj

}. In this
case the steady-state distribution of a detailed balanced CRN can be factorized
due to the simple nature of G(s) given by Eq. (12):

π(s) =
e−G(s)

Z
=

∏L
j=1 e

−G(sj)

∏L
j=1

∑
sj ′∈Ω

j
s0

e−G(sj ′)
=

L∏

j=1

e−G(sj)

∑
sj ′∈Ω

j
s0

e−G(sj ′)
=

L∏

j=1

e−G(sj)

Zj
, (16)

where sj = (sj
1, s

j
2, . . . , s

j
Mj

) is the state of the set of species within subspace j. �
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The product form π(s) means that species from separate subspaces Ωj
s0

are
statistically independent. To develop non-trivial conditional probabilities for the
states of different species, therefore, it is necessary either to use a non-detailed
balanced CRN by driving the system out of equilibrium, or to generate complex
interdependencies through conservation laws that constrain reachability classes
and “entangle” the state spaces for different species. We explore both of these
possibilities in the following sections.

3.2 Direct Implementation of a Chemical Boltzmann Machine
(DCBM)

We first consider the most direct way to implement an N -node Boltzmann
machine with a chemical system. Recall that a BM has a state space ΩBM =
{0, 1}N and an energy function E(x1, x2, . . . , xN ) = −∑

i<j wijxixj − ∑
i θixi.

We use a dual rail representation of each node i by two CRN species XON
i

and XOFF
i and reactions that respect a conservation law, xON

i + xOFF
i = 1.

The species XON
i and XOFF

i could represent activation states of an enzyme.
The CRN has M = 2N species and states s = (xON

1 , xOFF
1 , . . . , xON

N , xOFF
N ).

Although there are 22N states in which each species has a count of at most
one, only 1/2N of these states are reachable due to the conservation laws. Let
ΩDCBM be the states reachable from a valid initial state. There exists a one-to-
one invertible mapping F : ΩBM → ΩDCBM which maps the states x ∈ ΩBM

of a BM to states s = F(x) ∈ ΩDCBM of the CBM, according to xON
i = xi and

xOFF
i = 1 − xi.

Reactions are intended to provide a continuous-time analog of the typical BM
implementations, such as the Gibbs sampling method discussed in Sect. 2.1. In
each reaction r, only the species XON

i and XOFF
i , corresponding to a single node

i, change (νr − μr has two non-zero components). To reproduce the stationary
distribution of a Boltzmann machine with energy function E(x), it is sufficient
to require that the CTMC for the CRN satisfies

s −⇀↽− s′ with
Rs→s′

Rs′→s
=

e−E(s′)

e−E(s)
= eθi+

∑
j∈N(i) wijxON

j (17)

where s is any reachable state with xOFF
i = 1, and s′ has xON

i = 1 but is
otherwise the same. Such a choice would enforce detailed balance of the CTMC,
with the desired steady-state distribution

π(s) =
1
Z

e−E(s) =
1
Z

e−∑i<j wijxON
i xON

j −∑i θix
ON
i . (18)

To implement such a CRN, we define a reaction set R that contains a distinct
pair of reactions for each possible state of the neighbors of i for which wij �= 0.
Let αi ∈ {ON,OFF}|N (i)| denote a state of neighboring species. Then, the
necessary reactions and rate constants are

XON
i +

∑

j∈N (i)

X
αi

j

j

ki−|αi−−−−⇀↽−−−−
ki+|αi

XOFF
i +

∑

j∈N (i)

X
αi

j

j ,
ki+|αi

ki−|αi

= eθi+
∑

j∈N(i) wijxON
j ,

(19)
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kβexp(w35)

kβ

kαexp(w13+w35)

kα

kγexp(w13)

kγ

kδ
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θ3 = 0

Fig. 2. The reactions required by the dynamics of a single node using the direct CBM
implementation. We consider a simple network with the illustrated topology, and dis-
play the required reactions for node 3. Since node 3 has degree 2, there are 4 possible
states of its neighbors, and hence four distinct pairs of reactions for the species of node
3. The relative rates of each pair of reactions is set by wij as indicated (where, for
simplicity, we have assumed θ3 = 0).

for each i and every possible state α. In physical terms, the species representing
the neighbors of node i collectively catalyze XOFF

i � XON
i , with a separate pair

of reactions for every possible αi. While this entails a large number of reactions
(2|N (i)|+1 for each node i), it allows the rate constants for each configuration
of neighbors to be distinct, and thus to satisfy the ratio of rate constants given
in (19). For CRN states that satisfy the conservation laws xON

i + xOFF
i = 1,

there will be a unique reaction that can flip any given bit, and thus the CTMC
detailed balance (17) also holds, yielding the correct π(s). The construction is
illustrated by example in Fig. 2 and compared to other constructions in Fig. 3.

The distribution π(s) is identical to that of the BM, both with and with-
out clamping. Reachability is preserved by clamping, as all states satisfying the
conservation laws and clamping can be reached in the clamped CRN. All results
derived for traditional BMs therefore apply, including conditional inference and
the Hebbian learning rule. The construction can be generalized to any graphical
model and indeed to any finite Markov chain defined on a positive integer lattice.

With the DCBM, we have shown that CRNs can express the same distribu-
tions as BMs, and are thus very expressive. However, since each possible state
αi of N (i) is associated with two reactions, the number of reactions of the CRN
is exponentially large in the typical node degree d in the original BM. More-
over, the scheme requires high molecularity reactions in which multiple cata-
lysts effect a single transition (the molecularity grows linearly with d). Physical
implementations are therefore likely to be challenging. We further note that as a
consequence of Theorem 2, the DCBM cannot be detailed balanced at the level
of the underlying chemistry, due to its simple conservation laws. Physically, this
means that the DCBM must use a fuel species to drive each reaction. Details of
this argument are given in the Appendix (A.1).
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Fig. 3. Comparison of the switching of a node in exact constructions for fully-
connected topologies. Black circles indicate ON species (or nodes), and white circles
indicate OFF species. Similarly, black/white rectangles indicate ON/OFF edge species.
Species not involved in the reaction have been grayed out. A. A Boltzmann machine.
Black edges contribute to the energy function. B. The direct implementation of a chem-
ical Boltzmann machine. All species jointly catalyze the conversion of XOFF

1 to XON
1 .

C. The edge species chemical Boltzmann machine. XOFF
1 is converted to ON simulta-

neously with W OFF
14 , W OFF

15 , W OFF
16 and W OFF

17 ; all other node species involved act
as catalysts.

3.3 The Edge Species CBM Construction (ECBM)

Can a detailed balanced CRN also implement a Boltzmann machine, or is it
necessary to break detailed balance at the level of the CRN reactions, as in the
DCBM? Here we show that it is not necessary by introducing a detailed balanced
CRN that uses species to represent both the nodes and edges of a BM. The N
nodes of a BM are converted into N pairs of species, XON

i and XOFF
i , via a

dual rail implementation identical to that used in the DCBM. Similarly, the
edges wij are represented by dual rail edge species WON

ij and WOFF
ij with the

conservation law wON
ij +wOFF

ij = 1 for 1 ≤ j < i ≤ N . Note that we may slightly
abuse notation and let W

αij

ij and W
αij

ji , with αij ∈ {ON,OFF}, represent the
same chemical species.

To have detailed balance, we associate energies to each node species deter-
mined by the bias in a BM, G[XON

i ] = −θi and G[XOFF
i ] = 0. Similarly,

each edge species has an energy determined by the corresponding edge weight
G[WON

ij ] = −wij and G[WOFF
ij ] = 0. Finally, we define a set of catalytic reac-

tions that ensure that the states of edge and node species are consistent, meaning
wON

ij = 1 if and only if xON
i = 1 and xON

j = 1. To achieve this coupling, the
reactions that switch node i are always catalyzed by the species corresponding to
the set of neighboring nodes N (i). Simultaneously, these reactions switch edge
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ij if j ∈ N (i) and xON
j = 1, maintaining xON

i xON
j = wON

ij . The set of reactions
that result from this scheme are

XOFF
i +

∑

j∈N (i)

X
αi

j

j +
∑

j∈N (i), xON
j =1

WOFF
ij � XON

i +
∑

j∈N (i)

X
αi

j

j +
∑

j∈N (i), xON
j =1

WON
ij .

(20)
This reaction scheme is visualized in Fig. 3. Just like in the DCBM, there is a
separate pair of reactions for each node i for each state of its neighbors αi. In
this case, however, the backward reaction in (20) does represent a transition that
is a true chemical inversion of the forward reaction. So the rate constants can
be set to agree with detailed balance (11). Further, given a valid initial state,
clamping any subset of the X

ON/OFF
i species preserves reachability.

Theorem 3. The stationary distribution π(xON , xOFF , wON , wOFF ) of the
ECBM is equivalent to the stationary distribution of a Boltzmann machine, P (x),
provided that the ECBM begins in a valid state obeying wON

ij = xON
i xON

j and
one applies a one-to-one invertible mapping F between BM and ECBM states,
as described below.

Proof. If this CRN begins in a consistent state, then every subsequent reaction
will conserve this condition. The combined conservation laws xON

i + xOFF
i = 1,

wON
ij + wOFF

ij = 1, and wON
ij = xON

i xON
j ensure that the set of values xON

i

uniquely determine the CRN state for the ECBM, and thus—similar to how
the BM and DCBM states were related—we can define a one-to-one invertible
mapping F that sets xON

i = xi and obeys the conservation laws.
The ECBM is detailed balanced and therefore its stationary distribution has

the form (13). Substituting the conservation law wij = xixj and omitting species
with 0 energy results in

π(xON , xOFF , wON , wOFF ) =
1

Zπ
e−∑i�=j G[W ON

ij ]xON
i xON

j −∑i G[XON
i ]xON

i (21)

Comparing this expression to the distribution of a BM, Eq. (2), the above expres-
sions are equivalent provided that their partition functions are equivalent. To see
this is the case, notice that: (1) the partition function is just a sum over the Gibbs
factors across the entire state space. (2) The Gibbs factors take the same form
between the ECBM and BM (as shown above). And (3) the reachable state
spaces spaces are equivalent. Thus a sum over all possible Gibbs factors will be
equal. Therefore, ZBM = Zπ and the theorem is proven. �

Via the ECBM, we have shown that even detailed balanced CRNs can repre-
sent rich distributions and are able to calculate conditional distributions through
clamping as proven in Theorem 1. Due to being detailed balanced, this construc-
tion requires no fuel molecules and performs sampling via the intrinsic equilib-
rium fluctuations of the CRN. Moreover, it is only necessary to tune molecular
energies in this construction, since appropriate relative rate constants follow by
definition. This construction is possible due to the complex set of conservation
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laws that ensure that the reachability classes of all the X
ON/OFF
i species are

tightly coupled via the W
ON/OFF
ij species. One implication is that this construc-

tion does not generalize easily to non-binary species counts. Additionally, issues
related to high molecularity reactions and large number of reactions remain.

4 Approximate Bimolecular Implementations

The DCBM and the ECBM both require reactions of high molecularity. High
molecularity reactions and systems involving many species are physically chal-
lenging to implement and also potentially suffer from long mixing times. In this
section, we discuss an approximation scheme to create CBMs with lower molec-
ularity reactions and thus overcome these issues.

4.1 Taylor Series Chemical Boltzmann Machine (TCBM)

Here, we demonstrate a compact CBM that approximates a BM. It is not
detailed balanced on either the Markov chain or the CRN level, but uses only
2N species and O(N2) unimolecular and bimolecular reactions. The TCBM is
a non-equilibrium CBM of the kind discussed in Sect. 3.1 that uses a dual-rail
representation and single-node transitions to approximately implement a BM.
The reactions are given by:

XOFF
i

k−⇀↽−
k

XON
i

XON
j + XOFF

i

kaij−−−→ XON
j + XON

i

XON
j + XON

i

kbij−−→ XON
j + XOFF

i (22)

which, with appropriate initial conditions, preserve the conservation law that
xON

i + xOFF
i = 1.

This model’s parameters can be taken directly from the weights of a BM, wij .
First, define a symmetric matrix W . Decompose this matrix into the difference
of two positive matrices, W = A − B, where aij ∈ A are all wij > 0 and bij ∈ B
are the absolute values of all wij < 0. Finally, k is an arbitrary overall rate. This
construction can be understood as an approximation of Eq. (17), which dictates
that for two states s and s′ that differ only in bit i with xON

i = 1 in state s′,
the CTMC transition rates must satisfy

Rs→s′

Rs′→s
=

e
∑

j �=i aijxON
j

e
∑

j �=i bijxON
j

=
1 +

∑
j �=i aijx

ON
j + O((

∑
j �=i aijx

ON
j ))2

1 +
∑

j �=i bijxON
j + O((

∑
j �=i bijxON

j ))2
, (23)

The bias θi has been absorbed into wij for notational clarity by assuming there
is some xON

0 = 1 whose weights act as biases. The TCBM is a bimolecular CRN
obeying the same conservation laws as the DCBM in which each species j acts
as an independent catalyst for transitions in i with reaction rates determined
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by aij and bij . The relative propensities of this network are exactly equal to
the linear expansion of the relative propensities shown in the last term in (23).
Specifically, the numerator is the sum of the reaction propensities for reactions
that convert or catalyze XOFF

i → XON
i and the denominator is the sum of

the reaction propensities for XON
i → XOFF

i , in each case plus a constant term
due to the unimolecular reactions. We thus propose the simple scheme in (22)
as an approximate CBM; Fig. 4A depicts this TCBM schematically. This model
bears some resemblance to protein phosphorylation networks where adding or
removing a phosphate group is analogous to turning a species on or off; both are
driven, catalytic processes capable of diverse computation.

