
Wieland Fischer
Naofumi Homma (Eds.)

 123

LN
CS

 1
05

29

19th International Conference
Taipei, Taiwan, September 25–28, 2017
Proceedings

Cryptographic Hardware
and Embedded Systems –
CHES 2017

Lecture Notes in Computer Science 10529

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Wieland Fischer • Naofumi Homma (Eds.)

Cryptographic Hardware
and Embedded Systems –
CHES 2017
19th International Conference
Taipei, Taiwan, September 25–28, 2017
Proceedings

123

Editors
Wieland Fischer
Infineon Technologies
Neubiberg, Bayern
Germany

Naofumi Homma
Tohoku University
Sendai-shi
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-66786-7 ISBN 978-3-319-66787-4 (eBook)
DOI 10.1007/978-3-319-66787-4

Library of Congress Control Number: 2017951309

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 19th International Conference on Cryptographic Hardware and Embedded Systems
(CHES 2017) was held in Taipei, Taiwan, during September 25–28, 2017. The con-
ference was sponsored by the International Association for Cryptologic Research.

CHES 2017 received 130 submissions. Each paper was anonymously reviewed by
at least four Program Committee members in a double-blind peer-review process.
Submissions co-authored by PC members received at least five reviews. With the help
of 212 external reviewers our 48 Program Committee members wrote a total of 552
reviews. CHES continued the policy that submissions needed to closely match the final
versions published by Springer in length and format. Additionally, the new paper
submission policy from last year was applied whereby authors needed to indicate
conflicts of interest with Program Committee members. A rebuttal process comple-
mented again the review process and the Program Committee finally selected 33 papers
for publication in these proceedings.

Of the two papers that were nominated for the CHES 2017 best paper award, the
Program Committee decided to give the award to Nanofocused X-Ray Beam to
Reprogram Secure Circuits by Stéphanie Anceau, Pierre Bleuet, Jessy Clédière,
Laurent Maingault, Jean-luc Rainard, and Rémi Tucoulou. The second nominee was
High-Order Conversion from Boolean to Arithmetic Masking by Jean-Sébastien Coron.
Together with Blockcipher-Based Authenticated Encryption: How Small Can We Go?
by Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi all three
papers were invited to submit extended versions to the Journal of Cryptology.

The technical program was completed by an invited talk by Shih-Lien Lu from
TSMC about HW Security: A Foundry Perspective. Furthermore, CHES 2017 also
featured a poster session, which was kindly chaired by Oscar Reparaz. As in previous
years, two tutorials on the first day of the conference were held: one by Colin O’Flynn
on Side Channel Live! and one by Tim Güneysu on Post-Quantum Cryptography for
Embedded Systems.

Many people contribute to such a big conference. First of all, we would like to thank
all the authors who submitted their excellent research to CHES 2017. After all, it is
their results that the conference is about and without them, it would not exist. We are
very much indebted to the members of the Program Committee and their external
reviewers for their effort over an extended period of time to select the papers for the
program. The review process and the editing of the final proceedings were greatly
supported by the software written by Shai Halevi. We further thank the general chairs,
Chen-Mou Cheng and Bo-Yin Yang, for organizing all aspects of the conference in
such a great location. A special thanks goes to Peter Schwabe who provided us with his
pleasant website. We always could count on his prompt support. We are grateful to

Emmanuel Prouff, Thomas Baignères, Matthieu Finiasz, Pascal Paillier, and Matthieu
Rivain, who organized our CHES challenge and to Oscar Reparaz, who served as the
poster session chair. We are also grateful for the financial support received from our
many generous sponsors.

July 2017 Wieland Fischer
Naofumi Homma

VI Preface

CHES 2017

19th Conference on Cryptographic Hardware
and Embedded Systems

Taipei, Taiwan,
September 25–28, 2017

Sponsored by the International Association for Cryptologic Research

General Chairs

Chen-Mou Cheng National Taiwan University, Taiwan
Bo-Yin Yang Academia Sinica, Taiwan

Program Chairs

Wieland Fischer Infineon Technologies, Germany
Naofumi Homma Tohoku University, Japan

Program Committee

Diego Aranha University of Campinas, Brazil
Josep Balasch KU Leuven, Belgium
Lejla Batina Radboud University, The Netherlands
Olivier Benoit Qualcomm Technologies, Inc., USA
Daniel J. Bernstein University of Illinois at Chicago, USA
Guido Marco Bertoni STMicroelectronics, Italy
Tung Chou Technische Universiteit Eindhoven, The Netherlands
Christophe Clavier Université de Limoges, France
Elke De Mulder Rambus, Cryptography Research Division, USA
Hermann Drexler Giesecke & Devrient, Germany
Thomas Eisenbarth Worcester Polytechnic Institute, USA
Junfeng Fan Open Security Research, China
Viktor Fischer Hubert Curien Laboratory, University of Lyon, France
Pierre-Alain Fouque Université de Rennes 1, France
Berndt Gammel Infineon Technologies, Germany
Benedikt Gierlichs KU Leuven, Belgium
Christophe Giraud Oberthur Technologies, France
Jorge Guajardo Robert Bosch LLC, Research and Technology Center,

USA
Sylvain Guilley TELECOM-ParisTech and Secure-IC, France

Tim Güneysu University of Bremen & DFKI, Germany
Johann Heyszl Fraunhofer AISEC, Germany
Éliane Jaulmes ANSSI, France
Marc Joye NXP Semiconductors, USA
François Koeune Université catholique de Louvain, Belgium
Yuichi Komano Toshiba, Japan
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Tancrède Lepoint SRI International, USA
Yang Li Nanjing University of Aeronautics and Astronautics,

China
Victor Lomné LIRMM/University of Montpellier, France
Paolo Maistri CNRS, TIMA Laboratory, France
Mitsuru Matsui Mitsubishi Electric, Japan
Marcel Medwed NXP Semiconductors Austria GmbH, Austria
Amir Moradi Ruhr-Universität Bochum, Germany
Debdeep Mukhopadhyay Indian Institute of Technology Kharagpur, India

and Nanyang Technological University, Singapore
David Oswald The University of Birmingham, UK
Dan Page University of Bristol, UK
Francesco Regazzoni ALaRI - USI, Switzerland
Matthieu Rivain CryptoExperts, France
Erkay Savaş Sabanci University, Turkey
Patrick Schaumont Virginia Tech, USA
Jörn-Marc Schmidt secunet, Germany
Sergei Skorobogatov University of Cambridge, UK
Marc Stöttinger Continental Teves, Germany
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Michael Tunstall Rambus, Cryptography Research Division, USA
André Weimerskirch Lear Corporation, USA
Brecht Wyseur Kudelski Security, Switzerland
Dai Yamamoto Fujitsu Laboratories Ltd., Japan

External Reviewers

Elie Noumon Allini
Wang An
Philippe Andouard
Tomer Ashur
Jean-Philippe Aumasson
Aydin Aysu
Florian Bache
Johanna Baehr
Jean-Claude Bajard
Max Baker
Subhadeep Banik

Guillaume Barbu
Alberto Battistello
Sven Bauer
Georg T. Becker
Sonia Belaïd
Molka ben Romdhane
Florent Bernard
Pauline Bert
Francesco Berti
Scott Best
Shivam Bhasin

Sarani Bhattacharya
Begül Bilgin
Marc Blanc-Patin
Markus Bockes
Lilian Bossuet
Guillaume Bouffard
Christina Boura
Jakub Breier
Samuel Burri
Yang Cao
Sébastien Carré

VIII CHES 2017

Gizem Çetin
Colin Chaigneau
Ou Changhai
Urbi Chatterjee
Chien-Ning Chen
Cong Chen
Jiun-Peng Chen
Abdelkarim Cherkaoui
Brice Colombier
John Connor
Edouard Cuvelier
Joan Daemen
Wei Dai
Nilanjan Datta
Eloi de Chérisey
Ruan de Clercq
Nicolas Debande
He Debiao
Jeroen Delvaux
Jérémie Detrey
Yarkin Doroz
Milos Drutarovsky
Cécile Dumas
Karim Eldefrawy
Zhang Fan
Benoît Feix
Francesc Fons
Tom Forest
Marc Fyrbiak
Georges Gagnerot
Adriano Gaibotti
Flavio Garcia
Benoît Gérard
Gilbert Goodwill
Dahmun Goudarzi
Vincent Grosso
Giuseppe Guagliardo
Oscar Guillen
Berk Gulmezoglu
Patrick Haddad
Carl-Daniel Hailfinger
Zhang Hailong
Mike Hamburg
Nabil Hamzi
Helena Handschuh
Francisco Rodríguez

Henríquez

Lars Hoffmann
Yohei Hori
Li Huiyun
Michael Hutter
Dirmanto Jap
Jérémy Jean
Anthony Journault
Bernhard Jungk
Koray Karabina
Elif Bilge Kavun
Ilya Kizhvatov
Roman Korkikian
Archanaa

Santhana Krishnan
Tanja Lange
Sandra Lisa Lattacher
Wen-Ding Li
Zheng Liu
Weiqiang Liu
David Lubicz
Aaron Lye
Takanori Machida
Pieter Maene
Cédric Marchand
Mark Marson
Pedro Maat Massolino
Philippe Maurine
Silvia Mella
Filippo Melzani
Wil Michiels
Jelena Milosevic
Xiaoyu Min
Tarik Moataz
Maria Chiara Molteni
Thorben Moos
Sumio Morioka
Daisuke Moriyama
Nicky Mouha
Ugo Mureddu
Bruce Murray
Köksal Mus
Zakaria Najm
Kashif Nawaz
Ventzislav Nikov
Tobias Oder
Naoki Ogura
Thomaz Oliveira

Jheyne N. Ortiz
Elisabeth Oswald
Erdinç Öztürk
Paolo Palmieri
Kostas Papgiannopoulos
Sikhar Patranabis
Conor Patrick
Sylvain Pelissier
Hervé Pelletier
Fernando Magno Quintao
Pereira
Ludovic Perret
Edoardo Persichetti
Mert D. Pesé
Jonathan Petit
Oto Petura
Christian Pilato
Thomas Plos
Christina Plump
Thomas Pöppelmann
Ilia Polian
Yuriy Polyakov
Axel Poschmann
Romain Poussier
Emmanuel Prouff
Jürgen Pulkus
Prasanna Ravi
Christof Rempel
Guénaël Renault
Joost Renes
Oscar Reparaz
Léo Reynaud
Bastian Richter
Franck Rondepierre
Sujoy Sinha Roy
Debapriya Basu Roy
Vladimir Rožić
Sayandeep Saha
Durga Prasad Sahoo
Kazuo Sakiyama
Peter Samarin
Niels Samwel
Manuel San Pedro
Pascal Sasdrich
Alexander Schaub
Falk Schellenberg
Alexander Schlösser

CHES 2017 IX

Tobias Schneider
Peter Schwabe
Okan Seker
Hideo Shimizu
Alban Siffer
Takeshi Sugawara
Ruggero Susella
Daisuke Suzuki
Mostafa Taha
Adrian Thillard
Naoya Torii
Elena Trichina
Taner Tuncer
Florian Unterstein

Aurelien Vasselle
Ingrid Verbauwhede
Frederik Vercauteren
Vincent Verneuil
Karine Villegas
Ingo von Maurich
Sebastian Wallat
Suying Wang
Estelle Wang
Felix Wegener
Liu Weiqiang
Erich Wenger
William Whyte
Alexander Wild

Antoine Wurcker
Zhao Xinjie
Jun Yajima
Bo-Yin Yang
Yuan Yao
Xin Ye
Meng-Day (Mandel) Yu
Bilgiday Yuce
Vittorio Zaccaria
Andreas Zankl
Rina Zeitoun
Guo Zheng
Kai Zhu

X CHES 2017

Contents

Side Channel Analysis I

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 3
Mélissa Rossi, Mike Hamburg, Michael Hutter, and Mark E. Marson

Improved Blind Side-Channel Analysis by Exploitation of Joint
Distributions of Leakages . 24

Christophe Clavier and Léo Reynaud

Convolutional Neural Networks with Data Augmentation Against
Jitter-Based Countermeasures: Profiling Attacks Without Pre-processing 45

Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff

CacheZoom: How SGX Amplifies the Power of Cache Attacks 69
Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth

Higher Order Countermeasures

High-Order Conversion from Boolean to Arithmetic Masking 93
Jean-Sébastien Coron

Reconciling dþ 1 Masking in Hardware and Software. 115
Hannes Gross and Stefan Mangard

Changing of the Guards: A Simple and Efficient Method
for Achieving Uniformity in Threshold Sharing . 137

Joan Daemen

Generalized Polynomial Decomposition for S-boxes with Application
to Side-Channel Countermeasures . 154

Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud,
and Srinivas Vivek

Emerging Attacks I

Nanofocused X-Ray Beam to Reprogram Secure Circuits. 175
Stéphanie Anceau, Pierre Bleuet, Jessy Clédière, Laurent Maingault,
Jean-luc Rainard, and Rémi Tucoulou

http://dx.doi.org/10.1007/978-3-319-66787-4_1
http://dx.doi.org/10.1007/978-3-319-66787-4_2
http://dx.doi.org/10.1007/978-3-319-66787-4_2
http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1007/978-3-319-66787-4_3
http://dx.doi.org/10.1007/978-3-319-66787-4_4
http://dx.doi.org/10.1007/978-3-319-66787-4_5
http://dx.doi.org/10.1007/978-3-319-66787-4_6
http://dx.doi.org/10.1007/978-3-319-66787-4_6
http://dx.doi.org/10.1007/978-3-319-66787-4_7
http://dx.doi.org/10.1007/978-3-319-66787-4_7
http://dx.doi.org/10.1007/978-3-319-66787-4_8
http://dx.doi.org/10.1007/978-3-319-66787-4_8
http://dx.doi.org/10.1007/978-3-319-66787-4_9

Novel Bypass Attack and BDD-based Tradeoff Analysis Against All
Known Logic Locking Attacks . 189

Xiaolin Xu, Bicky Shakya, Mark M. Tehranipoor, and Domenic Forte

Post Quantum Implementations

McBits Revisited. 213
Tung Chou

High-Speed Key Encapsulation from NTRU. 232
Andreas Hülsing, Joost Rijneveld, John Schanck, and Peter Schwabe

FPGA-based Key Generator for the Niederreiter Cryptosystem
Using Binary Goppa Codes . 253

Wen Wang, Jakub Szefer, and Ruben Niederhagen

Cipher & Protocol Design

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 277
Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi

GIMLI : A Cross-Platform Permutation . 299
Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks,
Pedro Maat Costa Massolino, Florian Mendel, Kashif Nawaz,
Tobias Schneider, Peter Schwabe, François-Xavier Standaert,
Yosuke Todo, and Benoît Viguier

GIFT: A Small Present: Towards Reaching the Limit
of Lightweight Encryption . 321

Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki,
Siang Meng Sim, and Yosuke Todo

Making Password Authenticated Key Exchange Suitable
for Resource-Constrained Industrial Control Devices 346

Björn Haase and Benoît Labrique

Security Evaluation

Back to Massey: Impressively Fast, Scalable and Tight Security
Evaluation Tools . 367

Marios O. Choudary and P.G. Popescu

Fast Leakage Assessment . 387
Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede

XII Contents

http://dx.doi.org/10.1007/978-3-319-66787-4_10
http://dx.doi.org/10.1007/978-3-319-66787-4_10
http://dx.doi.org/10.1007/978-3-319-66787-4_11
http://dx.doi.org/10.1007/978-3-319-66787-4_12
http://dx.doi.org/10.1007/978-3-319-66787-4_13
http://dx.doi.org/10.1007/978-3-319-66787-4_13
http://dx.doi.org/10.1007/978-3-319-66787-4_14
http://dx.doi.org/10.1007/978-3-319-66787-4_15
http://dx.doi.org/10.1007/978-3-319-66787-4_16
http://dx.doi.org/10.1007/978-3-319-66787-4_16
http://dx.doi.org/10.1007/978-3-319-66787-4_17
http://dx.doi.org/10.1007/978-3-319-66787-4_17
http://dx.doi.org/10.1007/978-3-319-66787-4_18
http://dx.doi.org/10.1007/978-3-319-66787-4_18
http://dx.doi.org/10.1007/978-3-319-66787-4_19

FPGA Security

Your Rails Cannot Hide from Localized EM: How Dual-Rail Logic Fails
on FPGAs . 403

Vincent Immler, Robert Specht, and Florian Unterstein

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware . . . 425
Nisha Jacob, Johann Heyszl, Andreas Zankl, Carsten Rolfes,
and Georg Sigl

Emerging Attacks II

Illusion and Dazzle: Adversarial Optical Channel Exploits Against Lidars
for Automotive Applications. 445

Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks. . . . 468
Luka Malisa, Kari Kostiainen, Thomas Knell, David Sommer,
and Srdjan Capkun

On the Security of Carrier Phase-Based Ranging. 490
Hildur Ólafsdóttir, Aanjhan Ranganathan, and Srdjan Capkun

Side Channel Analysis II

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 513
Robert Primas, Peter Pessl, and Stefan Mangard

A Systematic Approach to the Side-Channel Analysis of ECC
Implementations with Worst-Case Horizontal Attacks 534

Romain Poussier, Yuanyuan Zhou, and François-Xavier Standaert

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 555
Daniel J. Bernstein, Joachim Breitner, Daniel Genkin,
Leon Groot Bruinderink, Nadia Heninger, Tanja Lange,
Christine van Vredendaal, and Yuval Yarom

Encoding Techniques

Faster Homomorphic Function Evaluation Using Non-integral
Base Encoding . 579

Charlotte Bonte, Carl Bootland, Joppe W. Bos, Wouter Castryck,
Ilia Iliashenko, and Frederik Vercauteren

Hiding Secrecy Leakage in Leaky Helper Data . 601
Matthias Hiller and Aysun Gurur Önalan

Contents XIII

http://dx.doi.org/10.1007/978-3-319-66787-4_20
http://dx.doi.org/10.1007/978-3-319-66787-4_20
http://dx.doi.org/10.1007/978-3-319-66787-4_21
http://dx.doi.org/10.1007/978-3-319-66787-4_22
http://dx.doi.org/10.1007/978-3-319-66787-4_22
http://dx.doi.org/10.1007/978-3-319-66787-4_23
http://dx.doi.org/10.1007/978-3-319-66787-4_24
http://dx.doi.org/10.1007/978-3-319-66787-4_25
http://dx.doi.org/10.1007/978-3-319-66787-4_26
http://dx.doi.org/10.1007/978-3-319-66787-4_26
http://dx.doi.org/10.1007/978-3-319-66787-4_27
http://dx.doi.org/10.1007/978-3-319-66787-4_28
http://dx.doi.org/10.1007/978-3-319-66787-4_28
http://dx.doi.org/10.1007/978-3-319-66787-4_29

Efficient Implementations

Very High Order Masking: Efficient Implementation and Security
Evaluation . 623

Anthony Journault and François-Xavier Standaert

PRESENT Runs Fast: Efficient and Secure Implementation in Software. 644
Tiago B.S. Reis, Diego F. Aranha, and Julio López

FourQ on Embedded Devices with Strong Countermeasures Against
Side-Channel Attacks . 665

Zhe Liu, Patrick Longa, Geovandro C.C.F. Pereira, Oscar Reparaz,
and Hwajeong Seo

Bit-Sliding: A Generic Technique for Bit-Serial Implementations
of SPN-based Primitives: Applications to AES, PRESENT and SKINNY 687

Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich

Author Index . 709

XIV Contents

http://dx.doi.org/10.1007/978-3-319-66787-4_30
http://dx.doi.org/10.1007/978-3-319-66787-4_30
http://dx.doi.org/10.1007/978-3-319-66787-4_31
http://dx.doi.org/10.1007/978-3-319-66787-4_32
http://dx.doi.org/10.1007/978-3-319-66787-4_32
http://dx.doi.org/10.1007/978-3-319-66787-4_32
http://dx.doi.org/10.1007/978-3-319-66787-4_33
http://dx.doi.org/10.1007/978-3-319-66787-4_33

Side Channel Analysis I

A Side-Channel Assisted Cryptanalytic Attack
Against QcBits

Mélissa Rossi2,3,4(B), Mike Hamburg1, Michael Hutter1, and Mark E. Marson1

1 Rambus Cryptography Research,
425 Market Street, 11th Floor, San Francisco, CA 94105, USA

{mike.hamburg,michael.hutter,mark.marson}@cryptography.com
2 Thales Communications & Security, Paris, France

3 Département d’informatique de l’ENS,
École normale supérieure, CNRS, PSL Research University,

75005 Paris, France
melissa.rossi@ens.fr
4 INRIA, Paris, France

Abstract. QcBits is a code-based public key algorithm based on a
problem thought to be resistant to quantum computer attacks. It is a
constant-time implementation for a quasi-cyclic moderate density parity
check (QC-MDPC) Niederreiter encryption scheme, and has excellent
performance and small key sizes. In this paper, we present a key recov-
ery attack against QcBits. We first used differential power analysis (DPA)
against the syndrome computation of the decoding algorithm to recover
partial information about one half of the private key. We then used the
recovered information to set up a system of noisy binary linear equa-
tions. Solving this system of equations gave us the entire key. Finally, we
propose a simple but effective countermeasure against the power analysis
used during the syndrome calculation.

Keywords: QcBits · Post-quantum cryptography · McEliece ·
Niederreiter · QC-MDPC codes · Side-channel analysis · Differential
power analysis · Noisy binary linear equations · Learning parity with
noise

1 Introduction

1.1 Quantum Computers and Post-Quantum Cryptography

The security of the most commonly-used public key cryptosystems is based on
the difficulty of either the integer factorization problem or the discrete loga-
rithm problem. Unfortunately, both of these problems can be efficiently solved
using quantum computers [36]. Progress in quantum computing has been steady,
and many believe that practical quantum computers will become a reality

M. Rossi—This work was done while the author was at Rambus Cryptography
Research.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 3–23, 2017.
DOI: 10.1007/978-3-319-66787-4 1

4 M. Rossi et al.

within the next 20 years [12,28]. In fact, the National Security Agency (NSA)
and the National Institute of Standards and Technology (NIST) have both
issued announcements calling for the standardization and transition to post-
quantum public key algorithms in the near future [12,33]. A European initia-
tive, PQCRYPTO, sponsored by the European Commission under its Horizon
2020 Program, published a report entitled “Initial Recommendation of long-term
secure post-quantum systems” [1]. This report recommends the development of
cryptography which is resistant to quantum computers. These concerns about
quantum computers have given research in post-quantum cryptography a great
deal of momentum in the past few years. Some of the most promising directions
include cryptosystems based on lattices, error correcting codes, hash functions,
and multivariate quadratic equations. The mathematical problems upon which
these cryptosystems are based are expected to remain intractable even in the
presence of quantum computers [7].

In this paper, we analyze and successfully attack a code-based post-quantum
public key cryptosystem called QcBits [13]. QcBits (pronounced “quick-bits”)
is a variant of the McEliece public-key cryptosystem [24] based on quasi-cyclic
(QC) moderate density parity check (MDPC) codes [26]. Although the McEliece
cryptosystem in its original form is still regarded as secure, the public keys for the
originally proposed parameters are very large. On the other hand, cryptosystems
based on QC-MDPC codes have much smaller and simpler public and private
keys. The quasi-cyclic form allows the public and private keys to be completely
defined by the first rows of their matrices.

However, it is precisely the quasi-cyclic structure and moderate density of
the private key which allows our attack to succeed. The QcBits secret parity
check matrix is the concatenation of two sparse circulant matrices, denoted H 0

and H 1. We first used differential power analysis (DPA) against H 0 to narrow
down the locations of its nonzero elements. This gave us enough information to
set up a system of noisy binary linear equations, which we could solve with high
probability. Solving these equations gave us both the exact matrix H 0, as well
as the other matrix H 1.

1.2 Previous Related Work

The first code-based public key cryptosystem is due to McEliece [24]. Its security
is based on the difficulty of decoding a random linear code. It has been exten-
sively analyzed since being proposed, and is still regarded as secure in its original
form using Goppa codes. The main drawback of this construction is the size of the
public keys. For the originally proposed parameters these keys contain about 500
Kbits. This drawback motivated the search for secure code-based cryptosystems
with more manageable key sizes [19,23,29,38]. Unfortunately, most of the pro-
posed McEliece variants using codes other than Goppa codes have turned out to
be insecure [14,22,25,27,34,39]. Using QC-MDPC codes to replace Goppa codes
in the McEliece cryptosystem was first suggested by Misoczki et al. in 2013 [26],
and appears to be a promising choice. Some hardware implementations of this
scheme followed in 2013 [18] and 2014 [42].

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 5

QC-MDPC codes are characterized by moderate density parity check matri-
ces in quasi-cyclic form. The quasi-cyclic form allows both the public key and
private key matrices to be completely defined by their first rows, leading to much
smaller key sizes. Also, because of the way the public generator matrix is con-
structed, there is no need for scrambling and permutation matrices. Instead, the
generator matrix is directly presented as a public key in its systematic form.
In [1], the PQCRYPTO group recommends the QC-MDPC scheme for further
study.

QC-MDPC McEliece was originally designed to be secure against chosen
plaintext attacks (CPA) but not against chosen ciphertext attacks (CCA). To
achieve security against adaptive chosen ciphertext attacks, some transforma-
tions were proposed in [4,20]. A hybrid CCA-secure encryption protocol using
QC-MDPC Niederreiter was proposed by Persichetti [32] and implemented by
Von Maurich et al. [43]. QcBits is an implementation of a variant of this protocol
due to Chou in [13]. It operates in a constant time and has very good speed
results and small keys sizes.

Another issue with the QC-MDPC cryptosystems is that they have a non-
negligible probability of decryption failure, with the failure rate depending on
the security parameters. The failure rate was around 10−7 in Misoczki et al.
original proposal [26], and is even worse for constant-time decoders. In [16],
Guo et al. take advantage of the decryption failures to recover the secret key of
Misoczki’s original version in minutes. Preliminary work was done to improve
constant-time decoding algorithms in [10], but they did not improve the failure
rate below 10−7. For CCA-secure versions of QC-MDPC cryptosystems, Guo
et al. proposed a more complex version of their attack that requires at most 350
million decryptions and has a time complexity of 239.7. QcBits is CCA-secure but
it has a more advanced constant-time decoder [13]. Chou claims a failure rate of
10−8 for the 80-bit secure version. Guo et al. still estimate the time complexity for
attacking QcBits to be 255.3, but to our knowledge have not run the attack. They
have not provided estimates against the 128-bit secure version. They proposed
drastically reducing the decoding failure probability as countermeasure against
this attack, but no details about how to do so have been published.

Side-channel attacks against code-based schemes have focused more on the
original version of the McEliece cryptosystem based on Goppa Codes. Timing
leakages were first studied in [41]. This was followed by Strenzke and Shoufan
et al., who performed a key recovery attack using timing analysis [37,40]. Heyse
et al. performed a simple power analysis (SPA) attack against software imple-
mentations of classic McEliece algorithm [17]. In [11], Chen et al. describe a
differential power analysis (DPA) [21] key recovery attack against a QC-MDPC
FPGA McEliece implementation. To our knowledge, no DPA attacks have been
performed on CCA-secure constant-time versions of QC-MDPC McEliece.

Our attack also includes solving a learning parity with noise (LPN) prob-
lem. We set up and solve a system of noisy binary linear equations to com-
plete the key recovery. Solving such systems has a long history in cryptanalysis,
with many different methods used depending upon the specifics of the problem.

6 M. Rossi et al.

See Belaid et al. in [2,3] for recent examples of such attacks. Our system of
equations has very low noise. We therefore used an elementary method which,
for very low noise systems (1%), was shown in [35] to be more efficient than the
Blum-Kalai-Wasserman (BKW) algorithm [9].

1.3 Our Contribution

In this paper we present a side-channel assisted cryptanalytic attack against
QcBits. In contrast to Guo et al.’s attack in [16], our attack focuses on the first
step of the decoding process, and is independent of its failure probability. Our
attack only requires us to observe a small number of decryptions (about 200
power traces for the implementation we analyzed), and we need to analyze less
than 1% of each trace. Our attack also works for both the 80-bit and 128-bit
security versions.

Our attack consists of two steps:

1. A DPA attack targeting the syndrome computation of the decryption oper-
ation. The operation uses half of the private key, and during this step we
recover some information about that half of the key. Because of the way
in which the implementation leaks, there is some ambiguity as to the exact
location of the nonzero elements of the key.

2. A linear algebra computation which takes advantage of the sparseness of the
private key and succeeds with high probability. We repeat this operation
(varying the equations slightly each time) until the computation succeeds.
This allows us to recover the entire secret key.

The number of traces required in the first step will of course depend upon the
implementation and hardware on which it is run. The amount of work required
for the second step will depend on how much information is recovered in the first
step. For the implementation and hardware we used for our analysis, the DPA
attack required about 200 power traces in Step 1. The work factors in Step 2
were 224 for the 80-bit security version, and 227 for the 128-bit security version.
See Sect. 4 for details.

1.4 Paper Roadmap

In Sect. 2, we describe the QcBits cryptosystem introduced by Chou in [13]. In
Sect. 3, we describe the DPA attack we used to recover information about the
private key. In Sect. 4, we present the algebraic attack we implemented recovering
the entire private key. In Sect. 5, we describe a simple countermeasure to help
protect against our attack. Finally, in Sect. 6, we summarize our results and
discuss future research.

2 Description of the QcBits Cryptosystem

2.1 Definitions

Definition 1 (Circulant matrix). A r × r matrix is a circulant matrix if its
rows are successive cyclic shifts of its first one.

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 7

Definition 2 (Quasi-cyclic matrix). A matrix H = (H0, ...,Hm) is a quasi-
cyclic (QC) matrix if the submatrices H0, ...,Hm are circulant matrices.

Definition 3 (QC-MDPC code). An (n, r, w)-QC-MDPC code is a binary
linear code with n-bit codewords and dimension r which is defined by a QC
Moderate Density Parity Check (MDPC) matrix H.

C = {x ∈ F
n
2 |H · xT = 0}. (1)

In other words, the codewords are all the vectors in the right nullspace of H
which is QC and has a “moderate density”. “Moderate” here means that H has
a constant row weight w = O(

√
n.log(n)).

2.2 QC-MDPC Codes Used for QcBits

QcBits uses (n, r, w)-QC-MDPC binary codes with n = 2r. The parity check
matrix in its QC-MDPC form is then composed of 2 square sparse circulant
matrices

H = (H 0,H 1) ∈ F
r×n
2 (2)

The generator matrix in its systematic form is the r × n binary matrix

G = (I ,P) (3)

where I is the r × r identity matrix and P is an r × r dense binary circulant
matrix

P = (H−1
1 · H 0)T (4)

The reader can easily verify that H ·GT = 0 , so the rows of G form a basis for
the codewords. An r-bit data vector x is encoded by multiplying it by G:

c = x · G. (5)

Let e be a n-bit error vector, and ĉ the corrupted codeword

ĉ = c ⊕ e = x · G ⊕ e . (6)

In the general case, decoding a corrupted codeword (i.e., removing its errors)
from a random binary linear code is an NP-hard problem [5]. However, if the
QC-MDPC parity check matrix H = (H 0,H 1) is known and the Hamming
weight of e is not too large, there are efficient algorithms for decoding corrupted
QC-MDPC codewords. There is no known efficient algorithm if the two sparse
circulant matrices H 0 and H 1 are not known. The most commonly-used decod-
ing algorithm is the probabilistic bit-flipping algorithm introduced by Gallager
in [15]. See Sect. 2.3 for details.

For the bit-flipping decoding algorithm on QC-MDPC codes, the maximum
allowed number of bit errors, denoted t, is an estimated value. In [26] the authors
determined values for QC-MDPC code parameters (n, r, w, t) which would provide

8 M. Rossi et al.

the desired security levels, while keeping the probability of a decoding failure as
low as possible (<10−7). The parameters they selected are shown in Table 1.

Table 1. Proposed QC-MDPC instances with security level

n r w t Bits of security

9602 4801 90 84 80

19714 9857 142 134 128

For the remainder of this paper, we focus on QC-MDPC codes with the
two parameter sets (n, r, w, t) from Table 1. The private key of QcBits is the
QC-MDPC parity check matrix H priv:

H priv = (H 0,H 1) (7)

where H 0,H 1 ∈ F
r×r
2 are randomly generated circulant matrices with weight w

2
in each row. The private key is sparse, so only the indices of the nonzero values
of the first row are stored. Knowing the private key, one can use the bit-flipping
decoding algorithm to recover a codeword which has been corrupted by up to t
errors.

The public key is computed directly from the private key H priv as the dense
circulant r × r matrix P :

P = (H−1
1 · H 0)T . (8)

Knowing P allows anyone to build the generator matrix in its systematic form
Gpub and a parity check matrix H pub :

Gpub = (I ,P), (9)

H pub = (PT , I). (10)

2.3 QcBits Encryption and Decryption Algorithms

QcBits is an hybrid CCA-secure encryption protocol based on Niederreiter [29].
Unlike McEliece cryptosystem, Niederreiter uses the parity-check matrix rather
than the generator matrix for the encryption. QcBits uses the following crypto-
graphic primitives. See [13] for more details.

1. A hash function denoted Hash. QcBits uses Keccak [31];
2. A symmetric stream cipher denoted (Senc,Sdec). QcBits uses Salsa20 [8];
3. An authentication function denoted (Tag,Check). QcBits uses Poly1305 [6].

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 9

The encryption of a message m using QcBits is shown in Algorithm 1.

Algorithm 1. QcBits encryption
Data: Plaintext m , Public matrix P
Result: Ciphertext (c|d |g)

1 e ← $ // Drawing a random n-bit error vector with Hamming weight t
2 key ← Hash(e);
3 cT ← (I ,P−T) · eT ∈ F

r
2 ;

4 d ← Senc(key ,m) ;
5 g ← Tag(key);
6 Return (c|d |g);

The reader can verify that (c|0) ∈ F
n
2 is a codeword corrupted with the error e .

The encrypted message d has the size of the plaintext m , as it is encrypted with
a stream cipher. The message authenticator g is 16 bytes in length.

We next describe the bit-flipping algorithm, which is used by the decryption
algorithm. Given a vector that is at most t errors away from a codeword, the bit
flipping algorithm attempts to recover the codeword (or equivalently the error)
using a sequence of iterations. During each iteration the algorithm decides which
of the n positions of the input vector are most likely to be wrong, and inverts
those bits. The resulting vector then becomes the input to the next iteration.
In QcBits, the bit-flipping algorithm performs a total of jmax = 6 iterations.
It uses the precomputed thresholds Thresh[0, . . . , 5] = [29, 27, 25, 24, 23, 23] in
each iteration to determine which bits should be flipped. The bit-flipping process
is shown in Algorithm 2.

Algorithm 2. Bit Flipping
Data: H priv ∈ F

r·n
2 ,x ∈ F

n
2

Result: Corrected codeword v
1 v ← x ;
2 S ← H priv · vT // Syndrome computation;
3 for j ∈ {0, jmax} do
4 for i ∈ {0, ..., n − 1} do
5 σi ← 〈S ,h i〉 ∈ Z // h i denotes the i-th column of H ;
6 if σi ≥ Thresh[j] then
7 v i ← v i ⊕ 1
8 end
9 end

10 S ← H priv · vT

11 end
12 Return the codeword v

10 M. Rossi et al.

Algorithm 3 shows the decryption process. First, (c|0) ∈ F
n
2 gets decoded.

The bit-flipping returns the error e . Then, the decryption hashes e to compute
the symmetric key, verifies the tag g , and decrypts the second part of the cipher-
text, d .

Algorithm 3. QcBits decryption
Data: Ciphertext (c|d |g), Private key H priv = (H 0,H 1)
Result: Plaintext m or ⊥

1 s← (c | 0) ∈ F
n
2 ;

2 e ← Bit-Flipping(H priv, s) ⊕ s;
3 key ← Hash(e);
4 if Check(key, g) then
5 Return m ← Sdec(key ,d)
6 else
7 Return ⊥
8 end

We performed our side-channel attack against the use of the secret parity
check matrix H priv during Step 2 in Algorithm2. This gave us enough informa-
tion after just a few decryptions to complete the cryptanalytic attack. This is
in contrast to the attack of Guo et al., who obtained information about the key
during the low-probability failures of Algorithm3. We describe our attack in the
next two sections.

3 Differential Power Analysis Attack Against QcBits

In this section, we describe how we used DPA to recover some partial information
about the secret matrix H 0. Our attack targets the syndrome calculation at the
start of the bit-flipping algorithm, and recovers partial information about H 0.

3.1 General Leakage Model

We analyzed the C code of QcBits and identified the syndrome computation
of the bit-flipping decoding (Step 2 in Algorithm2) as a candidate for a DPA
attack:

H priv ·
(
cT

0

)
= (H 0,H 1) ·

(
cT

0

)
= H 0 · cT (11)

where c ∈ F
r
2 is the first part of the ciphertext. We will focus our attention on

this computation.
Let {x0, ..., x(w

2 −1)} denote the unknown indices of the nonzero elements of
h0, the first row of H 0. Because H 0 is a circulant, it is uniquely defined by the
xi, and is represented in QcBits as a list of these indices. Due to its structure,
the matrix H 0 can be decomposed as a sum of w

2 rotation matrices

H 0 = Rx0 + ... + Rx(w
2 −1)

. (12)

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 11

Multiplying cT by Rxi
, 0 ≤ i ≤ w

2 − 1, results in a left circular shift of c by xi

positions:
Rxi

· cT = rxi
(c)T . (13)

Hence the multiplication in Eq. 11 can be accomplished by computing the
rotated ciphertexts rxi

(c), 0 ≤ i ≤ w
2 − 1, and XORing them all together:

H 0 · cT =

w
2 −1⊕

i=0

rxi
(c)T . (14)

In fact, this is how the multiplication is performed in the QcBits implementation.
In a loop, each rotated vector rxi

(c) is stored into a temporary memory location
as it is calculated, and then XORed with the partial XOR sum from the previous
loop iteration:

Si = Si−1 ⊕ rxi
(c) =

i−1⊕

j=0

rxj
(c) ⊕ rxi

(c). (15)

Our side-channel analysis model assumes that the power consumption of the
device depends on whether the leftmost bit (bit position 0) of each rotated vector
rxi

(c) is either 0 or 1 when it is stored to memory. Note that bit xi of c is rotated
into bit position 0 by rxi

and into bit position 1 by rxi−1 . We therefore expect
the device to leak for multiple guesses near the correct value, with the number
of guesses exhibiting leaks related to the native word size of the device.

3.2 The Experiment Setup

We used the reference C version of QcBits1 with 80 and 128 bits of security. We
ported the code to run on ChipWhisperer evaluation platform designed by Colin
O’Flynn [30]. The ChipWhisperer is a board composed of a programmable chip
(Atmel AVR XMEGA128) and an on-board power-measurement circuit that
can be connected to a PC via USB interface. An open-source python software is
available that can be used to communicate with the chip, for example, to send
encryption or decryption commands to the AVR. In order to measure the power
consumption, the board features an analog to digital converter (OpenADC) that
allows synchronous clocking to the AVR’s clock. The clock frequency is fixed at
7.37 MHz. The signal is amplified with up to 55 dB gain and the power traces
were sampled at a 96 MS/s rate.

We then generated a set of N known, random values {c0, ..., cN−1} ∈ F
r
2.

These were padded with zeros and passed to the bit-flipping Algorithm2. Since
they were randomly generated, the zero-padded values were almost certainly
not codewords corrupted by at most t errors. As we were attacking the syn-
drome calculation at the beginning of the bit-flipping algorithm, however, we
were not concerned with whether these values could be decoded properly. If
properly formed ciphertext was required by the implementation, it could have
been computed using the public-key information.
1 Available at http://www.win.tue.nl/∼tchou/qcbits/.

http://www.win.tue.nl/~tchou/qcbits/

12 M. Rossi et al.

Fig. 1. Power trace of the first rotated ciphertext computation.

Figure 1 shows a typical power trace during the computation of one cipher-
text rotation rxi

(c) in QcBits. After the computation, the result is stored into
memory, which can be seen in the power trace at the very end of the rotation
operation. Figure 2 zooms into the store operation where the first 64-bits of the
rotated value are written to memory. Because the XMEGA is an 8-bit archi-
tecture, we can observe eight different power patterns which are related to the
storing of each 8-bit value from internal registers into internal RAM. We col-
lected 13, 000 traces of that operation for each key index, which was sufficient
for our analyses. To characterize the leakage behavior of the device, we analyzed
25 different key indices, varying both the secret value and the loop iteration in
which it gets XORed into the partial sum in Eq. 15.

Fig. 2. Storing of the first 64 bits of the result of the rotation.

We attacked the unknown values {x0, . . . , x(w
2 −1)} sequentially using stan-

dard DPA. We first made guesses for all possible values for the unknown x0.
Given the size of the secret matrix H 0 this is clearly an exhaustible parameter.
For each of those guesses, we sorted the traces Tj into two partitions based on
whether the leftmost bit of the each rotated vector {rx0(c0), ..., rx0(cN−1)} was
a zero or a one. We averaged the traces in the two partitions separately and com-
puted the difference of the averages. Large spikes in the difference trace indicated
a leak of information. As will be discussed in the next section, multiple guesses
for each xi exhibited significant leaks. This is due to how the algorithm was
implemented, and how the hardware on the evaluation board leaked. We discuss
how we resolved this ambiguity in Sect. 4. The DPA process is then repeated for
each of the unknowns xi.

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 13

3.3 DPA Results

Figure 3 shows the result of the DPA targeting for all possible values xi using
500 power traces on the 80-bit version. The device clearly shows a significant
leakage around the correct index (value 2, 000 in this experiment). However, it
also shows that there are other indices leaking, for example, the indices 1,985
up to 2,000 show similar Difference of Mean (DoM) values. We performed DPA
attacks targeting other unknown indices of h0 and identified a particular leakage
model. For a given secret index xi, the device always leaks for 16 consecutive
guesses starting at index

yi =
 (xi − 1) mod r

64
� · 64 + 1, (16)

which is
 2000−1
64 � · 64 + 1 = 1985 in our example.

Fig. 3. Maximum Difference of Means (DoM) using 500 traces over all possible values
xi. Significant difference is observed for around the correct index 2000.

This gives us 64 different possible values for xi. Complicating matters is
that there isn’t always a DPA peak for the correct secret index because the
device leaks only for 16 consecutive guesses. For example, if xi = 2030, then
yi =
 2030−1

64 � · 64 + 1 = 1985 and the device will show leaks only for the
16 consecutive guesses from (1,985 to 2,000). Fortunately, more information is
available if we look at the times at which the leaks occur.

We observed that the leak corresponding to yi can appear in one of 8 different
time locations corresponding to the 8-bit AVR memory-store operations. These
8 positions can be seen in Fig. 4. The upper plot shows the DPA results for
the indices 1,985 to 1,992 (drawn in black) and other index values from 0 to
1,984 (drawn in gray). The lower plot shows the results for the indices 1,993 to
2,000, and other index values from 2,001 to 4,800. The leakage occurs during
two 8-bit AVR memory-store operations near sample points 146 and 172. We
discovered that the time location at which the leak for guess yi occurs gives us
more information about the correct value xi.

Let qi ∈ {0, ..., 7} denote the location at which the leak corresponding to
guess yi occurs. It turns out that qi is related to xi by Eq. 17:

qi = 7 −
 (xi − 1) mod 64
8

� ∈ {0, ..., 7}. (17)

14 M. Rossi et al.

Fig. 4. Upper plot shows the DPA result using indices from 1,985 to 1,992 (drawn in
black), the lower plot shows the result using indices from 1,993 to 2,000 (drawn in
black). Other indices are drawn in gray.

In our example, qi = 7 −
 2000−1 mod 64
8 � = 6th position. In Fig. 4, we see that

the leak corresponding to yi = 1985, in the upper plot, is in the 6th location.
Hence, using power analysis we were able to recover a pair of values (yi, qi)

which narrows down the choice of xi to one of 8 possible values. Given (yi, qi),
there are only 8 possible values for xi which satisfy both Eqs. 16 and 17:

xi ∈ Zi = [yi + (7 − qi) × 8, yi + (7 − qi) × 8 + 7]. (18)

In our example we measured (yi, qi) = (1985, 6), and therefore deduce that
Zi = [1993, 2000].

3.4 About the Index Search Intervals Zi

We denote by α the length of index search intervals Zi. In a sense, α repre-
sents the precision of the DPA analysis. Our attack gave us search intervals of
length α = 8, which actually equals to the word width of the underlying AVR
architecture. We assume that on other devices, with different architectures and
word lengths, our attack could yield search intervals with different lengths. For
example, on a 64-bit device, the search interval could have length α = 64. We
will see in Sect. 4 that the algebraic part of the attack is not feasible for such
a large value of α. In this case, we recommend looking for ways to improve the
precision of the power analysis step to reduce the size of the search intervals, or
using a stronger method than we did for solving the noisy system of equations.

It may be the case that different secret indices lie in the same interval Zi. We
denote by β the total number of unique search intervals Zi. Note that β satisfies

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 15

β ≤ w
2 . In our experiments, we needed around 100–200 traces to identify all β

intervals of size α = 8 containing the nonzero elements of h0. Figure 5 illustrates
the intervals recovered.

Fig. 5. Partial knowledge of h0 after the DPA attack.

4 Recovering the Rest of the Key

In this section we describe how we used the partial information discovered by
our DPA attack to recover the rest of the key. A brute force attack could take
up to α

w
2 calculations, which would be infeasible. However, the sparseness of the

private key enables a much more efficient attack.
We simply choose a large number of private key bit positions at random, and

hope that all the bits in those positions are 0. Since over 99% of the private key
bits are 0, our guess will be correct with non-negligible probability. Combined
with the information recovered in the DPA attack, this will give us enough linear
equations to solve for the private key. A more sophisticated attack might work
with less information recovered, but our attack is sufficient for α up to 32.

4.1 Cryptanalytic Attack Using Partial Information of Secret Key

Recall that the public key is P = (H−1
1 ·H 0)T . Setting Q = P−1 we rearrange

and write
Q · H T

0 = H T
1 . (19)

The matrices H 0 and H 1 are sparse circulants defined by their first rows h0

and h1 respectively. We can therefore write 19 as the system of linear equations

Q · hT
0 = hT

1 (20)

where Q is dense and known, h0 is sparse and partially known as shown in
Fig. 5, and h1 is sparse and unknown.

We now use the information we recovered about h0 to help us completely
solve the system of Eq. in 20. First, we know the β intervals {Z 0, ...,Z β−1} of
length α which contain all the nonzero entries of h0. All the entries of h0 outside
these intervals are known to be zero. We can therefore remove from our system
of equations the zero-valued entries of h0, and the corresponding columns of Q .
This leaves us with a new system of equations

Q ′ · h ′ T
0 = hT

1 (21)

16 M. Rossi et al.

where h ′
0 = (Z 0, ...,Z β−1) is the vector of length αβ obtained by concatenating

the variables in the intervals containing the nonzero entries of h0, and Q ′ is the
r × αβ matrix obtained by removing from Q the columns corresponding to the
zero-valued entries of h0. This step is illustrated in Fig. 6 below. We use the
color gray to represent the removed variables.

Fig. 6. Removing the columns of Q

The DPA attack allows us to know if two or more secret indices lie in the same
interval Zi. We therefore know the number of nonzero values of each interval of
h0 and use this information to add parity equations to the system. Let bi denote
the number of nonzero values of the interval Z i modulo 2. Then

bi = (1, 1, ..., 1) · Z T
i . (22)

There will be exactly β such equations. Let b = (b0, ..., bβ−1) and W be the
β × αβ matrix which for row i, 0 ≤ i < β, has ones in positions j for i ·
α ≤ j < (i + 1) · α and zeros elsewhere. We can then extend our system of
equations to include the parity equations by appending W to the bottom of Q ′

and appending b to h1. The new extended (r + β) × αβ system of equations is
shown in Fig. 7 below.

Fig. 7. Adding the parity equations

We don’t know the vector h1. However, it is generated to be an extremely
sparse vector and the entries are zero with probability 1 − w

2r > 0.99. Suppose

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 17

we create a square αβ × αβ system of equations by randomly selecting β(α − 1)
entries from h1, and keeping the corresponding rows of Q ′. We also retain all
the parity information W and b. Then the probability p that all the randomly
selected entries from h1 are zero is

p =
number ofh1 for which guess is right

total possible number ofh1
(23)

=

(
r−β(α−1)

w
2

)

(
r
w
2

) =
(r − β(α − 1))!(r − w

2)!
r!(r − β(α − 1) − w

2)!
(24)

The expected number of attempts before finding a subvector of h1 with all zeros
entries is 1

p . Table 2 gives an estimation of this, using the parameters proposed
for QcBits and assuming the worst case of β = w

2 .

Table 2. Approximate number of attempts in the worst case

α = 8 16 32 64

80-bit 22 950 223 258

128-bit 40 3500 226 264

The last step in the attack proceeds as follows. We randomly select β(α − 1)
entries of h1, and guess that they are all zero. We also extract the corresponding
rows of Q ′ and denote the resulting matrix Q ′′. We retain all the parity infor-
mation W and b as well, giving us a square αβ × αβ system of equations. This
process is shown in Fig. 8 below. Here the color gray represents the rows that we
keep.

Fig. 8. Selecting random positions in h1 and corresponding rows of Q ′

Finally, we solve the system of equations
(
Q ′′

W

)
· h ′ T

0 =
(
0

bT

)
(25)

18 M. Rossi et al.

If all the selected entries of h1 are actually zero, then the correct value of h ′
0 is

among the solutions. We then look for a solution vector h ′ T
0 with weight exactly

w
2 , and we also check that Q · hT

0 has weight exactly w
2 . If this is the case, we

have found h0, and h1 can be computed directly from it. If this is not the case,
the selected entries of h1 are not all zero and a suitable solution will not be
found. We then keep repeating the final step with different random subvectors
of h1 until a solution is found.

4.2 Attack Complexity

To compute the attack’s complexity, we include the cost of repeatedly solving
αβ × αβ systems of binary linear equations. For our estimates, we assume the
worst case, in which β = wα

2 . As for solving the system, Vassilevska Williams
has an algorithm which can solve such a system with complexity (wα

2)2.373 [44].
Hence the average total complexity of the algebraic part of our attack is

1

p
· (wα

2
)
2.373

(26)

In our experiments, the DPA attack gave us α = 8. Hence, the total average
complexity of our key recovery attack is 224 for the 80-bit security version, and
227 for the 128-bit security version.

4.3 Experimental Results

We verified the algebraic part of our attack using SAGE on one core of a 2.9 GHz
Core i5 MacBook Pro. We tested the attack for α ∈ {8, 16, 32}. For α ∈ {8, 16}
we had a 100% success rate with a bounded number of iterations. We successfully
recovered the secret key in each test, with at most 10, 000 iterations. For α = 32
with 80 bits of security, the expected time in the worst case of β = w

2 is around
16 h. For α = 32 with 128 bits of security, and α = 64, we estimated the expected
times based on our experiments with the other α values.

The results are shown in Table 3, and the times shown exclude the preparation
step of computing the initial matrix Q ′. Since the main loop of the attack is based
on guessing subsets of the equations until a guess is correct, it is completely
parallelizable. Thus the results should scale inversely with the number of cores
used to perform the attack.

Table 3. Approximate solving times in SAGE on one core

α = 8 16 32 64

80 bits 0.4 s 15 s 16 h ≈530 years

128 bits 2 s 4 min ≈ 7 days ≈790,000 years

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 19

5 Attack Countermeasure

We propose a simple masking technique to help defend against side channel
attacks during the syndrome calculation in QcBits. Since QC-MDPC codes are
linear, the XOR of two codewords is another codeword. Also, all codewords are
in the nullspace of the parity check matrix H priv. We can therefore mask the
corrupted codeword (c|0) by XORing it with a random codeword cm before
passing it to the syndrome calculation. This does not change the outcome of the
syndrome calculation since

H priv · ((c|0) ⊕ cm)T = H priv · (c|0)T ⊕ H priv · cT
m = H priv · (c|0)T . (27)

It does effectively mask the DPA leak we exploited, however. Figure 9 shows
the difference of means for all possible guesses for xi with this countermeasure
implemented. In contrast to Fig. 3, there is no significant spike for any of the
guesses.

Fig. 9. Maximum Difference of Means (DoM) using 500 traces over all possible values
xi when the countermeasure is enabled. The right key index is 2000.

This countermeasure is of course only effective during the syndrome calcula-
tion. Additional side-channel countermeasures would be required to protect the
private key during other calculations such as the bit flipping algorithm.

6 Conclusions

In this paper we described a key recovery attack against QcBits. We first per-
formed power analysis to recover partial information about the key. We then
used that information to set up and solve a system of noisy binary linear equa-
tions. Solving that system recovered the entire key. Finally, we proposed a simple
countermeasure which was effective against the power analysis we performed in
the attack.

QcBits has sparse, highly structured private keys. The sparseness is required
for the decoding algorithm to work. The quasi-circulant nature of the keys is
essential for small key sizes and efficient calculations. We exploited both these

20 M. Rossi et al.

features in our attack. Another characteristic of QcBits and other code-based
algorithms is that the Hamming weight of the noise added to codewords during
encryption must be modest enough that the corrupted word can be decoded.

Many proposals for post-quantum cryptography are based on noisy linear
systems: lattices, learning with errors or error-correcting codes. In terms of
side-channel resilience, these systems have an important difference from systems
based on number-theoretic problems. Leaking a few bits of a number-theoretic
system may open up a new avenue of attack, but it usually doesn’t directly con-
tribute to solving the underlying hard problem. For noisy linear systems, leaking
a few bits of the secret is likely to directly erode the difficulty of the underlying
hard problem. Therefore designers and analysts may wish to consider the risks of
side-channel analysis when evaluating post-quantum cryptographic algorithms.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck, W.,
Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A. , Lange, T., Emam
Mohamed, M.S., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F., Yang,
B.-Y.: Initial recommendations of long-term secure post-quantum systems (2015).
http://pqcrypto.eu.org/docs/initial-recommendations.pdf. 4, 5

2. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48324-4 20. 6

3. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in
GF(2128) - application to AES-GCM. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 306–325. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45608-8 17. 6

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions
of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). doi:10.1007/
BFb0055718. 5

5. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.: On the inherent intractability
of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978). 7

6. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). doi:10.1007/11502760 3. 8

7. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009). 4

8. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–
336. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5 25. 8

9. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: Frances Yao, F., Luks, E.M. (eds.) Proceedings
of the Thirty-Second Annual ACM Symposium on Theory of Computing, Portland,
OR, USA, 21–23 May 2000, pp. 435–440. ACM (2000). 6

10. Chaulet, J., Sendrier, N.: Worst case QC-MDPC decoder for McEliece cryp-
tosystem. In: IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, 10–15 July 2016, pp. 1366–1370. IEEE (2016). 5

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://dx.doi.org/10.1007/978-3-662-48324-4_20
http://dx.doi.org/10.1007/978-3-662-45608-8_17
http://dx.doi.org/10.1007/978-3-662-45608-8_17
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/BFb0055718
http://dx.doi.org/10.1007/11502760_3
http://dx.doi.org/10.1007/978-3-540-89754-5_25

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 21

11. Chen, C., Eisenbarth, T., Maurich, I., Steinwandt, R.: Differential power analysis
of a McEliece cryptosystem. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Poly-
chronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 538–556. Springer, Cham
(2015). doi:10.1007/978-3-319-28166-7 26. 5

12. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. National Institute of Standards and
Technology (NIST), NISTIR 8105 Draft, U.S. Department of Commerce, February
2016. 4

13. Chou, T.: QcBits: constant-time small-key code-based cryptography. In: Gierlichs,
B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 280–300. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53140-2 14. 4, 5, 6, 8

14. Couvreur, A., Corbella, I.M., Pellikaan, R.: A polynomial time attack against alge-
braic geometry code based public key cryptosystems. In: 2014 IEEE International
Symposium on Information Theory, Honolulu, HI, USA, 29 June–4 July 2014, pp.
1446–1450. IEEE (2014). 4

15. Gallager, R.G.: Low-density parity-check codes. IRE Trans. Information Theory
8(1), 21–28 (1962). 7

16. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with
CCA security using decoding errors. Cryptology ePrint Archive, Report 2016/858
(2016). http://eprint.iacr.org/2016/858. 5, 6

17. Heyse, S., Moradi, A., Paar, C.: Practical power analysis attacks on software imple-
mentations of McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061,
pp. 108–125. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12929-2 9. 5

18. Heyse, S., Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-
MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron,
J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40349-1 16. 4

19. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-
geometric codes. Des. Codes Crypt. 8(3), 293–307 (1996). 4

20. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp.
19–35. Springer, Heidelberg (2001). doi:10.1007/3-540-44586-2 2. 5

21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25. 5

22. Landais, G., Tillich, J.-P.: An efficient attack of a McEliece cryptosystem variant
based on convolutional codes. Cryptology ePrint Archive, Report 2013/080 (2013).
http://eprint.iacr.org/2013/080. 4

23. Löndahl, C., Johansson, T.: A new version of McEliece PKC based on convolutional
codes. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012. LNCS, vol. 7618, pp. 461–
470. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34129-8 45. 4

24. McEliece, R.J.: A public-key system based on algebraic coding theory. DSN
Progress Report 44, pp. 114–116 (1978). 4

25. Minder, L., Shokrollahi, A.: Cryptanalysis of the Sidelnikov cryptosystem. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72540-4 20. 4

26. Misoczki, R., Tillich, J.-P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: new
McEliece variants from moderate density parity-check codes. In: Proceedings of
the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey,
7–12 July 2013, pp. 2069–2073. IEEE (2013). 4, 5, 7

http://dx.doi.org/10.1007/978-3-319-28166-7_26
http://dx.doi.org/10.1007/978-3-662-53140-2_14
http://eprint.iacr.org/2016/858
http://dx.doi.org/10.1007/978-3-642-12929-2_9
http://dx.doi.org/10.1007/978-3-642-40349-1_16
http://dx.doi.org/10.1007/3-540-44586-2_2
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://eprint.iacr.org/2013/080
http://dx.doi.org/10.1007/978-3-642-34129-8_45
http://dx.doi.org/10.1007/978-3-540-72540-4_20

22 M. Rossi et al.

27. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes
in the McEliece cryptosystem. In: IEEE International Symposium on Information
Theory, ISIT 2000, p. 215 (2000). 4

28. Mosca, M.: Cybersecurity in an era with quantum computers: will we be ready?
Cryptology ePrint Archive, Report 2015/1075 (2015). http://eprint.iacr.org/2015/
1075. 4

29. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15, 159–166 (1986). 4, 8

30. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). doi:10.1007/978-3-319-10175-0 17. 11

31. Peeters, M., Van Assche, G., Bertoni, G., Daemen, J.: Keccak and the SHA-
3 standardization (2013). http://csrc.nist.gov/groups/ST/hash/sha-3/documents/
Keccak-slides-at-NIST.pdf. 8

32. Persichetti, E.: Secure and anonymous hybrid encryption from coding theory. In:
Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 174–187. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-38616-9 12. 5

33. Schneier, B.: NSA plans for a post-quantum world (2015). https://www.schneier.
com/blog/archives/2015/08/nsa plans for a.html. 4

34. Sendrier, N.: On the concatenated structure of a linear code. Appl. Algebra Eng.
Commun. Comput. 9(3), 221–242 (1998). 4

35. Seurin, Y.: Primitives et protocoles cryptographiques à sécurité prouvée. Ph.D.
thesis, Université de Versailles Saint-Quentin-en-Yvelines (2009). Sect. 3.5.7. 6

36. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Proceedings of the 35th FOCS, pp. 124–134. IEEE Computer Society
Press, November 1994. 3

37. Shoufan, A., Strenzke, F., Molter, H.G., Stöttinger, M.: A timing attack against
patterson algorithm in the McEliece PKC. In: Lee, D., Hong, S. (eds.) ICISC
2009. LNCS, vol. 5984, pp. 161–175. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14423-3 12. 5

38. Sidelnikov, V.M.: A public-key cryptosystem based on binary Reed-Muller codes.
Discret. Math. Appl. 4(3), 191–208 (1994). 4

39. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discret. Math. Appl. 2(4), 439–444 (1992). 4

40. Strenzke, F.: A timing attack against the secret permutation in the McEliece PKC.
In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 95–107. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-12929-2 8. 5

41. Strenzke, F., Tews, E., Molter, H.G., Overbeck, R., Shoufan, A.: Side chan-
nels in the McEliece PKC. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 216–229. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88403-3 15. 5

42. von Maurich, I., Güneysu, T.: Lightweight code-based cryptography: QC-MDPC
McEliece encryption on reconfigurable devices. In: Fettweis, G., Nebel, W. (eds.)
Design, Automation & Test in Europe Conference & Exhibition, DATE 2014,
Dresden, Germany, 24–28 March 2014, pp.1–6. European Design and Automation
Association (2014). 4

http://eprint.iacr.org/2015/1075
http://eprint.iacr.org/2015/1075
http://dx.doi.org/10.1007/978-3-319-10175-0_17
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf
http://dx.doi.org/10.1007/978-3-642-38616-9_12
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
https://www.schneier.com/blog/archives/2015/08/nsa_plans_for_a.html
http://dx.doi.org/10.1007/978-3-642-14423-3_12
http://dx.doi.org/10.1007/978-3-642-14423-3_12
http://dx.doi.org/10.1007/978-3-642-12929-2_8
http://dx.doi.org/10.1007/978-3-540-88403-3_15
http://dx.doi.org/10.1007/978-3-540-88403-3_15

A Side-Channel Assisted Cryptanalytic Attack Against QcBits 23

43. Maurich, I., Heberle, L., Güneysu, T.: IND-CCA secure hybrid encryption from
QC-MDPC Niederreiter. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606,
pp. 1–17. Springer, Cham (2016). doi:10.1007/978-3-319-29360-8 1. 5

44. Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd. In:
Karloff, H.J., Pitassi, T. (eds.) Proceedings of the 44th Symposium on Theory
of Computing Conference, STOC 2012, New York, NY, USA, 19–22 May 2012, pp.
887–898. ACM (2012). 18

http://dx.doi.org/10.1007/978-3-319-29360-8_1

Improved Blind Side-Channel Analysis
by Exploitation of Joint Distributions

of Leakages

Christophe Clavier(B) and Léo Reynaud

Université de Limoges, XLIM-CNRS, Limoges, France
christophe.clavier@unilim.fr, leo.reynaud@xlim.fr

Abstract. Classical side-channel analysis include statistical attacks
which require the knowledge of either the plaintext or the ciphertext
to predict some internal value to be correlated to the observed leakages.

In this paper we revisit a blind (i.e. leakage-only) attack from Linge
et al. that exploits joint distributions of leakages. We show – both by
simulations and concrete experiments on a real device – that the max-
imum likelihood (ML) approach is more efficient than Linge’s distance-
based comparison of distributions, and demonstrate that this method can
be easily adapted to deal with implementations protected by first-order
Boolean masking. We give example applications of different variants of
this approach, and propose countermeasures that could prevent them.

Interestingly, we also observe that, when the inputs are known, the
ML criterion is more efficient than correlation power analysis.

Keywords: Unknown plaintext · Joint distributions · Maximum
likelihood

1 Introduction

Cryptographic implementations of embedded products like smartcards are
known to be vulnerable to statistical side-channel analysis such as Differen-
tial Power Analysis [12], Correlation Power Analysis [1] or Mutual Information
Analysis [7]. These side-channel analyses are divide-and-conquer attacks where
the whole key is recovered by chunks of few bits (e.g. one byte) at a time. This is
possible because the device produces a measurable leakage like power consump-
tion or electromagnetic emanation which depends at any instant on the internal
value manipulated by the processor. When this value only depends on a public
information – like the plaintext or the ciphertext – and a small piece of the key,
a so-called subkey, it is possible to validate or invalidate an hypothesis about
the subkey by correlating the leakage with a prediction of the internal value.

While these statistical analyses all require the knowledge of the input or the
output to be correlated with, there are some use cases or protocols where this
information is either not available or not exploitable. This is the case for the
derivation of the session key that is used to compute application cryptograms
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 24–44, 2017.
DOI: 10.1007/978-3-319-66787-4 2

Improved Blind Side-Channel Analysis 25

in the EMV payment scheme [4, p. 128] (see also left of Fig. 8). In this case the
attacker does not know the output (session key) and the input only varies on
its first two bytes, so that he can expect to recover only the two corresponding
bytes of the master key.

To deal with situations where neither the plaintext nor the ciphertext are
available, Linge et al. introduced the concept of joint distribution analysis [16].
In the case of the AES cipher, the idea is to exploit the fact that the joint distri-
bution of the Hamming weight of a byte m and that of y = S(m⊕k) depends on
k so that this key byte value can be retrieved (at any round) by comparing the
distance between the observed experimental distribution of (HW(m),HW(y))
and all 28 theoretical ones. Linge et al. also proposed a so-called slice method to
convert leakages to Hamming weights. While Le Bouder [14] presented an alter-
native approach – based on the maximum likelihood (ML) criterion – to Linge’s
distance-based comparison of distributions, she did not provide any comparison
between both methods. In this paper we build upon [14,16] and provide the fol-
lowing contributions: (i) we propose a novel way to estimate Hamming weights
based on variance analysis, (ii) we compare the ML and distance-based meth-
ods using both the slice and the variance analysis ways of obtaining Hamming
weights, (iii) we present new variants that improve the attack by exploiting other
and/or more points of interest, (iv) we adapt the blind joint distribution analy-
sis to implementations featuring Boolean masking countermeasure. Our work is
supported by experimental results based both on simulations and on real traces.

Another related work by Hanley et al. [11] presents a template-based attack
by joint distribution analysis in the blind context. This work differs from our’s
as it requires a profiling phase on a similar device with known key where the
unknown input assumption does not hold. Also, and contrarily to our work,
the adaptation of their attack to masked implementations is only applicable on
the first round. In the context of blind fault analysis, Korkikian et al. [13] and
Li et al. [15] also exploit the joint distribution of (HW(m),HW(y)) with the
distance-based and ML methods respectively.

This paper is organized as follows. In Sect. 2 we introduce the notations
used in the paper and present the original joint distribution analysis from Linge
et al. In Sect. 3 we describe the ML criterion and compare it to Linge’s distance-
based method. Section 4 considers how the different variants of our attacks can
be adapted to implementations protected by first-order Boolean masking. We
then depart from the unknown plaintext scenario in Sect. 5 to further assess
the efficiency of the ML criterion and compare it with classical CPA. Concrete
experiments on side-channel traces captured from a real device are presented
in Sect. 6 and their results compared to simulation figures. We then provide
several application examples of our attacks in Sect. 7 and discuss which kind of
countermeasures could prevent them. Section 8 finally concludes this work.

2 Background and Original Linge’s Attack

The attacks presented in this paper assume a software implementation of a
block cipher, and without loss of generality we will consider the AES [18].

26 C. Clavier and L. Reynaud

For these attacks one needs to measure the leakages corresponding to some
specific internal byte states. We thus assume that the attacker is able to locate
precisely the points of interest related to these variables. This means that an
attacker facing an implementation hardened by random delays or other types of
time randomization must have been able to preprocess the traces and remove
the effect of these desynchronizations. When the traces are aligned, identifying
the points of interest may not be an easy task. Since the attacker does not know
the plaintext, the statistical T-test or other tests that partition the trace set
based on a plaintext dependent value [3,8,9,17] can not be used. Although, it is
still possible to identify instants where the device shows a high activity from the
peaks on the trace of standard deviations such as depicted in Fig. 2. Such traces
do not provide any clue by themselves about which kind of internal data leaks,
but this information may be guessed based on reasonable assumptions about the
implementation.

2.1 Notations

We are mainly concerned with three kinds of internal AES states that we gener-
ically call m, x and y, and respectively correspond to:

m : the input byte of the XOR operation with the key byte k during the
AddRoundKey function,

x : the result of the XOR operation with the key byte (x = m⊕ k), which is the
input of the S-Box during the subsequent SubBytes function,

y : the output of the S-Box (y = S(x) = S(m⊕k)) during the SubBytes function.

Note that, except if explicitly stated, we do not assume any particular byte
number or any particular round number for m, x and y.

2.2 The Original Attack

The joint distribution analysis proposed by Linge et al. [16] considers the case
of two state bytes m and y which are seen as random variables. Assuming uni-
formly distributed plaintexts, the probability distributions of both m and y –
considered separately – are uniform and independent on the key. Though, this is
totally different for the joint distribution of the couple (m, y). Indeed this joint
distribution actually depends on k. The core idea of Linge’s attack is that if
the joint distribution of (m, y) depends on the key then it should be also true
for the joint distribution of their Hamming weights (HW(m),HW(y)). We can
thus consider 28 theoretical distributions of (HW(m),HW(y)), one per value of
k, that we call models and which we denote by Mk. As an illustrative example,
Fig. 1 shows models M39 and M167 which clearly appear to be different.

Improved Blind Side-Channel Analysis 27

Fig. 1. Joint distributions of (HW(m), HW(y)) for k = 39 (left) and for k = 167 (right)

Since we assume the Hamming weight leakage model, an attacker able to infer
the Hamming weights of m and y from two corresponding series of leakages �m

and �y can generate an empirical distribution of (HW(m),HW(y)) issued from
the device. We denote this distribution by D. As this empirical distribution
should converge to the model corresponding to the key used in the device, one
can compare D with each model Mk and select the one that achieves the best
match. To sum up, Linge’s attack comprises three steps:

Computing the models. One computes the theoretical distribution Mk for
each key candidate. This is simply a matter of considering all possible inputs
m, derive the value y = S(m ⊕ k), counting how many times each couple
(HW(m),HW(y)) appears, and normalizing in order to obtain the probability
distribution. These models are independent from the device and can thus be
computed beforehand.

Obtaining the empirical distribution D. Given a large set of traces cor-
responding to encryptions with random inputs, one measures the leak-
ages �m and �y at the two previously identified points of interest. These
couples of leakages must be converted to couples of Hamming weights in
{0, . . . , 8} × {0, . . . , 8} in order to comply with the domain of the models.
Finally, counting the number of occurrences of each observed Hamming weight
couple, and normalizing by the total number of observations, allows to gen-
erate the empirical distribution D.

Comparing D with the models. Linge et al. proposed to compare the empir-
ical distribution to the theoretical ones based on some distance. The closest
model Mk to D provides the best candidate for the secret. They studied a
large panel of 65 distances and selected four of them for giving better results
in the presence of errors in estimating the Hamming weights.

A tricky task in this attack is the conversion from leakages to Hamming
weights. Linge et al. proposed a simple method that assigns Hamming weights by
“slices” of the sorted list of leakages in accordance to their relative probabilities.
Given a set of leakages measured at a given point of interest, if we consider
them sorted in ascending order, it is reasonable to think that the smallest ones

28 C. Clavier and L. Reynaud

would correspond to a Hamming weight h = 0 and the largest ones to h = 8.
How many leakages should correspond to each Hamming weight slice may be
estimated by the theoretical proportion of each of them: given the leakages of
n random values, one assigns h = 0 to the n

256

(
8
0

)
smallest ones, h = 1 to the

n
256

(
8
1

)
immediately larger ones, and so on, up to h = 8 to the n

256

(
8
8

)
largest

leakages.

3 Improved Joint Distribution Analysis

The attack presented in Sect. 2.2 does not require the knowledge of neither the
plaintext nor the ciphertext. This remarkable property results from the fact that
the analysis is local : the information used to “correlate” with the S-Box output
y is self-contained in the trace since it comes from the leakage of m instead of
from its value. The important benefit from this is that the attack applies at any
arbitrary round, and not solely on the first or last one. On the other side, instead
of using the exact value of the input – as in classical attacks – this information
is replaced by a noisy estimation of its Hamming weight. This makes this attack
less efficient than classical ones (in term of number of traces) and motivates the
need to exploit the available information as efficiently as possible.

In this section we recall an improved method to exploit the joint distribution
of leakages at points m-y which is based on the maximum likelihood criterion [14].
The idea is to compute for each key hypothesis the probability of this key given
the observed leakages. The attacker then selects the most probable one. In this
approach the noisy leakage must be converted to a noisy Hamming weight which
does not require to be an integer value since the noise is modeled as being
distributed according to a centered Gaussian law with variance σ2. Section 3.2
discusses several ways to convert the original leakages to real-valued Hamming
weights.

3.1 Maximum Likelihood Criterion

We consider a noisy measurement (hm, hy) of a couple of Hamming weights
(h∗

m, h∗
y) corresponding to the values manipulated at points of interest related

to m and y. That means h∗
m = HW(m) and h∗

y = HW(y) = HW(S(m ⊕ k)). We
have hm = h∗

m + ωm and hy = h∗
y + ωy where ωm and ωy are two independent

and centered Gaussian noises with standard deviations σm and σy respectively1.
The probability of the key given a single observation of Hamming weights can
be derived from Bayes formula as:

Pr(k|(hm, hy)) =
Pr((hm, hy)|k) · Pr(k)

Pr((hm, hy))

1 The assumption that the distribution of the noise is Gaussian is not restrictive. If it
is not, one uses the same equations given in this section, except that Eq. (3) must
be consequently adapted to the actual (or supposed) distribution of the noise.

Improved Blind Side-Channel Analysis 29

Note that in this equation the denominator Pr((hm, hy)) is a normalization term
that does not depend on the key. We can simply ignore it since we are just inter-
ested in comparing the probabilities to each other instead of actually computing
their values2. We so have

Pr(k|(hm, hy)) ∝ Pr((hm, hy)|k) · Pr(k)

where the term Pr(k) corresponds to the uniform distribution in the case of
a first observation of (hm, hy) and more generally to the posterior distribution
computed based upon the already exploited Hamming weights couples. The prob-
ability of the key given a set of observations ((hm, hy)i)i=1...n can then be derived
in the following iterative way:

Pr(k|((hm, hy)i)i=1...n ← Pr((hm, hy)n|k) · Pr(k|((hm, hy)i)i=1...n−1 (1)

Considering that the observed Hamming weights can be issued from any possible
actual ones, the multiplicative term Pr((hm, hy)|k) can be computed thanks to
the law of total probabilities as:

Pr((hm, hy)|k) =
∑

h∗
m,h∗

y

Pr((hm, hy)|(h∗
m, h∗

y)) · Pr((h∗
m, h∗

y)|k) (2)

The second term of the product comes from the same precomputed models as
exploited in the original method, while the first term is simply the probability
of the noise that accounts for the observation:

Pr((hm, hy)|(h∗
m, h∗

y)) = Pr(ωm = hm − h∗
m) · Pr(ωy = hy − h∗

y)

=
(

1
σm

√
2π

e
− 1

2

(
hm−h∗

m
σm

)2)
·
(

1
σy

√
2π

e
− 1

2

(
hy−h∗

y
σy

)2)

(3)

Equations (1) to (3) allow to compute the probability distribution of the key
given the observed Hamming weights. This exploits the full information that
can be derived from the measurements. Based on this distribution, the attacker
simply selects the key with highest probability.

3.2 Estimating the Hamming Weights

Section 2.2 describes Linge’s “slice” method for converting leakages to Hamming
weights. While clever and quite simple to apply, its main drawback is that it esti-
mates Hamming weights as integers, so that the process may arbitrarily assign
two different Hamming weights to two quite near (possibly even equal) leakages.
While such integer values can be used in Eqs. (1) to (3), we see this threshold
effect as undesirable since the maximum likelihood method can take advantage
of a more smooth estimation without such rounding inaccuracies. We now pro-
pose two methods for converting real-valued leakages to real-valued Hamming
weights.
2 For sake of simplicity, we continue to use the notation Pr(·) in the next equations

while this actually denotes a term which is proportional to the actual probability.

30 C. Clavier and L. Reynaud

Linear Regression. According to the linear model � = α HW(v) + β, it is
possible to estimate the Hamming weight from the leakage � as soon as we know
– or have estimated – the values of the constant coefficients α and β. Linear
regression infers from two series (�i)i and (HW(vi))i of leakages and correspond-
ing Hamming weights the coefficients α and β of the linear relationship that best
fits the set of points. Unfortunately this requires the knowledge of the byte val-
ues vi corresponding to each leakage li. This means that this method preferably
applies during a characterization phase on a known-key device, the inferred coef-
ficient values being subsequently used for the attack on a similar target device
with an unknown key.

Variance Analysis. As for linear regression, our second method for converting
leakages to Hamming weights also estimates α and β. However, as far as we know
this is the first proposed method that can estimate these coefficients without
the knowledge of the key or the plaintexts/ciphertexts. It does not need them
because it is not required to know which vi corresponds to which �i.

From a large set of execution traces with varying inputs it is possible to
compute the variance (or the standard deviation) of the leakage at each instant.
Usually, this variance trace clearly shows two kinds of time samples. Those for
which the variance is low, which correspond to a low activity of the device,
or at least to a constant activity independent from the algorithm input. At
these instants we consider that the variance level reflects the variance of the
measurement noise on the leakage. On the other hand when the activity is related
to a data that depends on the algorithm input, then the variance is quite larger
as it also includes that of the manipulated data. This is illustrated in Fig. 2
where three groups of 16 peaks correspond to the standard deviation when m, x
and y bytes are manipulated, while the initial portion up to time sample 30 000
corresponds to a low activity process.

Fig. 2. Standard deviation trace computed on 1000 executions

Improved Blind Side-Channel Analysis 31

From the measurement of the variance levels both on a quiet part and at
the point of interest for the attack, one can derive the coefficient α of the leak-
age model. The noisy leakage expresses as: � = α HW(v) + β + ω. Due to the
independence of the noise from the data, we have:

Var(�) = Var(α HW(v) + β) + Var(ω) = α2 Var(HW(v)) + Var(ω) (4)

As v is a random byte value the variance of its Hamming weight is equal to 8
times the variance of a uniformly distributed bit, that is Var(HW(v)) = 8× 1

4 = 2.
We can now derive α from Eq. (4):

α = ±
√(

(Var(�) − Var(ω)
)
/2 (5)

Once α is known, the value of β can be inferred from the model as β =
E(�) − α E(HW(v)) = E(�) − 4α, where E(�) is estimated by the average leakage
at the considered point of interest. Finally, from α and β, a leakage � can be
converted to the estimated Hamming weight h = (�−β)

α .

3.3 Experimental Results

In this section we provide experimental results that compare the original
distance-based method with that based on the ML criterion. We performed sim-
ulations where m is generated at random uniformly and y = S(m⊕k) is derived
from m and from the key byte to be recovered (k is drawn at random for each
run). We generated our observations by adding two independent Gaussian noises
with same variance to HW(m) and HW(y).

Based on the sets of real-valued Hamming weights (hm)i and (hy)i, we com-
puted integer versions of them suitable for applying the distance method. To
that end we applied Linge’s slice method to the real-valued Hamming weights
in a same manner as if they were original leakages. Note that applying the slice
method to the real-valued Hamming weights is strictly equivalent to applying it
to the leakages from which they are supposed to be linearly derived.

The left part of Fig. 3 presents the results in terms of the average rank of the
correct key based on 10 000 runs with a medium noise level of σ = 1.0. Drawings
in plain line style refer to the “slice” way to derive integer Hamming weights
from real-valued ones. Blue, green and gray lines refer to the Inner Product, to
the Pearson χ2 and to the Euclidean distances respectively. Red lines refer to
the ML criterion for which we also show in dotted line style the results when
using directly the real-valued Hamming weights. In the case of the ML we used
the same noise level σ = 1.0 for the attack phase as we used to generate the
observations.

We can clearly see that IP and Euclidean distances do not give good results
whereas the Pearson χ2 based distance gives better ones. Also, ML strongly
outperforms all distance-based methods, particularly when used with original
real values. For the maximum likelihood the average rank is about 5 with 1000
observations, and below 2 with only 2000 observations.

32 C. Clavier and L. Reynaud

These simulation results demonstrate that themaximum likelihood approach is
superior to the distance based one in two respects: (i) it is intrinsically better when
compared with the same observations (integer Hamming weights generated by the
slice process) and further, (ii) it can take great advantage of real-valued Hamming
weight estimations that can be directly inferred from the measured leakage.

Fig. 3. Left: comparison of original distance method and m-y maximum likelihood
(σ = 1.0). Right: comparison of m-y and m-x-y variants for different levels of noise.
(Color figure online)

Variants with More Points of Interest. While the joint Hamming weights
distribution analysis has been presented in Sect. 3.1 with two observed leakages
(namely m and y), it is possible to use more of them if available. For example we
can use the joint leakage from the three points of interest of m, x = m ⊕ k and
y = S(m⊕k). Such so-called m-x-y attack is a straightforward generalization of
the m-y attack where the theoretical models contain values of Pr((h∗

m, h∗
x, h∗

y)|k)
instead of Pr((h∗

m, h∗
y)|k), where the summation of Eq. (2) is over all triplets

(h∗
m, h∗

x, h∗
y)3, and where the conditional probability of the observation in Eq. (3)

includes an extra term corresponding to Pr(ωx = hx − h∗
x).

The right part of Fig. 3 compares both m-y (plain lines) and m-x-y (dotted
lines) variants of the maximum likelihood attack with three noise levels σ=0.7
(blue), σ=1.0 (green) and σ=1.5 (red). Notice that for a same noise level the m-x-y
attack is quite more efficient than the m-y one. This is because the observation of
hx brings extra information that helps to further discriminate candidate keys. We
also observe that the effect of the noise is important as it requires about five times
more observations to get the same reliability on the key for σ=1.5 than for σ=1.0.

It is also possible to use other points of interest. For example, the y value is
subsequently used in the MixColumns operation. Thus, depending on the imple-
mentation, there may exist instants where 2y and 3y are also manipulated. We
have studied variants of the attack where these variables are included in the
analysis. This results in attacks of types m-y-2y, m-y-3y, m-y-2y-3y and the
3 While this can be viewed as a multiplication by 9 of the terms in the summation, it

is worth to note that Pr((h∗
m, h∗

x, h∗
y)|k) is non null for at most 256 triplets.

Improved Blind Side-Channel Analysis 33

same ones with x also. The simulation results show that adding more variables
to the analysis always gives better results, but this gain is smaller for 3y than
for x, and even smaller for 2y 4.

Variant m-x . We now present a particular variant of the joint distribution
analysis which involves only the leakages of m and x. This variant is special
in the sense that if one computes the theoretical models for all possible k then
one observes that they form classes of indistinguishable models, with each class
being specific to the Hamming weight of k. That means that the distribution of
(HW(m),HW(m ⊕ k)) only depends on HW(k). This property is not so surpris-
ing, and comes from the fact that the XOR operation acts on bits independently
from each other and that the Hamming weight function is invariant by any
permutation of the bits.

There are two practical consequences of this property. First, the amount of
information that can be retrieved from a m-x joint distribution analysis is less
than for the m-y variant (about 2.5 bits instead of 8 bits on average). The second
consequence is that the m-x attack retrieves hk = HW(k) more efficiently than
the m-y attack retrieves k. This is due not only to the fact that there are only
9 models to distinguish from, but also to the fact the those models are more
different from each other.

Fig. 4. Top: joint distributions of (HW(m), HW(x)) for HW(k) equal to 0, 1 and 2.
Bottom: simulation results of the m-x variant for different noise levels.

4 This last observation can be explained by the fact that information brought by y
and 2y are somewhat redundant. Indeed their Hamming weights are quite correlated
since they are equal for all y < 128 values for which 2y is equal to y � 1.

34 C. Clavier and L. Reynaud

As an illustrative example, the top of Fig. 4 shows the models Mhk
for values

0, 1 and 2 of hk. One can observe that these distributions show a characteristic
pattern made of respectively 1, 2 and 3 parallel and linear structures like “walls”.

Simulation results for the m-x variant are presented on the bottom of Fig. 4.
The correct Hamming weight of the key is “first ranked” (arbitrarily, say a mean
rank less than 0.2) with less than 100, 200 and 500 traces for noise levels σ equal
to 0.7, 1.0 and 1.5 respectively.

4 Implementations Protected by Boolean Masking

Both Linge’s and the maximum likelihood methods presented in Sect. 3 require
a non protected implementation. Notably, they can not recover the key in the
presence of the Boolean masking countermeasure [10,19]. This defense technique
prevents from classical statistical attacks by XOR-masking all intermediate state
bytes of the ciphering path with a random mask byte which is refreshed at every
execution. To do so, it is necessary to generate a modified S-Box S′ designed
to produce a masked version y′ = y ⊕ rout of the normal output y = S(x)
when it receives a masked input x′ = x ⊕ rin. The modified S-Box is thus
defined as y′ = S′(x′) = S(x′ ⊕ rin) ⊕ rout. From the measured leakages �m′ and
�y′ the attacker infers a masked couple (HW(m′),HW(y′)) which is differently
distributed than the couple (HW(m),HW(y)) based on which the models are
defined.

4.1 Variants m-y and m-x-y

Figure 5 presents different options for implementing the Boolean masking coun-
termeasure. We focus here on the area involving the XOR with the key and the
S-Box. These schemes differ according to whether the key itself is masked or not,
and whether the input and output masks of the S-Box are the same or not.

Fig. 5. Examples of Boolean masking schemes

Improved Blind Side-Channel Analysis 35

When an attacker performs the first-order joint distribution analysis on an
implementation protected by first-order Boolean masking, he generates an empir-
ical distribution of masked couples (HW(m′),HW(y′)) and “compares”5 it to a
distribution of non masked couples (HW(m),HW(y)). The consequence is that
the empirical distribution will not match the models even for the correct key.

In the case where m and y are masked by the same value (schemes a, b and
c of Fig. 5), it is possible to recover the consistency between both empirical and
theoretical distributions if we define the models as being distributed according
to the distribution of masked couples with an uniformly distributed m and an
uniformly distributed mask u.

Thus, it is possible to adapt the joint distribution attack to such masked
implementations and the only modification consists in creating the models in a
way that fits with the distribution of the couples of masked Hamming weights.
Precisely, there still exists 256 models Mk, one per key byte, and each model
contains the conditional probabilities Pr((HW(m′),HW(y′))|k). But in this case,
these probabilities are computed by counting the number of occurrences of each
couple of Hamming weights when both m and the mask u range over all byte
values. These models still mutually differ but they are much more similar to each
other than for the non-masked case. This is illustrated on the top of Fig. 6 which
presents the models for the same example keys than those presented in Fig. 1.
We verified that all 256 models are different from each other.

The greater similarity between theoretical distributions in the masked case
induces a much larger number of observations that are needed to distinguish
between them. This is due to the fact that one must wait longer before the
empirical distribution converges toward its model.

Notice that a m-x-y variant of such second-order joint distribution analysis
is also possible provided that all three intermediate state bytes are masked by
the same value. This is notably the case for schemes a and c of Fig. 5. We
present experimental results for both m-y and m-x-y variants of the second-
order joint distribution analysis (with ML criterion) on the bottom of Fig. 6.
These simulation results were obtained by averaging the rank of the correct key
over 1000 runs with a noise level equal to σ=1.0.

Here also the m-x-y variant is more efficient than the m-y one. We also
observe that the number of traces needed to recover the key is much more than
for the first-order attack. Nevertheless, this demonstrates that joint distribution
analysis also works on masked implementations provided that relevant variables
are masked by the same value.

4.2 Variant m-x

We have seen in Sect. 3.3 that the m-x variant is particular in the sense that it
allows to recover the Hamming weight of k instead of k itself. Another remark-
able and important property of this variant is that it is exactly as efficient when
applied to masked values m′ = m ⊕ u and x′ = x ⊕ u as it is when applied

5 This comparison is either explicit (Linge’s distances) or implicit (ML).

36 C. Clavier and L. Reynaud

Fig. 6. Top: joint distributions of (HW(m′), HW(y′)) for k = 39 (left) and k = 167
(right). Bottom: comparison of second-order m-x and m-x-y variants (σ = 1.0)

directly to m and x. This means that masking is totally useless with respect
to this attack. The reason is that both joint distributions of (HW(m),HW(x))
and (HW(m′),HW(x′)) are the same. This is because both series of (m,x) and
(m′, x′) are the same in a permuted order, so are equal the series of their Ham-
ming weights.

We stress on the importance of this special behavior: even an implementation
protected by Boolean masking is vulnerable to the m-x variant which can recover
the Hamming weight of the key byte with about only few hundreds traces. Again,
this is only true if m and x are masked by the same value, which is the case of
schemes a and c of Fig. 5.

5 Joint Distribution Analysis with Knowledge
of the Plaintext

As stated by Eq. (2), the joint distribution analysis with ML criterion uses the
conditional distributions Pr((h∗

m, h∗
y)|k) of the Hamming weights given the key.

These models are built in a precomputation phase by counting, for the given
key, the number of occurrences of each Hamming weight couple (or triplet for a
m-x-y attack) for all possible values of m, and possibly all values of the mask u
in the case of a masked implementation.

Improved Blind Side-Channel Analysis 37

In this section we study how to adapt this attack to the classical case where
the plaintext is known from the attacker. Of course, contrarily to the blind
context, the attack is now feasible only on the first round.

5.1 First-Order Attack

When m is known it is no more useful to include hm in the observation, and we
work with the probability distribution of h∗

y (or of (h∗
x, h∗

y) for a m-x-y attack)
for given values of k and m. Note that in this case the distribution is degener-
ated as a unique h∗

y value (or a unique (h∗
x, h∗

y) couple) resulting from k and m.
Though, the computation of the probability distribution of k given the observa-
tions remains feasible in a similar way by summing over only h∗

y (or (h∗
x, h∗

y)) in
Eq. (2).

We have simulated the m-y attack on 1000 runs and compared it with the
classical CPA. Results are presented on the left part of Fig. 7 for σ noise levels of
1.0, 3.0 and 5.0 respectively. We note that retrieving the key by the ML method
is slightly more efficient than by CPA. On the other hand, CPA does not require
the determination of the point of interest.

Fig. 7. Left: comparison of m-y attack (with m known) to CPA. Right: comparison of
2nd-order m-y attack (with m known) to 2nd-order CPA. Variant with points of interest
m′ = m ⊕ u and y′ = y ⊕ u.

5.2 Second-Order Attack

In the case of a masked implementation, a first option is also to straightforwardly
adapt the attack to the knowledge of m. The attack takes m′ and y′ as points
of interest. For each couple (k,m) we precompute a corresponding model that
gives the distribution of (h∗

m′ , h∗
y′) when only the mask u varies.

As an alternative method, one can substitute the observation of m′ by that
of the random value that masks y. The two points of interest are then u and
y′ = y ⊕ u, and the models correspond to the distribution of (h∗

u, h∗
y′). A great

advantage of this variant is that it applies even when two independent masks
are added to m and y. On the other hand, it requires to identify the point of
interest of the mask, which may be difficult.

38 C. Clavier and L. Reynaud

We have simulated both variants on 1000 runs. In each case we compare
the ML method with the 2nd-order CPA where the combination of the leakages
(centered product6) is correlated with HW(m ⊕ y) in the first case, and with
HW(y) in the second case. Both variants give almost the same results, which is
not surprising as when m is known, the information brought by m′ = m⊕u and
by u are essentially the same. The right part of Fig. 7 presents the results for
the variant which exploits m′ and y′. Note that the ML method finds the key
somewhat earlier than 2nd-order CPA.

6 Concrete Experiments

In this section we present concrete experiments on side-channel traces captured
from a real device. We have implemented two versions of a software AES on
an Arduino Uno 8-bit microcontroller. The first version does not feature any
countermeasure while the other one implements Boolean masking with the same
mask on m, x and y.

We present two attacks: a m-y attack with unknown plaintext on the naive
implementation, and a m-y attack with known plaintext on the masked imple-
mentation (variant with points of interest on m′ and y′).

Traces were acquired on a Lecroy WaveRunner oscilloscope with a sampling
rate of 5 GS/s. The 1000 traces for the first attack and the 200 traces for the sec-
ond one were perfectly aligned and the points of interest were blindly determined
based on the highest peaks of the standard deviation trace. Figure 2 shows the
computed trace that was used for the first attack. It clearly shows three groups
of 16 peaks. The points of interest corresponding to m and y bytes were easily
identified by assuming that the three groups correspond to manipulations of m,
x and y respectively. For the second attack the points of interest for m′ and y′

where identified similarly based on a standard deviation trace that exhibits four
groups of peaks corresponding to successive manipulations of m, m′, x′ and y′.

We used the variance analysis method of Sect. 3.2 to derive α and β coeffi-
cients at each point of interest. Based on the first part of the standard deviation
trace of Fig. 2, we have estimated the standard deviation (in leakage unit7) of
the noise by visual inspection, and we choose the value 2.0 which approximately
lies in the middle of the vertical range. This procedure resulted in the same
estimated value for the second attack.

Notice that when α is derived from Eq. (5), the attacker must decide its sign.
If he does not know which sign is correct for αm nor for αy, he must perform the
attack four times, and the four sorted lists of key candidates must be interleaved
when trying to find to correct whole key by key enumeration. In our case, a prior

6 Given two leakages �1 and �2 the centered product combining function computes
f(�1, �2) = (�1 − E(�1)) × (�2 − E(�2)). The absolute value of centered difference
combining function defined by g(�1, �2) = |(�1 − E(�1)) − (�2 − E(�2))| has also been
considered but shows to be less efficient than the centered product.

7 σ of the noise on the leakage and that on the Hamming weight are equal up to the
factor |α|. It is thus expressed in leakage unit or in bit unit according to the context.

Improved Blind Side-Channel Analysis 39

characterization of the device revealed that α is negative for all points of interest
as explained in Appendix A.

Table 1 gives the ranks of correct key bytes for the m-y attack with unknown
plaintexts on the unprotected implementation. For comparison purpose the
attack has also been performed with the distance-based method using Inner
Product and Euclidean distances8. Except for six bytes, the maximum likeli-
hood always finds the correct key in the first 10 positions, whereas the distance
based attacks are quite less efficient. Note that the standard deviation of the
noise (in bit unit) was more or less equal to σ = 0.7 for each byte. Simulations
show that for this noise level the average rank is about 58 for the Inner Prod-
uct, about 29 for the Euclidean distance, and close to 0.25 for the maximum
likelihood.

Table 1. Rank of the correct key byte for a m-y attack with unknown plaintexts on
an unprotected implementation (1000 traces)

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In. Prod 0 0 167 29 45 187 192 45 77 108 36 124 5 104 64 147

Eucl. Dist 1 80 210 106 3 62 186 17 38 68 194 48 27 120 21 116

ML (slice) 1 1 29 0 1 46 1 0 1 32 36 19 26 67 66 28

ML (var.) 0 2 6 1 1 17 1 0 1 19 5 15 4 40 19 13

Similarly, Table 2 gives the ranks of correct key bytes for the m-y attack with
known plaintexts on the masked implementation. ML and centered product 2nd-
order CPA give similar almost perfect results. For comparison, we also provide
results for the absolute value of centered difference combining function which
show to be globally less efficient.

Table 2. Rank of the correct key byte for a m-y attack with known plaintexts on a
masked implementation (200 traces)

Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SO-CPA (abs. diff.) 0 5 1 213 0 109 0 75 0 0 0 58 0 1 3 0

SO-CPA (product) 0 0 6 64 0 16 0 0 1 0 0 2 0 0 0 0

ML (variance) 1 0 0 12 0 5 0 0 0 0 0 9 0 0 0 0

8 The Pearson χ2 distances were impossible to compute due to an insufficient number
of traces.

40 C. Clavier and L. Reynaud

7 Applications and Possible Countermeasures

7.1 Applications

We now present three applications of the attacks presented in this paper.

1. Our first application relates to the AES-based9 EMV session key deriva-
tion function depicted on the left of Fig. 8. As Linge et al. already noted
this scheme resists to classical side-channel analyses like DPA or CPA. An
attacker who wants to recover the master key would target the first AES.
Unfortunately, its output is not known since this is the session key. It is thus
impossible to perform an attack at the last round. It is also impossible to
attack the first round except on the first two key bytes since the 14 remain-
ing input bytes are constant. Linge et al. also observed that, contrarily to
DPA and CPA, joint distribution analysis can be used to recover the mas-
ter key. Indeed after two rounds all state bytes can be considered to vary
uniformly. It is thus possible to apply their attack e.g. at the third round to
retrieve the value of K3. While Linge’s attack is restricted to naive implemen-
tations, our m-y and m-x-y variants presented in Sect. 4.1 can do the same
on implementations protected by first-order Boolean masking.

2. EMV session key derivation can also be attacked by the m-x variant. Since this
variant only recovers the Hamming weights of the key bytes, applying it on the
16 bytes of a round key is not sufficient as this brings an average of only about
20 bits of information. Instead we can perform the attack at all rounds, which
recovers the Hamming weights of all 176 bytes of the expanded key. While
this is much more information about the key, one would wonder whether this
information can be efficiently exploited to retrieve the ciphering key K. It has
been shown [2] that a branch-and-bound like algorithm can recover K quite
efficiently from part of these Hamming weights. This algorithm can also deal
with some errors in the estimation of the Hamming weights. It is thus possible

Fig. 8. Left: EMV session key derivation scheme. Right: ISO/IEC 9797-1 MAC scheme
using 3-DES algorithm.

9 EMV scheme also allows to use the Triple DES function.

Improved Blind Side-Channel Analysis 41

to recover an AES key on a Boolean masked implementation with no extra
cost compared to a naive one.

3. In [6] Feix et al. show that a fixed key used to compute a cryptogram with
the standard scheme ISO/IEC 9797-1 MAC algorithm using 3-DES algorithm
can be compromised even if the DES itself is implemented in a secure way.
The right part of Fig. 8 shows how the MAC value is computed from a k-
bloc plaintext P = (P1, . . . , Pk) and a 112-bit secret key K = (K1,K2).
Their attack obtains side-channel information outside the DES function, at
the protocol level. Precisely, if an attacker fixes the first n plaintext blocks
and lets Pn+1 vary, then the fixed value of the intermediate ciphertext block
Cn can be recovered by correlating, byte per byte, the known value Pn+1

with the leakage of Cn ⊕ Pn+1. Once Cn is known, K1 can be retrieved by a
56-bit exhaustive search against a known plaintext/ciphertext pair. Once K1

is known, K2 is also recovered by a 56-bit exhaustive search.
A proposed fix to this attack, which consists in applying a Boolean masking on
all plaintext blocks, has later been proven vulnerable to 2nd-order analysis [5]
if the masks do not have maximal entropy. The authors show that one can
jeopardize a masked implementation in the two following cases: (i) a same
8-byte mask block M = (R0, R1, . . . , R7) is used to mask all Pi blocks, or
(ii) all Pi are masked with different mask blocks Mi = (Ri, Ri, . . . , Ri) made
of a same repeated random byte. They notice that the attack does not work
when all mask blocks Mi = (Ri,0, . . . , Ri,7) are different and made of different
bytes, and consequently recommend this full entropy masking.
In the case of careful Boolean masking with full entropy, we observe that
both Pn+1 and Pn+1⊕Cn are still masked by the same value Mn+1. It is then
possible to mount an m-x type joint distribution analysis10 which reveals
the Hamming weights of each Cn byte. One can obtain similar information
for several plaintexts (P1, . . . , Pn) and use them all in the exhaustive search
phase. More precisely, any key candidate that complies with the Hamming
weights of the first pair will be checked against those of the second one, and
so on.

7.2 Possible Countermeasures

As stated in Sects. 4.1 and 4.2, it is possible to apply the joint distribution
analysis to implementations protected by first-order masking. Yet, a requirement
for all m-y, m-x-y and m-x variants is that the targeted variables are all masked
with a same value. As a result, the masking scheme d of Fig. 5 is not vulnerable
to our attacks since m, x and y are all masked by independent random values.
We thus recommend this masking scheme or any other one which would share
the same property.

10 A classical second-order CPA on the pair of leakages of (Pn+1⊕Mn+1, Pn+1⊕Mn+1⊕
Cn) is not possible in this case as it would imply to correlate the combination of
these leakages with the Hamming weight of Cn which does not vary.

42 C. Clavier and L. Reynaud

We also recommend any countermeasure that introduces time randomization –
like random delays or shuffling of independent operations – and spoils the notion
of point of interest or make them difficult to identify.

8 Conclusion

We demonstrated that the maximum likelihood method better exploits couples
of Hamming weights in Linge’s joint distribution analysis. Given a set of observed
couples of Hamming weights it computes the posterior probability of each key
candidate and selects the most probable of them. We have studied the non
trivial problem of inferring Hamming weights from leakages and described a
new method based on variance analysis that does not require the knowledge of
the key and the plaintexts/ciphertexts (contrarily to linear regression).

We compared the ML approach to Linge’s technique based on distances
between distributions and showed, by simulations and concrete experiments,
that it recovers the key value more efficiently. We derived several variants – m-
x-y, m-x and others – of the original m-y attack and adapted the generation of
theoretical models to make this attack work in the presence of Boolean masking.
We noticed a remarkable property of the m-x attack that applies equally well
on naive and masked implementations.

We proposed new applications of our attacks that can threaten the EMV ses-
sion key derivation even on protected implementations, and we proposed imple-
mentation guidelines in order to thwart our attacks or at least make them quite
difficult.

As future works, it could be interesting to study how the ML criterion can
deal with non Gaussian noises and with non linear leakage functions.

Acknowledgements. The authors would like to thank Yanis Linge, Antoine Wurcker
and Benoit Feix for fruitful discussions about the attacks presented in this paper.

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

2. Clavier, C., Marion, D., Wurcker, A.: Simple power analysis on AES key expansion
revisited. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp.
279–297. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 16

3. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

4. EMV Co. EMV Integrated Circuit Card Specifications for Payment Systems, Book
2, Security and Key Management, Version 4.3, November 2011

http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-662-44709-3_16
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10

Improved Blind Side-Channel Analysis 43

5. Feix, B., Ricart, A., Timon, B., Tordella, L.: Defeating embedded cryptographic
protocols by combining second-order with brute force. In: Lemke-Rust, K.,
Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 23–38. Springer, Cham
(2017). doi:10.1007/978-3-319-54669-8 2

6. Feix, B., Thiebeauld, H.: Defeating ISO9797-1 MAC Algo 3 by Combining Side-
Channel and Brute Force Techniques. IACR Cryptology ePrint Archive, Report
2014/702 (2014)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85053-3 27

8. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). doi:10.1007/11894063 2

9. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resitance validation. In: NIST Non-invasing Attack Testing Workshop (2011)

10. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

11. Hanley, N., Tunstall, M., Marnane, W.P.: Unknown plaintext template attacks. In:
Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 148–162. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-10838-9 12

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

13. Korkikian, R., Pelissier, S., Naccache, D.: Blind fault attack against SPN ciphers.
In: Tria, A., Choi, D. (eds.) Fault Diagnosis and Tolerance in Cryptography -
FDTC 2014, pp. 94–103. IEEE Computer Society Press (2014)

14. le Bouder, H.: Un formalisme unifiant les attaques physiques sur circuits cryp-
tographiques et son exploitation afin de comparer et rechercher de nouvelles
attaques. Ph.D. thesis, École Nationale Supérieure des Mines de Saint-Étienne
(2014)

15. Li, Y., Chen, M., Liu, Z., Wang, J.: Reduction in the number of fault injections
for blind fault attack on SPN block ciphers. ACM Trans. Embed. Comput. Syst.
16(2), 55:1–55:20 (2017)

16. Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a
cryptographic function in side channel analysis. In: Prouff, E. (ed.) COSADE
2014. LNCS, vol. 8622, pp. 199–213. Springer, Cham (2014). doi:10.1007/
978-3-319-10175-0 14

17. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 25

18. National Institute of Standards and Technology. Advanced Encryption Standard
(AES). Federal Information Processing Standard #197 (2001)

19. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). doi:10.
1007/11605805 14

http://dx.doi.org/10.1007/978-3-319-54669-8_2
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/11894063_2
http://dx.doi.org/10.1007/3-540-48059-5_15
http://dx.doi.org/10.1007/978-3-642-10838-9_12
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-10175-0_14
http://dx.doi.org/10.1007/978-3-319-10175-0_14
http://dx.doi.org/10.1007/978-3-642-42033-7_25
http://dx.doi.org/10.1007/11605805_14
http://dx.doi.org/10.1007/11605805_14

44 C. Clavier and L. Reynaud

A Determination of the Sign of α

The sign of α indicates whether the leakage function linearly increases (α > 0)
or decreases (α < 0) with the Hamming weight of the data. Experiments on our
device with known plaintexts and a known key demonstrated that positive CPA
peaks always occur on the descending part of the leakage during the clock cycle,
while negative peaks always occur on its ascending part. This is clearly visible
in Fig. 9 where the power consumption and the CPA traces are depicted in red
and green respectively.

On the same figure one can notice that the standard deviation peaks (in
blue) may occur either on positive or negative CPA peaks. Deciding whether a
standard deviation peak corresponds to a positive or negative α value simply
consists in observing whether it matches with a falling or a raising edge of the
leakage respectively. In the experiments described in Sect. 6 we observed that the
selected points of interest – defined by the highest standard deviation peaks –
always correspond to the ascending part of the clock cycle leakage, which means
a negative α value.

Fig. 9. Relation between the correlation sign and the raising/falling part of the leakage
(Color figure online)

Convolutional Neural Networks with Data
Augmentation Against Jitter-Based

Countermeasures

Profiling Attacks Without Pre-processing

Eleonora Cagli1,2,4(B), Cécile Dumas1,2, and Emmanuel Prouff3,4

1 Univ. Grenoble Alpes, 38000 Grenoble, France
2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France

{eleonora.cagli,cecile.dumas}@cea.fr
3 Safran Identity and Security, Issy-les-Moulineaux, France

emmanuel.prouff@ssi.gouv.fr
4 Sorbonne Universités, UPMC Univ Paris 06, POLSYS, UMR 7606, LIP6,

75005 Paris, France

Abstract. In the context of the security evaluation of cryptographic
implementations, profiling attacks (aka Template Attacks) play a fun-
damental role. Nowadays the most popular Template Attack strategy
consists in approximating the information leakages by Gaussian distri-
butions. Nevertheless this approach suffers from the difficulty to deal
with both the traces misalignment and the high dimensionality of the
data. This forces the attacker to perform critical preprocessing phases,
such as the selection of the points of interest and the realignment of
measurements. Some software and hardware countermeasures have been
conceived exactly to create such a misalignment. In this paper we pro-
pose an end-to-end profiling attack strategy based on the Convolutional
Neural Networks: this strategy greatly facilitates the attack roadmap,
since it does not require a previous trace realignment nor a precise selec-
tion of points of interest. To significantly increase the performances of
the CNN, we moreover propose to equip it with the data augmentation
technique that is classical in other applications of Machine Learning. As
a validation, we present several experiments against traces misaligned
by different kinds of countermeasures, including the augmentation of
the clock jitter effect in a secure hardware implementation over a mod-
ern chip. The excellent results achieved in these experiments prove that
Convolutional Neural Networks approach combined with data augmen-
tation gives a very efficient alternative to the state-of-the-art profiling
attacks.

Keywords: Side-Channel Attacks · Convolutional Neural Networks ·
Data augmentation · Machine learning · Jitter · Trace misalignment ·
Unstable clock

E. Prouff—This work has been finalized when the author was working at ANSSI,
France.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 45–68, 2017.
DOI: 10.1007/978-3-319-66787-4 3

46 E. Cagli et al.

1 Introduction

To prevent Side-Channel Attacks (SCA), manufacturers commonly implement
countermeasures that create misalignment in the measurements sets. The latter
countermeasures are either implemented in hardware (unstable clock, random
hardware interruption, clock stealing) or in software (insertion of random delays
through dummy operations [8,9], shuffling [31]). Until now two approaches have
been developed to deal with misalignment problems. The first one simply consists
in adapting the number of side-channel acquisitions (usually increasing it by a
factor which is linear in the misalignment effect). Eventually an integration over
a range of points [21] can be made, which guarantees the extraction of the
information over a single point, at the cost of a linear increase of the noise,
that may be compensated by the increase of the acquisitions. The second one,
which is usually preferred, consists in applying realignment techniques in order to
limit the desynchronization effects. Two realignment techniques families might
be distinguished: a signal-processing oriented one (e.g. [24,30]), more adapted to
hardware countermeasures, and a probabilistic-oriented one (e.g. [11]), conceived
for the detection of dummy operations, i.e. software countermeasures.

Among the SCAs, profiling attacks (aka Template Attacks, TA for short)
play a fundamental role in the context of the security evaluation of crypto-
graphic implementations. Indeed the profiling attack scenario allows to evaluate
their worst-case security, admitting the attacker is able to characterize the device
leakages by means of a full-knowledge access to a device identical to the one under
attack. Such attacks work in two phases: first, a leakage model is estimated dur-
ing a so-called profiling phase, then the profiled leakage model is exploited to
extract key-dependent information in the proper attack phase. Approximating
the information leakage by a Gaussian distribution is today the most popular
approach for the profiling, due to its theoretical optimality when the noise tends
towards infinity. Nevertheless the performances of such a classical TA highly
depend on some preliminary phases, such as the traces realignment or the selec-
tion of the Points of Interest (PoIs). Indeed the efficiency/effectiveness of the
Gaussian approximation is strongly impacted by the dimension of the leakage
traces at input.

In this paper we propose the use of a Convolutional Neural Network (CNN)
as a comprehensive profiling attack strategy. Such a strategy, divided into a
learning phase and a proper attack phase, can replace the entire roadmap of
the state of the art attacks: for instance, contrary to a classical TA, any trace
preprocessing such as realignment or the choice of the PoIs are included in the
learning phase. Indeed we will show that the CNNs implicitly perform an appro-
priate combination of the time samples and are robust to trace misalignment.
This property makes the profiling attacks with CNNs efficient and easy to per-
form, since they do not require critical preprocessings. Moreover, since the CNNs
are less impacted than the classical TA by the dimension of the traces, we
can a priori expect that their efficiency outperforms (or at least perform as
well as) the classical TAs. Indeed, CNNs can extract information from a large
range of points while, in practice, Gaussian TAs are used to extract information

Convolutional Neural Networks with Data Augmentation 47

on some previously dimensionality-reduced data (and dimensionality reduction
never raises the informativeness of the data [10]). This claim, and more gener-
ally the soundness and the efficiency of our approach, will be proven by several
experiments throughout this paper.

To compensate some undesired behaviour of the CNNs, we propose as well to
embed them with Data Augmentation (DA) techniques [28,32], recommended in
the machine learning domain for improving performances: the latter technique
consists in artificially generating traces in order to increase the size of the profil-
ing set. To do so, the acquired traces are distorted through plausible transforma-
tions that preserve the label information (i.e. the value of the handled sensitive
variable in our context). Actually, in this paper we propose to turn the misalign-
ment problem into a virtue, enlarging the profiling trace set via a random shift
of the acquired traces and another typology of distortion that together simulate
a clock jitter effect. Paradoxically, instead of trying to realign the traces, we
propose to further misalign them (a much easier task!), and we show that such
a practice provides a great benefit to the CNN attack strategy.

This contribution makes part of the transfer of methodology in progress in
last years from the machine learning and pattern recognition domain to the side-
channel analysis one. Recently the strict analogy between template attacks and
the supervised classification problem as been depicted [15], while the deployment
of Neural Networks (NNs) [22,23,33] and CNNs [20] to perform profiled SCAs
has been proposed. Our paper aims to pursue this line of works.

This paper focuses over the robustness of CNNs to misalignment, thus consid-
erations about other kinds of countermeasures, such as masking, are left apart.
Nevertheless, the fact that CNNs usually applies non-linear functions to the data
makes them potentially (and practically, as already experienced in [20]) able to
deal with such a countermeasure as well.

The paper is organized as follows: in Sect. 2 we recall the classical TA
roadmap, we introduce the MLP family of NNs, we describe the NN-based SCA
and we finally discuss the practical aspects of the training phase of an NN.
In Sect. 3 the basic concepts of the CNNs are introduced, together with the
description of the deforming functions we propose for the data augmentation.
In Sect. 4 we test the CNNs against some software countermeasures, in order to
validate our claim of robustness to the misalignment caused by shifting. Exper-
iments against hardware countermeasures are described in Sect. 5, proving that
the CNN are robust to deformations due to the jitter.

2 Preliminaries

2.1 Notations

Throughout this paper we use calligraphic letters as X to denote sets, the corre-
sponding upper-case letter X to denote random variables (random vectors if in
bold X) over X , and the corresponding lower-case letter x (resp. x for vectors)
to denote realizations of X (resp. X). The i-th entry of a vector x is denoted by

48 E. Cagli et al.

x[i]. Side-channel traces will be viewed as realizations of a random column vec-
tor X ∈ R

D. During their acquisition, a target sensitive variable Z = f(P,K) is
handled, where P denotes some public variable, e.g. a plaintext, and K the part
of secret key the attacker aims to retrieve. The value assumed by such a variable
is viewed as a realization z ∈ Z = {z1, z2, . . . , z|Z|} of a discrete finite random
variable Z. We will sometimes represent the values zi ∈ Z via the so-called one-
hot encoding representation, assigning to zi a |Z|-dimensional vector, with all
entries equal to 0 and the i-th entry equal to 1: zi → zi = (0, . . . , 0, 1

︸︷︷︸

i

, 0, . . . , 0).

2.2 Profiling Side-Channel Attack

A profiling SCA is composed of two phases: a profiling (or characterization, or
training) phase, and an attack (or matching) phase. During the first one, the
attacker estimates the probability:

Pr[X|Z = z] , (1)

from a profiling set {xi, zi}i=1,...,Np
of size Np, which is a set of traces xi acquired

under known value zi of the target. The potentially huge dimensionality of X
lets such an estimation a very complex problem, and the most popular way
adopted until now to estimate the conditional probability is the one that led to
the well-established Gaussian TA [5] (aka Quadratic Discriminant Analysis [12]).
To perform the latter attack, the adversary priorly exploits some statistical tests
(e.g. SNR or T-Test) and/or dimensionality reduction techniques (e.g. Principal
Component Analysis, Linear Discriminant Analysis [12], Kernel Discriminant
Analysis [4]) to select a small portion of PoIs or an opportune combination
of them. Then, denoting ε(X) the result of such a dimensionality reduction,
the attacker assumes that ε(X)|Z has a multivariate Gaussian distribution, and
estimates the mean vector μz and the covariance matrix Σz for each z ∈ Z
(i.e. the so-called templates). In this way the pdf (1) is approximated by the
Gaussian pdf with parameters μz and Σz. The attack phase eventually consists
in computing the likelihood of the attack set {xi}i=1,...,N for each template and
in sorting the key candidates k ∈ K with respect to their score dk defined such
that:

dk =
N
∏

i=1

Pr[Z = f(pi, k)|ε(X) = ε(xi)] =
N
∏

i=1

Pr[ε(X) = ε(xi)|Z = f(pi, k)]
Pr[Z = f(pi, k))]

,

(2)
where (2) is obtained via Bayes’ Theorem under the hypothesis that acquisitions
are independent.1

Traces misalignment affects the approach above. In particular, if not treated
with a proper realignment, it makes the PoI selection harder, obliging the

1 In TA the profiling set and the attack set are assumed to be different, namely the
traces xi involved in (2) have not been used for the profiling.

Convolutional Neural Networks with Data Augmentation 49

attacker to consider a wide range of points for the characterization and matching
(the more effective the misalignment, the wider the range), directly or after a
previous integration [7] or a dimension reduction methods.2 As we will see in the
next section, neural networks, and in particular the CNNs, are able to efficiently
and simultaneously address the PoI selection problem and the misalignment
issue. More precisely, they can be trained to search for informative weighted
combinations of leakage points, in a way that is robust to traces misalignment.

2.3 Neural Networks and the Multi-layer Perceptron

The classification problem is the most widely studied one in machine learning,
since it is the central building block for all other problems, e.g. detection, regres-
sion, etc. [3] It consists in taking an input, e.g. a side-channel trace x, and in
assigning it a label z ∈ Z, e.g. the value of the target variable handled during
the acquisition. In the typical setting of a supervised classification problem, a
training set is available, which is a set of data already assigned to the right
label. The latter set exactly corresponds to the profiling set in the side-channel
context.

Neural networks (NN) are nowadays the privileged tool to address the clas-
sification problem. They aim at constructing a function F : R

D → R
|Z| that

takes data x ∈ R
D and outputs vectors y ∈ R of scores. The classification of

x is done afterwards by choosing the label zi such that i = argmax y[i]. In
general F is obtained by combining several simpler functions, called layers. An
NN has an input layer (the identity over the input datum x), an output layer
(the last function, whose output is the scores vector y) and all other layers are
called hidden layers. The nature (the number and the dimension) of the layers is
called the architecture of the NN. All the parameters that define an architecture,
together with some other parameters that govern the training phase, have to be
carefully set by the attacker, and are called hyper-parameters. The so-called neu-
rons, that give the name to the NNs, are the computational units of the network
and essentially process a scalar product between the coordinates of its input and
a vector of trainable weights (or simply weights) that have to be trained. Each
layer processes some neurons and the outputs of the neuron evaluations will form
new input vectors for the subsequent layer. The training phase consists in an
automatic tuning of the weights and it is done via an iterative approach which
locally applies the Stochastic Gradient Descent algorithm [13] to minimize a loss
function quantifying the classification error of the function F over the training
set. We will not give further details about this classical optimization approach,
and the interested reader may refer to [13].

In this paper we focus on the family of the Multi-Layer Perceptrons (MLPs).
They are associated with a function F that is composed of multiple linear func-
tions and some non-linear activation functions which are efficiently-computable
and whose derivatives are bounded and efficient to evaluate. To sum-up, we can
express an MLP by the following equation:

2 The latter techniques being themselves very sensible to misalignment effect.

50 E. Cagli et al.

F (x) = s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1(x) = y , (3)

where:

– the λi functions are the so-called Fully-Connected (FC) layers and are express-
ible as affine functions: denoting x ∈ R

D the input of an FC, its output is
given by Ax + b, being A ∈ R

D×C a matrix of weights and b ∈ R
C a vector

of biases. These weights and biases are the trainable weights of the FC layer.3

– the σi are the so-called activation functions (ACT): an activation function is
a non-linear real function that is applied independently to each coordinate of
its input,

– s is the so-called softmax 4 function (SOFT): s(x)[i] = ex[i]
∑

j ex[j] .

Examples of ACT layers are the sigmoid f(x)[i] = (1 + e−x[i])−1 or the
rectified linear unit (ReLU) f(x)[i] = max(0,x[i]). In general they do not depend
on trainable weights.

The role of the softmax is to renormalise the output scores in such a way
that they define a probability distribution y = Pr[Z|X = x].

In this way, the computed output does not only provide the most likely label
to solve the classification problem, but also the likelihood of the remaining |Z|−1
other labels. In the profiling SCA context, this form of output allows us to enter
it in (2) (setting the preprocessing function ε equal to the identity) to rank key
candidates; actually (3) may be viewed as an approximation of the pdf in (1).5

We can thus rewrite (2) as:

dk =
N
∏

i=1

F (xi)[f(pi, k)]. (4)

We refer to [19] for an (excellent) explication over the relationship between
the softmax function and the Bayes theorem.

2.4 Practical Aspects of the Training Phase and Overfitting

The goal of the training phase is to tune the weights of the NN. The latter ones
are first initialized with random values and are afterwards updated by applying
several times the same process: a batch of traces chosen in random order goes
through the network to obtain its score, the loss function is computed from this

3 They are called Fully-Connected because each i-th input coordinate is connected to
each j-th output via the A[i, j] weight. FC layers can be seen as a special case of the
linear layers in general Feed-Forward networks, in which not all the connections are
present. The absence of some (i, j)-th connections can be formalized as a constraint
for the matrix A consisting in forcing to 0 its (i, j)-th coordinates.

4 To prevent underflow, the log-softmax is usually preferred if several classification
outputs must be combined.

5 Remarkably, this places SCAs based on MLP as a particular case of the classical
profiling attack that exploits the maximum likelihood as distinguisher.

Convolutional Neural Networks with Data Augmentation 51

score and finally the loss is reduced by modifying the trainable parameters. A
good choice for the size of the batch is a value as large as possible but which
avoids computational performances drop. An iteration over the entire training set
is called epoch. To monitor the training of an NN and to evaluate its performances
it is a good practice to separate the labelled data into 3 sets:

– the proper training set, which is actually used to train the weights (in general
it contains the greatest part of the labelled data)

– a validation set, which is observed in general at the end of each epoch to
monitor the training

– a test set, which is kept unobserved during the training phase and which is
involved to finally evaluate the performances of the trained NN.

For our experiments we will use the attack traces as test set, while we will
split the profiling traces into a training set and a validation set.6

The Accuracy is the most common metric to both monitor and evaluate an
NN. It is defined as the successful classification rate reached over a dataset. The
training accuracy, the validation accuracy and the test accuracy are the success-
ful classification rates achieved respectively over the training, the validation and
the test sets. At the end of each epoch it is useful to compute and to compare the
training accuracy and the validation accuracy. For some trained models we will
measure in this paper (see e.g. Table 1) the following two additional quantities:

– the maximal training accuracy, corresponding to the maximum of the training
accuracies computed at the end of each epoch

– the maximal validation accuracy, corresponding to the maximum of the vali-
dation accuracies computed at the end of each epoch.

In addition to the two quantities above, we will also evaluate the performances
of our trained model, by computing a test accuracy. Sometimes it is useful to
complete this evaluation by looking at the so-called confusion matrix (see the
bottom part of Fig. 5). Indeed the latter matrix enables, in case of misclassifi-
cation, for the identification of the classes which are confused. The confusion
matrix corresponds to the distribution over the couples (true label, predicted
label) directly deduced from the results of the classification on the test set. A
test accuracy of 100% corresponds to a diagonal confusion matrix.

6 The way how the profiling set is split into training and validation sets might induce
a bias in the learned model. A good way to get rid of such a bias is to apply a
cross-validation technique, e.g. a 10-fold cross-validation. The latter one consists in
partitioning the profiling set into 10 sub-sets, and in performing 10 times the training
while choosing each time one of the sub-sets for the validation and the union of the
9 other ones for the training. An average over the performances of the 10 obtained
models gives a more robust estimation of the accuracies and performances. Results
of this papers do not make use of such a cross-validation technique.

52 E. Cagli et al.

On the Need to Also Consider the Guessing Entropy. The accuracy
metric is perfectly adapted to the machine learning classification problem, but
corresponds in side-channel language to the success rate of a Simple Attack,
i.e. an attack where a single attack trace is available. When the attacker can
acquire several traces for varying plaintexts, the accuracy metric is not sufficient
alone to evaluate the attack performance. Indeed such a metric only takes into
account the label corresponding to the maximal score and does not consider the
other ones, whereas an SCA through (4) does (and therefore exploits the full
information).

To take this remark into account, we will always associate the test accuracy
to a side-channel metric defined as the minimal number N� of side-channel traces
that makes the guessing entropy (the average rank of the right key candidate)
be permanently equal to 1 (see e.g. Table 1). We will estimate such a guessing
entropy through 10 independent attacks.

As we will see in the sections dedicated to our attack experiments, applying
Machine Learning in a context where at the same time (1) the model to recover
is complex and (2) the amount of exploitable measurements for the training is
limited, may be ineffective due to some overfitting phenomena.

Overfitting. Often the training accuracy is higher than the validation one.
When the gap between the two accuracies is excessive, we assist to the overfit-
ting phenomenon. It means that the NN is using its weights to learn by heart
the training set instead of detecting significant discriminative features. For this
reason its performances are poor over the validation set, which is new to it. Over-
fitting occurs when an NN is excessively complex, i.e. when it is able to express
an excessively large family of functions. In order to keep the NN as complex as
wished and hence limiting the overfitting, some regularization techniques can be
applied. For example, in this paper we will propose the use of the Data Augmen-
tation (DA) [28] that consists in artificially adding observations to the training
set. Moreover we will take advantage of the early-stopping technique [26] that
consists in well choosing a stop condition based on the validation accuracy or on
the validation loss (i.e. the value taken by the loss function over the validation
set).

3 Convolutional Neural Networks

In this section we describe the layers that turn an MLP into a Convolutional
Neural Network (CNN), and we explain how the form of these layers makes the
CNNs robust to misalignment. Then we will specify the Data Augmentation that
can be applied in our context, in order to deal with overfitting.

3.1 Description of the CNNs

The CNNs complete the classical principle of MLP with two additional types of
layers: the so-called convolutional layer based on a convolutional filtering, and a
pooling layer. We describe these two particular layers hereafter.

Convolutional Neural Networks with Data Augmentation 53

Convolutional (CONV) Layers are linear layers that share weights across
space. The representation is given in Fig. 1(a).7 To apply a convolutional layer
to an input trace, V small column vectors, called convolutional filter, of size
W are slid over the trace.8 The column vectors form a window which defines a
linear transformation of W consecutive points of the trace into a new vector of
V points. The coordinates of the window (viewed as a matrix) are among the
trainable weights and are constrained to be unchanged for every input window.
This constraint is the main difference between a CONV layer and an FC layer; it
allows the former to learn shift-invariant features. The reason why several filters
are applied is that we expect each filter to extract a different kind of characteristic
from the input. As one goes along convolutional layers, higher-level abstraction
features are expected to be extracted. These high-level features are arranged
side-by-side over an additional data dimension, the so-called depth.9 This is this
geometric characteristic that makes CNNs robust to temporal deformations [18].

To avoid complexity explosion due to this depth increasing, the insertion of
pooling layers is recommended.

Pooling (POOL) Layers are non-linear layers that reduce the spatial size in
order to limit the amount of neurons, and by consequence the complexity of
the minimization problem (see Fig. 1(b)). As the CONV layers, they make some
filters slide across the input. Filters are 1-dimensional, characterised by a length
W , and usually the stride (see footnote 5) is chosen equal to their length; for
example in Fig. 1(b) both the length and the stride equal 3, so that the selected
segments of the input do not overlap. In contrast with convolutional layers, the
pooling filters do not contain trainable weights. They only slide across the input
to select a segment, then a pooling function is applied: the most common pooling
functions are the max-pooling which outputs the maximum values within the
segment and the average-pooling which outputs the average of the coordinates
of the segment.

Common architecture. The main block of a CNN is a CONV layer γ directly
followed by an ACT layer σ. The former locally extracts information from the
input thanks to filters and the latter increases the complexity of the learned
classification function thanks to its non-linearity. After some (σ ◦ γ) blocks, a
POOL layer δ is usually added to reduce the number of neurons: δ ◦ [σ ◦ γ]n2 .
This new block is repeated in the neural network until obtaining an output of
reasonable size. Then, some FC are introduced in order to obtain a global result

7 CNNs have been introduced for images [18]. So, usually, layer interfaces are arranged
in a 3D-fashion (height, weight and depth). In Fig. 1(a) we show a 2D-CNN (length
and depth) adapted to 1D-data as side-channel traces are.

8 The amount of units by which the filter shifts across the trace is called stride. In
Fig. 1(a) the stride equals 1.

9 Ambiguity: NNs with many layers are sometimes called Deep Neural Networks, where
the depth corresponds to the number of layers.

54 E. Cagli et al.

Fig. 1. (a) Convolutional filtering: W = 2, V = 4, stride = 1. (b) Max-pooling layer:
W = stride = 3.

which depends on the entire input. To sum-up, a common convolutional network
can be characterized by the following formula:10

s ◦ [λ]n1 ◦ [δ ◦ [σ ◦ γ]n2]n3 . (5)

Layer by layer it increases depth through convolution filters, adds non-
linearity through activation functions and reduces spatial (or temporal, in the
side-channel traces case) size through pooling layers. Once a deep and narrow
representation has been obtained, one or more FC layers are connected to it,
followed by a softmax function. An example of CNN architecture is represented
in Fig. 2.

Fig. 2. Common CNN architecture

10 where each layer of the same type appearing in the composition is not to be intended
as exactly the same function (e.g. with same input/output dimensions), but as a
function of the same form.

Convolutional Neural Networks with Data Augmentation 55

3.2 Data Augmentation

As pointed out in Sect. 2.4, it is sometimes necessary to manage the overfit-
ting phenomenon, by applying some regularization techniques. As we will see in
Sects. 4 and 5 this will be the case in our experiments: indeed we will propose a
quite deep CNN architecture, flexible enough to manage the misalignment prob-
lems, but trained over some relatively small training sets. This fact, combined
with the high number of weights exploited by our CNN implies that the latter
one will learn by heart each element of the training set, without catching the
truly discriminant features of the traces.

Among all regularization techniques, we choose to concentrate priorly on the
Data Augmentation [28], mainly for two reasons. First, it is well known that the
presence of misalignment forces to increase the number of acquisitions. In other
terms, misalignment may provoke a lack of data phenomenon on the adversary
side. In the machine learning domain such a lack is classically addressed thanks to
the DA technique, and its benefits are widely proved. For example, many image
recognition competition winners made use of such a technique (e.g. the winner
of ILSVRC-2012 [17]). Second, the DA is controllable, meaning that the defor-
mations applied to the data are chosen, thus fully characterized. It is therefore
possible to fully determine the addition of complexity induced to the classifica-
tion problem. In our opinion, other techniques add constraints to the problem
in a more implicit way, e.g. the dropout [14] or the �2-norm regularization [3].

Data augmentation consists in artificially generating new training traces by
deforming those previously acquired. The deformation is done by the application
of transformations that preserve the label information (i.e. the value of the
handled sensitive variable in our context). We choose two kinds of deformations,
that we denote by Shifting and Add-Remove.

Shifting Deformation (SHT �) simulates a random delay effect of maximal ampli-
tude T �, by randomly selecting a shifting window of the acquired trace, as shown
in Fig. 3. Let D denote the original size of the traces. We fix the size of the input
layer of our CNN to D′ = D − T �. Then the technique SHT � consists (1) in
drawing a uniform random t ∈ [0, T �], and (2) in selecting the D′-sized window
starting from the t-th point. For our study, we will compare the SHT technique
for different values T ≤ T �, without changing the architecture of the CNN (in
particular the input size D′). Notably, T � T � implies that T � −T time samples
will never have the chance to be selected. As we suppose that the information
is localized in the central part of the traces, we choose to center the shifting
windows, discarding the heads and the tails of the traces (corresponding to the
first and the last T �−T

2 points).

Add-Remove Deformation (AR) simulates a clock jitter effect (Fig. 3). We will
denote by ARR the operation that consists (1) in inserting R time samples, whose
positions are chosen uniformly at random and whose values are the arithmetic
mean between the previous time sample and the following one, (2) in suppressing
R time samples, chosen uniformly at random.

The two deformations can be composed: we will denote by SHT ARR the
application of a SHT followed by a ARR.

56 E. Cagli et al.

Fig. 3. Left: Shifting technique for DA. Right: Add-Remove technique for DA (added
points marked by red circles, removed points marked by black crosses). (Color figure
online)

4 Application to Software Countermeasures

In this section we present a preliminary experiment we have performed in order
to validate the shift-invariance claimed by the CNN architecture, recalled in
Sect. 3.1. In this experiment a single leaking operation was observed through the
side-channel acquisitions, shifted in time by the insertion of a random number of
dummy operations. A CNN-based attack is run, successfully, without effectuating
any priorly realignment of the traces. We also performed a second experiment
in which we targeted two leaking operations.

We believe (and we discuss it in more details in AppendixA) that dealing with
dummy operations insertion does not represent an actual obstacle for an attacker
nowadays. Thus, the experiment we present in this section is not expected to be
representative of real application cases. Actually, we think that the CNNs bring
a truly great advantage with respect to the state-of-the-art TAs in presence of
hardware-flavoured countermeasures, such as augmented jitter effects. We refer
to Sect. 5 for experiments in such a context.

CNN-based Attack Against Random Delays. For this experiment, we
implemented, on an Atmega328P microprocessor, a uniform Random Delay
Interrupt (RDI) [29] to protect the leakage produced by a single target oper-
ation. Our RDI simply consists in a loop of r nop instructions, with r drawn
uniformly in [0, 127].

Some acquired traces are reported in the left side of Fig. 4, the target peak
being highlighted with a red ellipse. They are composed of 3, 996 time samples,
corresponding to an access to the AES-Sbox look-up table stored in NVM. For
the training, we acquired only 1, 000 traces and 700 further traces were acquired
as validation data. Our CNN has been trained to classify the traces according to
the Hamming weight of the Sbox output; namely, our labels are the 9 values taken
by Z = HW(Sbox(P ⊕ K)). This choice has been done to let each class contain
more than only a few (i.e. about 1, 000/256) training traces.11 Since Z is assumed
to take 9 values and the position of the leakage depends on a random r ranging
over 128 values, it is clear that the 1, 000 training traces do not encompass

11 For Atmega328P devices, the Hamming weight is known to be particularly relevant
to model the leakage occurring during register writing [2].

Convolutional Neural Networks with Data Augmentation 57

Fig. 4. Left: one leakage protected by single uniform RDI. Right: two leaking operations
protected by multiple uniform RDI. (Color figure online)

the full 9 × 128 = 1, 152 possible combinations (z, r) ∈ [0, 8] × [0, 127]. We
undersized the training set by purpose, in order to establish whether the CNN
technique, equipped with DA, is able to catch the meaningful shift-invariant
features without having been provided with all the possible observations.

For the training of our CNN, we applied the SHT data augmentation, select-
ing T � = 500 and T ∈ {0, 100, T �}; this implies that the input dimension of
our CNN is reduced to 3, 496. Our implementation is based on Keras library [1]
(version 1.2.1), and we run the trainings over an ordinary computer equipped
with a gamers market GPU, as specified in Sect. 5.2. For the CNN architecture,
we chose the following architecture:

s ◦ [λ]1 ◦ [δ ◦ [σ ◦ γ]1]4, (6)

i.e. (5) with n1 = n2 = 1 and n3 = 4. To accelerate the training we introduced
a Batch Normalization layer [16] after each pooling δ. The network transforms
the 3, 496×1 inputs in a 1×256 list of abstract features, before entering the last
FC layer λ : R

256 → R
9. Even if the ReLU activation function [25] is classically

recommended for many applications in literature, we obtained in most cases bet-
ter results using the hyperbolic tangent. We trained our CNN by batches of size
32. In total the network contained 869, 341 trainable weights. The training and
validation accuracies achieved after each epoch are depicted in Fig. 5 together
with the confusion matrices that we obtained from the test set. Applying the
early-stopping principle recalled in Sect. 2.4, we automatically stopped the train-
ing after 120 epochs without decrement of the loss function evaluated over the
validation set, and kept as final trained model the one that showed the minimal
value for the loss function evaluation. Concerning the learning rate, i.e. the fac-
tor defining the size of the steps in the gradient descent optimization (see [13])
we fixed the beginning one to 0.01 and reduced it by a factor of

√
0.1 after 5

epochs without validation loss decrement.
Table 1 summarizes the obtained results. For each trained model we can

compare the maximal training accuracy achieved during the training with the
maximal validation accuracy (see Sect. 2.4 for the definition of these accuracies).

58 E. Cagli et al.

Fig. 5. One leakage protected via single uniform RDI: accuracies vs epochs and confu-
sion matrices obtained with our CNN for different DA techniques. From left to right:
SH0, SH100, SH500.

Table 1. Results of our CNN, for different DA techniques, in presence of an uniform
RDI countermeasure protecting. For each technique, 4 values are given: in position
a the maximal training accuracy, in position b the maximal validation accuracy, in
position c the test accuracy, in position d the value of N� (see Sect. 2.4 for definitions).

SH0 SH100 SH500

a b 100% 25.9% 100% 39.4% 98.4% 76.7%

c d 27.0% > 1000 31.8% 101 78.0% 7

This comparison gives an insight about the risk of overfitting for the train-
ing.12 Case SH0 corresponds to a training performed without DA technique.
When no DA is applied, the overfitting effect is dramatic: the training set is
100%-successfully classified after about 22 epochs, while the test accuracy only
achieves 27%. The 27% is around the rate of uniformly distributed bytes showing
an Hamming weight of 4.13 Looking at the corresponding confusion matrix we
remark that the CNN training has been biased by the binomial distribution of
the training data, and almost always predicts the class 4. This essentially means
that no discriminative feature has been learned in this case, which is confirmed
by the fact that the trained model leads to an unsuccessful attack (N� > 1, 000).

12 The validation accuracies are estimated over a 700-sized set, while the test accuracies
are estimated over 100, 000 traces. Thus the latter estimation is more accurate, and
we recall that the test accuracy is to be considered as the final CNN classification
performance.

13 We recall that the Hamming weight of uniformly distributed data follows a binomial
law with coefficients (8, 0.5).

Convolutional Neural Networks with Data Augmentation 59

Table 2. Results of our CNN in presence of uniform RDI protecting two leaking
operations. See the caption Table 1 for a legend.

First operation Second operation

a b 95.2% 79.7% 96.8% 81.0%

c d 76.8% 7 82.5% 6

Remarkably, the more artificial shifting is added by the DA, the more the over-
fitting effect is attenuated; for SHT with e.g. T = 500 the training set is never
completely learnt and the test accuracy achieves 78%, leading to a guessing
entropy of 1 with only N� = 7 traces.

These results confirm that our CNN model is able to characterize a wide
range of points in a way that is robust to RDI.

Two Leaking Operations. In this section we study whether our CNN classi-
fier suffers from the presence of multiple leaking operations with the same power
consumption pattern. This situation occurs for instance any time the same oper-
ation is repeated several successive times over different pieces of data (e.g. the
SubByte operation for a software AES implementation is often performed by 16
successive look-up table access). To start our study we performed the same exper-
iments as in Sect. 4 over a second traces set, where two look-up table accesses
leak, each preceded by a random delay. Some examples of this second traces
set are given in the right side of Fig. 4, where the two leaking operations being
highlighted by red and green ellipses. We trained the same CNN as in Sect. 4,
once to classify the first leakage, and a second time to classify the second leak-
age, applying SH500. Results are given in Table 2. They show that even if the
CNN transforms spatial (or temporal) information into abstract discriminative
features, it still holds an ordering notion: indeed if no ordering notion would have
been held, the CNN could no way discriminate the first peak from the second
one.

5 Application to Hardware Countermeasures

A classical hardware countermeasure against side-channel attacks consists in
introducing instability in the clock. This implies the cumulation of a deforming
effect that affects each single acquired clock cycle, and provokes traces misalign-
ment on the adversary side. Indeed, since clock cycles do not have the same
duration, they are sampled during the attack by a varying number of time sam-
ples. As a consequence, a simple translation of the acquisitions is not sufficient
in this case to align w.r.t. an identified clock cycle. Several realignment tech-
niques are available to manage this kind of deformations, e.g. [30]. The goal of
this paper is not to compare a new realignment technique with the existing ones,
but to show that we can get rid of the realignment pre-processing exploiting the
end-to-end attack strategy provided by the CNN approach.

60 E. Cagli et al.

5.1 Performances over Artificial Augmented Clock Jitter

In this section we present the results that we obtained over two datasets named
DS low jitter and DS high jitter. Each one contains 10, 000 labelled traces, used
for the training/profiling phase (more precisely, 9, 000 are used for the train-
ing, and 1, 000 for the validation), and 100, 000 attack traces. The traces are
composed of 1, 860 time samples. The two datasets have been obtained by artifi-
cially adding a simulated jitter effect over some synchronized original traces. The
original traces were measured on the same Atmega328P microprocessor used in
the previous section. We verified that they originally encompass leakage on 34
instructions: 2 nops, 16 loads from the NVM and 16 accesses to look-up tables.
For our attack experiments, it is assumed that the target is the first look-up
table access, i.e. the 19th clock cycle. As in the previous section, the target
is assumed to take the form Z = HW(Sbox(P ⊕ K)). To simulate the jitter
effect each clock pattern has been deformed14 by adding r new points if r > 0
(resp. removing r points if r < 0), with r ∼ N (0, σ2).15 For the DS low jitter
dataset, we fixed σ2 = 4 and for the DS high jitter dataset we fixed σ2 = 36.
As an example, some traces of DS low jitter are depicted in the left-hand side
of Fig. 6: the cumulative effect of the jitter is observable by remarking that the
desynchronization raises with time. Some traces of DS high jitter are depicted
as well in the right-hand side of Fig. 6. For both datasets we did not operate any
PoI selection, but entered the entire traces into our CNN.

Fig. 6. Left: some traces of the DS low jitter dataset, a zoom of the part highlighted
by the red rectangle is given in the bottom part. Right: some traces (and the relative)
of the DS high jitter dataset. The interesting clock cycle is highlighted by the grey
rectangular area.

We used the same CNN architecture (6) as in previous section. We assisted
again to a strong overfitting phenomenon and we successfully reduced it by
applying the DA strategy introduced in Sect. 3.2. This time we applied both the
shifting deformation SHT with T � = 200 and T ∈ {0, 20, 40} and the add-remove
deformation ARR with R ∈ {0, 100, 200}, training the CNN model using the 9

14 The 19th clock cycle suffers from the cumulation of the previous 18 deformations.
15 This deformation is not the same of the proposed AR technique for the DA.

Convolutional Neural Networks with Data Augmentation 61

combinations SHT ARR. We performed a further experiment with much higher
DA parameters, i.e. SH200AR500, to show that the benefits provided by the DA
are limited: as expected, too much deformation affects the CNN performances
(indeed results obtained with SH200AR500 will be worse than those obtained
with e.g. SH40AR200).

Fig. 7. Comparison between a Gaussian template attack, with and without realign-
ment, and our CNN strategy, over the DS low jitter (left) and the DS high jitter (right).

The results we obtained are summarized in Table 3. Case SH0AR0 corre-
sponds to a training performed without DA technique (and hence serves as a
reference suffering from the overfitting phenomenon). It can be observed that
as the DA parameters raise, the validation accuracy increases while the train-
ing accuracy decreases. This experimentally validates that the DA technique
is efficient in reducing overfitting. Remarkably in some cases, for example in
the DS low jitter dataset case with SH100AR40, the best validation accuracy is
higher than the best training accuracy. In Fig. 8 the training and validation accu-
racies achieved in this case epoch by epoch are depicted. It can be noticed that
the unusual relation between the training and the validation accuracies does not
only concern the maximal values, but is almost kept epoch by epoch. Observing
the picture, we can be convinced that, since this fact occurs at many epochs, this
is not a consequence of some unlucky inaccurate estimations. To interpret this
phenomenon we observe that the training set contains both the original data
and the augmented ones (i.e. deformed by the DA) while the validation set only
contains non-augmented data. The fact that the achieved training accuracy is
lower than the validation one, indicates that the CNN does not succeed in learn-
ing how to classify the augmented data, but succeeds to extract the features of
interest for the classification of the original data. We judge this behaviour pos-
itively. Concerning the DA techniques we observe that they are efficient when
applied independently and that their combination is still more efficient.

According to our results in Table 3, we selected the model issued using the
SH200AR40 technique for the DS low jitter dataset and the one issued using the
SH200AR20 technique for the DS higher jitter. In Fig. 7 we compare their per-
formances with those of a Gaussian TA possibly combined with a realignment
technique. To tune this comparison, several state-of-the-art Gaussian TA have

62 E. Cagli et al.

Table 3. Results of our CNN in presence of artificially-generated jitter countermeasure,
with different DA techniques. See the caption of Table 1 for a legend.

DS low jitter

a b
c d

SH0 SH20 SH40 SH200

100.0% 68.7% 99.8% 86.1% 98.9% 84.1%
AR0 57.4% 14 82.5% 6 83.6% 6

87.7% 88.2% 82.4% 88.4% 81.9% 89.6%
AR100 86.0% 6 87.0% 5 87.5% 6

83.2% 88.6% 81.4% 86.9% 80.6% 88.9%
AR200 86.6% 6 85.7% 6 87.7% 5

85.0% 88.6%
AR500 86.2% 5

DS high jitter

a b
SH0 SH20 SH40 SH200c d

AR0
100% 45.0% 100% 60.0% 98.5% 67.6%
40.6% 35 51.1% 9 62.4% 11

AR100
90.4% 57.3% 76.6% 73.6% 78.5% 76.4%
50.2% 15 72.4% 11 73.5% 9

AR200
83.1% 67.7% 82.0% 77.1% 82.6% 77.0%
64.0% 11 75.5% 8 74.4% 8

AR500
83.6% 73.4%
68.2% 11

Fig. 8. Training of the CNN model with DA SH100AR40. The training classification
problem becomes harder than the real classification problem, leading validation accu-
racy constantly higher than the training one.

been tested. In particular, for the selection of the PoIs, two approaches have
been applied: first we selected from 3 to 20 points maximising the estimated
instantaneous SNR, secondly we selected sliding windows of 3 to 20 consecutive
points covering the region of interest. For the template processing, we tried (1)
the classical approach [5] where a mean and a covariance matrix are estimated

Convolutional Neural Networks with Data Augmentation 63

for each class, (2) the pooled covariance matrix strategy proposed in [6] and (3)
the stochastic approach proposed in [27]. In this experiment, the leakage is con-
centrated in peaks that are easily detected by their relatively high amplitude,
so we use a simple method that consists in first detecting the peaks above a
chosen threshold, then keeping all the samples in a window around these peaks.
The results plotted in Fig. 7 are the best ones we obtained (via the stochastic
approach over some 5-sized windows). Results show that the performances of
the CNN approach are much higher than those of the Gaussian templates, both
with and without realignment. This confirms the robustness of the CNN app-
roach with respect to the jitter effect: the selection of PoIs and the realignment
integrated in the training phase are effective.

5.2 Performances on a Secure Smartcard

As a last (but most challenging) experiment we deployed our CNN architecture
to attack an AES hardware implementation over a modern secure smartcard
(secure implementation on 90 nm technology node). On this implementation,
the architecture is designed to optimize the area, and the speed performances
are not the major concern. The architecture is here minimal, implementing only
one hardware instance of the SubByte module. The AES SubByte operation
is thus executed serially and one byte is processed per clock cycle. To protect
the implementation, several countermeasures are implemented. Among them, a
hardware mechanism induces a strong jitter effect which produces an important
traces’ desynchronization. The bench is set up to trig the acquisition of the trace
on a peak which corresponds to the processing of the first byte. Consequently,
the set of traces is aligned according to the processing of the first byte while
the other bytes leakages are completely misaligned. To illustrate the effect of
this misalignment, the SNR characterizing the (aligned) first byte and the (mis-
aligned) second byte are computed (according to the formula given in [4]) using
a set of 150, 000 traces labelled by the value of the SubByte output (256 labels).
These SNRs are depicted in the top part of Fig. 9. The SNR of the first byte (in
green) detects a quite high leakage, while the SNR of the second byte (in blue)
is nullified. A zoom of the SNR of the second peak is proposed in the bottom-
left part of Fig. 9. In order to confirm that the very low SNR corresponding
to the second byte is only due to the desynchronization, the patterns of the
traces corresponding to the second byte have been resynchronized using a peak-
detection-based algorithm, quite similar to the one applied for the experiments
of Sect. 5.1. Then the SNR has been computed onto these new aligned traces and
has been plot in red in the top-left part of Fig. 9; this SNR is very similar to that
of the first byte. This clearly shows that the leakage information is contained
into the trace but is efficiently hidden by the jitter-based countermeasure.

We applied the CNN approach onto the rough set of traces (without any
alignement). First, a 2, 500-long window of the trace has been selected to input
CNN. The window, identified by the vertical cursors in the bottom part of Fig. 9,
has been selected to ensure that the pattern corresponding to the leakage of the
second byte is inside the selection. At this step, it is important to notice that
such a selection is not at all as meticulous as the selection of PoIs required by
a classical TA approach. The training phase has been performed using 98, 000

64 E. Cagli et al.

labelled traces; 1, 000 further traces have been used for the validation set. We
performed the training phase over a desktop computer equipped with an Intel
Xeon E5440 @2,83GHz processor, 24Gb of RAM and a GeForce GTS 450 GPU.
Without data augmentation each epoch took about 200s.16 The training stopped
after 25 epochs. Considering that in this case we applied an early-stopping strat-
egy that stopped training after 20 epochs without validation loss decrement, it
means that the final trainable weights are obtained after 5 epochs (in about
15 min). The results that we obtained are summarized in Table 4. They prove
not only that our CNN is robust to the misalignment caused by the jitter but
also that the DA technique is effective in raising its efficiency. A comparison
between the CNN performances and the best results we obtained over the same
dataset applying the realignment-TA strategy in the right part of Fig. 9. Beyond
the fact that the CNN approach slightly outperforms the realignment-TA one,
and considering that both case-results shown here are surely non-optimal, what
is remarkable is that the CNN approach is potentially suitable even in cases
where realignment methods are impracticable or not satisfying. It is of partic-
ular interest in cases where sensitive information does not lie in proximity of
peaks or of easily detectable patterns, since many resynchronization techniques
are based on pattern or peak detection. If the resynchronization fails, the TA
approach falls out of service, while the CNN one remains a further weapon in
the hands of an attacker.

Fig. 9. Top Left: in green the SNR for the first byte; in blue the SNR for the second
byte; in red the SNR for the second byte after a trace realignment. Bottom Left: a zoom
of the blue SNR trace. Right: comparison between a Gaussian template attack with
realignment, and our CNN strategy, over the modern smart card with jitter. (Color
figure online)

Table 4. Results of our CNN over the modern smart card with jitter.

SH0AR0 SH10AR100 SH20AR200

a b 35.0% 1.1% 12.5% 1.5% 10.4% 2.2%

c d 1.2% 137 1.3% 89 1.8% 54

16 Raising to about 2, 000 seconds when SH20DA200 data augmentation is performed
(data are augmented online during training).

Convolutional Neural Networks with Data Augmentation 65

6 Conclusions

In this paper we have proposed an end-to-end profiling attack approach, based
on the CNNs. We claimed that such a strategy would be robust to trace misalign-
ment, and we successfully verified our claim by performing CNN-based attacks
against different kinds of misaligned data. This property represents a great prac-
tical advantage compared to the state-of-the-art profiling attacks, that require a
meticulous trace realignment in order to be efficient. It represents also a solution
to the problem of the selection of points of interest issue: CNNs efficiently man-
age high-dimensional data, allowing the attacker to simply select large windows.
In this sense, the experiments described in Sect. 5.2 are very representative: our
CNN retrieves information from a large window of points instead of an almost
null instantaneous SNR. To guarantee the robustness to trace misalignment, we
used a quite complex architecture for our CNN, and we clearly identified the risk
of overfitting phenomenon. To deal with this classical issue in machine learning,
we proposed two Data Augmentation techniques adapted to misaligned side-
channel traces. All the experimental results we obtained have proved that they
provide a great benefit to the CNN strategy.

Acknowledgements. This work has been partially funded by the H2020-DS-LEIT-
2016 project REASSURE. The authors would like to thank Charles Guillemet for the
fruitful discussions about this work.

References

1. Keras library. https://keras.io/
2. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff,

E.: Improved side-channel analysis of finite-field multiplication. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 20

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

4. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). doi:10.1007/
978-3-319-54669-8 1

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

6. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
doi:10.1007/978-3-319-08302-5 17

7. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). doi:10.1007/3-540-44499-8 20

8. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747,
pp. 156–170. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 12

https://keras.io/
http://dx.doi.org/10.1007/978-3-662-48324-4_20
http://dx.doi.org/10.1007/978-3-319-54669-8_1
http://dx.doi.org/10.1007/978-3-319-54669-8_1
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/3-540-44499-8_20
http://dx.doi.org/10.1007/978-3-642-04138-9_12

66 E. Cagli et al.

9. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay
countermeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES
2010. LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15031-9 7

10. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

11. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded software
implementations using Hidden Markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37288-9 9

12. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugen. 7(7), 179–188 (1936)

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

14. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Improving neural networks by preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580 (2012)

15. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Crypt. Eng. 1(4), 293–
302 (2011)

16. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167 (2015)

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 1097–
1105. Curran Associates Inc. (2012)

18. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361(10)
(1995)

19. Lin, H.W., Tegmark, M.: Why does deep and cheap learning work so well? arXiv
preprint arXiv:1608.08225 (2016)

20. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). doi:10.1007/
978-3-319-49445-6 1

21. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 18

22. Martinasek, Z., Hajny, J., Malina, L.: Optimization of power analysis using neural
network. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp.
94–107. Springer, Cham (2014). doi:10.1007/978-3-319-08302-5 7

23. Martinasek, Z., Zeman, V.: Innovative method of the power analysis. Radioengi-
neering 22(2), 586–594 (2013)

24. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: DPA using phase-based
waveform matching against random-delay countermeasure. In: IEEE International
Symposium on Circuits and Systems, ISCAS 2007, pp. 1807–1810. IEEE (2007)

25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

http://dx.doi.org/10.1007/978-3-642-15031-9_7
http://dx.doi.org/10.1007/978-3-642-15031-9_7
http://dx.doi.org/10.1007/978-3-642-37288-9_9
http://dx.doi.org/10.1007/978-3-642-37288-9_9
http://www.deeplearningbook.org
http://arxiv.org/abs/1608.08225
http://dx.doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.1007/978-3-319-49445-6_1
http://dx.doi.org/10.1007/978-3-540-24660-2_18
http://dx.doi.org/10.1007/978-3-319-08302-5_7

Convolutional Neural Networks with Data Augmentation 67

26. Prechelt, L.: Early stopping — but when? In: Montavon, G., Orr, G.B., Müller,
K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 53–67.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35289-8 5

27. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

28. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional
neural networks applied to visual document analysis. In: ICDAR, vol. 3, pp. 958–
962. Citeseer (2003)

29. Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software.
In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP
2007. LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-72354-7 3

30. Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558,
pp. 104–119. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19074-2 8

31. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 44

32. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data aug-
mentation for classification: when to warp? In: 2016 International Conference on
Digital Image Computing: Techniques and Applications (DICTA), pp. 1–6. IEEE
(2016)

33. Yang, S., Zhou, Y., Liu, J., Chen, D.: Back propagation neural network based
leakage characterization for practical security analysis of cryptographic implemen-
tations. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 169–185. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31912-9 12

A Discussion about Software Countermeasures

The goal of the experiences performed in in Sect. 4 was to verify the shift-
invariance property claimed by the CNN architecture. We achieved this objective
by considering the case of a simple countermeasure, the uniform RDI, which con-
sists in injecting shifts in side-channel traces. We remark that this kind of coun-
termeasure is nowadays considered defeated, e.g. thanks to resynchronization
by cross-correlation [24]. The complexity of the state-of-the-art resynchroniza-
tion techniques strongly depends on the variability of the shift. When the latter
variability is low, i.e. when attacks are judge to be applicable, multiple random
delays are recommended. It has even been proposed to adapt the probabilis-
tic distributions of the random delays to achieve good compromises between the
countermeasure efficiency and the chip performance overhead [8,9]. Attacks have
already been shown even against this multiple RDI kind of countermeasures, e.g.
[11]. The latter attack exploits some Gaussian templates to classify the leakage
of each instruction; the classification scores are used to feed a Hidden Markov
Model (HMM) that describes the complete chip execution, and the Viterbi algo-
rithm is applied to find the most probable sequence of states for the HMM and

http://dx.doi.org/10.1007/978-3-642-35289-8_5
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-540-72354-7_3
http://dx.doi.org/10.1007/978-3-540-72354-7_3
http://dx.doi.org/10.1007/978-3-642-19074-2_8
http://dx.doi.org/10.1007/978-3-642-34961-4_44
http://dx.doi.org/10.1007/978-3-642-31912-9_12

68 E. Cagli et al.

to remove the random delays. We remark that this HMM-based attack exploits
Gaussian templates to feed the HMM model, and the accuracy of such templates
is affected by other misalignment reasons, e.g. clock jitter. We believe that our
CNN approach proposal for operation classification, is a valuable alternative to
the Gaussian template one, and might even provide benefits to the HMM per-
formances, by e.g. improving the robustness of the attack in presence of both
RDI and jitter-based countermeasures. This robustness w.r.t. of misalignment
caused by the clock jitter is analysed in Sect. 5.

CacheZoom: How SGX Amplifies
the Power of Cache Attacks

Ahmad Moghimi(B), Gorka Irazoqui, and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{amoghimi,girazoki,teisenbarth}@wpi.edu

Abstract. In modern computing environments, hardware resources are
commonly shared, and parallel computation is widely used. Parallel
tasks can cause privacy and security problems if proper isolation is not
enforced. Intel proposed SGX to create a trusted execution environment
within the processor. SGX relies on the hardware, and claims runtime
protection even if the OS and other software components are malicious.
However, SGX disregards side-channel attacks. We introduce a powerful
cache side-channel attack that provides system adversaries a high resolu-
tion channel. Our attack tool named CacheZoom is able to virtually track
all memory accesses of SGX enclaves with high spatial and temporal pre-
cision. As proof of concept, we demonstrate AES key recovery attacks
on commonly used implementations including those that were believed
to be resistant in previous scenarios. Our results show that SGX can-
not protect critical data sensitive computations, and efficient AES key
recovery is possible in a practical environment. In contrast to previous
works which require hundreds of measurements, this is the first cache
side-channel attack on a real system that can recover AES keys with a
minimal number of measurements. We can successfully recover AES keys
from T-Table based implementations with as few as ten measurements.

1 Motivation

In the parallel computing environment, processes with various trust and critical-
ity levels are allowed to run concurrently and share system resources. Prolifera-
tion of cloud computing technology elevated these phenomena to the next level.
Cloud computers running many different services authored by various providers
process user information on the same hardware. Traditionally, the operating
system (OS) provides security and privacy services. In cloud computing, cloud
providers and the hypervisor also become part of the Trusted Computing Base
(TCB). Due to the high complexity and various attack surfaces in modern com-
puting systems, keeping an entire system secure is usually unrealistic [19,33].

One way to reduce the TCB is to outsource security-critical services to Secure
Elements (SE), a separate trusted hardware which usually undergoes rigorous
auditing. Trusted Platform Modules (TPM), for example, provide services such
as cryptography, secure boot, sealing data and attestation beyond the authority
of the OS [39]. However, SEs come with their own drawbacks: they are static
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 69–90, 2017.
DOI: 10.1007/978-3-319-66787-4 4

70 A. Moghimi et al.

components and connected to the CPU over an untrusted bus. Trusted Execution
Environments (TEE) are an alternative, which provide similar services within
the CPU. A TEE is an isolated environment to run software with a higher
trust level than the OS. The software running inside a TEE has full access
to the system resources while it is protected from other applications and the
OS. Examples include ARM TrustZone [4] and Intel Software Guard eXtensions
(SGX) [29]. Intel SGX creates a TEE on an untrusted system by only trusting the
hardware in which the code is executed. Trusted code is secured in an enclave,
which is encrypted and authenticated by the hardware. The CPU decrypts and
verifies enclave code and data as it is moved into the cache. That is, enclaves are
logically protected from malicious applications, the OS, and physical adversaries
monitoring system buses. However, Intel SGX is not protected against attacks
that utilize hardware resources as a side channel [28]. And indeed, first proposed
works showing that microarchitectural side channels can be exploited include
attacks using page table faults [52] and the branch prediction unit [34].

Caches have become a very popular side channel in many scenarios, including
mobile [35] and cloud environments [26]. Reasons include that Last Level Cache
(LCC) attacks perform well in cross-core scenarios on Intel machines. Another
advantage of cache attacks are the high spatial resolution they provide. This
high spatial resolution, combined with a good temporal resolution, have enabled
attacks on major asymmetric implementations, unless they are optimized for
constant memory accesses. For symmetric cryptography, the scenario is more
challenging. A software AES implementation can be executed in a few hundred
cycles, while a Prime+Probe cycle on the LLC takes about 2000 cycles to mon-
itor a single set. To avoid the undersampling, synchronized attacks first prime,
trigger a single encryption and then probe, yielding at best one observation per
encryption [37]. Higher resolution is only possible in OS adversarial scenarios.

1.1 Our Contribution

We demonstrate not only that Intel SGX is vulnerable to cache attacks, but show
that with SGX, the quality of information retrieved is significantly improved. The
improved resolution enables attacks that are infeasible in previous scenarios, e.g.,
cloud environments. We utilize all the capabilities that SGX assumes an attacker
has, i.e., full access to OS resources. We construct a tool1 named CacheZoom
that is able to interrupt the victim every few memory accesses, thereby collecting
high-resolution information about all memory accesses that the target enclave
makes by applying Prime+Probe attack in the L1 cache. The usage of core-private
resources does not reduce the applicability of the attack, as the compromised
OS schedules both victim and attacker in the same core.

While tracking memory accesses of enclave with high temporal and spatial
resolution has many adversarial scenarios, we demonstrate the power of this
side channel by attacking several AES implementations. Further, we show that

1 CacheZoom source and data sets: https://github.com/vernamlab/CacheZoom.

https://github.com/vernamlab/CacheZoom

CacheZoom: How SGX Amplifies the Power of Cache Attacks 71

adopted countermeasures in popular cryptographic libraries, like cache prefetch-
ing and implementations with small memory footprint, not only do not prevent
attacks, but can facilitate attacker’s observation. In short, this work:

– Presents a powerful and low-noise side channel implemented through the L1
cache. We exploit several capabilities corresponding to the compromised OS.
This side channel can be applied against TEEs to recover fine grained infor-
mation about memory accesses, which often carry sensitive data.

– Demonstrates the strength of our side channel by recovering AES keys with
fewer traces than ever in previous attacks, and further, by attacking imple-
mentations considered resistant against cache attacks.

– Shows that some of the countermeasures that were supposed to protect AES
implementations, e.g. prefetching and S-box implementations, are not effec-
tive in the context of SGX. In fact, prefetching can even ease the retrieval of
memory traces.

2 Background

This section covers topics that help understand the side channel used to retrieve
sensitive information. We discuss the basic functionality of Intel SGX and pos-
sible microarchitectural attacks that can be deployed against it.

2.1 How Intel SGX Works

Intel introduced SGX, a new subset of hardware instructions that allows execu-
tion of software inside isolated environments called enclaves with the release of
Skylake generation. Enclaves are isolated from other components running on the
same hardware, including OSs. SGX has recently gained attention of the security
community and various SGX-based solutions have been proposed [5,7,44].

Enclave modules can be shipped as part of an untrusted application and can
be utilized by untrusted components of the application. The untrusted compo-
nent interacts with the system software, which dedicates specific trusted memory
regions for the enclave. After that, the authenticity, integrity and confidentiality
of enclave are provided and measured by the hardware. Any untrusted code base,
including the OS, has no control over the trusted memory region. Untrusted
applications can only use specific instructions to call the trusted component
through predefined interfaces. This design helps developers to benefit from the
hardware isolation for security critical applications.

SGX is designed to protect enclaves from malicious users that gain root access
to an OS. Memory pages belonging to an enclave are encrypted in DRAM and
protected from a malicious OS snooping on them. Pages are only decrypted when
they are processed by the CPU, e.g., when they are moved to the caches. In short,
SGX assumes only the hardware to be trusted; any other agent is considered
susceptible of being malicious. Upon enclave creation, virtual memory pages
that can only map to a protected DRAM region (called the Enclave Page Cache)

72 A. Moghimi et al.

are reserved. The OS is in charge of the memory page mapping; however, SGX
detects any malicious mapping performed by it. In fact, any malicious action
from the OS will be stored by SGX and is verifiable by third party agents.

2.2 Microarchitectural Attacks in SGX

Despite all the protection that SGX offers, the documentation specifically claims
that side channel attacks were not considered under the threat scope of its design.
In fact, although dealing with encrypted memory pages, the cache utilization is
performed similar to decrypted mode and concurrently to any other process in
the system. This means that the hardware resources can be utilized as side chan-
nels by both malicious enclaves and OSs. While enclave-to-enclave attacks have
several similarities to cross-VM attacks, malicious OS-to-enclave attacks can
give attackers a new capability not observed before: virtually unlimited tem-
poral resolution. The OS can interrupt the execution of enclave processes after
every small number of memory accesses to check the hardware utilization, as just
the TLB (but no other hardware resources) is flushed during context switches.
Further, while cross-core attacks gained huge popularity in others scenarios for
not requiring core co-residency, a compromised OS can assign an enclave any
affinity of its choice, and therefore use any core-private resource. Thus, while
SGX can prevent untrusted software to perform Direct Memory Access (DMA)
attacks, it also gives almost full resolution for exploitation by hardware side
channels. For instance, an attacker can exploit page faults to learn about the
memory page usage of the enclave. Further she can create contention and snoop
on the utilization of any core-private and core-shared resource, including but not
limited to Branch Prediction Units (BPUs), L1 caches or LLCs [1,36,41]. Fur-
ther, although applicable in other scenarios [10], enclave execution mode does
not update the Hardware Performance Counters, and these can not provide (at
least directly) information about the isolated process.

From the aforementioned resources, cache gives the most information. Unlike
page faults, which at most will give a granularity of 4 kB, cache hits/misses can
give 64 byte utilization granularity. In addition, while other hardware resources
like Branch Prediction Units (BPU) can only extract branch dependent execu-
tion flow information, cache attacks can extract information from any memory
access. Although most prior work targets the LLC for being shared across cores,
this is not necessary in SGX scenarios, local caches are as applicable as LLC
attacks. Further, because caches are not flushed when the enclave execution is
interrupted, the OS can gain almost unlimited timing resolution.

2.3 The Prime+Probe Attack

The Prime+Probe attack was first introduced as a spy process capable of attack-
ing core-private caches [41]. It was later expanded to recover RSA keys [2],
keystrokes and ElGamal keys across VMs [43,55]. As our attack is carried out in
the L1 caches, we do not face some hurdles (e.g. slices) that an attacker would
have to overcome. The Prime+Probe attack stages include:

CacheZoom: How SGX Amplifies the Power of Cache Attacks 73

– Prime: in which the attacker fills the entire cache or a small portion of it
with her own dummy data.

– Victim Access: in which the attacker waits for the victim to make accesses
to particular sets in the cache, hoping to see key dependent cache utilization.
Note that, in any case, victim accesses to primed sets will evict at least one
of the attackers dummy blocks from the set.

– Probe: in which the attacker performs a per-set timed re-access of the pre-
viously primed data. If the attacker observes a high probe time, she deduces
that the cache set was utilized by the victim. On the contrary, if the attacker
observes low access times, she deduces that all the previously primed memory
blocks still reside in the cache, i.e., it was not utilized by the victim.

Thus, the Prime+Probe methodology allows an attacker to guess the cache
sets utilized by the victim. This information can be used to mount a full key
recovery attack if the algorithm has key-dependent memory accesses translated
into different cache set accesses.

3 Related Work

Timing side-channel attacks have been studied for many years. On a local
area network, the timing of the decryption operation on a web server could reveal
information about private keys stored on the server [15]. Timing attacks are
capable of breaking important cryptography primitives, such as exponentiation
and factorization operations of Diffie-Hellman and RSA [32]. More specifically,
microarchitectural timing side channels have been explored extensively
[21]. The first attacks proposed were based on the timing difference between
local core-private cache misses and hits. Generally, cache timing attacks are
based on the fact that a spy process can measure the differences in memory
access times. These attacks are proposed to recover cryptography keys of ciphers
such as DES [50], AES [11] and RSA [42]. Although there exist solutions to
make cryptographic implementation resistant to cache attacks [13,41], most of
these solutions result in worse performance. Further, cache attacks are capable
of extracting information from non-cryptographic applications [56].

More recent proposals applied cache side channels on shared LLC, a
shared resource among all the cores. This is important as, compared to previ-
ous core-private attacks, LLC attacks are applicable even when attacker and
victim reside in different cores. The Flush+Reload [8,53] attack on LLC is
only applicable to systems with shared memory. These side channels can be
improved by performance degradation [3,24]. Flush+Reload can be applied
across VMs [31], in Platform as a service (PaaS) clouds [56] and on smart-
phones [35]. The Flush+Reload is constrained by the memory deduplication
requirement. On the other hand, Prime+Probe [36], shows that in contrast to the
previous core-private cache side channels and the Flush+Reload attack, practical
attacks can be performed without memory deduplication or a core co-residency
requirement. The Prime+Probe attack can be implemented from virtually any

74 A. Moghimi et al.

cloud virtual machines running on the same hardware. The attacker can identify
where a particular VM is located on the cloud infrastructure such as Amazon
EC2, create VMs until a co-located one is found [43,54] and perform cross-VM
Prime+Probe attacks [30]. Prime+Probe can also be mounted from a browser
using JavaScript [40] and as a malicious smartphone application [35]. In addi-
tion to caches, other microarchitectural components such as Branch Target
Buffers (BTB) are vulnerable to side channels [1,34]. BTB can be exploited to
determine if a branch has been taken by a target process or not, e.g. to bypass
Address Space Layout Randomization (ASLR) [20].

Security of Intel SGX has been analyzed based on the available public
resources [17]. A side channel resistant TCB is proposed in the literature [18].
However, the proposed solution requires significant changes to the design of the
processor. Similar to Intel SGX, ARM TrustZone is vulnerable to cache side-
channel attacks [35]. Control-Channel attacks [52] have been proposed using the
page-fault mechanism. An adversarial OS can introduce page faults to a tar-
get application and, based on the timing of the accessed page, the execution
flow of a target can be inferred at page size granularity. Page fault side chan-
nels are effective on SGX and can be defeated using software solutions [48] or
by exploiting Intel Transactional Synchronization Extensions (TSX) [47]. Race
conditions between two running threads inside an enclave can be exploited [51].
SGX-Shield [46] proposes protection by adding ASLR protection and introduces
software diversity inside an enclave. Several Cache attacks on SGX have recently
and concurrently been shown, e.g. on AES [22] and RSA [12]. While those works
also exploit core co-location and L1 cache leakage, they fall short of exposing the
full temporal and spatial resolution and thus focus on known vulnerable imple-
mentations and attack styles. An enclave-to-enclave attack through LLC in a
different adversarial scenario [45], as well as methods to detect privileged side-
channel attacks from within an enclave [16] have concurrently been proposed.

4 Creating a High-Resolution Side Channel on Intel SGX

We explain how to establish a high resolution channel on a compromised OS to
monitor an SGX enclave. We first describe attacker capabilities, then our main
design goals and how our malicious kernel driver is implemented. We finally test
the resolution of our proposed side channel.

4.1 Attacker Capabilities

In our attack, we assume that the adversary has root access to a Linux OS run-
ning SGX. The attacker is capable of installing kernel modules and configuring
boot properties of the machine. As consequence of root access, the attacker can
read the content of static binary on the disk, observe which symmetric cipher
and implementation is used, and identify offset of tables that static data from
the victim binary will occupy.2 Although the attacker can observe the binary,
2 If the enclave binary is obfuscated, position of tables needs to be reconstructed using

reverse engineering methods, e.g. by analyzing cache access patterns [26].

CacheZoom: How SGX Amplifies the Power of Cache Attacks 75

she has no knowledge of the cipher key used during the encryption. In addition,
the attacker is capable of synchronizing the enclave execution with CacheZoom.
These assumptions are reasonable, as SGX promises a trusted environment for
execution on untrusted systems. Symmetric keys can be generated at runtime
from a secure random entropy (using RDRAND instruction) and/or transferred
through a public secure channel without the attacker knowledge.

4.2 CacheZoom Design

To create a high bandwidth channel with minimal noise, (1) we need to iso-
late the attackers’ malicious spy process code and the target enclave’s trusted
execution from the rest of the running operations and (2) we need to perform
the attack on small units of execution. By having these two elements, even a
comparably small cache like L1 turns into a high capacity channel. Note that
our spy process monitors the L1D data cache, but can also be implemented to
monitor the L1I instruction cache or LLC. Our spy process is designed to profile
all the sets in the L1D cache with the goal of retrieving maximum leakage. In
order to avoid noise, we dedicate one physical core to our experimental setup,
i.e., to the attacker Prime+Probe code and the victim enclave process. All other
running operations on the system, including OS services and interrupts, run on
the remaining cores. Furthermore, CacheZoom forces the enclave execution to
be interrupted in short time intervals, in order to identify all enclave memory
accesses. Note that, the longer the victim enclave runs without interruption, the
higher the number of accesses made to the cache, implying higher noise and less
temporal resolution. CacheZoom should further reduces other possible sources of
noise, e.g., context switches. The main purpose is that the attacker can retrieve
most of the secret dependent memory accesses made by the target enclave. Since
the L1 cache is virtually addressed, knowing the offset with respect to a page
boundary is enough to know the accessed set.

4.3 CacheZoom Implementation

We explain technical details behind the implementation of CacheZoom, in par-
ticular, how the noise sources are limited and how we increase the time resolution
to obtain clean traces.

Enclave-Attack Process Isolation. Linux OS schedules different tasks among
available logical processors by default. The main scheduler function schedule
is triggered on every tick of the logical processor’s local timer interrupt. One
way to remove a specific logical processor from the default scheduling algorithm
is through the kernel boot configuration isolcpus which accepts a list of logical
cores to be excluded from scheduling. To avoid a logical core from triggering the
scheduling algorithm on its local timer interrupt, we can use nohz full boot
configuration option. Recall that reconfiguring the boot parameters and restart-
ing the OS is included in our attackers capabilities. However, these capabilities

76 A. Moghimi et al.

are not necessary, as we can walk through the kernel task tree structure and turn
the PF NO SETAFFINITY flag off for all tasks. Then, by dynamically calling the
kernel sched setaffinity interface for every task, we are able to force all the
running kernel and user tasks to execute on specific cores. In addition to tasks
and kernel threads, interrupts also need to be isolated from the target core. Most
of the interrupts can be restricted to specific cores except for the non-maskable
interrupts (NMIs), which can’t be avoided. However, in our experience, their
occurrence is negligible and does not add considerable amount of noise.

CPU frequency has a more dynamic behavior in modern processors. Our
target processor has Speedstep technology which allows dynamic adjustment
of processor voltage and C-state, which allows different power management
states. These features, in addition to hyper-threading (concurrent execution of
two threads on the same physical core), make the actual measurement of cycles
through rdtsc less reliable. Cache side channel attacks that use this cycle counter
are affected by the dynamic CPU frequency. In non-OS adversarial scenarios,
these noise sources have been neglected thus forcing the attacker to do more
measurements. In our scenario, these processor features can be disabled through
the computer BIOS setup or can be configured by the OS to avoid unpredictable
behavior. In our attack, we simply disable every second logical processor to
practically avoid hyper-threading. To maintain a stable frequency in spite of the
available battery saving and frequency features, we set the CPU scaling governor
to performance and limit the maximum and minimum frequency range.

Increasing the Time Resolution. Aiming at reducing the number of mem-
ory accesses made by the victim between two malicious OS interrupts, we use
the local APIC programmable interrupt, available on physical cores. The APIC
timer has different programmable modes but we are only interested in the TSC-
Deadline mode. In TSC deadline mode, the specified TSC value will cause the
local APIC to generate a timer IRQ once the CPU reaches it. In the Linux
kernel, the function lapic next deadline is responsible for setting the next
deadline on each interrupt. The actual interrupt handler routine for this IRQ is
local apic timer interrupt. In order to enable/disable our attack, we install
hooks on these two functions. By patching the null function calls, available for
the purpose of live patching, we can redirect these functions to the malicious
routines in our kernel modules at runtime.
ffffffff81050900 lapic_next_deadline

ffffffff81050900: callq null_sub1

ffffffff81050c90 local_apic_timer_interrupt

ffffffff81050c90: callq null_sub2

In the modified lapic next deadline function, we set the timer interrupt
to specific values such that the running target enclave is interrupted every short
period of execution time. In the modified local apic timer interrupt, we first
probe the entire 64 sets of the L1D cache to gather information of the previous
execution unit and then prime the entire 64 sets for the next one. After each
probe, we store the retrieved cache information to a separate buffer. Our kernel
driver is capable of performing 50000 circular samplings. To avoid unnecessarly
sampling, we need to synchronize with the target enclave execution. For this

CacheZoom: How SGX Amplifies the Power of Cache Attacks 77

purpose, we enable the hooks just before the call to the enclave interface and
disable it right after.

4.4 Testing the Performance of CacheZoom

Our experimental setup is a Dell Inspiron 5559 laptop with Intel(R) Skylake
Core(TM) i7-6500U processor running Ubuntu 14.04.5 LTS and SGX SDK 1.7.
Our target processor has 2 hyper-threaded physical cores. Each physical core
has 32 kB of L1D and 32 kB of L1I local cache memory. The L1 cache, used as
our side channel, is 8 way associative and consists of 64 sets.

Even though Skylake processors use an adaptive LRU cache replacement
policy and the adaptive behavior is undocumented [23], our results show that
we can still use the pointer chasing eviction set technique [36] to detect memory
accesses. In the specific case of our L1D cache, the access time for chasing 8
pointers associated to a specific set is about 40 cycles on average. In order to
test the resolution of our side channel, we took an average of 50000 samples of
all the sets and varied the number of evictions from 0 to 8. The results can be
seen in Fig. 1, where the access time is increased by roughly 5 cycles for every
additional eviction. Thus, our results show that our eviction set gives us an
accurate measurement on the number of evicted lines from a specific set.

