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École normale supérieure, CNRS, PSL Research University,

75005 Paris, France
melissa.rossi@ens.fr
4 INRIA, Paris, France

Abstract. QcBits is a code-based public key algorithm based on a
problem thought to be resistant to quantum computer attacks. It is a
constant-time implementation for a quasi-cyclic moderate density parity
check (QC-MDPC) Niederreiter encryption scheme, and has excellent
performance and small key sizes. In this paper, we present a key recov-
ery attack against QcBits. We first used differential power analysis (DPA)
against the syndrome computation of the decoding algorithm to recover
partial information about one half of the private key. We then used the
recovered information to set up a system of noisy binary linear equa-
tions. Solving this system of equations gave us the entire key. Finally, we
propose a simple but effective countermeasure against the power analysis
used during the syndrome calculation.

Keywords: QcBits · Post-quantum cryptography · McEliece ·
Niederreiter · QC-MDPC codes · Side-channel analysis · Differential
power analysis · Noisy binary linear equations · Learning parity with
noise

1 Introduction

1.1 Quantum Computers and Post-Quantum Cryptography

The security of the most commonly-used public key cryptosystems is based on
the difficulty of either the integer factorization problem or the discrete loga-
rithm problem. Unfortunately, both of these problems can be efficiently solved
using quantum computers [36]. Progress in quantum computing has been steady,
and many believe that practical quantum computers will become a reality
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within the next 20 years [12,28]. In fact, the National Security Agency (NSA)
and the National Institute of Standards and Technology (NIST) have both
issued announcements calling for the standardization and transition to post-
quantum public key algorithms in the near future [12,33]. A European initia-
tive, PQCRYPTO, sponsored by the European Commission under its Horizon
2020 Program, published a report entitled “Initial Recommendation of long-term
secure post-quantum systems” [1]. This report recommends the development of
cryptography which is resistant to quantum computers. These concerns about
quantum computers have given research in post-quantum cryptography a great
deal of momentum in the past few years. Some of the most promising directions
include cryptosystems based on lattices, error correcting codes, hash functions,
and multivariate quadratic equations. The mathematical problems upon which
these cryptosystems are based are expected to remain intractable even in the
presence of quantum computers [7].

In this paper, we analyze and successfully attack a code-based post-quantum
public key cryptosystem called QcBits [13]. QcBits (pronounced “quick-bits”)
is a variant of the McEliece public-key cryptosystem [24] based on quasi-cyclic
(QC) moderate density parity check (MDPC) codes [26]. Although the McEliece
cryptosystem in its original form is still regarded as secure, the public keys for the
originally proposed parameters are very large. On the other hand, cryptosystems
based on QC-MDPC codes have much smaller and simpler public and private
keys. The quasi-cyclic form allows the public and private keys to be completely
defined by the first rows of their matrices.

However, it is precisely the quasi-cyclic structure and moderate density of
the private key which allows our attack to succeed. The QcBits secret parity
check matrix is the concatenation of two sparse circulant matrices, denoted H 0

and H 1. We first used differential power analysis (DPA) against H 0 to narrow
down the locations of its nonzero elements. This gave us enough information to
set up a system of noisy binary linear equations, which we could solve with high
probability. Solving these equations gave us both the exact matrix H 0, as well
as the other matrix H 1.

1.2 Previous Related Work

The first code-based public key cryptosystem is due to McEliece [24]. Its security
is based on the difficulty of decoding a random linear code. It has been exten-
sively analyzed since being proposed, and is still regarded as secure in its original
form using Goppa codes. The main drawback of this construction is the size of the
public keys. For the originally proposed parameters these keys contain about 500
Kbits. This drawback motivated the search for secure code-based cryptosystems
with more manageable key sizes [19,23,29,38]. Unfortunately, most of the pro-
posed McEliece variants using codes other than Goppa codes have turned out to
be insecure [14,22,25,27,34,39]. Using QC-MDPC codes to replace Goppa codes
in the McEliece cryptosystem was first suggested by Misoczki et al. in 2013 [26],
and appears to be a promising choice. Some hardware implementations of this
scheme followed in 2013 [18] and 2014 [42].
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QC-MDPC codes are characterized by moderate density parity check matri-
ces in quasi-cyclic form. The quasi-cyclic form allows both the public key and
private key matrices to be completely defined by their first rows, leading to much
smaller key sizes. Also, because of the way the public generator matrix is con-
structed, there is no need for scrambling and permutation matrices. Instead, the
generator matrix is directly presented as a public key in its systematic form.
In [1], the PQCRYPTO group recommends the QC-MDPC scheme for further
study.