4.2 Approximate BCRN Inference

Remarkably, this simple approximate CBM can reasonably approximate the
inferential capabilities of a BM. We demonstrate this by using (22) to con-
vert a BM trained on the MNIST dataset [47] to a TCBM (Fig. 4). We then
compare the BM and the TCBM side by side. Digit classification is shown in

Fig. 4. A. CRN underlying an individual node of the TCBM approximation. In this
case a negative weight, wij < 0 is shown because XON

i catalyzes XON
j → XOFF

j .
B. Network architecture used for simulations is fully connected but only 10 percent
of edges are shown for clarity. C. Average raw classification output of a BM running
with clamped MNIST digits. D. Average max classification output of a BM running
with clamped MNIST digits. E. Digits generated by a BM by clamping individual class
nodes. Small sub-boxes in the bottom corners are plots of the top 85th percentile of
pixels. F. Average raw classification output of a TCBM running with clamped MNIST
digits. G. Average max classification output of a TCBM running with clamped MNIST
digits. H. Digits generated by a TCBM by clamping individual class nodes. Small sub-
boxes in the bottom corners are plots of the top 85th percentile of pixels.
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Fig. 4 panels C and D for a BM and in Fig. 4 panels F and G for a CBM as
confusion heatmaps. Classification is carried out by clamping the image nodes
to MNIST images and averaging the values of the classification nodes. As is
apparent from these plots, the BM does a fairly reasonable job classifying these
digits, but struggles on the number 5. The CBM functions as a very noisy ver-
sion of the BM with nodes in general much more likely to be on. The CBM has
also faithfully inherited the capabilities and limitations of the BM and similarly
struggles to classify the digit 5. Digit generation is shown in Fig. 4E for a BM
and 4H for a CBM. Generation was carried out by clamping a single class node
to 1 and all other class nodes to 0, then averaging the output of the image nodes
after the network had equilibrated. For each generated image, we show the raw
output and the top 85th percentile of nodes, a thresholding which helps visualize
the noisy output. As is apparent from the raw output, the CBM approximation
scheme does not generate images nearly as distinctly as the BM. However, this
approximation does faithfully reproduce plausible digits when filtered for the
top 85th percentile. Additional training and simulation details can be found in
the appendix (A.2).

The overall performance of the CRN is reasonable, given the fact that weights
were simply imported from a BM without re-optimization. The TCBM only
approximates the distribution implied by these weights and, in the absence
of detailed balance, does not have an established formal relationship between
clamping and conditioning.

5 Detailed Balanced CRN Learning Rule

A broad class of detailed balanced chemical reaction networks can be trained
with a Hebbian learning rule between a waking phase (clamped) and sleeping
phase (free) that is reminiscent of the classic gradient descent learning algorithm
for a BM [8,35]. We present the CRN learning rule here.

First we state a simple case of Theorem 4 where we just want a CRN with
stationary distribution π over Ωs0 to learn a target distribution Q also defined
on Ωs0 . Then, the learning rule is given by

dgi

dt
= −∂DKL

∂gi
= 〈si〉Q − 〈si〉π. (24)

Here, 〈si〉π and 〈si〉Q denote the expected count of the species Si with respect to
the probability distributions π and Q, respectively, and gi = G[Si] is the energy
of species Si. Theorem 4 generalizes this procedure to cases with hidden species.

Theorem 4. Let C = (S,R, k) be a detailed balanced chemical reaction network
with stationary distribution π(s) on Ωs0 . Consider a partition (V,H) of the set
S of species into visible and hidden species such that π(s) = π(v, h). Require
that for all visible states v, the clamped CRN C|V =v preserves reachability. Let
Q(v) > 0 for all v ∈ ΩV

s0
= {v s.t. (v, h) ∈ Ωs0} be a target distribution defined

on the projection of Ωs0 onto V . Furthermore, let πQ(v, h) = Q(v)π(h | v)
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be the weighted mixture of stationary distributions of the clamped CRNs C|V =v

with v drawn from the distribution Q. Then, the gradient of the Kullback-Leibler
divergence from πV to Q with respect to the energy, gi = G[Si], of the species Si

is given by
∂DKL(Q||πV )

∂gi
= 〈si〉π − 〈si〉πQ

(25)

where πV (v) =
∑

h∈ΩH
s0

π(v, h) is the marginal π(v, h) over hidden species H.

Proof. Applying Theorem 1, the clamped CRN ensemble πQ(s) may be written

πQ(s) = πQ(v, h) = Q(v)π(h | v) = Q(v)
π(v, h)∑

h∈ΩH
s0

π(v, h)
= Q(v)

π(v, h)
πV (v)

. (26)

Additionally we will need the partial derivative of a Gibbs factor and the parti-
tion function with respect to gi,

∂e−G(s)

∂gi
= −sie−G(s) and

∂Z

∂gi
= −Z〈si〉π. (27)

Using these results, the partial derivative of any detailed balanced CRN’s dis-
tribution at a particular state s, with respect to an energy gi, is

∂π(s)
∂gi

=
∂

∂gi

1
Z

e−G(s) = 〈si〉ππ(s) − siπ(s). (28)

Noting that Q has no dependence on gi, the gradient of the Kullback-Leibler
divergence can then be written,

∂DKL(Q||πV )
∂gi

=
∂

∂gi

∑

v∈ΩV
s0

Q(v) log
Q(v)
πV (v)

=
∑

v∈ΩV
s0

− Q(v)
πV (v)

∂πV (v)
∂gi

= −
∑

v∈ΩV
s0

∑

h∈ΩH
s0

Q(v)
πV (v)

π(v, h)〈si〉π − Q(v)
πV (v)

π(v, h)si

= −
∑

(v,h)∈Ωs0

πQ(v, h)〈si〉π − πQ(v, h)si = −〈si〉π + 〈si〉πQ

�

In the special case where there are no hidden species, which is to say the target
distribution Q is defined over the whole reachability class Ωs0 , then πV (v) = π(s)
and πQ(s) = Q(s) and the gradient has the simple form shown in Eq. (24).

Applying gradient descent via dgi

dt = −∂DKL

∂gi
, we thus have a simple in silico

training algorithm to train any detailed balanced CRN such that it minimizes the
Kullback-Leibler divergence from πV to Q. If H = ∅, simulate the CRN freely to
estimate the average counts 〈si〉 under π(s). Then compare to the average counts
under the target Q(s) and update the species’ energies accordingly. If H �= ∅,
clamp the visible species to some v ∈ ΩV

s0
with probability Q(v) and simulate the
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dynamics of the hidden units. Repeat to sample an ensemble of clamped CRNs
C|V =q. Because clamping v preserves reachability, Gillespie simulations of the
CRN with the V species clamped to the data values v will sample appropriately.
This gives the average counts under πQ.

This CBM learning rule is more general than the classical Boltzmann machine
learning rule, as it applies to arbitrary detailed balanced CRNs, including those
with arbitrary conservation laws and arbitrarily large species counts (but still
subject to the constraint that reachability under clamping must be preserved).
That said, at first glance the CBM learning rule appears weaker than the classi-
cal Boltzmann machine learning rule, as it depends exclusively on mean values
〈si〉, whereas the Boltzmann machine learning rule relies primarily on second-
order correlations 〈xixj〉. In fact, though, conservation laws within the CRN
can effectively transform mean values into higher-order correlations. A case in
point would be to apply the CBM learning rule to the ECBM network: For
gi = G[XON

i ] = −θi, dθi

dt = −dgi

dt = 〈xON
i 〉πQ

− 〈xON
i 〉π, and for gi = G[WON

ij ] =
−wij ,

dwij

dt = −dgi

dt = 〈wON
ij 〉πQ

− 〈wON
ij 〉π = 〈xON

i xON
j 〉πQ

− 〈xON
i xON

j 〉π, which
exactly matches the classical Boltzmann machine learning rule if we assert that
the energies of OFF species are fixed at zero.

6 Discussion

We have given one approximate and two exact constructions that allow CRNs
to function as Boltzmann machines. BMs are a “gold standard” generative
model capable of performing numerous computational tasks and approximat-
ing a wide range of distributions. Our constructions demonstrate that CRNs
have the same computational power as a BM. In particular, CRNs can produce
the same class of distributions and can compute conditional probabilities via the
clamping process. Moreover, the TCBM construction appears similar in archi-
tecture to protein phosphorylation networks. Both models are non-equilibrium
(i.e., require a fuel source) and make use of molecules that have an on/off (e.g.,
phosphorylated/unphosphorylated) state. Additionally, there are clear similari-
ties between our exact schemes and combinatorial regulation of genetic networks
by transcription factors. In this case, both models make use of combinatoric net-
works of detailed-balanced interactions (e.g., binding/unbinding) to catalyze a
state change in a molecule (e.g., by turning a gene on/off). We note that our
constructions differ from some biological counterparts in requiring binary mole-
cular counts. However, in some cases we believe that biology may make use of
conservation laws (such as having only a single copy of a gene) to allow for
chemical networks to perform low-cost computations. In the future, we plan to
examine these cases in a biological setting as well as generalize our models to
higher counts.

Developing these CBMs leads us to an important distinction between equi-
librium, detailed-balanced CRNs with steady state distributions determined by
molecular energies, and CRNs that do not obey detailed balance in the under-
lying chemistry. The second category includes those that nonetheless appear
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detailed balanced at the Markov chain level. Physically, this distinction is espe-
cially important: a non-detailed balanced CRN will always require some kind
of implicit fuel molecule (maintained by a chemostat) to run and the steady
state will not be an equilibrium steady state due to the continuous driving from
the fuel molecules. A detailed balanced CRN (at the chemical level) requires
no fuel molecules: and thus the chemical circuit can act as a sampler without
fuel cost. Despite this advantage, working with detailed balanced CRNs presents
additional challenges: to ensure that chemical species do not have independent
distributions, species counts must be carefully coupled via conservation laws.

Table 1. The complexity and underlying properties of our constructions for reproduc-
ing a BM with N nodes of degree d. Detailed balance describes whether the construction
is detailed balanced at the CRN level, at the CTMC level, or neither.

Model Species Reactions Molecularity Detailed balance

Direct CBM 2N N2d+1 d + 1 CTMC

Edge CBM 2N + dN N2d+1 ≤ 2d + 1 CRN and CTMC

Taylor CBM 2N 2N + 2dN ≤ 2 Neither

Our constructions also highlight important complexity issues underlying
CBM design. The number of species, the number of reactions, and the reac-
tion molecularity needed to implement a particular BM are relevant. Trade-offs
appear to arise between these different factors and the thermodynamic require-
ments of a given design. A breakdown of the main features of each CBM is
given in Table 1. Summarizing, the TCBM is by far the simplest construction,
using O(N) species, at most O(N2) reactions, with molecularity ≤ 2. However,
this happens at the expense of not being an exact recreation of a BM, and the
requirement of a continuous consumption of fuel molecules. The DCBM is the
next simplest in complexity terms, using O(N) species, O(N2N ) reactions, and
molecularity of at most N . Like the TCBM, the DCBM requires fuel molecules
because it is not detailed balanced at the CRN level. The ECBM is considerably
more complex than the DCBM, using quadratically more species, O(N2), the
same number of reactions, O(N2N ) and double the reaction molecularity. The
ECBM makes up for this increased complexity by being detailed balanced at
the CRN level, meaning that it functions in equilibrium without implicit fuel
species.

Finally, we have shown that a broad class of detailed balanced CRNs can
be trained using a Hebbian learning rule between a waking phase (clamped)
and sleeping phase (free) reminiscent of the gradient descent algorithm for a
BM. This exciting finding allows for straightforward optimization of detailed
balanced CRNs’ distributions.

This work provides a foundation for future investigations of probabilistic mole-
cular computation. In particular, how more general restrictions on reachability
classes can generate other “interesting” distributions in detailed balanced CRNs
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remains an exciting question. We also wonder if the learning rule algorithm can be
generalized to certain classes non-detailed balanced CRNs, and whether our exact
CBM constructions can be generalized to non-binary molecular counts. From a
physical standpoint, plausible implementations of the clamping process and the
energetic and thermodynamic constraints require investigation. Indeed, a more
realistic understanding of how a CBM might be implemented physically will help
us identify when these kinds of inferential computations are being performed in
real biological systems and could lead to building a synthetic CBM.
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A Appendix

A.1 Application of Theorem 2: The Direct CBM Must Use
Implicit Fuel Species

Here, we use Theorem 2 to analyze the direct implementation of a CBM and
show that it cannot be detailed balanced and thereby requires implicit fuel mole-
cules. First, notice that the the conservation laws used in this construction are
of a simple form. The states accessible by (XON

i ,XOFF
i ) are independent of

(XON
j ,XOFF

j ) for i �= j, and therefore the reachability class is a product over
the subspaces of each individual node. As a consequence, by Theorem 2, the sys-
tem must be out of equilibrium and violate detailed balance at the level of the
CRN because, by construction, this system is equivalent to a BM and has corre-
lations between nodes i and j whenever wij �= 0. In physical terms, the presence
of catalysts cannot influence the equilibrium yield of a species, and therefore a
circuit which uses catalysis to bias distributions of species must be powered by
a supply of chemical fuel molecules [41–43]. It is also worth noting that, as a
consequence, this scheme cannot be implemented by tuning of (free) energies; it
is fundamentally necessary to carefully tune all of the rate constants individually
(via implicit fuel molecules) to ensure that detailed balance is maintained at the
level of the Markov chain for the species of interest.