Our isolated CPU core and the L1D eviction set have the minimal possible
noise and avoid noises such as CPU frequency, OS and enclave noise; however, the
actual noise from the context switch between enclave process and attacker inter-
rupt is mostly unavoidable. The amount of noise that these unwanted memory
accesses add to the observation can be measured by running an enclave with an
empty loop under our attack measurement. Our results, presented in Fig. 2, show
that every set has a consistent number of evictions. Among the 64 sets, there are
only 4 sets that get filled as a side effect of the context switch memory accesses.
For the other sets, we observed either 0 or less than 8 unwanted accesses. Due
to the consistency of the number of evictions per set, we can conclude that only
sets that get completely filled are obscure and do not leak any information, 4 out
of 64 sets in our particular case. An example of the applied noise ex-filtration
process can be observed in Fig. 3, in which the enclave process was consecutively
accessing different sets. The left hand figure shows the hit access map, without

Fig. 1. Average cycle count per num-
ber of evictions in a set.

Fig. 2. Average cycle count for each
set. Variations are due to channel noise:
4 sets are unusable for attacks.

78 A. Moghimi et al.

Fig. 3. Cache hit map before (left) and after (right) filtering for context switch noise.
Enclave memory access patterns are clearly visible once standard noise from context
switch has been eliminated

taking into account the appropriate set threshold. The right hand figure shows
the access pattern retrieved from the enclave once the context switch noise access
has been taking into account and removed.

5 Attack on AES

The following gives a detailed description of different implementation styles for
AES to help the reader understand the attacks that we later perform:

5.1 Cache Attacks on Different AES Implementations

AES is a widely used block cipher that supports three key sizes from 128 bit to
256 bits. Our description and attacks focus on the 128-bit key version, AES-128,
but most attacks described can be applied to larger-key versions as well. AES
is based on 4 main operations: AddRoundKey, SubBytes, ShiftRows and Mix-
Columns. The main source of leakage in AES comes from the state-dependent
table look ups for the SubBytes operation. These look-ups result in secret-
dependent memory accesses, which can be exploited by cache attacks.

S-box: Software implementations that implement the 4 stages independently
base the SubBytes operation in a 256 entry substitution table, each entry
being 8 bits long. In this implementation, a total of a 160 accesses are per-
formed to the S-box during a 128-bit AES encryption, 16 accesses per round.
We refer to this implementation style as the S-box implementation.

4 T-tables: To achieve a better performance, some implementations combine
the MixColumns and SubBytes in a single table lookup. At the cost of bigger
pre-computed tables (and therefore, more memory usage) the encryption time
can be significantly reduced. The most common type uses 4 T-tables: 256
entry substitution tables, each entry being 32 bits long. The entries of the
four T-tables are the same bytes but rotated by 1, 2 and 3 positions, depending
on the position of the input byte in the column of the AES state. We refer
to this style as T-table implementation. We refer to this as the 4 T-table
implementation.

CacheZoom: How SGX Amplifies the Power of Cache Attacks 79

Large T-table Aiming at improving the memory usage of T-table based imple-
mentations, some designs utilize a single 256 entries T-table, where each entry
is 64 bits long. Each entry contains two copies of the 32 bit values typically
observed with regular size T-tables. This design reads each entry with a dif-
ferent byte offset, such that the values from the 4 T-tables can be read from a
single bigger T-table. The performance of the implementation is comparable,
but requires efficient non word-aligned memory accesses. We refer to this as
the Large T-table implementation.

Depending on the implementation style, implementations can be more sus-
ceptible to cache attacks or less. The resolution an attacker gets depends on
the cache line size, which is 64 bytes on our target architecture. For the S-box
implementation, the S-box occupies a total of 4 cache lines (256 bytes). That
is, an attacker able to learn for each observed access to a table entry at most
two bits. Attacks relying on probabilistic observations of the S-box entries not
being accessed during an entire encryption [31] would observe such a case with
a probability of 1.02 · 10−20, making a micro-architectural attack nearly infeasi-
ble. For a 4 T-tables implementation, each of the T-tables gets 40 accesses per
encryption, 4 per round, and occupies 16 cache lines. Therefore, the probability
of a table entry not being accessed in an entire encryption is 8%, a fact that
was exploited in [31] to recover the full key. In particular, all these works target
either the first or the last round to avoid the MixColumns operation. In the
first round, the intermediate state before the MixColumns operation is given by
s0i = Ti[pi ⊕ k0i], where pi and k0i are the plaintext and first round key bytes
i, Ti is the table utilization corresponding to byte i and s0i is the intermediate
state before the MixColumns operation in the first round. We see that, if the
attacker knows the table entry being utilized xi and the plaintext he can derive
equations in the form xi=pi ⊕ k0i to recover the key. A similar approach can
be utilized to mount an attack in the last round where the output is in the
form ci = Ti[s9i] ⊕ k10i . The maximum an attacker can learn, however, is 4 bit
per lookup, if each lookup can be observed separately. The scenario for attacks
looking at accesses to a single cache line for an entire encryption learn a lot less,
hence need significantly more measurements.

For a Large T-table implementation, the T-table occupies 32 cache lines, and
the probability of not accessing an entry is reduced to 0.6%. This, although not
exploited in a realistic attack, could lead to key recovery with sufficiently many
measurements. An adversary observing each memory access separately, however,
can learn 5 bits per access, as each cache line contains only 8 of the larger entries.

Note that an attacker that gets to observe every single access of the aforemen-
tioned AES implementations would succeed to recover the key with significantly
fewer traces, as she gets to know the entry accessed at every point in the execu-
tion. This scenario was analyzed in [6] with simulated cache traces. Their work
focuses on recovering the key based on observations made in the first and second
AES rounds establishing relations between the first and second round keys. As a
result, they succeed on recovering an AES key from a 4 T-table implementation
with as few as six observed encryptions in a noise free environment.

80 A. Moghimi et al.

5.2 Non-vulnerable AES Implementations

There are further efficient implementations of AES that are not automatically
susceptible to cache attacks, as they avoid secret-dependent memory accesses.
These implementation styles include bit-sliced implementations [38], implemen-
tations using vector instructions [25], constant memory access implementations
and implementations using AES instruction set extensions on modern Intel
CPUs [27]. However, they all come with their separate drawbacks. The bit-
sliced implementations need data to be reformatted before and after encryption
and usually show good performance only if data is processed in large chunks [9].
Constant memory access implementations also suffer from performance as the
number of memory accesses during an encryption significantly increases. While
hardware support like AES-NI combines absence of leakage with highest perfor-
mance, it is only an option if implemented and if the hardware can be trusted [49],
and further might be disabled in BIOS configuration options.

5.3 Cache Prefetching as a Countermeasure

In response to cache attacks in general and AES attacks in particular, several
cryptographic library designers implement cache prefetching approaches, which
just load the key dependent data or instructions to the cache prior to their possi-
ble utilization. In the case of AES, this simply means loading all the substitution
tables to the cache, either once during the encryption (at the beginning) or before
each round of AES. Prefetching takes advantage of the low temporal resolution
that an attacker obtains when performing a regular non-OS controlled attack, as
it assumes that an attacker cannot probe faster than the prefetching. Translated
to AES, prefetching assumes that a cache attack does not have enough tempo-
ral granularity to determine which positions in the substitution table have been
used if they are prefetched, e.g., at the beginning of each round.

An example of the implications that such a countermeasure will have on a
typical cache attack can be observed in Fig. 4. The Prime+Probe process cannot
be executed within the execution of a single AES round. Thanks to prefetching,
the attacker is only able to see cache hits on all the Table entries. We analyze
whether those countermeasures, implemented in many cryptographic libraries,
resist the scenario in which an attacker fully controls the OS and can inter-
rupt the AES process after every small number of accesses. As it was explained
in Sect. 2, attacking SGX gives a malicious OS adversary almost full temporal
resolution, which can reverse the effect of prefetching mechanisms.

Fig. 4. Prefetching and the timeline effect for a regular Prime+Probe attack.

CacheZoom: How SGX Amplifies the Power of Cache Attacks 81

6 CacheZooming SGX-Based AES

We use CacheZoom to retrieve secret keys of different implementations of AES
running inside an enclave. As mentioned in Sect. 4.1, we assume no knowledge
of the encryption key, but to have access to the enclave binary, and thus to the
offset of the substitution tables. We further assume the enclave is performing
encryptions over a set of known plaintext bytes or ciphertext bytes.

6.1 T-Table Implementations

Our first attacks target the T-table implementations. To recover the AES key
from as few traces as possible, we recover the memory access pattern of the
first 2 rounds of the AES function. A perfect single trace first round attack
reveals at most the least significant 4 and 5 bits of each key byte in 4 T-table
(16 entries/cache line) and Large T-table implementations (8 entries/cache line)
respectively. As we want to retrieve the key with the minimal number of traces,
we also retrieve the information from the accesses in the second round and use
the relation between the first and second round key. In particular, we utilize
the relations described in [6], who utilized simulated data to demonstrate the
effectiveness of their AES key recovery algorithm.

Fig. 5. Memory footprint of the AES execution inside enclave.

In our specific practical attack, we face three problems: (1) Even in our high
resolution attack, we have noise that adds false positives and negatives to our
observed memory access patterns. (2) Our experiments show that the out-of-
order execution and parallel processing of memory accesses does not allow for
a full serialization of the observed memory accesses. (3) Separating memory
accesses belonging to different rounds can be challenging. These first two facts
can be observed in Fig. 5, which shows 16 memory accesses to each round of a 4

82 A. Moghimi et al.

T-table (4 access per table) AES. Due to our high resolution channel and the out-
of-order execution of instructions, we observe that we interrupt the out-of-order
execution pipeline while a future memory access is being fetched. Thus, inter-
rupting the processor and evicting the entire L1D cache on each measurement
forces the processor to repeatedly load the cache line memory until the tar-
get read instruction execution completes. Hence, attributing observed accesses
to actual memory accesses in the code is not trivial. Although this behavior
adds some confusion, we show that observed accesses still have minimal order
that we can take into account. As for the third fact, it involves thorough visual
inspection of the collected trace. In particular, we realized that every round start
involves the utilization of a substantially higher number of sets than the rest,
also observable in Fig. 5.

In the first implementation of our key recovery algorithm, we just use the
set access information without taking into account the ordering of our observed
accesses. Recall that we have access to the binary executed by the enclave, and
thus, we can map each set number to its corresponding T-table entry. This means
that all our accesses can be grouped on a T-table basis. Duplicated accesses to a
set within a round are not separated and are considered part of the same access.
After applying this filter to the first and second round traces, we apply the key
recovery algorithm, as explained in [6]. The accuracy of our measurements with
respect to the aforementioned issues can be seen in Table 1. For the 4 T-table
implementation, 55% of the accesses correspond to true accesses (77% of them
were ordered), 44% of them were noisy accesses and 56% of the true accesses
were missed. For the single Large T-table implementation, 75% of the T-table
accesses corresponded to true accesses (67% ordered), 24% were noisy accesses
and 12% of the true accesses were missed. The quality of the data is worse in
the 4 T-table case because they occupy larger number of sets and thus include
more noisy lines, as explained in Fig. 2.

With these statistics and after applying our key recovery algorithms with
varying number of traces we obtained the results presented in Fig. 6. If we do
not consider the order in our experiments, we need roughly 20 traces (crosses

Fig. 6. Key recovery success rate.

Table 1. Statistics on recovered
memory accesses for T-table imple-
mentations.

Implementation 4 T-table Large
T-table

True Positive 55% 75%

False Positive 44% 24%

False Negative 56% 12%

Ordered 77% 67%

CacheZoom: How SGX Amplifies the Power of Cache Attacks 83

and diamonds) to get the entire correct key with 90% probability in both the 4
T-table and single T-table implementations.

To further improve our results, we attempt to utilize the partial order of the
observed accesses. We obtain the average position for all the observed accesses
to a set within one round. These positions are, on average, close to the order
in which sets were accessed. The observed order is then mapped to the order
in which each T-table should have been utilized. Since this information is not
very reliable, we apply a score and make sure misorderings are not automatically
discarded. After applying this method, the result for our key recovery algorithm
can be observed again in Fig. 6, for which we needed around 15 traces for the
4 T-table implementation (represented with stars) and 12 traces for the single
Large T-table implementation (represented circles) to get the key with 90%
probability. Thus, we can conclude that using the approximate order helped us
to recover the key with fewer traces.

Cache Prefetching, as explained in Sect. 5, is implemented to prevent pas-
sive attackers from recovering AES keys. CacheZoom, in theory, should bypass
such a countermeasure by being able to prime the cache after the T-tables are
prefetched. The observation of a trace when cache prefetching is implemented
before every round can be observed in Fig. 7. We can see how cache prefetching
is far from preventing us to recover the necessary measurements. In fact, it eases
the realization of our attack, as we now can clearly distinguish accesses belong-
ing to different rounds, allowing for further automation of our key recovery step.
Thus, CacheZoom not only bypasses but further benefits from mechanisms that
mitigated previous cache attacks.

Fig. 7. Memory footprint of the AES execution inside an enclave with prefetch coun-
termeasure. The prefetch is clearly distinguishable and helps to identify the start of
each round. Further, it also highlights out-of-order execution and in-order completion.

84 A. Moghimi et al.

6.2 S-Box Implementation

S-box implementation is seen as a remedy to cache attacks, as all S-box accesses
use only a very small number of cache lines (typically 4). With 160 S-Box accesses
per encryption, each line is loaded with a very high likelihood and thus prevents
low resolution attackers from gaining information. Adding a prefetch for each
round does not introduce much overhead and also prevents previous attacks that
attempted interrupting the execution [14,24]. However, CacheZoom can easily
distinguish S-box accesses during the rounds, but due to the out-of order execu-
tion, it is not possible to distinguish accesses for different byte positions in a reli-
able manner. However, one distinguishable feature is the number of accesses each
set sees during a round. We hypothesize that the number of observed accesses
correlates with the number of S-box lookups to that cache line. If so, a classic
DPA correlating the observed accesses to the predicted accesses caused by one
state byte should recover the key byte. Hence we followed a classic DPA-like
attack on the last round, assuming known ciphertexts.

The model used is rather simple: for each key byte k, the accessed cache
set during the last round for a given ciphertext byte c is simply given as set =
S−1(x ⊕ k) � 6, i.e. the two MSBs of the corresponding state byte before the
last SubBytes operation. The access profile for a state byte position under an
assumed key k and given ciphertext bytes can be represented by a matrix A
where each row corresponds to a known ciphertext and each column indicates
whether that ciphertext resulted in an access to the cache line with the same
column index. Hence, each row has four entries, one per cache line, where the
cache line with an access is set to one, and the other three columns are set to
zero (since that state byte did not cause an access). Our leakage is given as a
matrix L, where each row corresponds to a known ciphertext and each column to
the number of observed accesses to one of the 4 cache lines. A correlation attack
can then be performed by computing the correlation between A and L, where
A is a function of the key hypothesis. We used synthetic, noise-free simulation
data for the last AES round to validate our approach, where accesses for 16
bytes are accumulated over 4 cache lines for numerous ciphertexts under a set
key. The synthetic data shows a best expectable correlation of about .25 between
noise-free cumulative accesses L and the correct accesses for a single key byte A.
As little as 100 observations yield a first-order success rate of 93%.

Next, we gathered hundreds of measurements using CacheZoom. Note that
due to a lack of alignment, the collection of a large number of observations and
the extraction of the last round information still requires manual intervention.
When performing the key recovery attack, even 200 observations yielded 4–5 key
bytes correctly. However, the first-order success rate only increases very slowly
with further measurements. We further observed that (1) more traces always
recover later key bytes first and (2) key ranks for earlier lookups are often very
low, i.e. the correct key does not even yield a high correlation. To analyze this
behavior, we simply correlated the expected leakage A for each byte position to
the observed leakage L. The result is shown in Fig. 8. It can be observed that
the correlation for the later key bytes is much stronger than for the earlier key

CacheZoom: How SGX Amplifies the Power of Cache Attacks 85

bytes. This explains why later key bytes are much easier to recover. The plot also
shows a comparison of using the absolute number of observed accesses (ranging
between 10 and 80 observed accesses per round, blue) an the relative number of
accesses per cache set (amber) after removing outliers.

Results for the best and the worst key guess are shown in Fig. 9. For k15
(amber), the correlation for the correct key guess is clearly distinguishable. For
k0 however, the correct key guess does not show any correlation with the used
1500 observations. In summary, 500 traces are sufficient to recover 64 key bits,
while 1500 recover 80 key bits reliably. While full key recovery will be challenging,
recovering 12 out of 16 key bytes is easily possible with thousands of observations.
The remaining key bytes can either be brute-forced or can be recovered by
exploiting leakage from the second last round.

Next, we explain the reason why we believe bytes processed first are harder to
recover. The Intel core i7 uses deep pipelines and speculative out-of-order execu-
tion. Up to six micro-instructions can be dispatched per clock cycle, and several
instructions can also complete per cycle. As a result, getting order information
for the accesses is difficult, especially if 16 subsequent S-box reads are spread
over only 4 cache lines. While execution is out-of-order, each instruction and
its completion state are tracked in the CPU’s reorder buffer (ROB). Instruction
results only affect the system state once they are completed and have reached
the top of the ROB. That is, micro-ops retire in-order, even though they exe-
cute out-of-order. The result of micro-ops that have completed hence do not
immediately affect the system. In our case, if the previous load has not yet been
serviced, the subsequent completed accesses cannot retire and affect the system
until the unserviced load is also completed.

Every context switch out of an enclave requires the CPU to flush the out-of
order execution pipeline of the CPU [17]. Hence CacheZoom’s interrupt causes a
pipeline flush in the CPU, all micro-ops on the ROB that are not at the top and
completed will be discarded. Since our scheduler switches tasks very frequently,
many loads cannot retire and thus the same load operation has to be serviced
repeatedly. This explains why we see between 9 and 90 accesses to the S-box
cache lines although there are only 16 different loads to 4 different cache lines.

Fig. 8. Correlation between observed
and expected accesses caused by one
byte position. Leakage is stronger for
later bytes. Correlation of observed
(blue) vs. relative accesses (amber).

Fig. 9. Correlation of key values for
the best (k15, amber) and worst (k0,
blue) key bytes with 1500 traces. The
guess with the highest correlation (o)
and the correct key (x) match only for
k15. (Color figure online)

86 A. Moghimi et al.

The loads for the first S-box are, however, the least affected by preceding loads.
Hence, they are the most likely to complete and retire from the ROB after a
single cache access. Later accesses are increasingly likely to be serviced more
than once, as their completion and retirement is dependent on preceding loads.
Since our leakage model assumes such behavior (in fact, we assume one cache
access per load), the model becomes increasingly accurate for later accesses.

7 Conclusion

This work presented CacheZoom, a new tool to analyze memory accesses of
SGX enclaves. To gain maximal resolution, CacheZoom combines a L1 cache
Prime+Probe attack with OS modifications that greatly enhance the time res-
olution. SGX makes this scenario realistic, as both a modified OS and knowl-
edge of the unencrypted binary are realistic for enclaves. We demonstrate that
CacheZoom can be used to recover key bits from all major software AES imple-
mentations, including ones that use prefetches for each round as a cache-attack
countermeasure. Furthermore, keys can be recovered with as few as 10 observa-
tions for T-table based implementations. For the trickier S-box implementation
style, 100s of observations reveal sufficient key information to make full key
recovery possible. Prefetching is in this scenario beneficial to the adversary, as
it helps identifying and separating the accesses for different rounds. A list of
libraries that contain vulnerable implementations can be found at Table 2.

CacheZoom serves as evidence that security-critical code needs constant exe-
cution flows and secret-independent memory accesses. As SGX’s intended use
is the protection of sensitive information, enclave developers must thus use the
necessary care when developing code and avoid microarchitectural leakages. For
AES specifically, SGX implementations must feature constant memory accesses.
Possible implementation styles are thus bit-sliced or vectorized-instruction-based
implementations or implementations that access all cache lines for each look-up.

Table 2. Vulnerable implementations in popular current cryptographic libraries. These
implementations can be configured through compile/runtime settings.

Library Vulnerable implementations

OpenSSL 1.1.0f aes core.c T-table, aes x86core.c Large T-table, S-box
and prefetching configurable through
AES COMPACT IN INNER ROUNDS,
AES COMPACT IN OUTER ROUNDS

WolfCrypt 3.11.0 aes.c T-Table with prefetching before the first round

Mozilla NSS 3.30.2 rijndael.c T-Table and S-box configurable through
RIJNDAEL GENERATE VALUES MACRO

Nettle 3.3 aes-encrypt-internal.asm T-table

Libtomcrypt 1.17 aes.c T-table

Libgcrypt 1.7.7 rijndael.c T-table, S-box for the last round with
prefetching

MbedTLS 2.4.2 aes.c T-table, S-box for the last round

CacheZoom: How SGX Amplifies the Power of Cache Attacks 87

Acknowledgments. This work is supported by the National Science Foundation,
under the grant CNS-1618837. CacheZoom source repository and data sets are available
at https://github.com/vernamlab/CacheZoom.

References

1. Aciiçmez, O., Koç, Ç.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security, pp. 312–320. ACM (2007)

2. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on openSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-79263-5 16

3. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side
channels through performance degradation. In: Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 422–435. ACM (2016)

4. ARM TrustZone. https://www.arm.com/products/security-on-arm/trustzone.
Accessed 25 June 2017

5. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,
J., Muthukumaran, D., O’Keeffe, D., Stillwell, M.L., et al.: SCONE: Secure linux
containers with Intel SGX. In: 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 2016). USENIX Association (2016)

6. Ashokkumar, C., Giri, R.P., Menezes, B.: Highly efficient algorithms for AES key
retrieval in cache access attacks. In: 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 261–275. IEEE (2016)

7. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. ACM Trans. Comput. Syst. (TOCS) 33(3) (2015)

8. Benger, N., Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit” : A
small amount of side channel can go a long way. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 5

9. Bernstein, D.J., Schwabe, P.: New AES software speed records. In: Chowdhury,
D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 322–
336. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89754-5 25

10. Bhattacharya, S., Mukhopadhyay, D.: Who watches the watchmen?: Utilizing per-
formance monitors for compromising keys of RSA on intel platforms. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 248–266. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 13

11. Bonneau, J., Mironov, I.: Cache-collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006). doi:10.1007/11894063 16

12. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software Grand Exposure: SGX Cache Attacks are Practical (2017). arXiv preprint
arXiv:1702.07521

13. Brickell, E., Graunke, G., Neve, M., Seifert, J.P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. IACR Cryptology
ePrint Archive 2006, vol. 52 (2006)

14. Briongos, S., Malagón, P., Risco-Mart́ın, J.L., Moya, J.M.: Modeling side-channel
cache attacks on AES. In: Proceedings of the Summer Computer Simulation Con-
ference, p. 37. Society for Computer Simulation International (2016)

https://github.com/vernamlab/CacheZoom
http://dx.doi.org/10.1007/978-3-540-79263-5_16
http://dx.doi.org/10.1007/978-3-540-79263-5_16
https://www.arm.com/products/security-on-arm/trustzone
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-540-89754-5_25
http://dx.doi.org/10.1007/978-3-662-48324-4_13
http://dx.doi.org/10.1007/11894063_16
http://arxiv.org/abs/1702.07521

88 A. Moghimi et al.

15. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

16. Chen, S., Zhang, X., Reiter, M.K., Zhang, Y.: Detecting privileged side-channel
attacks in shielded execution with déjá vu. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 7–18. ACM
(2017)

17. Costan, V., Devadas, S.: Intel SGX explained. Technical report, Cryptology ePrint
Archive, Report 2016/086 (2016). https://eprint.iacr.org/2016/086

18. Costan, V., Lebedev, I., Devadas, S.: Sanctum: Minimal hardware extensions for
strong software isolation. USENIX Security, vol. 16, pp. 857–874 (2016)

19. Dahbur, K., Mohammad, B., Tarakji, A.B.: A survey of risks, threats and vulner-
abilities in cloud computing. In: Proceedings of the 2011 International Conference
on Intelligent Semantic Web-Services and Applications, p. 12. ACM (2011)

20. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.: Jump over ASLR: Attacking
branch predshared cache attictors to bypass ASLR. In: IEEE/ACM International
Symposium on Microarchitecture (MICRO) (2016)

21. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A Survey of Microarchitectural Timing
Attacks and Countermeasures on Contemporary Hardware. IACR Eprint (2016)

22. Götzfried, J., Eckert, M., Schinzel, S., Müller, T.: Cache attacks on intel SGX. In:
EUROSEC, pp. 2–1 (2017)

23. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: A remote software-induced
fault attack in javascript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). doi:10.1007/
978-3-319-40667-1 15

24. Gullasch, D., Bangerter, E., Krenn, S.: Cache games-bringing access-based cache
attacks on AES to practice. In: 2011 IEEE Symposium on Security and Privacy,
pp. 490–505. IEEE (2011)

25. Hamburg, M.: Accelerating AES with vector permute instructions. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 18–32. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04138-9 2

26. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53140-2 18

27. Intel: Intel R© Data Protection Technology with AES-NI and Secure Key.
http://www.intel.com/content/www/us/en/architecture-and-technology/
advanced-encryption-standard-aes-/data-protection-aes-general-technology.
html

28. ISCA 2015 tutorial slides for Intel R© SGX.https://software.intel.com/sites/
default/files/332680-002.pdf. Accessed: 25 June 2017

29. Intel SGX. https://software.intel.com/en-us/sgx. Accessed: 25 June 2017
30. Irazoqui, G., Eisenbarth, T., Sunar, B.: S $ A: A shared cache attack that works

across cores and defies VM sandboxing-and its application to AES. In: 2015 IEEE
Symposium on Security and Privacy, pp. 591–604. IEEE (2015)

31. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, cross-VM
attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1 15

32. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

https://eprint.iacr.org/2016/086
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-319-40667-1_15
http://dx.doi.org/10.1007/978-3-642-04138-9_2
http://dx.doi.org/10.1007/978-3-662-53140-2_18
http://dx.doi.org/10.1007/978-3-662-53140-2_18
http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes-/data-protection-aes-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes-/data-protection-aes-general-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes-/data-protection-aes-general-technology.html
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/en-us/sgx
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1007/3-540-68697-5_9

CacheZoom: How SGX Amplifies the Power of Cache Attacks 89

33. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon. IEEE Secur. Priv. 9(3),
49–51 (2011)

34. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring Fine-
grained Control Flow Inside SGX Enclaves with Branch Shadowing. Technical
report, arxiv Archive 2016 (2017). https://arXiv.org/pdf/1611.06952.pdf

35. Lipp, M., Gruss, D., Spreitzer, R., Mangard, S.: Armageddon: Last-level cache
attacks on mobile devices. arXiv preprint (2015). arXiv:1511.04897

36. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy (2015)

37. Liu, W., Di Segni, A., Ding, Y., Zhang, T.: Cache-timing attacks on AES.
New York University (2013)

38. Matsui, M., Nakajima, J.: On the power of bitslice implementation on intel core2
processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
121–134. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 9

39. Morris, T.: Trusted platform module. In: van Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 1332–1335. Springer, Heidelberg
(2011)

40. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: Practical cache attacks in javascript and their implications. In: Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 1406–1418. ACM (2015)

41. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). doi:10.1007/11605805 1

42. Percival, C.: Cache missing for fun and profit (2005)
43. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

44. Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M., Mainar-Ruiz,
G., Russinovich, M.: VC3: trustworthy data analytics in the cloud using SGX. In:
2015 IEEE Symposium on Security and Privacy. IEEE (2015)

45. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard exten-
sion: Using SGX to conceal cache attacks (2017). arXiv preprint arXiv:1702.08719

46. Seo, J., Lee, B., Kim, S., Shih, M.W., Shin, I., Han, D., Kim, T.: SGX-Shield:
Enabling address space layout randomization for SGX programs. In: Proceedings
of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA (2017)

47. Shih, M.W., Lee, S., Kim, T., Peinado, M.: T-SGX: Eradicating controlled-channel
attacks against enclave programs. In: Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (2017)

48. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: Proceedings of the 11th ACM on Asia Conference on Com-
puter and Communications Security, pp. 317–328. ACM (2016)

49. Takehisa, T., Nogawa, H., Morii, M.: AES Flow Interception: Key Snooping
Method on Virtual Machine-Exception Handling Attack for AES-NI-. IACR Cryp-
tology ePrint Archive 2011, vol. 428 (2011)

50. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45238-6 6

https://arXiv.org/pdf/1611.06952.pdf
http://arxiv.org/abs/1511.04897
http://dx.doi.org/10.1007/978-3-540-74735-2_9
http://dx.doi.org/10.1007/11605805_1
http://arxiv.org/abs/1702.08719
http://dx.doi.org/10.1007/978-3-540-45238-6_6
http://dx.doi.org/10.1007/978-3-540-45238-6_6

90 A. Moghimi et al.

51. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: Exploit-
ing synchronisation bugs in intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457.
Springer, Cham (2016). doi:10.1007/978-3-319-45744-4 22

52. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In: 2015 IEEE Symposium on Security and
Privacy, pp. 640–656. IEEE (2015)

53. Yarom, Y., Falkner, K.: Flush+reload: a high resolution, low noise, L3 cache side-
channel attack. In: 23rd USENIX Security Symposium (USENIX Security 14), pp.
719–732 (2014)

54. Zhang, Y., Juels, A., Oprea, A., Reiter, M.K.: Homealone: Co-residency detection
in the cloud via side-channel analysis. In: 2011 IEEE Symposium on Security and
Privacy, pp. 313–328. IEEE (2011)

55. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: Proceedings of the 2012 ACM conference on
Computer and Communications Security, pp. 305–316. ACM (2012)

56. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pp. 990–1003. ACM (2014)

http://dx.doi.org/10.1007/978-3-319-45744-4_22

Higher Order Countermeasures

High-Order Conversion from Boolean
to Arithmetic Masking

Jean-Sébastien Coron(B)

University of Luxembourg, Luxembourg, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. Masking with random values is an effective countermeasure
against side-channel attacks. For cryptographic algorithms combining
arithmetic and Boolean masking, it is necessary to switch from arith-
metic to Boolean masking and vice versa. Following a recent approach
by Hutter and Tunstall, we describe a high-order Boolean to arithmetic
conversion algorithm whose complexity is independent of the register
size k. Our new algorithm is proven secure in the Ishai, Sahai and Wag-
ner (ISW) framework for private circuits. In practice, for small orders,
our new countermeasure is one order of magnitude faster than previous
work.

We also describe a 3rd-order attack against the 3rd-order Hutter-
Tunstall algorithm, and a constant, 4th-order attack against the t-th
order Hutter-Tunstall algorithms, for any t ≥ 4.

1 Introduction

The Masking Countermeasure. Masking is a very common countermeasure
against side channel attacks, first suggested in [CJRR99,GP99]. It consists in
masking every variable x into x′ = x ⊕ r, where r is a randomly generated
value. The two shares x′ and r are then manipulated separately, so that a first-
order attack that processes intermediate variables separately cannot succeed.
However first-order masking is vulnerable to a second-order attack combining
information on the two shares x′ and r; see [OMHT06] for a practical attack.
Boolean masking can naturally be extended to n shares, with x = x1 ⊕ · · · ⊕ xn;
in that case an implementation should be resistant against t-th order attacks, in
which the adversary combines leakage information from at most t < n variables.
It was shown in [CJRR99,PR13,DDF14] that under a reasonable noisy model,
the number of noisy samples required to recover a secret x from its shares xi

grows exponentially with the number of shares.

Security Model. The theoretical study of securing circuits against side-channel
attacks was initiated by Ishai, Sahai and Wagner (ISW) [ISW03]. In this model,
the adversary can probe at most t wires in the circuit, but he should not learn
anything about the secret key. The authors show that any circuit C can be
transformed into a new circuit C ′ of size O(t2 · |C|) that is resistant against such
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 93–114, 2017.
DOI: 10.1007/978-3-319-66787-4 5

94 J.-S. Coron

an adversary. The construction is based on secret-sharing every variable x into n
shares with x = x1 ⊕ · · · ⊕ xn, and processing the shares in a way that prevents
a t-limited adversary from leaning any information about the initial variable x,
for n ≥ 2t + 1.

The approach for proving security is based on simulation: instead of consid-
ering all possible t-uples of probes, which would be unfeasible since this grows
exponentially with t, the authors show how to simulate any set of t wires probed
by the adversary, from a proper subset of the input shares of the transformed
circuit C ′. Since any proper subset of the input shares can be simulated without
knowledge of the input variables of the original circuit (simply by generating
random values), one can then obtain a perfect simulation of the t probes. This
shows that the t probes do not bring any additional information to the attacker,
since he could simulate those t probes by himself, without knowing the secret key.

In this paper, all our constructions are proven secure in the ISW model. More
precisely, we use the refined t-SNI security notion introduced in [BBD+16]. This
enables to show that a particular gadget can be used in a full construction with
n ≥ t + 1 shares, instead of n ≥ 2t + 1 for the weaker definition of t-NI security
(as used in the original ISW security proof). The t-SNI security notion is a very
practical definition that enables modular proofs; this is done by first considering
the t-SNI security of individual gadgets and then composing them inside a more
complex construction.

Boolean vs. Arithmetic Masking. Boolean masking consists in splitting
every variable x into n shares xi such that x = x1 ⊕ x2 ⊕ · · · ⊕ xn, and the
shares are then processed separately. However some algorithms use arithmetic
operations, for example IDEA [LM90], RC6 [CRRY99], XTEA [NW97], SPECK
[BSS+13] and SHA-1 [NIS95]. In that case it can be advantageous to use arith-
metic masking. For example, if the variable z = x + y mod 2k must be com-
puted securely for some parameter k, a first-order countermeasure with arith-
metic shares consists in writing x = A1 + A2 and y = B1 + B2 for arithmetic
shares A1, A2, B1, B2. Then instead of computing z = x + y directly, which
would leak information on x and y, one can add the shares separately, by letting
C1 ← A1 + B1 and C2 ← A2 + B2; this gives the two arithmetic shares C1 and
C2 using z = x + y = A1 + A2 + B1 + B2 = C1 + C2. Note that throughout the
paper all additions and subtractions are performed modulo 2k for some k; for
example for SHA-1 we have k = 32.

When combining Boolean and arithmetic masking, one must be able to con-
vert between the two types of masking; obviously the conversion algorithm itself
must be secure against side-channel attacks. More precisely, a Boolean to arith-
metic conversion algorithm takes as input n shares xi such that:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

and one must compute n arithmetic shares Ai such that:

x = A1 + A2 + · · · + An (mod 2k)

without leaking information about x.

High-Order Conversion from Boolean to Arithmetic Masking 95

Prior Work. The first Boolean to arithmetic conversion algorithms were
described by Goubin in [Gou01], with security against first-order attacks only.
Goubin’s Boolean to arithmetic algorithm is quite elegant and has complexity
O(1), that is independent of the register size k. The arithmetic to Boolean con-
version is more complex and has complexity O(k); this was later improved to
O(log k) in [CGTV15]; however in practice for k = 32 the number of operations
is similar.

The first conversion algorithms secure against high-order attacks were
described in [CGV14], with complexity O(n2 · k) for n shares and k-bit addition
in both directions, with a proof of security in the ISW model.1 The authors of
[CGV14] also describe an alternative approach that use Boolean masking only
and employ secure algorithms to perform the arithmetic operations directly on
the Boolean shares, with the same asymptotic complexity; they show that for
HMAC-SHA-1 this leads to an efficient implementation.

Recently, Hutter and Tunstall have described in [HT16] a high-order Boolean
to arithmetic conversion algorithm with complexity independent of the register
size k (as in Goubin’s original algorithm). However no proof of security is pro-
vided, except for second-order and third-order attacks. The complexity of the
algorithm for n shares is O(2n/2), but for small values of n the algorithm is much
more efficient than [CGV14,CGTV15], at least by one order of magnitude2.

Our Contributions. In this paper our contributions are as follows:

• We describe a high-order Boolean to arithmetic conversion algorithm with
complexity independent of the register size k, using a similar approach as
in [HT16], but with a proof of security in the ISW model. Our algorithm
achieves security against attacks of order n−1 for n shares, for any n ≥ 3. Our
conversion algorithm has complexity O(2n), instead of O(n2 · k) in [CGV14],
but for small values of n it is one order of magnitude more efficient. In Sect. 6
we report the execution times we achieved for both algorithms, using 32-bit
registers.

• We describe a 4th order attack against the t-th order Hutter-Tunstall algo-
rithm (with n = t + 1 shares), for any t ≥ 4. We also describe a 3rd order
attack for t = 3. This implies that the conversion algorithm in [HT16] cannot
offer more than second-order security3.

Source Code. A proof-of-concept implementation of our high-order conversion
algorithm, using the C language, is available at: http://pastebin.com/CSn67PxQ

1 This can also be improved to O(n2 · log k) using [CGTV15].
2 In [HT16] the authors claim that the complexity of their algorithm is O(n2), but it

is actually O(2n/2), because it makes 2 recursive calls to the same algorithm with
n − 2 shares.

3 Our attacks apply on the version posted on 22-Dec-2016 of [HT16]; it has been
updated since then.

http://pastebin.com/CSn67PxQ

96 J.-S. Coron

2 Security Definitions

In this section we recall the t-NI and t-SNI security definitions from [BBD+16].
For simplicity we only provide the definitions for a simple gadget taking as input
a single variable x (given by n shares xi) and outputting a single variable y (given
by n shares yi). Given a vector of n shares (xi)1≤i≤n, we denote by x|I := (xi)i∈I

the sub-vector of shares xi with i ∈ I.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n and
outputting the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any set
of t intermediate variables, there exists a subset I of input indices with |I| ≤ t,
such that the t intermediate variables can be perfectly simulated from x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting (yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of t
intermediate variables and any subset O of output indices such that t+ |O| < n,
there exists a subset I of input indices with |I| ≤ t, such that the t intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in the
ISW probing model; based on the ISW multiplication gadget, it allows to prove
the security of a transformed circuit with n ≥ 2t + 1 shares. The stronger t-SNI
notion allows to prove the security with n ≥ t + 1 shares only [BBD+16]. The
difference between the two notions is as follows: in the stronger t-SNI notion, the
size of the input shares subset I can only depend on the number of probes t and
is independent of the number of output variables |O| that must be simulated
(as long as the condition t + |O| < n is satisfied). For a complex construction
involving many gadgets (as the one considered in this paper), this enables to
easily prove that the full construction is t-SNI secure, based on the t-SNI security
of its components.

3 Goubin’s First-Order Conversion and Previous Works

3.1 Goubin’s Algorithm

We first recall Goubin’s first-order algorithm for conversion from Boolean to
arithmetic masking [Gou01]. The algorithm is based on the affine property of
the function Ψ(x1, r) : F2k × F2k → F2k

Ψ(x1, r) = (x1 ⊕ r) − r (mod 2k)

As mentioned previously, all additions and subtractions are performed modulo 2k

for some parameter k, so in the following we omit the mod 2k. Moreover we grant
higher precedence to xor than addition, so we simply write Ψ(x1, r) = x1 ⊕r−r.

Theorem 1 (Goubin [Gou01]). The function Ψ(x1, r) is affine with respect
to r over F2.

High-Order Conversion from Boolean to Arithmetic Masking 97

Thanks to the affine property of Ψ , the conversion from Boolean to arithmetic
masking is relatively straightforward. Namely given as input the two Boolean
shares x1, x2 such that

x = x1 ⊕ x2

we can write:

x = x1 ⊕ x2 − x2 + x2

= Ψ(x1, x2) + x2

=
[(

x1 ⊕ Ψ(x1, r ⊕ x2)
) ⊕ Ψ(x1, r)

]
+ x2

for random r ← {0, 1}k. Therefore one can compute

A ← (
x1 ⊕ Ψ(x1, r ⊕ x2)

) ⊕ Ψ(x1, r)

and get the two arithmetic shares A and x2 of

x = A + x2 (mod 2k)

The conversion algorithm is clearly secure against first-order attacks, because
the left term Ψ(x1, r ⊕ x2) is independent of x2 (thanks to the mask r), and the
right term Ψ(x1, r) is also independent from x2. The algorithm is quite efficient
as it requires only a constant number of operations, independent of k.

3.2 t-SNI Variant of Goubin’s Algorithm

In this paper our goal is to describe a high-order conversion algorithm from
Boolean to arithmetic masking, with complexity independent of the register size
k, as in Goubin’s first-order algorithm above. Moreover we will use Goubin’s first-
order algorithm as a subroutine, for which the stronger t-SNI property recalled
in Sect. 2 is needed. However it is easy to see that Goubin’s algorithm recalled
above does not achieve the t-SNI security notion. This is because by definition
the output share x2 in x = A+x2 is the same as the input share in x = x1 ⊕x2;
therefore if we take O = {2} in Definition 2, we need to set I = {2} to properly
simulate x2; this contradicts the t-SNI bound |I| ≤ t, since in that case for t = 0
we should have I = ∅.

However, it is straightforward to modify Goubin’s algorithm to make it t-SNI:
it suffices to first refresh the 2 input shares x1, x2 with a random s. We obtain
the following first-order t-SNI Boolean to arithmetic algorithm (Algorithm 1).

Lemma 1 (GoubinSNI). Let x1, x2 be the inputs of Goubin’s algorithm (Algo-
rithm 1) and let A1 and A2 be the outputs. Let t be the number of probed variables
and let O ⊂ {1, 2}, with t + |O| < 2. There exists a subset I ⊂ {1, 2}, such that
all probed variables and A|O can be perfectly simulated from x|I , with |I| ≤ t

Proof. We distinguish two cases. If t = 0, then the variable s is not probed by the
adversary, and therefore both A2 = a2 = x2⊕s and A1 = x−A2 = x−x2⊕s have

98 J.-S. Coron

Algorithm 1. GoubinSNI: Boolean to arithmetic conversion, t-SNI variant
Input: x1, x2 such that x = x1 ⊕ x2

Output: A1, A2 such that x = A1 + A2

1: s ← {0, 1}k

2: a1 ← x1 ⊕ s
3: a2 ← x2 ⊕ s
4: r ← {0, 1}k

5: u ← a1 ⊕ Ψ(a1, r ⊕ a2)
6: A1 ← u ⊕ Ψ(a1, r)
7: A2 ← a2

8: return A1, A2

the uniform distribution separately; therefore any of these 2 output variables can
be perfectly simulated with I = ∅.

If t = 1, then we must have O = ∅. It is easy to see that any single intermedi-
ate variable can be perfectly simulated from the knowledge of either x1 or x2, as
in Goubin’s original conversion algorithm, which gives |I| ≤ t as required.

Complexity Analysis. We see that Algorithm 1 requires 2 random genera-
tions, 2 computations of Ψ , and 5 xors, for a total of 11 operations. In particular,
the complexity of Goubin’s algorithm is independent of the register size k.

3.3 High-Order Conversion Between Boolean and Arithmetic
Masking

The first conversion algorithms secure against high-order attacks were described
in [CGV14], with complexity O(n2 · k) for n shares and k-bit addition in both
directions. The algorithms in [CGV14] are proven secure in the ISW probing
model [ISW03], with n ≥ 2t + 1 shares for security against t probes. The arith-
metic to Boolean conversion proceeds by recursively applying a n/2 arithmetic
to Boolean conversion on both halves, and then performing a Boolean-protected
arithmetic addition:

A = A1 + · · · + An/2 + An/2+1 + · · · + An

= x1 ⊕ · · · ⊕ xn/2 + y1 ⊕ · · · ⊕ yn/2

= z1 ⊕ · · · ⊕ zn

The arithmetic addition can be based on Goubin’s recursion formula [Gou01]
with complexity O(k) for k-bit register. This can be improved to O(log k) by
using a recursion formula based on the Kogge-Stone carry look-ahead adder (see
[CGTV15]); however for k = 32 the number of operations is similar. In both cases
the recursion formula only uses Boolean operation, so it can be protected with
n shares with complexity O(n2 · k) or O(n2 · log k). For the other direction, i.e.
Boolean to arithmetic, it is based on the above arithmetic to Boolean conversion,
and it has also complexity O(n2 · k) (and O(n2 · log k) with Kogge-Stone).

High-Order Conversion from Boolean to Arithmetic Masking 99

Recently, Hutter and Tunstall have described in [HT16] a different technique
for high-order Boolean to arithmetic conversion, with complexity independent
of the register size k (as in Goubin’s original algorithm). However no proof
of security is provided, except for second-order and third-order attacks. The
complexity of their algorithm for n shares is O(2n/2), but for small values of n
the algorithm is much more efficient than [CGV14,CGTV15], at least by one
order of magnitude. In [HT16] the authors claim that the complexity of their
algorithm is O(n2), but it is easy to see that it must be O(2n/2), because it
makes 2 recursive calls to the same algorithm with n − 2 shares.

However, in this paper we describe a 4th order attack against the t-th order
Hutter-Tunstall algorithm (with n = t+1 shares), for any t ≥ 4; we also describe
a 3rd order attack for t = 3; see Sect. 5. This implies that the conversion algo-
rithm in [HT16] cannot offer more than second-order security. In particular,
we have not found any attack against the second-order Boolean to arithmetic
conversion specified in [HT16, Algorithm 2].

4 High-order Conversion from Boolean to Arithmetic
Masking

In this section, we describe our main contribution: a high-order conversion algo-
rithm from Boolean to arithmetic masking, with complexity independent of the
register size k, with a proof of security in the ISW model for n ≥ t + 1 shares
against t probes (t-SNI security).

4.1 A Simple but Insecure Algorithm

To illustrate our approach, we first describe a simple but insecure algorithm;
namely we explain why it fails to achieve the t-SNI security property. We start
from the n shares xi such that

x = x1 ⊕ · · · ⊕ xn

and we must output n shares Ai such that

x = A1 + · · · + An (mod 2k)

Our tentative conversion algorithm Cn is defined recursively, using a similar
approach as in [HT16], and works as follows:

1. We write

x = x2 ⊕ · · · ⊕ xn + (x1 ⊕ x2 ⊕ · · · ⊕ xn − x2 ⊕ · · · ⊕ xn)

which gives using Ψ(x1, u) = x1 ⊕ u − u:

x = x2 ⊕ · · · ⊕ xn + Ψ(x1, x2 ⊕ · · · ⊕ xn)

100 J.-S. Coron

From the affine property of the Ψ function, we obtain:

x = x2 ⊕ · · · ⊕ xn + (n ∧ 1) · x1 ⊕ Ψ(x1, x2) ⊕ · · · ⊕ Ψ(x1, xn)

Therefore we let z1 ← (n ∧ 1) · x1 ⊕ Ψ(x1, x2) and zi ← Ψ(x1, xi+1) for all
2 ≤ i ≤ n − 1. This gives:

x = x2 ⊕ · · · ⊕ xn + z1 ⊕ · · · ⊕ zn−1

2. We then perform two recursive calls to the Boolean to arithmetic conversion
algorithm Cn−1, with n − 1 shares. This gives:

x = A1 + · · · + An−1 + B1 + · · · + Bn−1

3. We reduce the number of arithmetic shares from 2n−2 to n by some additive
grouping, letting Di ← Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 ← An−1 and
Dn ← Bn−1. This gives as required:

x = D1 + · · · + Dn

This terminates the description of our tentative algorithm. We explain why
this simple algorithm is insecure. Namely if the adversary probes the n − 1
variables zi, since each zi reveals information about both x1 and xi+1, those
n − 1 variables reveal information about x. More precisely, from the probed zi’s
the adversary can compute:

z1 ⊕ · · · ⊕ zn−1 = Ψ(x1, x2 ⊕ · · · ⊕ xn)

Letting u = x2 ⊕ · · · ⊕ xn and v = xn, for n ≥ 3 we can assume that the two
variables u and v are uniformly and independently distributed. Therefore the
adversary obtains the two variables:

Ψ(x1, u) = x1 ⊕ u − u, Ψ(x1, v) = x1 ⊕ v − v

and one can check that the distribution of (Ψ(x1, u), Ψ(x1, v)) depends on x =
x1⊕u. Therefore, the n−1 probes leak information about x. Moreover, due to the
recursive definition of the above algorithm, the number of required probes can
be decreased by probing within the recursive calls, instead of the zi’s. Namely if
the adversary probes only n − 2 variables within Cn−1, this reveals information
about the n − 1 variables zi’s, which in turn reveals information about x, as
explained above.

The attack can be applied recursively down to a single probe. Namely one
can check experimentally (for small k and n) that for randomly distributed
x1, . . . , xn, some intermediate variables in the recursion have a distribution that
depends on x = x1 ⊕ · · · ⊕ xn; hence the algorithm is actually vulnerable to a
first-order attack.

High-Order Conversion from Boolean to Arithmetic Masking 101

Algorithm 2. RefreshMasks
Input: x1, . . . , xn

Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn

1: yn ← xn

2: for i = 1 to n − 1 do
3: ri ← {0, 1}k

4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri � yn,i = xn ⊕⊕i

j=1 rj
6: end for
7: return y1, . . . , yn

x1 · · · xi · · · xn−1 xn

r1

...

ri

...

rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last
column.

4.2 Mask Refreshing

To prevent the above attack (and any other attack), we must perform some mask
refreshing on the intermediate shares. We use the same RefreshMasks procedure
as in [RP10]; see Algorithm 2, and Fig. 1 for an illustration.

In the RefreshMasks algorithm above we denote by yn,i the intermediate
variables in the accumulated sum, namely for 1 ≤ i ≤ n − 1:

yn,i = xn ⊕
i⊕

j=1

rj

We add 3 applications of RefreshMasks in the previous conversion algorithm.
The first application is to first expand the n input shares xi into n + 1 shares,
so that we can now have n variables of the form zi = Ψ(x1, xi+1) instead of only
n−1; this is to prevent the adversary from recovering all variables zi’s. However,
one must still compress to n − 1 variables for the recursive application of the
conversion algorithm with n − 1 shares. This is done by using two RefreshMasks
(one for each recursive application) followed by xoring the last two shares into
one, to get n − 1 shares. As will be seen in the next sections, we obtain a t-SNI
conversion algorithm; this is essentially based on a careful analysis of the security
properties of RefreshMasks.

102 J.-S. Coron

4.3 Secure Conversion from Boolean to Arithmetic Masking

We are now ready to describe our new high-order conversion algorithm from
Boolean to arithmetic masking; as previously, our algorithm Cn is defined
recursively. We start from the n shares:

x = x1 ⊕ · · · ⊕ xn

If n = 2, we apply the t-SNI variant of Goubin’s first order algorithm, as
described in Algorithm 1. For n ≥ 3, we proceed as follows.

1. We first perform a (n + 1)-RefreshMasks of the n shares xi’s and xn+1 = 0,
so that we obtain the following n + 1 shares:

a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)

Therefore we still have x = a1 ⊕ · · · ⊕ an+1. We can write as previously using
Ψ(a1, u) = a1 ⊕ u − u:

x = a2 ⊕ · · · ⊕ an+1 + (a1 ⊕ · · · ⊕ an+1 − a2 ⊕ · · · ⊕ an+1)
= a2 ⊕ · · · ⊕ an+1 + Ψ(a1, a2 ⊕ · · · ⊕ an+1)

2. Thanks to the affine property of Ψ , this gives as previously:

x = a2 ⊕ · · · ⊕ an+1 + (n ∧ 1) · a1 ⊕ Ψ(a1, a2) ⊕ · · · ⊕ Ψ(a1, an+1)

Therefore, we let b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2) and bi ← Ψ(a1, ai+1) for all
2 ≤ i ≤ n. This gives:

x = a2 ⊕ · · · ⊕ an+1 + b1 ⊕ · · · ⊕ bn

3. We perform a RefreshMasks of the ai’s and of the bi’s, letting:

c1, . . . , cn ← RefreshMasks(a2, . . . , an+1)
d1, . . . , dn ← RefreshMasks(b1, . . . , bn)

Therefore we still have:

x = c1 ⊕ · · · ⊕ cn + d1 ⊕ · · · ⊕ dn

4. We compress from n shares to n−1 shares, by xoring the last two shares of the
ci’s and di’s. More precisely we let ei ← ci and fi ← di for all 1 ≤ i ≤ n − 2,
and en−1 ← cn−1 ⊕ cn and fn−1 ← dn−1 ⊕ dn. Therefore we still have:

x = e1 ⊕ · · · ⊕ en−1 + f1 ⊕ · · · ⊕ fn−1

5. We perform two recursive calls to the Boolean to arithmetic conversion algo-
rithm Cn−1:

A1, . . . , An−1 ← Cn−1

(
e1, . . . , en−1

)

B1, . . . , Bn−1 ← Cn−1

(
f1, . . . , fn−1

)

This gives:
x = A1 + · · · + An−1 + B1 + · · · + Bn−1

High-Order Conversion from Boolean to Arithmetic Masking 103

6. We reduce the number of arithmetic shares from 2n−2 to n by some additive
grouping, letting Di ← Ai + Bi for 1 ≤ i ≤ n − 2, and Dn−1 ← An−1 and
Dn ← Bn−1. This gives as required:

x = D1 + · · · + Dn (mod 2k)

This completes the description of the algorithm. For clarity we also provide a
formal description in Appendix A.

Theorem 2 (Completeness). The Cn Boolean to arithmetic conversion algo-
rithm, when taking x1, . . . , xn as input, outputs D1, . . . , Dn such that x1 ⊕ · · · ⊕
xn = D1 + · · · + Dn (mod 2k).

Proof. The proof is straightforward from the above description. The complete-
ness property holds for n = 2 with Goubin’s conversion algorithm. Assuming
that completeness holds for n − 1 shares, we obtain:

n∑

i=1

Di =
n−1∑

i=1

Ai +
n−1∑

i=1

Bi =
n−1⊕

i=1

ei +
n−1⊕

i=1

fi =
n⊕

i=1

ci +
n⊕

i=1

di =
n+1⊕

i=2

ai +
n⊕

i=1

bi

=
n+1⊕

i=2

ai + Ψ

(

a1,

n+1⊕

i=2

ai

)

=
n+1⊕

i=1

ai =
n⊕

i=1

xi

and therefore completeness holds for n shares.

Complexity Analysis. We denote by Tn the number of operations for n shares.
We assume that random generation takes unit time. We have T2 = 11 (see
Sect. 3.2). The complexity of RefreshMasks with n shares is 3n − 3 operations.
From the recursive definition of our algorithm, we obtain:

Tn = [3 · (n + 1) − 3] + [2 · n + 3] + [2 · (3n − 3)] + 2 + 2 · Tn−1 + [n − 2]
= 2 · Tn−1 + 12 · n − 3

This gives:
Tn = 14 · 2n − 12 · n − 21

Therefore, the complexity of our algorithm is exponential in n, namely O(2n),
instead of O(n2 · k) in [CGV14]; however for small values of n our conversion
algorithm is one order of magnitude more efficient; see Sect. 6 for implementation
results.

Security. The following theorem shows that our conversion algorithm achieves
the t-SNI property. This means that our conversion algorithm is secure against
any adversary with at most n−1 probes in the circuit. Moreover thanks to the t-
SNI property, our conversion algorithm can be used within a larger construction
(for example a block-cipher, or HMAC-SHA-1), so that the larger construction
also achieves the t-SNI property.

104 J.-S. Coron

Theorem 3 (t-SNI of Cn). Let (xi)1≤i≤n be the input and let (Di)1≤i≤n be
the output of the Boolean to arithmetic conversion algorithm Cn. For any set of t
intermediate variables and any subset O ⊂ [1, n], there exists a subset I of input
indices such that the t intermediate variables as well as D|O can be perfectly
simulated from x|I , with |I| ≤ t.

The rest of the section is devoted to the proof of Theorem 3. The proof is
based on a careful analysis of the properties of the RefreshMasks algorithm. In the
next section, we start with three well known, basic properties of RefreshMasks.

4.4 Basic Properties of RefreshMasks

The lemma below shows that RefreshMasks achieves the t-NI property in a
straightforward way, for any t < n.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of Refresh-
Masks and let (yi)1≤i≤n be the output. For any set of t intermediate variables,
there exists a subset I of input indices such that the t intermediate variables can
be perfectly simulated from x|I , with |I| ≤ t.

Proof. The set I is constructed as follows. If for some 1 ≤ i ≤ n − 1, any of the
variables xi, ri or yi is probed, we add i to I. If xn or yn or any intermediate
variable yn,j is probed, we add n to I. Since we add at most one index to I per
probe, we must have |I| ≤ t.

The simulation of the probed variable is straightforward. All the randoms
ri for 1 ≤ i ≤ n − 1 can be simulated as in the real algorithm, by generat-
ing a random element from {0, 1}k. If yi is probed, then we must have i ∈ I,
so it can be perfectly simulated from yi = xi ⊕ ri from the knowledge of xi.
Similarly, if any intermediate variable yn,j is probed, then n ∈ I, so it can be
perfectly simulated from xn. Therefore all probes can be perfectly simulated
from x|I .

Remark 1. It is easy to see that RefreshMasks does not achieve the t-SNI prop-
erty. Namely with t = 1 we can probe yn,1 = xn ⊕ r1 and additionally require
the simulation of the output variable y1 = x1 ⊕ r1. We have yn,1 ⊕ y1 = xn ⊕x1,
hence the knowledge of both x1 and xn is required for the simulation of the two
variables, which contradicts the bound |I| ≤ t.

The following lemma shows that any subset of n − 1 output shares yi of
RefreshMasks is uniformly and independently distributed, when the algorithm is
not probed.

Lemma 3. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of Refresh-
Masks. Any subset of n − 1 output shares yi is uniformly and independently
distributed.

High-Order Conversion from Boolean to Arithmetic Masking 105

Proof. Let S � [1, n] be the corresponding subset. We distinguish two cases. If
n /∈ S, we have yi = xi ⊕ ri for all i ∈ S, and therefore those yi’s are uniformly
and independently distributed. If n ∈ S, let i∗ /∈ S. We have yi = xi ⊕ ri for all
i ∈ S \ {n}. Moreover:

yn =

⎛

⎝xn ⊕
n−1⊕

i=1,i �=i∗
ri

⎞

⎠ ⊕ ri∗

where ri∗ is not used in another yi for i ∈ S. Therefore the n − 1 output yi’s are
uniformly and independently distributed.

The following lemma, whose proof is also straightforward, shows that when
RefreshMasks is not probed, the distribution of the n output shares yi’s can
be perfectly simulated from the knowledge of x1 ⊕ · · · ⊕ xn only; that is, the
knowledge of the individual shares xi’s is not required.

Lemma 4. Let (xi)1≤i≤n be the input and let (yi)1≤i≤n be the output of Refresh-
Masks. The distribution of (yi)1≤i≤n can be perfectly simulated from x1⊕· · ·⊕xn.

Proof. We have yi = xi ⊕ ri for all 1 ≤ i ≤ n − 1 and:

yn = xn ⊕
n−1⊕

i=1

ri =

(
n⊕

i=1

xi

)

⊕
(

n−1⊕

i=1

yi

)

Therefore we can perfectly simulate the output (yi)1≤i≤n by letting yi ← {0, 1}k

for all 1 ≤ i ≤ n − 1 and yn ←
(

n⊕

i=1

xi

)
⊕

(
n−1⊕

i=1

yi

)
.

4.5 Property of the Initial RefreshMasks

The lemma below gives the first non-trivial property of RefreshMasks. We con-
sider the first RefreshMasks of our conversion algorithm Cn described in Sect. 4.3,
taking as input n + 1 input shares xi (instead of n), but with xn+1 = 0. The
lemma below is a refinement of the basic t-NI lemma (Lemma 2); namely we
show that if at least one of the output variables yj is probed, then it can be
simulated “for free”, that is without increasing the size of the input index I.
More precisely, we get the bound |I| ≤ t − 1 under that condition, instead of
|I| ≤ t in Lemma 2. This stronger bound will be used for the security proof of
our conversion algorithm; namely at Step 2 in Sect. 4.3 the adversary can probe
t of the variables bi = Ψ(a1, ai+1), whose simulation then requires the knowledge
of t + 1 variables ai. Thanks to the stronger bound, this requires the knowledge
of only t input shares xi (instead of t + 1), as required for the t-SNI bound.

Below we actually prove a slightly stronger lemma: if we fix xn+1 = 0, then
we can always simulate the t probes from x|I with |I| ≤ t − 1, except in the
trivial case of the adversary probing the input xi’s only.

106 J.-S. Coron

Lemma 5. Let x1, . . . , xn be n inputs shares, and let xn+1 = 0. Consider the
circuit y1, . . . , yn+1 ← RefreshMasksn+1(x1, . . . , xn, xn+1), where the randoms
are accumulated on xn+1. Let t be the number of probed variables. There exists
a subset I such that all probed variables can be perfectly simulated from x|I , with
|I| ≤ t − 1, except if only the input xi’s are probed.

x1 · · · xi · · · xn 0

r1

...

ri

...

rn

y1 · · · yi · · · yn yn+1

x1 · · · xj · · · xn 0

r1

...

rj

...

rn

y1 · · · yj · · · yn yn+1

Fig. 2. Illustration of Lemma 5. Case 1 (left): the adversary has spent at least one
probe on the last column for which xn+1 = 0, therefore we can have |I| ≤ t − 1. Case
2 (right): no intermediate variable is probed on the last column; therefore rj can play
the role of a one-time pad for the simulation of the probed yj , hence xj is not required
and again |I| ≤ t − 1.

Proof. As illustrated in Fig. 2, we distinguish two cases. If xn+1 or yn+1 or any
intermediate variable yn+1,j has been probed, we construct the set I as follows.
If for some 1 ≤ i ≤ n, any of the variables xi, yi or ri is probed, we add i to I.
In the construction of I we have omitted at least one probed variable (on the
column of index n + 1), and therefore we must have |I| ≤ t − 1 as required. The
simulation is then straightforward and proceeds as in Lemma 2. Namely all the
randoms ri are simulated as in the actual algorithm, and all probed variables
xi and yi can be perfectly simulated from xi, since in that case i ∈ I. The only
difference is that n + 1 need not be in I since xn+1 = 0 by definition.

We now consider the second case. If neither xn+1 nor yn+1 nor any inter-
mediate variable yn+1,i has been probed, we construct the set I as follows. By
assumption, there exists an index j such that rj or yj or both have been probed,
with 1 ≤ j ≤ n; namely we have excluded the case of the adversary probing only
the input xi’s. For all 1 ≤ i ≤ n and i �= j, if xi or ri or yi has been probed,
we add i to I. Moreover if xj has been probed, or if both rj and yj have been
probed, we add j to I. From the construction of I, we must have |I| ≤ t − 1 as
required. Namely either a single variable among rj and yj has been probed, and
this probe does not contribute to I, or both rj and yj have been probed, and
these two probes contribute to only one index in I.

The simulation of probed xi, ri or yi is straightforward for i �= j, from the
knowledge of xi. If j ∈ I, the simulation of xj , rj and yj is also straightforward.
If j /∈ I, then either rj or yj has been probed (but not both). If rj has been
probed, it can be simulated by generating a random value. If yj has been probed,

High-Order Conversion from Boolean to Arithmetic Masking 107

since we have yj = xj ⊕ rj and moreover rj does not appear in the computation
of any other probed variable (since in that case rj has not been probed, nor any
intermediate variable yn+1,i), we can simulate yj as a random value in {0, 1}k.
Therefore all probed variables can be perfectly simulated from x|I .

Remark 2. The lemma does not necessarily hold if we don’t assume that xn+1 =
0, or if we only assume that xi = 0 for some i �= n + 1. For example, assuming
that x2 = 0, the adversary can probe both y1 = x1 ⊕ r1 and yn+1,1 = xn+1 ⊕ r1,
which gives y1 ⊕ yn+1 = x1 ⊕ xn+1. Hence the knowledge of 2 input shares
is required to simulate the 2 probes (including the output variable y1), which
contradicts the bound |I| ≤ t − 1.

4.6 More Results on RefreshMasks

In this section we consider the properties of RefreshMasks required for the com-
pression from n shares to n − 1 shares as performed at steps 3 and 4 of our
conversion algorithm in Sect. 4.3. Namely if the adversary probes t of the vari-
ables fi’s, because of the last variable fn−1 = dn−1 ⊕ dn, this can require the
knowledge of t + 1 of the variables di’s. Without RefreshMasks the knowledge
of t + 1 of the variables bi’s would be required, and eventually t + 1 of the
input shares xi’s, which would contradict the t-SNI bound. In this section, we
show that thanks to RefreshMasks we can still get the bound |I| ≤ t instead of
|I| ≤ t + 1.

We first prove two preliminary lemmas. The first lemma below is analogous
to Lemma 5 and shows that when the randoms in RefreshMasks are accumulated
on xn, the corresponding output variable yn can always be simulated “for free”,
that is, without increasing the size of the input index I; more precisely, if we
require that yn is among the t probes, then we can have |I| ≤ t − 1 instead of
|I| ≤ t in Lemma 2. This will enable to show that when a subsequent compression
step to n − 1 shares is performed with zn−1 ← yn−1 ⊕ yn, we can still keep the
bound |I| ≤ t instead of |I| ≤ t + 1. Namely either the adversary does not
probe zn−1 = yn−1 ⊕ yn and he does not benefit from getting information on
two variables with a single probe, or zn−1 is probed and we can apply Lemma 6
below with probed yn; in both cases we get |I| ≤ t instead of |I| ≤ t + 1. We
provide the proof of Lemma 6 in the full version of this paper [Cor17].

Lemma 6. Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number
of probed variables, with t < n. If yn is among the probed variables, then there
exists a subset I such that all probed variables can be perfectly simulated from
x|I , with |I| ≤ t − 1.

Remark 3. The lemma does not hold for other output variables. For example
the adversary can probe both y1 = x1 ⊕ r1 and yn,1 = xn ⊕ r1. Since y1 ⊕ yn,1 =
x1 ⊕ xn, both x1 and xn are required for the simulation, which contradicts the
bound |I| ≤ t − 1.

108 J.-S. Coron

In the previous lemma we have restricted ourselves to t < n probes (including
the probe on yn). Namely if t = n, the adversary can probe all yi’s and learn
x1 ⊕ · · · ⊕ xn = y1 ⊕ · · · ⊕ yn; therefore the simulation cannot be performed
using a proper subset I of [1, n]. In Lemma 4 we have showed that when no
intermediate variables of RefreshMasks are probed, the n output shares yi can
be simulated from the knowledge of x1 ⊕ · · · ⊕ xn only. The lemma below shows
that this is essentially the best that the adversary can do: when the adversary
has n probes, and if one of which must be yn, then either all probes in the circuit
can be simulated from x1 ⊕· · ·⊕xn only, or they can be simulated from x|I with
|I| ≤ n − 1. As previously this only holds if yn must be among the n probes;
namely without this restriction the attacker could probe the n input shares xi

directly and learn the value of the individual shares xi (and not only the xor of
the xi’s); see also Remark 4 below.

As previously, this will enable to show that when a subsequent compression
step is performed with zn−1 ← yn−1 ⊕ yn, if the adversary has a total of n − 1
probes, then the simulation can be performed from x1⊕· · ·⊕xn only, or from x|I
with |I| ≤ n − 1. Namely either the adversary does not probe zn−1 = yn−1 ⊕ yn
and we can simulate from x|I with |I| ≤ n − 1, or zn−1 is probed and we can
apply Lemma 7 below with probed yn. The proof of Lemma 7 can be found in
the full version of this paper [Cor17].

Lemma 7. Let x1, . . . , xn be the input of a RefreshMasks where the randoms
are accumulated on xn, and let y1, . . . , yn be the output. Let t be the number of
probed variables, with t = n. If yn is among the probed variables, then either all
probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a
subset I with |I| ≤ n − 1 such that they can be perfectly simulated from x|I .

Remark 4. As previously, the lemma does not hold if any other output variable
yi is required to be probed instead of yn. Namely the adversary can probe the
n variables y1 = x1 ⊕ r1, x2, . . . , xn−1 and yn,1 = xn ⊕ r1. The xor of these n
variables gives x1 ⊕ · · · ⊕ xn, but the adversary also learns the individual shares
x2, . . . , xn−1. Whereas in Lemma 7, the adversary either learns x1 ⊕· · ·⊕xn and
nothing else, or at most n − 1 of the shares xi.

The lemma below is the main result of the section. As mentioned previously,
it enables to show that when we perform the compression from n shares to n−1
shares at steps 3 and 4 of our conversion algorithm from Sect. 4.3, we can still
have the bound |I| ≤ t instead of |I| ≤ t + 1 when t < n; and for t = n − 1,
the simulation can be performed either from x1 ⊕ · · · ⊕ xn, or from x|I with
|I| ≤ n − 1. We refer to the full version of this paper [Cor17] for the proof of
Lemma 8.

Lemma 8. Consider the circuit with y1, . . . , yn ← RefreshMasks(x1, . . . , xn),
zi ← yi for all 1 ≤ i ≤ n − 2 and zn−1 ← yn−1 ⊕ yn. Let t be the number of
probed variables. If t < n − 1, there exists a subset I with |I| ≤ t such that all
probed variables can be perfectly simulated from x|I . If t = n − 1, then either all
probed variables can be perfectly simulated from x1 ⊕ · · · ⊕ xn, or there exists a
subset I with |I| ≤ n − 1 such that they can be perfectly simulated from x|I .

High-Order Conversion from Boolean to Arithmetic Masking 109

Remark 5. The lemma does not hold if the two xored output variables of Refresh-
Masks do not include yn (when the randoms of RefreshMasks are accumulated
on xn). For example, if we let z1 ← y1 ⊕ y2 instead, the adversary could probe
both z1 = y1 ⊕ y2 = (x1 ⊕ r1) ⊕ (x2 ⊕ r2) and yn,2 = xn ⊕ r1 ⊕ r2, which gives
z1 ⊕ yn,2 = x1 ⊕ x2 ⊕ xn. Hence to simulate those 2 probes the knowledge of 3
shares is required, which contradicts the bound |I| ≤ t.

Note that the value x1 ⊕ · · · ⊕ xn in the above lemma corresponds to either
a2 ⊕ · · · ⊕ an+1 or b1 ⊕ · · · ⊕ bn at Step 3 of our conversion algorithm from
Sect. 4.3. In that case, the adversary has already spent n − 1 probes, and no
other variable is probed. As shown in the next section, this enables to prove
that these values can be simulated without knowing the input shares. Namely
when the initial RefreshMasks is not probed, the distribution of a2 ⊕ · · · ⊕ an+1

is uniform because of Lemma 3, and can therefore be simulated by a random
value. Similarly we have:

b1 ⊕ · · · ⊕ bn = Ψ(a1, a2 ⊕ · · · ⊕ an+1) = x − x ⊕ a1

where x = x1 ⊕ · · · ⊕ xn = a1 ⊕ · · · ⊕ an+1. Since in that case the initial Refresh-
Masks is not probed, the variable a1 has the uniform distribution, hence the
value b1 ⊕ · · · ⊕ bn can also be simulated by a random value.

4.7 Proof of Theorem 3

We refer to the full version of this paper [Cor17] for the proof of Theorem 3.

5 Cryptanalysis of the Hutter-Tunstall Boolean
to Arithmetic Conversion Algorithm

In this section, we describe two attacks against the high-order Hutter-Tunstall
Boolean to arithmetic conversion algorithm in [HT16], breaking all the conver-
sion algorithms except the second-order algorithm. For clarity we will use the
same notations as in [HT16] and denote by n the maximum number of probes
in the circuit; therefore the conversion algorithm takes as input n+1 shares and
outputs n+1 shares, instead of n in the previous sections. Following [HT16], we
say that a countermeasures is of order n when it should be resistant against n
probes (hence with n + 1 shares as input and output).

Our two attacks are as follows:

• An attack of order 4 against the n-th order countermeasure, for n ≥ 4.
• An attack of order n against the n-th order countermeasure, for n ≥ 3.

Therefore the second attack is only useful for n = 3, as for n ≥ 4 the first
attack is of constant order 4. In particular, we show that our second attack
can be applied against the third-order algorithm explicitly described in [HT16,
Algorithm 3]. Our two attacks imply that the conversion algorithm in [HT16]
cannot offer more than second-order security.

110 J.-S. Coron

In the following we do not provide a full description of the conversion algo-
rithm from [HT16]; for simplicity we only provide the relevant part leading to
the attack; we refer to [HT16] for the full description.

5.1 Attack of Order 4 Against n-th Order Countermeasure

We have as input the n + 1 shares x′, r1, . . . rn, where:

x = x′ ⊕ r1 ⊕ · · · ⊕ rn

We copy Eq. (24) from [HT16]:

(
n−1⊕
i=1

κi

)
−
(

α ⊕
n⊕

i=1

ri

)
= ((¬n ∧ 1)β) ⊕

n−1⊕
i=1

Ψ(β, δi) ⊕ Ψ

(
β, α ⊕ rn ⊕

n−1⊕
i=1

δi ⊕ ri

)

The above equation means that the variable

X = ((¬n ∧ 1)β) ⊕
n−1⊕

i=1

Ψ(β, δi) ⊕ Ψ

(

β, α ⊕ rn ⊕
n−1⊕

i=1

δi ⊕ ri

)

(1)

is explicitly computed, using a certain sequence of operations following from the
right-hand side of the equation. From the affine property of the Ψ function, we
have:

X = Ψ

(

β, α ⊕
n⊕

i=1

ri

)

Letting u := α ⊕
n⊕

i=1

ri, we can write:

X = Ψ(β, u) = β ⊕ u − u

x = x′ ⊕ α ⊕ u

Therefore, if the variable β is explicitly computed when evaluating (1), our attack
works by probing the 4 variables β, X, α and x′. From β and X = β ⊕ u − u,
we obtain information about u. From α and x′, this reveals information about
x = x′ ⊕ α ⊕ u.

Alternatively, if the variable β is not explicitly computed4, the variable Y =
Ψ(β, δ1) must still be explicitly computed when evaluating X. Therefore our
attack works by probing the 4 variables Y , X, α and x′. We obtain the two
variables:

X = Ψ(β, u), Y = Ψ(β, δ1)

4 In the concrete description of the third-order conversion algorithm in [HT16, Algo-
rithm 3], the variable β is not explicitly computed when computing Ψ(β, δi) =
β ⊕ δi − δi, by only computing β ⊕ δi instead.

High-Order Conversion from Boolean to Arithmetic Masking 111

and one can check that for randomly distributed β, δ1, the distribution of (X,Y)
leaks information about u. Namely, the variable Y = Ψ(β, δ1) = β ⊕ δ1 − δ1
leaks information about β, which combined with X = Ψ(β, u) = β ⊕ u − u leaks
information about u. From α and x′, this reveals information about x = x′⊕α⊕u.
Hence in both cases we obtain an attack of constant order 4 against the n-th
order countermeasures for any n ≥ 4.

5.2 Attack of Order n Against the n-th Order Countermeasure

We refer to the full version of this paper [Cor17] for the description of our second
attack.

6 Operation Count and Implementation

As shown in Sect. 4.3, the number of operations of our Boolean to arithmetic
conversion algorithm is given by Tn = 14 · 2n − 12 · n − 21, so it has complexity
O(2n) independent of the register size k, while the conversion algorithm from
[CGV14] has complexity O(k ·n2). We summarize in Table 1 the operation count
for [CGV14] (for k = 32) and for our new algorithm from Sect. 4.3. We see that
for small orders t, our new countermeasure is at least one order of magnitude
faster than previous work.

Table 1. Operation count for Boolean to arithmetic conversion algorithms, up to
security order t = 12, with n = t + 1 shares.

B → Aconversion Security order t

1 2 3 4 5 6 8 10 12

Goubin [Gou01] 7

Hutter-Tunstall [HT16] 31

CGV, 32 bits [CGV14] 2 098 3 664 7 752 10 226 14 698 28 044 39 518 56 344

Our algorithm (Sect. 4.3) 55 155 367 803 1 687 7 039 28 519 114 511

We have also implemented the algorithm in [CGV14] and our new algorithm,
in C on an iMac running a 3.2 GHz Intel processor, using the Clang compiler.
We summarize the execution times in Table 2, which are consistent with the
operation count from Table 1. This confirms that in practice for small orders,
our new countermeasure is at least one order of magnitude faster than previous
work.

112 J.-S. Coron

Table 2. Running time in μs for Boolean to arithmetic conversion algorithms, up to
security order t = 12, with n = t + 1 shares. The implementation was done in C on a
iMac running a 3.2 GHz Intel processor.

B → A conversion Security order t

2 3 4 5 6 8 10 12

CGV, 32 bits [CGV14] 1 593 2 697 4 297 5 523 7 301 10 919 15 819 21 406

Our algorithm (Sect. 4.3) 45 119 281 611 1 270 5 673 22 192 87 322

References

[BBD+16] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Proceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, Vienna, Austria, 24–28 October, pp.
116–129 (2016)

[BSS+13] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers,
L.: The SIMON and SPECK families of lightweight block ciphers. IACR
Cryptology ePrint Archive 2013, 404 (2013)

[CGTV15] Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from
arithmetic to boolean masking with logarithmic complexity. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48116-5 7

[CGV14] Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between
boolean and arithmetic masking of any order. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44709-3 11

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 26

[Cor17] Coron, J.-S.: High-order conversion from boolean to arithmetic masking.
Cryptology ePrint Archive, Report 2017/252 (2017). http://eprint.iacr.
org/2017/252

[CRRY99] Contini, S., Rivest, R.L., Robshaw, M.J.B., Yin, Y.L.: Improved analy-
sis of some simplified variants of RC6. In: Knudsen, L. (ed.) FSE 1999.
LNCS, vol. 1636, pp. 1–15. Springer, Heidelberg (1999). doi:10.1007/
3-540-48519-8 1

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-55220-5 24

[Gou01] Goubin, L.: A sound method for switching between boolean and arith-
metic masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 3–15. Springer, Heidelberg (2001). doi:10.1007/
3-540-44709-1 2

http://dx.doi.org/10.1007/978-3-662-48116-5_7
http://dx.doi.org/10.1007/978-3-662-44709-3_11
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-48405-1_26
http://eprint.iacr.org/2017/252
http://eprint.iacr.org/2017/252
http://dx.doi.org/10.1007/3-540-48519-8_1
http://dx.doi.org/10.1007/3-540-48519-8_1
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/3-540-44709-1_2
http://dx.doi.org/10.1007/3-540-44709-1_2

High-Order Conversion from Boolean to Arithmetic Masking 113

[GP99] Goubin, L., Patarin, J.: DES and differential power analysis the “Duplica-
tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

[HT16] Hutter, M., Tunstall, M.: Constant-time higher-order boolean-to-
arithmetic masking. Cryptology ePrint Archive, Report 2016/1023 (2016).
http://eprint.iacr.org/2016/1023. Version posted on 22 Dec 2016

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

[LM90] Lai, X., Massey, J.L.: A proposal for a new block encryption standard.
In: Damg̊ard, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404.
Springer, Heidelberg (1991). doi:10.1007/3-540-46877-3 35

[NIS95] NIST. Secure hash standard. In: Federal Information Processing Standard,
FIPA-180-1 (1995)

[NW97] Needham, R.M., Wheeler, D.J.: Tea extentions. Technical report, Com-
puter Laboratory, University of Cambridge (1997)

[OMHT06] Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order
DPA attacks for masked smart card implementations of block ciphers.
In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207.
Springer, Heidelberg (2006). doi:10.1007/11605805 13

[PR13] Prouff, E., Rivain, M.: Higher-order side channel security and mask refresh-
ing. In: Advances in Cryptology - EUROCRYPT 2013 - 32nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26–30, 2013. Proceedings, pp. 142–159
(2013)

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

http://dx.doi.org/10.1007/3-540-48059-5_15
http://eprint.iacr.org/2016/1023
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-46877-3_35
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/978-3-642-15031-9_28

114 J.-S. Coron

A Formal Description of the High-order Boolean
to Arithmetic Conversion

Algorithm 3. Cn: high-order Boolean to Arithmetic Conversion
Input: x1, . . . , xn

Output: D1, . . . , Dn such that x1 ⊕ · · · ⊕ xn = D1 + · · · + Dn (mod 2k)
1: if n = 2 then
2: D1, D2 ← GoubinSNI(x1, x2)
3: return D1, D2

4: end if
5: a1, . . . , an+1 ← RefreshMasksn+1(x1, . . . , xn, 0)
6: b1 ← (n ∧ 1) · a1 ⊕ Ψ(a1, a2)
7: for i = 2 to n do
8: bi ← Ψ(a1, ai+1)
9: end for

10: c1, . . . , cn ← RefreshMasksn(a2, . . . , an+1)
11: d1, . . . , dn ← RefreshMasksn(b1, . . . , bn)
12: e1, . . . , en−2 ← c1, . . . , cn−2 and en−1 ← cn−1 ⊕ cn
13: f1, . . . , fn−2 ← d1, . . . , dn−2 and fn−1 ← dn−1 ⊕ dn

14: A1, . . . , An−1 ← Cn−1(e1, . . . , en−1)
15: B1, . . . , Bn−1 ← Cn−1(f1, . . . , fn−1)
16: for i = 1 to n − 2 do
17: Di ← Ai + Bi

18: end for
19: Dn−1 ← An−1

20: Dn ← Bn−1

21: return D1, . . . , Dn

Reconciling d + 1 Masking in Hardware
and Software

Hannes Gross(B) and Stefan Mangard

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

{hannes.gross,stefan.mangard}@iaik.tugraz.at

Abstract. The continually growing number of security-related auto-
nomous devices requires efficient mechanisms to counteract low-cost
side-channel analysis (SCA) attacks. Masking provides high resistance
against SCA at an adjustable level of security. A high level of SCA resis-
tance, however, goes hand in hand with an increasing demand for fresh
randomness which drastically increases the implementation costs. Since
hardware based masking schemes have other security requirements than
software masking schemes, the research in these two fields has been con-
ducted quite independently over the last ten years. One important practi-
cal difference is that recently published software schemes achieve a lower
randomness footprint than hardware masking schemes. In this work we
combine existing software and hardware masking schemes into a unified
masking algorithm. We demonstrate how to protect software and hard-
ware implementations using the same masking algorithm, and for lower
randomness costs than the separate schemes. Especially for hardware
implementations the randomness costs can in some cases be halved over
the state of the art. Theoretical considerations as well as practical imple-
mentation results are then used for a comparison with existing schemes
from different perspectives and at different levels of security.

Keywords: Masking · Hardware security · Threshold Implementa-
tions · Domain-oriented masking · Side-channel analysis

1 Introduction

One of the most popular countermeasures against side-channel analysis attacks
is Boolean masking. Masking is used to protect software implementations as
well as hardware implementations. However, since it was shown that software
based masking schemes (that lack resistance to glitches) are in general not
readily suitable to protect hardware implementations [15], the research has
split into masking for software implementations and masking for hardware
implementations.

The implementation costs of every masking scheme is thereby highly influ-
enced by two factors. At first, the number of shares (or masks) that are required
to achieve dth-order security, and second the randomness costs for the evaluation
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 115–136, 2017.
DOI: 10.1007/978-3-319-66787-4 6

116 H. Gross and S. Mangard

of nonlinear functions. For the first one, there exists a natural lower bound of
d + 1 shares in which every critical information needs to be split in order to
achieve dth-order security.

For the evaluation of nonlinear functions, the number of required fresh ran-
dom bits have a huge influence on the implementation costs of the masking
because the generation of fresh randomness requires additional chip area, power
and energy, and also limits the maximum throughput. Recently proposed soft-
ware based masking schemes require (with an asymptotic bound of d(d + 1)/4)
almost half the randomness of current hardware based masking schemes.

Masking in hardware. With the Threshold Implementations (TI) scheme by
Nikova et al. [16], the first provably secure masking scheme suitable for hardware
designs (and therefore resistant to glitches) was introduced in 2006. TI was later
on extended to higher-order security by Bilgin et al. [3]. However, the drawback
in the original design of TI is that it requires at least td + 1 shares to achieve
dth-order (univariate [17]) security where t is the degree of the function. In 2015,
Reparaz et al. [18] demonstrated that dth-order security can be also achieved with
only d + 1 shares in hardware. A proof-of-concept was presented at CHES 2016
by De Cnudde et al. [20] requiring (d+1)2 fresh randomness. Gross et al. [11,12]
introduced the so-called domain-oriented masking (DOM) scheme that lowers
the randomness costs to d(d + 1)/2.

Masking in software. Secure masked software implementations with d + 1
shares exist all along [5,14,19]. However, minimizing the requirements for fresh
randomness is still a demanding problem that continues to be researched. Since
efficient implementation of masking requires decomposition of complex nonlinear
functions into simpler functions, the reduction of randomness is usually stud-
ied on shared multiplications with just two shared input bits without a loss of
generality.

In 2016, Beläıd et al. [2] proved an upper bound for the randomness require-
ments of masked multiplication of O(d log d) for large enough d’s, and a lower
bound to be d + 1 for d ≤ 3 (and d for the cases d ≤ 2). Furthermore, for the
orders two to four, Beläıd et al. showed optimized algorithms that reach this
lower bound and also introduced a generic construction that requires d2

4 + d
fresh random bits (rounded). Recently, Barthe et al. [1] introduced a generic
algorithm that requires �d

4�(d + 1) fresh random bits. Barthe et al.’s algorithm
saves randomness in three of four cases over Beläıd et al.’s algorithm but for the
remaining cases it requires one bit more.

Please note, even though Barthe et al. states that their parallelization consid-
eration makes their algorithm more suitable for hardware designs, it stays unclear
how these randomness optimized multiplication algorithms can be securely and
efficiently implemented in hardware with regard to glitches.

Our Contribution. In this work we combine the most recent masking
approaches from both software and hardware in a unified masking approach
(UMA). The basis of the generic UMA algorithm is the algorithm of Barthe
et al. which we combine with DOM [12]. The randomness requirements of UMA

Reconciling d + 1 Masking in Hardware and Software 117

are in all cases less or equal to generic software masking approaches. As a non-
generic optimization, for the second protection order, we also take the solution
of Beläıd et al. into account.

We then show how the UMA algorithm can be efficiently ported to hardware
and thereby reduce the asymptotic randomness costs from d(d + 1)/2 to d(d +
1)/4. Therefore, we analyze the parts of the algorithm that are susceptible to
glitches and split the algorithm into smaller independent hardware modules that
can be calculated in parallel. As a result, the delay in hardware is at most five
cycles.

Finally, we compare the implementation costs and randomness requirements
of UMA to the costs of DOM in a practical and scalable case study for protection
orders up to 15, and analyze the SCA resistance of the UMA design with a t-test
based approach.

2 Boolean Masked Multiplication

We use similar notations as Barthe et al. [1] to write the multiplication of two
variables a and b. In shared form, the multiplication of a·b is given by Eq. 1 where
the elements of the vectors a and b are referred to as the randomly generated
sharing of the corresponding variable. For any possible randomized sharing, the
equations a =

∑d
i=0 ai and b =

∑d
j=0 bj always needs to be fulfilled, where ai

and bj refer to individual shares of a and b, respectively.

q = a · b =
d∑

i=0

d∑

j=0

aibj (1)

In order to correctly implement this multiplication in shared form, Eq. 1 needs
to be securely evaluated. In particular, summing up the multiplication terms
aibj needs to result again in a correct sharing of the result q with d + 1 shares,
and needs to be performed in such a way that an attacker does not gain any
information on the unshared variables a, b, or q. To achieve dth-order security,
an attacker with the ability to “probe” up to d signals during any time of the
evaluation should not gain an advantage in guessing any of the multiplication
variables. This model is often referred to as the so-called (d-)probing model of
Ishai et al. [14] which is linked to differential side-channel analysis (DPA) attacks
over the statistical moment that needs to be estimated by an attacker for a
limited set of noisy power traces [7,19]. This task gets exponentially harder with
increasing protection order d if the implementation is secure in the d-probing
model [4].

However, directly summing up the terms aibj does not even achieve first-
order security regardless of the choice for d. To make the addition of the terms
secure, fresh random shares denoted as r in the following are required that are
applied to the multiplication terms on beforehand. The number of required fresh
random bits and the way and order in which they are used is essential for the
correctness, security, and efficiency of the shared multiplication algorithm.

118 H. Gross and S. Mangard

Barthe et al.’s Algorithm. A vectorized version of Barthe et al.’s algorithm
is given in Eq. 2 where all operations are performed share-wise from left to right.
Accordingly, the vector multiplication is the multiplication of the shares with the
same share index, e.g. ab = {a0b0, a1b1, . . . , adbd}. Additions in the subscript
indicate an index offset of the vector modulo d+1 which equals a rotation of the
vector elements inside the vector, e.g. a+1 = {a1, a2, . . . , a0}. Superscript indices
refer to different and independent randomness vectors with a size of d+1 random
bits for each vector.

q = ab + r0 + ab+1 + a+1b + r0+1 + ab+2 + a+2b

+ r1 + ab+3 + a+3b + r1+1 + ab+4 + a+4b

+ r2 + ab+5 + a+5b + r2+1 + ab+6 + a+6b . . .

(2)

At the beginning of the algorithm, the q shares are initialized with the terms
resulting from the share-wise multiplication ab. Then there begins a repeating
sequence that ends when all multiplication terms were absorbed inside one of the
shares of q. The first sequence starts with the addition of the random bit vector
r0. Then a multiplication term and mirrored term pair (aibj and ajbi, where
i �= j) is added, before the rotated r0+1 vector is added followed by the next
pair of terms. The next (up to) four multiplication terms are absorbed using the
same sequence but with a new random bit vector r1. This procedure is repeated
until all multiplication terms are absorbed. There are thus �d

4� random vectors
required with each a length of d+1 bits. So in total the randomness requirement
is �d

4�(d + 1). In cases other than d ≡ 0 mod 4, the last sequence contains less
than four multiplication terms.

3 A Unified Masked Multiplication Algorithm

For the assembly of the unified masked multiplication algorithm (UMA) we
extend Barthe et al.’s algorithm with optimizations from Beläıd et al. and DOM.
We therefore differentiate between four cases for handling the last sequence in
Barthe et al.’s algorithm: (1) if the protection order d is an integral multiple of
4 than we call the last sequence complete, (2) if d ≡ 3 mod 4 we call it pseudo-
complete, (3) if d ≡ 2 mod 4 we call it half-complete, and (4) if d ≡ 1 mod 4
we call it incomplete. We first introduce each case briefly before we give a full
algorithmic description of the whole algorithm.

Complete and Pseudo-Complete. Complete and pseudo complete sequences
are treated according to Barthe et al.’s algorithm. In difference to the complete
sequence, the pseudo-complete sequence contains only three multiplication terms
per share of q. See the following example for d = 3:

q = ab + r0 + ab+1 + a+1b + r0+1 + ab+2

Half-Complete. Half-complete sequences contain two multiplication terms per
share of q. For handling this sequence we consider two different optimizations.

Reconciling d + 1 Masking in Hardware and Software 119

The first optimization requires d fresh random bits and is in the following referred
to as Beläıd’s optimization because it is the non-generic solution in [2] for the
d = 2 case. An example for Beläıd’s optimization is given in Eq. 3. The trick to
save randomness here is to use the accumulated randomness used for the terms
in the first functions to protect the last function of q. It needs to be ensured
that r00 is added to r01 before the terms a2b0 and a0b2 are added.

q0 = a0b0 + r00 + a0b1 + a1b0
q1 = a1b1 + r01 + a1b2 + a2b1
q2 = a2b2 + r00 + r01 + a2b0 + a0b2

(3)

Unfortunately Beläıd’s optimization can not be generalized to higher orders
to the best of our knowledge. As a second optimization we thus consider the
DOM approach for handling this block which is again generic. DOM requires
one addition less for the last q function for d = 2 but requires one random bit
more than the Beläıd’s optimization (see Eq. 4) and thus the same amount as
Barthe et al.’s original algorithm. However, for the hardware implementation in
the next sections the DOM approach saves area in this case because it can be
parallelized.

q0 = a0b0 + r00 + a0b1 + r02 + a0b2
q1 = a1b1 + r01 + a1b2 + r00 + a1b0
q2 = a2b2 + r02 + a2b0 + r01 + a2b1

(4)

Incomplete. Incomplete sequences contain only one multiplication term per
share of q. Therefore, in this case one term is no longer added to its mirrored
term. Instead the association of each term with the shares of q and the usage of
the fresh random bits is performed according to the DOM scheme. An example
for d = 1 is given in Eq. 5.

q0 = a0b0 + r00 + a0b1
q1 = a1b1 + r00 + a1b0

(5)

3.1 Full Description of UMA

Algorithm 1 shows the pseudo code of the proposed UMA algorithm. The inputs
of the algorithm are the two operands a and b split into d + 1 shares each.
The randomness vector r∗ (we use ∗ to make it explicit that r is a vector of
vectors) contains �d/4� vectors with d+1 random bits each. Please note that all
operations, including the multiplication and the addition, are again performed
share-wise from left to right.

At first the return vector q is initialized with the multiplication terms that
have the same share index for a and b at Line 1. In Line 2 to 4, the complete
sequence are calculated according to Barthe et al. ’s original algorithm. We use
the superscript indices to address specific vectors of r∗ and use again subscript

120 H. Gross and S. Mangard

Algorithm 1. Unified masked multiplication algorithm (UMA)
Input: a, b, r∗

Output: q
Initialize q:

1: q = ab
Handle complete sequences:

2: for i = 0 < �d/4� do
3: q += ri + ab+2i+1 + a+2i+1b + ri

+1 + ab+2i+2 + a+2i+2b
4: end for

Handle last sequence:
5: l = �d/4�

Pseudo-complete sequence:
6: if d ≡ 3 mod 4 then
7: q += rl + ab+2l+1 + a+2l+1b + rl

+1 + ab+2l+2

Half-complete sequence:
8: else if d ≡ 2 mod 4 then
9: if d = 2 then

10: z = {rl0, rl1, rl0 + rl1}
11: q += z + ab+2l+1 + a+2l+1b
12: else
13: q += rl + ab+2l+1 + rl

+2l+2 + ab+2l+2

14: end if
Incomplete sequence:

15: else if d ≡ 1 mod 4 then
16: z = {rl, rl}
17: q += z + ab+2l+1

18: end if
19: return q

indices for indexing operations on the vector. Subscript indexes with a leading
“+” denote a rotation by the given offset.

From Line 5 to 17 the handling of the remaining multiplication terms is per-
formed according to the description above for the pseudo-complete, half-complete,
and incomplete cases. In order to write this algorithm in quite compact form,
we made the assumption that for the last random bit vector rl only the required
random bits are provided. In Line 10 where Beläıd’s optimization is used for
d = 2, a new bit vector z is formed that consists of the concatenation of the two
elements of the vector rl and the sum of these bits. So in total the z vector is
again d + 1 (three) bits long. In similar way we handle the randomness in Line
16. We concatenate two copies of rl of the length (d + 1)/2 to form z which is
then added to the remaining multiplication terms.

Randomness requirements. Table 1 shows a comparison of the randomness
requirements of UMA with other masked multiplication algorithms. The com-
parison shows that UMA requires in all generic cases the least amount of fresh
randomness. With the non-generic Beläıd’s optimization, the algorithm reaches

Reconciling d + 1 Masking in Hardware and Software 121

the Beläıd et al.’s proven lower bounds of d + 1 for d > 2 and of d for d ≤ 2
below the fifth protection order.

Compared to Barthe et al.’s original algorithm, UMA saves random bits in the
cases where the last sequence is incomplete. More importantly, since we target
efficient higher-order masked hardware implementations in the next sections,
UMA has much lower randomness requirements than the so far most randomness
efficient hardware masking scheme DOM. Up to half of the randomness costs can
thus be saved compared to DOM. In the next section we show how UMA can
be securely and efficiently implemented in hardware.

Table 1. Randomness requirement comparison

d UMA Barthe et al. Beläıd et al. DOM

1 1 2 1 1

2 3 (21) 3 3 (21) 3

3 4 4 5 (41) 6

4 5 5 8 (51) 10

5 9 12 11 15

6 14 14 15 21

7 16 16 19 28

8 18 18 24 36

9 25 30 29 45

10 33 33 35 55

11 36 36 41 66

12 39 39 48 78

13 49 56 55 91

14 60 60 63 105

15 64 64 71 120
(1) Non-generic solution

4 UMA in Hardware

Directly porting UMA to hardware by emulating what a processor would do,
i.e. ensuring the correct order of instruction execution by using registers in
between every operation, would introduce a tremendous area and performance
overhead over existing hardware masking approaches. To make this algorithm
more efficient and still secure in hardware, it needs to be sliced into smaller
portions of independent code parts than can be translated to hardware modules
which can be evaluated in parallel.

Domain-Oriented Masking (DOM). To discuss the security of the intro-
duced hardware modules in the presence of glitches, we use the same terminol-
ogy as DOM [10] in the following. DOM interprets the sharing of any function

122 H. Gross and S. Mangard

Fig. 1. Inner-domain block Fig. 2. Incomplete block

in hardware as a partitioning of the circuit into d + 1 independent subcircuits
which are also called domains. All shares of one variable are then associated with
one specific domain according to their share index number (a0 is associated with
domain “0”, a1 with domain “1”, et cetera.). By keeping the d+1 shares in their
respective domains, the whole circuit is trivially secure against an attacker with
the ability to probe d signals as required.

This approach is intuitively simple for linear functions that can be performed
on each of the shares independently. To realize nonlinear functions, shared infor-
mation from one domain needs to be sent to another domain in a secure way.
This process requires the usage of fresh randomness without giving the attacker
any advantage in probing all shares of any sensitive variable.

In the context of DOM, multiplication terms with the same share index
(e.g. a0b0) are also called inner-domain terms. These terms and are considered
uncritical since the combination of information inside one domain can never
reveal two or more shares of one variable as the domain itself contains only
one share per variable. Terms which consist of shares with different share index
(cross-domain terms) that thus originate from different domains (e.g. a0b1) are
considered to be more critical. Special care needs to be taken to ensure that
at no point in time, e.g. due to timing effects (glitches), any two shares of one
variable come together without a secure remasking step with fresh randomness
in between.

Inner-domain block. The assignment of the inner-domain terms (q = ab)
in Line 1 of Algorithm1 can thus be considered uncritical in terms of dth-order
probing security. Only shares with the same share index are multiplied and stored
at the same index position of the share in q. The inner-domain block is depicted
in Fig. 1 and consist of d+1 AND gates that are evaluated in parallel. Hence each
share stays in its respective share domain. So even if the sharings of the inputs
of a and b would be the same, this block does not provide a potential breach
of the security because neither a0a0 nor b0b0, for example, would provide any
additional information on a or b. We can thus combine the inner-domain block
freely with any other secure masked component that ensures the same domain
separation.

Reconciling d + 1 Masking in Hardware and Software 123

Fig. 3. Complete block (Color figure
online)

Fig. 4. Half-complete block (Beläıd
opt.)

(Pseudo-)Complete blocks. For the security of the implementation in hard-
ware, the order in which the operations in Line 3 (and Line 7) are performed
is essential. Since the calculation of one complete sequence is subdivided by the
addition of the random vector in the middle of this code line, it is quite tempting
to split this calculation into two parts and to parallelize them to speed up the
calculation.

However, if we consider Eq. 2, and omit the inner domain-terms that would be
already calculated in a separate inner-domain block, a probing attacker could get
(through glitches) the intermediate results from the probe p0 = r0 + a0b1 + a1b0
from the calculation of q0 and p1 = r0 + a4b1 + a1b4 from the calculation of
q4. By combining the probed information from p0 and p1 the attacker already
gains information on three shares of a and b. With the remaining two probes
the attacker could just probe the missing shares of a or b to fully reconstruct
them. The complete sequence and for the same reasons also the pseudo-complete
sequence can thus not be further parallelized.

Figure 3 shows the vectorized complete block that consists of five register
stages. Optional pipeline registers are depicted with dotted lines where necessary
that make the construction more efficient in terms of throughput. For the pseudo-
complete block, the last XOR is removed and the most right multiplier including
the pipeline registers before the multiplier (marked green).

The security of this construction has already been analyzed by Barthe
et al. [1] in conjunction with the inner-domain terms (which have no influence on
the probing security) and for subsequent calculation of the sequences. Since the

124 H. Gross and S. Mangard

scope of the randomness vector is limited to one block only, a probing attacker
does not gain any advantage (information on more shares than probes she uses)
by combining intermediate results of different blocks even if they are calculated
in parallel. Furthermore, each output of these blocks is independently and freshly
masked and separated in d+1 domains which allows the combination with other
blocks.

Half-complete block. Figure 4 shows the construction of the half-complete
sequence in hardware when Beläıd’s optimization is used for d = 2. The creation
of the random vector z requires one register and one XOR gate. The security
of this construction was formally proven by Beläıd et al. in [2]. For protection
orders other than d = 2, we use instead the same DOM construction as we use
for the incomplete block.

Incomplete block. For the incomplete block (and the half-complete block with-
out Beläıd optimization) each random bit is only used to protect one multiplica-
tion term and its mirrored term. The term and the mirrored term are distributed
in different domains to guarantee probing security. Figure 2 shows the construc-
tion of an incomplete block following the construction principles of DOM for
two bits of q at the same time. For half-complete blocks (without Beläıd’s opti-
mization) two instances of the incomplete constructions are used with different
indexing offsets and the resulting bits are added together (see Line 13). No fur-
ther registers are required for the XOR gate at the output of this construction
because it is ensured by the registers that all multiplication terms are remasked
by r before the results are added. For a more detailed security discussion we
refer to the original paper of Gross et al. [10].

Assembling the UMA AND Gate. Figure 5 shows how the UMA AND gate
is composed from the aforementioned building blocks. Except the inner-domain
block which is always used, all other blocks are instantiated and connected
depending on the given protection order which allows a generic construction
of the masked AND gate from d = 0 (no protection) to any desired protection
order. Connected to the inner-domain block, there are �d

4	 complete blocks, and
either one or none of the pseudo-complete, half-complete, or incomplete blocks.

Fig. 5. Fully assembled UMA AND gate

Reconciling d + 1 Masking in Hardware and Software 125

Table 2. Overview on the hardware costs of the different blocks

Block AND XOR FF ·(d + 1) Delay

·(d + 1) ·(d + 1) w/o pipel. Pipelined [Cycles]

Inner-domain 1 � d
4
� 0 0–10 0

Complete 4 5 5 7 5

Pseudo-complete 3 4 4 6 4

Half-complete:

Beläıd’s optimization 2 2 + 1
3

3 3 3

DOM 2 3 2 2 1

Incomplete 1 1 1 1 1

Table 2 gives an overview about the hardware costs of the different blocks
that form the masked AND gate. All stated gate counts need to be multiplied
by the number of shares (d + 1). The XOR gates which are required for con-
necting the different blocks are accounted to the inner-domain block. In case
pipelining is used, the input shares of a and b are pipelined instead of pipelining
the multiplication results inside the respective blocks. The required pipelining
registers for the input shares are also added on the inner-domain block’s regis-
ter requirements, since this is the only fixed block of every masked AND gate.
The number of pipelining registers are determined by the biggest delay required
for one block. In case one or more complete blocks are instantiated, there are
always five register stages required which gives a total amount of 10(d+1) input
pipelining registers. However, for d < 4 the number of input pipelining register
is always twice the amount of delay cycles of the instantiated block which could
also be zero for the unprotected case where the masked AND gate consists only
of the inner-domain block. The inner-domain block itself does not require any
registers except for the pipelining case and thus has a delay of zero.

For the cost calculation of the UMA AND gate, the gate counts for the
complete block needs to be multiplied by the number of instantiated complete
blocks (�d

4) and the number of shares (d+1). The other blocks are instantiated
at maximum one time. The pseudo-complete block in case d ≡ 3 mod 4, the
half-complete block in case d ≡ 2 mod 4 (where Beläıd’s optimization is only
used for d = 2), and the incomplete block in case d ≡ 1 mod 4.

Comparison with DOM. Table 3 shows a first comparison of the UMA AND
gate with a masked AND gate from the DOM scheme. For the generation of these
numbers we used Table 2 to calculate the gate counts for the UMA AND gate. For
DOM, we used the description in [10] which gives us (d+1)2 AND gates, 2d(d+1)
XOR gates, and (d + 1)2 registers (− d − 1, for the unpipelined variant). For
calculating the gate equivalence, we used the 90 nm UMC library from Faraday
as reference as we also use them for synthesis in Sect. 5. Accordingly, a two input
AND gate requires 1.25 GE, an XOR gate 2.5 GE, and a D-type flip-flop with
asynchronous reset 4.5 GE.

126 H. Gross and S. Mangard

Table 3. Comparison of the UMA AND gate with DOM

UMA AND DOM AND

d AND XOR Registers GE AND XOR Registers GE

Unpipel. Pipel. Unpipel. Pipel. Unpipel. Pipel. Unpipel. Pipel.

1 4 4 2 6 24 42 4 4 2 4 24 33

2 9 10 9 27 77 157 9 12 6 9 68 82

3 16 20 16 56 142 322 16 24 12 16 134 152

4 25 30 25 85 219 489 25 40 20 25 221 244

5 36 48 36 108 327 651 36 60 30 36 330 357

6 49 70 49 133 457 835 49 84 42 49 460 492

7 64 88 72 184 624 1, 128 64 112 56 64 612 648

8 81 108 90 216 776 1, 343 81 144 72 81 785 826

9 100 140 110 250 970 1, 600 100 180 90 100 980 1, 025

10 121 176 132 286 1, 185 1, 878 121 220 110 121 1, 196 1, 246

11 144 204 168 360 1, 446 2, 310 144 264 132 144 1, 434 1, 488

12 169 234 195 403 1, 674 2, 610 169 312 156 169 1, 693 1, 752

13 196 280 224 448 1, 953 2, 961 196 364 182 196 1, 974 2, 037

14 225 330 270 510 2, 321 3, 401 225 420 210 225 2, 276 2, 344

15 256 368 304 592 2, 608 3, 904 256 480 240 256 2, 600 2, 672

p12

64

256

64

A1

0∗‖K

64

As

256

P1 C1

256

K‖0∗

128
T

p6 p6 p6 p6 p6 p12

256

const

K‖N

Pt Ct

Initialization Processing
Plaintext FinalizationAssociated Data
Processing

K

256

0∗‖1

64 64

Fig. 6. Data encryption and authentication with Ascon

Since in both implementations AND gates are only used for creating the
multiplication terms, both columns for the UMA AND gate construction and the
DOM AND are equivalent. The gate count for the XORs is in our implementation
is lower than for the DOM gate which results from the reduced randomness usage
compared to DOM. The reduced XOR count almost compensates for the higher
register usage in the unpipelined case. The difference for the 15th order is still
only 8 GE, for example. However, the delay of the UMA AND gate is in contrast
to the DOM AND gate, except for d = 1, not always one cycle but increases
up to five cycles. Therefore, in the pipelined implementation more register are
necessary which results in an increasing difference in the required chip area for
higher protection orders.

Reconciling d + 1 Masking in Hardware and Software 127

5 Practical Evaluation on Ascon

To show the suitability of the UMA approach and to study the implications on a
practical design, we decide on implementing the CAESAR candidate Ascon [6]
one time with DOM and one time with the UMA approach. We decided on
Ascon over the AES for example, because of its relatively compact S-box con-
struction which allows to compare DOM versus UMA for a small percentage of
non-linear functionality, but also for a high percentage of non-linear functional-
ity if the S-box is instantiated multiple times in parallel. The design is for both
DOM and UMA generic in terms of protection order and allows some further
adjustments. Besides the different configuration parameters for the algorithm
itself, like block sizes and round numbers, the design also allows to set the num-
ber of parallel S-boxes and how the affine transformation in the S-box is handled,
for example.

Ascon is an authenticated encryption scheme with a sponge-like mode of
operation as depicted in Fig. 6. The encryption and decryption work quite sim-
ilar. At the beginning of the initialization the 320-bit state is filled with some
cipher constants, the 128-bit key K, and the 128-bit nonce N . In the upcoming
calculation steps, the state performs multiple rounds of the transformation p
which consists of three substeps: (1) the addition of the round constant, (2) the
nonlinear substitution layer, and (3) the linear transformation. For the Ascon-
128 the initialization and the finalization takes 12 rounds and the processing of
any data takes six rounds. The input data is subdivided into associated data
(data that only requires authentication but no confidentiality) and plaintext or
ciphertext data. The data is processed by absorbing the data in 64-bit chunks
into the state and subsequently performing the state transformation. In the
finalization step, a so-called tag is either produced or verified that ensures the
authenticity of the processed data.

5.1 Proposed Hardware Design

An overview of the top module of our hardware design is given in Fig. 7 (left).
It consists of a simple data interface to transfer associated data, plaintext or
ciphertext data with ready and busy signaling which allows for simple connection

Fig. 7. Overview of the Ascon core (left) and the state module of the Ascon design
(right)

128 H. Gross and S. Mangard

with e.g. AXI4 streaming masters. Since the nonce input and the tag output have
a width of 128 bit, they are transferred via a separate port. The assumptions
taken on the key storage and the random number generator (RNG) are also
depicted. We assume a secure key storage that directly transfers the key to the
cipher core in shared form, and an RNG that has the capability to deliver as
many fresh random bits as required by the selected configuration of the core.

The core itself consists of the control FSM and the round counter that form
the control path, and the state module that forms the data path and is respon-
sible for all state transformations. Figure 7 (right) shows a simplistic schematic
of the state module. The state module has a separate FSM and performs the
round transformation in four substeps:

(1) during IDLE, the initialization of the state with the configuration constants,
the key, and the nonce is ensured.

(2) in the ADD ROUND CONST state the round constant is added, and option-
ally other required data is either written or added to the state registers like
input data or the key. Furthermore, it is possible to perform the linear parts
of the S-box transformation already in this state to save pipeline registers
during the S-box transformation and to save one delay cycle. This option,
however, is only used for the configuration of Ascon where all 64 possible
S-box instances are instantiated.

(3) the SBOX LAYER state provides flexible handling of the S-box calculation
with a configurable number of parallel S-box instances. Since the S-box is
the only non-linear part of the transformation, its size grows quadratically
with the protection order and not linearly as the other data path parts of the
design. The configurable number of S-boxes thus allows to choose a trade-off
between throughput and chip area, power consumption, et cetera. During
the S-box calculation the state registers are shifted and the S-box module
is fed with the configured number of state slices with five bits each slice.
The result of the S-box calculation is written back during the state shifting.
Since the minimum delay of the S-box changes with the protection order and
whether the DOM or UMA approach is used, the S-box calculation takes
one to 70 cycles.

(4) in the LINEAR LAYER state the whole linear part of the round transforma-
tion is calculated in a single clock cycle. The linear transformation simply
adds two rotated copies of one state row with itself. It would be possible
to breakdown this step into smaller chunks to save area. However, the per-
formance overhead and the additional registers required to do so, would
relativize the chip area savings especially for higher orders.

S-box construction. Ascons’s S-box is affine equivalent to the Keccak S-
box and takes five (shared) bits as an input (see Fig. 8). The figure shows
where the pipeline registers are placed in our S-box design (green dotted lines).
The first pipeline stage (Stage 0, grey) is optionally already calculated in the
ADD ROUND CONST stage. The registers after the XOR gate in State 0 are
important for the glitch resistance and therefore for the security of the design.
Without this registers, the second masked AND gate from the top (red paths),

Reconciling d + 1 Masking in Hardware and Software 129

Fig. 8. Ascon’s S-box module with optional affine transformation at input (grey) and
variable number of pipeline registers (green) (Color figure online)

for example, could temporarily be sourced two times by the shares of x1 for both
inputs of the masked AND gate. Because the masked AND gate mixes shares
from different domains, a timing dependent violation (glitch) of the d-probing
resistance could occur. Note that the XOR gates at the output do not require
an additional register stage because they are fed into one of the state registers.
As long as no share domains are crossed during the linear parts of the trans-
formation the probing security is thus given. We assure this by associating each
share and each part of the circuit with one specific share domain (or index) and
keeping this for the entire circuit.

The other pipelining registers are required because of the delay of the masked
AND gates which is one cycle for the DOM gate, and up to five cycles for the
UMA AND gate according to Table 2.

5.2 Implementation Results

All results stated in this section are post-synthesis results for a 90 nm Low-K
UMC process with 1 V supply voltage and a 20 MHz clock. The designs were syn-
thesized with the Cadence Encounter RTL compiler v14.20-s064-1. Figure 9 com-
pares the area requirements of the UMA approach with DOM for the pipelined
Ascon implementation with a single S-box instance. The figure on the left shows
the comparison of single masked AND gates inside the Ascon design, while
figure right compares the whole implementations of the design. Comparing this
results with Table 3 reveals that the expected gate counts for DOM quite nicely
match the practical results. For the UMA approach, on the other hand, the prac-
tical results are always lower than the stated numbers. The reduction results
from the fact that the amount of required pipelining registers for the operands
is reduced because the pipelining register are shared among the masked AND
gates. This does not affect the DOM implementation because the multiplication
results are always calculated within only one delay cycle.

130 H. Gross and S. Mangard

Fig. 9. UMA versus DOM area requirements for different protection orders. Left figure
compares masked AND gates, right figure compares full Ascon implementations

Fig. 10. UMA versus DOM area requirements for different protection orders and 64
parallel S-boxes (left) and throughput comparison in the right figure

The right figure shows that the difference for the single S-box Ascon imple-
mentation is relatively low especially for low protection orders, and seems to
grow only linearly within the synthesized range for d between 1 and 15. For the
first order implementation both designs require about 10.8 kGE. For the sec-
ond order implementation the difference is still only about 200 GE (16.2 kGE
for DOM versus 16.4 kGE). The difference grows with the protection order and
is about 4.8 kGE for d = 15 which is a size difference of about 5%. The seem-
ingly linear growth in area requirements for both approaches is observed because
the S-box is only a relatively small part with 3–20% of the design which grows
quadratically, while the state registers that grow linearly dominate the area
requirements with 96–80%.

We also synthesized the design for 64 parallel S-boxes which makes the imple-
mentation much faster in terms of throughput but also has a huge impact on
the area requirements (see Fig. 10). The characteristics for UMA and DOM look
pretty similar to the comparison of the masked AND gates in Fig. 9 (left) and

Reconciling d + 1 Masking in Hardware and Software 131

shows a quadratic increase with the protection order. The chip area is now
between 28 kGE (d = 1) and 1,250 kGE (d = 15) for UMA and 926 kGE for
DOM. The S-box requires between 55% and 92% of the whole chip area.

Throughput. To compare the maximum throughput achieved by our designs
we calculated the maximum clock frequency for which our design is expected
to work for typical operating conditions (1 V supply, and 25 ◦C) over the timing
slack for the longest delay path. This frequency is then multiplied with the block
size for our encryption (64 bits) divided by the required cycles for absorbing the
data in the state of Ascon (for six consecutive round transformations).

The results are shown in Fig. 10. The throughput of both masking approaches
with only one S-box instance is quite similar which can be explained with the
high number of cycles required for calculating one round transformation (402–
426 cycles for UMA versus 402 cycles for DOM). The UMA approach achieves
a throughput between 48 Mbps and 108 Mbps, and the DOM design between
50 Mbps and 108 Mbps for the single S-box variants.

For 64 parallel S-boxes the gap between DOM and UMA increases because
DOM requires only 18 cycles to absorb one block of data while UMA requires
between 18 and 42 cycles which is a overhead of more than 130%. Therefore, also
the throughput is in average more than halved for the UMA implementation.
The UMA design achieves between 0.5 Gbps and 2.3 Gbps, and DOM Ascon
between 1.5 Gbps and 2.3 Gbps.

Randomness. The amount of randomness required for the UMA and DOM
designs can be calculated from Table 1 by multiplying the stated number by five
(for the five S-box bits), and additionally with 64 in case of the 64 parallel S-
box version. For the single S-box design, the (maximum) amount of randomness
required per cycle for the UMA design is thus between 5 bits for d = 1 and
320 bits for d = 15, and for DOM between 5 bits and 600 bits. For the 64 parallel
S-boxes design, the first-order designs already require 320 bits per cycle, and
for the 15th-order designs the randomness requirements grow to 20 kbits and
37.5 kbits per cycle, respectively.

6 Side-Channel Evaluation

In order to analyze the correctness and the resistance of our implementations, we
performed a statistical t-test according to Goodwill et al. [8] on leakage traces
of the S-box designs of the UMA variants. We note that t-tests are unfeasible
to prove any general statements on the security of a design (for all possible
conditions and signal timings) as it would be required for a complete security
verification. However, to the best of our knowledge there exist no tools which
are suitable to prove the security of higher-order masked circuits in the presence
of glitches in a formal way. T-tests only allow statements for the tested devices
and under the limitations of the measurement setup. Many works test masked
circuits on an FPGA and perform the t-test on the traces gathered from power
measurements. This approach has the drawback that due to the relatively high

132 H. Gross and S. Mangard

noise levels the evaluation is usually limited to first and second-order multivariate
t-tests. We use the recorded signal traces from the post-synthesis simulations of
the netlists, which are noise-free and allows us to evaluate the designs up to
the third-order. Because of the simplified signal delay model this evaluation
covers only glitches resulting from cascaded logic gates and no glitches caused
by different signal propagation times resulting from other circuit effects. We
emphasize that we use this t-test based evaluation merely to increase the trust in
the correctness and security of our implementation, and keep a formal verification
open for future work.

The intuition of the t-test follows the idea that an DPA attacker can only
make use of differences in leakage traces. To test that a device shows no
exploitable differences, two sets of traces are collected per t-test: (1) a set with
randomly picked inputs, (2) a set with fixed inputs and the according t-value is
calculated. Then the t-value is calculated according to Eq. 6 where X denotes
the mean of the respective trace set, S2 is the variance, and N is the size of the
set, respectively.

t =
X1 − X2√
S2
1

N1
+ S2

2
N2

(6)

The null-hypothesis is that the means of both trace sets are equal, which
is accepted if the calculated t-value is below the border of ±4.5. If the t-value
exceeds this border then the null-hypothesis is rejected with a confidence greater
than 99.999% for large enough trace sets. A so-called centered product pre-
processing step with trace points inside a six cycle time window is performed
for higher-order t-tests. Beyond this time frame, the intermediates are ensured
to be unrelated to the inputs. We thus combine multiple tracepoints by first
normalizing the means of the trace points and then multiplying the resulting
values with other normalized points inside the time window.

Results. Figure 11 shows the results of the t-tests for the time offsets which
achieved the highest t-values for the UMA S-box implementations of Ascon.
From top to bottom the figures show the results for different protection orders
from d = 0 to d = 3, and from left to right we performed different orders of
t-tests starting from first order up to third order. Above d = 3 and third-order
t-tests the evaluation of the t-tests becomes too time intensive for our setup.

On the y-axis of the figures the t-values are drawn, and the y-axis denotes
the used number of traces at a fraction of a million. The horizontal lines (green,
inside the figures) indicate the ±4.5 confidence border. The protection border
between the figures (the red lines) separates the t-tests for which the protection
order of the design is below the performed t-test (left) from the t-tests for which
the test order is above (right).

As intended, the t-values for the masked implementations below the protec-
tion border do not show any significant differences even after one million noise-
free traces. For the unprotected implementation (top, left figure), for example,
the first-order t-test fails with great confidence even after only a couple of traces,
and so do the second and third-order t-tests on the right. The first-order t-test

Reconciling d + 1 Masking in Hardware and Software 133

Fig. 11. T-test evaluation for different protection orders d = 0 . . . 3 (from top to bot-
tom) and for different t-test orders (first to third, from left to right) (Color figure
online)

below of the first-order protected S-box does not show leakages anymore but the
higher-order t-tests fail again as expected. The third-order implementation does
not show any leakages anymore for the performed t-tests. We thus conclude that
our implementations seem to be secure under the stated limitations.

7 Discussion on the Randomness Costs and Conclusions

In this work, we combined software and hardware based masking approaches
into a unified masking approach (UMA) in order to save randomness and the
cost involved. In practice, the generation of fresh randomness with high entropy
is a difficult and costly task. It is, however, also difficult to put precise num-
bers on the cost of randomness generation because there exist many possible
realizations. The following comparison should thus not be seen as statement of
implementation results but reflects only one possible realization which serves as
basis for the discussion.

A common and performant way to generate many random numbers with high
entropy is the usage of PRNGs based on symmetric primitives, like Ascon for
example. A single cipher design thus provides a fixed number of random bits,
e.g. 64 bits in the case of Ascon, every few cycles. In the following comparison,
we assume a one-round unrolled Ascon implementation resulting in six delay
cycles and 7.1 kGE of chip area [13]. If more random bits are required, additional
PRNGs are inserted, which increase the area overhead accordingly.

Figure 12 (left) shows the area results from Sect. 5 including the overhead cost
for the required PRNGs. Starting with d = 2 for DOM, d = 3 for UMA for the

134 H. Gross and S. Mangard

Fig. 12. UMA versus DOM area requirements including an area estimation for the
randomness generation in the left figure, and an efficiency evaluation (throughput per
chip area) on the right

single S-box variants, and for all of the 64 parallel S-box variants, one PRNG
is no longer sufficient to reach the maximum possible throughput the designs
offer. The randomness generation thus becomes the bottleneck of the design
and additional PRNGs are required, which result in the chip area differences
compared to Figs. 9 and 10, respectively. As depicted, both UMA variants require
less chip area than their DOM pendants. However, this comparison does not take
the throughput of the designs into account (see Fig. 10).

Figure 12 (right) compares the efficiency, calculated as throughput (in Mbps)
over the chip area (in kGE). By using this metric, it shows that UMA is the more
efficient scheme when considering the single S-box variants, while DOM is the
more efficient solution for the 64 S-box variants. However, the practicality of the
64 S-box implementations with up to a few millions of GE and between 30 and
3,600 additional PRNGs is very questionable.

In practice, the most suitable approach for generating random bits and the
constraints vary from application to application. While UMA seems to be the
more suitable approach for low-area applications, DOM introduces less delay
cycles which is a relevant constraint for performance oriented applications. To
make our results comparable for future designs and under varying constraints,
we make our hardware implementations available online [9].

Acknowledgements. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under grant number 845589 (SCALAS), and has received fund-
ing from the European Unions Horizon 2020 research and innovation programme under
grant agreement No 644052. The work has furthermore been supported in part by the
Austrian Science Fund (project P26494-N15) and received funding from the European
Research Council (ERC) under the European Unions Horizon 2020 research and inno-
vation programme (grant agreement No 681402).

Reconciling d + 1 Masking in Hardware and Software 135

References

1. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. IACR Cryptology ePrint Archive 2016:912 (2016)

2. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 22

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 18

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

5. Coron, J., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. IACR Cryptology ePrint Archive 2015:359 (2015)

6. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to the CAESAR competition (2016). http://competitions.cr.yp.to/round3/asconv
12.pdf

7. Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13190-5 7

8. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop (2011)

9. Gross, H.: DOM and UMA masked hardware implementations of Ascon (2017).
https://github.com/hgrosz/ascon dom

10. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES
implementation with arbitrary protection order. In: Handschuh, H. (ed.) CT-
RSA 2017. LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). doi:10.1007/
978-3-319-52153-4 6

11. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. Cryptology ePrint
Archive, Report 2016/486 (2016). http://eprint.iacr.org/2016/486

12. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Proceedings of the
2016 ACM Workshop on Theory of Implementation Security, TIS 2016, p. 3. ACM,
New York (2016)

13. Groß, H., Wenger, E., Dobraunig, C., Ehrenhofer, C.: Suit up! - made-to-measure
hardware implementations of ASCON. In: DSD 2015, Madeira, Portugal, 26–28
August 2015, pp. 645–652 (2015)

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

15. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006). doi:10.1007/11894063 7

16. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/3-540-48405-1_26
http://competitions.cr.yp.to/round3/asconv12.pdf
http://competitions.cr.yp.to/round3/asconv12.pdf
http://dx.doi.org/10.1007/978-3-642-13190-5_7
https://github.com/hgrosz/ascon_dom
http://dx.doi.org/10.1007/978-3-319-52153-4_6
http://dx.doi.org/10.1007/978-3-319-52153-4_6
http://eprint.iacr.org/2016/486
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/11894063_7
http://dx.doi.org/10.1007/11935308_38

136 H. Gross and S. Mangard

17. Reparaz, O.: A note on the security of higher-order threshold implementations.
IACR Cryptology ePrint Archive 2015:001 (2015)

18. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

19. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

20. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d + 1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53140-2 10

http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-662-53140-2_10
http://dx.doi.org/10.1007/978-3-662-53140-2_10

Changing of the Guards: A Simple
and Efficient Method for Achieving Uniformity

in Threshold Sharing

Joan Daemen1,2(B)

1 Radboud University, Nijmegen, The Netherlands
J.Daemen@science.ru.nl

2 STMicroelectronics, Diegem, Belgium

Abstract. Since they were first proposed as a countermeasure against
differential power analysis (DPA) and differential electromagnetic analy-
sis (DEMA) in 2006, threshold schemes have attracted a lot of attention
from the community concentrating on cryptographic implementations.
What makes threshold schemes so attractive from an academic point of
view is that they come with an information-theoretic proof of resistance
against a specific subset of side-channel attacks: first-order DPA. From an
industrial point of view they are attractive as a careful threshold imple-
mentation forces adversaries to DPA of higher order, with all its problems
such as noise amplification. A threshold scheme that offers the mentioned
provable security must exhibit three properties: correctness, incomplete-
ness and uniformity. A threshold scheme becomes more expensive with
the number of shares that must be implemented and the required num-
ber of shares is lower bound by the algebraic degree of the function being
shared plus 1. Defining a correct and incomplete sharing of a function of
degree d in d + 1 shares is straightforward. However, up to now there is
no generic method to achieve uniformity and finding uniform sharings of
degree-d functions with d+1 shares has been an active research area. In
this paper we present a generic, simple and potentially cheap method to
find a correct, incomplete and uniform d + 1-share threshold scheme of
any S-box layer consisting of degree-d invertible S-boxes. The uniformity
is not implemented in the sharings of the individual S-boxes but rather
at the S-box layer level by the use of feedforward and some expansion
of shares. When applied to the Keccak-p nonlinear step χ, its cost is
very small.

Keywords: Side-channel attacks · Threshold schemes · Uniformity ·
Keccak

1 Introduction

Systems such as digital rights management (DRM) or banking cards try to offer
protection against adversaries that have physical access to platforms performing
cryptographic computations, allowing them to measure computation time, power
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 137–153, 2017.
DOI: 10.1007/978-3-319-66787-4 7

138 J. Daemen

consumption or electromagnetic radiation. Adversaries can use this side chan-
nel information to retrieve cryptographic keys. A particularly powerful attack
against implementations of cryptographic algorithms is differential power analy-
sis (DPA) introduced by Kocher et al. [20]. This attack can exploit even the
weakest dependence of the power consumption (or electromagnetic radiation)
on the value of the manipulated data by combining the measurements of many
computations to improve the signal-to-noise ratio. The simplest form of DPA is
first-order DPA, that exploits the correlation between the data and the power
consumption. To make side channel attacks impractical, system builders imple-
ment countermeasures, often multiple at the same time.

In threshold schemes, as proposed by Rijmen et al. [23–25] one represents
each sensitive variable by a number of shares (typically denoted by d + 1) such
that their (usually) bitwise sum equals that variable. These shares are initially
generated in such a way that any subset of d shares gives no information about
the sensitive variable. Functions (S-boxes, mixing layers, round functions . . .)
are computed on the shares of the inputs resulting in the output as a number of
shares. Threshold schemes must be correct : the sum of the output shares equals
the result of applying the implemented function on the sum of the input shares.
Another essential property of a threshold implementation of a function is incom-
pleteness: each output share shall be computed from at most d input shares, or
equivalently, in the computation of each output share at least one input share is
not used. Incompleteness guarantees that each individual output share compu-
tation cannot leak information about sensitive variables. The resulting output is
then typically subject to some further computation, again in the form of sepa-
rate and incomplete computation on shares. For these subsequent computations
to not leak information about the sensitive variables, the output of the previous
stage must still be uniform. Therefore, in an iterative cryptographic primitive
such as a block cipher, we need a threshold implementation of the round func-
tion that yields a uniformly shared output if its input is uniformly shared. This
property of the threshold implementation is called uniformity.

Threshold schemes form a good protection mechanism against DPA. In par-
ticular, using it allows building cryptographic hardware that is guaranteed to
be unattackable with first-order DPA, assuming certain leakage models of the
cryptographic hardware at hand and for a plausible definition of “first order”.
De Cnudde et al. have an interesting work [13] on such assumptions and their
validity in the real world. Still, threshold schemes remain a very attractive tech-
nique for building cipher implementations that offer a high level of resistance
against DPA and differential electromagnetic analysis (DEMA).

Constructing an incomplete threshold implementation of a non-linear func-
tion is rather straightforward and can be done in the following way. One can
express the function algebraically as the sum of monomials. Then one replaces
each shared variable by the sum of its shares. Subsequently, one can work out
the expressions resulting in a larger number of monomials, where the factors are
bits (or in general, components) of the shares. A monomial of degree d can have
factors from at most d shares. So if there are d + 1 shares, such a monomial

Changing of the Guards: A Simple and Efficient Method 139

is incomplete: there is at least one share missing. It follows that to build an
incomplete sharing of a function of algebraic degree d, it suffices to take d + 1
shares. Clearly, the implementation cost of a function increases exponentially
with its degree: a monomial of degree d requires d + 1 shares and explodes into
the sum of (d + 1)d monomials. To reduce the implementation cost, Stoffelen
applies techniques for representing S-boxes with minimum number of nonlinear
operations [31]. Kutzner et al. on the other hand factor S-boxes of some degree
as the composition of functions of lower algebraic degree [21]. Such techniques,
combined with tower field representation, are also applied in the sharing of the
AES S-box, that natively has algebraic degree 7. We refer again to De Cnudde
et al. for an example [14]. These publications demonstrate that these techniques
are quite powerful, but serial composition comes at a prize. It requires the inser-
tion of registers (or latches) between the combinatorial circuits that increase
latency.

Constructing a correct, incomplete and uniform sharing is widely perceived
as a challenge and an important research problem. Several publications have
been devoted to the classification of 3, 4 and 5-bit S-boxes with respect to cryp-
tographic properties, and the minimum number of shares for which a uniform
sharing is known is an important criterion. Examples include the study of Bilgin
et al. [8] and that of Božilov et al. [10]. Other papers propose solutions, some-
times only partial, for large classes of S-boxes. We refer again to Bilgin et al. [9],
Kutzner et al. [21], and Beyne et al. [5]. A well-known example of an S-box that
is problematic in this context is the Keccak S-box, known as χ. It has algebraic
degree 2 and no uniform incomplete 3-share threshold implementations is known.
We proposed a number of different solutions with varying degrees of efficiency
in [6]. One solution is the transition from 3 to 4 or even 5 shares. Another is the
compensation of loss of uniformity by injecting fresh randomness. As argued by
Reparaz et al. [29], this technique brings the threshold scheme in the realm of
private circuits as proposed by Ishai et al. [19].

Given a non-uniform threshold implementation, it is not immediate how to
exploit its non-uniformity in an attack. We made a start in explorations in
that direction in [16,17]. However, uniformity of a threshold implementation
is essential in its information-theoretical proof of resistance against first-order
DPA. In short, if one has a uniform sharing, one does not have to give additional
arguments why the threshold scheme would be secure against first-order DPA.

In this paper we present a simple and efficient technique for building a thresh-
old implementation with d + 1 shares of any invertible S-box layer of degree d
that is correct, incomplete and uniform. When applied to the nonlinear layer in
Keccak, χ, it can be seen as the next logical step of the methods discussed in
Sect. 3 of our paper [6]. In that method 4 fresh random bits must be introduced
every round to restore uniformity. The added value of the technique in this paper
is that it no longer needs any fresh randomness and that it can convert a cor-
rect and incomplete sharing of any S-box into a correct, incomplete and uniform
sharing of a layer of such S-boxes.

140 J. Daemen

1.1 The “Changing of the Guards” Idea in a Nutshell

The basic method can be summarized as follows:

– The shared S-boxes are arranged in a linear array. These sharings must be
correct and incomplete.

– Each share at the output of S-box i is made uniform by bitwise adding to it
one or two shares from the input of S-box i − 1.

– The state is augmented with d dummy components, called guards, to be added
to the output of the first S-box in the array.

– The new value of the guards are taken from the input of the last S-box in the
array.

– Uniformity is proven by giving an algorithm that computes the shared input
from the shared output of this mapping.

For threshold sharings that have a so-called multi-transformation property, the
guards can be reduced in size and so does the amount of bits fed forward.

1.2 Notation

Assume we have a nonlinear mapping that consists of a layer of invertible S-
boxes. We denote the width of the S-boxes by n and their total number by
m. So the layer operates on an array of n × m bits. We denote the input as
x = (x1, x2, x3, . . . xm) and the output as X = (X1,X2,X3, . . . Xm), with each
of the xi and Xi an n-bit array.

In general the S-boxes can differ per position. We denote the S-box at position
i by Si, so Xi = Si(xi).

We denote addition in GF(2) by +.

1.3 Overview of the Paper

In Sect. 2 we explain and prove the soundness of the method applied to the
simplest possible case. In Sect. 3 we formulate the method for a more general
case and in Sect. 4 we apply it to the nonlinear layer used in Keccak, Keyak
and Ketje. Finally in Sect. 5 we discuss some implementation aspects.

2 The Basic Method Applied to 3-Share Threshold
Schemes

Assume the same S-box is used for all positions and its algebraic degree is 2
over GF(2), that we denote by S. In that case it is trivial to find a correct and
incomplete threshold scheme with 3 shares S by substituting the terms in the
algebraic expression of the S-box by their sum as components and appropri-
ately distributing the monomials over the three shares of the S-box sharing. We
denote the three shares that represent xi by ai, bi and ci, with xi = ai + bi + ci.
Likewise, we denote the three shares that represent Xi by Ai, Bi and Ci, with

Changing of the Guards: A Simple and Efficient Method 141

Xi = Ai + Bi + Ci. The sharing of S consists of three functions from 2n to n
bits, that we denote as (Sa, Sb, Sc). Correctness is satisfied if:

Sa(bi, ci) + Sb(ai, ci) + Sc(ai, bi) = S(ai + bi + ci) .

Incompleteness is implied by the fact that each of the three elements of
(Sa, Sb, Sc) take only two shares as inputs. In this scheme our m-component
input x is represented by triplet (a, b, c) with three shares.

At the basis of our “Changing of the Guards” technique for achieving unifor-
mity is the expansion of the shared representation. In particular, for the input
we expand share b with an additional dummy component that we denote as b0
and do the same for c. In this sharing x is represented by (a, b, c) where a has
m components and both b and c have m + 1 components. A triplet (a, b, c) is a
uniform sharing of x if all possible values (a, b, c) compliant with x are equiprob-
able. As there are 2(3m+2)n possible triplets (a, b, c) and being compliant with
x requires the satisfaction of mn independent linear binary equations, there are
exactly 2(3m+2)n−mn = 22(m+1)n encodings (a, b, c) of any particular value x.
The same holds for the sharing (A,B,C) of the output X.

Definition 1. The Changing of the Guards sharing of an S-box layer where
(Sa, Sb, Sc) is a sharing of S, mapping (a, b, c) to (A,B,C), is given by:

Ai = Sa(bi, ci) + bi−1 + ci−1 for i > 0
Bi = Sb(ai, ci) + ci−1 for i > 0
Ci = Sc(ai, bi) + bi−1 for i > 0
B0 = cm

C0 = bm

The sharing is depicted in Fig. 1.

Fig. 1. Changing of the Guards sharing applied to simple S-box layer.

We can now prove the following theorem.

Theorem 1. If S is an invertible S-box and (Sa, Sb, Sc) is a correct and incom-
plete sharing of S, the sharing of Definition 1 is a correct, incomplete and uni-
form sharing of an S-box layer with S as component.

142 J. Daemen

Proof. Correctness follows from the correctness of the S-box sharing and the fact
that each input components that is fed forward to the output of its neigboring
components is added twice. We have for all i > 0:

Ai + Bi + Ci = Sa(bi, ci) + bi−1 + ci−1 + Sb(ai, ci) + ci−1 + Sc(ai, bi) + bi−1

= Sa(bi, ci) + Sb(ai, ci) + Sc(ai, bi)
= S(ai + bi + ci) .

For incompleteness, we see in Definition 1 that the computation of Ai does
not involve components of a, the one of Bi does not involve components of b
and the one of Ci does not involve components of c. Note that making this
statement valid for component i = 0 necessitates the swap when expressing the
output guards from the input shares of the last S-box: (C0, B0) = (bm, cm).

For uniformity, we observe that for each input x or each output X there are
exactly 22(m+1)n valid sharings. If the mapping of Definition 1 is an invertible
mapping from (a, b, c) to (A,B,C), it implies that if (a, b, c) is a uniform sharing
of x, then (A,B,C) is a uniform sharing of X. It is therefore sufficient to show
that the mapping of Definition 1 is invertible. We will do that by giving a method
to compute (a, b, c) from (A,B,C).

We compute the components of (a, b, c) starting from index m down to 0. First
we compute the shares bm and cm from the output guards. We have bm = C0

and cm = B0. Then we use the correctness property to compute the component
xm from Xm = Am + Bm + Cm by applying the inverse S-box yielding am =
xm + bm + cm. From this we compute the output components of the S-box.
This allows us again to compute bm−1 and cm−1. Concretely, we can iterate the
following loop for i going from m down to 1:

ai = S−1(Ai + Bi + Ci) + bi + ci

bi−1 = Sc(ai, bi) + Ci

ci−1 = Sb(ai, ci) + Bi . ��
The term “guards” refers to the dummy components b0 and c0 that are

there to guard uniformity and that are “changed” to B0 and C0 by the shared
implementation of the S-box layer.

The cost of this method is the addition of 4 XOR gates per bit of x and the
expansion of the representation by 2n bits. The cost of additional XOR gates is
typically not negligible but still relatively modest compared to the gates in the
S-box sharing. For a typical S-box layer the expansion of the state is very small.

When applying this method to an iterated cipher that has a round function
consisting of an S-box layer and a linear layer, one can do the following. The
sharing of the S-box layer maps (a, b, c) to (A,B,C) and the linear layer is
applied to the shares separately. In the linear mapping the guard components
B0 and C0 are simply mapped to the components b0 and c0 of the next round
by the identity.

It is likely that the swapping that takes place between the guards is not
necessary, but it does simplify the proof for the incompleteness aspect.

Changing of the Guards: A Simple and Efficient Method 143

3 Generalization to Any Invertible S-box Layer

Here we give a method for an S-box layer with only restriction that the com-
ponent S-boxes have the same width and are all invertible. So this includes the
case that the S-boxes are different and even the case that they have different
algebraic degrees. We assume the maximum degree over all S-boxes of the layer
is d and so we can produce a correct and incomplete threshold scheme with d+1
shares. We denote the shares by x0 to xd and component j of share i by xj

i .
In the generalization there are d guard components instead of two. Similarly

to the three-share implementation, there is no guard for the first share (a or x0).
The schedule for adding shares from the neighboring S-box is somewhat more
complicated. There are four cases, depending on the index j of the output share
considered:

j > 2 : add input shares j − 1 and j − 2 of its neighboring S-box;
j = 2 : add input share 1 of its neighboring S-box;
j = 1 : add input share d of its neighboring S-box;
j = 0 : add input shares d and d − 1 of its neighboring S-box.

Clearly, input shares with index 0 are not added to the neighboring S-box
output share. All other input shares are added to exactly two output shares of
the neighboring S-box. We depict the treatment of the output of shared S-box
of index i for a threshold scheme with 6 shares in Fig. 2. The S-box inputs have
been omitted for not crowding the picture. We now provide the more formal
definition.

Fig. 2. Example of the generic method, depicting treatment of output of shared S-box i.

Definition 2. The Changing of the Guards sharing of an S-box layer with
(S0

i , S1
i , . . . , Sd

i) a sharing of Si, mapping (x0, x1, x2, . . . , xd) to (X0,X1,X2, . . . ,

Xd), is given by (with xi \ xj
i denoting the vector of d elements xj′

i for j′ �= j):

X0
i = S0

i (xi \ x0
i) + xd−1

i−1 + xd
i−1 for i > 0

X1
i = S1

i (xi \ x1
i) + xd

i−1 for i > 0

X2
i = S2

i (xi \ x2
i) + x1

i−1 for i > 0
· · ·

144 J. Daemen

Xj
i = Sj

i (xi \ xj
i) + xj−2

i−1 + xj−1
i−1 for i > 0

· · ·
Xd

i = Sd
i (xi \ xd

i) + xd−2
i−1 + xd−1

i−1 for i > 0

Xj
0 = xj+1

m for j > 0

Xd
0 = x1

m

We can now prove the following theorem.

Theorem 2. Let S be an S-box layer consisting of invertible n-bit S-boxes Si

with 1 ≤ i ≤ m, where the S-boxes Si may be different and where d is the
maximum degree over all these S-boxes. Let (S0

i , S1
i , . . . Sd

i) with 1 ≤ i ≤ m
be correct and incomplete sharing of Si with d + 1 shares. Then the sharing of
Definition 2 is a correct, incomplete and uniform sharing of the S-box layer with
Si as components.

Proof. Correctness follows from the correctness of the individual S-box sharings
and the fact that each input component that is fed forward to the output of its
neigboring components is added twice. We have for all i > 0:
∑

j

Xj
i =

⎛

⎝
∑

j

Sj
i (xi \ xj

i)

⎞

⎠+

⎛

⎝
∑

j>2

xj−2
i−1 + xj−1

i−1

⎞

⎠+
(
xd−1
i−1 + xd

i−1

)
+
(
xd
i−1

)
+
(
x1
i−1

)

= Si(xi) +

⎛

⎝
∑

0<j<d−1

xj
i−1

⎞

⎠+

⎛

⎝
∑

1<j<d

xj
i−1

⎞

⎠+ xd−1
i−1 + x1

i−1

= Si(xi) .

For incompleteness, we see in Definition 2 that the computation of Xj
i does

not involve components of xj as in the S-box input xj
i is excluded and the inputs

of the neighboring S-box that are added are taken from shares j − 1 and j − 2
(modulo d + 1 for j < 2). Moreover, there is a (cyclic) swap taking place in the
mapping from the input shares of the last S-box to the output guards to ensure
this.

For uniformity, it is again sufficient to show that the mapping of
Definition 2 is invertible. We give a method to compute (x0, x1, x2, . . . , xd) from
(X0,X1,X2, . . . , Xd).

We compute the components of (x0, x1, x2, . . . , xd) starting from index m
down to 0. From Definition 2 it is immediate that x1

m = Xd
0 and then x2

m =
X1

0 , x3
m = X2

0 , x4
m = X3

0 , . . . xd
m = Xd−1

0 . Then we can iterate the following loop
for i going from m down to 1:

x0
i = S−1

i (
∑

j

Xj
i) +

∑

j>0

xj
i

xd
i−1 = S1

i (xi \ xj
i) + X1

i

x1
i−1 = S2

i (xi \ x2
i) + X2

i

Changing of the Guards: A Simple and Efficient Method 145

x2
i−1 = S3

i (xi \ x3
i) + X3

i + x1
i−1

x3
i−1 = S4

i (xi \ x4
i) + X4

i + x2
i−1

· · ·
xd−1

i−1 = Sd
i (xi \ xj

i) + Xd
i + xd−2

i−1 .

��
As said, our method applies also to heterogeneous S-box layers, i.e., S-box

layers with different S-boxes. Such layers are quite rare in modern cryptogra-
phy, especially after the benefits of symmetry became clear. The block cipher
DES [26] is a notable exception to this, but one may argue whether that is a
modern cipher. In any case, one may ask how the method applies to S-box layer
in the DES F-function as it consists of non-invertible S-boxes. Remarkably, as
was stated by Boss et al. [11] and mathematically explained by the same team
[12], in Feistel networks where the S-box layer is embedded in a function whose
output is (bitwise) added to part of the state, uniformity is achieved automati-
cally. Basically, thanks to the Feistel construction the shared round function is
a permutation and hence uniform. So, if the algebraic degree of the S-box layer
is d, it is sufficient to represent the state by d + 1 shares and have a threshold
implementation for the S-boxes that is correct and incomplete.

4 Application to the Sharing χ′ for Keccak

Keccak-p is the permutation underlying our hash function Keccak [2,28], our
authenticated encryption schemes Keyak [4] and Ketje [3] and is defined in
the Keccak reference [2] and NIST standard [28].

4.1 The Sharing χ′ of the Nonlinear Layer in Keccak

The nonlinear layer in Keccak-p is called χ. It has algebraic degree 2 over
GF(2) and operates independently on 5-bit rows. If we denote the elements of
a row by x0 to x4, the mapping χ applied to a single row is defined as (with
addition and multiplication over GF(2) and indices � ∈ Z5 taken modulo 5):

X� = x� + (x�+1 + 1)x�+2 .

Note that the state of Keccak-p is a three-dimensional array and we only
represent the intra-row index here by � for clarity as we look here at a single
row.

In [1] we proposed a correct and incomplete sharing of χ with 3 shares and
called it χ′. As she mapping χ operates independently on 5-bit rows and conse-
quently χ′ operates in parallel on 15-bit units. If we denote the three shares by
a, b and c, χ′ is defined as:

A� = b� + (b�+1 + 1)b�+2 + b�+1c�+2 + b�+2c�+1, (1)

B� = c� + (c�+1 + 1)c�+2 + c�+1a�+2 + c�+2a�+1, (2)

C� = a� + (a�+1 + 1)a�+2 + a�+1b�+2 + a�+2b�+1, (3)

146 J. Daemen

4.2 The Multi-transformation Property

The mapping χ′ has a remarkable property that we can exploit to reduce the
overhead due to the “Changing of the Guards” method. We call this a multi-
transformation property, inspired by the concept of multi-permutations proposed
by Schnorr and Vaudenay [30]. Loosely speaking, an n-bit transformation has a
multi-transformation property of order r if for any input, the bits in r specific
positions in the input and the bits in n− r specific positions in the output, with
r < n, together fully determine the remaining n − r bits of the input. We now
give a more rigorous definition.

Definition 3 (Transformation property with respect to an index sub-
set). Let f be a transformation operating on vectors of n bits (x0, x1, . . . , xn−1)
and let us denote the bits of f(x0, x1, . . . , xn−1) by (xn, xn+1, . . . , x2n−1). We
can now represent f by a set F of 2n vectors of the form (x0, x1, . . . , x2n−1). Let
S be a subset with n elements of the set of indices of these vectors, i.e., S ⊂ Z2n.
Then we say f has the transformation property with respect to S if the set F
has no two elements that are equal in all components in S, or equivalently:

∀x ∈ F : #{y | ∀i ∈ S : xi = yi} = 1.

We call r = #(S ∩ Zn) the order of the transformation property.

Clearly, any n-bit transformation f has a transformation property of order n
with respect to S = Zn. So if it has the transformation property with respect to
an additional set S, we call it a multi-transformation. Note that any permutation
f has a transformation property of order 0 with respect S = Z2n \ Zn. In the
context of this paper we are interested in finding a multi-transformation property
in S-box threshold implementations that are not uniform and hence are not
permutations.

4.3 Using the Multi-transformation Property of χ′

The mapping χ′ restricted to a single row is a transformation operating on 15
bits. We can show it has a transformation property of order 6. The consequence
of this is that we can reduce the size of the guards from 10 bits to 4 bits and the
number of bitwise addition operations per row to 8.

We first need to introduce some notation. For a 5-bit vector s, let
L(s) � (s0, s1, s2) and R(s) � (s3, s4). Similarly, we define L(a, b, c) �
(a0, b0, c0, a1, b1, c1, a2, b2, c2) and R(a, b, c) � (a3, b3, c3, a4, b4, c4).

Lemma 1. For any of the 215 choices of L(A,B,C),R(a, b, c), there is exactly
one solution L(a, b, c),R(A,B,C) such that (A,B,C) = χ′(a, b, c).

Changing of the Guards: A Simple and Efficient Method 147

Proof. We describe how to compute L(a, b, c),R(A,B,C) from L(A,B,C),
R(a, b, c). We rewrite each of the Eq. (1) by switching lefthand term and first
terms on the righthand from side:

b� = A� + (b�+1 + 1)b�+2 + b�+1c�+2 + b�+2c�+1,

c� = B� + (c�+1 + 1)c�+2 + c�+1a�+2 + c�+2a�+1,

a� = C� + (a�+1 + 1)a�+2 + a�+1b�+2 + a�+2b�+1,

We can use these equations for computing (a2, b2, c2) by taking � = 2. Clearly
the first term on the righthand side is part of L(A,B,C) and the remaining terms
are expressed in terms of bits in R(a, b, c). We can now use this equation with
� = 1 to compute (a1, b1, c1) using the acquired value of (a2, b2, c2). This can be
repeated for � = 0 giving us the full knowledge of (a, b, c). From (a, b, c) we can
compute (A,B,C) using Eq. (1) and hence we also know R(A,B,C). ��

We can use Lemma 1 to apply a variant of the “Changing of the Guards”
method to χ′ that requires less state expansion and XOR gates due to the
feedforward. We call it χ′′.

Definition 4. The χ′′ sharing of χ is given by:

R(Ai) = R(χ′
a(bi, ci)) + R(bi−1) + R(ci−1) for i > 0

R(Bi) = R(χ′
b(ai, ci)) + R(ci−1) for i > 0

R(Ci) = R(χ′
c(ai, bi)) + R(bi−1) for i > 0

L(Ai) = L(χ′
a(bi, ci)) for i > 0

L(Bi) = L(χ′
b(ai, ci)) for i > 0

L(Ci) = L(χ′
c(ai, bi)) for i > 0

R(B0) = R(cm)
R(C0) = R(bm) .

Here the indexing i assumes rows arranged in a one-dimensional array. In
Keccak-p this is a two-dimensional array indexed by y and z. It is however
simple to adopt a convention for converting this to a single-dimensional one,
e.g. i = y + 5z.

Note that L(b0), L(c0), L(B0) and L(C0) do not occur in the computations. We
can therefore reduce the guards to their 2-bit right parts: R(b0), R(c0), R(B0)
and R(C0).

The total expansion of the state reduces from 2 times the S-box width
(totalling to 10 bits) to 4 bits. Moreover, there are only 8 XOR gates per S-
box, i.e. 1.6 per native bit instead of 4 additional XOR gates per native bit.
In the context of the χ′ sharing the computational overhead is very small, as
implementing Eq. (1) requires 9 XOR gates and 9 (N)AND gates per native bit.
Note that the multi-transformation technique can be applied to other primitives
that use a variant of χ as nonlinear layer.

We can now prove the following theorem.

148 J. Daemen

Theorem 3. χ′′ as defined in Definition 4 is a correct, incomplete and uniform
sharing of χ.

Proof. Correctness and incompleteness is immediate. For proving uniformity we
describe how to compute (a, b, c) from (A,B,C). We compute the components
of (a, b, c) starting from index m down to 0. First we have R(bm) = R(C0) and
R(cm) = R(B0). Then we can iterate the following loop going from m down to
1, computing ai,L(bi),L(ci) and R(bi−1),R(ci−1):

– R(ai) = R(S−1(Ai + Bi + Ci)) + R(bi) + R(ci)
– compute L(ai, bi, ci) from L(Ai, Bi, Ci),R(ai, bi, ci) using Lemma 1
– R(bi−1) = R(Sc(ai, bi)) + R(Ci)
– R(ci−1) = R(Sb(ai, ci)) + R(Bi). ��

5 Implementation Aspects

In this section we discuss suitability of our method for decomposed S-boxes,
parallel and serial architectures.

5.1 Compatibility with Serial Decomposition of S-boxes

To reduce the number of shares, one has proposed the serial decomposition of
S-boxes in S-boxes of lower degree. Notably, Kutzner et al. decomposed all 4-bit
S-boxes of algebraic degree 3 into component degree-2 mappings [21] in such a
way that for each of the components a correct, incomplete and uniform 3-share
threshold scheme can be found. One may wonder whether our method can be
combined with such decomposition.

As a matter of fact, when “Changing of the Guards” is applied, the require-
ments on the decomposition due to sharing vanish: it suffices to find a decom-
position of an invertible S-box as the series of two degree-2 S-boxes. If such a
decomposition exists, but if no uniform sharing for one or both component S-
boxes can be found, our method comes to the rescue. In Fig. 3 we illustrate it for
the case that the “Changing of the Guards” is applied to both layers. Note that
the uniformity of the composed mapping follows directly from the uniformity of
the component mappings.

One can see that in between the two layers, there is a register or latch. This
results in an increase of latency. The output guards of the first step are used
as input guards for the second step. If one of the two layers would not require
“Changing of the Guards”, the guards would just skip that step. For example, if
the first layer would not use the method, the incoming guards b0, c0 would not
be used the first layer but directly in the second layer and the outcoming guards
A0, B0 would be produced by the second layer.

In the case of more complex decompositions that combine serial and par-
allel composition, our “Changing of the Guards” cannot be readily applied.
Especially if the decomposition contains building blocks that are not permu-
tations. A well-known example of such decompositions are the ones applied to

Changing of the Guards: A Simple and Efficient Method 149

Fig. 3. Changing of the Guards applied to a layer of serially decomposed S-boxes.

the S-box of our cipher Rijndael [15] by Moradi et al. [22] and Bilgin et al. [7].
As the Rijndael S-box has algebraic degree 7 in GF(2) and hence would require
8 shares, a straightforward implementation of our proposed method would be
very expensive. Due to the status of Rijndael as worldwide block cipher stan-
dard [27], it would be interesting further work to find a decomposition of the
Rijndael S-box in terms of components that are all permutations of low alge-
braic degree.

5.2 Implementation Cost in Parallel Architectures

In a parallel architecture where the full round function is implemented in a
block of combinatorial logic, the cost of the basic method is d XOR gates per
bit plus d/m additional registers per bit. Introducing an extra share costs a
single additional register per bit, plus possibly additional combinatorial logic. It
follows that in parallel architectures the method becomes less and less interesting
as d grows. It is at its best for protecting degree-2 functions, especially when
a multi-transformation property can be exploited as in Keccak. As a matter
of fact, Bilgin et al. [6] compare Keccak 4-share circuits with ones protected
with a method that only differs from our method by the fact that the 4 bits of
additional state are generated randomly every round, and hence the numbers
reported there are expected to be very close to what we would achieve. A 4-
share fully parallel implementation of Keccak-f [1600] turns out to be about
20% more expensive than a 3-share guards-like one.

5.3 Implementation Cost in Serial Architectures

In serial architectures, the combinatorial logic can be limited to a fraction of
the round function and one round takes multiple cycles. In the extreme case,
this logic would only contain a single implementation of the (shared) S-box. In
Fig. 4 we illustrate two cases to show that our method is compatible with such
an architecture, both zooming in on the circuit implementing the shared S-box.

150 J. Daemen

It can be seen that the combinatorial logic is extended with two registers (called
guard) for keeping the inputs of the previous S-box computation. Figure 4 should
give a good idea of how these circuits operate, but are not fully self-explanatory
as we omit some details to not overload the pictures. The single-stage circuit
operates as follows:

– The S-box input arrives in the boxes indicated by in. Depending on the archi-
tecture these can be registers, the output of another combinatorial block or a
multiplexer.

– The operation of the guard registers:
• At the beginning of the computation, they are initialized to random values

(not depicted).
• While processing an S-box layer, they get their input from the in boxes.
• After processing the last S-box of a layer, they keep their value but swap

contents (not depicted).
– The S-box output is presented in the boxes indicated by out for further

processing or storage. The guards never leave the guard registers.

The two-stage circuit is a pipeline and operates similarly to the single-stage one,
with the following refinements:

– During operation the first stage will always be one S-box ahead of the second
stage. This implies that the processing of a layer of m S-boxes will take m+1
cycles.

– The guard register of the first stage operate similarly to the single-stage case.
The only difference is that after the last S-box of a layer has been processed,

Fig. 4. Circuit for shared S-box computation in serial architecture, single-stage (left),
two-stage (right)

Changing of the Guards: A Simple and Efficient Method 151

they get their values from the guard registers of the second stage (not depicted
to not overload the figure).

– The operation of the guard registers of the second stage:
• At the beginning of the computation, they are initialized to random values

(not depicted).
• While processing an S-box layer, they get their input from the from the

registers or latches, indicated by reg, in between the two stages.
• After processing the last S-box of a stage, they get their value from the

guard registers of the first stage.

In a serial implementation the guard registers have a higher relative overhead
when comparing to the combinatorial circuit alone. However, when the real estate
for keeping the state is also counted, an additional share is much more expensive
than some additional XOR gates and guard registers. The exercise by Bilgin
et al. [6] reports on 4-share serialized architectures that are 30% more expensive
than a 3-share guards-like one.

6 Conclusions

In this paper we introduce a simple and low cost technique for achieving a 3-share
correct, incomplete and uniform threshold implementation of the nonlinear layer
in Keccak. We have generalized this to a generic technique for achieving a d+1-
share correct, incomplete and uniform threshold implementation of any S-box
layer of invertible S-boxes that have degree at most d. Looking for S-boxes with
uniform threshold implementations with the minimum (d + 1) number of shares
has therefore lost relevance. On the other hand, it becomes now interesting to
look for S-boxes that have d + 1-share implementations with a suitable multi-
transformation property, such as observed in the nonlinear layer of Keccak.

Acknowledgements. I thank Gilles Van Assche, Vincent Rijmen, Begül Bilgin,
Svetla Nikova and Ventzi Nikov for working with me on the paper [6], that already
contained an idea very close to the “Changing of the Guards” technique, Guido Bertoni
for inspiring discussions and finally Lejla Batina and Amir Moradi for useful feedback
on earlier versions of this text.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis
resistant implementations of Keccak. In: Second SHA-3 Candidate Conference,
August 2010

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference,
January 2011. http://keccak.noekeon.org/

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2, September 2016. http://ketje.noekeon.org/

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR sub-
mission: Keyak v2, document version 2.2, September 2016. http://keyak.noekeon.
org/

http://keccak.noekeon.org/
http://ketje.noekeon.org/
http://keyak.noekeon.org/
http://keyak.noekeon.org/

152 J. Daemen

5. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. IACR Cryp-
tology ePrint Archive 2016:715 (2016)

6. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.: Efficient
and First-Order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham
(2014). doi:10.1007/978-3-319-08302-5 13

7. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014).
doi:10.1007/978-3-319-06734-6 17

8. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implemen-
tations of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33027-8 5

9. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptogr. Commun. 7(1), 3–33 (2015)

10. Božlov, D., Bilgin, B., Sahin, H.: A note on 5-bit quadratic permutations’ classifi-
cation. IACR Trans. Symmetric Cryptol. 2017(1), 398–404 (2017)

11. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit S-boxes with efficient masking in hardware. In Gierlichs, B., Poschmann, A.Y.
(eds.) [18], pp. 171–193 (2016)

12. Boss, E., Grosso, V., Güneysu, T., Leander, G., Moradi, A., Schneider, T.: Strong
8-bit sboxes with efficient masking in hardware extended version. J. Cryptogr. Eng.
7(2), 149–165 (2017)

13. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does
coupling affect the security of masked implementations? IACR Cryptology ePrint
Archive 2016:1080 (2016)

14. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d + 1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) [18],
pp. 194–212 (2016)

15. Daemen, J., Rijmen, V.: The Design of Rijndael — AES, the Advanced Encryption
Standard. Springer, Heidelberg (2002)

16. Daemen, J.: Spectral characterization of iterating lossy mappings. IACR Cryptol-
ogy ePrint Archive 2016:90 (2016)

17. Daemen, J.: Spectral characterization of iterating lossy mappings. In: Carlet, C.,
Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 159–178.
Springer, Cham (2016). doi:10.1007/978-3-319-49445-6 9

18. Gierlichs, B., Poschmann, A.Y. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2016–Proceedings of the 18th International Conference, Santa
Barbara, CA, USA, 17–19 August 2016. LNCS, vol. 9813. Springer (2016)

19. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

21. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-Bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91–108. Springer, Cham (2014). doi:10.1007/978-3-319-12160-4 6

http://dx.doi.org/10.1007/978-3-319-08302-5_13
http://dx.doi.org/10.1007/978-3-319-06734-6_17
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-642-33027-8_5
http://dx.doi.org/10.1007/978-3-319-49445-6_9
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-12160-4_6

Changing of the Guards: A Simple and Efficient Method 153

22. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

23. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

24. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-00730-9 14

25. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

26. NIST: Federal information processing standard 46, data encryption standard
(DES), October 1999

27. NIST: Federal information processing standard 197, advanced encryption standard
(AES), November 2001

28. NIST: Federal information processing standard 202, SHA-3 standard: permutation-
based hash and extendable-output functions, August 2015. doi:10.6028/NIST.
FIPS.202

29. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 764–783. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 37

30. Schnorr, C.P., Vaudenay, S.: Parallel FFT-hashing. In: Anderson, R.J. (ed.) FSE
1993. LNCS, vol. 809, pp. 149–156. Springer, Heidelberg (1994). doi:10.1007/
3-540-58108-1 18

31. Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT
solvers. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 140–160. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-52993-5 8

http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.1007/978-3-642-00730-9_14
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1007/978-3-662-47989-6_37
http://dx.doi.org/10.1007/3-540-58108-1_18
http://dx.doi.org/10.1007/3-540-58108-1_18
http://dx.doi.org/10.1007/978-3-662-52993-5_8

Generalized Polynomial Decomposition
for S-boxes with Application to Side-Channel

Countermeasures

Dahmun Goudarzi1,2(B), Matthieu Rivain1, Damien Vergnaud2,
and Srinivas Vivek3

1 CryptoExperts, Paris, France
{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

2 ENS, CNRS, INRIA, PSL Research University, Paris, France
damien.vergnaud@ens.fr

3 University of Bristol, Bristol, UK
sv.venkatesh@bristol.ac.uk

Abstract. Masking is a widespread countermeasure to protect imple-
mentations of block-ciphers against side-channel attacks. Several mask-
ing schemes have been proposed in the literature that rely on the efficient
decomposition of the underlying s-box(es). We propose a generalized
decomposition method for s-boxes that encompasses several previously
proposed methods while providing new trade-offs. It allows to evaluate
nλ-bit to mλ-bit s-boxes for any integers n, m, λ ≥ 1 by seeing it a
sequence of m n-variate polynomials over F2λ and by trying to minimize
the number of multiplications over F2λ .

Keywords: S-box decomposition · Multiplicative complexity · Side-
channel countermeasure · Masking · Software implementation ·
Block-cipher

1 Introduction

Implementing cryptographic algorithms in constrained embedded devices is a
challenging task. In the 1990s, Kocher et al. [Koc96,KJJ99] showed that one
may often use the physical leakage of the underlying device during the algorithm
execution (e.g., the running-time, the power consumption or the electromagnetic
radiations) to recover some secret information. Side-channel analysis is the class
of cryptanalytic attacks that exploit such physical emanations to hinder the
strength of the underlying cryptography.

One of the most common technique to protect implementations against side-
channel attacks is to mask internal secret variables. This so-called masking tech-
nique [GP99,CJRR99] splits every sensitive data manipulated by the algorithm
(which depends on the secret key and possibly on other variables known to the
attacker) into d + 1 shares (where d ≥ 1, the masking order, plays the role of a

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 154–171, 2017.
DOI: 10.1007/978-3-319-66787-4 8

Generalized Polynomial Decomposition for S-boxes 155

security parameter). The first d shares are usually generated uniformly at ran-
dom and the last one is computed so that the combination of the d+1 shares for
some group law is equal to the initial value. With this technique, the attacker
actually needs the whole set of d+1 shares to learn any information on the initial
value. Since each share’s observation comes with noise, the higher is the order
d, the more complex is the attack [CJRR99,PR13]. This masking approach per-
mits to achieve provable security in formal security models, notably the probing
security model [ISW03] and the noisy leakage model [PR13,DDF14].

Most symmetric cryptographic algorithms manipulate binary data x ∈
{0, 1}n (for some integer n ≥ 1) and the natural group law used for masking
is the Boolean XOR ⊕ over F2 (or more generally addition in the finite field F2n

or in the vector space F
n
2). Using this Boolean masking, each sensitive data x is

thus split into d+1 shares x0, . . . , xd whose addition returns the initial value (i.e.
x = x0 ⊕ x1 ⊕ · · · ⊕ xd). One can then compute securely any linear function f of
the sensitive value x since a sharing of y = f(x) is readily obtained by computing
yi = f(xi) for i ∈ {0, . . . , d} (such that y = y0⊕y1⊕· · ·⊕yd). It is unfortunately
not so easy to compute a sharing of f(x) for non-linear functions f but solutions
were proposed for multiplication (e.g. see [ISW03,RP10,BBP+16]). However, if
the evaluation cost of linear function is linear in d, the best known algorithms
for multiplication have O(d2) computational complexity.

In practice, iterative block cipher (such as AES) apply several time a round
function to an internal state composed itself usually of a linear round key addi-
tion, of linear operations to ensure diffusion and of non-linear operations (usually
called s-boxes) to ensure confusion. The main issue to provide secure imple-
mentation of block ciphers is thus to provide an efficient and secure way to
mask the s-box(es). The most widely-used solution is to consider their represen-
tation as polynomial functions over finite fields F2n (using Lagrange’s inter-
polation theorem) and to find an efficient way to evaluate this polynomial
using a minimal number of multiplications. In this paper, we present a gen-
eralization of known methods and we obtain new interesting construction for
efficiency/memory trade-offs.

1.1 Related Work

The first generic method to mask any s-box at any masking order d was proposed
in 2012 by Carlet, Goubin, Prouff, Quisquater and Rivain [CGP+12] (following
prior work by Rivain and Prouff for the AES block cipher [RP10]). The core
idea is to split into simple operations over F2n (namely, addition, multiplication
by constant, squaring and regular multiplication of two distinct elements), the
evaluation of the polynomial representation of the s-box. Among these opera-
tions, only the regular multiplication of two distinct elements is non-linear (since
squaring over a characteristic 2 finite field is actually linear), and one can use
the secure multiplication algorithms mentioned above [ISW03,RP10,BBP+16]
to evaluate them. Since these operations have O(d2) complexity, it is interest-
ing to propose an evaluation scheme of the polynomial with as few as possible
regular multiplications. Carlet et al. [CGP+12] defined the masking complexity

156 D. Goudarzi et al.

(also known as multiplicative complexity and non-linear complexity) of an s-box
as the minimal number of such multiplications necessary to evaluate the corre-
sponding polynomial and they adapted known methods for polynomial evalua-
tion based on addition chains (see [CGP+12] for details).

This technique was later improved by Roy and Vivek in [RV13] using cyclo-
tomic cosets addition chains. They notably presented a polynomial evaluation
method for the DES s-boxes that requires 7 non-linear multiplications (instead
of 10 in [CGP+12]). They also presented lower-bound on the length of such a
chain and showed that the multiplicative complexity of the DES s-boxes is lower
bounded by 3. In 2014, Coron, Roy and Vivek [CRV14] proposed an heuristic
method which may be viewed as an extension of the ideas developed in [CGP+12]
and [RV13]. The so-called CRV method considers the s-box as a polynomial over
F2n and has heuristic multiplicative complexity O(2n/2/

√
n) instead of O(2n/2)

proven multiplicative complexity for the previous methods. They also proved a
matching lower bound of Ω(2n/2/

√
n) on the multiplicative complexity of any

generic method to evaluate n-bit s-boxes. For all the tested s-boxes their method
is at least as efficient as the previous proposals and it often requires less non-
linear multiplications (e.g. only 4 for the DES s-boxes).

In [GR16], Goudarzi and Rivain introduced a new method to decompose
an s-box into a circuit with low multiplicative complexity. One can see their
approach as a way to model the s-box as a polynomial over F

n
2 (instead of F2n)

and it consists in applying masking at the Boolean level by bitslicing the s-boxes
within a block cipher round. The proposed decomposition then relies on the one
proposed by Coron et al. [CRV14] and extends it to efficiently deal with several
coordinate functions. The schemes from [ISW03,RP10,BBP+16] can then be
used to secure bitwise multiplication and the method allows to compute all the
s-boxes within a cipher round at the same time.

Finally, in [PV16], Pulkus and Vivek generalized and improved Coron et al.
technique [CRV14] by working over slightly larger fields than strictly needed
(i.e. they considered the s-box as a polynomial over F2t instead of F2n , where
t ≥ n). Their technique permits notably to evaluate DES s-boxes with only 3
non-linear multiplications over F28 (compared to 4 over F26 with Coron et al.
method [CRV14]).

1.2 Our Results

We propose a generalized decomposition method for s-boxes that unifies these
previously proposed methods and provides new median case decompositions.
More precisely, in our approach any nλ-bit s-box for some integers n ≥ 1 and
λ ≥ 1 can be seen as a polynomial (or a vector of m ≥ 1 polynomials) over
F

n
2λ . We first prove a lower bound of Ω(2λn/2

√
m/λ) for the complexity of any

method to evaluate nλ-bit to mλ-bit s-boxes. We then describe our general-
ized decomposition method for which we provide concrete parameters to achieve
decomposition for several triplet (n,m, λ) and for exemplary s-boxes of popu-
lar block ciphers (namely PRESENT [BKL+07], SC2000 [SYY+02], CLEFIA
[SSA+07] and KHAZAD [BR00]).

Generalized Polynomial Decomposition for S-boxes 157

Depending on the s-box, our generalized method allows one to choose the
parameters n, m and λ to obtain the best possible s-box decomposition in terms
of multiplications over F2λ . In particular, for 8 × 8 s-boxes, the CRV decompo-
sition method [CRV14] (n = 1, m = 1, λ = 8) and the bitslice decomposition
method [GR16] (n = 8, m = 8, λ = 1) are special cases of this generalized
decomposition method. The implementation results provided in Sect. 6 (8 × 8
s-boxes on a 32-bit ARM architecture) show that our method is comparable
with [CRV14] while being more space efficient. It is therefore a good alternative
to prior techniques and can be effectively implemented in software on devices
with limited resources.

In the full version of this paper, we generalize the method further by explor-
ing the problem of decomposing arbitrary (n,m)-bit s-boxes over an arbitrary
field F2λ . Namely we do not require that λ divides the s-box input and output
bit-lengths. This allows us to also integrate, in addition to [CRV14,GR16], the
method of [PV16] that considers decomposition when λ ≥ n.

2 Preliminaries

2.1 Notations and Notions

Let λ be a positive integer. Then F2λ denotes the finite field with 2λ elements.
Let Fλ,n be the set of functions from F

n
2λ to F2λ . Using Lagrange’s interpolation

theorem, any function f ∈ Fλ,n can be seen as a multivariate polynomial over
F2λ [x1, x2, . . . , xn]/(x2λ

1 − x1, x
2λ

2 − x2, . . . , x
2λ

n − xn):

f(x) =
∑

u∈[0,2λ−1]n

au xu , (1)

where x = (x1, x2, . . . , xn), xu = xu1
1 · xu2

2 · . . . · xun
n , and au ∈ F2λ for every

u = (u1, . . . , un) ∈ [0, 2λ − 1]n.
The multiplicative complexity of a function in Fλ,n (also called the non-linear

complexity) is defined as the minimal number of F2λ -multiplications required to
evaluate it.

2.2 S-box Characterization

In the following, an s-box S is characterized with respect to 3 parameters: the
number of input elements n; the number of output elements m; and the bit-size
of the elements λ. In other words, an s-box with λn input bits and λm outputs
bits is represented as follows:

S(x) = (f1(x), f2(x), . . . , fm(x)), (2)

where functions f1, f2, . . . , fm ∈ Fλ,n are called the coordinate functions of S.
As mentioned in the introduction, Roy and Vivek presented in [RV13] lower-

bound on the length of cyclotomic coset addition chains and used it to derive a

158 D. Goudarzi et al.

logarithmic lower bound on the multiplicative complexity of an s-box (i.e. on the
minimal number of such multiplications necessary to evaluate the corresponding
polynomial). Coron et al. [CRV14] improved this lower bound and showed that
the non-linear complexity of any generic method to evaluate n-bit s-boxes when
seen as a polynomial defined over F2n is in Ω(2n/2/

√
n).

In the following section, we generalize their approach and provide a new lower
bound on the multiplicative complexity of a sequence of n-variate polynomials
over F2λ . Following [RV13], we define the multiplicative complexity notion for
such a sequence as follows:

Definition 1 (Polynomial chain). Let λ ≥ 1, n ≥ 1 and m ≥ 1 be three inte-
gers and let f1, . . . , fm ∈ F2λ [x1, . . . , xn] be a sequence of n-variate polynomials
over F2λ . A polynomial chain π for (f1, . . . , fm) is a sequence π = (πi)i∈{−n,...,�}
and a list (i1, . . . , im) ∈ {−n, . . . , �}m with

π−n = xn, π1−n = xn−1, . . . , π−1 = x1, π0 = 1,

πij
= fj(x1, . . . , xn) mod (x2λ

1 + x1, . . . , x
2λ

n + xn), ∀j ∈ {1, . . . , m},

and such that for every i ∈ {1, . . . , �}, one of the following condition holds:

1. there exist j and k in {−n, . . . , i − 1} such that πi = πj · πk;
2. there exist j and k in {−n, . . . , i − 1} such that πi = πj + πk;
3. there exists j in {−n, . . . , i − 1} such that πi = π2

j ;
4. there exists j in {−n, . . . , i − 1} and α ∈ F2λ such that πi = α · πj.

Given such a polynomial chain π for (f1, . . . , fm), the multiplicative complexity
of π is the number of times the first condition holds in the whole chain π. The
multiplicative complexity of (f1, . . . , fm) over F2λ , denoted M(f1, . . . , fm) is the
minimal multiplicative complexity over all polynomial chains for (f1, . . . , fm).

Remark 1. The multiplicative complexity is similar to the classical circuit com-
plexity notion in which we do not count the linear operations over F2λ (namely
addition, scalar multiplication and squaring operations). For any sequence of
n-variate polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn] we obviously have:

M(f1, . . . , fm) ≤ M(f1) + · · · + M(fm)

3 Multiplicative Complexity Lower Bound

In the next section, we will provide a heuristic method which given a sequence of
n-variate polynomials over F2λ provides an evaluation scheme (or a circuit) with
“small” multiplicative complexity. Following, Coron et al. [CRV14], Proposition 1
provides a Ω(2nλ/2

√
m/λ) lower bound on this multiplicative complexity. As in

[CRV14], the proof is a simple combinatorial argument inspired by [PS73].

Proposition 1. Let λ ≥ 1, n ≥ 1 and m ≥ 1 be three integers. There exists
f1, . . . , fm ∈ F2λ [x1, . . . , xn] a sequence of n-variate polynomials over F2λ such

that M(f1, . . . , fm) ≥
√

m2nλ

λ − (2n + m − 1).

Generalized Polynomial Decomposition for S-boxes 159

Proof. We consider a sequence of n-variate polynomials f1, . . . , fm in the alge-
bra F2λ [x1, . . . , xn] with multiplicative complexity M(f1, . . . , fm) = r for some
integer r ≥ 1. If we consider only the non-linear operations in a polynomial
chain of minimal multiplicative complexity π = (πi)i∈{−n,...,�}, we can see
that there exists indices m0,m1, . . . ,mn+r+(m−1) with mi ∈ {−n, . . . , �} for
i ∈ {0, . . . , n + r + (m − 1)} such that

– mj = −j − 1 for j ∈ {0, . . . , n − 1}
(i.e. πmj

= π−j−1 = xj+1 for j ∈ {0, . . . , n − 1});
– for k ∈ {n, . . . , n + r − 1}, there exist field elements βk, β′

k ∈ F2λ and
βk,i,j , β

′
k,i,j ∈ F2λ for (i, j) ∈ {0, . . . , k − 1} × {0, . . . , λ − 1} such that

πmk
=

⎛

⎝βk +
k−1∑

i=0

λ−1∑

j=0

βk,i,jπ
2j

mi

⎞

⎠ ·
⎛

⎝β′
k +

k−1∑

i=0

λ−1∑

j=0

β′
k,i,jπ

2j

mi

⎞

⎠

mod (x2λ

1 + x1, . . . , x
2λ

n + xn);

– for k ∈ {n + r, . . . , n + r + (m − 1)} there exist field elements βk ∈ F2λ and
βk,i,j ∈ F2λ for (i, j) ∈ {0, . . . , n + r − 1} × {0, . . . , λ − 1} such that

fk+1−(n+r) = πmk
= βk +

n+r−1∑

i=0

λ−1∑

j=0

βk,i,jπ
2j

mi
mod (x2λ

1 + x1, . . . , x
2λ

n + xn).