QC-MDPC McEliece was originally designed to be secure against chosen
plaintext attacks (CPA) but not against chosen ciphertext attacks (CCA). To
achieve security against adaptive chosen ciphertext attacks, some transforma-
tions were proposed in [4,20]. A hybrid CCA-secure encryption protocol using
QC-MDPC Niederreiter was proposed by Persichetti [32] and implemented by
Von Maurich et al. [43]. QcBits is an implementation of a variant of this protocol
due to Chou in [13]. It operates in a constant time and has very good speed
results and small keys sizes.

Another issue with the QC-MDPC cryptosystems is that they have a non-
negligible probability of decryption failure, with the failure rate depending on
the security parameters. The failure rate was around 10−7 in Misoczki et al.
original proposal [26], and is even worse for constant-time decoders. In [16],
Guo et al. take advantage of the decryption failures to recover the secret key of
Misoczki’s original version in minutes. Preliminary work was done to improve
constant-time decoding algorithms in [10], but they did not improve the failure
rate below 10−7. For CCA-secure versions of QC-MDPC cryptosystems, Guo
et al. proposed a more complex version of their attack that requires at most 350
million decryptions and has a time complexity of 239.7. QcBits is CCA-secure but
it has a more advanced constant-time decoder [13]. Chou claims a failure rate of
10−8 for the 80-bit secure version. Guo et al. still estimate the time complexity for
attacking QcBits to be 255.3, but to our knowledge have not run the attack. They
have not provided estimates against the 128-bit secure version. They proposed
drastically reducing the decoding failure probability as countermeasure against
this attack, but no details about how to do so have been published.

Side-channel attacks against code-based schemes have focused more on the
original version of the McEliece cryptosystem based on Goppa Codes. Timing
leakages were first studied in [41]. This was followed by Strenzke and Shoufan
et al., who performed a key recovery attack using timing analysis [37,40]. Heyse
et al. performed a simple power analysis (SPA) attack against software imple-
mentations of classic McEliece algorithm [17]. In [11], Chen et al. describe a
differential power analysis (DPA) [21] key recovery attack against a QC-MDPC
FPGA McEliece implementation. To our knowledge, no DPA attacks have been
performed on CCA-secure constant-time versions of QC-MDPC McEliece.

Our attack also includes solving a learning parity with noise (LPN) prob-
lem. We set up and solve a system of noisy binary linear equations to com-
plete the key recovery. Solving such systems has a long history in cryptanalysis,
with many different methods used depending upon the specifics of the problem.
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See Belaid et al. in [2,3] for recent examples of such attacks. Our system of
equations has very low noise. We therefore used an elementary method which,
for very low noise systems (1%), was shown in [35] to be more efficient than the
Blum-Kalai-Wasserman (BKW) algorithm [9].

1.3 Our Contribution

In this paper we present a side-channel assisted cryptanalytic attack against
QcBits. In contrast to Guo et al.’s attack in [16], our attack focuses on the first
step of the decoding process, and is independent of its failure probability. Our
attack only requires us to observe a small number of decryptions (about 200
power traces for the implementation we analyzed), and we need to analyze less
than 1% of each trace. Our attack also works for both the 80-bit and 128-bit
security versions.

Our attack consists of two steps:

1. A DPA attack targeting the syndrome computation of the decryption oper-
ation. The operation uses half of the private key, and during this step we
recover some information about that half of the key. Because of the way
in which the implementation leaks, there is some ambiguity as to the exact
location of the nonzero elements of the key.

2. A linear algebra computation which takes advantage of the sparseness of the
private key and succeeds with high probability. We repeat this operation
(varying the equations slightly each time) until the computation succeeds.
This allows us to recover the entire secret key.

The number of traces required in the first step will of course depend upon the
implementation and hardware on which it is run. The amount of work required
for the second step will depend on how much information is recovered in the first
step. For the implementation and hardware we used for our analysis, the DPA
attack required about 200 power traces in Step 1. The work factors in Step 2
were 224 for the 80-bit security version, and 227 for the 128-bit security version.
See Sect. 4 for details.