A.2 BM Training and TCBM Simulation Details

We trained a BM using stochastic gradient descent on the MNIST dataset, down
sampled to be 10 pixels by 10 pixels [47]. The BM has 100 visible image units
(representing a 10× 10 image), 10 visible class nodes, and 40 hidden nodes as
depicted in Fig. 4B. Our training data consisted of the concatenation of down
sampled MNIST images and their classes projected onto the 10 class nodes. The
weights and biases of the trained BM were converted to reaction rates for a CBM



Chemical Boltzmann Machines 229

using the Taylor series approximation. This CBM consists of 300 species, 300
unimolecular reactions and 22350 bimolecular reactions. The resulting CBM was
then compared side-by-side with the trained BM on image classification and gen-
eration. The BM was simulated using custom Gibbs sampling written in Python.
The CRN was simulated on a custom Stochastic Simulation Algorithm (SSA) [40]
algorithm written in Cython. All simulations, including network training, were
run locally on a notebook or on a single high performance Amazon Cloud server.

Classification was carried out on all 10000 MNIST validation images using
both the BM and the CBM. Each 10 by 10 gray-scale image was converted to a
binary sample image by comparing the gray-scale image’s pixels (which are repre-
sented as real numbers between 0 and 1) to a uniform distribution over the same
range. The network’s image units were then clamped to the binary sample and the
hidden units and class units were allowed to reach steady state. This process was
carried out 3 times for each MNIST validation image, resulting in 30000 sample
images being classified. Raw classification scores were computed by averaging the
class nodes’ outputs for 20000 simulation steps after 20000 steps of burn-in (Gibbs
sampling for the BM, SSA for the CBM). Max classification was computed by
taking the most probable class from the raw classification output. Raw classifica-
tion and max classification confusion heatmaps, showing the average classification
across all sample images as a function of the true label are shown in Fig. 4 panels
C and D for a BM and in Fig. 4 panels F and G for a CBM.

Image generation was carried out by clamping the class nodes with a single
class, 0...9, taking the value of 1 and all other classes being 0, and then allowing
the network to reach steady state. Generated images were computed by averaging
the image nodes over 50000 simulation steps (Gibbs sampling for the BM, SSA
for the CBM) after 25000 steps of burn-in. Generation results are shown in
Fig. 4E for a BM and Fig. 4H for a CBM.

References

1. Bray, D.: Protein molecules as computational elements in living cells. Nature
376(6538), 307 (1995)

2. Bray, D.: Wetware: A Computer in Every Living Cell. Yale University Press,
New Haven (2009)

3. McAdams, H.H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Natl.
Acad. Sci. 94(3), 814–819 (1997)

4. Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene expression
in a single cell. Science 297(5584), 1183–1186 (2002)

5. Perkins, T.J., Swain, P.S.: Strategies for cellular decision making. Mol. Syst. Biol.
5(1), 326 (2009)

6. Muroga, S.: Threshold Logic and Its Applications. Wiley Interscience, New York
(1971)

7. Hopfield, J.J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

8. Hinton, G.E., Sejnowski, T.J., Ackley, D.H.: Boltzmann Machines: Constraint Sat-
isfaction Networks that Learn. Department of Computer Science, Carnegie-Mellon
University, Pittsburgh (1984)



230 W. Poole et al.

9. Bray, D.: Intracellular signalling as a parallel distributed process. J. Theor. Biol.
143(2), 215–231 (1990)

10. Hellingwerf, K.J., Postma, P.W., Tommassen, J., Westerhoff, H.V.: Signal trans-
duction in bacteria: phospho-neural network(s) in Escherichia coli. FEMS Micro-
biol. Rev. 16(4), 309–321 (1995)

11. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J.
Theor. Biol. 152(4), 429–453 (1991)

12. Mestl, T., Lemay, C., Glass, L.: Chaos in high-dimensional neural and gene net-
works. Physica D: Nonlin. Phenom. 98(1), 33–52 (1996)

13. Buchler, N.E., Gerland, U., Hwa, T.: On schemes of combinatorial transcription
logic. Proc. Natl. Acad. Sci. 100(9), 5136–5141 (2003)

14. Deutsch, J.M.: Collective regulation by non-coding RNA. arXiv preprint
arXiv:1409.1899 (2014)

15. Deutsch, J.M.: Associative memory by collective regulation of non-coding RNA.
arXiv preprint arXiv:1608.05494 (2016)

16. Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural net-
works and turing machines. Proc. Natl. Acad. Sci. 88(24), 10983–10987 (1991)

17. Hjelmfelt, A., Ross, J.: Chemical implementation and thermodynamics of collective
neural networks. Proc. Natl. Acad. Sci. 89(1), 388–391 (1992)

18. Kim, J., Hopfield, J.J., Winfree, E.: Neural network computation by in vitro
transcriptional circuits. In: Advances in Neural Information Processing Systems
(NIPS), pp. 681–688 (2004)

19. Napp, N.E., Adams, R.P.: Message passing inference with chemical reaction net-
works. In: Advances in Neural Information Processing Systems (NIPS), pp. 2247–
2255 (2013)

20. Gopalkrishnan, M.: A scheme for molecular computation of maximum like-
lihood estimators for log-linear models. In: Rondelez, Y., Woods, D. (eds.)
DNA 2016. LNCS, vol. 9818, pp. 3–18. Springer, Cham (2016). doi:10.1007/
978-3-319-43994-5 1

21. Hjelmfelt, A., Schneider, F.W., Ross, J.: Pattern recognition in coupled chemical
kinetic systems. Science 260, 335–335 (1993)

22. Kim, J., White, K.S., Winfree, E.: Construction of an in vitro bistable circuit from
synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006)

23. Kim, J., Winfree, E.: Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol.
7, 465 (2011)

24. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand
displacement cascades. Nature 475(7356), 368–372 (2011)

25. Lestas, I., Paulsson, J., Ross, N.E., Vinnicombe, G.: Noise in gene regulatory net-
works. IEEE Trans. Autom. Control 53, 189–200 (2008)

26. Lestas, I., Vinnicombe, G., Paulsson, J.: Fundamental limits on the suppression of
molecular fluctuations. Nature 467(7312), 174–178 (2010)

27. Veening, J.W., Smits, W.K., Kuipers, O.P.: Bistability, epigenetics, and bet-
hedging in bacteria. Annu. Rev. Microbiol. 62, 193–210 (2008)

28. Balázsi, G., van Oudenaarden, A., Collins, J.J.: Cellular decision making and bio-
logical noise: from microbes to mammals. Cell 144(6), 910–925 (2011)

29. Tsimring, L.S.: Noise in biology. Rep. Prog. Phys. 77(2), 26601 (2014)
30. Eldar, A., Elowitz, M.B.: Functional roles for noise in genetic circuits. Nature

467(7312), 167–173 (2010)
31. Mansinghka, V.K.: Natively probabilistic computation. Ph.D. thesis, Massa-

chusetts Institute of Technology (2009)

http://arxiv.org/abs/1409.1899
http://arxiv.org/abs/1608.05494
http://dx.doi.org/10.1007/978-3-319-43994-5_1
http://dx.doi.org/10.1007/978-3-319-43994-5_1


Chemical Boltzmann Machines 231

32. Wang, S., Zhang, X., Li, Y., Bashizade, R., Yang, S., Dwyer, C., Lebeck, A.R.:
Accelerating Markov random field inference using molecular optical Gibbs sam-
pling units. In: Proceedings of the 43rd International Symposium on Computer
Architecture, pp. 558–569. IEEE Press (2016)

33. Fiser, J., Berkes, P., Orbán, G., Lengyel, M.: Statistically optimal perception and
learning: from behavior to neural representations. Trends Cogn. Sci. 14(3), 119–130
(2010)

34. Pouget, A., Beck, J.M., Ma, W.J., Latham, P.E.: Probabilistic brains: knowns and
unknowns. Nat. Neurosci. 16(9), 1170–1178 (2013)

35. Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann
machines. Cogn. Sci. 9(1), 147–169 (1985)

36. Tanaka, T.: Mean-field theory of Boltzmann machine learning. Phys. Rev. E 58(2),
2302 (1998)

37. Tang, Y., Sutskever, I.: Data normalization in the learning of restricted Boltz-
mann machines. Department of Computer Science, University of Toronto, Techni-
cal report UTML-TR-11-2 (2011)

38. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann machines
for modeling motion style. In: Proceedings of the 26th Annual International Con-
ference on Machine Learning (ICML), pp. 1025–1032. ACM (2009)

39. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174
(1992)

40. Gillespie, D.T.: Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem.
58, 35–55 (2007)

41. Qian, H.: Phosphorylation energy hypothesis: open chemical systems and their
biological functions. Annu. Rev. Phys. Chem. 58, 113–142 (2007)

42. Beard, D.A., Qian, H.: Chemical Biophysics: Quantitative Analysis of Cellular
Systems. Cambridge University Press, Cambridge (2008)

43. Ouldridge, T.E.: The importance of thermodynamics for molecular systems,
the importance of molecular systems for thermodynamics. arXiv preprint
arXiv:1702.00360 (2017)

44. Joshi, B.: A detailed balanced reaction network is sufficient but not necessary for
its Markov chain to be detailed balanced. arXiv preprint arXiv:1312.4196 (2013)

45. Erez, A., Byrd, T.A., Vogel, R.M., Altan-Bonnet, G., Mugler, A.: Criticality of
biochemical feedback. arXiv preprint arXiv:1703.04194 (2017)

46. Anderson, D.F., Craciun, G., Kurtz, T.G.: Product-form stationary distributions
for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970
(2010)

47. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits
(1998)

http://arxiv.org/abs/1702.00360
http://arxiv.org/abs/1312.4196
http://arxiv.org/abs/1703.04194


A General-Purpose CRN-to-DSD Compiler
with Formal Verification, Optimization,

and Simulation Capabilities

Stefan Badelt1(B), Seung Woo Shin1, Robert F. Johnson1, Qing Dong2,
Chris Thachuk1, and Erik Winfree1(B)

1 California Institute of Technology, Pasadena, USA
{badelt,winfree}@caltech.edu

2 Stony Brook University, New York, USA

Abstract. The mathematical formalism of mass-action chemical reac-
tion networks (CRNs) has been proposed as a mid-level programming
language for dynamic molecular systems. Several systematic methods
for translating CRNs into domain-level strand displacement (DSD) sys-
tems have been developed theoretically, and in some cases demonstrated
experimentally. Software that facilitates the simulation of CRNs and
DSDs, and that helps automate the construction of DSDs from CRNs,
has been instrumental in advancing the field, but as yet has not incorpo-
rated the fundamental enabling concept for programming languages and
compilers: a rigorous abstraction hierarchy with well-defined semantics
at each level, and rigorous correctness proofs establishing the correctness
of compilation from a higher level to a lower level. Here, we present a
CRN-to-DSD compiler, Nuskell, that makes a first step in this direction.
To support the wide range of translation schemes that have already been
proposed in the literature, as well as potential new ones that are yet to be
proposed, Nuskell provides a domain-specific programming language for
translation schemes. A notion of correctness is established on a case-by-
case basis using the rate-independent stochastic-level theories of pathway
decomposition equivalence and/or CRN bisimulation. The “best” DSD
implementation for a given CRN can be found by comparing the mole-
cule size, network size, or simulation behavior for a variety of translation
schemes. These features are illustrated with a 3-reaction oscillator CRN
and a 32-reaction feedforward boolean circuit CRN.

1 Introduction

Toehold-mediated nucleic acid strand displacement has become a widely used
technology to control and fine-tune the interactions of DNA and RNA molecules
[8,22]. This contribution focuses on automated construction – compilation – of
nucleic acid networks, to realize larger, dynamically more complex and precise
algorithms using DSD. We use the abbreviation DSD for “domain-level strand
displacement” as opposed to the more common notion of “DNA strand displace-
ment”, because all results presented in this work are using the domain-level
abstraction and we do not analyse any sequence-level details.
c© Springer International Publishing AG 2017
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Domains are segments of a molecule with well defined properties. In the sim-
plest case, we distinguish two types of domains: toehold domains and branch-
migration domains. A DSD system contains many possible instances of those
domains, where two domains can only bind if they are of the same type and
complementary to each other. Toehold domains (short) bind reversibly, while
branch-migration domains (long) bind irreversibly. Ensuring that these proper-
ties are fulfilled is something attributed to the sequence-level. This abstraction
enables us to study nucleic acid reaction networks on a different level of detail,
including rigorous proofs to guarantee the correctness of a domain-level compi-
lation and simulations of DSD systems based on “typical” sequence-independent
reaction rates. A correct domain-level network can then be compiled to either
DNA or RNA sequences or combinations of different nucleic acids, as well as,
hypothetically, other artificial polymers such as PNA sequences, or even proteins
[1].