The total number of parameters β in this evaluation scheme of P is simply equal
to:

n+r−1∑

k=n

2 · (1 + k · λ) + m(1 + (n + r) · λ) = r2λ + r(λm + 2λn − λ + 2) + λmn + m

and each parameter can take any value in F2λ . The number of sequence of n-
variate polynomials f1, . . . , fm ∈ F2λ [x1, . . . , xn] with multiplicative complexity
M(f1, . . . , fm) = r is thus upper-bounded by 2λ(r2λ+r(λm+2λn−λ+2)+λmn+m).

Since the total number of sequence of n-variate polynomials f1, . . . , fm ∈
F2λ [x1, . . . , xn] defined mod (x2λ

1 +x1, . . . , x
2λ

n +xn) is ((2λ)2
nλ

)m, in order to be
able to evaluate all such polynomials with at most r non-linear multiplications,
a necessary condition is to have

r2λ + r(λm + 2λn − λ + 2) + λmn + m ≥ m2nλ

and therefore

r2λ + r(λm + 2λn − λ + 2) − (m2nλ − λmn − m) ≥ 0.

Eventually, we obtain

r ≥
√

λ4m2nλ + (λm + 2λn − λ + 2)2 − (λm + 2λn − λ + 2)
2λ

(3)

160 D. Goudarzi et al.

and

r ≥
√

4λm2nλ − 2(λm + 2λn − λ + 2)
2λ

≥
√

m2nλ

λ
− (2n + m − 1).

�	

4 Generalized Decomposition Method

In this section, we propose a generalized decomposition method for s-boxes that
aims at encapsulating previously proposed methods and at providing new median
case decompositions. Depending on the s-box, we can then choose the parameters
n, m and λ in order to obtain the best possible s-box decomposition in terms of
multiplications over F2λ . In particular, for 8×8 s-boxes, the CRV decomposition
method [CRV14] (n = 1, m = 1, λ = 8) and the bitslice decomposition method
[GR16] (n = 8, m = 8, λ = 1) are special cases of this generalized decomposition
method.

4.1 Decomposition of a Single Coordinate Function

Let us define the linear power class of a function φ ∈ Fλ,n, denoted by Cφ, as
the set

Cφ = {φ2i

: i = 0, . . . , λ − 1}. (4)

Intuitively, Cφ corresponds to the set of functions in Fλ,n that can be computed
from φ using only the squaring operation. It is not hard to see that {Cφ}φ are
equivalence classes partitioning Fλ,n. For any set B ⊆ Fλ,n, let us define the
linear power closure of B as the set

B =
⋃

φ∈B
Cφ

and the linear span of B as the set

〈B〉 =
{ ∑

φ∈B
aφφ

∣
∣ aφ ∈ F2λ

}
.

Let f be a function in Fλ,n. The proposed decomposition makes use of a
basis of functions B ⊆ Fλ,n and consists in writing f as:

f(x) =
t−1∑

i=0

gi(x) · hi(x) + ht(x), (5)

where gi, hi ∈ 〈B〉 and t ∈ N. By definition, the functions gi and hi can be
written as

gi(x) =
|B|∑

j=1

�j(ϕj(x)) and hi(x) =
|B|∑

j=1

�′
j(ϕj(x)),

Generalized Polynomial Decomposition for S-boxes 161

where the �j , �
′
j are linearized polynomials over Fλ,n (i.e. polynomials for which

the exponents of all the constituent monomials are powers of 2) and where
{ϕj}1≤j≤|B| = B. We now explain how to find such a decomposition by solving
a linear system.

Solving a Linear System. In the following, we shall consider a basis B such
that 1 ∈ B and we will denote B∗ = B \ {1} = {φ1, φ2, . . . , φ|B|−1}. We will
further heuristically assume |Cφi

| = λ for every i ∈ {1, 2, . . . , |B| − 1}. We then
get |B| = 1 + λ|B∗| = 1 + λ(|B| − 1).

We first sample t random functions gi from 〈B〉. This is simply done by picking
t · |B| random coefficients ai,0, ai,j,k of F2λ and setting gi = ai,0 +

∑
j,k ai,j,kφ2k

j

for every i ∈ [0, t − 1] where 1 ≤ k ≤ λ and 1 ≤ j ≤ |B| − 1. Then we search
for a family of t + 1 functions {hi}i satisfying (5). This is done by solving the
following system of linear equations over F2λ :

A · c = b (6)

where b = (f(e1), f(e2), . . . , f(e2nλ))T with {ei} = F
n
2λ and where A is a block

matrix defined as
A = (1|A0|A1| · · · |At), (7)

where 1 is the all-one column vector and where

Ai = (Ai,0|Ai,1| · · · |Ai,|B|−1) (8)

with
Ai,0 = (gi(e1), gi(e2), . . . , gi(e2nλ))T (9)

for every i ∈ [0, t], with

Ai,j =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

φj(e1) · gi(e1) φ2
j (e1) · gi(e1) ... φ2λ−1

j (e1) · gi(e1)
φj(e2) · gi(e2) φ2

j (e2) · gi(e2) ... φ2λ−1

j (e2) · gi(e2)

...
...

. . .
...

φj(e2nλ) · gi(e2nλ) φ2
j (e2nλ) · gi(e2nλ) ... φ2λ−1

j (e2nλ) · gi(e2nλ)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (10)

for every i ∈ [0, t − 1] and j ∈ [1, |B| − 1], and with

At,j =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

φj(e1) φ2
j (e1) ... φ2λ−1

j (e1)
φj(e2) φ2

j (e2) ... φ2λ−1

j (e2)

...
...

. . .
...

φj(e2nλ) φ2
j (e2nλ) ... φ2λ−1

j (e2nλ)

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

, (11)

for every j ∈ [1, |B| − 1].

162 D. Goudarzi et al.

It can be checked that the vector c, solution of the system, gives the coeffi-
cients of the hi’s over the basis B (plus the constant term in first position). A
necessary condition for this system to have a solution whatever the target vector
b (i.e. whatever the coordinate function f) is to get a matrix A of full rank. In
particular, the following inequality must hold:

(t + 1)|B| + 1 ≥ 2nλ . (12)

Another necessary condition to get a full-rank matrix is that the squared
linear power closure B × B spans the entire space Fλ,n. More details about the
choice of such basis are discussed in the following.

4.2 S-box Decomposition

Let S : x → (f1(x), f2(x), . . . , fm(x)) be an s-box. We could apply the above
decomposition method to each of the m coordinate functions fi, which could
roughly result in multiplying by m the multiplicative complexity of a single
function in Fλ,n. As suggested in [BMP13,GR16], we can actually do better: the
product involved in the decomposition of a coordinate function can be added
to the basis for the subsequent decompositions. Specifically, we start with some
basis B1 and, for every i ≥ 1, we look for a decomposition

fi(x) =
ti−1∑

j=0

gi,j(x) · hi,j(x) + hi,ti
(x), (13)

where ti ∈ N and gi,j , hi,j ∈ 〈Bi〉. Once such a decomposition has been found,
we carry on with the new basis Bi+1 defined as:

Bi+1 = Bi ∪ {gi,j · hi,j}ti−1
j=0 . (14)

This update process implies that, for each decomposition, the basis grows and
hence the number ti of multiplicative terms in the decomposition of fi might
decrease. In this context, the necessary condition on the matrix rank (see (12))
is different for every i. In particular, the number ti of multiplications at step i
satisfies:

ti ≥ 2nλ − 1
λ|B∗

i | + 1
− 1 , (15)

where as above B∗
i stands for Bi \ {1}.

4.3 Basis Selection

Let us recall that the basis B1 needs to be such that the squared basis B1 × B1

spans the entire space Fλ,n, i.e. 〈B1×B1〉 = Fλ,n in order to have a solvable linear
system. This is called the spanning property in the following. This property can
be rewritten in terms of linear algebra. For every S ⊆ Fλ,n, let us define Mat(S)

Generalized Polynomial Decomposition for S-boxes 163

as the (λn× |S|)-matrix for which each column corresponds to the evaluation of
one function of S in every point of Fn

2λ , that is

Mat(S) =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

ϕ1(e1) ϕ2(e1) ... ϕ|S|(e1)
ϕ1(e2) ϕ2(e2) ... ϕ|S|(e2)

...
...

. . .
...

ϕ1(e2nλ) ϕ2(e2nλ) ... ϕ|S|(e2nλ)

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

, (16)

where {ϕ1, ϕ2, . . . , ϕ|S|} = S. Then, we have

〈B1 × B1〉 = Fλ,n ⇐⇒ rank(Mat(B1 × B1)) = 2λn. (17)

To construct the basis B1, we proceed as follows. We start with the basis
composed of all monomials of degree 1 plus unity, i.e. the following basis:

B1 = {1, x1, x2, . . . , xn}. (18)

Then, we iterate B1 ← B1 ∪ {φ · ψ}, where φ and ψ are randomly sampled
from 〈B1〉 until reaching a basis with the desired cardinality and satisfying
rank(Mat(B1 × B1)) ≥ 2λn. We add the constraint that, at each iteration,
a certain amount of possible products are tried and only the best product is
added to the basis, namely the one inducing the greatest increase in the rank
of Mat(B1 × B1). To summarize, the construction of the basis B1 is given in the
following algorithm:

Algorithm 1. B1 construction algorithm
Input: Parameters λ, n, and N
Output: A basis B1 such that 〈B1 × B1〉 = Fλ,n

1. B1 = {1, x1, x2 . . . , xn}
2. rank = 0
3. while rank< 2nλ do
4. for i = 1 to N do
5. φ, ψ

$←− 〈B1〉
6. Si ← B1 ∪ {φ · ψ}
7. ri ← rank(Mat(Si × Si))
8. end for
9. j ← argmax ri

10. if rj = rank then
11. return error
12. end if
13. rank ← rj

14. B1 ← Sj

15. end while
16. return B1

164 D. Goudarzi et al.

Remark 2. In [GR16], the starting basis B1 is constructed from a basis B0 that
has the spanning property by design. In practice, the optimal parameters for
s-boxes are always obtained by taking B1 = B0 and could be improved with a
smaller basis. Our experiments showed that we can achieve a smaller basis B1

with the spanning property (hence slightly improving the optimal parameters
from [GR16]) with a random generation as described above. For instance, in the
Boolean case applied on a 8-bit s-box, Algorithm 1 easily finds a basis B1 of 26
elements (involving 17 multiplications) instead of 31 by taking B1 = B0 as in
[GR16].

4.4 Optimal Parameters

Assuming that satisfying the lower bound on ti (see (15)) is sufficient to get a
full-rank system, we can deduce optimal parameters for our generalized decom-
position method. Specifically, if we denote si = |B∗

i |, we get a sequence (si)i that
satisfies {

s1 = r + n

si+1 = si + ti with ti =
⌈
2nλ−1
λsi+1

⌉
− 1

(19)

for i = 1 to m−1, where r denotes the number of multiplications involved in the
construction of the first basis B1 (the n free elements of B1 being the monomials
x1, x2, . . . , xn). From this sequence, we can determine the optimal multiplicative
complexity of the method C∗ which then satisfies

C∗ = min
r≥r0

(r + t1 + t2 + · · · + tm) , (20)

where r0 denotes the minimal value of r for which we can get an initial basis B1

satisfying the spanning property (that is 〈B1 × B1〉 = Fλ,n) and where the ti’s
are viewed as functions of r according to the sequence (19).

Table 1 provides a set of optimal parameters r, t1, t2, . . . , tm and corre-
sponding C∗ for several s-box sizes and several parameters λ and n = m (as for
bijective s-boxes). For the sake of completeness, we included the extreme cases
n = 1, i.e. standard CRV method [CRV14], and λ = 1, i.e. Boolean case [GR16].
We obtain the same results as in [CRV14] for the standard CRV method. For the
Boolean case, our results slightly differ from [GR16]. This is due to our improved
generation of B1 (see Remark 2) and to our bound on the ti’s (see (15)) which
is slightly more accurate than in [GR16].

Table 2 gives the size of the smallest randomised basis we could achieve using
Algorithm 1 for various parameters. The number of tries made was N = 1000
before adding a product of random linear combination to the current basis.

5 Experimental Results

In this section, we report the concrete parameters for random and specific s-
boxes achieved using our generalized decomposition method. Table 3 compares

Generalized Polynomial Decomposition for S-boxes 165

Table 1. Theoretical optimal parameters for our decomposition method.

(λ, n) |B1| r t1, t2, . . . , tn C∗

4-bit s-boxes

(1,4)
7 2 2,1,1,1 7
8 3 1,1,1,1 7
9 4 1,1,1,1 8

(2,2)
4 1 2,1 4
5 2 1,1 4
6 3 1,1 5

(4,1)
3 1 1 2
4 2 1 3

6-bit s-boxes

(1,6)
14 7 4,3,2,2,2,2 22
15 8 4,3,2,2,2,2 23

(2,3)
8 4 4,2,2 12
9 5 3,2,2 12
10 6 3,2,2 13

(3,2)
6 3 3,2 8
7 4 3,2 9
8 5 2,2 9

(6,1)
4 2 3 5
5 3 2 5
6 4 2 6

8-bit s-boxes

(1,8)

24 17 9,7,6,5,4,4,4,3 59
25 18 9,7,5,5,4,4,4,3 59
28 19 9,6,5,5,4,4,4,3 59
29 20 8,6,5,5,4,4,4,3 59
30 21 8,6,5,5,4,4,4,3 60

(2,4)

15 9 9,5,4,4 31
16 10 8,5,4,4 31
17 11 8,5,4,3 31
18 12 7,5,4,3 31
19 13 7,5,4,3 32

(4,2)

8 5 8,4 17
9 6 7,4 17
10 7 6,4 17
11 8 6,3 17
12 9 5,3 17
13 10 5,3 18

(8,1)

5 3 7 10
6 4 6 10
7 5 5 10
8 6 4 10
9 7 3 10
10 8 3 11

(λ, n) |B1| r t1, t2, . . . , tn C∗

9-bit s-boxes

(1,9)
35 25 14,10,8,7,6,6,5,5,5 91
36 26 14,10,8,7,6,6,5,5,5 92
37 27 13,10,8,7,6,6,5,5,5 92

(3,3)

13 9 13,6,5 33
14 10 12,6,5 33
15 11 11,6,5 33
16 12 11,6,5 34

(9,1)
8 6 7 13
9 7 6 13
10 8 6 14

10-bit s-boxes

(1,10)
49 38 20,14,12,10,9,8,8,7,7,7 140
50 39 20,14,12,10,9,8,8,7,7,7 141
51 40 20,14,12,10,9,8,8,7,7,7 142

(2,5)
25 19 20,11,9,7,7 73
26 20 20,11,9,7,7 74
27 21 19,11,9,7,7 74

(5,2)

13 10 16,7 33
14 11 15,7 33
15 12 14,7 33
16 13 13,7 33
17 14 12,7 33
18 15 11,7 33
19 16 11,7 34

(10,1)

9 7 12 19
10 8 11 19
11 9 10 19
12 10 9 19
13 11 8 19
14 12 7 19
15 13 7 20

the achievable parameters vs. the optimal estimate for random s-boxes. Note that
in the table, the parameters |B1|, r, t1, t2, . . . , tn correspond to the parameters
in the achievable decomposition for randomly chosen s-boxes. The last column
gives the probability of obtaining a successful decomposition for random S-boxes
and for randomly chosen coefficients in the basis computation as well as the

166 D. Goudarzi et al.

Table 2. Achievable smallest randomised basis computed according to Algorithm 1.

4-bit s-boxes 5-bit s-boxes 6-bit s-boxes 7-bit s-boxes

(λ, n) (1,4) (2,2) (4,1) (1,5) (5,1) (1,6) (2,3) (3,2) (6,1) (1,7) (7,1)

|B1| 7 4 3 10 4 14 8 6 4 19 4

r 2 1 1 4 2 7 4 3 2 11 2

8-bit s-boxes 9-bit s-boxes 10-bit s-boxes

(λ, n) (1,8) (2,4) (4,2) (8,1) (1,9) (3,3) (9,1) (1,10) (2,5) (5,2) (10,1)

|B1| 26 14 8 5 35 13 5 49 25 11 6

r 17 9 5 3 25 9 3 38 19 8 4

decomposition step. In all the cases 10 trials each were made to compute the
probabilities except for the decomposition of 8-bit S-boxes over F22 where 100
trials each were made.

In the experiments, successive basis elements were added by products of
random linear combinations of elements from the current basis. The basis B1

was chosen such that the corresponding matrix for the first coordinate function
resulted in full rank (implying that the spanning property of the basis B1 was
satisfied). The basis was successively updated with the ti products formed in
the decomposition step of the ith coordinate function. While the parameter t1
is invariant of the chosen s-box, the other ti are indeed dependent on it. As we
see from Table 3, the probabilities increase with the size of the field used for the
decomposition.

Table 3. Optimal and achievable parameters for random s-boxes.

Optimal/Achievable (λ, n) |B1| r t1, t2, . . . , tn C∗ proba.

4-bit s-boxes

Optimal (2,2) 5 2 1,1 4 -
Achievable (2,2) 5 2 1,1 4 0.2

6-bit s-boxes

Optimal (2,3) 8 4 4,2,2 12 -
Achievable (2,3) 8 4 5,2,2 13 0.3

Optimal (3,2) 6 3 3,2 8 -
Achievable (3,2) 6 3 4,2 9 0.9

8-bit s-boxes

Optimal (2,4) 16 11 8,5,4,3 31 -
Achievable (2,4) 16 11 9,6,5,3 34 0.02

Optimal (4,2) 10 7 6,4 17 -
Achievable (4,2) 10 7 7,4 18 1.0

9-bit s-boxes

Optimal (3,3) 15 11 11,6,5 33 -
Achievable (3,3) 15 11 14,6,5 36 0.8

Generalized Polynomial Decomposition for S-boxes 167

Table 4 gives the concrete parameters to achieve decomposition for s-boxes of
popular block ciphers (namely PRESENT [BKL+07], DES S1 and S8 [DES77],
SC2000 S6 [SYY+02], CLEFIA S0 and S1 [SSA+07] and KHAZAD [BR00]).
Note that for all the cases considered the parameters from Table 4 yield a decom-
position. As above, the last column of the table gives the success probability
over the random choice of the coefficients in the basis computation as well as
the decomposition step. In all the cases 10 trials each were made to compute the
probabilities except for the decomposition of 8-bit S-boxes over F22 where 100
trials each were made.

Table 4. Achievable parameters to decompose specific s-boxes.

s-box (λ, n) |B1| r t1, t2, . . . , tn C∗ proba.

4-bit s-boxes

PRESENT [BKL+07] (2,2) 5 2 1,1 4 0.3

(6,4)-bit s-boxes

DES S1 [DES77] (2,3) 7 4 5,2 11 0.3

DES S8 [DES77] (2,3) 7 4 5,2 11 0.5

6-bit s-boxes

SC2000 S6 [SYY+02] (2,3) 8 4 5,2,2 13 0.2

SC2000 S6 [SYY+02] (3,2) 6 3 4,2 9 0.8

8-bit s-boxes

CLEFIA S0 [SSA+07] (4,2) 10 7 7,4 18 1.0

CLEFIA S0 [SSA+07] (2,4) 16 11 9,5,4,3 32 0.01

CLEFIA S1 [SSA+07] (4,2) 10 7 7,4 18 1.0

CLEFIA S1 [SSA+07] (2,4) 16 11 9,6,5,3 34 0.01

KHAZAD [BR00] (4,2) 10 7 7,4 18 1.0

KHAZAD [BR00] (2,4) 16 11 9,5,4,3 32 0.02

6 Implementation

Based on our generic decomposition method, we now describe our implemen-
tation of an s-box layer protected with higher-order masking in ARM v7. We
focused our study on the common scenario of a layer applying 16 8-bit s-boxes
to a 128-bit state. We apply our generalized decomposition with parameters
n = m = 2 and λ = 4 (medium case) to compare the obtained implementation
to the ones for the two extreme cases:

– Plain field case (λ = 8, n = 1): standard CRV decomposition [CRV14];
– Boolean case (λ = 1, n = 8): Boolean decomposition from [GR16].

Our implementation is based on the decomposition obtained for the CLEFIA
S0 s-box with parameters (r, t1, t2) = (7, 7, 4). Note that it would have the
same performances with any other 8-bit s-box with the same decomposition

168 D. Goudarzi et al.

parameters (which we validate on all our tested random 8-bit s-boxes). The
input (x1, x2) of each s-box is shared as ([x1], [x2]) where

[xi] = (xi,1, xi,2, . . . , xi,d) such that
d∑

j=1

xi,j = xi. (21)

Note that for those chosen parameters (n,m, λ), the input x1 and x2 are 4-bit
elements, i.e. the inputs of the 8-bit s-boxes are split into 2. The output of the
computation is a pair ([y1], [y2]) where y1 and y2 are the two 4-bit coordinates
of the s-box output.

We start from a basis that contains the input sharings {[z1], [z2]} =
{[x1], [x2]}. Then for i = 3 to 21 each of the 18 multiplications is performed
between two linear combinations of the elements of the basis, that is

[zi] = [ui] � [vi] , (22)

where � denotes the ISW multiplication with refreshing of one of the operand
(see [GR17] for details) and where

ui,j =
∑

k<i

�i,k(zk,j) and vi,j =
∑

k<i

�′
i,k(zk,j) for every j ∈ [1, d], (23)

for some linearized polynomials �i,k and �′
i,k obtained from the s-box decompo-

sition. Once all the products have been computed, the output sharings [y1] and
[y2] are simple linear combinations of the computed [zi].

To make the most of the 32-bit architecture, the s-box evaluations are done
eight-by-eight since we can fill a register with eight 4-bit elements. The ISW-
based multiplications can then be parallelized as suggested in [GR17] except for
the field multiplications between two shares. To perform those multiplications,
we simply need to unpack the eight 4-bit elements in each 32-bit operand, and
then to sequentially perform the 8 field multiplications. These field multiplica-
tions are fully tabulated which only takes 0.25 KB of ROM on F16 (following the
results of [GR17]). Using such a degree-8 parallelized ISW multiplication allows
to improve by 58% the asymptotic gain compared to 8 serials ISW multiplica-
tions [GR17].

Table 5. Performances in clock cycles.

Generalized Polynomial Decomposition for S-boxes 169

We compare our results with the bitslice implementation from [GR16] and
the CRV-based optimized implementation from [GR17]. The former evaluates 16
s-boxes in parallel (based on bitslicing), whereas the latter performs 4 times 4
s-boxes in parallel (by filling 32-bits registers with four 8-bit elements). Table 5
summarizes the obtained performances in terms clock cycles, RAM consump-
tion, and the random usage (needed by both the ISW multiplication and the
refreshing procedure) with respect to the masking order d and in terms of code
size (including the look-up tables).

These results show that our implementation is slightly less efficient in terms
of timings (Fig. 1). However, it provides an interesting tradeoff in terms of mem-
ory consumption. Indeed the bitslice implementation has the drawback of being
quite consuming in terms of RAM (with 644d bytes needed) and the CRV-based
implementation has the drawback of having an important code size (27.5 KB)
which is mainly due to the half-table multiplication and the tabulation linearized
polynomials over F256. Our implementation offers a nice alternative when both
RAM and code size are constrained. It also needs the same amount of random-
ness than the CRV decomposition and more than twice less than the bitslice
decomposition.

Additionally, implementations based on our medium case decomposition
might provide further interesting tradeoffs on smaller (8-bit or 16-bit) architec-
tures where bitslice would be slowed down and where the optimized CRV-based
implementation from [GR17] might be too consuming in terms of code size.

2 4 6 8 10

1

2

3

4

·105

d

cl
o
ck

cy
cl

es

Bitslice 16

CRV (4 × 4)

Our implementations

Fig. 1. Timings for n = 8.

Acknowledgements. We would like to thank Jürgen Pulkus for helpful discussions
regarding choosing basis elements as random products. We would also like to thank the
anonymous reviewers of CHES 2017 for valuable feedback that helped to improve the
paper. Srinivas Vivek’s work was partially supported by the European Union’s H2020
Programme under grant agreement number ICT-644209 (HEAT).

170 D. Goudarzi et al.

References

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multi-
plication. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 616–648. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 22

[BKL+07] Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann,
A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-
lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74735-2 31

[BMP13] Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with
applications to cryptology. J. Cryptol. 26(2), 280–312 (2013)

[BR00] Barreto, P., Rijmen, V.: The Khazad legacy-level block cipher. First Open
NESSIE Workshop, KU-Leuven (2000). http://www.cosic.esat.kuleuven.ac.
be/nessie/

[CGP+12] Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-
order masking schemes for S-Boxes. In: Canteaut, A. (ed.) FSE 2012.
LNCS, vol. 7549, pp. 366–384. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34047-5 21

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/
3-540-48405-1 26

[CRV14] Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary
finite fields and application to side-channel countermeasures. In: Batina, L.,
Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44709-3 10

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-55220-5 24

[DES77] Data encryption standard. National Bureau of Standards, NBS FIPS PUB
46, U.S. Department of Commerce, January 1977

[GP99] Goubin, L., Patarin, J.: DES and differential power analysis the “Duplica-
tion” method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717,
pp. 158–172. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 15

[GR16] Goudarzi, D., Rivain, M.: On the multiplicative complexity of boolean func-
tions and bitsliced higher-order masking. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 457–478. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53140-2 22

[GR17] Goudarzi, D., Rivain, M.: How fast can higher-order masking be in
software? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 567–597. Springer, Cham (2017). doi:10.1007/
978-3-319-56620-7 20

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://www.cosic.esat.kuleuven.ac.be/nessie/
http://www.cosic.esat.kuleuven.ac.be/nessie/
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/978-3-642-34047-5_21
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/978-3-662-44709-3_10
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/3-540-48059-5_15
http://dx.doi.org/10.1007/978-3-662-53140-2_22
http://dx.doi.org/10.1007/978-3-319-56620-7_20
http://dx.doi.org/10.1007/978-3-319-56620-7_20
http://dx.doi.org/10.1007/978-3-540-45146-4_27

Generalized Polynomial Decomposition for S-boxes 171

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). doi:10.1007/3-540-48405-1 25

[Koc96] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996.
LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). doi:10.1007/
3-540-68697-5 9

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 9

[PS73] Paterson, M., Stockmeyer, L.J.: On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM J. Comput. 2(1), 60–66 (1973)

[PV16] Pulkus, J., Vivek, S.: Reducing the number of non-linear multiplications
in masking schemes. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016.
LNCS, vol. 9813, pp. 479–497. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53140-2 23

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

[RV13] Roy, A., Vivek, S.: Analysis and improvement of the generic higher-order
masking scheme of FSE 2012. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 417–434. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-40349-1 24

[SSA+07] Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-
bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE
2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007). doi:10.
1007/978-3-540-74619-5 12

[SYY+02] Shimoyama, T., Yanami, H., Yokoyama, K., Takenaka, M., Itoh, K.,
Yajima, J., Torii, N., Tanaka, H.: The block cipher SC2000. In: Matsui,
M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 312–327. Springer, Heidelberg
(2002). doi:10.1007/3-540-45473-X 26

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/978-3-662-53140-2_23
http://dx.doi.org/10.1007/978-3-662-53140-2_23
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-40349-1_24
http://dx.doi.org/10.1007/978-3-642-40349-1_24
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/978-3-540-74619-5_12
http://dx.doi.org/10.1007/3-540-45473-X_26

Emerging Attacks I

Nanofocused X-Ray Beam to Reprogram
Secure Circuits

Stéphanie Anceau1,2, Pierre Bleuet1,2, Jessy Clédière1,2(B),
Laurent Maingault1,2, Jean-luc Rainard1,2, and Rémi Tucoulou3

1 University of Grenoble Alpes, 38000 Grenoble, France
2 CEA, LETI, MINATEC Campus, 38054 Grenoble, France

{stephanie.anceau,pierre.bleuet,jessy.clediere,laurent.maingault,
jean-luc.rainard}@cea.fr

3 ESRF, The European Synchrotron, 71 Avenue des Martyrs,
38043 Grenoble, France

tucoulou@esrf.fr

Abstract. Synchrotron-based X-ray nanobeams are investigated as a
tool to perturb microcontroller circuits. An intense hard X-ray focused
beam of a few tens of nanometers is used to target the flash, EEP-
ROM and RAM memory of a circuit. The obtained results show that
it is possible to corrupt a single transistor in a semi-permanent state.
A simple heat treatment can remove the induced effect, thus making the
corruption reversible. An attack on a code stored in flash demonstrates
unambiguously that this new technique can be a threat to the security
of integrated circuits.

Keywords: X-ray · Flash · EEPROM · RAM · ATmega · Circuit edit ·
MOS Stuck-At

1 Introduction

The need to increase the level of digital security standards requires a sustained
research effort on new means of perturbations likely to disturb the processing of
integrated circuits. The possibility of using visible and IR light was revealed by
Skorobogatov and Anderson [1]. The physical phenomena have been studied and
explained by the failure-analysis community [2–5]. Laser light can be synchro-
nized and focused in order to induce transient faults. In the security-evaluation
practice, these faults may give powerful results. Electromagnetic radiation per-
turbation allows a new breach that corrupts circuits [6–8]. Access to the circuit
is less restrictive since depackaging is not necessarily required.

In order to further investigate the wavelength spectrum of perturbations, it is
proposed here to study the effects of ionizing radiation like X-rays. For one thing,
hard X-rays offer the great advantage of deeply penetrating through materials.
Every embedded component within the chip can be reached compared to only
the silicon substrate and doped regions with visible or IR light. X-ray interaction
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 175–188, 2017.
DOI: 10.1007/978-3-319-66787-4 9

176 S. Anceau et al.

with electronic circuits has been analyzed [9–12], but its use for security evalu-
ation has been mainly restricted to die and package imaging, and an occasional
mention as a perturbation means without practical or successful results [13,14].
Focusing exclusively on a selected area of the device under test may be seen
as the ultimate goal of a perturbation technique and the lack of practical tests
in the literature may be due to the difficulty to focus these high energy pho-
tons down to the nanoscale. The recent advent of third-generation synchrotron
nano-probe beamlines makes possible to focus hard X-ray beams down to a few
tens of nanometers. This paves the way to single transistor corruption during
operando experiments. It must be mentioned that the work detailed hereafter is
unprecedented, mostly because such beamlines have existed for only a few years;
before that, only micro-focusing was possible, i.e. single-transistor irradiation
was simply impossible.

The experimental setup, the physics of the X-ray interaction with MOS tran-
sistors and the possibility of using fluorescence techniques are detailed in Sect. 2.
Experimental results are given on an ATmega1284P circuit in Sect. 3 for RAM,
flash and EEPROM memory blocks. A real attack on this circuit for flash is
reported in Sect. 4, demonstrating the possibility of permanently modifying the
code of an application. The conclusion outlines all the potential of using X-ray
in the security-testing domain.

2 Nanofocused X-Ray Beam

2.1 Experiment Setup

A very intense multi-keV X-ray nanobeam is required to perform single-
transistor X-ray corruption, to profit from high penetration depth and locally
create a sufficient number of photo-electrons to induce faults. Unfortunately,
hard X-ray beams featuring decananometer resolution are unachievable today
using laboratory systems. Moreover, the extreme brilliance of new third-
generation synchrotron long beamlines, combined with high-efficiency X-ray
focusing optics, offers completely new possibilities in terms of X-ray charac-
terization and X-ray-based attacks. The work detailed in this paper is based
entirely on the use of the ID16B beamline at the European Synchrotron Radi-
ation Facility (ESRF) fully described by Martinez-Criado et al. [15]. For read-
ers’ convenience, the general principle of the X-ray microscope and essential
numbers follow: the low-divergence X-ray source located in the main storage
ring of the ESRF (844 m circumference) is demagnified using Kirkpatrick-Baez
optics located 165 m from the source. This optical scheme produces a beam of
60 × 60 nm2 (full width at half minimum [FWHM]) in the case of the results
detailed in this paper, with a high monochromaticity (18 keV, ΔE/E ≈ 10−4)
and a photon flux of 2 × 109 ph/s. The brilliance is high enough to generate
very locally a significant number of electrons (called X-ray beam induced cur-
rent or XBIC) able to induce faults, and the probe is sufficiently local even for
the latest nanoelectronic nodes. On top of that, a comfortable working space

Nanofocused X-Ray Beam to Reprogram Secure Circuits 177

around the sample enables performing operando experiments and accommodat-
ing X-ray detectors. It operates in ambient air, i.e. with no vacuum constraint.
It is therefore well suited for the experiment described here. A rough overview of
the optical scheme is shown in Fig. 1, with horizontal and vertical planes of the
beam, the characteristic distances in meters, and a picture of the space between
the optics and the sample.

Fig. 1. ID16B setup. Schematic of the line with the X-ray source (sizes are given
FWHM), optics (Kirkpatrick-Baez) and device under test (chip) in the focal plane.
Space between optics and the chip.

There are nearly 50 synchrotrons worlwide, including three very large facili-
ties (ESRF in Europe, APS in USA and Spring-8 in Japan) operating multi-GeV
storage rings; very few beamlines in the world can operate sub-100 nm beams
with hard X-rays.

178 S. Anceau et al.

2.2 Local Positioning on the Device Under Test by X-Ray
Fluorescence

The ID16B test-bench is equipped with a long working distance optical micro-
scope aligned with the X-ray beam and having its focal plane coplanar with the
one from the X-ray microscope, allowing a pre-positioning on the sample sur-
face (10 ×magnification, field of view of 1× 1 mm2). Obviously, this visible-light
microscope can be used only if the circuit packaging has been removed.

Although the visible-light microscope is ideal for pre-localization, its reso-
lution is not high enough to precisely locate the transistors and therefore to
place the one to be irradiated exactly in the focused X-ray beam. Fine-tuning
is required using another asset of the ID16B beamline, which is scanning X-ray
fluorescence (XRF). It is indeed possible to run a 2D scan of a region of interest
(ROI) and, at every position, to record a local X-ray fluorescence spectrum using
a multi-element energy-dispersive detector. A 2D map is obtained for each chem-
ical element in the sample. These maps can be obtained either by selecting a
peak in the spectra or, better, by fitting background and peaks using the PyMca
software [16], as shown in Fig. 2. Since the sample is located in the common focal
plane, it can be mapped precisely with a step size equal to the focused beam
size.

XRF visualization mode can be particularly interesting when addressing an
unknown circuit or when the attacker does not want to open the circuit’s pack-
aging. Results on ATmega1284P presented in this paper are obtained with a
front-side opened circuit. However, it can also be performed without opening
the package, as it was checked on a Thin Quad Flat Package (TQFP).

2.3 X-Ray Interaction

At 18 keV, the photoelectric effect is the main contributor driving the X-ray
absorption in semiconductor materials. The absorption coefficient greatly varies
with the atomic number (Z). A regular silicon chip is composed of very thin
layers of possibly high-Z metals (W, Au) and thicker layers of small atomic
number elements (Si, O, N), in which hard X-rays are weakly absorbed. They can
therefore deeply penetrate into the device and reach logic gates with irradiation
from the top surface or even through the package. After absorption, a high
number of carriers are generated within the material. These localized carriers
can deeply perturb an operating chip, especially when absorption occurs in the
oxide layers. It should be noted that it is impossible to generate carriers in the
oxide with an IR laser. Oxide band gaps are much larger than IR photon energy.
Depending on the types of gates that are targeted, two effects are of interest
with X-rays:

– charge trappings in insulating layers, inducing Vt shifts in MOS transistors
– photoemission of carriers stored in floating gates.

These effects have been extensively studied [9–12,17–28], especially for
aerospace applications, in which radiation naturally occurs and prevents chips

Nanofocused X-Ray Beam to Reprogram Secure Circuits 179

Fig. 2. Typical fluorescence spectrum (log scale) of the ATmega circuit (top). The
energy unit is keV. It shows the sum of all measured spectra (black) and the cor-
responding fitted sum spectrum and background (blue and green, respectively). The
scattering peak mismatch at 18 keV is due to multiple Compton scattering (only first-
order Compton scattering is modeled). The Ar peak at low energy comes from the Ar
naturally present in air. A selection of elemental 2D mappings for Ti, W, Cu and Sr is
shown below. (Color figure online)

from functioning properly. This paper gives a short summary of the most impor-
tant effects, focusing on the application for circuit perturbations and the two
types of memory in the experiment.

Charge Trapping. Electron-hole pairs created by X-rays are separated by the
electric field applied to the grid: electrons are drained away through the grid

180 S. Anceau et al.

thanks to their higher mobility, while lower mobility holes move inside the oxide
towards the transistor channel. Reaching the Si/SiO2 interface, holes can be
trapped into defect sites, which are numerous at this interface. This positive
charge accumulated near the transistor channel results in a shift of ID(VGS)
curves to lower gate voltages (Fig. 3). From an electrical point of view:

– a NMOS transistor becomes more easily conducting, even permanently
conducting

– a PMOS transistor becomes less easily conducting, even permanently
blocking.

This is a total ionizing dose (TID) effect: the more the device is irradiated,
the more holes are trapped and curves shifted (Fig. 3). Also, trapped charges
can escape when temperature is increased thanks to thermal excitation. Ther-
mal annealing can restore normal behavior of irradiated devices. As a result,
these faults can be viewed as “semi-permanent faults”: “permanent” as its effect
remains after irradiation has ceased, and “semi” because annealing can restore
the chip to a normal-state.

Fig. 3. Effect of dose level increasing (1 to 4, arbitrary unit) on ID(VGS) of a NMOS
device (extracted from [29]). The more the dose is increased, the greater the shift of
ID(VGS) curve toward lower gate voltages. The NMOS transistor becomes more easily
conducting, even permanently-conducting.

Effects on Floating Gates. Floating gates are used in non-volatile memories,
such as EEPROM and flash. A charge-storage element (floating gate) is placed
between the silicon channel and the control gate (normal transistor gate). By
changing the amount of electrons and holes in the floating gate, the threshold
voltage of the transistor can be altered. For ATmega1284P, the state with posi-
tive or no charge in the floating gate is the erased state, whereas negative charges
present in the floating gate are the programmed state of the cell.

Nanofocused X-Ray Beam to Reprogram Secure Circuits 181

This is the interpretation detailed in reference [12]:

– a first effect is very similar to the one that affects classical MOS transistors,
resulting in a semi-permanent shift of ID(VGS) curves: the cell is then semi-
permanently stuck in the erased state, but

– additionally, it is likely that the photoemission of the carriers in the float-
ing gate gets enough energy from the radiation to escape from this storage-
element potential. It is also possible that the positive charges created in the
surrounding oxides are injected into the floating gate. The injected holes
recombine with the stored electrons. This results in a decrease of the number
of electrons in the floating gate, which induces the memory cell erasure.

If the first effect dominates, stuck-at faults of the cell will be observed and the
cell cannot be programmed any more. If the second effect dominates, the cell
will not be semi-permanently faulted, and can be reprogrammed as a normally
erased cell.

3 Experimental Results

3.1 RAM

RAM in the ATmega128 uses a classic six-transistor cell, as shown in Fig. 4.
It comprises two cross-coupled inverters (transistors NI1, PI1 and transistors
NI2, PI2), and two access transistors (NA1, NA2) connecting inverters to the
two-bit lines. Access-transistor grids are driven by the word line, allowing read-
and-write operations. The inverters’ PMOS (PI1, PI2) are weak transistors to
facilitate writing operations.

Fig. 4. Six-transistor RAM cell of the ATmega128.

182 S. Anceau et al.

Fig. 5. RAM faults. Background: SEM picture of etched RAM, showing transistor
grids (metals are removed); colored dots: superimposed result of fluorescence mapping;
red and green rectangles: irradiated transistors, causing the cell to be faulted at logical
value 1 (red) or 0 (green); in yellow: addresses of corresponding RAM cells. (Color
figure online)

The attack was directed at the ESRF bench targets’ inverter’s NMOS tran-
sistors. Accurate location of transistors to be targeted was obtained using fluo-
rescence mapping, allowing localization of tungsten vias in the device. Superposi-
tion of fluorescence and SEM pictures (Fig. 5) show location of RAM transistors
and allow precise focused irradiation of any individual transistors in a cell. If
NMOS NI2 is irradiated, this becomes a conducting device, whatever the value
applied to its grid. Inverter output is then stuck at logical value 0 and the cell

Nanofocused X-Ray Beam to Reprogram Secure Circuits 183

value remains semi-permanently at 0. A heat annealing of 150 ◦C for one hour at
ambient atmosphere restores normal behavior of NI2. Attacking NI1 transistor
symmetrically causes the cell to become stuck at logical value 1. Experimental
results are shown in Fig. 5. Several bit cells are targeted to semi-permanently
have them stuck at logical value 0 or 1.

Every RAM cell of the circuit can be stuck at a desired value 0 or 1.

3.2 Non Volatile Memories

The ATmega1284P device has 128 KB of flash and four kilobytes of EEPROM
for non volatile memories (NVM). Both memories have the same cell structure:
a floating gate transistor dedicated to store the carriers and a second MOS
transistor to select the cell.

The two memory blocks are tested with the same protocol. The chip was
first erased (all bytes set to 0 ×FF). With the help of a fluorescence image for
localization inside the memory cell, the chip was irradiated by the nano beam
for a few seconds. Reading the memory afterwards showed whether modification
in the memory was successful or not.

Two types of memory modifications are observed:

– a whole column is reset
– a single bit is reset.

These two behaviors are explained by the physical effects described in Sect. 2.3.
A whole column is reset if the beam affects the selection transistor of the cell.
The NMOS transistor becomes conductive and the entire column is always read
as logical value 0. This fault was semi-permanent: a thermal annealing (150 ◦C
for one hour at ambient atmosphere) removes holes from defect sites to restore
the transistor to its normal behavior. A single bit was reset when the beam
was focused on the floating gate transistor. In this case, electrons stored in the
floating gate were removed either by recombining with holes created in the neigh-
boring oxides or by direct photoemission. The cell was emptied and reset. The
transistor kept its normal operating conditions: the cell could be erased/pro-
grammed again. The semi-permanent effect on the floating gate transistor was
not observed during this experiment. EEPROM and flash memory exhibited the
same behavior.

This is an unprecedented demonstration of the ability to modify a single
bit at any given address in an NVM memory. Targeting a specific address is
possible with reverse-engineering of the memory mapping. Memory mapping
(the relation between physical position and logical address) was retrieved after
several irradiations over the memory surface. This mapping is presented in Fig. 6.
It is possible to individually modify any data or program stored in the NVM from
an attacker’s point of view. An attack example using this feature is presented in
Sect. 4.

184 S. Anceau et al.

3.3 Comparison with Laser Attacks

Compared to laser-induced faults, classically used in secured smart-card attacks,
focused X-ray results in different kinds of faults:

– X-ray faults are semi-permanent: fault effect remains after irradiation has
ceased. Normal operation can be restored with a thermal annealing or erasing
NVM memory. Laser faults are fugitive, i.e. they are present only during laser
irradiation.

– X-ray attacks can be used for “circuit editing”: by individual irradiation,
NMOS can be made always conductive, while PMOS can be blocked. Func-
tions or parts of a device can be modified; for example, to deactivate security
countermeasures or detectors. Moreover, X-rays penetrate regular protective
shields that prevent focused ion beam (FIB) attacks.

– X-ray attacks can be used to directly modify non-volatile memories program-
ming, while laser attacks can corrupt only NVM reading or writing.

– X-ray can be focused down to nanometric size, to target a single transistor,
while laser is limited to micrometric scale (Rayleigh criterion).

4 Real Attack on Flash Program

In this investigation, a full attack path was performed to illustrate the feasibil-
ity of circuit reprogramming. An authentication program was stored in the flash
boot sector in one ATmega1284P circuit. After start-up of the circuit, this pro-
gram waited for a four-digit PIN sequence to be sent on UART0. Code analysis
of the dumped assembly code [30] pointed out that the authentication relies on
a single statement at flash address 0× 0000015c:

0000015 c : b1 f6 BRNE.−84 ; 0 x10a <main+0x2e>

The branch if not equal (BRNE) statement catches the 9999 erroneous, presented
PIN. Modifying the BRNE op-code to a branch if equal (BREQ) op-code would
allow reversing the situation and accepting the 9999 erroneous PIN and rejecting
the genuine PIN. Thus, without the correct PIN, an assailant would have a
probability of 9999 of 10000 to pass the authentication (instead of one of 10000
previously).

Comparing the BRNE and BREQ op-codes Table 1 shows that a single-bit
reset is needed in flash memory to modify the assembly. This bit reset can be
performed by X-ray lighting of the floating gate transistor storing the bit value.

Table 1. Comparison of BRNE and BREQ op-code of ATmega circuit.

Instruction hexadecimal code binary code

BRNE .-84 0× f6b1 1111011010110001

BREQ .-84 0× f2b1 1111001010110001

Nanofocused X-Ray Beam to Reprogram Secure Circuits 185

Fig. 6. Optical microscope images of the flash of an ATmega chip. The strip to attack
should be chosen in one of the green rectangles. Then the nine most significant bits of
the address correspond to the lines, whereas the seven least significant bits represent
the column inside the green box. The position of the actual attack is shown by the
yellow cross. The superimposed image corresponds to the ID16B’s optical microscope
view. (Color figure online)

Without the correct PIN, it is impossible to use the circuit: a well-
implemented PIN-try counter limits the exhaustive search to a single PIN trial.
With the results obtained in Sect. 3.2, it is possible to transform the code stored
in flash in order to change the BRNE to BREQ at address 0× 0000015c. The
CPU address 16 bits of flash (words). Address 0× 0000015c corresponds to
0× ae= 174 = 128 + 5 × 8 + 6. Thus, the targeted bit is stored on the sec-
ond line, sixth strip and seventh column of the flash memory block. Figure 6
presents the routing of ATmega’s flash memory and the position of the floating
gate transistor holding the stored value to attack.

The X-ray beam is focused once on the desired bit of the target circuit
for 500 ms. The first attempt was successful. The circuit was then permanently
reprogrammed, and PIN security bypassed by choosing any incorrect PIN among
the 9999 possibilities.

In order to perform such an attack, the code analysis must take into account
the error model. For a flash memory block, this error model is a permanent reset
of chosen bit(s).

5 Conclusion

Nano-focused X-ray beams turned out to be an efficient means of corrupting
the integrity of integrated circuits. It has been shown that targeting a single

186 S. Anceau et al.

MOS transistor is possible. A RAM cell can be stuck at a logical value 0 or 1
semi-permanently, and a heat treatment can then remove the corruption. Dis-
charging the floating gate can reset the flash and EEPROM cells. A real attack
has been demonstrated on a flash cell to modify the secure start-up sequence of
a programmed circuit. Fluorescence mapping at the nanoscale provided a very
powerful opportunity to obtain a precise location in the layout of the circuit to
successfully target the desired transistor.

The results presented in this paper were obtained on an ATmega circuit
with an ancient technology (350 nm). Ongoing experiments are producing similar
results with an up-to-date technology node: a microcontroller circuit in 45 nm
has been tested. The size of the X-ray beam (60 nm) is not restrictive as soon
as the distance between two transistors is increased. A single transistor will still
be targeted in future technology nodes.

Results are presented for RAM, flash and EEPROM memory block. However,
transistors in the logic part of a circuit can also be targeted. NMOS transis-
tors can be made conductive and PMOS transistors blocked. The corresponding
CMOS cell can be stuck at logical value 0 or 1 depending on the implemented
functionality. For a complex cell, the Karnaugh map could be modified to a
selected state. Although not tackled in this paper, this feature provides a new
way to approach the circuit-editing technique and an alternative to the FIB sys-
tem. Considering the fact that it is not necessary to open the package of the
circuit and that the size of the technology node is not a constraint, X-ray circuit
edit could play an important role.

In the context of security application, X-ray nanofocusing provides many
opportunities for attacking electronic circuits. Among them, let’s note the pos-
sibility to cause permanent faults in cryptographic algorithms, deactivation of
counter measures, reprogramming of memories, etc. Nanofocused X-ray are a
serious threat to circuit security. At present, access to third-generation syn-
chrotron sources equipped with a nanofocus beamline is, obviously, a major
concern. The work discussed here is completely exploratory and was performed
through the so-called academic beamtime regulated by scientific committees,
with time constraints incompatible with routine analyses. However, access to
beamtime through the industrial channel is much easier and faster, making
X-ray nanoprobe a new tool to corrupt circuits at the single transistor level.

Acknowledgements. The experiments were performed on beamline ID16B at the
European Synchrotron Radiation Facility (ESRF), Grenoble, France.

Thanks to Olivier Hériveaux and Olivier Meynard for their pertinent contributions
during days and nights at ID16B in May 2016.

References

1. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). doi:10.1007/3-540-36400-5 2

2. Habing, D.H.: The use of lasers to simulate radiation-induced transients in semi-
conductor devices and circuits. IEEE Trans. Nucl. Sci. 12, 91–100 (1965)

http://dx.doi.org/10.1007/3-540-36400-5_2

Nanofocused X-Ray Beam to Reprogram Secure Circuits 187

3. Henley, F.J.: Logic failure analysis of CMOS VLSI using a laser probe. In: 22nd
Annual Reliability Physics Symposium, pp. 69–75 (1984)

4. Burns, D., Pronobis, M., Eldering, C., Hillman, R.: Reliability/design assessment
by internal-node timing-margin analysis using laser photocurrent injection. In:
22nd Annual Proceedings on Reliability Physics 1984, pp. 76–82. IEEE (1984)

5. Hériveaux, L., Clédière, J., Anceau, S.: Electrical modeling of the effect of photo-
electric laser fault injection on bulk CMOS design. In: 39th International Sympo-
sium for Testing and Failure Analysis ISTFA (2013)

6. Quisquatter, J.-J., Samyde, D.: Eddy current for magnetic analysis with active
sensor. In: Proceedings of Esmart (2002)

7. Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRT-based RSA: con-
crete results. In: 15th Austrian Workshop on Microelectronics, Austrochip (2007)

8. Poucheret, F., Tobich, K., Lisart, M., Chusseau, L., Robisson, B., Maurine, P.:
Local and direct EM injection of power into CMOS integrated circuits. In: Fault
Diagnosis and Tolerance in Cryptography, FDTC (2011)

9. Micheloni, R., Crippa, L., Marelli, A.: Inside NAND Flash Memories, pp. 537–571.
Springer, Heidelberg (2010)

10. Oldham, T.R., McLean, F.B.: Total ionizing dose effects in MOS oxides and
devices. IEEE Trans. Nucl. Sci. 50, 483–499 (2003)

11. Oldham, T.R.: Ionizing Radiation Effect in MOS Oxides. Advances in Solid State
Electronics and Technology (ASSET) Series. World Scientific, Singapore (1999)

12. Gerardin, S., Bagatin, M., Paccagnella, A., Grürmann, K., Gliem, F., Oldham,
T.R., Irom, F., Nguyen, D.N.: Radiation effects in flash memories. IEEE Trans.
Nucl. Sci. 60(3), 1953–1969 (2013)

13. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The Sorcerer’s
Apprentice Guide to Fault Attacks. IACR Cryptology ePrint Archive (2004)

14. Soucarros, M., Clédière, J., Dumas, C., Elbaz-Vincent, P.: Fault analysis and eval-
uation of a true random number generator embedded in a processor. J. Electron.
Test. 29(3), 367–381 (2013)

15. Martinez-Criado, G., Villanova, J., Tucoulou, R., Salomon, D., Suuronen, J.-P.,
Labouré, S., Guilloud, C., Valls, V., Barrett, R., Gagliardini, E., Dabin, Y., Baker,
R., Bohic, S., Cohen, C., Morse, J.: ID16B: a hard X-ray nanoprobe beamline at
the ESRF for nano-analysis. J. Synchrotron Radiat. 23(1), 344–352 (2016)

16. ESRF. http://www.atmel.com/webdoc/avrassembler/
17. Ma, T.P., Dressendorfer, P.V.: Ionizing Radiation Effects in MOS Devices and

Circuits. Wiley, New York (1989)
18. Shaneyfelt, M.R., Schwank, J.R., Fleetwood, D.M., Winokur, P.S., Hughes, K.L.,

Sexton, F.W.: Field dependence of interface trap buildup in polysilicon and metal
gate MOS devices. IEEE Trans. Nucl. Sci. 37(6), 16–32 (1990)

19. Caywood, J., Prickett, B.: Radiation-induced soft errors and floating gate memo-
ries. In: Proceedings of 21st Annual Reliability Physics Symposium, pp. 167–172
(1983)

20. Snyder, E., McWhorter, P., Dellin, T., Sweetman, J.: Radiation response of floating
gate EEPROM memory cells. IEEE Trans. Nucl. Sci. 36, 2131–2139 (1989)

21. McNulty, P., Yow, S., Scheick, L., Abdel-Kader, W.: Charge removal from FGMOS
floating gates. IEEE Trans. Nucl. Sci. 49, 3016–3021 (2002)

22. Cellere, G., Paccagnella, A., Visconti, A., Bonanomi, M.: Ionizing radiation effects
on floating gates. Appl. Phys. Lett. 85, 485–487 (2004)

23. Cellere, G., Paccagnella, A., Visconti, A., Bonanomi, M., Caprara, P., Lora, S.: A
model for TID effects on floating gate memory cells. IEEE Trans. Nucl. Sci. 51,
3753–3758 (2004)

http://www.atmel.com/webdoc/avrassembler/

188 S. Anceau et al.

24. Cellere, G., Paccagnella, A., Lora, S., Pozza, A., Tao, G., Scarpa, A.: Charge loss
after 60 Co irradiation of flash arrays. IEEE Trans. Nucl. Sci. 51, 2912–2916 (2004)

25. Wang, J., Samiee, S., Chen, H.-S., Huang, C.-K., Cheung, M., Borillo, J., Sun,
S.-N., Cronquist, B., McCollum, J.: Total ionizing dose effects on flash-based field
programmable gate array. IEEE Trans. Nucl. Sci. 51, 3759–3766 (2004)

26. Wang, J., Kuganesan, G., Charest, N., Cronquist, B.: Biased-irradiation charac-
teristics of the floating gate switch in FPGA. In: Proceedings of IEEE Radiation
Effects Data Workshop, pp. 101–104, July 2006

27. Cellere, G., Paccagnella, A., Visconti, A., Bonanomi, M., Beltrami, S., Schwank,
J., Shaneyfelt, M., Paillet, P.: Total ionizing dose effects in NOR and NAND flash
memories. IEEE Trans. Nucl. Sci. 54, 1066–1070 (2007)

28. Nguyen, D.N., Lee, C.I., Johnston, A.H.: Total ionizing dose effects on flash mem-
ories. In: IEEE Radiation Effect Data Workshop, p. 100 (1998)

29. Sharma, A.K.: Semiconductor memory radiation effects. In: Semiconductor Mem-
ories, Technology, Testing and Reliability, Chap. 7, p. 328. IEEE (1997)

30. ATMEL AVR Assembler. http://pymca.sourceforge.net/

http://pymca.sourceforge.net/

Novel Bypass Attack and BDD-based Tradeoff
Analysis Against All Known Logic

Locking Attacks

Xiaolin Xu(B), Bicky Shakya, Mark M. Tehranipoor, and Domenic Forte

ECE Department, University of Florida, Gainesville, USA
{xiaolinxu,tehranipoor,dforte}@ece.ufl.edu, bshakya@ufl.edu

Abstract. Logic locking has emerged as a promising technique for pro-
tecting gate-level semiconductor intellectual property. However, recent
work has shown that such gate-level locking techniques are vulnerable
to Boolean satisfiability (SAT) attacks. In order to thwart such attacks,
several SAT-resistant logic locking techniques have been proposed, which
minimize the discriminating ability of input patterns to rule out incor-
rect keys. In this work, we show that such SAT-resistant logic locking
techniques have their own set of unique vulnerabilities. In particular,
we propose a novel “bypass attack” that ensures the locked circuit works
even when an incorrect key is applied. Such a technique makes it possible
for an adversary to be oblivious to the type of SAT-resistant protection
applied on the circuit, and still be able to restore the circuit to its cor-
rect functionality. We show that such a bypass attack is feasible on a
wide range of benchmarks and SAT-resistant techniques, while incurring
minimal run-time and area/delay overhead. Binary decision diagrams
(BDDs) are utilized to analyze the proposed bypass attack and assess
tradeoffs in security vs overhead of various countermeasures.

1 Introduction

With the globalization of semiconductor industry, many companies have relo-
cated the fabrication of their integrated circuits (ICs) from trusted on-shore
foundries to untrusted off-shore foundries. As a result of this realignment, com-
panies as well as government agencies are now facing threats of intellectual prop-
erty (IP) theft/piracy, counterfeiting, and IC overproduction [1]. Therefore, there
is a critical need to develop technologies that tackle the threats associated with
untrusted foundries. Towards this end, various countermeasures such as split
manufacturing [2], IC metering [3] and logic locking [4,5] have been developed.
Among these techniques, logic locking has emerged as a low-cost and effective
solution. Basic logic locking works by embedding extra key-gates into the netlist

X. Xu and B. Shakya—Indicates equal contribution.
c©IACR 2017. This article is the final version submitted by the author(s) to the IACR
and to Springer-Verlag on June 26, 2017. The version published by Springer-Verlag
is available at <DOI>.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 189–210, 2017.
DOI: 10.1007/978-3-319-66787-4 10

190 X. Xu et al.

of the circuit design. Proper operation of the circuit can only be ensured in the
presence of the correct unlocking key. However, recent work has shown that early
logic locking techniques are all vulnerable to Boolean satisfiability (SAT) based
attacks [6]. In these SAT attacks, a small set of discriminating input patterns
(DIPs) are obtained from the locked circuit netlist and incorrect keys that do not
satisfy the DIP and the corresponding correct output are ruled out. In order to
mitigate SAT attacks, several SAT-resistant countermeasures have been recently
proposed [7,8].

In this paper, we show that the cutting-edge SAT-resistant logic locking tech-
niques: SARLock and Anti-SAT, also possess their own critical vulnerability. In
particular, we show that for any logic locking technique which is highly resistant
to SAT attacks, it becomes more vulnerable to “bypass attacks” that can eas-
ily circumvent the effect of the SAT resistant locking scheme. In this novel yet
simple attack, the logic locked circuit is embedded with a low-overhead bypass
circuitry that enables the circuit to operate even in the presence of an incorrect
key. Our main contributions in this paper can be summarized as follows:

– We present the bypass attack, which can be applied to recently proposed SAT-
resistant logic locking techniques. Our attack uses the same set of assump-
tions/adversarial models as regular SAT attacks and can make the circuit
operate correctly with any arbitrary key.

– We present the complete flow of the attack and show that it can thwart
the state-of-the-art logic locking techniques: SARLock, Anti-SAT and hybrid
versions of SARLock. We execute the attack on several benchmark circuits
protected with these SAT-resistant logic locking methods. Further, we show
that the original functionality of the circuit can be restored with area over-
heads linear to the number of patterns to bypass, and with minimal runtime
required to execute the attack.

– We analyze logic locking techniques and SAT-resistant countermeasures in
terms of existing attacks and the proposed attack. We show that bypass attack
possesses a tradeoff with SAT attack, i.e., resistance to bypass decreases the
resistance to SAT and resistance to SAT decreases the area overhead of the
proposed attack. This leads to an interesting new way of assessing the security
of logic locking schemes.

– Binary decision diagrams (BDDs) are introduced as a method to determine
whether there exists a feasible complexity/overhead/attack resistance tradeoff
for secure logic locking. The benefits and future challenges associated with
BDD-based logic locking approaches are also discussed.

The rest of the paper is organized as follows. Section 2 reviews the background
of conventional logic locking and the countermeasures against SAT attacks.
Section 3 explains our bypass attack; in particular, the feasibility/scalability
of our attack on different logic locking techniques is shown. Section 4 presents
experimental results (delay/area overhead, computation time) of the attack on
various benchmarks. Our proposed attack is also compared with the state-of-the-
art. Section 5 presents the BDD-based approach for logic locking and tradeoff
analysis. Section 6 concludes the paper.

Novel Bypass Attack and BDD-based Tradeoff Analysis 191

2 Background and Related Work

Logic locking techniques modify the netlist of a circuit design by adding extra
key controlled logic such that the circuit will only work correctly when the
correct key (or keys) is applied to it; otherwise, the circuit’s output is corrupted.
The insertion of additional key gates into the original netlist obfuscates the
functionality of the IC to an untrusted foundry and potentially prevents them
from engaging in overproduction or IC piracy. Several techniques have been
proposed over the years in order to perform logic locking, such as random locking
[4] and fault analysis-based techniques [5]. Unfortunately, all these approaches
are vulnerable to SAT attacks, as discussed below.

2.1 SAT Attacks on Logic Locking

In the SAT attack model [6], an attacker has access to: (1) Logic Locked Netlist :
Such a netlist can be obtained from a malicious foundry or through reverse-
engineering [9]. Simulations can also be readily performed on the netlist. (2)
Unlocked IC : Such an IC can be purchased from the open market or through
a malicious insider in the trusted design house. This IC can be used by the
attacker as an oracle, i.e., one can check whether the output for a given key from
the locked netlist is correct. In order to perform this attack within reasonable
time, an attacker seeks to apply the minimum number of input patterns to the
IC. Note that only combinational circuits (or sequential circuits in which all
flip-flops are assumed to be accessible through the scan chain) are considered in
such attacks [6].

Various attacks have been proposed based on this attack model to minimize
the number of required input patterns. For example, in [10], automatic test
pattern generation (ATPG) tools [11] are used to generate a set of inputs that
can propagate (sensitize) the correct key to observable outputs in the circuit.
In SAT-based attacks, such propagations are not required. Instead, the attacker
iteratively finds a set of distinguishing input patterns (DIPs) for which two copies
of the locked netlist, loaded with two wrong keys, produce different outputs.
Since the unlocked IC is available to the attacker, he or she can then apply this
pattern to the unlocked IC and find the correct output. The algorithm then
iteratively uses these DIPs to guide a SAT solver to a correct key value. The
algorithm terminates when no more DIPs can be found, which means that the
remaining key is guaranteed to be the correct key. The results in [6] show that
the algorithm quickly converges in little to no time, with a fairly small amount
of DIPs.

2.2 Notation and Terminology

– A bold variable means a set of elements, and |.| is used to denote the number
of elements in a set. For example K stands for a key set with |K| possible
keys, and Ki represents the ith element in this set;

192 X. Xu et al.

– We denote the input/output relationship of the obfuscated logic circuit with:
Y = F (X, K), where Y denotes the primary output space of the circuit, X
denotes the primary input space and K denotes the key input space; similarly,
Y = F (X, K) means that one primary output Y is generated by the circuit
fed with one input vector X and key K;

– To keep it consistent with common SAT notation, an obfuscated logic
circuit is expressed in conjunctive normal form (CNF) as C(X,K,Y).
SAT (C(X,K,Y)) is used to evaluate whether the CNF C(X,K,Y) is true
or false. X = SAT Assignment(C(X,K,Y)) refers to calling a SAT solver
to find satisfying assignments X for the CNF C(X,K,Y).

– The evaluation operation with X on the unlocked IC (i.e., applying DIPs and
observing the correct output) is denoted by eval(X).

2.3 SAT-Resistant Logic Locking

To strengthen the security of logic locking, various SAT-resistant techniques have
been recently developed, most notably SARlock [7] and Anti-SAT [8]. Both these
techniques attach additional logic to the circuit in order to reduce the number
of wrong keys that can be ruled out by each DIP and, therefore, force the SAT
attack to take an exponential number of iterations to find the correct key.

SARLock. In SARLock [7], at most one incorrect key value is ruled out by
each DIP. This effect is brought about by a small comparator circuit that flips
the circuit output for only one input pattern for a given (wrong) key. SARLock
results in the worst case scenario for the attacker, as shown in the truth table
of Fig. 1. For this particular circuit/Boolean function, there are, in total, 23 = 8
possible key values: K0–K7. When the input pattern {1, 1, 1} is applied, only
K7 can be identified as incorrect. To find the correct key, one has to iteratively
search through 6 more DIPs and rule out the other wrong keys (K0–K5). On the
other hand, it is possible to rule out all incorrect keys with one input pattern
{1, 1, 0} for a regular logic locked design.

SARLock+SLL. Though SARLock possesses strong resistance against SAT
attacks, it cannot protect the circuit against other attacks that exploit its
mode of implementation. For example, in a removal attack, an attacker can
analyze the netlist and then identify and remove the SARLock gates from the
design. To mitigate this vulnerability, the authors in [7] proposed a two-layer
or hybrid logic-locking mechanism: SARLock + strong logic locking (SLL) [10].
This hybrid technique combines SARLock with regular logic locking (i.e., embed-
ding of XOR/XNOR/MUX key-gates into the netlist), and also intertwines the
two keys (SARLock key and SLL key) using permutations.

The SARLock+SLL scheme comprises of a 2n-bit key, where n-bits are used
for SARLock and n-bits are used for SLL. To understand the exact effect of such
a hybrid scheme, we divide the whole key set (consisting of 22n keys) into SLL
set and SARlock set. The SARLock set comprises of 2n keys where the n SLL

Novel Bypass Attack and BDD-based Tradeoff Analysis 193

Fig. 1. Two truth tables of a logic design with 3-bit inputs. (a) shows that multiple
wrong keys will be ruled out for each input pattern. (b) shows that with each input
patterns, only one incorrect key value can be identified.

key bits are correct and the n SARLock key bits are incorrect. All the other
keys (22n − 2n) are classified into a SLL set, as shown in Fig. 2. From the table,
it can be seen that a single DIP can rule out multiple wrong keys in the SLL
set. However, if a wrong key is in the SARLock set, then only one DIP can be
found and at most one key in the SARLock set can be ruled out per iteration.
As shown in Fig. 2, we can see that the SAT attack can easily rule out the keys
(K0, K1, K2, K3, K4, K5, K6)1 in the SLL set with a small number of DIPs.
However, the keys (KSAR

0 , KSAR
1 , KSAR

2 , KSAR
3) in the SARLock set can only

be ruled out one at a time per input pattern. Therefore, the SAT resistance of
the hybrid scheme is only brought about by keys in the SARLock set. The keys
in the SLL set only add a negligible amount of DIPs for the attack.

Fig. 2. A truth table example of the SARLock+SLL mechanism. The strength of the
SARLock+SLL scheme against SAT attack is provided only by the keys in the SARLock
set. (Note that the key space is divided into SLL and SARLock sets for simplicity. In
practice, the keys of the two sets are mixed with each other.)

1 These sequential numbers are used to make it easier to visualize the entire key space.

194 X. Xu et al.

Fig. 3. Schematic of Anti-SAT: (a) shows the integration of Anti-SAT and a locked
circuit. By using an XOR gate, the Anti-SAT block can flip the output if a wrong key is
used. (b) illustrates the construction of Anti-SAT block, in which two complementary
Boolean functions with n-bit inputs are employed. (c) shows an example of Anti-SAT
implemented with AND and NAND gates.

Anti-SAT. In Anti-SAT [8], an Anti-SAT block is integrated into the circuit
(see Fig. 3), which is composed of a pair of sub-blocks B1 = gl1(X,Kl1) and
B2 = gl2(X,Kl2). The two blocks share a common input X but two different
keys Kl1 and Kl2. The functionality of the two blocks gl1 and gl2 are comple-
mentary. Hence, they can also be denoted by g and ḡ. There is a one-bit output
Y for the Anti-SAT block, which is generated by ANDing B1 and B2. Similar
to SARLock, a wrong key applied on the Anti-SAT block will enable Y = 1
for some input pattern(s), and flip the correct outputs, as depicted in Fig. 3(a).
Assuming the Boolean function g has n inputs, we denote the number of input
patterns that make g evaluate to “1” as p. The authors in [8] prove that the
decryption capability of the SAT attack is greatly limited if p is sufficiently close
to 1 (or 2n − 1). A properly designed Anti-SAT block satisfying p = 1 forces an
attacker to enumerate the largest number of possible keys to reveal the correct
ones. They also note that natural candidates for g and ḡ that satisfy p = 1 are
AND and NAND respectively.

2.4 Other Attacks

Yasin et al. have proposed the use of cipher blocks (such as AES) for generating
logic-locking keys [12], which are infeasible to break by SAT within reasonable
time. However, due to the independence between the cipher block and the func-
tional circuitry, it becomes trivial for the attacker to identify and circumvent
the AES. To prevent similar vulnerabilities, Xie et al. propose functional and
structural obfuscation techniques to enhance the security of Anti-SAT block [8].
However, it has been recently shown that although the Anti-SAT block can be
hidden in the whole netlist, the attacker can still identify the flip signal Y gen-
erated by the Anti-SAT block, by analyzing the signal probability skew of the g
and ḡ blocks in the circuit [13]. This allows the attacker to set the flip signal of
the Anti-SAT block to 0 and then apply the conventional SAT attack.

Novel Bypass Attack and BDD-based Tradeoff Analysis 195

3 Bypass Attack: Definition and Methodologies

3.1 Adversarial Model/Capabilities

In this work, we follow the same adversarial model considered in most attacks
on logic locking [6], i.e., the malicious party is in possession of the following: (1)
The locked netlist; and (2) An unlocked IC, on which the attacker can apply
input patterns and observe outputs. In practice, the attacker treats the locked
netlist as a black box, and seeks to unlock the functionality of the design so that
it can be pirated/overproduced.

3.2 Our Method: Bypass Attack

The main purpose of SAT attack is to reveal the correct key by iteratively apply-
ing DIPs. However, once all DIPs for any wrong key are known, an alternative
for the attacker is to reverse the incorrect outputs instead of continuing with
the search for the correct key(s). Taking the schematic in Fig. 4(a) as an exam-
ple, if the DIPs that cause an incorrect output for a wrong key are known,
then one can simply stitch a “bypass circuit” to monitor those DIPs and reverse
the output back to the correct one. Such a bypass circuitry can be constructed
with a comparator, which is stitched to the primary output of the circuit/logic
cone. An example bypass circuit that monitors the DIP=(0, 0, 0, 1) is shown in
Fig. 4(b). When the circuit encounters this DIP, it can be used to trigger a signal

Fig. 4. (a) shows that for a locked netlist, a bypass circuit can be inserted to detect the
DIP for the wrong key Ki. (b) shows an example bypass circuit block for correcting the
flipped output in (d). When the input pattern (I0, I1, I2, I3) is (0,0,0,1), a logic “Y=1”
will be generated to flip the original wrong output. (c) denotes the construction of
miter circuit, which will be then applied to the SAT Solver. (d) shows an example
truth table for finding the DIPs.

196 X. Xu et al.

Y = 1 that inverts the incorrect output. In summary, a bypass circuit ensures
that the incorrect output can be inverted back; thereby nullifying the effect of a
wrong key.

Miter Construction. The first step in our proposed bypass attack is construct-
ing a miter circuit that can be fed into a SAT solver. The miter is constructed
with two circuit copies: the first is a copy of the locked netlist with an incorrect
key Ki and the second is the same locked netlist with another incorrect key Kj ,
as shown in Fig. 4(c). A SAT solver can then be used to find a DIP that causes
the miter to evaluate to 1 (where the output of copy A does not equal the output
of copy B). In the example in Fig. 4(d), the SAT solver should find and return
the input pattern Ia = (0, 0, 0, 1) or Ib = (0, 0, 1, 0) where Z(Ki) �= Z(Kj),
where Z is the output of the circuit copy. Further, calling the SAT solver again
(while banning the previous solution) should return both input patterns Ia and
Ib. Note that any input pattern which causes both Z(Ki) and Z(Kj) to evaluate
to the same wrong logic value (e.g., Z(Ki) = Z(Kj) = 0 when Z = 1) will not
be discovered by this miter construction.

Querying Unlocked IC. Once Ia and Ib are found, they can be applied on
the unlocked IC to find the correct outputs. In Fig. 4(d), Z = 0 for Ia, and
Z = 1 for Ib. With these observations, we can now see that for the locked netlist
with key Ki, only input pattern Ia produces the incorrect output. Provided that
standalone SARLock or Anti-SAT is applied (no SLL or structural/functional
obfuscation), we can be certain that this is the only input pattern for which the
circuit with wrong key Ki produces the wrong output. Similarly, for the locked
netlist with wrong key Kj , Ib is the only pattern that produces the wrong output.

Bypass Circuitry Overhead. In terms of gates, the bypass circuitry overhead
is a linear function of the number of DIPs NDIP for the wrong key found above
and the number of output bits flipped by the DIPs. Consider a circuit with N
primary inputs. It would need N XNOR gates (or AND/NOR) for checking the
inputs for the single DIP, (N −1) two input AND gates for determining a match
between the DIP and input, and one XOR gate to flip the primary output when
the input matches the DIP. In case the flip signal from the Anti-SAT/SARLock
is not connected directly to the primary output (and instead, to an internal net),
we can evaluate the number of primary outputs in the fan-in cone of the key
input (say Nout), and embed Nout XOR gates into the Nout primary outputs.
Thus we have the following expression:

Overhead = (2N − 1) × NDIP + Nout (1)

The overhead across a set of benchmarks will be shown in Sect. 4.
In the sections below, we show how to apply this attack on SARLock, SAR-

Lock+SLL, and Anti-SAT.

Novel Bypass Attack and BDD-based Tradeoff Analysis 197

3.3 Bypass Attack on SARLock

In SARLock, there is only one DIP corresponding to each wrong key. In other
words, though the wrong key is applied, the functionality of the circuit is just
slightly different from that of an unlocked IC. This favors our bypass attack.
Simply put, we can just apply any random key2, and then identify the lone DIP
with a SAT solver. By simply reversing the flipped output with a bypass circuitry,
we can make the circuit (fed with a wrong key) regain its correct input-output
behavior.

3.4 Bypass Attack on SARLock+SLL

Following the methodology of bypass attack on SARLock, we can pick up a
random wrong key, identify all the DIPs and reverse them for SARLock+SLL.
However, this is not a good choice in practice because for each key in the SLL
set (as mentioned in Sect. 2.3), the number of DIPs is not a constant value. This
would increase the overhead of the bypass circuit. Further, we would not be able
to guarantee the correct functionality of the bypassed circuit (more on this will
be discussed in Sect. 4). By analyzing the truth table in Fig. 2, we can make two
conclusions:

1. For any two random keys KSAR
i and KSAR

j from the SARLock set, the Ham-
ming Distance HD(F (X,KSAR

i), F (X,KSAR
j)) between their outputs3 is 1 if

the input X is a DIP. Here, F (X,KSAR
i) denotes the output of the design for

a primary input X and key input KSAR
i . In other words, for any two (wrong)

keys in SARLock set, at most 2 DIPs can be observed.
2. In a single iteration of the SAT attack, at most 1 incorrect key from the

SARLock set can be ruled out using one DIP, but ≥ 2 wrong keys from SLL
set can be ruled out.

These two observations imply that our approach should now be to first find a
wrong key in the SARLock set and then implement our bypass attack. To realize
this, we propose Algorithm 14, which is a modified version of the original SAT
algorithm presented in [6]. In the original attack, the algorithm terminates when
no further DIPs can be found. For the purpose of executing our bypass attack,
the algorithm should instead terminate when all the wrong keys in the SLL set
have been ruled out. In other words, the new algorithm stops when no more
DIPs which can rule out at least 2 wrong keys in a single iteration are found5.

The modified attack is shown in Algorithm1. The main difference between
this and the original SAT attack [6] lies between lines 2 and 11. In the modified
2 The probability of getting the correct key in the first random try is extremely low,

thus we do not consider this situation.
3 “1” means the number of flipped outputs, not the number of flipped bits.
4 Note that a paper recently accepted to GLSVLSI 2017 proposed a similar algorithm

[14]. We developed Algorithm 1 independently.
5 Note that when this condition is satisfied, some keys in the SARlock set might also

have been ruled out, but all the keys in SLL set are already ruled out.

198 X. Xu et al.

Algorithm 1. Ruling out the wrong keys in SLL set.
Prerequisite: C and eval (as defined in Sect. 2.2)
Ensure: A wrong key candidate KSAR in SARlock set
1: i := 1
2: F 1

1 = C(X1,K1, Y1) ∧ C(X1,K2, Y2)
3: F 2

1 = C(X1,K3, Y1) ∧C(X1,K4, Y2) {K1,K2,K3 and K4 are 4 random key candi-
dates}

4: F1 = F 1
1 ∧ F 2

1 {F1 is a SAT formula composed by 2 parts: F 1
1 and F 2

1 }
5: while SAT

[
Fi ∧ (Y1 �= Y2) ∧ (K1 �= K3) ∧ (K2 �= K4)

]
do

6: Xd
i := SAT Assignment

(
(Fi ∧ (Y1 �= Y2) ∧ (K1 �= K3) ∧ (K2 �= K4))

)

7: Y d
i := eval(Xd

i)
8: F 1

i+1 = F 1
i ∧ C(Xd

i ,K1, Y
d
i) ∧ C(Xd

i ,K2, Y
d
i)

9: F 2
i+1 = F 2

i ∧ C(Xd
i ,K3, Y

d
i) ∧ C(Xd

i ,K4, Y
d
i)

10: i ← i + 1
11: Fi = F 1

i ∧ F 2
i

12: end while
13: KSAR = K1 {when the algorithm terminates, any key remaining should be in

SARLock set}
14: return KSAR

attack, a combinational miter is formed between four copies of the locked netlist,
each with keys K1,K2,K3,K4, the same input Xi and outputs Y1, Y2 (lines 2,
3 and 4). A SAT solver is called to find a DIP Xd

i , that causes the four circuit
copies to produce outputs such that Y1 �= Y2 (line 6). This Xd

i is then applied
on the unlocked circuit to obtain the correct output Y d

i (line 7). After Xd
i and

Y d
i are obtained, these are added as constraints to the conjunctive normal form

(CNF) circuit formula, so that in the next iteration, the keys K1,K2,K3,K4 will
be chosen such that they are consistent with all the Xd

i and Y d
i inputs/outputs

observed thus far on the unlocked IC (line 8 and 9). In contrast to the original
SAT algorithm, this algorithm will terminate when no more than 2 wrong keys
can be ruled out within a single iteration (with one single DIP Xd

i). This implies
that all the wrong keys in SLL set have been ruled out, and any key(s) left
behind (KSAR) should now be in the SARlock set. As stated earlier, in the
SARlock set, the key bits corresponding to SLL gates are correct and the key
bits corresponding to the SARLock block may or may not be correct. After
this, KSAR can be used to implement our bypass attack as previously discussed
in Sect. 3.3 for SARLock. Note that once KSAR is obtained, the area overhead
required for the bypass attack will be the same as that of standalone SARLock.

3.5 Bypass Attack on Anti-SAT

In [8], two different modes of integration of the Anti-SAT block were proposed:
secure integration (SI) and random integration (RI). In secure integration mode,
the n-bit inputs X of the Anti-SAT block are directly connected with the n-bit
primary inputs (IN) of the original circuit, and output Y of the Anti-SAT block

Novel Bypass Attack and BDD-based Tradeoff Analysis 199

is connected to a randomly selected wire in the circuit that has high observability.
In random integration mode, the inputs X and output Y of Anti-SAT are con-
nected to several random internal wires of the original circuit. The authors also
showed that the Anti-SAT block implemented with secure integration was more
resistant to SAT attacks than random integration. In Appendix A, we describe
the secure integration mode in more detail and also show that using secure inte-
gration makes it easier to apply the bypass attack. More specifically, we show
that if an Anti-SAT block is implemented using secure integration (where p = 1),
there exists one and only one DIP for any wrong key. This then implies that our
bypass attack can be implemented on Anti-SAT in the exact same manner as
on SARLock. However, for p > 1, the number of DIPs causing bit flips (NDIP)
increases and therefore, the overhead of the bypass attack increases (see Eq. 1).
Thus, there is tradeoff between SAT-resistance attack complexity and bypass
attack overhead.

In random integration mode, it cannot be guaranteed that there exists only
one DIP per wrong key. Internal nets in wires are often correlated (to varying
degrees), which prevents all possible input patterns from occurring at the input
of the Anti-SAT block. Therefore, the one bit flip per wrong key assumptions
holds only for a very limited subset of the entire input space. This brings about
two effects.

– The SAT attack becomes easier, as only a limited subset of the entire input
space triggers the Anti-SAT block. Therefore, the number of DIPs as well
as the time required to execute the attack decrease significantly. Further, a
large number of keys could turn out to be correct, because of the failure
of the Anti-SAT block to trigger. This explanation is also supported by the
results in [8], where it was shown that random integration was broken in far
fewer iterations/less time than secure integration. We also performed a few
experiments on random integration, where we varied the nodes chosen (as
well as the number of nodes chosen) as inputs to the Anti-SAT block. While
SAT attack execution time increased with the number of nodes chosen, it
also varied significantly with the choice of nodes. For example, for the C3540
benchmark, a 32 bit Anti-SAT key resulted in a SAT attack time of 89 s (941
iterations) for one choice of 16 random nodes, and 616 s (2615 iterations) for
yet another choice of nodes.

– Bypass attack becomes harder (or less feasible), as setting a random wrong
key in the locked circuit could result in multiple bit flips for multiple input
patterns. Depending on which wrong key is randomly chosen, the number of
patterns (and therefore, the number of gates required to implement the bypass
circuitry) could be prohibitively high. For example, when querying the miter
circuit for the C3540 benchmark, we found that for some wrong keys, the
SAT solver returned UNSAT immediately, indicating that no distinguishing
patterns existed between the two circuits with the two wrong keys. For other
key pairs, however, we found that the solver returned more than 50 K patterns
as distinguishing.

200 X. Xu et al.

In summary, our bypass attack works very good against secure integration
(SI). Although the bypass attack also works on random integration (RI), its scal-
ability in terms of area overhead depends on which internal nodes are selected.

4 Experimental Results and Discussion

In this section, we evaluate the performance and overhead of our approach. We
also compare our technique with the current state-of-the-art.

4.1 Experimental Setup

We evaluate our method with a subset of benchmarks from the ISCAS, MCNC
and EPFL benchmark sets [15,16]. For each benchmark, a primary output with
at least 8 inputs in its transitive fan-in cone was chosen and all gates in such a
cone were extracted to create a logic cone for locking. SARLock/Anti-SAT were
implemented on the output cone, and then the bypass circuitry was embedded
on the locked cone. As for the key length, for a benchmark with N inputs, the
SARLock key length is N whereas the Anti-SAT (SI) key length is 2N . We
excluded random integration (RI) for Anti-SAT because of the aforementioned
scalability issues of our bypass attack. For SARLock+SLL, we added 32 ran-
domly inserted key gates which makes the key length N + 32. In terms of tools,
we employed the Python extension of Cryptominisat [17] for finding the DIPs to
bypass, and used the ABC synthesis tool [18] to estimate the area/delay over-
head of the final bypassed circuit (after optimizing/resynthesizing them using
the commands strash → refactor → rewrite).

Bypass Circuitry Overhead. The basis of our attack is that we are able to
embed a bypass circuitry to circumvent SAT-resistant logic locking. However, the
area/delay overhead consumed by the bypass circuitry itself cannot go unnoticed.
Therefore, from an attacker’s perspective, the relevant metrics for attack efficacy
would be area and delay overhead from the bypass circuitry. Area and delay
overhead are estimated by the increases in design gate count and number of
levels in the output cone, respectively, from the original as well as locked design.

Table 1 shows the area/delay overhead from integrating the bypass circuitry
on designs locked with SARLock and Anti-SAT. For most of the benchmarks, we
can see that the there is actually a considerable improvement in area/delay over-
heads (compared to the locked designs). This is because we applied resynthesis to
the bypassed circuit6. Since the bypassed design has hard-coded SARLock/Anti-
SAT key values, resynthesis leads to a considerable portion of the locking cir-
cuitry being automatically eliminated/merged with other gates. However, there
is a slight increase in area/delay overheads compared to the original design
(as seen in the columns under “over original”). Note that these overheads scale

6 Note that if resynthesis were not applied, we can expect to see an area overhead in
line with Eq. 1, as shown in Fig. 5(b).

Novel Bypass Attack and BDD-based Tradeoff Analysis 201

T
a
b
le

1
.
A

re
a
,
d
el

ay
ov

er
h
ea

d
s

fo
r

im
p
le

m
en

ti
n
g

b
y
p
a
ss

ci
rc

u
it

ry
o
n

S
A

T
-r

es
is

ta
n
t

ci
rc

u
it

s.

B
e
n
ch

m
a
rk

G
a
te

c
o
u
n
t

C
o
n
e

g
a
te

c
o
u
n
t

S
A
R
L
o
ck

A
n
ti
-S

A
T

L
o
ck

e
d

C
o
n
e

B
y
p
a
ss

(o
v
e
r

lo
ck

e
d
)

B
y
p
a
ss

(o
v
e
r

o
ri
g
in

a
l)

L
o
ck

e
d

C
o
n
e

B
y
p
a
ss

(o
v
e
r

lo
ck

e
d
)

B
y
p
a
ss

(o
v
e
r

o
ri
g
in

a
l)

A
re

a
%

C
o
n
e

D
e
la

y
%

A
re

a
%

C
o
n
e

D
e
la

y
%

A
re

a
%

C
o
n
e

D
e
la

y
%

A
re

a
%

C
o
n
e

D
e
la

y
%

A
re

a
%

C
o
n
e

D
e
la

y
%

A
re

a
%

C
o
n
e

D
e
la

y
%

C
4
3
2

1
6
0

1
0
5

8
3
.1

3
2
9
.0

3
−

4
3
.6

9
−

3
2
.5

3
.1

3
−

1
2
.9

3
9
4
.7

4
2
9
.0

3
−

2
3
.2

3
−

1
5

4
8
.7

5
9
.6

8

C
8
8
0

3
8
3

8
0

4
4
.1

9
1
1
0
.5

3
−

2
5
.1

9
−

5
2
.5

0
.7

8
0
.0

0
5
0
.5

1
1
1
.1

1
−

9
.7

2
−

1
0
.5

3
2
6
.1

1
8
8
.8

9

C
1
9
0
8

8
8
0

5
2
2

1
5
.3

6
3
7
.0

4
−

1
1
.1

9
−

2
7
.0

3
0
.1

1
0
.0

0
1
8
.1

1
3
7
.0

4
−

4
.7

4
−

2
1
.6

2
9
.5

5
7
.4

1

C
3
5
4
0

1
6
6
9

3
5
4

7
.0

2
1
7
8
.5

7
−

4
.3

8
−

6
6
.6

7
0
.8

4
−

7
.1

4
8
.2

6
1
7
8
.5

7
−

3
.9

4
−

3
0
.7

7
2
.2

2
9
2
.8

6

C
5
3
1
5

2
2
9
7

1
8
4

6
.6

1
6
6
.6

7
−

5
.8

6
−

6
2
.5

0
.0

0
0
.0

0
7
.3

8
1
6
6
.6

7
−

6
.5

1
−

6
2
.5

0
.0

0
0
.0

0

C
7
5
5
2

3
5
1
2

4
9
3

1
0
.0

8
4
7
6
.4

7
−

8
.5

6
−

7
7
.5

5
−

0
.2

2
9
.4

1
1
1
.6

8
4
7
6
.4

7
−

9
.7

6
−

7
7
.5

5
−

0
.2

2
9
.4

1

a
p
e
x
2

1
5
2
2

5
8
3

1
1
.0

4
1
1
.7

6
−

3
.6

8
−

1
0
.5

3
−

0
.3

3
0
.0

0
1
1
.6

7
1
1
.7

6
−

3
.8

7
−

1
0
.5

3
−

0
.3

3
0
.0

0

sq
rt

1
6
9
9
8

8
8
4

0
.6

3
0
.8

6
−

0
.6

1
−

1
.7

−
0
.0

1
−

0
.8

6
0
.7

0
.8

6
−

0
.3

3
0
.4

3
0
.3

3
1
.2

9

202 X. Xu et al.

mostly as a function of the number of primary inputs N in the circuit (see
Eq. 1). For designs with few primary inputs and large number of gates, the
overhead becomes negligible (e.g., ≈ 1% area/delay overheads for benchmarks
apex2, sqrt).

Attack Time. From the attacker’s perspective, execution time is also impor-
tant. The execution time to generate the DIPs to bypass for SARLock and
Anti-SAT is < 2 s for all the benchmarks. Note that the scalability/run-time of
our attack is limited only by the number of variables/clauses (from the circuit’s
CNF representation) that can be handled by the SAT solver (which only needs to
be called twice for the two DIPs). Arbitrarily large sequential circuits could also
be bypassed (provided there is scan access), because the SAT-resistant scheme is
only applied to a few combinational logic cones in the circuit. These are usually
much smaller than the entire circuit.

We also implemented Algorithm 1 using the Python wrapper for Cryptomin-
isat, and used it to extract a bypass key for the hybrid version of SARLock (i.e.,
SARLock + SLL, with 32 bit XOR keys inserted randomly into the netlist).
For the locked output cone of the C3540 benchmark, the code converged to the
final key with the correct SLL portion in 442 iterations (i.e., 442 input-output
observations). Similarly, for the C432 benchmark, the code took 651 iterations.
For apex2, the number of iterations was 820. The run-time for the SAT solver on
these benchmarks was on the order of 5–15 min. The run-times were higher as
we used the Python wrapper for Cryptominisat (not the native C++ version).
We do not present area/delay results for bypass attack on hybrid SARLock, as
they are identical to the results for standalone SARLock (the bypass circuit only
depends on the no. of inputs).

4.2 Comparison to State-of-the-Art

Table 2 shows a comparison of various logic locking countermeasures and applica-
ble attacks, where a ✓ (✗) denotes that an attack can (can not) break a par-
ticular logic locking method. The table shows that SAT attack applies only to
SLL. Removal attacks can apply to Anti-SAT and SARLock [13]. Bypass attack
applies to all of the techniques except SLL. Note that the bypass attack may or
may not scale to Anti-SAT (RI), which is why it has a ✓as well as ✗. Further-
more, bypass attack is complementary to both SAT and removal attacks.

– SAT Attack: The parameter p for Anti-SAT is directly proportional to NDIP
7.

As discussed earlier, a low (high) value of p (and therefore, NDIP) implies
higher (lower) SAT resistance. However, the overhead of the bypass attack
(see Eq. 1) increases linearly with NDIP (and therefore, p). This implies that

7 Note that in [8], p refers to the output one count of the function g. When p is very
low (i.e., 1) or very high (2N − 1, where N is the number of inputs to the Anti-SAT
block), SAT attack becomes difficult. For values of p between 1 and 2N − 1, SAT

resistance decreases. In the discussion here, a high value of p refers to p ≈ 2N−1
2

.

Novel Bypass Attack and BDD-based Tradeoff Analysis 203

Fig. 5. (a) Alternative Anti-SAT construction for g and ḡ to vary p (by changing few
AND gates to OR gates) (b) Trade-off between SAT resistance and bypass circuitry
overhead on varying p. Each data point is a 16 key bit Anti-SAT block with varying p.
Maximum value of p is 255. However, the graph is symmetric before and after p ≈ 127.
Therefore, only the first half is shown.

Table 2. A comparison of various logic locking techniques, attacks and countermea-
sures.

Attacks Countermeasures

Regular Logic
Lock (SLL)

SARLock SARLock +
SLL

Anti-SAT
(SI)

Anti-SAT
(RI)

SAT ✓ ✗ ✗ ✗ ✗

Removal ✗ ✓ ✗ ✓ ✓

Bypass ✗ ✓ ✓ ✓ ✗/✓

there is a tradeoff between these two attacks, which can be seen in Fig. 5. As
one attack becomes more effective (i.e., time complexity of SAT decreases,
bypass circuit overhead decreases), the other attack becomes less effective
(i.e., time complexity of SAT increases, bypass circuit overhead increases).
It should also be noted that when p is modified by changing the construction
of the Anti-SAT block (as shown in Fig. 5a), there is a chance that some
patterns can be missed by the miter construction (as explained in Sect. 3).
The number of patterns remaining undetected will depend on the key chosen
for bypass, and the boolean function obtained by the modified Anti-SAT
block. In any case, the trade-off observation still holds. A higher p value
implies a higher chance of undetected patterns, higher overhead for bypass
but also much lower SAT resistance.

– Removal Attack: Anti-SAT (RI) cannot always be efficiently attacked using
bypass attack. However, it is vulnerable to removal attacks, if the Anti-SAT
block is not obfuscated using additional key gates. Further, SAT resistance is
also lowered as discussed in Sect. 3.5.

204 X. Xu et al.

Therefore, for any secure logic locking scheme, all the aforementioned attacks
need to be considered in unison.

5 Countermeasure Exploration and Trade-Off Assessment

5.1 Binary Decision Diagram

In order to better understand the tradeoffs discussed above (complementary
nature of the attacks), we propose logic locking at the functional level using
binary decision diagrams (BDDs) instead of at the netlist level. BDDs are graph-
representations of Boolean functions that have been extensively used in the past
decade for synthesis and formal verification. A BDD is able to represent the
entire input space of a Boolean function in a compact form. An example of a
BDD for a simple XOR function Y = A ⊕ B is shown in Fig. 6(a), where the
variables A, B are represented as nodes. Dashed lines represent a variable (A,
B) equaling logic ‘0’ and solid lines represent a variable (A, B) equaling logic ‘1’.

Given a BDD representation of a combinational circuit, a simple logic locking
scheme is shown in Fig. 6(b). K1,K2 are new variables added to the BDD. In
this scheme, application of the correct key {K1 = 0,K2 = 0} allows the BDD
to exert the original circuit functionality f . Application of any other (wrong)
key causes the circuit to perform functions f ′, f ′′, f ′′′, and so forth which are
different from the original function f , as shown in Fig. 6(c). In order to develop
SAT attack resistance at the BDD level (for p = 1), we need to make sure that
every wrong key value leads to a function f ′, f ′′, etc. that has Hamming Distance
from f equal to 1. This causes a 1-bit flip when the wrong key is used. Further,
any arbitrary values of p (or NDIP) can be accommodated by the BDD.

We summarize the benefits of BDD-based logic locking below.

– Balancing Bypass and SAT Resistance: As shown in Fig. 5, there is clearly
a tradeoff between SAT attack execution time and bypass attack feasibility.
Since BDDs permit arbitrary values of p, it would be possible to find the

Fig. 6. (a) BDD representation of an XOR function. (b) Logic locking at the BDD
Level. (c) Every wrong key value leads to a function that has Hamming Distance from
f equal to 1.

Novel Bypass Attack and BDD-based Tradeoff Analysis 205

point of intersection in Fig. 5. As a designer, this is the best-case scenario for
logic locking, since it balances the highest SAT attack execution time with
the highest bypass cost for the attacker. In addition, by knowing this point
of intersection, the designer can determine whether logic locking provides
enough protection against piracy.

– Removal and Sensitization Attacks: Unlike Anti-SAT/SARLock which inverts
the circuit at a single net, BDD-based obfuscation represents the Boolean
function as a digraph, embeds key gates and introduces the obfuscated func-
tions as part of the original logic circuit. It would not be possible to isolate
the original function f from the obfuscated functions f ′, f ′′, f ′′′. Therefore,
there is no tradeoff involved for mitigating removal attacks. Further, sensiti-
zation attacks that try to propagate a single key value to the output are also
difficult [10], as (i) all key values converge to the same BDD output and (ii)
a key vector appears as a graph traversal path (not as individual key gates).

Therefore, BDDs could be viewed as a platform for simultaneously assessing all
known threats against logic locking.

Table 3. BDD-based Logic Locking with SAT Resistance: Each benchmark was logic
locked for SAT resistance with BDDs (w/ 10 bit key) and 32 key gates were then intro-
duced to increase the key length. Build/Lock Time indicates the total time required to
build the BDD for the selected output logic cone of the benchmark, and to introduce
the 10-bit SAT-resistant locking.

Benchmark Hybrid BDD Obfuscation

Area
Overhead /%

Iterations for
SAT Attack

SAT Attack
Time (s)

Build/Lock
Time (s)

C880 4090.72 1457 3049.3 1.08

C1908 3314.89 1268 1839.5 0.56

C3540 1286.9 1034 2161.3 3.18

dalu 1171.99 1075 821.6 0.56

apex2 535.58 1028 1789.9 0.37

However, we’ve also identified a shortcoming of BDD-based logic locking –
area overhead. Table 3 shows the results from applying the proposed BDD-based
logic locking scheme with SAT attack resistance. The BDD transformation of
the original circuit and subsequent embedding of key inputs (10 bits long) was
performed in the CUDD environment, using iterative ITE operations [19]. From
the table, we can observe that the SAT attack tool takes a number of iterations
that is, at the least, exponential in the size of the SAT-resistant key-length (i.e.,
iterations ≥ 210 for 10-bit key). Unfortunately, the area overheads are also
observed to be extremely high. This is expected because for SAT resistance, every
wrong key value (2n − 1) leads to a separate BDD with a unique DIP. Although
several BDD size reduction techniques exist (e.g., changing the variable orders

206 X. Xu et al.

as they appear in the BDD, BDD-based logic optimization), we noticed that
for SAT resistance, the size of the locked BDD is almost always exponential in
the key length, as seen in Fig. 7. Also, the BDD tool could read in and build a
BDD for all the benchmarks in the ISCAS’85 benchmark set (with the exception
of C6288, which is a multiplier). The node count for the BDD of the largest
benchmark (C7552) was 16 K nodes, with regular sifting-based reordering and
without any resynthesis of the BDD. Since this is clearly much bigger than
the original gate count (3.5 K), it is recommended that BDD-based locking be
performed on a per-output basis (i.e., extract transitive fan-in cone of an output,
convert the cone to BDDs, lock and then merge with the cones of the other
outputs which have not been converted to BDDs).

In order to further combat the area overhead limitation, three avenues can
be pursued.

Fig. 7. Growth of no. of nodes (area) as a function of key length for SAT attack
resistant BDD locking on the C5315 benchmark

– The SAT-resistant key can be shortened, and regular logic locking (i.e.,
embedding XOR, MUX key gates) can be performed on the circuit generated
from BDD-based obfuscation. This prevents an attacker from brute forcing a
short key. In fact, for the results in Table 3, we incorporated 32-bit XOR-based
logic locking into the resultant circuit after BDD-based locking. However, the
extra key gates introduced do not increase the circuit’s SAT resistance capa-
bilities. The SAT attack tool’s solving time is only limited as a function of
the Anti-SAT keys, not the regular logic locking keys (as these keys only add
a minimal number of DIPs for the attack). Further, the attack in Algorithm1
could be used to directly obtain keys in the SAT-resistant key space, which
can then be used for bypass.

– Another option is to embed the BDD-based obfuscation on multiple outputs
of the circuit, with a short key dedicated to each output. This allows the key
length of the circuit to increase without exponential area blow-up. However,
the number of DIPs required by the SAT attack will now be linear in the
size of the key. For example, a circuit with outputs Y1 and Y2 is locked using
the BDD-based approach. Output Y1 and Y2 are locked with keys K1 and
K2 respectively. Provided that these outputs do not share any DIPs, the

Novel Bypass Attack and BDD-based Tradeoff Analysis 207

number of iterations required by the SAT solver will now be lower bounded
by (2|K1| − 1) + (2|K2| − 1) iterations, and not 2|K1|+|K2| − 1. However, area
will only grow linearly as a function of the number of locked outputs. Due to
these reasons, there is again, an inherent tradeoff in SAT resistance and area
overhead when doing BDD-based logic locking.

– The area overhead from BDD-based logic locking is also a direct result of
sub-optimal logic synthesis from BDDs. Note that BDDs can be further opti-
mized by better variable ordering or logic decomposition [20]. Unfortunately,
techniques and tools for synthesizing circuits from BDDs are still scarce. More
research in this domain could make BDD-based logic locking more feasible.

5.2 Parametric Tests

As shown in Fig. 4(a), the bypass attack is implemented by adding extra circuit
to decrypt the locked netlist. The area and delay overhead of the bypassed IC
copies would be different from the original (locked) ones, and therefore can be
potentially identified by so called parametric tests such as side-channel mea-
surements. As the original IC is larger, the detection becomes possible since the
size of the bypass circuit also increases, as depicted in Fig. 5. However, there
are several issues that prohibit the implementation of these parametric tests in
practical scenarios:

1. The existence of process variations between different ICs would introduce
uncertainty into side-channel leakage and limit the effectiveness of the para-
metric tests.

2. Motivation for consumers in the market to undertake such an effort is weak.
Consumers usually want the cheapest chip, regardless of whether it contains
pirated IP. Our results in Table 1 show that the pirated IP can perform even
better (in terms of overhead) after re-synthesis than the obfuscated circuit.

3. It is already common practice for design houses to use reverse-engineering
(RE) companies (e.g., TechInsights) to physically RE the IP of competitors
for litigation purposes, which would be more effective than parametric tests.

With the reasons above, we argue that although it may be possible to use
parametric tests as a countermeasure against bypass attacks, practical concerns
like detection accuracy and cost would likely limit their applicability.

6 Conclusion

In this paper, we presented a novel bypass attack that can thwart SAT-resistant
logic locking schemes. The only overhead from our attack is a small bypass
logic that can be stitched onto the SAT-resistant circuit. We also assessed how
all existing attacks on logic locking can complement each other. Specifically,
high SAT attack resistance corresponds to low bypass resistance and vice-versa.
The only Anti-SAT locking technique that is somewhat resistant to our bypass

208 X. Xu et al.

attack is still vulnerable to removal attacks. We also introduced a BDD-based
logic locking approach for analyzing these competing attacks and simultaneously
balancing them. Finally, we highlighted the challenges and future work required
to make BDD (and in general, secure logic locking approaches) more practical.

Acknowledgment. This research is supported in part by Cisco Systems Inc, and by
the AFOSR award number FA9550-14-1-0351.

References

1. Tehranipoor, M.M., Guin, U., Forte, U.: Counterfeit integrated circuits. In: Coun-
terfeit Integrated Circuits, pp. 15–36. Springer, Heidelberg (2015)

2. Vaidyanathan, K., Liu, R., Sumbul, E., Zhu, Q., Franchetti, F., Pileggi, L.: Efficient
and secure intellectual property (IP) design with split fabrication. In: 2014 IEEE
International Symposium on Hardware-Oriented Security and Trust (HOST), pp.
13–18. IEEE (2014)

3. Alkabani, Y., Koushanfar, F.: Active hardware metering for intellectual property
protection and security. In: USENIX security, Boston MA, USA, pp. 291–306
(2007)

4. Roy, J.A., Koushanfar, F., Markov, I.L.: Epic: Ending piracy of integrated circuits,
vol. 43, pp. 30–38. IEEE (2010)

5. Rajendran, J., Zhang, H., Zhang, C., Rose, G.S., Pino, Y., Sinanoglu, O., Karri,
R.: Fault analysis-based logic encryption. IEEE Trans. Comput. 64(2), 410–424
(2015)

6. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption
algorithms. In: 2015 IEEE International Symposium on Hardware Oriented Secu-
rity and Trust (HOST), pp. 137–143. IEEE (2015)

7. Yasin, M., Mazumdar, B., Rajendran, J.J.V., Sinanoglu, O.: SARLock: SAT attack
resistant logic locking. In: 2016 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 236–241, May 2016

8. Xie, Y., Srivastava, A.: Mitigating SAT attack on logic locking. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 127–146. Springer, Hei-
delberg (2016). doi:10.1007/978-3-662-53140-2 7

9. Torrance, R., James, D.: The state-of-the-art in IC reverse engineering. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 363–381. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04138-9 26

10. Rajendran, J., Pino, Y., Sinanoglu, O., Karri, R.: Security analysis of logic obfus-
cation. In: Proceedings of the 49th Annual Design Automation Conference, pp.
83–89. ACM (2012)

11. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, vol. 17. Springer, Heidelberg (2004)

12. Yasin, M., Rajendran, J.J., Sinanoglu, O., Karri, R.: On improving the security
of logic locking. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 35(9),
1411–1424 (2016)

13. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Security analysis of anti-
SAT. In: 2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), pp. 342–347. IEEE (2017)

14. Shen, Y., Zhou, H.: Double DIP: Re-evaluating security of logic encryption algo-
rithms. In: Proceedings of the Great Lakes Symposium on VLSI 2017, GLSVLSI
2017, pp. 179–184. ACM, New York (2017)

http://dx.doi.org/10.1007/978-3-662-53140-2_7
http://dx.doi.org/10.1007/978-3-642-04138-9_26

Novel Bypass Attack and BDD-based Tradeoff Analysis 209

15. Brglez, F.: A neutral netlist of 10 combinational benchmark circuits and a target
translation in FORTRAN. In: ISCAS-85 (1985)

16. Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark
suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis
(IWLS), number EPFL-CONF-207551 (2015)

17. Soos, M.: Cryptominisat-a SAT solver for cryptographic problems (2009). http://
www.msoos.org/cryptominisat4

18. Brayton, R., Mishchenko, A.: ABC: An academic industrial-strength verification
tool. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
24–40. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 5

19. Somenzi, F.: CUDD: CU decision diagram package release 2.3.0. University of
Colorado at Boulder (1998)

20. Yang, C., Ciesielski, M.: BDS: A BDD-based logic optimization system. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 21(7), 866–876 (2002)

A Bypass Attack on Anti-SAT with Secure Integration

Note that in this proof, we follow the notation and terminology in Sect. 2.2.
Following the notation in [8], we denote the n-bit inputs to the Anti-SAT block
with X. In the secure integration mode, X are directly connected to the primary
inputs (IN, width of which might be larger than n) of the netlist, as shown
in Fig. 3(a). If (|IN| − |X|) > 0, then those input wires not connected with
Anti-SAT block become “don’t cares” for it. The existence of such “don’t cares”
makes it easier for attackers, since |X| is not maximized, which means |K| is not
maximized since |K| = |X|(as shown in Fig. 3(b) and (c)). If our attack works
when |IN| = |X| then it should also work when |IN| > |X|. Therefore, in the
following discussion we shall simply assume that |IN| = |X|.
Lemma 1. Given a wrong key to Anti-SAT of secure integration mode, for all
n-bit input patterns: X = B

n, B = {0, 1}, there exists one and only one DIP.

Proof. First of all, note that to make it more understandable, our proof is based
on the same notation and terminology as [8]. Given a Boolean function g(L)
with n-bit inputs, we can divide the input vectors L into two sets: L1 and L0,
which represent the inputs that make the Boolean function g equal to 1 and 0.
If we denote |L1| = p, we can get:

L1 = {L|g(L) = 1}, (|L1| = p)
L0 = {L|g(L) = 0}, (|L0| = 2n − p)

(2)

We define all 2n-bit keys for Anti-SAT with K=< Kl1,Kl2 >= B
2n, B = {0, 1},

in which Kl1 and Kl2 stand for two n-bit key inputs connected to the Anti-SAT
components g and g (l1 and l2 refer to the locations of g and its complementary
function g in the netlist, as shown in Fig. 3). Assuming Xd denotes a set of DIPs,
and Yd stands for corresponding outputs of Anti-SAT, then for the wrong key
set WKi =< Kl1

i ,K
l2
i > ruled out at the ith iteration of SAT attack by a DIP

Xd
i and Y d

i , we can get:

Y d
i = g(Xd

i ⊕ Kl1
i) ∧ g(Xd

i ⊕ Kl2
i) = 1 (3)

http://www.msoos.org/cryptominisat4
http://www.msoos.org/cryptominisat4
http://dx.doi.org/10.1007/978-3-642-14295-6_5

210 X. Xu et al.

From Eqs. 2 and 3, we can deduce that:

(Xd
i ⊕ Kl1

i) ∈ L1 and (Xd
i ⊕ Kl2

i) ∈ L0 (4)

Note that Xd
i is a input vector, thus |Kl1

i | = |L1| = p. By defining the ele-
ments in Kl1

i as {Kl1
i 1,K

l1
i 2, . . .K

l1
i p}, and corresponding XORed results in L1

as {L1
1, L

1
2, . . . L

1
p}, we can get:

(Xd
i ⊕ Kl1

i o) = L1
o ∈ L1, o ∈ [1, 2, . . . p] (5)

In Eq. 5, Kl1
i o stands for a wrong key vector for g, thus according to the properties

of XOR operation, the following equation holds true, ∀Xj ∈ X, if Xj �= Xd
i :

(Xd
i ⊕ Kl1

i o) �= (Xj ⊕ Kl1
i o), o ∈ [1, 2, . . . p] (6)

As proven in [8], if the output-one count p of Anti-SAT block g is sufficiently
close to 1, attackers are forced to iterate at least 2n keys to reveal the correct
one(s). That is, the SAT-resistance capability of Anti-SAT is maximized when
p is 1. The authors of [8] proposed to use AND and NAND gates to realize this
goal, as shown in Fig. 3(c). This implies that |Kl1

i | = |L1| = 1, if this wrong key
Kl1

i 1 is applied on the Boolean function g, then output becomes:

g(X ⊕ Kl1
i 1) =

{
1, if X = Xd

i

0, otherwise
(7)

The total number of 0 outputs from g(X ⊕ Kl1
i 1) is 2n − 1, this means that for

2n − 1 input vectors of X, the outputs Y of Anti-SAT block will be 0, i.e., the
original outputs are not flipped. Note that there must exist at least one input
corresponds to an output Y = 1, since otherwise, it violates the definition of a
wrong key.

Conclusion: in secure integration mode, there exists one and only
one DIP for any wrong key.

Post Quantum Implementations

McBits Revisited

Tung Chou(B)

Graduate School of Engineering, Osaka University Japan,
1-1, Yamadaoka, Suita, Osaka Prefecture 565-0871, Japan

blueprint@crypto.tw

Abstract. This paper presents a constant-time fast implementation for
a high-security code-based encryption system. The implementation is
based on the “McBits” paper by Bernstein, Chou, and Schwabe in 2013:
we use the same FFT algorithms for root finding and syndrome com-
putation, similar algorithms for secret permutation, and bitslicing for
low-level operations. As opposed to McBits, where a high decryption
throughput is achieved by running many decryption operations in par-
allel, we take a different approach to exploit the internal parallelism
in one decryption operation for the use of more applications. As the
result, we manage to achieve a slightly better decryption throughput at
a much higher security level than McBits. As a minor contribution, we
also present a constant-time implementation for encryption and key-pair
generation, with similar techniques used for decryption.

Keywords: McEliece · Niederreiter · Bitslicing · Software implementa-
tion

1 Introduction

In recent years, due to the advance in quantum computing, cryptographers are
paying more and more attention to post-quantum cryptography. In particular,
NIST’s call for proposal [16] serves as an announcement to declare that post-
quantum cryptography is going to be reality, and the whole world needs to
be prepared for that. Among other things, we need post-quantum public-key
encryption schemes, and the most promising candidates today are from code-
based cryptography and lattice-based cryptography.

In 1978, McEliece proposed his hidden-Goppa-code cryptosystem [13] as the
first code-based encryption system. Until today, almost 40 years of research has
been invested on cryptanalyzing the system, yet nothing has really shaken its
security. It has thus become one of the most confidence-inspiring post-quantum
encryption systems we have today, and it is important to evaluate how practical
the system is for deployment.

This work was supported by the Cisco University Research Program, by the National
Science Foundation under grant 1018836, and by the Netherlands Organisation for
Scientific Research (NWO) under grant 639.073.005. Permanent ID of this document:
a6d277b6724b21ae996418cbec02d682. Date: 2017.06.26.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 213–231, 2017.
DOI: 10.1007/978-3-319-66787-4 11

214 T. Chou

Table 1. Number of cycles for decoding for McBits and our software.

reference m n t bytes sec perm synd key eq root all arch

McBits [3]
13 6624 115 958482 252 23140 83127 102337 65050 444971 IB

13 6960 119 1046739 263 23020 83735 109805 66453 456292 IB

This paper 13 8192 128 1357824 297
3783 62170 170576 53825 410132 IB
3444 36076 127070 34491 275092 HW

In 2013, Bernstein, Chou, and Schwabe published the “McBits” paper [3],
which presents a software implementation of Niederreiter’s dual form [15] of
the McEliece cryptosystem. McBits features (1) a very high decoding (and thus
decryption) throughput which is an order of magnitude faster than the previous
implementation by Biswas and Sendrier [8], and (2) full protection against timing
attacks. These features are achieved by bitslicing non-conventional algorithms
for decoding: they use the Gao–Mateer additive FFT [11] for the root-finding,
the corresponding “transposed” FFT for syndrome computation, and a sorting
network for secret permutation.

The decryption throughput McBits achieves, however, relies on the assump-
tion that there are many decryption operations that can be run at the same
time. This is a reasonable assumption for some applications, but not for the all
applications. The user would be glad to have an implementation that is capable
of decrypting efficiently, even when there is only one decryption operation at the
moment.

The main contribution of this paper is that we show the assumption is NOT a
requirement to achieve a high decryption throughput. Even better, our software
actually achieves a slightly better decryption throughput than McBits, at a much
higher security level. To achieve this, we need to have a deep understanding about
the data flow in each stage of decoding algorithm in order to figure out what
kind of internal parallelism there is and how it can be exploited.

Speeds. The decoding speed of our software, as well as those for the highest-
security parameters in [3, Table 1], are listed in Table 1. Most notations here
are the same as in [3, Table 1]: we use m to indicate the field size 2m, n to
denote the code length, and t to denote the number of errors. “Bytes” is the
size of public keys in bytes; “Sec” is the (pre-quantum) security level reported
by the https://bitbucket.org/cbcrypto/isdfq script from Peters [17], rounded to
the nearest integer. We list the cycle counts for each stage of the decoding
process as in [3, Table 1]: “perm” for secret permutation, “synd” for syndrome
computation, “key eq” for key-equation solving, and “root” for root finding. In [3,
Table 1] there are two columns for “perm”: one stands for the initial permutation
and one stands for the final permutation, but the cycle counts are essentially the
same (we pick the timing for the initial permutation). Note that the column “all”,
which serves as an estimation for the KEM decryption time, is computed as

“perm” × 2 + “synd” × 2 + “key eq” + “root” × 2.

https://bitbucket.org/cbcrypto/isdfq

McBits Revisited 215

Table 2. Cycle counts for key generation, encryption (for 59-byte messages), and
decryption.

key-generation encryption decryption arch

1552717680 312135 492404 IB
1236054840 289152 343344 HW

This is different from the “total” column in [3, Table 1] for decoding time, which
is essentially

“perm” × 2 + “synd” + “key eq” + “root”.

The difference is explained in Sect. 6 in detail. “Arch” indicates the microarchi-
tecture of the platform: “IB” for Ivy Bridge and “HW” for Haswell.

We comment that the way we exploit internal parallelism brings some over-
head that can be avoided when using external parallelism. In general such an
overhead is hard to avoid since the data flow of the algorithm is not necessarily
friendly for bitslicing internally. This is exactly the main reason why our soft-
ware is slower in “key eq” than McBits (a minor reason is that we are using
a larger t). Despite the extra overhead, we still perform better when it comes
to “synd” and “root”. The improvement on “perm” is mainly because of our
use of an asymptotically faster algorithm. Our “all” speed ends up being bet-
ter than McBits. We emphasize that the timings for McBits are actually 1/256
of the timings for 256 parallel decryption operations, while the timings for our
software involve only one decryption operation.

For completeness, we also implement the complete KEM/DEM-like ([19])
encryption system as described in [3, Sect. 6]. The corresponding cycle counts
for key generation, encryption, and decryption are presented in Table 2.

For comparison with lattice-based cryptosystems, NTRU Prime [4], which
appears to be the fastest high-security NTRU-type system (that has a constant-
time implementation) at the moment, takes

– 1 multiplications in F9829[x]/(x739 − x − 1) for encryption and
– 2 multiplications in F9829[x]/(x739 − x − 1) plus

1 multiplication in F3[x]/(x739 − x − 1) for decryption,

where each multiplication in F9829[x]/(x739 −x− 1) takes around 50000 Haswell
cycles. As other lattice-based cryptosystems, NTRU Prime has a relatively small
public key size of 1232 bytes. Our system has a ciphertext overhead of only 224
bytes, while NTRU Prime takes at least 1141 bytes.

Parameter Selection. As shown in Table 1, we implement one specific para-
meter set (m,n, t) = (13, 8192, 128), with 1357824-byte public keys and a 2297

security level. We explain below the reasons to select this parameter set.
The Gao–Mateer additive FFT evaluates the input polynomial at a prede-

fined F2-linear subspace of F2m . The parameter n indicates the size of the list of

216 T. Chou

field elements that we need to evaluate at, so for n = 2m we can simply define
the subspace as F2m . In the case of n < 2m, however, there is no way to define
the subspace to fit arbitrary choice of the field elements (which is actually a part
of the secret key), so the best we can do is still evaluate at the whole F2m . In
other words, having n < 2m would result in some redundant computation.

The parameter n also indicates the number of elements that we need to apply
secret permutations on. The permutation algorithm we use, in its original form,
requires that the number of elements to be a power of 2. The algorithm can
be “truncated” to deal with an arbitrary number of elements, but this makes
implementation difficult.

Having t close to the register size is convenient for bitslicing the FFT algo-
rithms and the Berlekamp–Massey algorithm. We choose t = 128 to match the
size of XMM registers in SSE-supporting architectures, as well as the size of
the vector registers in the ARM-NEON architectures. Not having t close to the
register size will not really affect the performance of FFTs: the algorithms are
dominated by the t-irrelevant part as long as t is much smaller than 2m. A bad
value for t has more impact on the performance of the Berlekamp–Massey algo-
rithm since we might waste many bits in the registers. Choosing t = 128 (after
choosing n = 2m) also forces the number of rows mt and number of columns
n − mt of the public-key matrix to be multiples of 128, which is convenient for
implementing the encryption operation.

For the reasons stated above, some other nice parameters for (m,n, t) are

– (12, 4096, 64) with 319488-byte public keys and a 2159 security level,
– (12, 4096, 128) with 491520-byte public keys and a 2189 security level, and
– (13, 8192, 64) with 765440-byte public keys and a 2210 security level.

We decided to select a parameter set that achieves at least a 2256 pre-quantum
security level and thus presumably at least a 2128 post-quantum security level.

The reader might argue that such a high security level is not required for real
applications. Indeed, even if quantum algorithms can take a square root on the
security level, it still means that our system has a roughly 2150 post-quantum
security level. In fact, we even believe that quantum algorithms will not be able
to take a square root on the security: we believe there is a overhead of more
than 220 that needs to be added upon the square root. However, before the
post-quantum security of our system is carefully analyzed, we think it is not a
bad idea to implement a parameter set that is very likely to be an overkill and
convince users that the system achieves a decent speed even in this case. Once
careful analysis is done, our implementation can then be truncated to fit the
parameters. The resulting implementation will have at least the same speed and
a smaller key size.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the low-level building blocks used in our software. Section 3 describes how
we implement the Beneš networks for secret permutations. Section 4 describes
how we implement the Gao–Mateer FFT for root finding and the correspond-
ing “transposed” FFT for syndrome computation. Section 5 introduces how we

McBits Revisited 217

implement the Berlekamp–Massey algorithm for key-equation solving. Finally,
Sect. 6 introduces how the components in Sects. 3, 4, 5 are combined to form the
complete decryption, as well as how key generation and encryption are imple-
mented.

2 Building Blocks

This section describes the low-level building blocks used in our software. We will
use these building blocks as black boxes in the following sections. The imple-
mentation techniques behind these building blocks are not new. In particular,
this section presents (1) how to use bitslicing to perform several field operations
in parallel and (2) how to perform bit-matrix transposition in software. Readers
who are familiar with these techniques may skip this section.

Individual Field Operations. The finite field F213 is constructed as F2[x]/(g),
where g = x13+x4+x3+x+1. Let z = x+(g). Each field element

∑12
i=0 aiz

i can
then be represented as the integer (a12a11 · · · a0)2 in software. Field additions
are carried out by XORs between integers. Field multiplications are carried out
by the following C function.

typedef uint16_t gf;
gf gf_mul(gf in0, gf in1)
{

uint64_t i, tmp, t0=in0, t1=in1, t;
tmp = t0 * (t1 & 1);
for (i = 1; i < 13; i++) tmp ^= (t0 * (t1 & (1 << i)));
t = tmp & 0x1FF0000;
tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
t = tmp & 0x000E000;
tmp ^= (t >> 9) ^ (t >> 10) ^ (t >> 12) ^ (t >> 13);
return tmp & ((1 << 13)-1);

}

The squaring function is written in a similar way. Computing the inverse of a
field element is carried out by raising the element to the power 213 − 2 using 12
squarings and 4 multiplications.

Bitsliced Field Operations. The field multiplication function gf mul and the
field addition shown above are rather inefficient. The reason is that each logical
instruction deals with only a small number of bits. For the algorithms used in
our software, however, most of the time several field operations can be performed
in parallel. We thus “bitslice” the field operations. The idea of bitslicing is to
use bitwise logical operations to simulate w copies of a combinational circuit:
the data for the ith copy is stored in the ith bits of the registers. In this way,
the number of bits involved in each instruction can be improved to w. Bitslicing
is also heavily used in [3]. We emphasize that for [3], the w copies are from w
different decryption operations. For our software, the w copies are all from the
same decryption operation.

218 T. Chou

void vec64_mul(uint64_t *h, uint64_t *f, uint64_t *g)
{

int i, j;
uint64_t r[2*13 - 1];
for (i = 0; i < 2*13 - 1; i++)

r[i] = 0;
for (i = 0; i < 13; i++)
for (j = 0; j < 13; j++)

r[i+j] ^= r[i+j] ^ (f[i] & g[j]);
for (i = 2*13-2; i >= 13; i--)
{

r[i - 9] ^= r[i];
r[i - 10] ^= r[i];
r[i - 12] ^= r[i];
r[i - 13] ^= r[i];

}
for (i = 0; i < 13; i++) h[i] = r[i];

}

Fig. 1. The C function for bitsliced multiplications in F213 [x]/(x13 + x4 + x3 + x + 1)
using 64-bit words.

The function vec64 mul for bitsliced field multiplications using 64-bit words
is shown in Fig. 1. One can of course use 128-bit or 256-bit words instead. Accord-
ing to Fog’s well-known performance survey [10], on the Ivy Bridge architecture,
the bitwise AND/XOR/OR instructions on the 128-bit registers (XMM regis-
ters) have a throughput of 3 per cycle, while for the 256-bit registers (YMM
registers) the throughput is only 1. On Haswell, the instructions for the 256-
bit registers have a throughput of 3 per cycle. We thus use the corresponding
function vec128 mul for Ivy Bridge and use vec256 mul as much as possible for
Haswell. Since both functions are heavily used in our software, they are written
in qhasm [2] code for the best performance.

Many CPUs nowadays support the pclmulqdq instruction. The instruction
essentially performs a multiplication between two 64-coefficient polynomials in
F2[x], so it can be used for field multiplications. Our multiplication function
vec256 mul takes 138 Haswell cycles, which means a throughput of 1.86 field
multiplications per cycle. The pclmulqdq instruction has a throughput of 1/2 on
Haswell. We may perform 2 multiplications between 13-coefficient polynomials
using one pclmulqdq instruction. However, non-bitsliced representations make
it expensive to perform reductions modulo the irreducible polynomial g. On
Ivy Bridge the throughput for pclmulqdq is only 1/8, which makes it even less
favorable.

Transposing Bit Matrices. Bit-matrix transposition appears to be a well-
known technique in computer programming. Perhaps due to the simplicity of
the method, it is hard to trace who the credit belongs to. Below we give a brief
review on the idea.

McBits Revisited 219

The task is to transpose a w ×w bit matrix M , where w is a power of 2. The
idea is to first divide the matrix into 4 w/2×w/2 submatrices, i.e., the left upper,
right upper, left bottom, and right bottom submatrices. Then a “coarse-grained
transposition” is performed on M , which simply interchanges the left bottom
and right upper submatrices. Finally each block is transposed recursively, until
we reach 1 × 1 matrices. The idea is depicted below.

M =
(

M00 M01

M10 M11

)

=⇒ M ′ =
(

M00 M10

M01 M11

)

=⇒
(

MT
00 MT

10

MT
01 MT

11

)

= MT

The benefit of this approach is that it can be carried out efficiently in soft-
ware. Suppose we are working on a w-bit machine, where the matrix is naturally
represented as an array of w w-bit words in a row-major fashion. Observe that
each of the first w/2 rows of M ′ is the concatenation of the first halves of two
rows in M . Similarly, each of the second w/2 rows is the concatenation of the
second halves of two rows in M . Therefore, each row in M ′ can be generated
using a few logical operations. After this, in order to carry out operations in the
recursive calls efficiently, the operations involving the upper two blocks can be
handled together using logical operations on w-bit words. The same applies for
the bottom two blocks. The C code for transposing 64× 64 matrices is shown in
Fig. 2.

const uint64_t mask[6][2] =
{

{0X5555555555555555, 0XAAAAAAAAAAAAAAAA},
{0X3333333333333333, 0XCCCCCCCCCCCCCCCC},
{0X0F0F0F0F0F0F0F0F, 0XF0F0F0F0F0F0F0F0},
{0X00FF00FF00FF00FF, 0XFF00FF00FF00FF00},
{0X0000FFFF0000FFFF, 0XFFFF0000FFFF0000},
{0X00000000FFFFFFFF, 0XFFFFFFFF00000000}

};
for (j = 5; j >= 0; j--)
{

s = 1 << j;
for (p = 0; p < 32/s; p++)
for (i = 0; i < s; i++)
{

idx0 = p*2*s + i;
idx1 = p*2*s + i + s;
x = (in[idx0] & mask[j][0]) | ((in[idx1] & mask[j][0]) << s);
y = ((in[idx0] & mask[j][1]) >> s) | (in[idx1] & mask[j][1]);
in[idx0] = x;
in[idx1] = y;

}
}

Fig. 2. The C code for transposing 64 × 64 bit matrices. The matrix to be transposed
is stored in the array in. The transposition is performed in-place.

220 T. Chou

The same technique can be easily generalized to deal with non-square matri-
ces. Our software makes use of functions for transposing 64 × 128 and 128 × 64
matrices, where instructions such as psrlq, psllq, psrld, pslld, psrlw, and
psllw are used to shift the 128-bit registers.

3 The Beneš Network

As described in [3], a “permutation network” uses a sequence of conditional
swaps to apply an arbitrary permutation to an input array S. Each condi-
tional swap is a permutation-independent pair of indices (i, j) together with
a permutation-dependent bit c; it swaps S[i] with S[j] if c = 1. Our software
uses a specific type of permutation network, called the Beneš network [1], to
perform secret permutations for the code-based encryption system.

The McBits paper uses a “sorting network” for the same purpose but notes
that it takes asymptotically more conditional swaps than the Beneš network:
O(n log2 n) versus O(n log n) for array size n = 2m. We found that the Beneš
network is more favorable for our implementation because it is easier to use
the internal parallelism due to its simple structure. This section introduces the
structure of the Beneš network, as well as how it is implemented in our software.

Conditional Swaps: Structure. The Beneš network for 2m elements con-
sists of a sequence of 2m − 1 stages, where each stage consists of exactly 2m−1

conditional swaps. The set of index pairs for these 2m−1 conditional swaps is
defined as

{
(α · 2s+1 + β, α · 2s+1 + 2s + β) | 0 ≤ α < 2m−1−s, 0 ≤ β < 2s

}
,

where s is stage-dependent. The sequence of s is defined as

m − 1,m − 2, . . . , 1, 0, 1, . . . ,m − 2,m − 1.

To visualise the structure, the size-16 Beneš network is depicted in Fig. 3.
The Beneš network is often defined in a recursive way, in which case the

size-2m Beneš network is viewed as the combination of the first and last stage,
plus 2 size-2m−1 Beneš networks in the middle. Also note that in some materials
the sequence of s is defined as

0, 1, . . . ,m − 2,m − 1,m − 2, . . . , 1, 0.

The two ways to define the sequence for s are equivalent up to a permutation of
the array indices.

Conditional Swaps: Implementation. Consider the Beneš network for an
array S of 2m bits for some even m. We may consider S as a m/2 × m/2 matrix
M such that

Mi,j = S[i · 2m/2 + j].

In each of the first and last m/2 stages, the index pairs always have an index
difference that is a multiple of 2m/2. This implies that in each of these stages,

McBits Revisited 221

Fig. 3. The size-16 Beneš network with 7 stages. Each horizontal line represents an
element in the array. Each vertical line segment illustrates a conditional swap involving
the array elements corresponding to the end points.

Mi,j is always conditionally swapped with Mi′,j , where i′ is a function of i. This
implies that the conditional swaps can be carried out by performing bitwise
logical operations between the rows (and the vectors formed by the corresponding
conditions): a conditional swap between Mi,j and Mi′,j with condition bit c can
be carried out by 4 bit operations

(y ← Mi,j ⊕ Mi′,j ; y ← cy;Mi,j ← Mi,j ⊕ y;Mi′,j ← Mi′,j ⊕ y),

as mentioned in [3]. Likewise, the m − 1 stages in the middle can be carried out
by using bitwise logical operations between columns.

The Beneš network can be easily implemented on a machine with m/2-bit
registers. The matrix M can be represented using an array of m/2 m/2-bit
words in a row-major fashion. With such a representation, the conditional swaps
between the rows can be performed by bitwise logical instructions between the
words. To deal with the m − 1 stages in the middle, we transpose the bit matrix
right after the first m/2 stages and right before the last m/2 stages (using the
technique described in Sect. 2), to maintain a column-major representation of M
during the m − 1 stages.

For our system it is required to permute 2m = 213 bits. We store these bits
in a 64 × 128 matrix, and the same technique described above still applies.

4 The Gao–Mateer Additive FFT

Given a predefined F2-linear basis {β1, β2, . . . , βk} ⊂ F2m and an �-coefficient
input polynomial f =

∑�−1
i=0 fix

i ∈ F2m [x] such that � ≤ 2k ≤ 2m, the Gao–
Mateer FFT evaluates f at all the subset sums of the basis. In other words, the
FFT outputs the sequence f(e1), f(e2), . . . , f(e2k), where

(e1, e2, e3, e4, e5, . . .) = (0, β1, β2, β1 + β2, β3, . . .).

Such an FFT will be called a size-2k FFT.

222 T. Chou

Assuming that βk = 1. The idea is to compute two polynomials f (0) and f (1)

such that
f = f (0)(x2 + x) + xf (1)(x2 + x),

using the “radix conversion” described in [3, Sect. 3] (this is called “Taylor expan-
sion” in [11]). Note that f (0) is a ��/2	-coefficient polynomial, while f (1) is a

�/2�-coefficient polynomial. Observe that α2 + α = (α + 1)2 + (α + 1). This
implies that once t0 = f (0)(α2 + α) and t1 = f (1)(α2 + α) are computed, f(α)
can be computed as t0 + α · t1, and f(α + 1) can be computed as f(α) + t1.
Observe that the output of the FFT is the sequence

f(e1), f(e2), . . . , f(e2k−1), f(e1 + 1), f(e2 + 1), . . . , f(e2k−1 + 1),

and e1, . . . , e2k−1 forms all subset sums of {β1, . . . , βk−1}. Therefore, two FFT
recursive calls are carried out to evaluate f (0) and f (1) at all subset sums of
{β2

1 + β1, . . . , β
2
k−1 + βk−1}. Finally, f(ei) and f(ei + 1) are computed by using

f (0)(e2i + ei) and f (1)(e2i + ei) from the recursive calls, for all i from 1 to 2k−1.
In the case where βk �= 1, the task is reconsidered as evaluating f(βkx) at the

subset sums of {β1/βk, β2/βk, . . . , 1}. This is called “twisting” in [3]. Note that
it takes � − 1 multiplications to compute f(βkx). To sum up, the Gao–Mateer
additive FFT consists of 4 steps: (1) twisting, (2) radix conversion, (3) two FFT
recursive calls, and (4) combining outputs from the recursive calls.

In order to find the roots of an error locator, we need to evaluate at every
field element in F213 . The corresponding basis is defined as

{β1 = z12, β2 = z11, . . . , β13 = 1}.

Having β13 = 1 means that the first twisting can be skipped. Since we use
t = 128, the error locator for our system is a 129-coefficient polynomial. However,
for implementation of the FFT algorithm it is more convenient to have a 128-
coefficient input polynomial. We therefore consider the error locator as x128 + f
and compute α128+f(α) for all α ∈ F213 . Below we explain how the Gao–Mateer
additive FFT for root finding, as well as the corresponding “transposed” FFT
for syndrome computation, are implemented in our software.

Radix Conversions and Twisting. As described in [3], the first step of the
radix conversion is to compute polynomials Q and R from the 4n-coefficient (n
is a power of 2) input polynomial f =

∑4n−1
i=0 fix

i:

Q = (f2n + f3n) + · · · + (f3n−1 + f4n−1)xn−1 + f3nxn + · · · + f4n−1x
2n−1,

R = (f0) + · · · + (fn−1)xn−1

+ (fn + f2n + f3n)xn + · · · + (f2n−1 + f3n−1 + f4n−1)x2n−1,

so that f = Q(x2n + xn) + R. Then Q and R are fed into recursive calls
to obtain the corresponding R(0), R(1), Q(0), Q(1). Finally, the routine outputs
f (0) = R(0) + xnQ(0) and f (1) = R(1) + xnQ(1). The recursion ends when we
reach a 2-coefficient polynomial f0 + f1x, in which case f (0) = f0 and f (1) = f1.

McBits Revisited 223

Here is a straightforward way to implement the routine. First of all, represent
the input polynomial f as a 4n-element array in of datatype gf (see Sect. 2) such
that fi is stored in in[i]. Then perform 4n XORs

for (i = 0; i < n; i++) in[2*n+i] ^= in[3*n+i];
for (i = 0; i < n; i++) in[1*n+i] ^= in[2*n+i];

to store Ri in in[i] and Qi in in[2*n+i]. Likewise, the additions in the
recursive calls can be carried out by in-place XORs between array elements.
Eventually we have f

(0)
i in in[2*i] and f

(1)
i in in[2*i+1].

Representing the polynomials as arrays in gf is, however, expensive for twist-
ing: as mentioned in Sect. 2, the function gf mul is not efficient. Therefore in our
software the polynomials are represented in bitsliced format. In this case, the
additions can be simulated by using bitwise logical instructions and shifts. As
a concrete example, let f be a 64-coefficient input polynomial in F213 [x], which
is represented as a 13-element array of type uint64 t. Then the following code
applies the radix conversion on f .

const uint64_t mask[5][2] =
{
{0x8888888888888888, 0x4444444444444444},
{0xC0C0C0C0C0C0C0C0, 0x3030303030303030},
{0xF000F000F000F000, 0x0F000F000F000F00},
{0xFF000000FF000000, 0x00FF000000FF0000},
{0xFFFF000000000000, 0x0000FFFF00000000}

};
for (k = 4; k >= 0; k--)
for (i = 0; i < 13; i++)
{
in[i] ^= (in[i] & mask[k][0]) >> (1 << k);
in[i] ^= (in[i] & mask[k][1]) >> (1 << k);

}

In the end, the coefficients of f (0) are represented by the even bits of the words,
while the coefficients of f (1) are represented by the odd bits.

The same technique can also be used to complete the radix conversions in the
FFT recursive calls. Since a twisting operation simply multiplies fi by βi

k, they
are carried out using bitsliced multiplications. See Fig. 4 for the code for all the
radix conversions and twisting operations, including those in the FFT recursive
calls. Note that the first twisting operation, which should take place before the
first radix conversion, is already skipped in the code. Our software uses similar
code but replaces 64-bit words by 128-bit words.

Butterflies. The reader might have noticed that the last 4 stages of Fig. 3 are
similar to the well-known butterfly diagram for standard multiplicative FFTs.
In a standard multiplicative FFT, f is written as f (0)(x2) + xf (1)(x2) so that
f(α) and f(−α) can be computed using f (0)(α2) and f (1)(α2) obtained from

224 T. Chou

for (j = 0; j <= 4; j++)
{

for (i = 0; i < 13; i++)
for (k = 4; k >= j; k--)
{

in[i] ^= (in[i] & mask[k][0]) >> (1 << k);
in[i] ^= (in[i] & mask[k][1]) >> (1 << k);

}
vec64_mul(in, in, s[j]); // twisting

}

Fig. 4. The code for performing the twisting operations and radix conversion in the
FFT for a 64-coefficient polynomial f ∈ F213 [x].

recursive calls. The similarity (between multiplicative FFTs and additive FFTs)
in the ways of rewriting f results in the same “butterfly” structure.

In the case of a “full-size” additive FFT, where � = 2k, the whole butterfly
diagram has to be carried out. The technique used for carrying out the Beneš
network (see Sect. 3) can be easily generalized to carry out the diagram. For
decoding, however, � is usually much smaller than 2k = 2m. As the result, we
only need to carry out the last log2 � stages of the complete butterfly diagram.

As described in Sect. 3, we carry out the second half of the Beneš network
by using a bit-matrix transposition in the middle. In the case of additive FFT
butterflies, there will be m bit-matrix transpositions. The ideal case is that the
� is small enough so that the transpositions can be avoided. The corresponding
code using 64-bit words for m = 12 is presented in Fig. 5. For the parameters
� = 128 and m = 13, we are close to this ideal case but need to carry out 1 or 2
extra stages. The extra stages can be carried out by interleaving the 128-bit or
256-bit words.

for (i = 0; i <= 5; i++)
{

s = 1 << i;
for (j = 0; j < 64; j += 2*s)
for (k = j; k < j+s; k++)
{

vec64_mul(tmp, out[k+s], consts[consts_ptr + (k-j)]);
for (b = 0; b < 13; b++) out[k][b] ^= tmp[b];
for (b = 0; b < 13; b++) out[k+s][b] ^= out[k][b];

}
consts_ptr += (1 << i);

}

Fig. 5. Butterflies in the additive FFT.

McBits Revisited 225

for (i = 5; i >= 0; i--)
{

s = 1 << i;
consts_ptr -= s;
for (j = 0; j < 64; j += 2*s)
for (k = j; k < j+s; k++)
{

for (b = 0; b < 13; b++) out[k][b] ^= out[k+s][b];
vec64_mul(tmp, out[k], consts[consts_ptr + (k-j)]);
for (b = 0; b < 13; b++) out[k+s][b] ^= tmp[b];

}
}

:
:
:

for (j = 4; j >= 0; j--)
{

vec64_mul(in, in, s[j]); // twisting
for (k = j; k <= 4; k++)
for (i = 0; i < 13; i++)
{

in[i] ^= (in[i] & (mask[k][1] >> (1 << k))) << (1 << k);
in[i] ^= (in[i] & (mask[k][0] >> (1 << k))) << (1 << k);

}
}

Fig. 6. Transposed FFT code with respect to Figs. 4 and 5.

The Bottom Level of Recursion. As shown in Fig. 4, when carrying out the
radix conversions and twisting operations, we maintain a list of � field elements.
On the other hand, as shown in Fig. 5, when carrying out the FFT butterflies,
we maintain a list of 2m field elements. Apparently some operations are required
to transit from the �-element representation to the 2m-element representation.
This has to do with how the bottom level of recursion is defined.

The straightforward way to end the recursion is to check whether the input
polynomial has only 1 coefficient; if so, the output is simply copies of the coeffi-
cient (the constant term). This is exactly the case for Figs. 4 and 5: after running
the code in Fig. 4, we simply prepare the bitsliced representation of 64 copies of
each elements and store them in out, and then Fig. 5 can be run to complete the
FFT.

We do better by using the idea in [3, Sect. 3] to end the recursion when the
input is a 2-coefficient polynomial. Let the input be f = f0 + f1x and the basis
be {β1, . . . , βk}. The idea is to first prepare a table containing f1βi for all i, and
then each output element can be computed using at most one field addition. To
implement the idea, we perform the radix conversions and twisting operations

226 T. Chou

as in Fig. 4 but stop when we reach 2-coefficient polynomials. At this moment,
the �/2 elements corresponding to f0 would lie in the lower �/2 bits of the �-bit
words, while those for f1 would lie in the higher �/2 bits. The outputs of the
lowest-level FFTs can then be obtained by carrying out bitsliced multiplications
and additions using bitwise logical operations between the �/2-bit words.

After this, we have the bitsliced representation (an array of m �/2-bit words)
for the first output elements of the lowest level FFTs, the representation for the
second output elements, and so on; in total there are 2m/(�/2) such arrays. In
order to group the output elements that belong to the same lowest-level FFT,
we perform a sequence of m transpositions on 2m/(�/2) × (�/2) = 128 × 64 bit
matrices, using the technique described in Sect. 2. Finally, the FFT butterflies
can be performed using code similar to Fig. 5.

The Transposed Additive FFT. As described in [3, Sect. 4], a linear algorithm
can be represented as a directed graph, and an algorithm that performs the
transposed linear map can be obtained by reversing the edges in the graph. The
way we implement the FFT makes it easy to imagine the structure of the graph
and program the corresponding transposed FFT. As shown in Figs. 4 and 5, each
inner loop in our FFT code essentially applies a simple linear operation on the
values in in or out. In general it suffices to modify the loops to reverse the order
that the inner loop is iterated and then replace the inner loop by its transpose.
The transposed additive FFT code with respect to Figs. 4 and 5 is shown in
Fig. 6 (the code for transposing the bottom level of recursion is skipped).

5 The Berlekamp-Massey Algorithm

The description of the original Berlekamp–Massey algorithm (BM) can be found
in [12]. In each iteration of the algorithm, a field inversion has to be carried out.
To perform the inversion in constant time, we may use the square-and-multiply
algorithm, but this is rather expensive as discussed in Sect. 2. To avoid the
problem, our implementation follows the inversion-free version of the algorithm
as described in [21].

The algorithm begins with initializing polynomials σ(x) = 1, β(x) = x ∈
F2m [x], � = 0 ∈ Z, and δ = 1 ∈ F2m . The input syndrome polynomial is denoted
as S(x) =

∑2t−1
i=0 Six

i. Then in iteration k (from 0 to 2t − 1), the variables are
updated using operations in Fig. 7. Note that � and δ are just an integer and
a field element, and multiplying a polynomial by x (to update β(x)) is rather
cheap. Therefore the algorithm is bottlenecked by computing d and updating
σ(x). We explain below how the algorithm is implemented in our software.

General Implementation Strategy. Assume that there are (t+1)-bit general-
purpose registers on the target machine. For example, one can assume that t = 63
and that we are working on a 64-bit machine. We store polynomials σ(x) and
β(x) in the bitsliced format, each using an array of m (t + 1)-bit words. The
constant terms σ0 and β0 are stored in the most significant bits of the words; σ1

and β1 are stored in the second significant bits; and so on. We also use an array

McBits Revisited 227

d ←
t∑

i=0

σiSk−i

[
σ(x), β(x), �, δ

]
←

⎧
⎪⎨

⎪⎩

[
δσ(x) − dβ(x), xβ(x), �, δ

]
, d = 0 or k < 2�.

[
δσ(x) − dβ(x), xσ(x), k − � + 1, d

]
, otherwise.

Fig. 7. Iteration k in the inversion-free BM.

S′ of m (t+1)-bit words to store at most t + 1 coefficients of S(x). This array is
maintained so that Sk is stored in the most significant bits of the words; Sk−1

is stored in the second significant bits; and so on.
To compute d, we first perform a bitsliced field multiplication between σ(x)

and S′. The result is the bitsliced representation of σ0Sk, σ1Sk−1, . . . , etc. The
element d can then be computed as the parities of the m (t+1)-bit words. After
this, Sk+1 is inserted to the most significant bits of the words in S′, which will
be used in the next iteration.

To update σ(x), we need to perform two scalar multiplications δ ·σ(x) and d ·
β(x). The bitsliced representations of t+1 copies of δ and d are first prepared, and
then bitsliced multiplications are carried out to compute the products. Updating
β(x) is done by conditionally replacing the value of β(x) by σ(x) (which can be
easily represented as logical operations) and then shifting each word to the right
by one bit to simulate the multiplication by x.

The implementation strategy pretty much simulates the circuit presented
in [21, Fig. 1]. Using the strategy, (each iteration of) the BM algorithm can be
represented as a fixed sequence of instructions. In particular, the load and store
instructions always use the same memory indices. As the result, the implemen-
tation is fully protected against timing attacks.

Haswell Implementation for t = 128. Exactly the same implementation
strategy cannot be used for t = 128 on Haswell for there is no (128 + 1)-bit reg-
isters. To solve this problem, our strategy is to store σ0 and Sk in two variables
of datatype gf. The elements σ1, . . . , σ128 and Sk−1, . . . , S0 are still stored in the
bitsliced format, using two arrays of 128-bit words. To compute d, the product
σ0Sk is computed separately. Similarly, to update σ(x), the product σ0δ is com-
puted separately. Note that β0 is always 0, so we simply store β1, . . . , β128 in the
bitsliced format.

We also need a way to update S′ and β(x) without generic shift instructions
for 128-bit registers. Our solution is to make use of the shrd instruction. Given
64-bit registers r1, r0 as arguments, the shrd instruction is able to shift the least
significant bit of r1 into the most significant bit of r0. Therefore, with 2 shrd
instructions, we can shift a 128-bit word by one bit to the right. In particular,
the second shrd shifts one bit into the most significant bit of the 128-bit word.

228 T. Chou

Therefore, we update S′ by setting this bit to bits of Sk and update β by setting
this bit to 0 or bits of σ0 (depending on the condition).

To optimize the speed for Haswell, we combine the two vec128 mul function
calls for δ · σ(x) and d · β(x) to form one vec256 mul. As discussed in Sect. 2,
this is better because 256-bit logical instructions have the same throughput as
the 128-bit ones.

We also use 256-bit logical instructions to accelerate vec128 mul. A field
multiplication can be viewed as a multiplication between 13-coefficient polyno-
mials, followed by a reduction modulo g. Let the polynomials be f and f ′; the
idea is to split the polynomial multiplication into two parts f(f ′

0 + · · · + f ′
6x

6)
and f(f ′

7 + · · ·+f ′
12x

5 +0x6). In this way, we create two bitsliced multiplications
for computing d, and the two can be combined as what we do for δ · σ(x) and
d ·β(x). Note that for combining the two products and the reduction part we still
use 128-bit logical instructions. By using 256-bit logical instructions, we improve
the cycle counts of vec128 mul from 137 to 94 Haswell cycles.

As a minor optimization, we also combine the computation of σ0Sk and σ0δ.
This is achieved by using the upper 32 bits of the 64-bit variables in gf mul for
another multiplication. In this way, two field multiplications can be carried out
in roughly the same time as gf mul.

As discussed in Sect. 4, the input of the FFT function for root finding is the
bitsliced representation of f0, . . . , f127; f128 is not stored since it is assumed to be
1. In fact, at the end of the Berlekamp–Massey algorithm we have fi = σ128−i.
Therefore we perform a field inversion for σ0 and bitsliced multiplications to
force a monic output polynomial for the Berlekamp–Massy algorithm.

6 The Complete Cryptosystem

In [3, Sect. 6] a complete public-key encryption system is described. The cryp-
tosystem uses a KEM/DEM-like structure, where the KEM is based on the
Niederreiter cryptosystem. To send a message, the sender first uses the receiver’s
Niederreiter public key to compute the syndrome of a random weight-t error
vector. Then the error vector is hashed to obtain two symmetric keys. The first
symmetric key is used for a stream cipher to encrypt the arbitrary-length mes-
sage. The second symmetric key is used for a message authentication code to
authenticate the output generated by the stream cipher. The syndrome, the
stream-cipher output, and the authentication tag are then sent to the receiver.

The receiver first decodes the syndrome using the Niederreiter secret key.
The resulting error vector is then hashed to obtain the symmetric keys, and the
receiver verifies (using the tag) and decrypts the stream-cipher output. Note that
the receiver can fail in decoding or verification. The decryption algorithm should
be carefully implemented such that others cannot distinguish (for example, by
using timing information) what kind of failure the receiver encounters.

We show below how key-pair generation, KEM encryption, and KEM decryp-
tion are implemented in our software.

McBits Revisited 229

Private-Key Generation. The private key of the system consists of two parts:
(1) a sequence (α1, . . . , αn) of n distinct elements in F2m and (2) a square-free
degree-t polynomial g ∈ F2m [x] such that g(αi) �= 0 for all i.

For our implementation, g is generated as a uniform random degree-t monic
irreducible polynomial in F2m [x]. To generate g, we first generate a random
element α in the extension field F2mt . The polynomial g is then defined as the
minimal polynomial of α in F2m [x], if the degree is t. To find the minimal polyno-
mial, we view F2mt as the vector space (F2m)t and try to find linear dependency
between 1, α, α2, . . . , αt using Gaussian elimination. A description of the algo-
rithm can be found in, for example, [20, Sect. 17.2].

The benefit of this approach is that it is easy to make Gaussian elimination
constant-time: [3] already shows how this can be achieved in the case of bit
matrices. Note that the algorithm can fail to find a degree-t irreducible polyno-
mial when α ∈ F2mt′ such that t′ is a divisor of t. For our parameters m = 13
and t = 128 the probability of failure is only 2−832.

Recall that we use n = 2m. Let φ be a permutation function such that
φ(e1, . . . , e2m) = (α1, . . . , α2m), where (e1, . . . , e2m) is the stardard order of field
elements introducted by the FFT (see Sect. 4). In our software, the permutation
function is defined using the condition bits in the corresponding size-2m Beneš
network. Instead of generating the sequence αi and then figure out the condition
bits, the condition bits are generated as random bits in the current implementa-
tion; the reader may refer to [3, Sect. 5] for a brief discussion on this approach.
We comment that there are (2m − 1)2m−1 = m2m − 2m−1 condition bits in the
Beneš network, while a list of 2m field elements takes m2m bits. In other words,
representing (α1, . . . , αn) as condition bits actually saves the size of secret keys.

Public-Key Generation. Let H be the bit matrix obtained by replacing each
entry in the matrix

⎛

⎜
⎜
⎜
⎝

1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)

⎞

⎟
⎟
⎟
⎠

by a column of m bits from the standard-basis representation. The receiver
computes the row-reduced echelon form of H. If the result is of the form

[
I|H ′],

the public-key is set to H ′; otherwise a new secret key is generated.
In our implementation, the images g(e1), . . . , g(en) are first generated using

the FFT implementation described in Sect. 4. After this, the inversions of all
these images are computed, using Montgomery’s trick [14] with bitsliced field
multiplications. Now we have the bitsliced representation of the first row of the
matrix ⎛

⎜
⎜
⎜
⎝

1/g(e1) 1/g(e2) · · · 1/g(en)
e1/g(e1) e2/g(e2) · · · en/g(en)

...
...

. . .
...

et−1
1 /g(e1) et−1

2 /g(e2) · · · et−1
n /g(en)

⎞

⎟
⎟
⎟
⎠

.

230 T. Chou

The remaining rows are then computed one-by-one using bitsliced field multi-
plications. Since all the rows are represented in the bitsliced format, the matrix
can be easily viewed as the corresponding mt × n bit matrix. Then the Beneš
network is applied to each row of the bit matrix to obtain H. Finally we fol-
low [3, Sect. 6] to perform a constant-time Gaussian elimination. The public key
is then the row-major representation of H ′ (one can of course use a column-major
representation instead).

KEM Encryption. The KEM encryption begins with generating the error
vector e of weight t. This is carried out by first generating a sequence of t
random m-bit values, which indicates the positions of the errors. The t values
are then checked for repetition. If a repetition is found, we simply regenerate the
t random m-bit values; otherwise, we convert the indices into the error vector as
a sequence of n/8 bytes.

To compute each bit of the syndrome, each 128-bit word in the corresponding
row is first ANDed with the corresponding 128-bit word in the error vector. The
128-bit results are then XORed together to form one single 128-bit word. We
make use of the popcnt instruction to compute the parity of the 128-bit word,
and the syndrome bit is set to the parity. Finally, after processing all the rows of
the public key, we deal with the identity matrix by XORing the first mt/8 bytes
of the error vector into the syndrome.

KEM Decryption. As explained in [3], decoding consists of 5 stages: the initial
permutation, syndrome computation, key-equation solving, root finding, and the
final permutation. This is why the “total” column in [3, Table 1] is essentially

“perm” × 2 + “synd” + “key eq” + “root”.

The “all” column in Table 1, however, is computed as

“perm” × 2 + “synd” × 2 + “key eq” + “root” × 2.

In other words, we count one extra “root” and one extra “synd”.
The reason we count “root” one more time is a matter of implementation

choice. To perform syndrome computation, each of the 2m input bits is required
to be scaled by 1/g(α)2, where α is the corresponding point for evaluation. Since
1/g(α)2 depends only on g, [3] uses them as pre-computed values. This strategy
saves time but enlarges the size of secret keys. We decide to save the size of
secret keys and compute all 1/g(α)2 on the fly, using “root” for computing g(α),
Montgomery’s trick for simultaneous inversions [14] with bitsliced multiplica-
tions, and bitsliced squarings.

The reason we count “synd” one more time is for re-encryption. A decoding
algorithm is only required to decode when the input syndrome corresponds to
an error vector of weight t. For KEM, however, we need additionally the ability
to reject invalid inputs. We therefore check the weight of the error vector and
perform “synd” again to compute the syndrome of the error vector. The decoding
is considered successful only if the weight is exactly t and the syndrome matches
the output of the first “synd” stage.

McBits Revisited 231

References

1. Beneš, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic Press, Cambridge (1965). §3

2. Bernstein, D.J.: qhasm software package (2007). http://cr.yp.to/qhasm.html. §2
3. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based

cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 250–272. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40349-1 15. §1,
§1, §1, §1, §1, §1, §1, §1, §2, §2, §3, §3, §4, §4, §4, §4, §4, §6, §6, §6, §6, §6, §6, §6

4. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU Prime
(2016). https://eprint.iacr.org/2016/461.pdf. §1

5. Bertoni, G., Coron, J.-S. (eds.): CHES 2013. LNCS, vol. 8086. Springer, Heidelberg
(2013). See [3]

6. Biham, E. (ed.): FSE 1997. LNCS, vol. 1267. Springer, Heidelberg (1997). See [7]
7. Biham, E.: A fast new DES implementation in software, in [6], pp. 260–272 (1997)
8. Biswas, B., Sendrier, N.: McEliece cryptosystem implementation: theory and prac-

tice, in [9], pp. 47–62 (2008). §1
9. Buchmann, J., Ding, J. (eds.): Post-Quantum Cryptography. LNCS, vol. 5299.

Springer, Heidelberg (2008). See [8]
10. Agner Fog: Instruction tables (2016). http://www.agner.org/optimize/instruction

tables.pdf. §2
11. Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE Trans.

Inf. Theory 56, 6265–6272 (2010). http://www.math.clemson.edu/sgao/pub.html.
§1, §4

12. Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15, 122–127 (1969). §5

13. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress report, pp. 114–116 (1978). http://ipnpr.jpl.nasa.gov/progress
report2/42-44/44N.PDF. §1

14. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathe. Comput. 48, 243–264 (1987). http://www.jstor.org/stable/pdf/2007888.
pdf. §6, §6

15. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15, 159–166 (1986). §1

16. NIST: Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process (2016). http://csrc.nist.gov/groups/ST/
post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf. §1

17. Peters, C.: Information-set decoding for linear codes over Fq. In: Sendrier, N. (ed.)
PQCrypto 2010 [18]. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12929-2 7. §1

18. Sendrier, N. (ed.): PQCrypto 2010. LNCS, vol. 6061. Springer, Heidelberg (2010).
See [17]

19. Shoup, V.: A proposal for an ISO standard for public key encryption (version 2.1).
http://www.shoup.net/papers. §1

20. Shoup, V. (ed.): A Computational Introduction to Number Theory and Algebra
(Version 2). Cambridge University Press, Cambridge (2015). §6

21. Youzhi, X.: Implementation of Berlekamp-Massey algorithm without inversion. IEE
Proc. I Commun. Speech Vision 138, 138–140 (1991). §5, §5

http://cr.yp.to/qhasm.html
http://dx.doi.org/10.1007/978-3-642-40349-1_15
https://eprint.iacr.org/2016/461.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.math.clemson.edu/sgao/pub.html
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
http://www.jstor.org/stable/pdf/2007888.pdf
http://www.jstor.org/stable/pdf/2007888.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://dx.doi.org/10.1007/978-3-642-12929-2_7
http://www.shoup.net/papers

High-Speed Key Encapsulation from NTRU

Andreas Hülsing1(B), Joost Rijneveld2(B), John Schanck3,4(B),
and Peter Schwabe2(B)

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, Eindhoven, The Netherlands

andreas@huelsing.net
2 Digital Security Group, Radboud University, Nijmegen, The Netherlands

joost@joostrijneveld.nl, peter@cryptojedi.org
3 Institute for Quantum Computing, University of Waterloo, Waterloo, Canada

4 Security Innovation, Wilmington, MA, USA
jschanck@uwaterloo.ca

Abstract. This paper presents software demonstrating that the 20-
year-old NTRU cryptosystem is competitive with more recent lattice-
based cryptosystems in terms of speed, key size, and ciphertext size. We
present a slightly simplified version of textbook NTRU, select parame-
ters for this encryption scheme that target the 128-bit post-quantum
security level, construct a KEM that is CCA2-secure in the quantum
random oracle model, and present highly optimized software targeting
Intel CPUs with the AVX2 vector instruction set. This software takes
only 307 914 cycles for the generation of a keypair, 48 646 for encapsu-
lation, and 67 338 for decapsulation. It is, to the best of our knowledge,
the first NTRU software with full protection against timing attacks.

Keywords: Post-quantum crypto · Lattice-based crypto · NTRU ·
CCA2-secure KEM · QROM · AVX2

1 Introduction

In December 2016, NIST issued a call for proposals for “post-quantum cryp-
tography” [34] to select schemes for standardization. More specifically, NIST
requests algorithms in three categories: public-key encryption, key exchange or
key encapsulation mechanisms (KEMs), and digital signatures. Obviously, the
central requirement is that proposed schemes are indeed “post-quantum”, i.e.,
that they resist attacks by a large quantum computer.

This work has been supported by the European Commission through the ICT program
under contract ICT-645622 (PQCRYPTO), and by the Netherlands Organisation for
Scientific Research (NWO) through Veni 2013 project 13114. This work has also been
supported by Canada’s NSERC CREATE program. The Institute for Quantum Com-
puting is supported in part by the Government of Canada and the Province of Ontario.
Permanent IDof this document: 65dcfe39848495fe9b2423ac0a563d43. Date: June 26,
2017.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 232–252, 2017.
DOI: 10.1007/978-3-319-66787-4 12

High-Speed Key Encapsulation from NTRU 233

For encryption and key encapsulation, it seems that the most promising app-
roach in terms of speed, key size, and ciphertext size is lattice-based cryptogra-
phy. It is no coincidence that Google chose a lattice-based scheme, more specif-
ically the Newhope Ring-LWE-based key exchange [2], for their post-quantum
TLS experiment [9]. It is also not surprising that various recent papers propose
constructions and parameters, often together with implementations, for lattice-
based encryption schemes and KEMs. See, for example, [2,3,7,8,13,14,17,35].

These schemes differ in terms of security notions (e.g., passive vs. active
security), underlying hard problems (e.g., learning-with-errors vs. learning with
rounding), structure of the underlying lattices (standard vs. ideal lattices), cryp-
tographic functionality (encryption vs. key encapsulation), and performance in
terms of speed and sizes.

Contributions of this paper. In this paper we take a step back and turn
our attention to the “grandfather of lattice-based encryption schemes”, namely
NTRU [23], with the goal of constructing a CCA2-secure key encapsulation
mechanism (KEM).

We start by reconsidering the textbook OW-CPA-secure NTRU encryption
scheme and show how a restriction on parameters leads to a considerably simpler
and more efficient key generation algorithm. We also reconsider the sample spaces
for private key and message vectors. We avoid the commonly used fixed-weight
sample spaces and propose a sampling algorithm that produces independent
and identically distributed coefficients. These changes make constant-time noise
sampling much more efficient without significantly impacting security.

We then carefully optimize NTRU parameters to achieve 128 bits of post-
quantum security while at the same time eliminating the possibility of decryp-
tion failures. Next, we transform this optimized OW-CPA-secure scheme into a
CCA2-secure KEM in the quantum-accessible random oracle model (QROM).
To this end, we tweak a known transform by Dent [18] such that security can
also be shown in the QROM without notably sacrificing efficiency.

We illustrate the performance of our NTRU-based KEM by providing a
highly optimized implementation targeting Intel processors with AVX2 vector
instructions, the same architectures targeted by the optimized Newhope soft-
ware described in [2]. To the best of our knowledge, our software is the first
NTRU software with full timing-attack protection.

KEM vs. PKE and passive vs. active security. Achieving CCA2 security for
an NTRU-based public key encryption scheme appears to require the use of com-
plex padding mechanisms [27]. However, already [40] and [36] showed that most
of this complexity can be avoided when constructing an NTRU-based CCA2-
secure KEM. CCA2-secure KEMs are very versatile building blocks. Together
with a CCA2-secure symmetric “data encapsulation mechanism” (DEM) they
can be used for CCA2-secure public-key encryption of messages of arbitrary
length [16]. They are, furthermore, the central building block in (authenticated)
key exchange constructions (see, e.g., [31]), in particular those that do not rely on
signatures for authentication. We note that the NTRU-based KEM we describe
in this paper could be used in place of Newhope in the key exchange setting

234 A. Hülsing et al.

considered in Google’s post-quantum TLS experiment. As a potential benefit,
the CCA2 security allows busy servers to cache and reuse ephemeral keys to
reduce the number of CPU cycles spent on key generation. This is a common
optimization in TLS libraries, but passively secure schemes like Newhope or
Frodo may not be secure when this optimization is deployed. See [2, Sect. 2].

Hasn’t NTRU been superseded? From some recent papers on lattice-based
cryptography one might get the impression that NTRU has been “superseded”
by public-key encryption based on Ring-LWE [33] or by NTRU Prime [3]. For
example, Kirchner and Fouque write in [30]: “Since the practical cost of trans-
forming a [sic] NTRU-based cryptosystem into a Ring-LWE-based cryptosystem
is usually small, especially for key-exchange [...], we recommend to dismiss the
former, in particular since it is known to be weaker.” Bernstein, Chuengsatian-
sup, Lange, and van Vredendaal write in [3]: “Rings of the form (Z/q)[x]/(xp−1),
where p is a prime and q is a power of 2, are used in the classic NTRU cryp-
tosystem, and have none of our recommended defenses.”

The statement by Kirchner and Fouque about NTRU being weaker than
Ring-LWE is an asymptotic statement. It is actually not surprising that Ring-
LWE is asymptotically a better choice than NTRU, because Ring-LWE-based
(and LWE-based) cryptography has been designed, to a large extent, with
asymptotic security statements in mind. However, these asymptotic results say
little or nothing about the concrete security of parameters that have been pro-
posed for actual use. See for example [10, Sect. 6]. NTRU on the other hand was
designed with concrete security for concrete efficient parameters in mind and
does not attempt to make asymptotic statements.

NTRU Prime can be seen as a variation of NTRU that uses a different ring
(or, as the authors phrase it, that avoids “rings with worrisome structure”).
Whether or not this choice of ring and other choices made in the design of NTRU
Prime lead to a more or less secure scheme will need careful investigation. This is
acknowledged by the authors, who state that they “caution potential users that
many details of Streamlined NTRU Prime are new and require careful security
review”.

To summarize, in this paper we do not argue for an order of preference
among NTRU, NTRU Prime, and Ring-LWE. For concrete parameters aiming
at a similar level of security and efficiency it is unclear which of the three will
prove optimal in the long run. At the moment there are good reasons for and
against choosing any of them. We focus on NTRU, the oldest of these schemes,
with a track record of surviving 20 years of cryptanalysis.

A note on patents. One reason that NTRU is not more widely deployed is
that there have been patents restricting its usage for most of its lifetime. The
NTRU cryptosystem was patented in [24], and NTRU with “product-form keys”
was patented in [25]. The former patent was due to expire on August 19, 2017,
but in March of this year Security Innovation released both patents [38], placing
NTRU into the public domain. Neither the present work nor the accompanying
software makes use of product-form keys.

High-Speed Key Encapsulation from NTRU 235

Availability of software. We place all software presented in this paper into the
public domain to maximize reusability of our results. It is available for download
at https://joostrijneveld.nl/papers/ntrukem.

2 Preliminaries

Minimal representatives. In describing NTRU it is useful to refer to quotient
rings such as Z[x]/(8192, xn − 1) and Z[x]/(3, xn − 1). However, the scheme
involves computations that are not well defined as maps on quotient rings. To
avoid technical pitfalls around this issue, we describe all operations in Z[x] and
introduce a “minimal representative” map to enact reduction modulo an ideal.

Let I be an ideal of Z[x] with Z[x]/I ∼= (Z/�)m for some m, possibly ∞.
The minimal representative map [·]I : Z[x] → Z[x] is defined such that [a]I ≡ a
(mod I), deg [a]I < m, and [a]I has coefficients in [−�/2, �/2). When � is even we
use the convention that [�/2]I = −�/2. We write [1/a]I to denote the minimal b
for which [ab]I = 1, if such an element exists.

Cyclotomic rings. We denote the dth cyclotomic polynomial by Φd. Note Φ1 =
x − 1 and if d is prime Φd = 1 + x + x2 + · · · + xd−1. These are the only two
cases we consider. We define

Sd := Z[x]/(Φd),
Rn := Z[x]/(xn − 1).

For prime n we have xn − 1 = Φ1Φn and Rn
∼= S1 × Sn. We will occasionally

need to lift elements of Sn/p to Rn for a fixed prime p. We do this by solving
the system of congruences

Liftp(v) ≡ 0 (mod Φ1)
Liftp(v) ≡ v (mod (p, Φn)).

Solutions are guaranteed to exist by the Chinese remainder theorem. We fix a
particular solution

Liftp(v) :=
[
Φ1 [v/Φ1](p,Φn)

]
(xn−1)

.

An efficient algorithm for Liftp may be found in the full version of this paper.

Coefficient embedding of Rn . The coefficient embedding identifies the mono-
mial basis {1, x, x2, . . . , xn−1} of Rn as an orthonormal basis of Rn. We write vi

for the ith coefficient of v and allow arithmetic modulo n in the index. We write
〈·, ·〉 for the inner product on R

n and define the 2-norm and max-norm as usual:
|v|2 =

√
〈v, v〉, and |v|∞ = maxi |vi|.

For a ∈ Rn we write a to denote the element with ai = a−i for all i. This
“reversal” map reveals a connection between the multiplicative structure of Rn

and the geometry of the coefficient embedding that we use in Lemma 1. Namely,

ab =
n−1∑
k=0

n−1∑
i=0

ak−ibix
k =

n−1∑
k=0

〈xka, b〉xk.

https://joostrijneveld.nl/papers/ntrukem

236 A. Hülsing et al.

Min-entropy. If ρ is a probability distribution on a finite set X, then the min-
entropy of ρ is min{− log2 ρ(x) : x ∈ X}.

eXtendable Output Functions (XOF). Our constructions make use of an
extendable output function XOF(X,L, S), where X is the input bitstring, L is the
desired output length in bits, and S is a context string (domain separator). As
the XOF will be modeled as (quantum-accessible) random oracle in our security
arguments, we require the instantiation of the XOF to be indistinguishable from
a random oracle. The XOF can be instantiated, for example, using sponge con-
structions like SHAKE [5]. We often need a length value that is consistent with
the security level for the scheme. We denote this μ. One may assume μ = 256.

3 OW-CPA-secure NTRU Encryption

In this section we describe the key generation, encryption, and decryption rou-
tines for our OW-CPA-secure NTRU encryption scheme. We make several depar-
tures from previous instantiations. First, we work directly with Sn to avoid
common security issues associated with the S1 subring of Rn. While it is pos-
sible to instantiate NTRU directly in Sn, and not use Rn at all, we still lift
elements of Sn to Rn to take advantage of convenient computational and geo-
metric features of Rn. Second, we choose parameters so that decryption failures
are completely eliminated, and we do this without restricting the key and mes-
sage spaces. Finally, we eliminate any need for fixed-weight distributions like
those used in [3,15,17,20,21,23,28]. All of our sampling routines are chosen to
admit simple and efficient constant time implementations.

3.1 Parameters

NTRU is parameterized by an odd prime n and coprime positive integers p and
q. The parameter n indexes Rn and Sn, hereafter denoted R and S. We define
p = (p, Φn) and q = (q, xn − 1). Ciphertexts and public keys belong to the set
of minimal representatives of R/q = Z[x]/q. Messages, blinding polynomials,
and private keys belong to the set of minimal representatives of S/p = Z[x]/p,
denoted

T = {a ∈ Z[x] : a = [a]p} .

Private keys are restricted to non-negatively correlated elements of T :

T+ = {v ∈ T : 〈xv, v〉 ≥ 0} .

The correlation restriction is new to this work. It comes from the proof of cor-
rectness in Sect. 3.5.

In Sect. 3.5 we prove that our instantiation of NTRU is correct, i.e. that
decryption failures are impossible, with p = 3 and q = q(n) where log2 q(n) =

7/2 + log2 (n)�. With p = 3 and q as the smallest power of two providing
correctness, n is our only free parameter.

High-Speed Key Encapsulation from NTRU 237

A final restriction on parameters is that Φn must be irreducible modulo both
p and q. This obviates invertibility tests during key generation and makes the
process more amenable to a constant time implementation. A similar condition
has been recommended since the original description of NTRU [22,23], but has
not previously been a requirement. Streamlined NTRU Prime has an analo-
gous requirement for q, but not for p [3]. This leaves us with only a handful of
valid n in the range typical of recent NTRU and LWE instantiations. They are:
509, 557, 653, 677, 701, 773, 797, 821, 859, 907, 941, and 1061. All of these satisfy
q(n) ∈ {8192, 16384}. The largest for which q(n) = 8192 is n = 701. In Sect. 4
we show that the corresponding parameter set, n = 701, p = 3, q = 8192, is
expected to provide 128-bit security in a post-quantum setting.

3.2 Key Generation

A private key for our OW-CPA-secure encryption scheme is a non-zero element
f ∈ T . A corresponding public key is h ∈ R such that [fh]q has small coefficients.
We generate h by sampling g in T and computing h = [Φ1gfq]q where fq =
[1/f](q,Φn). This ensures [fh]q = Φ1g.

Previous instantiations of NTRU have taken f to be a short element of R with
an inverse in both R/p and R/q. With the parameters of the previous section,
every non-zero element of T is invertible as an element of both S/p and S/q.
Invertibility in S/p and S/q is sufficient for our decryption procedure, so we can
forego tests for invertibility in R/p and R/q. Inverses must still be computed,
but the process never fails.

The factor of Φ1 in the definition of h ensures that h is equivalent to zero
modulo (q, Φ1). Previous instantiations of NTRU have taken h = [g/f]q and
the value of h modulo (q, Φ1) has been a security concern – one that is typi-
cally mitigated by sampling f and g from sets of fixed-weight vectors. To avoid
complicated sampling routines, we allow f and g to take any value in T+.

Of course the exact distribution from which f and g are drawn affects security.
Algorithm 1 makes use of a generic subroutine SampleT+ that may be thought
of as sampling from the uniform distribution on T+. In Sect. 3.4 we describe a
non-uniform SampleT+ routine that admits simple and efficient constant time
implementation. Our security claims in Sect. 4 are relative to this non-uniform
distribution. Implementations that sample from the uniform distribution on T+

may be able to claim a slightly higher security level.

Algorithm 1. KeyGen(coins)
1: g = SampleT+(XOF(coins, μ, randg))
2: f = SampleT+(XOF(coins, μ, randf))
3: fq = [1/f](q,Φn)

4: h = [Φ1gfq]q
Output: Private key f , Public key h

238 A. Hülsing et al.

3.3 OW-CPA Encryption

An NTRU public key determines an R-module of rank 2 that we denote by

Lh = {(u, v) ∈ R2 : v ≡ uh (mod q)}. (1)

Clearly (1, h) ∈ Lh, so [Lh]q is a set of exactly qn distinct points in R2. Elements
of R2 of the form r(1, h) + (0,m) = (r, rh + m) will generally not be in Lh. The
essential idea behind NTRU is that with suitable restrictions on r and m it is
possible to recover m uniquely from rh + m.

In previous instantiations of NTRU, r and m have been chosen to have coef-
ficients in {−1, 0, 1} with a prescribed number of coefficients taking each value.
We depart from this by letting r and m take arbitrary values in T .

We also ensure that all ciphertexts are identical modulo (q, Φ1). Toward this
end we take encryption to be the map

(r,m) �→ [prh + Liftp(m)]q .

Since h and Liftp(m) are equivalent to 0 modulo (q, Φ1) this achieves our goal.
Complete encryption and decryption routines are given by Algorithms 2 and

3. As with SampleT+ in the previous section, SampleT in Algorithm 2 is a generic
sampling routine that may be thought of as sampling from the uniform distri-
bution on T . However, our security claims in Sect. 4 are with respect to the
SampleT instantiation described in Sect. 3.4, which does not sample the uniform
distribution on T .

Line 2 of Algorithm 2 is equivalent to the original NTRU encryption primitive
[23] on the subring corresponding to S. The OW-CPA security [18, Definition
3] of this scheme is (trivially) equivalent to the assumption that random NTRU
ciphertexts are hard to invert.

Algorithm 2. E (m, coins, h)
1: r = SampleT (coins)
2: e = [prh + Liftp(m)]q
Output: Ciphertext e.

Algorithm 3. D (e, f)

1: m′ =
[
[ef]q f−1

]
p

Output: m′

3.4 Simplified Sampling

Sampling from the uniform distribution on T or T+ in constant time may be
difficult or slow. In this section we present alternative distributions that admit
simple and efficient constant time sampling routines. Our security analysis in
Sect. 4 assumes that these simplified sampling routines are used. Implementa-
tions that sample from the uniform distribution on these spaces may be able to
claim a slightly higher security level.

We first note that any routine for sampling from T can be transformed into a
routine for sampling from T+ with at most a one bit loss in the min-entropy of its

High-Speed Key Encapsulation from NTRU 239

output distribution. Let v be an element of T and let w be the element obtained
by flipping the signs of the even index coefficients of v. With the exception of
wn−1w0, each product in the expansion of 〈xw,w〉 contains one even index term
and one odd index term. Hence 〈xw,w〉 = 2vn−1v0 − 〈xv, v〉. However, since
v ∈ T we have vn−1 = 0 and in fact 〈xw,w〉 = −〈xv, v〉.

Our simplified SampleT+ routine (Algorithm 4) draws v from T and then
conditionally applies an even index sign flip to v if 〈xv, v〉 < 0. While Algorithm4
does not preserve the distribution of its SampleT subroutine, in the way that
rejection sampling would, it does preserve expected length. Also note that the
even index sign flip is an involution on T , so the min-entropy of the output
of SampleT+, over a uniform choice of coins, is at most one bit less than the
min-entropy of the output of SampleT .

Algorithm 4. SampleT+(coins)
1: v = SampleT (coins)
2: s = sign(〈xv, v〉)
3: /* s = ±1, sign(0) = 1 */
4: for i = 0 to (n − 1)/2 do
5: v2i = s · v2i

6: end for
Output: v ∈ T+

Algorithm 5. SampleT (coins)
1: b = XOF(coins, 4n − 4, expand)
2: v = 0
3: for i = 0 to n − 2 do
4: vi = [b4i + b4i+1 − b4i+2 − b4i+3]p
5: end for
Output: v

Our simplified SampleT routine (Algorithm 5) draws n − 1 coefficients inde-
pendently from a centered binomial distribution1 of parameter t = 2 and
then reduces these coefficients modulo p. The process always consumes exactly
2t(n−1) random bits. The resulting distribution is centrally symmetric (for any
value of p and t) and tends to the uniform distribution as t is increased. With
p = 3 and t = 2, a coefficient drawn from this distribution is −1, 0, or 1 with
probability 5

16 , 6
16 , and 5

16 respectively. The expected length of the output is

therefore
√

5
8 (n − 1).

3.5 Correctness

The following lemma determines the parameters for which we can prove that
(KeyGen, E ,D) is a correct probabilistic encryption scheme. It also explains our
use of T+. A similar statement with g ∈ T would require a factor of 2 rather
than

√
2.

Lemma 1. For r ∈ T and g ∈ T+,

|Liftp(r)g|∞ ≤
√

2 max
a∈T

|a|22.

1 A centered binomial distribution of parameter t is defined as
∑t

i=1 bi − bt+i where
b1, b2, . . . , b2t are uniform random bits.

240 A. Hülsing et al.

Proof. We may write Liftp(r) = [(x − 1)v](xn−1) where v = [r/Φ1]p ∈ T . The
quantity in question satisfies

|Liftp(r)g|∞ = |v(xg − g)|∞ = max
i

|〈xiv, xg〉 − 〈xiv, g〉|.

To simplify the indexing we will assume wlog that the maximum is attained at
i = 0. Let γ = 〈v, g〉/|g|22, and let ṽ denote the projection of v orthogonal to g,
ṽ = v − γg. Let η = 〈g, xg〉/|g|22. Crucially, note that g ∈ T+ implies η ∈ [0, 1].
This gives us

|〈v, xg〉 − 〈v, g〉| = |〈ṽ, xg〉 + γ〈g, xg〉 − 〈v, g〉|
≤ |ṽ|2|xg|2 + |γ〈g, xg〉 − 〈v, g〉|
= |ṽ|2|g|2 + |η〈v, g〉 − 〈v, g〉|
≤ |ṽ|2|g|2 + |〈v, g〉|.