1.4 Paper Roadmap

In Sect. 2, we describe the QcBits cryptosystem introduced by Chou in [13]. In
Sect. 3, we describe the DPA attack we used to recover information about the
private key. In Sect. 4, we present the algebraic attack we implemented recovering
the entire private key. In Sect. 5, we describe a simple countermeasure to help
protect against our attack. Finally, in Sect. 6, we summarize our results and
discuss future research.

2 Description of the QcBits Cryptosystem

2.1 Definitions

Definition 1 (Circulant matrix). A r × r matrix is a circulant matrix if its
rows are successive cyclic shifts of its first one.



A Side-Channel Assisted Cryptanalytic Attack Against QcBits 7

Definition 2 (Quasi-cyclic matrix). A matrix H = (H0, ...,Hm) is a quasi-
cyclic (QC) matrix if the submatrices H0, ...,Hm are circulant matrices.

Definition 3 (QC-MDPC code). An (n, r, w)-QC-MDPC code is a binary
linear code with n-bit codewords and dimension r which is defined by a QC
Moderate Density Parity Check (MDPC) matrix H.

C = {x ∈ F
n
2 |H · xT = 0}. (1)

In other words, the codewords are all the vectors in the right nullspace of H
which is QC and has a “moderate density”. “Moderate” here means that H has
a constant row weight w = O(

√
n.log(n)).

2.2 QC-MDPC Codes Used for QcBits

QcBits uses (n, r, w)-QC-MDPC binary codes with n = 2r. The parity check
matrix in its QC-MDPC form is then composed of 2 square sparse circulant
matrices

H = (H 0,H 1) ∈ F
r×n
2 (2)

The generator matrix in its systematic form is the r × n binary matrix

G = (I ,P) (3)

where I is the r × r identity matrix and P is an r × r dense binary circulant
matrix

P = (H−1
1 · H 0)T (4)

The reader can easily verify that H ·GT = 0 , so the rows of G form a basis for
the codewords. An r-bit data vector x is encoded by multiplying it by G:

c = x · G. (5)

Let e be a n-bit error vector, and ĉ the corrupted codeword

ĉ = c ⊕ e = x · G ⊕ e . (6)

In the general case, decoding a corrupted codeword (i.e., removing its errors)
from a random binary linear code is an NP-hard problem [5]. However, if the
QC-MDPC parity check matrix H = (H 0,H 1) is known and the Hamming
weight of e is not too large, there are efficient algorithms for decoding corrupted
QC-MDPC codewords. There is no known efficient algorithm if the two sparse
circulant matrices H 0 and H 1 are not known. The most commonly-used decod-
ing algorithm is the probabilistic bit-flipping algorithm introduced by Gallager
in [15]. See Sect. 2.3 for details.

For the bit-flipping decoding algorithm on QC-MDPC codes, the maximum
allowed number of bit errors, denoted t, is an estimated value. In [26] the authors
determined values for QC-MDPC code parameters (n, r, w, t) which would provide
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the desired security levels, while keeping the probability of a decoding failure as
low as possible (<10−7). The parameters they selected are shown in Table 1.

Table 1. Proposed QC-MDPC instances with security level

n r w t Bits of security

9602 4801 90 84 80

19714 9857 142 134 128

For the remainder of this paper, we focus on QC-MDPC codes with the
two parameter sets (n, r, w, t) from Table 1. The private key of QcBits is the
QC-MDPC parity check matrix H priv:

H priv = (H 0,H 1) (7)

where H 0,H 1 ∈ F
r×r
2 are randomly generated circulant matrices with weight w

2
in each row. The private key is sparse, so only the indices of the nonzero values
of the first row are stored. Knowing the private key, one can use the bit-flipping
decoding algorithm to recover a codeword which has been corrupted by up to t
errors.

The public key is computed directly from the private key H priv as the dense
circulant r × r matrix P :

P = (H−1
1 · H 0)T . (8)

Knowing P allows anyone to build the generator matrix in its systematic form
Gpub and a parity check matrix H pub :

Gpub = (I ,P), (9)

H pub = (PT , I ). (10)

2.3 QcBits Encryption and Decryption Algorithms

QcBits is an hybrid CCA-secure encryption protocol based on Niederreiter [29].
Unlike McEliece cryptosystem, Niederreiter uses the parity-check matrix rather
than the generator matrix for the encryption. QcBits uses the following crypto-
graphic primitives. See [13] for more details.