Formal CRNs are a natural language to formulate the intended dynamics of
a nucleic acid network and therefore serve as the ideal input for a DSD com-
piler. We demonstrate automated translation of CRNs into DSD systems, as
well as the formal verification and simulation using our compiler Nuskell (see
Sect. 2). We show that there are many formally correct translations of particu-
lar CRNs, but that some types of CRNs are more efficiently implemented with
different translation schemes [2–4,12,13,18,20]. Starting from CRNs highlights
a fundamental difference from other existing compilers, e.g. VisualDSD [12], the
most used software for DNA strand displacement design, that takes hand-crafted
DSD modules as input in order to predict and verify their dynamics [10]. The
DNA strand displacement compilers Seesaw [21] and Piperine [20] have each
been developed for one experimentally tested/optimized translation scheme and
translate digital circuits or bimolecular reactions respectively.

Formal CRNs themselves might be derived from higher-level languages such
as digital-circuits, Turing machines, etc. [5,17,18]. A demonstration is shown
in Sect. 3.3, where we present a translation from a logic circuit into a formal
CRN, and then use Nuskell to compile this CRN into a DSD circuit. The DSD
implementation is pathway decomposition equivalent [16] (see Sect. 2.3) with the
input CRN.

2 Nuskell

The CRN-to-DSD compiler Nuskell is an open-source Python package1 for the
design, verification and analysis of DSD systems. Figure 1 provides an overview
of the Nuskell compiler project. The translation from CRNs to DSD sys-
tems is described in Sect. 2.1, the domain-level reaction enumeration using the
peppercornenumerator2 library [7] in Sect. 2.2 and the two notions of stochastic
trajectory-type CRN equivalence (pathway equivalence [16] and CRN bisimula-
tion equivalence [9]) in Sect. 2.3.
1 www.github.com/DNA-and-Natural-Algorithms-Group/nuskell.
2 www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator.

www.github.com/DNA-and-Natural-Algorithms-Group/nuskell
www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator
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Fig. 1. The Nuskell compiler. The current version “Nuskell 1.0” translates for-
mal CRNs into a set of domain-level nucleic acid complexes. The algorithm for trans-
lation can be chosen from multiple different CRN-to-DSD translation schemes (see
Sect. 2.1). Domain-level complexes are input for a DSD reaction network enumerator
(see Sect. 2.2). Two CRN equivalence notions (see Sect. 2.3) can be used to formally
verify the equivalence between the domain-level reaction network and the formal CRN.
Alternatively, initial complex concentrations can be specified to simulate the formal
and/or enumerated CRN using ODEs. Domain-level specifications may be imported or
exported to a plain-text format (*.pil) for manual adjustments or as an alternative to
translation schemes. The next version “Nuskell 2.0” will translate correct domain-
level specifications into sequence-level specifications and use sequence-level kinetic mod-
els to verify the correct implementation of domain-level reaction networks. Eventually,
the Nuskell project may incorporate experimental feedback to train domain-level and
sequence-level biophysics.

2.1 Translation: From a CRN to DSD Species

A multitude of translations from formal reactions into DSD systems have been
shown previously [2–4,11–13,18,20], and there are many more possible varia-
tions. Nuskell’s CRN-to-DSD translation is a top-down approach. First, one has
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to conceptualize a domain-level design in terms of an algorithm and then apply
it to a formal input CRN. From this point on, we call a translation scheme a
script written in the Nuskell programming language, which takes an input CRN
and produces a DSD system. The language provides an “easy” formulation of
translation schemes, and, more importantly, a standardized format for compar-
ison, evaluation and debugging. This approach is in contrast to the bottom-up
language of VisualDSD, where the user prototypes domain-level complexes as
individual modules and combines them into a DSD system. In the bottom-up
approach, it is not obvious whether a particular DSD implementation or its
components can be generalized to implement different algorithms or whether
conceptually new modules are required.

# Translate formal reactions with two reactants and two products.

# Lakin et al. (2012) "Abstractions for DNA circuit design ." [Fig. 5]

# Define a global short toehold domain

global toehold = short ();

# Define domains and structure of signal species

class formal(s) = "? t f" | ". . ."

where { t = toehold; f = long () };

# Define fuel complexes for bimolecular reactions

class bimol_fuels(r, p) =

[ "a t i + b t k + ch t c + dh t d + t* dh* t* ch* t* b* t* a* t*"

| "( ( . + ( ( . + ( ( . + ( ( . + ) ) ) ) ) ) ) ) .",

"a t i" | ". . .", "t ch t dh t" | ". . . . ." ]

where {

a = r[0].f;

b = r[1].f;

c = p[0].f; ch = long ();

d = p[1].f; dh = long ();

i = long (); k = long ();

t = toehold };

# Module *rxn* applies the fuel production to every bimolecular reaction

module rxn(r) = sum(map(infty , fuels))

where fuels =

if len(r.reactants) != 2 or len(r.products) != 2 then

abort(’Reaction type not implemented ’)

else

bimol_fuels(r.reactants , r.products );

# Module *main* applies *rxn* to the crn

module main(crn) = sum(map(rxn , crn))

where crn = irrev_reactions(crn);

Listing 1.1. An example of a translation scheme. The formal class defines a signal
species for every formal species, here, consisting of three unpaired domains: a history
domain, a global short domain and a unique long domain. The main module translates
a CRN into a set of fuel complexes: the CRN is converted to irreversible reactions, every
reaction translated into a set of fuel complexes and the sum over all sets returned by
the main function.

A drawback of CRN-to-DSD translation schemes is that they require a par-
ticular DSD architecture. There are always two types of species involved: sig-
nal species and fuel species. Signal species are at low concentrations and they
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represent the dynamical information, e.g. input andoutput species. Fuel species are
at high (ideally constant) concentrations and they mediate the information trans-
fer by consuming and/or releasing signal species. All signal species must have the
same domain-level constitution and structure, and they must be independent of
each other. After compilation, every signal species corresponds to one species in
the formal CRN.

We provide a continuously growing translation scheme library online3, and a
basic example in Listing 1.1 (translating Fig. 5 of [12]). The Nuskell program-
ming language is inspired by the functional programming language Haskell and
provides DSD specific classes, functions and macros to generalize translations for
arbitrary CRNs [16]. There are two required parts: (i) the formal class defines
sequence and structure of signal complexes, (ii) the main module produces a set
of fuel species from the input CRN.

In some translation schemes, multiple signal species can correspond to the
same formal species [2,12,18,20]. These schemes make use of so-called history
domains. A history domain is considered to be an inert branch-migration domain
of a signal species, but it is unique to the reaction that has produced the sig-
nal species. Hence, multiple species that differ only by their history domains
map to the same formal species. When writing a translation scheme, a history
domain is a wildcard: ‘?’. Together with the remainder of the molecule, a species
with a wildcard forms a regular-expression, matching every other species in the
system that differs only by a single domain in place of ‘?’. Nuskell automati-
cally replaces history domains after domain-level enumeration, when it is known
which species actually got produced. If there exists a species matching the regu-
lar expression, then the species with the wildcard domain and every enumerated
reaction involving that species is removed from the system, otherwise, the wild-
card domain is replaced by a new branch-migration domain.

A given translation schemes may be particularly efficient for certain types of
formal reactions but inefficient or incorrect for other types, or it can be correct for
every possible formal CRN, typically at the cost of being less efficient. For exam-
ple, some translation schemes are particularly efficient for reversible reactions,
while others implement reversible reactions using two irreversible reactions. To
bypass the strict DSD system architectures that are imposed by translation
schemes, Nuskell also provides an import/export file format (*.pil) to modify
DSD systems, add extra modules or analyse bottom-up, hand-crafted, or alterna-
tively compiled domain-level designs. In order to verify CRN equivalence, users
have to ensure that names of signal species in the DSD implementation match
the formal species in the input CRN, potentially using wildcards to indicate his-
tory domains. Also, Nuskell can export DSD systems to the VisualDSD file for-
mat (*.dna), which enables convenient access to the functionality of VisualDSD,
including visualization, alternative reaction enumeration semantics and verifica-
tion using probabilistic model checking [10].

3 http://www.github.com/DNA-and-Natural-Algorithms-Group/nuskell/schemes.

http://www.github.com/DNA-and-Natural-Algorithms-Group/nuskell/schemes
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2.2 Reaction Enumeration and Reaction Rate Calculation

The domain-level representation provides a more coarse-grained perspective on
nucleic acid folding than the single-nucleotide level. At the nucleotide level every
step is a base pair opening or closing reaction and the corresponding rate can
be calculated from the free energy change of a reaction combined with inherent
kinetic rate constants [6,15]. On the domain level, we consider a more diverse
set of reactions in order to account for the fine-grained details that can hap-
pen on the sequence level. Nuskell uses the domain-level reaction enumerator
Peppercorn [7] to predict desired and, potentially, undesired reactions emerging
from interactions between previously compiled signal and fuel species.

Detailed Enumeration. The general types of reactions are summarized in Fig. 2. In
particular: spontaneous binding and unbinding of domains, 3-way branch migra-
tion, 4-way branch migration and remote toehold branch migration. These reac-
tions have been identified as most relevant in DSD systems. A typical DSD reac-
tion pathway (also shown in Fig. 2) is a sequence of these detailed reaction steps.
Peppercorn’s enumeration semantics are justified based on the assumption that

Fig. 2. Reaction semantics of the DSD enumerator Peppercorn [7]. Four generally
supported detailed forms of reactions: intermolecular and intramolecular binding/
unbinding of domains, 3-way branch migration, 4-way branch migration and
remote toehold branch migration. A typical detailed domain-level strand dis-
placement pathway. The condensed reaction network notion removes the interme-
diate (transient) complex and calculates one irreversible rate (see main text). Toe-
hold occlusion describes the effect of toehold binding to a complementary domain
that does not have the correct adjacent branch-migration domain. 0-toehold branch
migration is an invalid reaction in the Peppercorn semantics, but it is a well-known
unintended leak reaction.



238 S. Badelt et al.

the DSD system is operated at sufficiently low concentrations, such that unimole-
cular reactions always go to completion before the next bimolecular interaction
takes place. A number of enumeration constraints are implemented to avoid com-
binatoric explosions [7].

Condensed Enumeration. Under the assumptions of low concentrations, a con-
densed CRN can be calculated, with reactions that indicate just the eventual
results after all unimolecular reactions complete, and with rate constants sys-
tematically derived from the detailed reaction network rate constants. Reaction
condensation can drastically reduce the size of an enumerated network by remov-
ing reactions that do not result in stable resting states. A particular example,
toehold occlusion is shown in Fig. 2. The reversible binding of a single toehold
domain without the prospect of initiating branch migration is captured in the
detailed reaction network, but not in its condensed form. For more details and
subtleties, see [7].

Limitations. There are other forms of interactions which cannot be modelled
using the presented set of reactions. Most prominently, every conformation in
the DSD system has to be free of pseudoknots. That means every bound domain
dissects the structure into an independent left and a right part, such that there
are no base pairs connecting them. Also, initiation of 3-way branch-migration
reactions requires at least one already bound domain. So-called 0-toehold branch-
migration reactions (see Fig. 2) have been observed in practice due to partial
unbinding at helix ends, but cannot be enumerated. They belong to the broader
category of leak reactions which we faithfully ignore in the current version of the
compiler.

Reaction rates. Peppercorn uses empirical domain-level reaction rates derived
from DNA strand displacement and general DNA biophysics experiments. The
domain-level reaction rate constants assume perfect Watson-Crick complemen-
tary of domains and “typical” sequences, as they only depend on the length and
the type of a reaction. Detailed explanation on rates, as well as their justification
compared with thermodynamic models can be found in [7], but it is important to
emphasize that domain-level designs may choose from a range of realistic rates,
which are here presented in a discrete form as typical for certain toehold and
branch-migration domain lengths. Finding sequences that confirm these chosen
rates constants and verifying them using stochastic sequence-level simulations
is the responsibility of a sequence-level compiler. There are many mechanisms,
such as small variations in toehold sequence composition, single-nucleotide mis-
matches, wobble base pairs, and non-canonical base pairs that can be exploited
to fine-tune reaction dynamics.

2.3 Verification of DSD Reaction Networks

The most fundamental requirement towards compilation of large scale DSD sys-
tems is verification. Every formal reaction is translated into multiple imple-
mentation reactions. Thus, there are many possibilities for introducing “bugs”,
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i.e. unwanted side reactions that alter the implemented algorithm. We present
two case-by-case verification strategies that compare formal CRNs with their
implementations. As intended, our approach does not verify the general correct-
ness of a particular scheme, but the correctness of a particular implementation.

Pathway Decomposition Equivalence. This notion was introduced in [16] together
with an early version of the Nuskell compiler. The core idea is to represent each
implementation trajectory as a combination of independent pathways of reac-
tions between formal species. Pathway decomposition yields a set of pathways
which are indivisible (or prime) and are called the formal basis of a CRN. The
formal basis is unique for any valid implementation. Any two CRNs are said to
be equivalent if they have the same formal basis. Conveniently, a CRN without
intermediate species has itself as the formal basis, and it is worth pointing out
that this equivalence relation allows for the comparison of one implementation
with another implementation.

A common artifact of incorrect CRN-to-DSD translations is that interme-
diate species accumulate. That means the implementation network produces
intermediate species, but they do not get cleaned up after a formal reaction goes
to completion. In the notion of pathway equivalence, a given implementation
is tidy if all intermediate species are cleaned up after a formal reaction goes
to completion, and not tidy otherwise. The pathway decomposition verification
method removes fuel species and inert waste products before equivalence testing,
the compiler distinguishes formal from intermediate species.