For an upper bound we may assume that |v|2 = |g|2 = max{|a|2 : a ∈ T }. Then
with θ as the angle between v and g we have |ṽ|2 = sin(θ)|v|2, hence

|ṽ|2|g|2 + |〈v, g〉| ≤ (sin(θ) + cos(θ))max
a∈T

|a|22

≤
√

2 max
a∈T

|a|22

as claimed. ��

Theorem 1 (Correctness). The algorithms KeyGen, E, and D with parame-
ters p = 3 and q > 8

√
2n are a correct probabilistic encryption scheme.

Proof. Let f , g, and h be as in Algorithm 1, and let h′ be such that h = [Φ1h
′]q.

Fix a message m ∈ T and coins c ∈ {0, 1}μ. Let e = E(m, c, h). Note that
we may write e = [pLiftp(r)h′ + Liftp(m)]q for some r ∈ T . The claim is that
[[ef]qf−1]p = m. It suffices to show that [[ef]q]p = [Liftp(m)f]p. Toward this
end, note that

ef = [pLiftp(r)h′ + Liftp(m)]qf
≡ pLiftp(r)g + Liftp(m)f (mod q).

By definition of the minimal representative map, the claim holds if

[pLiftp(r)g + Liftp(m)f]q = [pLiftp(r)g + Liftp(m)f](xn−1).

Only the reduction modulo q can obstruct this since (xn − 1) ⊂ q. Hence it is
sufficient to have

|pLiftp(r)g + Liftp(m)f |∞ < q/2.

With p = 3 an element of T is of norm at most n − 1. By Lemma 1 we have

|3Liftp(r)g + Liftp(m)f |∞ < 4
√

2n < q(n)/2,

and the claim follows. ��

High-Speed Key Encapsulation from NTRU 241

4 NTRU Parameters for 128-bit Post-quantum Security

We claim that our n = 701 parameter set offers 128-bit security in a post-
quantum setting. Recall that we have defined our KEM so that n is the only
free parameter; for n = 701 we have p = 3 and q = 8192. The claim of 128-bit
post quantum security is based on two separate numerical analyses. First, an
analysis of the “known quantum” primal attack described in [2] with the cost
model of the same paper. Second, an analysis of the hybrid attack [26] using the
cost model of [21]. In the full version of this paper we review the cryptanalytic
literature around NTRU and provide some insight into how security analyses of
NTRU have evolved since 1996.

Both of our numerical analyses attempt to estimate the cost of lattice reduc-
tion on a sublattice of Lh (Eq. 1). Specifically, a lattice generated by a subset of
the columns of (

q · In−1 H
0 In−1

)
, (2)

where column 0 ≤ i < n − 1 of H is given by [xih](q,Φn). The analyses also
require estimates for the length of a shortest vector in Lh. For this we assume
the distribution on f and g induced by Algorithm5.

When optimized according to the success criteria of [2], the “known quan-
tum” primal attack applies BKZ with blocksize 466 to the first 1283 columns of
Eq. (2)2. The cost of BKZ-466 is dominated by a polynomial number of calls to
an SVP solver in dimension 466. The quantum version of Laarhoven’s hypercone
filtering sieve solves SVP in dimension k at a cost of (13/9)k/2+o(k) queries to a
quantum search oracle [32, Sect. 14.2.10]. Following [2] we assume that the o(k)
term is positive for relevant values of k. Setting k = 466 and suppressing all
subexponential factors, including the number of SVP calls made by BKZ, we
obtain a cost of (13/9)466/2 > 2123 queries. In [2] the overhead of converting
the query cost into a quantum RAM model cost is absorbed into the (13/9)o(k)

term. Our claim of 128 bit post-quantum security follows as long as a query has
a quantum RAM model cost ≥ 25. To see that this is the case we will briefly
sketch the steps of the hypercone filtering sieve and what these queries involve.

With k = 466, each iteration of the sieve involves the enumeration of >
298 lattice points. A subset of these of size 297 is put aside for later use. The
remaining lattice points, of which there are >297, are stored in a database that
admits nearest-neighbor queries. Points are stored in a data structure called a
filter bucket in order to facilitate these queries. Each point is stored in 226 out
of a total of 297 filter buckets. The total number of point representations stored
is therefore > 2123. Having built this database, the attacker makes a nearest
neighbor query for each of the reserved 297 points. Let v be such a point. The
search for a neighbor of v involves the construction of a list of points in filter
buckets relevant to v. There are expected to be �226 filter buckets relevant to v,
each containing �226 points. For the (13/9)k/2 query cost estimate, one assumes

2 If SampleT produced the uniform distribution on T , then the attack would apply
BKZ with blocksize 470 to the first 1285 columns of Eq. (2).

242 A. Hülsing et al.

that this list of �252 points relevant to v is presented by a quantum-accessible
oracle, Ov, and moreover, that quantum search finds a nearest neighbor of v
after 226 queries to Ov. Each query tests whether a point w is close to v; the
test is performed in superposition over relevant w. Accessing the entries of w,
in order to compute ||v − w||, has a (quantum) RAM model cost that is at least
linear in k (the dimension of v and w). The nearest neighbor search is repeated
for each of the reserved points for a total quantum RAM model cost of at least
466 · 226 · 297 > 2131 operations.

We will now consider the cost of Howgrave-Graham’s hybrid attack [26]. This
analysis allows for a more direct comparison with recent security estimates for
NTRU [21] and NTRU Prime [3]. As in [3,21] we use the BKZ 2.0 simulator of
[12] to estimate the quality of the basis produced by BKZ-β after a fixed number
of SVP calls.

In a slight departure from [3,21], we estimate the cost of solving SVP by
enumeration in dimension β using a quasilinear fit to the experimental data of
Chen and Nguyen [11]. Following [1] we use the trend line:

enum(β) = 0.18728 · β log2(β) − 1.0192 · β + 16.10. (3)

Note that enum(β) estimates the logarithm of the RAM cost for one SVP call.
After optimizing the attack parameters subject to the success criteria given

in [21], we estimate that hybrid attack makes >213 SVP calls in dimension 339.
Each SVP call has a cost of 2enum(β) > 2204 operations. The attack has a cost
of > 2217 operations. As described, this is an entirely pre-quantum attack. The
meet-in-the-middle stage of the hybrid attack can be replaced by quantum search
to reduce the storage requirements, but this does not change the estimated cost.

Following [17], we also consider the effect of a quadratic improvement in
the cost of solving SVP by enumeration. We report the resulting cost in the
“Quantum Enum” column of Table 1. Lastly, in the column labeled “Quantum
Sieve”, we report the cost of the hybrid attack when the quantum version of
Laarhoven’s hypercone filtering sieve is used within BKZ.

Table 1. Cost of the hybrid attack with various SVP subroutines.

SVP routine Enum Quantum Enum Quantum Sieve

Dimension 925 1092 1144

Blocksize β 339 434 464

SVP calls 12250 11462 13128

SVP cost exponent enum(β) enum(β)/2 β log2(13/9)

Cost 2217 2156 2136

Note that the cost estimates in Table 1 do not have the same units. The
enumeration column has units of “bit operations.” The quantum enumeration
and quantum sieve columns have units of “quantum queries.” Furthermore

High-Speed Key Encapsulation from NTRU 243

the queries required for quantum enumeration could potentially be replaced
with polynomial space algorithms, while the quantum sieve requires exponential
space.

5 CCA2-secure Key-Encapsulation Mechanism

We now show how to turn the above OW-CPA secure encryption into an IND-
CCA2-secure KEM. Toward this end, we make use of a generic transform by
Dent [18, Table 5]. Similar transforms have already been used for the NTRU-
based KEMs described in [36,40] and [3]. This transform comes with a security
reduction in the random oracle model. As we are interested in post-quantum
security, we have to deal with the quantum-accessible random oracle model
(QROM) [6]. As it turns out, Dent’s transform can be viewed as the KEM version
of the Fujisaki-Okamoto transform (FO) [19]. For this FO-transform there exists
a security reduction in the QROM by Targhi and Unruh [41]. It just requires
appending a hash to the ciphertext.

The basic working of the KEM-transform is as follows. First, a random string
m is sampled from the message space of the encryption scheme. This string is
encrypted using random coins, deterministically derived from m using a hash
function, later modeled as a random oracle (RO) in the proof (we use a XOF
to instantiate all ROs). The session key is derived from m by applying another
RO. Finally, the ciphertext and the session key are output.

The decapsulation algorithm decrypts the ciphertext to obtain m, derives
the random coins from m, and re-encrypts m using these coins. If the resulting
ciphertext matches the received one, it generates the session key from m.

In the QROM setting, Targhi and Unruh had to add the hash of m to the
ciphertext to make the proof go through. The reason is that in the QROM
setting a reduction simulating the RO has no way to learn the actual content of
adversarial RO queries. This issue can be circumvented by this additional hash
using a length preserving RO. In the proof, the reduction simulates this RO
using an invertible function. When it later receives a classical output of this RO,
it can recover the corresponding input, inverting the function.

An unfortunate detail in our case is that message space elements are strictly
larger than a single hash value. Appending the output of a length preserving
function to the ciphertext would therefore significantly increase the encapsula-
tion size. One might think of several ways to circumvent this issue, sadly all
straight forward approaches fail. A first approach would be to append a hash of
the coins used for SampleT instead of using its output. This does not work in
the given setting as SampleT is not invertible. Hence, the receiver has no way to
check the validity of the hash. A second approach would be as follows. Instead
of deriving everything from the message, one could first compute a message
digest using a XOF parameterized to be compressing. Then the coins used in
the encryption, the encapsulated key, and the appended hash are all computed
from this message digest. This makes the security reduction fail, as it becomes
impossible for the reduction to verify if a given decapsulation query contains

244 A. Hülsing et al.

a valid ciphertext. The reduction would always return a valid decapsulation as
it does not use decryption for this. Hence, the behavior of the reduction would
significantly differ from the real security game. As none of these straightforward
approaches work, we accept the increase of 141 bytes, which “only” accounts
for 11% of the final encapsulation size. Users that do not consider a QROM
proof necessary, can just omit this hash value. Alternatively, one could replace
SampleT with an efficiently invertible function. In that case the first approach
described above becomes viable.

Algorithm 6. Encaps (h)
1: c0←{0, 1}μ

2: m = SampleT (c0)
3: c1 = XOF(m, μ, coins)
4: k = XOF(m, μ, key)
5: e1 = E(m, c1, h)
6: e2 = XOF(m, μ, qrom)
Output: Ciphertext (e1, e2),

session key k.

Algorithm 7. Decaps ((e1, e2), (f, h))
1: m = D(e, f)
2: c1 = XOF(m, μ, coins)
3: k = XOF(m, μ, key)
4: e′

1 = E(m, c1, h)
5: e′

2 = XOF(m, μ, qrom)
6: if (e′

1, e
′
2) �= (e1, e2) then

7: k = ⊥
8: end if
Output: Session key k

6 Implementation

With this work, we provide a portable reference implementation of the scheme
described above, as well as an optimized implementation using vector instruc-
tions from the AVX2 instruction set. Both implementations run in constant time.
The AVX2 implementation is tailored to the n = 701, q = 8192, p = 3 parame-
ter set. This section highlights some of the relevant building blocks to consider
when implementing the scheme, focusing on the AVX2 implementation. Recall
that the AVX2 extensions provide 16 vector registers of 256 bits that support a
wide range of SIMD instructions.

6.1 Polynomial Multiplication

It will come as no surprise that the most crucial implementation aspect is polyno-
mial multiplication. As is apparent from the definition of the scheme, we require
multiplication in R/q during key generation and during encryption and decryp-
tion. Additionally, decryption uses multiplication in S/p. Furthermore, we use
multiplication of binary polynomials in order to perform inversion in S/q, which
we will describe in Sect. 6.2.

Multiplication in R/q . The multiplication can be composed into smaller
instances by combining Toom-Cook multiplication with Karatsuba’s method3.
3 Note that, as is observed in [3], popular choices for the ring in Ring-LWE schemes

typically make it convenient to use the NTT to perform multiplication. As was also
the case in [3], however, our ring of choice is particularly unsuitable. In our case this
is caused by q being a power of two, and the polynomials being of prime degree.

High-Speed Key Encapsulation from NTRU 245

Consider that elements of R/q are polynomials with 701 coefficients in Z/8192;
16 such coefficients fit in a vector register. With this in mind, we look for a
sequence of decompositions that result in multiplications best suited for parallel
computation.

By applying Toom-Cook to split into 4 limbs, we decompose into 7 multipli-
cations of polynomials of degree 176. We decompose each of those by recursively
applying two instances of Karatsuba to obtain 63 multiplications of polynomi-
als of 44 coefficients. Consider the inputs to these multiplications as a matrix,
rounding the dimensions up to 64 and 48. By transposing this matrix we can
efficiently perform the 63 multiplications in a vectorized manner. Using three
more applications of Karatsuba, we decompose first into 22 and 11 coefficients,
until finally we are left with polynomials of degree 5 and 6. At this point a
straight-forward schoolbook multiplication can be performed without additional
stack usage.

The full sequence of operations is as follows. We first combine the evalua-
tion step of Toom-4 and the two layers of Karatsuba. Then, we transpose the
obtained 44-coefficient results by applying transposes of 16× 16 matrices, and
perform the block of 63 multiplications. The 88-coefficient products remain in
44-coefficient form (i.e. aligned on the first and 45th coefficient), allowing for
easy access and parallelism during interpolation; limbs of 44 coefficients are the
smallest elements that interact during this phase, making it possible to operate
on each part individually and keep register pressure low.

A single multiplication in R/q costs 11 722 cycles. Of this, 512 cycles are
spent on point evaluation, 3 692 cycles are used for the transposes, 4 776 are
spent computing the 64-way parallel multiplications, and the interpolation and
recomposition takes 2 742 cycles.

Multiplication in S/p. In this setting it appears to be efficient to decompose
the multiplication by applying Karatsuba recursively five times, resulting in 243
multiplications of polynomials of degree 22. One could then bitslice the two-
bit coefficients into 256-bit registers with only very minimal wasted space, and
perform schoolbook multiplication on the 22-register operands, or even decide
to apply another layer of Karatsuba.

For our implementation, however, we instead decide to use our R/q multipli-
cation as though it were a generic Z[x]/(xn − 1) multiplication. Even though in
general these operations are not compatible, for our parameters it works out.
After multiplication and summation of the products, each result is at most
701 · 4 = 2804, staying well below the threshold of 8192. While a dedicated
S/p multiplication would out-perform this use of R/q multiplication, the choice
of parameters makes this an attractive alternative at a reasonable cost.

Multiplication in (Z/2)[x]. Dedicated processor instructions have made mul-
tiplications in (Z/2)[x] considerably easier. As part of the CLMUL instruction
set, the PCLMULQDQ instruction computes a carry-less multiplication of two 64-bit
quadwords, performing a multiplication of two 64-coefficient polynomials over
Z/2.

246 A. Hülsing et al.

We set out to efficiently decompose into polynomials of degree close to 64,
and do so by recursively applying a Karatsuba layer of degree 3 followed by
a regular Karatsuba layer and a schoolbook multiplication. This reduces the
full multiplication to 72 multiplications of 59-bit coefficients, which we perform
using PCLMULQDQ. By interweaving the evaluation and interpolation steps with
the multiplications, we require no intermediate loads and stores, and a single
multiplication ends up measuring in at only 244 cycles.

6.2 Inverting Polynomials

Computing the inverse of polynomials plays an important role in key generation.
We compute [1/f](q,Φn) when producing the public key, but also pre-compute
[1/f](p,Φn) as part of the secret key, to be used during decryption.

Inversion in S/q . We compute [1/f](2,Φn) and then apply a variant of Newton
iteration [39] in R/q to obtain fq ≡ f−1 (mod (q, Φn)). It may not be the case
that fq = [1/f](q,Φn), however the difference this makes in the calculation of h is
eliminated after the multiplication by Φ1 in Line 4 of Algorithm1. The Newton
iteration adds an additional cost of eight multiplications in R/q on top of the
cost of an inversion in S/2.

Finding an inverse in S/2 is done using f2n−1−1 ≡ 1 (mod (2, Φn)), and thus
f2700−2 ≡ f−1 (mod (2, Φ701)) [29]. This exponentiation can be done efficiently
using an addition chain, resulting in twelve multiplications and thirteen multi-
squarings.

Performing a squaring operation in (Z/2)[x] is equivalent to inserting 0-bits
between the bits representing the coefficients: the odd-indexed products cancel
out in Z/2. When working modulo (xn−1) with odd n, the subsequent reduction
of the polynomial causes the terms with degree exceeding xn to wrap around and
fill the empty coefficients. This allows us to express the problem of computing
a squaring as performing a permutation on bits. More importantly: repeated
squarings can be considered repeated permutations, which compose into a single
bit permutation.

Rewording the problem to that of performing bit permutations allows for
different approaches; both generically and for specific permutations. In order to
aid in constructing routines that perform these permutations, we have developed
a tool to simulate a subset of the assembly instructions related to bit movement.
Rather than representing the bits by their value, we label them by index, making
it significantly easier to keep track. The assembly code corresponding to the
simulated instructions is generated as output. While we have used this tool to
construct permutations that represent squarings, it may be of separate interest
in a broader context — the source code is also available as part of this work.

We use two distinct generic approaches to construct permutation routines,
based on pext/pdep (from the BMI2 instruction set), and on vshufb.

The first approach amounts to extracting and depositing bits that occur
within the same 64-bit block in both the source and destination bit sequence,
under the constraint that their order remains unchanged. By relabeling the bits

High-Speed Key Encapsulation from NTRU 247

according to their destination and using the patience sorting algorithm, we iter-
atively find the longest increasing subsequence in each block until all bits have
been extracted. Note that the number of required bit extractions is equal to the
number of piles patience sort produces. In order to minimize this, we examine
the result for each possible rotated input, and rotate it according to the rotation
that produces the least amount of disjunct increasing subsequences. Heuristically
keeping the most recently used masks in registers allows us to reduce the number
of load operations, as the BMI2 instructions do not allow operands from mem-
ory. Further improvements could include dynamically finding the right trade-off
between rotating registers and re-using masks, as well as grouping similar extrac-
tions together. For the permutations we faced, these changes did not immediately
seem to hold any promises for significant improvements.

The second approach uses byte-wise shuffling to position the bits within 256-
bit registers. We examine all eight rotations of the input bytes and use vshufb
to reposition the bytes (as well as vpermq to cross over between xmm lanes).
The number of required shuffles is minimized by gathering bytes for all three
destination registers at the same time, and where possible, rotation sequences
are replaced by shifts (as the rotated bits often play no role in the bit deposit
step, and shifts are significantly cheaper). Whereas the bit extraction approach
works for well-structured permutations, it is beaten by the (somewhat more
constant) shuffling-based method for the more dispersed results. While there
is some potential for gain when hand-crafting permutations, it turns out to be
non-trivial to beat the generated multi-squarings.

The multi-squaring routines vary around 235 cycles, with a single squaring
taking only 58. Including converting from R/q to S/2, an inversion in S/2 costs
10 332 cycles. Combining this with the multiplication in R/q described above,
the full procedure takes 107 726 cycles.

Inversion in S/p. Inversion in S/p is done using the ‘Almost Inverse’ algorithm
described in [37] and [39]. However, the algorithm as described in [39] does not
run in constant time. Notably, it performs a varying number of consecutive
divisions and multiplications by x depending on the coefficients in f , and halts
as soon as f has degree zero. We eliminate this issue by iterating through every
term in f (i.e. including potential zero terms, up to the nth term), and always
performing the same operations for each term (i.e. constant-time swaps and
always performing the same addition, multiplied with a flag fixing the sign). See
the full version of this paper for a listing in pseudo-code.

While the number of loop iterations is constant, the final value of the rotation
counter k is not; the done flag may be set before the final iteration. We com-
pensate for k after the loop has finished by rotating 2i bits for each bit in the
binary representation of k, and subsequently performing a constant-time move
when the respective bit is set.

Benefiting from the width of the vector registers, we operate on bitsliced
vectors of coefficients. This allows us to efficiently perform the multiplications
and additions in parallel modulo 3, and makes register swaps comparatively
easy. On the other hand, shifts are still fairly expensive, and two are performed

248 A. Hülsing et al.

Table 2. Comparison of lattice-based KEMs and public-key encryption. Benchmarks
were performed on an Intel Core i7-4770K (Haswell) if not indicated otherwise. Cycles
are stated for key generation (K), encapsulation/encryption (E), and decapsula-
tion/decryption (D) Bytes are given for secret keys (sk), public keys (pk), and cipher-
texts (c). The column “ct?” indicates whether the software is running in constant time,
i.e., with protection against timing attacks.

Scheme PQ sec. ct? Cycles Bytes

Passively secure KEMs

BCNS [8] 78a yes K: ≈ 2 477 958 sk: 4096

E: ≈ 3 995 977 pk: 4096

D: ≈ 481 937 c: 4224

NewHope [2] 255a yes K: 88 920 sk: 1792

E: 110 986 pk: 1824

D: 19 422 c: 2048

Frodo [7] (recommended parameters) 130a yes K: ≈ 2 938 000b sk: 11 280

E: ≈ 3 484 000b pk: 11 296

D: ≈ 338 000b c: 11 288

CCA2-secure KEMs

NTRU Prime [3] 129a yes K: ?c sk: 1417

E: > 51488c pk: 1232

D: ?c c: 1141

spLWE-KEM [13] (128-bit PQ parameters) 128g ? K: ≈ 336 700d sk: ?

E: ≈ 813 800d pk: ?

D: ≈ 785 200d c: 804

NTRU-KEM (this paper) 123a yes K: 307 914 sk: 1422

E: 48 646 pk: 1140

D: 67 338 c: 1281

CCA-secure public-key encryption

NTRU ees743ep1 [21] 159a no K: 1 194 816 sk: 1 120

E: 57 440 pk: 1 027

D: 110 604 c: 980

Lizard [14] (recommended parameters) 128g no K: ≈ 97 573 000 sk: 466 944f, h

E: ≈ 35 000 pk: 2 031 616h

D: ≈ 80 800 c: 1 072
a According to the conservative estimates obtained by the approach from [2]
b Benchmarked on a 2.6 GHz Intel Xeon E5 (Sandy Bridge)
c The NTRU Prime paper reports benchmarks only for polynomial multiplication
d Benchmarked on “PC (Macbook Pro) with 2.6 GHz Intel Core i5”
e Benchmarked by eBACS [4] on Intel Xeon E3-1275 (Haswell)
f Unlike our scheme, the secret key does not include the public key required for decryption in
the Targhi-Unruh transform
g According to the authors’ analysis, i.e., not following [2]
h Derived from the implementation – can be compressed to 10

16
of its size at a marginal increase

in cost of K, E and D by representing each coefficient using log(q) bits

High-Speed Key Encapsulation from NTRU 249

for each loop iteration to multiply and divide by x. With 159 606 cycles, the
inversion remains a very costly operation that determines a large chunk of the
cost of the key generation operation. There may still be some room for significant
improvement, though, considering the fact that each instruction in the critical
loop gets executed fourteen hundred times.

7 Results and Comparison

Table 2 gives an overview of the performance of various lattice-based encryp-
tion schemes and KEMs. As memory is typically not a big concern on the given
platforms, concrete memory usage figures are often not available and we do
not attempt to include this in the comparison. In the same spirit, our refer-
ence implementation uses almost 11 KiB of stack space and our AVX2 software
uses over 43 KiB, but this should not be considered to be a lower bound. We
performed our benchmarks on one core of an Intel Core i7-4770K (Haswell) at
3.5 GHz and followed the standard practice of disabling TurboBoost and hyper-
threading. We warn the reader that direct comparison of the listed schemes and
implementations is near impossible for various reasons: First of all, there are
significant differences in the security level; however, at least most schemes aim
at a level of around 128 bits of post-quantum security. More importantly, the
passively secure KEMs have a very fast decapsulation routine, but turning them
into CCA2-secure KEMs via the Targhi-Unruh transform would add the cost
of encapsulation to decapsulation. Also, the level of optimization of implemen-
tations is different. For example, we expect that Frodo [7] or the spLWE-based
KEM from [13] could be sped up through vectorization. Finally, not all imple-
mentations protect against timing attacks and adding protection may incur a
serious overhead. However, the results show that carefully optimized NTRU is
very competitive, even for key generation and even with full protection against
timing attacks.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. IACR Cryptology ePrint Archive report 2015/046 (2015). https://eprint.
iacr.org/2015/046. 242

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: Holz, T., Savage, S. (eds.) Proceedings of the 25th USENIX Secu-
rity Symposium. USENIX Association (2016). https://cryptojedi.org/papers/#
newhope. 233, 234, 241, 248

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
IACR Cryptology ePrint Archive report 2016/461 (2016). https://eprint.iacr.org/
2016/461. 233, 234, 236, 237, 242, 243, 244, 248

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to. 248

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (2011).
http://keccak.noekeon.org/. 236

https://eprint.iacr.org/2015/046
https://eprint.iacr.org/2015/046
https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/papers/#newhope
https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461
http://bench.cr.yp.to
http://keccak.noekeon.org/

250 A. Hülsing et al.

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry,
M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0 3. https://eprint.iacr.org/2010/428. 243

7. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: take off the ring! Practical, quantum-secure key
exchange from LWE. In: Kruegel, C., Myers, A., Halevi, S. (eds.) Conference on
Computer and Communications Security - CCS 2016, pp. 1006–1018. ACM (2016).
https://doi.org/10.1145/2976749.2978425. 233, 248, 249

8. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange
for the TLS protocol from the ring learning with errors problem. In: Bauer, L.,
Shmatikov, V. (eds.) 2015 IEEE Symposium on Security and Privacy, pp. 553–
570. IEEE (2015). https://eprint.iacr.org/2014/599. 233, 248

9. Braithwaite, M.: Experimenting with post-quantum cryptography. Posting
on the Google Security Blog (2016). https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html. 233

10. Chatterjee, S., Koblitz, N., Menezes, A., Sarkar, P.: Another look at tightness ii:
practical issues in cryptography. IACR Cryptology ePrint Archive report 2016/360
(2016). https://eprint.iacr.org/2016/360. 234

11. Chen, Y.: Lattice reduction and concrete security of fully homomorphic encryption.
Ph.D. thesis, l’Université Paris Diderot (2013).242

12. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0 1.
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf. 242

13. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum
public-key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.)
ICISC 2016. LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). doi:10.1007/
978-3-319-53177-9 3. https://eprint.iacr.org/2016/1055. 233, 248, 249

14. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! Practical post-
quantum public-key encryption from LWE and LWR. IACR Cryptology ePrint
Archive report 2016/1126 (2016). https://eprint.iacr.org/2016/1126. 233, 248

15. Consortium for Efficient Embedded Security. EESS #1: Implementation aspects
of NTRUEncrypt and NTRUSign v. 2.0. http://grouper.ieee.org/groups/1363/
lattPK/submissions/EESS1v2.pdf. 236

16. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1),
167–226 (2003). http://www.shoup.net/papers/cca2.pdf. 233

17. del Pino, R., Lyubashevsky, V., Pointcheval, D.: The whole is less than the sum of
its parts: constructing more efficient lattice-based AKEs. In: Zikas, V., De Prisco,
R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 273–291. Springer, Cham (2016). doi:10.
1007/978-3-319-44618-9 15. https://eprint.iacr.org/2016/435. 233, 236, 242

18. Dent, A.W.: A designer’s guide to KEMs. In: Paterson, K.G.
(ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 133–
151. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40974-8 12.
http://www.cogentcryptography.com/papers/designer.pdf. 233, 238, 243

19. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 34. 243

http://dx.doi.org/10.1007/978-3-642-25385-0_3
http://dx.doi.org/10.1007/978-3-642-25385-0_3
https://eprint.iacr.org/2010/428
https://doi.org/10.1145/2976749.2978425
https://eprint.iacr.org/2014/599
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://eprint.iacr.org/2016/360
http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://www.iacr.org/archive/asiacrypt2011/70730001/70730001.pdf
http://dx.doi.org/10.1007/978-3-319-53177-9_3
http://dx.doi.org/10.1007/978-3-319-53177-9_3
https://eprint.iacr.org/2016/1055
https://eprint.iacr.org/2016/1126
http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
http://grouper.ieee.org/groups/1363/lattPK/submissions/EESS1v2.pdf
http://www.shoup.net/papers/cca2.pdf
http://dx.doi.org/10.1007/978-3-319-44618-9_15
http://dx.doi.org/10.1007/978-3-319-44618-9_15
https://eprint.iacr.org/2016/435
http://dx.doi.org/10.1007/978-3-540-40974-8_12
http://www.cogentcryptography.com/papers/designer.pdf
http://dx.doi.org/10.1007/3-540-48405-1_34

High-Speed Key Encapsulation from NTRU 251

20. Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., Whyte, W.: Choosing
NTRUEncrypt parameters in light of combined lattice reduction and MITM
approaches. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.)
ACNS 2009. LNCS, vol. 5536, pp. 437–455. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-01957-9 27. https://eprint.iacr.org/2005/045. 236

21. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang,
Z.: Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-
RSA 2017. LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). doi:10.1007/
978-3-319-52153-4 1. https://eprint.iacr.org/2015/708. 236, 241, 242, 248

22. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a new high speed public key
cryptosystem (1996). Draft from at CRYPTO 1996 rump session. http://web.
securityinnovation.com/hubfs/files/ntru-orig.pdf. 237

23. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). doi:10.1007/BFb0054868. 233, 236, 237, 238

24. Hoffstein, J., Pipher, J., Silverman, J.H.: Public key cryptosystem method and
apparatus. United States Patent 6081597 (2000). Application filed 19 August 1997.
http://www.freepatentsonline.com/6081597.html. 234

25. Hoffstein, J., Silverman, J.H.: Speed enhanced cryptographic method and appa-
ratus. United States Patent 7031468 (2006). Application filed 24 August 2001.
http://www.freepatentsonline.com/7031468.html. 234

26. Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against NTRU. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622,
pp. 150–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74143-5 9.
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf. 241, 242

27. Howgrave-Graham, N., Silverman, J.H., Singer, A., Whyte, W.: NAEP: provable
security in the presence of decryption failures. Cryptology ePrint Archive, Report
2003/172 (2003). https://eprint.iacr.org/2003/172. 233

28. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets
for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA
2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-30574-3 10. https://eprint.iacr.org/2005/045. 236

29. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses
in GF (2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988).
https://sciencedirect.com/science/article/pii/0890540188900247. 246

30. Kirchner, P., Fouque, P.-A.: Comparison between subfield and straightforward
attacks on NTRU. IACR Cryptology ePrint Archive report 2012/387 (2016).
https://eprint.iacr.org/2016/717. 234

31. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 429–448. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 24.
eprint.iacr.org/2013/339. 233

32. Laarhoven, T.: Search problems in cryptography. Ph.D. thesis, Eindhoven Univer-
sity of Technology (2015). http://www.thijs.com/docs/phd-final.pdf. 241

33. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 1–23. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1.
http://www.di.ens.fr/˜lyubash/papers/ringLWE.pdf. 234

34. NIST. Post-quantum crypto project (2016). http://csrc.nist.gov/groups/ST/
post-quantum-crypto/. 232

http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/978-3-642-01957-9_27
https://eprint.iacr.org/2005/045
http://dx.doi.org/10.1007/978-3-319-52153-4_1
http://dx.doi.org/10.1007/978-3-319-52153-4_1
https://eprint.iacr.org/2015/708
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://web.securityinnovation.com/hubfs/files/ntru-orig.pdf
http://dx.doi.org/10.1007/BFb0054868
http://www.freepatentsonline.com/6081597.html
http://www.freepatentsonline.com/7031468.html
http://dx.doi.org/10.1007/978-3-540-74143-5_9
http://www.iacr.org/archive/crypto2007/46220150/46220150.pdf
https://eprint.iacr.org/2003/172
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-540-30574-3_10
https://eprint.iacr.org/2005/045
https://sciencedirect.com/science/article/pii/0890540188900247
https://eprint.iacr.org/2016/717
http://dx.doi.org/10.1007/978-3-642-40041-4_24
https://eprint.iacr.org/2013/339
http://www.thijs.com/docs/phd-final.pdf
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://www.di.ens.fr/~lyubash/papers/ringLWE.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

252 A. Hülsing et al.

35. Saarinen, M.-J.O.: Ring-LWE ciphertext compression and error correction: tools for
lightweight post-quantum cryptography. IACR Cryptology ePrint Archive report
2016/461 (2016). https://eprint.iacr.org/2016/1058. 233

36. Sakshaugh, H.: Security analysis of the NTRUEncrypt public key encryption
scheme. Master’s thesis, Norwegian University of Science and Technology (2007).
https://brage.bibsys.no/xmlui/handle/11250/258846. 233, 243

37. Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange
with elliptic curve systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 43–56. Springer, Heidelberg (1995). doi:10.1007/3-540-44750-4 4.
https://pdfs.semanticscholar.org/edc9/5e3d34f42deabe82ff3e9237266e30adc1a7.pdf.
247

38. Security Innovation. Security Innovation makes NTRUEncrypt patent-free (2017).
https://www.securityinnovation.com/company/news-and-events/press-releases/
security-innovation-makes-ntruencrypt-patent-free. 234

39. Silverman, J.H.: Almost inverses and fast NTRU key creation. Technical report
#014, NTRU Cryptosystems (1999). Version 1. https://assets.onboardsecurity.
com/static/downloads/NTRU/resources/NTRUTech014.pdf. 246, 247

40. Stam, M.: A key encapsulation mechanism for NTRU. In: Smart, N.P. (ed.) Cryp-
tography and Coding 2005. LNCS, vol. 3796, pp. 410–427. Springer, Heidelberg
(2005). doi:10.1007/11586821 27. 233, 243

41. Targhi, E.E., Unruh, D.: Quantum security of the Fujisaki-Okamoto and OAEP
transforms. Cryptology ePrint Archive, Report 2015/1210 (2015). https://eprint.
iacr.org/2015/1210. 243

https://eprint.iacr.org/2016/1058
https://brage.bibsys.no/xmlui/handle/11250/258846
http://dx.doi.org/10.1007/3-540-44750-4_4
https://pdfs.semanticscholar.org/edc9/5e3d34f42deabe82ff3e9237266e30adc1a7.pdf
https://www.securityinnovation.com/company/news-and-events/press-releases/security-innovation-makes-ntruencrypt-patent-free
https://www.securityinnovation.com/company/news-and-events/press-releases/security-innovation-makes-ntruencrypt-patent-free
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
http://dx.doi.org/10.1007/11586821_27
https://eprint.iacr.org/2015/1210
https://eprint.iacr.org/2015/1210

FPGA-based Key Generator for the Niederreiter
Cryptosystem Using Binary Goppa Codes

Wen Wang1(B), Jakub Szefer1(B), and Ruben Niederhagen2(B)

1 Yale University, New Haven, CT, USA
{wen.wang.ww349,jakub.szefer}@yale.edu

2 Fraunhofer Institute SIT, Darmstadt, Germany
ruben@polycephaly.org

Abstract. This paper presents a post-quantum secure, efficient, and
tunable FPGA implementation of the key-generation algorithm for the
Niederreiter cryptosystem using binary Goppa codes. Our key-generator
implementation requires as few as 896,052 cycles to produce both public
and private portions of a key, and can achieve an estimated frequency
Fmax of over 240 MHz when synthesized for Stratix V FPGAs. To the
best of our knowledge, this work is the first hardware-based implementa-
tion that works with parameters equivalent to, or exceeding, the recom-
mended 128-bit “post-quantum security” level. The key generator can
produce a key pair for parameters m = 13, t = 119, and n = 6960 in
only 3.7 ms when no systemization failure occurs, and in 3.5 · 3.7 ms
on average. To achieve such performance, we implemented an optimized
and parameterized Gaussian systemizer for matrix systemization, which
works for any large-sized matrix over any binary field GF(2m). Our work
also presents an FPGA-based implementation of the Gao-Mateer addi-
tive FFT, which only takes about 1000 clock cycles to finish the evalua-
tion of a degree-119 polynomial at 213 data points. The Verilog HDL code
of our key generator is parameterized and partly code-generated using
Python and Sage. It can be synthesized for different parameters, not just
the ones shown in this paper. We tested the design using a Sage reference
implementation, iVerilog simulation, and on real FPGA hardware.

Keywords: Post-Quantum Cryptography · Code-based cryptography ·
Niederreiter key generation · FPGA · Hardware implementation

1 Introduction

Once sufficiently large and efficient quantum computers can be built, they will
be able to break many cryptosystems used today: Shor’s algorithm [22,23] can
solve the integer-factorization problem and the discrete-logarithm problem in
polynomial time, which fully breaks cryptosystems built upon the hardness of

Permanent ID of this document: 503b6c5d84a7a196a4fd4ce7034b06ba.
Date: 2017.06.26.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 253–274, 2017.
DOI: 10.1007/978-3-319-66787-4 13

254 Wang, Szefer, Niederhagen

these problems, e.g., RSA, ECC, and Diffie-Hellman. In addition, Grover’s algo-
rithm [10] gives a square-root speedup on search problems and improves brute-
force attacks that check every possible key, which threatens, e.g., symmetric
key ciphers like AES. However, a “simple” doubling of the key size can be used
as mitigation for attacks using Grover’s algorithm. In order to provide alterna-
tives for the cryptographic systems that are threatened by Shor’s algorithm, the
cryptographic community is investigating cryptosystems that are secure against
attacks by quantum computers using both Shor’s and Grover’s algorithm in a
field called Post-Quantum Cryptography (PQC).

Currently, there are five popular classes of PQC algorithms: hash-based, code-
based, lattice-based, multivariate, and isogeny-based cryptography [3,21]. Most
code-based public-key encryption schemes are based on the McEliece cryptosys-
tem [16] or its more efficient dual variant developed by Niederreiter [18]. This
work focuses on the Niederreiter variant of the cryptosystem using binary Goppa
codes. There is some work based on QC-MDPC codes, which have smaller key
sizes compared to binary Goppa codes [12]. However, QC-MDPC codes can have
decoding errors, which may be exploited by an attacker [11]. Therefore, binary
Goppa codes are still considered the more mature and secure choice despite their
disadvantage in the key size. Until now, the best known attacks on the McEliece
and Niederreiter cryptosystems using binary Goppa codes are generic decoding
attacks which can be warded off by a proper choice of parameters [5].

However, there is a tension between the algorithm’s parameters (i.e., the
security level) and the practical aspects, e.g., the size of keys and computation
speed, resulting from the chosen parameters. The PQCRYPTO project [20] rec-
ommends to use a McEliece cryptosystem with binary Goppa codes with binary
field of size m = 13, adding t = 119 errors, code length n = 6960, and code
rank k = 5413 in order to achieve 128-bit post-quantum security for public-key
encryption when accounting for the worst-case impact of Grover’s algorithm [1].
The classical security level for these parameters is about 266-bit [5]. This rec-
ommended parameter set results in a private key of about 13 kB, and a public
key of about 1022 kB. These parameters provide maximum security for a public
key of at most 1 MB [5]. Our tunable design is able to achieve these parameters,
and many others, depending on the user’s needs.

The Niederreiter cryptosystem consists of three operations: key generation,
encryption, and decryption. In this paper, we are focusing on the implementation
of the most expensive operation in the Niederreiter cryptosystem: the key gener-
ation. The industry PKCS #11 standard defines a platform-independent API for
cryptographic tokens, e.g., hardware security modules (HSM) or smart cards, and
explicitly contains functions for public-private key-pair generation [19]. Further-
more, hardware crypto accelerators, e.g., for IBM’s z Systems, have dedicated
key-generation functions. These examples show that efficient hardware imple-
mentations for key generation will also be required for post-quantum schemes.
We selected FPGAs as our target platform since they are ideal for hardware
development and testing; most parts of the hardware code can also be re-used
for developing an ASIC design.

FPGA-based Key Generator for the Niederreiter Cryptosystem 255

Due to the confidence in the Niederreiter cryptosystem, there are many
publications on hardware implementations related to this cryptosystem, e.g.,
[13,15,24]. We are only aware of one publication [24] that presents a hardware
implementation of the key-generation algorithm. The key-generation hardware
design in [24], however, uses fixed, non-tunable security and design parameters,
which do not meet the currently recommended post-quantum security level, and
has a potential security flaw by using a non-uniform permutation, which may
lead to practical attacks.

Contributions. This paper presents the first post-quantum secure, efficient,
and tunable FPGA-based implementation of the key-generation algorithm for
the Niederreiter cryptosystem using binary Goppa codes. The contributions are:

– a key generator with tunable parameters, which uses code-generation to gen-
erate vendor-neutral Verilog HDL code,

– a constructive, constant-time approach for generating an irreducible Goppa
polynomial,

– an improved hardware implementation of Gaussian systemizer which works
for any large-sized matrix over any binary field,

– a new hardware implementation of Gao-Mateer additive FFT for polynomial
evaluation,

– a new hardware implementation of Fisher-Yates shuffle for obtaining uniform
permutations, and

– design testing using Sage reference code, iVerilog simulation, and output from
real FPGA runs.

Source code. The source code is available as Open Source at http://caslab.
csl.yale.edu/code/keygen.

2 Niederreiter Cryptosystem and Key Generation

The first code-based public-key encryption system was given by McEliece in
1978 [16]. The private key of the McEliece cryptosystem is a randomly chosen
irreducible binary Goppa code G with a generator matrix G that corrects up to
t errors. The public key is a randomly permuted generator matrix Gpub = SGP
that is computed from G and the secrets P (a permutation matrix) and S (an
invertible matrix). For encryption, the sender encodes the message m as a code-
word and adds a secret error vector e of weight t to get ciphertext c = mGpub⊕e.
The receiver computes cP−1 = mSG ⊕ eP−1 using the secret P and decodes m
using the decoding algorithm of G and the secret S. Without knowledge of the
code G, which is hidden by the secrets S and P , it is computationally hard to
decrypt the ciphertext. The McEliece cryptosystem with correct parameters is
believed to be secure against quantum-computer attacks.

In 1986, Niederreiter introduced a dual variant of the McEliece cryptosys-
tem by using a parity check matrix H for encryption instead of a generator
matrix [18]. For the Niederreiter cryptosystem, the message m is encoded as a

http://caslab.csl.yale.edu/code/keygen
http://caslab.csl.yale.edu/code/keygen

256 Wang, Szefer, Niederhagen

Algorithm 1. Key-generation algorithm for the Niederreiter cryptosystem.
Input : System parameters: m, t, and n.
Output: Private key (g(x), (α0, α1, . . . , αn−1)) and public key K.

1 Choose a random sequence (α0, α1, . . . , αn−1) of n distinct elements in GF(2m).
2 Choose a random polynomial g(x) such that g(α) �= 0 for all α ∈ (α0, . . . , αn−1).
3 Compute the t × n parity check matrix

H =

⎡
⎢⎢⎢⎣

1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) αt−1

1 /g(α1) · · · αt−1
n−1/g(αn−1)

⎤
⎥⎥⎥⎦ .

4 Transform H to a mt × n binary parity check matrix H ′ by replacing each entry
with a column of m bits.

5 Transform H ′ into its systematic form [Imt|K].
6 Return the private key (g(x), (α0, α1, . . . , αn−1)) and the public key K.

weight-t error vector e of length n; alternatively, the Niederreiter cryptosystem
can be used as a key-encapsulation scheme where a random error vector is used
to derive a symmetric encryption key. For encryption, e is multiplied with H and
the resulting syndrome is sent to the receiver. The receiver decodes the received
syndrome, and obtains e. Originally, Niederreiter used Reed-Solomon codes for
which the system has been broken [25]. However, the scheme is believed to be
secure when using binary Goppa codes. Niederreiter introduced a trick to com-
press H by computing the systemized form of the public key matrix. This trick
can be applied to some variants of the McEliece cryptosystem as well.

We focus on the Niederreiter cryptosystem due to its compact key size and
the efficiency of syndrome decoding algorithms. As the most expensive opera-
tion in the Niederreiter cryptosystem is key generation, it is often omitted from
Niederreiter implementations on FPGAs due to its large memory demand. There-
fore, our paper presents a new contribution by implementing the key-generation
algorithm efficiently on FPGAs.

2.1 Key Generation Algorithm

Algorithm 1 shows the key-generation algorithm for the Niederreiter cryptosys-
tem. The system parameters are: m, the size of the binary field, t, the number
of correctable errors, and n, the code length. Code rank k is determined as
k = n−mt. We implemented Step 2 of the key-generation algorithm by comput-
ing an irreducible Goppa polynomial g(x) of degree t as the minimal polynomial
of a random element r from a polynomial ring over GF(2m) using a power
sequence 1, r, . . . , rt and Gaussian systemization in GF(2m) (see Sect. 5). Step 3
requires the evaluation of g(x) at points {α0, α1, . . . , αn−1}. To achieve high effi-
ciency, we decided to follow the approach of [4] which evaluates g(x) at all ele-
ments of GF(2m) using a highly efficient additive FFT algorithm (see Sect. 4.2).

FPGA-based Key Generator for the Niederreiter Cryptosystem 257

Table 1. Parameters and resulting configuration for the key generator.

Param. Description Size (bits) Config. Description Size (bits)

m Size of the binary field 13 g(x) Goppa polynomial 120× 13

t Correctable errors 119 P Permutation indices 8192× 13

n Code length 6960 H Parity check matrix 1547× 6960

k Code rank 5413 K Public key 1547× 5413

Therefore, we evaluate g(x) at all α ∈ GF(2m) and then choose the required αi

using Fisher-Yates shuffle by computing a random sequence (α0, α1, . . . , αn−1)
from a permuted list of indices P . For Step 5, we use the efficient Gaussian
systemization module for matrices over GF(2) from [26].

2.2 Structure of the Paper

The following sections introduce the building blocks for our key-generator mod-
ule in a bottom-up fashion. First, we introduce the basic modules for arithmetic
in GF(2m) and for polynomials over GF(2m) in Sect. 3. Then we introduce the
modules for Gaussian systemization, additive FFT, and Fisher-Yates shuffle in
Sect. 4. Finally, we describe how these modules work together to obtain an effi-
cient design for key generation in Sect. 5. Validation of the design using Sage,
iVerilog, and Stratix V FPGAs is presented in Sect. 6 and a discussion of the
performance is in Sect. 7.

2.3 Reference Parameters and Reference Platform

We are using the recommended parameters from the PQCRYPTO project [20]
shown in Table 1 as reference parameters; however, our design is fully parame-
terized and can be synthesized for any other valid parameter selection.

Throughout the paper (except for Table 9), performance results are reported
from Quartus-synthesis results for the Altera Stratix V FPGA (5SGXEA7N),
including Fmax (maximum estimated frequency) in MHz, Logic (logic usage) in
Adaptive Logic Modules (ALMs), Mem. (memory usage) in Block RAMs, and
Reg. (registers). Cycles are derived from iVerilog simulation. Time is calculated
as quotient of Cycles and Fmax. Time × Area is calculated as product of Cycles
and Logic.

3 Field Arithmetic

The lowest-level building blocks in our implementation are GF(2m) finite field
arithmetic and on the next higher level GF(2m)[x]/f polynomial arithmetic.

258 Wang, Szefer, Niederhagen

Table 2. Performance of different field multiplication algorithms for GF(213).

Algorithm Logic Reg. Fmax (MHz)

Schoolbook algorithm 90 78 637

2-split Karatsuba algorithm 99 78 625

3-split Karatsuba algorithm 101 78 529

Bernstein 87 78 621

3.1 GF(2m) Finite Field Arithmetic

GF(2m) represents the basic finite field in the Niederreiter cryptosystem. Our
code for all the hardware implementations of GF(2m) operations is generated by
code-generation scripts, which take in m as a parameter and then automatically
generate the corresponding Verilog HDL code.

GF(2m) Addition. In GF(2m), addition corresponds to a simple bitwise xor
operation of two m-bit vectors. Therefore, each addition has negligible cost and
can often be combined with other logic while still finishing within one clock cycle,
e.g., a series of additions or addition followed by multiplication or squaring.

GF(2m) Multiplication. Multiplication over GF(2m) is one of the most used
operations in the Niederreiter cryptosystem. A field multiplication in GF(2m) is
composed of a multiplication in GF(2)[x] and a reduction modulo f , where f is a
degree-m irreducible polynomial. For the case of m = 13, we use the pentanomial
f(x) = x13 + x4 + x3 + x + 1 since there is no irreducible trinomial of degree 13.
We are using plain schoolbook multiplication, which turns out to deliver good
performance. Table 2 shows that the schoolbook version of GF(213) multiplica-
tion achieves a higher Fmax while requiring less logic compared to several of our
implementations using Karatsuba multiplication [14,17]. The performance of the
schoolbook version is similar to Bernstein’s operation-count optimized code [2].
We combine multiplication in GF(2)[x] and reduction modulo f such that one
GF(2m) multiplication only takes one clock cycle.

GF(2m) Squaring. Squaring over GF(2m) can be implemented using less logic
than multiplication and therefore an optimized squaring module is valuable for
many applications. However, in the case of the key-generation algorithm, we
do not require a dedicated squaring module since an idle multiplication mod-
ule is available in all cases when we require squaring. Squaring using GF(2m)
multiplication takes one clock cycle.

GF(2m) Inversion. Inside the GF(2m) Gaussian systemizer, elements over
GF(2m) need to be inverted. An element a ∈ GF(2m) can be inverted by com-
puting a−1 = a|GF(2m)|−2. This can be done with a logarithmic amount of squar-
ings and multiplications. For example, inversion in GF(213) can be implemented
using twelve squarings and four multiplications. However, this approach requires
at least one multiplication circuit (repeatedly used for multiplications and squar-
ings) plus some logic overhead and has a latency of at least several cycles in order

FPGA-based Key Generator for the Niederreiter Cryptosystem 259

to achieve high frequency. Therefore, we decided to use a pre-computed lookup
table for the implementation of the inversion module. For inverting an element
α ∈ GF(2m), we interpret the bit-representation of α as an integer value and
use this value as the address into the lookup table. For convenience, we added
an additional bit to each value in the lookup table that is set high in case the
input element α can not be inverted, i.e., α = 0. This saves additional logic that
otherwise would be required to check the input value. Thus, the lookup table
has a width of m+1 and a depth of 2m, and each entry can be read in one clock
cycle. The lookup table is read-only and therefore can be stored in either RAM
or logic resources.

3.2 GF(2m)[x]/f Polynomial Arithmetic

Polynomial arithmetic is required for the generation of the secret Goppa poly-
nomial. GF(2m)[x]/f is an extension field of GF(2m). Elements in this extension
field are represented by polynomials with coefficients in GF(2m) modulo an irre-
ducible polynomial f . We are using a sparse polynomial for f , e.g., the trinomial
x119 + x8 + 1, in order to reduce the cost of polynomial reduction.

Polynomial Addition. The addition of two degree-d polynomials with d + 1
coefficients is equivalent to pair-wise addition of the coefficients in GF(2m).
Therefore, polynomial addition can be mapped to an xor operation on two m(d+
1)-bit vectors and finishes in one clock cycle.

Polynomial Multiplication. Due to the relatively high cost of GF(2m) multi-
plication compared to GF(2m) addition, for polynomials over GF(2m) Karatsuba
multiplication [14] is more efficient than classical schoolbook multiplication in
terms of logic cost when the size of the polynomial is sufficiently large.

Given two polynomials A(x) =
∑5

i=0 aix
i and B(x) =

∑5
i=0 bix

i, schoolbook
polynomial multiplication can be implemented in hardware as follows: Calculate
(a5b0, a4b0, . . . , a0b0) and store the result in a register. Then similarly calculate
(a5bi, a4bi, . . . , a0bi), shift the result left by i · m bits, and then add the shifted
result to the register contents, repeat for all i = 1, 2, . . . , 5. Finally the result
stored in the register is the multiplication result (before polynomial reduction).
One can see that within this process, 6 × 6 GF(2m) multiplications are needed.

Karatsuba polynomial multiplication requires less finite-field multiplications
compared to schoolbook multiplication. For the above example, Montgomery’s
six-split Karatsuba multiplication [17] requires only 17 field element multipli-
cations over GF(2m) at the cost of additional finite field additions which are
cheap for binary field arithmetic. For large polynomial multiplications, usually
several levels of Karatsuba are applied recursively and eventually on some low
level schoolbook multiplication is used. The goal is to achieve a trade-off between
running time and logic overhead.

The multiplication of two polynomials of degree d = t − 1 is a key step in
the key-generation process for computing the Goppa polynomial g(x). Table 3
shows the results of several versions of polynomial multiplication for t = 119,
i.e., d = 118, using parameterized six-split Karatsuba by adding zero-terms in

260 Wang, Szefer, Niederhagen

Table 3. Performance of different multiplication algorithms for degree-118 polynomials.

Algorithm Mult. Cycles Logic Times × Area Fmax (MHz)

1-level Karatsuba 17× (20× 20) 20 377 11,860 4.47 · 106 342
2-level Karatsuba 17× 17× (4× 4) 16 632 12,706 8.03 · 106 151

2-level Karatsuba 17× 17× (4× 4) 4 1788 11,584 2.07 · 107 254

order to obtain polynomials with 120 and 24 coefficients respectively. On the
lowest level, we use parameterized schoolbook multiplication. The most efficient
approach for the implementation of degree-118 polynomial multiplication turned
out to be one level of six-split Karatsuba followed by schoolbook multiplication,
parallelized using twenty GF(213) multipliers. Attempts using one more level of
six-split Karatsuba did not notably improve area consumption (or even worsened
it) and resulted in both more cycles and lower frequency. Other configurations,
e.g., five-split Karatsuba on the second level or seven-split Karatsuba on the
first level, might improve performance, but our experiments do not indicate that
performance can be improved significantly.

In the final design, we implemented a one-level six-split Karatsuba multipli-
cation approach, which uses a size-�d+1

6 � schoolbook polynomial multiplication
module as its building block. It only requires 377 cycles to perform one multi-
plication of two degree-118 polynomials.

4 Key Generator Modules

The arithmetic modules are used as building blocks for the units inside the
key generator, shown later in Fig. 2. The main components are: two Gaussian
systemizers for matrix systemization over GF(2m) and GF(2) respectively, Gao-
Mateer additive FFT for polynomial evaluation, and Fisher-Yates shuffle for
generating uniformly distributed permutations.

4.1 Gaussian Systemizer

Matrix systemization is needed for generating both the private Goppa polyno-
mial g(x) and the public key K. Therefore, we require one module for Gaussian
systemization of matrices over GF(213) and one module for matrices over GF(2).
We use a modified version of the highly efficient Gaussian systemizer from [26]
and adapted it to meet the specific needs for Niederreiter key generation. As
in [26], we are using an N × N square processor array to compute on column
blocks of the matrix. The size of this processor array is parameterized and can
be chosen to either optimize for performance or for resource usage.

The design from [26] only supports systemization of matrices over GF(2). An
important modification that we applied to the design is the support of arbitrary
binary fields — we added a binary-field inverter to the diagonal “pivoting” ele-
ments of the processor array and binary-field multipliers to all the processors.
This results in a larger resource requirement compared to the GF(2) version but

FPGA-based Key Generator for the Niederreiter Cryptosystem 261

the longest path still remains within the memory module and not within the
computational logic for computations on large matrices.

4.2 Gao-Mateer Additive FFT

Evaluating a polynomial g(x) =
∑t

i=0 gix
i at n data points over GF(2m) is an

essential step for generating the parity check matrix H. Applying Horner’s rule
is a common approach for polynomial evaluation. For example, a polynomial
f(x) =

∑7
i=0 fix

i of degree 7 can be evaluated at a point α ∈ GF(2m) using
Horner’s rule as

f(α) = f7α
7 + f6α

6 + · · · + f1α + f0

= (((f7α + f6)α + f5)α + f4) . . .)α + f0

using 7 field additions and 7 field multiplications by α. More generically speaking,
one evaluation of a polynomial of degree d requires d additions and d multipli-
cations. Evaluating several points scales linearly and is easy to parallelize. The
asymptotic time complexity of polynomial evaluation of a degree-d polynomial
at n points using Horner’s rule is O(n · d).

In order to reduce this cost, we use a characteristic-2 additive FFT algorithm
introduced in 2010 by Gao and Mateer [9], which was used for multipoint poly-
nomial evaluation by Chou in 2013 [4]. This algorithm evaluates a polynomial
at all elements in the field GF(2m) using a number of operations logarithmic
in the length of the polynomial. Most of these operations are additions, which
makes this algorithm particularly suitable for hardware implementations. The
asymptotic time complexity of additive FFT is O

(
2m · log2 (d)

)
.

The basic idea of this algorithm is to write f in the form f(x) = f (0)(x2 +
x) + xf (1)(x2 + x), where f (0)(x) and f (1)(x) are two half-degree polynomials,
using radix conversion. The form of f shows a large overlap between evaluating
f(α) and f(α + 1). Since (α + 1)2 + (α + 1) = α2 + α for α ∈ GF(2m), we have:

f(α) = f (0)(α2 + α) + αf (1)(α2 + α)

f(α + 1) = f (0)(α2 + α) + (α + 1)f (1)(α2 + α).

Once f (0) and f (1) are evaluated at α2+α, it is easy to get f(α) by performing one
field multiplication and one field addition. Now, f(α+1) can be easily computed
using one extra field addition as f(α + 1) = f(α) + f (1)(α2 + α). Additive FFT
applies this idea recursively until the resulting polynomials f (0) and f (1) are
1-coefficient polynomials (or in another word, constants). During the recursive
operations, in order to use the α and α+1 trick, a twisting operation is needed for
all the subspaces, which is determined by the new basis of f (0) and f (1). Finally,
the 1-coefficient polynomials of the last recursion step are used to recursively
evaluate the polynomial at all the 2m data points over GF(2m) in a concluding
reduction operation.

Radix Conversion. Radix conversion converts a polynomial f(x) of coefficients
in GF(2m) into the form of f(x) = f (0)(x2 + x) + xf (1)(x2 + x). As a basic

262 Wang, Szefer, Niederhagen

example, consider a polynomial f(x) = f0 + f1x + f2x
2 + f3x

3 of 4 coefficients
with basis {1, x, x2, x3}. We compute the radix conversion as follows: Write the
coefficients as a list [f0, f1, f2, f3]. Add the 4th element to the 3rd element and
add the new 3rd element to the 2nd element to obtain [f0, f1+f2+f3, f2+f3, f3].
This transforms the basis to {1, x, (x2 + x), x(x2 + x)}, we have

f(x) = f0 + (f1 + f2 + f3)x + (f2 + f3)(x2 + x) + f3x(x2 + x)

=
(
f0 + (f2 + f3)(x2 + x)

)
+ x

(
(f1 + f2 + f3) + f3(x2 + x)

)

= f (0)(x2 + x) + xf (1)(x2 + x)

with f (0)(x) = f0 + (f2 + f3)x and f (1)(x) = (f1 + f2 + f3) + f3x.
For polynomials of larger degrees, this approach can be applied recursively:

Consider a polynomial g(x) = g0 +g1x+g2x
2 +g3x

3 +g4x
4 +g5x

5 +g6x
6 +g7x

7

of 8 coefficients. Write g(x) as a polynomial with 4 coefficients, i.e.,

g(x) = (g0 + g1x) + (g2 + g3x)x2 + (g4 + g5x)x4 + (g6 + g7x)x6.

Perform the same operations as above (hint: substitute x2 with y and re-
substitute back in the end) to obtain

g(x) = (g0 + g1x) +
(
(g2 + g3x) + (g4 + g5x) + (g6 + g7x)

)
x2

+
(
(g4 + g5x) + (g6 + g7x)

)
(x2 + x)2 + (g6 + g7x)x2(x2 + x)2

= (g0 + g1x) +
(
(g2 + g4 + g6) + (g3 + g5 + g7)x

)
x2

+
(
(g4 + g6) + (g5 + g7)x

)
(x2 + x)2 + (g6 + g7x)x2(x2 + x)2

with basis {1, x, x2, x3, (x2 + x)2, x(x2 + x)2, x2(x2 + x)2, x3(x2 + x)2}.
Now, recursively apply the same process to the 4-coefficient polynomials

g(L)(x) = g0 + g1x + (g2 + g4 + g6)x2 + (g3 + g5 + g7)x3 and g(R)(x) =
(g4 + g6) + (g5 + g7)x + g6x

2 + g7x
3. This results in

g(L)(x) = g0 + (g1 + g2 + g3 + g4 + g5 + g6 + g7)x

+ (g2 + g3 + g4 + g5 + g6 + g7)(x2 + x) + (g3 + g5 + g7)x(x2 + x), and

g(R)(x) = (g4 + g6) + (g5 + g6)x + (g6 + g7)(x2 + x) + g7x(x2 + x).

Substituting g(L)(x) and g(R)(x) back into g(x), we get

g(x) = g0

+ (g1 + g2 + g3 + g4 + g5 + g6 + g7)x

+ (g2 + g3 + g4 + g5 + g6 + g7)(x2 + x)

+ (g3 + g5 + g7)x(x2 + x)

+ (g4 + g6)(x2 + x)2

+ (g5 + g6)x(x2 + x)2

+ (g6 + g7)(x2 + x)3

+ (g7)x(x2 + x)3.

FPGA-based Key Generator for the Niederreiter Cryptosystem 263

with basis {1, x, (x2+x)1, x(x2+x)1, . . . , (x2+x)3, x(x2+x)3}. This representa-
tion can be easily transformed into the form of g(x) = g(0)(x2+x)+xg(1)(x2+x).

In general, to transform a polynomial f(x) of 2k coefficients into the form
of f = f (0)(x2 + x) + xf (1)(x2 + x), we need 2i size-2k−i, i = 0, 1, ..., k radix
conversion operations. We will regard the whole process of transforming f(x)
into the form of f (0)(x2 + x) + xf (1)(x2 + x) as one complete radix conversion
operation for later discussion.

Twisting. As mentioned above, additive FFT applies Gao and Mateer’s idea
recursively. Consider the problem of evaluating an 8-coefficient polynomial f(x)
for all elements in GF(24). The field GF(24) can be defined as: GF(24) =
{0, a, . . . , a3+a2+a, 1, a+1, . . . , (a3+a2+a)+1} with basis {1, a, a2, a3}. After
applying the radix conversion process, we get f(x) = f (0)(x2+x)+xf (1)(x2+x).
As described earlier, the evaluation on the second half of the elements (“...+1”)
can be easily computed from the evaluation results of the first half by using the
α and α + 1 trick (for α ∈ {0, a, . . . , a3 + a2 + a}). Now, the problem turns into
the evaluation of f (0)(x) and f (1)(x) at points {0, a2 + a, . . . , (a3 + a2 + a)2 +
(a3 + a2 + a)}. In order to apply Gao and Mateer’s idea again, we first need to
twist the basis: By computing f (0′)(x) = f (0)((a2 + a)x), evaluating f (0)(x) at
{0, a2 + a, . . . , (a3 + a2 + a)2 + (a3 + a2 + a)} is equivalent to evaluating f (0′)(x)
at {0, a2 + a, a3 + a, a3 + a2, 1, a2 + a + 1, a3 + a + 1, a3 + a2 + 1}. Similarly for
f (1)(x), we can compute f (1′)(x) = f (1)((a2 +a)x). After the twisting operation,
f (0′) and f (1′) have element 1 in their new basis. Therefore, this step equivalently
twists the basis that we are working with. Now, we can perform radix conversion
and apply the α and α + 1 trick on f (0′)(x) and f (1′)(x) recursively again.

The basis twisting for f (0)(x) and f (1)(x) can be mapped to a sequence of
field multiplication operations on the coefficients. Let β = α2 +α. fi denotes the
i-th coefficient of a polynomial f(x). For a degree-7 polynomial f(x), we get

[f (1′)
3 , f

(1′)
2 , f

(1′)
1 , f

(1′)
0 , f

(0′)
3 , f

(0′)
2 , f

(0′)
1 , f

(0′)
0]

= [β3f
(1)
3 , β2f

(1)
2 , βf

(1)
1 , f

(1)
0 , β3f

(0)
3 , β2f

(0)
2 , βf

(0)
1 , f

(0)
0].

When mapping to hardware, this step can be easily realized by an entry-wise
multiplication between the polynomial coefficients and powers of β, which are
all independent and can be performed in parallel. Given a polynomial of 2k

coefficients from GF(2m), each twisting step takes 2k GF(2m) multiplication
operations. In our implementation, we use a parameterized parallel multiplier
module that is composed of multiple GF(2m) multipliers. The number of GF(2m)
multipliers is set as a parameter in this module, which can be easily adjusted to
achieve an area and running time trade-off, as shown in Table 4.

Reduction. Evaluating a polynomial f(x) ∈ GF(2m)[x] of 2k coefficients at all
elements in GF(2m) requires k twisting and k radix conversion operations. The
last radix conversion operation operates on 2k−1 polynomials of 2 coefficients of
the form g(x) = a+bx. We easily write g(x) as g(x) = g(0)(x2+x)+xg(1)(x2+x)
using g(0)(x) = a, g(1)(x) = b. At this point, we finish the recursive twist-then-
radix-conversion process, and we get 2k polynomials with only one coefficient.

264 Wang, Szefer, Niederhagen

Fig. 1. Dataflow diagram of our hardware version of Gao-Mateer additive FFT.
Functional units are represented as white boxes and memory blocks are represented as
grey boxes.

Table 4. Performance of additive FFT using different numbers of multipliers for twist.

Multipliers

Twist Reduction Cycles Logic Times × Area Mem. Reg. Fmax (MHz)

4 32 1188 11,781 1.39 · 107 63 27,450 399

8 32 1092 12,095 1.32 · 107 63 27,470 386

16 32 1044 12,653 1.32 · 107 63 27,366 373

32 32 1020 14,049 1.43 · 107 63 26,864 322

Now we are ready to perform the reduction step. Evaluation of these 1-coefficient
polynomials simply returns the constant values. Then by using g(α) = g(0)(α2 +
α) + αg(1)(α2 + α) and g(α + 1) = g(α) + g(1)(α2 + α), we can recursively finish
the evaluation of the polynomial f at all the 2m points using �log2(t)� recursion
steps and 2m−1 multiplications in GF(2m) in each step.

Non-recursive Hardware Implementation. We mapped the recursive algo-
rithm to a non-recursive hardware implementation shown in Fig. 1. Given a poly-
nomial of 2k coefficients, the twist-then-radix-conversion process is repeated for k
times, and an array containing the coefficients of the resulting 1-coefficient poly-
nomials is fed into the reduction module. Inside the reduction module, there are
two memory blocks: A data memory and a constants memory. The data memory
is initialized with the 1-coefficient polynomials and gets updated with interme-
diate reduction data during the reduction process. The constants memory is ini-
tialized with elements in the subspace of f (0) and f (1), which are pre-generated
via Sage code. Intermediate reduction data is read from the data memory while
subspace elements are read from the constants memory. Then the reduction
step is performed using addition and multiplication submodules. The computed
intermediate reduction results are then written back to the data memory. The
reduction step is repeated until the evaluation process is finished and the final
evaluation results are stored in the data memory.

Performance. Table 4 shows performance and resource-usage for our additive
FFT implementation. For evaluating a degree-119 Goppa polynomial g(x) at all
the data points in GF(213), 32 finite filed multipliers are used in the reduction

FPGA-based Key Generator for the Niederreiter Cryptosystem 265

Algorithm 2. Fisher-Yates shuffle
Output: Shuffled array A
Initalize: A = {0, 1, . . . , n − 1}

1 for i from n − 1 downto 0 do
2 Generate j uniformly from range[0, i]
3 Swap A[i] and A[j]

Table 5. Performance of the Fisher-Yates shuffle module for 213 elements.

m Size (= 2m) Cycles (avg.) Logic Time × Area Mem. Reg. Fmax (MHz)

13 8192 23,635 149 3.52 · 106 7 111 335

step of our additive FFT design in order to achieve a small cycle count while
maintaining a low logic overhead. The twisting module is generated by a Sage
script such that the number of multipliers can be chosen as needed. Radix con-
version and twisting have only a small impact in the total cycle count; therefore,
using only 4 binary filed multipliers for twisting results in good performance,
with best Fmax. The memory required for additive FFT is only a small fraction
of the overall memory consumption of the key generator.

4.3 Random Permutation: Fisher-Yates Shuffle

Computing a random list of indices P = [π(0), π(1), . . . , π(2m − 1)] for a permu-
tation π ∈ S2m (here, Si denotes the symmetric group on {0, 1, . . . , i − 1}), is
an important step in the key-generation process. We compute P by performing
Fisher-Yates shuffle [8] on the list [0, 1, . . . , 2m − 1] and then using the first n
elements of the resulting permutation. We choose Fisher-Yates shuffle to perform
the permutation, because it requires only a small amount of computational logic.
Algorithm 2 shows the Fisher-Yates shuffle algorithm.

We implemented a parameterized permutation module using a dual-port
memory block of depth 2m and width m. First, the memory block is initialized
with contents [0, 1, . . . , 2m − 1]. Then, the address of port A decrements from
2m−1 to 0. For each address A, a PRNG keeps generating new random numbers
as long as the output is larger than address A. Therefore, our implementation
produces a non-biased permutation (under the condition that the PRNG has no
bias) but it is not constant-time. Once the PRNG output is smaller than address
A, this output is used as the address for port B. Then the contents of the cells
addressed by A and B are swapped. We improve the probability of finding a
random index smaller than address A by using only �log2(A)� bits of the PRNG
output. Therefore, the probability of finding a suitable B always is at least 50%.

Since we are using a dual-port memory in our implementation, the memory
initialization takes 2m−1 cycles. For the memory swapping operation, for each
address A, first a valid address B is generated and data stored in address A and B
is read from the memory in one clock cycle, then one more clock cycle is required

266 Wang, Szefer, Niederhagen

Fig. 2. Dataflow diagram of the key generator. Functional units are represented as
white boxes and memory blocks are represented as grey boxes. The ports g out and
P out are for the private-key data, and the port K out is for the public-key data.

for updating the memory contents. On average, 2m−1 +
∑m

i=1

∑2i−1−1
j=0 (2i

2i−j +1)
cycles are needed for our Fisher-Yates shuffle implementation. Table 5 shows
performance data for the Fisher-Yates shuffle module.

5 Key Generator for the Niederreiter Cryptosystem

Using two Gaussian systemizers, Gao-Mateer additive FFT, and Fisher-Yates
shuffle, we designed the key generator as shown in Fig. 2. Note that the design
uses two simple PRNGs to enable deterministic testing. For real deployment,
these PRNGs must be replaced with a cryptographically secure random number
generator, e.g., [6]. We require at most m random bits per clock cycle per PRNG.

5.1 Private Key Generation

The private key consists of an irreducible Goppa polynomial g(x) of degree t
and a permuted list of indices P .

Goppa Polynomial g(x). The common way for generating a degree-d irre-
ducible polynomial is to pick a polynomial g of degree d uniformly at random,
and then to check whether it is irreducible or not. If it is not, a new polynomial
is randomly generated and checked, until an irreducible one is found. The den-
sity of irreducible polynomials of degree d is about 1/d [16]. When d = t = 119,
the probability that a randomly generated degree-119 polynomial is irreducible
gets quite low. On average, 119 trials are needed to generate a degree-119 irre-
ducible polynomial in this way. Moreover, irreducibility tests for polynomials
involve highly complex operations in extension fields, e.g., raising a polynomial
to a power and finding the greatest common divisor of two polynomials. In the

FPGA-based Key Generator for the Niederreiter Cryptosystem 267

hardware key generator design in [24], the Goppa polynomial g(x) was generated
in this way, which is inefficient in terms of both time and area.

We decided to explicitly generate an irreducible polynomial g(x) by using
a deterministic, constructive approach. We compute the minimal (hence irre-
ducible) polynomial of a random element in GF(2m)[x]/h with deg(h) =
deg(g) = t: Given a random element r from the extension field GF(2m)[x]/h,
the minimal polynomial g(x) of r is defined as the non-zero monic polynomial
of least degree with coefficients in GF(2m) having r as a root, i.e., g(r) = 0. The
minimal polynomial of a degree-(t−1) element from field GF(2m)[x]/h is always
of degree t and irreducible if it exists.

The process of generating the minimal polynomial g(x) = g0 + g1x + · · · +
gt−1x

t−1 + xt of a random element r(x) =
∑t−1

i=0 rix
i is as follows: Since

g(r) = 0, we have g0 + g1r + · · · + gt−1r
t−1 + rt = 0 which can be equivalently

written using vectors as: (1T , rT , . . . , (rt−1)T , (rt)T) · (g0, g1, . . . , gt−1, 1)T = 0.
Note that since R = (1T , rT , . . . , (rt−1)T , (rt)T) is a t × (t + 1) matrix while
g = (g0, g1, . . . , gt−1, 1)T is a size-(t + 1) vector, we get

R · g =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 rt−1 · · · (rt)t−1

0 rt−2 · · · (rt)t−2
...

...
. . .

...
0 r1 · · · (rt)1
1 r0 · · · (rt)0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g0
g1
...

gt−1

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= 0.

Now, we can find the minimal polynomial of r by treating g as variable and
by solving the resulting system of linear equations for g. By expanding this
matrix-vector multiplication equation, we get t linear equations which uniquely
determine the solution for (g0, g1, . . . , gt−1). Solving systems of linear equations
can be easily transformed into a matrix systemization problem, which can be
handled by performing Gaussian elimination on the coefficient matrix R.

In our hardware implementation, first a PRNG is used, which generates t
random m-bit strings for the coefficients of r(x) =

∑t−1
i=0 rix

i. Then the coeffi-
cient matrix R is calculated by computing the powers of 1, r, . . . , rt, which are
stored in the memory of the GF(2m) Gaussian systemizer. We repeatedly use the
polynomial multiplier described in Sect. 3.2 to compute the powers of r. After
each multiplication, the resulting polynomial of t coefficients is written to the
memory of the GF(2m) Gaussian systemizer. (Our Gaussian-systemizer mod-
ule operates on column-blocks of width NR. Therefore, the memory contents
are actually computed block-wise.) This multiply-then-write-to-memory cycle is
repeated until R is fully calculated. After this step is done, the memory of the
GF(2m) Gaussian systemizer has been initialized with the coefficient matrix R.

After the initialization, the Gaussian elimination process begins and the coef-
ficient matrix R is transformed into its reduced echelon form [It|g]. Now, the right
part of the resulting matrix contains all the unknown coefficients of the minimal
polynomial g.

The part of memory which stores the coefficients of the Goppa polynomial
g(x) is shown as the “g-portion” in Fig. 2. Later the memory contents stored in

268 Wang, Szefer, Niederhagen

Table 6. Performance of the GF(2m) Gaussian systemizer for m = 13 and t = 119,
i.e., for a 119 × 120 matrix with elements from GF(213).

NR Cycles Logic Time × Area Mem. Reg. Fmax (MHz)

1 922,123 2539 2.34 · 109 14 318 308

2 238,020 5164 1.23 · 109 14 548 281

4 63,300 10,976 6.95 · 108 13 1370 285

the g-portion are read out and sent to the g(x) evaluation step, which uses the
additive FFT module to evaluate the Goppa polynomial g(x) at every point in
field GF(2m).

Table 6 shows the impact of different choices for the Gaussian-systemizer
parameter NR for a matrix of size 119 × 120 in GF(213). NR defines the size of
the NR × NR processor array of the Gaussian systemizer [26] and implicitly the
width of the memory that is used to store the matrix. It has an impact on the
number of required memory blocks, because the synthesis tools usually require
more memory blocks for wider memory words to achieve good performance.
Furthermore, have to add zero-columns to the matrix to make the number of
columns a multiple of NR. However, for these parameters, the memory is used
most efficiently for NR = 4. When doubling NR, the number of required cycles
should roughly be quartered and the amount of logic should roughly be quadru-
pled. However, the synthesis results show a doubling pattern for the logic when
NR = 1, 2 and 4, which is probably due to some logic overhead that would
vanish for larger NR.

Random Permutation P . In our design, a randomly permuted list of indices
of size 213 is generated by the Fisher-Yates shuffle module and the permutation
list is stored in the memory P in Fig. 2 as part of the private key. Later memory
P is read by the H generator which generates a permuted binary form the parity
check matrix. In our design, since n ≤ 2m, only the contents of the first n memory
cells need to be fetched.

5.2 Public Key Generation

As mentioned in Sect. 2, the public key K is the systemized form of the binary
version of the parity check matrix H. In [24], the generation of the binary version
of H is divided into two steps: first compute the non-permuted parity check
matrix and store it in a memory block A, then apply the permutation and write
the binary form of the permuted parity-check matrix to a new memory block
B, which is of the same size as memory block A. This approach requires simple
logic but needs two large memory blocks A and B.

In order to achieve better memory efficiency, we omit the first step, and
instead generate a permuted binary form H ′ of the parity check matrix in one
step. We start the generation of the public key K by evaluating the Goppa
polynomial g(x) at all α ∈ GF(2m) using the Gao-Mateer additive FFT module.

FPGA-based Key Generator for the Niederreiter Cryptosystem 269

After the evaluation finishes, the results are stored in the data memory of the
additive FFT module.

Now, we generate the permuted binary parity check matrix H ′ and store it in
the memory of the GF(2) Gaussian systemizer. Suppose the permutation indices
stored in memory P are [p0, p1, . . . , pn−1, . . . , p2m−1], then

H ′ =

⎡

⎢
⎢
⎢
⎣

1/g(αp0) 1/g(αp1) · · · 1/g(αpn−1)
αp0/g(αp0) αp1/g(αp1) · · · αpn−1/g(αpn−1)

...
...

. . .
...

αt−1
p0

/g(αp0) αt−1
p1

/g(αp1) · · · αt−1
pn−1

/g(αpn−1)

⎤

⎥
⎥
⎥
⎦

.

To generate the first column of H ′, the first element p0 from P is fetched and
stored in a register. Then, the corresponding polynomial evaluation value g(αp0)
is read out from the data memory of the additive FFT module. This value is
then inverted using a GF(2m) inverter. After inversion, we get 1/g(αp0) which is
the first entry of the column. The second entry is calculated by a multiplication
of the first entry row and αp0 , the third entry again is calculated by a multiplica-
tion of the previous row and αp0 and so on. Each time a new entry is generated,
it is written to the memory of the GF(2) Gaussian systemizer (bit-wise, one
bit per row). This computation pattern is repeated for all p0, p1, . . . , pn−1 until
H ′ is fully calculated. After this step, the memory of the GF(2) Gaussian sys-
temizer contains H ′ and the Gaussian systemization process is started. (Again,
this process is actually performed on column-blocks of width NH due to the
architecture of the Gaussian systemizer.)

If a fail signal from the GF(2) Gaussian systemizer is detected, i.e., the matrix
cannot be systemized, key generation needs to be restarted. Otherwise, the left
part of the matrix has been transformed into a mt×mt identity matrix and the
right side is the mt × k public key matrix K labeled as “K-portion” in Fig. 2.

Success Probability. The number of invertible mt × mt matrices over GF(2)
is the order of the general linear group GL(mt,GF(2)), i.e.,

∏mt−1
j=0 2mt − 2j .

The total number of mt × mt matrices over GF(2) is 2(mt)2 . Therefore,
the probability of a random mt × mt matrix over GF(2) being invertible is
(
∏mt−1

j=0 2mt − 2j)/2(mt)2 . For mt = 13 · 119 = 1547, the probability is about
29%. Thus, on average we need about 3.5 attempts to successfully generate a
key pair.

Performance. Table 7 shows the effect of different choices for parameter NH

on a matrix of size 1547 × 6960 in GF(2). Similar to the GF(2m) Gaussian
systemizer, NH has an impact on the number of required memory blocks. When
doubling NH , the number of required cycles should roughly be quartered (which
is the case for small NH) and the amount of logic should roughly be quadrupled
(which is the case for large NH). The best time-area product is achieved for
NH = 80, because for smaller values the non-computational logic overhead is
significant and for larger values the computational logic is used less efficiently.
Fmax is mainly limited by the paths within the memory.

270 Wang, Szefer, Niederhagen

Table 7. Performance of the GF(2) Gaussian systemizer for a 1547 × 6960 matrix.

NH Cycles Logic Time × Area Mem. Reg. Fmax (MHz)

10 150,070,801 826 1.24 · 1011 663 678 257

20 38,311,767 1325 5.08 · 1010 666 1402 276

40 9,853,350 3367 3.32 · 1010 672 4642 297

80 2,647,400 10,983 2.91 · 1010 680 14,975 296

160 737,860 40,530 2.99 · 1010 720 55,675 290

320 208,345 156,493 3.26 · 1010 848 213,865 253

6 Design Testing

We tested our hardware implementation using a Sage reference implementation,
iVerilog, and an Altera Stratix V FPGA (5SGXEA7N) on a Terasic DE5-Net
FPGA development board.

Parameters and PRNG Inputs. First, we chose a set of parameters, which
were usually the system parameters of the cryptosystem (m, t, and n, with
k = n − mt). In addition, we picked two design parameters, NR and NH , which
configure the size of the processor arrays in the GF(2m) and GF(2) Gaussian
systemizers. In order to guarantee a deterministic output, we randomly picked
seeds for the PRNGs and used the same seeds for corresponding tests on different
platforms. Given the parameters and random seeds as input, we used Sage code
to generate appropriate input data for each design module.

Sage Reference Results. For each module, we provide a reference implemen-
tation in Sage using built-in Sage functions for field arithmetic, etc. Given the
parameters, seeds, and input data, we used the Sage reference implementation
to generate reference results for each module.

iVerilog Simulation Results. We simulated the Verilog HDL code of each
module using a “testbench” top module and the iVerilog simulator. At the end of
the simulation, we stored the simulation result in a file. Finally, we compared the
simulation result with the Sage reference result. If these reference and simulation
results matched repeatedly for different inputs, we assumed the Verilog HDL
code to be correct.

FPGA Results. After we tested the hardware design through simulation, we
synthesized the design for an Altera Stratix V FPGA using the Altera Quar-
tus 16.1 tool chain. We used a PCIe interface for communication with the FPGA.
After a test finished, we wrote the FPGA output to a file. Then we compared
the output from the FPGA testrun with the output of the iVerilog simulation
and the Sage reference results. If the outputs matched, we assumed the hardware
design to be correct.

FPGA-based Key Generator for the Niederreiter Cryptosystem 271

Table 8. Performance of the key generator for parameters m = 13, t = 119, and
n = 6960. All the numbers in the table come from compilation reports of the Altera
and Xilinx tool chains respectively. For Xilinx, logic utilization is counted in LUTs.

Case NH NR Cycles Logic Time × Area Mem. Fmax Time

Altera Stratix V

logic 40 1 11,121,220 29,711 3.30 · 1011 756 240 MHz 46.43 ms

bal. 80 2 3,062,942 48,354 1.48 · 1011 764 248 MHz 12.37 ms

time 160 4 896,052 101,508 9.10 · 1010 803 244 MHz 3.68 ms

Xilinx Virtex Ultrascale+

logic 40 1 11,121,220 42,632 4.74 · 1011 348.5 200 MHz 55.64 ms

bal. 80 2 3,062,942 60,989 1.87 · 1011 356 221 MHz 13.85 ms

time 160 4 896,052 112,845 1.01 · 1011 375 225 MHz 3.98 ms

Table 9. Comparison with related work. Cycles and time are average values, taking
into account failure cases.

Design m t n Cycles (avg.) Freq. Time (avg.) Arch.

Shoufan et al. [24] 11 50 2048 1.47 · 107 163 MHza 90 ms Virtex V

this work 11 50 2048 2.72 · 106 168 MHzb 16 ms Virtex V

Chou [7] 13 128 8192 1.24 · 109 1–4 GHzc 1236–309 ms Haswell

this work 13 128 8192 4.30 · 106 215 MHza 20 ms Stratix V
aActual frequency running on FPGAs.
bFmax reported by the Xilinx tool chain.
cAvailable for a range of frequencies.

7 Evaluation

We synthesized the final design for an Altera Stratix V FPGA (5SGXEA7N) and
for comparison for a Xilinx UltraScale+ VUP9 FPGA (e.g., used in the Amazon
EC2 F1 instances). Based on the PQCRYPTO project [20] recommendations,
the following system parameters were selected: m = 13, t = 119, n = 6960 and
k = 5413 (note k = n − mt). These parameters were specified in [5] for a target
public key size of about 1 MB. They provide a classical security level of about
266-bit which corresponds to a post-quantum security level of at least 128-bit.

Due to the large size of the permuted parity check matrix H, generating the
public key K by doing matrix systemization on the binary version of H is usually
the most expensive step both in logic and cycles in the key-generation algorithm.
In our key generator, independently of the security parameters, the design can
be tuned by adjusting NR and NH , which configure the size of the processor
array of the GF(2m) and GF(2) Gaussian systemizer respectively. Tables 6 and
7 show that by adjusting NR and NH in the two Gaussian systemizers, we can
achieve a trade-off between area and performance for the key generator.

272 Wang, Szefer, Niederhagen

Table 8 shows performance data for three representative parameter choices:
The logic case targets to minimize logic consumption at the cost of performance,
the time case focuses on maximising performance at the cost of resources, and
the balanced case (bal.) attempts to balance logic usage and execution time.

Comparison of our results with other Niederreiter key-generator implemen-
tations on FPGAs is not easy. Table 9 gives an attempt of comparing our result
to the performance data given in [24]. The design in [24] occupies about 84%
of the target FPGA for their entire Niederreiter-cryptosystem implementation
including key generation, encryption, decryption, and IO. Our design requires
only about 52% of the logic (for NH = 30 and NR = 10), but only for the
key generation. The design in [24] practically achieves a frequency of 163 MHz
while we can only report estimated synthesis results for Fmax of 168 MHz for
our design. Computing a private-public key pair using the design in [24] requires
about 90 ms on average (their approach for generating the Goppa polynomial is
not constant time and the key-generation procedure needs to be repeated several
times until the Gaussian systemization of the public key succeeds). Our design
requires about 16 ms on average at 168 MHz.

We also compare our design to a highly efficient CPU implementation from [7]
in Table 9. The results show that our optimized hardware implementation com-
petes very well with the CPU implementation. In this case, we ran our imple-
mentation on an Altera Stratix V FPGA. The actual frequency that we achieved
fits well to the estimated frequencies for Stratix V in Table 8.

8 Conclusion

This work presents a new FPGA-based implementation of the key-generation
algorithm for the Niederreiter cryptosystem using binary Goppa codes. It is
the first hardware implementation of a key generator that supports currently
recommended security parameters (and many others due to tunable parameters).
Our design is based on novel hardware implementations of Gaussian systemizer,
Gao-Mateer additive FFT, and Fisher-Yates shuffle.

Acknowledgments. We want to thank Tung Chou for his invaluable help, in partic-
ular for discussions about the additive FFT implementation.

References

1. Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck, W.,
Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., Lange, T., Mohamed,
M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F., Yang,
B.Y.: Initial recommendations of long-term secure post-quantum systems. Tech-
nical report, PQCRYPTO ICT-645622 (2015). https://pqcrypto.eu.org/docs/
initial-recommendations.pdf. Accessed 22 June 2017

2. Bernstein, D.J.: High-speed cryptography in characteristic 2. http://binary.cr.yp.
to/m.html. Accessed 17 Mar 2017

https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
http://binary.cr.yp.to/m.html
http://binary.cr.yp.to/m.html

FPGA-based Key Generator for the Niederreiter Cryptosystem 273

3. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

4. Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 250–272. Springer, Heidelberg (2013)

5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31–46. Springer, Heidelberg (2008)

6. Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 179–196. Springer, Heidelberg (2013)

7. Chou, T.: McBits revisited. In: Fischer, W., Homma, N. (eds.) Cryptographic Hard-
ware and Embedded Systems. LNCS, Springer (2017)

8. Fisher, R.A., Yates, F.: Statistical Tablesfor Biological, Agriculturaland Medical
Research. Oliver and Boyd, London (1948)

9. Gao, S., Mateer, T.: Additive fast fourier transforms over finite fields. IEEE Trans.
Inf. Theory 56(12), 6265–6272 (2010)

10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing - STOC 1996, pp. 212–219. ACM (1996)

11. Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10031, pp. 789–815. Springer, Heidelberg (2016)

12. Heyse, S., Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-
MDPC McEliece implementations on embedded devices. In: Bertoni, G., Coron,
J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 273–292. Springer, Heidelberg (2013)

13. Hu, J., Cheung, R.C.C.: An application specific instruction set processor (ASIP)
for the Niederreiter cryptosystem. Cryptology ePrint Archive, Report 2015/1172
(2015)

14. Karatsuba, A., Ofman, Y.: Multiplication of multidigit numbers on automata. Sov.
Phys. Dokl. 7, 595–596 (1963)

15. Massolino, P.M.C., Barreto, P.S.L.M., Ruggiero, W.V.: Optimized and scalable co-
processor for McEliece with binary Goppa codes. ACM Trans. Embed. Comput.
Syst. 14(3), 45 (2015)

16. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Prog. Rep. 42–44, 114–116 (1978)

17. Montgomery, P.L.: Five, six, and seven-term Karatsuba-like formulae. IEEE Trans.
Comput. 54(3), 362–369 (2005)

18. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15, 19–34 (1986)

19. PKCS #11 base functionality v2.30, p. 172. ftp://ftp.rsasecurity.com/pub/pkcs/
pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf. Accessed 20 June 2017

20. Post-quantum cryptography for long-term security PQCRYPTO ICT-645622.
https://pqcrypto.eu.org/. Accessed 17 March 2017

21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

22. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Foundations of Computer Science - FOCS 1994, pp. 124–134. IEEE
(1994)

23. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/v2-30/pkcs-11v2-30b-d6.pdf
https://pqcrypto.eu.org/

274 Wang, Szefer, Niederhagen

24. Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor archi-
tecture for McEliece cryptosystem and FPGA platforms. IEEE Trans. Comput.
59(11), 1533–1546 (2010)

25. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discrete Mathe. Appl. 2(4), 439–444 (1992)

26. Wang, W., Szefer, J., Niederhagen, R.: Solving large systems of linear equations
over GF(2) on FPGAs. In: Reconfigurable Computing and FPGAs - ReConFig
2016, pp. 1–7. IEEE (2016)

Cipher & Protocol Design

Blockcipher-Based Authenticated Encryption:
How Small Can We Go?

Avik Chakraborti1(B), Tetsu Iwata2, Kazuhiko Minematsu3,
and Mridul Nandi4

1 NTT Secure Platform Laboratories, Tokyo, Japan
chakraborti.avik@lab.ntt.co.jp
2 Nagoya University, Nagoya, Japan

iwata@cse.nagoya-u.ac.jp
3 NEC Corporation, Tokyo, Japan

k-minematsu@ah.jp.nec.com
4 Applied Statistics Unit, Indian Statistical Institute, Kolkata, India

mridul.nandi@gmail.com

Abstract. This paper presents a design of authenticated encryption
(AE) focusing on minimizing the implementation size, i.e., hardware
gates or working memory on software. The scheme is called COFB, for
COmbined FeedBack. COFB uses an n-bit blockcipher as the underlying
primitive, and relies on the use of a nonce for security. In addition to
the state required for executing the underlying blockcipher, COFB needs
only n/2 bits state as a mask. Till date, for all existing constructions
in which masks have been applied, at least n bit masks have been used.
Thus, we have shown the possibility of reducing the size of a mask with-
out degrading the security level much. Moreover, it requires one blockci-
pher call to process one input block. We show COFB is provably secure
up to O(2n/2/n) queries which is almost up to the standard birthday
bound. We also present our hardware implementation results. Exper-
imental implementation results suggest that our proposal has a good
performance and the smallest footprint among all known blockcipher-
based AE.

Keywords: COFB · AES · Authenticated encryption · Blockcipher

1 Introduction

Authenticated encryption (AE) is a symmetric-key cryptographic primitive for
providing both confidentiality and authenticity. Due to the recent rise in com-
munication networks operated on small devices, the era of the so-called Internet
of Things, AE is expected to play a key role in securing these networks.

In this paper, we study blockcipher modes for AE with primary focus on the
hardware implementation size. Here, we consider the overhead in size, thus the
state memory size beyond the underlying blockcipher itself (including the key
schedule) is the criteria we want to minimize. We observe this direction has not
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 277–298, 2017.
DOI: 10.1007/978-3-319-66787-4 14

278 A. Chakraborti et al.

received much attention until the launch of CAESAR competition (see below),
while it would be relevant for future communication devices requiring ultra low-
power operations. A general approach to reduce the entire hardware size of AE
modes is to use a lightweight blockcipher [15,17,25,48,49] or to use standard
AES implemented in a tiny, serialized core [37], where the latter is shown to be
effective for various schemes including popular CCM [5] or OCB [32] modes, as
shown in [16] and [12]. Our approach is orthogonal to these directions.

In this paper, we propose a new blockcipher AE mode which utilizes both
plaintext and ciphertext feedback. Our proposal is called COFB for COmbined
FeedBack, and we show that this enables essentially AE using the minimum
amount of state memory while keeping the security level similar to the previ-
ous schemes. Specifically, let n denote the block size in bits of the underlying
blockcipher, then our proposal needs an n/2-bit register for a mask in addition
to the registers required for holding round keys and the internal state memory
(i.e., n bits) for the blockcipher computation. Ignoring the state for the round
keys, it requires 1.5n bit state. It has provable security up to O(2n/2/n) queries,
based on the standard assumption that the blockcipher is a PRP (PseudoRan-
dom Permutation). Our scheme is efficient in that the rate is 1, i.e., it makes
one blockcipher call to process one input block, meaning that it is as fast as
encryption-only modes.

CAESAR [3], started in 2012, attracted 57 AE schemes, and there are
schemes that were designed to minimize the implementation size. The most rele-
vant one is JAMBU [52], which can be implemented with 1.5n-bit state memory.
However, the provable security result is not published for this scheme1, and the
security claim about the confidentiality in the nonce misuse scenario was shown
to be flawed [40]. We also point out that the rate of JAMBU is 1/2, i.e., it makes
two blockcipher calls to process one input block. This can be seen in our imple-
mentation results where COFB is more efficient, in terms of throughput per area,
than JAMBU by a factor of two. CLOC and SILC [28,29] have provable security
results and were designed to minimize the implementation size, however, they
do not allow the implementation with 1.5n-bit state and the rate is also 1/2.

On the downside, COFB is completely serial both for encryption and decryp-
tion. However, we argue that this is a reasonable trade-off, as tiny devices are
our primal target platform for COFB. We present Table 1 to show a comparison
of blockcipher AE modes including COFB.

In order to instantiate our efficiency claim, we implemented COFB on
hardware and evaluated it on FPGAs. The implementation results show the
impressive performance figures of COFB both for size and speed. For the sake of
completeness we also compare COFB with various schemes (not limited to block-
cipher modes) listed in the hardware benchmark framework called ATHENa [1].
We have to warn that this is a rough comparison ignoring differences in sev-
eral implementation factors (see Sect. 6). Nevertheless, we think this comparison
implies a good performance of COFB among others even using the standard
AES-128.

1 The authenticity result was briefly presented in the latest specification [52].

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 279

Table 1. Comparison of AE modes, using an n-bit blockcipher with k-bit keys. An
inverse-free mode is a mode that does not need the blockcipher inverse (decryption)
function for both encryption and decryption. For JAMBU, the authenticity bound was
briefly presented in [52].

Scheme State size Rate Parallel Inverse-free Sec. proof Ref

COFB 1.5n + k 1 No Yes Yes This work

JAMBU 1.5n + k 1/2 No Yes Partial [52]

CLOC/SILC 2n + k 1/2 No Yes Yes [28,29]

iFEED 3n + k 1 Only for Enc Yes Flawed [47] [54]

OCB ≥ 3n + k 1 Yes No Yes [32,41,42]

2 Preliminaries

Notation. We fix a positive integer n which is the block size in bits of the
underlying blockcipher EK . Typically, we consider n = 128 and AES-128 [7] is
the underlying blockcipher, where K is the 128-bit AES key. The empty string is
denoted by λ. For any X ∈ {0, 1}∗, where {0, 1}∗ is the set of all finite bit strings
(including λ), we denote the number of bits of X by |X|. Note that |λ| = 0. For
two bit strings X and Y , X‖Y denotes the concatenation of X and Y . A bit
string X is called a complete (or incomplete) block if |X| = n (or |X| < n
respectively). We write the set of all complete (or incomplete) blocks as B (or
B< respectively). Let B≤ = B< ∪ B denote the set of all blocks. For B ∈ B≤, we
define B as follows:

B =

⎧
⎪⎨

⎪⎩

0n if B = λ

B‖10n−1−|B| if B �= λ and |B| < n

B if |B| = n

Given Z ∈ {0, 1}∗, we define the parsing of Z into n-bit blocks as

(Z[1], Z[2], . . . , Z[z]) n←− Z, (1)

where z = �|Z|/n�, |Z[i]| = n for all i < z and 1 ≤ |Z[z]| ≤ n such that Z =
(Z[1] ‖Z[2] ‖ · · · ‖Z[z]). If Z = λ, we let z = 1 and Z[1] = λ. We write ||Z|| = z
(number of blocks present in Z). We similarly write (Z[1], Z[2], . . . , Z[z]) m←− Z
to denote the parsing of the bit string Z into m bit strings Z[1], Z[2], . . . , Z[z−1]
and 1 ≤ |Z[z]| ≤ m. Given any sequence Z = (Z[1], . . . , Z[s]) and 1 ≤ a ≤ b ≤ s,
we represent the subsequence (Z[a], . . . , Z[b]) by Z[a..b]. Similarly, for integers
a ≤ b, we write [a..b] for the set {a, a + 1, . . . , b}. For two bit strings X and Y
with |X| ≥ |Y |, we define the extended xor-operation as

X⊕Y = X[1..|Y |] ⊕ Y and

X ⊕ Y = X ⊕ (Y ‖0|X|−|Y |),

280 A. Chakraborti et al.

where (X[1],X[2], . . . ,X[x]) 1←− X and thus X[1..|Y |] denotes the first |Y | bits
of X. When |X| = |Y |, both operations reduce to the standard X ⊕ Y .

Let γ = (γ[1], . . . , γ[s]) be a tuple of equal-length strings. We define
mcoll(γ) = r if there exist distinct i1, . . . , ir ∈ [1..s] such that γ[i1] = · · · = γ[ir]
and r is the maximum of such integer. We say that {i1, . . . , ir} is an r-multi-
collision set for γ.

Authenticated Encryption and Security Definitions. An authenticated
encryption (AE) is an integrated scheme that provides both privacy of a plaintext
M ∈ {0, 1}∗ and authenticity of M as well as associate data A ∈ {0, 1}∗. Taking
a nonce N (which is a value never repeats at encryption) together with associated
date A and plaintext M , the encryption function of AE, EK , produces a tagged-
ciphertext (C, T) where |C| = |M | and |T | = t. Typically, t is a fixed length and
we assume n = t throughout the paper. The corresponding decryption function,
DK , takes (N,A,C, T) and returns a decrypted plaintext M when the verification
on (N,A,C, T) is successful, otherwise returns the atomic error symbol denoted
by ⊥.

Privacy. Given an adversary A, we define the PRF-advantage of A against E
as Advprf

E (A) = |Pr[AEK = 1] − Pr[A$ = 1]|, where $ returns a random string
of the same length as the output length of EK , by assuming that the output
length of EK is uniquely determined by the query. The PRF-advantage of E is
defined as

Advprf
E (q, σ, t) = max

A
Advprf

E (A) ,

where the maximum is taken over all adversaries running in time t and making
q queries with the total number of blocks in all the queries being at most σ. If
EK is an encryption function of AE, we call it the privacy advantage and write
as Advpriv

E (q, σ, t), as the maximum of all nonce-respecting adversaries (that
is, the adversary can arbitrarily choose nonces provided all nonce values in the
encryption queries are distinct).

Authenticity. We say that an adversary A forges an AE scheme (E ,D) if A
is able to compute a tuple (N,A,C, T) satisfying DK(N,A,C, T) �= ⊥, without
querying (N,A,M) for some M to EK and receiving (C, T), i.e. (N,A,C, T) is
a non-trivial forgery.

In general, a forger can make qf forging attempts without restriction on N in
the decryption queries, that is, N can be repeated in the decryption queries and
an encryption query and a decryption query can use the same N . The forging
advantage for an adversary A is written as Advauth

E (A) = Pr[AE forges], and
we write

Advauth
E ((q, qf), (σ, σf), t) = max

A
Advauth

E (A)

to denote the maximum forging advantage for all adversaries running in time
t, making q encryption and qf decryption queries with total number of queried
blocks being at most σ and σf , respectively.

Unified Security Notion for AE. The privacy and authenticity advantages
can be unified into a single security notion as introduced in [23,43]. Let A be

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 281

an adversary that only makes non-repeating queries to DK . Then, we define the
AE-advantage of A against E as

AdvAE
E (A) = |Pr[AEK ,DK = 1] − Pr[A$,⊥ = 1]| ,

where ⊥-oracle always returns ⊥ and $-oracle is as the privacy advantage. We
similarly define AdvAE

E ((q, qf), (σ, σf), t) = maxA AdvAE
E (A), where the maxi-

mum is taken over all adversaries running in time t, making q encryption and
qf decryption queries with the total number of blocks being at most σ and σf ,
respectively.

Blockcipher Security. We use a blockcipher E as the underlying primitive, and
we assume the security of E as a PRP (pseudorandom permutation). The PRP-
advantage of a blockcipher E is defined as Advprp

E (A) = |Pr[AEK = 1]−Pr[AP =
1]|, where P is a random permutation uniformly distributed over all permutations
over {0, 1}n. We write

Advprp
E (q, t) = max

A
Advprp

E (A) ,

where the maximum is taken over all adversaries running in time t and making
q queries. Here, σ does not appear as each query has a fixed length.

3 Combined Feedback Mode

Let EK be the underlying primitive, a blockcipher, with key K. Depending on
how the next input block of EK is determined from the previous output of EK ,
a plaintext block, or a ciphertext block, we can categorize different types of
feedback modes. Some of the feedback modes are illustrated in Fig. 1. The first
three modes are known as the message feedback mode, ciphertext feedback mode,
and output feedback mode, respectively. The examples using the first three modes
can be found in the basic encryption schemes [4] or AE schemes [5,28,29,54]. The
fourth mode, which uses additional (linear) operation G : B → B, is new. We call
it combined feedback. In the combined feedback mode, the next input block X[i]
of the underlying primitive EK depends on at least two of the following three
values: (i) previous output EK(X[i− 1]), (ii) plaintext M [i], and (iii) ciphertext
C[i]. With an appropriate choice of G, this feedback mode turns out to be useful
for building small and efficient AE schemes. We provide a unified presentation
of all types of feedback functions below.

Definition 1 (Feedback Function). A function ρ : B ×B → B ×B is called a
feedback function (for an encryption) if there exists a function ρ′ : B×B → B×B
(used for decryption) such that

∀Y,M ∈ B, ρ(Y,M) = (X,C) ⇒ ρ′(Y,C) = (X,M). (2)

ρ is called a plaintext or output feedback if X depends only on M or Y , respec-
tively (e.g., the first and third mode in Fig. 1). Similarly, it is called ciphertext
feedback if X depends only on C in the function ρ′ (e.g., the second mode in
Fig. 1). All other feedback functions are called combined feedback.

282 A. Chakraborti et al.

X[i]
M [i]

C[i]

ρ

X[i]
M [i]

C[i]

X[i]M [i]

C[i]

X[i]

M [i]

C[i]

X[i − 1] X[i − 1] X[i − 1]

X[i − 1]

G

EK EK

EK

EK

Fig. 1. Different types of feedback modes. We introduce the last feedback mode (called
the combined feedback mode) in our construction.

The condition stated in Eq. (2) is sufficient for inverting the feedback computa-
tion from the ciphertext. Given the previous output block Y = EK(X[i−1]) and
a ciphertext block C = C[i − 1], we are able to compute (X,M) = (X[i],M [i])
by using ρ′(Y,C).

In particular, when G is not the zero function nor the identity function, the
combined feedback mode using this G is not reduced to the remaining three
modes. It can be described as ρ(Y,M) = (X,C) = (G(Y) ⊕ M,Y ⊕ M).

4 COFB: A Small-State, Rate-1, Inverse-Free AE Mode

In this section, we present our proposal, COFB, which has rate-1 (i.e. needs one
blockcipher call for one input block), and is inverse-free, i.e., it does not need a
blockcipher inverse (decryption). In addition to these features, this mode has a
quite small state size, namely 1.5n + k bits, in case the underlying blockcipher
has an n-bit block and k-bit keys. We first specify the basic building blocks and
parameters used in our construction.

Key and Blockcipher. The underlying cryptographic primitive is an n-bit
blockcipher, EK . We assume that n is a multiple of 4. The key of the scheme
is the key of the blockcipher, i.e. K. As mentioned we typically assume that
EK is AES-128 with n = k = 128, however, COFB can be instantiated with any
blockcipher of any n-bit block size by appropriately defining other components.

Masking Function. We define the masking function mask : {0, 1}n/2 × N
2 →

{0, 1}n/2 as follows:

mask(Δ, a, b) = αa · (1 + α)b · Δ (3)

We may write maskΔ(a, b) to mean mask(Δ, a, b). Here, · denotes the multipli-
cation over GF(2n/2), and α denotes the primitive element of the field. For the
primitive polynomial defining the field, we choose the lexicographically first one,

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 283

Y [4] Y [5] Y [6]

EK EK EK

X[4] X[6]X[5]

M [2] M [3]

maskΔ(3, δA) maskΔ(4, δA) maskΔ(4, δA + δM)

C[2] C[3]

T

ρ

ρ1M [1]

Y [3]

C[1]

ρ ρ

A[1] A[2] A[3]

EK

0n/2 N

Y [0] Y [1] Y [2]

Y [3]ρ1

maskΔ(1, 0) maskΔ(2, 0) maskΔ(2, δA)

EK EK EK

X[1] X[3]X[2]

ρ1 ρ1

Fig. 2. Encryption of COFB for 3-block associated data and plaintext.

that is, p(x) = x64 + x4 + x3 + x + 1 following [6,27]. Rogaway [41] showed
that for all (a, b) ∈ {0, . . . , 251} × {0, . . . , 210}, the values of αa · (1 + α)b are
distinct2. For other values of n, we need to identify the primitive element α of
the primitive polynomial and an integer L such that αa · (1 + α)b are distinct
for all (a, b) ∈ {0, . . . , L} × {0, . . . , 4}. Then the total allowed size of a message
and associated data would be at most nL bits. We need this condition to prove
the security claim. In particular we have the following properties of the masking
function.

Lemma 1. For any (a, b) �= (a′, b′) chosen from the set {0, . . . , L} × {0, . . . , 4}
(as described above), c ∈ {0, 1}n/2 and a random n/2 bit string Δ, we have

Pr[maskΔ(a, b) ⊕ maskΔ(a′, b′) = c] =
1

2n/2
, and Pr[maskΔ(a, b) = c] =

1
2n/2

.

Proof of the first equation trivially follows from the fact that αa · (1 + α)b

are distinct for all (a, b) ∈ {0, . . . , L} × {0, . . . , 4}.
Similar masking functions are frequently used in other modes, such as

[9,35,41], however, the masks are full n bits. The use of n-bit masking function

2 If we follow the notations of [41], the right hand side of Eq. (3) could be written as
2a3bΔ.

284 A. Chakraborti et al.

usually allows to redefine the AE scheme as a mode of XE or XEX tweakable
blockcipher [41], which significantly reduces the proof complexity. In our case,
to reduce the state size, we decided to use the n/2-bit masking function, and as
a result the proof is ad-hoc and does not rely on XE or XEX.

Feedback Function. Let Y ∈ {0, 1}n and (Y [1], Y [2], Y [3], Y [4]) n/4←−− Y , where
Y [i] ∈ {0, 1}n/4. We define G : B → B as G(Y) = (Y [2], Y [3], Y [4], Y [4] ⊕ Y [1]).
We also view G as the n × n non-singular matrix, so we write G(Y) and G · Y
interchangeably. For M ∈ B≤ and Y ∈ B, we define ρ1(Y,M) = G · Y ⊕ M . The
feedback function ρ and its corresponding ρ′ are defined as

ρ(Y,M) = (ρ1(Y,M), Y ⊕M),
ρ′(Y,C) = (ρ1(Y, Y ⊕ C), Y ⊕C).

Note that when (X,M) = ρ′(Y,C) then X = (G ⊕ I)Y ⊕C. Our choice of G
ensures that I ⊕ G is also invertible matrix. So when Y is chosen randomly for
both computations of X (through ρ and ρ′), X also behaves randomly. We need
this property when we bound probability of bad events later.

Tweak Value for The Last Block. Given B ∈ {0, 1}∗, we define δB ∈ {1, 2}
as follows:

δB =

{
1 if B �= λ and n divides |B|
2 otherwise.

(4)

This will be used to differentiate the cases that the last block of B is n bits or
shorter, for B being associated data or plaintext or ciphertext. We also define a
formatting function Fmt for a pair of bit strings (A,Z), where A is associated
data and Z could be either a message or a ciphertext. Let (A[1], . . . , A[a]) n←− A
and (Z[1], . . . , Z[z]) n←− Z. We define t[i] as follows:

t[i] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i, 0) if i < a

(a − 1, δA) if i = a

(i − 1, δA) if a < i < a + z

(a + z − 2, δA + δZ) if i = a + z

Now, the formatting function Fmt(A,Z) returns the following sequence:
(
(A[1], t[1]), . . . , (A[a], t[a]), (Z[1], t[a + 1]), . . . , (Z[z], t[a + z])

)
,

where the first coordinate of each pair specifies the input block to be processed,
and the second coordinate specifies the exponents of α and 1 + α to determine
the constant over GF(2n/2). Let Z≥0 be the set of non-negative integers and X
be some non-empty set. We say that a function f : X → (B × Z≥0 × Z≥0)+ is
prefix-free if for all X �= X ′, f(X) = (Y [1], . . . , Y []) is not a prefix of f(X ′) =
(Y ′[1], . . . , Y ′[′]) (in other words, (Y [1], . . . , Y []) �= (Y ′[1], . . . , Y ′[])). Here, for
a set S, S+ means S ∪ S2 ∪ · · · , and we have the following lemma.

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 285

Lemma 2. The function Fmt(·) is prefix-free.

The proof is more or less straightforward and hence we skip it.
Now we present the specifications of COFB in Fig. 3. The encryption and

decryption algorithms are denoted by COFB-EK and COFB-DK . We remark that
the nonce length is n/2 bits, which is enough for the security up to the birthday
bound. The nonce is processed as EK(0n/2 ‖N) to yield the first internal chaining
value. The encryption algorithm takes non-empty A and non-empty M , and
outputs C and T such that |C| = |M | and |T | = n. The decryption algorithm
takes (N,A,C, T) with |A|, |C| �= 0 and outputs M or ⊥.

We remark that the pseudocodes of Fig. 3 are for clarity and not necessarily
memory-efficient due to (say) the use of Fmt and caching multiple Y [i] values at
decryption. In fact, the encryption and decryption of COFB can be done with
keeping one input/output state for the blockcipher and sequentially updating
the n/2-bit mask. See Fig. 2 for an illustration.

Module Mask-Gen(K, N)

1. Y [0] ← EK(0n/2 ‖ N)

2. (Y 1[0], . . . , Y 4[0])
n/4←−− Y [0]

3. Δ ← Y 2[0]‖Y 3[0]
4. return (Δ, Y [0])

Algorithm COFB-EK(N, A, M)

1. (Δ, Y [0]) ← Mask-Gen(K, N)
2. (A[1], . . . , A[a])

n←− A
3. (M [1], . . . , M [m])

n←− M
4. � ← a + m
5. ((B[1], t[1]), . . . , (B[�], t[�])) ← Fmt(A, M)
6. for i = 1 to �
7. X[i] ← (B[i] ⊕ G · Y [i − 1]) ⊕ maskΔ(t[i])
8. Y [i] ← EK(X[i])
9. if i > a then

10. C[i − a] ← Y [i − 1] ⊕ M [i − a]
11. T ← Y [�]
12. return (C, T)

Algorithm COFB-DK(N, A, C, T)

1. (Δ, Y [0]) ← Mask-Gen(K, N)
2. (A[1], . . . , A[a])

n←− A
3. (C[1], . . . , C[c])

n←− C
4. � ← a + c
5. ((B[1], t[1]), . . . , (B[�], t[�])) ← Fmt(A, C)
6. for i = 1 to �
7. if i ≤ a then
8. X[i] ← (B[i] ⊕ G · Y [i − 1])⊕maskΔ(t[i])
9. else X[i] ← (B[i] ⊕ Y [i − 1] ⊕ G · Y [i − 1])

⊕ maskΔ(t[i])
10. Y [i] ← EK(X[i])
11. for i = 1 to c
12. M [i] ← Y [i + a − 1] ⊕ C[i]
13. M ← (M [1], . . . , M [c])
14. T ′ ← Y [�]
15. if T ′ = T then return M
16. else return ⊥

Fig. 3. The encryption and decryption algorithms of COFB.

5 Security of COFB

We present the security analysis of COFB in Theorem 1.

Theorem 1 (Main Theorem).

AdvAE
COFB((q, qf), (σ, σf), t) ≤ Advprp

AES(q
′, t′) +

0.5(q′)2

2n
+

4σ + 0.5nqf

2n/2

+
qf + (q + σ + σf) · σf

2n

286 A. Chakraborti et al.

where, q′ = q + qf +σ +σf , which corresponds to the total number of blockcipher
calls through the game, and t′ = t + O(q′).

Proof. Without loss of generality, we can assume q′ ≤ 2
n
2 −1, since otherwise the

bound obviously holds as the right hand side becomes more than one. The first
transition we make is to use an n-bit (uniform) random permutation P instead of
EK , and then to use an n-bit (uniform) random function R instead of P. This two-
step transition requires the first two terms of our bound, from the standard PRP-
PRF switching lemma and from the computation to the information security
reduction (e.g., see [13]). Then what we need is a bound for COFB using R,
denoted by COFB-R. That is, we prove

AdvAE
COFB-R((q, qf), (σ, σf),∞) ≤ 4σ + 0.5nqf

2n/2
+

qf + (q + σ + σf) · σf

2n
. (5)

For i = 1, . . . , q, we write (Ni, Ai,Mi) and (Ci, Ti) to denote the i-th encryption
query and response. Here, Ai = (Ai[1], . . . , Ai[ai]), Mi = (Mi[1], . . . , Mi[mi]),
and Ci = (Ci[1], . . . , Ci[mi]). Let 	i = ai + mi, which denotes the total input
block length for the i-th encryption query. We write Xi[j] (resp. Yi[j]) for
i = 1, . . . , q and j = 0, . . . , 	i to denote the j-th input (resp. output) of the
internal R invoked at the i-th encryption query, where the order of invocation
follows the specification shown in Fig. 3. We remark that Xi[0] = 0n/2‖Ni and
Yi[i] = Ti for all i = 1, . . . , q. Similarly, we write Δi to denote Y 2

i [0]‖Y 3
i [0]

where Y 1
i [0]‖ · · · ‖Y 4

i [0] n/4←−− Yi[0].
We introduce the following relaxations in the game, which only gain the

advantage. First, after completing all queries and forging attempts (i.e. decryp-
tion queries), let the adversary learn all the Y -values for all encryption queries
only. We remark that any X-values computed at the message processing phase
(not the AD processing phase) of the i-th encryption query are immediately
determined by the i-th query-response tuple, (Ni, Ai,Mi, Ci, Ti) and Yi values
from the property of feedback function, and Δ-values (it is a part of Y [0]).

In case of the ideal oracle, all these variables corresponding to Y will be cho-
sen uniformly and independently, where at the plaintext encryption phase Yi[j] is
randomly chosen and used to determine Ci[j] as Ci[j] = Yi[j−1] ⊕ Mi[j], and at
AD processing phase it is a dummy and has no influence to the response (Ci, Ti).
For decryption queries, the ideal oracle always returns ⊥ (here we assume that
the adversary makes only fresh queries).

Coefficients-H Technique. We outline the Coefficients-H technique developed
by Patarin, which serves as a convenient tool for bounding the advantage (see
[39,50]). We will use this technique (without giving a proof) to prove our main
theorem. Consider two oracles O0 = ($,⊥) (the ideal oracle for the relaxed game)
and O1 (real, i.e. our construction in the same relaxed game). Let V denote the
set of all possible views an adversary can obtain. For any view τ ∈ V, we will
denote the probability to realize the view as ipreal(τ) (or ipideal(τ)) when it is
interacting with the real (or ideal respectively) oracle. We call these interpola-
tion probabilities. Without loss of generality, we assume that the adversary is

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 287

deterministic and fixed. Then, the probability space for the interpolation proba-
bilities is uniquely determined by the underlying oracle. As we deal with stateless
oracles, these probabilities are independent of the order of query responses in
the view. Suppose we have a set of views, Vgood ⊆ V, which we call good views,
and the following conditions hold:

1. In the game involving the ideal oracle O0 (and the fixed adversary), the
probability of getting a view in Vgood is at least 1 − ε1.

2. For any view τ ∈ Vgood, we have ipreal(τ) ≥ (1 − ε2) · ipideal(τ).

Then we have |Pr[AO0 = 1] − Pr[AO1 = 1]| ≤ ε1 + ε2. The proof can be found
at (say) [50]. Now we proceed with the proof of Theorem 1 by defining certain
Vgood for our games, and evaluating the bounds, ε1 and ε2.

Views. In our case, a view τ is defined by the following tuple:

τ = ((Ni, Ai,Mi, Yi)i∈{1,...,q}, (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf}),

where Z∗
i′ denotes the output of the decryption oracle D (it is always ⊥ when we

interact with the ideal oracle) for the i′-th decryption query (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′).
Note that Yi denotes (Yi[0], . . . , Yi[i]) = Yi[0..	i], where 	i = ai + mi, and ai

(resp. mi) denotes the block length of Ai (resp. Mi). Here we implicitly use the
fact that given a complete block Mi[j], the mapping from Yi[j] to Ci[j] is bijective
and hence keeping those Yi[j] values instead of Ci[j] is sufficient. Similarly we
define c∗

i′ and a∗
i′ , and write 	∗

i′ = a∗
i′ + c∗

i′ .
Let (Li[j], Ri[j])

n/2←−− Xi[j] for all i ∈ [1..q] and j ∈ [1..	i]. For any i, let pi

denote the length of the longest common prefix of Fmt(A∗
i , C

∗
i) and Fmt(Aj , Cj)

where Nj = N∗
i . If there is no such j, we define pi = −1. Since Fmt is prefix-free,

it holds that pi < min{	∗
i , 	j}. We observe that pi is unique for all i = 1, . . . , qf ,

as there is at most one encryption query that uses the same nonce as N∗
i .

Bad Views. Now we define a bad view. The complement of the set of bad views
is defined to be the set of good views. A view is called bad if one of the following
events occurs:

B1: Li[j] = 0n/2 for some i ∈ [1..q] and j > 0.
B2: Xi[j] = Xi′ [j′] for some (i, j) �= (i′, j′) where j, j′ > 0.
B3: mcoll(R) > n/2, where R is the tuple of all Ri[j] values. Recall that

(Li[j], Ri[j])
n/2←−− Xi[j].

B4: X∗
i [pi + 1] = Xi1 [j1] for some i, i1, j1 with pi as defined above. Note that

when pi ≥ 0, X∗
i [pi + 1] is determined from the values of Y .

B5: For some Z∗
i �= ⊥. This clearly cannot happen for the ideal oracle case.

We add some intuitions on these events. When B1 does not hold, then Xi[j] �=
Xi′ [0] for all i, i′, and j > 0. Hence Δi will be completely random. When B2 does
not hold, then all the inputs for the random function are distinct for encryption
queries, which makes the responses from encryption oracle completely random in
the “real” game. When B3 does not hold, then at the right half of Xi[j] we see at

288 A. Chakraborti et al.

most n/2 multi-collisions. A successful forgery is to choose one of the n/2 multi-
collision blocks and forge the left part so that the entire block collides. Forging
the left part has 2−n/2 probability due to randomness of masking. Finally, when
B4 does not hold, then the (pi + 1)-st input for the i-th forging attempt will be
fresh with a high probability and so all the subsequent inputs will remain fresh
with a high probability.

A view is called good if none of the above events hold. Let Vgood be the set of
all such good views. The following lemma bounds the probability of not realizing
a good view while interacting with a random function (this will complete the
first condition of the Coefficients-H technique).

Lemma 3.
Pr
ideal

[τ �∈ Vgood] ≤ 4σ + 0.5nqf

2n/2
.

Proof (of Lemma 3). Throughout the proof, we assume all probability nota-
tions are defined over the ideal game. We bound all the bad events individually
and then by using the union bound, we will obtain the final bound. We first
develop some more notation. Let (Y 1

i [j], Y 2
i [j], Y 3

i [j], Y 4
i [j]) n/4←−− Yi[j]. Similarly,

we denote (M1
i [j],M2

i [j]) n/2←−− Mi[j].

(1) Pr[B1] ≤ σ/2n/2: We fix a pair of integers (i, j) for some i ∈ [1..q] and
j ∈ [1..	i]. Now, Li[j] can be expressed as

(Y 2
i [j − 1]‖Y 3

i [j − 1]) ⊕ (αa · (1 + α)b · Δi) ⊕ M1
i [j]

for some a and b. Note that when j > 1, Δi and Yi[j−1] are independently and
uniformly distributed, and hence for those j, we have Pr[Li[j] = 0n/2] = 2−n/2

(apply Lemma 1 after conditioning Yi[j − 1]). Now when j = 1, we have the
following three possible choice: (i) Li[1] = (1 + α) · Δi ⊕ Cons if ai ≥ 2, (ii)
Li[1] = α · Δi ⊕ Cons if ai = 1 and the associated data block is full, and (iii)
Li[1] = α2 · Δi ⊕ Cons if ai = 1 and the associated data block is not full, for
some constant Cons. In all cases by applying Lemma 1, Pr[B1] ≤ σ/2n/2.

(2) Pr[B2] ≤ σ/2n/2: For any (i, j) �= (i′, j′) with j, j′ ≥ 1, the equality event
Xi[j] = Xi′ [j′] has a probability at most 2−n since this event is a non-trivial
linear equation on Yi[j − 1] and Yi′ [j′ − 1] and they are independent to each
other. Note that σ2/2n ≤ σ/2n/2 as we are estimating probabilities.

(3) Pr[B3] ≤ 2σ/2n/2: The event B3 is a multi-collision event for randomly
chosen σ many n/2-bit strings as Y values are mapped in a regular manner
(see the feedback function) to R values. From the union bound, we have

Pr[B3] ≤
(

σ

n/2

)
1

2(n/2)·((n/2)−1)
≤ σn/2

2(n/2)·((n/2)−1)
≤

(σ

2(n/2)−1

)n/2

≤ 2σ

2n/2
,

where the last inequality follows from the assumption (σ ≤ 2(n/2)−1).

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 289

(4) Pr[B4 ∧ B1c ∧ B3c] ≤ 0.5nqf/2n/2: We fix some i and want to bound the
probability Pr[X∗

i [pi+1] = Xi1 [j1]∧B1c∧B3c] for some i1, j1. If pi = −1 (i.e.,
N∗

i does not appear in encryption queries), then N∗
i is fresh as left n/2 bits of

all Xi[j] is non-zero for all j > 0 (since we also consider B1 does not hold). So
the probability is zero. Now we consider pi ≥ 0. The event B3c implies that at
most n/2 possible values of (i1, j1) are possible for which X∗

i [pi +1] = Xi1 [j1]
can hold. Fix any such (i1, j1). Now it is sufficient to bound the probability
for equality for the left n/2 bits. We first consider the case where j1 = pi +1.
Now from the definition of pi, (C∗

i [pi +1], t∗i [pi +1]) �= (Ci1 [pi +1], ti1 [pi +1]).
If ti[pi +1] = ti1 [pi +1] then the bad event cannot hold with probability one.
Otherwise, we obtain a non-trivial linear equation in Δi1 and apply Lemma 1,
and we also use the fact that G+ I is non singular. A similar argument holds
for the other choices of j1. Therefore, the probability for the atomic case is at
most 2−n/2, and because we have at most qf ·n/2 chances, Pr[B4∧B1c∧B3c]
is at most (n/2) · qf · 1/2n/2.

Summarizing, we have

Pr
ideal

[τ �∈ Vgood] ≤ Pr[B1] + Pr[B2] + Pr[B3] + Pr[B4 ∧ B1c ∧ B3c]

≤ σ

2n/2
+

σ

2n/2
+

2σ

2n/2
+

0.5nqf

2n/2
=

4σ + 0.5nqf

2n/2
,

which concludes the proof. ��
Lower Bound of ipreal(τ). We consider the ratio of ipreal(τ) and ipideal(τ). In
this paragraph we assume that all the probability space, except for ipideal(∗), is
defined over the real game. We fix a good view

τ = ((Ni, Ai,Mi, Yi)i∈{1,...,q}, (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf}),

where Z∗
i′ = ⊥. We separate τ into

τe = (Ni, Ai,Mi, Yi)i∈{1,...,q} and τd = (N∗
i′ , A∗

i′ , C∗
i′ , T ∗

i′ , Z∗
i′)i′∈{1,...,qf},

and we first see that for a good view τ , ipideal(τ) equals to 1/2n(q+σ).
Now we consider the real case. Since B1 and B2 do not hold with τ , all

inputs of the random function inside τe are distinct, which implies that the
released Y -values are independent and uniformly random. The variables in τe

are uniquely determined given these Y -values, and there are exactly q+σ distinct
input-output of R. Therefore, Pr[τe] is exactly 2−n(q+σ).

We next evaluate

ipreal(τ) = Pr[τe, τd] = Pr[τe] · Pr[τd|τe] =
1

2n(q+σ)
· Pr[τd|τe]. (6)

We observe that Pr[τd|τe] equals to Pr[⊥all|τe], where ⊥all denotes the event
that Z∗

i = ⊥ for all i = 1, . . . , qf , as other variables in τd are determined by τe.
Let η denote the event that, for all i = 1, . . . , qf , X∗

i [j] for pi < j ≤ 	∗
i is not

colliding to X-values in τe and X∗
i [j′] for all j′ �= j. For j = pi + 1, the above

290 A. Chakraborti et al.

condition is fulfilled by B4, and thus Y ∗
i [pi + 1] is uniformly random, and hence

X∗
i [pi + 2] is also uniformly random, due to the property of feedback function

(here, observe that the mask addition between the chain of Y ∗
i [j] to X∗

i [j + 1]
does not reduce the randomness).

Now we have Pr[⊥all|τe] = 1−Pr[(⊥all)c|τe], and we also have Pr[(⊥all)c|τe] =
Pr[(⊥all)c, η|τe] + Pr[(⊥all)c, ηc|τe]. Here, Pr[(⊥all)c, η|τe] is the probability that
at least one T ∗

i for some i = 1, . . . , qf is correct as a guess of Y ∗
i [∗

i]. Here Y ∗
i [∗

i]
is completely random from η, hence using the union bound we have

Pr[(⊥all)c, η|τe] ≤ qf

2n
.

For Pr[(⊥all)c, ηc|τe] which is at most Pr[ηc|τe], the above observation suggests
that this can be evaluated by counting the number of possible bad pairs (i.e. a
pair that a collision inside the pair violates η) among the all X-values in τe

and all X∗-values in τd, as in the same manner to the collision analysis of e.g.,
CBC-MAC using R. For each i-th decryption query, the number of bad pairs is
at most (q + σ + 	∗

i) · 	∗
i ≤ (q + σ + σf) · 	∗

i . Therefore, the total number of bad
pairs is

∑
1≤i≤qf

(q + σ + σf) · 	∗
i ≤ (q + σ + σf) · σf , and we have

Pr[(⊥all)c, ηc|τe] ≤ (q + σ + σf) · σf

2n
.

Combining all, we have

ipreal(τ) =
1

2n(q+σ)
· Pr[τd|τe] = ipideal(τ) · Pr[⊥all|τe]

≥ ipideal(τ) · (1 − (Pr[(⊥all)c, η|τe] + Pr[(⊥all)c, ηc|τe]))

≥ ipideal(τ) ·
(

1 − qf + (q + σ + σf) · σf

2n

)

.

��

6 Hardware Implementation of COFB

6.1 Overview

COFB primarily aims to achieve a lightweight implementation on small hardware
devices. For such devices, the hardware resource for implementing memory is
often the dominant factor of the size of entire implementation, and the scalability
by parallelizing the internal components is not needed. In this respect, COFB’s
small state size and completely serial operation is quite desirable.

For implementation aspects, COFB is simple, as it consists of a blockcipher
and several basic operations (bitwise XOR, the feedback function, and the con-
stant multiplications over GF(2n/2)). Combined with the small state size, this
implies that the implementation size of COFB is largely dominated by the under-
lying blockcipher.

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 291

We also provide the number of clock cycles needed to process input bytes,
as a conventional way to estimate the speed. Here, COFB taking a-block AD
(associated data) and an m-block message needs 12(a + m) + 23 cycles. Table 2
shows the number of average cycles per input message bytes, which we call cycles
per byte (cpb), assuming AD has the same length as message and the underlying
blockcipher has 128-bit block. That is, the table shows (12 · 2m + 23)/16m.

Table 2. Clock cycles per message byte for COFB using a 128-bit blockcipher.

Message length (Bytes)

16 32 64 128 256 512 1024 2048 4096 16384 32768

cpb 2.93 2.22 1.86 1.68 1.59 1.54 1.52 1.51 1.50 1.50 1.50

6.2 Hardware Architecture

We describe the hardware implementation of COFB using AES-128. This is a
basic implementation without any pipelining, and employs a module architec-
ture. We primary focus on the encryption-only circuit, however, the combined
encryption and decryption circuit should have very small amount of overhead
thanks to the inverse-freeness (i.e. no AES decryption routine is needed) and
simplicity of the mode. Due to the similarity between the associated data and
the message processing phase, the same hardware modules are used in the both
phases. A single bit switch is used to distinguish between the two types of input
data. The main architecture consists of the modules described below. We remark
that, there is also a Finite State Machine (FSM) which controls the flow by send-
ing signal to these modules. The FSM has a rather simple structure, and will be
described in the full version. Then, the overall hardware architecture is described
in Fig. 4.

1. State Registers: The state registers are used to store the intermediate states
after each iteration. We use a 128-bit State register to store the 128-bit AES
block state, a 64-bit Δ register to store the 64-bit mask applied to each AES
input, and a 128-bit Key register to store the 128-bit key. The round key of
AES is stored in the additional 128-bit register (RoundKey), however, this
is included in the AES module.

2. AES Round: AES round function module runs one AES round computation
and produces a 128-bit output, using two 128-bit inputs, one from the State
and the other from (internal) RoundKey registers. The latter register is
initialized by loading the master key, stored in the Key register, each time
the AES function is invoked. The output of AES module is stored into the
State register, which is the input for the next round. The entire operation
is serial, while the internal round computation and the round key generation
run in parallel, and needs 11 cycles to perform full AES-128 encryption.

292 A. Chakraborti et al.

3. Feedback Function ρ: The ρ module is to compute the linear feedback
function ρ on the 128-bit data block and the 128-bit intermediate state value
(output from the AES computation). The output is a 128-bit ciphertext and
a 128-bit intermediate state (to be masked and stored to the State register).

4. MaskUpdate: uMask module updates the mask stored in Δ register.
uMask receives the current mask value and updates it by multiplying with
α or (1 + α) or (1 + α)2 based on the signals generated by the FSM, where
signals are to indicate the end of the message and the completeness of the
final block process.

Basic Implementation: We describe a basic flow of our implementation of
COFB, which generally follows the pseudocode of Fig. 3. Prior to the initializa-
tion, State register is loaded with 064 ‖N . Once State register is initialized, the
initialization process starts by encrypting the nonce (064 ‖N) with AES. Then,
64 bits of the encrypted nonce is chopped by the “chop” function as in Fig. 4, and
this chopped value is stored into the Δ register (this is initialization of Δ). After
these initializations, 128-bit associated data blocks are fetched and sent to the ρ
module along with the previous AES output to produce a 128 bit intermediate
state. This state is partially masked with 64-bit Δ for every AES call. After all
the associated data blocks are processed, the message blocks are processed in the
same manner, except that the ρ function produces 128-bit ciphertext blocks in
addition to the intermediate state values. Finally, after the message processing
is over, the tag is generated using an additional AES call.

064||N

State

128

128128

128 128

128

128

128

AESr

Key

ρρρ

Δ

uMask

128

T

chop
128 64

AD/M

64

||064⊕⊕⊕

C

128
128

64

Fig. 4. Hardware circuit diagram

Combined Encryption and Decryption: As mentioned earlier, we here
focus on the encryption-only circuit. However, due to the similarity between
the encryption and the decryption modes, the combined hardware for encryp-
tion and decryption can be built with a small increase in the area, with the same
throughput. This can be done by adding a control flow to a binary signal for
mode selection.

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 293

6.3 Implementation Results

We implemented COFB on Xilinx Virtex 6 and Virtex 7, using VHDL and Xil-
inx ISE 13.4. AES-128 is used as the internal blockcipher. Table 3 presents the
implementation results of COFB on Virtex 7 with the target device xc7vx330t
and Virtex 6 with the target device xc6vlx760. We employ RTL approach and
a basic iterative type architecture. The areas are listed in the number of Slice
Registers, Slice LUTs and Occupied Slices. We also report frequency (MHz),
Throughput (Gbps), and throughput-area efficiency. In the full version, we will
show the area utilization for this basic AES-based implementation.

Table 3. Implementation results of COFB on FPGAs.

Platform # Slice
registers

LUTs # Slices Frequency
(MHz)

Gbps Mbps/
LUT

Mbps/
Slice

Virtex 6 722 1075 442 267.20 2.85 2.24 6.45

Virtex 7 722 1456 555 264.24 2.82 2.22 5.08

For AES, we use the implementation available from Athena [1] maintained
by George Mason University. This implementation stores all the round subkeys
in a single register to make the AES implementation faster and parallelizable.
However, the main motivation of COFB is to reduce hardware footprint. Hence,
we change the above implementation to a sequential one such that it processes
only one AES round in a single clock cycle. This in turn eliminates the need to
store all the round subkeys in a single register and reduces the hardware area
consumed by the AES module.

6.4 Comparison with ATHENa Database

We compare our implementation of COFB with the results published in ATHENa
Database [2], taking Virtex 6 and Virtex 7 as our target platforms. We first warn
that this is a rough comparison. Here, we ignore the overhead to support the
GMU API and the fact that ours is encryption-only while the others are (to
the best of our knowledge) supporting both encryption and decryption, and the
difference in the achieved security level, both quantitative and qualitative. We
acknowledge that supporting GMU API will require some additional overhead to
the current figures of COFB. Nevertheless, we think the current figures of COFB
suggest that small hardware implementations are possible compared with other
blockcipher AE modes shown in the table, using the same AES-128, even if we
add a circuit for supporting GMU API and decryption.

We also remark that it is basically hard to compare COFB using AES-128 with
other non-block-cipher-based AE schemes in the right way, because of the differ-
ence in the primitives and the types of security guarantee. For example, ACORN

294 A. Chakraborti et al.

is built from scratch and does not have any provable security result, and is sub-
jected to several cryptanalysis [20,34,44,45]. Joltik and JAMBU-SIMON employ
lightweight (tweakable) blockciphers allowing smaller implementation than AES,
and Sponge AE schemes (ASCON, Ketje, NORX, and PRIMATES-HANUMAN)
use a keyless permutation of a large block size to avoid key scheduling circuit
and have the provable security relying on the random permutation model. In
Table 4, we provide the comparison table only on the Vertex 6 platform. The
comparison table on the Vertex 7 platform will be provided in the full version.

Table 4. Comparison on Virtex 6 [2]. In the “Primitive” column, SC denotes Stream
cipher, (T)BC denotes (Tweakable) blockcipher, and BC-RF denotes the blockcipher’s
round function.

Scheme Primitive #LUT #Slices Gbps Mbps/LUT Mbps/Slices

ACORN [51] SC 455 135 3.112 6.840 23.052

AEGIS [53] BC-RF 7592 2028 70.927 9.342 34.974

AES-COPA [10] BC 7754 2358 2.500 0.322 1.060

AES-GCM [22] BC 3175 1053 3.239 1.020 3.076

AES-OTR [36] BC 5102 1385 2.741 0.537 1.979

AEZ [26] BC-RF 4597 1246 8.585 0.747 2.756

ASCON [21] Sponge 1271 413 3.172 2.496 7.680

CLOC [29] BC 3145 891 2.996 0.488 1.724

DEOXYS [31] TBC 3143 951 2.793 0.889 2.937

ELmD [19] BC 4302 1584 3.168 0.736 2.091

JAMBU-AES [52] BC 1836 652 1.999 1.089 3.067

JAMBU-SIMON [52] BC (non-AES) 1222 453 0.363 0.297 0.801

Joltik [30] TBC 1292 442 0.853 0.660 0.826

Ketje [14] Sponge 1270 456 7.345 5.783 16.107

Minalpher [46] BC (non-AES) 2879 1104 1.831 0.636 1.659

NORX [11] Sponge 2964 1016 11.029 3.721 10.855

PRIMATES-HANUMAN [8] Sponge 1012 390 0.964 0.953 2.472

OCB [33] BC 4249 1348 3.122 0.735 2.316

SCREAM [24] TBC 2052 834 1.039 0.506 1.246

SILC [29] BC 3066 921 4.040 1.318 4.387

Tiaoxin [38] BC-RF 7123 2101 52.838 7.418 25.149

TriviA-ck [18] SC 2118 687 15.374 7.259 22.378

COFB BC 1075 442 2.850 2.240 6.450

7 Conclusion

This paper presents COFB, a blockcipher mode for AE focusing on the state
size. When instantiated with an n-bit blockcipher, COFB operates at rate-1,

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 295

and requires state size of 1.5n bits, and is provable secure up to O(2n/2/n)
queries based on the standard PRP assumption on the blockcipher. In fact this
is the first scheme fulfilling these features at once. A key idea of COFB is a new
type of feedback function combining both plaintext and ciphertext blocks. We
have also presented the hardware implementation results, which demonstrate
the effectiveness of our approach.

Acknowledgements. The authors thank the anonymous reviewers for helpful feed-
back. The work by Tetsu Iwata was supported in part by JSPS KAKENHI, Grant-in-
Aid for Scientific Research (B), Grant Number 26280045, and was partially carried out
while visiting Nanyang Technological University, Singapore.

References

1. ATHENa: Automated Tool for Hardware Evaluation. https://cryptography.gmu.
edu/athena/

2. Authenticated Encryption FPGA Ranking. https://cryptography.gmu.edu/
athenadb/fpga auth cipher/rankings view

3. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/caesar.html/

4. Recommendation for Block Cipher Modes of Operation: Methods and Techniques.
NIST Special Publication 800–38A. National Institute of Standards and Technology
(2001)

5. Recommendation for Block Cipher Modes of Operation: The CCM Mode for
Authentication and Confidentiality. NIST Special Publication 800–38C. National
Institute of Standards and Technology (2004)

6. Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication. NIST Special Publication 800–38B. National Institute of Stan-
dards and Technology (2005)

7. NIST FIPS 197. Advanced Encryption Standard (AES). Federal Information
Processing Standards Publication, 197 (2001)

8. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mendel, F., Mennink, B.,
Mouha, N., Wang, Q., Yasuda, K.: PRIMATEs v1.02. Submission to CAESAR
(2016). https://competitions.cr.yp.to/round2/primatesv102.pdf

9. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: Parallelizable and authenticated online ciphers. In: Sako, K., Sarkar, P. (eds.)
ASIACRYPT 2013. LNCS, vol. 8269, pp. 424–443. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-42033-7 22

10. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda,
K.: AES-COPA v. 2. Submission to CAESAR (2015). https://competitions.cr.yp.
to/round2/aescopav2.pdf

11. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX v3.0. Submission to CAESAR
(2016). https://competitions.cr.yp.to/round3/norxv30.pdf

12. Banik, S., Bogdanov, A., Minematsu, K.: Low-area hardware implementations of
CLOC, SILC and AES-OTR. In: DIAC (2015)

13. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000)

14. Bertoni, G., Daemen, M.P.J., Van Assche, G., Van Keer, R.: Ketje v2. Submission
to CAESAR (2016). https://competitions.cr.yp.to/round3/ketjev2.pdf

https://cryptography.gmu.edu/athena/
https://cryptography.gmu.edu/athena/
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/rankings_view
http://competitions.cr.yp.to/caesar.html/
https://competitions.cr.yp.to/round2/primatesv102.pdf
http://dx.doi.org/10.1007/978-3-642-42033-7_22
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round2/aescopav2.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/ketjev2.pdf

296 A. Chakraborti et al.

15. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

16. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE:
AES-based lightweight authenticated encryption. In: Moriai, S. (ed.) FSE
2013. LNCS, vol. 8424, pp. 447–466. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43933-3 23

17. Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

18. Chakraborti, A., Nandi, M.: TriviA-ck-v2. Submission to CAESAR (2015). https://
competitions.cr.yp.to/round2/triviackv2.pdf

19. Datta, N., Nandi, M.: Proposal of ELmD v2.1. Submission to CAESAR (2015).
https://competitions.cr.yp.to/round2/elmdv21.pdf

20. Dey, P., Rohit, R.S., Adhikari, A.: Full key recovery of ACORN with a single fault.
J. Inf. Sec. Appl. 29, 57–64 (2016)

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission
to CAESAR (2016). https://competitions.cr.yp.to/round3/asconv12.pdf

22. Dworkin, M.: Recommendation for block cipher modes of operation: Galois/counter
mode (GCM) and GMAC. NIST Special Publication 800–38D (2011). http://csrc.
nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf

23. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-line
authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol.
7549, pp. 196–215. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34047-5 12

24. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K., Journault, A., Durvaux, F.,
Gaspar, L., Kerckhof, S.: SCREAM Side-Channel Resistant Authenticated Encryp-
tion with Masking. Submission to CAESAR (2015). https://competitions.cr.yp.to/
round2/screamv3.pdf

25. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22

26. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v4.2: Authenticated Encryption
by Enciphering. Submission to CAESAR (2016). https://competitions.cr.yp.to/
round3/aezv42.pdf

27. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE
2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-39887-5 11

28. Iwata, T., Minematsu, K., Guo, J., Morioka, S.: CLOC: authenticated encryption
for short input. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
149–167. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0 8

29. Iwata,T.,Minematsu,K.,Guo, J.,Morioka, S.,Kobayashi, E.:CLOCandSILC. Sub-
mission to CAESAR (2016) https://competitions.cr.yp.to/round3/clocsilcv3.pdf

30. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1.3. Submission to CAESAR (2015).
https://competitions.cr.yp.to/round2/joltikv13.pdf

31. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1.41. Submission to CAESAR (2016).
https://competitions.cr.yp.to/round3/deoxysv141.pdf

32. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-21702-9 18

http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-662-43933-3_23
http://dx.doi.org/10.1007/978-3-642-34961-4_14
https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/triviackv2.pdf
https://competitions.cr.yp.to/round2/elmdv21.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://dx.doi.org/10.1007/978-3-642-34047-5_12
https://competitions.cr.yp.to/round2/screamv3.pdf
https://competitions.cr.yp.to/round2/screamv3.pdf
http://dx.doi.org/10.1007/978-3-642-23951-9_22
https://competitions.cr.yp.to/round3/aezv42.pdf
https://competitions.cr.yp.to/round3/aezv42.pdf
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-540-39887-5_11
http://dx.doi.org/10.1007/978-3-662-46706-0_8
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
http://dx.doi.org/10.1007/978-3-642-21702-9_18

Blockcipher-Based Authenticated Encryption: How Small Can We Go? 297

33. Krovetz, T., Rogaway, P.: OCB(v1.1). Submission to CAESAR (2016). https://
competitions.cr.yp.to/round3/ocbv11.pdf

34. Lafitte, F., Lerman, L., Markowitch, O., Van Heule, D.: SAT-based cryptanalysis
of ACORN. IACR Cryptology ePrint Archive 2016:521 (2016)

35. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom
functions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 275–292. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 16

36. Minematsu, K.: AES-OTR v3.1. Submission to CAESAR (2016). https://
competitions.cr.yp.to/round3/aesotrv31.pdf

37. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

38. Nikolić, I.: Tiaoxin - 346. Submission to CAESAR (2016). https://competitions.
cr.yp.to/round3/tiaoxinv21.pdf

39. Patarin, J.: Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S.
Phd Thèsis de Doctorat de l’Université de Paris 6 (1991)

40. Peyrin, T., Sim, S.M., Wang, L., Zhang, G.: Cryptanalysis of JAMBU. In: Leander,
G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 264–281. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48116-5 13

41. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30539-2 2

42. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6(3), 365–403
(2003)

43. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). doi:10.1007/11761679 23

44. Salam, M.I., Bartlett, H., Dawson, E., Pieprzyk, J., Simpson, L., Wong, K.K.-H.:
Investigating cube attacks on the authenticated encryption stream cipher ACORN.
In: Batten, L., Li, G. (eds.) ATIS 2016. CCIS, vol. 651, pp. 15–26. Springer,
Singapore (2016). doi:10.1007/978-981-10-2741-3 2

45. Salam, Md.I., Wong, K.K.-H., Bartlett, H., Simpson, L.R., Dawson, Ed., Pieprzyk,
J.: Finding state collisions in the authenticated encryption stream cipher ACORN.
In: Proceedings of the Australasian Computer Science Week Multiconference, p. 36
(2016)

46. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui, M.,
Hirose, S.: Minalpher v1.1. Submission to CAESAR (2015). https://competitions.
cr.yp.to/round2/minalpherv11.pdf

47. Schroé, W., Mennink, B., Andreeva, E., Preneel, B.: Forgery and subkey recov-
ery on CAESAR candidate iFeed. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 197–204. Springer, Cham (2016). doi:10.1007/
978-3-319-31301-6 11

48. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.:
Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23

https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
http://dx.doi.org/10.1007/978-3-642-55220-5_16
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
http://dx.doi.org/10.1007/978-3-642-20465-4_6
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
http://dx.doi.org/10.1007/978-3-662-48116-5_13
http://dx.doi.org/10.1007/978-3-540-30539-2_2
http://dx.doi.org/10.1007/11761679_23
http://dx.doi.org/10.1007/978-981-10-2741-3_2
https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://competitions.cr.yp.to/round2/minalpherv11.pdf
http://dx.doi.org/10.1007/978-3-319-31301-6_11
http://dx.doi.org/10.1007/978-3-319-31301-6_11
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23

298 A. Chakraborti et al.

49. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: a lightweight
block cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC
2012. LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35999-6 22

50. Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryptol. 16(4),
249–286 (2003)

51. Wu, H.: ACORN: A Lightweight Authenticated Cipher (v3). Submission to CAE-
SAR (2016). https://competitions.cr.yp.to/round3/acornv3.pdf

52. Wu, H., Huang, T.: The JAMBU Lightweight Authentication Encryption Mode
(v2.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/
jambuv21.pdf

53. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm
(v1.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/
aegisv11.pdf

54. Zhang, L., Wu, W., Sui, H., Wang, P.: iFeed[AES] v1. Submission to CAESAR
(2014). https://competitions.cr.yp.to/round1/ifeedaesv1.pdf

http://dx.doi.org/10.1007/978-3-642-35999-6_22
http://dx.doi.org/10.1007/978-3-642-35999-6_22
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf

GIMLI: A Cross-Platform Permutation

Daniel J. Bernstein1(B), Stefan Kölbl2, Stefan Lucks3,
Pedro Maat Costa Massolino4, Florian Mendel5, Kashif Nawaz6,
Tobias Schneider7, Peter Schwabe4, François-Xavier Standaert6,

Yosuke Todo8, and Benôıt Viguier4

1 University of Illinois at Chicago, Chicago, USA
djb@cr.yp.to

2 Technical University of Denmark, Kongens Lyngby, Denmark
stek@dtu.dk

3 Bauhaus-Universität Weimar, Weimar, Germany
Stefan.Lucks@uni-weimar.de

4 Radboud University, Nijmegen, Netherlands
P.Massolino@cs.ru.nl,peter@cryptojedi.org,benoit@viguier.nl

5 Graz University of Technology, Graz, Austria
florian.mendel@gmail.com

6 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
{kashif.nawaz,fstandae}@uclouvain.be

7 Ruhr-University Bochum, Bochum, Germany
tobias.schneider-a7a@rub.de

8 NTT Secure Platform Laboratories, Tokyo, Japan
todo.yosuke@lab.ntt.co.jp

Abstract. This paper presents Gimli, a 384-bit permutation designed
to achieve high security with high performance across a broad range
of platforms, including 64-bit Intel/AMD server CPUs, 64-bit and 32-
bit ARM smartphone CPUs, 32-bit ARM microcontrollers, 8-bit AVR
microcontrollers, FPGAs, ASICs without side-channel protection, and
ASICs with side-channel protection.

Keywords: Intel · AMD · ARM Cortex-A · ARM Cortex-M · AVR ·
FPGA · ASIC · Side channels · The eyes of a hawk and the ears of a fox

Author list in alphabetical order; see https://www.ams.org/profession/leaders/
culture/CultureStatement04.pdf. This work resulted from the Lorentz Center Work-
shop “HighLight: High-security lightweight cryptography”. This work was supported
in part by the Commission of the European Communities through the Horizon
2020 program under project number 645622 (PQCRYPTO) and project number
645421 (ECRYPT-CSA); the Austrian Science Fund (FWF) under grant P26494-
N15; the ARC project NANOSEC; the Belgian Fund for Scientific Research (FNRS-
F.R.S.); the Technology Foundation STW (project 13499 TYPHOON), from the
Dutch government; the Netherlands Organisation for Scientific Research (NWO)
under grant 639.073.005; and the U.S. National Science Foundation under grant
1314919. “Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.” Permanent ID of this document:
93eb34af666d7fa7264d94c21c18034a.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 299–320, 2017.
DOI: 10.1007/978-3-319-66787-4 15

https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

300 D.J. Bernstein et al.

1 Introduction

Keccak [11], the 1600-bit permutation inside SHA-3, is well known to be
extremely energy-efficient: specifically, it achieves very high throughput in
moderate-area hardware. Keccak is also well known to be easy to protect against
side-channel attacks: each of its 24 rounds has algebraic degree only 2, allowing
low-cost masking. The reason that Keccak is well known for these features is
that most symmetric primitives are much worse in these metrics.

Chaskey [21], a 128-bit-permutation-based message-authentication code with
a 128-bit key, is well known to be very fast on 32-bit embedded microcontrollers:
for example, it runs at just 7.0 cycles/byte on an ARM Cortex-M3 microcon-
troller. The reason that Chaskey is well known for this microcontroller perfor-
mance is that most symmetric primitives are much worse in this metric.

Salsa20 [7], a 512-bit-permutation-based stream cipher, is well known to
be very fast on CPUs with vector units. For example, [9] shows that Salsa20
runs at 5.47 cycles/byte using the 128-bit NEON vector unit on a classic ARM
Cortex-A8 (iPad 1, iPhone 4) CPU core. The reason that Salsa20 and its variant
ChaCha20 [6] are well known for this performance is again that most symmetric
primitives are much worse in this metric. This is also why ChaCha20 is now
used by smartphones for HTTPS connections to Google [13] and Cloudflare [27].

Cryptography appears in a wide range of application environments, and each
new environment seems to provide more reasons to be dissatisfied with most
symmetric primitives. For example, Keccak, Salsa20, and ChaCha20 slow down
dramatically when messages are short. As another example, Chaskey has a lim-
ited security level, and slows down dramatically when the same permutation is
used inside a mode aiming for a higher security level.

Contributions of this paper. We introduce Gimli, a 384-bit permuta-
tion. Like other permutations with sufficiently large state sizes, Gimli can
easily be used to build high-security block ciphers, tweakable block ciphers,
stream ciphers, message-authentication codes, authenticated ciphers, hash func-
tions, etc.

What distinguishes Gimli from other permutations is its cross-platform per-
formance. Gimli is designed for energy-efficient hardware and for side-channel-
protected hardware and for microcontrollers and for compactness and for vec-
torization and for short messages and for a high security level.

We present a complete specification of Gimli (Sect. 2), a detailed design ratio-
nale (Sect. 3), an in-depth security analysis (Sect. 4), and performance results for
a wide range of platforms (Sect. 5).

Availability of implementations. We place all software and hardware imple-
mentations described in this paper into the public domain to maximize reusabil-
ity of our results. They are available at https://gimli.cr.yp.to.

https://gimli.cr.yp.to

Gimli: A Cross-Platform Permutation 301

2 GIMLI Specification

This section defines Gimli. See Sect. 3 for motivation.

Notation. We denote by W = {0, 1}32 the set of bitstrings of length 32. We
will refer to the elements of this set as “words”. We use

– a ⊕ b to denote a bitwise exclusive or (XOR) of the values a and b,
– a ∧ b for a bitwise logical and of the values a and b,
– a ∨ b for a bitwise logical or of the values a and b,
– a ≪ k for a cyclic left shift of the value a by a shift distance of k, and
– a � k for a non-cyclic shift (i.e., a shift that is filling up with zero bits) of

the value a by a shift distance of k.

We index all vectors and matrices starting at zero. We encode words as bytes in
little-endian form.

i

j

Fig. 1. State representation

The state. Gimli applies a sequence of rounds to a 384-bit state. The state
is represented as a parallelepiped with dimensions 3 × 4 × 32 (see Fig. 1) or,
equivalently, as a 3 × 4 matrix of 32-bit words.

We name the following sets of bits:

– a column j is a sequence of 96 bits such that sj = {s0,j ; s1,j ; s2,j} ∈ W3

– a row i is a sequence of 128 bits such that si = {si,0; si,1; si,2; si,3} ∈ W4

Each round is a sequence of three operations: (1) a non-linear layer, specifi-
cally a 96-bit SP-box applied to each column; (2) in every second round, a linear
mixing layer; (3) in every fourth round, a constant addition.

The non-linear layer. The SP-box consists of three sub-operations: rotations
of the first and second words; a 3-input nonlinear T-function; and a swap of the
first and third words. See Fig. 2 for details.

The linear layer. The linear layer consists of two swap operations, namely
Small-Swap and Big-Swap. Small-Swap occurs every 4 rounds starting from the
1st round. Big-Swap occurs every 4 rounds starting from the 3rd round. See
Fig. 3 for details of these swaps.

The round constants. There are 24 rounds in Gimli, numbered 24, 23, . . . , 1.
When the round number r is 24, 20, 16, 12, 8, 4 we XOR the round constant
0x9e377900 ⊕ r to the first state word s0,0.

Putting it together. Algorithm 1 is pseudocode for the full Gimli permutation.
AppendixA is a C reference implementation.

302 D.J. Bernstein et al.

x

y

z

x ← x ≪ 24
y ← y ≪ 9

x

y

z

x ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
y ← y ⊕ x ⊕ ((x ∨ z) � 1)
z ← z ⊕ y ⊕ ((x ∧ y) � 3)

x

y

z

x ← z
z ← x

Fig. 2. The SP-box applied to a column

Fig. 3. The linear layer

3 Understanding the GIMLI Design

This section explains how we arrived at the Gimli design presented in Sect. 2.
We started from the well-known goal of designing one unified cryptographic

primitive suitable for many different applications: collision-resistant hashing,
preimage-resistant hashing, message authentication, message encryption, etc. We
found no reason to question the “new conventional wisdom” that a permutation
is a better unified primitive than a block cipher. Like Keccak, Ascon [15], etc., we
evaluate performance only in the forward direction, and we consider only forward
modes; modes that also use the inverse permutation require extra hardware area
and do not seem to offer any noticeable advantages.

Where Gimli departs from previous designs is in its objective of being a single
primitive that performs well on every common platform. We do not insist on
beating all previous primitives on all platforms simultaneously, but we do insist
on coming reasonably close. Each platform has its own hazards that create poor
performance for many primitives; what Gimli shows is that all of these hazards
can be avoided simultaneously.

Vectorization. On common Intel server CPUs, vector instructions are by far
the most efficient arithmetic/logic instructions. As a concrete example, the 12-
round ChaCha12 stream cipher has run at practically the same speed as 12-round

Gimli: A Cross-Platform Permutation 303

Algorithm 1. The Gimli permutation
Require: s = (si,j) ∈ W3×4

Ensure: Gimli(s) = (si,j) ∈ W3×4

for r from 24 downto 1 inclusive do
for j from 0 to 3 inclusive do

x ← s0,j ≪ 24 � SP-box
y ← s1,j ≪ 9
z ← s2,j
s2,j ← x ⊕ (z � 1) ⊕ ((y ∧ z) � 2)
s1,j ← y ⊕ x ⊕ ((x ∨ z) � 1)
s0,j ← z ⊕ y ⊕ ((x ∧ y) � 3)

end for
� linear layer

if r mod 4 = 0 then
s0,0, s0,1, s0,2, s0,3 ← s0,1, s0,0, s0,3, s0,2 � Small-Swap

else if r mod 4 = 2 then
s0,0, s0,1, s0,2, s0,3 ← s0,2, s0,3, s0,0, s0,1 � Big-Swap

end if

if r mod 4 = 0 then
s0,0 = s0,0 ⊕ 0x9e377900 ⊕ r � Add constant

end if
end for
return (si,j)

AES-192 on several generations of Intel CPUs (e.g., 1.7 cycles/byte on Westmere;
1.5 cycles/byte on Ivy Bridge; 0.8 cycles/byte on Skylake), despite AES hardware
support, because ChaCha12 takes advantage of the vector hardware on the same
CPUs. Vectorization is attractive for CPU designers because the overhead of
fetching and decoding an instruction is amortized across several data items.

Any permutation built from (e.g.) common 32-bit operations can take advan-
tage of a 32b-bit vector unit if the permutation is applied to b blocks in parallel.
Many modes of use of a permutation support this type of vectorization. But this
type of vectorization creates two performance problems. First, if b parallel blocks
do not fit into vector registers, then there is significant overhead for loads and
stores; vectorized Keccak implementations suffer exactly this problem. Second,
a large b is wasted in applications where messages are short.

Gimli, like Salsa and ChaCha, views its state as consisting of 128-bit rows
that naturally fit into 128-bit vector registers. Each row consists of a vector
of 128/w entries, each entry being a w-bit word, where w is optimized below.
Most of the Gimli operations are applied to every column in parallel, so the
operations naturally vectorize. Taking advantage of 256-bit or 512-bit vector
registers requires handling only 2 or 4 blocks in parallel.

Logic operations and shifts. Gimli’s design uses only bitwise operations on
w-bit words: specifically, and, or, xor, constant-distance left shifts, and constant-
distance rotations.

304 D.J. Bernstein et al.

There are tremendous hardware-latency advantages to being able to carry
out w bit operations in parallel. Even when latency is not a concern, bitwise
operations are much more energy-efficient than integer addition, which (when
carried out serially) uses almost 5w bit operations for w-bit words. Avoiding
additions also allows “interleaved” implementations as in Keccak, Ascon, etc.,
saving time on software platforms with word sizes below w.

On platforms with w-bit words there is a software cost in avoiding additions.
One way to quantify this cost is as follows. A typical ARX design is roughly
balanced between addition, rotation, and xor. NORX [2] replaces each addition
a + b with a similar bitwise operation a ⊕ b ⊕ ((a ∧ b) � 1), so 3 instructions
(add, rotate, xor) are replaced with 6 instructions; on platforms with free shifts
and rotations (such as the ARM Cortex-M4), 2 instructions are replaced with
4 instructions; on platforms where rotations need to be simulated by shifts (as
in typical vector units), 5 instructions are replaced with 8 instructions. On top
of this near-doubling in cost, the diffusion in the NORX operation is slightly
slower than the diffusion in addition, increasing the number of rounds required
for security.

The pattern of Gimli operations improves upon NORX in three ways. First,
Gimli uses a third input c for a ⊕ b ⊕ ((c ∧ b) � 1), removing the need for a
separate xor operation. Second, Gimli uses only two rotations for three of these
operations; overall Gimli uses 19 instructions on typical vector units, not far
behind the 15 instructions used by three ARX operations. Third, Gimli varies
the 1-bit shift distance, improving diffusion compared to NORX and possibly
even compared to ARX.

We searched through many combinations of possible shift distances (and
rotation distances) in Gimli, applying a simple security model to each combina-
tion. Large shift distances throw away many nonlinear bits and, unsurprisingly,
turned out to be suboptimal. The final Gimli shift distances (2, 1, 3 on three
32-bit words) keep 93.75% of the nonlinear bits.

32-bit words. Taking w = 32 is an obvious choice for 32-bit CPUs. It also
works well on common 64-bit CPUs, since those CPUs have fast instructions
for, e.g., vectorized 32-bit shifts. The 32-bit words can also be split into 16-bit
words (with top and bottom bits, or more efficiently with odd and even bits as
in “interleaved” Keccak software), and further into 8-bit words.

Taking w = 16 or w = 8 would lose speed on 32-bit CPUs that do not have
vectorized 16-bit or 8-bit shifts. Taking w = 64 would interfere with Gimli’s
ability to work within a quarter-state for some time (see below), and we do not
see a compensating advantage.

State size. On common 32-bit ARM microcontrollers, there are 14 easily usable
integer registers, for a total of 448 bits. The 512-bit states in Salsa20, ChaCha,
NORX, etc. produce significant load-store overhead, which Gimli avoids by (1)
limiting its state to 384 bits (three 128-bit vectors), i.e., 12 registers, and (2)
fitting temporary variables into just 2 registers.

Limiting the state to 256 bits would provide some benefit in hardware area,
but would produce considerable slowdowns across platforms to maintain an

Gimli: A Cross-Platform Permutation 305

acceptable level of security. For example, 256-bit sponge-based hashing at a 2100

security level would be able to absorb only 56 message bits (22% of the state)
per permutation call, while 384-bit sponge-based hashing at the same security
level is able to absorb 184 message bits (48% of the state) per permutation call,
presumably gaining more than a factor of 2 in speed, even without accounting for
the diffusion benefits of a larger state. It is also not clear whether a 256-bit state
size leaves an adequate long-term security margin against multi-user attacks (see
[16]) and quantum attacks; more complicated modes can achieve high security
levels using small states, but this damages efficiency.

One of the SHA-3 requirements was 2512 preimage security. For sponge-based
hashing this requires at least a 1024-bit permutation, or an even larger permu-
tation for efficiency, such as Keccak’s 1600-bit permutation. This requirement
was based entirely on matching SHA-512, not on any credible assertion that 2512

preimage security will ever have any real-world value. Gimli is designed for use-
ful security levels, so it is much more comparable to, e.g., 512-bit Salsa20, 400-bit
Keccak-f [400] (which reduces Keccak’s 64-bit lanes to 16-bit lanes), 384-bit C-
Quark [4], 384-bit SPONGENT-256/256/128 [12], 320-bit Ascon, and 288-bit
Photon-256/32/32 [17].

Working locally. On the popular low-end ARM Cortex-M0 microcontroller,
many instructions can access only 8 of the 14 32-bit registers. Working with more
than 256 bits at a time incurs overhead to move data around. Similar comments
apply to the 8-bit AVR microcontroller.

Gimli performs many operations on the left half of its state, and separately
performs many operations on the right half of its state. Each half fits into 6
32-bit registers, plus 2 temporary registers.

It is of course necessary for these 192-bit halves to communicate, but this
communication does not need to be frequent. The only communication is Big-
Swap, which happens only once every 4 rounds, so we can work on the same
half-state for several rounds.

At a smaller scale, Gimli performs a considerable number of operations
within each column (i.e., each 96-bit quarter-state) before the columns com-
municate. Communication among columns happens only once every 2 rounds.
This locality is intended to reduce wire lengths in unrolled hardware, allowing
faster clocks.

Parallelization. Like Keccak and Ascon, Gimli has degree just 2 in each round.
This means that, during an update of the entire state, all nonlinear operations are
carried out in parallel: a nonlinear operation never feeds into another nonlinear
operation.

This feature is often advertised as simplifying and accelerating masked imple-
mentations. The parallelism also has important performance benefits even if side
channels are not a concern.

Consider, for example, software using 128-bit vector instructions to apply
Salsa20 to a single 512-bit block. Salsa20 chains its 128-bit vector operations: an
addition feeds into a rotation, which feeds into an xor, which feeds into the next
addition, etc. The only parallelism possible here is between the two shifts inside

306 D.J. Bernstein et al.

a shift-shift-or implementation of the rotation. A typical vector unit allows more
instructions to be carried out in parallel, but Salsa20 is unable to take advantage
of this. Similar comments apply to BLAKE [3] and ChaCha20.

The basic NORX operation a ⊕ b ⊕ ((a ∧ b) � 1) is only slightly better,
depth 3 for 4 instructions. Gimli has much more internal parallelism: on average
approximately 4 instructions are ready at each moment.

Parallel operations provide slightly slower forward diffusion than serial oper-
ations, but experience shows that this costs only a small number of rounds.
Gimli has very fast backward diffusion.

Compactness. Gimli is intentionally very simple, repeating a small number
of operations again and again. This gives implementors the flexibility to create
very small “rolled” designs, using very little area in hardware and very little
code in software; or to unroll for higher throughput.

This simplicity creates three directions of symmetries that need to be broken.
Gimli is like Keccak in that it breaks all symmetries within the permutation,
rather than (as in Salsa, ChaCha, etc.) relying on attention from the mode
designer to break symmetries. Gimli puts more effort than Keccak into reducing
the total cost of asymmetric operations.

The first symmetry is that rotating each input word by any constant number
of bits produces a near-rotation of each output word by the same number of
bits; “near” accounts for a few bits lost from shifts. Occasionally (after rounds
24, 20, 16, etc.) Gimli adds an asymmetric constant to entry 0 of the first row.
This constant has many bits set (it is essentially the golden ratio 0x9e3779b9,
as used in TEA), and is not close to any of its nontrivial rotations (never fewer
than 12 bits different), so a trail applying this symmetry would have to cancel
many bits.

The second symmetry is that each round is identical, potentially allowing
slide attacks. This is much more of an issue for small blocks (as in, e.g., 128-
bit block ciphers) than for large blocks (such as Gimli’s 384-bit block), but
Gimli nevertheless incorporates the round number r into the constant mentioned
above. Specifically, the constant is 0x93e77900 ⊕ r. The implementor can also
use 0x93e77900+r since r fits into a byte, or can have r count from 0x93e77918
down to 0x93e77900.

The third symmetry is that permuting the four input columns means permut-
ing the four output columns; this is a direct effect of vectorization. Occasionally
(after rounds 24, 20, 16, etc.) Gimli swaps entries 0, 1 in the first row, and swaps
entries 2, 3 in the first row, reducing the symmetry group to 8 permutations
(exchanging or preserving 0, 1, exchanging or preserving 2, 3, and exchanging or
preserving the halves). Occasionally (after rounds 22, 18, 14, etc.) Gimli swaps
the two halves of the first row, reducing the symmetry group to 4 permutations
(0123, 1032, 2301, 3210). The same constant distinguishes these 4 permutations.

We also explored linear layers slightly more expensive than these swaps. We
carried out fairly detailed security evaluations of Gimli-MDS (replacing a, b, c, d
with s ⊕ a, s ⊕ b, s ⊕ c, s ⊕ d where s = a ⊕ b ⊕ c ⊕ d), Gimli-SPARX (as in
[14]), and Gimli-Shuffle (with the swaps as above). We found some advantages

Gimli: A Cross-Platform Permutation 307

in Gimli-MDS and Gimli-SPARX in proving security against various types of
attacks, but it is not clear that these advantages outweigh the costs, so we opted
for Gimli-Shuffle as the final Gimli.

Inside the SP-box: choice of words and rotation distances. The bottom
bit of the T-function adds y to z and then adds x to y. We could instead add
x to y and then add the new y to z, but this would be contrary to our goal of
parallelism; see above.

After the T-function we exchange the roles of x and z, so that the next
SP-box provides diffusion in the opposite direction. The shifted parts of the T-
function already provide diffusion in both directions, but this diffusion is not
quite as fast, since the shifts throw away some bits.

We originally described rotations as taking place after the T-function, but
this is equivalent to rotation taking place before the T-function (except for a rota-
tion of the input and output of the entire permutation). Starting with rotation
saves some instructions outside the main loop on platforms with rotated-input
instructions; also, some applications reuse portions of inputs across multiple
permutation calls, and can cache rotations of those portions. These are minor
advantages but there do not seem to be any disadvantages.

Rotating all three of x, y, z adds noticeable software cost and is almost equiv-
alent to rotating only two: it merely affects which bits are discarded by shifts.
So, as mentioned above, we rotate only two. In a preliminary Gimli design we
rotated y and z, but we found that rotating x and y improves security by 1
round against our best integral attacks; see below.

This leaves two choices: the rotation distance for x and the rotation distance
for y. We found very little security difference between, e.g., (24, 9) and (26, 9),
while there is a noticeable speed difference on various software platforms. We
decided against “aligned” options such as (24, 8) and (16, 8), although it seems
possible that any security difference would be outweighed by further speedups.

4 Security Analysis

4.1 Diffusion

As a first step in understanding the security of reduced-round Gimli, we consider
the following two minimum security requirements:

– the number of rounds required to show the avalanche effect for each bit of
the state.

– the number of rounds required to reach a state full of 1 starting from a state
where only one bit is set. In this experiment we replace bitwise exclusive or
(XOR) and bitwise logical and by a bitwise logical or.

Given the input size of the SP-box, we verify the first criterion with the
Monte-Carlo method. We generate random states and flip each bit once. We
can then count the number of bits flipped after a defined number of rounds.

308 D.J. Bernstein et al.

Experiments show that 10 rounds are required for each bit to change on the
average half of the state (see Table 5 in Appendix F).

As for the second criterion, we replace the T-function in the SP-box by the
following operations:

x′ ← x ∨ (z � 1) ∨ ((y ∨ z) � 2)
y′ ← y ∨ x ∨ ((x ∨ z) � 1)
z′ ← z ∨ y ∨ ((x ∨ y) � 3)

By testing the 384 bit positions, we prove that a maximum of 8 rounds are
required to fill up the state.

4.2 Differential Cryptanalysis

To study Gimli’s resistance against differential cryptanalysis we use the same
method as has been used for NORX [1] and Simon [20] by using a tool-assisted
approach to find the optimal differential trails for a reduced number of rounds.
In order to enable this approach we first need to define the valid transitions of
differences through the Gimli round function.

The non-linear part of the round function shares similarities with the NORX
round function, but we need to take into account the dependencies between the
three lanes to get a correct description of the differential behavior of Gimli. In
order to simplify the description we will look at the following function which
only covers the non-linear part of Gimli:

x′ ← y ∧ z

f(x, y, z) : y′ ← x ∨ z

z′ ← x ∧ y

(1)

where x, y, z ∈ W. For the Gimli SP-box we only have to apply some additional
linear functions which behave deterministically with respect to the propagation
of differences. In the following we denote (Δx,Δy,Δz) as the input difference
and (Δx′ ,Δy′ ,Δz′) as the output difference. The differential probability of a
differential trail T is denoted as DP(T) and we define the weight of a trail as
w = − log2(DP(T)).

Lemma 1 (Differential Probability). For each possible differential through
f it holds that

Δx′ ∧ (Δy ∨ Δz) = 0
Δy′ ∧ (Δx ∨ Δz) = 0
Δz′ ∧ (Δx ∨ Δy) = 0

(Δx ∧ Δy ∧ ¬Δz) ∧ ¬(Δx′ ⊕ Δy′) = 0
(Δx ∧ ¬Δy ∧ Δz) ∧ (Δx′ ⊕ Δz′) = 0

(¬Δx ∧ Δy ∧ Δz) ∧ ¬(Δx′ ⊕ Δy′) = 0
(Δx ∧ Δy ∧ Δz) ∧ ¬(Δx′ ⊕ Δy′ ⊕ Δz′) = 0.

(2)

Gimli: A Cross-Platform Permutation 309

The differential probability of (Δx,Δy,Δz)
f−→ (Δx′ ,Δy′ ,Δz′) is given by

DP((Δx,Δy,Δz)
f−→ (Δx′ ,Δy′ ,Δz′)) = 2−2·hw(Δx∨Δy∨Δz). (3)

A proof for this lemma is given in Appendix G. We can then use these
conditions together with the linear transformations to describe how differences
propagate through the Gimli round functions. For computing the differential
probability over multiple rounds we assume that the rounds are independent.
Using this model we then search for the optimal differential trails with the
SAT/SMT-based approach [1,20].
We are able to find the optimal differential trails up to 8 rounds of Gimli

(see Table 1). After more rounds this approach failed to find any solution in a
reasonable amount of time. The 8-round differential trail is given in Table 6 in
Appendix G.

Table 1. The optimal differential trails for a reduced number of rounds of Gimli.

Rounds 1 2 3 4 5 6 7 8

Weight 0 0 2 6 12 22 36 52

In order to cover more rounds of Gimli we restrict our search to a good
starting difference and expand it in both directions. As the probability of a
differential trail quickly decreases with the Hamming weight of the state it is
likely that any high probability trail will contain some rounds with very low
Hamming weight. In Table 2, we show the results when starting from a single bit
difference in any of the words. Interestingly, the best trails match the optimal
differential trails up to 8 rounds given in Table 1.

Table 2. The optimal differential trails when expanding from a single bit difference in
any of the words.

Rounds 1 2 3 4 5 6 7 8 9

r = 0 0 2 6 14 28 58 102

r = 1 0 0 2 6 12 26 48 88

r = 2 - 0 2 6 12 22 36 66 110

r = 3 - - 8 10 14 32 36 52 74

r = 4 - - - 26 28 32 38 52 74

Using the optimal differential for 7 rounds we can construct a 12-round dif-
ferential trail with probability 2−188 (see Table 7 in Appendix G). If we look at
the corresponding differential, this means we do not care about any intermedi-
ate differences; many trails might contribute to the probability. In the case of

310 D.J. Bernstein et al.

our 12-round trail we find 15800 trails with probability 2−188 and 20933 trails
with probability 2−190 contributing to the differential. Therefore, we estimate
the probability of the differential to be ≈ 2−158.63.

4.3 Algebraic Degree and Integral Attacks

Since the algebraic degree of the round function of Gimli is only 2, it is impor-
tant how the degree increases by iterating the round function. We use the (bit-
based) division property [28,29] to evaluate the algebraic degree, and the propa-
gation search is assisted by mixed integer linear programming (MILP) [32]. See
Appendix H.

We first evaluated the upper bound of the algebraic degree on r-round Gimli,
and the result is summarized as follows.

rounds 1 2 3 4 5 6 7 8 9

2 4 8 16 29 52 95 163 266

When we focus on only one bit in the output of r-round Gimli, the increase
of the degree is slower than the general case. Especially, the algebraic degree of
z0 in each 96-bit value is lower than other bits because z0 in rth round is the
same as x6 in (r−1)th round. All bits except for z0 is mixed by at least two bits
in (r−1)th round. Therefore, we next evaluate the upper bound of the algebraic
degree on four z0 in r-round Gimli, and the result is summarized as follows.

rounds 1 2 3 4 5 6 7 8 9 10 11

1 2 4 8 15 27 48 88 153 254 367

In integral attacks, a part of the input is chosen as active bits and the other
part is chosen as constant bits. Then, we have to evaluate the algebraic degree
involving active bits. From the structure of the round function of Gimli, the
algebraic degree will be small when 96 entire bits in each column are active.
We evaluated two cases: the algebraic degree involving si,0 is evaluated in the
first case, and the algebraic degree involving si,0 and si,1 is evaluated in the
second case. Moreover, all z0 in 4 columns are evaluated, and the following table
summarizes the upper bound of the algebraic degree in the weakest column in
every round.

The above result implies that Gimli has 11-round integral distinguisher when
96 bits in si,0 are active and the others are constant. Moreover, when 192 bits in
si,0 and si,1 are active and the others are constant, Gimli has 13-round integral
distinguisher.

Gimli: A Cross-Platform Permutation 311

rounds 3 4 5 6 7 8 9 10 11 12 13 14

Active 0 0 0 4 8 15 28 58 89 95 96 96 96

Columns 0 and 1 0 0 7 15 30 47 97 153 190 191 191 192

5 Implementations

This section reports the performance of Gimli for several target platforms. See
Tables 3 and 4 for cross-platform overviews of hardware and software perfor-
mance.