1. A hash function denoted Hash. QcBits uses Keccak [31];
2. A symmetric stream cipher denoted (Senc,Sdec). QcBits uses Salsa20 [8];
3. An authentication function denoted (Tag,Check). QcBits uses Poly1305 [6].
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The encryption of a message m using QcBits is shown in Algorithm 1.

Algorithm 1. QcBits encryption
Data: Plaintext m , Public matrix P
Result: Ciphertext (c|d |g)

1 e ← $ // Drawing a random n-bit error vector with Hamming weight t
2 key ← Hash(e);
3 cT ← (I ,P−T ) · eT ∈ F

r
2 ;

4 d ← Senc(key ,m) ;
5 g ← Tag(key);
6 Return (c|d |g);

The reader can verify that (c|0 ) ∈ F
n
2 is a codeword corrupted with the error e .

The encrypted message d has the size of the plaintext m , as it is encrypted with
a stream cipher. The message authenticator g is 16 bytes in length.

We next describe the bit-flipping algorithm, which is used by the decryption
algorithm. Given a vector that is at most t errors away from a codeword, the bit
flipping algorithm attempts to recover the codeword (or equivalently the error)
using a sequence of iterations. During each iteration the algorithm decides which
of the n positions of the input vector are most likely to be wrong, and inverts
those bits. The resulting vector then becomes the input to the next iteration.
In QcBits, the bit-flipping algorithm performs a total of jmax = 6 iterations.
It uses the precomputed thresholds Thresh[0, . . . , 5] = [29, 27, 25, 24, 23, 23] in
each iteration to determine which bits should be flipped. The bit-flipping process
is shown in Algorithm 2.

Algorithm 2. Bit Flipping
Data: H priv ∈ F

r·n
2 ,x ∈ F

n
2

Result: Corrected codeword v
1 v ← x ;
2 S ← H priv · vT // Syndrome computation;
3 for j ∈ {0, jmax} do
4 for i ∈ {0, ..., n − 1} do
5 σi ← 〈S ,h i〉 ∈ Z // h i denotes the i-th column of H ;
6 if σi ≥ Thresh[j] then
7 v i ← v i ⊕ 1
8 end
9 end

10 S ← H priv · vT

11 end
12 Return the codeword v
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Algorithm 3 shows the decryption process. First, (c|0 ) ∈ F
n
2 gets decoded.

The bit-flipping returns the error e . Then, the decryption hashes e to compute
the symmetric key, verifies the tag g , and decrypts the second part of the cipher-
text, d .

Algorithm 3. QcBits decryption
Data: Ciphertext (c|d |g), Private key H priv = (H 0,H 1)
Result: Plaintext m or ⊥

1 s← (c | 0 ) ∈ F
n
2 ;

2 e ← Bit-Flipping(H priv, s) ⊕ s;
3 key ← Hash(e);
4 if Check(key, g) then
5 Return m ← Sdec(key ,d)
6 else
7 Return ⊥
8 end

We performed our side-channel attack against the use of the secret parity
check matrix H priv during Step 2 in Algorithm2. This gave us enough informa-
tion after just a few decryptions to complete the cryptanalytic attack. This is
in contrast to the attack of Guo et al., who obtained information about the key
during the low-probability failures of Algorithm3. We describe our attack in the
next two sections.

3 Differential Power Analysis Attack Against QcBits

In this section, we describe how we used DPA to recover some partial information
about the secret matrix H 0. Our attack targets the syndrome calculation at the
start of the bit-flipping algorithm, and recovers partial information about H 0.

3.1 General Leakage Model

We analyzed the C code of QcBits and identified the syndrome computation
of the bit-flipping decoding (Step 2 in Algorithm2) as a candidate for a DPA
attack:

H priv ·
(
cT

0

)
= (H 0,H 1) ·

(
cT

0

)
= H 0 · cT (11)

where c ∈ F
r
2 is the first part of the ciphertext. We will focus our attention on

this computation.
Let {x0, ..., x(w

2 −1)} denote the unknown indices of the nonzero elements of
h0, the first row of H 0. Because H 0 is a circulant, it is uniquely defined by the
xi, and is represented in QcBits as a list of these indices. Due to its structure,
the matrix H 0 can be decomposed as a sum of w