CRN Bisimulation Verification. A CRN bisimulation [9] is an interpretation of
the implementation CRN, where every implementation species is mapped to a
multiset of formal species. This often yields so-called trivial reactions, where
reactants and products do not change according to the interpretation. An inter-
pretation is only a bisimulation if three conditions are fulfilled: (i) atomic con-
dition – for every formal species there exists an implementation species that
interprets to it, (ii) delimiting condition – any reaction in the implementation
is either trivial or a valid formal reaction, and (iii) permissive condition – for
any initial condition in the implementation CRN, the set of possible next non-
trivial reactions is exactly the same as it would be in the formal CRN. CRNs
are said to be bisimulation equivalent, if the translation can be interpreted as
an implementation of that formal CRN.

Bisimulation does not require any upfront information of which signal species
correspond to formal species. In fact an implementation can be bisimulation equiv-
alent without the intended correspondence between signal and formal species. For
this reason, Nuskell provides a mapping from signal to formal species as a partial
interpretation upfront, guaranteeing that the species are interpreted as intended,
and also guaranteeing that the atomic condition is fulfilled.

Differences of Equivalence Notions. In most cases of practical interest, path-
way decomposition and CRN bisimulation agree. However, it is worth point-
ing out examples where pathway decomposition and CRN bisimulation disagree.
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First, note that pathway decomposition theory was intended to be applied to trans-
lation schemes that implement reversible reactions as two independent irreversible
reaction pathways; it generally does not handle schemes that provide a single
reversible implementation of each reversible reaction. For example, consider the
following implementations using the scheme presented in [13]:

A + B � C + D A + B � B + C A + B � C + B

A � i1

B + i1 � i2

i2 � C + i3

i3 � D

A � i1

B + i1 � i2

i2 � B + i3

i3 � C

A � i1

B + i1 � i2

i2 � C + i3

i3 � B

not pathway equivalent pathway equivalent not pathway equivalent
bisimulation equivalent bisimulation equivalent bisimulation equivalent

It is easy to see that all CRNs are bisimulation equivalent, e.g. the interpretation
{i1 = {A}; i2 = {C,D}; i3 = {D}} is a valid bisimulation of A + B � C + D.
However, the first example is not pathway equivalent, because the species C can
be produced and then reverse without producing D. This form of prematurely
generated or consumed species is forbidden in pathway equivalence, because it is
problematic for implementations of irreversible reactions. In the second example
of a catalytic reaction, this effect is not present, because the catalyst last and
producing it first. Changing this order of reactants makes the two CRNs path-
way inequivalent. On the other hand, bisimulation demands an interpretation of
every species in terms of a formal species. A particularly relevant example is the
delayed choice phenomenon [16]. Consider the formal CRN {A → B;A → C}
and its implementation {A → i; i → B; i → C}. The two CRNs are clearly path-
way equivalent, but bisimulation cannot interpret i such that both formal reac-
tions are possible. Taken together, although both pathway decomposition and
bisimulation capture the majority of intuitive equivalence relations, particular
forms of very efficient implementations, or shortcuts might result in differences
between the notions.

3 Case Studies

This section provides a glimpse into the future of automated DSD circuit design.
We discuss potential problems of translation schemes, optimization strategies, and
compare different schemes for a small oscillating CRN. Last but not least, we
demonstrate the correct compilation of a large CRN implementing a digital circuit.

3.1 The Effects of Network Condensation (and Toehold Occlusion)

The intention behind network condensation is primarily to reduce the size of enu-
merated reaction networks. This makes verification methods, which often scale
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poorly with CRN size, more likely to be computationally tractable. However,
here we use network condensation to study the effects of toehold occlusion, i.e.
an effect where complementary toeholds bind “unintentionally” without actu-
ally triggering strand displacement reactions (see Fig. 2). Toehold occlusion is
believed to influence the dynamics of a DSD system [14,20], especially in schemes
where the consumption of fuels results in accumulation of waste species with
accessible toeholds.

We start with compiling an oscillator CRN with a translation scheme that has
recently been able to confirm DNA oscillations experimentally [20]. The CRN is
composed of three autocatalytic reactions:

A + B → 2B
B + C → 2C (1)
C + A → 2A

As the scheme uses history domains that are unique to each reaction output
and every formal species (A, B, C) is produced twice in the formal CRN, signal
species exist in two versions: A1, A2, B1, B2, C1, C2. We simulate the system at
the domain level using fuel concentrations at initially 100 nM and signal con-
centrations at [A1] = 2 nM, [B1] = 10 nM, [C1] = 15 nM. Keeping the species
at very low concentrations extends the number of oscillations, as fuel species get
depleted more slowly.

Figure 3 shows data from multiple simulations, analysing the influence of
reaction network condensation as a function of toehold length. We observed a
roughly constant number of oscillations ranging from 9 to 11 peaks in total,
across toehold lengths between 3–9 nt. The differences come from minor fluctu-
ations when fuel species get depleted, i.e. the first 9 oscillation peaks are present
across all examples. Hence, neither toehold length, nor reaction network conden-
sation has a strong effect on the number of oscillation peaks.

The period of oscillations, however, changes drastically for chosen toehold
lengths. At the typical lengths of 5–7 nt we observe the fastest oscillations accord-
ing to the detailed reaction network. For this range of toehold lengths and concen-
tations, binding and unbinding of toeholds occurs at a similar rate, which means
(a) toeholds frequently bind to complementary sites and have enough time to
initiate-branch migration and (b) toeholds bound to sites where branch migra-
tion cannot be initiated dissociate quickly. For shorter toeholds, both detailed
and condensed enumerations agree, because toeholds dissociate at a high rate
and the effects of toehold occlusion are insignificant. However, the fraction of toe-
holds completing branch migration is low, slowing down the oscillation period.
For longer toeholds, detailed and condensed enumeration disagree. In the detailed
network, toehold occlusion slows down the system, such that species cannot bind
to their intended complementary regions. The condensed network does not sim-
ulate toehold-occlusion effects and therefore these networks oscillate faster with
increased toehold length.

This result is particularly interesting because some translation schemes use
a mechanism called garbage collection [2,3]. The intention is to collect waste
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(a) ODE simulation: detailed network,
6 nt toeholds

(b) Simulations as a function of toehold
length.

Fig. 3. Controlling the dynamics of a DSD oscillator via toehold length. Data compares
an oscillator implemented using Srinivas’ translation scheme [19], with initial condi-
tions: A1 = 2 nM, B1 = 10 nM, C1 = 15 nM. (a) Simulation of a detailed enumerated
DSD reaction network. Black, red and blue lines correspond to the formal species A,
B and C respectively. Note that there are two molecules with distinct history domains
for each formal species. 9 oscillation peaks are clearly visible, starting with C (blue)
and ending with B (red). These peaks are also present in all other simulations, inde-
pendent of toehold length. However, there are actually two more hardly visible peaks
for species A and C just before they reach equilibrium. (b) Number of oscillation
peaks (top) and the period of oscillations (bottom) as a function of toehold length.
Oscillation peaks are counted after the species with distinct history domains have been
added (e.g. A = A1 + A2). The oscillation period for n oscillation peaks is calculated
as 3(tn − t1)/(n − 1), where tn is the time point of the last oscillation peak. (Color
figure online)

species with available toehold domains into inert complexes. Therefore, garbage
collection introduces additional complexes and reactions to keep the computation
speed of a DSD system constant. However, in practice, this makes systems larger
and harder to verify. In a physical realization, it increases the synthesis cost as
well as the possibilities for leak reactions, such that experimental realizations
have so far refrained from these additional complexes [4]. Studying the differences
of detailed vs. condensed reaction networks shows that, if one chooses the rates
for toehold binding appropriately and with respect to intended concentrations,
toehold occlusion is not a limiting issue for the presented system.
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3.2 Comparing DSD Oscillator Translations

In Fig. 4 we compare implementations of the above oscillator CRN using 13
different translation schemes. All schemes compared here verified correct for a
single autocatalytic reaction A + B → 2B, according to at least one of the
two equivalence notions. Figure 4b shows verification results of the full system,
including potential cross reactions between the three autocatalytic reactions.
The schemes are generalized versions to support n-arity of reactions, but use
exclusively reaction mechanisms shown (or described) in the original publica-
tion. A variant differs from the originally published version, either to correct
the original version, to generalize it in a form that was not obvious from the
publication, or to make a modification that enhances the performance of the
scheme.

Figure 4 compares the size of the condensed enumerated network and the
number of nucleotides in a system. The number of nucleotides is an indicator for
the synthesis cost of nucleic acid sequences, calculated as the combined length
of all distinct strands. The size of the implementation network is an indicator
of computation efficiency, calculated as number of irreversible implementation
reactions (i.e. reversible reactions are two irreversible reactions) in the condensed
reaction network.

The implementations range from 27 to 108 reactions in the condensed enu-
merated CRN and from 693 to 1557 nucleotides. Obviously, removing garbage
collection complexes reduces the total number of nucleotides as well as the num-
ber of reactions. The largest system in terms of reactions is lakin2012 3D.ts.
A simple modification in lakin2012 3D var1.ts: removing inert domains of
strands that reverse the consumption of input strands, makes them indepen-
dent of the implemented formal reaction and reduces the numbers to 48 reac-
tions and 693 nucleotides. The 2-domain scheme cardelli2013 2D 3I.ts is
implemented with the 3-domain irreversible step as suggested in the publica-
tion [3]. This scheme is particularly optimized for autocatalytic reactions such
that they do not require extra garbage collection complexes and reactions.
Hence, cardelli2013 2D 3I.ts and cardelli2013 2D 3I noGC.ts both return
the same set of fuel species for this CRN.

3.3 Towards Compilation of Large CRNs

We now demonstrate the domain-level implementation of larger systems. Our
test case, adapted from [14], is a dual-rail implementation of a logic circuit
computing the floor of the square root of a 4-bit binary number:

y2y1 = �√x4x3x2x1� (2)

First, the logic circuit was translated into a CRN that consists of 32 uni-
and bimolecular reactions (see Fig. 5a), second, the CRN was compiled using
Nuskell with the scheme soloveichik2010.ts [18]. The condensed enumer-
ated reaction network has 316 species (52 signal species, 92 fuel species, 172
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(a) Efficiency of translations schemes

Translation scheme pathway equivalent bisimulation equivalent

soloveichik2010.ts True True
cardelli2011 FJ.ts False -
cardelli2011 FJ noGC.ts False -
cardelli2011 NM.ts - -
cardelli2011 NM noGC.ts False True
qian2011 3D var1.ts True True
lakin2012 3D.ts False -
lakin2012 3D var1.ts False True
cardelli2013 2D 3I.ts False -
cardelli2013 2D 3I noGC.ts - -
chen2013 2D JF var1.ts - -
lakin2016 2D 3I.ts - -
srinivas2015.ts True True

(b) Verification of translation schemes

Fig. 4. DSD oscillator implemented using 13 different translation schemes. A “ noGC”
indicates that the scheme differs from the published version in that it does not implement
garbage collection reactions. Other variants are indicated by “ var”. lakin2012 3D.ts

produces identical complexes with the scheme presented in Listing 1.1 for this input CRN.
(a) The plot shows the total length of all distinct strands in the circuit as an indicator
of synthesis cost, and the size of the enumerated reaction network as indication of com-
putation speed. The number of nucleotides is calculated assuming 6 nt toeholds and 15
nt branch-migration domains. (b) A table summarizing the results of verification. None
of the schemes was shown incorrect by both equivalence notions, but many reaction net-
works are too complicated, such that equivalence testing did not terminate within 1 hour.
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Fig. 5. A CRN calculating the square root of a 4-bit binary number compiled to a DSD
system using the translation scheme presented in [18]. (a) A digital circuit taken from
[14] is translated following the rules shown for fanouts and AND gates. NOT and OR
gates follow the same principle, and the three-input AND gate is translated using two
two-input AND gates. (b-e) The four simulations show the results for inputs 0, 1, 4, 9.
Input signal species are called X, output signal species called Y , all other signal species
are “Gates”, which are only transiently produced. All signal species exist in an ON and
OFF version which is either initially present (10 nM) or absent (0 nM). Fuel species
are initially at 100 nM.
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intermediate species), 180 reactions, and it verifies as correct according to the
pathway equivalence notion.

Figure 5 shows the simulations for four calculations: 0000, 0001, 0100, 1001.
Every input and output digit is represented by one ON and one OFF species,
which are either initially present (10 nM) or absent (0 nM). The remaining 40
signal species (with unique history domains) represent the 12 transient formal
species in the formal CRN, also called “Gates” in Fig. 5. The fuel species are
initially at 100 nM; some of them are consumed during the DSD calculations,
while others become more abundant. The reaction rates as calculated by the
peppercornenumerator library suggest the completion of the DSD circuit after
approximately 27 h, which is comparable to the computation time using the See-
saw architecture [14], with respect to the lower concentrations of initial species
in this example.

Both enumeration and verification can be bottlenecks to compile large sys-
tems. For example, we have tested other techniques to translate digital circuits
into CRNs with trimolecular reactions, where the enumerator had difficulties
to deal with the combinatorial explosion of intermediate species due to history
domains.