5.1 FPGA and ASIC

We designed and evaluated three main architectures to address different hard-
ware applications. These different architectures are a tradeoff between resources,
maximum operational frequency and number of cycles necessary to perform the
full permutation. Even with these differences, all 3 architectures share a common
simple communication interface which can be expanded to offer different opera-
tion modes. All this was done in VHDL and tested in ModelSim for behavioral
results, synthesized and tested for FPGAs with Xilinx ISE 14.7. In case of ASICs
this was done through Synopsis Ultra and Simple Compiler with 180 nm UMC
L180, and Encounter RTL Compiler with ST 28 nm FDSOI technology.

The first architecture, depicted in Fig. 4, performs a certain number of rounds
in one clock cycle and stores the output in the same buffer as the input. The
number of rounds it can perform in one cycle is chosen before the synthesis
process and can be 1, 2, 3, 4, 6, or 8. In case of 12 or 24 combinational rounds,
optimized architectures for these cases were done, in order to have better results.
The rounds themselves are computed as shown in Fig. 5. In every round there is
one SP-box application on the whole state, followed by the linear layer. In the
linear layer, the operation can be a small swap with round constant addition, a
big swap, or no operation, which are chosen according to the two least significant
bits of the round number. The round number starts from 24 and is decremented
by one in each combinational round block.

Fig. 4. Round-based architecture

312 D.J. Bernstein et al.

Fig. 5. Combinational round in round-based architecture

Besides the round and the optimized half and full combinational architec-
tures, the other one is a serial-based architecture illustrated in Fig. 6. The serial-
based architecture performs one SP-box application per cycle, through a circular-
shift-based architecture, therefore taking in total 4 cycles. In case of the linear
layer, it is still executed in one cycle in parallel. The reason of not being done
in a serial based manner, is because the parallel version cost is very low.

Fig. 6. Serial-based architecture

All hardware results are shown in Table 3. In case of FPGAs the lowest
latency is the one with 4 combinational rounds in one cycle, and the one with best
Resources×Time/State is the one with 2 combinational rounds. For ASICs the

Gimli: A Cross-Platform Permutation 313

Table 3. Hardware results for Gimli and competitors. Gates Equivalent(GE). Slice(S).
LUT(L). Flip-Flop(F). * Could not finish the place and route.

Perm. State Version Cycles Resources Period (ns) Time (ns) Res.×Time/

size State

FPGA – Xilinx Spartan 6 LX75

Ascon 320 2 732 S(2700 L+325 F) 34.570 70 158.2

Gimli 384 12 2 1224 S(4398 L+389 F) 27.597 56 175.9

Keccak 400 2 1520 S(5555 L+405 F) 77.281 155 587.3

C-quark* 384 2 2630 S(9718 L+389 F) 98.680 198 1351.7

Photon 288 2 2774 S(9430 L+293 F) 74.587 150 1436.8

Spongent* 384 2 7763 S(19419 L+389 F) 292.160 585 11812.7

Gimli 384 24 1 2395 S(8769 L+385 F) 56.496 57 352.4

Gimli 384 8 3 831 S(2924 L+390 F) 24.531 74 159.3

Gimli 384 6 4 646 S(2398 L+390 F) 18.669 75 125.6

Gimli 384 4 6 415 S(1486 L+391 F) 8.565 52 55.5

Gimli 384 3 8 428 S(1587 L+393 F) 10.908 88 97.3

Gimli 384 2 12 221 S(815 L+392 F) 5.569 67 38.5

Gimli 384 1 24 178 S(587 L+394 F) 4.941 119 55.0

Gimli 384 Serial 108 139 S(492 L+397 F) 3.996 432 156.2

28 nm ASIC – ST 28nm FDSOI technology

Gimli 384 12 2 35452GE 2.2672 5 418.6

Ascon 320 2 32476GE 2.8457 6 577.6

Keccak 400 2 55683GE 5.6117 12 1562.4

C-quark 384 2 111852GE 9.9962 20 5823.4

Photon 288 2 296420GE 10.0000 20 20584.7

Spongent 384 2 1432047GE 12.0684 25 90013.1

Gimli 384 24 1 66205GE 4.2870 5 739.1

Gimli 384 8 3 25224GE 1.5921 5 313.7

Gimli 384 6 4 21675GE 2.1315 9 481.2

Gimli 384 4 6 14999GE 1.0549 7 247.2

Gimli 384 3 8 14808GE 2.0119 17 620.6

Gimli 384 2 12 10398GE 1.0598 13 344.4

Gimli 384 1 24 8097GE 1.0642 26 538.5

Gimli 384 Serial 108 5843GE 1.5352 166 2522.7

180 nm ASIC – UMC L180

Gimli 384 12 2 26685 9.9500 20 1382.9

Ascon 320 2 23381 11.4400 23 1671.7

Keccak 400 2 37102 22.4300 45 4161.0

C-quark 384 2 62190 37.2400 75 12062.1

Photon 288 2 163656 99.5900 200 113183.8

Spongent 384 2 234556 99.9900 200 122151.9

Gimli 384 24 1 53686 17.4500 18 2439.6

Gimli 384 8 3 19393 7.9100 24 1198.4

Gimli 384 6 4 15886 12.5100 51 2070.0

Gimli 384 4 6 11008 10.1700 62 1749.1

Gimli 384 3 8 10106 10.0500 81 2115.8

Gimli 384 2 12 7112 15.2000 183 3377.8

Gimli 384 1 24 5314 9.5200 229 3161.4

Gimli 384 Serial 108 3846 11.2300 1213 12146.0

314 D.J. Bernstein et al.

results change as the lowest latency is the one with full combinational setting, and
the one with best Resources×Time/State is the one with 8 combinational rounds
for 180 nm and 4 combinational rounds for 28 nm. This difference illustrates that
each technology can give different results, making it difficult to compare results
on different technology.

Hardware variants that do 2 or 4 rounds in one cycle appear to be attractive
choices, depending on the application scenario. The serial version needs 4.5 times
more cycles than the 1-round version, while saving around 28% of the gate
equivalents (GE) in the 28 nm ASIC technology, and less in the other ASIC
technology and FPGA. If resource constraints are extreme enough to justify the
serial version then it would be useful to develop a new version optimized for the
target technology, for better results.

To compare the Gimli permutation to other permutations in the literature,
we synthesized all permutations with similar half-combinational architectures,
taking exactly 2 cycles to perform a permutation. The permutations that were
chosen for comparison were selected close to Gimli in terms of size, even though
in the end the final metric was divided by the permutation size to try to “nor-
malize” the results.

The best results in Resources×Time/State are from 24-round Gimli and 12-
round Ascon-128, with Ascon slightly more efficient in the FPGA results and
Gimli more efficient in the ASIC results. Both permutation in all 3 technologies
had very similar results, while Keccak-f [400] is worse in all 3 technologies. The
permutations SPONGENT-256/256/128, Photon-256/32/32 and C-Quark have
a much higher resource utilization in all technologies. This is because they were
designed to work with little resources in exchange for a very high response time
(e.g., SPONGENT is reported to use 2641 GE for 18720 cycles, or 5011 GE for
195 cycles), therefore changing the resource utilization from logic gates to time.
Gimli and Ascon are the most efficient in the sense of offering a similar security
level to SPONGENT, Photon and C-Quark, with much lower product of time
and logic resources.

5.2 SP-box in Assembly

We now turn our attention to software. Subsequent subsections explain how to
optimize Gimli for various illustrative examples of CPUs. As a starting point,
we show in Listing 5.2 how to apply the Gimli SP-box to three 32-bit registers
x, y, z using just two temporary registers u, v.

Rotate
x ← x ≪ 24
y ← y ≪ 9
u ← x
.
.

Compute x
v ← z � 1
x ← y ∧ z
x ← x � 2
x ← x ⊕ v
x ← x ⊕ u

Compute y
v ← y
y ← u ∨ z
y ← y � 1
y ← y ⊕ u
y ← y ⊕ v

Compute z
u ← u ∧ v
u ← u � 3
v ← v ⊕ u
z ← v ⊕ z
.

Listing 5.2: SP-box assembly instructions

Gimli: A Cross-Platform Permutation 315

5.3 8-bit Microcontroller: AVR ATmega

The AVR architecture provides 32 8-bit registers (256 bits). This does not allow
the full 384-bit Gimli state to stay in the registers: we are forced to use loads
and stores in the main loop.

To minimize the overhead for loads and stores, we work on a half-state (two
columns) for as long as possible. For example, we focus on the left half-state for
rounds 21, 20, 19, 18, 17, 16, 15, 14. Before doing this, we focus on the right
half-state through the end of round 18, so that the Big-Swap at the end of round
18 can feed 2 words (64 bits) from the right half-state into the left half-state.
See Appendix C for the exact order of computation.

A half-state requires a total of 24 registers (6 words), leaving us with 8
registers (2 words) to use as temporaries. We can therefore use the same order
of operations as defined in Listing 5.2 for each SP-box. In a stretch of 8 rounds
on a half-state (16 SP-boxes) there are just a few loads and stores.

We provide two implementations of this construction. One is fully unrolled
and optimized for speed: it runs in just 10 264 cycles, using 19 218 bytes of ROM.
The other is optimized for size: it uses just 778 bytes of ROM and runs in 23 670
cycles. Each implementation requires about the same amount of stack, namely
45 bytes.

5.4 32-bit Low-End Embedded Microcontroller: ARM Cortex-M0

ARM Cortex-M0 comes with 14 32-bit registers. However orr, eor, and-like
instructions can only be used on the lower registers (r0 to r7). This forces us to
use the same computation layout as in the AVR implementation. We split the
state into two halves: one in the lower registers, one in the higher ones. Then we
can operate on each during multiple rounds before exchanging them.

5.5 32-bit High-End Embedded Microcontroller: ARM Cortex-M3

We focus here on the ARM Cortex-M3 microprocessor, which implements the
ARMv7-M architecture. There is a higher-end microcontroller, the Cortex-M4,
implementing the ARMv7E-M architecture; but our Gimli software does not
make use of any of the DSP, (optional) floating-point, or additional saturated
instructions added in this architecture.

The Cortex-M3 features 16 32-bit registers r0 to r15, with one register used
as program counter and one as stack pointer, leaving 14 registers for free use. As
the Gimli state fits into 12 registers and we need only 2 registers for temporary
values, we compute the Gimli permutation without requiring any load or store
instructions beyond the initial loads of the input and the final stores of the
output.

One particularly interesting feature of various ARM instruction sets includ-
ing the ARMv7-M instruction set are free shifts and rotates as part of arithmetic
instructions. More specifically, all bit-logical operations allow one of the inputs
to be shifted or rotated by an arbitrary fixed distance for free. This was used,

316 D.J. Bernstein et al.

e.g., in [26, Sec. 3.1] to eliminate all rotation instructions in an unrolled imple-
mentation of BLAKE. For Gimli this feature gives us the non-cyclic shifts by
1, 2, 3 and the rotation by 9 for free. We have not found a way to eliminate
the rotation by 24. Each SP-box evaluation thus uses 10 instructions: namely, 9
bit-logical operations (6 xors, 2 ands, and 1 or) and one rotation.

From these considerations we can derive a lower bound on the amount of
cycles required for the Gimli permutation: Each round performs 4 SP-box eval-
uations (one on each of the columns of the state), each using 10 instructions,
for a total of 40 instructions. In 24 rounds we thus end up with 24 · 40 = 960
instructions from the SP-boxes, plus 6 xors for the addition of round constants.
This gives us a lower bound of 966 cycles for the Gimli permutation, assuming
an unrolled implementation in which all Big-Swap and Small-Swap operations
are handled through (free) renaming of registers. Our implementation for the
M3 uses such a fully unrolled approach and takes 1 047 cycles.

5.6 32-bit Smartphone CPU: ARM Cortex-A8 with NEON

We focus on a Cortex-A8 for comparability with the highly optimized Salsa20
results of [9]. As a future optimization target we suggest a newer Cortex-A7 CPU
core, which according to ARM has appeared in more than a billion chips. Since
our Gimli software uses almost purely vector instructions (unlike [9], which
mixes integer instructions with vector instructions), we expect it to perform
similarly on the Cortex-A7 and the Cortex-A8.

The Gimli state fits naturally into three 128-bit NEON vector registers, one
row per vector. The T-function inside the Gimli SP-box is an obvious match for
the NEON vector instructions: two ANDs, one OR, four shifts, and six XORs.
The rotation by 9 uses three vector instructions. The rotation by 24 uses two
64-bit vector instructions, namely permutations of byte positions (vtbl) using
a precomputed 8-byte permutation. The four SP-boxes in a round use 18 vector
instructions overall.

A straightforward 4-round-unrolled assembly implementation uses just 77
instructions for the main loop: 72 for the SP-boxes, 1 (vrev64.i32) for Small-
Swap, 1 to load the round constant from a precomputed 96-byte table, 1 to xor
the round constant, and 2 for loop control (which would be reduced by further
unrolling). We handle Big-Swap implicitly through the choice of registers in two
vtbl instructions, rather than using an extra vswp instruction. Outside the main
loop we use just 9 instructions, plus 3 instructions to collect timing information
and 20 bytes of alignment, for 480 bytes of code overall.

The lower bound for arithmetic is 65 · 6 = 390 cycles: 16 arithmetic cycles
for each of the 24 rounds, and 6 extra for the round constants. The Cortex-A8
can overlap permutations with arithmetic. With moderate instruction-scheduling
effort we achieved 419 cycles, just 8.73 cycles/byte. For comparison, [9] says that
a “straightforward NEON implementation” of the inner loop of Salsa20 “cannot
do better than 11.25 cycles/byte” (720 cycles for 64 bytes), plus approximately
1 cycle/byte overhead. [9] does better than this only by handling multiple blocks
in parallel: 880 cycles for 192 bytes, plus the same overhead.

Gimli: A Cross-Platform Permutation 317

Table 4. Cross-platform software performance comparison of various permuta-
tions. “Hashing 500 bytes”: AVR cycles for comparability with [5]. “Permutation”:
Cycles/byte for permutation on all platforms. AEAD timings from [8] are scaled to
estimate permutaton timings.

Hashing 500 bytes Cycles ROM Bytes RAM Bytes

AVR ATmega

Spongent [5] 25 464 000 364 101

Keccak-f [400] [5] 1 313 000 608 96

Gimli-Hashb (this paper) small 805 110 778 44

Gimli-Hashb (this paper) fast 362 712 19 218 45

Permutation Cycles/B ROM Bytes RAM Bytes

AVR ATmega

Gimli (this paper) small 413 778 44

ChaCha20 [31] 238 –a 132

Salsa20 [19] 216 1 750 266

Gimli (this paper) fast 213 19 218 45

AES-128 [22] small 171 1 570 –a

AES-128 [22] fast 155 3 098 –a

ARM Cortex-M0

Gimli (this paper) 49 4 730 64

ChaCha20 [23] 40 –a –a

Chaskey [21] 17 414 –a

ARM Cortex-M3/M4

Spongent [12,24] (c-ref, our measurement) 129 486 1 180 –a

Ascon [15] (opt32, our measurement) 196 –a –a

Keccak-f [400] [30] 106 540 –a

AES-128 [25] 34 3 216 72

Gimli (this paper) 21 3 972 44

ChaCha20 [18] 13 2 868 8

Chaskey [21] 7 908 –a

ARM Cortex-A8

Keccak-f [400] (KetjeSR) [8] 37.52 –a –a

Ascon [8] 25.54 –a –a

AES-128 [8] many blocks 19.25 –a –a

Gimli (this paper) single block 8.73 480 –a

ChaCha20 [8] multiple blocks 6.25 –a –a

Salsa20 [8] multiple blocks 5.48 –a –a

Intel Haswell

Gimli (this paper) single block 4.46 252 –a

NORX-32-4-1 [8] single block 2.84 –a –a

Gimli (this paper) two blocks 2.33 724 –a

Gimli (this paper) four blocks 1.77 1227 –a

Salsa20 [8] eight blocks 1.38 –a –a

ChaCha20 [8] eight blocks 1.20 –a –a

AES-128 [8] many blocks 0.85 –a –a

ano data
bSponge construction[10] with c = 256 bits, r = 128 bits and 256 bits of output.

318 D.J. Bernstein et al.

5.7 64-bit Server CPU: Intel Haswell

Intel’s server/desktop/laptop CPUs have had 128-bit vectorized integer instruc-
tions (“SSE2”) starting with the Pentium 4 in 2001, and 256-bit vectorized inte-
ger instructions (“AVX2”) starting with the Haswell in 2013. In each case the
vector registers appeared in CPUs a few years earlier supporting vectorized
floating-point instructions (“SSE” and “AVX”), including full-width bitwise logic
operations, but not including shifts. The vectorized integer instructions include
shifts but not rotations. Intel has experimented with 512-bit vector instructions
in coprocessors such as Knights Corner and Knights Landing, and has announced
a 512-bit instruction set that includes vectorized rotations and three-input log-
ical operations, but we focus here on CPUs that are commonly available from
Intel and AMD today.

Our implementation strategy for these CPUs is similar to our implementa-
tion strategy for NEON: again the state fits naturally into three 128-bit vec-
tor registers, with Gimli instructions easily translating into the CPU’s vector
instructions. The cycle counts on Haswell are better than the cycle counts for the
Cortex-A8 since each Haswell core has multiple vector units. We save another
factor of almost 2 for 2-way-parallel modes, since 2 parallel copies of the state
fit naturally into three 256-bit vector registers. As with the Cortex-A8, we out-
perform Salsa20 and ChaCha20 for short messages.

References

1. Aumasson, J.-P., Jovanovic, P., Neves, S.: Analysis of NORX: investigating dif-
ferential and rotational properties. In: Aranha, D.F., Menezes, A. (eds.) LATIN-
CRYPT 2014. LNCS, vol. 8895, pp. 306–324. Springer, Cham (2015). doi:10.1007/
978-3-319-16295-9 17. 308, 309

2. Aumasson, J.-P., Jovanovic, P., Neves, S.: NORX: parallel and scalable AEAD.
In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 19–36.
Springer, Cham (2014). doi:10.1007/978-3-319-11212-1 2. 304

3. Aumasson, J., Meier, W., Phan, R.C., Henzen, L.: The Hash Function BLAKE.
Information Security and Cryptography. Springer, Heidelberg (2014). 306

4. Aumasson, J.-P., Knellwolf, S., Meier, W.: Heavy Quark for secure AEAD. In:
DIAC 2012: Directions in Authenticated Ciphers (2012). 305

5. Balasch, J., Ege, B., Eisenbarth, T., Gérard, B., Gong, Z., Güneysu, T., Heyse,
S., Kerckhof, S., Koeune, F., Plos, T., Pöppelmann, T., Regazzoni, F., Standaert,
F.-X., Assche, G.V., Keer, R.V., van Oldeneel tot Oldenzeel, L., von Maurich, I.:
Compact implementation and performance evaluation of hash functions in ATtiny
devices. Cryptology ePrint Archive: Report 2012/507 (2012). https://eprint.iacr.
org/2012/507/. 317

6. Bernstein, D.J.: ChaCha, a variant of Salsa20. In: SASC 2008: The State of the
Art of Stream Ciphers (2008). https://cr.yp.to/chacha/chacha-20080128.pdf. 300

7. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-68351-3 8. 300

8. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. https://bench.cr.yp.to. Accessed 25 June 2017. 317

http://dx.doi.org/10.1007/978-3-319-16295-9_17
http://dx.doi.org/10.1007/978-3-319-16295-9_17
http://dx.doi.org/10.1007/978-3-319-11212-1_2
https://eprint.iacr.org/2012/507/
https://eprint.iacr.org/2012/507/
https://cr.yp.to/chacha/chacha-20080128.pdf
http://dx.doi.org/10.1007/978-3-540-68351-3_8
https://bench.cr.yp.to

Gimli: A Cross-Platform Permutation 319

9. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33027-8 19. 300, 316

10. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge func-
tions (2011). http://sponge.noekeon.org/CSF-0.1.pdf. 317

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38348-9 19. 300

12. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede,
I.: SPONGENT: the design space of lightweight cryptographic hashing (2011).
https://eprint.iacr.org/2011/697. 305, 317

13. Bursztein, E.: Speeding up and strengthening HTTPS connections for
Chrome on Android (2014). https://security.googleblog.com/2014/04/
speeding-up-and-strengthening-https.html. 300

14. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 18. 306

15. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submis-
sion to the CAESAR competition (2016). https://competitions.cr.yp.to/round3/
asconv12.pdf. 302, 317

16. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, Even-Mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420–438. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 22. 305

17. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 13. 305

18. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS. In: Cheng, C.-M.,
Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp.
446–470. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49384-7 17. 317

19. Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156–172. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38553-7 9. 317

20. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher fam-
ily. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
161–185. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6 8. 308, 309

21. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit microcontrollers.
In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 306–323. Springer,
Cham (2014). doi:10.1007/978-3-319-13051-4 19. 300, 317

22. Poettering, B.: AVRAES: the AES block cipher on AVR controllers (2003). http://
point-at-infinity.org/avraes/. 317

23. Samwel, N., Neikes, M.: arm-chacha20 (2016). https://gitlab.science.ru.nl/
mneikes/arm-chacha20/tree/master. 317

24. Schneider, E., de Groot, W.: spongent-avr (2015). https://github.com/weedegee/
spongent-avr. 317

25. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Selected
Areas in Cryptology - SAC 2016. LNCS. Springer. To appear. 317

http://dx.doi.org/10.1007/978-3-642-33027-8_19
http://dx.doi.org/10.1007/978-3-642-33027-8_19
http://sponge.noekeon.org/CSF-0.1.pdf
http://dx.doi.org/10.1007/978-3-642-38348-9_19
https://eprint.iacr.org/2011/697
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
http://dx.doi.org/10.1007/978-3-662-53887-6_18
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-662-45611-8_22
http://dx.doi.org/10.1007/978-3-642-22792-9_13
http://dx.doi.org/10.1007/978-3-662-49384-7_17
http://dx.doi.org/10.1007/978-3-642-38553-7_9
http://dx.doi.org/10.1007/978-3-662-47989-6_8
http://dx.doi.org/10.1007/978-3-319-13051-4_19
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://gitlab.science.ru.nl/mneikes/arm-chacha20/tree/master
https://github.com/weedegee/spongent-avr
https://github.com/weedegee/spongent-avr

320 D.J. Bernstein et al.

26. Schwabe, P., Yang, B.-Y., Yang, S.-Y.: SHA-3 on ARM11 processors. In:
Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012. LNCS, vol. 7374, pp.
324–341. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31410-0 20. 316

27. Sullivan, N.: Do the ChaCha: better mobile performance with cryptography (2015).
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryp
tography/. 300

28. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12. 310

29. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18. 310

30. Van Assche, G., Van Keer, R.: Structuring and optimizing Keccak software (2016).
317

31. Weatherley, R.: Arduinolibs (2016). https://rweather.github.io/arduinolibs/
crypto.html. 317

32. Xiang, Z., Zhang, W., Bao, Z., Lin, D.: Applying MILP method to searching inte-
gral distinguishers based on division property for 6 lightweight block ciphers. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 648–678.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-53887-6 24. 310

A Appendices

The full version of the paper is online at https://gimli.cr.yp.to. See the full
version for appendices.

http://dx.doi.org/10.1007/978-3-642-31410-0_20
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
http://dx.doi.org/10.1007/978-3-662-46800-5_12
http://dx.doi.org/10.1007/978-3-662-52993-5_18
https://rweather.github.io/arduinolibs/crypto.html
https://rweather.github.io/arduinolibs/crypto.html
http://dx.doi.org/10.1007/978-3-662-53887-6_24
https://gimli.cr.yp.to

GIFT: A Small Present

Towards Reaching the Limit of Lightweight Encryption

Subhadeep Banik1,5(B), Sumit Kumar Pandey2, Thomas Peyrin1,2,3,
Yu Sasaki3, Siang Meng Sim2, and Yosuke Todo4

1 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{bsubhadeep,thomas.peyrin}@ntu.edu.sg

2 School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, Singapore

emailpandey@gmail.com, SSIM011@e.ntu.edu.sg
3 School of Computer Science and Engineering, Nanyang Technological University,

Singapore, Singapore
Sasaki.Yu@lab.ntt.co.jp

4 NTT Secure Platform Laboratories, Tokyo, Japan
Todo.Yosuke@lab.ntt.co.jp

5 LASEC, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract. In this article, we revisit the design strategy of PRESENT,
leveraging all the advances provided by the research community in con-
struction and cryptanalysis since its publication, to push the design up to
its limits. We obtain an improved version, named GIFT, that provides a
much increased efficiency in all domains (smaller and faster), while cor-
recting the well-known weakness of PRESENT with regards to linear hulls.

GIFT is a very simple and clean design that outperforms even SIMON

or SKINNY for round-based implementations, making it one of the most
energy efficient ciphers as of today. It reaches a point where almost
the entire implementation area is taken by the storage and the Sboxes,
where any cheaper choice of Sbox would lead to a very weak proposal.
In essence, GIFT is composed of only Sbox and bit-wiring, but its natural
bitslice data flow ensures excellent performances in all scenarios, from
area-optimised hardware implementations to very fast software imple-
mentation on high-end platforms.

We conducted a thorough analysis of our design with regards to state-
of-the-art cryptanalysis, and we provide strong bounds with regards to
differential/linear attacks.

Keywords: Lightweight cryptography · Block cipher · PRESENT · GIFT

1 Introduction

In the past decade, the development of ubiquitous computing applications trig-
gered the rapid expansion of the lightweight cryptography research field. All
these applications operating in very constrained devices may require certain
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 321–345, 2017.
DOI: 10.1007/978-3-319-66787-4 16

322 S. Banik et al.

symmetric-key cryptography components to guarantee privacy and/or authen-
tication for the users, such as block or stream ciphers, hash functions or
MACs. Existing cryptography standards such as AES [18] or SHA-2 [33] are
not always suitable for these strong constraints. There have been extensive
research conducted in this direction, with countless new primitives being intro-
duced [2,4,5,12,15,22,39], many of them getting broken rather rapidly (design-
ing a cipher with strong constraints is not an easy task). Conforming to gen-
eral trend, the American National Institute for Science and Technology (NIST)
recently announced that it will consider standardizing some lightweight func-
tions in a few years [34]. Some lightweight algorithms such as PRESENT [12],
PHOTON [21] and SPONGENT [11] have already been included into ISO standards
(ISO/IEC 29192-2:2012 and ISO/IEC 29192-5:2016).

Comparing different lightweight primitives is a very complex task. First, light-
weight encryption encompasses a broad range of use cases, from passive RFID
tags (that require a very low power consumption to operate) to battery powered
devices (that require a very low energy consumption to maximise its life span)
or low-latency applications (for disk encryption). While it is generally admit-
ted that a major criterion for lightweight encryption is area minimisation, the
throughput/area ratio is also very important because it shows the ability of the
algorithm to provide good implementation trade-offs (this ratio is also correlated
to the power or energy consumption of the algorithm). Moreover, the range of
the various platforms to consider is very broad, starting from tiny RFID tags
to rather powerful ARM processors. Even high-end servers have to be taken
into account as it is likely that these very small and constrained devices will be
communicating with back-end servers [6].

While most ciphers take lightweight hardware implementations into account
to some extend, PRESENT [12] is probably one of the first candidates that was
exclusively designed for that purpose. Its design is inspired by SERPENT [7] and
is very simple: the round function is simply composed of a layer of small 4-bit
Sboxes, followed by a bit permutation layer (essentially free in hardware) and a
subkey addition. PRESENT has been extensively analysed in the past decade, and
while its security margin has eroded, it remains a secure cipher. One can note
that the weak point of PRESENT is the tendency of linear trails to cluster and to
create powerful linear hulls [10,17].

Since the publication of PRESENT, many advances have been obtained, both
in terms of security analysis and primitive design. The NSA proposed in 2013
two ciphers [4], SIMON and SPECK, that can reach much better efficiency in both
hardware and software when compared to all other ciphers. However, this comes
at the cost that proving simple linear/differential bounds for SIMON is much
more complicated than for Substitution-Permutation-Network (SPN) ciphers like
PRESENT (SIMON is based on a Feistel construction, with an internal function
that uses only a AND, some XORs and some rotations). Besides, no preliminary
analysis or rationale was provided by the SIMON authors. Last year, the tweakable
block cipher SKINNY [5] was published to compete with SIMON’s efficiency for
round-based implementations, while providing strong linear/differential bounds.

GIFT: A Small Present Towards Reaching the Limit 323

As of today, SIMON and SKINNY seem to have a clear advantage in terms
of efficiency when compared to other designs. Yet, PRESENT remains an elegant
design, that suffers from being one of the first lightweight encryption algorithm to
have been published, and thus not benefiting from the many advances obtained
by the research community in the recent years.

Our Contributions. In this article, we revisit the PRESENT construction, 10
years after the original publication of PRESENT. This led to the creation of GIFT,
a new lightweight block cipher, improving over PRESENT in both security and
efficiency. Interestingly, our cipher GIFT offers extremely good performances and
even surpasses both SKINNY and SIMON for round-based implementations (see
Table 1). This indicates that GIFT is probably the cipher the most suited for
the very important low-energy consumption use cases. Due to its simplicity and
natural bitslice organisation of the inner data flow, our cipher is very versatile
and performs also very well on software, reaching similar performances as SIMON,
the current fastest lightweight candidate on software.

Table 1. Hardware performances of round-based implementations of PRESENT, SKINNY,
SIMON and our new cipher GIFT, synthesized with STM 90 nm Standard cell library.

Area Delay Cycles TPMAX Power (µW) Energy

(GE) (ns) (MBit/s) (@10 MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9

SKINNY-64–128 1477 1.84 37 966.2 80.3 297.0

PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6

SIMON 64/128 1458 1.83 45 794.8 72.7 327.3

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1

SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3

SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6

In more details, we have revisited the PRESENT design strategy and pushed it
to its limits, while providing special care to the known weak point of PRESENT:
the linear hulls. The diffusion layer of PRESENT being composed of only a bit per-
mutation, most of the security of PRESENT relies on its Sbox. This Sbox presents
excellent cryptographic properties, but is quite costly. Indeed, it is trivial to see
that the PRESENT Sbox needs to have a branching number of 3, or very good dif-
ferential paths would exist otherwise (with only a single active Sbox per round).
We managed to remove this constraint by carefully crafting the bit permutation
in conjunction with the Difference Distribution Table (DDT)/Linear Approxi-
mation Table (LAT) of the Sbox. We remark that, to the best of the authors
knowledge, this is the first time that the linear layer and the Sbox are fully
intricate in a SPN cipher.

324 S. Banik et al.

In terms of performances, removing this Sbox constraint allowed us to choose
a much cheaper Sbox, which is actually what composes most of the overall area
cost in PRESENT. GIFT is not only much smaller, but also much faster than
PRESENT. As can be seen in Table 2, GIFT is by far the cipher that uses the least
total number of operation per bit up to now. In terms of security, we are able
to provide strong security bounds for simple differential and linear attacks. We
can even show that GIFT is very resistant against linear hulls, and the clustering
effect is greatly reduced when compared to PRESENT, thus correcting its main
weak point. We have conducted a thorough security analysis of our candidate
with state-of-the-art cryptanalysis techniques.

Table 2. Total number of operations and theoretical performance of GIFT and various
lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a
XOR gate.

Cipher nb. of
rds

gate cost (per bit per round) nb. of op. nb. of op. round-based

int. cipher key sch. total w/o key sch. w/key sch. impl. area

GIFT-64-128 28 1 N 1 N 3 × 28 = 84 3 × 28 = 84 1 + 2.67 × 2 = 6.34

2 X 2 X

SKINNY-64-128 36 1 N 1 N 3.25 × 36 = 117 3.875 × 36 = 139.5 1 + 2.67 × 2.875

2.25 X 0.625 X 2.875 X

SIMON-64/128 44 0.5 A 0.5 A 2 × 44 = 88 3.5 × 44 = 154 0.67 + 2.67 × 3 = 8.68

1.5 X 1.5 X 3.0 X

PRESENT-128 31 1 A 0.125 A 1.125 A 4.75 × 31 = 147.2 5.22 × 31 = 161.8 1.5 + 2.67 × 4.094

3.75 X 0.344 X 4.094 X

GIFT-128-128 40 1 N 1 N 3.0 × 40 = 120 3.0 × 40 = 120 1 + 2.67 × 2 = 6.34

2 X 2 X

SKINNY-128-128 40 1 N 1 N 3.25 × 40 = 130 3.25 × 40 = 130 1 + 2.67 × 2.25 = 7.01

2.25 X 2.25 X

SIMON-128/128 68 0.5 A 0.5 A 2 × 68 = 136 3 × 68 = 204 0.67 + 2.67 × 2.5 = 7.34

1.5 X 1 X 2.5 X

AES-128 10 4.25 A 1.06 A 5.31 A 20.25 × 10 = 202.5 24.81 × 10 = 248.1 7.06 + 2.67 × 19.5

16 X 3.5 X 19.5 X

We end up with a very natural and clean cipher, with a simple round function
and key schedule (composed of only a bit permutation, thus essentially free in
hardware). The cipher can be seen in three different representations (classical 1D,
bitslice 2D, and 3D), each offering simple yet different perspective on the cipher’s
security and opportunities for implementation improvements. GIFT comes in two
versions, both with a 128-bit key: one 64-bit block version GIFT-64 and one 128-
bit block version GIFT-128. The only difference between these two versions is
the bit permutation to accommodate twice more state bits for GIFT-128.

In our hardware implementations of GIFT the storage composes about 75%
of the total area, and the (very cheap) Sbox about 20%. Since any weaker choice
of the Sbox would lead to a very insecure design, we argue that GIFT is probably
very close to reaching the area limit of lightweight encryption.

GIFT: A Small Present Towards Reaching the Limit 325

Outline. We first specify GIFT in Sect. 2, and we provide the design rationale
in Sect. 3. A thorough security analysis is performed in Sect. 4, while perfor-
mances and implementation strategies are given in Sects. 5 and 6 for hardware
and software respectively. All details are provided in the full version of the paper.

2 Specifications

In this work, we propose two versions of GIFT, GIFT-64-128 is a 28-round SPN
cipher and GIFT-128-128 is a 40-round SPN cipher, both versions have a key
length of 128-bit. For short, we call them GIFT-64 and GIFT-128 respectively.

GIFT can be perceived in three different representations. In this paper, we
adopt the classical 1D representation, describing the bits in a row like PRESENT.
It can also be described in bitslice 2D, a rectangular array like RECTANGLE [44],
and even in 3D cuboid like 3D [32]. These alternative representations are detailed
in the full version.

Round Function. Each round of GIFT consists of 3 steps: SubCells, PermBits,
and AddRoundKey, which is conceptually similar to wrapping a gift:

1. Put the content into a box (SubCells);
2. Wrap the ribbon around the box (PermBits);
3. Tie a knot to secure the content (AddRoundKey).

Figure 1 illustrates 2 rounds of GIFT-64.

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

GS

RKi

RKi+1

Fig. 1. 2 Rounds of GIFT-64.

326 S. Banik et al.

Table 3. Specifications of GIFT Sbox GS.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

GS(x) 1 a 4 c 6 f 3 9 2 d b 7 5 0 8 e

Initialization. The cipher receives an n-bit plaintext bn−1bn−2...b0 as the cipher
state S, where n = 64, 128 and b0 being the least significant bit. The cipher
state can also be expressed as s many 4-bit nibbles S = ws−1||ws−2||...||w0,
where s = 16, 32. The cipher also receives a 128-bit key K = k7||k6||...||k0 as
the key state, where ki is a 16-bit word.

SubCells. Both versions of GIFT use the same invertible 4-bit Sbox, GS. The
Sbox is applied to every nibble of the cipher state. wi ← GS(wi), ∀i ∈
{0, ..., s − 1}. The action of this Sbox in hexadecimal notation is given in
Table 3.

PermBits. The bit permutation used in GIFT-64 and GIFT-128 are given in
Tables 4 and 5 respectively. It maps bits from bit position i of the cipher
state to bit position P (i). bP (i) ← bi, ∀i ∈ {0, ..., n − 1}.

AddRoundKey. This step consists of adding the round key and round con-
stants. An n/2-bit round key RK is extracted from the key state, it is fur-
ther partitioned into 2 s-bit words RK = U ||V = us−1...u0||vs−1...v0, where
s = 16, 32 for GIFT-64 and GIFT-128 respectively.
For GIFT-64, U and V are XORed to {b4i+1} and {b4i} of the cipher state
respectively. b4i+1 ← b4i+1 ⊕ ui, b4i ← b4i ⊕ vi, ∀i ∈ {0, ..., 15}.
For GIFT-128, U and V are XORed to {b4i+2} and {b4i+1} of the cipher state
respectively. b4i+2 ← b4i+2 ⊕ ui, b4i+1 ← b4i+1 ⊕ vi, ∀i ∈ {0, ..., 31}.
For both versions of GIFT, a single bit “1” and a 6-bit round constant
C = c5c4c3c2c1c0 are XORed into the cipher state at bit position n − 1,
23, 19, 15, 11, 7 and 3 respectively. bn−1 ← bn−1 ⊕ 1, b23 ← b23 ⊕ c5, b19 ←
b19 ⊕ c4, b15 ← b15 ⊕ c3, b11 ← b11 ⊕ c2, b7 ← b7 ⊕ c1, b3 ← b3 ⊕ c0.

Table 4. Specifications of GIFT-64 Bit Permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P64(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P64(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P64(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P64(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

GIFT: A Small Present Towards Reaching the Limit 327

Table 5. Specifications of GIFT-128 Bit Permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P128(i) 0 33 66 99 96 1 34 67 64 97 2 35 32 65 98 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P128(i) 4 37 70 103 100 5 38 71 68 101 6 39 36 69 102 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P128(i) 8 41 74 107 104 9 42 75 72 105 10 43 40 73 106 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P128(i) 12 45 78 111 108 13 46 79 76 109 14 47 44 77 110 15

i 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

P128(i) 16 49 82 115 112 17 50 83 80 113 18 51 48 81 114 19

i 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

P128(i) 20 53 86 119 116 21 54 87 84 117 22 55 52 85 118 23

i 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

P128(i) 24 57 90 123 120 25 58 91 88 121 26 59 56 89 122 27

i 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

P128(i) 28 61 94 127 124 29 62 95 92 125 30 63 60 93 126 31

Key Schedule and Round Constants. The key schedule and round constants
are the same for both versions of GIFT, the only difference is the round key
extraction. A round key is first extracted from the key state before the key state
update.

For GIFT-64, two 16-bit words of the key state are extracted as the round
key RK = U ||V . U ← k1, V ← k0.

For GIFT-128, four 16-bit words of the key state are extracted as the round
key RK = U ||V . U ← k5||k4, V ← k1||k0.

The key state is then updated as follows, k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫
12||...||k3||k2, where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the same 6-bit affine LFSR as
SKINNY, whose state is denoted as (c5, c4, c3, c2, c1, c0). Its update function is
defined as: (c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1). The six bits are
initialized to zero, and updated before being used in a given round. The values
of the constants for each round are given in the table below, encoded to byte
values for each round, with c0 being the least significant bit.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

328 S. Banik et al.

Remark: GIFT aims at single-key security, so we do not claim any related-key
security (even though no attack is known in this model as of today). In case
one wants to protect against related-key attacks as well, we advice to double the
number of rounds.

3 Design Rationale

First, let us propose a subclassification for SPN ciphers.

Definition 1. Substitution-bitPermutation network (SbPN) is a subclassifica-
tion of Substitution-Permutation network, where the permutation layer (p-layer)
only comprises of bit permutation. An m/n-SbPN cipher is an n-bit cipher in
which substitution layer (s-layer) comprises of m-bit (Super-)Sboxes.

For SPN ciphers like AES and SKINNY, we can shift the XOR components
from the p-layer to the s-layer to form Super-Sboxes, leaving the p-layer with
only bit permutation. For example, PRESENT is a 4/64-SbPN cipher, SKINNY-64
is a 16/64-SbPN cipher, and SKINNY-128 and AES are 32/128-SbPN ciphers.

Having that said, GIFT-64 is a 4/64-SbPN cipher while GIFT-128 is (probably
the first of its kind) a 4/128-SbPN cipher.

3.1 The Designing of GIFT

Before we discuss the design rationale of GIFT, we would like to share some
background story about GIFT, its design approach, and its comparison with
another PRESENT-like ciphers.

The Origin of GIFT. It all started with a casual remark “What if the Sboxes
in PRESENT are replaced with some smaller Sboxes, say the PICCOLO Sbox? It
will be extremely lightweight since the core cipher only has some Sboxes and
nothing else...”. We quickly tested it but only to realise that the differential
bounds became very low because the Sbox does not have differential branching
number of 3. That is when we started analyzing the differential characteristics
and studying the interaction between the linear layer and the Sbox. Surprisingly,
we found that by carefully crafting the linear layer based on the properties of the
Sbox, we were able to achieve the same differential bound as PRESENT without
the constraint of differential branching number of 3. In addition, this result can
also be applied to the improve linear cryptanalysis resistance which was lacking
in PRESENT. Eventually, a small present—GIFT was created.

Design Approach. It is natural to ask how GIFT is different from the other
lightweight primitives, especially the recent SKINNY family of block ciphers that
was proposed at CRYPTO2016. One of the main difference is the design app-
roach. SKINNY was designed with a high-security-reduce-area approach, that is to
have a strong security property, then try to remove/reduce various components
as much as possible. While GIFT adopts a small-area-increase-security approach,
starting from a small area goal, we try to improve its security as much as possible.

GIFT: A Small Present Towards Reaching the Limit 329

Other PRESENT-like Ciphers. Besides PRESENT, one may also compare
GIFT-64 with RECTANGLE since both are 4/64-SbPN ciphers and an improve-
ment on the design of PRESENT. RECTANGLE was designed to be software friendly
and to achieve a better resistance against the linear cryptanalysis as compared
to PRESENT. However, although its bit permutation (ShiftRow) was designed to
be software friendly, little analysis was done on the how differential and linear
characteristics propagate through the cipher. Whereas for GIFT, we study the
interplay of the Sbox and the bit permutation to achieve better differential and
linear bounds. In addition, the ShiftRow of RECTANGLE achieves full diffusion
in 4 rounds at best. Whereas GIFT-64 achieves full diffusion in 3 rounds like
PRESENT, which can be proven to be the optimal for 4/64-SbPN ciphers.

3.2 Designing of GIFT Bit Permutation

To better understand the design rationale of the linear layer, we first look at the
permutation layer of PRESENT to analyze the issue when the Sbox is replaced
with another Sbox that does not have branching number of 3. Next, we show
how we can solve this issue by carefully designing the bit permutation.

Linear Layer of PRESENT. The bit permutation of PRESENT is given in Table 6.

Table 6. Bit permutation of PRESENT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

It is known that the bit permutation can be partitioned into 4 independent
bit permutations, mapping the output of 4 Sboxes to the input of 4 Sboxes in
the next round.

For convenience, we number the Sboxes in ith round as Sbi
0, Sbi

1, ..., Sbi
s−1,

where s = n/4. These Sboxes can be grouped in 2 different ways - the Quotient
and Remainder groups, Qx and Rx, defined as

• Qx = {Sb4x, Sb4x+1, Sb4x+2, Sb4x+3},
• Rx = {Sbx, Sbq+x, Sb2q+x, Sb3q+x}, where q = s

4 , 0 ≤ x ≤ q − 1.

330 S. Banik et al.

In PRESENT, n = 64 and output bits of Qxi = {Sbi
4x, Sbi

4x+1, Sbi
4x+2, Sbi

4x+3}
map to input bits of Rxi+1 = {Sbi+1

x , Sbi+1
4+x, Sbi+1

8+x, Sbi+1
12+x}, this group mapping

is defined in Table 7, where the entry (l,m) at row rw and column cl denotes
that the lth output bit of the Sbox corresponding to the row rw at ith round will
map to the mth input bit of the Sbox corresponding to the column cl at (i+1)th

round. For example, suppose x = 2, row and column start at 0, then the entry
(3, 2) at row 2 and column 3 means that the 3rd output bit of Sbi

10 maps to 2nd

input bit of Sbi+1
14 , thus P (43) = 58 (see Table 6).

Table 7. PRESENT group mapping from Qxi to Rxi+1.

PRESENT bit permutation can be realised in hardware with wires only (no
logic gates required). Further, full diffusion is achieved in 3 rounds; from 1 bit
to 4, then 4 to 16 and then 16 to 64. But, if there exists Hamming weight 1 to
Hamming weight 1 differential transition, or 1−1 bit differential transition, then
there exists consecutive single active bit transitions.

We define 1 − 1 bit DDT as a sub-table of the DDT containing Hamming
weight 1 differences. Consider some Sbox with the following 1 − 1 bit DDT (see
Table 8). Δx and Δy denote the differential in the input and output of Sbox
respectively. It is evident that this Sbox has differential branch number 2.

It is trivial to see that there exists a single active bit path which results in a
differential characteristic with single active Sboxes in each round. Let the input
differences be at 3rd bit of Sb

(i)
15 . According to 1 − 1 bit DDT (Table 8), there

exists a transition from 1000 to 1000. From the group mapping (Table 7), 3rd

output bit of Sb
(i)
15 maps to 3rd input bit of Sb

(i+1)
15 . And then the differential

continues from 3rd output bit of Sb
(i+1)
15 to 3rd input bit of Sb

(i+2)
15 and so on. Not

only that, if there exists any 1 − 1 bit transition (not necessarily 1000 → 1000),
one can verify that there always exists some differential characteristic with single
active Sbox per round for at least 4 consecutive rounds.

To overcome this problem, we propose a new construction paradigm, “Bad
Output must go to Good Input” or BOGI in short. We explain this in the context
of the differential of an Sbox, but the analysis is same for linear case also.

Bad Output Must Go to Good Input (BOGI). The existence of the single
active bit path is because the bit permutation allows 1 − 1 bit transition from
some Sbox in ith round to propagate to some Sbox in (i + 1)th round that

GIFT: A Small Present Towards Reaching the Limit 331

Table 8. 1 − 1 bit DDT Example 1 Table 9. 1 − 1 bit DDT Example 2

again would produce 1 − 1 bit transition. To overcome such problem, it must be
ensured that such path does not exist. In 1 − 1 bit DDT, let us define Δx =
x3x2x1x0 be a good input if the corresponding row has all zero entries, else a bad
input. Similarly, we define Δy = y3y2y1y0 be a good output if the corresponding
column has all zero entries, else a bad output. In Table 8, 1000 is both bad input
and bad output, rest are good.

Consider another 1 − 1 bit DDT in Table 9. Let GI,GO,BI,BO denote
the set of good inputs, good outputs, bad inputs and bad outputs respectively.
Then, in Table 9, GI = {0100, 0010}, GO = {1000, 0001}, BI = {1000, 0001}
and BO = {0100, 0010}. Or, if we represent these binary strings by integers
considering the position of the “1” (rightmost position is 0) in these strings, we
may rewrite GI = {2, 1}, GO = {3, 0}, BI = {3, 0} and BO = {2, 1}.

An output belonging to BO (bad ouput) could potentially come from a single
bit transition through some Sbox in this round. Thus we want to map this active
output bit to some GI (good input) in the next round, which guaranteed that
it will not propagate to another 1 − 1 bit transition. As a result, it avoids single
active bit path in 2 consecutive rounds.

BOGI: Let |BO| ≤ |GI| and π1 : BO → GI be an injective map. To ensure
that π1 is an injective map, it is required that |BO| ≤ |GI| (the cardinality of
the set BO must be less than or equal to the cardinality of the set GI). Let
π2 : GO → π1(BO)C (the complement of π1(BO)) be another injective map.
The map π1 ensures that “Bad Output must go to Good Input”. A combined
map π : BO ∪ GO → BI ∪ GI is defined as π(e) = π1(e) if and only if e ∈ BO,
otherwise π(e) = π2(e). For example, consider the Table 9. The injective maps
π1 : {2, 1} → {2, 1} and π2 : {3, 0} → {3, 0} both have 2 choices which altogether
make 4 choices for the combined map π. An example BOGI mapping would be
π(0) = 0, π(1) = 1, π(2) = 2, π(3) = 3, which happens to be an identity mapping.

Any choice of π may be used to define the bit permutation. We call these πs
differential BOGI permutations as derived from 1 − 1 bit DDT.

Remark: Similar analysis is done for linear case also. Analogous to 1 − 1 bit
DDT, analysis is done on the basis of 1 − 1 bit LAT and BOGI permutations
are found for linear case too. We call them linear BOGI permutations. We can
now choose any common permutation from the set of both differential and linear
BOGI permutations.

332 S. Banik et al.

BOGI Bit Permutation for GIFT. Let π : {0, 1, 2, 3} → {0, 1, 2, 3} be a com-
mon permutation from the set of both differential and linear BOGI permutations.
Table 10 shows the group mapping.

Table 10. BOGI Bit Permutation mapping from Qxi to Rxi+1.

Note that we made some left rotations to the rows of the bit mapping, this
is because we need the inputs to each Sbox in (i+1)th round to be coming from
4 different bit positions.

In GIFT, we chose an Sbox that has a common BOGI permutation that is an
identity mapping, that is π(i) = i. Figure 2 illustrates the group mapping from
Q0 to R0 in GIFT-64. The same BOGI permutation is applied to all the q group
mappings to form the final n-bit permutation for both version of GIFT.

0

0

1

1

2

2

3

3

4

16

5

17

6

18

7

19

8

32

9

33

10

34

11

35

12

48

13

49

14

50

15

51

GSi
3

GSi+1
12

GSi
2

GSi+1
8

GSi
1

GSi+1
4

GSi
0

GSi+1
0

Fig. 2. Group mapping from Q0 to R0 in GIFT-64.

Some Results About Our Bit Permutation. To be concise, we leave the
proofs for our results in the full version. Let Q0, Q1, · · · , Q(q − 1) be q different
Quotient groups and R0, R1, · · · , R(q−1) be q different Remainder groups. Then,
for 0 ≤ x ≤ q − 1,

1. The input bits of an Sbox in Rx come from 4 distinct Sboxes in Qx.
2. The output bits of an Sbox in Qx go to 4 distinct Sboxes in Rx.
3. The input bits of 4 Sboxes from the same Qx come from 16 different Sboxes.
4. The output bits of 4 Sboxes from the same Rx go to 16 different Sboxes.

GIFT: A Small Present Towards Reaching the Limit 333

Lemma 1. When the number of Sboxes in a round is 16 or 32, the proposed
bit permutation achieves an optimal full diffusion which is achievable by a bit
permutation.

Lemma 2. In the proposed bit permutation, there does not exist any single
active bit transition for two consecutive rounds in both differential and linear
characteristics.

Definition 2. The differential (resp. linear) score of an Sbox is |GI|+|GO|
observed from 1 − 1 bit DDT (resp. LAT).

Lemma 3. There exists differential (resp. linear) BOGI permutation for an
Sbox if and only if the differential (resp. linear) score of an Sbox is at least 4.

It is essential that our Sbox has at least score 4 for both differential and linear,
and has some common BOGI permutation. These are 2 of the main criteria for
the selection of GIFT Sbox.

Remark: BOGI permutation is a group mapping that is independent of the
number of groups. Thus, this permutation design is scalable to any bit permuta-
tion size that is multiple of 16. This allows us to potentially design larger state
size like 256-bit that is useful for designing hash functions.

3.3 Selection of GIFT Sbox

We first recall some Sbox properties and introduce a metric to estimate the
hardware implementation cost of Sboxes.

Properties of Sbox. For the differential property, let S : F4
2 → F

4
2 denote a

4-bit Sbox. Let ΔI ,ΔO ∈ F
4
2 be the input and output differences, DS(ΔI ,ΔO) =

�{x ∈ F
4
2|S(x) ⊕ S(x ⊕ ΔI) = ΔO}, and Dmax(S) = maxΔI ,ΔO �=0 DS(ΔI ,ΔO).

For the linear property, let α, β ∈ F
4
2 be the input and output masking,

LS(α, β) = |�{x ∈ F
4
2|x • α = S(x) • β} − 8|, and Lmax(S) = maxα,β �=0 LS(α, β).

Definition 3 ([36]). Let Mi and Mo be two invertible matrices and ci, co ∈ F
4
2.

The Sbox S′ defined by S′(x) = MoS(Mi(x ⊕ ci)) ⊕ co belongs to the affine
equivalence (AE) set of S.

It is known that both Dmax and Lmax are preserved under the AE class.

Definition 4 ([36]). Let Pi and Po be two bit permutation matrices and ci, co ∈
F
4
2. The Sbox S′ defined by S′(x) = PoS(Pi(x ⊕ ci)) ⊕ co belongs to the

permutation-xor equivalence (PE) set of S.

One is to note that the 1−1 bit differential and linear transition is preserved
only under the PE class. That is to say that the score of an Sbox is preserved
under the PE class but not the AE class.

334 S. Banik et al.

Heuristic Sbox Implementation. We use a simplified metric to estimate the
implementation cost of Sboxes. We denote {NOT, NAND, NOR} as N-operations1 and
{XOR, XNOR} as X-operations, and estimate the cost of an N-operation to be 1 unit
and X-operations to be 2 units. We consider the following 4 types of instruction
for the construction of the Sboxes: a ← NOT(a); a ← a X b; a ← a X (b N c); a ←
a X ((b N c) N d), where a, b, c, d are distinct bits of an Sbox input. These so-called
invertible instructions [23] allow us to implement the inverse Sbox by simply
reversing the sequence of the instructions. In addition, the implementation cost
of the inverse Sbox would be the same as the direct Sbox since the same set of
instructions is used.

Under this metric, we found that PRESENT Sbox requires 4N+ 9X operations,
a cost of 22 units. While RECTANGLE Sbox requires 4N + 7X operations, a cost of
18 units. Hence, one of the criteria for our Sbox is to have implementation cost
lesser than 18 units2.

Search for GIFT Sbox. Our primary design criteria for the GIFT Sbox are:

1. Implementation cost of at most 17 units.
2. With a score of at least 4 in both differential and linear. I.e. For both differ-

ential and linear, |GO| + |GI| ≥ 4.
3. There exists a common BOGI permutation for both differential and linear.

From the list of 302 AE Sboxes presented in [14], we generate the PE Sboxes
and check its implementation cost. Our heuristic search shows that there is no
optimal Sboxes [30] (Dmax = 4 and Lmax = 4) that satisfies all 3 criteria, hence
we extended our search to non-optimal Sboxes. For Sboxes with Dmax = 6 and
Lmax = 4, we found some Sboxes with implementation cost of 16 units. For a cost
of 15 units, the best possible Sboxes (in terms of Dmax and Lmax) that satisfies
the criteria have Dmax = 12 and Lmax = 6. And Sboxes with cost of at most 14
units have either Dmax = 16 or Lmax = 8. To maximise the resistance against
differential and linear attacks while satisfying the Sbox criteria, we consider
Sboxes with Dmax = 6, Lmax = 4 and implementation cost of 16 units.

In order to reduce the occurrence of sub-optimal differential transition, we
impose two additional criteria:

4. �{(ΔI ,ΔO) ∈ F
4
2 × F

4
2|DS(ΔI ,ΔO) > 4} ≤ 2.

5. For DS(ΔI ,ΔO) > 4, wt(ΔI) + wt(ΔO) ≥ 4, where wt(·) is the Hamming
weight.

Criteria (5) ensures that when sub-optimal differential transition occurs,
there is a total of at least 4 active Sboxes in the previous and next round.

Finally, we pick an Sbox with a common BOGI permutation for differential
and linear that is an identity, i.e. π(i) = i.
1 We do not need to consider AND and OR because when we use these invertible instruc-

tions, it is equivalent to some other instructions that have been taken into consider-
ation. For instance, a XOR (b AND c) ≡ a XNOR (b NAND c).

2 This “unit” metric is to facilitate the Sbox search, the Sboxes are later synthesized
to obtain their GE in Sect. 5.

GIFT: A Small Present Towards Reaching the Limit 335

Properties of GIFT Sbox. Our GIFT Sbox GS can be implemented with 4N+6X
operations (smaller than the Sboxes in PRESENT and RECTANGLE), has a maximum
differential probability of 2−1.415 and linear bias of 2−2, algebraic degree 3 and no
fixed point. For the sub-optimal differential transitions with probability 2−1.415,
there are only 2 such transitions and the sum of Hamming weight of input
and output differentials is 4. The implementation, differential distribution table
(DDT) and linear approximation table (LAT) of GS are provided in the full
version.

3.4 Designing of GIFT Key Schedule

Key State Update. One of our main goals when designing the key schedule is
to minimize the hardware area, and thus we chose bit permutation which is just
wire shuffle and has no hardware area at all. For it to be also software friendly, we
consider the entire key state rotation to be in blocks of 16-bit, and bit rotations
within some 16-bit blocks. Since it is redundant to apply bit rotations within
key state blocks that have not been introduced to the cipher state, we update
the key state blocks only after it has been extracted as a round key.

To introduce the entire key material into the cipher state as fast as possible,
the key state blocks that are extracted as the round key are chosen such that
all the key material are introduced into the cipher state in the least possible
number of rounds.

Adding Round Keys. To optimize the hardware performances of GIFT, we
XOR the round key to only half of the cipher state. This saves a significant
amount of hardware area in a round-based implementation. For it to be software
friendly too, we XOR the round key at the same i-th bit positions of each
nibble. This makes the bitslice implementation more efficient. In addition, since
all nibbles contains some key material, the entire state will be dependent on the
key after a SubCells operation.

The choice of the positions for adding the round key and 16-bit rotations
were chosen to optimize the related-key differential bounds. However, we would
like to reiterate that more rounds is advised to resist related-key attacks.

Round Constants. For the round constants, but instead of using a typical
decimal counter, we use a 6-bit affine LFSR (like in SKINNY [5]). It requires only
a single XNOR gate per update which is probably has smallest possible hardware
area for a counter. Each of the 6 bits is xored to a different nibble to break the
symmetry. In addition, we add a “1” at the MSB to further increase the effect.

4 Security Analysis

In this section, we provide short summary of the various cryptanalysis that we
had conducted on GIFT. All details are provided in the full version.

336 S. Banik et al.

4.1 Differential and Linear Cryptanalysis

We use Mixed Integer Linear Programming(MILP) to compute the lower bounds
for the number of active Sboxes in both differential cryptanalysis [9] (DC) and
linear cryptanalysis [31] (LC), the results are summaries in Table 11. The MILP
solution provide us the actual differential or linear characteristics, which allow
us to compute the actual differential probability and correlation contribution.

Table 11. Lower bounds for number of active Sboxes.

Cipher DC/LC Rounds

1 2 3 4 5 6 7 8 9

GIFT-64 DC 1 2 3 5 7 10 13 16 18

LC 1 2 3 5 7 9 12 15 18

PRESENT DC 1 2 4 6 10 12 14 16 18

LC 1 2 3 4 5 6 7 8 9

RECTANGLE DC 1 2 3 4 6 8 11 13 14

LC 1 2 3 4 6 8 10 12 14

GIFT-128 DC 1 2 3 5 7 10 13 17 19

LC 1 2 3 5 7 9 12 14 18

Recall that one of our main goals is to match the differential bounds of
PRESENT, that is having an average of 2 active Sboxes per round, but with a
lighter Sbox and without the constraint of differential branching number of 3. In
addition, we aim for same ratio for the linear bound which was not accomplished
by PRESENT. These targets were achieved at 9-round of GIFT. Hence, our DC and
LC analysis and discussion focus on 9-round.

Regarding the security against DC, GIFT-64 has a 9-round differential proba-
bility of 2−44.415, taking the average per round and propagate forward, we expect
that the differential probability will be lower than 2−63 after 14 rounds. There-
fore, we believe 28-round GIFT-64 is enough to resist against DC. For GIFT-128,
it has a 9-round differential probability of 2−46.99, which suggested that 26-round
is sufficient to achieve a differential probability lower than 2−127. Therefore, we
believe 40-round GIFT-128 is enough to resist against DC.

Regarding LC, GIFT-64 has a 9-round linear hull effect of 2−49.997, which
expected to require 13-round to achieve correlation potential lower than 2−64.
Therefore, we believe 28-round GIFT-64 is enough to resist against LC. For
GIFT-128, it has a 9-round differential probability of 2−45.99, which means that
we would need around 27 rounds to achieve a differential probability lower than
2−128. Therefore, we believe 40-round GIFT-128 is enough to resist against LC.

Related-Key Differential Cryptanalysis. For GIFT-64, since it takes 4
rounds for the all the key material to be introduced into the cipher state, it
is trivial to see that it is possible to have no active Sboxes from 1-round to
4-round. Thus we start our computation on the related-key differential bounds

GIFT: A Small Present Towards Reaching the Limit 337

from 5-round onwards. From 5-round to 12-round, the probability of these differ-
ential characteristics are 2−1.415, 2−5, 2−6.415, 2−10, 2−16, 2−22, 2−27, 2−33 respec-
tively. Even if we suppose that the probability of 12-round characteristic is lower
bounded by 2−33, it is doubtful that 28 rounds are secure against related-key
differential cryptanalysis. Therefore, as we describe in Sect. 2, we strongly rec-
ommend to increase the number of rounds to achieve the security against the
related-key attacks.

For GIFT-128, we start our computation from 3-round onwards. From 3-
round to 9-round, the probabilities are 2−1.415, 2−5, 2−7, 2−11, 2−20, 2−25, 2−31

respectively. Similar to GIFT-64, it is doubtful that 40 rounds are secure against
related-key differential cryptanalysis.

4.2 Integral Attacks

We discuss the security against integral attacks [26]. Here the integral distin-
guisher is found by using the (bit-based) division property [40,42] and the key
recovery is executed by using the partial-sum technique [19]. As a result, the num-
ber of rounds that we can find integral distinguishers is 9 rounds for GIFT-64,
and the following is an example.

(A60, ACAA) 9R−−→ ((UUBB)16)

Here, only 2nd bit in plaintext is constant, and bits {b4i} and {b4i+1} in 9-round
ciphertexts are balanced. Note that there is no whitening key at the beginning.
Therefore, we can trivially extend integral distinguishers by one round, and
GIFT-64 has 10-round integral distinguishers, respectively. We can append four
rounds to the 10-round integral distinguisher as the key recovery and attack 14-
round GIFT-64. The attack complexity is about 297 with 263 chosen plaintexts.

We also evaluated the longest integral distinguisher for GIFT-128 by using
the (bit-based) division property. As a result, we can find 11-round integral
distinguisher. The number of rounds is improved by two rounds than that for
GIFT-128. However, the number of bits in round key that is XORed every round
increases from 32 bits to 64 bits. Therefore, we expect that GIFT-128 is also
secure against integral attacks.

4.3 Impossible Differential Attacks

Impossible differential attacks [8,25] exploits a pair of difference Δ1 and Δ2 in
which Δ1 never reaches Δ2 after some rounds.

We searched for impossible differentials by using the MILP-based tool [38].
The results show that there does not exist any impossible differentials with 1-
active nibble against 7 rounds of GIFT-64. Thus full rounds are sufficient to
resist the impossible differential attack.

4.4 Meet-in-the-Middle Attacks

The meet-in-the-middle (MITM) attack discussed here is a rather classical one,
which separates the encryption algorithm into two independent functions [13,16].

338 S. Banik et al.

GIFT-64-128 XORs only 32 bits out of 128 bits of the key to the state
in every round. Given this property, along with splice-and-cut [1] and initial-
structure (IS) [37] techniques, we choose that 8 bits of (k6, k7) and 8 bits of
k2, k3 as sources of independent computations called neutral bits and separate
15 rounds as shown in Fig. 3. Note that when the backward computation reaches
the plaintext, the attacker makes a query to obtain the corresponding ciphertext.
Every details of the attack procedure will be explained in the full version.

Round 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subkey U k1 kB
3 k5 kF

7 k1 kB
3 k5 kF

7 k1 kB
3 k5 kF

7 k1 kB
3 k5

V k0 kB
2 k4 kF

6 k0 kB
2 k4 kF

6 k0 kB
2 k4 kF

6 k0 kB
2 k4

Remarks ←− IS −→ match ←−

Fig. 3. Chunk separation for 15-round MitM attack.

For each of 2112 non-neutral bits, the attacker computes the forward and
backward chunks for 28 choices of neutral bits. Therefore, the time complexity
is 2120 and the memory complexity is 28. This requires the knowledge of the full
codebook, thus the data complexity is 264.

4.5 Invariant Subspace Attacks

Since the round constant is XORed only in the MSB of several S-boxes, invariant
subspace attacks [20,28,29] can be a potential threat.

We exhaustively searched for the subspace transition through the GIFT S-box
and confirmed that XORing the constant to MSB breaks the invariant subspace,
thus GIFT resists the attack. The details are provided in the full version.

4.6 Nonlinear Invariant Attacks

Nonlinear invariant attacks [41] are weak-key attacks that can be applied when
the round constant is XORed only to some particular bits of nibbles. The core
idea is to find a nonlinear approximation of the round transformation with prob-
ability one. For the SPN structure, the attacks are mounted when (1) S-box has
the quadratic nonlinear invariant and (2) the linear layer is represented by the
multiplication with an orthogonal binary matrix.

The diffusion of GIFT (bit permutation) is orthogonal. However, it is not
represented by the multiplication with an orthogonal binary matrix. Moreover,
we searched for the quadratic nonlinear invariant for GIFT S-box, but there is no
such invariant. Therefore, GIFT is secure against the nonlinear invariant attacks.

4.7 Algebraic Attacks

Algebraic attacks do not threaten GIFT, the analysis is provided in the full
version.

GIFT: A Small Present Towards Reaching the Limit 339

5 Hardware Implementation

GIFT is surprisingly efficient and on ASIC platforms across various degrees of
serialization. This is mainly due to the extremely lightweight round function
that performs key addition on only half of the state and uses a bit permutation
as the only diffusion mechanism. Due to page constraints, we leave the details
in the full version of our paper and present the summary here.

5.1 Round Based Implementation

GIFT includes various design strategies in order to minimize gate count.
GIFT employs key addition to only half of the state and so saves silicon area
in the process. SKINNY uses the same mechanism, but it additionally uses an
equal amount of XOR gates to add the tweak to the state, and so the number
of XOR gates required to construct the roundkey addition layer is equal to that
of any cipher employing full state addition.

In Table 12, we compare the hardware performances of GIFT with other
lightweight ciphers. In Fig. 4 we list the individual area requirements of the
respective components in GIFT.

We see that GIFT has the smallest area compared to the other ciphers. From
the pie chart, we see that the storage area (which is a fixed cost) took up most
of the area percentage, the cipher component (which is the variable) only make
up a small percentage to the overall area.

Table 12. Comparison of performance metrics for round based implementations syn-
thesized with STM 90nm Standard cell library

Area Delay Cycles TPMAX Power (µW) Energy

(GE) (ns) (MBit/s) (@10MHz) (pJ)

GIFT-64-128 1345 1.83 29 1249.0 74.8 216.9

SKINNY-64-128 1477 1.84 37 966.2 80.3 297.0

PRESENT 64/128 1560 1.63 33 1227.0 71.1 234.6

SIMON 64/128 1458 1.83 45 794.8 72.7 327.3

MIDORI 64 1542 2.06 17 1941.7 60.6 103.0

PICCOLO 64/128a 1868 2.32 32 889.9 79.4 254.1

RECTANGLE 64/128 1637 1.61 27 1472.2 76.2 206.0

LED 64/128 1831 5.25 50 243.8 131.3 656.5

GIFT-128-128 1997 1.85 41 1729.7 116.6 478.1

SKINNY-128-128 2104 1.85 41 1729.7 132.5 543.3

SIMON 128/128 2064 1.87 69 1006.6 105.6 728.6

MIDORI 128 2522 2.25 21 2844.4 89.2 187.3

AES128 7215 3.83 11 3038.2 730.3 803.3

(a Piccolo implemented in dynamic key mode)

340 S. Banik et al.

GIFT-64-128 (1345 GE) GIFT-128-128 (1997 GE)

Key Register - 649 GE

State Register - 326 GE

S. Layer - 263 GE

Xor gates- 64 GE

Control System - 43 GE

Key Register - 649 GE

State Register - 651 GE

S. Layer - 527 GE

Xor gates- 127 GE

Control System - 43 GE

48.2%

24.2%

19.6%

4.8%3.2%

32.5%

32.6%

26.4%

6.4%
2.1%

Fig. 4. Componentwise area requirements for GIFT-64-128 and GIFT-128-128

5.2 Serial Implementation

The serial implementation of GIFT-64-128 uses a mixed datapath of size 4 bits
on the stateside and 16 bits on the keyside. The architecture has been explained
in Fig. 5.

GIFT-128-128 uses a similar architecture: a mixture of 4 bit datapath in the
stateside and a 32 bit datapath on the keyside is employed. We also implemented
bit serial versions of GIFT as per the techniques outlined in [24]. In Table 13, we

Fig. 5. Serial Implementation for GIFT-64-128 (The boxes in green denote scan flip-
flops/registers)

GIFT: A Small Present Towards Reaching the Limit 341

Table 13. Comparison of performance metrics for serial implementations synthesized
with STM 90 nm Standard cell library

Degree of Area Delay Cycles TPMAX Power (µW) Energy

Serialization (GE) (ns) (MBit/s) (@10MHz) (nJ)

GIFT-64-128 4/16 1113 2.14 522 57.3 39.0 2.04

GIFT-64-128 1 930 2.67 2816 8.5 35.9 10.11

SKINNY-64-128 4 1265 1.73 756 48.9 59.2 4.48

SKINNY-64-128 1 887 0.98 3152 20.7 42.6 13.42

PRESENT 64/128 4 1158 1.94 576 57.3 58.0 3.34

SIMON 64/128 1 794 1.10 1536 37.9 44.7 6.87

LED 64/128 4 1225 2.54 1904 13.2 49.8 9.48

GIFT-128-128 4/32 1455 2.25 714 79.7 61.7 4.40

GIFT-128-128 1 1213 2.46 6528 8.0 40.3 26.30

SKINNY-128-128 8 1638 1.95 840 78.1 79.1 6.64

SKINNY-128-128 1 1110 0.81 6976 22.7 53.8 37.53

SIMON 128/128 1 1077 1.17 4480 25.1 60.5 27.10

AES 128a 8 2060 5.79 246 88.6 129.7 3.19

(a AES implementation figures from [3])

list the performance comparisons of GIFT with other block ciphers. While the
bit serial implementation of Simon is probably the most compact due to the
nature of the design, but the performance of GIFT is comparable/better with
other ciphers with similar level of serialization.

6 Software Implementation

In this section, we describe our software implementation of GIFT-64 and
GIFT-128. Due to its inherent bitslice structure, it seems natural to consider
that the most efficient software implementations of GIFTwill be bitslice imple-
mentations.

We leave the details of the packing/unpacking of the data and round function
implementation in the full version.

Benchmarks. We have produced this bitslice implementation for AVX2 reg-
isters and we give in Table 14 the benchmarking results on a computer with a
Intel Haswell processor (i5-4460U). We have benchmarked the bitslice imple-
mentations of SIMON and SKINNY (available online) on the same computer for
fairness.

Comments. Bitslice implementations can be used for any parallel mode (as it
is the case for most modern operating modes), but can also be used for serial
modes when several users are communicating in parallel. In this setting, the

342 S. Banik et al.

Table 14. Bitslice software implementations of GIFT and other lightweight block
ciphers. Performances are given in cycles per byte, with messages composed of 2000
64-bit blocks to obtain the results.

implementation would be exactly the same, as our key preparation does not
assume that the keys have to be the same for all blocks. In the scenario of a serial
mode for a single user, then a classical table-based or VPERM implementation
will probably be the most efficient option [6].

For low-end micro-controllers, it is very likely that GIFT will perform very well
on this platform. RECTANGLE is very good on micro-controllers and GIFT shares
the same general strategy on this regard. The key schedule being even simpler,
we believe that it will actually perform even better than RECTANGLE.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. This work is partly supported by the Singapore National
Research Foundation Fellowship 2012 (NRF-NRFF2012-06).

References

1. Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and more.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp.
103–119. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04159-4 7

2. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: a block cipher for low energy. In: Iwata, T., Cheon, J.H.
(eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 411–436. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 17

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. Cryptology ePrint
Archive, Report 2016/1005 (2016)

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

6. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–351. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 17

http://dx.doi.org/10.1007/978-3-642-04159-4_7
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_17

GIFT: A Small Present Towards Reaching the Limit 343

7. Biham, E., Anderson, R., Knudsen, L.: Serpent: a new block cipher proposal. In:
Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 222–238. Springer, Heidelberg
(1998). doi:10.1007/3-540-69710-1 15

8. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. J. Cryptology 18(4), 291–311 (2005)

9. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991). doi:10.1007/3-540-38424-3 1

10. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 165–
182. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 10

11. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.:
spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 21

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

13. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson,
D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19574-7 16

14. Cannière, C.D.: Analysis and Design of Symmetric Encryption Algorithms. Ph.D
thesis, Katholieke Universiteit Leuven Bart Preneel (promotor) (2007)

15. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family
of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K.
(eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 20

16. Chaum, D., Evertse, J.-H.: Cryptanalysis of des with a reduced number of rounds.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 192–211. Springer,
Heidelberg (1986). doi:10.1007/3-540-39799-X 16

17. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11925-5 21

18. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

19. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved cryptanalysis of rijndael. In: Goos, G., Hartmanis, J., Leeuwen, J.,
Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 213–230. Springer, Heidelberg
(2001). doi:10.1007/3-540-44706-7 15

20. Guo, J., Jean, J., Nikolic, I., Qiao, K., Sasaki, Y., Sim, S.: Invariant subspace
attack against midori64 and the resistance criteria for s-box designs. IACR Trans.
Symmetric Cryptology 2016(1), 33–56 (2016)

21. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 13

22. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-23951-9 22. [35]

http://dx.doi.org/10.1007/3-540-69710-1_15
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/978-3-642-55220-5_10
http://dx.doi.org/10.1007/978-3-642-23951-9_21
http://dx.doi.org/10.1007/978-3-642-23951-9_21
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-19574-7_16
http://dx.doi.org/10.1007/978-3-642-04138-9_20
http://dx.doi.org/10.1007/3-540-39799-X_16
http://dx.doi.org/10.1007/978-3-642-11925-5_21
http://dx.doi.org/10.1007/978-3-642-11925-5_21
http://dx.doi.org/10.1007/3-540-44706-7_15
http://dx.doi.org/10.1007/978-3-642-22792-9_13
http://dx.doi.org/10.1007/978-3-642-23951-9_22

344 S. Banik et al.

23. Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building
blocks. Cryptology ePrint Archive, Report 2017/101 (2017)

24. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-Sliding: A Generic Technique
for Bit-Serial Implementations of SPN-based Primitives. In: To appear in Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - Taipei, Taiwan, 25–28
September 2017

25. Knudsen, L.: Deal - a 128-bit block cipher. NIST AES Proposal (1998)
26. Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.)

FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). doi:10.1007/
3-540-45661-9 9

27. Kölbl, S.: AVX implementation of the Skinny block cipher (2016). https://github.
com/kste/skinny avx

28. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: the invariant subspace attack. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 206–221. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 12

29. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace
attacks: cryptanalysis of robin, iSCREAM and zorro. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 254–283. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 11

30. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,
Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73074-3 13

31. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

32. Nakahara, J.: 3D: a three-dimensional block cipher. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) CANS 2008. LNCS, vol. 5339, pp. 252–267. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89641-8 18

33. National Institute of Standards and Technology: Fips 180–2: Secure hash standard.
http://csrc.nist.gov

34. National Institute of Standards and Technology: Lightweight cryptography (2016).
https://www.nist.gov/programs-projects/lightweight-cryptography

35. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

36. Saarinen, M.-J.O.: Cryptographic analysis of all 4 × 4-bit S-boxes. In: Miri, A.,
Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 118–133. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28496-0 7

37. Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search.
In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01001-9 8

38. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and crypt-
analysis aspects. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 185–215. Springer, Cham (2017). doi:10.1007/978-3-319-56617-7 7

39. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Pic-
colo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 23. [35]

40. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 12

http://dx.doi.org/10.1007/3-540-45661-9_9
http://dx.doi.org/10.1007/3-540-45661-9_9
https://github.com/kste/skinny_avx
https://github.com/kste/skinny_avx
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1007/978-3-662-46800-5_11
http://dx.doi.org/10.1007/978-3-540-73074-3_13
http://dx.doi.org/10.1007/3-540-48285-7_33
http://dx.doi.org/10.1007/978-3-540-89641-8_18
http://csrc.nist.gov
https://www.nist.gov/programs-projects/lightweight-cryptography
http://dx.doi.org/10.1007/978-3-642-28496-0_7
http://dx.doi.org/10.1007/978-3-642-01001-9_8
http://dx.doi.org/10.1007/978-3-319-56617-7_7
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-642-23951-9_23
http://dx.doi.org/10.1007/978-3-662-46800-5_12

GIFT: A Small Present Towards Reaching the Limit 345

41. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53890-6 1

42. Todo, Y., Morii, M.: Bit-based division property and application to Simon family.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-52993-5 18

43. Wingers, L.: Software for SUPERCOP benchmarking of SIMON and SPECK
(2015). https://github.com/lrwinge/simon speck supercop

44. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

http://dx.doi.org/10.1007/978-3-662-53890-6_1
http://dx.doi.org/10.1007/978-3-662-52993-5_18
https://github.com/lrwinge/simon_speck_supercop

Making Password Authenticated Key
Exchange Suitable for Resource-Constrained

Industrial Control Devices

Björn Haase(&) and Benoît Labrique

Endress + Hauser Conducta GmbH & Co. KG,
Dieselstr. 24, 70839 Gerlingen, Germany

Bjoern.Haase@conducta.endress.com

Abstract. Connectivity becomes increasingly important also for small
embedded systems such as typically found in industrial control installations.
More and more use-cases require secure remote user access increasingly
incorporating handheld based human machine interfaces, using wireless links
such as Bluetooth. Correspondingly secure operator authentication becomes of
utmost importance. Unfortunately, often passwords with all their well-known
pitfalls remain the only practical mechanism.
We present an assessment of the security requirements for the industrial

setting, illustrating that offline attacks on passwords-based authentication pro-
tocols should be considered a significant threat. Correspondingly use of a
Password Authenticated Key Exchange protocol becomes desirable. We review
the significant challenges faced for implementations on resource-constrained
devices.
We explore the design space and shown how we succeeded in tailoring a

particular variant of the Password Authenticated Connection Establishment
(PACE) protocol, such that acceptable user interface responsiveness was
reached even for the constrained setting of an ARM Cortex-M0+ based Blue-
tooth low-energy transceiver running from a power budget of 1.5 mW without
notable energy buffers for covering power peak transients.

Keywords: PAKE � ARM Cortex-M0 � Curve25519 � ECDH � PACE �
Curve25519 � ECDH key-exchange � Elliptic-curve cryptography � Embedded
devices � Elligator � Process industry � Bluetooth � Curve19119 � X19119 �
Bluetooth low energy

1 Introduction and Motivation

Connectivity becomes increasingly important also for small microcontroller-based
embedded systems found in industrial control installations, such as so-called field
devices. More and more use-cases require secure remote user access, e.g. for mainte-
nance and configuration involving subsystems such as industrial control units and
home automation electronics. Increasingly smart phones or tablet computers are used as
handheld units providing the Human Machine Interface (HMI). The continuously
growing Internet of Things will only add to this development.

© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 346–364, 2017.
DOI: 10.1007/978-3-319-66787-4_17

It is of great interest to provide efficient cryptographic primitives and protocols
suitable also for the resource-constrained embedded CPUs typically employed in these
environments. In most applications, user authentication by use of iris scanners, fin-
gerprint analysis or based on smart cards is unfortunately not practical. On the other
hand, implanted identification chips are already in wide-spread use, but mainly in the
context of production animals and for some specific reason rather not for human
operators.

In many circumstances, the old-fashioned password remains the only practical
means for authentication of human operators. We presume that frequently the crucial
weakness of the security solution is the password-based authentication protocol,
namely if the protocol exposes the password to offline dictionary attacks. Astonishingly
weak challenge-response-type protocols seem still to be in wide-spread use in many
critical systems.

In the context of resource-constrained devices and password authentication, the
aspect of efficiency becomes of utmost importance, since the computational complexity
directly translates into the delay experienced by the user during the login procedure.

This article summarizes the results of research implemented in the context of
securing a Bluetooth-low-energy based human-machine-interface for an industrial field
device hardware.

Contribution of this work. The contribution of this work is threefold.

• We present the result of our review of PAKE protocols from the perspective of
efficient implementations in small microcontrollers.

• We explore the design space for efficient implementations of one option, the PACE
protocol family, considering Weierstrass curves as well as more recently suggested
Montgomery or Edwards curves.

• We provide experimental results for implementations on an ARM Cortex M0+ for
both, 128 and 96 bit security level.

Note regarding side-channel protection
All of the software presented in this paper avoids secret-data dependent branches and
is, thus, inherently protected against timing attacks on targets for which instruction
duration does not depend on the value of operands.

2 Organization of This Paper

This paper is organized as follows. First in Sect. 3 the reader is given a review of the
security requirements for operator authentication in industrial control installations.

In Sect. 4 properties of different PAKE protocols are reviewed from the perspective
of suitability for resource-constrained industrial control devices. As a result of this
analysis the PACE protocol family suggested by Bender, Kügler and Fischlin [1] was
assessed to be particularly well adapted.

In Sect. 5 the specific particularities of the PACE protocol are reviewed and the
most important points with respect to efficiency are analyzed.

Making Password Authenticated Key Exchange Suitable 347

The subsequent Sect. 6 considers issues that show up when trying to specifically
tailor the PACE protocol for the constrained setting. Optimization for efficiency
includes selection of a suitable finite field used for the elliptic curve point group, a
suitable elliptic curve and a matching choice of symmetric primitives.

In Sect. 7 we introduce a new Montgomery curve “Curve19119” for a legacy
security level.

In Sect. 8 we describe the specific tailoring chosen for PACE in the experiments
and describe our optimization strategy.

Section 9 combines both, presentation of the experimental results and comparison
with other related work.

3 Security Requirements and Implementation Constraints

In industrial control installation it is common to wire many so-called field devices still
by using a purely analogue interface, e.g. encoding measurement values in a current
ranging from 4…20 mA. This holds even in 2017. Depending on the installation up to
90% of the instrumentation does not use any digital data transmission. This is an
advantage regarding security.

Field devices often have to withstand high temperatures and humidity. One con-
sequence is that the user interface often only allows for a few buttons and one line of
LCD, not providing good usability for the operators.

This is one motivation for integrating wireless interfaces based on standards such as
Bluetooth 4.0 low energy. Wireless access allows for comfort by referring the graphical
user interface to a powerful handheld unit. Unfortunately many wireless standards were
originally not designed for the security requirements in industry plants, where
manipulation of the integrity of one single field device might result in explosions or
other severe damage. Note that, for instance, the security layer of Bluetooth low energy
4.0 is not providing any protection against a passive eavesdropper! Providing protec-
tion is difficult, since any simple challenge-response protocol exposes the passwords to
the risk of offline attacks.

Field devices also often face the requirement of having to be intrinsically safe with
respect to the risk of explosions, for instance when used on refineries. Most strategies
for intrinsic safety base on circuit-designs that limit peak currents, peak voltages and
the amount of energy in buffers like capacitors or batteries. The limitation guarantees
that ignition of explosive gas or dust becomes impossible. As a consequence a large
portion of so-called “2-wire” field devices has to operate from 15mW to 30mW
functional power for its full operation. Note that this power is constantly available but
cannot be exceeded transiently since intrinsically safe barriers and interfaces prevent
that any more current will be delivered. If circuitry needs transients, e.g. for a mea-
surement circuit, this needs to be buffered locally.

An important aspect in the context of this paper is the limitation of the actual size of
the energy buffers, since levels sufficient for triggering an ignition must be prevented.
Batteries often may not be integrated due to the continuous maintenance requirement
and the temperature rating. A typical value for the energy stored in buffer capacitors for
transients is in the range of several mJ only. Note that most of the transient buffer will

348 B. Haase and B. Labrique

be allocated for the main functionality of the field device and only a small fraction will
be made available for wireless transmission or for complex calculations. The algo-
rithms and protocol implementations need to have both in mind, low power con-
sumption on average and limited energy buffers for covering transients.

4 Review of PAKE Protocols from the Perspective
of Resource-Constrained Devices

Since the initial pioneer papers from Bellovin, S.M. and M. Merritt [2] regarding key
generation based on weak “user memorable” (i.e. low entropy) passwords extensive
literature is available regarding the basic problem. Protocols typically are referred to by
use of acronyms such as EKE [8], SPEKE [9], SRP [10], PACE [1], PAK [11, 15],
AMP [7, 12] and AugPAKE [13, 16]. Many of these base on the framework of Diffie-
Hellman key exchange [14].

At a first glance a plethora of protocol candidates needs to be considered for the
setting of field devices. A closer look, however, exposes that unfortunately most of the
protocols suggested are to be considered impractical for this setting. For applications in
extremely resource-constrained devices the most suitable algorithm subset must not
make use of multiplicative group operations, such that using elliptic curves becomes
possible.

This special subgroup of PAKE protocols seems to be particularly difficult to
construct correctly. Many protocols have been shown to be insecure. We assessed only
a small subset of more carefully analyzed protocols such as AugPAKE [13, 16] or
PACE [1] to be good candidates. To make matters worse, an additional aspect to
consider is the issue of pending patents on protocols or efficient implementation of
algorithmic sub-steps. In particular a patent applications for the AugPAKE [13, 16]
protocol does apply under US020110145579A1. As a result our further analysis did
concentrate on PACE [1].

5 Review of the Password-Authenticated Connection
Establishment (PACE) Protocol

The PACE protocol designed by Bender, Kügler and Fischlin [1, 18] might actually
rather be considered to form a tailorable family of protocols involving different steps
that allow for specific implementation choices. E.g. it may be implemented on
large-characteristic fields as well as on groups defined by points on elliptic curves.
Correspondingly in the security analysis of the protocol [1] four alternative variants of
the Map2Point sub-step of the protocol were suggested. The PACE protocol family
assumes that a cyclic finite group of a large order, such as provided by points on an
elliptic curve, is available. In the protocol basically four different sub-steps may be
distinguished (see also Fig. 2 and 3 in [1] for the specific definitions).

• In a first step a random number “s” is exchanged between the two parties by use of
purely symmetric cryptographic primitives and the weak shared secret (password)

Making Password Authenticated Key Exchange Suitable 349

as key. It is the objective of the subsequent protocol steps to verify that both sides
initiate the PACE protocol run by using the same “s” value without exposing any
information on its actual value to passive or active attackers.

• In a second step of each protocol run the two parties interactively agree on a
session-specific generator of the group: G = Map2Point(s). This involves usage of
symmetric and asymmetric primitives and exchange of one or more messages.

• In a third step, the two parties implement a conventional Diffie-Hellman protocol
for agreeing on a shared session secret by use of the session-specific generator G.

• Subsequently, in the last step, exchange of conventional authentication code mes-
sages being derived from the shared Diffie-Hellman secret are used for mutually
proving that both parties share the same secret. The session key is also derived from
the Diffie-Hellman result.

Efficiency analysis of PACE. With respect to computational efficiency one may
neglect the computational complexity of the symmetric primitives altogether. The two
dominant components within the protocol are the Map2Point sub-step and the shared
secret generation by the Diffie-Hellman sub-step.

The Diffie-Hellman step in PACE works with a generator base point G that varies
in each protocol execution. This implies that optimizations possible for fixed base point
algorithms could not be used.

The most important factor for an efficient implementation of the PACE protocol is
actually the efficiency of the Map2Point protocol sub-step. In [1] four distinct alter-
natives have been analyzed.

The DH2Point algorithm as used by the German government authority BSI for the
German identiy card requires the equivalent of two fixed and one variable point
exponentiation, possibly for patent circumvention. A very similar option is the
Coin2Point alternative which is trading off a scalar multiplication against an additional
message exchange.

The computational complexity may be significantly reduced if a so-called inte-
grated mapping [27] (in [1] referred to as hash to curve h2c operation) algorithm is
available for the selected curve. Such an operation maps an arbitrarily chosen scalar
number to a point on the elliptic curve. Fortunately constant-time algorithms for effi-
cient integrated mapping are available for many curves. For examples see [3, 4, 28] and
references cited therein, notably the so-called Shallue-Woestijne-Ulas (SWU) algo-
rithm. The possible performance benefit of integrated mapping is large since the order
of magnitude of efficient integrated mapping algorithms accounts roughly for two field
inversions only and is thus only a small fraction of two exponentiations [28].

6 Tailoring of PACE for Resource-Constrained Devices

Tailoring of PACE for an embedded target should best cover all relevant levels within
the implementation pyramid: Choice of a suitable finite field, a suitable finite group,
etc. In this section we focus on the asymmetric operations since they dominate the
computational effort.

350 B. Haase and B. Labrique

Giving our final result at the very beginning, we conclude that best efficiency
regarding all aspects might be obtained by using Montgomery or Edwards curves such
as Curve25519 constructed over fields with special primes of the form 2n – m and
Elligator2 as part of the Map2Point protocol.

In this paper we aim not only at presenting our final result. We also would like to
present the reasoning why other approaches had been discarded in our industry setting.
We also aim at giving our rough estimates regarding their respective performance
disadvantages. For some applications actual implementations might be forced to use
specific algorithms that might not best suited from a performance perspective and also a
rough assessment might prove helpful.

6.1 Choosing the Field

Despite some impressing results for binary fields (see e.g. [6]) also on architectures
such as the ARM Cortex M0, the more complex security story of constructions on top
of binary extension fields [34–36] lead us to focus on prime fields quite early.

Assessment of Performance for random prime fields. We did shortly assess the
penalty to expect for random primes (such as used by the Brainpool group [17, 21]) and
came to the conclusion that for the 128 bit security level on a small 32 bit CPU like the
ARM Cortex M0 roughly a factor of * 2.75 should be expected for multiplications
and a factor of * 4 for squarings. This stems from the observation that the cost for one
fully optimized Karatsuba multiplication and half a textbook multiplication for
Montgomery reduction makes multiply and square operations almost equally expen-
sive. According to our analysis the possible performance gain for the 1/2 multiplication
in Montgomery reduction is almost compensated for by losing the possibility of
employing the Karatsuba stages that proved highly beneficial in [5].

Assessment of Performance for the Solinas prime [23] for P-256. Avery rough
assessment of the potential of the Solinas prime for P-256 leads us to the expectation
that the larger number of additions and conditional moves during the reduction being
expensive to implement in constant time accounts for a penalty in the range of some
10% … 30% for multiply and square operations in comparison to the optimized
Curve25519 prime field implementation from [5]. We expect penalties for addition and
subtraction to be somewhat larger. They might reach even +100% since the nice feature
of the additional “carry bit” in the last 32 bit word available for Curve25519 is missing.
In our opinion this is one of the factors leading to the speed difference factor of 3 when
comparing Curve25519 [5] and P-256 [26].

6.2 Selection of Appropriate Elliptic Curve Groups

Selection of appropriate elliptic curve groups impacts efficiency directly and indirectly
by a number of parameters, having both, technical and legal origin, such as pending
intellectual property rights. The latter aspect is of major importance for all industrial
applications. Specifically industrial control devices typically are designed for
world-wide installation and already the complex handling of external licenses or the

Making Password Authenticated Key Exchange Suitable 351

mere theoretical risk of intellectual property right conflicts in a single country typically
force implementers to search for circumvention approaches.

In the context of the PACE protocol family one of the major efficiency parameters
is linked to the Map2Point sub-step, specifically the availability of an integrated
mapping primitive.

For the NIST standard P-256 with p mod 4 == 3 SWU could be used. Unfortu-
nately part of this algorithm seems to be covered by patents.

This drew our attention to a second set of candidate curves, specifically more recent
Edwards or Montgomery curves such as Curve25519 [29]. Curve25519 has recently
been standardized by ITEF [22] and independently found to be particularly suitable for
the Cortex M0 by a group at the company ARM itself [25]. Moreover a patent-free
mapping algorithm, Elligator2, is available [4]. For Curve25519, as a side-effect of the
original design goal of avoiding secret-dependent table lookups in [29] highly efficient
algorithms are available without facing penalties for variable base point scalar multi-
plications and with a small memory footprint.

6.3 Tailoring on the Protocol Level

The by far most important parameter on the PACE protocol level for efficiency is the
choice of the Map2Point primitive. When choosing Montgomery curves as a basis,
Elligator 2 is the natural choice.

When using Coin2Point for patent circumvention the complexity of PACE is
roughly doubled. Note that the penalty might even be larger since the requirement of
calculating full additions, precludes more memory efficient and possibly faster
approaches working on x-coordinate-only point representations.

6.4 Exploring the Potential of Reduced Security Parameters

Use of a legacy-level curve for PACE might very well be appropriate, however we
think that going below the 96 bit security level might not be advisable. Also we would
only recommend this for a setting where sessions are short and compromised confi-
dentiality due to lost forward security is not critical. Note that this could possibly be
considered the case for some industry installations where the integrity is the main target
and confidentiality is often considered to form a target of a somewhat reduced priority.
We would recommend reducing security parameters only in case that the alternative
would be to be thrown back to challenge-response protocols.

7 Curve19119: A Little Brother of Curve25519

Due to the high computational complexity of PAKE protocols we aimed at exploring
the performance gain for a legacy security parameter. Unlike the situation for con-
ventional Weierstrass curves there seem to be no established Montgomery curves for a
security of say 80 or 96 bits. For this reason we designed a new curve using a field
based on the 191 bit prime 2191–19. We refer to the curve and the associated
Diffie-Hellman x-coordinate-only protocol by the acronyms Curve19119 and X19119
respectively.

352 B. Haase and B. Labrique

Curve19119 was constructed following almost the same rigid requirement set as
used for Curve25519, however for the prime 2191–19. The single exception in the
construction prescription is that we imposed the additional constraint on the curve
parameter “A” that “A + 2” shall be a square. Note that this allows for application of
the most efficient Hisil-Wong-Carter-Dawson [20] point addition formula in extended
coordinates for the isomorphic Edwards curve. Just as for Curve25519 the Mont-
gomery curve equation reads

y2 ¼ x3 þ Ax2 þ x ð1Þ

with A = 528418 and the base point x = 11. The candidate A = 922 has been ruled out
due to the group order being smaller than 2(191−3).

The group order of Curve19119 is 8 (2188 + 6805822842506810719592233527)
with a secure near-prime order quadratic twist. Note that actually a very similar curve
with A = 281742 was suggested by Diego F. Aranha et al. [19]. This other curve, in
contrast to the Curve19119 presented here, does not allow for the more efficient point
addition in extended coordinates.

8 Putting It Together: PACE on the ARM Cortex M0

In the following paragraphs we will present our specific choices and elaborate on our
optimization strategy. The full protocol overview of our implementation is given in
Fig. 1 and uses mostly terminology from [1]. Note that the task of generating fresh
entropy for random number generation is a crucial aspect but due to its complexity out
of the scope of this paper. We implemented the full protocol with Curve25519. For
Curve19119 we only aimed at being able to assess the performance gain and restricted
the implementation effort to the most expensive component, the X19119 Diffie-
Hellman part.

According to our target security level in the protocol, we take 128 bit random
numbers for the values s and t and chose a 64 bit nonce n for Salsa20-20.

Review of the ARM Cortex M0 microcontroller architecture. The ARM Cortex
M0 and M0+ cores (M0) are the smallest members of ARM’s Cortex-M series tar-
geting low-cost and low-power embedded devices. The important feature with respect
to asymmetric cryptography operation is the 32 bit x 32 bit => 32 bit single cycle
multiplier engine available in virtually all actual instances. Previous research [5] has
shown that one of the key bottlenecks for efficiency is register pressure in conjunction
with a comparably slow memory interface (von Neumann-Architecture with a shared
address and data bus).

8.1 Symmetric Encryption

For both, random number generation and symmetric encryption we made use of
Salsa20-20 [32]. We selected the conservative 20 rounds variant because the amount of
payload to encrypt is small and efficiency considerations allow for the more

Making Password Authenticated Key Exchange Suitable 353

conservative variant. We preferred Salsa20-20 because according to our assessment it
was more extensively reviewed, specifically as part of the eSTREAM project than other
candidates, such as Speck or Simon [33]. This choice also avoided considerations
regarding cache timing attacks on the smart phone implementation for the client.

Fig. 1. Overview over our PACE protocol choices

354 B. Haase and B. Labrique

Assembly optimization strategy. The most important identified weakness of the M0
is the memory bandwidth. Luckily, the Salsa20 permutation runs in its inner loop on a
set of four 32 bit words being permuted one after the other and, thus, fits into the
register set. Also the 32 bit rotation operation requires only one single instruction on
the M0 architecture. Our assembly code implementing the hsalsa20 permutation of the
64 byte input runs in 2628 cycles (* 41.1 cycles/byte) and needs 404 bytes of program
flash.

8.2 Cryptographic Hash

We selected SHA512. An advantage provided by using SHA512 was also that when
hashing the shared secret of the Diffie-Hellman substep, the 512 bit result allowed for
extracting all of, 256 bit session key and two 128 bit authentification verification
messages from a single run. This avoided the need for implementing a specific sym-
metric message authentication code primitive.

Assembly optimization strategy. The main bottleneck for the SHA512 implemen-
tation is the fact that the small 32 bit register set of the M0 is by far too small for
holding the intermediate state of the SHA512 subsystem. Also the 64 bit rotations
require a large number of 32 bit shifts. The implementation is optimized for speed
rather than code size by unrolling the inner loop completely. This results in a rather big
memory footprint of 1448 Bytes. Hashing 10 bytes costs 22031 cycles on the M0 and
for 2048 bytes of data we end up with an efficiency of 181.6 cycles per byte.

8.3 Point Verification for PACE

Both, Curve25519 and Curve19119 are of nearly prime order. Specifically, the group
order is 8 times a prime. During the X25519 and X19119 scalar multiplication each of
the weak points is mapped onto the neutral element and thus verification that a point is
valid may be implemented subsequently by checking, after each point multiplication,
that the result of the point multiplication differs from the neutral element. Insertion of a
twist point does not provide the attacker any advantage according the security guar-
antees of X25519 and the identically constructed X19119.

8.4 Map2Point Protocol Substep

We use the Hash2Point procedure and Elligator2 as “h2c” function according to ter-
minology from [1].

Elligator2. The implementation shares most arithmetic operations with the elliptic
curve point multiplication. The most costly sub-steps are formed by one field inversion
and one exponentiation with 2254 – 10. Both of them are implemented in constant time
by an exponentiation operation. For the exponentiation with 2254 – 10 an important
optimization goal was to reduce the number of temporary field elements. We came up
with a solution needing 255 field squarings and 11 field multiplications.

Making Password Authenticated Key Exchange Suitable 355

8.5 Diffie-Hellman Protocol

Regarding Diffie-Hellman protocol, we implemented two variants, X25519 and
X19119 in order to assess the potential of performance gain when reducing the security
parameter from 128 bits to 96 bits.

Optimization for X25519. The optimized arithmetic on the prime field and the basic
algorithm used for the X25519 protocol sub-steps is based on the strategy of [5]. We
integrated only almost negligible improvements regarding the integer squaring oper-
ation. Differing from [5] we implement the conditional swap operation after each ladder
step by swapping pointer variables instead of data. We expect slightly better perfor-
mance and also a reduced side-channel leakage [24].

Optimization for X19119. In order to allow for a fair comparison between the
legacy-level security curve Curve19119 and the highly optimized X25519 imple-
mentation from [5], an equivalent level of optimization was considered necessary. We
followed the same approach that has been used as in [5]. Due to the almost identical
structure of the curve construction, reduction, addition and subtraction algorithms
could be re-used almost identically just as for the algorithms for the x-coordinate-only
Montgomery ladder of X19119.

With respect to the optimization of Multiplication and Squaring, Curve19119
suffers from the penalty of less symmetry. For the prime 2255–19 a cascade of three
refined Karatsuba stages could be used for mapping 256 bit multiplications to the
32 � 32 bit level in a symmetric cascade. This is possible because 256 is a power of
two. For the prime 2191–19 our most efficient multiplication and squaring implemen-
tation first uses a refined Karatsuba stage for mapping 192 bit operations to 96 bit
operations.

On the 96 bit level, squaring was split into a 64 bit squaring using one additional
level of refined Karatsuba, two 32 bit multiplications and one 32 bit squaring. The 96
bit Multiplication correspondingly was mapped onto a 64 bit multiplication (imple-
mented again with one level of refined Karatsuba) and 5 remaining 32 bit
multiplications.

The lack of symmetry in comparison to the 256 bit case results in a slightly
increased overhead due to additional memory accesses. This was only partially com-
pensated for by reduced register pressure.

It is also worth noting that the Montgomery curve group constant “A” for
Curve19119 is slightly less optimal than for Curve25519. For Curve25519 the small
curve constant required within the Montgomery ladder calculations fits into 17 bits and
multiplication could be implemented by using one addition and one 16 bit multipli-
cation, while for Curve19119 18 bits length make two 16 bit multiplications necessary
for each operand word.

356 B. Haase and B. Labrique

8.6 Implementation Strategy Regarding Absence of Energy Buffers:
Asynchronous Crypto Engine (ACE)

Due to the absence of large energy buffers in many field devices it turned out to be
mandatory to setup a framework that allows for an “interrupt and resume” mode of
operation in case of temporarily insufficient power resources.

For this reason all of the calculations of the protocol were implemented by an
asynchronous crypto engine (ACE) object accounting for roughly ¾ of the PACE
implementation effort. The ACE interfaces to the host application by accepting cal-
culation tasks for complex operations and by generating an asynchronous “requested
operation completed” event subsequently. The engine is periodically invoked from a
power supervision system in case that the respective energy buffer charge level allows
for a given number of CPU cycles to be allocated for cryptographic calculations.
Details on the asynchronous calculation tasks will be given in the results section.

Note that the ACE object strategy also optimizes for stack requirements since the
point within the source code where the actual calculation is triggered may be specif-
ically chosen such that the call stack has only a low fill level.

9 Experimental Results and Discussion

In this section we will present experimental results of our implementations. We first
give details regarding the hardware used for the experiments. Then we use a bottom-up
approach for structuring the presentation of the results.

9.1 Environment Used for Collecting Experimental Data

The results reported here were measured on an nRF51822 microcontroller with inte-
grated wireless transceiver from the company Nordic Semiconductors. This device
includes a 32 bit ARM Cortex M0+ microcontroller, 256 kByte of flash memory and
16 kByte of RAM in addition to radio frequency circuitry suitable for the Bluetooth
low energy protocol. Data flash and program memory access do not require wait states
on this target platform. It does not include cache and, thus, RAM access timing does
not depend on the actual address.

Specific properties of the target hardware platform. In the nRF51822 around
128/256 kByte of flash memory and 10/16 kByte of RAM memory are required alone
for running the wireless protocol stack. Around 6 kByte of RAM are available for both,
the communication application and security operations, both for static data and exe-
cution stack. In our setting first a Bluetooth connection is established, the PACE
protocol messages are exchanged with a smart phone and the authentication calcula-
tions have to run while the wireless link is maintained. I.e. the client-side implemen-
tation of the protocol runs on a smart phone.

A particular property of the nRF51822 setting in Bluetooth operation is that the
16 MHz clock frequency cannot be divided down in small steps.

For this reason the CPU core is either “on” or “off” and consumes roughly 4.3 mA
when running. Due to required operation in the industrial temperature range up to 85°C

Making Password Authenticated Key Exchange Suitable 357

a supply voltage of 2 V is used, being larger than the necessary value for consumer
temperatures. The value was obtained by current measurements for repeated X25519
protocol runs and takes into account some safety margin for process variations and
current consumption increase at 85°C temperature.

In the given setting the M0 transceiver CPU interfaces to a main microcontroller of
the control unit by use of a communication software layer using a serial interface. The
main microcontroller of the control unit monitors the energy buffer state and allocates a
certain amount of the available energy buffer budget to the Cortex M0 running the
wireless interface and the security implementation.

Since the wireless interface for the HMI use-case is considered only to be an
“add-on” feature most of the net functional power of 30 mW is allocated for the main
field-device functionality. Only an amount of power of 1.5 mW is available for the M0
transceiver unit, a significant fraction of which being consumed by the RF receiver and
transmitter unit and the Bluetooth protocol stack.

Cycle counts reported here were experimentally obtained by use of a hardware
timer block in the nRF51822 controller. The cryptographic part of the software was
compiled by use of the LLVM compiler with the settings recommended in [5].

9.2 Efficiency Results for Asymmetric Cryptography

Table 1 summarizes our results regarding synchronous execution of the asymmetric
primitives for squaring, multiplication, addition and inversion. It also benchmarks the
performance of X25519 and Curve25519 field operations against X19119 and
Curve19119. The columns “*a24” and “*i16” refer to multiplication with the curve
constant and a 16 bit integer respectively. The latter operation is implemented for a
continuous re-randomization in projective coordinates as defense e.g. against horizontal
attacks [30, 31] being out of the scope of the present paper and not activated for the
X25519/X19119 speed measurements reported here.

The column denoted “1/2 ECDH” refers to one run of the X25519/X19119 protocol
respectively. The cycle count for X25519 is 50480 cycles lower in comparison to [5].
We expect that this is mainly due to the fact we made use of constant-time swaps of
pointers by logic operations instead of swapping the full field elements as in [5].

The only other published report regarding efficiency for prime-field curves for the
M0 that we are aware of is found in [26]. There 4.59 (10.73) million cycles were
reported for an assembly-optimized NIST P-192 (P-256) scalar multiplication respec-
tively. Our implementations for the M0 on the 96 bit and 128 bit security level are a

Table 1. Cortex M0 cycle counts for prime field operations and a single point multiplication.
All field operations include reduction modulo 2191 – 38 and 2256 – 38 respectively.

x*x x*y x + y 1/x * a24 * i16 ½ ECDH

Curve19119 666 983 95 140568 144 119 1801856
Curve25519 985 1475 117 268281 190 145 3466086
relative factor 1.48 1.50 1.23 1.91 1.32 1.22 1.92

358 B. Haase and B. Labrique

factor of 2.55 and 3.1 faster respectively. We therefore assume that our implementation
establishes a new speed record for an implementation for the 96 bit security level, with
timing side-channel awareness. In our opinion the large difference stems mainly from
the fact that the multiplication and squaring operation is much better optimized.
A second important factor might be that the addition formulas for the Montgomery
curve provide better performance than what is possible with P-192.

The cost of a synchronous execution of the Elligator2 algorithm costs 547338
cycles for Curve25519. We did not implement it for Curve19119, The operations
required for Curve19119 are essentially the same as for Curve25519. The complexity is
almost identical to two field inversions since the cost is dominated by the field
squarings required by the exponentiation approach used for the constant-time algo-
rithm. Therefore an improvement factor of equally 1.9 may be accurately predicted.

When comparing the efficiencies of X25519 and X19119, we come to the con-
clusion that roughly a speed improvement of 1.92 is possible for the legacy-level curve
also on the PACE level.

9.3 Efficiency Figures Regarding the Asynchronous ACE Engine

The results for the most important performance figures regarding the asynchronized
protocol engine are summarized in Table 2. The time values were calculated for the
16 MHz clock of our core and the energy values were calculated by using factors for
the supply voltage of 2 V and the drawn current of 4.3 mA.

The respective state of the PACE protocol is stored in the body of the Asyn-
chronous Crypto Engine (ACE) object. This object also holds all intermediate results
required for resuming an interrupted calculation. For storing this state and intermediates
we need 264 bytes of static memory and measured an additional execution stack
requirement of 432 bytes by using a stack guard pattern method. The sum of both is
only slightly larger than the 548 bytes reported in [5], probably due to the inclusion of
the SHA512 operations.

The total protocol including two point multiplications and the Elligator accounts for
7.588 million cycles and a dissipated energy of roughly 4 mJ respectively.

Note that this amount of energy is about four times the total energy buffer size of
our explosion protected experiment hardware! Since the CPU cannot be clocked down

Table 2. Results for the asynchronized ACE protocol engine

Suboperation Cycle count Time Energy/lJ

X25519 ladder step 13,486 843 ls 7.2
Elligator step “v” 271,061 16.9 ms 145.7
Elligator step “epsilon” 276,291 17.3 ms 148.5
Field inversion 268,289 16.8 ms 144.2
Short SHA512 block hash 21,560 1121 ls 11.6
Prepare random scalar for X25519 17,945 1121 ls 9.6
Complete PACE protocol run 7,588,000 474 ms 4078.6

Making Password Authenticated Key Exchange Suitable 359

(not unusual for wireless transceivers!) we had to go to sleep very frequently so that the
energy buffer may re-charge with the average current granted to the M0 subsystem until
the calculation operation may be allowed to resume. Recall also that we run the
calculation while the wireless stack maintains the link to the handheld unit running the
client side implementation!

The interruption of the calculation was not allowed at arbitrary points within the
software but only at distinct boundaries. The biggest blocks are formed by the field
inversion and the Elligator because otherwise we would have had to place all of the
temporaries used during the field exponentiation in the ACE object reducing the
amount of memory available. In order to limit the amount of the maximum energy
chunk, the Elligator was split into two sub-blocks coined “v” and “epsilon” in line with
the terminology of [4].

In total the maximum transient energy chunk is given by the inversions and the two
Elligator2 sub-steps and amounts roughly to 150 lJ. We assessed the additional
overhead due to the asynchronous interface to amount to roughly 3%.

9.4 Assessment of the User-Perceived Login Delay

While the biggest amount of required energy buffer size is determined by the maximum
chunk size in the ACE state machine, the user-experienced duration of the login delay
is controlled mainly by the granted average power. If the core would be allowed to run
without interruption, the whole protocol calculation would have finished after 474 ms.
This is clearly perfect from a usability perspective on the GUI interface.

However, when assuming that 5% of the total average power of 30 mW of the
control unit may be allocated for the “add-on-feature” of a wireless user interface, we
end up with roughly 1.5 mW. Subtracting 0.5 mW for maintaining the wireless link one
ends up with 1 mW average power for the security functionality or 0.5 mA at 2 V. If
the core consumes 4.3 mA it must sleep most of the time. For this reason a time
stretching factor of 4.3 mA/0.5 mA of 8.6 needs to be considered, such that the actual
protocol calculation needs roughly four seconds.

This is a value clearly perceivable by the user but still in an acceptable range. The
times calculated theoretically such as above also roughly correspond to the times
measured on the actual smart phone setting. We sometimes observe additional delay of
say 0.5 s, since sometimes the ACE object needs to wait a bit until the amount of
energy required for the Elligator is fully available. Wakeup-cycles of the CPU are
triggered by the radio transmission periods controlled by the handheld device.

When considering a login delay of four seconds, it is obvious that there is not any
room left for loosing efficiency by avoiding the burden of assembly optimizations or by
choosing cryptographic primitives of lower efficiency!

The tight constraints also were the original motivation for developing the custom
curve Curve19119 in the first line. It was mainly due to the performance improvements
obtained in [5] that acceptable login delays were obtained without being forced to use a
security parameter that is no longer state-of the art.

360 B. Haase and B. Labrique

10 Summary

Summing up, in this paper we have explored the design-space regarding password
authenticated key exchange for the domain of resource-constrained explosion protected
industrial control devices.

We first reviewed PAKE protocols from the literature and came to the conclusion
that the PACE protocol family is well suited for the given setting.

We then analyzed the impact of the choice of elliptic curve candidates for PACE for
ARM Cortex M0 devices and came to the conclusion that best efficiency for
software-based implementations on small 32 bit microcontrollers is likely to be
obtained when using Montgomery or Edwards curves over prime fields using
Pseudo-Mersenne primes of the form 2n – m.

Based on our analysis an implementation avoiding the risk of intellectual property
violation without complicated licensing for the PACE protocol on NIST curves should
be expected to be roughly a factor of 2.5 less efficient. The main factor is patent
circumvention regarding hashing of scalars onto elliptic curves and use of the
Coin2Point primitive of PACE as workaround. For curves built on top of a random
prime field we derived an additional speed-reduction factor of roughly 3 accounting for
the large cost of modulo reduction in a purely software-based solution on the ARM
Cortex M0.

We did evaluate the performance benefit stemming from reduction of the 128 bit
security parameter to roughly 96 bits and observed a speed gain in the range of 1.92.
For this purpose we introduced a new elliptic curve Curve19119 and a corresponding
Diffie-Hellman Protocol X19119 that we believe to setup new speed records for the 96
bit security level for constant-time implementations on Cortex M0 microcontrollers.

We used our optimized elliptic curve cryptographic algorithms in order to construct
a tailored solution based on the PACE protocol family.

Finally we have shown that the scheme allows for an actual implementation in the
setting of a wireless Bluetooth transceiver controller running the PACE protocol with
Curve25519 in parallel to the wireless operation. For a power budget of 1.5 mW worst
case login delays in the range of 4 s were attained for the 128 bit security level.

This result was obtained in an explosion-protected setting where incorporation of
larger capacitors or batteries was impossible. The clue to circumvent the problem
generated by the absence of notable energy buffers was definition of an asynchronous
operation mode for the cryptographic algorithms. This way the amount of required
energy buffer size was reduced down to 150 lJ.

Our analysis brings us to the conclusion that when working on the conventional
Weierstrass curves, the limits imposed by acceptable login-delays on the user interface
would most likely have forced us to reduce the security parameter to a value that might
not be adequate nowadays. Ultimately this might even have driven us back to weak
challenge-response protocols.

Acknowledgements. The authors acknowledge inspiring discussions with Peter Schwabe, Marc
Fischlin, Florian Bachmann and Johann Heyszl. We also would like to thank Tanja Lange for
drawing our attention to the possibility of advantageous application of reptiles.

Making Password Authenticated Key Exchange Suitable 361

Concluding remark

Concluding this paper regarding a rather complex protocol we express the hope that our
contribution also might help to re-explore the potential of special types of simple
challenge-response protocols. We do refer specifically to protocols that might be
constructed on top of isomorphic transformations from the space of cryptographic
protocols to Italian language, such as sketched in Fig. 2.

References

1. Bender, J., Fischlin, M., Kügler, D.: Security analysis of the PACE key-agreement protocol.
In: Samarati, P., Yung, M., Martinelli, F., Ardagna, Claudio A. (eds.) ISC 2009. LNCS, vol.
5735, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04474-8_3

2. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure
against dictionary attacks. In: Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society (1992)

3. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 303–316. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03356-8_18

4. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: Elliptic-curve points
indistinguishable from uniform random strings. In: CCS 2013. ACM, New York (2013)

5. Düll, M., Haase, B., Hinterwäldler, G., Hutter, M., Paar, C., Sanchez, A.H., Schwabe, P.:
High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers. Des. Codes Cryptogr.
77, 493–514 (2015)

6. De Clercq, R., Uhsadel, L., Van Herrewege, A., Verbauwhede, I.: Ultra low-power
implementation of ECC on the ARM Cortex-M0+. In: DAC 2014 Proceedings of the 51st
Annual Design Automation Conference on Design Automation Conference, pp. 1–6. ACM,
New York (2014). https://www.cosic.esat.kuleuven.be/publications/article-2401.pdf. 15, 16

7. Kwon, T.: Summary of AMP (Authentication and key agreement via Memorable Passwords).
http://grouper.ieee.org/groups/1363/passwdPK/contributions/ampsummary2.pdf

8. Bellovin, S., Merrit, M.: Augmented encrypted key exchange: a password-based protocol
secure against dictionary attacks and password-file compromise. In: ACM Conference on
Computer and Communications Security, pp. 244–250 (1993)

9. Jablon, D.: Strong password-only authenticated key exchange. ACM Comput. Commun.
Rev. 26(5), 5–26 (1996)

10. Wu, T.: Secure remote password protocol. In: ISOC Network and Distributed System
Security Symposium (1998)

 Alice Bob

PACE?

PACE.

Fig. 2. Sketch of a challenge-response protocol candidate that might be beneficial.

362 B. Haase and B. Labrique

http://dx.doi.org/10.1007/978-3-642-04474-8_3
http://dx.doi.org/10.1007/978-3-642-03356-8_18
https://www.cosic.esat.kuleuven.be/publications/article-2401.pdf
http://grouper.ieee.org/groups/1363/passwdPK/contributions/ampsummary2.pdf

11. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange. In:
Submission to IEEE P1363.2, April 2002

12. Kwon, T.: Authentication and key agreement via memorable password. In: ISOC Network
and Distributed System Security Symposium, February 2001

13. Shin, T., Kobara, K.: Efficient augmented password-only authentication and key exchange
for IKEv2 (2012). https://tools.ietf.org/html/rfc6628

14. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
544–654 (1976)

15. MacKenzie, P.: The PAK suite: protocols for password-authenticated key-exchange.
DIMACS Technical report 2002-46 (2002)

16. Shin, S., Kobara, K., Imai, H.: Security proof of AugPAKE. Cryptology ePrint Archive:
Report 2010/334, June 2010. http://eprint.iacr.org/2010/334

17. Federal Office for Information Security (BSI): Elliptic Curve Cryptography, Version 2.0,
TR-03111, June 2012. https://www.bsi.bund.de

18. Federal Office for Information Security (BSI): Advanced Security Mechanism for Machine
Readable Travel Document – Extended Access Control (EAC), Password Authenticated
Connection Establishment (PACE), and Restricted Identification (RI), BSI-TR-03110, June
2012. https://www.bsi.bund.de

19. Aranha, D.F., Barreto, P.S.L.M., Pereira, G.C.C.F., Ricardini, J.E.: A note on high-security
general-purpose elliptic curves (2013). https://eprint.iacr.org/2013/647.pdf

20. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted edwards curves revisited. In:
Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-89255-7_20

21. Lochter, M., Merkle, J.: Elliptic curve cryptography (ECC) brainpool standard curves and
curve generation, IETF RFC 5639 (2010)

22. Lepinski, M., Kent, S.: Additional diffie-hellman groups for use with IETF standards,
IETF RFC 5114 (2008)

23. Solinas, J.A.: Generalized Mersenne Numbers (1999)
24. Nascimento, E., Chmielwski, L., Oswald, D., Schwabe, P.: Attacking embedded ECC

implementations through cmov side channels. Selected Areas in Cryptology – SAC 2016,
Springer (2016, to appear)

25. Tschofenig, H., Pegourie-Gonnard, M.: Performance of state-of-the-art cryptography on
ARM-based microprocessors. In: NIST LWC Workshop (2015)

26. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve cryptography on
embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol.
8250, pp. 244–261. Springer, Cham (2013). doi:10.1007/978-3-319-03515-4_16

27. Coron, J.-S., Gouget, A., Icart, T., Pailler, P.: Supplemental access control (PACE v2):
security analysis of PACE integrated mapping (2011). https://eprint.iacr.org/2011/058.pdf

28. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randiram, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. http://eprint.iacr.org/

29. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records (2006). https://cr.yp.to/
ecdh/curve25519-20060209.pdf

30. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation
analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS,
vol. 6476, pp. 46–61. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17650-0_5

31. Batina, L., Chmielewski, Ł., Papachristodoulou, L., Schwabe, P., Tunstall, M.: Online
template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol.
8885, pp. 21–36. Springer, Cham (2014). doi:10.1007/978-3-319-13039-2_2

32. Bernstein, D.J.: Salsa20 design (2005). https://cr.yp.to/snuffle/design.pdf

Making Password Authenticated Key Exchange Suitable 363

https://tools.ietf.org/html/rfc6628
http://eprint.iacr.org/2010/334
https://www.bsi.bund.de
https://www.bsi.bund.de
https://eprint.iacr.org/2013/647.pdf
http://dx.doi.org/10.1007/978-3-540-89255-7_20
http://dx.doi.org/10.1007/978-3-319-03515-4_16
https://eprint.iacr.org/2011/058.pdf
http://eprint.iacr.org/
https://cr.yp.to/ecdh/curve25519-20060209.pdf
https://cr.yp.to/ecdh/curve25519-20060209.pdf
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-319-13039-2_2
https://cr.yp.to/snuffle/design.pdf

33. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: Simon and
speck: block ciphers for the internet of things (2015). http://csrc.nist.gov/groups/ST/lwc-
workshop2015/papers/session1-shors-paper.pdf

34. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a weil descent. In: Wang, X.,
Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34961-4_28

35. Gaudry, P., Hess, F., Smart, N.: Constructive and destructive facets of Weil descent on
elliptic curves. J. Cryptol. 15, 19–46 (2002). http://www.hpl.hp.com/techreports/2000/HPL-
2000-10.html

36. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve
discrete logarithm problem. J. Symbolic Comput. 44, 1690–1702 (2009). http://eprint.iacr.
org/2004/073

364 B. Haase and B. Labrique

http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session1-shors-paper.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session1-shors-paper.pdf
http://dx.doi.org/10.1007/978-3-642-34961-4_28
http://www.hpl.hp.com/techreports/2000/HPL-2000-10.html
http://www.hpl.hp.com/techreports/2000/HPL-2000-10.html
http://eprint.iacr.org/2004/073
http://eprint.iacr.org/2004/073

Security Evaluation

Back to Massey: Impressively Fast, Scalable
and Tight Security Evaluation Tools

Marios O. Choudary(B) and P.G. Popescu

University Politehnica of Bucharest, Bucharest, Romania
marios.choudary@cs.pub.ro, pgpopescu@yahoo.com

Abstract. None of the existing rank estimation algorithms can scale to
large cryptographic keys, such as 4096-bit (512 bytes) RSA keys. In this
paper, we present the first solution to estimate the guessing entropy of
arbitrarily large keys, based on mathematical bounds, resulting in the
fastest and most scalable security evaluation tool to date. Our bounds
can be computed within a fraction of a second, with no memory overhead,
and provide a margin of only a few bits for a full 128-bit AES key.

Keywords: Side-channel attacks · Guessing entropy · Bounds ·
Scalability

1 Introduction

Side-channel attacks are powerful tools to extract secret information from hard-
ware devices, such as the cryptographic microcontrollers used in banking smart-
cards. These attacks apply a divide-and-conquer strategy, such that they are
able to target each subkey byte of a cryptographic algorithm independently.
This may allow an attacker to mount a practical side-channel attack on a block
cipher such as AES, when using a key of 128 or 256 bits (16 or 32 bytes, respec-
tively), by targeting each of the 16 or 32 key bytes independently, whereas a
purely brute-force search attack on the full key is computationally infeasible.

Recent advances in side-channel attacks have focused on the problem of esti-
mating the rank of the full key of a cryptographic algorithm, after obtaining
sorted lists of probabilities for the different subkeys that compose the full key
(e.g. lists for the 16 subkey bytes of AES, when used with a 128-bit key).

These recent algorithms represent very useful tools for security evaluators
that need to estimate the security of a given device. The algorithm proposed
by Veyrat-Charvillon et al. [7] was the first method that could estimate the
rank of a full 128-bit key, albeit with a considerable error margin. More recent
algorithms [11–13] have reduced the bounds of this estimation to within one bit
for 128-bit keys and can run within seconds of computation, after being given
with a list of sorted probabilities for the individual subkeys.

We thank our God, the One God in Three Persons: Father, Son and Holy Spirit, for
this work.

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 367–386, 2017.
DOI: 10.1007/978-3-319-66787-4 18

368 M.O. Choudary and P.G. Popescu

But none of these algorithms can scale for large keys composing of more than
256 bytes (e.g. an RSA 2048 or 4096 bit key), while at the same time providing
tight bounds. Furthermore, even for smaller key sizes (e.g. 128-bit AES key),
existing approaches can deviate from the actual security metric.

In this paper, we present sound mathematically-derived bounds for the guess-
ing entropy, which allow us to evaluate the security of devices using arbitrary
large keys (even 512 bytes or more). These have no memory requirements, can
be computed instantaneously and provide bounds within a few bits.

2 Background: Side-Channel Attacks and Key
Enumeration

Given a physical device (e.g. a smartcard) that implements a cryptographic algo-
rithm, such as AES, we may record side-channel traces (power consumption or
electromagnetic emissions) using an oscilloscope. In this case, for each encryption
of a plaintext pi with a key k�, we can obtain a leakage trace xi that contains
some information about the encryption operation.

For the particular case of AES and other similar block ciphers that use a
substitution box (S-Box), a common target for side-channel attacks is the S-box
operation v = S-box(k � ⊕p) from the first round of the block cipher. Since this
operation is done for each subkey k� in part (for AES each subkey only has 8
bits), we can attack each of the subkeys separately. And by using information
from the leakage traces, a side-channel attack such as DPA [1], CPA [3] or Tem-
plate Attacks [2] can assign higher probabilities to the correct subkeys, leading
to a very powerful brute-force search on each subkey.

After obtaining the lists of probabilities for each subkey, we may need to
combine these lists in some way in order to determine what are the most likely
values for the full cryptographic key. One important motivation for this is that
secure devices, such as the microcontrollers used in EMV cards, need to obtain a
Common Criteria certification at some assurance level (e.g. EAL4+). To provide
such certification, evaluation laboratories may need to verify the security of
devices against side-channel attacks also for the case of full-key recovery attacks,
in particular where some subkeys may leak considerably different than others.

For the particular case of AES, we need to combine from 16 bytes (128-bit
key) to 32 bytes (256-bit key). If the target device leaks enough information and
sufficient measurements are done, then the attack may provide a probability close
to one for the correct subkey value, while assigning a very small probability to
the other candidate subkey values. In this case, the combination is trivial, as we
only need to use the most likely value for each subkey. However, in practice, due
to noise in the measurements and various security measures in secured devices,
the correct value of each subkey may be ranked anywhere between the first and
the last position. In this case, a trivial direct combination of all the lists of
probabilities is not computationally feasible. Note that this problem arises in
any scenario where we need to combine multiple lists of probabilities, not just
in the case of AES, as we shall show below.

Back to Massey 369

To deal with this combination problem in the context of side-channel attacks,
two kinds of combination algorithms have emerged in recent years: key enumera-
tion and rank estimation algorithms. Key enumeration algorithms [5,14] provide
a method to output full keys in decreasing order of likelihood, such that we can
minimize the number of keys we try until finding the correct one (which is typi-
cally verified by comparing the encryption of a known plaintext/ciphertext pair).

The other kind of algorithms, which are directly related to our paper, are
the rank estimation algorithms. These algorithms provide an estimate of the full
key rank, i.e. the number of keys we should try until finding the correct one if
we were to apply a similar approach to key enumeration. The great advantage
of rank estimation algorithms is that we can estimate the key rank even if this
rank is very high (e.g. 280 or larger), whereas enumerating such large number of
keys is computationally infeasible. For security evaluations, this was until now
probably the most convenient tool, since it can quickly estimate the security of
a device. However, it is important that these rank estimation algorithms provide
some guarantee of their bounds, since otherwise their output can be misleading.

Veyrat-Charvillon et al. [7] proposed the first efficient rank estimation algo-
rithm for 128-bit keys, which could run in between 5 and 900 s. The main
drawbacks of this algorithm are that the bounds of the rank estimation can
be up to 20–30 bits apart from the real key rank and the required time to
tighten the bounds increases exponentially. More recently, new algorithms [11–
13] have improved the speed and tightness of the rank estimation. Among these,
the histogram-based approach of Glowacz et al. [11] is probably the fastest and
scales well even up to keys composed of 128 bytes (e.g. 1024-bit RSA key).

Nevertheless, none of these recent algorithms can scale efficiently to larger
cryptographic keys, e.g. 2048-bit (256 bytes) or 4096-bit (512 bytes) keys, such
as common RSA keys used for public key encryption. We have tested the C
implementation of Glowacz et al. [11] on 256 subkey bytes and it took about 64
seconds per iteration (using the default N = 2048 bins and the merge parameter
set to two, i.e. doing a pre-computation step where lists of subkey probabilities
are first combined two by two; for merge = 3 the memory requirements killed
the program), while for 512 subkey bytes (merge = 2) the memory requirements
killed again the program1. The algorithm of Martin et al. [13] is also prohibitive
for large keys, since it runs in O(m2n log n), where m is the number of subkeys
and n is the number of possible values per subkey. Similarly, the PRO algorithm
of Bernstein et al. [12] (which is the fastest of the two proposed by the authors)
took about 5 h for 256 subkey bytes and made the evaluation platform run out
of swap memory (according to their results).

In contrast, our methods presented in the following sections allow us to obtain
tight bounds instantaneously for arbitrarily large keys2. This is the first fully
scalable security evaluation method proposed to date.

1 On a Intel i5 4-core CPU at 3.2 GHz, with 16 GB RAM.
2 The only limitation being the numerical representation used by the computing

machine.

370 M.O. Choudary and P.G. Popescu

A possible scenario where such scalable methods are required, is the evalu-
ation of side-channel attacks against the key loading operation. That is, side-
channel attacks which target the transfer of keys from memory to registers,
rather than the cryptographic algorithm itself. This was the case for exam-
ple in the attacks of Oswald and Paar against the commercial Mifare DES-
Fire MF3ICD40 [6] or the attacks of Choudary and Kuhn [8] against the AVR
XMEGA. Recent secure devices, such as the A7101CGTK2: Secure authenti-
cation microcontroller [23] support RSA encryptions with keys up to 4096 bits
(512 bytes). Hence, in order to evaluate the security of these devices against
full-key recovery side-channel attacks during the key loading operation, we need
scalable rank estimation algorithms.

Furthermore, our methods are generally applicable, so they can be used in
any other scenario where probability lists need to be combined to determine the
approximate security of some system.

3 Experimental Data

In order to present and demonstrate our results, we used two distinct datasets,
one from a hardware AES implementation and the other from MATLAB sim-
ulated data. The first dataset consists of 220 ≈ 1 M power-supply traces of the
AES engine inside an AVR XMEGA microcontroller, obtained while the cryp-
tographic engine was encrypting different uniformly distributed plaintexts. The
traces correspond to the S-box lookup from the first round key. Each trace con-
tains m = 5000 oscilloscope samples recorded at 500 MS/s, using a Tektronix
TDS7054 oscilloscope, configured at 250 MHz bandwidth in HIRES mode with
Fastframe and 10 mV/div vertical resolution, using DC coupling. The XMEGA
microcontroller was powered at 3.3 V from batteries and was run by a 2 MHz
sinewave clock. We shall refer to this as the real dataset.

The second dataset consists of simulated data, generated using MATLAB.
The data contains unidimensional leakage samples xi produced as the hamming
weight of the AES S-box output value mixed with Gaussian noise, i.e.

xi = HW(S-box(k ⊕ pi)) + ri, (1)

where pi is the plaintext byte corresponding to this trace, and ri represents the
Gaussian noise (variance 10). We shall refer to this as the simulated dataset.

3.1 Template Attacks

To use our datasets with the methods evaluated in this paper, we need to obtain
lists of probabilities for the possible values of the 16 subkeys used with our AES
implementations. To do this we use template attacks (TA) [2,8] on each subkey
during the S-box lookup of the first AES round.3

3 For the case of the real dataset, we first applied a Correlation Power Analysis (CPA)
attack [3] to determine which is the leakage sample that leaks the most and then
used this single sample in a template attack.

Back to Massey 371

After executing a side-channel attack using a vector X of leakage traces
(e.g. the real or simulated traces in our case), we obtain a vector of scores or
probabilities d(k|X) ∈ R

|S| for each possible key byte value k ∈ {1, . . . , |S|},
where |S| is the number of possible values (typically |S| = 256 for one AES
subkey byte). In the case of template attacks we obtain real probabilities and
we shall often write P (k|X) = d(k|X).4

After obtaining the probabilities Pi(k|X) for each subkey byte i, we can
compute the security metrics and rank estimation methods presented below.

4 Security Metrics

To evaluate the security of a device against different side-channel attacks, an
evaluator will typically use some evaluation metric. Standaert et al. [4] presented
several such metrics for the case of attacks that target a single subkey at a time.
Among these, we present below the guessing entropy and the conditional entropy.
Afterwards we show how to derive scalable and tight bounds for these metrics.
These allow us to obtain very efficient methods for estimating the security of
devices against full-key recovery side-channel attacks.

4.1 Guessing Entropy

In 1994, James L. Massey proposed a metric [16], known as the Guessing Entropy,
to measure the average number of guesses that an attacker needs to find a secret
after a cryptanalytic attack (such as our side-channel attacks).

Given the probability vectors P (k|X) for each subkey obtained after a side
channel attack, we can compute Massey’s guessing entropy as follows. First, sort
all the probability values P (k|X), obtaining the sorted probability vector p =
{p1, p2, . . . , p|S|}, where p1 = maxk P (k|X), p2 is the second largest probability
and so on. Then, compute Massey’s guessing entropy (GM) as:

GM =
|S|∑

i=1

i · pi. (2)

Massey’s guessing entropy represents the statistical expectation of the
position of the correct key in the sorted vector of conditional probabilities. A
similar measure is the actual guessing entropy (GE) [4], which provides the
position of the correct key in the sorted vector of conditional probabilities. The
GE is computed as follows: given the vector of sorted probabilities (or scores)

4 Unprofiled side-channel attacks such as CPA often return a score vector, e.g. based
on the correlation coefficient ρk ∈ [−1, 1] for each possible candidate value k, which
might not work very well with rank estimation methods. However, even in the unpro-
filed setting is possible to use other methods, such as linear regression on the fly [15]
to obtain pseudo-probabilities that work well with rank estimation algorithms.

372 M.O. Choudary and P.G. Popescu

p = {p1, p2, . . . , p|S|}, return the position of the probability corresponding to
the correct key k�5:

GE = i, pi = P (k � |X). (3)

As we can see from their definitions, both measures are computed from the
posteriori probabilities of the keys given a set of leakage traces, but the GM
computes the expected position of the correct key, while the GE computes the
actual position of the correct key. For this reason, the GE requires knowledge of
the correct key, while the GM does not. Furthermore, we can see that averaging
the GE over many experiments we approximate precisely the GM. Therefore, if
we had exact probabilities, the GM would be the expected value of the GE.

In terms of usage, the GE is the most used measure in the side-channel
evaluations published so far, mainly because it represents the actual position of
the correct key and also because it can be computed even when using score-based
attacks which do not output probabilities for each key (e.g. by sorting the keys
according to their correlation after a correlation power attack and selecting the
position of the correct key).

However, if we can obtain good probabilities for the key candidates (e.g. by
using template attacks), then the GM can be a better evaluation tool, because
as we said, the GM represents the expected value of the GE, but also because
it is less affected by minor differences between probabilities. That is, when p1 is
much larger than the other probabilities, both measures will return 1 (or close to
1). On the other hand, for all scenarios in which the key is not easy to detect and
the probabilities p1, p2, . . . , p|S| are very close to each other, any minor variation
in the probabilties (e.g. due to measurement errors) will lead to possibly large
variations of GE, while GM will provide the correct result, i.e. the expected value
(which should be around (|S| + 1)/2 if all the probabilities are very close).

Furthermore, the GM will allow us to derive the fast, scalable and tight
bounds that we present in the following sections.

In our results, we shall show the logarithm (base 2) of the guessing entropy.

4.2 Conditional Entropy

In information theory, the mutual information I(X,Y) between two random
variables X and Y is defined as:

I(X,Y) = H(X) − H(X|Y), (4)

where
H(X) = −E log2 P (X) = −

∑

x∈X
P (x) · log2 P (x) (5)

represents Shannon’s entropy for the random variable X, and

H(X|Y) =
∑

y∈Y
P (y)H(X|Y = y) = −

∑

y∈Y
P (y)

∑

x∈X
P (x|y) · log2 P (x|y) (6)

5 This measure assumes that an evaluator knows which is the correct key.

Back to Massey 373

represents the conditional entropy of X given Y . In short, the conditional entropy
shows how much entropy (uncertainty) remains about the variable X when the
variable Y is given.

As before, we are interested in knowing how much uncertainty (entropy)
remains about the random variable K (representing the secret key byte k), when
a set of leakage traces (represented by the variable L) is given; this can be quan-
tified using the conditional entropy defined above. If K represents one key byte,
as in our setup, then H(K) = 8.6 Using this notation we obtain the conditional
entropy

H(K|L) =
∑

X∈L
P (X)H(K|L = X) = −

∑

X∈L
P (X)

∑

k∈K
P (k|X) · log2 P (k|X).

(7)
In practice, we can compute the conditional entropy from (7) using one of

the following options7:

1. Compute an integral over the full leakage space, leading to the
computationally-intensive form:

H(K|L) = −
∫

X∈L
P (X)

∑

k∈K
P (k|X) · log2 P (k|X)dX. (8)

2. Use Monte Carlo sampling from a limited subset of N traces:

H(K|L) = − 1
N

N∑

i=1

∑

k∈K
P (k|Xi) · log2 P (k|Xi). (9)

The first form is computationally intensive, as for multi-dimensional leakage
traces the integral in (8) needs to be computed over a multi-dimensional space.
Therefore, in our experiments we used the second form, where N is the number of
iterations (usually N = 100) over which we computed the second summation and
the probabilities P (k|Xi) were obtained from template attacks on each iteration.

5 Tight Bounds for Guessing Entropy

In this section, we explain how to adapt several known bounds (lower and upper)
of the guessing entropy (GM) in the context of side-channel attacks, when we
deal with a single list of probabilities (e.g. targeting a single subkey byte). These
bounds can be used as a fast approximation of the GM (since they run in linear
time, because they don’t require the sorting operation that is necessary for the
computation of GM), but their great advantage is in the context of multiple lists
of probabilities (see next section).
6 We assume all key bytes are equally likely, in the absence of leakage information.
7 There are other ways to estimate the conditional entropy, including several variants

of the Monte Carlo method. Here we focused only on the two most popular such
variants.

374 M.O. Choudary and P.G. Popescu

5.1 Bounds for Massey’s Guessing Entropy from Probabilities

Arikan [19] presented a lower and an upper bound for GM. We can adapt these
bounds to our side-channel context using the notation from previous sections,
as follows:

1
1 + ln |S|

⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

≤ GM ≤
⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

, (10)

with the important remark that in the lower and upper bounds the individ-
ual probabilities pk = P (k|X) do not need to be sorted. This means that
both bounds can be computed in O(|S|). The upper bound of Arikan has been
improved in [18], by Theorem 3, yielding:

GM ≤ 1
2

⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

+
1
2

≤
⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

.

Combining this with (10), we obtain the tighter relation:

1
1 + ln |S|

⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

≤ GM ≤ 1
2

⎡

⎣
|S|∑

k=1

p
1/2
k

⎤

⎦
2

+
1
2
. (11)

We shall refer to these lower and upper bounds as LBGM and UBGM, respectively.
We show the results of using these bounds on the simulated (left) and real

(right) datasets in Fig. 1. We can make several observations. Firstly, the bounds
are in both cases within 1–2 bits apart8 for all values of the guessing entropy.

10 0 10 1 10 2
-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE

10 0 10 1 10 2 10 3
-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
E

nt
ro

py

LB_GM
UB_GM
GM
GE

nr attack traces nr attack traces

Fig. 1. GM, GE and GM bounds from probabilities for the simulated (left) and real
(right) datasets, when targeting a single subkey byte. These are averaged results over
100 experiments.

8 While this is not as tight as other rank estimation algorithms, we shall see later that
our bounds stay tight even when using a large number of target subkey bytes and
that they are always sound (due to the mathematical demonstration), while existing
rank estimations can provide estimation and calculation errors.

Back to Massey 375

Secondly, we see that for the simulated dataset the GM is very close to the GE,
but for the real dataset the GE deviates considerably and even goes outside the
upper bound of the GM. In all our experiments, we observed that the GM stays
either close or below the GE. This can be explained by the fact that even if many
probabilities are close to each other in value, small ordering errors can have a
higher impact on GE (which only depends on the order) than on GM (which
only depends on the probability values).

As we shall show later, previous rank estimation algorithms, such as the
one of Glowacz et al. [11], also tend to follow more the GM rather than the
GE, because they also rely on the values of probabilities rather than the exact
position of the correct key, even though such algorithms also use the value of
the correct key in order to position their bounds closer to the actual position of
the correct key. Nevertheless, both measures can be useful. If we need the exact
position of the key for a particular set of measurements, then GE is the best tool.
However, the GE cannot be computed for large number of target subkeys and
is also subject to the particular measurements, i.e. noise can cause the correct
subkey value to be ranked very bad, even though its probability is very close to
those in the top, leading to a very high GE, while the GM will show a lower
value. Hence, in such scenario the GM may actually provide a better intuition
since with a new set of traces (e.g. the attacker), the correct subkey value could
be ranked better, leading to a smaller GE. Furthermore, the fact that the GM
will in general be below the GE (or very close to it in case it is slightly above)
means that relying on the GM will provide a safer conclusion from a designer
perspective. That is, if the resulting GM is above a desired security level for
some scenario, then we can be confident enough that the GE will either be very
close or above.

From the figure, we also see that GM always stays within the bounds. This
is guaranteed, given the mathematical derivation. And as we shall see, the algo-
rithmic approaches can introduce estimation errors and provide erroneous results
that are neither between our bounds nor close to the expected GE.

Besides the above differences between GM and GE, what is most important
in our context, is that we can obtain very fast and scalable bounds for GM.

Finally, we mention another important difference between GM and GE,
namely for the computation of GE we need knowledge of the real key (so we
can compute its position), while for the GM we do not. Hence, our GM bounds
allow anyone to estimate the security of a device, while previous rank estimations
could only be used by evaluators having access to the real key (target) values.

5.2 Bounds from Conditional Entropy

We now show how to bound Massey’s guessing entropy as a function of the con-
ditional entropy, using Massey’s inequality [16] and McEliece and Yu inequal-
ity [17]. This allows us to obtain a general relation between the guessing entropy
and the conditional entropy in the context of side-channel attacks.

376 M.O. Choudary and P.G. Popescu

Let H(K|L = X) be the conditional entropy obtained for the set of leakage
traces X. Applying Massey’s inequality [16] to GM and H(K|L = X), we obtain
the following upper bound for the conditional entropy:

2 + log(GM − 1) ≥ H(K|L = X). (12)

Then, applying McEliece and Yu’s inequality [17], we obtain a lower bound for
the conditional entropy as:

H(K|L = X) ≥ 2 log |S|
|S| − 1

(GM − 1). (13)

Using (12) and (13), we obtain lower and upper bounds for GM as a function of
the conditional entropy:

2H(K|L=X)−2 + 1 ≤ GM ≤ |S| − 1
2 log |S|H(K|L = X) + 1. (14)

We refer to these as LBGMHK and UBGMHK, respectively.

Remark 1. The left inequality in (14) is true when H(K|L = X) is greater than
2 bits.

10 0 10 1 10 2
-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
En

tro
py

LB_GM
UB_GM
GM
GE
LB_GMHK
UB_GMHK

10 0 10 1 10 2 10 3
-1

0

1

2

3

4

5

6

7

G
ue

ss
in

g
En

tro
py

LB_GM
UB_GM
GM
GE
LB_GMHK
UB_GMHK

nr at tack t races nr at tack t races

Fig. 2. GM, GE and GM bounds from probabilities and conditional entropy H(K|L)
for the simulated (left) and real (right) datasets, when targeting a single subkey byte.
These are averaged results over 100 experiments.

We show these bounds in Fig. 2, along with the previous bounds, for both
the simulated (left) and real (right) datasets. We can see that in both cases the
lower bound LBGMHK stays within 1 bit of GM for all values of GM, while the
upper bound UBGMHK deviates substantially, even more than 3 bits from the
GM. Secondly, in both results we see that UBGM is a much better upper bound
than UBGMHK. We observed this in all our experiments. Combining the best of
these bounds, we can say that for the lower bound we should use the maximum
between LBGMHK and LBGM, while for the upper bound we should use UBGM.

Back to Massey 377

6 Impressive Scaling: Scalable Bounds for Guessing
Entropy

We now show how to scale the bounds presented in the previous section to
arbitrarily many lists of probabilities, so they can be used to estimate the secu-
rity of a full AES key (16–32 subkey bytes) or even RSA key (128–512 subkey
bytes), while being computable in time that increases linearly with the number
of subkeys targeted.

In the following, we shall use the notation GMf to refer to the GM for the
full key, ns for the number of subkeys composing the full target key, and |S|ns for
the number of possible full key values (e.g. ns = 16, |S|ns = 2128 for AES-128).

6.1 Using Bounds of GM for Evaluation of Full Key

In Sect. 5.1, we showed how to derive tight bounds for GM from probabilities
in the case of a single subkey byte. Considering the shape of the summation
involved in (11), we need a way to avoid the computation of all the possible
probabilities in the set of cross-probabilities from the full key space. Splitting
the full sum into groups of partial sums leads to our main result:

Theorem 1 (LBGM and UBGM for full key). Let pi
1, p

i
2, ..., p

i
|S| be the probabil-

ities for the i = 1, 2, ..., ns target subkey. Then we have

1
1 + ln |S|ns

ns∏

i=1

⎡

⎣
|S|∑

k=1

√
pi

k

⎤

⎦
2

≤ GMf ≤ 1
2

ns∏

i=1

⎡

⎣
|S|∑

k=1

√
pi

k

⎤

⎦
2

+
1
2
.

Proof. Considering the LBGM and UBGM bounds for the full key, we have

1
1 + ln |S|ns

⎡

⎣
|S|ns∑

k=1

√
pf

k

⎤

⎦
2

≤ GMf ≤ 1
2

⎡

⎣
|S|ns∑

k=1

√
pf

k

⎤

⎦
2

+
1
2
.

Then, adding the fact that the new probabilities are combined as a product
of ns probabilities from target subkeys, i.e. pf

k =
∏ns

i=1 pi
j , with j = j(k, i) ∈

{1, 2, ..., |S|} and factoring accordingly, we obtain that

|S|ns∑

k=1

√
pf

k =

⎡

⎣
|S|∑

k=1

√
p1k

⎤

⎦ ·
⎡

⎣
|S|∑

k=1

√
p2k

⎤

⎦ · . . . ·
⎡

⎣
|S|∑

k=1

√
pns

k

⎤

⎦

i.e.
|S|ns∑

k=1

√
pf

k =
ns∏

i=1

⎡

⎣
|S|∑

k=1

√
pi

k

⎤

⎦

and we are done.

378 M.O. Choudary and P.G. Popescu

UBGM runs in O(|S|) and for full key runs in O(ns · |S|), i.e. the computation
time only increases linearly with the number of subkey bytes.

Remark 2. We can estimate the number of bits δ between our LBGM and
UBGM bounds for the full key as δ = log 2(UBGM) − log 2(LBGM) =
log 2(UBGM/LBGM). Ignoring the 1/2 factor (which is negligible as the num-
ber of subkeys increases), we obtain the following approximation:

δ ≈ log 2
(

1 + ln |S|ns

2

)
= log 2

(
1 + ns · ln |S|

2

)
bits.

6.2 Using Bounds of H(K|L) for Evaluation of Full Key

Assuming independence between target subkeys and considering the bounds pre-
sented into (14) applied for the full key space yields

Theorem 2 (LBGMHK and UBGMHK for full key). Let H(K|L = Xi) be the
conditional entropy for the i = 1, 2, ..., ns target subkey, then

2
∑ns

i=1 H(K|L=Xi)−2 + 1 ≤ GMf ≤ |S|ns − 1
2 log |S|ns

ns∑

i=1

H(K|L = Xi) + 1.

Proof. Considering (14) applied for full key space yields

2H(Kf |Lf=X)−2 + 1 ≤ GMf ≤ |S|ns − 1
2 log |S|ns

H(Kf |Lf = X) + 1,

where H(Kf |Lf = X) is the joint conditional entropy for all ns target subkeys.
And because of the assumed independence between target subkeys, yields from
[20, Theorem 2.6.6] that

H(Kf |Lf = X) =
ns∑

i=1

H(K|L = Xi),

which gives us the wanted result.

Again, both bounds LBGMHK and UBGMHK run in O(|S|) and for full key in
O(ns · |S|), i.e. they both scale linearly with the number of target subkeys.

In Fig. 3, we show our scaled bounds for GMf for the case of targeting two
subkey bytes. We computed both GMf and GEf by first obtaining the cross-
product of probabilities between the first two subkeys in the datasets. We see
again that our bounds are correct for GMf , while GEf deviates slightly from
GMf for the real dataset (refer to Sects. 4.1 and 5.1 for an explanation). LBGM

and UBGM stay within about 2 bits in both the simulated and real experiments
from Fig. 3. UBGMHK stays again far from GMf , but LBGMHK is tighter than
LBGM for higher values of GMf , as we saw also in the case of a single subkey
byte. This confirms that for the lower bound we should use the maximum from
LBGM and LBGMHK, while for the upper bound we should use UBGM.

Back to Massey 379

10 0 10 1 10 2

nr at tack t races

0

2

4

6

8

10

12

14

16
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB
GM
GE
LB_GMHK
UB_GMHK

10 0 10 1 10 2 10 3

nr attack traces

0

2

4

6

8

10

12

14

16

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
GM
GE
LB_GMHK
UB_GMHK

Fig. 3. GM, GE and GM bounds for the simulated (left) and real (right) datasets,
when targeting two subkey bytes. These are averaged results over 100 experiments.

6.3 GM Bounds from Element Positioning

Considering the computational advantage of working with scalable bounds for
GM, in [21,22], based on an inequality related to positioning an element into a
sorted matrix, the authors present new scalable bounds for GM as follows:

ns∏

i=1

GMi ≤ GMf ≤ |S|ns −
ns∏

i=1

(|S| − GMi) ,

where GMi is the guessing entropy of the i = 1, 2, ..., ns target subkey.
In order to answer the authors, which left the improvement of these bound as

open question, we accepted the challenge and refined both bounds. But because
we observed (see Fig. 7 in Appendix) that these improved bounds are still much
weaker than the LBGM and UBGM bounds, we leave the results and proofs of
this part in Appendix.

6.4 GM Bounds Versus the FSE 2015 Rank Estimation

As mentioned in Sect. 2, several algorithms [7,11–13] have been proposed in
recent years to estimate the rank of the correct full key. Among them, the rank
estimation of Glowacz et al. [11], to which we shall refer as FSE15 from now
on, is probably the fastest and scales well for keys up to 128 bytes (e.g. 1024-bit
RSA key). For this reason, in Fig. 4, we compare our GM bounds to the results
of FSE15 (using their C implementation) for the case of two subkeys, for both
the simulated (left) and real (right) datasets. The results show that the FSE15
bounds generally stay within our GM bounds in both data sets, but for the real
data set they go slightly beyond our bounds, following the GEf .

380 M.O. Choudary and P.G. Popescu

10 0 10 1 10 2 10 3

nr attack traces

0

2

4

6

8

10

12

14

16

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
GM
GE
LB_GMHK
LB_FSE15
UB_FSE15

10 0 10 1 10 2

nr at tack t races

0

2

4

6

8

10

12

14

16
G

ue
ss

in
g

E
nt

ro
py

GM_LB
GM_UB
GM
GE
LB_GMHK
LB_FSE15
UB_FSE15

Fig. 4. GM, GE GM bounds and FSE15 bounds for the simulated (left) and real
(right) datasets, when targeting two subkey bytes. These are averaged results over 100
experiments.

10 0 10 1 10 2

nr at tack t races

0

20

40

60

80

100

120

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
LB_GMHK
LB_FSE15
UB_FSE15

10 0 10 1 10 2 10 3

nr attack traces

0

20

40

60

80

100

120

G
ue

ss
in

g
E

nt
ro

py

GM_LB
GM_UB
LB_GMHK
LB_FSE15
UB_FSE15

Fig. 5. GM bounds and FSE15 bounds for the simulated (left) and real (right) datasets,
when targeting 16 subkey bytes. These are averaged results over 100 experiments.

In Fig. 5, we compare our GM bounds and the FSE15 bounds for the full 16-
byte AES key, again for the simulated (left) and real (right) datasets. From this
figure, we see that our GM bounds are tight even for the full 128-bit AES key (16
subkeys), LBGM and UBGM staying within 5 bits of each other in both experi-
ments. From the experiments on the real dataset, we also see that LBGMHK fails
once the guessing entropy decreases below 70 bits, due to numerical limitations9

when computing the bound at this point. Comparing our bounds to the FSE15
bounds in the simulated data set, we can see that for higher values of GMf , the
FSE15 bounds stay within our GM bounds, but afterwards they start to deviate,
due to the deviation of GEf from GMf . A similar pattern is observed with the
real data set.

9 We used MATLAB R2015b.

Back to Massey 381

From these experiments, we can see that the FSE15 bounds follow the GE,
while our GM bounds follow the GM, and in general the FSE15 bounds stay
within our GM bounds, due to the GE being close to the GM. Depending on
the requirements, one may prefer to use one tool or the other. However, while
less tight than the FSE15 bounds, our GM bounds have the advantage of being
scalable to arbitrarily large number of subkeys, while any of the previous rank
estimation algorithms, including the FSE15 bounds are limited due to memory
and computation time to some maximum size.

6.5 GM Bounds Versus Rank Estimation Algorithms

Given the development of several rank estimation algorithms in the recent
years [7,9–13,21], we provide in Table 1 a comparison of these algorithms with
our GM bounds in terms of computation time, memory requirements, tightness
and accuracy for different key sizes.

Table 1. Comparing GM bounds with rank estimation algorithms.

Method Good Bad

FSE ’15 [11] Very fast (<1 s) for up to ns = 128.

Very tight bounds

Not scalable for ns ≥ 256 (slow)

Asiacrypt ’15 [13] Tight bounds (similar to FSE’15).

Fast for ns = 16 (1–4 s)

Memory can be prohibitive for

large key sizes. Not scalable:

O(ns
2|S| log |S|) (very slow for

large key size)

Eurocrypt ’15 [10] Success Rate (SR) for full key as

function of time complexity. Time:

O(ns · Nmax2)

No method to go from SR to key

rank for a given set of leakage

traces. Not scalable for tighter

bounds (would require large

Nmax)

PRO [12] Fast for ns = 16 (about 7 s). Tight

bounds as function of α (can be slow)

Can run out of RAM for large

keys (α = 213). Takes about 5 h

for large keys, not scalable

Eurocrypt ’13 [7] Bounds within 6 bits for key ranks

smaller than 230, when targetting a

128-bit key

Run time: 5 s–900 s. Bound up to

20–30 bits for large key ranks

(250 − 2100). Memory: 4k – 83

MB. Weak bounds (40 bit) for

small key rank

CARDIS ’14 (Ye) [9] Acceptable bound, unclear for 16-bit

(close to Eurocrypt’13)

Computationally intensive.

Scalability may be bad (not

evaluated)

CT-RSA ’17 [21] Fast and scalable: O(ns · (|S| log |S|)) Weak lower bound. Very weak

upper bound

LBGM and UBGM Guaranteed bounds for GM. Fastest

method to date. Scales to arbitrarily

large ns: O(ns · |S|). Tight bounds (5

bits for 128-bit key). Constant

(negligible) memory

382 M.O. Choudary and P.G. Popescu

7 Conclusion

In this paper we have presented the first fully scalable, tight, fast and sound
method for estimating the guessing entropy from arbitrarily many lists of prob-
abilities. This method, based on mathematically-derived bounds, allows us to
estimate within a few bits the guessing entropy for a 128-bit key, but can also
be used to estimate the guessing entropy for cryptographic keys of 1024 bytes
(8192 bits) and much larger, which is not possible with any of the previous rank
estimation algorithms due to memory or running time limitations.

As an illustration of this capability, we show in Fig. 6, the computation of our
bounds for a 1024-byte (8192-bit) key10. For simplicity and easier reproducibility,
we have used the simulated dataset, where we have replicated the 16 lists of
probabilities (one for each target subkey byte) 64 times, so we get 1024 lists of
probabilities11. The plot shows our LBGM and UBGM bounds for this case. Note
in the right side, that the margin between our bounds is about 11.5 bits, which is
expected from Remark 2. We leave this figure as a reference for future methods,
as none of the previous ones could be used to obtain this plot.

10 0 10 1 10 2

nr at tack t races

0

1000

2000

3000

4000

5000

6000

7000

8000

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB

1 2
nr at tack t races

8060

8070

8080

8090

8100

8110

8120

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB

Fig. 6. LBGM and UBGM bounds for a 1024-byte (8192-bit) key, computed from 1024
lists of probabilities. We used a logarithmic Y-axis, as in the rest of the figures. On the
right, we show a zoom for na = 1 and na = 2 attack traces only.

Acknowledgement. This work has partially been funded by University Politehnica of
Bucharest, through the Excellence Research Grants Program, UPB - GEX. Identifiers:
UPB - EXCELENŢĂ - 2016, Noi metode pentru modelarea consumului de energie ı̂n
dispozitivele electronice and Managementul Eficient al Datelor ı̂n Sisteme Distribuite
Moderne bazat pe Noi Limite ale Entropiei (acronym: BigDataH), Contract numbers:
17&18/26.09.2016.

10 Computed using symbolic variables and variable precision arithmetic features of
MATLAB, within 13 seconds per iteration.

11 However, the computation of our bounds would work equally well for any set of lists
of probabilities.

Back to Massey 383

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

2. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

4. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

5. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

6. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis
and templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 207–222. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23951-9 14

7. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 8

8. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
doi:10.1007/978-3-319-08302-5 17

9. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham
(2015). doi:10.1007/978-3-319-16763-3 13

10. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

11. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

12. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. https://eprint.iacr.org/2015/221

13. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in paral-
lel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 13

14. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 4

http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-23951-9_14
http://dx.doi.org/10.1007/978-3-642-23951-9_14
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/978-3-319-16763-3_13
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
https://eprint.iacr.org/2015/221
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-53140-2_4

384 M.O. Choudary and P.G. Popescu

15. Choudary, M.O., Poussier, R., Standaert, F.-X.: Score-based vs. probability-based
enumeration – a cautionary note. In: Dunkelman, O., Sanadhya, S.K. (eds.)
INDOCRYPT 2016. LNCS, vol. 10095, pp. 137–152. Springer, Cham (2016). doi:10.
1007/978-3-319-49890-4 8

16. Massey, J.L.: Guessing and entropy. In: IEEE ISIT, p. 204 (1994)
17. McEliece, R.J., Yu, Z.: An inequality on entropy. In: IEEE ISIT 1995, p. 329 (1995).

ISBN: 0-7803-2453-6
18. Boztaş, S.: Comments on “An inequality on guessing and its application to sequen-

tial decoding”. IEEE Trans. Inf. Theory 43(6), 2062–2063 (1997)
19. Arikan, E.: An inequality on guessing and its application to sequential decoding.

IEEE Trans. Inf. Theory 42(1), 99–105 (1996)
20. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley

(2006). ISBN: 0-471-24195-4
21. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for

multi-subkey side-channel attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 311–327. Springer, Cham (2017). doi:10.1007/978-3-319-52153-4 18

22. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm
for multi-dimensional side-channel attacks. Cryptology ePrint Archive, Report
2015/1236 (2015). http://eprint.iacr.org/2015/1236

23. NXP A710x family: Secure authentication microcontroller. http://www.nxp.com/
products/identification-and-security/secure-authentication-and-anti-counterfeit-
technology/secure-authentication-microcontroller:A710X FAMILY. Accessed 11
Oct 2016

A GM bounds from element positioning

Considering the computational advantage of working with scalable bounds for
GM, in [21,22], based on an inequality related to positioning an element into a
sorted matrix, the authors present new scalable bounds for GM as follows:

ns∏

i=1

GMi ≤ GMf ≤ |S|ns −
ns∏

i=1

(|S| − GMi) , (15)

where GMi is the guessing entropy of the i = 1, 2, ..., ns target subkey.
In order to answer the authors, which left the improvement of these bound

as open question, we accept the challenge and refine both bounds as follows.
First, for the upper bound, we may observe that the base inequality involved

here, representing the positioning of an element into a sorted matrix built from
the combination of products of elements of two vectors x and y, see [22] Fig. 3,
i.e.

ij ≤ rank(xi, yj) ≤ n2 − (n − i)(n − j), i, j = 1, 2, ...n

is weak and its meaning is unclear (the position of an element could not go so
far). A more meaningful form of this inequality is a tighter one, like

ij ≤ rank(xi, yj) ≤ n2 − (n − i + 1)(n − j + 1) + 1

http://dx.doi.org/10.1007/978-3-319-49890-4_8
http://dx.doi.org/10.1007/978-3-319-49890-4_8
http://dx.doi.org/10.1007/978-3-319-52153-4_18
http://eprint.iacr.org/2015/1236
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY
http://www.nxp.com/products/identification-and-security/secure-authentication-and-anti-counterfeit-technology/secure-authentication-microcontroller:A710X_FAMILY

Back to Massey 385

and considering its right hand side applied for our context reveals an improved
upper bound for GM. But this improvement is almost unnoticeable in our exper-
iments, so we will not use it for the following discussions.

Now, for the lower bound we define as I1, I2, ..., Im nonempty, pairwise dis-
joint subsets of {1, 2, ..., ns}, with ∪jIj = {1, 2, ..., ns}, j = 1, 2, ...m, m ≤ ns

and with the same number of elements (|I1| = |I2| = ... = |Im| = ns/m).
We further define as GMIj the guessing entropy of the combined target sub-

keys from the subset Ij , j = 1, 2...,m. We have the following

Theorem 3 (EP bounds for GM). Considering the above we have
ns∏

i=1

GMi ≤
m∏

j=1

GMIj ≤ GMf .

Proof. The left hand side of the inequality follows directly from the combination
of the left hand sides of the inequality of [21, Theorem 2] particularized for d = j,
with j = 1, 2, ...,m, i.e. from inequalities

∏

i∈Ij

GMi ≤ GMIj , j = 1, 2, ...m.

For the right hand side of the inequality we notice that grouping the target
subkeys into subgroups of the same size, yields lists of probabilities per the new
target subkeys of the same size, so we can still apply the left hand side of the
generalized base inequality form [21] in order to obtain the wanted result.

It is easy to observe that the previous result is a refinement of the lower
bound presented into [21,22]. Also we can refine furthermore the result by using
a good grouping strategy. For example in practice ns = 16 so a lower bound will
arrive from grouping into 2 groups of 8 elements, then a weaker lower bound will
be derived by grouping into 4 groups of 4 elements, and so on until we group
each individual element, which is the lowest bound, i.e.

10 0 10 1 10 2

nr at tack t races

0

20

40

60

80

100

120

140

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB
GM_LB EP
GM_LB EP MERGE2
GM_UB EP

10 0 10 1 10 2 10 3

nr at tack t races

0

20

40

60

80

100

120

140

G
ue

ss
in

g
En

tro
py

GM_LB
GM_UB
GM_LB EP
GM_LB EP MERGE2
GM_UB EP

Fig. 7. GM bounds and EP bounds for the simulated (left) and real (right) datasets,
when targeting 16 subkey bytes. These are averaged results over 100 experiments.

386 M.O. Choudary and P.G. Popescu

Corollary 1.

ns∏

i=1

GMi =
ns∏

j=1

GMIj ≤
8∏

j=1

GMIj ≤
4∏

j=1

GMIj ≤
2∏

j=1

GMIj ≤ GMf .

Because of the computational limitations, in our experiments we have only
considered grouping as much as two elements per group, i.e. two subkeys. In
Fig. 7, we compare these bounds, with our GM bounds. We see that even after
merging, the two EP bounds are weaker than our LBGM and UBGM bounds.

Fast Leakage Assessment

Oscar Reparaz(B), Benedikt Gierlichs, and Ingrid Verbauwhede

Department of Electrical Engineering, imec-COSIC, KU Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium

{oscar.reparaz,benedikt.gierlichs,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. We describe a fast technique for performing the computa-
tionally heavy part of leakage assessment, in any statistical moment (or
other property) of the leakage samples distributions. The proposed tech-
nique outperforms by orders of magnitude the approach presented at
CHES 2015 by Schneider and Moradi. We can carry out evaluations
that before took 90 CPU-days in 4 CPU-hours (about a 500-fold speed-
up). As a bonus, we can work with exact arithmetic, we can apply
kernel-based density estimation methods, we can employ arbitrary pre-
processing functions such as absolute value to power traces, and we can
perform information-theoretic leakage assessment. Our trick is simple
and elegant, and lends itself to an easy and compact implementation.
We fit a prototype implementation in about 130 lines of C code.

Keywords: Leakage assessment · Efficient computation · Side-channel
analysis · Countermeasure

1 Introduction

Implementations of cryptographic protocols and algorithms often need to be pro-
tected against side-channel attacks. This is true for devices all along the range
from tiny embedded compute platforms, where an adversary is able to perform
local attacks (power [KJJ99], EM [QS01,GMO01], etc.), to cloud infrastructure,
where an attacker is able to perform remote attacks (timing attacks [BB03],
cache attacks [Per05], etc.). There is a large variety of countermeasures, some
are ad-hoc, others are supported by theory, some protect against specific attacks,
others protect against families of attacks, etc. However, most countermeasures
have in common that it is not easy to implement them properly, and thus the
effectiveness of their implementation needs to be carefully validated. This is done
by physical testing. The most common, classical approach is to apply relevant
attacks and assess the effort that is required to break the implementation. An
advantage of this approach is that one gets a good view on the security level pro-
vided by the implementation. A disadvantage is that the approach can be exten-
sive, time consuming and costly. Indeed, an attack may comprise many steps
(sample preparation, data acquisition, pre-processing, analysis, post-processing,
key enumeration) and for each step there are many possible techniques, and
there are many relevant attacks.
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 387–399, 2017.
DOI: 10.1007/978-3-319-66787-4 19

388 O. Reparaz et al.

Leakage assessment is a fundamentally different approach. It was introduced
by Coron, Naccache and Kocher [CKN00,CNK04] after the publication of Dif-
ferential Power Analysis [KJJ99] as a procedure to assess side-channel informa-
tion leakage. In brief, leakage assessment techniques allow to assess whether a
device leaks information that might be exploitable by side-channel attacks. The
approach gained momentum in security evaluations of countermeasures against
side-channel attacks in academia [BGN+14,SM15,DCE16] after it resurfaced in
publications by Cryptography Research Inc. [GJJR11,CDG+13]. Leakage assess-
ments (especially non-specific ones, see Sect. 2) are easy to carry out and can be
very sensitive.

Previous Work. Schneider and Moradi present formulae for leakage assessment
at any order traversing the dataset only once [SM15]. They base their approach
on the work of Pébay [P08]. The works of Durvaux and Standaert [DS16] and
Ding et al. [DCE16] are orthogonal to this paper, and can benefit from the
techniques we describe.

Our Contribution. We present a computational trick that serves to accelerate
the computationally heavy part of leakage assessment, in any statistical moment
or other property of the leakage samples distributions, by orders of magnitude
compared to [SM15].

2 Leakage Assessment

There is essentially only one approach to leakage assessment: it is Test Vector
Leakage Assessment (TVLA) by Cryptography Research (CRI).

The main idea is to check whether two well chosen data inputs (the test
vectors) lead to distinguishable side-channel information. One says that the
device leaks if the side-channel information is distinguishable. The test should
be repeated with a few pairs of input data to increase confidence. If the side-
channel information is not distinguishable one has learned little, in particular
one must not conclude that the device does not leak. Even when the device is
deemed leaking, one does not necessarily learn that key-extraction is easy.

In the remainder we focus on (local) power analysis attacks, where the side-
channel information is typically referred to as power traces or curves. It is
straightforward to adapt the technique to other sources of information leakage,
e.g. binary cache hit/miss.

Applying TVLA one chooses two inputs, A and B. One obtains measurement
traces from the processing of A or B. Practice has shown that tests are very
sensitive and pick up all kinds of systematic effects, therefore the measurement
process should be as randomized as possible. For example, measurements of
groups A and B should be randomly interleaved.

One ends up with two sets of measurements and computes a suitable statis-
tic or metric to determine if the samples in the two sets come from the same
distribution or not [GJJR11,CDG+13,MOBW13]. For instance, using Welch’s

Fast Leakage Assessment 389

two-tailed t-test with confidence level 99.999% one determines that the device
leaks if the threshold ±4.5 is exceeded.

The TVLA proposals by CRI distinguish specific and non-specific tests. In
specific tests one checks for leakage of one or a few chosen intermediate values.
One chooses the inputs A and B such that a “substantial” difference occurs only
for the chosen intermediate values while all other intermediate values appear
to be similar or random. This typically requires to know the key used by the
implementation. In non-specific tests one checks for leakage of any intermediate
value. Due to fundamental properties of cryptographic algorithms it often suffices
to choose two different inputs A and B.

To enhance the power of the assessment and to increase coverage of special
cases that are hard to anticipate, CRI proposed fixed versus random testing. One
input is fixed at the chosen value, the other input takes uniformly distributed
random values (in specific tests the domain can be restricted).

Durvaux and Standaert [DS16] argue that fixed versus fixed testing with two
different well chosen inputs can lead to faster leakage detection.

Anyhow, what we propose in the next section is orthogonal to this and hence
may serve to improve all flavors of leakage assessment.

3 Fast Leakage Assessment

The focus of this paper is on how one uses the measurement samples to compute
the test statistic. A simple approach could be to first obtain all measurements
and store them for instance on a hard disk. Then one reads the measurements
and uses chosen algorithms to compute the required moments of the distributions
and finally the statistic. A different approach could be to interleave data acqui-
sition and computation of statistical moments. There are different algorithms
with different properties: some algorithms require multiple passes through the
data set, some algorithms are single pass; some algorithms are numerically more
stable than others. In general, one wants to use algorithms that are efficient and
numerically stable. Typically one ends up using so-called update algorithms. For
each new sample, these algorithms update a number of intermediate results that
allow to compute the final value without having to pass through the data set
again. See [SM15] for a discussion.

Key Idea. The first key observation for our work is that all solutions and algo-
rithms discussed in the side-channel analysis-related literature directly compute
moments or statistics from samples. The second key observation is that, in order
to compute a distribution’s mean, one only needs a sample distribution his-
togram, and not the whole sample set. The same holds for variance, and actually
for any statistical moment or other property of the sampled distribution.

Our main idea is hence a divide and conquer step: we first compute the
histogram describing the sample distribution for each class, for each time sample.
Only this step requires access to the traces. Note that this step is typically
performed quite fast. It boils down to read/write memory accesses and counter

390 O. Reparaz et al.

increments by one. Then, using only the histograms, we compute all necessary
statistical moments and the t-statistic, or other properties and metrics.

Notation. We assume that an evaluator takes N side-channel leakage traces
ti[n]. The time index n ranges from 1 to the trace length L. The trace index i
ranges from 1 to the number of traces N . Each time sample within a trace is
an integral value from the set {0, 1, . . . , 2Q − 1} = [0, 2Q) ∩ Z, where Q is the
number of quantization bits used to sample the side-channel signal. (In typical
oscilloscopes, Q = 8 bits.) The array c[i] stores the class index corresponding to
the i-th trace. We assume there are just two classes c[i] ∈ {0, 1}, ∀i (fixed and
random, for instance).

Procedure. The procedure works as follows:

Step 1. Initialize two families of histograms H0[n] and H1[n]. Each family is
actually a L × 2Q matrix of counters. Row n stores the histogram for
trace distribution at time sample n.

Step 2. For each trace ti[n], n = 1, . . . , L belonging to class c[i] ∈ {0, 1}, update
the corresponding histograms as Hc[i][n][ti[n]] ← Hc[i][n][ti[n]] + 1.

Step 3. From the two histogram families H0 and H1, compute the necessary
moments and the t-statistic value.

Why this Works. This procedure works since histogram families Hi carry all the
information about the (estimated) class-conditional distributions. From those
histograms, it becomes easy to compute means or any other statistical moment
or property of the distributions. For example, we can compute the sample mean
m0[n] at time sample n in step 3 from H0 as:

m0[n] =
1

∑2Q−1
i=0 H0[n][i]

2Q−1∑

i=0

i · H0[n][i]. (1)

In a similar way, we can compute all necessary statistical moments to calculate
the t-statistic value at any order only from the histograms Hi.

4 Implementation

We wrote a C99 shared library named libfastld, with no external dependencies
except math.h, implementing the previous methodology. Our approach is simple:
it fits in around 130 lines of source code. Our interface is simple as well: the
implementation provides a function

void add_curve(fastld_t *ctx, uint8_t *curve, uint8_t class);

that processes one curve array and updates the corresponding histograms in the
state ctx according to the trace class. This curve can be discarded after calling
add curve. Afterwards, the state is processed in step 3 to yield a t-statistic

Fast Leakage Assessment 391

curve. Our current implementation first pre-processes histograms at arbitrary
order (by first centering and then exponentiating each histogram) and then uses
the Welford method to estimate the variance [Knu81, Sect. 4.2.2.A]. Then, from
variances and means the t-statistic is constructed.

We decided to use 32-bit unsigned integers for matrix counters. This means
we can iterate step 2 over 232 (≈ 4 billion) traces without problems. This seemed
to us like a comfortable maximum number of traces for our current evaluations.
We could have used 16-bit counters for better performance, but this requires
more care not to overflow (theoretically possible after 216 ≈ 65 k measurements).
In our case, measurements are quantized with Q = 8 bits.

Which Algorithm to Use for Variance Computation? For the moments computa-
tion step, we are not forced to use single-pass algorithms. This step is performed
based on a histogram, and not on the whole trace dataset. Therefore, multiple-
pass algorithms are cheap to compute, can provide very good numerical stability
and can lend themselves to an easy implementation [TFC83].

(Recall that the distribution estimation phase, step 1, is single-pass. Thus,
once we acquire a trace and update the corresponding histogram, we can throw
away the trace.)

5 Performance Analysis

5.1 Analytical

Separation of Tasks. We effectively decouple two tasks:

1. estimating measurement distributions, and
2. computing distribution parameters (statistical moments).

The first task is performed in step 2. This step produces a compact repre-
sentation of measurement distributions (namely, two sets of histograms). The
running time of this step depends on the number of traces, and only this step.
The computational effort in step 2 is just one counter increment per time sample
per trace. This is the key advantage of this method: the computational work per
trace is minimal.

The resulting histograms are used in step 3 to perform the second task.
Previous approaches, such as Schneier and Moradi [SM15] perform both tasks
at the same time. We will see that performing the moment estimation from the
histogram information brings advantages.

5.2 Empirical

First Dataset. Our dataset comprises N = 106 traces of L = 3000 samples long.
We assume traces are provided one-at-a-time. (If traces are made transposed,
this may accelerate the process, but we are interested in on-the-fly algorithms.)
Our dataset is synthetic: the distribution of each time sample is uniform at
random in {0, . . . , 255}. We compile the implementation from Sect. 4 with gcc
version 4.9.2 and optimization flags -O3. Our benchmark platform is a Core i5
desktop workstation running at 3.3 GHz.

392 O. Reparaz et al.

Running Times. The update of histograms (Step 2 in Sect. 3) takes 9.8 s to
process the N = 106 traces. This makes roughly a trace processing bandwidth
of 305 MB/s. After step 2, we compute the first 10 statistical moments (Step
3 in Sect. 3) in 0.8 s. Note that the distribution of this synthetic dataset is the
worst possible for cache efficiency. Thus, these figures can be taken as worst-
case. Traces coming from an actual device will likely follow a distribution more
amenable to cache accesses in step 2.

Memory Requirements. For traces L = 3000 time samples long the size required
to hold the two histogram families H0 and H1 is about 6 MB, which just fits into
the L2 cache of modern processors.

0 2 4 6 8 10
Number of traces # 104

0

1

2

3

4

5

6

7

ru
nt

im
e

[s
]

step 2
step 3

0 1 2 3 4 5
trace length # 104

0

10

20

30

40

50

60

ru
nt

im
e

[s
]

step 2
step 3

0 10 20 30 40 50
orders computed

0

2

4

6

8

10

ru
nt

im
e

[s
]

step 2
step 3

Fig. 1. Left: running times for step 2 and step 3, as the number of traces grows, for
L = 5000 and five statistical moments computed. Center: running times as the trace
length grows, for N = 100 000 traces and five statistical moments computed. Right:
running times as the number of statistical moments computed grows, for N = 100 000
and L = 5000.

5.3 Scaling

Scaling of Running Times. The method proposed in Sect. 3 scales well in several
directions. It is easy to see that the running time of step 2 is linear in the number
of traces, and the running time of step 3 is constant. In Fig. 1, left, we plot the
empirical running time of step 2 and 3 as the number of traces grows. Traces
are L = 5000 time samples long and step 3 computes the first five statistical
moments. We can see that indeed the dependency of the running time of step 2
is linear, and the time spent on step 3 is independent of the number of traces. In
Fig. 1, center, we plot running times as a function of the trace length, for a fixed
number of traces (N = 100 000) and five statistical moments. We can see that
the running times of both steps depend linearly on the trace length. Finally in
Fig. 1, right, we plot the running times as a function of the number of statistical
moments computed. Step 2 runs in time independent of the number of computed
moments, and the running time for step 3 is linear in the number of computed
moments. In this case, we fix the number of traces N = 100 000 and the trace
length L = 5000.