2 rotation matrices

H 0 = Rx0 + ... + Rx(w
2 −1)

. (12)
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Multiplying cT by Rxi
, 0 ≤ i ≤ w

2 − 1, results in a left circular shift of c by xi

positions:
Rxi

· cT = rxi
(c)T . (13)

Hence the multiplication in Eq. 11 can be accomplished by computing the
rotated ciphertexts rxi

(c), 0 ≤ i ≤ w
2 − 1, and XORing them all together:

H 0 · cT =

w
2 −1⊕

i=0

rxi
(c)T . (14)

In fact, this is how the multiplication is performed in the QcBits implementation.
In a loop, each rotated vector rxi

(c) is stored into a temporary memory location
as it is calculated, and then XORed with the partial XOR sum from the previous
loop iteration:

Si = Si−1 ⊕ rxi
(c) =

i−1⊕

j=0

rxj
(c) ⊕ rxi

(c). (15)

Our side-channel analysis model assumes that the power consumption of the
device depends on whether the leftmost bit (bit position 0) of each rotated vector
rxi

(c) is either 0 or 1 when it is stored to memory. Note that bit xi of c is rotated
into bit position 0 by rxi

and into bit position 1 by rxi−1 . We therefore expect
the device to leak for multiple guesses near the correct value, with the number
of guesses exhibiting leaks related to the native word size of the device.

3.2 The Experiment Setup

We used the reference C version of QcBits1 with 80 and 128 bits of security. We
ported the code to run on ChipWhisperer evaluation platform designed by Colin
O’Flynn [30]. The ChipWhisperer is a board composed of a programmable chip
(Atmel AVR XMEGA128) and an on-board power-measurement circuit that
can be connected to a PC via USB interface. An open-source python software is
available that can be used to communicate with the chip, for example, to send
encryption or decryption commands to the AVR. In order to measure the power
consumption, the board features an analog to digital converter (OpenADC) that
allows synchronous clocking to the AVR’s clock. The clock frequency is fixed at
7.37 MHz. The signal is amplified with up to 55 dB gain and the power traces
were sampled at a 96 MS/s rate.

We then generated a set of N known, random values {c0, ..., cN−1} ∈ F
r
2.

These were padded with zeros and passed to the bit-flipping Algorithm2. Since
they were randomly generated, the zero-padded values were almost certainly
not codewords corrupted by at most t errors. As we were attacking the syn-
drome calculation at the beginning of the bit-flipping algorithm, however, we
were not concerned with whether these values could be decoded properly. If
properly formed ciphertext was required by the implementation, it could have
been computed using the public-key information.
1 Available at http://www.win.tue.nl/∼tchou/qcbits/.

http://www.win.tue.nl/~tchou/qcbits/
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Fig. 1. Power trace of the first rotated ciphertext computation.

Figure 1 shows a typical power trace during the computation of one cipher-
text rotation rxi

(c) in QcBits. After the computation, the result is stored into
memory, which can be seen in the power trace at the very end of the rotation
operation. Figure 2 zooms into the store operation where the first 64-bits of the
rotated value are written to memory. Because the XMEGA is an 8-bit archi-
tecture, we can observe eight different power patterns which are related to the
storing of each 8-bit value from internal registers into internal RAM. We col-
lected 13, 000 traces of that operation for each key index, which was sufficient
for our analyses. To characterize the leakage behavior of the device, we analyzed
25 different key indices, varying both the secret value and the loop iteration in
which it gets XORed into the partial sum in Eq. 15.

Fig. 2. Storing of the first 64 bits of the result of the rotation.

We attacked the unknown values {x0, . . . , x(w
2 −1)} sequentially using stan-

dard DPA. We first made guesses for all possible values for the unknown x0.
Given the size of the secret matrix H 0 this is clearly an exhaustible parameter.
For each of those guesses, we sorted the traces Tj into two partitions based on
whether the leftmost bit of the each rotated vector {rx0(c0), ..., rx0(cN−1)} was
a zero or a one. We averaged the traces in the two partitions separately and com-
puted the difference of the averages. Large spikes in the difference trace indicated
a leak of information. As will be discussed in the next section, multiple guesses
for each xi exhibited significant leaks. This is due to how the algorithm was
implemented, and how the hardware on the evaluation board leaked. We discuss
how we resolved this ambiguity in Sect. 4. The DPA process is then repeated for
each of the unknowns xi.
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3.3 DPA Results