4 Conclusions

The strength of Nuskell comes from three features: First, formulating DSD
design principles as translation schemes makes the design and optimization of
complex networks easily accessible to a broad scientific community. Second, rig-
orous proofs of correctness guarantee a successful domain-level compilation, and
are applied on a flexible case-by-case basis. Third, multiple translation schemes
can be compared for a given CRN, exploiting the diversity of DSD circuits imple-
menting the same CRN and allowing for optimization of circuits at the domain
level, before proceeding to the computationally more expensive DNA sequence-
level design and verification.

The discussed verification methods ensure that – given a particular reac-
tion semantics – a CRN is correctly translated. Variations of these enumeration
semantics are sometimes necessary and can help to identify problems. For ex-
ample, some schemes are only correct if remote toehold branch migration or
4-way branch-migration reactions are disabled, which reveals clues for identify-
ing unintended side reactions and making schemes more robust. On the other
hand, ODE simulations of domain-level systems can be used to compare the
performance of schemes, e.g. in terms of oscillation periods or fuel consumption;
some schemes can be technically incorrect but with a probability of error that
decreases with molecular counts in the stochastic regime and disappears entirely
in the large-volume deterministic regime. Future versions of the compiler might
calculate leak reaction rates to fine-tune the length of particular domains and
to more efficiently combat leak during nucleic acid sequence design.

There are many open questions about the limitations of the algorithmic
behavior that can be programmed into nucleic acid systems. How complex can
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DSD systems get? Does efficiency decrease with a larger number of reactions?
Can particularly efficient translation schemes be combined? Compilers can be
used to study and optimize DSD systems in order to reveal their full potential.
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1 Introduction

Most of the models of computing that have come to prominence in molecular
programming are essentially kinetic. For example, models of DNA strand dis-
placement cascades and algorithmic tile assembly formalize desired interaction
rules followed by certain chemical systems over time [8,12]. Basing molecular
computation on kinetics is not surprising given that computation itself is ordi-
narily viewed as a process. However, unlike electronic computation, where ther-
modynamics holds little sway, chemical systems operate in a Brownian environ-
ment [2]. If the desired output happens to be a meta-stable configuration, then
thermodynamic driving forces will inexorably drive the system toward error. For
example, leak in most strand displacement systems occurs because the thermo-
dynamic equilibrium of a strand displacement cascade favors incorrect over the
correct output, or does not discriminate between the two [11]. In DNA tile assem-
bly, we typically must find and exploit kinetic barriers to unseeded growth to
enforce that growth happens only from seed assemblies, otherwise thermodynam-
ically favored assemblies will quickly form that are not the intended self-assembly
program execution from the seed/input [1,10].

We introduce the Thermodynamic Binding Networks (TBN) model, where
information processing is due entirely to the thermodynamic tradeoff between
entropy and enthalpy, and not any particular reaction pathway. In most experi-
mental systems considered in DNA nanotechnology, thermodynamic favorability
is determined by a tradeoff between: (1) the number of base pairs formed or bro-
ken (all else being equal, a state with more base pairs bound is more favorable);
(2) the number of separate complexes (all else being equal, a state with more free
complexes is more favorable). We use the terms enthalpy and entropy to describe
(1) and (2) respectively (although this use does not perfectly align with their
physical definitions, see Sect. 2). Intuitively, the entropic benefit of configurations
with more separate complexes is due to additional microstates, each describing
the independent three-dimensional positions of each complex. Although the gen-
eral case of a quantitative trade-off between enthalpy and entropy is complex,
we develop an elegant formulation based on the limiting case in which enthalpy
is infinitely more favorable than entropy. Intuitively, this limit corresponds to
increasing the strength of binding, while diluting (increasing the volume), such
that the ratio of binding to unbinding rate goes to infinity. Systems studied
in molecular programming can in principle be engineered to arbitrarily app-
roach this limit. Indeed, this is the regime previously studied in the context of
leak reduction for strand displacement cascades [11]. Figure 1 shows a simple
TBN, which can exist in 9 possible binding configurations. The favored (stable)
configuration is the one that, among the maximally bound ones (bottom row),
maximizes the number of separate complexes (bottom right).

As a central choice in seeking a general theory, we dispense with geometry :
formally, we treat monomers simply as multisets of binding sites (domains).
Viewed in the context of strand displacement, this abstracts away secondary
structure (the order of domains on a strand), allowing us to represent arbitrary
molecular arrangements such as pseudoknots [4], and handle non-local error
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Fig. 1. An example TBN T = (D, M). D = {a, b} and M = {m1,m2,m3,m4}, where
monomers m1 = {a, b},m2 = {a∗, b∗},m3 = {a}, and m4 = {b}. Note that the order of
domains does not matter (thus, {a, b} = {b, a}). There are nine distinct configurations
for the monomer collection

⇀
c = {m1,m2,m3,m4} consisting of a single copy of each

of these monomers. The five in the top row are not saturated meaning that they do
not maximize the number of bound domains, whereas the four configurations in the
bottom row are all saturated. In addition to being saturated, the configuration in the
bottom right is stable as it maximizes the number of separate complexes (3) among all
saturated configurations (the other saturated configurations have 2).

modes such as spurious remote toeholds [5]. In the context of tile self-assembly,
we consider configurations in which binding does not follow the typical regular
lattice structure. Since the TBN model does not rely on geometric constraints to
enforce correct behavior, showing that specific undesired behavior is prevented
by enthalpy and entropy alone leads to a stronger guarantee. Thus, for example
proving leaklessness in this model would imply that even if pseudoknots, or other
typically disallowed structures form, we would still have little leak. Indeed, by
casting aside the vagaries of DNA biophysics (e.g., persistence length, number
of bases per turn, sequence dependence on binding strength, etc.), our aim is to
develop a general theory of programmable systems based on molecular bonds, a
theory that will apply to bonds based on other substrates such as proteins, base
stacking, or electric charge.

After introducing the TBN model in Sect. 2, we give results on Boolean
circuit-based and self-assembly-based computation. In Sect. 3 we show how to
construct AND and OR gates where the thermodynamically favored configura-
tions encode the output. We develop provable guarantees on the entropic penalty
that must be overcome to produce an incorrect 1 output, showing how the logic
gates can be designed to make the penalty arbitrarily large. Although com-
pletely modular reasoning seems particularly tough in this model, we develop a
proof technique based on logically excising domains to handle the composition
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of Boolean gates—specifically trees of AND gates. Further work is needed to
generalize these results to arbitrary circuits.

In Sect. 4 we look at self-assembly, beginning with questions about large
assemblies. On the one hand we exhibit a class of TBNs with thermodynami-
cal stable assemblies (with simple ‘tree’ connectivity) of size exponential in the
number of constituent monomer types. On the other hand, we show that this
bound is essentially tight by giving an exponential size upper bound on the size
of stable assemblies in general. These self-assembly results, along with the binary
counter result below, tell us that monomer-efficient self-assembly is indeed pos-
sible within this model, but that (somewhat surprisingly for a model that favors
enthalpy infinitely over entropy) super-exponential size polymers are necessarily
unstable, even if they are self-assemblable in kinetic-based models.

For clarity of thought in separating the computational power of thermody-
namics and kinetics, throughout much of this paper we do not identify any
particular kinetic pathway leading to the desired TBN stable state. Of course
real-world physical systems do not operate at thermodynamic equilibrium, and
might take longer than the lifetime of the universe to get there. Thus, for such
‘kinetically trapped’ systems, encoding desired output in thermodynamic equi-
librium is not enough by itself. To address this, in the full version of this paper we
give a kinetically and thermodynamically favoured binary counter that assem-
bles in both the abstract Tile Assembly Model and the TBN model. Similarly,
the strand displacement AND gate from Ref. [11] can be shown to compute
correctly in the TBN model [3]. Nonetheless, more work is needed to come up
with TBN schemes that have fast kinetic pathways, in addition to the provable
thermodynamic guarantees.

2 Model

Let N,Z,Z+ denote the set of nonnegative integers, integers, and positive inte-
gers, respectively. A key type of object in our definitions is a multiset, which
we define in a few different ways as convenient. Let A be a finite set. We can
define a multiset over A using the standard set notion, e.g., c = {a, a, c}, where
a, c ∈ A. Formally, we view multiset c as a vector assigning counts to A. Let-
ting N

A denote the set of functions f : A → N, we have c ∈ N
A. We index

entries by elements of a ∈ A, calling c(a) ∈ N the count of a in c. Fixing some
arbitrary ordering on the elements of A = {a1, a2, . . . , ak}, we may equivalently
view c as an element of Nk, where for i ∈ {1, 2, . . . , k}, c(i) denotes c(ai). Let
‖c‖ = ‖c‖1 =

∑
a∈A c(a) denote the size of c. For any vector or matrix c, let

amax(c) denote the largest absolute value of any component of c.
We model molecular bonds with precise binding specificity abstractly as bind-

ing “domains”, designed to bind only to other, specific binding domains. For-
mally, consider a finite set D of primary domain types. Each primary domain
type a ∈ D is mapped to a complementary domain type (a.k.a., codomain type)
denoted a∗. Let D∗ = {a∗ | a ∈ D} denote the set of codomain types of D. The
mapping is assumed 1-1, so |D∗| = |D|. We assume that domains of type a bind
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only to those of type a∗ and vice versa.1 The set D ∪ D∗ is the set of domain
types.

We assume a finite set M of monomer types, where a monomer type m ∈
N

D∪D∗
is a non-empty multiset of domain types, e.g., m = {a, b, b, c∗, a∗}, where

primary domain types a, b, c ∈ D. A thermodynamic binding network (TBN) is
a pair T = (D,M) consisting of a finite set D of primary domain types and a
finite set M ⊂ N

D∪D∗
of monomer types. A monomer collection ⇀c ∈ N

M of T is
multiset of monomer types; intuitively, ⇀c indicates how many of each monomer
there are, but not how they are bound.2

Since one monomer collection usually contains more than one copy of the
same domain type, we use the term domain to refer to each copy separately.3

We similarly reserve the term monomer to refer to a particular instance of a
monomer type if a monomer collection has multiple copies of the same monomer
type.

A single monomer collection ⇀c can take on different configurations depend-
ing on how domains in monomers are bound to each other. To formally model
configurations, we first need the notion of a bond assignment M , which is simply
a matching4 on the bipartite graph (U, V,E) describing all possible bonds, where
U is the set of all primary domains on all monomers in ⇀c , V is the set of all
codomains on all monomers in ⇀c , and E is the set of edges between primary
domains and their complements {{u, v} | u ∈ U, v ∈ V, v = u∗}. A configuration
α of monomer collection ⇀c is then the (multi)graph (U ∪V,EM ), where the edges
EM describe both the association of domains within the same monomer, and the
bonding due to M . Specifically, for each pair of domains di, dj ∈ D ∪ D∗ that
are part of the same monomer in ⇀c , let {di, dj} ∈ EM , calling this a monomer
edge, and for each edge {di, d

∗
i } in the bond assignment M , let {di, d

∗
i } ∈ EM ,

calling this a binding edge. Let [⇀c ] be the set of all configurations of a monomer
collection ⇀c . We say the size of a configuration, written |α|, is simply the number
of monomers in it.

Another graph that will be useful in describing the connectivity of the
monomers, independent of which exact domains are bound, is the monomer
binding graph Gα = (Vα, Eα), which is obtained by contracting each monomer
edge of α. In other words, Vα is the set of monomers in α, with an edge between
monomers that share at least one pair of bound domains.

1 That is, we assume like-unlike binding such as that found in DNA Watson-Crick
base-pairing, as opposed to like-like binding such as hydrophobic molecules with
an affinity for each other in aqueous solution, or base stacking between the blunt
ends of DNA helices [6,13]. It is not clear the extent to which this choice affects the
computational power of our model.

2 Because a monomer collection is a multiset of monomer types, each of which is itself
a multiset, we distinguish them typographically with an arrow.

3 For instance, the monomer collection shown in Fig. 1 has 2 domains of type a, 2
domains of type b, and 1 domain of type a∗ and b∗ each.

4 A matching of a graph is a subset of edges that share no vertices in common. In our
case this enforces that a domain is bound to at most one other domain.
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Which configurations are thermodynamically favored over others depends on
two properties of a configuration: its bond count and entropy. The enthalpy H(α)
of a configuration is the number5 of binding edges (i.e., the cardinality of the
matching M). The entropy S(α) of a configuration is the number of connected
components of α.6 Each connected component is called a polymer.7 Note that a
polymer is itself a configuration, but of a smaller monomer collection ⇀c ′ ≤ ⇀c . As
with all configurations, the size of a polymer is the number of monomers in it.

Intuitively, configurations with higher enthalpy H(α) (more bonds formed)
and higher entropy S(α) (more separate complexes) are thermodynamically
favored. What happens if there is a conflict between the two? One can imagine
capturing a tradeoff between enthalpy and entropy by some linear combination
of H(α) and S(α). In DNA nanotechnology applications, the tradeoff can be con-
trolled by increasing the number of nucleotides constituting a binding domain
(increasing the weight on H(α)), or by decreasing concentration (increasing the
weight on S(α)).8

In the rest of this paper, we study the particularly interesting limiting case in
which enthalpy is infinitely more favorable than entropy.9 We say a configuration
α is saturated if it has no pair of domains d and d∗ that are both unbound; this

5 We are assuming bonds are of equal strength (although the definition can be natu-
rally generalized to bonds of different strength).