Fast Leakage Assessment 393

Memory Scaling. It is easy to see that memory requirements scale linearly with
the trace length L. Interestingly, they are constant with the number of traces
N . The number of computed statistical moments incurs little influence on the
memory requirements as well. There is an exponential dependency on Q, albeit
for a typical oscilloscope we may safely assume Q = 8. The number of bytes
required to store the histogram families is obviously 2 × L × 2Q × W if we use
W -byte counters.

6 Discussion

6.1 Comparison with Other Approaches

As a rough benchmark, the work of Schneider and Moradi requires around 9 h to
compute up to the fifth order from a dataset of 100 million traces of 3 000 time
samples using 24 cores [SM15, Sect. 4.3]. This makes around 7.8×10−3 s per trace
per core, which is roughly 800 times slower than our approach. We note that
this is a very crude benchmark: the benchmarking platforms are substantially
different and many other variables are as well different. Nevertheless, it serves as
evidence that the approach presented in this paper outperforms previous work
by several orders of magnitude.

We also implemented the update formulae of Schneider and Moradi and
benchmarked with the same dataset. The results can be found in AppendixA.

Table 1. Scaling. A cell marked with “—” means “same content as the cell above”.

Method Ops. per trace Time per trace
L = 3000

Finalization step
L = 3000

[SM15], orders 1–5 14L RW + 66L
MUL + L DIV +
31L ADD

7.8 × 10−3 s 0 s (virtually free)

This paper, orders 1–5 2L RW + L ADD 1.45 × 10−5 s 0.3 s

This paper, orders 1–10 — — 0.8 s

This paper, orders 1–50 — — 4.6 s

This paper, orders 1–100 — — 9.4 s

Operation Count Scaling. Here we describe how the operation count scales for
both methods. The results are condensed in Table 1. We should note that oper-
ations for the [SM15] method are performed on double-precision floating point
arithmetic, while for our method are performed using 32-bit integers. The oper-
ation count of the [SM15] method was a back-of-the-envelope calculation based
on the update formulas in [SM15, Sect. A.1].

If restricted to computing the first five statistical moments, the [SM15]
method requires the following operation count per trace per timesample: about

394 O. Reparaz et al.

14 double-precision floating-point read-write operations, about 66 floating-point
multiplications, 1 floating-point division and about 31 floating-point additions.
The number of operations in this case highly depends on the number of statistical
moments one would like to compute.

In contrast, the method proposed in this paper requires just two 32-bit mem-
ory read-write operations and one integer addition for step 2, per time sample
per trace. The computation per trace is constant, independent of the statistical
moments one is interested to compute. Our method requires a finalization step
that takes less than 1 s for L = 3000 traces, and does not depend on N and thus
can be amortized. This means that our method outperforms the [SM15] method
for sufficiently many traces.

Memory Scaling. For both methods, memory requirements are not usually the
bottleneck. Both methods require linearly more memory as the number of time
samples L grows. The [SM15] method requires memory linear in the number of
statistical moments computed, and our method requires memory exponential in
the quantization steps of the oscilloscope, often Q = 8.

6.2 Parallelization

The algorithm described in Sect. 3 is embarrassingly parallel. The work of step 2
can be split across several processors trivially. Step 3 can be as well distributed:
each processor gets a different time-slice. However, we believe parallelization will
be applied seldom. In our case, our implementation is single-threaded because
multi-threading was not deemed necessary. Step 2 is no longer the most consum-
ing step in our evaluation chain.

6.3 Bonuses

Bonus: Exact Arithmetic. In the extreme case, one can perform the whole com-
putation of step 3 in rational arithmetic (that is, working in Q). Thus, we have
the ability to compute the exact value for the (square of the) t-statistic, elimi-
nating any round-off or numeric stability issue. Since we work with exact values,
the choice of estimator to compute statistical moments is superfluous, since they
will all yield the intended exact result.

The penalty in computational effort is very low. There is no impact on the
running time of the dominating step 2, and only slight on step 3. We have imple-
mented step 3 in rational arithmetic using the GNU’s Multiple Precision Arith-
metic library (GMP) with mpq t rational integer types. (This requires obviously
linking against GMP. This is only required for using exact arithmetic.) The final
square root floating point computation in the denominator is performed with at
least 128-bit precision, but this is not really necessary. We can very well compare
t2 against (4.5)2 to fail or pass a device.

We repeated the experiment with the dataset from Sect. 4. Step 3 now takes
around 81 s. This is a one-time effort. We believe this is a useful feature, espe-
cially for evaluation labs where extra assurance is desirable. When using exact

Fast Leakage Assessment 395

arithmetic one does not have to worry about the choice of algorithm for variance,
numeric stability or errors.

Bonus: Kernel-Based Estimation. It is well-known that kernel-based density
estimation methods may lead to more accurate estimations, especially when the
sample size is scarce (few traces). We note that kernel-based estimations are very
easy to plug in our method. One can apply the kernels directly to the histograms
(output of step 2), instead to each trace individually. Then, the evaluator only
has to modify accordingly step 3. This fact can be helpful if the evaluator wants
to experiment with a family of kernels (say, different kernel bandwidths). She
can experiment with different parameters a posteriori, once traces have been
collected and thrown away in step 2.

Bonus: Arbitrary Pre-processing Function. Sometimes, one is interested in using
a different pre-processing function other than centering and exponentiating. In
some noisy cases, it is advisable to use for example absolute difference [BGRV15]
rather than the theoretically optimum centered product [PRB09] (assuming HW
leakage behavior and Gaussian noise).

The evaluator can apply an arbitrary pre-processing function of his choice
after step 2 and before step 3. For example, the evaluator can inject the absolute
value pre-processing function. This is not trivial to do in the approach of Schneier
and Moradi. (One could develop the Taylor expansion for |x| to approximate with
a polynomial, but this incurs an error due to truncation.)

Bonus: Information-Theoretic Leakage Detection. From the histograms, it is
also possible to perform an information-theory based leakage detection test,
using for instance a two-sample Kolmogorov–Smirnov test (this tool was pre-
viously used for instance by Whitnall and Oswald [WOM11]) or mutual infor-
mation [MOBW13]. We note that for mutual information it is possible to apply
a kernel density estimation method after the histograms H0 and H1 have been
estimated (due to linearity), resulting in a fast estimation.

Bonus: Cropping Detection. It is important to detect if there is cropping while
acquiring power traces when performing a leakage detection test. Typical oscil-
loscopes output a saturated value when sampling a value out of range. When
performing leakage detection tests with cropped (saturated) values, the obtained
t-value is unreliable and should be discarded. (Normally, with saturated samples
the t-statistic grows very much. It is easy to explain this: saturated samples
carry a small variance, shrinking the denominator and thus the t-value grows.)
One should ideally check that there is no cropping while measuring. However,
in the case that such check is missing, our method after step 2 allows to detect
if any of the traces were cropped (maybe the evaluator did a mistake, or some
event (mis)happened), after trace collection. It is however impossible to recover
from this mistake; that is, it is impossible to “remove” cropped traces once the
histograms of step 2 have been filled, meaning that traces must be acquired
again. Nevertheless, we think this can bring extra assurance whether to trust

396 O. Reparaz et al.

the evaluation or not. This can be implemented in step 3 as follows: verify that
the histogram does not take the extremal values (in our case, 0 and 2Q − 1). We
found this feature useful in our own experience.

6.4 DPA Attacks

In principle one could port the same principles from Sect. 3 to plain DPA attacks.
However, the gain is not so strong, since one should keep in general one histogram
per plaintext value, instead of just two. Naively the memory requirements are
significantly higher. Of course, if the evaluator can choose texts this can be
significantly lowered.

6.5 Deployment

The technique presented in this paper is mature and was used in several
evaluations performed in the last three years in our lab. Among others, it
was used in the evaluation of recently proposed higher-order masking schemes
such as [BGN+14,CBRN14,CBR+15,CRB+16] and other publications [CN16,
CBG+17].

7 Conclusion

In this paper we presented a simple methodology to significantly alleviate the
computation effort required to perform a leakage assessment. Our method is
extremely simple and compact to implement (about 130 lines of C code), but
has a significant impact on the running time of a leakage assessment. We can
lower the running time of leakage assessment evaluations by several orders of
magnitude .

Acknowledgments. This work was supported in part by the Research Council KU
Leuven: C16/15/058. In addition, this work was supported by the Flemish Government,
FWO G.00130.13N, FWO G.0876.14N and Thresholds G0842.13; by the Hercules Foun-
dation AKUL/11/19; through the Horizon 2020 research and innovation programme
under grant agreement 644052 HECTOR and Cathedral ERC Advanced Grant 695305.
Benedikt Gierlichs is Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(FWO).

A Benchmark of Schneider and Moradi

Here we repeat the analysis from Sect. 5.3 for the method of Schneider and
Moradi. We evaluate both methods in the same machine, with the same tool-
chain and with software written by the same person. Nevertheless, the purpose
of this section is only exploratory, and it is possible that a more optimized imple-
mentation of either method yields better performance.

Fast Leakage Assessment 397

0 2 4 6 8 10
Number of traces # 104

0

100

200

300

400

500

ru
nt

im
e

[s
]

0 1000 2000 3000 4000 5000
trace length

0

10

20

30

40

50

60

70

ru
nt

im
e

[s
]

Fig. 2. Method of Schneider and Moradi. Left: running times as the number of traces
grows, for L = 3000 and five statistical moments computed. Right: running times as
the trace length grows, for N = 100 000 traces and five statistical moments computed.

0 2 4 6 8 10
Number of traces # 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ru
nt

im
e

[s
]

step 2
step 3

0 1 2 3 4 5
trace length # 104

0

10

20

30

40

50

60

ru
nt

im
e

[s
]

step 2
step 3

Fig. 3. Method presented in this paper. Left: running times as the number of traces
grows, for L = 3000 and five statistical moments computed. Right: running times as
the trace length grows, for N = 100 000 traces and five statistical moments computed.
Note that the number of traces in the right picture is an order of magnitude larger
than that of Fig. 2.

398 O. Reparaz et al.

We compute t-statistics up to the fifth order. In Fig. 2 we plot the evolution
of running times for the method of Schneider and Moradi. For completeness,
we repeat in Fig. 3 the performance of the method presented in this paper for
parameters that match Fig. 2.

The difference in running time between methods is expected to grow sub-
stantially as the statistical order increases. However, estimations of higher-order
statistical moments are very sensitive to noise and thus are rarely done in today’s
evaluations.

References

[BB03] Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Pro-
ceedings of the 12th USENIX Security Symposium. USENIX Association
(2003)

[BGN+14] Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order
threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT
2014. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45608-8 18

[BGRV15] Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing
and masking at 1 GHz. In: Güneysu and Handschuh [GH15], pp. 599–619

[CBG+17] De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen,
V.: Does coupling affect the security of masked implementations? In:
Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer,
Cham (2017)

[CBR+15] Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order
threshold implementation of the AES S-Box. In: Homma, N., Medwed,
M. (eds.) CARDIS 2015. LNCS, vol. 9514, pp. 259–272. Springer, Cham
(2016). doi:10.1007/978-3-319-31271-2 16

[CBRN14] De Cnudde, T., Bilgin, B., Reparaz, O., Nikova, S.: Higher-order glitch
resistant implementation of the PRESENT S-Box. In: Ors, B., Preneel, B.
(eds.) BalkanCryptSec 2014. LNCS, vol. 9024, pp. 75–93. Springer, Cham
(2015). doi:10.1007/978-3-319-21356-9 6

[CDG+13] Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi,
P.: Test vector leakage assessment (TVLA) methodology in practice. In:
International Cryptographic Module Conference (2013)

[CKN00] Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage.
In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer,
Heidelberg (2001). doi:10.1007/3-540-45472-1 12

[CN16] De Cnudde, T., Nikova, S.: More efficient private circuits II through
threshold implementations. In: Maurine, P., Tunstall, M. (eds.) Interna-
tional Workshop on Fault Diagnosis and Tolerance in Cryptography 2016,
Volume Conference Publishing Service, pp. 114–124, Santa Barbara, CA,
USA. IEEE (2016)

[CNK04] Coron, J.-S., Naccache, D., Kocher, P.C.: Statistics and secret leakage.
ACM Trans. Embedded Comput. Syst. 3(3), 492–508 (2004)

[CRB+16] De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.:
Masking AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53140-2 10

http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-662-45608-8_18
http://dx.doi.org/10.1007/978-3-319-31271-2_16
http://dx.doi.org/10.1007/978-3-319-21356-9_6
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/978-3-662-53140-2_10

Fast Leakage Assessment 399

[DCE16] Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust
T-test based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.)
COSADE 2016. LNCS, vol. 9689, pp. 163–183. Springer, Cham (2016).
doi:10.1007/978-3-319-43283-0 10

[DS16] Durvaux, F., Standaert, F.-X.: From improved leakage detection to the
detection of points of interests in leakage traces. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 10

[GH15] Güneysu, T., Handschuh, H. (eds.): CHES 2015. LNCS, vol. 9293.
Springer, Heidelberg (2015)

[GJJR11] Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for
side channel resistance validation. In: NIST Non-invasive Attack Testing
Workshop (2011)

[GMO01] Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: con-
crete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). doi:10.1007/
3-540-44709-1 21

[KJJ99] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg
(1999). doi:10.1007/3-540-48405-1 25

[Knu81] Knuth, D.E.: The Art of Computer Programming, Volume II: Seminumer-
ical Algorithms, 2nd edn. Addison-Wesley, Boston (1981)

[MOBW13] Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device
leak information? an a priori statistical power analysis of leakage
detection tests. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013.
LNCS, vol. 8269, pp. 486–505. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-42033-7 25

[P08] Pébay, P.: Formulas for robust, one-pass parallel computation of co-
variances and arbitrary-order statistical moments. Technical report
SAND2008-6212, Sandia National Laboratory (2008)

[Per05] Percival, C.: Cache missing for fun and profit. In: Proceedings of BSDCan
2005 (2005)

[PRB09] Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order dif-
ferential power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

[QS01] Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): mea-
sures and counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.)
E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001).
doi:10.1007/3-540-45418-7 17

[SM15] Schneider, T., Moradi, A.: Leakage assessment methodology - a clear
roadmap for side-channel evaluations. In: Güneysu and Handschuh
[GH15], pp. 495–513

[TFC83] LeVeque, R.J., Chan, T.F., Golub, G.H.: Algorithms for computing the
sample variance: analysis and recommendations. Am. Stat. 37(3), 242–247
(1983)

[WOM11] Whitnall, C., Oswald, E., Mather, L.: An exploration of the kolmogorov-
smirnov test as a competitor to mutual information analysis. In: Prouff, E.
(ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-27257-8 15

http://dx.doi.org/10.1007/978-3-319-43283-0_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-44709-1_21
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-642-42033-7_25
http://dx.doi.org/10.1007/978-3-642-42033-7_25
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/978-3-642-27257-8_15

FPGA Security

Your Rails Cannot Hide from Localized EM:
How Dual-Rail Logic Fails on FPGAs

Vincent Immler(B), Robert Specht, and Florian Unterstein

Fraunhofer Institute for Applied and Integrated Security (AISEC),
Munich, Germany

{vincent.immler,robert.specht,florian.unterstein}@aisec.fraunhofer.de

Abstract. Protecting cryptographic implementations against side-
channel attacks is a must to prevent leakage of processed secrets. As a
cell-level countermeasure, so called DPA-resistant logic styles have been
proposed to prevent a data-dependent power consumption.

As most of the DPA-resistant logic is based on dual-rails, properly
implementing them is a challenging task on FPGAs which is due to their
fixed architecture and missing freedom in the design tools.

While previous works show a significant security gain when using such
logic on FPGAs, we demonstrate this only holds for power-analysis. In
contrast, our attack using high-resolution electromagnetic analysis is able
to exploit local characteristics of the placement and routing such that
only a marginal security gain remains, therefore creating a severe threat.

To further analyze the properties of both attack and implementation,
we develop a custom placer to improve the default placement of the ana-
lyzed AES S-box. Different cost functions for the placement are tested
and evaluated w.r.t. the resulting side-channel resistance on a Spartan-6
FPGA. As a result, we are able to more than double the resistance of
the design compared to cases not benefiting from the custom placement.

1 Introduction

Physical attacks based on power analysis, called DPA [20], have been subject
to extensive research and initiated the development of DPA countermeasures
at different levels of abstraction. Some introduce noise, e.g., [12,23] or random-
ize the order of operations, i.e., shuffling, e.g., [16,23]. More application-specific
attempts to increase the resistance are done by manipulating the underlying
cryptographic algorithm to randomize its intermediate values, i.e., masking at
the algorithmic level, e.g., [29,30]. Others, so called “hiding” countermeasures,
try to solve the problem by avoiding data-dependencies in the power consump-
tion. These countermeasures at the cell-level, called DPA-resistant logic styles,
ideally remove the data-dependent power consumption and thereby equalize it.

When considering the various proposals in this domain [3,13,15,19,22,26,
28,33,43,44], one identifies that most of them are based on dual-rail precharge
(DRP) logic or duplication schemes. Both no longer represent a bit as a single
value but instead as complementary rails of (true,false) = (t, f), such that
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 403–424, 2017.
DOI: 10.1007/978-3-319-66787-4 20

404 V. Immler et al.

regardless of the operation, each bit-flip is compensated by an inverse bit-flip.
However, both approaches are fundamentally different as explained later on in
more detail: Using a simplified view, DRP styles can be considered as a func-
tion fDRP(t, f) and duplication schemes as a compound function of fDUP(t) and
f−1
DUP(f) which leads to different implementations as sketched in Fig. 1.

(a) S-box implementing the inseparable
function fDRP(t, f) (DRP logic).

true S-box

false S-box
probe

EM

(b) S-box implementing fDUP(t) and
f−1
DUP(f) separately (duplication scheme).

DRP S-box

probe
EM

Fig. 1. Resulting FPGA floor plan to illustrate different dual-rail styles. The on-chip
positioning of a probe used for the EM analysis is indicated by a circle.

To properly implement either one, several design flaws must be avoided such
as glitches [24]. Another, the early propagation (EP) effect [37] is typically pre-
vented by a synchronization mechanism, e.g., an enable signal. Moreover, to
achieve equal power consumption between the dual-rails, it is necessary to min-
imize their routing imbalances [39], as they result in different capacitive loads
when switching which can be exploited by a DPA attack. Therefore, some routing
techniques have been proposed such as [11,26,41] to diminish the load imbalances
in either the ASIC or FPGA design process. Most dual-rail mitigation techniques
work reasonably-well when assuming a power-based side-channel, e.g., by mea-
suring the voltage over a shunt resistor (including parasitics), thereby treating
the leakage of a device as a whole. The local placement and routing imbalances
are therefore not sufficiently considered as part of a design or evaluation process.
From a practical point of view, power-analysis also requires the PCB to be mod-
ified in most cases. Moreover, decoupling capacitances tend to be increasingly
more integrated recently in the chip itself which makes the use of the power-based
side-channel more difficult.

An often preferred alternative are side-channels based on Electro-Magnetic
(EM) emanation. Various publications have shown different options on how to
measure the emanation. Mainly two approaches exist, the off-chip measurement
[7,32], i.e., the probe is positioned slightly above the chip package and on-chip (or
on-surface) measurement [17,31,35,42], i.e., the chip is partially depackaged to
position the probe directly on top of the die’s surface. By positioning a suitable
EM probe in proximity to the area of interest, spatial information of the imple-
mentation can be explored [17,31]. This is also known as localized EM and is due
to previous results a promising candidate to measure dual-rails independently
from each other, thereby possibly bypassing this countermeasure.

Your Rails Cannot Hide from Localized EM 405

Our Contribution. A natural question that arises is by how much better
on-chip EM attacks perform when compared to power measurements, as local
placement and routing characteristics could possibly be more easily extracted
using a localized EM attack. To start answering this question, we first survey
the existing logic styles for FPGA platforms and argue that previous security
evaluations did not fully assess the properties of the underlying designs, i.e., the
density of the placement and local routing imbalances.

Afterwards, we practically investigate if the available DRP logics can still be
assumed secure when subject to a localized EM attack. As a result, we show that
only a barely noticable security gain of any DRP logic remains when compared
to a SingleRail implementation using the default placement of the Xilinx ISE
tools. To the best of the authors’ knowledge, we are the first to publicly perform
such attacks on dual-rails using high-resolution equipment, i.e., with a probe
diameter of 150µm at a very low distance of ≤50µm.1

To fairly compare the security of dual-rails using a power- and an EM-based
analysis, we present a systematic evaluation methodology based on a correlation
based leakage test which is complemented by an information theoretic approach.
It is additionally supplemented by considering the Signal-to-Noise-Ratio (SNR).

As the next contribution we focus on the placement of the secure logic, more
specifically its density and its possible influence on the resistance towards an
EM-based analysis. As target design and platform, we selected an AES S-box
to be realized on a Spartan-6 FPGA. Its local placement using ISE defaults is
improved by means of a custom placer based on simulated annealing. A new and
previous cost function are evaluated for the placer. Our experimental results
show that increasing the density of the placement using our own cost function
helps to reduce the amount of extractable leakage by an EM-based analysis.

State-of-the-Art. Secure logic styles primarily follow two competing concepts
on FPGAs: DRP logic and duplication schemes. DRP logic gates operate in two
phases, i.e., precharge and evaluation, which are controlled by the clock signal as
seen later on in Fig. 6b. Proposed candidates include: WDDL [40], BCDL [28],
DPLnoEE [3], and AWDDL [26], as listed in Table 1.

Unfortunately, none of the DRP proposals include a thorough analysis based
on a localized EM attack to answer the fundamental question, if dual-rails could
be measured separately, e.g., by measuring differing orientations of the emanated
field of the rails, therefore possibly bypassing this countermeasure. Another issue
is local placement and routing imbalances. Especially large nets with multiple
sinks cause a “messy” routing with the following properties: not all dual-rails can
be fully balanced due to the lack of precise timing information from the Xilinx
tools as stated in [26], also one cannot assume that balanced dual-rails remain
balanced across several devices using the same design due to device-specific vari-
ation as shown in [43], cross-coupling of lines adds another uncertainty that may
lead to leakage and inter-dependency of lines within an FPGA [6,9].
1 We omitted results from probes with 100µm and 250µm due to similarity reasons. In

contrast, a probe with 3mm was almost equivalent to a power-based measurement.

406 V. Immler et al.

Table 1. Survey on dual-rail logic styles for reconfigurable hardware.

Reference Design properties Device under test Evaluation

EP Glitch Route Place Platform Target Setup

DRP logic

BCDL [28] � � x ? Stratix II AES Power

WDDL [33,40] x � x * Stratix DES off-chip EM

DPLnoEE [3] * � x ? Stratix I AES Powera

AWDDL [26] � � * ? Virtex 5 AES Power

Duplication schemes

DWDDL [44] x � x ? Spartan 3E AES Power

Part. SDDL [19] � x * ? Spartan 3E AES Power

PA-DPL [13,14] � x * * Virtex 5 AES off-chip EM

[15] � � x ? Virtex 5 AES off-chip EM

GliFreD [43] � � * ? Spartan 6 AES Power
� : addressed x: problematic *:partially considered ?:not considered aEM on capacitor

Regardless of these obstacles, some work has been done in hardening DRP
logic on FPGAs. In [34], different placement strategies are investigated. Each is
based on constraints of the Quartus-II tools. Since the evaluation is done using
a power-based DPA only, analyzing local effects of the various placements more
closely has not been possible.

In another work [26], the authors investigate if rails can be balanced using
a custom routing algorithm. Although the leakage is reduced by their router,
the authors report that it cannot be completely avoided since the Xilinx tools
only report worst-case values that differ from reality. Moreover, the placement
was not considered at all. Since this is the foundation for an optimized routing,
verifying its properties prior to the routing would have been necessary. Again,
results are only based on a power-analysis. Table 1 summarizes additional DRP
logic styles and indicates the strong need for an on-chip EM analysis.

In contrast to DRP logic, duplication schemes are typically realized as follows:
For a given circuit, a complementary one is created which leads to a dual-copy
of a fully placed-and-routed circuit which has been shown, can often be broken
due to non-dual glitches in the original and dual part of the circuit [24,43].

In terms of implementing them, they have the advantage of using duplicated
routes that are shifted in horizontal or vertical direction [15,43]. The balancing
aspect is therefore derived from the fact that routes of equivalent shape using
identical hardware resources are likely to yield balanced capacitive loads. How-
ever, the resulting distance between true/false is typically large, e.g., at least a
tile and often more than that [13,44]. Considering localized EM attacks this may
be a significant issue. Moreover, the only known duplication scheme to address
both glitches and early-propagation is GliFreD [43] which results in a massive
Flip-Flop (FF) overhead compared to DRP logic styles. Furthermore, it has only

Your Rails Cannot Hide from Localized EM 407

been evaluated using power-analysis. Table 1 includes other candidates of dupli-
cation schemes and lists their conceptual weaknesses with respect to their design
properties. Hence, they are not considered in depth as part of our work.

One minor exception of duplication schemes we would like to address is the
work of [14] which analyzes various placement strategies of PA-DPL [13] by using
on-chip EM measurements. However, their measurement setup is incomparable
to ours (cf. Sect. 5.3). As an example, the diameter of their coil is by orders of
magnitude larger (1 mm) than ours (150µm). This may have prevented a more
detailed analysis, since no differences for the tested placements were observed.

In the direction of EM-based analysis, we would like to refer to [17,18,31,35]
to illustrate the advancements over previous EM-based approaches. Aforemen-
tioned references indicate that localized EM attacks are more powerful than
power measurements. However, they did not carry out a thorough comparison.
Hence, we also investigate the practical limits of localized EM in terms of resolu-
tion vs. the given routing architecture and technology size of a Xilinx Spartan 6.

2 Dual-Rail Routing and Placement

Let us recall selected properties of dual-rail styles and how they relate to a local-
ized EM attack. As outlined before, both DRP logic and duplications schemes
create complementary rails to achieve a constant number of switches independent
from the processed data, ideally resulting in equalized power consumption.

This appears as a valid approach when neglecting the design challenges to
properly implement them. However, even under idealized assumptions, carrying
out a localized EM attack could prove more resourceful than a power-based
measurement, as a wise positioning of the probe may lead to an asymmetric
view on the rails as illustrated in Fig. 2a. As the signal strength picked up by
the probe depends on its distance to the emanating source, it appears likely
that due to an unequal signal strength of true and false that they no longer
compensate each other. The resulting residue then reflects the properties of the
stronger signal which exhibits the same behavior of a SingleRail implementation.

Fig. 2. Introductory material on high-resolution, localized EM analysis.

Clearly, the success of this depends on the resolution of the attack relative to
the density of the placement and routing of the logic. It is therefore not possible

408 V. Immler et al.

to analyze this problem independently from placement and routing characteris-
tics. Hence, they must be considered and optimized, too.

For duplication schemes, the situation is as sketched in Fig. 1b. For a given
S-box, a complementary copy is created resulting in symmetrically placed and
routed logic. While achieving a high level of uniformity, at the same time the
distance between true and false is typically large, often multiple tiles of an FPGA.
Please also note that due to the divided approach of duplication schemes, both
rails and the computing LUTs of the true and false paths are fully separated.

For DRP logic as depicted in Fig. 1a, the situation is completely different.
Since both true and false path must be jointly routed to each Look-Up-Table
(LUT), each rail must be routed individually and cannot be copied. Ideally,
depending on the quality of the placement and routing capabilities, one would
be able to route a dual-rail much closer to each other when compared to dupli-
cation schemes. However, at the same time, where this is not possible, local
non-uniformities (larger distances between still balanced dual-rails, cf. Fig. 3b)
or even imbalances would occur (rails with unequal capacitive loads, cf. Fig. 3c).

true
false

Ct

Cf

C = Cf t

(a)

true
false

Ct

Cf

C = Cf t

(b)

true
false

Ct

Cf

C < Cf t

(c)

true
false

current flow

current flow

(d)

Fig. 3. Different routing characteristics. (3a) “Ideal” dual-rail (3b) Non-uniformity (3c)
Imbalance (3d) Large distance between rails and different orientation of the emanated
field due to current flow.

Since computing true and false rails of DRP logic takes place within the same
slice (or same LUT), we expect that the remaining non-uniformities and imbal-
ances are much more difficult to exploit when compared to a duplication scheme
where both computation and dual-rail routing are split. We therefore focus on
the resistance of DRP styles and compare their effectiveness as a countermeasure
under a power- and localized EM-attack setting. To do so, we first introduce the
topic of placement and its optimizations, to also compare a low and high-density
placement, as a higher density should help mitigate the aforementioned effects.

3 Placement on FPGAs

Commonly available FPGAs share similarities in their fabrics, i.e., the underlying
structure of hardware resources. For Xilinx FPGAs, the reoccurring structure
implementing the majority of logic is called a tile. Each tile typically comprises
two slices, whereas each slice contains 4 LUTs, several multiplexors, and FFs.
In between each tile and slice, different routing resources are available.

Your Rails Cannot Hide from Localized EM 409

As a first step to implement the designated logic on FPGAs, its representation
as a hardware description language is mapped onto the device using device-
specific libraries. Subsequently, the logic must be placed such that the hardware
resources are not exceeded. On a global level, partitioning the logic is often done
using quadratic placement, especially on ASICs. On a local level, i.e., modules
of reasonable size this is often done using simulated annealing [38]. In general,
this is termed the “placement problem” [27] and known to be np-complete, i.e.,
placing logic within a certain rectangular area P based on some minimized cost
function C(p) is only practically feasible using approximative approaches.

P is defined by its boundaries xhigh, xlow, yhigh, ylow. The list of gates G and
nets V is a graph G = (V,E). The cost function C(p) = C(V,E) represents the
sum of the expected wirelength for each net. Determining the wirelength WL(e)
can be done using different approaches, as discussed in Sect. 3.2. In addition to
that, it is possible to assign weights w(e) to each net for, e.g., critical nets. The
resulting cost function is then denoted as: C(p) =

∑
e∈E w(e)WL(e).

The placement problem can now be formalized as: given P , a list of gates
and nets G = (V,E) = (FV ∪ MV,E) with FV as fixed gates and MV as
movable gates, and a cost function C(V,E). Determine (xi, yi) such that for
each vi ∈ MV : (i) it is placed within P and (ii) no pair of vi, vj overlaps with
∀vi, vj (iii) C(p) is minimal.

3.1 Simulated Annealing

Simulated annealing [2] resembles a cooling process to allow larger changes in the
beginning as long as the temperature is high. While cooling down, the magni-
tude of changes becomes smaller with each iteration. Thereby, an approximative
global optimum is found by avoiding local minima/maxima.

For the placement region P , an initial random placement p0 is realized. Its
quality is determined by the cost function C(p0). For a given temperature T0 in
the beginning, the subsequent iterations start to move around logic gates. Each
new placement is again evaluated by C(p). Degradations are only accepted with
a probability of e−C(pnew)−C(pold)

T , i.e., the acceptance rate of optimizing towards
the wrong direction decreases. This process continues until an exit criterion is
fulfilled, e.g., a certain temperature, iteration count or quality of placement.

3.2 Cost Functions

As part of this work, we adapted the cost function of Versatile-Place-and-Route
(VPR) [2] which is based on the Half-Perimeter-Wire-Length (HPWL). More-
over, we define our own cost function called Same-Slice-Same-Tile (SSST). Both
are also illustrated in Fig. 4 and explained hereafter.

HPWL. The function q(n) · HPWL which we use is a modified version of the
linear congestion function of [2]. The original equation is

410 V. Immler et al.

Tile X0Y1 Tile X1Y1

Tile X0Y0 Tile X0Y0

Σ(SSST)=4

SSST=2

SSST=1
SSST=0
SSST=.5

SSST=.5

Slices

(a) Same Slice Same Tile.

Bounding Box

bb (n)x

bb (n)y

HPWL = bbx y(n) + bb (n)

net

(b) Half-Perimeter-Wirelength.

Fig. 4. Illustration of different cost functions of the custom placer.

Clc(p) =
Nnets∑

n=1

q(n)
[bbx(n)
Cav,x(n)

+
bby(n)

Cav,y(n)
]

(1)

whereas Nnets is the number of nets between the to-be-placed instances. bbx(n)
and bby(n) are the side lengths in x or y direction of the specific bounding box
of a net n, as sketched in Fig. 4b. A bounding box is the smallest rectangle that
fits each instance of a net. Hence, HPWL = bbx(n) + bby(n).

q(n) is a specific factor to balance nets with many pins. The respective values
have been taken from [5]. Cav,x(n) and Cav,y(n) reflect the routing channel
capacity to, e.g., make certain wires more expensive than others. However, since
the Xilinx Spartan 6 is assumed to provide a symmetric channel/wire layout in
arbitrary direction, we simplify the cost function to:

CHPWL(p) =
Nnets∑

n=1

q(n)
[
bbx(n) + bby(n)

]
(2)

SSST. Since our goal is to not only make an optimized routing but also to
create a placement of highest density, we define our own cost function

CSSST(p) =
Nnets∑

n=1

Nsinks∑

m=1

P(m) (3)

whereas
∑Nsinks

m=1 P(m) is the sum over all wirelengths of a net with

P(m) =

⎧
⎪⎨

⎪⎩

0, if Source and sink are within the same slice
0.5, if Source and sink are within the same tile
d(Tile(s),Tile(m)), else

(4)

Your Rails Cannot Hide from Localized EM 411

The function d(., .) represents the Manhattan distance2 between the tile in
which the source of the net is placed and the tile in which the sink is. Figure 4a
illustrates the properties of the SSST-metric.

4 Custom Placer and Design Implementation

In the following subsection, we describe the implementation of our custom placer.
Subsequently, we use this placer to work on the design presented in Sect. 4.2.

4.1 Custom Placer

Since our device-under-test (DUT) for the design is a Xilinx Spartan-6 FPGA,
we could make use of the RapidSmith library [21]. The resulting workflow is
outlined in Fig. 5 and is based on the Xilinx Design Language (XDL). For our
use case, we fully process the design (as depicted in Fig. 6a) up to the ncd right
before bitgen, using the standard Xilinx ISE tools.

Fig. 5. Workflow using the RapidSmith library and the custom placer

The only modifications we made to the design are (i) to put all elements
requiring improved placement into a closed group which is area constrained, (ii)
to keep the input PIN positions of the LUTs locked, and (iii) to put LUTs of
each logic gate into the same slice using either the pair (A,B) or (C,D) of LUTs.

Once the design is processed by ISE, it is converted to its XDL representation
and imported to RapidSmith. The S-box is detected by its hierarchy name and
confined to the region P using the same boundaries as for the constraints of the
ISE toolchain. Afterwards, the primitive sites within this region are identified to
check if the designated logic could be placed using the given site (e.g., SLICEL).

To relocate the already placed logic, it is necessary to remove the nets and
extract the logic from its given XDL hierarchy. A group of “relocatable” logic is
created to allow their repositioning. Another abstract group is created to keep
track of how they are interconnected, i.e., the nets. The initial placement of the
ISE tools is considered as p0, i.e., the start of the simulated annealing is well-
defined and not a random placement. Subsequently, the annealing is carried out
as described in Sect. 3.1 using the cost functions of Fig. 4a and b.
2 d = abs(xs − xm) + abs(ys − ym), i.e., the rectangular distance over the grid.

412 V. Immler et al.

Once the annealing stops (after less than a minute), the logic is placed back
on the primitive sites. Please note, since relocating the logic was performed by
making “valid moves” only, there is no legalization step required (in contrast
to quadratic placement). The thus placed logic is then interconnected using the
routing capabilities of the ISE tools and the bit files are generated.

4.2 Design Implementation

For the analysis, we made an exemplary design which in addition to the control
logic consists in an AES S-box [1]. We have taken the area-optimized S-box by
Canright [4] which is a typical design for an S-box hardware implementation.

As logic styles, we selected the following: SingleRail, WDDL [40], DPL-
noEE [3], and AWDDL [26], as they can all be realized using the same routing
which leads to an unambiguous comparison.3 For each style, we instantiated the
S-box logic by 2-input gates. A block diagram of the design is shown in Fig. 6a.

eni
Sbox

WDDL/noEE/
AWDDL

to
WDDL

Control Logic
prch eno

in
out

SingleRail/

(a) The exemplary design block diagram. (b) Concept of WDDL ([40]).

Fig. 6. Basic properties of the implemented design.

Since we aim at evaluating only the leakage associated to the combinatorial
circuit, we must exclude the leakage of the output register (see [25]). We there-
fore implement the design as follows: At a certain clock cycle, the control logic
disables prch signal and the “to WDDL” conversion unit propagates the input to
the S-box thereby initializing the evaluation phase. In the next half of the clock
cycle the control logic enables prch signal and the precharge phase is started.

In a common DRP circuit eno should be active at the start of precharge in
order to store the output of the combinatorial circuit (here the AES S-box).
Therefore, the control logic does not enable eno signal and the register does not
store the S-box output.4 Over these two (evaluation and precharge) phases either
power consumption or electro-magnetic emanation of the FPGA are measured.

To implement the logic and achieve the same routing for them, we use the
following procedure. Using AWDDL as a start, we implement WDDL and DPL-
noEE by changing only the LUT contents in the XDL file which is possible due to
3 Our results can also be mapped onto BCDL [28] since it is similar to DPLnoEE.
4 At a later point in time, eno becomes active in order to check the correct functionality

of the circuit. This is not covered by the recorded power and EM traces.

Your Rails Cannot Hide from Localized EM 413

the 2-input AWDDL gates. For the SingleRail variant, we additionally disable
the FALSE rail of WDDL and adjusted the “toWDDL” conversion accordingly.

Now, different sets of placements are created. Each comprises all four logics
and uses the procedure to achieve the same routing within each set:

– Set 1: Default ISE placement using constraints
– Set 2a: Customized placement optimized towards HPWL
– Set 2b: Customized placement optimized towards SSST

The resulting placement metrics according to the cost functions are summarized
in Table 2. For both Set 2a and 2b, one can see that an improvement over the
ISE defaults is achieved. Each design of each set is then subject to the power and
EM measurement using the same bit file. The measurement setups are described
hereafter and preceed the practical investigations of Sect. 6.

Table 2. Results of the respective cost functions for different designs of the S-box.

Design type HPWL SSST

Set 1 (default placement) 5860.0 3198.0

Set 2a (optimized towards HPWL) 3241.6 2308.0

Set 2b (optimized towards SSST) 3540.8 1781.0

5 Measurement Setups

In the following, we briefly present the properties of our measurement setups.

5.1 Notations

For a specific side channel experiment we collect the set I of traces with N
being the number of collected traces. One trace I of length T is represented by
its samples I = (i0, ..., tT) which have been acquired over time. The plaintext
is denoted as P = p0||...||p15 and the key as K = k0||k1||...||k15. The target
intermediate value of the AES S-box is defined by vi,n = SBOX(ki,n ⊕ pi,n) for
the subkey and plaintext of target byte i ∈ [0, 15] and trace number n ∈ [1, ..., N].

We denote ⊕ as the bitwise XOR-operator, V as the set of all possible inter-
mediate values v, and | · | as the number of elements in a set. Whenever accessing
a single value of a trace with number n, point in time t, and intermediate value
v we denote this as ivn,t.Iv denotes the set of traces for the intermediate value v.

5.2 Signal-to-Noise-Ratio (SNR)

When investigating the properties of a measurement campaign from a security
point of view, we are mostly interested in the effectiveness of distinguishing the
targeted values. For this purpose, the SNR definition by Mangard et al. in [23]
has often been used. It is expressed by

414 V. Immler et al.

SNRM =
Var(E[IX0], ...,E[IX|V |])

E[Var(IX0), ...,Var(IX|V |)]
∀ Xj ∈ V (5)

and denoted as SNRM in the following. It is known to be a useful tool to identify
the points in time that have leakage in their first statistical moment.

5.3 High Resolution EM Measurement Setup

As a device under test, we use a decapsulated Spartan 6 FPGA, which is clocked
at 8 MHz. For the FPGA as shown in Fig. 2a, we rasterize an area of 2730µm ×
1600µm with the probe at a distance to the surface of ≤50µm. In total, we use
120 (15 × 8) equally-spaced positions to acquire measurements within this area.

For the FPGA as shown in Fig. 2b, we rasterize an area of 2730µm×1600µm
with an equally-spaced 15× 8 grid (120 measurement positions in total) and the
probe at a distance of ≤5µm to the die surface. For the measurement, we use
a Langer ICR HH150-6 near-H-field (horizontal) probe with a coil diameter of
150µm. The maximum bandwidth of the probe is 6 GHz with a built-in 30 dB
preamplifier. In addition to that, we use another 30 dB amplifier such that the
resulting signal is amplified by 60 dB in total.

With this setup synchronized to the device’s clock, we collected 10 000 traces
for each target design and position at a rate of 5GS/s using a LeCroy WavePro
725 Zi. The resulting mean and SNRM for WDDL are shown in Fig. 7a.

5.4 Power Measurement Setup

Aside from the change in the measurement approach, the setup is kept the same
for the power-based measurement, i.e., the same FPGA using the same designs.
Instead of the H-field probe and amplifiers, a differential probe (LeCroy AP033)
measures the voltage drop across a 10 Ω shunt resistor.

With this setup, we collected a total of 100 000 traces for each target design
using the same clock frequency and samplingrate. As an example, the resulting
mean and SNRM for WDDL are shown in Fig. 7b

6 Practical Investigations

In this chapter we present the concept of our practical investigations and the
results for the power and high resolution EM measurements.

6.1 Concept of Investigations

To guarantee comparable results between the four logic styles, we adhere to the
following requirements: (i) only identical bit files are used for the comparison of
power and high resolution EM measurement (ii) the same routing is realized for
all logic styles (iii) the improvement over the SingleRail logic is only considered

Your Rails Cannot Hide from Localized EM 415

90

100

110

120

130

140

150

1150 1250 1350 1450 1550
0

1

2

A
m

p
lit

u
d

e

S
N

R
M

Samples over time

Mean Trace of EM-Analysis

mean(WDDL)
SNRM(WDDL)

(a) Mean and SNRM of WDDL (based on
localized EM measurement)

40

50

60

70

80

90

100

110

120

1150 1250 1350 1450 1550
0

0.01

0.02

0.03

A
m

p
lit

u
d

e S
N

R
M

Samples over time

Mean Trace of Power-Analysis

mean(WDDL)
SNRM(WDDL)

(b) Mean and SNRM of WDDL (based on
power measurement over shunt)

Fig. 7. Basic properties of the design and comparison of the measurement setups.

within the same measurement method. Hence, Figs. 8 and 9 are based on the
same bit files with the same routing using the default ISE placement (Set 1).

To fairly compare the properties of the implementations and analyze their
leakage, we selected three metrics. The first is a correlation based leakage test
proposed by Durvaux et al. [8], which works very similar to a CPA with profiled
power model. To carry out the test, the traces are split into two sets, the profiling
set Ip and an attack set Ia. The profiling set is used to estimate the power
consumption model m of the device by calculating the mean for each point in
time for each element in V , according to

mv =
1

|Ip(v)|
∑

n∈|Ip(v)|
Ip,n (6)

As a result, a power model is created which is based on practical measure-
ments. It therefore better reflects the actual properties of the device when com-
pared to “black-box” power models, e.g., Hamming weight or Hamming distance.
Ip(v) and Ia(v) denotes the selection of all traces with the internal value v.

Afterwards the correlation vector corr is computed by correlating each trace
of the attack set Ia with the corresponding value of mi = (m(0, i), ...,m(|Ia|, i)),
as shown in Eq. 7. In this case, m(n, i) denotes the element of mv for the inter-
mediate value v of trace number n and target byte i.

corrt,i = ρ(mi, ia,t) (7)

To quantify the achieved security complexity, we make use of the properties
of the Pearson correlation coefficient, as the measurements to disclosure are
proportional to (max(corr)2). Based on this behavior we define the security
gain as: secgain = (max(corr1)

max(corr2)
)2. The thus created power model and resulting

correlation coefficient leads to the detection of first order leakage.

416 V. Immler et al.

To complement our correlation-based analysis, we use the mutual information
(MI) which is an information theoretic (IT) metric proposed by [10,36] indepen-
dently. It has the advantage of detecting leakages at arbitrary order. Hence, it
captures the amount of information available to the worst-case adversary. We
use it to directly calculate the mutual information between a given trace and
the S-box input, as shown in Eq. 8, for each point in time t and target byte i.

mit,i = H(It) − H(It|vi) (8)

Since our goal is to also compare power and high resolution EM measure-
ments, we additionally include the results of SNRM as third metric.

6.2 Power Measurement Results for Default ISE Placement (Set 1)

By carrying out a power-based side-channel attack first, we confirm the results
of previous publications such as [26] and showcase the correct behavior of our
implementations. According to our concept, we perform the correlation based
leakage test which leads to the curves as shown in Fig. 8. The results are based on
a default ISE placement (Set 1) with the described technique to ensure the same
routing amongst all the considered candidates. Each evaluated implementation
shows two correlation peaks which correspond to evaluation and precharge phase.

0

0.2

0.4

0.6

0.8

1

1200 1250 1300 1350 1400 1450 1500 1550 1600 1650

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Samples over time

Power-Analysis of Set 1 (default ISE placement)

SingleRail
WDDL

AWDDL
DPLnoEE

0

0.05

0.1

1250 1350

evaluation (zoom)

0

0.05

0.1

1525 1625

precharge (zoom)

Fig. 8. Correlation based leakage test of a power measurement for AWDDL, DPLnoEE,
WDDL, and SingleRail of the default placement

The obtained correlations are well above the significance threshold of 0.012,
defined by Mangard et al. [23]. The insignificant region is indicated by the grey
area inside the boxes of Fig. 8. Clearly visible is the strong correlation of the
SingleRail variant that climbs up to 0.99. It is, as expected, orders of magni-
tude higher when compared to the dual-rail logics. WDDL shows a maximum
correlation of 0.119, DPLnoEE of 0.048, and AWDDL of 0.046 respectively.

Based on this metric, the WDDL design – due to its data-dependent time-
of-evaluation and time-of-precharge – has the highest leakage of the dual rail
styles. DPLnoEE and AWDDL show a similar leakage in the evaluation phase.

Your Rails Cannot Hide from Localized EM 417

As claimed by [26], the leakage of AWDDL is marginally lower in the precharge
phase when compared to DPLnoEE. The plots also show a leakage of AWDDL
that is shifted in time which is owed to its self-timed behavior. A massive leakage
is observed for the SingleRail implementation that spreads over both evaluation
and precharge phase. This is probably due to parasitics of the power measure-
ment setup. The resulting security gains are:

– SingleRail → WDDL:
(
0.990
0.119

)2 = 69.2
– WDDL → DPLnoEE:

(
0.119
0.048

)2 = 6.15
– DPLnoEE → AWDDL:

(
0.048
0.046

)2 ≈ 1 (difference below significance interval)

To complement our analysis we applied the information theoretic metric, too.
They confirm the results of the correlation based leakage test and are summarized
in Table 3. As a next step, we investigate if similar security gains can be obtained
if the device under test is subject to a localized-EM attack.

6.3 Localized-EM Measurement for Default ISE Placement (Set 1)

Using the same design files and same DUT, we also performed high resolution,
localized EM measurements. This leads to Fig. 9 for the correlation based test.
Again, we indicated the insignificant region by a grey area inside the plot.

0

0.2

0.4

0.6

0.8

1

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Samples over time

EM-Analysis of Set 1 (default ISE placement)

SingleRail
WDDL

AWDDL
DPLnoEE

Fig. 9. Leakage test of a localized EM measurement for the considered logic styles at
the position of the highest correlation using the default ISE placement.

It is striking that during the evaluation phase all correlation curves peak at
very similar levels. Considering both phases, the SingleRail implementation has
its highest peak at 0.89, followed by WDDL and AWDDL at 0.83, and DPLnoEE
at 0.77. We would like to highlight that only 10 000 traces were necessary to
create these results. Deriving the respective security gains, we get

– SingleRail → WDDL:
(
0.889
0.836

)2 = 1.13
– WDDL → DPLnoEE:

(
0.836
0.768

)2 = 1.18
– DPLnoEE → AWDDL:

(
0.768
0.829

)2 = 0.858

418 V. Immler et al.

which shows a barely noticable security gain when using a high resolution, local-
ized EM attack. Since the same bit files were used this is clearly owed to the
superior measurement acquisition. Again, the results of the information theoretic
metric are added to Table 3.

It is remarkable that under this setting, AWDDL performs worse when com-
pared to DPLnoEE. This is owed to the fact that DPLnoEE gates directly go to
precharge once one of the inputs goes to precharge. In contrast, AWDDL goes to
precharge only when both inputs are in precharge. Therefore, the propagation
wave of AWDDL spreads over time which leads to the presented result, i.e., the
leakage of AWDDL continues even after that of the SingleRail has stopped.

6.4 Comparing Localized EM and Power Measurements

In this section we compare the results (as given in Table 3) of the power and local-
ized EM measurements, both of which are using the same bit files (cf. Sects. 6.2
and 6.3). Hence, routing and placement is the same for both measurements and
all considered logic styles (Set 1). Therefore, the only substantial differences can
only be caused by the specifics of the measurement setups.

Table 3. Summary of the practical evaluations for the default ISE placement.

Design Attack SNRM max(corr) max(secgain) max(MI)

SingleRail

Power

54.16 0.990 ←
463.2

2.99
WDDL 0.032 0.119 0.057
AWDDL 0.011 0.046 ← 0.030

DPLnoEE 0.013 0.048 0.032

SingleRail

EM

4.06 0.889 ←
1.34

2.93
WDDL 2.89 0.836 2.57
AWDDL 1.80 0.829 1.96

DPLnoEE 1.37 0.768 ← 1.95

When evaluating the results w.r.t. the obtained security gain, it is striking
that they differ significantly between power (about a factor of 463) and localized
EM measurements (about a factor of 1.34). This strongly supports the argument
that localized EM attacks are a severe threat to dual-rail logic on FPGAs.

For the SingleRail implementation, it is surprising that the total leakage
appears to only be captured by a power measurement, resulting in a much higher
SNRM of 54.16 when compared to the localized EM measurement (4.06). How-
ever, this changes drastically when inspecting the numbers for DRP logic as the
results of localized EM outperform the power-based by orders of magnitude.

Another approach to substantiate the impact of our results is the capability
of the setups in distinguishing the true and false rail. To analyze this, we need
to consider two scenarios: (i) In case the rails are inseparable, one would expect
to see a significant increase in the leakage when deactivating one of the rails
since the balancing aspect is lost. (ii) If the opposite is true, i.e., the rails are

Your Rails Cannot Hide from Localized EM 419

separable, then the leakage should be approximately the same when deactivating
one of the rails since from the beginning on, there would have been no difference.

This can be studied by observing the behavior when switching from the
SingleRail implementation to any of the dual-rail variants. For the power mea-
surements we are within scenario (i), as the correlation significantly differs when
performing the switch between SingleRail and dual-rail. For the local EM mea-
surements we are within scenario (ii), as the magnitude of correlation remains
the same regardless of the fact whether it is a SingleRail or a dual-rail variant.

All observations are backed by the IT analysis that verifies the claimed behav-
ior of the different measurement methods. Under this scenario, both measure-
ment methods perform equally when considering the SingleRail implementation,
indicating that aside from the difference in SNRM, the full leakage is extracted.

As a next step, we investigate if this situation can be improved by means of
an increased density of the placement. The goal of this is to increase the density
up to the point where distinguishing the rails is no longer possible.

0

0.2

0.4

0.6

0.8

1

1150 1250 1350 1450 1550

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Samples over time

EM-Analysis of Set 2a (HPWL)

SingleRail
WDDL

AWDDL
DPLnoEE

(a) Correlation curves for Set 2a.

0

0.2

0.4

0.6

0.8

1

1150 1250 1350 1450 1550

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Samples over time

EM-Analysis of Set 2b (SSST)

SingleRail
WDDL

AWDDL
DPLnoEE

(b) Correlation curves for Set 2b.

Fig. 10. Correlation based leakage test of a high resolution EM measurement.

6.5 Security Analysis of the Custom Placement

To improve the situation under a localized EM attack, we investigate the impact
of the previously described placement improvements. We repeated our measure-
ments using these files and carried out the same tests. For HPWL and SSST,
the results of this test are illustrated in Fig. 10a and b respectively.

Again, for the sake of fair comparison, we realized the same routing within
the HPWL (Set2a) and SSST (Set2b) designs. We therefore only compare the
results of the placement and the security improvement from a SingleRail to
dual-rail version. Otherwise, the effect of the routing could not be excluded.

Considering the results for HPWL, one can see that for Fig. 10a almost
no improvement is achieved. In contrast, the SSST-based placement shows an
improvement at a factor of about 2.24. Taking the results of Table 2 into account,
it is evident that by using the SSST cost function one achieves a more dense
placement up to the point where the power of the used EM attack is degrading
(Table 4).

420 V. Immler et al.

Table 4. Summary of the EM analysis for the customized placements.

Design Attack SNRM max(corr) max(secgain) max(MI)

HPWL

SingleRail

EM

2.82 0.881 ←
1.15

2.76
WDDL 3.04 0.867 2.12
AWDDL 1.70 0.863 2.21

DPLnoEE 1.92 0.823 ← 1.96

SSST

SingleRail

EM

3.23 0.851 ←
2.24

2.31
WDDL 1.54 0.720 1.73
AWDDL 1.29 0.653 1.20

DPLnoEE 1.36 0.569 ← 1.14

However, since an optimal placement is likely not to be found analytically
(which could further improve the resistance), only improving the placement as
a countermeasure is insufficient. We therefore analyzed also a masked version of
AWDDL. These supplementary results are shown in Fig. 11 of the Appendix.

7 Conclusion

In this work we have shown that verifying DRP logics on FPGAs only by a
power-based side-channel analysis is insufficient. While their security gain is
remarkable in this setting, it is not when considering high-resolution, localized
EM measurements. We therefore suggest to always include a thorough EM-based
analysis in future proposals of such logic styles.

To compensate for the significant loss in security under an EM-based attack,
we investigated if the situation improves when adapting the placement. This is
achieved by a custom placer using simulated annealing using a novel cost func-
tion. Our practical investigations confirm that by using a more dense placement,
the security doubles when compared to the default ISE setting.

While generally assuming that a single countermeasure is insufficient and
combining multiple countermeasures is needed, we demonstrate that for dual-
rails on FPGAs this may result in a wrong systematic, as they may be rendered
mostly useless, especially if not taking care of the placement.

Even though we did not specifically consider duplication schemes, we expect
that our findings apply to them as well, since the minimum distance between
their true and false is typically large, i.e., more than one tile. This needs to be
confirmed by future evaluations, also considering triple-rail logics such as [22].

Your Rails Cannot Hide from Localized EM 421

References

1. Federal Information Processing Standards Publication (FIPS 197). Advanced
Encryption Standard (AES) (2001)

2. Betz, V., Rose, J.: VPR: A New Packing, Placement and Routing Ttool for FPGA
Research

3. Bhasin, S., Guilley, S., Flament, F., Selmane, N., Danger, J.-L., Evaluation, C.E.:
An approach towards robust dual-rail precharge logic. In: WESS 2010, p. 6. ACM
(2010)

4. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

5. Cheng, C.-L.E.: RISA: accurate and efficient placement routability modeling. In:
Proceedings of the 1994 IEEE/ACM International Conference on Computer-aided
Design, ICCAD 1994, Los Alamitos, CA, USA. IEEE Computer Society Press

6. Cnudde, T.D., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.: Does cou-
pling affect the security of masked implementations? Cryptology ePrint Archive,
Report 2016/1080 (2016)

7. De Mulder, E., Buysschaert, P., Ors, S., Delmotte, P., Preneel, B., Vandenbosch,
G., Verbauwhede, I.: Electromagnetic analysis attack on an FPGA implementation
of an elliptic curve cryptosystem. In: The International Conference on Computer
as a Tool, EUROCON 2005, vol. 2, pp. 1879–1882, November 2005

8. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

9. Giechaskiel, I., Eguro, K.: Information Leakage Between FPGA Long Wires. CoRR
(2016)

10. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85053-3 27

11. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The “Backend Duplication”
method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397.
Springer, Heidelberg (2005). doi:10.1007/11545262 28

12. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-23951-9 3

13. He, W., de la Torre, E., Riesgo, T.: A precharge-absorbed DPL logic for reducing
early propagation effects on FPGA implementations. In: ReConFig 2011. IEEE
Computer Society (2011)

14. He, W., Herrmann, A.: Placement security analysis for side-channel resistant dual-
rail scheme in FPGA. In: Proceedings of the Second Workshop on Cryptography
and Security in Computing Systems, CS2 2015 (2015)

15. He, W., Otero, A., de la Torre, E., Riesgo, T.: Automatic generation of identical
routing pairs for FPGA implemented DPL logic. In: ReConFig 2012. IEEE (2012)

16. Herbst, C., Oswald, E., Mangard, S.: An AES smart card implementation resistant
to power analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS,
vol. 3989, pp. 239–252. Springer, Heidelberg (2006). doi:10.1007/11767480 16

http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-540-85053-3_27
http://dx.doi.org/10.1007/11545262_28
http://dx.doi.org/10.1007/978-3-642-23951-9_3
http://dx.doi.org/10.1007/11767480_16

422 V. Immler et al.

17. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromag-
netic analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27954-6 15

18. Heyszl, J., Merli, D., Heinz, B., Santis, F., Sigl, G.: Strengths and limitations
of high-resolution electromagnetic field measurements for side-channel analysis.
In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 248–262. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-37288-9 17

19. Kaps, J.-P., Velegalati, R.: DPA resistant AES on FPGA using partial DDL. In:
FCCM 2010, pp. 273–280. IEEE Computer Society (2010)

20. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

21. Lavin, C., Padilla, M., Lamprecht, J., Lundrigan, P., Nelson, B., Hutchings, B.,
Wirthlin, M.: Rapidsmith - a library for low-level manipulation of partially
placed-and-routed FPGA designs. Technical report, Brigham Young University,
September 2012

22. Lomné, V., Maurine, P., Torres, L., Robert, M., Soares, R., Calazans, N.: Evalua-
tion on FPGA of triple rail logic robustness against DPA and DEMA. In: DATE
2009, pp. 634–639. IEEE (2009)

23. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, New York (2007)

24. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked AES
hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 76–90. Springer, Heidelberg (2006). doi:10.1007/11894063 7

25. Moradi, A., Eisenbarth, T., Poschmann, A., Paar, C.: Power analysis of single-
rail storage elements as used in MDPL. In: Lee, D., Hong, S. (eds.) ICISC
2009. LNCS, vol. 5984, pp. 146–160. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14423-3 11

26. Moradi, A., Immler, V.: Early propagation and imbalanced routing, How to dimin-
ish in FPGAs. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731,
pp. 598–615. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44709-3 33

27. Nam, G.-J., Villarrubia, P.G.: Placement: introduction/problem formulation. In:
Alpert, C.J., Mehta, D.P., Sapatnekar, S.S. (eds.) Handbook of Algorithms for
Physical Design Automation, 1st edn, pp. 277–287. Auerbach Publications, Boca
Raton (2008)

28. Nassar, M., Bhasin, S., Danger, J.-L., Duc, G., Guilley, S.: BCDL: a high speed
balanced DPL for FPGA with global precharge and no early evaluation. In: DATE
2010, pp. 849–854. IEEE (2010)

29. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

30. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005). doi:10.1007/
11502760 28

31. Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Power and electromagnetic analy-
sis: improved model, consequences and comparisons. Integr. VLSI J. 40, 52–60
(2007)

http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/978-3-642-37288-9_17
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/11894063_7
http://dx.doi.org/10.1007/978-3-642-14423-3_11
http://dx.doi.org/10.1007/978-3-642-14423-3_11
http://dx.doi.org/10.1007/978-3-662-44709-3_33
http://dx.doi.org/10.1007/11502760_28
http://dx.doi.org/10.1007/11502760_28

Your Rails Cannot Hide from Localized EM 423

32. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7 17

33. Sauvage, L., Guilley, S., Danger, J.-L., Mathieu, Y., Nassar, M.: Successful attack
on an FPGA-based WDDL DES cryptoprocessor without place and route con-
straints. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2009 (2009)

34. Sauvage, L., Nassar, M., Guilley, S., Flament, F., Danger, J.-L., Mathieu, Y.: DPL
on stratix II FPGA: What to expect? In: ReConFig 2009, pp. 243–248. IEEE
Computer Society (2009)

35. Specht, R., Heyszl, J., Kleinsteuber, M., Sigl, G.: Improving non-profiled attacks
on exponentiations based on clustering and extracting leakage from multi-channel
high-resolution EM measurements. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 3–19. Springer, Cham (2015). doi:10.1007/
978-3-319-21476-4 1

36. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

37. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-rail
pre-charge logic style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 255–269. Springer, Heidelberg (2006). doi:10.1007/11894063 21

38. Swartz, W.: Placement using simulated annealing. In: Alpert, C.J., Mehta, D.P.,
Sapatnekar, S.S. (eds.) Handbook of Algorithms for Physical Design Automation,
pp. 311–325. Auerbach Publications, Baco Raton (2008)

39. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: Prototype IC with WDDL and differential routing – DPA resistance assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005). doi:10.1007/11545262 26

40. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: DATE 2004, pp. 246–251. IEEE
Computer Society (2004)

41. Tiri, K., Verbauwhede, I.: Place and route for secure standard cell design. In:
CARDIS 2004, pp. 143–158. Kluwer (2004)

42. Unterstein, F., Heyszl, J., De Santis, F., Specht, R.: Dissecting leakage resilient
PRFs with multivariate localized em attacks - a practical security evaluation on
FPGA. In: Constructive Side-Channel Analysis and Secure Design: 8th Interna-
tional Workshop, April 13–14, 2017, Paris, France. Springer International Publish-
ing (2017)

43. Wild, A., Moradi, A., Güneysu, T.: GliFreD: Glitch-Free Duplication - Towards
Power-Equalized Circuits on FPGAs (2015)

44. Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and rout-
ing. In: CODES+ISSS 2007, pp. 45–50. ACM (2007)

Appendix

For the sake of completeness, we present the results of a simple boolean masked
version of AWDDL as an example in Fig. 11, using the default placement of

http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-319-21476-4_1
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/11894063_21
http://dx.doi.org/10.1007/11545262_26

424 V. Immler et al.

ISE. Both power and localized EM attack have been carried out. The first order
correlation based leakage test did (as expected) not show any leakage.

In contrast, using the mutual information, it was still possible for both designs
to extract leakage. Hence, additional countermeasures would be required.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600
0.02

0.03

0.03

0.04

0.04

0.04

0.05

M
u

tu
al

 In
fo

rm
at

io
n

 E
M

M
u

tu
al

 In
fo

rm
at

io
n

 P
o

w
er

Samples over time

MASKED AWDDL EM
MASKED AWDDL POWER

Fig. 11. Mutual information of the evaluation and precharge phases over time.

How to Break Secure Boot on FPGA SoCs
Through Malicious Hardware

Nisha Jacob1(B), Johann Heyszl1,
Andreas Zankl1, Carsten Rolfes1, and Georg Sigl1,2

1 Fraunhofer Institute for Applied and Integrated Security (AISEC),
Munich, Germany

{nisha.jacob,johann.heyszl,
andreas.zankl,carsten.rolfes}@aisec.fraunhofer.de

2 Technische Universität München, EI SEC, Munich, Germany
sigl@tum.de

Abstract. Embedded IoT devices are often built upon large system
on chip computing platforms running a significant stack of software.
For certain computation-intensive operations such as signal processing
or encryption and authentication of large data, chips with integrated
FPGAs, FPGA SoCs, which provide high performance through config-
urable hardware designs, are used. In this contribution, we demonstrate
how an FPGA hardware design can compromise the important secure
boot process of the main software system to boot from a malicious net-
work source instead of an authentic signed kernel image. This significant
and new threat arises from the fact that the CPU and FPGA are con-
nected to the same memory bus, so that FPGA hardware designs can
interfere with secure boot routines on FPGA SoCs that are without
any interruption on regular SoCs. An enabling factor is that integrated
hardware designs are likely bought from external partners and there is
a realistic lack of security review at the system integrators. This facil-
itates flaws or even unwanted functionality in such hardware designs.
We perform a proof of concept on a Xilinx Zynq-7000 FPGA SoC, and
the threat can be generalized to other devices. We also present as effec-
tive mitigation, an easy-to-review and re-usable wrapper module which
prevents any unauthorized memory access by included hardware designs.

Keywords: FPGA SoCs · Secure boot · Hardware design ·Outsourced ·
Threat

1 Introduction

We are currently experiencing a rapid increase in the number of embedded
devices being used in the context of the Internet-of-Things (IoT) and cyber
physical systems. The application domains of such systems range from automo-
tive, aviation, infrastructure, to industrial production and even home appliances.
Across all domains, embedded systems are mostly build on powerful high-volume
System on Chips (SoCs) running a mixture of open-source and closed source
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 425–442, 2017.
DOI: 10.1007/978-3-319-66787-4 21

426 N. Jacob et al.

software, and include network communication interfaces. Such devices perform
critical tasks, however, are at the same time physically accessible for attackers
in many cases. Fortunately, several security mechanisms have been developed to
counteract possible attacks based on physical access. The arguably most impor-
tant and widely adopted countermeasure is a secure boot mechanism which
ensures that only authentic and unmodified software can be run right from the
start of the first code within the CPU. This prevents attackers from manipulating
software images and restarting devices into a manipulated behaviour. As such,
it can be seen as the foundation of all further software security measures. Some
applications of embedded systems require high computational capabilities for
signal processing or cryptographic operations. At the same time, devices often
remain in the field for many years which means that updates of the functional-
ity are likely required. For such cases, FPGA manufacturers such as Xilinx have
produced SoC chips known as FPGA SoCs which include configurable hardware
logic on the same chip as a conventional CPU architecture. Embedded systems
built using such devices (e.g. [26]) are able to support significant computational
capabilities through hardware acceleration while both, software as well as hard-
ware can be updated in the field.

However, this additional configurable hardware may lead to severe security
issues. Configurable hardware within FPGA SoCs is typically connected to high-
bandwidth memory buses of the main CPU which means that hardware blocks
may possibly access memory regions which are access-managed by the software
system. This has severe consequences for the system, because this may easily cor-
rupt the security of the entire system. We have in the past seen similar attack
vectors in the PC world which were successful. For instance, external high-speed
interfaces have been misused to directly access internal memory [12,24]. For-
tunately, countermeasures such as Input Output Memory Management Units
(IOMMUs) have also been developed against such attacks [3] which handle the
memory management of peripherals with direct access to memory and thereby
prevent unauthorised memory accesses. In our opinion, however, such threats
are now possible from a new direction i.e., through the integrated hardware. In
order to understand the reasons for this, it is important to realize that hard-
ware designs (e.g. cryptographic accelerators) will possibly come from ‘external’
sources. This is simply cheaper and provides a faster time-to-market. Open-
source software is used for similar reasons. Even large ASIC SoCs for short-lived
consumer-grade routers/modems are designed with outsourced hardware mod-
ules, which means that the following threat also applies to ASICs in such cases.
For example, the Elastic Compute Cloud (EC2) from Amazon Web Services
(AWS) now includes an instance with integrated FPGAs (EC2 F1 instance)
where IP cores can be used from a dedicated IP market place [15]. While design-
ers of embedded systems will likely have sufficient software expertise within their
team, they will, in many cases, lack proper hardware engineering expertise along
with the required extensive tooling for hardware development and verification. If
hardware is sourced from elsewhere, it is hence questionable whether the embed-
ded system designers/integrators will be able to properly review the hardware

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 427

code to check for unwanted functionality or possible attacks. In many cases,
hardware blocks will even be delivered as a synthesized netlist which more or
less prohibits proper review. The problem is that malicious functionality could
be part of such hardware modules.

Previous contributions have already highlighted some of the issues arising
from this where unwanted additional functionality in hardware blocks leaks or
corrupts sensitive information. E.g. Kutzner et al. [19] describe how an AES
core could be maliciously modified such that the key of the last round is output
instead of the cipher text. Other contributions have demonstrated how cryp-
tographic keys could be leaked via intentional side-channels such as the power
consumption [21] or over the wireless channel [17]. King et al. [18] and Yang et al.
[29] show how a privilege escalation of applications can be achieved at run-time
using malicious hardware blocks. For this, King et al. modify the data cache and
MMU of the Leon processor, while Yang et al., modify the register that holds the
privilege bit of the OpenRISC processor. Li et al. [20] describe how a hardware
core, which is originally purposed for memory tracing in the context of software
debugging, may include unwanted functionality to inject code into the running
system. As a proof of concept, Li et al. demonstrate how a log-in password
check of a Linux Operating System (OS) can successfully be circumvented by a
hardware core scanning and manipulating the memory on the Xilinx Zynq-7000.
Jacob et al. [23] show how public authentication keys can be overwritten by a
malicious hardware core in FPGA SoCs so that the devices accepts malicious
system updates.

In this work, we show that even the secure boot process, one of the most
important and basic security features of embedded systems, can be compromised
by malicious hardware blocks in the FPGA on FPGA SoCs. We describe a proof
of concept on the Xilinx Zynq-7000 device and explain why even later models
which include IOMMUs (and are fit to counteract attacks such as described by
Li et al. [20] and Jacob et al. [23]) will likely be susceptible to such attacks.
Our proof of concept system includes a conventional software stack along with
an additional hardware block for the FPGA. The included unwanted hardware
functionality overwrites parameters of the second stage boot loader, U-boot, dur-
ing the secure boot so that an unauthorized kernel image is retrieved and booted
over the network instead of the local authorized image even though all previous
boot stages are properly verified prior to that. In our opinion, it will not be
realistic for general design teams to acquire the necessary hardware expertise to
prevent this. Hence, we developed an efficient countermeasure, which provides
full re-usability, and is easy-to-review because of the small code size, that pro-
tects against all unauthorized memory accesses through hardware cores while
raising an alarm at every attempt. It is a simple hardware wrapper for the AXI
bus interface which is easy to wrap around all outsourced hardware cores with
memory access and is configured through every access from software. It can be
seen as a stripped-down IOMMU which instead works straight from configura-
tion (without requiring the software to explicitly enable or configure it, which is
usually done after boot in the OS) and has a smaller set of functionality, thus,
trusted code base.

428 N. Jacob et al.

The paper is organised as follows. Section 2 reviews the security of embed-
ded systems generally. Section 3 outlines the attack on the secure boot process.
Section 4 describes the Xilinx Zynq device and boot sequence along with a gen-
eralization to other devices. Section 5 presents the proof of concept along with a
discussion. Section 6 presents the countermeasure.

2 On the Security of Embedded Systems

To highlight the importance of a secure boot process we review popular security
mechanisms for embedded systems in this section. They can be divided into
three general kinds of security measures built on top of each other.

Hardware Security. Since many IoT embedded systems are in physical reach
of potential attackers, security must be rooted in the hardware of respective
devices. Hardware security mechanisms for instance include protection against
physical tampering, which can be achieved by using tamper-proof casings with
light sensors to detect break-ins. Chip-internal tamper detection sensors typ-
ically monitor clock and voltage inputs to prevent fault-injection attacks [4].
In case of a tamper event, critical data is e.g. cleared and the system is shut
down. Many SoCs for embedded systems include dedicated secure memory for
keys and/or certificates. This helps to refrain from storing such information on
external memories. Another important aspect of hardware security is to protect
debug interfaces using e.g. passwords so that read-out and/or corruption of data
and software is prevented in the field [13].

Secure System Startup. One of the most important security mechanisms is a
secure boot process. In this process, all executed code is verified for integrity
and authenticity using cryptographic means before execution. This means that
right after the system startup, the running software can be trusted, which is
the required foundation for all later security mechanisms. For a secure boot, a
chain-of-trust is established which starts from the very first code that is exe-
cuted from within the CPUs internal hardwired ROM (also including respective
keying material), commonly called the hardware root-of-trust [10]. Given that
attackers have physical access, a trusted boot process using Trusted Platform
Modules (TPMs) on the contrary, cannot provide this assurance, since the exter-
nal TPM can always be manipulated by malicious software on the main CPU
(comparable to a man-in-the-middle attack). Using similar functions as secure
boot, secure update processes allow updates in-the-field from authentic sources
by checking authenticity and integrity as well as decrypting confidential data
using cryptographic methods. Both require a secure storage for the respective
key material.

Runtime Security. After the device startup, all assets such as cryptographic keys,
processed data and control functions must be protected against run-time attacks
on the software. This only makes sense if the running software is trusted from the

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 429

start (i.e. secure boot). Popular mechanisms include different kinds of software
isolation and virtualization to prevent corrupted processes (e.g. after success-
ful exploits) from accessing sensitive or higher-privilege information. Memory
isolation can be achieved through the OS or a hypervisor. Both need hard-
ware support in the form of a Memory Management Unit (MMU) and/or IOM-
MUs [3]. Trusted execution environments [25] provide an additional privilege
level for processes where sensitive processes including their memory regions e.g.
keys, and even peripherals, can be put into a secure world to prevent access by
corrupted processes from the normal world.

Through this work we would like to highlight that even if we have an FPGA
SoC with a secure hardware root-of-trust and a secure boot process, as well
as runtime protection (by isolation of software components), we still have a
major risk that the system may be compromised. This risk comes from the
reconfigurable hardware. We show that protection mechanisms such as a secure
boot, MMU, or privilege levels do not help against such threats.

3 Attacking the Secure Boot on FPGA SoCs

In this section, we outline the general idea of an attack on the secure boot process
in the context of FPGA SoCs. The main underlying observation for all secure
boot processes is that the verification of the authenticity and integrity of a soft-
ware image is either not done in-place, or, more importantly, the process which
performs the verification and later hands off control to the subsequent stage is
inherently not atomic in the sense that it could be interrupted by manipulations.
This is an issue that we generally want to highlight and which is of particular
relevance for embedded systems built upon FPGA SoCs. In most cases of con-
ventional SoCs, there is no reason to believe that a manipulation of the memory
is happening while the CPU is executing the secure boot code, since no-one
besides the CPU is accessing the memory. However, in the case of FPGA SoCs,
hardware cores on the FPGA have access to the shared memory bus. Hence, such
cores, once loaded, present as immediate additional actors on those buses and
may manipulate memory content while the CPU is not ’aware’ of this. Specifi-
cally, such hardware cores, once loaded, are able to manipulate the boot process
such that a malicious software image is executed instead of an authentic one.
This can be achieved by the hardware secretly overwriting parts of a running
bootloader. We present a proof of concept on the Xilinx Zynq-7000 FPGA SoC.

It is important to note that the malicious functionality in the hardware, for
the reasons explained in the introduction, is part of an FPGA configuration
file and contains authentic signatures. It is also important to note that it often
makes sense to load the FPGA before starting the software system so that the
hardware acceleration is e.g. available to verify large software images to reduce
software startup times in secure boot scenarios.

430 N. Jacob et al.

4 Relevant Properties of the Xilinx Zynq-7000

We chose the Xilinx Zynq-7000 device for our practical proof of concept since it is
a popular choice for contemporary embedded system designs. Also, the insights
are generalizable to later models as well as devices from different manufacturers.

The Xilinx Zynq-7000 is an FPGA SoC consisting of a dual core ARM Cortex
A9 CPU and a Xilinx 7-series FPGA fabric on the same die. The processing
system includes a MMU and two-level cache. A small on-chip RAM of 256KB
is available for the storage of sensitive information or code. A larger external
DDR memory can be accessed via the memory controllers. The main memory
bus is an ARM AMBA AXI bus system. External communication is supported
through CAN, I2C, Ethernet and USB interfaces. The device includes a hard-
core AES and HMAC implementation which are used during the decryption and
authenticity verification of images and configuration files to be run on the Zynq-
7000. The ARM trusted execution environment known as TrustZone is available
for runtime security of the software system. A one-bit hardware setting divides
all processes and peripherals into either a secure, or a normal world.

4.1 Secure Boot Process on the Xilinx Zynq-7000

Figure 1 depicts the boot process on the Zynq-7000 FPGA SoC. It consists of
five stages after power-up:

1. BootROM (non-accessible internal hardwired code)
2. First Stage Bootloader (FSBL)
3. FPGA configuration (bitstream)
4. Second stage bootloader (i.e. U-boot)
5. Operating System (OS)

Fig. 1. Overview of boot process on Xilinx Zynq-7000

The FSBL, bitstream and second stage bootloader are packed into a single
boot image i.e., BOOT.bin as separate partitions. Each partition within the boot
image is separately encrypted and authenticated. Figure 2 depicts the structure
of such a partition. It contains the payload as the main part. For AES/HMAC-
based authentication and integrity checks, the HMAC key as well as the HMAC

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 431

digest are appended to the payload before encryption. Xilinx uses the MAC-
then-encrypt order of encryption and authentication i.e., the message digest of
each partition is first computed followed by its encryption. The key for the AES
encryption can either be stored in the battery-backed RAM or in eFuses of
the chip. The selection of the AES key source can be enforced by setting the
corresponding eFuse. If the optional RSA algorithm is used for authentication,
an RSA signature verification is computed in software and the signature as well
as the certificate are appended to the partition. The hash of the RSA public key,
which is used to validate the certificate, is stored in an on-chip eFuse array.

Fig. 2. Content of an authenticated and encrypted boot partition

After power-up, the CPU executes the hardwired instructions from the inter-
nal BootROM which is a small and inaccessible read-only memory of 128KB. It
also initializes the clocks and configures the first ARM processor core along with
the necessary peripherals to fetch the FSBL from Non-Volatile Memory (NVM)
based on the boot mode stating the source where the FSBL can be fetched (i.e.
SD card, QSPI flash, NAND flash or NOR flash). The boot mode is determined
by the voltage levels on the chip’s external pin1. The BootROM code then copies
the FSBL from the NVM to the 192KB2 on-chip memory (which is typically large
enough). The FSBL code is decrypted and authenticated using the AES/HMAC
core on the fly while copying it to the internal memory. Upon successful ver-
ification of the HMAC, control is handed off to the FSBL and it is executed
from the same internal memory. The FSBL is a Xilinx-specific bootloader which
initializes clocks, GPIOs, DDR controller and the FPGA fabric. Following the
initializations, the FSBL loads subsequent partitions. Xilinx provides a template
of the FSBL code, which can be customized. The FSBL controls the decryption
and authentication of the bitstream and second stage bootloader. If a bitstream
is part of the boot image, this is loaded next. (The bitstream may alternatively
be loaded at a later stage of boot through the U-boot or the OS. This, however,
is uncommon since it requires additional code to be inserted into the U-boot
or later OS instead of using the Xilinx template. Also, hardware acceleration
1 Those pins are accessible to possible attackers but no unauthorized images can be

started.
2 The rest of the on-chip memory is reserved for the BootROM code until control is

handed off to the FSBL.

432 N. Jacob et al.

would not be available for the verification of the OS image.). The bitstream
is decrypted and authenticated using AES/HMAC while it is loaded into the
FPGA configuration memory. If the verification fails, the FPGA containing an
unauthentic configuration is not activated. As a next step, the second stage
bootloader, e.g., U-boot is decrypted and authenticated. As the on-chip memory
is not large enough for typical loaders, the decrypted U-boot is stored on the
external DDR memory. If the verification is successful, control is then handed
off to U-boot. After initialization of the platform (processor, clocks, memory)
and reservation of memory, U-boot enters the main loop where it decrypts and
authenticates the kernel image. U-boot then reads the kernel image header and
jumps to the address of the kernel header, handing off control to the OS.

As can be devised, a secure chain-of-trust is established starting from the
BootROM code. If any of the partitions cannot be successfully verified, the
system goes into a secure lockdown mode. In case of a lockdown, the AES key
in the BBRAM is cleared and the configuration memory of the FPGA is cleared
(the keys and settings in the eFuses remain untouched).

5 Proof of Concept: Breaking the Secure Boot on Xilinx
Zynq-7000

In this section, we describe our proof of concept where we practically break
the secure boot process of the Xilinx Zynq-7000 FPGA SoC using a hardware
module. The investigation was carried on a Zedboard Rev. D development board
with 512MB of external DDR memory. The FSBL v2015.4, u-boot-xlnx v2016.1
and linux-xlnx v2016.1 from Xilinx are used [27]. The Xilinx tool bootgen is used
to encrypt and compute the message digests of each partition. Each partition of
the boot image is decrypted and authenticated using the on-chip AES/HMAC.
The AES encryption key is stored in the battery-backed RAM.

Hardware Module. As a likely scenario for the proof of concept, we chose a
hardware module similar to a cryptographic accelerator which we connect to the
AXI bus of the Xilinx Zynq-7000. In our case this module only XORs two input
values, which can be seen as a placeholder for several meaningful cryptographic
operations. We use an interface which is typical for high-speed hardware accel-
erators and consists of a low-speed slave interface for configuration and control
(i.e. source address, destination address, length, and enable signal) as well as a
high-speed master interface for data transfer [5,6,11]. The master interface is
DMA-like and, hence, reduces the load on the processing system by not requir-
ing the CPU for data input/output. The CPU only passes the configuration
information after which the module starts to perform its core function whilst
accessing data directly from the memory. Upon completion, a flag is set to alert
the processor.

In addition to this, the module also contains unwanted functionality. Using
the high-speed data interface, the module progressively scans the external DDR
memory and maliciously alters its content. It specifically scans the U-boot binary

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 433

in the DDR memory for the kernel boot parameters. After finding the target
memory location, the boot parameters are modified to load an unauthorized
kernel image from a remote server over the network instead of booting from the
verified source. For this unwanted functionality, our example hardware module
requires 117 LUTs and 46 Slices in addition to the original functionality. This
hardware overhead will likely pass unnoticed since e.g. a high-speed AES-GCM
core for the same family of FPGAs and including a similar interface requires
22.7 k LUTs and 6.9 k Slices [5] for example, which is larger by orders of magni-
tude. Another smaller example of a SHA-384/512 core (excluding the interface)
for the same FPGA family still requires 2.5 k LUTs and 700 Slices [14], which
is also significantly larger.

Fig. 3. Secure boot attack on Xilinx Zynq-7000 FPGA SoC

Sequence of Events During the Attack. Figure 3 depicts the Xilinx Zynq-7000
FPGA SoC and highlights the data flow of the encrypted and decrypted images
during the secure boot process as it is described in Section 4. The numbers in the
figure indicate the sequence of events during the attacked boot process. In step
1 (dotted grey path), the encrypted and authenticated partitions are read from
NVM (our system boots from an SD-card) or DDR memory and piped through

434 N. Jacob et al.

the AES/HMAC cores for verification3. Boot steps 2–4 (dashed green paths)
depict the successive loading of the FSBL, bitstream and U-boot respectively,
as described in Section 4.1. Following the successful verification and loading of
the bitstream to the FPGA, U-boot is verified and loaded to the external DDR
memory and control is handed-over. As soon as the hardware is activated after
the successful verification of the HMAC, the malicious core starts to scan the
external DDR memory for a particular U-boot setting which is to be modified.
This is the actual attack and depicted as step 5 in Figure 3.

Fig. 4. Excerpt of the .rodata section of the U-boot image

Figure 4a shows an excerpt of the trusted U-boot image which contains strings
representing the boot parameters in the .rodata section of the image. In step
5 explained above explained, the hardware module searches for the SD card
boot parameters i.e., fi.sdboot= (see Figure 4a). Upon locating the string, the
following original boot parameters from the authentic image, which are used to
load and verify the kernel image on the SD card, are overwritten:
load mmc 0 <dest addr> <filename>
zynqaes <src addr> <src len> <dest addr> <dest len>

The load command is used to transfer the encrypted and authenticated
kernel image from the SD card to the DDR memory. The zynqaes command then
routes this image from the DDR memory to the AES-HMAC core for decryption
and authentication. The malicious functionality overwrites these commands with
the following bootp command:
bootp <dest addr> <sever IP addr>:<filename>

3 Encrypted partitions may first be copied from NVM to DDR in order to accelerate
data transfer.

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 435

The bootp command downloads a file from the specified server IP address
to the DDR memory4. Once the image is downloaded to the DDR memory from
the remote server, the kernel is booted. For this, the malicious core also writes
a regular U-boot boot command, which specifies the locations where the bootp
command had placed the kernel image, uramdisk and devicetree in the DDR
memory, as follows:
bootm <kernel addr> <ramdisk addr> <devicetree addr>

Figure 4b shows the same excerpt as Figure 4a, with the described malicious
modifications highlighted in grey. (In our set-up, the kernel image (uI), device-
tree (dt.dtb) and uramdisk (ur.gz) are three separate images and, hence, suc-
cessively loaded.) Note that the U-boot code after the overwritten section of
code is corrupted. This is highlighted in red in Figure 4b but does not make a
difference as control is handed off to the OS after the bootm command.

Through the last command, control is handed-off and the malicious kernel
image is booted without the system or secure boot process having any chance to
detect the manipulation.

Regarding timing, the module is clocked at 100 MHz. Each read operation
to the external memory takes 70 ns. Insertion of the malicious code takes 3.6µs.
Straight after activation, the core begins to scan the memory starting from the
address 0×4000000, which is the default address where the U-boot is stored. This
address is static and publicly accessible from the default implementation of the
FSBL provided by Xilinx or the U-boot code which is open-source. The overall
attack (scanning and overwriting) takes 5.5 ms. Note that the scanning would
even be faster if the hardware core uses a full memory mapped AXI interface or
an AXI-stream interface which support burst data transfers.

To summarize, we were able to carry out the proof of concept attack suc-
cessfully and have shown that secure boot, which is a critical protection mech-
anism for embedded systems, can be compromised using malicious hardware in
the FPGA of FPGA SoCs.

Note that for this proof of concept, the RSA authentication of images was not
enabled and only the AES-HMAC was used for decryption and authentication.
However, the same attack can be carried out when RSA is enabled without any
modifications to the malicious functionality.

5.1 Discussions and Generalizations

There are several interesting aspects of the described successful attack which
require a more detailed discussion. This helps understanding and highlights gen-
eralizations to other devices.

IOMMUs. In general, IOMMUs or System MMUs (as called by ARM), are
designed to protect the system against threats such as the one demonstrated in
this contribution where bus peripherals access shared memory resources without

4 Alternative U-boot commands that could be used to load a file from a remote server
are tftpboot and dhcp.

436 N. Jacob et al.

proper authorization. IOMMUs are hardware cores which, when properly con-
figured, control bus access rights of such peripherals. They are even available in
newer (and partly more expensive) FPGA SoCs such as the Xilinx UltraScale+
[28] and Altera Stratix 10 [1]. However, IOMMUs are typically initialized by the
OS, which is the last stage in the boot process. Hence, we conclude that the
availability of IOMMUs on FPGA SoCs will not generally prevent the described
attack because this would require an earlier configuration. We advise the use of
the countermeasure presented in the next section instead.

ARM TrustZone. ARM TrustZone prevents unauthorized accesses from the nor-
mal world to secure world resources (e.g. memory regions) through the use of
the TrustZone bit, which is implemented in all system parts (MMU, bus par-
ticipants, CPU). However, it is e.g. likely that cryptographic cores are placed
within TrustZone, which allows them unlimited access which may lead to an
attack as described. Even if an IP core is not within TrustZone, it is still able to
compromise boot, since U-boot is typically not running in TrustZone. So while
TrustZone is an important security feature, it is not an effective countermeasure
against this attack.

Static Access Restrictions on Xilinx Devices. The Zynq-7000 allows to statically
restrict the access of peripherals to the memory at design time. This means that
under no operational circumstances, the hardware may access certain excluded
memory regions. A similar feature is also offered by Microsemi for the SmartFu-
sion2 FPGA SoCs [22]. However, this would pose a drastic limitation for designs
since for most cases, the final use of a hardware module such as a cryptographic
accelerator will be determined by software and it will be beneficial if all mem-
ory regions can be accessed. For example, a cryptographic core that is used for
run-time integrity checking of software requires access to all memory regions.

On the Xilinx Zynq UltraScale+ series, a XMPU module can be used to
restrict the access of masters on the bus. This access configuration can optionally
be locked at boot time (recommended method by Xilinx [28]). This, however,
means that the settings can only be changed after a power-on-reset using a
modified and signed image. Alternatively, if this setting is not locked at boot
time, the configuration can be changed at run-time. In our opinion, a static
configuration will not likely be used for acceleration-type cores since it poses as
an unfavorable restriction to designs. Instead the countermeasures presented in
the next section is advised.

Generalization. We used the Xilinx Zynq-7000 for a proof of concept. It is cur-
rently being deployed and will likely stay in the field for many years. And even
though the Zynq Ultrascale+ includes IOMMUs and XMPU, the Zynq-7000 will
remain attractive for new designs due to lower costs. Also, as described above,
the availability of IOMMUs does not by default prevent the described threats.
They also need to be configured properly before the FPGA is loaded.

The order of the boot of FPGA and software system influences the vulner-
ability of the boot process. In case of FPGA SoCs from Altera, three cases of

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 437

boot [2] are available: (i) the CPU boots and configures the FPGA during its
boot sequence (similar to Zynq-7000), (ii) the FPGA is configured first and the
CPU boot sequence is controlled by the FPGA, and (iii) the FPGA and CPU
boot independently. The first case is the same with the same issue, the second is
even worse as the FPGA is configured first. In the last, the FPGA and CPU are
booted independently so the success will depend on whether the FPGA boots
before the OS or during the CPU. In all cases, devices like, e.g. Stratix V and
Arria 10 have no IOMMU and are vulnerable at run-time at least.

Microsemi on the contrary offers non-volatile FPGA SoCs, which means that
the FPGA is ready to be used directly after power-up and there is no configu-
ration of the FPGA from external memory as is the case with standard SRAM-
based FPGA SoCs from Xilinx and Altera. Hence, the threat is imminent from
the very start of the system.

To summarize the above cases, whenever the FPGA is configured early during
the boot sequence, and this is often the case, a secure boot process can be
compromised by a malicious core in the FPGA and the use of the countermeasure
described in the next section is advised.

Virtual vs. Physical Memory Addressing. There is no virtual addressing before
the OS is loaded. Hence, attacks such as the presented one do not have to take
address mappings into account and can rely on direct physical addressing instead.

Finding the Location of the Code to be Overwritten. One of the key factors for
attack vectors as the one described in this contribution is to estimate the location
of the code which is to be overwritten. The less precise this is, the more code
needs to be searched which takes more time. Interestingly, the location of the
respective U-boot image depends only on a few factors and can be determined
using publicly accessible information. Within the U-boot image, the presented
attack overwrites U-boot environment variables which are located in the .rodata
section of the image in the form of strings. By being part of the U-boot image, the
variables are authenticated. (Technically, there are cases where such variables are
instead retrieved from other, unauthentic external memories, and are loaded onto
the heap in RAM at run-time. However, this option is completely unreasonable
in the context of secure embedded systems since attackers with physical access
may easily modify them [16]. Hence, we assume that U-boot is compiled such
that it does not read environment variables from external memory.)

U-boot is generally unaware where the previous bootloader, in our case the
FSBL, was loaded. Hence, after the basic initialization, U-boot checks the cur-
rent value of the program counter to determine the location. By default, the
FSBL loads the U-boot binary to start at address 0×4000000. There are regions
in DDR memory, which need to be preserved to store the kernel image, device-
tree and uramdisk. Hence, if U-boot detects that the previous loader has put
it into those regions, it relocates itself to a predefined region before continu-
ing execution. The relocation offset is usually at the end of the RAM so that
one big continuous part of the memory remains for the OS. By analysing the

438 N. Jacob et al.

U-boot code (which is open-source), the offset address can be retrieved5. In
our practical investigation, we found that the initialization before the relocation
takes approximately 37 ms. Afterwards, the remaining part of the initialization
is done, which takes approximately 400 ms on our example setup. Finally the
kernel is loaded as a last step. From this we see that an attack could target the
initial location of the U-boot during the 37 ms until it is relocated, or the final
location during the 400 ms of further initialization.

Timing and Durations. The available time to perform a search for the specific
string to be overwritten depends on whether it is done before or after the relo-
cation, as described above. Our presented hardware module is able to scan up to
2.1 MB of memory, and successfully modify the specific boot parameters during
the shorter time of 37 ms before relocation. For comparison, the size of a stan-
dard U-boot is about 3 MB which already hints at the high likeliness of success.
Our practical investigations have indeed shown, that for both cases, the attack
could be performed successfully.

Caches. The CPU caches are enabled by U-boot and could possibly influence the
outcome of such attacks if the respective code to be overwritten is cached while
it is overwritten in the RAM. This would lead to the case that the original data
is possibly written back from cache in case of a later cache eviction. However,
we did not encounter such situations and suspect that the targeted part of the
U-boot image, the boot environment variables, are not accessed, thus, not cached
until they are used shortly before handing over control to the OS kernel.

6 Wrapper Countermeasure

In this section, we propose a general countermeasure to protect systems against
unauthorized memory access from hardware cores within the FPGA part of
FPGA SoCs. For this purpose, we developed a flexible and lightweight security-
enhanced hardware wrapper for cores with an AXI interface6.

Cores can be easily integrated into the wrapper and subsequently connected
to the AXI bus. The wrapper stores access commands and prevents the core
from accessing other memory regions than designated by software driving it
through the command interface. In principle it can be regarded as a stripped-
down IOMMU. However, functionality is restricted to a minimum to support
easy review, and a small trusted code base for easy re-use. Also, the wrapper is
working with restricted default settings from the very start of the FPGA and
does not rely on the OS configuring it (contrary to IOMMUs).

Typically, a software process using a hardware core writes configuration infor-
mation (source address, destination address, length, enable) to the core via the
core’s slave interface. Based on this information the core performs its function
5 The U-boot command bdinfo outputs the relocation offset on a running system.
6 The source code for the wrapping module can be retrieved from

https://github.com/Fraunhofer-AISEC/axi-firewall.

https://github.com/Fraunhofer-AISEC/axi-firewall

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 439

Fig. 5. Hardware core with security-enhanced wrapper

using the master interface for memory access. Figure 5 depicts a system archi-
tecture of an FPGA SoC including a core which is wrapped with our proposed
design. Our wrapper uses the received configuration information to monitor the
AXI-transactions of the master interface and only allows access to the memory
range specified by the software process while leveraging the time during the AXI
handshake to enforce the access commands. In a typical AXI transaction, the
address channel is first set followed by the data channel. A transaction begins
with the master sending the address of the memory location to be read/writ-
ten along with an address valid signal. It then waits until the slave responds
with an address ready signal. Next, the slave sends a data valid signal and the
master responds with a data ready signal following which valid data can then be
read/written to the memory. The wrappers checks the address issued by the mas-
ter while it waits for the slaves’ address ready response signal. If the wrapped
underlying core attempts to access memory outside of the allowed range, an
alarm signal is set. Thereby aborting a transaction before any valid data could
be read/written to the memory while not affecting the performance of legiti-
mate transactions. The wrapper also checks the length of data read/written as
per the current configuration. If the core attempts to read or write more data,
the remaining transactions are dropped and an alarm is raised. Furthermore, the
wrapper also ensures that the core is only functional when a software process
has explicitly set the enable signal, which prevents the core from performing
accesses while technically in idle state. If the core tries to initiate any unautho-
rised transactions, an alarm is raised. Thus the core is not able to enable itself
or modify its configuration settings.

440 N. Jacob et al.

The alarm signal can be connected to the interrupt controller or a separate
tamper detection unit. Currently, all subsequent transactions are blocked after
an alarm is raised. However, based on the criticality of the system, other actions
can be taken such as e.g. putting the system into a secure lockdown mode. The
wrapper also includes a 2-bit error output code to indicate the cause of the alarm
which is listed in Table 1.

Table 1. Wrapper error codes

Error code Description

00 No error

01 Exceeded permitted number of transactions

10 Out-of-range write

11 Out-of-range read

For cores that may require access to both the secure and normal world e.g.,
run-time integrity monitors, the TrustZone setting may not be fixed at boot
(through the FSBL). In such cases, cores with a master interface may set the
TrustZone security bit themselves and are, hence, free to access the secure world
memory without explicit permission. Our wrapper, however, sets the security bit
of the master interface to normal world by default unless explicitly reconfigured
through software which prevents this.

Our proposed wrapper requires a hardware overhead of 133 LUTs and 55
Slices which is a low overhead compared to the given security gain in our opinion.
There is no cycle count penalty during operation.

In a previous contribution, Brunel et al. [7] have developed a secure AXI
bridge which is similar to a full IOMMU core for SoCs. The downside in our
view is that it requires significantly more hardware resources and contains a sig-
nificantly larger amount of source code to review. Coburn et al., [8] and Cotret
et al. [9] present a post-boot run-time protection core similar to TrustZone. This
is achieved by storing system wide or processor specific (for MPSoCs) security
policies in large look-up-tables or BRAMS resulting in a significant overhead
in area and latency. In contrast, the proposed wrapper protects devices against
malicious hardware IP cores. Further, the wrapper reuses the configuration infor-
mation passed to it from the firmware and leverages the time between the AXI
handshaking for the enforcement. Hence minimizing the overhead in terms of
area, performance, latency and maintenance of the security policies.

Xilinx provides a module known as the XMPU which can be used to dynam-
ically restrict memory access from early boot stages onwards [28] but is only
available for the Zynq Ultrascale+ devices. Unfortunately, the sources of the
module are not publicly available. In contrast, our AXI-wrapper can be used for
any IP cores with memory access and is not restricted to any manufacturer or
device. Also, as the source code of the wrapper is small in size and public, it can
be easily reviewed and re-used.

How to Break Secure Boot on FPGA SoCs Through Malicious Hardware 441

7 Conclusion

We successfully demonstrated the feasibility and practical impact of attacks on
the secure boot process of FPGA SoCs through hardware on the FPGA. In a
time where services such as the Amazon AWS EC2 F1 instances and embedded
systems based on FPGA SoCs entice the broader use of hardware from IP ven-
dors, the trust level of such outsourced hardware is difficult to determine. Hence,
in our opinion, hardware cores including unwanted functionality such as the one
described here, could become more common in hardware IP marketplaces. Hence,
to prevent attacks against secure boot such as the one we presented and protect
against similar attacks through unauthorized memory accesses from hardware
cores generally, we propose to use our efficient wrapping module as a counter-
measure. Alternatively, a strict restriction in the boot order (FPGA last) and
early configuration of IOMMUs would be necessary.

References

1. Altera Corporation. Stratix 10 secure device manager provides best-in-class FPGA
and SoC security (2015)

2. Altera Corporation. Arria 10 SoC boot user guide (2016)
3. AMD. I/O Memory Management Unit (2011). http://developer.amd.com/

wordpress/media/2012/10/48882.pdf
4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s

apprentice guide to fault attacks. Cryptology ePrint Archive, Report 2004/100
(2004). http://eprint.iacr.org/2004/100

5. BarcoSilex. BA415-AES-GCM 10 to 100 Gbps IP core (2015). http://www.xilinx.
com/products/intellectual-property/1-4sw1c9.html

6. BarcoSilex. BA413-SHA1, SHA2 and HMAC IP core (2016). http://www.
barco-silex.com/ip-cores/encryption-engine/BA413

7. Brunel, J., Pacalet, R., Ouaarab, S., Duc, G.: SecBus, a software/hardware archi-
tecture for securing external memories. In: 2nd IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering, MobileCloud 2014, Oxford,
United Kingdom, April 8–11, 2014, pp. 277–282 (2014)

8. Coburn, J., Ravi, S., Raghunathan, A., Chakradhar, S.: SECA: security-enhanced
communication architecture. In: Proceedings of the 2005 International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, CASES 2005,
New York, pp. 78–89. ACM (2005)

9. Cotret, P., Devic, F., Gogniat, G., Badrignans, B., Torres, L.: Security enhance-
ments for FPGA-based MPSoCs: A boot-to-runtime protection flow for an embed-
ded linux-based system. In: 7th International Workshop on Reconfigurable and
Communication-Centric Systems-on-Chip (ReCoSoC), York, United Kingdom,
July 9–11, 2012, pp. 1–8 (2012)

10. Wilkins, D.: UEFI firmware security best practices. UEFI Plugfest (2014)
11. Ensilica. Ensilica eSi - SHA-256 (2013). http://www.ensilica.com/wp-content/

uploads/eSi-SHA-256.pdf
12. Gamma International. Tactical IT intrusion portfolio: FINFIREWIRE (2011).

https://wikileaks.org/spyfiles/files/0/293 GAMMA-201110-FinFireWire.pdf

http://developer.amd.com/wordpress/media/2012/10/48882.pdf
http://developer.amd.com/wordpress/media/2012/10/48882.pdf
http://eprint.iacr.org/2004/100
http://www.xilinx.com/products/intellectual-property/1-4sw1c9.html
http://www.xilinx.com/products/intellectual-property/1-4sw1c9.html
http://www.barco-silex.com/ip-cores/encryption-engine/BA413
http://www.barco-silex.com/ip-cores/encryption-engine/BA413
http://www.ensilica.com/wp-content/uploads/eSi-SHA-256.pdf
http://www.ensilica.com/wp-content/uploads/eSi-SHA-256.pdf
https://wikileaks.org/spyfiles/files/0/293_GAMMA-201110-FinFireWire.pdf

442 N. Jacob et al.

13. Gonzalvo, B., Bourbao, E., Majéric, F., Bossue, L.: JTAG combined attacks. In:
2016 8th IFIP International Conference on New Technologies, Mobility and Secu-
rity (NTMS). IEEE (2016)

14. Helion. HTSHA-FAST64: Fast SHA-384/512 hashing (2016). http://www.xilinx.
com/products/intellectual-property/1-8dyf-612.html

15. Barr, J.: Developer preview – EC2 instances (F1) with programmable hardware.
Amazon Web Services (2016)

16. Oh, J.W.: Reverse engineering flash memory for fun and benefit. Blackhat (2014)
17. Jin, Y., Makris, Y.: Hardware trojans in wireless cryptographic ICs. IEEE Des.

Test Comput. 27(1), 26–35 (2010)
18. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and

implementing malicious hardware. In: Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats, LEET 2008, Berkeley, pp. 5:1–5:8.
USENIX Association (2008)

19. Kutzner, S., Poschmann, A.Y., Stöttinger, M.: Hardware trojan design and detec-
tion: a practical evaluation. In: Proceedings of the Workshop on Embedded Systems
Security, WESS 2013, New York, pp. 1:1–1:9. ACM (2013)

20. Li, L.W., Duc, G., Pacalet, R.: Hardware-assisted memory tracing on new SoCs
embedding FPGA fabrics. In: Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC 2015, New York, pp. 461–470. ACM (2015)

21. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware trojans through side-channel engineering. In: Clavier, C., Gaj,
K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04138-9 27

22. Microsemi Corporation. SmartFusion2 and IGLOO2 FPGA security and reliability
(2015)

23. Jacob, N., Rolfes, C., Zankl, A., Heyszl, J., Sigl, G.: Compromising FPGA SoCs
using malicious hardware blocks. In: Design Automation and Test in Europe,
DATE 2017, Lausanne, Switzerland, March (2017)

24. Sevinsky, R.: Funderbolt adventures in thunderbolt DMA attacks. BlackHat (2013)
25. Murdoch, S.J.: Introduction to Trusted Execution Environments (TEE). University

of Cambridge (2014)
26. Xilinx Inc. The roads must roll: Zynq SoC will be used to build intelligent trans-

port system in Singapore (2015). https://forums.xilinx.com/t5/Xcell-Daily-Blog/
The-Roads-Must-Roll-Zynq-SoC-will-be-used-to-build-Intelligent/ba-p/600630

27. Xilinx Inc. Xilinx Github (2016). https://github.com/Xilinx
28. Xilinx Inc. UG 1085: Zynq UltraScale+ MPSoC: Technical reference manual, Feb-

ruary (2017)
29. Yang, K., Hicks, M., Dong, Q., Austin, T.M., Sylvester, D.: A2: analog malicious

hardware. In: IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 22–26, 2016, pp. 18–37 (2016)

http://www.xilinx.com/products/intellectual-property/1-8dyf-612.html
http://www.xilinx.com/products/intellectual-property/1-8dyf-612.html
http://dx.doi.org/10.1007/978-3-642-04138-9_27
https://forums.xilinx.com/t5/Xcell-Daily-Blog/The-Roads-Must-Roll-Zynq-SoC-will-be-used-to-build-Intelligent/ba-p/600630
https://forums.xilinx.com/t5/Xcell-Daily-Blog/The-Roads-Must-Roll-Zynq-SoC-will-be-used-to-build-Intelligent/ba-p/600630
https://github.com/Xilinx

Emerging Attacks II

Illusion and Dazzle: Adversarial Optical Channel
Exploits Against Lidars for Automotive

Applications

Hocheol Shin, Dohyun Kim, Yujin Kwon, and Yongdae Kim(B)

Korea Advanced Institute of Science and Technology, Dajeon, Republic of Korea
{h.c.shin,dohyunjk,dbwls8724,yongdaek}@kaist.ac.kr

Abstract. With the advancement in computing, sensing, and vehicle
electronics, autonomous vehicles are being realized. For autonomous
driving, environment perception sensors such as radars, lidars, and vision
sensors play core roles as the eyes of a vehicle; therefore, their reliability
cannot be compromised. In this work, we present a spoofing by relaying
attack, which can not only induce illusions in the lidar output but can
also cause the illusions to appear closer than the location of a spoofing
device. In a recent work, the former attack is shown to be effective, but
the latter one was never shown. Additionally, we present a novel satura-
tion attack against lidars, which can completely incapacitate a lidar from
sensing a certain direction. The effectiveness of both the approaches is
experimentally verified against Velodyne’s VLP-16.

Keywords: Attack · Autonomous car · Sensor · Lidar · Saturating ·
Spoofing

1 Introduction

Of late, in the automotive industry, there is a trend shift towards autonomous
vehicles. Most of the major automotive manufacturers have researched and/or
invested in this technology and even companies outside the vehicular domain
are considering autonomous vehicles as profitable future business ventures. In
realizing autonomous vehicles, especially environment perception sensors such
as radars, object-recognizing cameras, ultrasonic sensors, and lidars are critical;
major sensor manufacturers (e.g. Velodyne, IBEO, and Mobileye) are attracting
as much attention as the vehicle manufacturers.

Among the various environment perception sensors, the lidar, the target sen-
sor in this work, has its own advantages that cannot be found in the other
sensors. Compared to the current automotive radars and cameras, lidars have a
considerably higher resolution and precision. Lidars can work both at daytime
and nighttime unlike cameras, and can also recognize lanes, license plates, and
street signs due to their retro-reflective surfaces [3]. These exclusive strengths
render the lidar essential in autonomous driving platforms; they can be found
on almost all autonomous vehicles except Tesla [17].
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 445–467, 2017.
DOI: 10.1007/978-3-319-66787-4 22

446 H. Shin et al.

Fig. 1. Simplified illustration of a three-layer lidar operation.

Although they are beneficial, lidars may be vulnerable to intentional exter-
nal interferences, because they must be exposed to the outside. If the lidar in an
autonomous vehicle is deceived by an attacker, it can lead to lethal outcomes,
similar to a blind driver or a driver viewing illusions. Despite these risks, secu-
rity against such threats are not being considered in the design of automotive
lidars. In fact, during Black Hat Europe 2015, Petit et al. presented a work on
remotely tempering a camera (Mobileye C2-270) and a lidar (IBEO LUX 3),
with light [30]. Against the target lidar, they successfully induced multiple fake
dots—sensed points that are not from real objects, but generated by the injected
signal—in a wall-like shape by relaying and replaying the received lidar pulses
with an intentionally added delay; they even induced multiple copies of the wall-
like shape by repeating the waveform. However, they were only able to induce
fake dots, further than the location of spoofer (this has even been specified as a
limitation of their work). This is a critical limitation as an attack because the
further the object is, the lesser is its effect on the victim vehicle. Therefore, at
the time of spoofing, the most threatening object to the victim vehicle would
not be the induced fake dots, but the attacker herself.

In this work, we have addressed such limitations. We demonstrated that it
is possible to induce fake dots closer than the spoofer location. We also detail
the actual attack process, which is considerably more complex than that of
the previous work, such that the described process and parametric setup would
be sufficient for other researchers to reproduce this work. Note that, inducing
closer fake dots would not be possible without such detailed understanding of
the process. Apart from the aforementioned contributions, we present a novel
saturation attack against the lidars. By illuminating the lidar with a strong light
of the same wavelength as that the lidar uses, we can actually erase the existing
objects in the sensed output of the lidar. This approach was inspired by the
work of Park et al., wherein they blinded a drop sensor in a medical infusion
pump and rendered it unable to sense the fluid drops [29]. We also discovered
that curved reception glass, which a number of off-the-shelve lidars adopt, can
pose a severe threat to the lidar due to refraction/reflection. The target lidar
we used to show the effectiveness of our attack was Velodyne’s VLP-16, which
was never analyzed previously. In addition, we discuss practical aspects of the
presented attacks along with several detailed scenarios. We also present multiple
approaches to mitigate our attacks, and their limitations. Our contributions can
be summarized as follows:

Illusion and Dazzle: Adversarial Optical Channel Exploits 447

• We present the process of inducing fake dots closer than the spoofer location.
This was considered to be impossible in the previous work.

• We introduce a saturation attack against the lidars, which can incapacitate
a lidar from detecting objects.

• We present the attack process in considerable details for reproducibility.
• We discuss, in-depth, the resolution of problems pertaining to the deployment

of attacks in reality, with detailed attack scenarios.

The remainder of this paper is organized as follows. Section 2 provides the
required backgrounds for understanding this work. Section 3 presents the attack
schemes for both attacks, and Sect. 4 the attack results. Sections 5 and 6 include
the discussions and the related works, respectively. Finally, we conclude the
study in Sect. 7.

2 Background

2.1 Lidar

Lidar is an active remote sensing method, or a sensor using this method to mea-
sure the distances to nearby objects. Here, active sensing is a way of analyzing
the target of interest by exposing it to the energy (or signal) intentionally trans-
mitted by the sensor itself. It is distinguished from the opposite, passive sensing,
which examines the target of interest only by receiving energy from it. Remote
sensing is a way of analyzing the target of interest without physical contact;
examples include the telescope, radar, and seismometer.

The lidar was devised shortly after the advent of the laser, as a laser ranging
device for the lunar laser ranging experiment [2]. Since then, it has been widely
applied in fields such as meteorology [11], agriculture [40], topography [43], and
altimetry [23]. Since the adoption of the lidar as one of the sensory systems for
the test vehicle in the DARPA-funded Autonomous Land Vehicle project [31], its
usage has expanded to advanced driver assistance systems [4,8] and autonomous
driving platforms [10,14].

Limiting the scope of the environment perception sensors to automotive sys-
tems, there are roughly two types of lidars: scanning and solid-state. Scanning
lidars are mainly composed of a/multiple laser transceiver(s) and a moving rotary
system for scanning; they acquire an around-view by rotating the laser trans-
ceiver. However, the moving parts of scanning lidars contribute to its high cost
and are limited in their reliability/durability. In contrast, solid-state lidars do
not require moving parts for steering their laser beams. Although affordable
solid-state lidars with acceptable performances are the ultimate goal of lidar
manufacturers, currently, scanning lidars are dominant in the market due to lack
of technical advancements, and solid-state lidars with equivalent performances
are generally considered as the next-generation lidars [1,12,33]. Therefore, we
confine our interest to scanning lidars only; in most cases, scanning lidars are
denoted as lidars, for the rest of this work.

448 H. Shin et al.

The working of a lidar is similar to that of a pulsed radar, and is quite simple.
First, a lidar transmits a laser pulse, while spinning. When the transmitted pulse
hits an object, a part of the transmitted energy reflects back to the lidar, as an
echo. Note that, there can be multiple echoes, when the object does not fully
block the transmitted pulse, possibly resulting in multiple echoes. Then, the
echo(es) are received by the lidar, and the elapsed time (Δt) is measured. As
light has a known constant speed (c) in air, the lidar can derive the distance (l)
to the object using the following equation:

l = cΔt/2 (1)

The lidar can also determine the direction in which the pulse is transmitted,
from the rotation angle of its spin. Knowing both the direction and the distance,
the lidar can map points. The lidar rotates to cover its field of view, resulting
in a point cloud, i.e., the set of all the measured points. Multi-layer lidars either
have multiple copies of this system with vertical slant angles between them or
they also scan vertically. Figure 1 illustrates the operation of a multi-layer lidar.

As the pulses are transmitted periodically, there are ambiguities in determin-
ing the elapsed time of the received echoes. Assuming that an echo was received,
after the last pulse was transmitted, and that the elapsed time is Δt, the echo
can either be that of the last transmitted pulse or of one of the previous pulses’.
Denoting the Pulse Repetition Time (PRT) as T , the elapsed time can be any
of Δt+nT . Therefore, to limit uncertainties, lidars and pulsed radars define the
receiving time (Δtmax) and dead time (D). Whenever a pulse is transmitted, a
lidar waits for its echoes, for the duration of the receiving time, and every echo
received in that interval is considered as that of the last transmitted pulse. After
the receiving time ends, the lidar ignores all the incoming pulses for the duration
of the dead time; then, the next pulse is transmitted. This establishes the rela-
tionship, Δtmax+D = T ; the maximum distance (lmax) of a lidar can be derived
using Eq. (1) to be lmax = cΔtmax/2. Figure 2 illustrates these relationships.

Additionally, for a lidar, a wide receiving angle (size of the receiver aperture)
is not required, if it is precisely calibrated. Only the echoes falling into the receiv-
ing angle can effectively affect the sensing result. The receiving aperture needs
to cover the direction of the pulse transmission only during the maximum round-
trip time (Δtmax) of the light pulse. Thus, we can derive the minimum required
receiving angle (ΘR [◦]) from the rotating speed (ω [◦/s]) and the maximum
distance of the lidar, as per the following equation:

ΘR = Δtmax · ω =
2lmax

c
· ω [◦] (2)

Because the rotating speed of a lidar is numerically much smaller than that of
light (ω � c), and the maximum distance is in the range of several hundred
meters, the minimum required receiving angle is very small. For example, this
value is only 0.0048◦ 1 for the Velodyne’s VLP-16.

1 2·100/3e8 [s]×360·20 [◦/s]. Note that 20 Hz is the maximum update rate of VLP-16.

Illusion and Dazzle: Adversarial Optical Channel Exploits 449

Fig. 2. Relationship between the PRT,
receiving time, and dead time.

Fig. 3. Typical transition curve of a
sensor and input-output relationships
in the three regions of the curve: the
silent (①), linear (②), and saturation
(③) regions.

2.2 Sensor Attacks

Although it is not long since sensor attacks drew significant attention from the
security academia, several researchers have studied various approaches in com-
promising the sensors and defending them. Given diverse types of attack channels
for sensor attacks, Shin et al. [34] classified them into three types: regular, trans-
mission, and side channel. Regular channel attacks target the sensing structure
using the same type of physical quantity sensed by the victim sensor, e.g. sound
wave for a microphone. Side channel attacks likewise target the sensing struc-
ture as in regular channel attacks, but use a physical quantity other than the
one sensed by the target sensor, as in the case where Son et al. [37] affected gyro-
scope sensing results with acoustic stimuli. Lastly, transmission channel attacks
influence the channel connecting the sensing structure and the other parts of
the system. For example, Foo Kune et al. intentionally induced electromagnetic
interference (EMI) in the wire connecting an analog sensor and an amplifier to
overwrite the sensor output [9]. For the rest of this paper, we focus on the regu-
lar channel attack, because the following two types of attacks against lidars all
belong to that type.

Sensor Saturating
All sensors can be viewed as a form of transducers because they convert one type
of inbound physical quantity into another type (mostly electric). Although it is
ideal for transducers (particularly for sensors) to have linear transition curve,
a certain degree of nonlinearity is inevitable. Figure 3 depicts a typical sensor
transition curve, and its input range can be divided into three regions. First, the
silent region is an input range below the threshold of the sensor. The threshold
also can be called the “Limit of Detection”, because input signals below the
threshold will not be detected. Thus, the output of the sensor will be the same
as that for a zero input signal, which is natural because every sensor has a limited

450 H. Shin et al.

sensitivity. Second is the linear region, which is the intended operation region
or the dynamic range of the sensor. By design, all sensors should be guaranteed
to work in this region, because the output is proportional to the input only in
this region. As the input increases over the “Limit of Linearity”, the saturation
region starts. In this region, the curve again becomes nonlinear, and the sensor
cannot reflect the input changes well.

The principle of saturating is to push the overall level of the input signal (②)
into the saturation region (③), in order to render the sensor unable to reflect
the variations in the legitimate input signal. As shown in Fig. 3, an attacker can
incapacitate a sensor by exposing it to excessive stimuli (② → ③).

Sensor Spoofing
Different from saturating, whose goal is the denial-of-service (DoS), the goal
of the sensor spoofing is to deceive the victim sensor. The attacker deceives
the victim sensor by exposing it to the attacking signal which simulates the
circumstance that the attacker wants the sensor to believe. Simulating a fake
circumstance exploits the semantic gap between what the circumstance really is
and how the sensor perceives it to be. For example, an earthquake and a child
shaking a seismometer are totally different, but it can seem similar to the sensor.
Therefore, fabricating reality itself, e.g. spoofing a smoke detector by generating
a real smoke, is not considered sensor spoofing.

For active sensors, in particular, sensor spoofing can be performed in more
specialized forms. As mentioned in Sect. 2.1, active sensors expose the target of
examination to their own energy; an active sensor can take a particular wave-
form (ping waveform) to differentiate its echoes from the other inbound signals.
Therefore, the attacker should first acquire the ping waveform, and then relay it
after an intentionally inserted delay to affect the victim sensor; this is called sen-
sor spoofing by relaying. Besides, the received ping waveform can be duplicated
during relaying, to amplify the effect.

The advantage of sensor spoofing is that it is not easy for the victim sensor
to determine whether it is real or not. In many cases, it is almost impossible to
detect the attack without external aids.

3 Attack Methods

3.1 Target System

We assume that the target is a scanning lidar system exposed to the exterior
due to its role as an environment perception sensor. Although we focus on lidars
for autonomous driving applications because attacking them leads to the most
severe outcomes, the following attack schemes can also be applied to lidars for
other types of applications, as long as they operate similarly.

For the case of inducing fake dots closer than the spoofer location, we
assume one more condition: the ping waveform remains unchanged or at least
changes predictably. We confirmed that most of the real-world lidar products
for autonomous applications would meet this condition. We could not find any

Illusion and Dazzle: Adversarial Optical Channel Exploits 451

product with a random ping waveform as part of the specification. This can be
cross-confirmed by measurements. We analyzed the Velodyne VLP-16 to confirm
that it has a consistent ping waveform, and we could also infer that the IBEO
LUX 3 had consistent ping waveform by examining the work of Petit et al. [30].

3.2 Attack Model

We list different models for the two types of attacks: saturating and spoofing.
This is because the required attacker capabilities are different for each.

Saturating: The attacker can inject an attacking light into the target sensor
remotely. The attacking equipment can transmit light, whose wavelength is the
same as that used by the target, with sufficient intensity to saturate the target
receiver. This includes the ability to aim and focus onto the target sensor.

Spoofing by Relaying: In addition to the ability to inject an attacking light
into the target sensor, the attacker can receive a signal from the target. Thus,
the attacker has both a receiver and transmitter to receive and inject.

Fig. 4. Lidars with curved reception glasses. Velodyne’s VLP-16, HDL-32E, IBEO’s
LUX Mini, and Quarnergy’s M8 (from left).

3.3 Saturating

As described in Sect. 2.2, saturating renders the victim sensor unable to reflect
the input signal changes. This line of attack is powerful, because saturation itself
is unavoidable. The victim systems can easily detect the attack2, but cannot
prevent the sensor from saturating. As the size of the sensor output curve’s
linear region is limited, irrespective of its size, its output will start to saturate at
a certain input strength. This also applies to lidars, and by exploiting it, attackers
can effectively perform DoS attacks. As the medium used for the attack is light,
saturating against lidars can also be called blinding.

Lidars can be saturated by exposing the target lidar to an intensive light
source with the same wavelength as that used by the lidar. We observed numer-
ous induced fake dots with a weak light source, and the complete blinding of
a certain direction with a strong light source. The effect of saturating will be
described and illustrated in detail, in Sect. 4.2. The following points are charac-
teristics common to the saturation attacks against lidars:

2 However, we could not find any function alerting the occurrence of saturation.

452 H. Shin et al.

Stealthiness against Drivers and Pedestrians: In order to not hinder
human driving and for eye safety, lidars use infrared (IR) lasers for their opera-
tion. The invisibility of the medium also assists stealthiness in saturating. Even
if the target lidar is saturated by a high-intensity IR light source, human drivers
and pedestrians would be unaware, rendering the attack effective.

Receiving Angle: As mentioned in Sect. 2.1, a wide receiving angle is not
essential for lidars to sense objects in the field of view. Therefore, lidar receivers
typically have much smaller receiving angles compared to the angle of view
(360◦ for the case of VLP-16) of the lidar. This can limit the effect of saturating,
because the attacking light comes from a certain direction, when the lidar is
rotating. As a result, saturating cannot affect target’s field of view universally,
but disturbs only a fan-shaped part of it; the angle of disturbance would be
proportional to the receiving angle. Referring to Eq. (2), the minimum receiving
angle for meeting the specification is sufficient to render saturating impractical.
In reality, however, we found that the receiving angles of lidars are much larger
than required, rendering them significantly more vulnerable to saturating, even
without adopting multiple light sources to widen the angle of disturbance.

Fig. 5. Speculations of how the oblique incidence of light onto a curved reception glass
induces fake dots in a direction different from that of the actual light source.

Curved Reception Glass: Due to the small receiving angles of scanning lidars,
it can only affect the sectors in the direction of the attacker. However, we found
that an oblique incidence of strong light onto the curved reception glass of VLP-
16 can cause the appearance of fake dots in directions other than that of the
attacking light source. In addition to VLP-16, there are several lidars with curved
reception glasses e.g. the Velodyne HDL-32E, IBEO LUX mini, and Quarnergy
M8 (Fig. 4). Although we are not 100% sure because we were only able to conduct
a non-destructive analysis, the above-mentioned occurrence is most likely due
to refraction or reflection on the curved glass surface. Figure 5 illustrates these
speculations. Fake dots in directions other than the direction of the attacker
can be a severe threat to the victim, because the detected points have different
significances according to their directions on roads. For example, an autonomous
vehicle should not be hindered by vehicles on the other lanes, even if they are
very close. Now assume the attacker vehicle is located slightly ahead of the

Illusion and Dazzle: Adversarial Optical Channel Exploits 453

Fig. 6. Attack scenario exploiting a curved reception glass. The attacker and victim
vehicles are heading the same direction, and the attacker obliquely illuminates the
victim’s lidar with a strong light source.

victim’s vehicle in the lane next to the victim’s; exploiting the above effect, the
attacker can generate fake dots in front of the victim, where nothing exists in
fact. Figure 6 depicts this attack scenario.

3.4 Spoofing by Relaying

Our approach for spoofing by relaying is basically the same as the principle used
in the relaying attack method proposed by Petit et al. [30]. In this work, however,
we also provide a method to generate fake dots closer than the attacker position.
This was listed as one of the limitations of the Petit et al.’s work. We first start
with the ideal process to understand how spoofing by relaying works in general,
then discuss the actual process.

Ideal Attack Process
Lidars measure distances by measuring the round-trip time of the flight of light.
A fired laser pulse flies until it meets an object, and is then reflected back to the
lidar. Ideally, the procedure for spoofing by relaying is to mimic this process:

1. Prepare an attack tool composed of a receiver, an adjustable delay component,
and a transmitter of the same wavelength as that used by the lidar.

2. Aim at the target lidar with the attack equipment.
3. Receive the target lidar pulse signal using the receiver.
4. Add the required delay using the delay component.
5. Fire a laser pulse back to the target lidar using the transmitter.

Theoretically, this process would induce only one fake dot, and the required
delay (di) in step 4 to generate a fake dot at a distance (l) can be determined as
follows. Let the distance between the spoofer and the victim lidar be ls; ls ≤ l
because we cannot add a negative delay. Therefore, di should be the delay, which
makes an echo appear l − ls further than the spoofer, i.e. the round-trip time of
light for the distance, l − ls. Using Eq. (1), it is derived as,

di =
2(l − ls)

c
(3)

454 H. Shin et al.

Although the basic procedure is as mentioned above, there are two other
points to be considered. One is the limited lidar receiving angle. Even if the
attacker fires attacking pulses to the victim lidar, they cannot affect the victim,
when the victim’s receiver is not facing the attack direction. Therefore, the
attacking pulse should reach the victim lidar, while it is still within the receiving
angle. The other is the lidar receiving time; as discussed in Sect. 2.1, lidars ignore
echoes with delays larger than a certain threshold derived from their range, i.e.
the maximum measurable distance. Only echoes that fall within the receiving
time can affect the measurement. This applies to the attacker also; therefore,
the attacker should fire back to the target lidar within the receiving time. For
example, VLP-16 has a range of 100 m, which results in a receiving time of
(2×100m)/(3×108 m/s) = 667 ns. Therefore, in order to affect the measurement
of the VLP-16, an attacker should fire back at least within 667 ns.

Actual Attack Process
Although theoretically, the attack process is as discussed above, the actual
process is quite different. First, the laser pulse from the lidar diverges. Accord-
ingly, the attacker receiver obtains multiple adjacent laser pulses; however, only
a part of these pulses exactly head in the direction of the receiver. This enables
the attacker to detect the target’s laser pulse a few PRTs (T) in advance, com-
pared to the case where the laser pulses do not diverge at all. Next, irrespective
of how close the receiver and transmitter are placed in the attack tool, they are
apart by a certain distance. Let us assume that they are arranged horizontally;
as the horizontal resolution of scanning lidars are typically high, the laser pulse
heading to the receiver and the pulse to the transmitter is not temporally the
same. Consequently, there is a time difference (S) between the detection of a

Fig. 7. Actual attack process: As the lidar rotates, multiple laser pulses, temporally
separated by the PRT (T), are first captured by the attacker receiver (①). Then, after
the actual required delay (da), the attacking laser pulse is fired (②). The graph below
displays the temporal arrangement of events.

Illusion and Dazzle: Adversarial Optical Channel Exploits 455

laser pulse by the receiver and the firing of a pulse toward the transmitter. Note
that the round-trip time of light would have almost no effect, because the speed
of light is much faster than the rotating speed of the lidar.

Owing to the above-mentioned phenomena, the required delay to induce a
fake dot at a certain distance differs from Eq. (3) due to the time differences,
T and S. Assuming that the receiver is illuminated by the lidar, before the
transmitter and denoting the signal processing/propagation delay as dp,

da = di + nT + S + dp (4)

The time differences (T and S) are compensated by adding them to the ideal
delay, because the delay component is triggered by the first received pulse. The
delay dp can be compensated likewise, because it is a constant delay which can
be measured in advance. Note that, n multiplied by T is for the case, where the
delay component is triggered multiple PRTs in advance. In addition, although
n, S → 0 as the distance between the lidar and the spoofer increases, attackers
can enlarge n and S by increasing the receiver aperture size and the receiver-
transmitter separation, respectively. Figure 7 illustrates this process. This can
be used for making a virtually negative-valued delay to generate fake dots closer
than the attacker location. Assuming that l < ls in Eq. (3), di becomes negative.
However, da will remain positive, because T, S � |di|.
A Notable Characteristics of Spoofing by Relaying Attack

– Stealthiness against Drivers and Pedestrians: As in saturating, spoofing
attempts are invisible to human eyes.

– Inducing Multiple Fake Dots: If the lidar rotates at a constant speed, an
attacker can generate multiple fake dots with one attack tool. This can be
done by periodically firing back the attacking pulses, immediately after the
first attacking pulse, with the same period as the PRT. The PRT of the target
lidar can be approximately derived from the specification, and then, minutely
adjusted by measurements. Let us denote the angular horizontal resolution of
the target lidar, whose rotating speed is constant, as rH [◦], and the update
rate as f [Hz]. Then, the theoretical interval between consecutive pulses can
be derived as follows:

1

/(
360
rH

× f

)
=

rH
360f

[s] (5)

Note that this is irrespective of the distance between the lidar and the
attacker.

– Receiving Angle: Similar to saturating, a small receiving angle limits the max-
imum number of fake dots inducible by a fixed spoofer. Therefore, to increase
the number of fake dots the attacker should utilize multiple transmitters.

– Curved Reception Glass: Although we did not experimentally confirm if spoof-
ing attack using refraction/reflection on the curved glass is possible because
we could not obtain a pulse laser source that was sufficiently strong, we expect

456 H. Shin et al.

the oblique incidence of a strong laser pulse to readily induce fake dots in sec-
tors, other than the direction of the attacker. If this is possible, it will expose
the victim vehicle to threats far more dangerous than that of saturating.

4 Experiments

In this section, we present equipment used and experimental setups for them.
In addition, experimental results are provided with figures. Note that further
details for the experiments, including videos and raw lidar packet capture for
the attack, can be found in the appendices.

Table 1. VLP-16 specification

of Vert. Layers 16 Light Wavelength 903nm

Update rate 5/10/20Hz Angular resolution 0.1/0.2/0.4◦

(hor.) 2◦ (ver.)

Range 100m Field of view -15◦ ∼ 15◦ (ver.)
360◦ (hor.)

4.1 Experimental Setup

Target Lidar: We selected Velodyne’s VLP-16 [42] for verifying our attack
methods. It is the lightest and the latest in the product lineup, and targeted
for various mobile usages such as autonomous vehicles, UAVs, and robotics. Its
specification related to this paper, is summarized in Table 1. Note that, the VLP-
16 has an adjustable update rate and horizontal resolution, and they are in a
trade-off relationship. For our case, they were set to lower values: 5 Hz and 0.1◦,
respectively3. To check the effect of the attacks we required a visualizer for the
sensing result. We used Velodyne’s official visualization software, VeloView [27],
which visualizes the sensing result in real time by parsing the UDP packet stream
from VLP-16, and supports recording into pcap files and replaying them.

Attack Tool for Saturating: For saturating, only a light source is required.
We used a 30 mW, 905 nm laser module (≈ USD 40) as the weak light source,
and a power-adjustable 800 mW, 905 nm laser module (≈ USD 350) as the strong
one. Product names and pictures can be found in the appendices.

Attack Tool for Spoofing: The attack tool is as depicted in Fig. 7. We used an
OSRAM SFH 213 FA (≈ USD 1) photodiode (PD) with additional comparator
circuitry for the receiver4, and an OSRAM SPL PL90 (≈ USD 16) pulsed laser
diode (PLD) with a PCO-7110-40-4 (≈ USD 300) PLD driver from Directed
Energy Inc. Note that, both of the PD and the PLD are not standalone; the
PLD driver is required to generate the high-current pulses, essential for firing
the laser pulses. For the delay component, we used an Agilent 33250 A function
generator with external-trigger mode in the burst n-cycle pulse output setup.
3 Raw packet captures for 10 Hz & 0.2◦ can also be found in the appendices.
4 Its detailed circuit diagram is given in the appendices.

Illusion and Dazzle: Adversarial Optical Channel Exploits 457

Fig. 8. VeloView output during expo-
sure to a weak light source. Fake dots
are observable only in the direction of
the light source. The maximum angle
between the dots was measured to
be 20◦.

Fig. 9. VeloView output during obli-
que exposure to a strong light source.
Fake dots are observable in a direction
other than the light source.

4.2 Saturating

For saturating, we illuminated the VLP-16 with the aforementioned light sources.
As mentioned in Sect. 3.3, invisible light is one of the strengths of this attack.
Thus, we used an IR viewer [32] to aim the light.

Weak Light Source: When the lidar was illuminated by a weak light source,
we could observe numerous randomly-located fake dots, as depicted in Fig. 8.
Because the experiment was conducted in a basement, every dot outside the
room perimeter is apparently fake. As discussed in Sect. 3.3, induced fake dots
were observed only in the direction of the light source. We suppose that the
overall increase in the noise floor due to the injected light is the cause of the
induced fake dots. The VLP-16 seems to have an absolute threshold for detecting
echoes, and the raised noise floor might almost reach this threshold, causing the
noise fluctuations lead to numerous fake dots.

Strong Light Source (Direct): We switched the light source to a strong
one, and directly illuminated the lidar. We discovered that the lidar became
completely blind in a sector, in the field of view (Fig. 10). We could also observe
multiple fake dots as in the case of the weak light source and a severe degradation
in the received signal strength in the direction of illumination.

Strong Light Source (Oblique): We obliquely illuminated the lidar, and
observed fake dots in a direction other than that of the light source, as in Fig. 9.
We also experimentally confirmed that curved glasses can change the incoming
direction of the obliquely incident light. Details can be found in the appendices.

458 H. Shin et al.

Fig. 10. VeloView output before (left) and after (right) exposure to a strong light
source. We placed a metal plate (41 × 42 cm2) in front of the lidar.

4.3 Spoofing by Relaying

We performed spoofing by relaying using the attack tool described in Sect. 4.1.
We first aimed the attack tool on the lidar to receive its pulses. When the
incoming pulses are captured by the PD, the comparator converts them into a
series of 5 V pulses. Then, these pulses are fed to the function generator, which is
triggered by the first received pulse. The function generator waits for a predefined
delay, and transmits a predefined number of copies of the output pulse to the
PLD driver. Finally, the PLD driver lets the PLD fire laser pulses as signaled.

To induce multiple fake dots (Sect. 3.4), the intervals between the output
pulses have to be matched to the PRT of the target lidar. Although the PRT
can be derived using Eq. (5), the real value subtly varies. We analyzed the target
lidar signal and found that the best approximation was 55.296μs, whereas the
theoretical value was 55.556μs. We observed that the measured PRT remained
the same over time and over various distances between the spoofer and the lidar.
After determining the actual PRT, we encountered a problem in applying it as
the output pulse interval. The smallest supported PRT of the PLD, OSRAM SPL
PL90, was only 100μs; therefore, to circumvent this problem, we set the output
pulse interval as double of the actual PRT, 110.592 = 2 · 55.296μs. Then, we
measured the delay da; it was determined by setting the cycle—a function gener-
ator parameter to determine how many times the output pulses will be repeated
after the inserted delay per a trigger—value to one, and gradually increasing the
delay parameter of the function generator until a fake dot appeared. When the
distance between the spoofer and lidar was approximately 5m, the delay was
measured to be 663.3μs. We could also conclude that the ping waveform of the
VLP-16 was only a single laser pulse; else, we could not have observed any fake
dot. Once we observed a fake dot by a single pulse, we gradually increased the
cycle value. However, no matter how large the cycle was, no more than ten fake
dots were observable. This may be because the receiving angle of the VLP-16
for the PLD used is approximately 2.0◦ 5, which corresponds to ten fake dots6.

5 This is considerably smaller than the case in Fig. 8. The differences in the light source
strength and beam diameter may be the cause.

6 As we fired attacking pulses for every two target lidar pulses, 10 · 2 · 0.1◦ = 2.0◦.
Note that 0.1◦ was the horizontal resolution of VLP-16 then.

Illusion and Dazzle: Adversarial Optical Channel Exploits 459

Figure 11 shows the induced fake dots. Note that this scheme works outdoor
under sunlight. Refer to the appendices for the details.

In Sect. 3.4, we present a method by which an attacker could induce fake
dots closer than the spoofer. To confirm this, we gradually reduced the value
of da until the induced fake dots were located between the spoofer and the
lidar. Figure 12 displays the induced fake dots located between the spoofer and
the lidar. The lidar-to-spoofer distance and the delay were 12 m and 1.959μs,
respectively.

We note that the exact value of da is not essential for inducing fake dots. In
reality, a sufficiently large cycle would suffice. We observed multiple fake dots,
when the cycle was set as 30, even with the delay parameter of the function
generator set as zero. This is because whenever the cycle is increased by one, it
is equivalent to adding a delay of 2·PRT. With the zero delay of the function
generator, no delay other than dp will be added. Therefore, the total delay for
the m-th pulse will be just 2mT + dp from Eq. (4). At a certain value among
m’s (denote it m′), the relation, 2m′T + dp ≈ da = nT + S + dp, satisfies, which
is equivalent to inducing a fake dot with di = 0 in Eq. (4). From that on, the
pulses will start inducing fake dots.

Fig. 11. VeloView output of the multi-
ple induced fake dots.

Fig. 12. VeloView output of the fake
dots closer than the spoofer. Note that
the redder a dot, the closer it is to the
lidar.

5 Discussion

5.1 Practical Consideration for Attack Deployment

Aiming Problem: Aiming is one of the main obstacles in deploying attacks in
practice. When the target vehicle moves, the attacker has to track the target
lidar with the attack tool. However, advanced attackers may circumvent this
difficulty by adopting the following approaches: Lidars are typically located at
a fixed position on the vehicle, i.e. on the center of the roof or on the corners.
Further, there are many cases on the road, when vehicles run straight with a

460 H. Shin et al.

constant speed. Therefore, an attacker may mount the attack tool on a vehicle
with an accurate motorized mount, and deliberately follow/precede the target
vehicle such that the relative speed becomes zero. This can render the situation
almost similar to a stationary case. Next, attackers may adopt an optical system
such as a beam expander [24] to widen the attacking beam width or spread the
beam with an appropriate optical system such as concave lenses for a flashlight-
like effect. Note that in this case, the decrease in light intensity due to expansion
does not affect the effectiveness of the attack, because lidars are designed to
mainly sense reflected lights, considerably weaker than direct illumination. Even
if a weak light intensity matters, attackers can utilize stronger light sources.
Attackers can also install a trap on the road. With the attacking transceiver
installed and calibrated in advance, the attacker can render the problem similar
to a stationary case, because the speed of the victim vehicle is considerably
slower than the rotating speed of the lidar and the speed of light.

Parameter Setting: Unlike in laboratory, attackers do not have access to the
target sensor output, in reality. Therefore, the attacker cannot determine the best
parameters for the attack tool. However, this would not be a serious issue because
of the following reasons: First, most vehicles are mass produced, and are identical
in terms of their sensors. Therefore, the attacker can obtain multiple types of
vehicles, and analyze them to acquire the essential information for deploying
the attacks, e.g. the PRT(s) and lidar position(s). Further, a precisely calibrated
attack tool will work, regardless of the circumstances, and this calibration can be
done in advance. Because real echoes and intentionally generated attack pulses
are indistinguishable, spoofing by relaying will work as long as the transmitter
and receiver are suitably aligned in the same direction. With such a calibrated
attack tool aimed at the victim lidar, the only variable is the distance between
the attacker and the target vehicle, which the attacker can measure by adopting
additional sensors.

5.2 Potential Countermeasures

Redundancy and Fusion: If a vehicle is equipped with multiple lidars having
an overlapping field of view, the effect of saturating and spoofing can be miti-
gated to a certain extent. However, this directly increases the cost, and is not
a definitive solution because attackers can blind multiple lidars simultaneously.
Besides, it is also not easy to detect spoofing, when fake dots are induced in
non-overlapped zones. Likewise, the fusion of multiple types of sensors cannot
be an ultimate solution either. Radars [44], cameras [30,44], and ultrasonic sen-
sors [44] have all been revealed to be vulnerable to either blinding/jamming or
spoofing.

Saturation Detection: As discussed in Sect. 3.3, attempts to intentionally sat-
urate a lidar can be easily detected, and the victim vehicle can adopt fail-safe
mode. For example, it can abandon sensor outputs from the direction of the
attack and move to the roadside, while slowing down. However, the victim will
be unable to drive because saturation itself is inevitable. Further, on crowded
roads, the fail-safe maneuver might rather endanger the victim vehicle.

Illusion and Dazzle: Adversarial Optical Channel Exploits 461

Reducing the Receiving Angle: According to the calculation and measure-
ment in Sects. 2.1 and 4.3 respectively, the receiving angle of VLP-16 (2.0◦) is
considerably larger than the minimum required size (0.0048◦) for meeting the
specifications. Therefore, reducing the receiving angle can mitigate the effect
of saturating and spoofing. Both the angle of the region blinded by saturation
and the maximum number of inducible fake points by spoofing can be reduced.
However, reducing the receiving angle is not easy, because it is in a trade-off rela-
tionship with the lidar sensitivity [25]. Further, it would be difficult to reduce
the receiving angle to the minimum required value due to the design margins.

Random-Direction Pinging: Transmitting pulses in random directions can
mitigate the effect of spoofing, because it is no longer possible to induce mul-
tiple fake dots by a single spoofer. However, it is practically difficult to apply
this approach to current lidars with rotating scanners. Randomly rotating the
scanners will severely degrade the reliability and durability of the lidar. Even
current lidars have reliability issues due to their moving parts [1]. Further, the
update rate, a key performance figure, will be reduced.

To avoid the problem of random rotation, lidars may maintain the current
scan-by-spinning but transmit pulses at random instants. However, this will
directly lead to update rate decreases. Lidars using this approach should spin
faster to reach the required update rate, which may again lead to reliability
issues. Currently, in our opinion, the best cost/performance effective mitigation
against the induction of multiple (closer) fake dots is to electrically perturb
PRTs while keeping the rotating speed constant. Such slightly perturbed PRTs
will not severely degrade the performance/reliability, but will effectively prevent
the attacker from predicting pulse-firing instants blocking aforementioned two
types of threats.

Randomizing the Ping Waveform: Transmitting pulses with randomized
waveforms and rejecting pulses different from the transmitted one can fundamen-
tally prevent spoofing from inducing fake dots closer than the spoofer. Further,
this also can help mitigate inter-lidar interference. Approaches of this type have
been intensively studied for military radars [26]. However, this cannot prevent
all spoofing attempts, because attackers can still induce fake dots further than
the spoofer location.

Mitigating Curved Glass Effects: The best approach for removing unwanted
effect of the curved reception glasses is to get rid of them. Indeed, several lidars
(e.g. IBEO LUX 2010 and Velodyne HDL-64E) do not have them. Even if curved
glasses are essential for the operation, designers may mitigate their adverse
effect by carefully selecting glass materials or designing glass curvature so that
obliquely incident attacking light cannot reach central receiving structures.

5.3 Other Points

Fatality of Induced Fake Dots: Unlike the case of the IBEO LUX 3 [30],
where it was possible to generate many fake dots spanning 30◦ approximately,

462 H. Shin et al.

only up to ten fake dots were induced in the VLP-16. As previously noted, the
ten fake dots correspond to an object 2.0◦ wide. This may not appear important
initially, but its significance cannot be underestimated; for example, the size of
an object spanning 2.0◦, 55 m away from the lidar would be 1.9 m wide, which
is almost as wide as most vehicles. As per the data from UK Department for
Transport [39], 55 m is the braking distance for a car driving at 60mph. Because
the braking distance is the distance required solely for braking, even autonomous
vehicles have no room for checking the authenticity of the observed dots, but
need to immediately activate emergency braking or evasive maneuvers. Such
sudden actions are sufficient to endanger the surrounding vehicles.

Increasing the Number of Induced Fake Dots: As revealed in the exper-
iment, the number of fake dots by one attack tool is limited due to the size of
the receiving angle. However, by adopting multiple attack tools, they can be
increased. Further, attackers can also induce a larger shape to the victim lidar
by orchestrating multiple attack tools.

Comparison with the Previous Work: Although we have improved upon
the previous work in many aspects, there are a certain issues that have not been
dealt with or were inferior in the outcome. However, we emphasize that the target
lidar was different; as noted before, the IBEO LUX 3 was used in the previous
work, whereas the Velodyne VLP-16 was used in our case. We did not deal with
the induction of multiple dots in a single direction. VLP-16 has three modes of
operation: last, strongest, and dual. Among the three, only the dual mode allows
up to two dots per direction; the other two modes permit only one dot. Therefore,
for the last and strongest modes, inducing multiple dots in a single direction was
fundamentally impossible. For the dual mode, to induce two dots in one angle,
two attack pulses should not deviate more than 667ns. However, as discussed in
Sect. 4.3, this small deviation was not possible under our single-PLD setup due
to the smallest supported PRT of the PLD used. As Petit et al. used the same
single PLD, the operation scheme of IBEO LUX 3 seems to differ from that of
VLP-16. Further, we did not deal with the tracking/recognition of the induced
fake dots. This was because Velodyne does not provide such a functionality for
any of its products, whereas IBEO does, and there were no suitable alternatives.
Finally, as previously mentioned, the difference in the spanning angle of the
induced fake dots seems solely because of the difference between the receiving
angles of the two lidars. If the receiving angle of LUX 3 had not been that large,
it would not have been possible to observe such a wide span of the induced dots
because the transmitter was also fixed in the previous work.

6 Related Work

Automotive Security: With the abrupt increase in the proportion of electron-
ics in modern vehicles, vehicles are no longer safe zones against hacking threats.
Since Koscher et al. first demonstrated the feasibility of vehicle hacking [16],
numerous researchers have discovered vulnerabilities in vehicular networks and

Illusion and Dazzle: Adversarial Optical Channel Exploits 463

control units [18], demonstrated the feasibility of remote hacking [5,19], and
even the hacking of real vehicles [20]. To cope with these new threats, var-
ious approaches have been proposed as defensive measures [6,7,13,18,22,41].
However, most works in this field focus on compromising and defending the
structurally vulnerable control area network buses. In comparison, researches on
vehicular sensor security are rare, despite its criticality for (semi-)autonomous
vehicles. We have already discussed the contributions and limitations of Petit
et al. [30] in Sect. 1; this work was the first in revealing that the vehicular sen-
sors for autonomous driving can be easily tempered by external stimuli. Another
notable work is that of Yan et al., who performed a comprehensive security analy-
sis on environment perception sensors mounted on a real vehicle, the Tesla Model
S [44]. They succeeded in jamming and spoofing the ultrasonic sensors, and only
in jamming the mm-wave radar. They also demonstrated, like Petit et al., that
cameras are extremely vulnerable to exposure to a strong light source. However,
the lidar was not dealt with, because the Model S does not have one. Finally,
Shoukry et al. spoofed an anti-lock braking (ABS) sensor, another vehicular sen-
sor that is a type of magnetic encoder [35]. They installed an attacking actuator
next to the target sensor, and canceled the legitimate magnetic field from the
sensor by emitting its reverse waveform. Then, they added the spoofing wave-
form, and it was injected without any disturbance. By simulation, they showed
that by this attack, the ABS system would be unable to brake properly.

Sensor Attacks: Park et al. caused a medical infusion pump to over/under
infuse fluids by injecting an IR laser to its drop sensor [29]. They illuminated
the receiver of the drop sensor to render it unable to sense any fluid drops,
which in turn led to over-infusion. To the best of our knowledge, this was the
first attempt at inducing a critical high-level malfunction by saturating. With a
side channel attack, Son et al. incapacitated a flying drone by inducing massive
fluctuations in the gyroscope outputs with acoustic stimuli [37]. Trippel et al.
further developed this idea over a DoS attack; they succeeded in controlling an
RC car driven by a smartphone’s accelerometer output, only with the injection
of acoustic stimuli to the MEMS-based accelerometer [38]. Finally, as an example
of transmission channel attack, Foo Kune et al. injected fake sensor outputs by
inducing EMI to the wire connecting an analog sensor and an amplifier [9]. They
demonstrated that this can be exploited to induce malfunctions in implantable
medical devices such as pacemakers and cardiac defibrillators.

Defenses against Sensor Attacks: To counter the aforementioned threats
to sensors, several approaches have been proposed. Shoukry et al. proposed an
active sensor spoofing defense scheme called PyCRA [36]. This is a spoofing
detection scheme that detects spoofing attempts by turning off the active sensor
transmitter at random instants such that the attacker cannot react to the sud-
den changes. When the sensor is attacked, the spoofing signal can be detected
because no incoming signal is expected. However, the PyCRA cannot be applied
to lidars or radars because it assumes the channel between the transmitter and
receiver to be fixed, whereas lidars and radars have continuously changing chan-
nels because targets can be located anywhere. Further, Shin et al. pointed out

464 H. Shin et al.

that the PyCRA has a critical problem to be applied to analog-digital sys-
tems [34], because it can either lead to an arms race between the attacker and
the defender or requires too many resources to be secure. For redundancy and
fusion, most works in this field focus on sensor reliability/precision enhancements
rather than on the security; relatively fewer works focus on security [15,21,28].
However, redundancy and fusion have limitations, as discussed in Sect. 5.2.

7 Conclusion

Lidars are undoubtedly one of the core sensors in autonomous vehicles. Being
the eyes of safety-critical systems, such as cars, their reliability is critical and
cannot be compromised, because it can endanger human lives. In this work,
we have presented and experimentally verified two types of attacks that can
severely degrade the reliability of lidars. Although we have listed many mitigative
approaches in the discussion, they are either technically/economically infeasible
or are not definitive solutions to the presented attacks. We do not advocate the
complete abandonment of the transition toward autonomous driving, because we
believe that its advantages can outweigh the disadvantages, if realistic adversarial
scenarios are appropriately mitigated. However, such considerations are currently
absent; therefore, automakers and device manufacturers need to start considering
these future threats before too late.

Acknowledgment. This work was supported by the Advanced Technology R&D Cen-
ter of Hyundai AutoEver.

References

1. Ackerman, E.: Velodyne Says It’s Got a “Breakthrough” in Solid State
Lidar Design. http://spectrum.ieee.org/cars-that-think/transportation/sensors/
velodyne-announces-breakthrough-in-solid-state-lidar-design. Accessed 24 Feb
2017

2. Alley, C.O., Bender, P.L., Dicke, R.H., Faller, J.E., Franken, P.A., Plotkin, H.H.,
Wilkinson, D.T.: Optical radar using a corner reflector on the Moon. J. Geophys.
Res. 70(9), 2267–2269 (1965). http://dx.doi.org/10.1029/JZ070i009p02267

3. Beasley, E.: LiDAR and Autonomous Technology. http://velodynelidar.com/blog/
lidar-autonomous-technology/. Accessed 9 Mar 2017

4. Bhatia, P.: Vehicle Technologies to Improve Performance and Safety. Tech-
nical report, University of California Transportation Center (2003). https://
escholarship.org/uc/item/4zw4m05k

5. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: Proceedings of 20th USENIX
Security Symposium. USENIX Association (2011)

6. Cho, K.T., Shin, K.G.: Fingerprinting electronic control units for vehicle intrusion
detection. In: Proceedings of 25th USENIX Security Symposium, pp. 911–927.
USENIX Association (2016)

http://spectrum.ieee.org/cars-that-think/transportation/sensors/velodyne-announces-breakthrough-in-solid-state-lidar-design
http://spectrum.ieee.org/cars-that-think/transportation/sensors/velodyne-announces-breakthrough-in-solid-state-lidar-design
http://dx.doi.org/10.1029/JZ070i009p02267
http://velodynelidar.com/blog/lidar-autonomous-technology/
http://velodynelidar.com/blog/lidar-autonomous-technology/
https://escholarship.org/uc/item/4zw4m05k
https://escholarship.org/uc/item/4zw4m05k

Illusion and Dazzle: Adversarial Optical Channel Exploits 465

7. Dagan, T., Wool, A.: Parrot, a software-only anti-spoofing defense system for the
can bus. In: ESCAR EUROPE (2016)

8. Distner, M., Bengtsson, M., Broberg, T., Jakobsson, L.: City safety a system
addressing rear-end collisions at low speeds. In: Proceedings of the 21st Inter-
national Technical Conference on the Enhanced Safety of Vehicles (2009)

9. Kune, D.F., Backes, J., Clark, S., Kramer, D., Reynolds, M., Fu, K., Kim, Y., Xu,
W.: Ghost talk: Mitigating EMI signal injection attacks against analog sensors. In:
IEEE Symposium on Security and Privacy. IEEE (2013)

10. Ford Mediacenter: Ford First Automaker to Test Autonomous Vehicle at
Mcity, University of Michigans Simulated Urban Environment. https://media.
ford.com/content/fordmedia/fna/us/en/news/2015/11/13/ford-first-automaker-
to-test-autonomous-vehicle-at-mcity.html. Accessed 23Feb 2017

11. Goyer, G., Watson, R.: The laser and its application to meteorology. Bull. Am.
Meteorol. Soc. 44(9), 564–575 (1963)

12. Higgins, S.: Solid-State LiDAR: A New Era of 3D Scanning. http://www.
spar3d.com/blogs/the-other-dimension/vol13no50-solid-state-lidar-a-new-era-of-
3d-scanning/. Accessed 24 Feb 2017

13. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks
– Practical examples and selected short-term countermeasures. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-87698-4 21

14. Huynh, T.: Google self-driving car: everything you need to know. http://www.
techradar.com/news/car-tech/google-self-driving-car-everything-you-need-to-
know-1321548. Accessed 23 Feb 2017

15. Ivanov, R., Pajic, M., Lee, I.: Attack-resilient sensor fusion for safety-critical cyber-
physical systems. ACM Trans. Embed. Comput. Syst. 15(1), 21 (2016)

16. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis of
a modern automobile. In: IEEE Symposium on Security and Privacy, pp. 447–462.
IEEE (2010)

17. Lambert, F.: Tesla still has no plans to use LiDAR in consumer vehicles,
but does use the tech for ‘ground truthing’. https://electrek.co/2016/11/02/
tesla-no-plan-for-lidar-self-driving-cars/. Accessed 9 Mar 2017

18. Miller, C., Valasek, C.: Adventures in automotive networks and control units. In:
DEF CON 21 (2013)

19. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. In: Black
Hat USA (2014)

20. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle. In:
Black Hat USA (2015)

21. Montgomery, P.Y., Humphreys, T.E., Ledvina, B.M.: Receiver-autonomous spoof-
ing detection: experimental results of a multi-antenna receiver defense against a
portable civil GPS spoofer. In: Proceedings of the ION International Technical
Meeting (2009)

22. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks. In:
IEEE Intelligent Vehicles Symposium, pp. 1110–1115. IEEE (2011)

23. NASA: Planetary Laser Altimetry. https://tharsis.gsfc.nasa.gov/index.php.
Accessed 23 Feb 2017

24. Newport Corp: Optics: How to Build a Beam Expander. http://assets.newport.
com/webdocuments-en/images/how to build a beam expander 5.pdf

25. Osta, P.V.: The Basics of Microscopy. http://www.vanosta.be/microscopy.htm

https://media.ford.com/content/fordmedia/fna/us/en/news/2015/11/13/ford-first-automaker-to-test-autonomous-vehicle-at-mcity.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2015/11/13/ford-first-automaker-to-test-autonomous-vehicle-at-mcity.html
https://media.ford.com/content/fordmedia/fna/us/en/news/2015/11/13/ford-first-automaker-to-test-autonomous-vehicle-at-mcity.html
http://www.spar3d.com/blogs/the-other-dimension/vol13no50-solid-state-lidar-a-new-era-of-3d-scanning/
http://www.spar3d.com/blogs/the-other-dimension/vol13no50-solid-state-lidar-a-new-era-of-3d-scanning/
http://www.spar3d.com/blogs/the-other-dimension/vol13no50-solid-state-lidar-a-new-era-of-3d-scanning/
http://dx.doi.org/10.1007/978-3-540-87698-4_21
http://www.techradar.com/news/car-tech/google-self-driving-car-everything-you-need-to-know-1321548
http://www.techradar.com/news/car-tech/google-self-driving-car-everything-you-need-to-know-1321548
http://www.techradar.com/news/car-tech/google-self-driving-car-everything-you-need-to-know-1321548
https://electrek.co/2016/11/02/tesla-no-plan-for-lidar-self-driving-cars/
https://electrek.co/2016/11/02/tesla-no-plan-for-lidar-self-driving-cars/
https://tharsis.gsfc.nasa.gov/index.php
http://assets.newport.com/webdocuments-en/images/how_to_build_a_beam_expander_5.pdf
http://assets.newport.com/webdocuments-en/images/how_to_build_a_beam_expander_5.pdf
http://www.vanosta.be/microscopy.htm

466 H. Shin et al.

26. Pace, P.E.: Detecting and Classifying Low Probability of Intercept Radar. Artech
House, Boston (2009)

27. ParaView: VeloView (2017). http://www.paraview.org/VeloView/. Accessed 05
Mar 2017

28. Park, J., Ivanov, R., Weimer, J., Pajic, M., Lee, I.: Sensor attack detection in the
presence of transient faults. In: Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems (2015)

29. Park, Y., Son, Y., Shin, H., Kim, D., Kim, Y.: This ain’t your dose: Sensor spoof-
ing attack on medical infusion pump. In: 10th USENIX Workshop on Offensive
Technologies. USENIX Association (2016)

30. Petit, J., Stottelaar, B., Feiri, M., Kargl, F.: Remote attacks on automated vehicles
sensors: experiments on camera and LiDAR. In: Black Hat Europe (2015)

31. Pomerleau, D.A.: ALVINN, an autonomous land vehicle in a neural network.
Carnegie Mellon University, Computer Science Department, Technical report
(1989)

32. Public Lab: Near-Infrared Camera (2017). https://publiclab.org/wiki/
near-infrared-camera. Accessed 06 Mar 2017

33. Quanergy Systems Inc.: Quanergy S3 Solid State LiDAR, the World’s
First Affordable Solid State LiDAR Sensor, to Begin Full Scale Manufac-
turing in 2017. http://www.businesswire.com/news/home/20170103005387/en/
Quanergy-S3-Solid-State-LiDAR-Worlds-Affordable. Accessed 24 Feb 2017

34. Shin, H., Son, Y., Park, Y., Kwon, Y., Kim, Y.: Sampling race: Bypassing timing-
based analog active sensor spoofing detection on analog-digital systems. In: 10th
USENIX Workshop on Offensive Technologies. USENIX Association (2016)

35. Shoukry, Y., Martin, P., Tabuada, P., Srivastava, M.: Non-invasive spoofing
attacks for anti-lock braking systems. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 55–72. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40349-1 4

36. Shoukry, Y., Martin, P., Yona, Y., Diggavi, S., Srivastava, M.: PyCRA: Physi-
cal challenge-response authentication for active sensors under spoofing attacks. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1004–1015. ACM (2015)

37. Son, Y., Shin, H., Kim, D., Park, Y., Noh, J., Choi, K., Choi, J., Kim, Y.: Rocking
drones with intentional sound noise on gyroscopic sensors. In: Proceedings of 24th
USENIX Security Symposium, pp. 881–896. USENIX Association (2015)

38. Trippel, T., Weisse, O., Xu, W., Honeyman, P., Fu, K.: WALNUT: Waging doubt
on the integrity of MEMS accelerometers with acoustic injection attacks. In: IEEE
European Symposium on Security and Privacy. IEEE (2017)

39. UK Department for Transport: The Highway Code - General rules, techniques
and advice for all drivers and riders (103 to 158) - Rule 126. https://www.gov.uk/
guidance/the-highway-code/general-rules-techniques-and-advice-for-all-drivers-
and-riders-103-to-158#rule126

40. USDA: ARS study helps farmers make best use of fertilizers. https://www.
ars.usda.gov/news-events/news/research-news/2010/ars-study-helps-farmers-
make-best-use-of-fertilizers/. Accessed 23 Feb 2017

41. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth - A simple, back-
ward compatible broadcast authentication protocol for CAN bus. In: ECRYPT
Workshop on Lightweight Cryptography (2011)

42. Velodyne: Velodyne LiDAR Puck (2017). http://velodynelidar.com/docs/
datasheet/63-9229 Rev-C VLP16 Datasheet Web.pdf. Accessed 05 Mar 2017

http://www.paraview.org/VeloView/
https://publiclab.org/wiki/near-infrared-camera
https://publiclab.org/wiki/near-infrared-camera
http://www.businesswire.com/news/home/20170103005387/en/Quanergy-S3-Solid-State-LiDAR-Worlds-Affordable
http://www.businesswire.com/news/home/20170103005387/en/Quanergy-S3-Solid-State-LiDAR-Worlds-Affordable
http://dx.doi.org/10.1007/978-3-642-40349-1_4
http://dx.doi.org/10.1007/978-3-642-40349-1_4
https://www.gov.uk/guidance/the-highway-code/general-rules-techniques-and-advice-for-all-drivers-and-riders-103-to-158#rule126
https://www.gov.uk/guidance/the-highway-code/general-rules-techniques-and-advice-for-all-drivers-and-riders-103-to-158#rule126
https://www.gov.uk/guidance/the-highway-code/general-rules-techniques-and-advice-for-all-drivers-and-riders-103-to-158#rule126
https://www.ars.usda.gov/news-events/news/research-news/2010/ars-study-helps-farmers-make-best-use-of-fertilizers/
https://www.ars.usda.gov/news-events/news/research-news/2010/ars-study-helps-farmers-make-best-use-of-fertilizers/
https://www.ars.usda.gov/news-events/news/research-news/2010/ars-study-helps-farmers-make-best-use-of-fertilizers/
http://velodynelidar.com/docs/datasheet/63-9229_Rev-C_VLP16_Datasheet_Web.pdf
http://velodynelidar.com/docs/datasheet/63-9229_Rev-C_VLP16_Datasheet_Web.pdf

Illusion and Dazzle: Adversarial Optical Channel Exploits 467

43. Vosselman, G., Maas, H.G.: Airborne and Terrestrial Laser Scanning. Whittles
Publishing, Dunbeath (2010)

44. Yan, C., Xu, W., Liu, J.: Can you trust autonomous vehicles: contactless attacks
against sensors of self-driving vehicle. In: DEF CON 24 (2016)

Appendices

Due to space limitation, appendices are posted to the website below:
https://sites.google.com/view/ches17illusionanddazzle.

https://sites.google.com/view/ches17illusionanddazzle

Hacking in the Blind: (Almost) Invisible
Runtime User Interface Attacks

Luka Malisa(B), Kari Kostiainen, Thomas Knell, David Sommer,
and Srdjan Capkun

Department of Computer Science, ETH Zürich, Switzerland
{luka.malisa,kari.kostiainen,david.sommer,srdjan.capkun}@inf.ethz.ch,

knellt@student.ethz.ch

Abstract. We describe novel, adaptive user interface attacks, where
the adversary attaches a small device to the interface that connects user
input peripherals to the target system. The device executes the attack
when the authorized user is performing safety-, or security-critical oper-
ations, by modifying or blocking user input, or injecting new events.
Although the adversary fully controls the user input channel, to succeed
he needs to overcome a number of challenges, including the inability
to directly observe the state of the user interface and avoiding being
detected by the legitimate user. We present new techniques that allow
the adversary to do user interface state estimation and fingerprinting,
and thus attack a new range of scenarios that previous UI attacks do not
apply to. We evaluate our attacks on two different types of platforms:
e-banking on general-purpose PCs, and dedicated medical terminals. Our
evaluation shows that such attacks can be implemented efficiently, are
hard for the users to detect, and would lead to serious violations of input
integrity.

1 Introduction

Modern malware can reside in various places — on the device itself, but also
on connected peripherals (e.g., BIOS or hard drive). One type of such malware
resides in user interface devices, such as a keyboard or a mouse [19]. The goal of
such malicious peripherals is to inject pre-programmed sequences of user input
that, e.g., install some form of malware to the device itself. However, installing
malware or introducing system misconfigurations, such as adding an administra-
tive account, can be prevented by security hardening (e.g., Windows Embedded
Lockdown features [16]), or by existing malware-detection approaches.

A significantly stealthier alternative is to attack systems only through their
user interfaces (UIs). Such attacks exploit a fundamental property of any device
designed to operate under user control; irrespective of applied security hardening
techniques, the device must continue to accept user input.

As user input cannot be simply blocked, various UI attacks have been pro-
posed. Current state-of-the-art are BadUSB-style attacks [19], where the goal of

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 468–489, 2017.
DOI: 10.1007/978-3-319-66787-4 23

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 469

the malicious peripheral is to inject simple, pre-programmed sequences of key-
board and mouse input [11], commonly while the user is not active. However,
due to the lack of system state awareness, such approaches are restricted to exe-
cuting only simple attacks (e.g., add new account, install malware). For example,
the BadUSB malware does not know in which state the system is currently in,
and launching such attacks that inject user input at the wrong time could result
either in attack failure, or in users trivially detecting them.

We therefore pose the following question: “Can an adversary improve the
state-of-the-art UI attacks, and expand the set of applicable attack scenarios?”.
We observe that if the malware could infer the system state, and the precise
attack launch time, stealthy and more powerful attacks become possible.

We present a new class of adaptive runtime user interface attacks, where the
adversary infers the system state, violates the integrity of user input at a specific
point in time, while the device is operated by the legitimate user, causing precise
and stealthy runtime UI attacks without any malware running on the device.
Contrary to existing works, our attack does not blindly inject input events, but
rather hijacks the input channel of a currently active user, and enables new
attack scenarios (e.g., compromise integrity of e-banking payment) that are not
achievable with existing UI attacks. The attack is hard for the user to detect, it
can result in serious safety or security violations, and the users are led to believe
that they accidentally caused the damage themselves.

The first part of the attack is conventional. The adversary gains temporary
physical access to the target system and attaches a small attack device (e.g.,
similar to the NSA cottonmouth [1]) in between an input device and the system.

In the second part of the attack lies its novelty. Contrary to existing
approaches, our attack device observes the constant stream of user input events
and, based on this information, determines when the user is about to perform
a critical operation, and when the UI attack should be launched. Although the
attack device has full visibility and control of the user input channel, it cannot
directly observe the state of the target system, as the device has no system feed-
back (e.g., access monitor output). In particular, the adversary does not know
the current state of the UI or the mouse pointer location, and must therefore,
given user input, infer the most likely system state and correct attack timing.

To successfully realize our UI attacks, we had to overcome technical chal-
lenges. Once the adversary has determined the correct time to attack, the attack
device injects a series of precise and fast input events. While the adversary is able
to freely manipulate the input channel, the user receives instant visual feedback
— the legitimate user is part of the system control loop. Therefore, we designed
novel attack techniques, including state tracking and fingerprinting, that are
both accurate (low false positives), and stealthy (give little visual indication to
the user). To demonstrate the attack, we implemented it on a small embedded
device, and evaluated it on general-purpose PCs and medical terminals.

On PC platforms, we tested our attack on UIs of real-world e-banking web-
sites. We can accurately fingerprint UIs in a reliable (90% attack success rate)
and stealthy (90% of users did not notice our attack) manner, that is surprisingly

470 L. Malisa et al.

Fig. 1. (Left) Examples of critical user interfaces on dedicated terminals and general-
purpose PCs. Attacking such UIs can lead to various safety and security violations.
(Right) the adversary attaches an attack device to an user input interface.

tolerant to noise (users habitually clicking around, pressing “tabs” to navigate
between elements, different browsers and screen resolutions). For dedicated ter-
minals, we tested the attack on a simulated UI of a medical implant program-
mer. We show that we can accurately perform system state tracking, and that
the attacks are very hard to detect (93–96% success rate).

Performing such attacks is not possible using existing UI attacks, unless the
malware resorts to injecting malicious software onto the target device; a step
that we never resort to. We emphasize that our attack approach is applicable to
a wide range of attack scenarios, including different user input methods and UIs,
where the adversary has to perform the attack under target state uncertainty.
Our attack approach is easy to deploy, as it requires only brief and non-invasive
access to the system (e.g., attaching a USB device takes seconds).

One way to detect the attack is that the user notices the subtle visual changes
on the user interface while the attack is active (e.g., medical device settings are
modified). However, our user studies show that the vast majority of users fail to
notice the attack. Preventing this attack likely requires different approaches, e.g.,
authentication of input devices, design of protective measures on user interfaces,
and this work motivates the development of such solutions. Since our attack is
invisible to traditional malware detection, it operates under uncertainty without
any feedback from the system, and it gives little visual indication to the user, we
call it hacking in the blind. To summarize, we make the following contributions:

– New attack approach. We propose a novel way to attack systems through their
user interfaces. The attack is quick to deploy, hard for users to notice, and
invisible to existing malware detection.

– New attack techniques. We developed a novel user interface tracking and fin-
gerprinting techniques.

– Attack prototype. We implemented the attack on a small embedded device.
– User studies. We conducted both user studies on two case UIs (online banking

and implant programmer) to evaluate attack detection rates.
– Analysis of protective measures. We analyze possible countermeasures and

point out their limitations.

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 471

Fig. 2. Classification of physical attack techniques and their limitations to our setting.

2 Problem Statement

The goal of the adversary is to attack a security-critical user interface (Fig. 1),
and we focus on attack scenarios where the adversary has brief physical access
to the target system, prior to its usage. In this section we discuss limitations of
known physical and user interface attacks and describe our adversary model.

2.1 Limitations of Known Attacks

There are various kinds of physical attack, and Fig. 2 provides a categorization
of common attack techniques.
Hardware modification. One could argue that, in case the attacker has even
brief physical access to a device, that the device should already be considered
as trivially compromised. However, this is often not the case, due to two prac-
tical reasons. First, the attacker often can not shut the device down, without
being noticed. This would prevent the attacker from opening the device and
injecting advanced hardware backdoors or performing similar hardware modi-
fications. Second, the attacker may simply not have sufficient time to perform
such attacks. For example, in case of the hospital, we observed that the intensive
care ward was never left unattended for extended periods of time.

Software injection. Another approach that relies on physical access is local
injection of malicious code. For example, many terminals can be configured such
that unsigned code cannot be executed from, e.g., connected USB devices.

Operate user interface. User input can not be simply blocked, and an attack
approach that leverages this fact is to manipulate the device directly through
its user interface. For example, if the adversary has physical access to the target
device, and can operate its UI, the adversary can perform all the operations that
the legitimate user is entitled to. Such attacks have two limitations. First, unau-
thorized use can be addressed with user authentication (e.g., devices could be
screen locked). Second and more importantly, on security-critical UIs, the dam-
age of such attacks is typically limited. For example, certain medical devices are
only connected to patients when operated by doctors, and such attacks are less
severe than runtime attacks that modify the operation of the terminal during its
use. Similarly, e-banking sites are protected using second-factor authentication,
that the attacker does not necessarily have access to.

472 L. Malisa et al.

Pre-programmed attacks. Another class of UI attacks rely on external devices
connected to the target system. In such cases, no malware is present on the target
system, and the purpose of the attack device is to either passively intercept user
input or to actively inject pre-programmed sets of commands. A hardware key
logger that collects user input is an example of a passive attack. BadUSB [19]
is an example of a pre-programmed attack where a malicious input device (key-
board) injects keystrokes into the target system. Such attacks leverage keyboard
shortcuts that, e.g., open a console or an administrative window and modify
system settings. Such attacks do not apply to hardened terminals, as they rarely
have console programs, and the user, or an adversary that controls user input,
cannot “escape” the application UI to modify system settings beyond what the
application enables. As the adversary does not know the current system state,
such attacks can not be used to compromise (e.g., hijack) an e-banking user
session, without resorting to installing malware to the device.

2.2 Our Goal: Adaptive Runtime Attacks

The focus of our work is on adaptive runtime UI attacks, that overcome the
limitations of the above discussed techniques. We explore UI attacks that work
even if hardware modifications are not practical and software injection can be
prevented. Our goal is to design runtime UI attacks that are more damaging and
accurate than pre-programmed attacks or operating the device through its UI.

Adversary model. We assume an adversary that gains temporary access to the
target device prior to device usage, attaches a small attack device that sits in-
between user input peripherals and the device (Fig. 1), and leaves the premises.
If the input device is external (e.g., USB mouse), the adversary can attach the
attack device to the USB port that connects it to the target system. The adver-
sary can also simply replace an external input peripheral with one that contains
the attack device. Most PCs have open ports for UI peripherals, and our survey
(https://goo.gl/arp2DU) shows that many terminals use external peripherals,
also connected to easily accessible ports.

Besides installing the attack device, the adversary does not interact with the
target device in any other way. In particular, we assume that the adversary can-
not observe current system state (the user interface might be locked, or password
protected). If the device is used via two input devices (e.g., mouse and keyboard),
the adversary can connect both of them to the same attack device. The attack
device can observe, delay, and block all events from the connected user input
devices as well as inject new events. We assume that, in the terminal case, the
adversary knows the target application UI (its states and state transitions).

Example attack targets. We explore attacks in two different contexts (general-
purpose PCs and dedicated terminals) that represent different types of attack
targets. The UI of a dedicated terminal device typically consists of a single
application, that occupies the entire screen, and that the user cannot escape
out of. Terminal devices often have fixed screen resolutions. On the other hand,
general-purpose PCs have many applications with various UIs. The application
UIs are managed by windowing systems that have various screen resolutions.

https://goo.gl/arp2DU

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 473

3 Hacking in the Blind

The installed attack device observes user events from the connected input
device(s) and launches the attack by modifying user input or injecting new input
events when the legitimate user is performing a security-critical operation.

While the attack device can intercept all user input events, their interpreta-
tion may have two forms of uncertainty. First, the adversary may not know the
state of the target device UI (e.g., because the UI was locked when the attack
device was installed). We call this state uncertainty. Second, the adversary may
not be able to interpret all received user input events without ambiguity. In
particular, mouse events are relative to the mouse cursor location that may be
unknown to the adversary. We call this location uncertainty. In contrast to mouse
input, touchscreen events do not have location uncertainty as touchscreen clicks
are reported to the operating system in terms of their absolute (x, y) coordinates.

The primary challenge in our approach is to launch the attack accurately
under such uncertainty, without any feedback from the target device (hacking
in the blind). The best attack strategy depends on the attack platform (general-
purpose PC vs. dedicated terminal), application user interface configuration,
the type of the input device, and the level of stealthiness the adversary wants to
achieve. We first discuss simple attack strategies, and then move on to present
our two main attack techniques: state tracking and UI fingerprinting.

3.1 Simple Techniques

If the adversary manages to reduce (or remove) both location and state uncer-
tainty, attacking the device user interface becomes easier. Assuming that the
adversary knows both the current user interface state, the mouse cursor location,
and complete model of the UI, each event can be interpreted unambiguously. For
example, if an adversary knows the complete user interface configuration of a
terminal, can easily track both mouse movement and state transitions in the
user interface. In PCs, building such a model is typically not possible. Below we
list simple methods that can help the adversary to reduce uncertainty.

Reducing state uncertainty. A simple technique to learn the state of the
system is to wait for a reboot. If the attack device can determine when the
terminal is booted, it knows that the target device UI is in a known state. While
PCs are routinely restarted, many terminals run for long periods of time.

Reducing location uncertainty. A simple technique to determine the mouse
cursor location is to actively move the mouse (i.e., inject movement events)
towards a corner of the screen. For example, if the mouse is moved up and left
sufficiently, the adversary knows with certainty that the mouse cursor is located
at the top-left corner of the screen. Moving the mouse while the system is idle
may not be possible, if the target device user interface is locked.

Summary. We assume a strong adversary, that in many scenarios has to perform
the attack under location uncertainty, state uncertainty or both, and next we

474 L. Malisa et al.

Fig. 3. (Left) Overview of our attack system. (Right) Movement event handling. Move-
ment can reduce the uncertainty area size (1) and (3) or change its location (2).

design attack techniques to handle both. We first describe state tracking that is
applicable to terminals, where the adversary can build a complete model of the
target system UI. After that, we describe UI fingerprinting that allows attack
state detection on PC platforms, where such model creation is infeasible.

3.2 State Tracking

Starting from this section, we describe a state tracking approach that enables
the adversary to launch accurate attacks despite of uncertainty. State tracking is
applicable to terminals, where the adversary can build a complete model of the
target system UI (e.g., typically on dedicated terminals, the target application UI
constitutes the complete target system UI). A noteworthy property of the system
is that it estimates user interface state and mouse location fully passively, and
thus enables implementation of stealthy attacks. We proceed by giving a high-
level overview of the attack system (Fig. 3).

The attack device contains a static model of the target system UI that the
adversary constructed before the device deployment and it has two main compo-
nents. The first one is a State and Location Estimator that determines the most
likely user interface state (and mouse cursor location) based on the observed user
events and the UI model. The estimation process can begin from a known, or an
unknown UI state, at an arbitrary moment and it tracks mouse and keyboard
events. The second component is an Attack Launcher that injects precise input
events while the legitimate user is performing a safety-critical operation.

User interface model. The UI model contains user interface states, their ele-
ments (buttons, text boxes, sliders, etc.) and state transitions. For each state,
the model includes the locations and the types of the input elements and the
possible state transition that the element triggers. One of the states is defined as
the start state and one or more states are defined as the target states. The goal
of the attack is to modify safety-critical inputs (target elements) on the target
states. Typically the target state includes also a confirmation element that the
user clicks to confirm the safety-critical operation.

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 475

State and location estimation. Here we describe our state and location esti-
mation algorithm for mouse and keyboard. Later we explain how the same algo-
rithm can be used to estimate state for touchscreens (only state uncertainty).

The algorithm operates by keeping track of all possible user interface state
and mouse location combinations. For each possible state and location, the algo-
rithm maintains a state tracker object. The state trackers contain an identifier
of the state and an uncertainty area that determines the possible location of
the mouse in that state instance. Additionally, the algorithm assigns a probabil-
ity for each tracker object that represent the likelihood that the terminal user
interface and the mouse cursor are in this state and location.