Figure 3 shows the result of the DPA targeting for all possible values xi using
500 power traces on the 80-bit version. The device clearly shows a significant
leakage around the correct index (value 2, 000 in this experiment). However, it
also shows that there are other indices leaking, for example, the indices 1,985
up to 2,000 show similar Difference of Mean (DoM) values. We performed DPA
attacks targeting other unknown indices of h0 and identified a particular leakage
model. For a given secret index xi, the device always leaks for 16 consecutive
guesses starting at index

yi = 
 (xi − 1) mod r

64
� · 64 + 1, (16)

which is 
 2000−1
64 � · 64 + 1 = 1985 in our example.

Fig. 3. Maximum Difference of Means (DoM) using 500 traces over all possible values
xi. Significant difference is observed for around the correct index 2000.

This gives us 64 different possible values for xi. Complicating matters is
that there isn’t always a DPA peak for the correct secret index because the
device leaks only for 16 consecutive guesses. For example, if xi = 2030, then
yi = 
 2030−1

64 � · 64 + 1 = 1985 and the device will show leaks only for the
16 consecutive guesses from (1,985 to 2,000). Fortunately, more information is
available if we look at the times at which the leaks occur.

We observed that the leak corresponding to yi can appear in one of 8 different
time locations corresponding to the 8-bit AVR memory-store operations. These
8 positions can be seen in Fig. 4. The upper plot shows the DPA results for
the indices 1,985 to 1,992 (drawn in black) and other index values from 0 to
1,984 (drawn in gray). The lower plot shows the results for the indices 1,993 to
2,000, and other index values from 2,001 to 4,800. The leakage occurs during
two 8-bit AVR memory-store operations near sample points 146 and 172. We
discovered that the time location at which the leak for guess yi occurs gives us
more information about the correct value xi.

Let qi ∈ {0, ..., 7} denote the location at which the leak corresponding to
guess yi occurs. It turns out that qi is related to xi by Eq. 17:

qi = 7 − 
 (xi − 1) mod 64
8

� ∈ {0, ..., 7}. (17)
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Fig. 4. Upper plot shows the DPA result using indices from 1,985 to 1,992 (drawn in
black), the lower plot shows the result using indices from 1,993 to 2,000 (drawn in
black). Other indices are drawn in gray.

In our example, qi = 7 − 
 2000−1 mod 64
8 � = 6th position. In Fig. 4, we see that

the leak corresponding to yi = 1985, in the upper plot, is in the 6th location.
Hence, using power analysis we were able to recover a pair of values (yi, qi)

which narrows down the choice of xi to one of 8 possible values. Given (yi, qi),
there are only 8 possible values for xi which satisfy both Eqs. 16 and 17:

xi ∈ Zi = [yi + (7 − qi) × 8, yi + (7 − qi) × 8 + 7]. (18)

In our example we measured (yi, qi) = (1985, 6), and therefore deduce that
Zi = [1993, 2000].

3.4 About the Index Search Intervals Zi

We denote by α the length of index search intervals Zi. In a sense, α repre-
sents the precision of the DPA analysis. Our attack gave us search intervals of
length α = 8, which actually equals to the word width of the underlying AVR
architecture. We assume that on other devices, with different architectures and
word lengths, our attack could yield search intervals with different lengths. For
example, on a 64-bit device, the search interval could have length α = 64. We
will see in Sect. 4 that the algebraic part of the attack is not feasible for such
a large value of α. In this case, we recommend looking for ways to improve the
precision of the power analysis step to reduce the size of the search intervals, or
using a stronger method than we did for solving the noisy system of equations.

It may be the case that different secret indices lie in the same interval Zi. We
denote by β the total number of unique search intervals Zi. Note that β satisfies
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β ≤ w
2 . In our experiments, we needed around 100–200 traces to identify all β

intervals of size α = 8 containing the nonzero elements of h0. Figure 5 illustrates
the intervals recovered.

Fig. 5. Partial knowledge of h0 after the DPA attack.