6 Our use of the terms “enthalpy” and “entropy”, and notation H and S is meant to
evoke the corresponding physical notions. Note, however, that there are other con-
tributions to physical entropy besides the number of separate complexes. Indeed, the
free energy contribution of forming additional bonds typically contains substantial
enthalpic and entropic parts.

7 We are generalizing the convention for the word “polymer” in the chemistry lit-
erature. We have no requirement that a polymer be linear, nor that it consist of
repeated subunits. We chose “polymer” rather than “complex” to better contrast
with “monomer”.

8 In typical DNA nanotechnology applications, the Gibbs free energy ΔG(α) of a
configuration α can be estimated as follows. Bonds correspond to domains of length l
bases, and forming each base pair is favorable by ΔG◦

bp. Thus, the contribution of
H(α) to ΔG(α) is (ΔG◦

bp · l)H(α). At 1 M, the free energy penalty due to decreasing
the number of separate complexes by 1 is ΔG◦

assoc. At effective concentration C M,
this penalty increases to ΔG◦

assoc + RT ln(1/C). As the point of zero free energy,
we take the configuration with no bonds, and all monomers separate. Thus, the
contribution of S(α) to ΔG(α) is (ΔG◦

assoc + RT ln(1/C))(|α| − S(α)), where |α| is
the total number of monomers. To summarize,

ΔG(α) = (ΔG◦
bp · l)H(α) + (ΔG◦

assoc + RT ln(1/C))(|α| − S(α)).

Note that, as expected, this is a linear combination of H(α) and S(α), and that
increasing the length of domains l weighs H(α) more heavily, while decreasing the
concentration C weighs S(α) more heavily. Typically G◦

bp ≈ −1.5 kcal/mol, and
G◦

assoc ≈ 1.96 kcal/mol [9].
9 Note that the other limiting case, where entropy is infinitely more favorable, is

degenerate: the most favorable configuration in that case always has every monomer
unconnected to any other.
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is equivalent to stating that α has maximal bonding among all configurations in
[⇀c ]. We say a configuration α ∈ [⇀c ] is stable (aka thermodynamically favored)
if it is saturated and maximizes the entropy among all saturated configurations,
i.e., every saturated configuration α′ ∈ [⇀c ] obeys S(α′) ≤ S(α). Let [⇀c ]� denote
the set of stable configurations of monomer collection ⇀c . See Fig. 1 for an example
thermodynamic binding network that has a single stable configuration. We note
that, consistent with our model, in strand displacement cascades “long” domains
are assumed to always be paired, and systems can be effectively driven by the
formation of more separate complexes [14].

3 Thermodynamic Boolean Formulas

Figure 2 shows an example of a TBN that performs AND computation, based
on the CRN strand displacement gate from Ref. [11]. Realized as a strand dis-
placement system, it has a kinetic pathway taking the untriggered (left) to the
triggered (right) configuration. The inputs are specified by the presence (logical
value 1) or absence (logical value 0) of the input monomers i1 and i2. The output
convention followed is the following. The output is 1 if and only if some stable
configuration has the output monomer o unbound to any other monomer (free).
This can be termed the weak output convention. Alternatively, in the strong
output convention, output 1 implies every stable configuration has the output
monomer o free, and output 0 implies every stable configuration has the output

Fig. 2. Basic AND gate: Monomers i1 = {a, b} and i2 = {c, d} represent the input,
o = {e, f} represents the output, while the remainder are intermediate monomers to
implement the logic relating the input to the output. If either or both inputs are miss-
ing, then the only stable configuration has the present input monomers free (unbound)
and the output monomer o not free (bound). If both input monomers are present, then
there are two stable configurations: one with inputs free (and o not free), or the one
depicted with o free and both inputs bound.



256 D. Doty et al.

monomer o bound to some other monomer. More complex AND gate designs
are compatible with the strong output convention (not shown).

Note that even the weak output convention, coupled with a kinetic pathway
releasing the output given the correct inputs, can be used to argue that: (1) if the
correct inputs are present the output will be produced (via kinetic argument),
(2) if the correct inputs are not present then ultimately little output will be
free (thermodynamic argument). In the context of strand displacement cascades,
TBNs can explore arbitrary structures (pseudoknots, remote toeholds, etc.) since
we do not impose any ordering on domains in a monomer, nor any geometry.
This strengthens the conclusion of (2), showing that arbitrary (even unknown)
kinetic pathways must lead to a thermodynamic equilibrium with little output.

While individual AND gates can be proven correct with respect to the above
output conventions (e.g., through the SAT solver of Ref. [3]), it remains to be
shown that these components can be safely composed into arbitrary Boolean cir-
cuits. Note that the input and output monomers have orthogonal binding sites.
This is important for composing AND gates, where the output of one acts as
an input to another. As is typical for strand displacement logic, OR gates can
be trivially created when multiple AND gates have the same output. Dual-rail
AND/OR circuits are sufficient to compute arbitrary Boolean functions with-
out explicit NOT gates. Nonetheless it is not obvious that the input convention
(complete presence or absence of input monomers) matches the output conven-
tion (weak or strong). It is also not clear how statements about the stable con-
figurations of the whole circuit can be made based on the stable configurations
of the individual modules.

We now show that correct composition can be proven in certain cases.
Although we believe that the gate shown in Fig. 2 is composable, the argument
below relies on a different construction. We further consider a restricted case of
AND gate formulas (trees).

An important concept in the argument below is the notion of “distance to
stability”. This refers to the difference between the entropy of the stable con-
figurations and the largest entropy of a saturated configuration with incorrect
output. The larger the distance to stability, the larger the entropy penalty to
incorrectly producing the output. Unlike the simple AND gate from Fig. 2, the
constructions below can be instantiated to achieve arbitrary desired distance to
stability (by increasing the redundancy parameter n).

Many open questions remain. Can our techniques be generalized to arbitrary
circuits, rather than just trees of AND gates? Can we prove these results for
logic gates that have a corresponding kinetic pathway (like the AND gates in
Fig. 2 which can be instantiated as strand displacement systems)? Finally, in our
Boolean gate constructions, we assume that the monomer collection has exactly
one copy of certain monomers. It remains open whether these schemes still work
if there are many copies of all monomers.
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3.1 Translator Cascades

We begin with the simplest of circuits, translator cascades (x1 → x2 → ... →
xk+1), which simply propagate signal through k layers when the input signal
x1 is present. Logically a translator gate is simply a repeater gate. The input is
the presence or absence of the input monomer consisting of n copies of domain
x1. Our analysis below implies that if and only if the input is present, there is
a stable configuration with n copies of xk+1 domain in the same polymer. The
terminator gadget converts this output to the weak output convention defined
above (whether or not the monomer consisting of n copies of domain xk+1 is
free). The following Lemma shows that we can exactly compute the distance
from stability of a translator cascade shown in Fig. 3. Besides being a “warm-
up” for AND gate cascades, the Lemma is used in the proof of Theorem 2.

Fig. 3. A cascade of k translator gates discussed in Sect. 3.1, with redundancy para-
meter n = 3. We say that a configuration of a formula has output 1 if the terminator
monomer {xk+1, . . . , xk+1} is free, and has output 0 otherwise. Redundancy parameter
n specifies the number of copies of monomers and domains as shown.

Observation 1. The intended configuration α of a monomer collection repre-
senting a depth k, redundancy n translator cascade, without input, and with
output 0, is saturated and has S(α) = nk + 1. (See Fig. 3.)

Lemma 1. If γ is a saturated configuration of a monomer collection represent-
ing a depth k, redundancy n translator cascade, without input, and with output
1, then S(γ) = n(k − 1) + 2.

The proof of Lemma 1 appears in the full version of this paper. Taken
together, Observation 1 and Lemma 1 imply that the redundancy parameter
(n) guarantees the distance to stability (n − 1) for a translator cascade of any
length.

3.2 Trees of AND Gates

In this section we motivate how Boolean logic gates can be composed such that
the overall circuit has a guaranteed distance to stability, relative to a redundancy
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Fig. 4. AND gates used in Sect. 3.2, with redundancy parameter n = 4. Two saturated
configurations are shown: γ0 is the intended configuration corresponding to output
of 0. γ1 is the intended configuration corresponding to output of 1. Input domains
are xi yi, and output domains are xi+1. The output is considered to be 1 in any
configuration where all n output domains are in the same polymer, 0 otherwise. Dashed
boxes represent that any domain type appearing inside of a box does have have a
complement appearing outside of the box.

Fig. 5. Shown highlighted is a leak path through a tree of AND gates from a missing
input (“0”) to erroneous output (“1”).

parameter n. Specifically, we start with the AND gate design of Fig. 4, and we
give a concrete argument for a tree of these AND gates (e.g., Fig. 5).

Theorem 2. Consider a TBN for AND gates, with redundancy n, composed
into a tree of depth k. If at least one of the inputs is not present, the distance to
stability for any saturated configurations with output 1 is at least n − 2k − 1.

Proof. Let γ be any saturated configuration of the TBN with output 1. Con-
sider the missing input and define the leak path to be the linear sequence of
AND gates from the missing input to and including the terminator gadget. For
convenience we imagine relabelling all the domains in the leak path indexed by
the position of the AND gate in the leak path. For example, Fig. 5 highlights
the leak path through the tree from a missing input (“0”) to erroneous output
(“1”). Specifically, the domain names as shown in Fig. 4 appear in the ith AND
gate (for 1 ≤ i ≤ k), where xk+1 feeds into the terminator gadget. Domains yi

connect the leak path to the rest of the tree.
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Definition 1. Given a configuration α of a monomer collection ⇀c , we say we
excise a domain d if we create a new configuration α′ by removing the node
corresponding to d and all incident edges. (Note that α′ is a configuration of a
monomer collection of a different TBN.)

Manipulation 1. Excise all domains of type yi and codomains of type y∗
i on

monomers of the leak path involved in fan-in, 1 ≤ i ≤ k, yielding the new
configuration γ′. Note that if domain yi is on a monomer other than the leak
path, then it is not excised.

The leak path in γ′ now has no domains in common with the rest of the tree
(and thus no bonds). Let γ′

L be the subconfiguration of the leak path, and let
γ′

R be the subconfiguration of the rest of the system. (Note γ′ = γ′
L ∪ γ′

R.)

Observation 3. Given a saturated configuration α, if you excise all domains
or codomains of a particular type (or both its domains and codomains) yielding
α′, then α′ is saturated.

By Observation 3 γ′ is saturated since for every domain type yi and codomain
type y∗

i , every instance of y∗
i is excised; 1 ≤ i ≤ k. This implies γ′

L and γ′
R are

also saturated.

Manipulation 2. Excise all domains of type ai and bi and all codomains of type
a∗

i and b∗
i in γ′

L, 1 ≤ i ≤ k, yielding the new configuration γ′′
L. By Observation 3,

γ′′
L is saturated.

Claim A. S(γ′) ≥ S(γ).

Proof of the claim. Entropy can only be decreased via excision if an entire
monomer is excised. Since Manipulation 1 only excised domain and codomain

types from the set D′ =
k⋃

i=1

{yi, y
∗
i }, and those domain types only appear on

monomers which also have domain instances with types not in D′, then no entire
monomer was excised. �

Claim B. S(γ′′
L) ≥ S(γ′

L) − 3k.

Proof of the claim. For every layer i, 1 ≤ i ≤ k, there are 3 monomers that
only contain domain and codomain types in the set {ai, bi, a

∗
i , b

∗
i }. Therefore, γ′′

L

contains at most 3 fewer monomers than γ′
L, for each of the k layers. �

Claim C. S(γ′′
L) = n(k − 1) + 2.

Proof of the claim. Recognize that γ′′
L is a saturated configuration of a monomer

collection representing a depth k, redundancy n translator cascade, without
input, and with output 1. The claim follows by Lemma 1. �

Claim D. S(γ) ≤ n(k − 1) + 2 + S(γ′
R) + 3k.
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Proof of the claim.

S(γ) ≤ S(γ′) by Claim A
= S(γ′

L) + S(γ′
R)

≤ S(γ′′
L) + S(γ′

R) + 3k by Claim B
≤ n(k − 1) + 2 + S(γ′

R) + 3k by Claim C

�
Now, take the monomers from the leak path in γ, and configure them into

the “untriggered configuration” (see Fig. 4, left), yielding subconfiguration β. Let
α = β∪γ′

R. Note that β is saturated, and therefore α is a saturated configuration
of the entire tree (i.e., the same TBN as γ).

Observation 4. S(α) = S(γ′
R) + k(n + 1) + 1.

Finally, consider the entropy gap between α and γ.

S(α) − S(γ) ≥ S(γ′
R) + k(n + 1) + 1 − S(γ) by Observation 4

≥ S(γ′
R) + k(n + 1) + 1

− (n(k − 1) + 2 + S(γ′
R) + 3k) by Claim D

= n − 2k − 1

Therefore, there exists a saturated configuration with output 0 over the same
TBN as γ, but with entropy at least n − 2k − 1 larger, thus establishing the
theorem. 	


Theorem 2 seems to suggest that in order to maintain the bound on dis-
tance to stability for incorrect computation, the redundancy parameter n should
increase to compensate for an increase in circuit depth k. However, a more sophis-
ticated argument shows that manipulations 1 and 2 can decrease entropy by at
most k + 1. Following the above argument, the distance to stability is found to
be n− 2. This is optimal because a single AND gate with redundancy n = 2 can
be shown to have no entropy gap between output 0 and output 1 configurations.