The estimation algorithm maintains the tracker objects in a list. If the esti-
mation begins from a known state, we start with only one tracker, to which
we assign 100% probability. If it begins from an unknown state, we create one
tracker per possible system state and assign them equal probabilities. Assuming
no prior knowledge on the mouse location, we set the mouse uncertainty area to
cover the entire screen in each tracker during initialization.

The state and location estimation is an event-driven process. Based on the
received user input events, we create new trackers, or update and delete existing
ones. For each mouse movement event, we update the mouse uncertainty area
in each tracker. For every mouse click, we consider all possible outcomes of the
click, including transitions to new states, as well as remaining in the same state.
We create new child trackers with updated uncertainty areas, add the children to
the list, and remove the parent tracker. When we observe a user event sequence
that indicates interaction with a specific UI element, we update the probabilities
of each tracker accordingly. We explain these steps in detail below.

Movement event handling. When the mouse uncertainty area is the entire
device screen, any mouse movement reduces the size of the uncertainty area. For
example, if the user moves the mouse to the right, the area becomes smaller, as
the mouse cursor can no longer reside in the leftmost part of the screen (Fig. 3).
If the mouse is moved to a direction where the uncertainty area border is not
on the edge of the screen, the mouse movement does not reduce the size of
the uncertainty area, but only causes its location to be updated. Any mouse
movement towards a direction where the uncertainty area is on the border of
the screen, reduces the size of the uncertainty area further. For each received
mouse movement event, we update the uncertainty areas in all trackers.

Click event handling. When we observe a mouse click event, the estimation
algorithm considers all possible outcomes for each tracker, that are determined
by the current mouse uncertainty area (Fig. 4, left). For each possible outcome
we create new child trackers and update their mouse uncertainty areas as follows.

If the user interface remains in the same state, the updated mouse area for
the child is the original area of the parent, from which we remove the areas of
the UI elements that cause transitions to other states. For each state transition,
the mouse area is calculated as the intersection of the parent area and the area
of the user input element that caused the transition. Once the updated mouse
uncertainty areas are calculated for each child tracker, we remove the parent

476 L. Malisa et al.

from the list, and add the children. We repeat the process for each tracker on
the list, and we note that, as a result of this process, the list may contain multiple
trackers for the same state with different mouse uncertainty areas.

The probability of a child tracker is calculated by multiplying the probability
of its parent with a transition probability. We consider two options for assigning
transition probabilities, as shown in Fig. 4 (right):

– Equal transitions. Our first option is to consider all possible state transitions
equally likely. E.g., if the mouse uncertainty area contains two buttons, each
of them causing a separate state transition, and parts of the screen where a
click does not cause a state transition, we assign each of them 1/3 probability.

– Element area. Our second option is to calculate the transition probabilities
based on the surface of the user interface element covered by the mouse
uncertainty area. For example, if the uncertainty area covers a larger area
over one button than another, we assign it bigger transition probability.

The transition probabilities can be enhanced with a priori probabilities of UI
element interactions. For example, based on prior experience on comparable UIs,
the adversary can estimate that “OK” is pressed twice as likely as “Cancel”.

Element detection. Finally, we identify user interaction with certain UI ele-
ments based on sequences of observed input events. For example, an event
sequence that begins with a button down event, followed by movement left or
right that exceeds a given threshold, followed by a button up event is an indi-
cation of slider usage. Similarly, text input from the keyboard indicates likely
interaction with a text field, and a click indicates interaction with a button.

When we observe such event sequences (slider movement, text input, button
click), we update the probabilities of the possible trackers on the list. One pos-
sible approach would be to remove all trackers from the list where interaction
with the identified element is not possible (e.g., a button click is not possible
under the mouse uncertainty area), and we could then increase the probabilities
of the remaining trackers equally. Such an approach could yield fast results, but
also provide erroneous state estimations. If the user provides text input on a user
interface state that does not contain editable text fields or if text highlighting
is mistaken for slider movement, the algorithm would remove the correct state
from the list. We adopt a safer approach where we consider trackers with the
identified elements more likely and scale up their probabilities, and keep the
remaining trackers and scale down their probabilities.

Target state detection. Our algorithm continues the state tracking process
until two criteria are met. First, we have identified the target state with a prob-
ability that exceeds a threshold. After each click event and detected element we
sum the probabilities for all trackers that represent the same state to check if
any of them exceeds the threshold. Second, the mouse uncertainty area must
be small enough to launch the attack. We combine the mouse uncertainty areas
from all matching trackers and consider the uncertainty area sufficiently small
when its size is smaller than the size of the confirmation element.

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 477

Fig. 4. Click event handling (left), and transition probabilities (right).

State estimation for touchscreen. Using a touchscreen instead of a mouse
does not affect our algorithm. Typically touchscreens report click events in
absolute coordinates, hence using a touchscreen corresponds to the case where
the mouse location is known, but the starting state is not. Determining the pos-
sible transitions after a click is trivial, since there can be at most one intersection
of a clicking point with the area of an element in a specific state.

3.3 User Interface Fingerprinting

In this section we describe UI fingerprinting that is applicable to adaptive UI
attacks on general-purpose PC platforms. On a high level, our UI fingerprint-
ing approach works as follows. The attack device keeps a history of all events
observed in the last t minutes (in our experiments, t = 5 min produced good
results). For every observed mouse click event, the attack device takes the target
application UI model, analyzes the event history and asks the following question:
“Is the user interacting with the critical UI?”. Similarly to our state tracking
approach, we also require a UI model for fingerprinting. However, the model is
simpler as no UI transitions are modeled.

In Fig. 5, we illustrate our fingerprinting approach on a concrete example.
The critical UI in this case is simple, and consists of three elements: two text-
boxes and a button. We require one text-box to be filled out, while the other
is optional. The latest event (at time t0) the attack device observes is a mouse
click. The attack device assumes the click was performed on the confirmation
element, and traverses the event history backwards in time to see if the user was
indeed interacting with the critical UI, according to the specified model.

The first encountered event is a mouse move, so the device moves the mouse
uncertainty region accordingly. The following two events are a click and a key
press, so the device creates two trackers (the uncertainty region was over two
different elements), and shrinks the uncertainty region over the corresponding
elements. The next event is another move, followed by a click and a keyboard
press. In the lower tracker, the click would have originated over no element, but
in the upper tracker, both required text-boxes would be filled, at which point the
attack device concludes that the user is interacting with the targeted UI state.

478 L. Malisa et al.

Fig. 5. Fingerprinting UI example. For every observed click, the attack device traverses
the event history and checks if the user is currently interacting with the target UI.

3.4 Attack Launch Techniques

Once the attack device has identified the attack state with sufficiently small
uncertainty area, it is ready to launch the attack. In a simple approach, the
adversary moves the mouse cursor over one of the attack elements, modifies its
value, moves the cursor over the confirmation button, and clicks it. The process
is fast and the user has little chances of preventing the attack. However, the user
is likely to notice it. For example, if a doctor never clicked the confirm button,
the doctor is unlikely to implant the pacemaker into a patient. For this reason,
we focus on more subtle attack launch techniques. Below we describe two such
techniques and in Sects. 4 and 5 we evaluate their user detection.

Element-driven attack. The adversary first identifies that the user interacts
with one of the target elements. This can be easily done when the mouse uncer-
tainty area is smaller than the target element. Once the user has modified the
value of the target element, the adversary waits a small period of time and dur-
ing it tracks the mouse movement, then quickly moves the mouse cursor back to
the target element, modifies its value, and returns the mouse cursor to its loca-
tion. After that, the adversary lets the legitimate user confirm the safety-critical
operation. The technique only requires little mouse movement, but the modified
value remains visible to the user for a potentially long time, as the adversary
does not know when the user will confirm the safety-critical operation.

Confirmation-driven attack. The adversary identifies that the system is on
the attack state and lets the user to set the attack element values uninterrupted.
When the user clicks the confirmation button, the attack activates. The adver-
sary blocks the incoming click event, moves the mouse cursor over one of the
attack elements, modifies its value, moves the mouse cursor back over the con-
firmation button, and then passes the click event to the target system. The
adversary then changes the modified attack element back to its original value.
In this technique, the mouse cursor may have to be moved more, but the modi-
fied attack element settings remain visible to the user only for a brief period of
time.

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 479

Fig. 6. Attack device prototype.
We implemented the full attack.

Fig. 7. Case study UI: custom cardiac
implant programmer.

3.5 Attack Device Protoype

We built a full prototype of the attack device by implementing the entire attack
system in C++ and deployed it on two BeagleBone Black boards (Fig. 6). The
two boards communicate over ethernet, as each board has only one set of USB
ports and we evaluate an attack where the adversary controls both mouse and
keyboard input. A custom attack device would consists of a single embedded
device. The boards have processing power comparable to a modern low-end
smartphone (1 GHz CPU, 512 MB RAM).

The boards are conveniently powered through USB, and no external power
supplies are required. Each board intercepts one USB device (keyboard and
mouse, respectively), and the two boards communicate through a short ethernet
cable. We emphasize that the complete attack software is running on the boards
themselves, and no remote communication with the attacker is either required
or performed. We purposefully optimized the C++ code for execution speed.

4 Case Study: Pacemaker Programmer UI

To evaluate our state tracking based attack on terminals, we focus on a simulated
pacemaker programmer (Fig. 7). We also performed a case-study on e-banking
user interfaces, on 20 domain experts, and we refer the reader to Sect. 5 for
details. A video of our attack is available at https://goo.gl/kdkRDC.

We implemented the user interface based on the publicly available docu-
mentation of an existing cardiac implant programmer [5]. Such a programmer
terminal is used by doctors to configure medical implant settings. For example,
when a doctor prepares a pacemaker for implantation, she configures its settings
based on the heart condition of the receiving patient. The terminal can also be
used to monitor the operation of the implant and potentially update its settings.

The model of this user interface consists of approximately ten states and
contains three types of user input elements: buttons, text fields and sliders. All
state transitions are triggered by button clicks. The attack elements are the user
input elements that are used to configure the pacemaker settings. Threshold is
set using a text field (keyboard), while amplitude and rate are set using slider

https://goo.gl/kdkRDC

480 L. Malisa et al.

0.3
0.6
1.0

10.0

100.0

U
n
c
e
rt
a
in
ty

A
re
a
(%

)

Known Start State Unknown Start State

0 2 4 6 8 10

Number of Mouse Clicks

0.0

25.0

50.0

75.0

90.0
100.0

C
o
rr
e
c
t
S
ta

te
(%

)

0 2 4 6 8 10

Number of Mouse Clicks

Fig. 8. State tracking accuracy of our attack system.

elements (mouse), see Fig. 7. All attack elements are on the same state. The
model creation was a manual process that took a few hours.

We implemented the user interface using HTML5/JavaScript, and the UI
serves two different purposes. First, we use it to demonstrate the attack and
evaluate attack detection on-site. For this use, we run the user interface on a
standard PC, instead of a terminal (Fig. 6). Second, we use the same UI to collect
user traces and evaluate the detection of different attack variants online.

Trace collection. To evaluate the tracking algorithm we collected online user
traces for the programmer UI. We recruited participants using the global crowd
sourcing platform CrowdFlower. In the instructions, we asked the participants
to find saved patient data that matches a given medical condition, copy that
patient’s pacemaker settings to the programming screen, and finally, to program
the device by pressing the confirmation element. We recorded all user input
during the task, but no private information on study participants was collected.

In total 400 contributors completed the task. We observed that approximately
7% of user input gestures were over non-existent elements (e.g., users clicked
when the mouse cursor was not over a button).

Estimation accuracy. We ran our estimator on all our traces (Fig. 8). As
our algorithm is event-based, after each click we measured (a) the size of the
mouse uncertainty area, expressed as percentage of the overall screen, and (b)
the probability that we correctly estimate the real state the user is currently in.

We say that our algorithm correctly estimates the current state, when it
assigns the highest probability for the correct state among all states. As all our
traces start from the same state, to evaluate the situation where the tracking
begins from an unknown state, we cut the first 10% from all our evaluation traces.
As tracking options we used the element-area transition probabilities together

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 481

with element detection (scaling parameter 0.95) and a priori probabilities that
we obtained by profiling the training traces.

First, we discuss the case where the state tracking begins from a known start
state (shown left in Fig. 8). The uncertainty area is the full screen at first and
the probability for estimating the correct state is 100% (known start state).
As the estimation algorithm gathers more user input events, the uncertainty
area size reduces quickly and already after three clicks the area is less than 1%
of the screen size. The estimation probability decreases first, as the first click
adds uncertainty to the tracking process, but after additional click events, the
estimation probability increases steadily, and after ten clicks the algorithm can
estimate the correct state with 90% probability.

Next, we consider the scenario where the state tracking begins from an
unknown target system state (shown right in Fig. 8). In the beginning, the uncer-
tainty area is the entire screen and the probability for the state estimate is low, as
all states are equally likely. As the tracking algorithm gathers more user events,
the uncertainty area reduces, but not as fast as in the case of known start state.
The uncertainty area becomes less than 1% of the screen size after eight clicks.
The probability for the correct state estimate increases and after ten clicks we
can estimate the correct state with approximately 90% probability.

We conclude that in both cases we can identify the correct system state with
high probability after observing only ten clicks and the uncertainty area becomes
very small (below 1%, equals to a small, 50×50 pixel rectangle). If the user enters
the attack state after ten clicks, we can launch the attack accurately.

We compared the performance of our different tracking options, and we
noticed that the they performed comparably. Element detection gave a major
accuracy increase, while a priori probabilities did not improve accuracy signifi-
cantly.

Attack launch success rate. To evaluate if our system successfully detects the
correct time to launch the attack, we ran our algorithm on all the user traces we
recorded from our user study. In 83% of all traces, our system correctly identified
the attack launch time, namely right after the user programs the pacemaker. In
16% of the traces, our system did not identify a suitable attack time and, as
a result, no attack would be launched. Only in 1% of the traces our system
launched the attack at the wrong time. We conclude that our system correctly
identifies the attack launch time in most cases.

Estimation overhead. To analyze how fast our state and location estimation
algorithm runs, we measured the runtime overhead of processing each user input
event from the collected traces. The algorithm was run on the two BeagleBone
boards with element tracking enabled, using equal transition probabilities.

Both mouse and keyboard events require little computation. The process-
ing overhead per event is very small (below 0.5 ms) and such events can be
easily processed in real-time. Mouse click events require more computation, as
those cause generation of new trackers, and the processing delay is relative to
the number of state trackers that the algorithm maintains. Figure 9 shows the
average processing delay for mouse clicks from our evaluation traces. When we

482 L. Malisa et al.

Fig. 9. The device per-event over-
head increases as the algorithm
accumulates more trackers, but is
overall low.

Attack
group

Attack
succeeded

Task
completed

1. Element, text, 5 ms 50% 84
2. Element, text, 62 ms 37% 84
3. Element, text, 125 ms 48% 86

4. Element, slider, 5 ms 12% 80
5. Element, slider, 62 ms 9% 83
6. Element, slider, 125 ms 6% 86

7. Confirmation, text, 10 ms 93% 81
8. Confirmation, text, 125 ms 96% 79
9. Confirmation, text, 250 ms 93% 78

10. Confirmation, slider, 10 ms 95% 85
11. Confirmation, slider, 125 ms 90% 82
12. Confirmation, slider, 250 ms 95% 79

Total 987

Fig. 10. Attack detection results.

start tracking from a known state, the overhead increases slightly over time, but
remains under 7 ms per event. When we start tracking from an unknown state,
the algorithm accumulates significantly more trackers, and thus the processing
overhead increases faster. After ten clicks, processing a single input event takes
approximately 43 ms on our test platform. From the analyzed traces we observe
that the interval between consecutive mouse clicks is typically in the order of
seconds. This gives the attack device ample time to process incoming click events.

We conclude that our implementation is fast. Mouse and keyboard events
are processed in real-time and the processing overhead for mouse clicks is signif-
icantly smaller than the typical interval between clicks. The UI remains respon-
sive, with no “processing lag” that would indicate an attack is taking place. Our
attack device can also be significantly minimized in terms of hardware. Based
on our results, even less powerful devices than our own would be sufficient.

Online attack detection user study. To evaluate how many users would
detect our attacks, we conducted two user studies. Here we describe the first,
large-scale online study. We recruited 1200 new study participants, that we
divided into 12 groups. We tested two element-driven attack variants: one where
we modify a text element and another where we modify a slider. We also tested
two confirmation-driven attack variants: one with text and another with slider
input. For each four attack variant we tested three separate speeds of the attack.

We provided the same task description as before, but depending on the group,
we launched an attack during the task. Once the task was over, we asked the
participants: “Do you think you programmed the pacemaker correctly?”.

If a participant noticed the UI manipulation, she had three possible ways to
act on it. First, she was able to program the pacemaker again with the correct
values. Second, the participant could report that the device was not programmed
correctly in the post-test question. Third, the she could write to the freeform
feedback that she noticed something suspicious in the application user interface.

In total 987 participants completed the task. We consider that the attack
succeeded when the participant did none of the above mentioned three actions.

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 483

The results are shown in Fig. 10. The success rate for the element-driven text
attacks was 37–50% and for the element-driven slider attacks 6–12%, depending
on the speed of the attack. The success rate for the confirmation-driven text
attacks was 93–96% and for the confirmation-driven slider attacks 90–95%.

All the tested confirmation-driven attacks had high success rates (over 90%).
In the element-driven attacks the user interface manipulation remains visible
longer for the user, and this is a possible explanation why the attacks do not
succeed equally well. We conclude that confirmation-driven attacks are a better
strategy for the adversary and focus the rest of our analysis on those.

We compared the success rates of text and slider manipulation on
confirmation-driven attacks, but found no statistically significant difference
(χ2(1, N = 484) = 0.12), p = 0.73). We also compared the success rates of
different attacks speeds on confirmation-driven text attacks (χ2(2, N = 238) =
0.42), p = 0.81) and slider attacks (χ2(2, N = 246) = 2.20), p = 0.33), but
found no significant difference. This implies that the adversary has at least a
few hundred milliseconds time to perform the user interface manipulation with-
out sacrificing its success rate.

We analyzed all freeform text responses, and none of the users associated the
observed UI changes with a malicious attack. Only two users commented on the
changing values of UI elements and both attributed them to a software glitch.

On-site user study. Our study participants were not domain experts, i.e., users
that would commonly operate a pacemaker programmer. We therefore performed
a on-site user study on two medical professionals (one doctor, one nurse). Both
participants failed to detect our attack, and were under the impression they
programmed the pacemaker correctly.

5 Case Study: Online Banking UI

In this section we describe our experiments on e-banking user interface. To eval-
uate how successful our attack is in fingerprinting UIs and compromising the
integrity of e-banking payments, we performed a separate on-site user study,
similar to the previous on-site attack detection study. We created partial local
replicas of three major e-banking websites (we only copied the payment parts of
the sites). The replicas were nearly the same as their online counterparts, with
minor differences introduced through the replication process.

Recruitment and procedure. We recruited 20 domain experts, where each
participant was required to be a regular e-banking user of one of the three banks
we replicated the websites of, and use either Chrome of Firefox during e-banking
sessions. Each participant was presented a sheet of paper with the following
instructions steps. (1) Open the browser you usually use for e-banking. (2) Click
on your e-banking site link, located in the browser bookmarks. (3) Imagine
you already performed the login procedure, as the replica website requires no
login. (4) Navigate to the payment site, and (5) make a payment to the account
provided on the study sheet. (6) To complete the task, close the browser.

484 L. Malisa et al.

The attack device was already installed to the laptop and was hidden from
sight. First step of our attack was to automatically detect that the user is inter-
acting with a critical UI (payment information is filled in), and which of the three
banks was being used. The second step was to detect when the “Confirm pay-
ment” button was clicked. The attack device then inserted mouse and keyboard
input that changed the payment field containing the amount of money trans-
mitted, and injected a javascript snippet through the URL bar that masked the
changed value in the upcoming “Payment confirmation” screen. The javascript
was only needed to mask the website so that the user has a harder time noticing
the attack. The whole attack was done in approximately 0.5 s, and a video which
demonstrates our attack is available at: https://goo.gl/kdkRDC. After complet-
ing the user study, we presented each participant with an exit questionnaire: “1.
Was the payment experience comparable to your regular e-banking experience?”
and “2. What do you think the user study was about?”

Results. Our attack successfully detected the precise point in time when the
users were interacting with the critical UI (making a payment) in 90% of the
cases. Our attack failed in only 10% of the cases (two users). In both cases the
attack state detection succeeded, but the attack input injection failed due to
implementation flaws, that were corrected after the study.

90% of participants positively answered to the first question, noting that
it was similar to their regular e-banking experience. Out of those, some users
noted that the UI looked slightly different, which was due to the imperfections
introduced by our replication process. Only 10% noted that the experience was
not the same, due to the missing second-factor authentication step. Out of 20
participants, 30% had no idea about the true nature of the user study. Another
30% suspected that some form of attack was performed (phishing, key-logging,
removal of second-factor authentication), while another 30% thought the study
was a usability test. Only two users detected our attack, and correctly guessed
the true nature of the study. We conclude that our attack was stealthy.

Discussion. We did not perform any security priming in our user study, however
we acknowledge that the role-playing bias of study participant not using their
real e-banking could be present. Users might have been less careful, because they
knew that their own money is not at risk. At the same time, our study setup
introduces another bias. Since the study was performed under our supervision,
some study participants may have been more alert than if they would have done
the online payment on their own.

We tested our attack on various browsers, e-banking sites and screen resolu-
tions as well as browser window locations, and we conclude that our attacks can
successfully perform UI fingerprinting and e-banking session hijacking, with no
false positives, and very low false negatives. Furthermore, we showed that our
attacks were not detected by the majority of users.

The user study was performed on our custom laptop, and the e-banking web-
site were replicas. At no point did we require the study participants to disclose
any kind of private information, such as their e-banking credentials.

https://goo.gl/kdkRDC

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 485

6 Countermeasures

In this section we analyze possible countermeasures and their limitations.

Trusted input devices. One way to address our attacks is to mandate usage of
trusted input devices. We call a user input device trusted, when it securely shares
a key with the target system, as then all traffic can be encrypted and authenti-
cated which prevents the adversary from observing, injecting, or replaying events.
However, deployment of secure input devices is challenging. For example, doctors
need be able to operate medical terminals at all times, even in case of trusted
peripherals breaking down.

Increased user feedback. The UI can provide visual feedback on each change
of attack elements [12]. For example, the UI can draw a border around a recently
edited element to keep it visible. In a confirmation-driven attack, the user would
see the border, but as the adversary changes the attack element value back to
the original, the content of the user interface element would appear as expected.
Noticing that an attack happened may be difficult for the user.

Change rate limiting. The user interface could limit the rate at which the val-
ues of the UI elements can be changed. However, our study results show that the
majority of users do not notice even relatively slow UI manipulations that take
250 ms. Finding a rate limit that efficiently prevents user interface manipulation
attacks, but does not prevent legitimate user interactions is challenging.

Randomized user interfaces. Another way to address our attacks is to ran-
domize parts of the safety-critical system user interface. While UI randomiza-
tion [13,23,26] can complicate, or even prevent our attacks, it also increases the
chances of human error. In contrast to smartphone screen lock, on safety-critical
terminals an increased error rate is typically not acceptable. For example, med-
ical devices consider lack of UI consistency a critical safety violation [10].

Continuous user authentication. While traditional user authentication sys-
tems require the user to log in once, continuous authentication systems monitor
user input over a period of time to detect if the usage deviates from a previously
recorded user profile. Many such systems track mouse velocity, acceleration and
movement direction [6,22], together with click events [6,22], angle-based curva-
ture metrics and click-pause measurements [28].

The proposed systems [17,21,28] need to observe the impostor for significant
amount of time (e.g., 12 consecutive seconds [21]). Our attacks require only
brief mouse movement and one or few clicks, and the attacks can be performed
well under a second. Our state estimation works fully passively, and current
continuous authentication systems are not directly applicable to detecting them.

Summary. We conclude that all the reviewed countermeasures have limitations.
Finding better protective measures that are both effective and practical to deploy
remains an open problem.

486 L. Malisa et al.

7 Discussion

In this section we discuss the applicability of the proposed approach to other
scenarios and directions for future work.

Attacks in the wild. Attacks similar to ours may already be taking place in
the wild. For example, the NSA cottonmouth project [1] is a malicious USB
connector that can both inject and observe user input. Such and similar devices
are ideally suited to perform our attacks.

User interface complexity. We experimented our attacks on a terminal user
interface that consists of approximately ten states. We consider this typical UI
complexity for embedded dedicated-purpose terminals. We also experimented
our attack on real (and replica) online banking websites. We believe that these
examples capture different types of security-critical user interfaces.

System output. In our attack scenario, the adversary has only access to the
user input channel. An attack device that is attached to an interface that con-
nects a touchscreen to the terminal mainboard is an example of a scenario where
the adversary may be able to access the system output channel as well. Video
interfaces can have high bandwidths and running image recognition algorithms
on a small embedded device in real-time may be challenging.

User presence. We tailored our attack for the case, where the legitimate user
is operating the device. The presence of the legitimate user both helps and
complicates our attack. Observing specific input events (e.g., mouse clicks that
presumably take place over buttons) help the adversary to determine the current
user interface state. At the same time, the adversary must inject the attack events
in a subtle manner to avoid user detection. If the attack is performed without
the user presence (i.e., when the system is idle), a different strategy is needed.
Exploring such state estimation strategies is an interesting future work.

Mouse transfer function. In our attack prototype, we assumed there was no
mouse transfer function, and that the physical mouse movement directly corre-
sponded to the on-screen cursor movement. However, if present, such functions
can be inferred and accounted for [20].

8 Related Work

USB attacks. Key loggers are small devices that the adversary can attach
between a keyboard and the target system. The key logger records user input
and the adversary collects the device later to learn any entered user secrets such
as passwords. Such attacks are limited to passive information leakage, while our
approach enables active runtime attacks with severe safety implications.

A malicious user input device, or a smartphone that impersonates one [27],
can attack PC platforms by executing pre-programmed attack sequences
[7,9,15]. For example, a malicious keyboard can issue dedicated key sequence
to open a terminal and execute malicious system commands. The input device

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 487

might also be able to copy malicious code to the target system. Such attacks are
typically not possible on hardened embedded terminals where the user cannot
escape the application UI, and installation and execution of unsigned code is
prevented.

An attack that sounds similar to our attack approach is Mousejacking [2].
However, in the Mousejack attack, the attacker does gain access to legitimate
user input, but is only able to blindly inject fake events into the input channel.

USB firewalls. In recent research, USB firewall architectures have been pro-
posed [3,24,25]. Similar to network firewalls, these approaches include packet
filtering functionality (e.g., in the OS kernel), and can prevent a USB peripheral
of one class masquerading as an instance of another class (e.g., mass storage
device masquerades as keyboard). Such measures do not prevent our attacks,
where all injected USB packets match the device class of the benign peripheral.

USB fingerprinting. Researchers have demonstrated fingerprinting of PCs
based on their USB communication timing patterns [4]. Similar approach could
be applied to fingerprint USB input devices. The processing delays that our
attack incur are so small that users cannot observe them, but it remains an
open question if timing-based fingerprinting could be used to detect the attack.

Terminal protection. Software-based attestation is a technique that allows a
host platform to verify the software configuration of a connected peripheral [14].
Such attestation would not address the variant of our attack where the attack
device sits between the benign peripheral and the terminal. Power analysis can be
used to identify unknown (malicious) software processes running on embedded
terminals, such as medical devices [8]. Such approaches would not detect our
attack where no malicious code is running on the terminal. Our prototype is
susceptible to power-analysis as it draws power from the host USB connection.
However, the device could easily be designed to include an on-board battery.

User interface attacks. In systems where multiple applications or websites
share the same display, the user can be tricked to interact with false UI elements.
For example, a malicious website may be able to draw an overlay over a button
that causes the user click the button unintentionally. Such attacks are called
clickjacking [12] or UI redressing [18]. In our attack scenario, the adversary can
only modify and injects user events.

9 Conclusions

In this paper we have presented hacking in the blind, a novel approach to attack
systems through input integrity violation under uncertainty about the target
system state. In the attack, the adversary installs an attack device between
a user input device and the target system, and the attack is launched when
the authorized user is performing a security-critical operation, by modifying or
injecting new user input events. Our approach is easy to deploy on the location,
invisible to traditional malware detection, difficult for the user to notice, and

488 L. Malisa et al.

surprisingly robust to noise. Many of the attack variants we tested had success
rate over 90%. We analyzed several countermeasures and noticed that all of them
have limitations. We conclude that our attack presents a serious threat to many
safety-critical terminals and PC applications.

References

1. Nsa cottonmouth project. https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.
html

2. Mousejack technical details (2017). https://www.bastille.net/research/
vulnerabilities/mousejack/technical-details

3. Angel, S., Wahby, R.S., Howald, M., Leners, J.B., Spilo, M., Sun, Z., Blumberg,
A.J., Walfish, M.: Defending against malicious peripherals (2015). http://arxiv.
org/abs/1506.01449

4. Bates, A.M., Leonard, R., Pruse, H., Lowd, D., Butler, K.R.: Leveraging usb to
establish host identity using commodity devices. In: Network and Distributed Sys-
tem Security Symposium (NDSS) (2014)

5. Biotronik. Cardiac rhythm management. http://goo.gl/jvCuzC
6. Cai, Z., Shen, C., Guan, X.: Mitigating behavioral variability for mouse dynamics:

a dimensionality-reduction-based approach. Trans. Hum.-Mach. Syst. 44(2) (2014)
7. Chen, K.: Reversing and exploiting an apple firmware update. In: Black Hat USA

(2009)
8. Clark, S.S., Ransford, B., Rahmati, A., Guineau, S., Sorber, J., Xu, W.,

Wattsupdoc, K.: Power side channels to nonintrusively discover untargeted mal-
ware on embedded medical devices. In: USENIX Workshop on Health Information
Technologies (HealthTech) (2013)

9. Crenshaw, A.: Plug and prey: malicious USB devices (2011)
10. Graham, M., Kubose, T., Jordan, D., Zhang, J., Johnson, T.R., Patel, V.L.: Heuris-

tic evaluation of infusion pumps: implications for patient safety in intensive care
units. J. Med. Inf. 73, 771–779 (2004)

11. Hak5. USB rubber ducky (2017). http://usbrubberducky.com/
12. Huang, L.-S., Moshchuk, A., Wang, H.J., Schechter, S., Jackson, C.: Clickjacking:

attacks and defenses. In: USENIX Security Symposium (2012)
13. Intel. Identity protection technology with PKI - technology overview (2013).

https://goo.gl/TtgzXW
14. Li, Y., McCune, J.M., Perrig, A.: SBAP: software-based attestation for peripherals.

In: Trust and Trustworthy Computing (TRUST) (2010)
15. Maskiewicz, J., Ellis, B., Mouradian, J., Shacham, H.: Mouse trap: exploiting

firmware updates in USB peripherals. In: Workshop on Offensive Technologies
(WOOT) (2014)

16. Microsoft. Lockdown features (windows embedded industry 8.1) (2014). https://
goo.gl/JcXC9X

17. Mondal, S., Bours, P.: A computational approach to the continuous authentication
biometric system. Inf. Sci. 304, 28–53 (2015)

18. Niemietz, M.: UI redressing: attacks and countermeasures revisited. In: CONFi-
dence (2011)

19. Nohl, K., Lell, J.: BadUSB - on accessories that turn evil. In: Black Hat USA
(2014)

https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html
https://nsa.gov1.info/dni/nsa-ant-catalog/usb/index.html
https://www.bastille.net/research/vulnerabilities/mousejack/technical-details
https://www.bastille.net/research/vulnerabilities/mousejack/technical-details
http://arxiv.org/abs/1506.01449
http://arxiv.org/abs/1506.01449
http://goo.gl/jvCuzC
http://usbrubberducky.com/
https://goo.gl/TtgzXW
https://goo.gl/JcXC9X
https://goo.gl/JcXC9X

Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks 489

20. Quinn, P., Cockburn, A., Casiez, G., Roussel, N., Gutwin, C.: Exposing and under-
standing scrolling transfer functions. In: Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology, pp. 341–350. ACM (2012)

21. Shen, C., Cai, Z., Guan, X., Du, Y., Maxion, R.: User authentication through
mouse dynamics. IEEE Trans. Inf. Forensics Secur. 8(1), 16–30 (2013)

22. Shen, C., Cai, Z., Guan, X., Sha, H., Du, J.: Feature analysis of mouse dynamics
in identity authentication and monitoring. In: IEEE International Conference on
Communications (ICC) (2009)

23. G. P. Store. Lockdown pro. https://play.google.com/store/apps/details?id=appplus.
mobi.lockdownpro

24. Tian, D.J., Bates, A., Butler, K.: Defending against malicious usb firmware
with goodUSB. In: Annual Computer Security Applications Conference (ACSAC)
(2015)

25. Tian, J., Scaife, N., Bates, A., Butler, K., Traynor, P.: Making USB great again
with USBFILTER. In: To appear in USENIX Security Symposium (2016)

26. von Zezschwitz, E., Koslow, A., De Luca, A., Hussmann, H.: Making graphic-
based authentication secure against smudge attacks. In: International Conference
on Intelligent User Interfaces (IUI) (2013)

27. Wang, Z., Stavrou, A.: Exploiting smart-phone USB connectivity for fun and profit.
In: Annual Computer Security Applications Conference (ACSAC) (2010)

28. Zheng, N., Paloski, A., Wang, H.: An efficient user verification system via mouse
movements. In: Computer and Communications Security (CCS) (2011)

https://play.google.com/store/apps/details?id=appplus.mobi.lockdownpro
https://play.google.com/store/apps/details?id=appplus.mobi.lockdownpro

On the Security of Carrier Phase-Based Ranging

Hildur Ólafsdóttir, Aanjhan Ranganathan(B), and Srdjan Capkun

ETH Zurich, Zurich, Switzerland
raanjhan@inf.ethz.ch

Abstract. Multicarrier phase-based ranging is fast emerging as a cost-
optimized solution for a wide variety of proximity-based applications due
to its low power requirement, low hardware complexity and compatibil-
ity with existing standards such as ZigBee and 6LoWPAN. Given poten-
tially critical nature of the applications in which phase-based ranging
can be deployed (e.g., access control, asset tracking), it is important to
evaluate its security guarantees. Therefore, in this work, we investigate
the security of multicarrier phase-based ranging systems and specifically
focus on distance decreasing relay attacks that have proven detrimental
to the security of proximity-based access control systems (e.g., vehicu-
lar passive keyless entry and start systems). We show that phase-based
ranging, as well as its implementations, are vulnerable to a variety of
distance reduction attacks. We describe different attack realizations and
verify their feasibility by simulations and experiments on a commercial
ranging system. Specifically, we successfully reduced the estimated range
to less than 3m even though the devices were more than 50 m apart. We
discuss possible countermeasures against such attacks and illustrate their
limitations, therefore demonstrating that phase-based ranging cannot be
fully secured against distance decreasing attacks.

Keywords: Secure ranging · Proximity verification · Phase-based
ranging

1 Introduction

The use of proximity and location information is ubiquitous today in a wide
range of applications [20,38]. For example, proximity-based access tokens (e.g.,
contactless smart cards, key fobs) are prevalent today in a number of systems
[17,34] including public transport ticketing, parking and highway toll fee
collection, payment systems, electronic passports, physical access control and
personnel tracking. Furthermore, modern automobiles use passive keyless entry
systems (PKES) to unlock, lock or start the vehicle. The vehicle automatically
identifies and unlocks when the key fob is in proximity, and there is no need
for the user to remove the key from his pocket. By eliminating the need for
user interaction, PKES-like systems also offer better protection in scenarios,
e.g., where the user forgets to lock the car manually. With the advent of mod-
ern cyber physical autonomous systems and the internet of things, the need for
proximity and location information is only bound to increase.
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 490–509, 2017.
DOI: 10.1007/978-3-319-66787-4 24

On the Security of Carrier Phase-Based Ranging 491

Numerous ranging techniques [23] that use radio communication signals have
been developed in the recent years. Some techniques are based on estimating
the change in the physical characteristics of the signal such as amplitude, phase
and frequency. For example, ranging systems based on received signal strength
(RSS) [7,42] rely on the free-space path-loss propagation model to estimate the
distance between two entities. Other ranging techniques estimate distance based
on the time-of-flight (e.g., roundtrip time of flight (RTOF), time-difference-of-
arrival (TDOA)) [44] of the radio frequency signal.

Most of these ranging techniques are inherently insecure. For example, an
attacker can fake the signal strength in an RSS-based ranging system. Similarly,
in an ultrasonic ranging system, an attacker can gain an advantage by relaying
messages over the faster radio-frequency channel [39]. Recently, it was shown that
the PKES systems used in automobiles are also vulnerable to relay attacks [15].
In a relay attack, the attacker uses two proxy devices to relay the communi-
cations between two legitimate entities without requiring any knowledge of the
actual data being transmitted; therefore independent of any cryptographic prim-
itives implemented. Researchers were able to unlock the car and drive away even
though the legitimate key was several hundred meters away from the car. Similar
relay attacks were demonstrated on other radio-frequency based access tokens
(NFC phones [16], Google Wallet [35]), even though the communication range
for many such contactless systems is limited to a few centimeters.

Multicarrier phase-based ranging [8] is fast emerging as a cost-optimized
solution for a wide variety of proximity-based applications. The low hardware
complexity and their low power consumption make them suitable for power-
constrained wireless sensor system applications. For example, the advent of inter-
net of things has seen an increasing number of smart and networked devices being
deployed ubiquitously where low power consumption is a key requirement. Today,
multicarrier phase-based ranging solutions [1,6,41] that are compliant with
prominent standards such as WiFi, ZigBee [5] and 6LoWPAN [21] are already
being commercialized (e.g., warehouse monitoring, child-monitoring). Given the
widespread deployment of 802.11 WiFi networks, several indoor localization and
ranging schemes [4,12,41,43] that use the carrier-phase of the radio signals have
been proposed. For example, Chronos [41] leverages the carrier phase informa-
tion of the 802.11 WiFi signals to implement a centimetre-level localization and
ranging system using commodity WiFi cards. The implications of distance modi-
fication attacks in scenarios where these systems are deployed in security-critical
applications like access control to automobiles, critical infrastructure, and med-
ical devices are significant and have not been investigated so far.

Therefore, in this work, we investigate the security of carrier phase-based
ranging systems and demonstrate their vulnerability to distance modification
attacks by exploiting the inherent physical properties of the signal. We focus on
attacks which result in a decrease of the measured distance since these have been
shown to be most relevant in a majority of security applications. Specifically, we
make the following contributions: (i) We show that phase-based ranging, as well
as its implementations, are vulnerable to a variety of distance reduction attacks.

492 H. Ólafsdóttir et al.

To this extent, we describe three different attack realizations with varying degree
of attacker complexity and evaluate their effectiveness under various conditions.
We demonstrate the attack on a commercial multicarrier phase-ranging system
and show that it is feasible to reduce the estimated distance significantly. Specif-
ically, through our experiments we successfully reduced the estimated range to
less than 3 m even though the devices were more than 50m apart. We discuss
possible countermeasures against these distance decreasing relay attacks and
illustrate their limitations. We show how implementing countermeasures such
as e.g., estimating rough time-of-flight, pseudorandom frequency hopping etc.
only increases the system complexity without fully securing against distance
decreasing attacks.

2 Background

2.1 Phase-Based Ranging

In phase-based ranging, two devices A and B measure the distance between
them by estimating the phase difference between a received continuous wave sig-
nal and a local reference signal. For example, if device A (verifier) is measuring
its distance to device B (prover), then the verifier begins ranging by transmit-
ting a continuous wave carrier signal. The prover locks its local oscillator to this
incoming signal and transmits it back to the verifier. The verifier measures the
distance based on the difference in the phase of the received signal and its ref-
erence signal as shown in Fig. 1a. If the distance d between the verifier and the

prover is less than the signal’s wavelength i.e.,
2 · f

c
, where f is the frequency

of the signal and c is the speed of light, the measured phase difference θ will be

θ = 4π · d · f

c
. In order to unambiguously measure distances greater than the

θ

θ

d

t

V P

(a) Phase Ranging

Δt t

θ1

θ2

(b) Multicarrier Phase Ranging

Fig. 1. (a) The prover locks its local oscillator to the verfier’s signal and transmits it
back to the verifier. The verifier then measures the distance based on the difference in
the phase of the received signal and its reference signal. (b) Two signals of different
frequencies that travel the same amount of time will experience a different phase shift.

On the Security of Carrier Phase-Based Ranging 493

signal’s wavelength, it is necessary to keep track of the number of whole cycles
elapsed. Therefore, the equation for measuring d becomes,

d =
c

2 · f
· (

θ

2π
+ n) (1)

where n is an integer which reflects the number of whole cycles elapsed. The
need for keeping track of n is eliminated by using continuous wave signals of
different frequencies.

2.2 Multicarrier Phase Ranging

Multicarrier phase ranging systems eliminates the whole cycle ambiguity by
transmitting continuous wave signals at different frequencies (Fig. 1b). For exam-
ple, the verifier first transmits a signal with a frequency f1 to which the prover
locks its local oscillator and retransmits the signal back to the verifier. At the ver-
ifier, the measured phase difference between the received signal from the prover
and the verifier’s own signal for this frequency (θ1) is given by (from Eq. 1),

θ1 = 2π · (
2 · d · f1

c
+ n) (2)

The verifier then transmits a continuous wave signal with a frequency f2 and
measures the phase difference (θ2) as previously.

θ2 = 2π · (
2 · d · f2

c
+ n) (3)

The distance d between the verifier and the prover can be unambiguously
measured by combining Eqs. 2 and 3:

d =
c

4π
· θ2 − θ1
f2 − f1

(4)

Phase Slope Method: In real-world, using only two frequencies to measure
the phase differences results in poor ranging accuracy. Therefore, it is typical
for the verifier to measure the phase differences on more than two frequencies,
thereby improving the system’s resolution and accuracy. The phase difference
measurements (θi) for each frequency (fi) can be expressed in the form of θi =
4π
c · fi · d + N .

If the phase differences are plotted on a phase vs frequency curve, the slope of
the curve represents the distance d between the verifier and the prover (Fig. 2).
In other words, the above equation can be seen as a straight line with the dis-
tance proportional to the slope of the line, d = c

4π · slope. Figure 2a shows the
measured phase differences vs frequency for two different distances. The phase-
differences are straightened as is shown in Fig. 2b to calculate the effective slope
and estimate the distance between the verifier and the prover.

494 H. Ólafsdóttir et al.

(a) The phase of the received signal.

~d2

~d1

(b) The straightened phase of the re-
ceived signal.

Fig. 2. Phase versus frequency if the prover is 10 and 20m away from the verifier.

2.3 Commercial Phase Ranging Systems

Due to their low-complexity and low power requirement, multicarrier phase rang-
ing is fast emerging as a cost-optimized solution for a wide variety of applications.
For example, multicarrier phase ranging has been proposed for the positioning
of ultra-high frequency RFID systems [24,25]. More recently, Atmel released a
radio transceiver [6] specifically targeting low-power applications and complying
with standards such as ZigBee [5] and 6LoWPAN [21]. The radio transceiver
AT86RF233 is designed for use in industry, scientific and medical (ISM) band
applications and implements multicarrier phase-based ranging technique for dis-
tance measurement. Further more, leveraging the proliferation of 802.11 WiFi
networks and the availability of carrier phase information directly from the net-
work cards [18], several indoor localization schemes [4,12] have been proposed
recently. For example, Chronos [41] leverages the carrier phase information of
the 802.11 WiFi signals to implement an indoor localization and ranging system
using commodity WiFi cards with centimeter-level precision.

The ranging procedure in these systems is typically divided into control and
ranging signals. The control messages are all transmitted using the same pre-
set frequency and is used to set up the necessary parameters and time syn-
chronization for the ranging to take place. In addition, the verifier and prover
exchange the results of the ranging using the control channel. The frequencies
of the continuous wave signals used in the ranging ranges from 2.324–2.527 GHz
with configurable hop sizes of 0.5, 1, 2, 4 MHz.

3 Security of Phase Ranging Systems

In this section, we investigate the security of phase ranging systems with a focus
on the physical-layer distance decreasing attacks as these attacks have been
shown to be detrimental to a number of security critical applications (e.g., NFC
payment systems [16,35], keyless entry systems in automobiles [15]).

On the Security of Carrier Phase-Based Ranging 495

3.1 Distance Decreasing Relay Attacks

We consider two devices, a verifier and a prover that are able to communicate
over a wireless radio link. The devices implement multicarrier phase measure-
ment for ranging. The verifier measures and verifies the distance claimed by the
prover. The verifier is trusted and is assumed to be honest. In this setting, dis-
tance decreasing attacks can be mounted in two ways: (i) by a dishonest prover
trying to cheat on its distance to the verifier, referred to as an internal attack and
(ii) by an external attacker who aims to shorten the distance between the verifier
and the honest prover, referred to as a “distance-decreasing relay attack”.

There are several ways for a dishonest or a malicious prover to mount an
internal attack. For example, a malicious prover can cheat on the distance by
not locking on to the correct phase when the verifier transmits its interrogating
signal (from Fig. 1a). The malicious prover can simply respond with a signal that
is phase incoherent with the verifier’s reference signal; thus resulting in a different
distance estimate at the verifier. Such internal attacks can only be prevented by
distance bounding [9] and implementing distance bounding [29,31,33] require
a number of hardware-software modifications that are incompatible with the
existing design of phase ranging systems. In this work, we focus on external
attackers under the assumption that both the verifier and the prover are trusted
and honest. Such a scenario is most applicable to e.g., passive keyless entry
systems where the key fob and the car are both trusted and assumed to be
honest. However, we note that the presented attacks in this paper can be used
by a dishonest prover to decrease its distance to the verifier without any loss of
generality.

Additionally, it is important that the verifier and the prover exchange data
that is cryptographically generated. Otherwise, it would be trivial for an unau-
thorized device to recreate the ranging signals and appear legitimate to the
verifier. Throughout this paper, we assume that the verifier and the prover gen-
erate and exchange cryptographic data in order to prevent unauthorized ranging
attempts.

3.2 Phase-Slope Rollover Attack

Recall that in a multicarrier phase ranging system, distance d is measured based
on the estimated phase differences between two or more carrier frequency sig-
nals (Eq. 4). Thus, the maximum measurable distance i.e., the largest value of
distance dmax that can be estimated using multicarrier phase-ranging system,
depends on the maximum measurable phase difference Δθmax between the two
frequency signals. Given that the phase values range from 0 to 2π, the maxi-
mum measurable phase difference between any two frequencies is Δθmax = 2π.
Substituting the values in Eq. 4 the maximum measurable distance is given by,

dmax =
c

4π
· Δθmax

Δf

dmax =
c

2
· 1
Δf

(5)

496 H. Ólafsdóttir et al.

V P

θ

t

Δt

θ

Δt

(a) Phase-slope Rollover Attack

0 0.2 0.4 0.6 0.8
Delay [7 s]

0

20

40

60

80

M
ea

su
re

d
D

is
ta

nc
e

[m
]

(b) Experimental Result

Fig. 3. (a) The verifier’s signal travels unaltered from the verifier to the prover. Then
the prover locks onto the incoming signal and transmits a signal with the same phase
back. The attacker intercepts the prover’s signal and delays each frequency by the
same amount. The verifier calculates an incorrect distance measurement based on the
attacker’s signal. (b) The verifier and prover are located 30m from each other and
the frequency hop size is 2 MHz (roll over happens at every 500 ns/75 m). The figure
shows the measured distance at the verifier when an attacker uniformly delays all the
frequencies by the same amount.

For example, if the frequency hop size is 2MHz (Δf), the maximum distance
measurable without any ambiguity is 75 m after which the measured distance
rolls over to 0 m. Similarly for frequency hop sizes of 0.5, 1, 2, 4 MHz, the
maximum measurable distances are 300, 150, 75 and 37.5 m respectively, beyond
which there is a rollover.

In our phase-slope rollover attack, we demonstrate how an attacker can lever-
age the maximum measurable distance property of the phase ranging system in
order to execute the distance decreasing relay attack. The phase-slope rollover
attack is illustrated in Fig. 3a. The attacker is assumed to be closer to the verifier
than the prover. For illustrative simplicity, here we assume that the prover is
far away from the verifier or in other words, the verifier and the prover are not
in communication range. During a phase-slope rollover attack, the attacker sim-
ply relays (amplify and forward) the verifier’s interrogating signal to the prover.
The prover determines the phase of the interrogating signal and re-transmits
a response signal that is phase-locked with the verifier’s interrogating signal.
The attacker receives the prover’s response signal and forwards it to the verifier,
however with a time delay (Δt). The attacker chooses the time delay such that
measured phase differences Δθ between the carrier frequency signals reaches
its maximum value of 2π and rolls over. Considering the previous example of
a system with the frequency hop size of 2MHz, the measured phase differ-
ences Δθ rolls over every 500 ns. Figure 3b shows how the measured distance
by the verifier changes depending on the delay Δt introduced by the attacker. In
Sect. 4, we demonstrate the feasibility of such an attack on a commercial phase-
based ranging system using a experimental setup. Furthermore, we show that an
attacker can decrease the estimated distance to the minimum possible distance

On the Security of Carrier Phase-Based Ranging 497

measurable (depends on sampling rate) by the system irrespective of the true
distance of the prover.

3.3 RF Cycle Slip Attack

In this section, we describe an alternative way for an attacker to decrease the esti-
mated distance of multicarrier phase ranging systems. In this attack, the attacker
manipulates the phase of individual carrier frequencies in order to achieve the
required phase difference between the carrier frequencies that will result in a
reduced distance estimate at the verifier. This is in contrast to the phase-slope
rollover attack described previously, where the attacker simply delays all the
carrier frequencies by Δt until the effective phase difference between the carrier
frequencies exceed the maximum value and rolls over.

In a RF cycle slip attack, the attacker delays each carrier frequency fi by Δti.
Recall that at the verifier, phase difference θi is measured between the prover’s
response signal and the verifier’s reference signal for frequency fi. Thus, an
attacker can alter θi by delaying individual carrier signals by an amount that
causes each phase measurement to change to a value θ′

i. The attacker chooses the
new phase, θ′

i, for each frequency such that the slope of the phase vs frequency
graph decreases and thus decreasing the measured distance. Figure 4b illustrates
the delays needed for individual carrier frequencies to cause a particular distance
estimate by the verifier. One of the drawbacks of this method is that the attacker
needs very high sampling rate. Alternatively, the attacker can use analog delay
lines [26,40] to realize such a relay attack hardware.

Fig. 4. (a) The verifier’s signal travels unaltered from the verifier to the prover. Then
the prover locks onto the incoming signal and transmits a signal with the same phase
back. The attacker intercepts the prover’s signal and delays each frequency individually.
The verifier calculates an incorrect distance measurement based on the attacker’s signal.
(b) The delay of each frequency the attacker needs to introduce to decrease the distance
to 1 m from 30 and 74m respectively. Here dvp is prover-verifier distance.

498 H. Ólafsdóttir et al.

3.4 On-the-fly Phase Manipulation Attack

In this section, we present a real-time phase manipulation attack, in which the
attacker is not required to delay the prover’s response signal. In this attack,
the attacker manipulates the phase of the prover’s response signal by mixing
it with specially crafted signal which results in an appropriate phase difference
at the verifier. It is important to note that the real-time phase manipulation
attacks keeps any possible data exchanged intact independent of the modulation
scheme used.

Figure 5 illustrates the real-time phase manipulation attack. The prover
receives the interrogating signal and re-transmits a phase-locked response sig-
nal back to the verifier. The prover’s response sP (t) can be expressed as
sP (t) = cos(2πft + θap), where f is the signal frequency and θap is the received
phase of the prover’s signal at the attacker. The attacker receives the prover’s
signal sP (t) and mixes it with a specially crafted signal sif (t) = cos(4πft + θA)
before relaying the signal to the verifier. Note that the crafted signal has twice
the frequency of the prover’s response signal. This is to account for the frequency
conversion that occurs during mixing of two signals. The attacker’s signal sA(t)
(after filtering high frequency components) that is finally relayed to the verifier
can be derived as follows:

sA(t) = sif (t) ⊗ sP (t)
= cos(2πft + θap) ⊗ cos(4πft + θA)
LP=

1
2

cos
(
2πft + θA − θap

) (6)

From Eq. 6, we observe that the relayed signal sA(t) is identical to the prover’s
response signal except that it is shifted in phase. Recall that (Eq. 4), in a multi-
carrier phase ranging system, the measured distance depends on the change in
phase difference measurements between each carrier frequency. Thus, in order
to modify the measured distance, the attacker needs to manipulate the phase
of each carrier frequency such that it results in a reduced distance estimate. In

θ

t

V P

θap

θA

θA-θap

Fig. 5. Attacker phase shifts the prover’s signal by first mixing it with a signal of twice
the frequency and then low-pass filters the result before transmitting it to the verifier.

On the Security of Carrier Phase-Based Ranging 499

other words, the attacker has to choose θA such that θA − θap results in a phase
difference estimate that corresponds to the reduced distance. In order to config-
ure θA, the attacker must have apriori knowledge of the phase of the prover’s
signal when received at the attacker’s location (θap). The attacker can detect
the phase of the verifier’s signal when it received it and if the attacker knows
the distance between the attacker and the prover, the attacker can estimate θap.
An alternative method for the attacker would be to actually detect (e.g., using
a phase-locked loop) the phase of the prover’s response signal. However, this
would introduce unnecessary delays1 in the relaying hardware thus making it
less favourable for the attacker.

4 Experimental Evaluation

In this section, we evaluate the feasibility of the above described distance decreas-
ing relay attacks using both commercial phase-ranging systems and simulations.
First, we demonstrate the distance decrease relay attack on the commercially
available Atmel AT86RF233 radio transceiver [6,32] that implements multicar-
rier phase-based ranging technique. Furthermore, we evaluate the feasibility of
the attacks in different environmental conditions (e.g., noise, communication
range) using simulations.

Table 1. Atmel hardware configuration for the attack

Parameter Value

Frequency hop Δf 2 MHz

Ranging frequency range 2.403–2.443 GHz

Control message frequency 2.4 GHz

No. of frequencies 20

Signal strength −17 dBm

4.1 Practical Demonstration of the Attack

Figure 6a shows the experimental setup used in evaluating the feasibility of exe-
cuting the distance decreasing relay attack on the Atmel phase-ranging system.
Our setup consists of two multicarrier phase ranging devices based on Atmel
AT86RF233 radio transceiver. One device (1) acts as the prover while the other
device (3) takes the role of the verifier. The verifier continuously measures the
distance between the prover and itself and outputs the result to the connected
laptop (4). The laptop was configured to continuously log the distance measure-
ments. We used Atmel’s default setup for configuring the ranging parameters2

and list them in Table 1.
1 Due to the settling time of PLLs.
2 For the 50 m attack the transmit power of the Atmel devices was increased to
−10 dBm.

500 H. Ólafsdóttir et al.

Fig. 6. (a) Two Atmel AT86RF233 multicarrier phase ranging devices that function
as the prover (1) and verifier (3), a laptop (4) that records the estimated distances and
the attacker’s hardware (2) comprising of a USRP [2] and two directional antennas.
(b) Hallway in which the experiment took place.

Attacker Hardware. The attacker’s hardware (2) consists of an USRP [2] and two
directional antennas, one used for receiving the prover’s response signal and the
other for transmitting the attacker’s signal to the verifier. The attacker setup was
placed close to the verifier while the prover was placed at different distances to
the verifier. We implemented the phase-slope rollover attack described in Sect. 3.2
in which the attacker delays all the carrier frequencies until the effective phase
difference between the frequencies exceed the maximum value of 2π and rolls
over. The verifier’s interrogating signal was left unmodified and the attacker
manipulated (delayed and amplified) only the prover’s response signal. In order
to minimize the processing delay due to the attacker’s hardware, all processing
was done directly on the USRP’s FPGA, that included receiving, delaying and
transmitting the signal. In other words, the host computer of the USRP was
bypassed completely and the signal processing was done solely in the FPGA
of the USRP. The delay from receiving to transmitting, caused by the USRP
hardware, was 536.22 ns with a standard deviation of 1.83 ns. The USRP’s host
computer was only used to trigger the relay attack and for specifying the amount
of delay to introduce into the prover’s response signal. The delay was made
configurable from the host and tuned at runtime to achieve the desired attack
objective.

Experimental Results. We placed the prover at distances 30m, 40m and 50m
away from the verifier in an empty hallway. The prover and verifier were in
communication range during the experiment and thus were able to estimate
their true distance in the absence of the attacker. The results of our experiment
are shown in Fig. 7. As can be observed, without the presence of the attacker
(solid line), the verifier and the prover estimate their true distance. When the
attack is triggered, the verifier’s estimated distance begins to reduce. The gradual
reduction is due to the verifier averaging the range estimates over a number of
samples. We note that the experiment was carried out in a corridor (see Fig. 6b)

On the Security of Carrier Phase-Based Ranging 501

Fig. 7. Effectiveness of the distance decreasing relay attack where the prover and ver-
ifier are located 30, 40 and 50 m apart and the attacker attempts to decrease the
distance.

with significant interference from other ISM band systems (e.g., WiFi). Even in
such conditions, our attacker was able to reduce the distance estimate by more
than 50m.

Rollover Using Only Amplification. If two phase-ranging devices are further
away from each other than the maximum unambiguous distance that they can
measure an attacker can cause a roll-over by simply amplifying their signals.
We simulated such and attack on the Atmel AT86RF233 radio transceivers. We
placed the devices at roughly 53m apart. When the devices were configured
to use a frequency hop size of 2MHz they correctly estimated their position.
However, when configured to use a hop size of 4MHz they incorrectly measured
a distance of 15–16 m, which is consistent with the rollover being 37.5m. Such
an attack is simple to implement but of course the attacker can only reduce
the distance rather than spoof the devices to a particular distance since the
measured distance will be determined by the devices actual distance.

4.2 Theoretical Evaluation

In this section, we evaluate the effectiveness of the distance decreasing relay
attack under various channel conditions using simulations.

Simulation Setup. For the simulations, we implemented the verifier, the prover
and the attacker in Matlab. The multicarrier phase-ranging system was modelled
exactly as described in Sect. 2.2. Similar to real-world phase ranging systems, the
verifier uses multiple carrier frequencies in the ISM band as the interrogating
signal. The range of frequencies used were 2.40–2.48 GHz with a configurable
frequency hop of 1MHz or 2MHz. The phase of the verifier’s interrogating sig-
nal is selected randomly for each frequency hop to simulate real-world behaviour.
The prover measures the phase of the verifier’s signal as in a real system and
generates its response signal that is phase synced to the verifier’s interrogating

502 H. Ólafsdóttir et al.

θ

AWGN

dva dap

V P

AWGN
Δt

(a) Phase-slope rollover and RF cycle
slip

θ

AWGN

dva dap

V P

θ

AWGN

(b) On-the-fly attack

Fig. 8. Simulation Setup: dva and dap are the verifier-attacker distance and attacker-
prover distance respectively. For the Phase-slope rollover attack (a) all frequencies are
delayed equally but for the RF cycle slip attack each carrier frequency is uniquely
delayed. In the on-the-fly attack (b), the attacker estimates the phase of the verifier’s
signal and uses it and knowledge of the distance to the prover to estimate the phase
of the prover’s signal when it arrives at the attacker. The attacker then mixes and
low-pass filters the prover’s signal to achieve the desired phase shift.

signal. For evaluating the effectiveness of the attack under noisy channel condi-
tions, white Gaussian noise is added to both the verifier’s and the prover’s signal.
The distances between the verifier, prover and the attacker were simulated by
introducing propagation delays in the signal. For example, in order to simulate
a verifier-prover distance of 30m, the signals were temporally shifted by 100 ns
before they were processed by the verifier or the prover.

The attacker was modelled depending on the type of attack evaluated. In the
scenario of the phase-slope rollover and the RF cycle slip attack (Fig. 8a), the
attacker only received and delayed the response signal from the prover appropri-
ately before relaying it to the verifier. In the case of on-the-fly phase manipulation
attack (Fig. 8b), the attacker estimates the phase of the verifier’s signal to be
able to estimate the phase of the prover’s signal when it reaches the attacker.
The attacker then mixes the received response signal with his locally generated
signal as described in Sect. 3.4 to generate a attack signal that is appropriately
shifted in phase in order to reduce the distance estimate while preserving the
carrier frequency. The attack signal is low-pass filtered and relayed to the verifier.

Effect of Channel Noise. We evaluated the effectiveness of the various distance
decreasing attacks described in Sect. 3 under different noise conditions. The eval-
uations were averaged over 100 different iterations for each SNR value in the set
[0–30] dB. We compared the error in the estimated distance in an adversarial
and non-adversarial scenario. The non-adversarial setting was simulated with
the prover located 1m away from the verifier without any attacker present. In
the adversarial scenario, an attacker located 1m away from the verifier relayed
the signals between the verifier and the prover. The verifier and the prover were
assumed to be out of communication range. Additive white Gaussian noise was

On the Security of Carrier Phase-Based Ranging 503

0 5 10 15 20 25 30

SNR [dB]

0

10

20

30

40

D
is

ta
nc

e
E

rr
or

 [
m

] Non-spoofed 1 MHz

Spoofed 1 MHz

Non-spoofed 2 MHz

Spoofed 2 MHz

(a) RF cycle slip attack

0 5 10 15 20 25 30

SNR [dB]

0

10

20

30

40

50

D
is

ta
nc

e
E

rr
or

 [
m

] Non-spoofed 1 MHz

Spoofed 1 MHz

Non-spoofed 2 MHz

Spoofed 2 MHz

(b) On-the-fly attack

Fig. 9. Distance measurement errors in a non-adversarial and during an attack. In
the adversarial setting the prover and verifier are not in communications range. The
non-adversarial measurements are when prover is located 1m away from the verifier.
During an RF cycle slip attack (a), the prover is located 30 m away from the verifier
and during the OTF attack (b), the prover is located 74 m away from the verifier. The
attacker tries to reduce this distance to 1 m in both the scenarios.

added to both the verifier’s interrogating signal and the prover’s response signal.
Figure 9a and b shows the results for the RF cycle slip attacker and On-the-fly
phase manipulation attacker respectively. We simulated the attacks for the com-
monly used frequency hop size of 1MHz and 2MHz. As seen in Fig. 9a for the
RF cycle slip attack, there is little difference in the distance error between the
adversarial and non-adversarial setting. However, the on-the-fly phase manipu-
lation attacker performs slightly worse than the non-adversarial setting. This is
because the attacker must estimate the verifier’s phase under noisy conditions
and any error in this estimation results in an incorrect phase shift.

Effect of Interference from the Prover. In certain scenarios, it is common that the
verifier and the prover are in communication range and the verifier also receives
the legitimate response signals in addition to the attacker’s signals. In this set
of experiments, we evaluated the effect of interference caused by the legitimate
prover signals on the ability of the attacker to reduce the estimated distance. The
amplitude and phase of the received signal at the verifier will depend on both
the amplitude and phase of the attacker and the prover signals. For example,
if the prover’s signal is weaker than the attacker’s, the effect on the estimated
distance due to the legitimate prover’s signal will be minimal. Figure 10 shows
the deviation in the distance calculated by the verifier for different verifier-prover
distances. In our simulations, the attacker was located 1m away from the verifier
and the prover’s distance from the verifier was varied. The attacker’s objective
was always to force the estimated distance to be 1m. It can be seen that the
effect is negligible even if the prover is located at a distance of 10m from the
verifier.

Random Phase Manipulation Attack. An attacker can simply introduce a ran-
dom phase change to the prover’s signal, by either randomly delaying the phase
of individual carrier frequencies or introducing a random phase change in the

504 H. Ólafsdóttir et al.

0 10 20 30 40 50 60 70
Prover Distance[m]

0

0.02

0.04

0.06

0.08

0.1

|D
is

ta
nc

e
Er

ro
r|

[m
]

Fig. 10. The effect on measured distance when the verifier and prover are in com-
munications range and the attacker does not correct for the effect from the prover’s
signal. The attacker is located 1 m away from the verifier and tries to decrease all true
prover-verifier distances to 1 m.

on-the-fly attack. A naive phase-ranging system might simply try to linearly fit a
slope to the measured phase which will result in an incorrect distance. Depending
on the true distance of the prover and verifier, the attacker might thus achieve
a distance reduction by simply randomly manipulating the phase. However, a
verifier should be able to detect that the received phase is abnormal and thus
surmise that any distance calculated from it would be incorrect.

5 Effectiveness of Countermeasures

In this section, we discuss possible countermeasures and their effectiveness in
preventing the distance decrease attacks described previously.

5.1 Frequency Hopping

In order to execute the distance decreasing attack, the attacker must know the
correct carrier frequency or be capable of re-transmitting the entire set of fre-
quencies used for ranging. So, an obvious countermeasure would be to imple-
ment pseudo-random frequency hopping. In other words, the verifier and the
prover change carrier frequencies based on a shared secret during the ranging
process. However, it would be ineffective against attackers capable of listening
and transmitting over the entire range of frequencies used by the system. With
the widespread availability of low-cost, high-bandwidth amplifiers [11], it is rea-
sonable to assume that the attacker would be capable of executing these attacks
over the entire range of frequencies used by the multicarrier phase ranging sys-
tem. Moreover, the attacker can listen to the verifier’s interrogating signal that
is necessary for the prover to lock and retransmit its response, thereby easily
detecting the next frequency used by the verifier and prover to execute the rang-
ing. Thus, a large bandwidth or a pseudo-random frequency hop sequence would
be ineffective in preventing distance decreasing attacks.

On the Security of Carrier Phase-Based Ranging 505

5.2 Rough Time-of-Flight Estimation

An alternative countermeasure would be to realize a rough time-of-flight esti-
mation. The verifier and the prover can implement a challenge-response mech-
anism i.e., the verifier modulates challenges in the interrogating signal that is
transmitted to the prover. The prover demodulates the challenge, computes a
corresponding response and modulates them back on the phase-locked response
signal that the prover transmits back to the verifier. Assuming that the sig-
nals travel at the speed of light and knowing the prover’s processing time, the
verifier can estimate a coarse distance by measuring the time elapsed between
transmitting the challenges and receiving the responses. It is well established
that the precision of the time estimate depends on the system bandwidth [8].
Commercially available phase-ranging radio transceivers today are capable of
exchanging data at a maximum rate of 2Mbps. Assuming that the transceivers
can estimate time-of-flight at this data rate, the maximum achievable precision
is 500 ns, which translates to a distance estimate of 150m. This means that, the
system would potentially detect attacks in scenarios where the prover is greater
than 150m away from the verifier.

It is important to note that the time-of-flight estimate would only guarantee
whether the prover is within, for example 150m. This still leaves a lot of room
for an attacker to execute a distance decreasing attack as phase-ranging would
still be required in addition to rough time-of-flight for precise distance estimates.
For example, the attacker can still reduce the estimated distance to 1m even in
scenarios where the prover is located 100m away from the verifier. In order to
improve the precision of the time-of-flight estimate, it is necessary to increase the
system bandwidth. Given that one of the main advantages of multicarrier phase
ranging is its low-complexity and cost, increasing the bandwidth for better time-
of-flight estimate will potentially make the phase-ranging system redundant.

5.3 Phase-Shifted Response Signal

Even though implementing a time-of-flight estimation prevents rollover attacks,
it is ineffective against an attacker capable of on-the-fly phase manipulation. As

θ θi

θ θi+1

t

V P

Fig. 11. The prover adds a phase offset to the received phase, which is known to the
verifier.

506 H. Ólafsdóttir et al.

described previously, in an on-the-fly phase manipulation attack, the attacker
does not reduce the estimated distance by delaying the signals. The attacker
mixes a locally generated intermediate frequency signal with the response sig-
nal in real-time to generate the attack signal (Fig. 11). In order to generate the
intermediate frequency signal, the attacker must know the phase of the incoming
response signal. The attacker can estimate the phase of the incoming response
signal based on the prover’s distance. The prover can potentially leverage this
requirement for the attacker and introduce additional phase-shifts in its response
signals. The phase-shifts introduced by the prover can be agreed apriori with the
verifier and can be accounted for during the distance estimation. The attacker
cannot guess the phase-shift that the prover introduces and thereby cannot gen-
erate a corresponding mixing signal to execute the distance reduction attack and
thereby will result in large fluctuations in the measured phase difference across
the carrier frequencies. Recall that, in an non-adversarial setting, the phase dif-
ference between the carrier frequencies would vary linearly.

However, an attacker can always detect the phase of the response signal and
accordingly generate the mixing signal. Due to the required precision of the phase
estimates, the verifier and the prover transmit their interrogating and response
signals for a long duration of time 60–100µs, in order to allow the phase-locked
loop to converge to a precise value. This gives significant time for the attacker
to detect the phase of the response signal and generate the necessary mixing
signal for the distance decreasing attack. Furthermore, it is important to note
that, this technique does not prevent the rollover attacks and hence has to be
combined with rough time-of-flight estimation technique. This further increases
the complexity of the system, thereby making other ranging techniques such as
UWB-IR better suited for security critical applications.

6 Related Work

In this section, we discuss relevant related work in physical-layer security of
wireless ranging systems beginning with the works closest to ours. Physical-layer
attacks exploits the physical properties of the radio communication system and
are therefore independent of any higher layer cryptographic protocols imple-
mented. Several attacks ranging from simply relaying the signal between two
legitimate nodes to injecting messages at the physical layer were demonstrated in
the past. Clulow et al. [10] introduced physical-layer attacks such as early detect
and late commit attacks. In an early detect attack, the attacker predicts the data
bit before receiving the entire symbol while in a late commit attack, the attacker
leverages the ability of the receiver to decode the bit even though the entire
symbol has not been correctly received. The feasibility of these attacks on a ISO
14443 RFID was demonstrated in [19]. For short and medium-distance precision
ranging and localisation, ultra-wide band (UWB) and chirp spread spectrum
(CSS) emerged as the most prominent techniques [36] and were standardized
in IEEE 802.15.4a [22] and ISO/IEC 24730-5 [3]. Flury et al. [14] evaluated
the security of impulse radio ultra wide-band PHY layer. The authors demon-
strated an effective distance decrease of 140 m for the mandatory modes of the

On the Security of Carrier Phase-Based Ranging 507

standard. Poturalski et al. [27,28] introduced the Cicada attack on the impulse
radio ultra wide-band PHY. In this attack, a malicious transmitter continuously
transmits a “1” impulse with power greater than that of an honest transmit-
ter. This degrades the performance of energy detection based receivers resulting
in distance reduction and possibly denial of service. Ranganathan et al. [30]
investigated the security of CSS-based ranging systems and demonstrated that
an attacker would be able to effectively reduce the distance estimated by more
than 600 m.

To the best of our knowledge, the security of phase ranging systems have
not been evaluated in literature. However, there have been several works [13,24,
32,37,45] that evaluated novel high precision distance measurement techniques
using carrier phase of a signal.

7 Conclusion

In this work, we investigated the security of multicarrier phase-based ranging
systems and demonstrated its vulnerability to distance decreasing relay attacks.
We demonstrated both through simulations and real world experiments that
phase-based ranging is vulnerable to a variety of distance reduction attacks.
We showed that an attacker can reduce the distance measured by a multicar-
rier phase-based ranging system to any arbitrary value and thus compromise its
security. Specifically, we successfully reduced the estimated range to less than
3m even though the devices were more than 50 m apart. We discussed possible
countermeasures that can make it more costly and difficult for an attacker. How-
ever, these countermeasures increase the system complexity, do not fully secure
against distance decreasing attacks and can be easily circumvented by strong
attackers.

References

1. Rf ranging. http://www.rfranging.com/. Accessed 9 Apr 2016
2. Usrp n210. https://www.ettus.com/. Accessed 9 Apr 2016
3. ISO/IEC 14443: Identification cards - Contactless integrated circuit cards - Prox-

imity cards - Part 2: Radio frequency power and signal interface (2010)
4. Abrudan, T.E., Haghparast, A., Koivunen, V.: Time synchronization and ranging

in OFDM systems using time-reversal. IEEE Trans. Instrum. Meas. 62, 3276–3290
(2013)

5. Alliance, Z.: Zigbee specification. ZigBee document 053474r13 (2006). http://www.
zigbee.org

6. Atmel: Atmel avr2152: Rtb evaluation application software user’s guide (2013)
7. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and

tracking system (2000)
8. Bensky, A.: Wireless Positioning Technologies and Applications. Artech House,

Norwood (2007)
9. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-

CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). doi:10.
1007/3-540-48285-7 30

http://www.rfranging.com/
https://www.ettus.com/
http://www.zigbee.org
http://www.zigbee.org
http://dx.doi.org/10.1007/3-540-48285-7_30
http://dx.doi.org/10.1007/3-540-48285-7_30

508 H. Ólafsdóttir et al.

10. Clulow, J., Hancke, G.P., Kuhn, M.G., Moore, T.: So near and yet so far: distance-
bounding attacks in wireless networks. In: Buttyán, L., Gligor, V.D., Westhoff, D.
(eds.) ESAS 2006. LNCS, vol. 4357, pp. 83–97. Springer, Heidelberg (2006). doi:10.
1007/11964254 9

11. Datasheets, M.P.A.: Minicircuits products
12. Exel, R.: Carrier-based ranging in ieee 802.11 wireless local area networks. In:

2013 IEEE Wireless Communications and Networking Conference (WCNC). IEEE
(2013)

13. Farnsworth, B.D., Taylor, D.W.: High precision narrow-band RF ranging. In: Pro-
ceedings of the 2010 International Technical Meeting of The Institute of Navigation
(2001)

14. Flury, M., Poturalski, M., Papadimitratos, P., Hubaux, J.P., Boudec, J.Y.L.: Effec-
tiveness of distance-decreasing attacks against impulse radio ranging (2010)

15. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and
start systems in modern cars (2011)

16. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer
relay attack using mobile phones. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS,
vol. 6370, pp. 35–49. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16822-2 4

17. Gupta, S.K.S., Mukherjee, T., Venkatasubramanian, K., Taylor, T.B.: Proximity
based access control in smart-emergency departments (2006)

18. Halperin, D., Hu, W., Sheth, A., Wetherall, D.: Tool release: gathering 802.11 n
traces with channel state information. ACM SIGCOMM Comput. Commun. Rev.
41, 53 (2011)

19. Hancke, G.P., Kuhn, M.G.: Attacks on time-of-flight distance bounding channels
(2008)

20. Hazas, M., Scott, J., Krumm, J.: Location-aware computing comes of age (2004)
21. Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet, vol. 43.

Wiley, New York (2011)
22. The Institute of Electrical and Electronic Engineers: IEEE 802.15.4a-2007 Wireless

Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-
Rate Wireless Personal Area Networks (WPANs) (2007)

23. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning
techniques and systems (2007)

24. Miesen, R., Kirsch, F., Groeschel, P., Vossiek, M.: Phase based multi carrier ranging
for UHF RFID. In: 2012 IEEE International Conference on Wireless Information
Technology and Systems (ICWITS) (2012)

25. Miesen, R., Parr, A., Schleu, J., Vossiek, M.: 360 degree carrier phase measurement
for UHF RFID local positioning. In: 2013 IEEE International Conference on RFID-
Technologies and Applications (RFID-TA). IEEE (2013)

26. Moon, Y., Choi, J., Lee, K., Jeong, D.K., Kim, M.K.: An all-analog multiphase
delay-locked loop using a replica delay line for wide-range operation and low-jitter
performance. IEEE J. Solid-State Circuits 35, 377–384 (2000)

27. Poturalski, M., Flury, M., Papadimitratos, P., Hubaux, J.P., Boudec, J.Y.L.: The
cicada attack: degradation and denial of service in IR ranging (2010)

28. Poturalski, M., Flury, M., Papadimitratos, P., Hubaux, J.P., Boudec, J.Y.L.: Dis-
tance Bounding with IEEE 802.15.4a: Attacks and Countermeasures (2011)

29. Ranganathan, A., Danev, B., Capkun, S.: Proximity verification for contactless
access control and authentication systems. In: Proceedings of the 31st Annual
Computer Security Applications Conference. ACM (2015)

http://dx.doi.org/10.1007/11964254_9
http://dx.doi.org/10.1007/11964254_9
http://dx.doi.org/10.1007/978-3-642-16822-2_4

On the Security of Carrier Phase-Based Ranging 509

30. Ranganathan, A., Danev, B., Francillon, A., Capkun, S.: Physical-layer attacks
on chirp-based ranging systems. In: Proceedings of the Fifth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WISEC 2012 (2012)

31. Ranganathan, A., Tippenhauer, N.O., Škorić, B., Singelée, D., Čapkun, S.: Design
and implementation of a terrorist fraud resilient distance bounding system. In:
Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
415–432. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33167-1 24

32. Rapinski, J., Smieja, M.: Zigbee ranging using phase shift measurements. J. Navig.
68, 665–677 (2015)

33. Rasmussen, K.B., Capkun, S.: Realization of RF distance bounding. In: USENIX
Security Symposium (2010)

34. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Capkun, S.: Proximity-
based access control for implantable medical devices (2009)

35. Roland, M.: Applying recent secure element relay attack scenarios to the real world:
Google wallet relay attack. Computing Research Repository (2012)

36. Sahinoglu, Z., Gezici, S.: Ranging in the IEEE 802.15.4a Standard (2006)
37. Salido-Monzú, D., Martin-Gorostiza, E., Lazaro-Galilea, J., Domingo-Perez, F.,

Wieser, A.: Multipath mitigation for a phase-based infrared ranging system applied
to indoor positioning. In: 2013 International Conference on Indoor Positioning and
Indoor Navigation (IPIN). IEEE (2013)

38. Schiller, J., Voisard, A.: Location-Based Services. Elsevier, San Francisco (2004)
39. Sedighpour, S., Capkun, S., Ganeriwal, S., Srivastava, M.B.: Distance enlargement

and reduction attacks on ultrasound ranging (2005)
40. Springer, A., Gugler, W., Huemer, M., Koller, R., Weigel, R.: A wireless spread-

spectrum communication system using saw chirped delay lines (2001)
41. Vasisht, D., Kumar, S., Katabi, D.: Decimeter-level localization with a single WiFi

access point. In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16) (2016)

42. Xiang, Z., Song, S., Chen, J., Wang, H., Huang, J., Gao, X.: A wireless LAN-based
indoor positioning technology. IBM J. Res. Dev. 48, 617–626 (2004)

43. Xiong, J., Sundaresan, K., Jamieson, K.: Tonetrack: leveraging frequency-agile
radios for time-based indoor wireless localization. In: Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking. ACM
(2015)

44. Technologies, Z.: Sapphire Dart Ultra-Wideband (UWB) Real Time Locating Sys-
tem (2010)

45. Zhang, Y., Qi, W., Zhang, S.: The unambiguous distance in a phase-based ranging
system with hopping frequencies. arXiv preprint arXiv:1403.1923 (2014)

http://dx.doi.org/10.1007/978-3-642-33167-1_24
http://arxiv.org/abs/1403.1923

Side Channel Analysis II

Single-Trace Side-Channel Attacks on Masked
Lattice-Based Encryption

Robert Primas(B), Peter Pessl, and Stefan Mangard

IAIK, Graz University of Technology, Graz, Austria
rprimas@gmail.com, {peter.pessl,stefan.mangard}@iaik.tugraz.at

Abstract. Although lattice-based cryptography has proven to be a par-
ticularly efficient approach to post-quantum cryptography, its security
against side-channel attacks is still a very open topic. There already
exist some first works that use masking to achieve DPA security. How-
ever, for public-key primitives SPA attacks that use just a single trace are
also highly relevant. For lattice-based cryptography this implementation-
security aspect is still unexplored.

In this work, we present the first single-trace attack on lattice-based
encryption. As only a single side-channel observation is needed for full key
recovery, it can also be used to attack masked implementations. We use
leakage coming from the Number Theoretic Transform, which is at the
heart of almost all efficient lattice-based implementations. This means
that our attack can be adapted to a large range of other lattice-based
constructions and their respective implementations.

Our attack consists of 3 main steps. First, we perform a template
matching on all modular operations in the decryption process. Second,
we efficiently combine all this side-channel information using belief prop-
agation. And third, we perform a lattice-decoding to recover the private
key. We show that the attack allows full key recovery not only in a generic
noisy Hamming-weight setting, but also based on real traces measured
on an ARM Cortex-M4F microcontroller.

Keywords: Lattice-based cryptography · Side-channel analysis · Single-
trace attack · Number theoretic transform

1 Introduction

The current public-key infrastructure is threatened by progress towards large-
scale quantum computing. Constructions based on RSA, DLP, or ECC, will
succumb to Shor’s algorithm [32], which is able to defeat these systems in poly-
nomial time. While estimates on the availability of powerful enough quantum
computers vary greatly–they range from 15 years [18] to never [31]–the threat
is still taken very seriously. This is demonstrated by, e.g., NIST’s current call
for post-quantum secure proposals [19] and official recommendations regarding
post-quantum security from the NSA [20].

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 513–533, 2017.
DOI: 10.1007/978-3-319-66787-4 25

514 R. Primas et al.

When it comes to possible post-quantum secure algorithms, lattice-based
cryptography appears to be a promising option and has garnered a lot of atten-
tion over the past decade. It proved to be versatile and efficient, as there already
exist practical lattice-based constructions offering basic services such as public-
key encryption, digital signatures, and key exchange. Furthermore, lattices also
serve as the basis for new primitives such as homomorphic encryption.

A very popular building block for lattice-based constructions is the ring-
variant of the Learning with Errors problem, RLWE [16]. Recent implementa-
tions of RLWE-based public-key encryption, e.g., [7,24,29], have shown that its
performance can compete with (or even exceed) that of RSA and ECC-based
systems on a large set of platforms.

While these results demonstrate practicality, the implementation-security
aspect of lattice-based cryptography is still a vastly unexplored and open topic.
Just like any other cryptographic algorithm, an unprotected implementation of
RLWE-based encryption will succumb to side-channel attacks such as Kocher’s
Differential Power Analysis (DPA) [14]. Due to the large number of linear opera-
tions in the en- and decryption process, masking [5] appears to be a natural fit for
protecting lattice-based cryptosystems against DPA. In fact, there already exist
masked implementations of lattice-based encryption [21,26–28]. They also show
that this countermeasure can be implemented with (relatively) little resource
overhead.

However, especially for public-key primitives the Simple Power Analysis
(SPA) security aspect is also of high importance. This is demonstrated by, e.g.,
the large number of single-trace attacks targeting implementations of RSA and
ECC. Yet, for lattice-based cryptography this aspect has never been analyzed
thus far. As implementation techniques for RLWE-based schemes differ drasti-
cally from those of established public-key constructions, there are new potential
venues for such single-trace attacks.

Our Contribution. In this work, we are first to show that single-trace attacks
are indeed a threat to implementations of lattice-based cryptography. We present
a new side-channel attack on lattice-based encryption that can, given sufficient
leakage, recover the private key using just the side-channel observation of a single
decryption. Hence, it can also be applied to masked implementations to recover
each individual share, recombine them, and still perform full decryption-key
recovery.

Our attack targets the computation of the Number Theoretic Transform
(NTT), which is an essential building block for almost all efficient implementa-
tions of lattice-based cryptography. Thus, the attack can be ported to not only
different implementations of encryption, but also to implementations of other
lattice-based constructions. Furthermore, the NTT is not the first target for a
DPA attack and was thus less protected in earlier works [21].

Our attack is comprised of 3 main steps. First, we perform a side-channel
template matching [6] on each modular operation performed during the inverse
NTT in the decryption process. In the second step, we combine the information

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 515

(probabilities of intermediates) of every operation in the entire NTT. We do so
by representing the FFT-like structure of the NTT as a graph and then applying
the belief propagation algorithm (BP). While the use of BP in context of side-
channel attacks is not new [12,13,36], it hasn’t been used in the context of
public-key encryption yet. In our setting, a simple implementation of BP would
require an impractical amount of time. Thus, we designed several optimizations
that are targeted specifically at the NTT analysis. In our third and final step,
we combine the knowledge of some secret intermediate values with the public
key in order to reveal the private key. Concretely, we recover the full decryption
key by first reducing the size of the public key and then performing a lattice
decoding.

We evaluate our single-trace key-recovery attack in two different settings.
First, we determine the success rate in a generic Hamming-weight leakage model.
There, our attack has a high success rate, i.e., > 0.9, with noise parameters of
up to σl = 0.4. Second, to verify our findings in practice we use real traces from
EM measurements of an ARM Cortex-M4F software implementation. In this
latter scenario, we were always able to recover the decryption key. Finally, we
also show that our attack performs similarly well even if masking is used.

Outline. In Sect. 2, we recall lattice-based encryption, efficient implementa-
tions, as well as proposed side-channel protection mechanisms. Then, in Sect. 3
we recall soft-analytical side-channel attacks and belief propagation as its
main tool. The three steps of the attack are then described in the following
sections. The first step, a side-channel analysis of the NTT, is given in Sect. 4.
Then, in Sect. 5 we efficiently combine all information using belief propagation.
The third and final step, i.e., lattice decoding, is given in Sect. 6. We present and
discuss the outcome and performance of our attack in Sect. 7.

2 Lattice-Based Encryption and Implementation

In this section, we recall lattice-based encryption, efficient implementation tech-
niques, and previous works on side-channel countermeasures.

2.1 Lattice-Based Public-Key Encryption

In this work, we use the RLWE-based public-key encryption scheme proposed
by Lyubashevsky, Peikert, and Regev [16]. It operates with polynomials over the
ring Rq = Zq[x]/〈xn + 1〉 and is parameterized by the tuple (n, q, σ). n denotes
the dimension of the polynomials, q is the modulus for the base field Zq, and σ is
the standard deviation for a discrete Gaussian distribution Dσ. We use boldface
lowercase letters to interchangeably denote polynomials in Rq as well as their
respective coefficient vectors. We now recall the basic encryption scheme.

Key generation. For key-pair generation, two polynomials r1 and r2 are sam-
pled from the discrete Gaussian distribution Dσ. Next, the public key p is

516 R. Primas et al.

computed as p = r1 − ar2. The uniformly-random polynomial a is either a
global domain parameter or is also included in the public key. r2 is the private
key, r1 is simply discarded.

Encryption. First, the plaintext m is encoded as m ∈ Rq. In a simple variant of
encoding, the bits of m are simply multiplied by q/2. Then, three error poly-
nomials e1, e2, e3 ∈ Dσ are sampled. The ciphertext is a pair of polynomials
(c1, c2) with c1 = ae1 + e2 and c2 = pe1 + e3 + m.

Decryption. The private key r2 is used to compute m� = c1r2 + c2. The
original message m is then retrieved by feeding m� to a decoder. There, one
computes the distance of each coefficient in m� to q/2. If this distance is
< q/4, then the decoder outputs 1, otherwise 0.

The above scheme only offers CPA security [8]. Recently, Oder et al. [21] pre-
sented an extension that also offers protection against adaptive chosen-ciphertext
attacks (CCA2). However, the core encryption and decryption algorithms are
identical, which is why we do not further discuss their CCA2 transformation
here.

2.2 Efficient Implementation

There already exists a somewhat large body of work targeting efficient implemen-
tation of the above encryption scheme. They range from FPGAs to low-resource
microcontrollers and desktop CPUs (e.g., [7,11,15,23,24,29]).

In our work we use the parameter set (n = 256, q = 7681, σ = 4.51), which
was introduced by Göttert et al. [11] and is used by all of the above implementa-
tions. The concrete security level provided by this instance is still under debate
and estimates vary (see, e.g., [2,10,21]). However, all our later analysis can be
extended to other parameters.

Number Theoretic Transform (NTT). If q is prime, n a power of two, and
q ≡ 1 mod 2n (which is the case for virtually all previously proposed parameter
sets), then there exist primitive n-th roots of unity ωn in Zq. This fact allows
to efficiently compute polynomial multiplication in Rq by means of the Number
Theoretic Transform (NTT).

The NTT is essentially a Discrete Fourier Transform (DFT) in a prime field
Zq instead of over the complex numbers C. Thus, this transformation is efficiently
computed using the same optimizations found in, e.g., the Cooley-Tukey FFT,
and runs in time O(n log n). The basic building block is a butterfly, which is
comprised of a modular multiplication with a certain power of the chosen primi-
tive root, a modular addition, and a modular subtraction. A total of n log2(n)/2
butterflies are computed during the NTT, as shown in Fig. 1 with the example of
a 4-coefficient NTT. The required powers of the primitive root, i.e., ω0

n . . . ω
n/2
n ,

are typically called twiddle factors. The inverse transformation (INTT) is com-
puted by simply invoking the NTT with ω−1

n mod q. We denote ã as the NTT
transformed of a.

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 517

Fig. 1. A 4-coefficient NTT network comprised of 4 butterflies.

Multiplication of two polynomials a, b can now be implemented as c =
INTT(NTT(a)∗NTT(b)), where ∗ denotes a point-wise multiplication1. Thus, a
product can be computed in time complexity O(n log n) (compared to O(n2) for
non-ring-based LWE constructions). This is one of the main arguments behind
the choice of the particular ring2 Rq = Zq[x]/〈xn + 1〉.

As proposed by Roy et al. [29], the encryption scheme described in Sect. 2.1
can be optimized by keeping the ciphertext in the NTT domain, i.e., transmitting
(c̃1, c̃2). This requires that the same primitive root ωn is used for both encryption
and decryption. Thus, it must be agreed upon and is public.

2.3 Side-Channel Protection of RLWE Encryption

Implementation security of lattice-based primitives is still a very new and open
topic. Yet, there already exists some previous work that studies potential pro-
tection mechanisms. We now discuss these proposals.

Masking. Due to the linearity of the main operations, i.e., polynomial addition
and multiplication, the masking countermeasure [5] is a natural fit for lattice-
based public-key encryption. As proposed by Reparaz et al. [27,28] and shown in
Fig. 2, the private key r2 can be split into two shares r′

2, r
′′
2 such that r2 = r′

2 + r′′
2

mod q. Then, polynomial multiplications, additions, and the inverse NTT can
be computed on each share individually.

The final decoding step, i.e., recovering m from m�, is nonlinear and requires
more care. Reparaz et al. designed a masked decoder which outputs two binary
shares of the message, i.e., m = m′ ⊕ m′′, which can then be used as a shared
key in a protected implementation of, e.g., the AES.

1 This explanation is slightly simplified and omits, e.g., the scaling required for the
negative-wrapped convolution. For a more thorough explanation, we refer to [29].

2 There do exist proposals that are consciously avoiding the ring Rq and thus cannot
use the NTT [3,4]. Still, NTT-enabled variants are the large majority.

518 R. Primas et al.

Fig. 2. Basic masking scheme for decryption

Shuffling and Blinding. In addition to masking, Oder et al. [21] propose to
use further countermeasures. First, they suggest to use shuffling to protect the
point-wise operations, i.e., point-wise addition and multiplication. They state
that these operations are the most likely target for a DPA attack. Hence, the
NTT is still computed in an unshuffled manner.

And second, they also use a randomization technique previously proposed
by Saarinen [30]. They pick random values a, b ∈ [1, q − 1] and then multiply
the coefficients a · c̃1, b · r̃2 and ab · c̃2 mod q. Due to the linearity of the
NTT, the mask can be removed by multiplying the output of the INTT with
(ab)−1 mod q.

Additively Homomorphic Masking. In a later work, Reparaz et al. [26]
present a different masking approach which exploits the additively homomorphic
property of LWE. This, however, has some caveats. First, Reparaz et al. do
not claim theoretical first-order security. And second, decoding errors are more
likely. This makes their method incompatible with the CCA2-transformation
presented by Oder et al. [21]. Due to these reasons, we do not further analyze
the susceptibility of this approach to our attack.

3 Soft-Analytical Side-Channel Attacks

In this section, we describe Soft-Analytical Side-Channel Attacks (SASCA),
which were proposed by Veyrat-Charvillon et al. [36] and are one of our main
attack tools. The main goal of SASCA is to bridge the gap between divide-and-
conquer approaches such as Kocher’s Differential Power Analysis (DPA) [14] and
algebraic/analytical side-channel attacks [25]. DPA offers low time and memory
complexity as well as high noise tolerance, but is suboptimal in terms of data
complexity (number of observed traces). Algebraic attacks are better in this sec-
ond regard, but are very sensitive to errors and often require exact information.

Veyrat-Charvillon et al. first perform a side-channel template matching [6]
on all intermediates computed during an AES encryption. For each intermediate
T , the template matching returns a vector of conditional probabilities Pr(T =
t|�), where � denotes the observed side-channel leakage and t runs through all
realizations of the random variable T . Then, they construct a factor graph of

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 519

the AES and its specific implementation. This graph models the relationship
between all intermediates. Finally, they use the belief propagation algorithm
(BP) on this graph and the corresponding conditional probabilities to efficiently
combine the information of all leakage points. We now give a brief description
of this BP algorithm.

3.1 Belief Propagation

The belief propagation algorithm, originally proposed by Pearl et al. [22], allows
to efficiently compute the marginalization of a function given its factorization.
Our description and notation is largely based on that of MacKay [17, Chap. 26].
Given a function P ∗ of a set of N variables x ≡ {xn}N

n=1 which is the product
of M factors:

P ∗(x) =
M
∏

m=1

fm(xm),

where each of the factors fm (xm) is a function of a subset xm of x and the
xn are defined over a domain D, the problem of marginalization is defined as
computing the marginal function Zn of any variable xn:

Zn(xn) =
∑

{xn′},n′ �=n

P ∗(x),

or its normalized marginal Pn(xn) = Zn(xn)/Z with the normalization constant
Z =

∑

x

∏M
m=1 fm(x). The computational cost of marginalization is believed to

grow exponentially with the number of variables N . The BP algorithm aims at
reducing it by exploiting the factorization of the given function. BP is based
on the message-passing principle. It requires a representation of the given func-
tion as a bipartite factor graph consisting of variable nodes and factor nodes.
A variable node represents one of the variables xi ∈ x, whereas a factor node
corresponds to one of the factors fm. Edges are drawn between xi and fm iff the
factor fm depends on the variable xi. The number of variables fm depends on
is the factors degree deg(fm). The BP algorithm can be used to determine the
marginal functions by iteratively executing the following two steps:

From variable to factor:

qn→m(xn) =
∏

m′∈M(n)\{m}
rm′→n(xn), (1)

where M(n) denotes the set of factors in which n participates.

From factor to variable:

rm→n(xn) =
∑

xm\n

fm(xm)
∏

n′∈N (m)\m

qn′→m(xn), (2)

520 R. Primas et al.

where N (m) denotes the indices of the variables that the m-th factor depends
on and xm\n denotes the set of variables in xm without xn.

After convergence, the marginal function Zn(xn) can be computed as:

Zn(xn) =
∏

m∈M(n)

rm→n(xn),

and the normalized marginals can be obtained from: Pn(xn) = Zn(xn)/Z, where
the normalizing constant Z is given by: Z =

∑

xn
Zn(xn)

If the factor graph is tree-like (acyclic), then the above algorithm returns the
exact marginals. Unfortunately, in many real life applications the factor graphs
contains cycles. To overcome this problem, the so called loopy BP algorithm has
been proposed. It uses the same update rules and also iterates until convergence
is reached, but uses a slightly different initialization. While it is not guaran-
teed that the loopy BP algorithm will return correct values or even converge, it
usually gives sufficiently precise approximations of the marginals in many real-
world applications. The exact conditions under which the loopy BP algorithm
converges are still unknown. However, some sufficient conditions that ensure BP
convergence have been stated by, e.g., Su et al. [35].

4 Attack Step 1: Side-Channels in an NTT Butterfly

After having covered all required preliminaries, we now start the description of
our attack. As the first step of the attack, we exploit side-channel leakage during
the computation of the inverse NTT in the decryption algorithm. Concretely, we
first perform a profiling and then, for the actual attack, we match the recorded
templates at each modular operation. As outcome, we obtain information in
form of a probability vector for each such operation.

In order to understand how much information a side-channel adversary can
realistically expect in this first step, and to also allow attack evaluation in a real-
istic scenario, we performed a side-channel analysis of the NTT on a real device.
We now discuss our targeted implementation and platform, the measurement
setup, and some results of this analysis. We additionally introduce a generic and
simpler Hamming-weight leakage model, which will later be used in addition to
real traces. First, however, we explain the choice of the NTT as the primary
target for our attack.

4.1 The NTT as Side-Channel Target

The Number Theoretic Transform (NTT) is a main building block of virtually all
efficient instantiations and implementations of lattice-based cryptography. Yet,
thus far it has not been target of any side-channel analysis.

One potential reason is that the point-wise operations, i.e., multiplications
and additions while computing c̃1 ∗ r̃2 + c̃2, are the prime target for DPA attacks

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 521

as they allow easy coefficient-wise prediction of intermediates [21]. However, this
makes it tempting to use less protection in other parts, i.e., the NTT.

Also, the NTT is an interesting target for algebraic side-channel attacks. As
seen in Fig. 1, it is comprised of many potentially leaking modular operations
which are additionally connected by relatively simple algebraic rules. This makes
it possible to combine the information of all leaking computations.

4.2 Measurement Setup and Implementation

We performed side-channel measurements on a Texas Instruments MSP432
(ARM Cortex-M4F) microcontroller on a MSP432P401R LaunchPad develop-
ment board. A Cortex-M4F was also used by many other (protected) implemen-
tations of RLWE encryption [7,21,27].

We exploit the EM side channel. As shown in Fig. 3, we placed a Langer RF-B
3-2 near-field probe in proximity to the external core-voltage regulation circuitry.
This setup does not require any on-chip spatial profiling. Also, we expect similar
outcomes for a power analysis. Our microcontroller was clocked at its maximum
possible frequency of 48 MHz.

Fig. 3. EM probe placed near the voltage-regulation circuitry of an ARM Cortex-M4F

We base our analysis on the implementation techniques used in the open-
sourced Cortex-M4F implementation of de Clercq et al. [7], which is also the
basis of the masked software implementation of Reparaz et al. [27]. They imple-
mented modular multiplication with division, i.e., a mod q = a−q�a/q	, and use
the integrated hardware multiplier and divider. On our platform, the multipli-
cation runs in constant time, but the DIV instruction does not. Reduction after
addition and subtraction is implemented using ARM conditional statements (IT
instruction), which run in constant time.

4.3 Real-Device Side-Channel Analysis

The NTT is comprised of repeated applications of a butterfly. It is a reason-
able assumption that all invocations utilize the same hardware, e.g., on-chip

522 R. Primas et al.

multiplier and divider, which results in loop-invariant leakage. To simplify our
later analysis and attack evaluation, we thus opt for the following approach.
We analyzed the butterfly operations, i.e., modular multiplication and addi-
tion/subtraction, independently. For the analysis, the operands were preloaded
into registers and no leakage of loading and storing in memory was used. We
prerecorded a set number of traces for each possible operand combination. For
attack evaluation, we pick a random key, perform encryption/decryption, and for
each of the n log2(n)/2 = 1024 butterflies invoked during decryption randomly
pick one of the prerecorded traces that corresponds to the processed intermedi-
ate. We now describe our results for each operation in the butterfly.

Modular Addition and Subtraction. de Clercq et al. implement modular
addition and subtraction with conditional ARM statements. While these run in
constant time, they still leak their state through other side-channels. With a
template matching, we were able to correctly classify virtually all, i.e., > 0.99,
of the taken branches. In the following, we simply assume that an attacker can
correctly detect whether a reduction happened or not. Alternatively, one could
also include the probability that a reduction happened in the later analysis.

Modular Multiplication. In a butterfly, one of the inputs is multiplied by
a known twiddle factor ω. There are qn/2 = 983 168 possible operand/twiddle
factor combinations, for each of them we prerecorded 100 traces. Thus, we use
roughly 100 million traces for evaluation. For the attack, for each multiplication
we randomly pick one out of the 100 traces corresponding to the processed value.

In the analysis, we use two steps to recover information on the unknown
input. First, we exploit that the runtime of division is data dependent. We found
that it depends on the bit size of the dividend, i.e., the value that is reduced
(the divisor is the constant q). By measuring this time, which we do with a
simple thresholding in the side-channel trace, we can immediately assign the
intermediate to one out of several disjoint sets.

In the second step, we perform a side-channel template matching [6] to further
narrow down the operand. For each multiplication, we use 99 (remaining) traces
to build templates for each currently possible operand. The points-of-interest
used for template building were determined with a t-test [9]. We then match all
templates with the previously picked trace and compute the probability vector
required for the next step of our attack.

In order to give a sense on the informativeness of our traces we use the metric
proposed in [34], i.e., give the average entropy left in the probability vectors
conditioned on the leakage Pr(T = t|�). Without leakage, we have an entropy of
log2(q) ≈ 12.9 bit. After performing the template matching, the average entropy
decreases to roughly 7 bit. However, we observed that the outcome somewhat
correlates with the value of the used twiddle factor. With ω0

n = 1 we have a
remaining entropy of about 10 bits. With larger values, we generally achieve
better results.

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 523

4.4 A Simplified Model

In order to allow reproducibility, we additionally analyze the performance of our
attack with a more generic and simpler model, namely the common noisy Ham-
ming weight leakage model. That is, apart from knowing if a reduction happened
after addition/subtraction, for each modular multiplication an attacker gets two
samples of the form:

l = (HW(a) + N (0, σl))||(HW(aωi
n mod q) + N (0, σl))

a is the unknown input and ωi
n the used twiddle factor. HW denotes the

Hamming weight function and N the Gaussian distribution with standard devia-
tion σl. For the experiments, we perform a 2-variate template matching on these
simulated traces.

5 Attack Step 2: Belief Propagation in the NTT

In the above template matching, the adversary obtains side-channel information
on each computed butterfly. In the second step of the attack, we now combine
all this information over the entire (I)NTT. We efficiently do so by using belief
propagation. We construct a factor-graph representation of the NTT, include
the side-channel information in this graph, and then run BP until convergence is
reached. With the constructed factor graph the runtime of a straight-forward BP
implementation is impractical. Thus, we present optimizations designed specifi-
cally for the NTT factor-graph, which decrease the runtime drastically.

5.1 Factor-Graph Construction

A factor graph is a bipartite graph containing variable nodes and factor nodes.
For modeling the NTT, we add one variable node x for each input/output of a
butterfly. With n = 256, we thus have n(log2(n) + 1) = 2 304 variable nodes.

We then add three types of factor nodes: fADD, fSUB, and fMUL. As seen in
Fig. 4, each type of factor occurs once per butterfly. Thus, there are a total of
3n log2(n)/2 = 3072 factor nodes in the NTT model. Evidently, there are cycles
in the graph shown in Fig. 4, so the loopy BP algorithm is needed.

fMUL is only connected to x2 and thus has degree 1. Its purpose is to add the
side-channel information gathered from the modular multiplication of x2 with
the known twiddle factor ω. We performed a template matching in Step 1 and
therefore are given vector of probabilities conditioned on the leakage l. Thus
we have:

fMUL(xi2) = Pr(x2 = xi2 |l)
The factors fADD and fSUB represent the modular addition and subtrac-

tion, respectively. They are connected to both butterfly-input nodes x1 and
x2, and one of the two output nodes x3 or x4. Thus, their degree is 3. These
factors model how variable nodes inside a butterfly are related, e.g., that
x3 = x1 + x2ω mod q. Furthermore, we use these factors to include whether

524 R. Primas et al.

Fig. 4. Butterfly network (left) and our corresponding factor graph (right)

a reduction happened after addition or subtraction, respectively. For addition
with subsequent reduction step, we have:

fADD(xi1 , xi2 , xi3) =

{
1 if xi1 + xi2ω ≡ xi3 mod q and xi1 + (xi2ω mod q) ≥ q

0 otherwise

If no reduction happened, then the second clause xi1 + (xi2ω mod q) > q is
simply negated. For subtraction with subsequent reduction, we have:

fSUB(xi1 , xi2 , xi4) =

{
1 if xi1 − xi2ω ≡ xi4 mod q and xi1 − (xi2ω mod q) < 0

0 otherwise

Other Leakage Points. The factor-graph representation of the NTT is flexible,
thus it can be modified to accommodate other leaking operations. One could, e.g.,
additionally include side-channel information of loading and storing in memory
or leakage on operands of modular addition and subtraction.

5.2 BP Runtime Estimation Without Optimization

As it turns out, the runtime of a straight-forward implementation of BP on
our constructed factor graph is impractically high. It depends on the number of
iterations, the number of variable nodes and the size of their domain D, as well
as the number of factor nodes and their degree.

Each iteration of BP involves the invocation of the update rules q (variable
to factor, Eq. 1) and r (factor to variable, Eq. 2) for all variable nodes and factor
nodes, respectively. In our case the number of required iterations is small, e.g.,
≤ 25, and therefore does not have a significant impact on the asymptotic runtime.
The runtime of q is also fairly low.

However, the same cannot be said for r. For a factor f with degree deg(f)
and its inputs x1, . . . , xdeg(f) with domain D, one can compute the update rule
given in Eq. 2 by simply looping over all |D|deg(f) possible input combinations
of f . In our scenario, we have factors fADD, fSUB with deg(f) = 3 and variable
nodes with domain size |D| = q = 7681. When additionally multiplying with

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 525

the number of fADD and fSUB in our factor graph, then we reach a runtime
of ≈ 249 for a single iteration. Reducing from cubic to quadratic runtime can
be done by only considering triplets where fADD, fSUB can be 1, but this still
amounts to ≈ 237 operations. Obviously, both numbers are not very practical
and optimizations are needed.

5.3 Runtime Optimizations

In Algorithm 1, we show an optimization that can decrease the runtime of r for
all factor nodes of degree 3 in the factor graph, i.e. fADD and fSUB, drastically.
We show it on the example of a factor node of type fADD. A slight variation of
the presented algorithm can be used to optimize fSUB.

Algorithm 1. Efficient BP for Modular Addition
Input:

qa, qb, qc Incoming messages from summands and result node
Reduction True if a reduction step was executed

Output:
ra, rb, rc Outgoing messages for summands and result node

1: ã = FFT2q(qa), b̃ = FFT2q(qb), c̃ = FFT2q(qc)
2: ta = IFFT2q(CONJ(b̃) ∗ c̃)
3: tb = IFFT2q(CONJ(ã) ∗ c̃)
4: tc = IFFT2q(ã ∗ b̃)
5: if Reduction then
6: ra = ta[q . . . 2q − 1], rb = tb[q . . . 2q − 1], rc = tc[q . . . 2q − 1]
7: else
8: ra = ta[0 . . . q − 1], rb = tb[0 . . . q − 1], rc = tc[0 . . . q − 1]

Our optimization uses the fact that update rules for input/output distribu-
tions of modular additions/subtractions can be efficiently expressed in matrix-
vector notation. Consider the addition a + b = c mod q, with qa, qb, qb the
incoming messages from the corresponding variable nodes. Each such message
is a q-dimensional vector assigning a probability to each value in D, we say that
ai = qai

= Pr(a = i). The output rc depends on qa, qb and an entry c∗
k = rck can

be computed as the sum over all aibj with i + j ≡ k mod q. The whole update
can be written in matrix-vector notation:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0 aq−1 · · · a2 a1

a1 a0 aq−1 a2

... a1 a0
. . .

...

aq−2
. aq−1

aq−1 aq−2 · · · a1 a0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

·

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b0
b1
...

bq−2

bq−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

c∗
0

c∗
1
...

c∗
q−2

c∗
q−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

526 R. Primas et al.

where the columns of the left matrix are circular shifts of qa. The above equa-
tion can be rewritten as a circular convolution qa � qb, which can be efficiently
computed using the FFT and the circular convolution theorem. Thus, we have :

rc = qa � qb = IFFTq(FFTq(qa) ∗ FFTq(qb)).

The update rules for ra and rb can be obtained similarly by additionally
using complex conjugations CONJ, as shown in Algorithm1. Recall that we
also include whether a reduction happened during modular addition and sub-
traction. This can be efficiently done by replacing the q-coefficient FFT with a
2q-coefficient FFT and by using only either the upper or lower half of the IFFT
output.

The runtime of computing r for the degree-3 factor nodes is now reduced to
O(q log q), since the only runtime relevant operations are FFTs. This allows us
to perform one iteration of the BP algorithm for our whole factor graph in about
one minute using a single core of an Intel Core i7-5600U CPU.

5.4 BP on Subgraphs

In our experiments, we found that applying BP to the whole NTT factor graph
does not yield satisfactory results. While we can narrow down values, the out-
come was not sufficient for key recovery. Yet, we were able to identify two prob-
lems and show how to circumvent them by applying BP only to subgraphs.

Uneven availability of side-channel information. The template attack on
multiplication is a primary source of information. Yet, multiplications are not
spread evenly across the NTT, as illustrated in Fig. 5a (also compare to
Fig. 1). Each cell of this figure corresponds to one variable node. White vari-
ables are multiplied with a twiddle factor, black ones are not. Due to the lack
of multiplications and its side-channel information in the top-right corner,
the BP algorithm cannot recover these variable with high-enough certainty.

Varying outcome of the template attack. As already pointed out in
Sect. 4.3, the performance of the template attack depends on the used twiddle
factor. In the first NTT layer, one always multiplies with ω0

n = 1. Even if this
multiplication is not optimized out, the fact that no reduction is performed
leads to little leakage.

We circumvent these two problems by applying BP not on the whole NTT
graph, but instead only on disjoint subgraphs. As depicted in Fig. 5b, we have
subgraphs FG 1, FG 2, and FG 3. These do not include the first layer and have
a higher ratio of observed to unobserved variables (compared to the full graph).
Thus, applying BP to these subgraphs gives significantly better results.

After convergence is reached on all 3 graphs, we perform a classification, i.e.,
pick the most likely value, on certain variable nodes. Concretely, we use variables
from layer 6 (output of layer 5 and input of layer 6). This is the last layer of
FG 1 and variables in later layers are usually recovered with higher confidence.
As shown in Fig. 5c, we use the 192 variables with indices 32...128 and 160...255.

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 527

If masking is used, then we have to perform BP twice to get the intermediates
in both invocations of the INTT. The unmasked intermediates can be computed
by simply adding the recovered values of both INTTs.

Fig. 5. Representation of the NTT and used factors

6 Attack Step 3: Lattice Decoding

Due to applying BP only on subgraphs, we cannot recover the full INTT input
c̃1 ∗ r̃2 + c̃2. Hence, the decryption key r̃2 (or equivalently r2) cannot be deter-
mined with simple linear algebra and another step is needed. In this third and
final attack step, we combine the recovered intermediates with the public key.
First, we create linear equations in the intermediates and r2 and use them to
decrease the rank of the lattice spanned by the public key (a, p). Then, we use
lattice-basis reduction and decoding to find r2 in the reduced-rank lattice.

6.1 Generating Linear Equations in the Key

We use the recovered intermediates to construct linear equations in the private
key r2. Polynomial multiplication in Rq can be written as a matrix-vector prod-
uct. We write the INTT output as m� = c1r2 + c2 = C1r2 + c2, where the
columns of matrix C1 are nega-cyclic rotations of c1. All operations inside the
(I)NTT are linear, thus this system can be transformed to describe any of its

528 R. Primas et al.

intermediates. Concretely, we transform it such that it describes the recovered
values of the sixth INTT layer.

We transform the system by performing a partial reversal of the INTT. We
revert 3 butterfly stages by computing x1 = (x3 + x4)/2 mod q and x2 = (x3 −
x4)/(2ω) (cf. Fig. 4). We end up with a system of form C′

1r2 + c′
2 = x, with x

being the 192 recovered intermediates and C′
1, c′

2 the transformed coefficients.

6.2 Key Recovery Using Lattice Reduction

The decryption key r2 is finally recovered by combining the above system with
the information embedded in the public key (a, p). Recall that p = r1 − ar2.
As r1 is small (it is sampled from a discrete Gaussian distribution with small σ),
we have that p ≈ −ar2. Thats is, p is close to the vector −ar2 which is part of the
q-ary lattice spanned by the columns of A (the matrix consisting of nega-cyclic
rotations of a). Hence, the recovery of r2 can be seen as a bounded-distance
decoding problem. The chosen system-parameters (n, q, σ) ensure that solving
this decoding problem is not feasible without further information.

However, by incorporating the linear equations from above the problem can
be reduced to a size that is solvable. We substitute the 192 equations C′

1r2 +
c′
2 = x into p = r1−Ar2 to get some p′ = r1−A′r′

2. The number of columns of
A’, and hence the rank of the spanned lattice, is now reduced to 256−192 = 64.

We then search for the closest vector to p′ by solving a shortest-vector prob-
lem. Concretely, we search for the error term r1 (or −r1) as an unusually short
vector in the lattice generated by (A′||p′). This approach of solving the lattice
decoding problem is described by, e.g., Albrecht et al. [1]. The short vector is
recovered using the BKZ lattice basis reduction algorithm, we use the imple-
mentation provided by Shoup’s NTL [33]. We invoke BKZ with a blocksize of
25, but abort reduction as soon as a candidate for r1, i.e., a vector with a small
enough norm, is found.

After that, one can compute the private key r2 by solving the linear system
p = r1 − ar2 for both recovered r1 and −r1. The correct r2 is the one that
follows the distribution used for key generation. That is, we pick the smaller out
of the two solutions.

Performance of Decoding. We tested the correctness and performance of
this key-recovery approach by performing well over 1 000 experiments. In each
of them we use the correct intermediates (cf. Fig. 5c) and only perform the
decoding step. All our experiments were successful. The average runtime on a
single core of a Xeon E5-2699v4 CPU is approximately 45 s.

This decoding approach is not limited to using exactly 192 recovered interme-
diates, it can be invoked with any number of coefficients. However, the runtime
of decoding will increase if fewer values are available. For instance, with 160
recovered intermediates the average runtime is 5 min and thus still well within
practicality. Below that, however, it increases drastically. With 150 values, it
reaches multiple hours. Experiments with 146 or fewer coefficients were not suc-
cessful after 1 full day of computation.

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 529

7 Attack Results and Conclusion

Our attack consists of subsequent execution of the three attack steps described
in the previous sections. We now present the outcome. First, we evaluate the
attack using real traces. We illustrate an exemplary outcome and give a success
rate. Then, we give the success rate for the Hamming-weight model with varying
noise-parameter σl, both with and without masking applied.

7.1 Real Device

With real traces obtained from the setup described in Sect. 4, we have the fol-
lowing results. Figure 6 illustrates an exemplary outcome of template-matching
and the subsequent belief propagation on the subgraph FG 3 (cf. Sect. 5.4). For
each variable node, we color-code the entropy of the probability vector. For black
nodes, the probability distribution is close to uniform, whereas for white nodes
one value has reached probability close to 1. After 1 iteration (Fig. 6a), the prob-
ability distributions essentially correspond to the direct output of the template
matching. After 20 iterations of BP (Fig. 6c), the network has converged and
almost all intermediates are determined with very high probability.

Lattice decoding is successful if all of the 192 intermediates used for key-
recovery are correct. After observing Fig. 6, it should not come as a surprise
that all our key-recovery experiments in the real-trace setting were successful.
The success rate, i.e., the probability that all used coefficients are correct, is 1.

Fig. 6. FG 3: entropy after set number of iterations of BP

530 R. Primas et al.

7.2 Hamming-Weight Model

In order to get a broader and more generic analysis of our attack, we also tested
it with a noisy Hamming-weight model (cf. Sect. 4.4). We rerun all tests with
varying noise parameter σl. The outcome is illustrated in Fig. 7, where we show
the success rate and the average entropy (after template matching) for each
tested value of σl. We give the entropy to allow at least a rough comparison to
the real-trace setting.

In the non-masked case, we have a high single-trace success rate up to σl = 0.4
or 0.5, then it drops drastically. Note, however, that an attacker that can observe
multiple decryptions can decrease the observed σl by averaging the traces. In
the masked setting, key-recovery is successful if the correct intermediates are
recovered in both invocations of the inverse NTT (see Fig. 2). Only then their
sum is equal to the unmasked value. Thus, the expected success rate is squared,
which is confirmed by our results. Obviously, averaging cannot be done if masking
is used.

Fig. 7. Success rates in the Hamming-weight leakage model

7.3 Conclusion

Our attack clearly shows that SPA security of lattice-based schemes cannot be
neglected and that relying on masking alone is not sufficient. Implementation
techniques that are vastly different to established constructions such as RSA
and ECC open up new venues in this regard. In fact, the regular structure of
the NTT allows to efficiently combine leakage of the entire decryption process.
Furthermore, each recovered intermediate can be used to decrease the difficulty
of key-recovery with the public key. And while this work focuses on lattice-based
encryption, our attack can be adapted to any other implementation of lattice-
based cryptography which employs the NTT.

When it comes to potential countermeasures, masking appears to be effective
against DPA, yet it does not prevent our attack. Thus, additional countermea-
sures should be implemented and will now be discussed.

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 531

Possible Countermeasures. One of the first measures to strengthen an imple-
mentation against SPA attacks is to ensure a constant runtime and control flow.
In our side-channel analysis of a real device, we exploit timing differences stem-
ming from the DIV operation invoked during modular reduction. There do exist
constant-time alternatives, as already shown by Oder et al. [21].

Like many other algebraic attacks, our key recovery can be thwarted by
employing shuffling. Concretely, the operations inside the NTT, e.g., the order
in which the butterflies are processed within one NTT layer, need to be shuffled.
Shuffling only point-wise operations, as proposed by Oder et al., clearly does not
hamper our attack. Other hiding countermeasures, such as the random insertion
of dummy operations inside the NTT, can also make our attack harder.

Oder et al. also propose to use a blinding countermeasure (cf. Sect. 2.3). Our
attack still applies, but needs an additional step and potentially a different selec-
tion of recovered intermediates. Concretely, it requires that a sufficient amount
of the INTT output coefficients are recoverable or can be computed from the
recovered intermediates. Then, one can test if the distribution of the unblinded
INTT output, i.e., after multiplication with ab−1 mod q, corresponds to that of
a valid m� (centered around 0 and q/2). For a non-masked implementation, or
if the same blinding values a, b are reused for both shares, then one can run
through all q − 1 possibilities of ab mod q. If different a, b are used for both
shares, then one needs to try all (q − 1)2 combinations. With our parameters,
this can be easily done within a minute. When using 64 output coefficients, this
always returned the correct blinding values in our tests. Hence, this countermea-
sure does not significantly increase single-trace security. It, however, prevents
averaging in the non-masked scenario.

Acknowledgements. This work has been supported by the Austrian Research Pro-
motion Agency (FFG) under project SCALAS (grant number 845589) and under the
COMET K-Project DeSSnet (grant number 862235).

References

1. Albrecht, M.R., Fitzpatrick, R., Göpfert, F.: On the efficacy of solving LWE by
reduction to unique-SVP. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol.
8565, pp. 293–310. Springer, Cham (2014). doi:10.1007/978-3-319-12160-4 18

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

3. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime.
IACR Cryptology ePrint Archive 2016, 461 (2016)

4. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V.,
Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure
key exchange from LWE. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers,
A.C., Halevi, S. (eds.) CCS 2016, pp. 1006–1018. ACM (2016)

5. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

http://dx.doi.org/10.1007/978-3-319-12160-4_18
http://dx.doi.org/10.1007/3-540-48405-1_26

532 R. Primas et al.

6. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

7. de Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Efficient software imple-
mentation of ring-lwe encryption. In: Nebel, W., Atienza, D. (eds.) DATE 2015,
pp. 339–344. ACM (2015)

8. Fluhrer, S.R.: Cryptanalysis of ring-lwe based key exchange with key share reuse.
IACR Cryptology ePrint Archive 2016, 85 (2016)

9. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). doi:10.1007/11894063 2

10. Göpfert, F., van Vredendaal, C., Wunderer, T.: A quantum attack on lwe with
arbitrary error distribution. Cryptology ePrint Archive, Report 2017/221 (2017)

11. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33027-8 30

12. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 12

13. Grosso, V., Standaert, F.: Masking proofs are tight (and how to exploit it in security
evaluations). IACR Cryptology ePrint Archive 2017, 116 (2017)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

15. Liu, Z., Seo, H., Sinha Roy, S., Großschädl, J., Kim, H., Verbauwhede, I.: Efficient
ring-LWE encryption on 8-bit AVR processors. In: Güneysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 663–682. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 33

16. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

17. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, New York (2003)

18. Mariantoni, M.: Building a superconducting quantum computer. Invited
Talk at PQCrypto 2014, October 2014. https://www.youtube.com/watch?
v=wWHAs-HA1c

19. NIST. Post-Quantum crypto standardization, December 2016. http://csrc.nist.
gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html

20. NSA/IAD. CNSA Suite and Quantum Computing FAQ, January 2016.
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/
algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm

21. Oder, T., Schneider, T., Pöppelmann, T., Güneysu, T.: Practical cca2-secure and
masked ring-lwe implementation. IACR Cryptology ePrint Archive 2016, 1109
(2016)

22. Pearl, J.: Reverend bayes on inference engines: a distributed hierarchical approach.
In: Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI
1982, pp. 133–136. AAAI Press (1982)

http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/11894063_2
http://dx.doi.org/10.1007/978-3-642-33027-8_30
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-662-48324-4_33
http://dx.doi.org/10.1007/978-3-642-13190-5_1
https://www.youtube.com/watch?v=wWHAs-HA1c
https://www.youtube.com/watch?v=wWHAs-HA1c
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/call-for-proposals-2016.html
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm

Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption 533

23. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 4

24. Pöppelmann, T., Oder, T., Güneysu, T.: High-performance ideal lattice-based
cryptography on 8-bit atxmega microcontrollers. In: Lauter, K., Rodŕıguez-
Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346–365. Springer,
Cham (2015). doi:10.1007/978-3-319-22174-8 19

25. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16342-5 29

26. Reparaz, O., Clercq, R., Roy, S.S., Vercauteren, F., Verbauwhede, I.: Additively
homomorphic ring-LWE masking. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol.
9606, pp. 233–244. Springer, Cham (2016). doi:10.1007/978-3-319-29360-8 15

27. Reparaz, O., Roy, S.S., de Clercq, R., Vercauteren, F., Verbauwhede, I.: Masking
ring-lwe. J. Cryptogr. Eng. 6(2), 139–153 (2016). Extended journal version of [28]

28. Reparaz, O., Roy, S.S., Vercauteren, F., Verbauwhede, I.: A masked ring-LWE
implementation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 683–702. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 34

29. Roy, S.S., Vercauteren, F., Mentens, N., Chen, D.D., Verbauwhede, I.: Com-
pact ring-LWE cryptoprocessor. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 371–391. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 21

30. Saarinen, M.-J.O.: Arithmetic coding and blinding countermeasures for lattice sig-
natures. J. Cryptogr. Eng. 1–14 (2017)

31. Shamir, A.: Financial cryptography: past, present, and future. Invited Talk at
Financial Cryptography 2016, February 2016. https://www.lightbluetouchpaper.
org/2016/02/22/financial-cryptography-2016/#comment-1456744

32. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

33. Shoup, V.: NTL: a library for doing number theory. http://www.shoup.net/ntl/
34. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-

sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

35. Su, Q., Wu, Y.C.: On convergence conditions of gaussian belief propagation. IEEE
Trans. Signal Process. 63(5), 1144–1155 (2015)

36. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 15

http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-319-22174-8_19
http://dx.doi.org/10.1007/978-3-642-16342-5_29
http://dx.doi.org/10.1007/978-3-319-29360-8_15
http://dx.doi.org/10.1007/978-3-662-48324-4_34
http://dx.doi.org/10.1007/978-3-662-44709-3_21
http://dx.doi.org/10.1007/978-3-662-44709-3_21
https://www.lightbluetouchpaper.org/2016/02/22/financial-cryptography-2016/#comment-1456744
https://www.lightbluetouchpaper.org/2016/02/22/financial-cryptography-2016/#comment-1456744
http://www.shoup.net/ntl/
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-662-45611-8_15

A Systematic Approach to the Side-Channel
Analysis of ECC Implementations

with Worst-Case Horizontal Attacks

Romain Poussier1(B), Yuanyuan Zhou1,2, and François-Xavier Standaert1

1 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

romain.poussier@uclouvain.be
2 Brightsight BV, Delft, The Netherlands

Abstract. The wide number and variety of side-channel attacks against
scalar multiplication algorithms makes their security evaluations com-
plex, in particular in case of time constraints making exhaustive analyses
impossible. In this paper, we present a systematic way to evaluate the
security of such implementations against horizontal attacks. As horizon-
tal attacks allow extracting most of the information in the leakage traces
of scalar multiplications, they are suitable to avoid risks of overestimated
security levels. For this purpose, we additionally propose to use linear
regression in order to accurately characterize the leakage function and
therefore approach worst-case security evaluations. We then show how to
apply our tools in the contexts of ECDSA and ECDH implementations,
and validate them against two targets: a Cortex-M4 and a Cortex-A8
micro-controllers.

1 Introduction

State of the art. The secure implementation of Elliptic Curve Cryptogra-
phy (ECC) is an important ingredient in modern information systems. In this
paper, we are concerned with side-channel attacks against scalar multiplication
implementations which have been the focus of continuous interest over the last
20 years. This literature informally divides these attacks in two main categories:
attacks using a Divide and Conquer (DC) approach and attacks using an Extend
and Prune (EP) approach – which we next survey.

Attacks that belong to the first category aim at recovering the scalar bits
independently and are therefore simple to analyze. They associate a probability
or a score to each scalar bit. The scalar is trivially recovered if all the correct
bits have the highest probability. If it is not the case, computational power can
be used to mitigate the lack of side-channel information thanks to key enumer-
ation [30,35,38]. If the key is beyond computational reach (e.g. beyond 260),
rank estimation (which requires the knowledge of the key and is therefore only
accessible to evaluators, not to concrete adversaries) allows estimating the com-
putational security level of a leaking implementation [6,20,30,39].
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 534–554, 2017.
DOI: 10.1007/978-3-319-66787-4 26

A Systematic Approach to the Side-Channel Analysis 535

Pr [k0 = 1]

k0

Pr [k0 = 0]

Pr [k1 = 1|k0 = 1]

k1

Pr [k1 = 0|k0 = 1]

Pr [k1 = 1|k0 = 0]

Pr [k1 = 0|k0 = 0]

Pr [k2 = 1|k0 = 1, k1 = 1]

k0

Pr [k2 = 0|k0 = 1, k1 = 1]

Pr [k2 = 1|k0 = 1, k1 = 0]

Pr [k2 = 0|k0 = 1, k1 = 0]

Pr [k2 = 1|k0 = 0, k1 = 1]

Pr [k2 = 0|k0 = 0, k1 = 1]

Pr [k2 = 1|k0 = 0, k1 = 0]

Pr [k2 = 0|k0 = 0, k1 = 0]

Fig. 1. Conditional probability tree for a 3 bits scalar k = (k0, k1, k2).

Attacks using an EP approach recover the scalar bits in a recursive manner.
Recovering the i-th bit requires to first recover all the previous ones. For a n-
bit scalar, EP attacks can be seen as a probability tree with 2n leaves where
each level corresponds to a different bit. Figure 1 illustrates such a probability
tree for n = 3, where each node corresponds to the conditional probability of
a bit given that the previous ones are correctly recovered. In this context, a
first attack strategy is to only look at the most probable tree path. We refer
to this method as first-order Success Rate (1-O SR). This strategy fails if not
enough side-channel information is available for at least one of the bits. In such
a case, the aforementioned enumeration algorithms cannot be applied due to the
conditional dependencies. Yet, a recent study [27] describes a method to apply
key enumeration/rank estimation on EP attacks1.

According to these two classes, we now describe the state of the art on side-
channel attacks against scalar multiplications. For each of them, we describe its
overall modus operandi, we show its associated class and we finally exhibit a
countermeasure (if existing).

The first attacks discovered on scalar multiplication, such as timing and
Simple Power Analysis [25,26] (SPA), aimed at finding different patterns that
depend on a scalar bit value. Such differences occur if the scalar multiplication
or the elliptic curve operations are irregular, which makes the timing pattern of

1 Instead of only looking at the most probable path, it assumes that the tree can be
divided into three parts. The first part corresponds to the bits which the adversary
is certain to have recovered correctly. The second part contains the (computationally
feasible) paths on which the adversary has partial information. The final part is the
exhaustive remaining part of the tree on which the adversary has no information.
Enumeration is done on this sub-tree using a Pollard-like method.

536 R. Poussier et al.

the leaking implementations dependent on all the scalar bits. As a consequence,
an adversary has to recover the scalar in a recursive manner and these attacks
belong to the EP class. Using a regular scalar multiplication as further described
in Sect. 2 naturally thwarts them.

Later on, (vertical) Differential Power Analysis (DPA) [26] and Correlation
Power Analysis (CPA) [7] were applied to scalar multiplications [13,32]. Such
methods aim at recovering the scalar bits iteratively using several side-channel
leakages traces of a scalar multiplication with a fixed scalar and several known
inputs. Thanks to the inputs knowledge, the scalar bits are recovered by guess-
ing one internal value that depends on the input and the guessed bits. Inde-
pendently of the distinguisher (e.g. correlation, difference of means,...), we refer
to all attacks using this framework as DPA. Here again, guessing the internal
value associated with a scalar bit requires that all the previous bits have been
correctly recovered. Hence, DPA also belongs to the EP class. Since this method
requires leakages on several executions with a fixed scalar, scalar randomization
techniques [12,13] are efficient countermeasures. Protocols using a scalar nonce
such as ECDSA [36] are naturally protected against DPA.

Next, Template Attacks (TA) [8] were introduced as a powerful tool to extract
all the information available in some leakage traces. In the context of scalar
multiplication, it has been first introduced against ECDSA [31]. From the prior
knowledge of the input, the attack computes 2d templates in order to recover
the first d bits of the scalar nonce. The actual bit of the nonce is then found
with templates matching. The secret key is finally recovered using lattice tech-
niques [5,34] from several partially known nonces and their associated signatures.
Interestingly, since such TA do not recover the whole scalar, they neither belong
to the EP nor DC classes.

Alternatively, Online Template Attacks (OTA) [2,16] were introduced to
recover the full scalar. This method interleaves the templates building and the
attack phases, thus requiring more online access to the target device. As the
iterative template building requires the knowledge of the current internal state
which depends on the previous bits, OTA belongs to the EP class. Since both
TA and OTA require the knowledge of the input, point randomization tech-
niques [13,23] are effective. Using the fact that (X,Y,Z) = (λ2X,λ3Y, λZ) in
Jacobian coordinates (see Sect. 2), an option to randomize the input is to change
its coordinates at the beginning of each scalar multiplication using a random λ.

Horizontal Differential Power Attacks (HDPA) [3,11] are another powerful
alternative to TA. From the posterior knowledge of the input, the scalar bits
are recovered by guessing several internal values that depend on both the input
and the guessed bits (instead of only one in the case of DPA). As guessing the
internal values associated with a particular bit requires the knowledge of the
previous ones, HDPA belongs to the EP class. As for TA, point randomization
is effective against HDPA.

Finally, Horizontal Collision Attacks (HCA) [3,4,10,14,21,40] have been
proposed in order to bypass the point randomization countermeasures.
These attacks require the scalar multiplication to exhibit different operand

A Systematic Approach to the Side-Channel Analysis 537

input/output collisions that depend on the scalar bit values. Being able to detect
such collisions from a trace allows recovering the scalar bits. Up to our knowl-
edge, only one collision attack defeats the Montgomery scalar multiplication
implemented as further described in Sect. 2.2 by Algorithm 1 [21]. The collision
is able to find whether two consecutive scalar bits are the same or not. Given
this information, the scalar is finally recovered using a modified version of the
Baby-Step/Giant-Step algorithm. If they target a regular scalar multiplication,
HCA belong to the DC class, since the position of the collisions in the leak-
age traces depends only on the current scalar bit value in this case. In case of
irregular algorithms, this position depends on the previous bits and HCA then
belong to the EP class. In general, countermeasures aiming at increasing the
noise level (e.g. shuffling, random delays, ...) are the only effective ones against
the attack presented in [21]. In this respect, one drawback of these attacks (from
the adversary’s viewpoint) is that they only exploit a very small part of the avail-
able information compared to HDPA and TA (which implies that the amount of
noise needed to hide the collisions is more limited).

We additionally mention that all the aforementioned attacks (except the TA)
ignore the leakages due to the direct manipulation of the scalar bits during the
scalar multiplication (such as discussed in [9,22,33]). Exploiting these leakages
is an orthogonal concern to this study and is therefore out of the scope of our
investigations.

Our contribution. Based on this broad state of the art, our goal is to fur-
ther investigate and systematize the security evaluation of scalar multiplication
implementations against HDPA. Our motivations in this context are threefold:

First of all, such attacks can potentially exploit most of the informative sam-
ples provided by a leaking implementation, and are therefore a natural candidate
for approaching their worst-case security level, which we aim for.

Second, most of the HDPA literature is based on the correlation distinguisher
and assumes an a priori leakage model. Yet, given our goal to approach the
worst-case security level of scalar multiplication implementations, it is natural
to study efficient solutions allowing a better characterization of the leakages. In
view of its broad applicability in the context of block cipher implementations,
linear regression appears as an excellent candidate for this purpose [37], and we
therefore study its applicability in our asymmetric setting.

Third, and quite importantly, only few practical experiments have been
reported on the application of HDPA against actual implementations of scalar
multiplication algorithms. We contribute to this issue by providing the results
of experiments against two (more or less challenging) targets: the first one is a
low frequency ARM Cortex M4 micro-controller (without interrupts), the second
one runs a Linux operating system in background and runs at high frequency.
While successful attacks against this second target have been published for block
ciphers [1,29], no public report discusses their vulnerabilities in the ECC case.
We also illustrate the application of framework to both ECDH and ECDSA.

The rest of the paper is organized as followed. Section 2 introduces the
notations and the necessary background on elliptic curve cryptosystems and

538 R. Poussier et al.

implementations. Section 3 describes the generic view we consider for regu-
lar scalar multiplication along with the systematic security evaluation method.
Finally, Sects. 4 and 5 respectively show the experimental results for the appli-
cation of this framework against our two targets.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We use sans serif font for functions (e.g. F) and calligraphic fonts for sets (e.g.
A). We use capital bold letters for matrices (e.g. M) and small bold caps for
vectors (e.g. v). We denote the conditional probability of a random variable A
given B with Pr [A|B].

2.2 Elliptic Curves Cryptography (ECC)

Let Fp be a finite field with a characteristic bigger than 3. We define by E(Fp) the
set of points (x, y) ∈ F

2
p (called affine coordinates) that satisfy the Weierstrass

equation y2 = x3+ax+b, (a, b) ∈ F
2
p with discriminant Δ = −16(4a3+27b2) �= 0.

E(Fp) along with a point at infinity which form an Abelian additive group. The
addition over E(Fp) requires field additions, subtractions, multiplications and
one inversion. We denote by + the addition of two points P and Q, and by
[k]P the k-times repeated additions P + P + ... + P with k ∈ N (called scalar
multiplication).

Scalar Multiplication. Most elliptic curve cryptosystems require to compute
a scalar multiplication [k]P from a number k ∈ [1, |<P>| − 1] and a curve point
P , where |<P>| is the order of the subgroupgenerated by P . In each case, k
is a sensitive variable unknown from the attacker which can be a private key
(e.g. for ECDH key exchange) or directly linked to it (e.g. for ECDSA). As
a result, the scalar multiplication represents an important source of potential
side-channel leakages. In order to thwart the most basic side-channel attacks,
scalar multiplication algorithms avoid conditional branching and have a regular
execution independently of the bits of k. In the following we will consider the
(left to right) Montgomery ladder [24] as described by Algorithm 1. We now
view the n-bit scalar as a binary vector k = (k0, ..., kn−1) (where k0 is the most
significant bit).

Jacobian Coordinates. In general, field inversions are costly compared to
additions, subtractions and multiplications. Moving from affine coordinates to
Jacobian coordinates allows avoiding the inversion when performing an addition
or a doubling over E(Fp). The Jacobian plan J over F3

p is defined as {(X,Y,Z) ∈
F
3
p s.t. ∀λ ∈ Fp, (X,Y,Z) = (λ2X,λ3Y, λZ)}. The set of points EJ (Fp) defined

A Systematic Approach to the Side-Channel Analysis 539

Algorithm 1. Montgomery ladder.
Input: P,k = (k0, ..., kn−1)
Output: [k]P

R0 ← O
R1 ← P
for i = 0 to n − 1 do

R1−ki ← R1−ki + Rki

Rki ← [2]Rki

end for
return R0

by the equation Y 2 = X3 + aXZ4 + bZ6 defines an elliptic curve over the
Jacobian plan. The Jacobian point (X,Y,Z), Z �= 0 corresponds to the affine
point (X/Z2, Y/Z3). The point at infinity in affine coordinates corresponds to
the point (λ2, λ3, 0) in Jacobian coordinates.

Given two points P and Q in EJ (Fp) with P �= ±Q, the formulas for the
addition P +Q and doubling P +P are respectively given by Algorithms 2 and 3.
As it is important for the rest of the paper, we stress the fact that an addition
over EJ (Fp) (resp. a doubling) requires 16 field multiplications (resp. 10).

Algorithm 2. Addition over EJ (Fp).
Input: P = (X1, Y1, Z1), Q = (X2, Y2, Z2), P �= ±Q
Output: P + Q = (X3, Y3, Z3)

Z1 ← Z2
1 ,Z2 ← Z2

2 , U1 ← X1Z2, U2 ← X2Z1, H ← U1 − U2, S1 ← Y1Z2Z2, S2 ←
Y2Z1Z1, R ← S1 − S2,H ← H2, G ← HH,V ← U1H
X3 ← R2 + G − 2V
Y3 ← R(V − X3) − S1G
Z3 ← Z1Z2H
return (X3, Y3, Z3)

Algorithm 3. Doubling over EJ (Fp).
Input: P = (X1, Y1, Z1)
Output: P + P = (X2, Y2, Z2)

X ← X2
1 ,Y ← Y 2

1 ,Z ← Z2
1 ,M ← 3X + aZ2, T ← Y2, S ← 4X1Y

X2 ← M2 − 2S
Y2 ← M(S − X2) − 8T
Z2 ← 2Y1Z1

return (X2, Y2, Z2)

Note that the Montgomery ladder algorithm is typically reflective of the
state of the art implementations of ECC secure against SPA. In the following, we
further considered implementations protected with scalar randomization in order
to avoid DPA attacks. So our focus is on single-trace attacks which naturally
goes with our worst-case information extraction motivation.

540 R. Poussier et al.

3 Systematic Approach

In this section we describe a systematic method for the worst-case security analy-
sis of scalar multiplications. We first give an abstract view of regular scalar mul-
tiplications. We then use this abstraction to specify the amount of informative
points in our leakage traces. We finally show how these informative points can
be extracted and combined to attack the scalar bits, and show how this method
applies on two ECC primitives, namely ECDH and ECDSA.

3.1 Generic Scalar Multiplication Architecture

As explained in Sect. 2.2, elliptic curve cryptosystems require to compute a scalar
multiplication. Section 1 also discussed the regularity requirements of the scalar
multiplication implementations, which implies that they can be described as
a fixed and predictable sequence of operations. In this context, all operations
that affect the internal state depending on the scalar bit value contain sensitive
information. In order to quantify this information, we will next describe the
scalar multiplication based on different levels, depicted in Fig. 2. At the top level,
a regular binary scalar multiplication is an iterative processing of the scalar bits.
Each bit handling is itself composed of a fixed number of additions and doublings.
Then, each addition (resp. doubling) contains a fixed number of field operations
(such as field additions, subtractions and multiplications). Finally, each field
operation is composed of a fixed number of register operations (such as register
additions, subtractions and multiplications). As a result, and for an n-bit scalar,
the sequence of register operations that can be exploited by an adversary can be
divided into n parts that depend on the scalar bit index. Independently of the
kind of operation, we assume that each part contains N register operations. We
therefore have that a regular binary scalar multiplication leads to n sequences of
N sensitive operations of which the results are stored in registers. We denote as
ri = (rj

i), j ∈ [0, N −1] the N intermediate computation results occurring during
the manipulation of the i-th scalar bit2. Eventually, each of these computations
will lead to side-channel leakages denoted as li = (lji), j ∈ [0, N − 1].

3.2 Information Extraction

From the previous abstract view of the scalar multiplication and its associated
leakages, the next step is to extract the information. Given a leakage l on a regis-
ter r, we compute the probability Pr [l|r = x] , x ∈ [0, 2|r| − 1] that the observed
leakage comes from the manipulation of the value x by r (where |r| denotes
the size of the register in bits). While using templates would be optimal, their
computational complexity is exponential in |r| as it requires to estimate 2|r|

Probability Density Functions (PDF) per register (e.g. 2|r| means and variances

2 Note that this is an abstract view. In practice, an operation can have more than one
register input/output. In such case, one can count this operation as corresponding
to several registers or only use one of them.

A Systematic Approach to the Side-Channel Analysis 541

k0 k1

EJ addition EJ doubling EJ addition EJ doubling

Fp mult Fp mult Fp mult ... Fp mult Fp mult Fp mult ...

r00 r10 r20 r30 r40 ... r01 r11 r21 r31 r41 ...

l00 l10 l20 l30 l40 ... l01 l11 l21 l31 l41 ...

Fig. 2. Level view of a regular scalar multiplication. First level (top): scalar bit han-
dling. Second: elliptic curve arithmetic. Third: Field arithmetic. Fourth: register oper-
ations. Fifth: leakages on register operations

for Gaussian templates). Therefore, and as a more efficient alternative, we use
linear regression [37] with a linear basis containing the |r| bits of the registers.
The latter decreases the profiling complexity from O(2|r|) to O(|r|), which is
particularly interesting in the case of a r = 32-bit architecture (as we will inves-
tigate). Yet, this admittedly comes at the cost of a potential information loss in
case the leakage function has informative non-linear terms (which we will briefly
discuss in Sects. 4 and 5).

We denote by �k�i the first i bits of k. We denote by rj
i (P, �k�i) the internal

value processed by the register operation rj
i when the input point is P and

the first i bits of k are equal to �k�i. Similarly, we denote by lji (P, �k�i) the
leakage corresponding to its manipulation. Using Nprof leakages from random
inputs (P q) and random scalars (kq), q ∈ [0, Nprof −1], we compute the Nprof ×
33 matrix A where the q-th line is the binary representation of rj

i (P
q, �kq�i)

appended with a constant 1. From A and the vector lji = (lji (P
q, �kq�i)), q ∈

[0, Nprof − 1] containing the Nprof leakages, we compute the linear basis b that
characterizes lji using Eq. 1 (where AT denotes the transpose of A):

b = (ATA)−1AT lji . (1)

Assuming that the noise follows a Gaussian distribution, the variance σ2 is
computed using a second set of traces (in order to avoid overfitting) as shown
by Eq. 2. Note that we assume independence between the noise and the value
processed by the register [28].

σ2 = (lji − Ab)T · (lji − Ab). (2)

From b and σ2, the probability that a leakage lji comes from the manipulation
of x by rj

i is then given by Eq. 3, where Nμ,σ2(l) denotes the evaluation in l of

542 R. Poussier et al.

the normal density function with mean μ and variance σ2, and (x)2 denotes the
binary decomposition of x appended with 1:

Pr
[
lji

∣∣∣ x
]

= N(x)2·b,σ2(lji). (3)

3.3 Information Combination

Now that we are able to identify and extract the information, we aim at com-
bining it to attack the scalar bits. As shown in Sect. 2, HDPA belong to the EP
class. In order to exploit the information on a specific bit, a hypothesis on the
values of the previous ones must be made.

From the knowledge of input P and the knowledge of the first i − 1 bits,
the likelihood that the bit i is equal to 1 (resp. 0) is computed by guessing all
the register values rj

i (P, �k�i−1||1) (resp. rj
i (P, �k�i−1||0) and combining their

likelihoods. Given the leakages li on the i-th bit, Eq. 4 gives the probability that
the leakages come from the first i − 1 bits being equal to �k�i−1 and the i-th bit
being equal to v ∈ {0, 1} (where || denotes the concatenation):

Pr
[
li

∣∣∣ �k�i = �k�i−1||v
]

=
N−1∏
j=0

Pr
[
lji

∣∣∣ rj
i (P, �k�i−1||v)

]
· (4)

This formula assumes that the leakages lji are independent (which simplifies
the profiling phase as we only consider univariate samples). While this assump-
tion may not be perfectly correct, we verified experimentally that considering
multivariate samples did not improve the efficiency of our attacks in the next
section, and therefore assume it to be sufficiently correct for simplicity. Extend-
ing this framework to attack k by chunks of d bits is straightforward. Given a d
bits hypothesis vector v, Eq. 5 extends the previous equation to attack d bits at
a time, where v|j denotes the j first elements of v:

Pr
[
li, ..., li+d−1

∣∣∣ �k�i+d−1 = �k�i−1||v
]

=
d−1∏
j=0

Pr
[
li+j

∣∣∣ �k�i−1||v|j
]
· (5)

When there is no ambiguity, we will refer to Pr
[
li, ..., li+d−1

∣∣∣ �k�i+d−1 =

�k�i−1||v
]

as Pr�k�i−1||v for readability reasons.

3.4 ECDH vs. ECDSA

In the rest of the paper we always assume that k is attacked by chunks of d bits.
For simplicity, we assume that nd = n

d ∈ N and we rewrite k = (k0, ...,knd−1)
being viewed as binary vectors of d elements.

A Systematic Approach to the Side-Channel Analysis 543

ECDH. In order to attack ECDH, the attacker has to recover the full scalar in
one trace. He starts by attacking the first d bits using Eq. 5. Using a leakage from
a known input, he computes the likelihoods Prv for all the 2d scalar hypotheses
v ∈ {0, 1}d. He then selects the hypothesis k∗

0 = argmaxv(Prv) that maximizes
the likelihood as being the correct guess. The following scalar guesses are selected
iteratively according the previous results as k∗

i = argmaxv(Prk∗
0 ||...||k∗

i−1||v), with
v ∈ {0, 1}d. The iterative process ends when the adversary has obtained a full
scalar hypothesis k∗ = (k∗

0, ...,k
∗
nd−1).

The attack trivially succeeds if k∗ = k, which corresponds to a 1-O SR. If
this is not the case, one can use computational power to mitigate the lack of
information by enumerating through the other paths [27]. In this study we only
look at the 1-O SR as our focus is on optimal information extraction (rather
than exploitation).

Eventually, the chunk size d is a parameter chosen by the adversary. It
increases the attack complexity exponentially in d, but allows increasing linearly
the amount of leakage samples exploited by the adversary.

ECDSA. As for ECDH, a potential strategy to attack the ECDSA scalar nonce
is to recover all its bits. Another option is to use the algebraic relation between
the nonce and the secret key. Using lattice techniques, one can attack the secret
key by recovering partial on the first d bits of several nonces. This strategy fails
if at least one of the nonces’ partial information is not recovered properly. As a
consequence, the attacker has to make sure that the d-bit partial information of
each nonce is correct. As the attack on the first d bits does not suffer from the
conditional dependencies, one can turn the previously estimated likelihoods into
true probabilities by applying Bayes’ theorem, as in Eq. 6. From these probabil-
ities, the adversary decides to ignore all the results having a probability lower

101 102
0

50

100

150

Number of known scalar bits (log)

N
u
m

b
er

o
f
re

q
u
ir

ed
si

g
n
a
tu

re
s

Fig. 3. Complexity of the lattice-based attack against ECDSA. Left: number of nonces
(y axis) needed when having d bits of partial information per nonce (x axis).

544 R. Poussier et al.

than a given threshold to maximize the success of the lattice attack.

Pr
[
k0 = v

∣∣∣ l0, ..., ld−1

]
=

Prv∑
v∗∈{0,1}d Prv∗

· (6)

To give more insight on the side-channel requirements of a lattice-based
attack against ECDSA, Fig. 3 shows how many nonces are needed (y axis) in
function of the partial information d (x axis). As we can see, the number of
required nonces decreases exponentially when d increases. It confirms the need
of being able to extract most of the information and to discard the wrong results
in a meaningful way. We use the fplll [15] library v4.0.4 with block sizes of 20
and 30 (only for 4 bits leaked case) to perform the experiments.

4 Experimental Results on Cortex-M4

In this section we apply previous systematic approach to attack ECC imple-
mentations in a 32-bit Cortex-M4 micro-controller. We first describe our imple-
mentation, device and the measurement setup. We then follow our evaluation
framework step by step and discuss experimental results.

4.1 Target Implementation

We implemented the finite field and elliptic curve arithmetic in assembly on both
chips. We chose the NIST P-256 curve [36]. Our attack framework is independent
of the choice of curve, as its only requirement is the regularity of the implemen-
tation. We thus focused on achieving constant time without optimizations. We
implemented the Montgomery ladder as described in Sect. 2.2 using Jacobian
coordinates. We used the addition and doubling formulas from Algorithms 2
and 3. The whole scalar multiplication runs in approximately 17,000,000 clock
cycles.

Field additions and subtractions are implemented in a straightforward man-
ner using carry additions and subtractions. Field multiplications are done using
the Long Integer Multiplication (LIM) followed by a modular reduction. More
details on the implementation can be found in eprint version of the paper, such
as a description of the assembly long integer multiplication.

4.2 Device and Setup

Our first target is a 32-bit ARM Cortex-M4 micro-controller from the atmel
SAM4C-EK evaluation kit3. It proceeds most instructions in constant time and
does not have any programs running in parallel that could disturb the signal.
Moreover, this micro-controller runs at 100 MHz which makes it a relatively easy
target for power acquisition.
3 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B cortex

m4 r0p0 trm.pdf http://www.atmel.com/tools/SAM4C-EK.aspx.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://www.atmel.com/tools/SAM4C-EK.aspx

A Systematic Approach to the Side-Channel Analysis 545

We monitored the voltage variation using a 4.7 Ω resistor inserted in the
supply circuit of the chip. We performed the trace acquisition using a Lecroy
WaveRunner HRO 66 ZI oscilloscope running at 200 megasamples per second.
For each scalar multiplication execution, we triggered the measurement at the
beginning of the execution and recorded the processing of the first 123 bits of
the scalar. Each trace contains 40,000,000 time samples and weighs 320,000,000
mega-bytes (written in double precision format).

Since the device does not suffer from any interruptions, the power traces are
directly used without any preprocessing.

4.3 Identifying and Extracting the Information

Among all the register operations ri available for a given bit, we target only the
higher 32-bit result of each umull and umaal instructions. This choice allows our
attack to remain implementation-independent (since those intermediate results
will indeed appear in most implementations). As shown by the doubling and
addition formulas in Sect. 2.2, an addition plus a doubling consist in 25 field
multiplications (the curve uses a = −3, thus the multiplication by a is done
using subtractions). Each field multiplication itself consists in 64 32-bits register
multiplications. As a result, we attack the implementation using N = 25 × 64 =
1, 600 leakage samples per scalar bit.

In order to efficiently identify the time positions of the corresponding registers
rj
i , we use the unprofiled correlation and partial SNR described below. They

exploit a set of Npoi = 8, 000 traces l acquired using random known inputs (P q)
and scalars (kq), q ∈ [0, Npoi−1]. We denote by l[t] vector of size Npoi containing
the Npoi leakages of the t-th time sample of each trace.

Unprofiled Correlation. Given the Npoi internal values rji = rj
i (P

q, �kq�i)
and a leakage model M, we apply the Pearson’s correlation ρ on each time sam-
ple. That is, we compute ρ(M(rji), l[t]), t ∈ [0; 40, 000, 000]. We used the Ham-
ming weight function for M. The time sample showing the highest correlation is
selected as the time sample of rj

i . The disadvantage of using unprofilied corre-
lation for the POI research is the requirement of a leakage model. However, it
allows using the information from the full 32 bits of the internal values rji .

Partial Signal to Noise Ratio (SNR). Computing the standard SNR is not
suitable to identify a specific register as any bijective relation between two reg-
isters will make them impossible to distinguish. Moreover, a 32-bit SNR would
require more than 232 leakages samples in the case of our 32-bit devices. Using
partial SNR allows avoiding these issues at the cost of a controlled information
lost. For this purpose, the 32-bit values of rji are first truncated to x bits. Each
trace is then labeled according to its truncated value and split into 2x sets Si.
For each time sample, the partial SNR is finally computed as var(mean(Si))

mean(var(Si))
where

var and mean respectively denote the sample variance and mean functions. The

546 R. Poussier et al.

time sample showing the highest SNR ratio is selected as the time sample of
rj
i . While partial SNR does not rely on a leakage model, it suffers from algo-

rithmic noise because of the truncation process (which reduces the information
exploited). That is, since the remaining 32 − x bits are not taken into account
when creating the sets Si, the actual signal is reduced. However, ignoring the
value of this remaining bits allows avoiding the bijection issue. In order to illus-
trate the bijection issue, one can take the AES as an example. Computing the
full SNR related to the plaintext m XORed with the key k doesn’t allow dif-
ferentiating whether we are before or after the S-box computation. This means
an SNR spike will be exhibited for both x ⊕ k and S(m ⊕ k), where S denotes
the AES S-box. However, computing a partial SNR on e.g. only 4 bits of x ⊕ k
instead of the 8 bits will break the bijection between the input and the output
of the S-Box. As a result, it will allow discriminating between the input and the
output of the S-box in the partial SNR spike.

Optimizations. Applying one of these two methods on the full trace for all
rj
i ’s is very time consuming as we have 123×1, 600 registers to characterize over

40,000,000 time samples. However, we know that the time order of the register
is (r00, ..., r

N−1
0 , r01, ...r

j
i , ...r

N−1
n−1). Using that knowledge, we can first search r00

among the first W time samples. Using correlation, we select r00’s position by
computing a p-value with a threshold of 5 [17]. If r00 has not been found, we
move the window to the next W time samples and repeat this process until r00 is
found. Once this temporal location is found, we search r10 similarly, by setting the
initial offset of the window at r00. This process is iterated until all the registers
are found. We set the window value W to 20,000, chosen to be slightly higher
than 40,000,000

123×25 (the time samples divided by the number of field multiplications).

Extraction. Once the temporal locations of all the registers are found, we
apply linear regression on each of them to extract the information as described
in Sect. 3.2, using a set of Nprof = 10, 000 traces. Note that for this simple
device, the leakage model was found to be close to Hamming weight and the
linear leakage model is not expected to cause a significant information loss.
Yet, the formal analysis of this statement with leakage certification tools is an
interesting scope for further research [18,19].

4.4 Information Combination

Using the maximum likelihood approach of Sect. 3.3, we attack the first 123 bits
of the Cortex-M4 implementation with the 1-O SR described in Sect. 3.4. We
used a new set of traces that has not been used to identify nor to extract the
information for this purpose. As a first experiment, we compute the success rate
of recovering the 123 bits using all the information. Secondly, we simulate an
implementation with less information by reducing the number N of register per
scalar bit. In that case, we study how using computational power by increasing

A Systematic Approach to the Side-Channel Analysis 547

the chunk’s size d can mitigate the lack of information. Finally, we study how
the number N of informative registers impacts the success rate of the attack.

Our first experiment is to look at the success rate using all the information.
In that case we have N = 1, 600 registers per scalar bit. We achieved a success
rate of 0.85 using a chunk’s size of 1 bit. It shows that such a device would
require much more algorithmic noise to be protected against worst case attacks
(e.g. using random delays, shuffling...).

As using all the information allows recovering all the 123 bits with a high
success rate, we next simulate a less informative implementation by using N =
600. In such a case, increasing the chunk size d is an option to increase success
rate. As stated in Sect. 3.4, the number of points of interest increases linearly
with the size of d at the cost of an exponential time complexity increase. Figure 4
shows the impact of the chunk size on the success rate. As we can see, the success
rate increases linearly with d. We also see that the slope of the curve is lower
than 1. This is explained by the fact that the number of points of interest for
the bits of indexes (0, 1, ..., d−1) of each chunk is equal to (dN, (d−1)N, ..., N).
That is, only the first chunk’s bit fully benefits from increasing d, while the last
one does not get any improvement.

As a last experiment, we study the impact of the number of target register N
on the success rate. Figure 5 shows the evolution of the success rate in function
of N for different values of d. Independently of d, the success rate increases
exponentially with N .

From these experiments, we conclude that as general in side-channel analysis,
the information extraction phase of the attacks is the most critical one, since it
is the one causing the exponential security loss. Computational power can then
be used as a useful (sometimes necessary) complementary ingredient to mitigate
a possible lack of information.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Chunk size d

1
-O

su
cc

es
s

ra
te

N = 600

Fig. 4. First-order success rate of the 123-bit recovery on the Cortex-M4 depending on
the chunk size d for different N = 600.

548 R. Poussier et al.

200 400 600 800 1,000 1,200 1,400 1,600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number N of POI per scalar bit

1
-O

su
cc

es
s

ra
te

d = 1

d = 2

d = 3

d = 4

Fig. 5. first-order success rate of the 123-bit recovery on the Cortex-M4 depending on
the number of poi N for different values of d.

5 Experimental Results on Cortex-A8

In this section we show the attack results on the Cortex-A8 micro-controller.
As in the previous section, we first describe the device and measurement setup.
We then show the application of the framework against this target along with
the results. The scalar multiplication is implemented the same way in Jacobian
coordinates as described in Sect. 4.1.

5.1 Device and Setup

Our second target is a 32-bit AM335x 1GHz ARM Cortex-A8 linux-based single
board computer4. As opposed to the previous target, this one is way more chal-
lenging [1,29]. As it is running a full version of Ubuntu 14.04 and more than 100
processes are running in the background while we execute our assembly Mont-
gomery ladder scalar multiplication implementation via SSH from the host PC.
The CPU has instruction cache and 13-stage ARM pipeline, all those factors
introduce a lot of noise and interruptions. Moreover, the high (1 GHz) frequency
also add more obstacles in terms of side channel measurements.

We measured the EM emission using a Langer HV100-27 magnetic near field
probe. As in [1,29], we got the best EM signal when the probe is around the
capacitor C65. During the measurements, we set the CPU frequency to the
highest 1 GHz and the CPU frequency governor to ‘Performance’. We measured
the EM traces using a Lecroy WaveRunner 620Zi oscilloscope at a sampling
rate of 10 GS/s. For each scalar multiplication execution, we also triggered the
measurement at the beginning of the execution and recorded the processing of the
first 4 bits of the scalar, so that each trace contains 2,000,000 sample points. As
mentioned in [1,29], the traces contain long interruptions that randomly appear
4 http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K cortex

a8 r3p2 trm.pdf https://beagleboard.org/black.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0344k/DDI0344K_cortex_a8_r3p2_trm.pdf
https://beagleboard.org/black

A Systematic Approach to the Side-Channel Analysis 549

due to the Linux system. We eliminated these interruptions by running the
program with the “nohup” command via SSH without any elevating techniques.
While this technique removes the big interruptions, the traces still contain many
smaller ones.

5.2 Preprocessing

In order to deal with the small interruptions, the traces have to be preprocessed.
The overall synchronization iterates over three steps. The first one consists in
synchronizing the traces around a particular field multiplication. The second
step is to cut the traces around the synchronized area into slices. Finally, each
slice is added to the set of preprocessed traces by concatenation. These three
steps are repeated for each field multiplication.

Synchronization. While the last two steps of the preprocessing are straightfor-
ward, the synchronization part deserves more insight. We use a correlation-based
alignment method to synchronize the EM traces per field multiplication opera-
tion. This method works in three steps that are depicted in Fig. 6. The left (resp.
right) part of the figure shows the traces before (resp. after) synchronization.

– Firstly, a searching interval A that contains the operation to be synchronized
is selected among all the traces. This is shown by the red window.

– Secondly, a second smaller reference interval Bq specific to each trace q is
chosen, shown by the yellow window on the three traces in Fig. 6(a).

– For each trace, we finally find the portion to be synchronized by using the
second window Bq to search over the whole interval A. The right portion
is selected as the one having the maximum correlation with the reference
interval. If the correlation is lower than a given threshold (arbitrarily chosen
by the attacker), the trace is assumed not good enough and is thus discarded.

(a) Before alignment (b) After alignment

Fig. 6. Three EM traces before and after alignment

550 R. Poussier et al.

Once the traces are synchronized, we identify and extract the information the
same way as in the previous section on the Cortex-M4 with a different number
of traces. We used Npoi = Nprof = 100, 000 traces to both identify and extract
the information. As will be clear next, a linear leakage model was sufficient to
obtain positive results even for this more challenging device. However, as in the
previous section, analyzing the quality of this model with leakage certification
tools would certainly be worth further investigations.

5.3 Information Combination

As for the experiment on the Cortex-M4, we use the maximum likelihood app-
roach of Sect. 3.3 to attack the first 4 bits of the Cortex-A8 implementation. This
time, we assume we are attacking an ECDSA secret key and use the probabilistic
approach of Sect. 3.4 on ECDSA. We used a new set of 2,200 traces that has not
been used to identify nor to extract the information.

Our first experiment simply looks at the 1-O SR. In that case, we recovered
the 4 bits with a success rate of 0.8155. As shown by Fig. 3, we know that 140
ECDSA nonces are required to recover the secret key with 4 bits of partial
information. As no error on the partial information is tolerated, the success rate
of the key recovery is equal to 0.8155140 ≈ 3.9 · 10−13. This confirms the strong
need of a sound way to discriminate the wrong results.

Motivated by this first experiment, we next studied how we can automati-
cally remove the wrong attack results. This is achieved by setting a probability
threshold under which some attack traces will be discarded. That is, an attack
trace is considered as invalid if the probability given by formula 6 for the most
likely partial nonce after the attack is below a given threshold. Intuitively, the
higher the threshold is, the more confident we are in having a successful partial
nonce recovery, which comes at the cost of increasing the number of discarded
attack traces. Table 1 shows how the success rate evolves in function of the prob-
ability threshold over the 2,200 attack traces. As we can see, using a threshold

Table 1. Evolution of the ECDSA scalar and key recovery success rate in function of
the threshold.

Threshold Scalar 1-O SR Key 1-O SR # discarded result # remaining result

0.5 0.8174349612 3.9 · 10−13 9 2,191

0.75 0.8462296698 5.5 · 10−13 171 2,029

0.9 0.8680042239 2.5 · 10−9 306 1,894

0.99 0.9025578563 5.8 · 10−7 558 1,642

0.9999 0.956596 0.002 1,025 1,175

0.99999 0.980366 0.062 1,235 965

0.9999999 0.991708 0.312 1,597 613

0.999999999 0.9942363112 0.445 1,853 347

0.9999999999 1 1 1,958 242

A Systematic Approach to the Side-Channel Analysis 551

of 0.5 does not discard much results and thus does not increase the probability
to recover the ECDSA secret key. However, the first-order success rate increases
when setting a higher probability threshold. We finally achieve a perfect success
rate using a threshold of 0.9999999999. Using this value, 1,958 of the attack
results were discarded, thus keeping 242 of them. As only 140 correct scalars are
needed to recover the ECDSA secret key, we achieve a success rate of 1.

6 Conclusion

This paper provides a generic evaluation framework for HDPA against scalar
multiplication algorithms, instantiates it with state of the art tools for pre-
processing, POI detection, profiling and information extraction, and applies it
to concrete implementations reflective of the variety of targets that can be used
for embedded cryptographic applications. In view of the limited experimental
reports available on the topic, we hope these implementation and systematiza-
tion efforts can be used to clarify the practicality of such advanced attacks in
practice, even against challenging targets running at high clock frequencies, and
therefore argue for their integration as a part of current certification practices.

From a designer’s point of view, our results also highlight that implementa-
tions of scalar multiplications on commercial platforms with scalar randomiza-
tion activated are generally at risk, in view of the huge amount of informative
samples such implementations provide. Straightforward solutions to improve this
situation include performance optimizations (since implementations with less
cycles inevitably leak less to the horizontal adversary) and the addition of noise.
Yet, our analysis of an ARM Cortex-A8 running at 1 GHz (a presumably noisy
target) suggests that this may not be enough. In this respect, the systematic
implementation of point randomization seems strictly necessary to reach high
security levels, the evaluation of which (with a systematic evaluation framework
as we described in this paper) is an interesting scope for further research, in
order to better assess its worst-case security.

Acknowledgements. François-Xavier Standaert is a research associate of the Belgian
Fund for Scientific Research. This work has been funded in parts by the European
Commission through the H2020 project 731591 (acronym REASSURE) and the ERC
project 724725 (acronym SWORD). Yuanyuan Zhou would like to thank Brightsight
management board for the support and his colleagues for fruitful discussions.

References

1. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293,
pp. 599–619. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48324-4 30

2. Batina, L., Chmielewski, �L., Papachristodoulou, L., Schwabe, P., Tunstall, M.:
Online template attacks. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 21–36. Springer, Cham (2014). doi:10.1007/
978-3-319-13039-2 2

http://dx.doi.org/10.1007/978-3-662-48324-4_30
http://dx.doi.org/10.1007/978-3-319-13039-2_2
http://dx.doi.org/10.1007/978-3-319-13039-2_2

552 R. Poussier et al.

3. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-
channel attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 1

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack
on elliptic curves. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 553–570. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43414-7 28

5. Benger, N., Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”: a
small amount of side channel can go a long way. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 5

6. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive,
2015:221 (2015)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

9. Chen, C.-N.: Memory address side-channel analysis on exponentiation. In: Lee, J.,
Kim, J. (eds.) ICISC 2014. LNCS, vol. 8949, pp. 421–432. Springer, Cham (2015).
doi:10.1007/978-3-319-15943-0 25

10. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-34931-7 9

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal cor-
relation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17650-0 5

12. Clavier, C., Joye, M.: Universal exponentiation algorithm a first step towards
Provable SPA-resistance. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES
2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001). doi:10.1007/
3-540-44709-1 25

13. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

14. Danger, J.-L., Guilley, S., Hoogvorst, P., Murdica, C., Naccache, D.: Improving
the big mac attack on elliptic curve cryptography. In: Ryan, P.Y.A., Naccache,
D., Quisquater, J.-J. (eds.) The New Codebreakers. LNCS, vol. 9100, pp. 374–386.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49301-4 23

15. The FPLLL development team. fplll, a lattice reduction library (2016).https://
github.com/fplll/fplll

16. Dugardin, M., Papachristodoulou, L., Najm, Z., Batina, L., Danger, J.-L., Guilley,
S.: Dismantling real-world ECC with horizontal and vertical template attacks. In:
Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 88–108.
Springer, Cham (2016). doi:10.1007/978-3-319-43283-0 6

http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-642-36095-4_1
http://dx.doi.org/10.1007/978-3-662-43414-7_28
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-319-15943-0_25
http://dx.doi.org/10.1007/978-3-642-34931-7_9
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-44709-1_25
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/978-3-662-49301-4_23
https://github.com/fplll/fplll
https://github.com/fplll/fplll
http://dx.doi.org/10.1007/978-3-319-43283-0_6

A Systematic Approach to the Side-Channel Analysis 553

17. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

18. Durvaux, F., Standaert, F.-X., Pozo, S.M.D.: Towards easy leakage certification:
extended version. J. Cryptograph. Eng. 7(2), 129–147 (2017)

19. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 26

20. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

21. Hanley, N., Kim, H.S., Tunstall, M.: Exploiting collisions in addition chain-
based exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-
RSA 2015. LNCS, vol. 9048, pp. 431–448. Springer, Cham (2015). doi:10.1007/
978-3-319-16715-2 23

22. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromag-
netic analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA
2012. LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-27954-6 15

23. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography — an algebraic approach —. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001).
doi:10.1007/3-540-44709-1 31

24. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 22

25. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

26. Kocher, P.C., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power
analysis. J. Cryptograph. Eng. 1(1), 5–27 (2011)

27. Lange, T., Vredendaal, C., Wakker, M.: Kangaroos in side-channel attacks. In:
Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 104–121. Springer,
Cham (2015). doi:10.1007/978-3-319-16763-3 7

28. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS,
vol. 9064, pp. 20–33. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4 2

29. Longo, J., Mulder, E., Page, D., Tunstall, M.: SoC It to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48324-4 31

30. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in paral-
lel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 13

31. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-00306-6 2

http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-642-55220-5_26
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-319-16715-2_23
http://dx.doi.org/10.1007/978-3-319-16715-2_23
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/978-3-642-27954-6_15
http://dx.doi.org/10.1007/3-540-44709-1_31
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-319-16763-3_7
http://dx.doi.org/10.1007/978-3-319-21476-4_2
http://dx.doi.org/10.1007/978-3-662-48324-4_31
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-642-00306-6_2

554 R. Poussier et al.

32. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 14

33. Nascimento, E., Chmielewski, L., Oswald, D., Schwabe, P.: Attacking embed-
ded ECC implementations through cmov side channels. IACR Cryptology ePrint
Archive, 2016:923 (2016)

34. Nguyen, P.Q., Shparlinski, I.E.: The insecurity of the elliptic curve digital signature
algorithm with partially known nonces. Des. Codes Crypt. 30(2), 201–217 (2003)

35. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and Rank Esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 4

36. NIST FIPS PUB. 186–2: Digital signature standard (dss). National Institute for
Standards and Technology (2000)

37. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

38. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

39. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT
2013. LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 8

40. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001). doi:10.1007/3-540-44709-1 24

http://dx.doi.org/10.1007/3-540-48059-5_14
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/3-540-44709-1_24

Sliding Right into Disaster:
Left-to-Right Sliding Windows Leak

Daniel J. Bernstein2(B), Joachim Breitner3(B), Daniel Genkin3,4(B),
Leon Groot Bruinderink1(B), Nadia Heninger3(B), Tanja Lange1(B),

Christine van Vredendaal1(B), and Yuval Yarom5(B)

1 Technische Universiteit Eindhoven, Eindhoven, Netherlands
{L.Groot.Bruinderink,c.v.vredendaal}@tue.nl, tanja@hyperelliptic.org

2 University of Illinois at Chicago, Chicago, USA
djb@cr.yp.to

3 University of Pennsylvania, Philadelphia, USA
{joachim,danielg3,nadiah}@cis.upenn.edu
4 University of Maryland, College Park, USA

5 University of Adelaide and Data61, CSIRO, Adelaide, Australia
yval@cs.adelaide.edu.au

Abstract. It is well known that constant-time implementations of
modular exponentiation cannot use sliding windows. However, software
libraries such as Libgcrypt, used by GnuPG, continue to use sliding win-
dows. It is widely believed that, even if the complete pattern of squarings
and multiplications is observed through a side-channel attack, the num-
ber of exponent bits leaked is not sufficient to carry out a full key-recovery
attack against RSA. Specifically, 4-bit sliding windows leak only 40% of
the bits, and 5-bit sliding windows leak only 33% of the bits.

In this paper we demonstrate a complete break of RSA-1024 as imple-
mented in Libgcrypt. Our attack makes essential use of the fact that
Libgcrypt uses the left-to-right method for computing the sliding-window
expansion. We show for the first time that the direction of the encod-
ing matters: the pattern of squarings and multiplications in left-to-right
sliding windows leaks significantly more information about the exponent
than right-to-left. We show how to extend the Heninger-Shacham algo-
rithm for partial key reconstruction to make use of this information and
obtain a very efficient full key recovery for RSA-1024. For RSA-2048 our
attack is efficient for 13% of keys.

Keywords: Left-to-right sliding windows · Collision entropy · Cache
attack · Flush+Reload · RSA-CRT

1 Introduction

Modular exponentiation in cryptosystems such as RSA is typically performed
starting from the most significant bit (MSB) in a left-to-right manner. More
efficient implementations use precomputed values to decrease the number of
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 555–576, 2017.
DOI: 10.1007/978-3-319-66787-4 27

556 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

multiplications. Typically these windowing methods are described in a right-to-
left manner, starting the recoding of the exponent from the least significant bit
(LSB), leading to the potential disadvantage that the exponent has to be parsed
twice: once for the recoding and once of the exponentiation.

This motivated researchers to develop left-to-right analogues of the integer
recoding methods that can be integrated directly with left-to-right exponentia-
tion methods. For example, the only method for sliding-window exponentiation
in the Handbook of Applied Cryptography [16, Chap. 14.6] is the left-to-right
version of the algorithm. Doche [7] writes “To enable ‘on the fly’ recoding, which
is particularly interesting for hardware applications” in reference to Joye and
Yen’s [14] left-to-right algorithm.

Given these endorsements, it is no surprise that many implementations chose
a left-to-right method of recoding the exponent. For example, Libgcrypt imple-
ments a left-to-right exponentiation with integrated recoding. Libgcrypt is part
of the GnuPG code base [2], and is used in particular by GnuPG 2.x, which is a
very popular implementation of the OpenPGP standard [6] for applications such
as encrypted email and files. Libgcrypt is also used by various other applications;
see [1] for a list of frontends.

It is known that exponentiation using sliding-window methods leaks infor-
mation, specifically the pattern of squarings and multiplications, through cache-
based side-channel attacks. However, it is commonly believed that for window
width w only about a fraction 2/(w + 1) bits would leak: each window has 1 bit
known to be 1, and each gap has on average 1 bit known to be 0, compared to
w + 1 bits occupied on average by the window and the gap.

Libgcrypt 1.7.6, the last version at the time of writing this paper, resists the
attacks of [9,15], because the Libgcrypt maintainers accepted patches to protect
against chosen-ciphertext attacks and to hide timings obtained from loading
precomputed elements. However, the maintainers refused a patch to switch from
sliding windows to fixed windows; they said that this was unnecessary to stop
the attacks. RSA-1024 in Libgcrypt uses the CRT method and w = 4, which
according to the common belief reveals only 40% of all bits, too few to use the
key-recovery attack [11] by Heninger and Shacham. RSA-2048 uses CRT and
w = 5, which according to the common belief reveals only 33% of all bits.

1.1 Contributions

In this paper we show that the common belief is incorrect for the left-to-right
recoding: this recoding actually leaks many more bits. An attacker learning
the location of multiplications in the left-to-right squarings-and-multiplications
sequence can recover the key for RSA-1024 with CRT and w = 4 in a search
through fewer than 10000 candidates for most keys, and fewer than 1000000
candidates for practically all keys. Note that RSA-1024 and RSA-1280 remain
widely deployed in some applications, such as DNSSEC. Scaling up to RSA-2048
does not stop our attack: we show that 13% of all RSA-2048 keys with CRT and
w = 5 are vulnerable to our method after a search through 2000000 candidates.

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 557

We analyze the reasons that left-to-right leaks more bits than right-to-left
and extensive experiments show the effectiveness of this attack. We further
improve the algorithm by Heninger and Shacham to make use of less readily
available information to attack RSA-2048, and prove that our extended algo-
rithm efficiently recovers the full key when the side channel leaks data with a
self-information rate greater than 1/2.

0.35 0.4 0.45 0.5 0.55 0.6 0.65

Distribution of information recovered (w = 4)

right-to-left

left-to-right (known bits)

left-to-right (self-information)

Fig. 1. The sequence of squares and multiplies of left-to-right windowed exponentiation
contains much more information about the exponent than from exponentiation in the
other direction, both in the form of known bits (red) and information-theoretic bits
(green). Recovering close to 50% of the information about the key allows an efficient
full key recovery attack. (Color figure online)

To illustrate the real-world applicability of this attack, we demonstrate how
to obtain the required side-channel data (the pattern of squarings and multi-
plications) from the modular-exponentiation routine in Libgcrypt version 1.7.6
using a Flush+Reload [24,25] cache-timing attack that monitors the target’s
cache-access patterns. The attack combines a small number of traces (at most 20)
using the same secret RSA key, and does not depend on further front end details.

1.2 Targeted Software and Current Status

Software and Hardware. We target Libgcrypt version 1.7.6, which is the
latest version at the time of writing this paper. We compiled Libgcrypt using
GCC version 4.4.7 and the -O2 optimization level. We performed the attack
on an HP-Elite 8300 desktop machine, running Centos 6.8 with kernel version
3.18.41-20. The machine has a 4-core Intel i5-3470 processor, running at 3.2 GHz,
with 8 GiB of DDR3-1600 CL-11 memory.

Current Status. We have disclosed this issue to the Libgcrypt maintainers and
are working with them to produce and validate a patch to mitigate our attack.
The vulnerability has been assigned CVE-2017-7526. A new version of Libgcrypt
will be released simultaneously with the publication of this paper.

558 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

2 Preliminaries

2.1 RSA-CRT

RSA signature key generation is done by generating two random primes p, q.
The public key is then set to be (e,N) where e is a (fixed) public exponent and
N = pq. The private key is set to be (d, p, q) where ed ≡ 1 (mod φ(n)) and
φ(n) = (p − 1)(q − 1). RSA signature of a message m is done by computing
s = h(m)d mod N where h is a padded cryptographically secure hash function.
Signature verification is done by computing z = se mod N and verifying that z
equals h(m). A common optimization for RSA signatures is based on the Chinese
Remainder Theorem (CRT). Instead of directly computing s = h(m)d mod N
directly, the signer computes sp = h(m)dp mod p, sq = h(m)dq mod q (where dp
and dq are derived from the secret key) and then combines sp and sq into s using
the CRT. The computations of sp and sq work with half-size operands and have
half-length exponents, leading to a speedup of a factor 2 − 4.