4 Recovering the Rest of the Key

In this section we describe how we used the partial information discovered by
our DPA attack to recover the rest of the key. A brute force attack could take
up to α

w
2 calculations, which would be infeasible. However, the sparseness of the

private key enables a much more efficient attack.
We simply choose a large number of private key bit positions at random, and

hope that all the bits in those positions are 0. Since over 99% of the private key
bits are 0, our guess will be correct with non-negligible probability. Combined
with the information recovered in the DPA attack, this will give us enough linear
equations to solve for the private key. A more sophisticated attack might work
with less information recovered, but our attack is sufficient for α up to 32.

4.1 Cryptanalytic Attack Using Partial Information of Secret Key

Recall that the public key is P = (H−1
1 ·H 0)T . Setting Q = P−1 we rearrange

and write
Q · H T

0 = H T
1 . (19)

The matrices H 0 and H 1 are sparse circulants defined by their first rows h0

and h1 respectively. We can therefore write 19 as the system of linear equations

Q · hT
0 = hT

1 (20)

where Q is dense and known, h0 is sparse and partially known as shown in
Fig. 5, and h1 is sparse and unknown.

We now use the information we recovered about h0 to help us completely
solve the system of Eq. in 20. First, we know the β intervals {Z 0, ...,Z β−1} of
length α which contain all the nonzero entries of h0. All the entries of h0 outside
these intervals are known to be zero. We can therefore remove from our system
of equations the zero-valued entries of h0, and the corresponding columns of Q .
This leaves us with a new system of equations

Q ′ · h ′ T
0 = hT

1 (21)
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where h ′
0 = (Z 0, ...,Z β−1) is the vector of length αβ obtained by concatenating

the variables in the intervals containing the nonzero entries of h0, and Q ′ is the
r × αβ matrix obtained by removing from Q the columns corresponding to the
zero-valued entries of h0. This step is illustrated in Fig. 6 below. We use the
color gray to represent the removed variables.

Fig. 6. Removing the columns of Q

The DPA attack allows us to know if two or more secret indices lie in the same
interval Zi. We therefore know the number of nonzero values of each interval of
h0 and use this information to add parity equations to the system. Let bi denote
the number of nonzero values of the interval Z i modulo 2. Then

bi = (1, 1, ..., 1) · Z T
i . (22)

There will be exactly β such equations. Let b = (b0, ..., bβ−1) and W be the
β × αβ matrix which for row i, 0 ≤ i < β, has ones in positions j for i ·
α ≤ j < (i + 1) · α and zeros elsewhere. We can then extend our system of
equations to include the parity equations by appending W to the bottom of Q ′

and appending b to h1. The new extended (r + β) × αβ system of equations is
shown in Fig. 7 below.

Fig. 7. Adding the parity equations

We don’t know the vector h1. However, it is generated to be an extremely
sparse vector and the entries are zero with probability 1 − w

2r > 0.99. Suppose
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we create a square αβ × αβ system of equations by randomly selecting β(α − 1)
entries from h1, and keeping the corresponding rows of Q ′. We also retain all
the parity information W and b. Then the probability p that all the randomly
selected entries from h1 are zero is

p =
number ofh1 for which guess is right

total possible number ofh1
(23)

=

(
r−β(α−1)

w
2

)

(
r
w
2

) =
(r − β(α − 1))!(r − w

2 )!
r!(r − β(α − 1) − w

2 )!
(24)

The expected number of attempts before finding a subvector of h1 with all zeros
entries is 1

p . Table 2 gives an estimation of this, using the parameters proposed
for QcBits and assuming the worst case of β = w

2 .

Table 2. Approximate number of attempts in the worst case

α = 8 16 32 64

80-bit 22 950 223 258

128-bit 40 3500 226 264

The last step in the attack proceeds as follows. We randomly select β(α − 1)
entries of h1, and guess that they are all zero. We also extract the corresponding
rows of Q ′ and denote the resulting matrix Q ′′. We retain all the parity infor-
mation W and b as well, giving us a square αβ × αβ system of equations. This
process is shown in Fig. 8 below. Here the color gray represents the rows that we
keep.

Fig. 8. Selecting random positions in h1 and corresponding rows of Q ′

Finally, we solve the system of equations
(
Q ′′

W

)
· h ′ T

0 =
(
0

bT

)
(25)
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If all the selected entries of h1 are actually zero, then the correct value of h ′
0 is

among the solutions. We then look for a solution vector h ′ T
0 with weight exactly

w
2 , and we also check that Q · hT

0 has weight exactly w
2 . If this is the case, we

have found h0, and h1 can be computed directly from it. If this is not the case,
the selected entries of h1 are not all zero and a suitable solution will not be
found. We then keep repeating the final step with different random subvectors
of h1 until a solution is found.