4 Thermodynamic Self-assembly: Assembling Large
Polymers

TBNs can not only exhibit Boolean circuit computation, but they can also be
thought of as a model of self-assembly. Here we begin to explore this connec-
tion by asking a basic question motivated by the abstract Tile Assembly Model
(aTAM) [12]: how many different monomer types are required to assemble a large
polymer?

Favoring enthalpy infinitely over entropy, on its face, appears to encourage
large polymers. Perhaps we can imagine designing a single TBN T that can
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assemble arbitrarily large polymers where for each n ∈ N, T has a stable poly-
mer α composed of at least n monomers. In this section we show that this is
impossible: every TBN T = (D,M) has stable polymers of size at most expo-
nential in the number of domain types |D| and monomer types |M| (Theorem 9).
The proof shows that any polymer ρ larger than the bound can be partitioned
into at least two saturated (maximally bound) polymers, which implies that ρ
is not stable. Figure 6 gives an example. We also show that this upper bound
is essentially tight by constructing a family of systems with exponentially large
stable polymers (Theorem 5). Taken together, the exponential lower bound of
Theorem 5 and upper bound of Theorem 9 give a relatively tight bound on the
maximum size achievable for stable TBN polymers.

Fig. 6. A polymer ρ composed of sev-
eral copies of four monomer types,
which is not stable since it can be bro-
ken into several smaller polymers (bot-
tom panel) such that all domains are
bound.

Fig. 7. An example of a TBN from
Theorem 5 for n = 4 and k = 2.

Is it possible to construct algorithmically interesting TBN polymers that are
stable? In the full version of this paper, we show that a typical binary counter
construction from the aTAM model is not stable, but can be modified to become
stable in our model. Importantly, this TBN binary counter demonstrates that
in principle algorithmically complex assemblies could have effective assembly
pathways (aTAM) as well as be thermodynamically stable (TBN).

4.1 Superlative Trees: TBNs with Exponentially Large Stable
Polymers

The next theorem shows that there are stable polymers that are exponentially
larger than the number of domain types and monomer types required to assemble
them.

Theorem 5. For every n, k ∈ Z
+, there is a TBN T = (D,M) with |D| = n−1

and |M| = n, having a stable polymer of size kn−1
k−1 .
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Proof. An example of T for n = 4 and k = 2 is shown in Fig. 7. Let D =
{d1, . . . , dn} and M = {m1, . . . ,mn}, where, for each j ∈ {2, . . . , n − 1}, mj =
{d∗

j−1, k · dj} (i.e., 1 copy of d∗
j−1 and k copies of dj), m1 = {k · d1}, and

mn = {d∗
n−1}. Define ⇀c ∈ N

M by ⇀c (mj) = kj−1 for j ∈ {1, . . . , n}. Then
‖⇀c‖ =

∑n
j=1 kj−1 = kn−1

k−1 . Observe that [⇀c ] has a unique (up to isomorphism)
saturated configuration α (which is therefore stable), described by a complete
k-ary tree: level j ∈ {1, . . . , n − 1} of the tree is composed of kj−1 copies of mj ,
each bound to k children of type mj+1 in level j + 1. 	


The remainder of Sect. 4 is devoted to proving that no stable polymer ρ can
have size more than exponential in |D| and |M|.

4.2 A Linear Algebra Framework

We prove Theorem 9, the main result of Sect. 4, by viewing TBNs from a linear
algebra perspective. Let T = (D,M) be a TBN, with D = {d1, . . . , dd} and
M = {m1, . . . ,mm}. For a matrix A, let A(i, j) denote the entry in the i’th
row and j’th column. Define the d × m positive monomer matrix M+

T of T by
M+

T (i, j) = mj(di). Define the d × m negative monomer matrix M−
T of T by

M−
T (i, j) = mj(d∗

i ). Define the d × m monomer matrix MT of T to be MT =
M+

T − M−
T . Note that M+

T and M−
T are matrices over N, but MT is over Z.

The rows of the monomer matrix MT correspond to domain types and
the columns correspond to monomer types. The mapping from a TBN T to
a monomer matrix MT is not 1-1: MT (i, j) is the number of di domains minus
the number of d∗

i domains in monomer type mj , which would be the same, for
instance, for monomer types m1 = {d1, d3} and m2 = {d1, d1, d

∗
1, d3}. Let ⇀c be

a monomer collection and let d = MT
⇀c ∈ N

d; for i ∈ {1, . . . , d}, d(i) is the
number of di domains minus the number of d∗

i domains in the whole monomer
collection ⇀c .

Let α ∈ [⇀c ] be saturated; α can only have a domain di unbound if all copies
of its complement d∗

i are bound, and vice versa. If d(i) > 0, in α there is an
excess of di domains, and all d∗

i domains are bound. If d(i) < 0, in α there is an
excess of d∗

i domains, and all di domains are bound. This leads to the following
observation.

Observation 6. Let T = (D,M) be a TBN and ⇀c ∈ N
M a monomer collection.

Let d = MT
⇀c . Then for every configuration α ∈ [⇀c ], α is saturated if and only

if, for all i ∈ {1, . . . , d}, if d(i) ≥ 0 (respectively, if d(i) ≤ 0), then d(i) is the
number of unbound di (resp., d∗

i ) domains in α.

Let T = (D,M) and T ′ = (D,M′) be TBNs with the same set of domain
types. Then we call T ′ a relabeling of T if there exists a subset D ⊆ D such
that M′ can be obtained from M by starring any instance of di ∈ D in M and
unstarring any instance of d∗

i in M. Since this corresponds to negating the i’th
row of MT , which negates the i’th entry of the vector d = MT

⇀c , this gives the
following observation.
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Observation 7. Let T = (D,M) be a TBN and ⇀c ∈ N
M a monomer collection.

There exists a relabeling T ′ of T so that MT ′
⇀c ≥ 0.

Combining Observations 6 and 7 results in the following observation, which
essentially states that for any given monomer collection ⇀c , we may assume with-
out loss of generality that domains unbound in saturated configurations α ∈ [⇀c ]
are all primary domain types.

Observation 8. Let T = (D,M) be a TBN and ⇀c ∈ N
M a monomer collection.

There exists a relabeling T ′ of T so that, letting d = MT ′
⇀c , for all configurations

α ∈ [⇀c ], α is saturated if and only if, for all i ∈ {1, . . . , d}, d(i) ∈ N is the number
of unbound primary domains of type di ∈ D in α.

The following lemma is a key technical tool for showing that a polymer is
not stable (or equivalently that a stable configuration has entropy greater than 1
and therefore cannot be a single polymer). It generalizes the idea shown in Fig. 6
that if one can find a monomer subcollection ⇀c 1 in a larger collection ⇀c , and ⇀c 1

has a saturated configuration with no bonds left unbound, then one can create a
saturated configuration γ ∈ [⇀c ] with no bonds between ⇀c 1 and ⇀c −⇀c 1. (Thus γ
has at least two polymers.)

More generally, given a monomer collection ⇀c with at least as many di as d∗
i

domains (under appropriate relabeling this holds for each i by Observation 7),
if we can partition ⇀c into subcollections ⇀c 1 and ⇀c 2, and each of them also has
at least as many di as d∗

i domains for each i ∈ {1, . . . , d}, then every stable
configuration α ∈ [⇀c ]� has at least two polymers, since there is a saturated
configuration of ⇀c in which there are no bonds between ⇀c 1 and ⇀c 2.10

Lemma 2. Let T = (D,M) be a TBN, let ⇀c ∈ N
M be a monomer collection of

T such that MT
⇀c ≥ 0, and let α ∈ [⇀c ]� be a stable configuration. If there exist

nonempty subcollections ⇀c 1,
⇀c 2 ∈ N

M where 1) ⇀c 1+⇀c 2 = ⇀c and 2) MT
⇀c 1 ≥ 0

and MT
⇀c 2 ≥ 0, then S(α) > 1.

The proof of Lemma 2 appears in the full version of this paper.

4.3 Exponential Upper Bound on Polymer Size

We now show a converse to Theorem 5, namely Theorem 9, showing that stable
polymers have size at most exponential in the number of domain and monomer
types. The proof of Theorem 9 closely follows Papadimitriou’s proof that integer
programming is contained in NP [7]. That proof shows, for any linear system

10 Observations 6, 7, and 8 are not really necessary for our technique, but simplify the
description of the conditions under which

⇀
c 1 and

⇀
c 2 would be saturated: specifically,

that if d = MT
⇀
c is in the nonnegative orthant, then so are d1 = MT

⇀
c 1 and

d2 = MT
⇀
c 2. If we did not use relabeling (thus could not guarantee that d is in the

nonnegative orthant) then the requisite condition to apply Lemma 2 would be that
d, d1, and d2 all occupy the same orthant; i.e., for all i ∈ {1, . . . , d}, if any of d(i),
d1(i), or d2(i) are negative, then the other two are not positive.
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Ax = b, where A is a given n × m integer matrix, b ∈ Z
n is a given integer

vector, and x represents the m unknowns, that if the system has a solution
x ∈ N

m, then it has a “small” solution x′ ∈ N
m. “Small” means that amax(x′)

is at most exponential in n + m + amax(A) + amax(b). The technique of [7]
proceeds by showing that any sufficiently large solution x ∈ N

m \ {0} can be
split into two vectors x1,x2 ∈ N

m \ {0} such that x1 + x2 = x, where Ax1 = 0,
so x2 is also a solution: Ax2 = A(x−x1) = Ax−Ax1 = Ax = b. This is useful
because x1 and x2 satisfy the hypothesis of Lemma 2, which tells us that all
stable configurations α ∈ [x] obey S(α) > 1, so any single-polymer configuration
of x is not stable.

We include the full proof for three reasons: (1) self-containment, (2) it requires
a bit of care to convert our inequality Ax ≥ 0 into an equality as needed for the
technique,11 and (3) although the proof of [7] is sufficiently detailed to prove our
theorem, the statement of the theorem in [7] hides the details about splitting
the vector, which are crucial to obtaining our result.

We require the following discrete variant of Farkas’ Lemma, also proven in [7].

Lemma 3 ([7]). Let a, d, l ∈ Z
+, v1, . . . ,vl ∈ {0,±1, . . . ,±a}d, and K =

(ad)d+1. Then exactly one of the following statements holds:

1. There exist l integers n1, . . . , nl ∈ {0, 1, . . . ,K}, not all 0, such that
∑l

j=1 njvj = 0.

2. There exists a vector h ∈ {0,±1, . . . ,±K}d such that, for all j ∈ {1, . . . , l},
hT · vj ≥ 1.

Intuitively, statement (1) of Lemma 3 states that the vectors can be added
to get 0 (they are “directions of balanced forces” [7]). This is false if and only
if statement (1) holds: the vectors all lie on one side of some hyperplane, whose
orthogonal vector h would then have positive dot product with each of the
vectors vj (thus adding any of them would move positively in the direction h
and could never cancel to get 0).

Intuitively, Theorem 9 states that the size of polymers in stable configura-
tions is upper bounded by a function which is exponential in d. We prove this
by first defining a constant K which is exponential in d. If each of the m indi-
vidual monomer counts is less than K, then we are done since no polymer in the
configuration can have size bigger than mK. If some of the monomer counts are
greater than K (call these large-count monomers), we consider two cases.

For the first case, we consider the scenario where the vectors which describe
the monomer types with large monomer counts are such that they can “balance”
each other out with relatively small linear combination coefficients. If this is

11 In particular, the proof of [7] upper bounds the size of x in terms of the entries of
both A and b. However, the näıve way to solve a linear inequality Ax ≥ 0 using an
equality, by introducing slack variables b and asking for solutions x ∈ N

m, b ∈ N
n

such that Ax = b, allows for the possibility that ‖b‖ is very large compared to ‖A‖,
in which case upper bounding ‖x‖ in terms of both A and b does not help to bound
‖x‖ in terms of A alone.
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the case, then we can make a saturated subconfiguration which has at least
one polymer using these small linear combination coefficients and large-count
monomer types since the domains and codomains completely “balance” each
other out. We can then use the rest of the counts of the configuration to make
another saturated subconfiguration which has at least one polymer. This is shown
mathematically by applying Lemma 3 to show that the monomer counts in the
polymer can be split to find a configuration consisting of two separate saturated
polymers. This means that there is a saturated configuration that has at least
two polymers which contradicts the assumption α is a single stable polymer.

If there exist no such linear combination to “balance out” out the vectors
describing the large-count monomers, then Lemma 3 tells us all of these vectors
lie on the same side of some hyperplane. In this case, we show that counts of
the small-count monomers play a role in bounding the counts of the large-count
monomers. Intuitively, if all of the vectors describing the large-count monomers
lie on the same side of some hyperplane, they are missing domains and codomains
which will allow them to bind together. The domains and codomains they need
in order to bind together, then must be found on the small-count monomer.
Consequently, this means the size of polymers will be bound by the counts of
small-count monomers (which is exponential in K). The proof appears in the
full version of this paper.

Theorem 9. Let T = (D,M) be a TBN with d = |D| and m = |M|. Let
a = max

m∈M,di∈D∪D∗
m(di) be the maximum count of any domain in any monomer.

Then all polymers of every stable configuration α of T have size at most 2(m +
d)(ad)2d+3.
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