4.2 Attack Complexity

To compute the attack’s complexity, we include the cost of repeatedly solving
αβ × αβ systems of binary linear equations. For our estimates, we assume the
worst case, in which β = wα

2 . As for solving the system, Vassilevska Williams
has an algorithm which can solve such a system with complexity (wα

2 )2.373 [44].
Hence the average total complexity of the algebraic part of our attack is

1

p
· (wα

2
)
2.373

(26)

In our experiments, the DPA attack gave us α = 8. Hence, the total average
complexity of our key recovery attack is 224 for the 80-bit security version, and
227 for the 128-bit security version.

4.3 Experimental Results

We verified the algebraic part of our attack using SAGE on one core of a 2.9 GHz
Core i5 MacBook Pro. We tested the attack for α ∈ {8, 16, 32}. For α ∈ {8, 16}
we had a 100% success rate with a bounded number of iterations. We successfully
recovered the secret key in each test, with at most 10, 000 iterations. For α = 32
with 80 bits of security, the expected time in the worst case of β = w

2 is around
16 h. For α = 32 with 128 bits of security, and α = 64, we estimated the expected
times based on our experiments with the other α values.

The results are shown in Table 3, and the times shown exclude the preparation
step of computing the initial matrix Q ′. Since the main loop of the attack is based
on guessing subsets of the equations until a guess is correct, it is completely
parallelizable. Thus the results should scale inversely with the number of cores
used to perform the attack.

Table 3. Approximate solving times in SAGE on one core

α = 8 16 32 64

80 bits 0.4 s 15 s 16 h ≈530 years

128 bits 2 s 4 min ≈ 7 days ≈790,000 years
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5 Attack Countermeasure

We propose a simple masking technique to help defend against side channel
attacks during the syndrome calculation in QcBits. Since QC-MDPC codes are
linear, the XOR of two codewords is another codeword. Also, all codewords are
in the nullspace of the parity check matrix H priv. We can therefore mask the
corrupted codeword (c|0 ) by XORing it with a random codeword cm before
passing it to the syndrome calculation. This does not change the outcome of the
syndrome calculation since

H priv · ((c|0 ) ⊕ cm)T = H priv · (c|0 )T ⊕ H priv · cT
m = H priv · (c|0 )T . (27)

It does effectively mask the DPA leak we exploited, however. Figure 9 shows
the difference of means for all possible guesses for xi with this countermeasure
implemented. In contrast to Fig. 3, there is no significant spike for any of the
guesses.

Fig. 9. Maximum Difference of Means (DoM) using 500 traces over all possible values
xi when the countermeasure is enabled. The right key index is 2000.

This countermeasure is of course only effective during the syndrome calcula-
tion. Additional side-channel countermeasures would be required to protect the
private key during other calculations such as the bit flipping algorithm.

6 Conclusions

In this paper we described a key recovery attack against QcBits. We first per-
formed power analysis to recover partial information about the key. We then
used that information to set up and solve a system of noisy binary linear equa-
tions. Solving that system recovered the entire key. Finally, we proposed a simple
countermeasure which was effective against the power analysis we performed in
the attack.

QcBits has sparse, highly structured private keys. The sparseness is required
for the decoding algorithm to work. The quasi-circulant nature of the keys is
essential for small key sizes and efficient calculations. We exploited both these
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features in our attack. Another characteristic of QcBits and other code-based
algorithms is that the Hamming weight of the noise added to codewords during
encryption must be modest enough that the corrupted word can be decoded.

Many proposals for post-quantum cryptography are based on noisy linear
systems: lattices, learning with errors or error-correcting codes. In terms of
side-channel resilience, these systems have an important difference from systems
based on number-theoretic problems. Leaking a few bits of a number-theoretic
system may open up a new avenue of attack, but it usually doesn’t directly con-
tribute to solving the underlying hard problem. For noisy linear systems, leaking
a few bits of the secret is likely to directly erode the difficulty of the underlying
hard problem. Therefore designers and analysts may wish to consider the risks of
side-channel analysis when evaluating post-quantum cryptographic algorithms.
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