2.2 Sliding Window Modular Exponentiation

In order to compute an RSA signature (more specifically the values of sp and
sq defined above), two modular exponentiation operations must be performed.
A modular exponentiation operation gets as inputs base b, exponent d, and
modulus p and outputs bd mod p. A common method used by cryptographic
implementations is the sliding window method, which assumes that the exponent
d is given in a special representation, the windowed form. For a window size
parameter w, the windowed form of d is a sequence of digits dn−1 · · · d0 such
that d =

∑n−1
i=0 di2i and di is either 0 or an odd number between 1 and 2w − 1.

Algorithm 1 performs the sliding window exponentiation method, assuming
that the exponent is given in a windowed form, in two steps: It first precomputes
the values of b1 mod p, b3 mod p, · · · , b2

w−1 mod p for odd powers of b. Then,
the algorithm scans the digits of d from the most significant bit (MSB) to the
least significant bit (LSB). For every digit, the algorithm performs a squaring
operation (Line 6) on the accumulator variable a. Finally, for every non-zero
digit of d, the algorithm performs a multiplication (Line 8).

2.3 Sliding Window Conversion

The representation of a number d in (sliding) windows is not unique, even for
a fixed value of w. In particular, the binary representation of d is a valid win-
dow form. However, since each non-zero digit requires a costly multiplication
operation, it is desirable to reduce the number of non-zero digits in d’s sliding
windows.

Right-to-Left Sliding Windows. One approach to computing d’s sliding win-
dows (with fewer of non-zero digits) scans d’s binary representation from the least
significant bit (LSB) to the most significant bit (MSB) and generates d’s sliding

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 559

Algorithm 1. Sliding window modular exponentiation.
Input: Three integers b, d and p where dn · · · d1 is a windowed form of d.
Output: a ≡ bd (mod p).
1: procedure mod exp(b, d, p)
2: b1 ← b, b2 ← b2 mod p, a ← 1
3: for i ← 1 to 2w−1 − 1 do � precompute table of small powers of b
4: b2i+1 ← b2i−1 · b2 mod p

5: for i ← n to 1 do
6: a ← a · a mod p
7: if di �= 0 then
8: a ← a · bdi mod p

9: return a
10: end procedure

windows from the least significant digit (right) to the most significant digit (left).
For every clear bit, a zero digit is appended to the left of the windowed form.
For each set bit, a non-zero digit is appended whose value is the w-bit integer
ending at the current bit. The next w − 1 digits in the windowed form are set
to be zero digits. The scan resumes from the leftmost bit unused so far. Finally,
any leading zeroes in the window form are truncated.

For example, let w = 3, and d = 181, which is 1 0 1 1 0 1 0 1 in binary. The
windows are underlined. This yields the sliding window form 10030005.

Left-to-Right Windowed Form. An alternative approach is the left-to-right
windowed form, which scans the bits of d the most to least significant bit and the
windowed form is generated from the most significant digit to the least significant
one. Similar to the right-to-left form, for every scanned clear bit a zero digit is
appended to the right of the windowed form. When a set bit is encountered, since
we require from digits to be odd, the algorithm cannot simply set the digit to
be the w-bit integer starting at the current bit. Instead, it looks for the longest
integer u that has its most significant bit at the current bit, terminates in a set
bit, and its number of bits k is at most w bits long. The algorithm sets the next
k − 1 digits in the windowed form to be zero, sets the subsequent digit to be u
and resumes the scan from the next bit unused so far. As before, leading zeroes
in the sliding window form are truncated.

Using the d = 181 and w = 3 example, the left-to-right sliding windows are
1 0 1 1 0 1 0 1 and the corresponding windowed form is 500501

Left-to-Right vs. Right-to-Left. While both the methods produce a win-
dowed form whose average density (the ratio between the non-zero digits and
the total form length) is about 1/(w + 1), generating the windowed form using
the right-to-left method guarantees that every non-zero digit is followed by at
least w − 1 zero digits. This is contrast to the left-to-right method, where two
non-zero digits can be as close as adjacent. As explained in Sect. 3, such consec-
utive non-zero digits can be observed by the attacker, aiding key recovery for
sliding window exponentiations using the left-to-right windowed form.

560 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

Algorithm 2. Left-to-right sliding window modular exponentiation.
Input: Three integers b, d and p where dn · · · d1 is the binary representation of d.
Output: a ≡ bd (mod p).
1: procedure mod exp(b, d, p)
2: b1 ← b, b2 ← b2, a ← 1, z ← 0
3: for i ← 1 to 2w−1 − 1 do � precompute table of small odd powers of b
4: b2i+1 ← b2i−1 · b2 mod p

5: i ← n
6: while i �= 1 do � main loop for computing bd mod p
7: z ← z + count leading zeros(di · · · d1)
8: i ← i − z � i is the leftmost unscanned set bit of d
9: l ← min(i, w)

10: u ← di · · · di−l+1

11: t ← count trailing zeros(u)
12: u ← shift right(u, t) � remove trailing zeroes by shifting u to the right
13: for j ← 1 to z + l − t do
14: a ← a · a mod p

15: a ← a · bu mod p � notice that u is always odd
16: i ← i − l
17: z ← t
18: return a
19: end procedure

2.4 GnuPG’s Sliding Window Exponentiation

While producing the right-to-left sliding window form requires a dedicated
procedure, the left-to-right form can be generated “on-the-fly” during the
exponentiation algorithm, combining the generation of the expansion and the
exponentiation itself in one go. Consequently, the left-to-right sliding window
form [16, Algorithm 14.85], shown in Algorithm2, is the prevalent method used
by many implementations, including GnuPG.

Every iteration of the main loop (Line 6) constructs the next non-zero digit
u of the windowed from by locating the location i of leftmost set bit of d which
was not previously handled (Line 8) and then removing the trailing zeroes from
di · · · di−w+1. It appends the squaring operations needed in order to handle the
zero windowed form digits preceding u (Line 13) before performing the multipli-
cation operation using u as the index to the precomputation table (thus handling
u), and keeping track of trailing zeroes in z.

3 Sliding Right Versus Sliding Left Analysis

In this section, we show how to recover some bits of the secret exponents, assum-
ing that the attacker has access to the square-and-multiply sequence performed
by Algorithm 2. We show that more bits can be found by applying this app-
roach to the square-and-multiply sequence of the left-to-right method compared
to that of the right-to-left method. At high level, our approach consists of two

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 561

main steps. In the first step, we show how to directly recover some of the bits of
the exponent by analyzing the sequence of squaring and multiplication opera-
tions performed by Algorithm2. This step shows that we are capable of directly
recovering an average of 48% of the bits of dp and dq for 1024-bit RSA with
w = 4, the window size used by Libgcrypt for 1024-bit RSA. However, the num-
ber of remaining unknown bits required for a full key recovery attack is still too
large to brute force. In Sect. 3.4 we show that applying a modified version of the
techniques of [11] allows us to recover the remaining exponent bits and obtain
the full private key, if at least 50% of the bits are recovered.

3.1 Analyzing the Square and Multiply Sequence

Assume the attacker has access to the sequence S ∈ {s,m}∗ corresponding
to the sequence of square and multiply operations performed by Algorithm2
executed on some exponent d. Notice that the squaring operation (Line 13) is
performed once per bit of d, while the multiplication operation is performed
only for some exponent bits. Thus, we can represent the attacker’s knowledge
about S as a sequence s ∈ {0, 1, 1, x, x}∗ where 0, 1 indicate known bits of d, x
denotes an unknown bit and the positions of multiplications are underlined. For
y ∈ {0, 1, 1, x, x} we denote by yi the i-times repetition of y times.

Since at the start of the analysis all the bits are unknown, we convert S to the
sequence s as follows: every sm turns into a x, all remaining s into x. As a running
example, the sequence of squares and multiplies S = smsssssssmsmsssssm is
converted into D1 = xxxxxxxxxxxxxx.

To obtain bits of d from S1, the attacker applies the rewrite rules in Fig. 2.

Fig. 2. Rules to deduce known bits from a square-and-multiply sequence

Rule 0: Multiplication bits. Because every digit in the windowed form is odd,
a multiplication always happens at bits that are set.

Applied to D1 we obtain D2 = 1xxxxxx11xxxx1.

Rule 1: Trailing zeros. The algorithm tries to include as many set bits as
possible in one digit of the windowed form. So when two multiplications are
fewer than w bits apart, we learn that there were no further set bits available to
include in the digit corresponding to the second multiplication. Rule 1 sets the
following bits to zero accordingly.

Applied to D2 we obtain D3 = 1xxxxxx11000x1.

562 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

Rule 2: Leading one. If we find two immediately consecutive multiplications,
it is clear that as the algorithm was building the left digit, there were no trailing
zeroes in u = di · · · di−l+1, i.e. t = 0 in Line 11. This tells us the precise location
of di, which we know is set.

Applied to D3 we obtain D4 = 1xxx1xx11000x1.

Rule 3: Leading zeroes. Every set bit of d is included in a non-zero digit of
the windowed form, so it is at most w − 1 bits to the left of a multiplication. If
two consecutive multiplications are more than w bits apart, we know that there
are zeroes in between.

Applied to D4 we obtain D5 = 10001xx11000x1.

Larger Example. Consider the bit string

0100001111100101001100110101001100001100011111100011100100001001.

The corresponding sequence of square and multiply operations (using w = 4)
evolves as follows as we apply the rules:
xx
x1xxxxxxx1xxx1xxxx1xxx1xx1xxxx11xxxxx1xxxxxx1x1xxxxx1xx1xxxxxxx1
x100xxxxx1xxx1xxxx1xxx1xx10xxx11000xx10xxxxx1x100xxx1xx10xxxxxx1
x100xxxxx1xxx1xxxx1xxx1xx101xx11000xx10xxxxx1x100xxx1xx10xxxxxx1
x10000xxx1xxx10xxx1xxx1xx101xx11000xx1000xxx1x100xxx1xx10000xxx1.

Out of the 64 bits, 34 become known through this analysis.

Iterative Application. The previous examples shows that by applying rules
iteratively, we can discover a few more bits. In particular, for a window where a
leading one is recovered (Rule 2), one may learn the leading bit of the preceding
window. Iterating Rule 2 in the example above gives 3 more known leading bits:

x10000xxx1xxx101xx11xx11x101xx11000xx1000xxx1x100xxx1xx10000xxx1.

This iterative behavior is hard to analyze and occurs rarely in practice. There-
fore the following analysis disregards it. Note that the algorithm of Sect. 3.4 does
use the additional bits.

3.2 Analyzing Recovery Rules

In this section we analyze the number of bits we are theoretically expected to
recover using Rules 0–3 described in the previous section. The analysis applies
to general window size w and the bit string length n.

Renewal processes with rewards. We model the number of bits recovered as
a renewal reward process [21]. A renewal process is associated with interarrival
times X = (X1,X2, . . .) where the Xi are independent, identically distributed
and non-negative variables with a common distribution function F and mean μ.
Let

Sn =
n∑

i=1

Xi, n ∈ N,

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 563

where S = (0, S1, S2, . . .) is the sequence of arrival times and

Nt =
∞∑

n=1

1(Sn ≤ t), t ∈ R
+

is the associated counting process. Now let Y = (Y1, Y2, . . .) be an i.i.d. sequence
associated with X in the sense that Yi is the reward for the interarrival Xi. Note
that even though both X and Y are i.i.d., Xi and Yi can be dependent. Then
the stochastic process

Rt =
Nt∑

i=1

Yi, t ∈ R
+,

is a renewal reward process. The function r(t) = E(Rt) is the renewal reward
function. We can now state the renewal reward theorem [17]. Since μX < ∞ and
μY < ∞ we have for the renewal reward process

Rt/t → μY /μX as t → ∞ with probability 1,
r(t)/t → μY /μX as t → ∞.

This is related to our attack in the following way. The n bit locations of the
bit string form an interval of integers [1, n], labeling the leftmost bit as 1. We
set X1 = b + w − 1, where b is the location of the first bit set to 1, that is, the
left boundary of the first window. Then the left boundary of the next window
is independent of the first b + w − 1 bits. The renewal process examines each
window independently. For each window Xi we gain information about at least
the multiplication bit. This is the reward Yi associated with Xi. The renewal
reward theorem now implies that for bit strings of length n, the expected number
of recovered bits will converge to nµY

µX
.

Recovered bit probabilities. In the remainder of this section we analyze
the expected number of bits that are recovered (the reward) in some number
of bits (the renewal length) by the rules of Sect. 3.1. Then by calculating the
probability of each of these rules’ occurrence, we can compute the overall number
of recovered bits by using the renewal reward theorem. Note that Rule 0 (the bits
set to 1) can be incorporated into the other rules by increasing their recovered
bits by one.

Rule 1: Trailing zeroes. The first rule applies to short windows. Recall that we
call a window a “short window” whenever the length between two multiplications
is less than w − 1.

Let 0 ≤ j ≤ w − 2 denote the length between two multiplications. (A length
of w − 1 is a full-size window.) The probability of a short window depends on
these j bits, as well as w − 1 bits after the multiplication: the multiplication bit
should be the right-most 1-bit in the window. The following theorem (which we
prove in the full version of this paper) gives the probability of a short window.

564 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

Theorem 1. Let X be an interarrival time. Then the probability that X = w
and we have a short window with reward Y = w − j, 0 ≤ j ≤ w − 2 is

pj =
1 +

∑j
i=1 22i−1

2j+w

We see in the proof that the bits yw−j−1, . . . , yw−2 can take any values. Also
since bit yw−j−2 = 0 is known, we have a renewal at this point where future bits
are independent.

Rule 2: Leading one. As explained in Sect. 3.1, this rule means that when after
renewal an ultra-short window occurs (a 1 followed by w − 1 zeroes) we get an
extra bit of information about the previous window. The exception to this rule is
if the previous window was also an ultra-short window. In this case the 1 of the
window is at the location of the multiplication bit we would have learned and
therefore we do not get extra information. As seen in the previous section, an
ultra-short window occurs with probability p0 = 1/2w If an ultra-short window
occurs after the current window with window-size 1 ≤ j ≤ w − 1, we therefore
recover (w − j)+1 bits (all bits of the current window plus 1 for the leading bit)
with probability pjp0 and (w − j) with probability pj(1 − p0).

Rule 3: Leading zeroes. The last way in which extra bits can be recovered is
the leading zeroes. If a window of size w − d is preceded by more than d zeroes,
then we can recover the excess zeroes. Let X0 be a random variable of the length
of a bit string of zeros until the first 1 is encountered. Then X0 is geometrically
distributed with p = 1/2. So P[X0 = k] = (1/2)k · (1/2) = (1/2)k+1. This
distribution has mean μX = 1.

Let Xw be a random variable representing the length of the bit string from
the first 1 that was encountered until the multiplication bit. For general window
length of w, we have

P[Xw = k] =

{
1

2w−1 k = 1
1

2w−k+1 k > 1

Now the distribution of the full bit string is the sum of the variables X0 and
Xw. We have that P[X0 + Xw = k] =

∑min(k,w)
i=1 P[Xw = i] · P[X0 = k − i].

Notice that this rule only recovers bits if the gap between two multiplications is
at least w − 1. This means that these cases are independent of Rule 1.

There is a small caveat in this analysis: the renewal length is unclear. In
the case that we have a sequence of zeroes followed by a short window of size
j < w, we are implicitly conditioning on the w − j bits that follow. This means
we cannot simply renew after the 1 and since we also cannot distinguish between
a short and regular window size, we also cannot know how much information we
have on the bits that follow.

We solve this by introducing an upper and lower bound. For the upper bound
the recovered bits remains as above and the renewal at X0 + w. This is an
obvious upper bound. This means that for a sequence of zeroes followed by a

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 565

short window of size j, we assume a probability of 1 of recovering information
on the w − j bits that follow the sequence. We get an average recovered bits of

R =
∞∑

k=w

min(k,w)∑

i=1

(k − i + 1) · P[Xw = i] · P[X0 = k − i],

and a renewal length of

N =
∞∑

k=w

min(k,w)∑

i=1

(k + w − i) · P[Xw = i] · P[X0 = k − i].

For the lower bound we could instead assume a probability of 0 of recovering
information on the w − j bits. We can however get a tighter bound by observing
that the bits that follow this rule are more likely a 0 than a 1 and we are more
likely to recover a 0 at the start of a new window then we are a 0. Therefore
bound the renewal at X0 + Xw and throw away the extra information. Similar
formulas can be derived for the lower bounds R and N .

From this, we can calculate the expected renewal length for fixed w, by
summing over all possible renewal lengths with corresponding probabilities. We
can do the same for the expected number of recovered bits per renewal. Finally,
we are interested in the expected total number of recovered bits in a n-bit string.
We calculate this by taking an average number of renewals (by dividing n by
the expected renewal length) and multiply this with the number of recovered
bits per window. Since we have upper and lower bounds for both the renewal
length and recovered bits for Rule 3, we also get lower and upper bounds for the
expected total number of recovered bits.

Recovered Bits for Right-to-Left. The analysis of bit recovery for right-to-
left exponentiation is simpler. The bit string is an alternation of X0 and Xw

(see Rule 3), where Xw = w and X0 is geometrically distributed with p = 1/2.
Therefore the expected renewal length N and the expected reward R are

N =
∞∑

i=0

(w + i) · P[X0 = i] = w + 1 and R =
∞∑

i=0

(1 + i) · P[X0 = i] = 2.

Then by the renewal reward theorem, we expect to recover 2n
w+1 bits.

3.3 Experimental Verification

To experimentally validate our analysis, we sampled n-bit binary strings uni-
formly at random and used Algorithm2 to derive the square and multiply
sequence. We then applied Rules 0–3 from Sect. 3.1 to extract known bits.

Case n = 512, w = 4. Figure 1 shows the total fraction of bits learned for
right-to-left exponentiation compared to left-to-right exponentiation, for w = 4,
over 1,000,000 experiments with w = 4 and n = 512, corresponding to the
our target Libgcrypt’s implementation for 1024-bit RSA. On average we learned

566 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

251 bits, or 49%, for left-to-right exponentiation with 512-bit exponents. This
is between our computed lower bound of βL = 245 (from a renewal length of
N = 4.67 bits and reward of 2.24 bits on average per renewal) and upper bound
βU = 258 (from a renewal length of N = 4.90 bits and reward of 2.47 bits per
renewal). The average number of recovered bits for right-to-left exponentiation
is 204 ≈ 2n

w+1 bits, or 40%, as expected.

0 20 40 60 80 100 120 140 160

Rule 0

Rule 1

Rule 2

Rule 3

Fig. 3. We generated 100,000 random 512-bit strings and generated the square and
multiply sequence with w = 4. We then applied Rules 0–3 successively to recover bits
of the original string. We plot the distribution of the number of recovered bits in our
experiments.

Figure 3 shows the distribution of the number of new bits learned for each rule
with left-to-right exponentiation by successively applying Rules 0–3 for 100,000
exponents. Both Rule 0 and Rule 3 contribute about 205 ≈ 2n

w+1 bits, which is
equal both to our theoretical analysis and is also the number of bits learned from
the right-to-left exponentiation. The spikes visible in Rule 3 are due to the fact
that we know that any least significant bits occurring after the last window must
be 0, and we credit these bits learned to Rule 3. The number of bits learned from
this final step is equal to n mod w, leading to small spikes at intervals of w bits.

Case n = 1024, w = 5. For n = 1024 and w = 5, corresponding to Libgcrypt’s
implementation of 2048-bit RSA, we recover 41.5% of bits on average using Rules
0–3. This is between our lower bound of βL = 412 (from a lower bound average
renewal length of N = 5.67 bits, and expected 2.29 bits on average per renewal)
and upper bound of βU = 436 (from an average renewal length of N = 5.89
bits with an average reward of 2.51 bits per renewal). Note that the reward per
renewal is about the same as in the first case (n = 512, w = 4), but the average
renewal length is higher. This means that we win fewer bits for this case.

3.4 Full RSA Key Recovery from Known Bits

Once we have used the recovered sequence of squares and multiplies to derive
some information about the bits of the Chinese remainder theorem coefficients
dp = d mod (p − 1) and dq = d mod (q − 1), we can use a modified version of
the branch and prune algorithm of Heninger and Shacham [11] to recover the
remaining unknown bits of these exponents to recover the full private key.

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 567

The algorithm will recover the values dp and dq from partial information. In
order to do so, we use the integer forms of the RSA equations

edp = 1 + kp(p − 1)
edq = 1 + kq(q − 1)

which these values satisfy for positive integers kp, kq < e.

RSA Coefficient Recovery. As described in [12,26], kp and kq are initially
unknown, but are related via the equation (kp−1)(kq −1) ≡ kpkqN mod e. Thus
we need to try at most e pairs of kp, kq. In the most common case, e = 65537.
As described in [26], incorrect values of kp, kq quickly result in no solutions.

LSB-Side Branch and Prune Algorithm. At the beginning of the algorithm,
we have deduced some bits of dp and dq using Rules 0–3. Given candidate values
for kp and kq, we can then apply the approach of [11] to recover successive bits of
the key starting from the least significant bits. Our algorithm does a depth-first
search over the unknown bits of dp, dq, p, and q. At the ith least significant bit,
we have generated a candidate solution for bits 0 . . . i−1 of each of our unknown
values. We then verify the equations

edp = 1 + kp(p − 1) mod 2i

edq = 1 + kq(q − 1) mod 2i

pq = N mod 2i (1)

and prune a candidate solution if any of these equations is not satisfied.

Analysis. Heuristically, we expect this approach to be efficient when we know
more than 50% of bits for dp and dq, distributed uniformly at random. [11,18] We
also expect the running time to grow exponentially in the number of unknown
bits when we know many fewer than 50% of the bits. From the analysis of
Rules 0–3 above, we expect to recover 48% of the bits. While the sequence of
recovered bits is not, strictly speaking, uniformly random since it is derived using
deterministic rules, the experimental performance of the algorithm matched that
of a random sequence.

Experimental Evaluation for w = 4. We ran 500,000 trial key recovery
attempts for randomly generated dp and dq with 1024-bit RSA and w = 4. For a
given trial, if the branching process passed 1,000,000 candidates examined with-
out finding a solution, we abandoned the attempt. Experimentally, we recover
more than 50% of the bits 32% of the time, and successfully recovered the key in
28% of our trials. For 50% or 512 bits known, the median number of examined
candidates was 182,738. We recovered 501 bits on average in our trials using
Rules 0–3; at this level the median number of candidates was above 1 million.

Experimental Evaluation for w = 5. We experimented with this algorithm
for 2048-bit RSA, with w = 5. The number of bits that can be derived uncon-
ditionally using Rules 0–3 is around 41% on average, below the threshold where
we expect the Heninger-Shacham algorithm to terminate for 1024-bit exponents.
The algorithm did not yield any successful key recovery trials at this size.

568 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

4 RSA Key Recovery from Squares and Multiplies

The sequence of squares and multiplies encodes additional information about the
secret exponent that does not translate directly into knowledge of particular bits.
In this section, we give a new algorithm that exploits this additional information
by recovering RSA keys directly from the square-and-multiply sequence. This
gives a significant speed improvement over the key recovery algorithm described
in Sect. 3.4, and brings an attack against w = 5 within feasible range.

4.1 Pruning from Squares and Multiplies

Our new algorithm generates a depth-first tree of candidate solutions for the
secret exponents, and prunes a candidate solution if it could not have produced
the ground-truth square-and-multiply sequence obtained by the side-channel
attack. Let SM(d) = s be the deterministic function that maps a bit string
d to a sequence of squares and multiplies s ∈ {s,m}∗.

In the beginning of the algorithm, we assume we have ground truth square-
and-multiply sequences sp and sq corresponding to the unknown CRT coefficients
dp and dq. We begin by recovering the coefficients kp and kq using brute force
as described in Sect. 3.4. We will then iteratively produce candidate solutions
for the bits of dp and dq by generating a depth-first search tree of candidates
satisfying Eq. 1 starting at the least significant bits. We will attempt to prune
candidate solutions for dp or dq at bit locations i for which we know the precise
state of Algorithm 2 from the corresponding square and multiply sequence s,
namely when element i of s is a multiply or begins a sequence of w squares.
To test an i-bit candidate exponent di, we compare s′ = SM(di) to positions 0
through i − 1 of s, and prune di if the sequences do not match exactly.

4.2 Algorithm Analysis

We analyze the performance of this algorithm by computing the expected number
of candidate solutions examined by the algorithm before it recovers a full key.
Our analysis was inspired by the information-theoretic analysis of [18], but we
had to develop a new approach to capture the present scenario.

Let ps = Pr[SM(di) = s] be the probability that a fixed square-and-multiply
sequences s is observed for a uniformly random i-bit sequence di. This defines
the probability distribution Di of square-and-multiply sequences for i-bit inputs.

In order to understand how much information a sequence s leaks about an
exponent, we will use the self-information, defined as Is = − log ps. This is the
analogue of the number of bits known for the algorithm given in Sect. 3.4. As with
the bit count, we can express the number of candidate solutions that generate s
in terms of Is: #{d | SM(d) = s} = 2ips = 2i2−Is . For a given sequence s, let Ii
denote the self-information of the least significant i bits.

Theorem 2. (Heuristic). If for the square-and-multiply sequences spi
and sqi ,

we have Ii > i/2 for almost all i, then the algorithm described in Sect. 4.1 runs
in expected linear time in the number of bits of the exponent.

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 569

Proof. (Sketch). In addition pruning based on s, the algorithm also prunes by
verifying the RSA equations up to bit position i. Let RSAi(dp, dq) = 1 if (edp −
1 + kp)(edq − 1 + kq) = kpkqN mod 2i and 0 otherwise. For random (incorrect)
candidates dpi

and dqi , Pr[RSAi(dpi
, dqi)] = 1/2i.

As in [11], we heuristically assume that, once a bit has been guessed wrong,
the set of satisfying candidates for dpi

and dqi behave randomly and indepen-
dently with respect to the RSA equation at bit position i.

Consider an incorrect guess at the first bit. We wish to bound the candidates
examined before the decision is pruned. The number of incorrect candidates
satisfying the square-and-multiply constraints and the RSA equation at bit i is

#{dpi , dqi} ≤ #{dpi | SM(dpi) = spi} · #{dqi | SM(dqi) = sqi} · Pr[RSAi(dpi , dqi)]

= 2i2−Ii · 2i2−Ii · 2−i = 2i−2Ii ≤ 2i·(1−2c)

with Ii/i ≥ c for some c > 1/2.
In total, there are

∑
i #{dpi

, dqi} ≤ ∑
i 2

i·(1−2c) ≤ 1/(1 − 21−2c) candiates.
But any of the n bits can be guessed wrongly, each producing a branch of

that size. Therefore, the total search tree has at most n · (1 + 1
1−21−2c) nodes.

A similar argument also tells us about the expected size of the search tree,
which depends on the collision entropy [20]

Hi = − log
∑

s∈{s,m}i

p2s

of the distribution Di of distinct square-and-multiply sequences. This is the log
of the probability that two i-bit sequences chosen according to Di are identical.

For our distribution Di, the Hi are approximately linear in i. We can define
the collision entropy rate H = Hi/i and obtain an upper bound for the expected
number of examined solutions, which we prove in the full version of the paper:

Theorem 3. The expected total number of candidate solutions examined by
Algorithm 2 for n-bit dp an dq is

E

[
∑

i

#{dpi
, dqi}

]

≤ n

(

1 +
1 − 2n·(1−2H)

1 − 21−2H

)

.

Entropy calculations. We calculated the collision entropy rate by modeling
the leak as a Markov chain. For w = 4, H = 0.545, and thus we expect Algorithm
2 to comfortably run in expected linear time. For w = 5, H = 0.461, and thus
we expect the algorithm to successfully terminate on some fraction of inputs.
We give more details on this computation in the full version of this paper.

4.3 Experimental Evaluation for w = 4

We ran 500,000 trials of our sequence-pruning algorithm for randomly generated
dp and dq with 1024-bit RSA and plot the distribution of running times in Fig. 4.

570 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

544 560 576 592 608 624 640 656

103

104

105

106

Self-information for two 512-bit exponents

Se
ar

ch
tr

ee
si

ze

Median

Middle 50%

Max–Min

Fig. 4. We attempted 500,000 key recovery trials for randomly generated 1024-bit
RSA keys with w = 4. We plot the distribution of the number of candidates tested
by the algorithm against the self-information of the observed square-and-multiply
sequences, measured in bits. The histogram above the plot shows the distribution of
self-information across all the trials.

For a given trial, if the branching process passed 1,000,000 candidates examined
without finding a solution, we abandoned the attempt. For each trial square-
and-multiply sequence s, we computed the number of bit sequences that could
have generated it. From the average of this quantity over the 1 million exponents
generated in our trial, the collision entropy rate in our experiments is H = 0.547,
in line with our analytic computation above. The median self-information of the
exponents generated in our trials was 295 bits; at this level the median number of
candidates examined by the algorithm was 2,174. This can be directly compared
to the 251 bits recovered in Sect. 3, since the self-information in that case is
exactly the number of known bits in the exponent.

4.4 Experimental Evaluation for w = 5

We ran 500,000 trials of our sequence-pruning algorithm for 2048-bit RSA and
w = 5 with randomly generated dp and dq and plot the distribution of run-
ning times in Fig. 5. 8.6% of our experimental trials successfully recovered the
key before hitting the panic threshold of 1 million tries. Increasing the allowed
tree size to 2 million tries allowed us to recover the key in 13% of trials. We
experimentally estimate a collision entropy rate H = 0.464, in line with our ana-
lytic computation. The median self-information for the exponents generated in
our trials is 507 bits, significantly higher than the 420 bits that can be directly
recovered using the analysis in Sect. 3.

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 571

944 960 976 992 1,008 1,024 1,040 1,056 1,072 1,088 1,104

104

105

106

Self-information for two 1024-bit exponents

Se
ar

ch
tr

ee
si

ze
Median

Middle 50%

Max–Min

Fig. 5. We attempted 500,000 key recovery trials for randomly generated 2048-bit RSA
keys with w = 5, and plot the distribution of search tree size by the self-information.
The vertical line marks the 50% rate at which we expect the algorithm to be efficient.

5 Attacking Libgcrypt

In the previous section we showed how an attacker with access to the square-and-
multiply sequence can recover the private RSA key. To complete the discussion
we show how the attacker can obtain the square-and-multiply sequence.

5.1 The Side-Channel Attack

To demonstrate the vulnerability in Libgcrypt, we use the Flush+Reload
attack [25]. The attack, which monitors shared memory locations for access by
a victim, consists of two phases. The attacker first evicts a monitored location
from the cache, typically using the x86 clflush instruction. He then waits for a
short while, before measuring the time to access the monitored location. If the
victim has accessed the memory location during the wait, the contents of the
memory location will be cached, and the attacker’s access will be fast. Other-
wise, the attacker causes the contents to be retrieved from the main memory
and his access takes longer. By repeating the attack, the attacker creates a trace
of the victim accesses to the monitored location over time. Flush+Reload has
been used in the past to attack modular exponentiation [3,25], as well as other
cryptographic primitives [4,5,13,19,24] and non-cryptographic software [10,28].

Mounting the Flush+Reload attack on Libgcrypt presents several challenges.
First, as part of the defense against the attack of Yarom and Falkner [25],
Libgcrypt uses the multiplication code to perform the squaring operation. While
this is less efficient than using a dedicated code for squaring, the use of the same
code means that we cannot identify the multiply operations by probing a sepa-
rate multiply code. Instead we probe code locations that are used between the
operations to identify the call site to the modular reduction.

The second challenge is achieving a sufficiently high temporal resolu-
tion. Prior side-channel attacks on implementations of modular exponentiation

572 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

use large (1024–4096 bits) moduli [8,9,15,25,27], which facilitate side-channel
attacks [22]. In this attack we target RSA-1024, which uses 512-bit moduli. The
operations on these moduli are relatively fast, taking a total of less than 2500
cycles on average to compute a modular multiplication. To be able to distinguish
events of this length, we must probe at least twice as fast, which is close to the
limit of the Flush+Reload attack and would results in a high error rate [3]. We
use the amplification attack of Allan et al. [3] to slow down the modular reduc-
tion. We target the code of the subtraction function used as part of the modular
reduction. The attack increases the execution time of the modular reduction to
over 30000 cycles.

Our third challenge is that even with amplification, there is a chance of miss-
ing a probe [3]. To reduce the probability of this happening, we probe two mem-
ory locations within the execution path of short code segments. The likelihood
of missing both probes is small enough to allow high-quality traces.

Overall, we use the Flush+Reload attack to monitor seven victim code loca-
tion. The monitored locations can be divided into three groups. To distinguish
between the exponentiations Libgcrypt performs while signing, we monitor loca-
tions in the entry and exit of the exponentiation function. We also monitor a
location in the loop that precomputes the multipliers to help identifying these
multiplications. To trace individual modular multiplications, we monitor loca-
tions within the multiply and the modular reduction functions. Finally, to iden-
tify the multiplication by non-zero multipliers, we monitor locations in the code
that conditionally copies the multiplier and in the entry to the main loop of the
exponentiation. The former is accessed when Libgcrypt selects the multiplier
before it performs the multiplication. The latter is accessed after the multipli-
cation when the next iteration of the main loop starts. We repeatedly probe
these locations once every 10000 cycles, allowing for 3–4 probes in each modular
multiply or square operation.

5.2 Results

To mount the attack, we use the FR-trace software, included in the Mastik
toolkit [23]. FR-trace provides a command-line interface for performing the
Flush+Reload and the amplification attacks we require for recovering the square-
and-multiply sequences of the Libgcrypt exponentiation. FR-trace waits until
there is activity in any of the monitored locations and collects a trace of the
activity. Figure 6 shows a part of a collected activity trace.

Recall that the Flush+Reload attack identifies activity in a location by mea-
suring the time it takes to read the contents of the location. Fast reads indicate
activity. In the figure, monitored locations with read time below 100 cycles indi-
cate that the location was active during the sample.

Because multiplications take an average 800 cycles, whereas our sample rate
is once in 10000 cycles, most of the time activity in the multiplication code is
contained within a single sample. In Fig. 6 we see the multiplication operations
as “dips” in the multiplication trace (dotted black).

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 573

Fig. 6. Libgcrypt activity trace.

Each multiplication operation is followed by a modular reduction. Our side-
channel amplification attack “stretches” the execution of the modular reduction
and it spans over more than 30000 cycles. Because none of the memory addresses
traced in the figure is active during the modular reduction, we see gaps of 3–4
samples between periods of activity in any of the other monitored locations.

To distinguish between multiplications that use one of the precomputed mul-
tipliers and multiplications that square the accumulator by multiplying it with
itself, we rely on activity in the multiplier selection and in the exponentiation
loop locations. Before multiplying with a precomputed multiplier, the multiplier
needs to be selected. Hence we would expect to see activity in the multiplier
selection location just before starting the multiply, and due to the temporal
granularity of the attack we are likely to see both events in the same sample.
Similarly, after performing the multiplication and the modular reduction, we
expect to see activity in the beginning of the main exponentiation loop. Again,
due to attack granularity, this activity is likely to occur within the same sample
as the following multiplication. Thus, because we see activity in the multiplier
selection location during sample 431 and activity in the beginning of the expo-
nentiation loop in the following multiplication (sample 435), we can conclude
that the former multiplication is using one of the precomputed multipliers.

In the absence of errors, this allows us to completely recover the sequence of
square and multiplies performed and with it, the positions of the non-zero digits
in the windowed representation of the exponent.

Fig. 7. Distribution of the number of errors in captured traces.

574 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

However, capture errors do occur, as shown in Fig. 7. To correct these, we
capture multiple traces of signatures using the same private key. On average there
are 14 errors in a captured trace. We find that in most cases, manually aligning
traces and using a simple majority rule is sufficient to recover the complete
square-and-multiply sequence. In all of the cases we have tried, combining twenty
sequences yielded the complete sequence.

Acknowledgments. Yuval Yarom performed part of this work as a visiting scholar at
the University of Pennsylvania. This work was supported by the Netherlands Organi-
sation for Scientific Research (NWO) under grant 639.073.005; by the Commission of
the European Communities through the Horizon 2020 program under project number
645622 (PQCRYPTO) and project number 645421 (ECRYPT-CSA); by the National
Science Foundation under grants 1314919, 1408734, 1505799, 1513671, 1319880 and
14–519. by a gift from Cisco; by an Endeavour Research Fellowship from the
Australian Department of Education and Training; by the 2017-2018 Rothschild Post-
doctoral Fellowship; by the Blavatnik Interdisciplinary Cyber Research Center (ICRC);
by the Check Point Institute for Information Security; by the Israeli Centers of Research
Excellence I-CORE program (center 4/11); by the Leona M. & Harry B. Helmsley Char-
itable Trust; by the Warren Center for Network and Data Sciences; by the financial
assistance award 70NANB15H328 from the U.S. Department of Commerce, National
Institute of Standards and Technology; and by the Defense Advanced Research Project
Agency (DARPA) under Contract #FA8650-16-C-7622.

Permanent ID of this document: 8016c16382e6f3876aa03bef6e4db5ff. Date:
2017.06.26.

References

1. GnuPG Frontends. https://www.gnupg.org/related software/frontends.html
2. GNU Privacy Guard. https://www.gnupg.org
3. Allan, T., Brumley, B.B., Falkner, K., van de Pol, J., Yarom, Y.: Amplifying side

channels through performance degradation. In: 32nd Annual Computer Security
Applications Conference (ACSAC), Los Angeles, CA, US, December 2016

4. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh Aah.. Just a Little Bit”:
a small amount of side channel can go a long way. In: Batina, L., Robshaw, M.
(eds.) CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-44709-3 5

5. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, Gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). doi:10.1007/978-3-662-53140-2 16

6. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: OpenPGP message
format. RFC 4880, November 2007

7. Doche, C.: Exponentiation. In: Handbook of Elliptic and Hyperelliptic Curve
Cryptography., pp. 144–168. Chapman and Hall/CRC (2005). doi:10.1201/
9781420034981.pt2

8. Genkin, D., Shamir, A., Tromer, E.: RSA Key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 25

https://www.gnupg.org/related_software/frontends.html
https://www.gnupg.org
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-44709-3_5
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1201/9781420034981.pt2
http://dx.doi.org/10.1201/9781420034981.pt2
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25

Sliding Right into Disaster: Left-to-Right Sliding Windows Leak 575

9. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 11

10. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: 24th USENIX Security Symposium, pp. 897–912,
Washington, DC, US, August 2015

11. Heninger, N., Shacham, H.: Reconstructing RSA private keys from random key
bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03356-8 1

12. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53140-2 18

13. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a Minute! A fast, Cross-VM
Attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014. LNCS,
vol. 8688, pp. 299–319. Springer, Cham (2014). doi:10.1007/978-3-319-11379-1 15

14. Joye, M., Yen, S.-M.: Optimal left-to-right binary signed-digit recoding. IEEE
Trans. Comput. 49(7), 740–748 (2000). doi:10.1109/12.863044

15. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: IEEE Symposium on Security and Privacy 2015. IEEE
(2015)

16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, Boca Raton (1996)

17. Moder, J.J., Elmaghraby, S.E.: Handbook of Operations Research: Models and
Applications, vol. 1. Van Nostrand Reinhold Co., New York (1978)

18. Paterson, K.G., Polychroniadou, A., Sibborn, D.L.: A coding-theoretic approach
to recovering noisy RSA keys. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 386–403. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 24

19. van de Pol, J., Smart, N.P., Yarom, Y.: Just a little bit more. In: Nyberg, K. (ed.)
CT-RSA 2015. LNCS, vol. 9048, pp. 3–21. Springer, Cham (2015). doi:10.1007/
978-3-319-16715-2 1

20. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–
561, Berkeley (1961)

21. Ross, S.M.: Stochastic Processes. Probability and Mathematical Statistics. Wiley,
New York (1983). ISBN 0-471-09942-2

22. Walter, C.D.: Longer keys may facilitate side channel attacks. In: Matsui, M.,
Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 42–57. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-24654-1 4

23. Yarom, Y.: Mastik: a micro-architectural side-channel toolkit, September 2016.
http://cs.adelaide.edu.au/yval/Mastik/Mastik.pdf

24. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the
Flush+Reload cache side-channel attack. Cryptology ePrint Archive, Report
2014/140, February 2014

25. Yarom, Y., Falkner, K.: Flush+Reload: a high resolution, low noise, L3 cache side-
channel attack. In: 25th USENIX Security Symposium, pp. 719–732, San Diego,
CA, US (2014)

http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-642-03356-8_1
http://dx.doi.org/10.1007/978-3-662-53140-2_18
http://dx.doi.org/10.1007/978-3-662-53140-2_18
http://dx.doi.org/10.1007/978-3-319-11379-1_15
http://dx.doi.org/10.1109/12.863044
http://dx.doi.org/10.1007/978-3-642-34961-4_24
http://dx.doi.org/10.1007/978-3-642-34961-4_24
http://dx.doi.org/10.1007/978-3-319-16715-2_1
http://dx.doi.org/10.1007/978-3-319-16715-2_1
http://dx.doi.org/10.1007/978-3-540-24654-1_4
http://cs.adelaide.edu.au/yval/Mastik/Mastik.pdf

576 Bernstein, Breitner, Genkin, Groot Bruinderink, Heninger, Lange, van Vredendaal, Yarom

26. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: a timing attack on openSSL con-
stant time RSA. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol.
9813, pp. 346–367. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53140-2 17

27. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: 19th ACM Conference on Computer and
Communications Security (CCS), pp. 305–316, Raleigh, NC, US, October 2012

28. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Computer and Communications Security (CCS), Scotts-
dale, AZ, US (2014)

http://dx.doi.org/10.1007/978-3-662-53140-2_17

Encoding Techniques

Faster Homomorphic Function Evaluation Using
Non-integral Base Encoding

Charlotte Bonte1, Carl Bootland1, Joppe W. Bos2, Wouter Castryck1,3,
Ilia Iliashenko1, and Frederik Vercauteren1,4(B)

1 imec-Cosic, Department of Electrical Engineering, KU Leuven, Leuven, Belgium
{charlotte.bonte,carl.bootland}@esat.kuleuven.be,

iliailiashenko@gmail.com
2 NXP Semiconductors, Leuven, Belgium

joppe.bos@nxp.com
3 Laboratoire Paul Painlevé, Université de Lille-1, Villeneuve-d’Ascq, France

wouter.castryck@gmail.com
4 Open Security Research, Shenzhen, China

frederik.vercauteren@gmail.com

Abstract. In this paper we present an encoding method for real num-
bers tailored for homomorphic function evaluation. The choice of the
degree of the polynomial modulus used in all popular somewhat homo-
morphic encryption schemes is dominated by security considerations,
while with the current encoding techniques the correctness requirement
allows for much smaller values. We introduce a generic encoding method
using expansions with respect to a non-integral base, which exploits this
large degree at the benefit of reducing the growth of the coefficients when
performing homomorphic operations. This allows one to choose a smaller
plaintext coefficient modulus which results in a significant reduction of
the running time. We illustrate our approach by applying this encoding
in the setting of homomorphic electricity load forecasting for the smart
grid which results in a speed-up by a factor 13 compared to previous
work, where encoding was done using balanced ternary expansions.

1 Introduction

The cryptographic technique which allows an untrusted entity to perform arbi-
trary computation on encrypted data is known as fully homomorphic encryption.
The first such construction was based on ideal lattices and was presented by Gen-
try in 2009 [24]. When the algorithm applied to the encrypted data is known in
advance one can use a somewhat homomorphic encryption (SHE) scheme which

This work was supported by the European Commission under the ICT programme
with contract H2020-ICT-2014-1 644209 HEAT, and through the European Research
Council under the FP7/2007-2013 programme with ERC Grant Agreement 615722
MOTMELSUM. The second author is also supported by a PhD fellowship of the
Research Foundation - Flanders (FWO).

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 579–600, 2017.
DOI: 10.1007/978-3-319-66787-4 28

580 C. Bonte et al.

only allows to perform a limited number of computational steps on the encrypted
data. Such schemes are significantly more efficient in practice.

In all popular SHE schemes, the plaintext space is a ring of the form Rt =
Zt[X]/(f(X)), where t ≥ 2 is a small integer called the coefficient modulus, and
f(X) ∈ Z[X] is a monic irreducible degree d polynomial called the polynomial
modulus. Usually one lets f(X) be a cyclotomic polynomial, where for reasons
of performance the most popular choices are the power-of-two cyclotomics Xd +
1 where d = 2k for some positive integer k, which are maximally sparse. In
this case arithmetic in Rt can be performed efficiently using the fast Fourier
transform, which is used in many lattice-based constructions (e.g. [8–10,34])
and most implementations (e.g. [3,6,7,25,26,29,32]).

One interesting problem relates to the encoding of the input data of the algo-
rithm such that it can be represented as elements of Rt and such that one obtains
a meaningful outcome after the encrypted result is decrypted and decoded. This
means that addition and multiplication of the input data must agree with the
corresponding operations in Rt up to the depth of the envisaged SHE compu-
tation. An active research area investigates different such encoding techniques,
which are often application-specific and dependent on the type of the input data.
For the sake of exposition we will concentrate on the particularly interesting and
popular setting where the input data consists of finite precision real numbers θ,
even though our discussion below is fairly generic. The main idea, going back to
Dowlin et al. [19] (see also [20,27,31]) and analyzed in more detail by Costache
et al. [16], is to expand θ with respect to a base b

θ = arb
r + ar−1b

r−1 + · · · + a1b + a0 + a−1b
−1 + a−2b

−2 + · · · + a−sb
−s (1)

using integer digits ai, after which one replaces b by X to end up inside the
Laurent polynomial ring Z[X±1]. One then reduces the digits ai modulo t and
applies the ring homomorphism to Rt defined by

ι : Zt[X±1] → Rt :
{

X �→ X,
X−1 �→ −g(X) · f(0)−1,

where we write f(X) = Xg(X) + f(0) and it is assumed that f(0) is invertible
modulo t; this is always true for cyclotomic polynomials, or for factors of them.
The quantity r + s will sometimes be referred to as the degree of the encoding
(where we assume that ara−s �= 0). For power-of-two-cyclotomics the homomor-
phism ι amounts to letting X−1 �→ −Xd−1, so that the encoding of (1) is given
by1 arX

r + ar−1X
r−1 + · · ·+ a1X + a0 − a−1X

d−1 − a−2X
d−2 − · · ·− a−sX

d−s.
Decoding is done through the inverse of the restriction ι|Zt[X±1][−�,m]

where

Zt[X±1][−�,m] = { amXm + am−1X
m−1 + . . . + a−�X

−� | ai ∈ Zt for all i }
is a subset of Laurent polynomials whose monomials have bounded exponents. If
�+m+1 = d then this restriction of ι is indeed invertible as a Zt-linear map. The
1 In fact in [16] it is mentioned that inverting X is only possible in the power-of-two

cyclotomic case, but this seems to be overcareful.

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 581

Fig. 1. Box in which to stay during computation, where � + m + 1 = d.

precise choice of �,m depends on the data encoded. After applying this inverse,
one replaces the coefficients by their representants in {−�(t − 1)/2�, . . . , 	(t −
1)/2
} to end up with an expression in Z[X±1], and evaluates the result at
X = b. Ensuring that decoding is correct to a given computational depth places
constraints on the parameters t and d, in order to avoid ending up outside the
box depicted in Fig. 1 if the computation were to be carried out directly in
Z[X±1]. In terms of Rt we will often refer to this event as the ‘wrapping around’
of the encoded data modulo t or f(X), although we note that this is an abuse
of language. In the case of power-of-two cyclotomics, ending up above or below
the box does indeed correspond to wrapping around modulo t, but ending up at
the left or the right of the box corresponds to a mix-up of the high degree terms
and the low degree terms.

The precise constraints on t and d not only depend on the complexity of the
computation, but also on the type of expansion (1) used in the encoding. Dowlin
et al. suggest to use balanced b-ary expansions with respect to an odd base
b ∈ Z≥3, which means that the digits are taken from {−(b−1)/2, . . . , (b−1)/2}.
Such expansions have been used for centuries going back at least to Colson (1726)
and Cauchy (1840) in the quest for more efficient arithmetic.

If we fix a precision, then for smaller b the balanced b-ary expansions are
longer but the coefficients are smaller, this implies the need for a larger d but
smaller t. Similarly for larger bases the expansions become shorter but have
larger coefficients leading to smaller d but larger t. For the application to some-
what homomorphic encryption considered in [6,16] the security requirements ask
for a very large d, so that the best choice is to use as small a base as possible,
namely b = 3, with digits in {±1, 0}. Even for this smallest choice the result-
ing lower bound on t is very large and the bound on d is much smaller than
that coming from the cryptographic requirements. To illustrate this, we recall
the concrete figures from the paper [6], which uses the Fan-Vercauteren (FV)
somewhat homomorphic encryption scheme [23] for privacy-friendly prediction
of electricity consumption in the setting of the smart grid. Here the authors use
d = 4096 for cryptographic reasons, which is an optimistic choice that leads to
80-bit security only (and maybe even a few bits less than that [1]). On the other
hand using balanced ternary expansions, correct decoding is guaranteed as soon
as d ≥ 368, which is even a conservative estimate. This eventually leads to the

582 C. Bonte et al.

Fig. 2. Comparison of the amount of plaintext space which is actually used in the
setting of [6], where d = 4096. More precise figures to be found in Sect. 4.

huge bound t � 2107, which is overcome by decomposing Rt into 13 factors using
the Chinese Remainder Theorem (CRT). This is then used to homomorphically
forecast the electricity usage for the next half hour for a small apartment complex
of 10 households in about half a minute, using a sequential implementation.

The discrepancy between the requirements coming from correct decoding and
those coming from security considerations suggests that other possible expan-
sions may be better suited for use with SHE. In this paper we introduce a generic
encoding technique, using very sparse expansions having digits in {±1, 0} with
respect to a non-integral base bw > 1, where w is a sparseness measure. These
expansions will be said to be of ‘non-integral base non-adjacent form’ with win-
dow size w, abbreviated to w-NIBNAF. Increasing w makes the degrees of the
resulting Laurent polynomial encodings grow and decreases the growth of the
coefficients when performing operations; hence lowering the bound on t. Our
encoding technique is especially useful when using finite precision real numbers,
but could also serve in dealing with finite precision complex numbers or even
with integers, despite the fact that bw is non-integral (this would require a careful
precision analysis which is avoided here).

We demonstrate that this technique results in significant performance
increases by re-doing the experiments from [6]. Along with a more careful pre-
cision analysis which is tailored for this specific use case, using 950-NIBNAF
expansions we end up with the dramatically reduced bound t ≥ 33. It is not
entirely honest to compare this to t � 2107 because of our better precision
analysis; as explained in Sect. 4 it makes more sense to compare the new bound
to t � 242, but the reduction remains huge. As the reader can see in Fig. 2 this
is explained by the fact that the data is spread more evenly across the plaintext
space during computation. As a consequence we avoid the need for CRT decom-
position and thus reduce the running time by a factor 13, showing that the same
homomorphic forecasting can be done in only 2.5 s.

Remark. An alternative recent proposal for encoding using a non-integral base
can be found in [15], which targets efficient evaluation of the discrete Fourier
transform on encrypted data. Here the authors work exclusively in the power-of-
two cyclotomic setting f(X) = Xd + 1, and the input data consists of complex
numbers θ which are expanded with respect to the base b = ζ, where ζ is a
primitive 2d-th root of unity, i.e. a root of f(X); a similar idea was used in [12].

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 583

One nice feature of this approach is that the correctness of decoding is not
affected by wrapping around modulo f(X). To find a sparse expansion they
use the LLL algorithm [28], but for arbitrary complex inputs the digits become
rather large when compared to w-NIBNAF.

2 Encoding Data Using w-NIBNAF

Our approach in reducing the lower bound on the plaintext modulus t is to use
encodings for which many of the coefficients are zero. In this respect, a first
improvement over balanced ternary expansions is obtained by using the non-
adjacent form (NAF) representations which were introduced by Reitweisner in
1960 for speeding up early multiplication algorithms [33]. We note that inde-
pendent work by Cheon et al. [11] also mentions the advantages of using NAF
encodings.

Definition 1. The non-adjacent form (NAF) representation of a real number
θ is an expansion of θ to the base b = 2 with coefficients in {−1, 0, 1} such that
any two adjacent coefficients are not both non-zero.

The NAF representation has been generalized [13]: for an integer w ≥ 1 (called
the ‘window size’) one can ensure that in any window of w consecutive coefficients
at most one of them is non-zero. This is possible to base b = 2 but for w > 2
one requires larger coefficients.

Definition 2. Let w ≥ 1 be an integer. A w-NAF representation of a real num-
ber θ is an expansion of θ with base 2 and whose non-zero coefficients are odd
and less than 2w−1 in absolute value such that for every set of w consecutive
coefficients at most one of them is non-zero.

We see that NAF is just the special case of w-NAF for w = 2. Unfortunately, due
to the fact that the coefficients are taken from a much larger set, using w-NAF
encodings in the SHE setting actually gives larger bounds on both t and d for
increasing w. Therefore this is not useful for our purposes.

Ideally, we want the coefficients in our expansions to be members of {±1, 0}
with many equal to 0, as this leads to the slowest growth in coefficient sizes,
allowing us to use smaller values for t. This would come at the expense of using
longer encodings, but remember that we have a lot of manoeuvring space on the
d side. One way to achieve this goal is to use a non-integral base b > 1 when
computing a non-adjacent form. We first give the definition of a non-integral
base non-adjacent form with window size w (w-NIBNAF) representation and
then explain where this precise formulation comes from.

Definition 3. A sequence a0, a1, . . . , an, . . . is a w-balanced ternary sequence
if it has ai ∈ {−1, 0, 1} for i ∈ Z≥0 and satisfies the property that each set of w
consecutive terms has no more than one non-zero term.

584 C. Bonte et al.

Definition 4. Let θ ∈ R and w ∈ Z>0. Define bw to be the unique positive real
root of the polynomial Fw(x) = xw+1−xw −x−1. A w-balanced ternary sequence
ar, ar−1, . . . , a1, a0, a−1, . . . is a w-NIBNAF representation of θ if

θ = arb
r
w + ar−1b

r−1
w + · · · + a1bw + a0 + a−1b

−1
w + · · · .

Below we will show that every θ ∈ R has at least one such w-NIBNAF
representation and provide an algorithm to find such a representation. But let
us first state a lemma which shows that bw is well-defined for w ≥ 1.

Lemma 1. For an integer w ≥ 1 the polynomial Fw(x) = xw+1−xw −x−1 has
a unique positive real root bw > 1. The sequence b1, b2, . . . is strictly decreasing
and limw→∞ bw = 1. Further, (x2 + 1) | Fw(x) for w ≡ 3 mod 4.

The proof is straightforward and given in Appendix A. The first few values
of bw are as follows

b1 = 1 +
√

2 ≈ 2.414214, b2 ≈ 1.839287,
b3 = 1

2 (1 +
√

5) ≈ 1.618034, b4 ≈ 1.497094,

where we note that b3 is the golden ratio φ.
Since we are using a non-integral base, a w-NIBNAF representation of a

fixed-point number has infinitely many non-zero terms in general. To overcome
this one approximates the number by terminating the w-NIBNAF representation
after some power of the base. We call such a terminated sequence an approxi-
mate w-NIBNAF representation. There are two straightforward ways of deciding
where to terminate: either a fixed power of the base is chosen so that any terms
after this are discarded giving an easy bound on the maximal possible error cre-
ated, or we choose a maximal allowed error in advance and terminate after the
first power which gives error less than or equal to this value.

Algorithm 1 below produces for every θ ∈ R a w-NIBNAF representation
in the limit as ε tends to 0, thereby demonstrating its existence. It takes the
form of a greedy algorithm which chooses the closest signed power of the base
to θ and then iteratively finds a representation of the difference. Except when
θ can be written as θ = h(bw)/bq

w, for some polynomial h with coefficients in
{±1, 0} and q ∈ Z≥0, any w-NIBNAF representation is infinitely long. Hence,
we must terminate Algorithm 1 once the iterative input is smaller than some
pre-determined precision ε > 0.

We now prove that the algorithm works as required.

Lemma 2. Algorithm 1 produces an approximate w-NIBNAF representation of
θ with an error of at most ε.

Proof. Assuming that the algorithm terminates, the output clearly represents θ
to within an error of at most size ε. First we show that the output is w-NIBNAF.
Suppose that the output, on input θ, bw, ε, has at least two non-zero terms, the
first being ad. This implies either that bd

w ≤ |θ| < bd+1
w and bd+1

w − |θ| > |θ| − bd
w

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 585

Algorithm 1. GreedyRepresentation
Input: θ – the real number to be represented,
bw – the w-NIBNAF base to be used in the representation,
ε – the precision to which the representation is determined.
Output: An approximate w-NIBNAF representation ar, ar−1, . . . of θ with

error less than ε, where ai = 0 if not otherwise specified.
σ ← sgn(θ)
t ← |θ|
while t > ε do

r ← ⌈logbw
(t)
⌉

if brw − t > t − br−1
w then

r ← r − 1
ar ← σ
σ ← σ · sgn(t − brw)
t ← |t − brw|

Return (ai)i.

or bd−1
w < |θ| ≤ bd

w and bd
w − |θ| ≤ |θ| − bd−1

w . These conditions can be written as
bd
w ≤ |θ| < 1

2bd
w(1 + bw) and 1

2bd−1
w (1 + bw) ≤ |θ| ≤ bd

w respectively, showing that

||θ| − bd
w| < max

{
bd
w − 1

2bd−1
w (1 + bw), 1

2bd
w(1 + bw) − bd

w

}
= 1

2bd
w(bw − 1) .

The algorithm subsequently chooses the closest power of bw to this smaller value,
suppose it is b�

w. By the same argument with θ replaced by |θ|− bd
w we have that

either b�
w ≤ ∣∣|θ| − bd

w

∣∣ or 1
2b�−1

w (1 + bw) ≤ ∣∣|θ| − bd
w

∣∣ and since b�
w is larger than

1
2b�−1

w (1+bw) the maximal possible value of �, which we denote by �w(d), satisfies

�w(d) = max
{
� ∈ Z

∣∣ 1
2b�−1

w (1 + bw) < 1
2bd

w(bw − 1)
}

.

The condition on � can be rewritten as b�
w < bd+1

w (bw −1)/(bw +1) which implies
that � < d + 1 + logbw

((bw − 1)/(bw + 1)) and thus

�w(d) = d +
⌈
logbw

(
bw − 1
bw + 1

)⌉
,

so that the smallest possible difference is independent of d and equal to

s(w) := d − �w(d) = −
⌈
logbw

(
bw − 1
bw + 1

)⌉
=

⌊
logbw

(
bw + 1
bw − 1

)⌋
.

We thus need to show that s(w) ≥ w. As w is an integer this is equivalent to

logbw

(
bw + 1
bw − 1

)
≥ w ⇐⇒ bw

w ≤ bw + 1
bw − 1

⇐⇒ bw+1
w − bw

w − bw − 1 ≤ 0

which holds for all w since Fw(bw) = 0. Note that our algorithm works correctly
and deterministically because when |θ| is exactly half-way between two powers
of bw we pick the larger power. This shows that the output is of the desired form.

586 C. Bonte et al.

Finally, to show that the algorithm terminates we note that the k’th suc-
cessive difference is bounded above by 1

2b
d−(k−1)s(w)
w (bw − 1) and this tends

to 0 as k tends to infinity. Therefore after a finite number of steps (at most⌈
(d − logbw

(2ε/(bw − 1)) /s(w)
⌉

+ 1) the difference is smaller than or equal to ε
and the algorithm terminates. ��

The process of encoding works as described in the introduction, i.e. we follow
the approach from [16,19] except we use an approximate w-NIBNAF represen-
tation instead of the balanced ternary representation. Thus to encode a real
number θ we find an approximate w-NIBNAF representation of θ with small
enough error and replace each occurrence of bw by X, after which we apply the
map ι to end up in plaintext space Rt. Decoding is almost the same as well, only
that after inverting ι and lifting the coefficients to Z we evaluate the resulting
Laurent polynomial at X = bw rather than X = 3, computing the value only to
the required precision. Rather than evaluating directly it is best to reduce the
Laurent polynomial modulo Fw(X) (or modulo Fw(X)/(X2+1) if w ≡ 3 mod 4)
so that we only have to compute powers of bw up to w (respectively w − 2).

Clearly we can also ask Algorithm 1 to return
∑

i aiX
i ∈ Zt[X±1], this gives

an encoding of θ with maximal error ε. Since the input θ of the algorithm can
get arbitrarily close to but larger than ε, the final term can be ±Xh where
h = �logbw

(2ε/(1 + bw))� + 1. If we are to ensure that the smallest power of
the base to appear in any approximate w-NIBNAF representation is bs

w then we
require that if bs−1

w is the nearest power of bw to the input θ then |θ| ≤ ε so that
we must have 1

2bs−1
w (1 + bw) ≤ ε which implies the smallest precision we can

achieve is ε = bs−1
w (1 + bw)/2. In particular if we want no negative powers of bw

then the best precision possible using the greedy algorithm is (1 + b−1
w)/2 < 1.

Remark. If one replaces bw by a smaller base b > 1 then Algorithm 1 still
produces a w-NIBNAF expansion to precision ε: this follows from the proof of
Lemma 2. The distinguishing feature of bw is that it is maximal with respect to
this property, so that the resulting expansions become as short as possible.

3 Analysis of Coefficient Growth During Computation

After encoding the input data it is ready for homomorphic computations. This
increases both the number of non-zero coefficients as well as the size of these coef-
ficients. Since we are working in the ring Rt there is a risk that our data wraps
around modulo t as well as modulo f(X), in the sense explained in the intro-
duction, which we should avoid since this leads to erroneous decoding. Therefore
we need to understand the coefficient growth more thoroughly. We simplify the
analysis in this section by only considering multiplications and what constraint
this puts on t, it is then not hard to generalize this to include additions.

Worst case coefficient growth for w-NIBNAF encodings. Here we ana-
lyze the maximal possible size of a coefficient which could occur from comput-
ing with w-NIBNAF encodings. Because fresh w-NIBNAF encodings are just

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 587

approximate w-NIBNAF representations written as elements of Rt we consider
finite w-balanced ternary sequences and the multiplication endowed on them
from Rt. Equivalently, we consider multiplication in the Z[X±1]-plane depicted
in Fig. 1. As we ensure in practice that there is no wrap around modulo f(X)
this can be ignored in our analysis.

To start the worst case analysis we have the following lower bound; note that
the d we use here is not that of the degree of f(X).

Lemma 3. The maximal absolute size of a term that can appear in the product
of p arbitrary w-balanced ternary sequences of length d + 1 is at least

Bw(d, p) :=
��p�d/w�/2�/(�d/w�+1)�∑

k=0

(−1)k

(
p

k

)(
p − 1 + �p�d/w�/2� − k�d/w� − k

p − 1

)
.

A full proof of this lemma is given in AppendixA but the main idea is to look
at the largest coefficient of mp where m has the maximal number of non-zero
coefficients, �d/w�+1, all being equal to 1 and with exactly w−1 zero coefficients
between each pair of adjacent non-zero coefficients. The (non-zero) coefficients
of mp are variously known in the literature as extended (or generalized) binomial
coefficients or ordinary multinomials; we denote them here by

(
p
k

)
n

defined via

(
1 + X + X2 + . . . + Xn−1

)p
=

∞∑
k=0

(
p

k

)
n

Xk,

[18,21,22,35]. In particular the maximal coefficient is the (or a) central one and
we can write Bw(d, p) =

(
p
k

)
n

where k = �p�d/w�/2� and n = �d/w� + 1.
We note that the w-NIBNAF encoding, using the greedy algorithm with

precision 1
2 , of b

d+w−(d mod w)
w (bw − 1)/2 is m so in practice this lower bound is

achievable although highly unlikely to occur.
We expect that this lower bound is tight, indeed we were able to prove the

following lemma, the proof is also given in AppendixA.

Lemma 4. Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d + 1.

We thus make the following conjecture which holds for all small values of p
and d we tested and which we assume to be true in general.

Conjecture 1. The lower bound Bw(d, p) given in Lemma 3 is exact for all
d, that is the maximal absolute term size which can occur after multiplying p
arbitrary w-balanced ternary sequences of length d + 1 is Bw(d, p).

This conjecture seems very plausible since as soon as one multiplicand does
not have non-zero coefficients exactly w places apart the non-zero coefficients
start to spread out and decrease in value.

588 C. Bonte et al.

To determine Bw(d, p) for fixed p define n := �d/w�+1, then we can expand
the expression for Bw(d, p) as a ‘polynomial’ in n of degree p − 1 where the
coefficients depend on the parity of n, see [5] for more details. The first few are:

Bw(d, 1) = 1, Bw(d, 2) = n,

Bw(d, 3) = 1
8 (6n2 + 1) − (−1)n

8 , Bw(d, 4) = 1
3 (2n3 + n),

Bw(d, 5) = 1
384 (230n4 + 70n2 + 27) − (−1)n

384 (30n2 + 27),

Bw(d, 6) = 1
20 (11n5 + 5n3 + 4n).

Denoting the coefficient of np−1 in these expressions by �p, it can be shown
(see [2] or [5]) that limp→∞

√
p�p =

√
6/π and hence we have

lim
p→∞ log2(Bw(d, p)) − (p − 1) log2(n) + 1

2 log2
(

πp
6

)
= 0

or equivalently Bw(d, p) ∼p

√
6/πpnp−1. Thus we have the approximation

log2(Bw(d, p)) ≈ (p − 1) log2(n) − 1
2 log2

(
πp
6

)

which for large enough n (experimentally we found for n > 1.825
√

p − 1/2) is an
upper bound for p > 2. For a guaranteed upper bound we refer to Mattner and
Roos [30] where they state, for n, p ∈ Z>0 with n ≥ 2, if p �= 2 or n ∈ {2, 3, 4}
then Bw(d, p) ≤ √

6/(πp(n2 − 1))np. This upper bound is in fact a more precise
asymptotic limit than that above which only considers the leading coefficient.

Statistical analysis of the coefficient growth. Based on the w-NIBNAF
encodings of random numbers in N ∈ [−240, 240

]
, we try to get an idea of the

amount of zero and non-zero coefficients in a fresh encoding without fractional
part, obtained by running Algorithm 1 to precision (1+ b−1

w)/2. We also analyze
how these proportions change when we perform multiplications. We plot this
for different values of w to illustrate the positive effects of using sparser encod-
ings. As a preliminary remark note that the w-NIBNAF encodings produced by
Algorithm 1 applied to −N and N are obtained from one another by changing
all the signs, so the coefficients −1 and 1 are necessarily distributed evenly.2

We know from the definition of a w-NIBNAF expansion that at least w − 1
among each block of w consecutive coefficients of the expansion will be 0, so we
expect for big w that the 0 coefficient occurs a lot more often than ±1. This is
clearly visible in Fig. 3. In addition we see an increasing number of 0 coefficients
and decreasing number of ±1 coefficients for increasing w. Thus both the absolute
and the relative sparseness of our encodings increase as w increases.

2 This is a desirable property leading to the maximal amount of cancellation during
computation. While this does not affect our worst case analysis, in practice where
the worst case is extremely unlikely this accounts for a considerable reduction of the
size of the coefficient modulus t. If in some application the input encodings happen
to be biased towards 1 or −1 then one can work with respect to the negative base
−bw < −1, by switching the signs of all the digits appearing at an odd index.

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 589

0 10 20 30 40 50
w

0

2

4

6

8

10

lo
g2

(#
co

ef
f)

non-zero coeff
coeff 0

Fig. 3. Plot of log2(#coeff) on the vertical axis against w on the horizontal axis aver-
aged over 10 000 w-NIBNAF encodings of random integers in

[−240, 240
]
.

Table 1. Comparison between the previous encoding techniques and w-NIBNAF

Balanced ternary 1-NIBNAF 2-NAF 2-NIBNAF

Zero coefficients 32.25% 48.69% 65.23% 70.46%

Non-zero coefficients 67.76% 51.31% 34.77% 29.54%

Since the balanced ternary encoding of [16,19] and the 2-NAF encoding [33],
only have coefficients in {0,±1} it is interesting to compare them to 1-NIBNAF
and 2-NIBNAF respectively. We compare them by computing the percentage
of zero and non-zero coefficients, in 10 000 encodings of random integers N in[−240, 240

]
. We compute this percentage up to an accuracy of 10−2 and consider

for our counts all coefficients up to and including the leading coefficient, further
zero coefficients are not counted. When we compare the percentages of zero and
non-zero coefficients occurring in 1-NIBNAF and balanced ternary in Table 1 we
see that for the balanced ternary representation, the occurrences of 0, 1 and −1
coefficients are approximately the same, while for 1-NIBNAF the proportion of 0
coefficients is larger than that of 1 or −1. Hence we can conclude that 1-NIBNAF
encodings will be sparser than the balanced ternary encodings even though the
window size is the same. For 2-NIBNAF we also see an improvement in terms
of sparseness of the encoding compared to 2-NAF.

The next step is to investigate what happens to the coefficients when we
multiply two encodings. From Fig. 4 we see that when w increases the maxi-
mal size of the resulting coefficients becomes smaller. So the plots confirm the
expected result that sparser encodings lead to a reduction in the size of the
resulting coefficients after one multiplication. Next, we investigate the behav-
iour for an increasing amount of multiplications. In Fig. 5 one observes that for
a fixed number of multiplications the maximum coefficient, considering all coef-
ficients in the resulting polynomial, decreases as w increases and the maximum
degree of the polynomial increases as w increases. This confirms that increasing
the degree of the polynomial, in order to make it more sparse, has the desirable

590 C. Bonte et al.

w= 1

-20 -10 0 10 20
coeff

0

5

10

15

20

lo
g

2
(#

co
ef

f+
1)

w= 2

-20 -10 0 10 20
coeff

0

5

10

15

20

lo
g

2
(#

co
ef

f+
1)

w= 3

-20 -10 0 10 20
coeff

0

5

10

15

20

lo
g

2
(#

co
ef

f+
1)

w= 50

-20 -10 0 10 20
coeff

0

5

10

15

20

25

lo
g

2
(#

co
ef

f+
1)

w= 100

-20 -10 0 10 20
coeff

0

5

10

15

20

25

lo
g

2
(#

co
ef

f+
1)

w= 150

-20 -10 0 10 20
coeff

0

5

10

15

20

25

lo
g

2
(#

co
ef

f+
1)

Fig. 4. Plot of log2(#coeff+1) on the vertical axis against the respective value of
the coefficient on the horizontal axis for the result of 10 000 multiplications of two
w-NIBNAF encodings of random numbers between

[−240, 240
]
.

0 100 200 300
0

5

10

15 1 mult
2 mult
3 mult
4 mult
5 mult

0 100 200 300
0

5

10

15 1 mult
2 mult
3 mult
4 mult
5 mult

0 100 200 300
0

5

10

15 1 mult
2 mult
3 mult
4 mult
5 mult

0 2000 4000 6000
0

2

4

6
1 mult
2 mult
3 mult
4 mult
5 mult

0 2000 4000 6000
0

2

4

6
1 mult
2 mult
3 mult
4 mult
5 mult

0 2000 4000 6000
0

2

4

6
1 mult
2 mult
3 mult
4 mult
5 mult

Fig. 5. log2 of the maximum absolute value of the coefficient of xi seen during 10 000
products of two w-NIBNAF encodings of random numbers in

[−240, 240
]

against i.

effect of decreasing the size of the coefficients. Figure 5 also shows that based on
the result of one multiplication we can even estimate the maximum value of the
average coefficients of xi for a specific number of multiplications by scaling the
result for one multiplication.

To summarize, we plot the number of bits of the maximum coefficient of the
polynomial that is the result of a certain fixed amount of multiplications as a
function of w in Fig. 6. From this figure we clearly see that the maximal coef-
ficient decreases when w increases and hence the original encoding polynomial
is sparser. In addition we see that the effect of the sparseness of the encoding
on the size of the resulting maximal coefficient is bigger when the amount of
multiplications increases. However the gain of sparser encodings decreases as w

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 591

becomes bigger. Furthermore, Fig. 6 shows that the bound given in Lemma 3 is
much bigger than the observed upper bound we get from 10 000 samples.

0 5 10 15 20 25 30 35 40 45 50

w

0

2

4

6

8

10

12

14

16

lo
g

2
(m

ax
(c

oe
ffi

ci
en

ts
))

average coeff 1 mult
upper bound coeff 1 mult
average coeff 2 mult
upper bound coeff 2 mult
average coeff 3 mult
upper bound coeff 3 mult
average coeff 4 mult
upper bound coeff 4 mult
average coeff 5 mult
upper bound coeff 5 mult

Fig. 6. log2 of the observed and theoretical maximum absolute coefficient of the result
of multiplying w-NIBNAF encodings of random numbers in

[−240, 240
]

against w.

4 Practical Impact

We encounter the following constraints on the plaintext coefficient modulus t
while homomorphically computing with polynomial encodings of finite precision
real numbers. The first constraint comes from the correctness requirement of the
SHE scheme: the noise inside the ciphertext should not exceed a certain level
during the computations, otherwise decryption fails. Since an increase of the
plaintext modulus expands the noise this places an upper bound on the possible
t which can be used. The second constraint does not relate to SHE but to the
circuit itself. After any arithmetic operation the polynomial coefficients tend to
grow. Given that fact, one should take a big enough plaintext modulus in order to
prevent or mitigate possible wrapping around modulo t. This determines a lower
bound on the range of possible values of t. In practice, for deep enough circuits
these two constraints are incompatible, i.e. there is no interval from which t
can be chosen. However, the plaintext space Rt can be split into smaller rings
Rt1 , . . . , Rtk

with t =
∏k

i=1 ti using the Chinese Remainder Theorem (CRT).
This technique [8] allows us to take the modulus big enough for correct evaluation
of the circuit and then perform k threads of the homomorphic algorithm over
{Rti

}i. These k output polynomials will then be combined into the final output,
again by CRT. This approach needs k times more memory and time than the
case of a single modulus. Thus the problem is mostly about reducing the number
of factors of t needed.

An a priori lower bound on t can be derived using the worst case scenario
in which the final output has the maximal possible coefficient, which was ana-
lyzed in Sect. 3. If we use w-NIBNAF encodings for increasing values of w then

592 C. Bonte et al.

this lower bound will decrease, eventually leading to fewer CRT factors; here a
concern is not to take w too large to prevent wrapping around modulo f(X).
In practice though, we can take t considerably smaller because the worst case
occurs with a negligible probability, which even decreases for circuits having a
bigger multiplicative depth. Moreover, we can allow the least significant coeffi-
cients of the fractional part to wrap around modulo t with no harm to the final
results.

In this section we revisit the homomorphic method for electricity load fore-
casting described in [6] and demonstrate that by using w-NIBNAF encodings, by
ignoring the unlikely worst cases, and by tolerating minor precision losses we can
reduce the number of CRT factors from k = 13 to k = 1, thereby enhancing its
practical performance by a factor 13. We recall that [6] uses the Fan-Vercauteren
SHE scheme [23], along with the group method of data handling (GMDH) as a
prediction tool; we refer to [6, Sect. 3] for a quick introduction to this method.
Due to the fact that 80% of electricity meter devices in the European Union
should be replaced with smart meters by 2020, this application may mitigate
some emerging privacy and efficiency issues.

Experimental setup. For comparison’s sake we mimic the treatment in [6]
as closely as possible. In particular we also use the real world measurements
obtained from the smart meter electricity trials performed in Ireland [14]. This
dataset [14] contains observed electricity consumption of over 5000 residential
and commercial buildings during 30 min intervals. We use aggregated consump-
tion data of 10 buildings. Given previous consumption data with some additional
information, the GMDH network has the goal of predicting electricity demand
for the next time period. Concretely, it requires 51 input parameters: the 48
previous measurements plus the day of the week, the month and the temper-
ature. There are three hidden layers with 8, 4, 2 nodes, respectively. A single
output node provides the electricity consumption prediction for the next half
hour. Recall that a node is just a bivariate quadratic polynomial evaluation.

The plaintext space is of the form Rt = Zt[X]/(X4096 +1), where the degree
d = 4096 is motivated by the security level of 80 bits which is targetted in [6];
recent work by Albrecht [1] implies that the actual level of security is slightly
less than that. Inside Rt the terms corresponding to the fractional parts and
those corresponding to the integral parts come closer together after each multi-
plication. Wrapping around modulo X4096 + 1, i.e. ending up at the left or at
the right of the box depicted in Fig. 1, means that inside Rt these integer and
fractional parts start to overlap. In this case it is no longer possible to decode
correctly. We encode the input data using approximate w-NIBNAF representa-
tions with a fixed number of integer and fractional digits. When increasing the
window size w one should take into account that the precision of the correspond-
ing encodings changes as well. To maintain the same accuracy of the algorithm
it is important to keep the precision fixed, hence for bigger w’s the smaller base
bw should result in an increase of the number of coefficients used by an encod-
ing. Starting with the balanced ternary expansion (BTE), for any w > 2, the
numbers �(w)i and �(w)f of integer and fractional digits should be expanded

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 593

0 385 1,000 2,000 3,000 4,095
0

6

29

41

in
te

g
er

p
a
rt

fr
a
ct

io
n
a
l
p
a
rt

coefficient index

b
in

a
ry

b
it

s
BTE mean

NAF mean

950-NIBNAF mean

BTE max

NAF max

950-NIBNAF max

Fig. 7. The mean and the maximal size per coefficient of the resulting polynomial.

according to �(w)i = (�(BTE)i − 1) · logbw
3 + 1, �(w)f = −�logbw

ef�, where
ef is the maximal error of an approximate w-NIBNAF representation such that
the prediction algorithm preserves the same accuracy. Empirically we found that
the GMDH network demonstrates reasonable absolute and relative errors when
�(BTE)inpi = 4 and einpf = 1 for the input and �(BTE)poli = 2 and epolf = 0.02032
for the coefficients of the nodes (quadratic polynomials).

Results. The results reported in this section are obtained running the same
software and hardware as in [6]: namely, FV-NFLlib software library [17] running
on a laptop equipped with an Intel Core i5-3427U CPU (running at 1.80 GHz).
We performed 8560 runs of the GMDH algorithm with BTE, NAF and 950-
NIBNAF. The last expansion is with the maximal possible w such that the
resulting output polynomial still has discernible integer and fractional parts.
Correct evaluation of the prediction algorithm requires the plaintext modulus to
be bigger than the maximal coefficient of the resulting polynomial. This lower
bound for t can be deduced either from the maximal coefficient (in absolute
value) appearing after any run or, in case of known distribution of coefficient
values, from the mean and the standard deviation. In both cases increasing
window sizes reduce the bound as depicted in Fig. 7. Since negative encoding
coefficients are used, 950-NIBNAF demands a plaintext modulus of 7 bits which
is almost 6 times smaller than for BTE and NAF.

As expected, w-NIBNAF encodings have longer expansions for bigger w’s
and that disrupts the decoding procedure in [6,16]. Namely, they naively split
the resulting polynomial into two parts of equal size. As one can observe in
Fig. 7, using 950-NIBNAF, decoding in this manner will not give correct results.
Instead, the splitting index is should be shifted towards zero, i.e. to 385. To
be specific [6, Lem. 1] states that is lies in the interval (di + 1, d − df) where
di = 2r+1(�(w)inpi +�(w)poli)−�(w)poli and df = 2r+1(�(w)inpf +�(w)polf)−�(w)polf .
Indeed, this is the worst case estimation which results in the maximal w = 74
for the current network configuration.

594 C. Bonte et al.

−2 −1 0 1
0

100

200

300

][

L(3500)

o
cc

u
rr

en
ce

s

Fig. 8. The distribution of L(3500)
over 8560 runs of the GMDH algorithm
and an approximation of its prediction
interval in red.

3,100 3,388 3,700

1

2

3

4

j

τ
(j

)

Fig. 9. The expected precision loss
after ignoring fractional coefficients less
than j.

However the impact of the lower coefficients of the fractional part can be
much smaller than the precision required by an application. In our use case the
prediction value should be precise up to einpf = 1. We denote the aggregated
sum of lower coefficients multiplied by corresponding powers of the w-NIBNAF
base as L(j) =

∑is

i=j−1 aib
−i
w . Then the omitted fractional coefficients ai should

satisfy |L(ic)| < 1, where ic is the index after which coefficients are ignored.
To find ic we computed L(j) for every index j of the fractional part and

stored those sums for each run of the algorithm. For fixed j the distribution
of L(j) is bimodal with mean μL(j) and standard deviation σL(j) (see Fig. 8).
Despite the fact that this unknown distribution is not normal, we naively approx-
imate the prediction interval [μL(j) −6σL(j), μL(j) +6σL(j)] that will contain the
future observation with high probability. It seems to be a plausible guess in this
application because all observed L(j) fall into that region with a big overestimate
according to Fig. 8. Therefore ic is equal to the maximal j that satisfies τ(j) < 1,
where τ(j) = max(|μL(j) − 6σL(j)|, |μL(j) + 6σL(j)|).

As Fig. 9 shows, ic is equal to 3388. Thus, the precision setting allows an
overflow in any fractional coefficient aj for j < 3388. The final goal is to provide
the bound on t which is bigger than any aj for j ≥ 3388. Since the explicit distri-
butions of coefficients are unknown and seem to vary among different indices, we
rely in our analysis on the maximal coefficients occurring among all runs. Hence,
the plaintext modulus should be bigger than maxj≥3388{aj} over all resulting
polynomials. Looking back at Fig. 7, one can find that t = 33 suffices.

As mentioned above t is constrained in two ways: from the circuit and from
the SHE correctness requirements. In our setup the ciphertext modulus is q ≈
2186 and the standard deviation of noise is σ = 102, which together impose that
t ≤ 396 [6]. This is perfectly compatible with t = 33, therefore 950-NIBNAF
allows us to omit the CRT trick and work with a single modulus, reducing the
sequential timings by a factor 13. In the parallel mode it means that 13 times
less memory is needed.

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 595

Table 2. GMDH implementation with 950-NIBNAF and BTE [6]

t CRT factors timing for one run

950-NIBNAF 25.044 1 2.57 s

BTE (this paper) 241.627 5 12.95 s

BTE [6] 2103.787 13 32.5 s

Additionally, these plaintext moduli are much smaller than the worst case
estimation from Sect. 3. For 950-NIBNAF we take d ∈ [542, 821] according to the
encoding degrees of input data and network coefficients. Any such encoding con-
tains only one non-zero coefficient. Consequently, any product of those encodings
has only one non-zero coefficient which is equal to ±1. When all monomials of
the GMDH polynomial result in an encoding with the same index of a non-zero
coefficient, the maximal possible coefficient of the output encoding will occur.
In this case the maximal coefficient is equal to the evaluation of the GMDH
network with all input data and network coefficients being just 1. It leads to
t = 2 · 615 � 239.775.

One further consequence of smaller t is that one can reconsider the para-
meters of the underlying SHE scheme. Namely, one can take smaller q and σ
that preserve the same security level and require a smaller bound on t instead
of 396 taken above. Given t = 33 from above experiments, q reduces to 2154

together with σ ≈ 5 that corresponds to smaller sizes of ciphertexts and faster
SHE routines, where σ is taken the minimal possible to prevent the Arora-Ge
attack [4] as long as each batch of input parameters is encrypted with a different
key. Unfortunately, it is not possible to reduce the size of q by 32 bits in our
implementation due to constraints of the FV-NFLlib library.

5 Conclusions

We have presented a generic technique to encode real numbers using a non-
integral base. This encoding technique is especially suitable for use when eval-
uating homomorphic functions since it utilizes the large degree of the defining
polynomial imposed by the security requirements. This leads to a considerably
smaller growth of the coefficients and allows one to reduce the size of the plain-
text modulus significantly, resulting in faster implementations. We show that
in the setting studied in [6], where somewhat homomorphic function evaluation
is used to achieve a privacy-preserving electricity forecast algorithm, the plain-
text modulus can be reduced from about 2103 when using a balanced ternary
expansion encoding, to 33 � 25.044 when using the encoding method introduced
in this paper (non-integral base non-adjacent form with window size w), see
Table 2. This smaller plaintext modulus means a factor 13 decrease in the run-
ning time of this privacy-preserving forecasting algorithm: closing the gap even
further to making this approach suitable for industrial applications in the smart
grid.

596 C. Bonte et al.

References

1. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parame-
ter choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). doi:10.
1007/978-3-319-56614-6 4

2. Aliev, I.: Siegel’s lemma and sum-distinct sets. Discrete Comput. Geom. 39(1–3),
59–66 (2008)

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security Symposium. USENIX Association (2016)

4. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22006-7 34

5. Bootland, C.: Central Extended Binomial Coefficients and Sums of Powers. In
preparation

6. Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.: Privacy-friendly forecast-
ing for the smart grid using homomorphic encryption and the group method of
data handling. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol.
10239, pp. 184–201. Springer, Cham (2017). doi:10.1007/978-3-319-57339-7 11

7. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the TLS protocol from the ring learning with errors problem. In: IEEE S&P, pp.
553–570. IEEE Computer Society (2015)

8. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0 4

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–
325. ACM, Janary 2012

10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

11. Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-preserving computations of pre-
dictive medical models with minimax approximation and non-adjacent form. In:
Proceedings of WAHC 2017. LNCS (2017)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Cryptology ePrint Archive, Report 2016/421 (2016).
http://eprint.iacr.org/2016/421

13. Cohen, H., Miyaji, A., Ono, T.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998). doi:10.1007/3-540-49649-1 6

14. Commission for Energy Regulation. Electricity smart metering customer behaviour
trials (CBT) findings report. Technical Report CER11080a (2011). http://www.
cer.ie/docs/000340/cer11080(a)(i).pdf

15. Costache, A., Smart, N.P., Vivek, S.: Faster homomorphic evaluation of Discrete
Fourier Transforms. IACR Cryptology ePrint Archive (2016)

16. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
schemes. In SAC 2016. LNCS. Springer (2016)

17. CryptoExperts. FV-NFLlib (2016). https://github.com/CryptoExperts/
FV-NFLlib

http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-319-56614-6_4
http://dx.doi.org/10.1007/978-3-642-22006-7_34
http://dx.doi.org/10.1007/978-3-319-57339-7_11
http://dx.doi.org/10.1007/978-3-642-45239-0_4
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://eprint.iacr.org/2016/421
http://dx.doi.org/10.1007/3-540-49649-1_6
http://www.cer.ie/docs/000340/cer11080(a)(i).pdf
http://www.cer.ie/docs/000340/cer11080(a)(i).pdf
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 597

18. de Moivre, A.: The Doctrine of Chances. Woodfall, London (1738)
19. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:

Manual for using homomorphic encryption for bioinformatics. Technical report,
MSR-TR-2015-87, Microsoft Research (2015)

20. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) International Conference on
Machine Learning, vol. 48, pp. 201–210 (2016). www.JMLR.org

21. Eger, S.: Stirling’s approximation for central extended binomial coefficients. Am.
Math. Mon. 121, 344–349 (2014)

22. Euler, L.: De evolutione potestatis polynomialis cuiuscunque (1 + x + x2 + x3 +
x4 + etc.)n. Nova Acta Academiae Scientarum Imperialis Petropolitinae, vol. 12,
pp. 47–57 (1801)

23. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012/144 (2012)

24. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June (2009)

25. Göttert, N., Feller, T., Schneider, M., Buchmann, J., Huss, S.: On the design of
hardware building blocks for modern lattice-based encryption schemes. In: Prouff,
E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 512–529. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-33027-8 30

26. Güneysu, T., Oder, T., Pöppelmann, T., Schwabe, P.: Software speed records for
lattice-based signatures. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932,
pp. 67–82. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9 5

27. Lauter, K., López-Alt, A., Naehrig, M.: Private computation on encrypted genomic
data. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895,
pp. 3–27. Springer, Cham (2015). doi:10.1007/978-3-319-16295-9 1

28. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261, 515–534 (1982)

29. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71039-4 4

30. Mattner, L., Roos, B.: Maximal probabilities of convolution powers of discrete
uniform distributions. Stat. Probab. Lett. 78(17), 2992–2996 (2008)

31. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (eds.) ACM Cloud Computing Security
Workshop - CCSW, pp. 113–124. ACM (2011)

32. Pöppelmann, T., Güneysu, T.: Towards practical lattice-based public-key encryp-
tion on reconfigurable hardware. In: Lange, T., Lauter, K., Lisoněk, P. (eds.)
SAC 2013. LNCS, vol. 8282, pp. 68–85. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 4

33. Reitwiesner, G.W.: Binary arithmetic. In: Advances in Computers, vol. 1, pp. 231–
308. Academic Press (1960)

34. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 4

35. Swanepoel, J.W.: On a generalization of a theorem by Euler. J. Number Theory
149, 46–56 (2015)

www.JMLR.org
http://dx.doi.org/10.1007/978-3-642-33027-8_30
http://dx.doi.org/10.1007/978-3-642-38616-9_5
http://dx.doi.org/10.1007/978-3-319-16295-9_1
http://dx.doi.org/10.1007/978-3-540-71039-4_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-662-43414-7_4
http://dx.doi.org/10.1007/978-3-642-20465-4_4

598 C. Bonte et al.

A Proofs

Lemma 1. For an integer w ≥ 1 the polynomial Fw(x) = xw+1 − xw − x − 1 has
a unique positive root bw > 1. The sequence b1, b2, . . . is strictly decreasing and
limw→∞ bw = 1. Further, (x2 + 1) | Fw(x) for w ≡ 3 mod 4.

Proof. For w ≥ 1, F ′
w(x) = (w+1)xw−wxw−1−1 = (x−1)((w+1)xw−1+xw−2+

· · ·+1) so that for x ≥ 0 there is only one turning point of Fw(x), at x = 1. Fur-
ther, F ′′

w(x) = (w+1)wxw−1−w(w−1)xw−2, which takes the value 2w > 0 at x =
1, so the turning point is a minimum. Since Fw(0) = −1 and limx→∞ Fw(x) = ∞
we conclude that there is a unique positive root of Fw(x), bw > 1, for any w ≥ 1.
Further, we have that Fw+1(x) = xFw(x)+x2−1 so that Fw+1(bw) = b2w −1 > 0
so that bw+1 < bw and hence the sequence bw is strictly decreasing and bounded
below by 1 so must converge to some limit, say b∞ ≥ 1. If b∞ > 1 then as
bw is the positive solution to x − 1 = (x + 1)/xw and, for x ≥ b∞ > 1,
limw→∞(x+1)/xw = 0 we see that b∞ = limw→∞ bw = 1, a contradiction. Hence
b∞ = 1 as required. Finally we see that Fw(x) = x(x−1)(xw−1+1)−(x2+1) and
for w = 4k +3 that xw−1 +1 = 1− (−x2)2k+1 = (x2 +1)

∑2k
i=0(−x2)i and hence

(x2 + 1) | F4k+3(x). ��
Recall that to find a lower bound on the maximal absolute coefficient size we

consider w-balanced ternary sequences and to each sequence (ai) we have the
corresponding polynomial

∑
i aiX

i in Rt. As we only look at the coefficients and
their relative distances we can simply assume that to each w-balanced ternary
sequence c0, c1, . . . , cd of length d + 1 we have the associated polynomial c0 +
c1X + . . . + cdX

d of degree d. Multiplication of polynomials thus gives us a way
of multiplying (finite) w-balanced ternary sequences. In the rest of this appendix
we use the polynomial and sequence notation interchangeably.

Lemma 3. The maximal absolute size of a term that can appear in the product
of p arbitrary w-balanced ternary sequences of length d + 1 is at least

Bw(d, p) :=
��p�d/w�/2�/(�d/w�+1)�∑

k=0

(−1)k

(
p

k

)(
p − 1 + �p�d/w�/2� − k�d/w� − k

p − 1

)
.

Proof. Consider the product of p sequences all of which are equal to m =
10 · · · 010 · · · 010 · · · 0 of length d + 1, having n := �d/w� + 1 non-zero terms
(all being 1) and between each pair of adjacent non-zero terms there are exactly
w−1 zero terms. Note that n is the maximal number of non-zero terms possible.

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding 599

As polynomials we have that m =
∑n−1

i=0 Xiw = 1−Xnw

1−Xw , and hence we have

mp =
(

1 − Xnw

1 − Xw

)p

= (1 − Xnw)p · (1 − Xw)−p

=

(
p∑

i=0

(−1)i

(
p

i

)
Xinw

)⎛
⎝ ∞∑

j=0

(
p − 1 + j

p − 1

)
Xjw

⎞
⎠

=
∞∑

�=0

⎛
⎝��/n�∑

k=0

(−1)k

(
p

k

)(
p − 1 + � − kn

p − 1

)⎞
⎠ X�w,

where we have used the substitution (i, j) → (k, �) = (i, in + j). Since we know
that mp has degree p(n − 1)w we can in fact change the infinite sum over � to
a finite one from � = 0 to p(n − 1). To give the tightest lower bound we look
for the maximal coefficient of mp. It is well known that this maximal coefficient
occurs as the central coefficient, namely of x� where � is any nearest integer to
p(n − 1)/2 and this gives us Bw(d, p). ��
Lemma 4. Suppose w divides d, then Bw(d, p) equals the maximal absolute size
of a term that can be produced by taking the product of p arbitrary w-balanced
ternary sequences of length d + 1.

Proof. Let Sw(d, p) be the set of all sequences that are the product of p arbitrary
w-balanced ternary sequences of length d + 1. To prove the lemma we bound all
the terms of any sequence in Sw(d, p). For i = 0, . . . , pd define

mw(d, p, i) = max{ |ai| | ai is the i’th term of a sequence in Sw(d, p) }.

Define Bw(d, p, �) :=
∑��/n�

k=0 (−1)k
(

p
k

)(
p−1+�−kn

p−1

)
, the coefficient of X�w in

mp. We will prove by induction on p that mw(d, p, i) ≤ Bw(d, p, �i/w�). We will
use the notation Ci(f) for a polynomial f to denote the coefficient of Xi in f(X);
this is defined to be zero if i > deg(f) or i < 0. Thus in this notation Bw(d, p, �) =
C�w ((1 − Xnw)p/(1 − Xw)p). The base case p = 1 is straight forward, all the
mw(d, p, i) are equal to 1 by the definition of a w-balanced ternary sequence. We
therefore suppose that mw(d, p− 1, i) ≤ Bw(d, p− 1, �i/w�) for 0 ≤ i ≤ (p− 1)d.
Consider a product of p w-balanced ternary sequences of length d + 1. It can be
written as f(X)e(X) where f(X) ∈ Sw(d, p − 1) and e(X) ∈ Sw(d, 1). We know
that if f(X) =

∑(p−1)d
i=0 aiX

i then |ai| ≤ mw(d, p−1, i) and if e(X) =
∑d

j=0 αjX
j

that (fe)(X) = f(X)e(X) =
∑pd

k=0

(∑min((p−1)d,k)
i=max(0,k−d) aiαk−i

)
Xk, and due to the

form of e(X) we see that |Ck(fe)| ≤ ∑nk

j=1 |aij
| ≤ ∑nk

j=1 mw(d, p−1, ij) for some
nk ≤ n, max(0, k −d) ≤ i1 < i2 < · · · < ink

≤ min((p−1)d, k) and ij+1 − ij ≥ w
for j = 1, . . . , nk − 1.

The final condition on the ij implies that the �ij/w� are distinct and since
mw(d, p − 1, i) is bounded above by Bw(d, p − 1, �i/w�), which depends only on

600 C. Bonte et al.

�i/w�, we can recast this as

|Ck(fe)| ≤
nk∑
j=1

Bw(d, p − 1, �j) =
nk∑
j=1

C�jw

((
1 − Xnw

1 − Xw

)p−1
)

where max(0, �k/w�−(n−1)) ≤ �1 < �2 < · · · < �nk
≤ min((p−1)(n−1), �k/w�)

where we have used that d/w = n − 1 is an integer.
Since �k/w� − (�k/w� − (n − 1)) + 1 = n we see that to make nk as large as

possible the �j must be the (at most n) consecutive integers in this range subject
also to 0 ≤ �1 and �nk

≤ (p−1)(n−1). Thus taking a maximum over all possible
f and e we have

mw(d, p, k) ≤
�k/w�∑

�=�k/w�−(n−1)

C�w

((
1 − Xnw

1 − Xw

)p−1
)

=
n−1∑
j=0

C�k/w�w

((
1 − Xnw

1 − Xw

)p−1

Xw(n−1−j)

)

= C�k/w�w

((
1 − Xnw

1 − Xw

)p)
= Bw(d, p, �k/w�),

which proves the inductive step. To finish the proof we note as before that the
maximal value of Bw(d, p, �k/w�) for 0 ≤ k ≤ pd is reached, for example, when
�k/w� = �p�d/w�/2� and in this case we have Bw(d, p) as required. ��

Hiding Secrecy Leakage in Leaky Helper Data

Matthias Hiller1(B) and Aysun Gurur Önalan2

1 Fraunhofer AISEC, Munich, Germany
matthias.hiller@aisec.fraunhofer.de

2 Chair of Security in Information Technology,

Technical University of Munich, Munich, Germany

Abstract. PUFs provide cryptographic keys for embedded systems
without dedicated secure memory. Practical PUF implementations often
show a bias in the PUF responses, which leads to secrecy leakage in
many key derivation constructions. However, previously proposed mit-
igation techniques remove the bias at the expense of discarding large
numbers of PUF response bits. Instead of removing the bias from the
input sequence, this work reduces the secrecy leakage through the helper
data. We apply the concept of wiretap coset coding to add randomness
to the helper data such that an attacker cannot isolate significant infor-
mation about the key anymore.

Examples demonstrate the effectiveness of coset coding for different
bias parameters by computing the exact leakage for short code lengths
and applying upper bounds for larger code lengths. In our case study,
we compare a secrecy leakage mitigation design with coset coding and
Differential Sequence Coding (DSC). It reduces the number of required
PUF response bits by 60% compared to state-of-the-art debiasing
approaches.

Keywords: Physical Unclonable Functions (PUFs) · Fuzzy extractor ·
Secrecy leakage · Coding theory · Wiretap channel · Coset coding

1 Introduction

Silicon Physical Unclonable Functions (PUFs) measure physical manufacturing
variations inside integrated circuits to derive a unique behavior for each device.
Typical silicon PUFs can be implemented in a standard CMOS manufacturing
process such that they provide cryptographic keys for embedded devices without
dedicated secure key storage in non-volatile memory [1]. This makes them a
suitable solution to protect a wide span of devices, starting from lightweight IoT
sensors up to complex high-end circuits such as FPGAs.

PUF responses are noisy and often not fully random such that postprocessing
steps are necessary to derive stable and secure cryptographic keys from PUFs.
The syndrome encoder computes helper data that is stored off-chip, e.g. in unse-
cured external non-volatile memory. The helper data maps the PUF response
to codewords of an Error-Correcting Code (ECC) to enable error correction,
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 601–619, 2017.
DOI: 10.1007/978-3-319-66787-4 29

602 M. Hiller and A.G. Önalan

but it must not leak information about the derived key. Several error correction
schemes were proposed and implemented over the last decade, e.g. [2–10].

Early work such as [11] already acknowledged the fact that PUF implemen-
tations can have imperfections that result in a reduced entropy of the PUF
response. As the field matured, the security implications of the imperfections in
the PUF responses, and especially bias, were analyzed and addressed in more
detail [5,10,12–15].

Looking at a fuzzy commitment [16] in Fig. 1 there are two ways to reduce
the leakage within this setting: The approaches in [5,10] reshape the input dis-
tribution in a debiasing step such that an unbiased sequence is processed in the
syndrome encoder. This comes at the expense that the unbiased sequence is sig-
nificantly shorter than the input PUF response. In contrast, we operate on the
ECC encoding to mask the leakage on the secret. While [7] proposed a method
to store multiple instances of helper data and thus hide the correct value, we
create the ambiguity within one single instance of helper data in this work.

ECC
Encoder

PUF

SYN
Encoder

Debiasing

secret helper data

Fig. 1. Helper data generation for a fuzzy commitment and a biased PUF

Another recent line of work relaxed the security argument from an informa-
tion theoretical setting to a complexity theoretical argument [17–20] where no
secrecy leakage is observed. However, to be able to quantify the actual statis-
tical correlation, we stay in the stricter information theoretical setting in the
following.

1.1 Contributions

– We show that the problem of secure key storage with PUFs relates closely
to the wiretap channel [21]. To the best of our knowledge, we are therefore
the first to apply coset coding [22] to PUFs. Instead of embedding only the
secret key, we add mask bits that are encoded by the ECC together with the
secret key and thus contribute to the helper data as well. Due to the bias, the
helper data inevitably leaks information about the key and the mask. Since
the attacker is not able to isolate the leakage on the key, this leakage cannot
be exploited.

– Examples demonstrate and quantify the leakage reduction that is achieved by
assigning mask bits for coset coding. We compute the exact leakage for short

Hiding Secrecy Leakage in Leaky Helper Data 603

code lengths and apply an upper bound for long code lengths for Reed–Muller
(RM) codes and a wide range of bias parameters.

– We provide design parameters for a practical design with Differential Sequence
Coding (DSC) and compare it to state-of-the-art debiasing approaches with
Index-Based Syndrome coding (IBS) and the von Neumann corrector (VN).
The comparison shows that our approach reduces the number of PUF response
bits by 60% for a moderately biased PUF with a bias of 0.54 and only has a
negligible secrecy leakage of less than 0.06 bit for the entire key.

1.2 Organization

Section 2 introduces the state of the art related to this work. The wiretap chan-
nel and corresponding codes which are the foundation of our new leakage reduc-
tion method are summarized in Sect. 3. Section 4 describes the correspondence
between the wiretap channel model and PUF key storage, and Sect. 5 introduces
coset coding for PUFs. The new approach is compared to the state of the art in
Sect. 6. Section 7 concludes this work.

1.3 Notation

Capital letters indicate random variables or values that are functions of random
variables, while small letters represent numbers and specific instantiations of
random variables. Matrices are given by bold capital letters, and calligraphic
letters represent sets. C is a codeword of a linear ECC C with code length n,
code size k, minimum distance d, generator matrix G, and parity check matrix
H [23]. The helper data W is computed from PUF response X and secret S.
Superscripts define the lengths of vectors.

Let E[·] be the expectation operator and Pr[·] the probability of an event.
Further, let hw(·) be the Hamming weight of a vector.

2 State of the Art Debiasing Approaches for PUFs

A simple approach of removing bias is to XOR multiple PUF response bits
[24], which reduces the bias for independent and identically distributed (i.i.d)
PUF responses according to the piling-up lemma [25]. However, each XOR also
reduces the number of PUF response bits so that only a fraction of the input
length remains and the output error probability is increased at the same time.
Therefore, we take a closer look at more sophisticated alternatives, namely Index-
Based Syndrome Coding (IBS) and the von Neumann Corrector (VN) in the
following.

For high input bit error probabilities in the range > 20%, the multi-bit
symbol-based approach discussed in [26] can also be used to generate keys from
biased PUFs without secrecy leakage.

604 M. Hiller and A.G. Önalan

2.1 Index-Based Syndrome Coding

IBS computes pointers to reliable PUF response bits and stores the pointers in
helper data [5]. Going back to Fig. 1, the IBS pointer generation acts as debias-
ing and syndrome encoding at once. IBS decreases the output error probability
but it cannot correct any errors. To enable error correction, IBS is typically
concatenated with ECCs such as BCH or Reed–Muller codes [23].

5% 3% 10
%

22
%

1% 7% 1% 25
%

12
%

3% 8% 5% 3% 5% 4% 13
%

2 1 4 2

x16

c4

w4

most reliable 0

most reliable 1

unreliable

Fig. 2. Helper data generation with index-based syndrome coding

Figure 2 shows an example for helper data generation with IBS. The PUF
response sequence is divided into blocks of fixed size q (here, q = 4). The ECC
encoder maps k-bit secrets into n-bit codewords Cn. The inputs of the IBS
encoder are a codeword bit Ci, a block of PUF response bits Xq and reliability
information, e.g. the bit error probability, for each of the PUF bits. It generates
a pointer W s, s = �log q� to index the bit which is equal to the secret bit with
the highest probability. The other bits of the block are discarded. This process
is repeated for each Ci. The indexing operation selects the PUF response bits
according to the distribution of input C. As proven in [5], IBS does not leak
secret information for i.i.d PUF response bits as long as no additional reliability
information is published. Complementary IBS adds an intermediate error cor-
rection step to increase the efficiency of IBS [6]. However, it was shown in [9],
that larger block sizes are required for more efficient indexing of reliable PUF
response bits.

2.2 Von Neumann Corrector

In [10], another debiasing step was proposed to overcome the leakage caused by
biased PUF responses. It is based on the von Neumann (VN) corrector [27] and
evaluates pairs of consecutive PUF response bits. (1,0) and (0,1) pairs occur
with the same probability but differ in the order of the numbers such that a
uniform random process is sampled while the pairs (1,1) and (0,0) are ignored.
Figure 3 shows the helper data generation with the VN corrector as debiasing
scheme and the fuzzy commitment as syndrome encoder [16].

The encoder scans the PUF response Xm sequentially and maps it to a
sequence Tn (m > n). If two consecutive PUF bits of Xm differ, the first bit

Hiding Secrecy Leakage in Leaky Helper Data 605

x16

c4

u8

t4

w4

0

1

Fig. 3. Helper data generation with the fuzzy commitment and the von Neumann
corrector

is added to the debiased output Tn and the position of the pair is stored as
additional helper data U l, as shown in Fig. 3. For i.i.d PUF response bits, the
VN approach provides perfectly random outputs. The efficiency of the approach
is enhanced in [10] by searching Xm in multiple passes for patterns of different
size. For the fuzzy commitment, helper data Wn is computed as XOR between
Tn and the codeword Cn. Neither Wn nor U l leak secret information. However,
a high number of discarded PUF response bits causes an overhead in PUF size.
In addition, an implementation of the multi-pass version would require either
multiple readouts of the PUF or buffering the entire PUF response.

IBS and the VN corrector both address only the debiasing and syndrome
coding blocks in Fig. 1. In the following, we also take the ECC encoder into
account.

3 Wiretap Channel and Coset Codes

Before going into our new leakage countermeasure for PUFs, we briefly discuss
the information theoretical problem that forms the foundation of our work. In
1975, Wyner introduced the wiretap channel model which represents a commu-
nication system that is wiretapped by an adversary [21], as shown in Fig. 4.

Alice encodes a k-bit secret message Sk to an n-bit codeword Cn and trans-
mits it to Bob through the main channel. Due to noise, Bob receives a distorted
version Y n of Cn and recovers message Ŝk. The attacker Eve also observes a
noisy version Zn of Cn through the wiretapper’s channel.

The challenge is to develop a coding scheme that allows a reliable communi-
cation from Alice to Bob while preventing Eve from recovering any information.
In a reliable system, Bob can decode message Ŝk from his received vector Y n

correctly with a high probability. For security reasons, we need to limit the infor-
mation that Zn provides to Eve about Sk. The delicate challenge is to encode
the message such that it has just enough structure to be decoded correctly by
Bob while it still must resemble ambiguous to Eve. Note that the wiretap chan-
nel has to be noisier than the main channel to be able to achieve any secret

606 M. Hiller and A.G. Önalan

Encoder Decoder
Main

Channel

Wiretap
Channel

Alice Bob

Eve

Sk Cn Y n Ŝk

Zn

Fig. 4. The wiretap channel

communication at all. The current research field of physical-layer security also
makes extensive use of the wiretap channel model [28,29].

The basic idea of wiretap coding is to introduce randomness to the encoding
process by assigning multiple codewords to each message. Alice selects a message
Sk and encodes it as a codeword of code C1. Instead of a bijective and determin-
istic encoding, C1 contains a set of multiple possible codewords for each message
and the encoder selects one of the corresponding codewords at random.

Bob recovers the message correctly, if C1 contains a sufficient amount of
redundancy such that the error probability

Pe = Pr[Ŝk �= Sk] < ε1 (1)

for an ε1 > 0. For large block lengths, it was shown that there exist codes such
that limn→∞ Pe = 0 [28].

Eve’s channel has a higher noise level so that she has multiple possible solu-
tions instead of one unique solution for the decoding problem. If the code is
designed properly, codeword candidates for all possible 2k messages are suitable,
and ideally equiprobable, for her received message Zn. In other words, according
to [28]

lim
n→∞

1
n

I(Sk;Zn) = 0 (2)

The noise level on the main channel determines the amount of redundancy that
has to be spent to achieve a reliable decoding for Bob. The difference between the
noise levels of the main channel and the wiretap channel defines the maximum
size of the secret information Sk that can be transmitted from Alice to Bob in
n transmitted symbols while keeping Eve ignorant. However, determining the
noise levels can be challenging in practice.

The secrecy capacity CS is thus given by [28]

CS = I(C;Y) − I(C;Z) (3)

Most wiretap codes discussed in the information theory community use ran-
dom codes, where random numbers are generated and then assigned to different

Hiding Secrecy Leakage in Leaky Helper Data 607

codebooks. Random coding arguments are highly suitable to prove that a prob-
lem can be solved with some asymptotic behavior or to show that a problem
cannot be solved better than some bound. However storing and searching large
random codebooks, e.g. with more than 232 entries, in an embedded system is
not feasible. After understanding the general theoretical behavior of a problem
by analyzing the behavior of random codes, work on deterministic algorithms is
the next step to bring an approach closer towards implementations in practical
systems.

In 1984, Ozarow and Wyner proposed a practical wiretap coding scheme
called coset coding [22]. A coset of a set is computed by adding a constant to
all elements of the original set [23]. In coset coding, a coset is selected according
to the secret message. Then, the encoder selects one element of the coset at
random as transmitted message. Coset coding achieves secrecy for a wiretap
channel model where the main channel is noiseless and the wiretapper observes
the message through a binary erasure channel, which is a stochastic channel
that replaces a transmitted symbol with an erasure symbol with a given fixed
probability. Later, this scheme was extended to other channel models, e.g. Binary
Symmetric Channels (BSCs) in [30].

Let G1 be a k1 × n generator matrix of linear code C1 and H1 be the parity
check matrix of the same code. Similarly, G2 and H2 are the generator and
parity check matrices of a linear code C2 ⊂ C1 with message length k2 and code
length n. The code space C1 is partitioned into 2k sets containing cosets of C2,
where k = k1 − k2.

G1 =
[
G2

G

]
(4)

A uniform random vector Rk2 is added as mask to disguise the secret message
Sk. The encoding is formalized by

Cn =
[
Rk2 Sk

] ·
[
G2

G

]
(5)

= Rk2 · G2 + Sk · G (6)

The coset Sk · G contains the secret message while codeword Rk2 · G2 adds
randomness to prevent Eve from decoding code C correctly.

The effectiveness of the coset coding countermeasure is measured by the
mutual information I(Sk;Zn). However, computing the exact mutual informa-
tion in Eq. 2 is practically infeasible for large codes. Chen and Han Vinck provide
an upper bound on the information leakage for the case that the main channel
and the wiretapper’s channel both are BSCs and linear codes are used for the
coset coding construction [30]. For a main channel with bit error probability pm
and a wiretap channel with a bit error probability of pw, the secrecy leakage is
bounded by

I(Sk;Zn) ≤ log (2n PC2(pw)) , (7)

where
PC2(pw) =

1
|C2|

∑
cn∈C2

pw
hw(cn)(1 − pw)(n−hw(cn)) (8)

608 M. Hiller and A.G. Önalan

for code space C2 with cardinality |C2| and elements cn with Hamming weight
hw(cn). Note that code C is important for the reliability while the secrecy leakage
in Eq. 7 only depends on C2.

Equation 8 iterates over all codewords. A good code design minimizes the
product pw

hw(cn)(1−pw)(n−hw(cn)) to tighten the bound in Eq. 7. Since the error
probability pw is given by the channel, one can only optimize the code. pw is
smaller than (1−pw) such that the Hamming weight hw(cn) of the codewords in
C2 is maximized. When C1 is partitioned into C and C2, it is therefore important
to assign components with high Hamming weights to C2 to maximize the impact
of the mask.

4 Wiretap Channel Model for PUFs

To apply coset coding to PUFs, we first need to show that key derivation with
PUFs also corresponds to the wiretap channel model.

In the following, we apply the fuzzy commitment scheme [16]. However the
code-offset fuzzy extractor or the syndrome construction, both [2], or systematic
low leakage coding [8] could also be used in a similar way. Figure 5 shows the
PUF key generation and reproduction with an attacker that has access to the
public helper data.

Encoder Decoder

PUF

Attacker

Noise

Sk Ŝk

Ŝk
A

Cn Wn C̃n

Xn

X̃n

En

Fig. 5. Fuzzy commitment PUF model with an attacker

The ECC encoder maps the secret Sk to a codeword Cn and the fuzzy com-
mitment XORs Cn with PUF response Xn to generate helper data Wn. Wn is
public, so both the legitimate decoder and the attacker can access it. The legiti-
mate receiver observes a noisy version of the PUF response X̃n = Xn ⊕En with
error pattern En. If the distortion is within the error correction capability of
code C1, the decoder can recover the secret successfully with a high probability.
The attacker tries to extract information regarding the secret from the helper
data Wn.

Hiding Secrecy Leakage in Leaky Helper Data 609

To map this PUF model to the wiretap channel model, one has to leave the
procedure-centric view which is typically applied in PUF key generation and
look at the information flows. The source outputs secret Sk, while Ŝk and Ŝk

A

are the inputs of the sinks at the receiver and the attacker side. In both cases,
the information is modified on the way from the source to the sink.

Encoder DecoderBSC (pm)

BSC (pw)

Sk Cn C̃n Ŝk

Wn

Fig. 6. Wiretap channel model for PUFs

Figure 6 shows the wiretap channel model for PUFs, where the main and
wiretapper’s channels are modeled as BSCs. Bob’s ECC decoder receives a noisy
codeword C̃n with error pattern En, i.e., C̃n = Cn ⊕ En. In Fig. 5, Xn is added
twice to the codeword which is transmitted over the main channel, so that only
the noise En remains.

C̃n = Cn ⊕ Xn ⊕ X̃n (9)
= Cn ⊕ Xn ⊕ Xn ⊕ En (10)
= Cn ⊕ En (11)

The attacker’s path in Fig. 6 does not show a decoder since we assume an
unbounded attacker. Therefore, Wn must not leak any information regardless of
any subsequent processing steps.

Wn also is a distorted version of Cn, since

Wn = Cn ⊕ Xn (12)

The PUF response Xn is interpreted as the wiretapper’s error pattern that is
added to codeword Cn in the wiretap channel. Assuming independent errors for
each position, the error patterns En and Xn can therefore be modeled by BSCs
with crossover probabilities pm = 1

n E[En] and pw = 1
n E[Xn], respectively.

So, we have shown that secure key storage with PUFs can also be interpreted
as a wiretap channel. In contrast to the wireless wiretap channel setting, the PUF
setting has the advantage that pw can be measured and characterized precisely
in practice, as e.g. in [31].

5 Wiretap Coset Codes for PUFs

This section introduces coset coding to PUFs as a new practical tool to address
helper data leakage, based on an example first and then provides a generic
approach.

610 M. Hiller and A.G. Önalan

Let the PUF response bits Xn be i.i.d with Pr[x = 1] = b, b ∈ [0, 1]. Then, the
probability distribution of Xn is a binomial distribution with hw(xn) successes
out of n Bernoulli trials with success probability b.

Pr[Xn = xn] = bhw(xn) · (1 − b)(n−hw(xn)) (13)

If b �= 0.5, the response bits are said to be biased and information leakage through
the helper data is observed, e.g. [15]. In the following, we discuss a toy example
to explain the leakage and its mitigation for a biased PUF.

Let us consider a fuzzy commitment scheme and 4-bit PUF responses X4

with bias b = 0.25. For error correction, exemplarily a (4, 3, 2) error detecting
code is applied whose generator matrix is given by

G1 =

⎛
⎝1 1 1 1

0 0 1 1
0 1 0 1

⎞
⎠

Let us assume that for a specific instance helper data w4 = 0001 is stored
and observed by the attacker. Table 1 shows all key candidates and assigns the
conditional probability of occurrence for the given helper data to each candidate.

Table 1. Probability of different key candidates for the given helper data w4 = 0001
and bias b = 0.25.

s3 c4 x4 Pr[X4 = x4] Pr[S3 = s3|W 4 = w4]

0 0 0 0 0 0 0 0 0 0 1 0.753 · 0.25 0.225

0 0 1 0 1 0 1 0 1 0 0 0.753 · 0.25 0.225

0 1 0 0 0 1 1 0 0 1 0 0.753 · 0.25 0.225

0 1 1 0 1 1 0 0 1 1 1 0.75 · 0.253 0.025

1 0 0 1 1 1 1 1 1 1 0 0.75 · 0.253 0.025

1 0 1 1 0 1 0 1 0 1 1 0.75 · 0.253 0.025

1 1 0 1 1 0 0 1 1 0 1 0.75 · 0.253 0.025

1 1 1 1 0 0 1 1 0 0 0 0.753 · 0.25 0.225

Recalling the notation from Sect. 3, we start with secret length k = 3 and
no masking, so k2 = 0. The first three columns show the mapping between the
key candidates s3, codewords c4 and PUF responses x4. Key candidates s3 are
encoded to codewords c4 by G1, i.e. c4 = s3 · G1. For a given w4, there is an
exact one-to-one mapping between a PUF response x4 and a secret s3, since

x4 = w4 ⊕ c4 = w4 ⊕ s3 · G1. (14)

The probabilities of all x4 are listed in the fourth column of the table.

Hiding Secrecy Leakage in Leaky Helper Data 611

The fifth column shows that one half of the possible PUF responses contains
three zeros and a single one, while the other half contains one zero and three ones.
Due to the bias towards zero, the PUF responses with more ones, highlighted
in gray in the table, have a lower probability of occurrence than the other half.
This gives the attacker an advantage to guess the secret correctly.

Previous work focused on debiasing the PUF response to avoid leakage. In
contrast, we now assign multiple PUF responses to each key candidate.

By interpreting the first bit of each key candidate as mask, so k2 = 1, we
reduce k to k = 2. Now, we obtain four different key candidates whereas each
candidate can be derived from two different PUF responses. For example, key
candidates s3 = 000 and s3 = 100 now both lead to s2 = 00 whose corresponding
PUF responses are x4 = 0001 and x4 = 1110. So,

Pr[s2 = 00|W 4 = 0001] = Pr[s3 = 000|W 4 = 0001] (15)

+ Pr[s3 = 100|W 4 = 0001]
= 0.25. (16)

After shortening s3 to s2 and interpreting the first bit as mask, all four key can-
didates s2 ∈ {00, 01, 10, 11} occur with probability 0.25. As a result, the prob-
ability Pr[S2 = s2|W 4 = 0001] is uniformly distributed and the attacker has no
advantage from observing the helper data.

Generalizing the example, let G1 be the generator matrix of an (n, k1, d)
linear block code C1. We mask k secret key bits with k2 mask bits according to
Eq. 4. Again, G1 is constructed as

G1 =
[
G2

G

]
(17)

where G2 is a k2 × n generator matrix encoding the mask bits and G is k × n
generator matrix encoding the secret key bits. As in the wiretap coset codes,
C1 has a generator matrix G1 and is partitioned by cosets of C2 with generator
matrix G2.

Applying k2 mask bits maps 2k2 PUF responses to each key. As the number
of assigned PUF responses increases, Pr[Sk|Wn] gets closer to a uniform distri-
bution which prevents the attacker from deriving secret information. Therefore,
increasing the number of mask bits reduces the information leakage.

The mutual information I(Sk;Wn) between the secret and the helper data
quantifies the leakage. So, the leakage is upper bounded by

I(Sk;Wn) = H(Sk) − H(Sk|Wn) (18)

≤ k − H̃∞(Sk|Wn) (19)

612 M. Hiller and A.G. Önalan

The conditional min entropy1 H̃∞(Sk|Wn) is given by [2]

H̃∞(Sk|Wn) = − log2

(
E
wn

[
max
sk

Pr
Sk|W

[sk|wn]
])

. (20)

The distribution of probability PSk|W (sk|wn) was already discussed in detail
in the previous example and Table 1. Now, we iterate over all wn and in each
iteration all values xn with xn = cn ⊕ wn for cn ∈ C1, are listed. According to
Pr[Xn = xn] for the listed xn, maxsk Pr[Sk|Wn = wn] is computed. For larger
code length, computing H̃∞(Sk|Wn) becomes infeasible, but it can be bounded,
e.g. according to [15].

6 Evaluation

After introducing the new leakage countermeasure for biased PUFs, this section
evaluates its effectiveness. In Sect. 6.1, we compute and discuss the exact leakage
for small codes with n = 8. Bounded results for a larger code with length n = 64
are provided in Sect. 6.2. Section 6.3 compares our approach to the state of the
art in a practical setting.

In the following, we analyze coset code designs based on Reed–Muller (RM)
codes [23]. RM codes are a popular code class that was already used several
times in the PUF context, e.g. [3,4,6,32]. They have a highly regular structure
and are well-suited for compact hardware implementations. RM(r,m) codes with
parameters r and m have code length n = 2m, message length k =

∑r
i=0

(
m
i

)
,

and code distance d = 2(m−r). Area-optimized FPGA implementations of RM
codes for PUF error correction can be found e.g. in [4,32].

The generator matrix G of an RM(r,m) code, is built from m base vectors
vn
(i) of length n = 2m and the all ones vector vn

(0) of form

vn
(0) = 11111111 · · · 11111111

vn
(m) = 00000000 · · · 11111111

...
vn
(3) = 00001111 · · · 00001111

vn
(2) = 00110011 · · · 00110011

vn
(1) = 01010101 · · · 01010101

For r′ = {1, ..., r} all linear combinations of r′ base vectors vn
(1) to vn

(m) are
added to G. Note that combining r′ base vectors always results in a vector with
Hamming weight d = 2(m−r′). The generator matrix consists of vn

(0) and all linear
combinations of 1 to r vectors in the set {vn

(1), v
n
(2) · · · v(m)}.

1 Please be aware that referenced publications from different communities vary in their
definitions of the conditional min-entropy. We use the definition in [2] and not the
one that is used in [28].

Hiding Secrecy Leakage in Leaky Helper Data 613

6.1 Exact Computations for Short Codes

Figure 7 presents the results for different bias values b in terms of total leakage
according to Eqs. 19 and 20. To show the impact of coset coding, we used RM
codes and a fuzzy commitment. Increasing the number of mask bits reduces
the total leakage, as expected. b = 0.5 refers to a uniform distribution of PUF
response bits so the leakage is always 0. High b values refer to a high bias, which
cause an increased secrecy leakage.

0 1 2 3
0

1

2

3

4

Mask bits

T
o
ta

l
L
ea

ka
g
e

(b
it

s)

b = 0.5

b = 0.6

b = 0.7

b = 0.8

b = 0.9

(a) RM(1, 3) code

0 2 4 6
0

2

4

6

Mask bits

T
o
ta

l
L
ea

ka
g
e

(b
it

s)

b = 0.5

b = 0.6

b = 0.7

b = 0.8

b = 0.9

(b) RM(2, 3) code

Fig. 7. Computed total information leakage of wiretap coset coding for PUFs with bias
b and RM(1, 3) and RM(2, 3) codes.

The RM(1,3) code in Fig. 7a has parameters (8,4,4) such that it carries 4
information bits if no bits are assigned to the mask. Depending on the bias,
between 1.3 and 3.8 of the 4 secret bits are leaked. As expected, the total leakage
is reduced as more secret bits are interpreted as mask bits.

The first row of its generator matrix G has Hamming weight 8 while the other
three rows have a Hamming weight of 4. The steepness of the curves changes
after one bit is assigned to the mask which is consistent with the behavior given
in Eq. 7, where the Hamming weight also plays a critical role in reducing the
leakage.

The second example, presented in Fig. 7b, is an RM(2, 3) code with parame-
ters (8,7,2). It shows significantly more secrecy leakage for high b since it also
contains more information that could be leaked. In contrast to the first example,
the RM(2, 3) code is able to generate nearly leakage-free secret bits. For example
for b = 0.6, after interpreting 3 bits as mask only less than 0.2 bit leak in total
about the remaining 4 secret bits.

614 M. Hiller and A.G. Önalan

The curves have three areas of different steepness because the generator
matrix has three more rows with Hamming weight 2 in addition to the four
rows of the RM(1,3) code. Therefore, each additional bit after 4 mask bits has
less impact than the bits 1 to 4.

6.2 Upper Bounds for Long Codes

After discussing fundamental properties of coset coding with short code lengths
in the previous section, this section shows the secrecy leakage reduction through
coset coding for a code length of 64, which is also used in practical implementa-
tions.

The exhaustive computation discussed in the previous subsection becomes
infeasible for longer code lengths. We therefore upper bound the leakage with
the bound presented in [30]. From a security point of view, it is important to
prove that the leakage is lower than a given threshold. In the following, we set
this threshold to less than 1 bit total leakage. The previous figures demonstrated
that this strongly depends on the bias at the input.

Figure 8 realigns the plots such that all start at a secrecy leakage around one.
The offset inxdirection is given bym. TheRM(2,6) code has parameters (64,22,16)
and the bias is narrowed down to parameters between b = 0.52 and b = 0.60. When
interpreting the results, it is important to take into account that the results are
conservative upper bounds and the actual values are always lower.

For a small bias of b = 0.52, roughly 4 mask bits are sufficient. Going to
b = 0.56 already requires more than 11 mask bits. However, even for b = 0.60
the bias can be brought down close to zero.

6.3 Comparison with the State of the Art

Several previous publications demonstrated that code concatenation or a com-
bination of error reduction and ECC facilitate to achieve key error probabilities
of 10−6 for low implementation complexities [3–6,9]. In addition, we have shown
in Sect. 6.1 that codes with a high ratio of key bits per codeword bit show more
promising masking properties. We therefore follow general experience of previous
work and coset coding specific behavior to refrain from providing a stand-alone
wiretap coset coding solution and directly combine it with Differential Sequence
Coding (DSC) [9].

DSC stores differential pointers Ui that indicate reliable PUF bits X, as
shown in Fig. 9. Each reliable PUF bit is mapped to a codeword bit Ci while
unreliable PUF response bits are ignored. If the indexed PUF response bit is
likely to be equal to its corresponding codeword bit, the inversion bit Vi is set
to zero. Otherwise it is set to one. The pointers and the inversion bits are stored
as helper data.

It was shown in [9] that DSC performs very efficient error reduction for
unbiased PUFs. For biased PUFs, two new aspects have to be considered: First,
the inversion bits V start to leak secret information, and second the bias even

Hiding Secrecy Leakage in Leaky Helper Data 615

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Mask bit addition

T
o
ta

l
L
ea

ka
g
e

(b
it

s)

b = 0.52,m = 4

b = 0.56,m = 11

b = 0.60,m = 17

Fig. 8. Bounded total information leakage of wiretap coset coding for PUFs with bias
b and RM(2, 6). m refers to the initial offset of mask bits.

increases if the PUF response is reduced to its more reliable bits. This relation
between bias and reliability was discussed in detail in [12].

To mitigate this leakage and derive a reliable key, we combine DSC and coset
coding in this work. First, Sk is encoded to Cn by coset encoding, and then Cn

is embedded into reliable PUF responses Xm by DSC.
Table 2 presents the result of DSC + wiretap RM coset coding (CC) and com-

pares it with previous leakage mitigation approaches. We computed all results in
Table 2 for an SRAM PUF with average bit error Pin = 10%, i.i.d PUF response
bits with bias 0.54 and reliability distribution according to [4,12]. A key error
probability Pe ≤ 10−6 is targeted for 128 bit key length. The error correction
relies on two ECC stages. We used repetition codes with parameters (n3, k3, n3)
as inner codes for the code-offset fuzzy extractor, VN and IBS. For DSC, the

1 0 3 4

x16

c4

u4

v4

reliable 0

reliable 1

unreliable

Fig. 9. Helper data generation with differential sequence coding

616 M. Hiller and A.G. Önalan

Table 2. Design comparison of a code-offset fuzzy extractor, DSC, IBS, VN debiasing
and DSC with wiretap coset coding for an SRAM PUF with Pin = 10% and b = 0.54,
and Pe ≤ 10−6 and 128 bit key length.

Design Fuz Ext DSC IBS VN CC + DSC CC + DSC

Codes Rep + BCH RM Rep + BCH Rep + BCH RM RM

Parameters 7 bits per block 3 passes 30 mask bits 25 mask bits

Number of

Blocks z

2 4 2 4 2 4

Inner Code

(n3, k3, n3)

(3,1,3) (2.5, 1)∗ (5,1,5) (8,1,8) (2.75, 1)∗ (5.75, 1)∗

Outer Code

(n1, k1, d1)

(255,99,47) (64,42,8) (127,64,21) (63,36,11) (128,99,8) (64,57,4)

Secret Size Sk 198 168 128 144 138 128

PUF Size Xm 1,530 640 1,778 2,471 704 1,472

Key Error

Probability Pe

5.4 × 10−7 3.5 × 10−7 4.6 × 10−7 9.7 × 10−8 2.5 × 10−7 6.6 × 10−7

Secrecy Leakage

I(Sk;Wn)

≤ 65.5 ≤ 37.1 0 0 ≤ 0.06 ≤ 0.01

inner repetition code is replaced by DSC with the rate (n3, 1), denoted by a
star. The code-offset fuzzy extractor, and IBS and VN debiasing schemes use
BCH codes as outer code with (n1, k1, d1) whereas wiretap coset coding uses
RM codes. z refers to the number of BCH or RM codewords that are used to
generate the entire key.

First of all, the Fuzzy Extractor and DSC results without debiasing clearly
demonstrate that there exists significant leakage, even for the relatively low
bias of 0.54. Removing this leakage with the state-of-the-art approaches IBS or
VN increases the number of PUF bits from 640 with DSC to 1,778 and 2,471,
respectively, which is an increase of over 1,100 PUF response bits or 178%.

Our new approach with DSC and wiretap coset coding only requires 704 PUF
response bits for a negligible upper bounded total leakage of 0.06. Therefore, the
debiasing overhead is reduced by almost 170% from 178% to 10%, or roughly
1, 000 PUF bits such that the overall number of PUF response bits is reduced
by 60% compared to IBS and VN.

We also provide a more conservative value for a secrecy leakage ≤ 0.01. As
already discussed in Sects. 6.1 and 6.2, the efficiency of coset coding decreases as
the number of mask bits increases. Removing the last 0.05 bit in the conservative
estimate of the secrecy leakage doubles the number of PUF response bits.

7 Conclusion

Biased PUF responses lead to secrecy leakage. We introduce wiretap coset coding
to PUFs to mitigate the leakage through the helper data. In contrast to previous
work that eliminates the bias at the input, we modify the ECC.

This work applies the wiretap channel model to PUFs to reduce the secrecy
leakage with coset coding. The typical one-to-one mapping between information

Hiding Secrecy Leakage in Leaky Helper Data 617

and codeword is changed to a one-to-many mapping so that all secrets show a
similar probability again for a given helper data candidate.

The exact secrecy leakage can be computed for short codes while bounds
also provide leakage results for longer codes. Our design for a practical scenario
reduces the overall number of required PUF response bits by roughly 1, 000 or
60% compared to the reference approaches VN and IBS.

Acknowledgements. The authors would like to thank Georg Sigl and Vincent Immler
for the helpful comments and discussions.

References

1. Herder, C., Yu, M., Koushanfar, F., Devadas, S.: Physical unclonable functions
and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

2. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24676-3 31

3. Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient
helper data key extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES
2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-85053-3 12

4. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04138-9 24

5. Yu, M., Devadas, S.: Secure and robust error correction for physical unclonable
functions. IEEE Des. Test Comput. 27(1), 48–65 (2010)

6. Hiller, M., Merli, D., Stumpf, F., Sigl, G.: Complementary IBS: application spe-
cific error correction for PUFs. In: IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pp. 1–6 (2012)

7. Skoric, B., de Vreede, N.: The spammed code offset method. IEEE Trans. Inf.
Forensics Secur. 9(5), 875–884 (2014)

8. Hiller, M., Yu, M., Pehl, M.: Systematic low leakage coding for physical unclonable
functions. In: ACM Symposium on Information, Computer and Communications
Security (ASIACCS), pp. 155–166 (2015)

9. Hiller, M., Yu, M., Sigl, G.: Cherry-picking reliable PUF bits with differential
sequence coding. IEEE Trans. Inf. Forensics Secur. 11(9), 2065–2076 (2016)

10. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.: Secure key generation
from biased PUFs: extended version. J. Cryptographic Eng. 6(2), 121–137 (2016)

11. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs
and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74735-2 5

12. Maes, R.: An accurate probabilistic reliability model for silicon PUFs. In: Bertoni,
G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 73–89. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40349-1 5

http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.1007/978-3-540-85053-3_12
http://dx.doi.org/10.1007/978-3-540-85053-3_12
http://dx.doi.org/10.1007/978-3-642-04138-9_24
http://dx.doi.org/10.1007/978-3-642-04138-9_24
http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1007/978-3-540-74735-2_5
http://dx.doi.org/10.1007/978-3-642-40349-1_5

618 M. Hiller and A.G. Önalan

13. Koeberl, P., Jiangtao, L., Rajan, A., Wei, W.: Entropy loss in PUF-based key
generation schemes: the repetition code pitfall. In: IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 44–49 (2014)

14. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 34(6), 889–902 (2015)

15. Delvaux, J., Gu, D., Verbauwhede, I., Hiller, M., Yu, M.-D.M.: Efficient fuzzy
extraction of PUF-induced secrets: theory and applications. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 412–431. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53140-2 20

16. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on
Computer and Communications Security (CCS), pp. 28–36 (1999)

17. Fuller, B., Meng, X., Reyzin, L.: Computational fuzzy extractors. In: Sako, K.,
Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 174–193. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-42033-7 10

18. Herder, C., Ren, L., van Dijk, M., Yu, M., Devadas, S.: Trapdoor computational
fuzzy extractors and stateless cryptographically-secure physical unclonable func-
tions. IEEE Trans. Dependable Secure Comput. (2016)

19. Huth, C., Becker, D., Guajardo, J., Duplys, P., Güneysu, T.: Securing systems
with scarce entropy: LWE-based lossless computational fuzzy extractor for the
IoT, IACR eprint archive (2016)

20. Colombier, B., Bossuet, L., Fischer, V., Hely, D.: Key reconciliation protocols for
error correction of silicon PUF responses. IEEE Trans. Inf. Forensics Secur. 12(8),
1988–2002 (2017)

21. Wyner, A.D.: The wire-tap channel. Bell Syst. Tech. J. 54(8), 1355–1387 (1975)
22. Ozarow, L.H., Wyner, A.D.: Wire-tap channel II. In: Beth, T., Cot, N.,

Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 33–50. Springer,
Heidelberg (1985). doi:10.1007/3-540-39757-4 5

23. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland (1977)

24. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48324-4 28

25. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
doi:10.1007/3-540-48285-7 33

26. Yu, M., Hiller, M., Devadas, S.: Maximum likelihood decoding of device-specific
multi-bit symbols for reliable key generation. In: IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 38–43 (2015)

27. von Neumann, J.: Various techniques used in connection with random digits. Appl.
Math Series 12, 36–38 (1951)

28. Bloch, M., Barros, J.: Physical-Layer Security: From Information Theory to Secu-
rity Engineering. Cambridge University Press, Cambridge (2011)

29. Bloch, M., Hayashi, M., Thangaraj, A.: Error-control coding for physical-layer
secrecy. Proc. IEEE 103(10), 1725–1746 (2015)

30. Chen, Y., Han Vinck, A.J.: On the binary symmetric wiretap channel. In: Inter-
national Zurich Seminar on Communications, pp. 17–20 (2010)

http://dx.doi.org/10.1007/978-3-662-53140-2_20
http://dx.doi.org/10.1007/978-3-642-42033-7_10
http://dx.doi.org/10.1007/3-540-39757-4_5
http://dx.doi.org/10.1007/978-3-662-48324-4_28
http://dx.doi.org/10.1007/3-540-48285-7_33

Hiding Secrecy Leakage in Leaky Helper Data 619

31. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I.,
Wachsmann, C.: PUFs: myth, fact or busted? A security evaluation of physically
unclonable functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-33027-8 17

32. Hiller, M., Kürzinger, L., Sigl, G., Müelich, S., Puchinger, S., Bossert, M.: Low-
area Reed decoding in a generalized concatenated code construction for PUFs. In:
IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (2015)

http://dx.doi.org/10.1007/978-3-642-33027-8_17
http://dx.doi.org/10.1007/978-3-642-33027-8_17

Efficient Implementations

Very High Order Masking: Efficient
Implementation and Security Evaluation

Anthony Journault(B) and François-Xavier Standaert

ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

{anthony.journault,fstandae}@uclouvain.be

Abstract. In this paper, we study the performances and security of
recent masking algorithms specialized to parallel implementations in
a 32-bit embedded software platform, for the standard AES Rijndael
and the bitslice cipher Fantomas. By exploiting the excellent features of
these algorithms for bitslice implementations, we first extend the recent
speed records of Goudarzi and Rivain (presented at Eurocrypt 2017) and
report realistic timings for masked implementations with 32 shares. We
then observe that the security level provided by such implementations is
uneasy to quantify with current evaluation tools. We therefore propose
a new “multi-model” evaluation methodology which takes advantage of
different (more or less abstract) security models introduced in the liter-
ature. This methodology allows us to both bound the security level of
our implementations in a principled manner and to assess the risks of
overstated security based on well understood parameters. Concretely, it
leads us to conclude that these implementations withstand worst-case
adversaries with >264 measurements under falsifiable assumptions.

1 Introduction

The masking countermeasure is among the most investigated solutions to
improve the security of cryptographic implementations against side-channel
analysis. Concretely, masking amounts to perform cryptographic operations on
secret shared data, say with d shares. Very summarized, it allows amplifying the
noise in the physical measurements (hence the security level) exponentially in
d, at the cost of quadratic (in d) performance overheads [27,38]. As discussed
in [25], these performance overheads may become a bottleneck for the deploy-
ment of secure software implementations, especially as the number of shares
increases – which is however needed if high security levels are targeted [15].

In this respect, two recent works from Eurocrypt 2017 tackled the chal-
lenge of improving the performances of masked implementations. In the first
one, Goudarzi and Rivain leveraged the intuition that bitslice implementations
are generally well suited to improve software performances, and described opti-
mizations leading to fast masked implementations of the AES (and PRESENT),
beating all state-of-the-art implementations based on polynomial representa-
tions [22]. In the second one, Barthe et al. introduced new masking algorithms
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 623–643, 2017.
DOI: 10.1007/978-3-319-66787-4 30

624 A. Journault and F.-X. Standaert

that are perfectly suited for parallel (bitslice) implementations and analyzed the
formal security guarantees that can be expected from them [5].
Building on these two recent works, our contributions are in four parts:

First, since the new masking algorithms of Barthe et al. are natural can-
didates for bitslice implementations, we analyze their performance on a 32-bit
ARM Cortex M4 processor. Our results confirm that they allow competing with
the performances of Goudarzi and Rivain with limited optimization efforts.

Second, we put forward the additional performance gains that can be
obtained when applying the algorithms of Barthe et al. to bitslice ciphers with
limited non-linear gates, such as the LS-design Fantomas from FSE 2014 [23].

Third, and since our implementations can run with very high number of
shares (we focus on the case with d = 32), we question their security evaluation.
For this purpose, we start from the observation that current evaluation method-
ologies (e.g., based on leakage detection [10,16,21,33,44] or on launching high
order attacks [35,39,49]) are not sufficient to gain quantitative insights about
the security level of these implementations (and the risks of errors in these eval-
uations). Hence, we introduce a new “multi-model” methodology allowing to
mitigate these limitations. This methodology essentially builds on the fact that
by investigating the security of the masked implementations in different security
models, starting from the most abstract “probing model” of Ishai et al. [27], fol-
lowing with the intermediate “bounded moment model” of Barthe et al. [5] and
ending with the most concrete “noisy leakage model” of Prouff and Rivain [38],
one can gradually build a confident assessment of the security level.

Finally, we apply our new multi-model methodology to our implementations
of the AES and Fantomas, and discuss its limitations. Its application allows us to
claim so far unreported security levels (e.g., against adversaries exploiting more
than 264 measurements) and to conclude that, in front of worst-case adversaries
taking advantage of all the exploitable leakage samples in an implementation,
performance improvements naturally lead to security improvements.

2 Background

In this section, we recall the parallel masking scheme we aim to study, and the
two block ciphers we choose to work with, namely the AES and Fantomas.

2.1 Barthe et al.’s Parallel Masking Algorithm

Masking is a popular side-channel countermeasure formalized by the seminal
work of Ishai et al. [27]. Its main idea is to split all the key dependent data (often
called sensitive variables) in different pieces which are randomly generated. More
formally, masking consists in sharing a sensitive value s such that:

s = s1 ⊕ s2 ⊕ · · · ⊕ sd.

In the case of Boolean masking we will consider next, ⊕ is the XOR operation,
each share si is a random bit and d is the number of shares. In order to apply

Very High Order Masking: Efficient Implementation and Security Evaluation 625

masking to a block cipher, one essentially needs a way to perform secure multi-
plications and to refresh the shares. In the case of the bitslice implementations
we will consider next, this amounts to perform secure AND gates and XORing
with fresh random values. For this purpose, we will use the algorithms proposed
by Barthe et al. at Eurocrypt 2017 [5]. Namely, and following their notations, we
denote as a = (a1, a2, · · · , ad) a vector of d shares, by rot(a, n) the rotation of
vector a by n positions. Moreover, the bitwise addition and multiplication oper-
ations (i.e., the XOR and AND gates) between two vectors a and b are denoted as
a⊕b and a ·b, respectively. Based on these notations, the refreshing algorithm is
given by Algorithm 1 for any number of shares d. Its time complexity is constant
in the number of shares d and requires d bits of fresh uniform randomness.

Algorithm 1. Parallel Refreshing Algorithm
Input: Shares a satisfying

⊕
i ai = a, uniformly random vector r

Output: Refreshed shares b satisfying
⊕

i bi = a
b = a ⊕ r ⊕ rot(r, 1)
return b

For readability, we next give the multiplication algorithm for the case d = 4 in
Algorithm 2. Its description for any d can be found in [5]. The time complexity
of the algorithm is linear in the number of shares d and it requires d · �d−1

4 �
bits of randomness. Intuitively, this algorithm can be viewed as a combination
of different steps: (1) the loading (and possible rotation) of the input share(s),
(2) a partial product phase between the shares, (3) the loading and rotation of
the fresh randomness, and (4) a compression phase where partial products are
XORed together, interleaved with the addition of fresh randomness.

Algorithm 2. Parallel Multiplication Algorithm for d = 4
Input: Shares a and b satisfying

⊕
i ai = a and

⊕
i bi = b, unif. rand. vector r

Output: Shares x satisfying
⊕

i xi = a · b
c1 = a · b
c2 = a · rot(b, 1)
c3 = rot(a, 1) · b
d1 = c1 ⊕ r
d2 = d1 ⊕ c2
d3 = d2 ⊕ c3
d4 = d3 ⊕ rot(r, 1)
x = d4

return x

626 A. Journault and F.-X. Standaert

2.2 Target Algorithms

The AES Rijjndael [13] is a 128-bit block cipher operating on bytes and allowing
three different key sizes (128, 192 and 256 bits). We will focus on the 128-
bit variant that has 10 rounds. Each round is composed of the succession of 4
operations: SubBytes (which is the non-linear part), ShiftRows, MixColumns and
AddRoundKey (except for the last round where MixColumns is removed). Each
round key is generated thanks to a key schedule algorithm. Operations will be
detailed in the implementation section. The AES’ robustness over the years and
widespread use makes it a natural benchmark to compare implementations.

Fantomas is an instance of LS-Design [23], of which the main goal is to make
Boolean masking easy to apply. It is a 128-bit cipher iterating 12 rounds based
on the application of an 8-bit bitslice S-box followed by a 16-bit linear layer
(usually stored in a table and called the L-box), together with a partial round
constant addition and a key addition. The internal state of Fantomas can be
seen as an 8 × 16-bit matrix where the S-box is applied on the columns and the
L-box is applied on the rows. The precise description of the S-box and L-box are
provided in the extended version of this work available on the IACR ePrint.

We note that another instance of LS-design (namely Robin) has been recently
cryptanalyzed by Leander et al. [29] and Todo et al. [47]: both attacks highlight
a dense set of weak keys in the algorithm and can be thwarted by adding full
round constants in each round [28]. Despite there is no public indication that a
similar attack can be applied to Fantomas, we considered a similar tweak as an
additional security margin (and denote this variant as Fantomas∗).

2.3 Target Device and Measurement Setups

Our implementations are optimized for a 32-bit ARM Cortex-M4 processor
clocked at 100 MHz and embedded in the SAM4C-EK evaluation board [1]. Of
particular interest for our experiments, this device has an embedded True Ran-
dom Number Generator (TRNG) which provides 32 bit of randomness every 80
clock cycles. We recall the description of the ARM processor and instructions
set given in [22]. The processor is composed of sixteen 32-bit purpose registers
labeled from R0 to R15. Registers R0 to R12 are the variable registers (available
for computations), R13 contains the stack pointer, R14 contains the link register
and R15 is the program counter. The ARM instructions can be classified in three
distinct sets: the data instructions such as AND, XOR, OR, LSR, MOV, ..., which
cost 1 clock cycle; the memory instructions such as STR, LDR,..., which cost 2
clock cycles (with the thumb extension); and the branching instructions such as
B, BL, BX, ..., which cost from 2 to 4 clock cycles. A useful property of the ARM
assembly is the barrel shifter. It allows applying one of the following instructions
on one of the operands of any data instruction for free: the logical shift (right
LSR and left LSL), the arithmetic shift right ASR and the rotate-right ROR.

As for our security evaluations, we performed power analysis attacks using
a standard setup measuring voltage variations across a resistor inserted in the
supply circuit, with acquisitions performed using a Lecroy WaveRunner HRO 66
oscilloscope running at 625 Msamples/second and providing 8-bit samples.

Very High Order Masking: Efficient Implementation and Security Evaluation 627

3 Efficient Implementations

We designed our implementations in a modular manner, starting with build-
ing blocks such as refreshing and multiplication algorithms, and then building
more complex components such as the S-boxes, rounds, and full cipher upon the
previous ones. This adds flexibility to the implementation (i.e., we can easily
change one of the building blocks, for example the random number generator)
and enables simple cycle counts for various settings. Following this strategy, we
first describe the implementation of cipher independent operations, and then
discuss optimizations that specifically relate to the AES and Fantomas∗.

3.1 Cipher Independent Components

We start by setting up the parameters of our parallel masking scheme and then
depict the implementation of the refreshing and multiplication algorithms.

Given the register size r of a processor, parallel masking offers different trade-
offs to store the shares of a masked implementation. In the following, we opted
for the extreme solution where the number of shares d equals r (which minimizes
the additional control overheads needed to store the shares of several interme-
diate values in a single register). In our 32-bit ARM processor example, this
implies that we consider a masked implementation with 32 shares.

More precisely, let s = (s1, · · · s32) be a 32-bit word where each si for 1 ≤ i ≤
32 is a bit and s be a sensitive bit. We have that s =

⊕32
i=1 si. Concretely, our

implementations will store such vectors of 32 shares corresponding to a single
bit of sensitive data in single registers. This allows us to take advantage of the
parallelization offered by bitwise operations such as XOR, AND, OR, ... That is,
let ⊥ be such a bitwise operator and sa, sb two 32-bit words, we have:

sa ⊥ sb = (sa1 ⊥ sb1, · · · , sa32 ⊥ sb32).

In practice, for a block cipher of size n with key size k, its internal state will
therefore be represented and stored as n+k 32-bit words in our parallel masking
setting. The initial key sharing (performed once in a leak-free environment) is
done as usual by ensuring that the si’s are random bits for 2 ≤ i ≤ d and
s1 = s ⊕ s2 ⊕ · · · ⊕ sd. These shares are then refreshed with Algorithm 1 before
each execution. And the un-sharing can finally be done by computing the value⊕32

i=1 si, or equivalently by computing the Hamming weight modulo 2 of s.
One natural consequence of this data representation is that it requires the

block cipher description to be decomposed based on Boolean operations. Bit-
slice ciphers such as Fantomas∗ are therefore very suitable in this context, since
directly optimized to minimize the complexity of such a decomposition.

Refreshing and Multiplication Algorithms. Since only requiring simple
AND, XOR and rotation operations, these algorithms have naturally efficient
implementations on our target device. The only particular optimization we con-
sidered is to keep all intermediate values in registers whenever possible, in order

628 A. Journault and F.-X. Standaert

to minimize the overheads due to memory transfers. (An ARM pseudo-code for
the multiplication with d = 4 is given in the ePrint version). The random val-
ues needed for the refreshings are first loaded and kept in registers. We then
compute the ci’s and di’s together instead of successively as in Algorithm 2,
allowing to save costly load and store instructions. Eventually, the randomness
was produced according to two different settings. In the first one, we generated
it on-the-fly thanks to the embedded TRNG of our board which costs RC = 80
clock cycles per 32-bit word. In the second one, we considered a cheaper PRG
following the setting of [22], which costs RC = 10 cycles per 32-bit word. Based
on these figures, the refreshing algorithm is implemented in 28 (resp. 98) clock
cycles and the multiplication algorithm in 197 (resp. 757) clock cycles.

3.2 Cipher Dependent Components

We now describe how we implemented the AES Rijndael and Fantomas∗ in bit-
slice mode rather than in based on their (more) usual byte representation.

AES Components. The AES S-box is an 8-bit permutation which can be
viewed as the composition of an inverse in F28 and an affine function. A well-
known method to mask this S-box, first proposed by Rivain and Prouff in [42],
is to decompose the inversion in a chain of squarings and multiplications. Yet,
this decomposition is not convenient in our parallel masking setting since not
based on binary operations. Hence, a better starting point for our purposes is
the binary circuit put forward by Boyar and Peralta in 2010 [8]. It requires 83
XOR, 32 AND and 4 NOT gates. Recently, Goudarzi and Rivain re-arranged
some operations of this circuit in order to improve their implementation of a
masked bitsliced AES [22]. We therefore implemented the AES S-box thanks to
the latter representation, with each AND replaced by a secure multiplication and
the XORs transposed using the corresponding ARM assembly instructions.

Following, and thanks to our internal state representation, the ShiftRows
operation is easy to implement: it just consists in a re-ordering of the data
which is achieved by a succession of load and store instructions.

The AES MixColumns operation is slightly more involved. The usual repre-
sentation of MixColumns is based on a matrix product in F28 , as depicted in the
following, where ci and di for 0 ≤ i ≤ 3 are bytes:

⎛

⎜
⎜
⎝

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

⎞

⎟
⎟
⎠ ×

⎛

⎜
⎜
⎝

c1
c2
c3
c4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

d1
d2
d3
d4

⎞

⎟
⎟
⎠ ·

The multiplication by 01 is trivial and the one by 03 can be split into 02 ⊕ 01,
which only leaves the need of a good multiplication by 02 (sometimes called
the xtimes function). This function is usually performed thanks to pre-computed
tables [13], but it can also be achieved solely with binary instructions. Let b =
(b0, · · · , b7) be a byte with bi ∈ {0, 1} for 0 ≤ i ≤ 7. We recall that the AES

Very High Order Masking: Efficient Implementation and Security Evaluation 629

field is defined as F28 ≡ F2[x]/(x8 + x4 + x3 + x + 1). Using this polynomial, the
xtimes can be turned into the following Boolean expression:

xtimes(b) = xtimes(b0, · · · , b7) = (b1, b2, b3, b4 ⊕ b0, b5 ⊕ b0, b6, b7 ⊕ b0, b0). (1)

For the parallel masking scheme, each bit bi is again replaced by a 32-bit word.
So in practice, we simply implement Mixcolumns by small pieces: for each byte ci
we load the eight 32-bit words, compute all the products by 02 thanks to Eq. (1),
and store the results in a temporary memory slot. Eventually, we recombine the
temporary values by XORing them to obtain the right output.

Fantomas∗ components. Fantomas∗’s 8-bit S-box is an unbalanced Feistel net-
work built from 3- and 5-bit S-boxes originally proposed in the MISTY block
cipher (see [34], Sect. 2.1 and [23]). It can be decomposed in 11 AND gates, 25
XOR gates and 5 NOT gates. Since the S-box is bitsliced, the implementation
of the parallel scheme is straightforward. Namely, each Wi in the algorithm is a
32-bit word encoding one secret bit in 32 shares. As for the AES S-box, ANDs
are replaced by secure multiplications and XORs are applied directly.

The Fantomas∗ linear layer so-called L-box can be represented as a 16 × 16
binary matrix M (given in the ePrint version). Let V a 16 × 1-bit vector of the
internal state of Fantomas∗. Applying the L-box consists in doing the product
M ∗V , which corresponds to executing XOR gates between the bits of V , defined
by the entries of the matrix M . Since the XOR is a bitwise and linear operation,
the L-box can again be computed directly in the parallel masking context (where
a bit in the vector V simply becomes a 32-bit word of shares). In practice, as in
the original publication of Fantomas∗ [23], we split M in two 16 × 8 matrices:
a left one and a right one. This allows us to work independently with the first
8 bits and the last 8 bits of V . For this purpose, we load eight 32-bit words
and compute the XORs between them corresponding to the left/right parts of
M , and store these intermediate values in a temporary memory slot. Eventually,
one has just to XOR the results of these two products to recover the output.

3.3 Performance Evaluation

Table 1 provides the total number of total clock cycles for both the AES and
Fantomas∗ in our two settings for the randomness generation. The S-box col-
umn reports the percentage of clock cycles spent in the evaluation of the S-box
(excluding the randomness generation and refreshings). The linear layer column
reports the percentage of clock cycles spent in the evaluation of the linear parts
(i.e., ShiftRows, MixColumns and AddRoundKey for the AES; the L-boxes, key and
round constant additions for Fantomas∗). The rand. column reports the percent-
age of clock cycles spent in the generation of fresh random numbers (including the
refresh operations and random values needed in the multiplication). Note that
in order to make our results comparable with the ones of Goudarzi and Rivain,
we did not consider the evaluation of the AES key schedule and simply assumed
that the round keys (or the master key for Fantomas∗) were pre-computed, stored
in a shared manner and refreshed before each execution of the ciphers. Besides,

630 A. Journault and F.-X. Standaert

and as in this previous work (Sect. 6.2), we systematically refreshed one of the
inputs of each multiplication in order to avoid flaws related to the multiplication
of linearly-related inputs.1 The masked AES implementation in [22] is evaluated
on a device similar to ours with up to 10 shares. Using their cost formulas, we can
extrapolate the number of clock cycles of their implementation for d = 32 shares
as approximately 3, 821, 312 cycles (considering RC = 10), which highlights
that the linear complexity of our multiplication algorithm indeed translates into
excellent concrete performances. The further comparison of our (share-based)
bitslicing approach with the (algorithm-based) one in [22] is an interesting scope
for further research. In this respect, we note the focus of our codes was on reg-
ularity and simplicity, which allowed fast development times while also leaving
room for further optimizations.

Table 1. Performance evaluation results for d = 32.

Total # of cycles S-box % Linear Layer % rand. %

AES (RC = 10) 2,783,510 25.16 1.99 72.66

AES (RC = 80) 9,682,710 7.23 0.6 91.91

Fantomas∗ (RC = 10) 1,217,616 23.95 4.6 68.56

Fantomas∗ (RC = 80) 4,134,096 7.06 1.38 90.74

As expected, using the bitslice cipher Fantomas∗ rather than the standard
AES Rijndael allows reducing the cycle counts by an approximate factor 2. This
is essentially due to the fact that the overall number of secure multiplications of
the latter is roughly twice lower (2112 against 5120 multiplications).

This benchmarking highlights that the time spent in the linear layers in very
high order (parallel) masked implementations is negligible: efforts are spent in the
S-box executions and (mostly) the randomness generation. It suggests various
tracks for improved designs, ranging from the minimization of the non-linear
components thanks to powerful linear layers, the reduction of the randomness
requirements in secure multiplications or the better composition of linear & non-
linear gadgets (see Sects. 4.1 and 4.3), and the design of efficient RNGs.

4 Side-Channel Security Evaluation

The previous section showed that bitslice implementations of masking schemes
lead to excellent performances, as already hinted by Goudarzi and Rivain [22],
and that the parallel refreshing and multiplication algorithms of Barthe et al.
in [5] are perfectly suited to them. Thanks to these advances, we are able to
obtain realistic timings for very high order masked implementations.
1 We used the iteration of

⌈
d−1
3

⌉
simple refreshing gadgets (given Algorithm 1) for this

purpose, which is conjectured to be composable in [5] (and therefore comparable to
the refreshing used in [22]). As will be discussed in Sects. 4.1 and 4.3, this very direct
strategy leaves ample room for further optimization efforts.

Very High Order Masking: Efficient Implementation and Security Evaluation 631

Quite naturally, such very high order implementations raise the complemen-
tary challenge that they are not trivial to evaluate. In particular, since one can
expect that they lead to very high security levels (if their shares’ leakages are
independent and sufficiently noisy), an approach based on “launching attacks”
is unlikely to provide any meaningful conclusion. That is, unsuccessful attacks
under limited evaluation time and cost do not give any indication of the actual
security level (say 2x) other than that the evaluator was unable to attack in
complexity 2y, with potentially 2x
 2y. In the following, we introduce a new
methodology for this purpose, based on recent progresses in the formal analysis
of masking exploiting different proof techniques and leakage models.

4.1 Rationale: A Multi-model Approach

The core idea of our following security evaluation is to exploit a good separation
of duties between the different leakage models and metrics that have been intro-
duced in the literature. More precisely, we will use the probing model of Ishai
et al. to guarantee an “algorithmic security order” [27], the bounded moment
model of Barthe et al. to guarantee a “physical security order” [5], and the noisy
leakage model of Prouff and Rivain to evaluate concrete security levels [38].

Step 1. The probing model, composability and formal methods. In
general, the first important step when evaluating a masked implementation is to
study its security against (abstract) t-probing attacks. In this model, the adver-
sary is able to observe t wires within the implementation (usually modeled as
a sequence of operations). From a theoretical point of view, it has been shown
in [14] that (under conditions of noise and independence considered in the follow-
ing steps), probing security is a necessary condition for concrete (noisy leakage)
security against (e.g., power or electromagnetic) side-channel attacks. It has also
been shown in [5] that it is equally relevant in the case of parallel implementation
we study here (i.e., that it is also a necessary condition in this context).

From a practical point of view, the probing security of simple gadgets such
as given by Algorithms 1 and 2 is given in their original papers, and the main
challenge for their application to complete ciphers is their composability. That
is, secure implementations must take into account the fact that using the output
of a computational gadget (e.g., an addition or multiplication) as the input of
another computational gadget may provide additional information to the adver-
sary. Such an additional source of leakage is essentially prevented by adding
refreshing gadgets. There exists two strategies to ensure that the refreshings in
an implementation are sufficient. First, one can use probing-secure computa-
tional gadgets, test implementations with formal methods such as [3], and add
refreshing gadgets whenever a composition issue is spotted by the tool. This
solution theoretically leads to the most efficient implementations, but is limited
by the complexity of analyzing full implementations at high orders. Second, one
can impose stronger (local) requirements to the computational gadgets, such as
the Strong Non Interference (SNI) property introduced in [4]. Those gadgets are
generally more expensive in randomness, but save the designers/evaluators from

632 A. Journault and F.-X. Standaert

the task of analyzing their implementation globally. As mentioned in Sect. 3.3 we
exploited a rough version of this second strategy, by applying an SNI refreshing
to one input of every multiplication. As discussed in [7] (e.g., when masking the
AES S-box based on a polynomial representation in Sect. 7.2), it is actually pos-
sible to obtain SNI circuits with less randomness thanks to a clever combination
of SNI and NI gadgets. The investigation of such optimizations in the case of
bitslice implementations is an interesting open problem.

Step 2. The bounded moment model and Welch’s T-test. Given that
probing security is guaranteed for an implementation, the next problem is to
guarantee the shares’ leakages physical independence. In other words, the evalu-
ator needs to test whether the leakage function does “re-combine” the shares in
some way that is not detectable by abstract probing attacks. From a theoretical
viewpoint, this recombination can be captured by a reduction of the security
order in the bounded moment model [5]. Concretely, it may be due to defaults
such as computational glitches [31,32] and memory transitions [2,11].

From a practical point of view, the security order in the bounded moment
leakage model can be estimated thanks to so-called “moment-based security
evaluations”. One option for this purpose is to launch high order attacks such
as [35,39,49]. In recent years, and alternative and increasingly popular solution
for this purpose has been to exploit simple(r) leakage-detection tests [10,16,21,
33,44]. We will next rely on the recent discussion and tools from [46].2

Step 3. The noisy leakage model and concrete evaluations. Eventually,
once a designer/evaluator is convinced that his target implementation guarantees
a certain security order, it remains to evaluate the amount of noise in the imple-
mentation. Indeed, from a theoretical point of view, a secure masking scheme
is expected to amplify the impact of the noise in any side-channel attack (and
therefore the worst-case measurement complexity) exponentially in the number
of shares. This concrete security is reflected by the noisy leakage model [38].

From a practical point of view, the noise condition for secure masking (and
the resulting noisy leakage security) can be captured by an information theoretic
or security analysis [45]. In this respect, it is important to note that this condition
depends on both the physical noise of the operations in the target implemen-
tation and the number of such operations. When restricting the evaluation to
divide-and-conquer attacks, which is the standard strategy to exploit physical
leakages [30], this number of operations drops to the number of exploitable oper-
ations (i.e., the operations that depend on an enumerable part of the key). We
will next consider this standard adversarial setting.3

Besides, as mentioned at the beginning of the section, one may expect that
the security level of a very high order masked implementation is beyond the
evaluator’s measurement (and time, memory) capacities. In this context, rather
than trying to launch actual attacks we will rely on the (standard cryptographic)
2 Note that nothing prevents using the bounded moment model to analyze abstract

implementations: as shown in [5] it may also allow explaining the security of certain
types of countermeasures that cannot be captured by probing security.

3 More advanced strategies include algebraic/analytical side-channel attacks, which
may require considering slight additional (constant) security margins [24,41,48].

Very High Order Masking: Efficient Implementation and Security Evaluation 633

strategy of bounding the attack complexity based on the adversary’s power. For
this purpose, we will use the tools recently introduced in [15,26] which show
that such bounds can be obtained from the information theoretic analysis of the
leakage function (i.e., a characterization of the individual shares’ leakages).

Wrapping up. The main observation motivating our rationale is that security
against side-channel attacks can be gradually built by exploiting existing leak-
age models, starting from the most abstract probing model, following with the
intermediate bounded moment model, and finishing with the most physical noisy
leakage model. In this respect, one great achievement of recent research in side-
channel analysis is that each of those theoretical leakage models has a concrete
counterpart allowing its practical evaluation. Namely, the probing security of
an algorithm (represented as a sequence of operations) is challenged by for-
mal methods or guaranteed by composable gadgets, bounded moment security
is tested thanks to moment-based distinguishers or leakage-detection tools, and
noisy leakage security is quantified thanks to information theoretic metrics which
eventually bound standard security metrics such as the success rate.

Cautionary note. Because of place constraints, the following sections will not
recall the technical details of the tools used in our evaluations (i.e., Welch’s
T-test, linear regression and the mutual information metric). We rather specify
all the parameters used and link to references for the description of the tools.

4.2 Bounded Moment Security and Security Order

Noise-Efficient Leakage Detection Test. As we rely on SNI refreshings to
ensure the composability of our masked implementations, the first step in our
evaluation is to evaluate the extent to which the shares’ physical leakages are
independent.4 As mentioned in the previous subsection, this independence is
reflected by a security order in the bounded moment model, which can be esti-
mated thanks to leakage detection. For this purpose, we used a variant of leakage
detection test recently introduced in [46], Sect. 3.2. As with the standard detec-
tion tools, its main idea is to consider two leakage classes: one corresponding
to a fixed plaintext and key, the other corresponding to random (or fixed [16])
plaintext(s) and a fixed key. The test then tries to detect a differences between
these classes at different orders (i.e., after raising the leakage samples to different
powers). The only specificity of this “noise-efficient” variation is that it mitigates
the exponential amplification of the noise due to masking by averaging the traces
before raising them to some power, thus reducing the evaluation time and stor-
age. Such an averaging is possible because of our evaluation setting where masks
are known. It admittedly makes the test completely qualitative (i.e., the number
of traces needed to detect is not correlated with the security level that we discuss
in the next subsection). Yet, in view of the noise level of our implementation, it
was the only way to detect high order leakages somewhat efficiently.
4 Analyzing the SNI security of a software code (rather than an abstract implementa-

tion as usually done in masking gadget proofs) would further increase the relevance
of the composability argument and is an interesting scope for further research.

634 A. Journault and F.-X. Standaert

Unfortunately, and even using this tweak, the complexity of the leakage detec-
tion is still exponential in the number of shares and therefore hardly achievable
at order 32 (see again [46]). As a result, we studied reduced-order implemen-
tations with limited number of shares/randomness. Similarly to reduced-round
versions in block cipher cryptanalysis, the goal of such implementations is to
extrapolate the attacks’ behavior based on empirically verifiable but weakened
versions of our implementations. In particular, we used such implementations to
verify the extent to which the shares are recombined by the physical leakages.
Since the implementations considered for this purpose are similar to the one
using 32 shares (see next), the hope is that they give the evaluator an estimate
of the “security order reduction factor” f caused by physical defaults (e.g., [2]
showed that transition-based leakages reduce this order by a factor two).

Concretely, we analyzed both tweaked implementations with d = 2 and d = 4
shares (thanks to an adapted software) and the implementation with 32 shares
where only 2 (resp. 4) bits of the random numbers generated were actually ran-
dom – the other 30 (resp. 28) bits being kept constant. All tests gave consistent
results and no leakage of order below the expected 2 (resp. 4) was detected.
For illustration, the result of a leakage detection test for the Fantomas∗ S-box
with d = 4 shares (tweaked implementation) is given in Fig. 1. We used 120,000
different traces, each of them repeated 50 times, for a total of 6,000,000 mea-
surements. The top of the figure shows the average trace, the bottom of the
figure is the result of the detection test at order 4, where we see that the stan-
dard threshold of 4.5 is passed for a couple of samples. We additionally checked
that those samples correspond to the multiplications performed during the S-box
execution. By contrast, we could not spot evidence of lower order leakages (for
which detection plots are given in the ePrint version). We insist that testing such
reduced-order implementations does not offer formal guarantees that no flaw may
happen for the full version with 32 random shares.5 Nevertheless, (i) the fact
that we observed consistent results for the d = 2 and d = 4 cases is reassuring;
(ii) we may expect that some physical defaults (such as couplings [9]) become
less critical with larger number of shares, since the shares will be more physically
separated in this case; and (iii) most importantly, we will use the factor f as a
parameter of our security evaluations, allowing a good risk assessment.

Robustness Against Transition-Based Leakages. The results of the pre-
vious detection tests are (positively) surprising since one would typically expect
that the transition-based leakages discussed in [2] reduce the security order in
the bounded moment model from the optimal o = d − 1 to o = �d/2� − 1.
For example, assuming a sharing s = s1 ⊕ s2, observing the Hamming distance
between the shares s1 and s2 would provide the adversary with leakages of the
form HD(s1, s2) = HW(s1 ⊕ s2) = s. By contrast, in our parallel implementation
setting, no such transitions could be detected. While we leave the full analysis
of this phenomenon (e.g., with formal methods) as an open problem, we next
5 Note also that the variant of leakage detection with averaging used here makes the

interpretation of such flaws less easy to interpret with the tools of [15] (Sect. 4.2).

Very High Order Masking: Efficient Implementation and Security Evaluation 635

0 500 1000 1500 2000 2500
−0.05

0

0.05

le
ak

ag
e

average trace

0 500 1000 1500 2000 2500

−5

0

5

time samples

T
st

at
is

tic
4th−order detection

Fig. 1. Noise-efficient leakage detection with 6M traces (50x averaging).

provide preliminary explanations why this positive result is at least plausible.
For this purpose, we first observe that the multiplication Algorithm2 essentially
iterates three types of operations: partial products, compressions and refreshings;
and it ensures that any pair of partial products (ai · bj , aj · bi) is separated from
the other pairs (and the ai ·bi partial products) by a refreshing. As already hinted
in [5], the distances between such pairs of intermediate results do not lead to
additional information to the adversary. So the main source of transition-based
leakages would be based on intermediate results separated by refreshings. In
this respect, we note that our implementation was designed so that intermediate
results are produced progressively according to the previous “compute partial
products – compress – refresh” structure, which additionally limits the risk that
many unrefreshed intermediates remain in the registers. Eventually, we checked
that intermediate results in successive clock cycles do not lead to detectable
transition-based leakages in the bounded moment model thanks to simulations.
So intuitively, we can explain the absence of such transition-based leakages by
the fact that our parallel manipulation of the shares mitigates them.6

Summarizing, as any hypothesis test, leakage detection offers limited the-
oretical guarantees that no lower-order leakages could be detected with more
measurements. Yet, our experiments do not provide any evidence of strong re-
combinations of the shares’ leakages via transitions or other physical defaults,
which can be explained by algorithmic features. Hence, in the following, we will
consider two possible settings for our evaluations: the empirically observed one,
assuming a security order 31 in the bounded moment model, and a more con-
servative one, assuming a security order 15 in the bounded moment model.

6 When decreasing technology sizes, this gain may come with higher risk of couplings
between the shares (as also mentioned in [5] and recently discussed in [9]).

636 A. Journault and F.-X. Standaert

4.3 Noisy Leakage Security and Information Theoretic Analysis

Assuming the security order of our implementations to be 31 (as observed exper-
imentally) or 15 (taking a security margin due to a risk of physical defaults that
we could not spot), we now want to evaluate the security level of these imple-
mentations in the noisy leakage model, based on an information theoretic and
security analysis. For this purpose, our next investigations will follow three main
steps. First we will estimate the deterministic and noisy parts of the leakage
function corresponding to our measurements, thanks to linear regression [43].
This will additionally lead to an estimation of our implementations’ Signal to
Noise Ratio (SNR). Second, we will use this estimation of the leakage function
to quantify the information leakage of our Boolean encodings (assuming security
orders 31 and 15, as just motivated), using the numerical integration techniques
from [15]. Finally, we will take advantage of the tightness of masking security
proofs recently put forward in [26], in order to bound the complexity of mul-
tivariate (aka horizontal) attacks taking advantage of all the leakage samples
computationally exploitable by a divide-and-conquer side-channel adversary.

Linear Regression and Noise Level. For this first step, we again considered a
simplified setting where the evaluator has access to the masks during his profiling
phase. Doing so, he is able to efficiently predict the 32 bits of the bus in our ARM
Cortex device, and therefore to estimate the leakage function for various target
operations thanks to linear regression. More precisely, and given a sensitive value
s and its shares vector s considered in our masking scheme, linear regression
allows estimating the true leakage function L̂(s) ≈ D̂(s) + N̂ , with D̂(s) the
deterministic part of the leakages and N̂ a noise random variable. As frequently
considered in the literature, we used a linear basis (made of the 32 bits of the
bus and a constant element) for this purpose. Such a model rapidly converged
towards close to Hamming weight leakages, with estimated SNR of 0.05 for the
best sample (defined as the variance of D̂(s) divided by the variance of N̂).

Encoding Leakage. Given the previous sensitive value s, its shares vector s
considered in our masking scheme, and a leakage function L leading to samples
l = L(s), a standard metric to capture the informativeness of these leakages is
the Mutual Information [45], defined as follows:

MI(S; L(S)) = H[S] +
∑

s∈S
Pr[s] ·

∑

l←L

f(l|s) · log2 Pr[s|l].

In this equation, H[S] is the entropy of the sensitive variable S and f(l|s) the
conditional Probability Density Function (PDF) of the leakages L(s) given the
secret s. Assuming Gaussian noise, it can be written as a mixture model:

f(l|s) =
∑

s∈Sd−1

N (
l|(s, s), σ2

n

) ·

Very High Order Masking: Efficient Implementation and Security Evaluation 637

The conditional probability Pr[s|l] is then computed thanks to Bayes’ theorem as:

Pr[s|l] =
f(l|s)

∑
s∗∈S f(l|s∗)

·

Unfortunately, what we obtained thanks to linear regression is not the true
leakage function L(s) but only its estimate L̂(s). Hence, what we will compute
in the following is rather the Hypothetical Information (HI), defined as:

HI(S; L̂(S)) = H[S] +
∑

s∈S
Pr[s] ·

∑

l←L̂

f̂(l|s) · log2 P̂r[s|l].

Formally, it corresponds to the amount of information that would be leaked from
an implementation of which the leakages would be exactly predicted by L̂(s).
Admittedly, we cannot expect that HI(S; L̂(S)) = MI(S; L(S)) in practice (e.g.,
since we used a linear basis rather than a full one in our regression).7 However,
we note that the information leakages of a masked implementation depend only
on their security order and SNR, not on variations of the leakage function’s
shape. So small errors on L̂ should not affect our conclusions. Furthermore, in
our parallel setting the addition of significant non-linear terms in the regression
basis would also directly decrease the security order because it would re-combine
the shares in a non-linear manner (see [5]). Since the previous moment-based
evaluation did not detect such re-combinations, a linear leakage model is also
well motivated from this side. We finally note that adding quadratic terms in
our basis could be a way to capture the reduction of the security order from 31
to 15. Yet, for efficiency, we next reflect such reductions of the security order by
simply (and pessimistically) reducing the number of random shares in s.

log10(SNR)
-2 -1 0 1 2 3

lo
g 10

(H
I)

-50

-40

-30

-20

-10

0

31st-order security
15th-order security
7th-order security
2128-bit security

264-bit security
measured SNR
2-averaging
4-averaging
6-averaging

Fig. 2. Information theoretic analysis of the encoding.

7 Yet, we can test that it is close enough thanks to leakage certification [17,18].

638 A. Journault and F.-X. Standaert

The result of such an information theoretic evaluation for our Boolean encod-
ing is given in Fig. 2, where we plot the HI in log scale, for various SNRs. Of
particular interest are the measured SNR and the SNRs with (2, 4 and 6×)
averaging, which would correspond to the noise level of sensitive shares vectors
appearing multiple times in the implementation, therefore allowing the adversary
to reduce the noise of these leakage samples by averaging (which we will discuss
next). We also plotted the curves corresponding to the security orders 31, 15
and 7 (i.e., corresponding to a flaw parameter f = 1, 2 and 4). Remarkably, we
see that for the measured SNR, the leakage of a single encoding secure of order
31 would lead to an HI below 2−128. Since the masking proofs in [15] show that
the measurement complexity of any side-channel attack is inversely proportional
to (and bounded by) this information leakage, it implies that a simple attack
exploiting a single leakage sample corresponding to a 32-tuple of parallel shares
would not be successful even with the full AES/Fantomas∗ codebook. Similarly,
a 15th-order secure implementation would be secure with up to a comfortable
1026 ≈ 282 measurements. Table 2 provides an alternative view of these findings
and lists experimental HI values for different levels of averaging.

Table 2. Experimental bounds on log10(HI) for the encoding.

SNR Measured ×2 ×3 ×4 ×5 ×6 ×7

Security order 31 −48 −39 −34 −31 −29 −27 −25

Security order 15 −26 −22 −19 −17 −16 −15 −14

Worst-Case Security Level. While the previous figure and table show that
an adversary exploiting a single 32-tuple of parallel shares, assuming security
order 31 (or 15) and the SNR estimated in the previous section, will not be able
to perform efficient key recoveries, it has been recently put forward in [6] and
more formally discussed in [26] that optimal side-channel adversaries are actually
much more powerful. Namely, such adversaries can theoretically exploit all the
32-tuples in the implementation, and if some of these tuples are manipulated
multiple times, average their leakages in order to improve their SNR.

In order to take such a possibility into account in our security evaluations,
we therefore started by inspecting the codes of our implementations in order to
determine (1) the number of linear and non-linear operations that can be tar-
geted by a divide-and-conquer attack (for illustration, we considered an adver-
sary targeting a single S-box), and (2) the number of such operations for which
one of the operands is repeated x times in the code. The result of such a code
inspection is given in Table 3. Note that the table includes the count of the SNI
refreshings added to one input of each multiplication, which we reported as 32
(resp. 11) additional linear operations for the AES (resp. Fantomas∗).8

8 This assumes that the iteration of simple refreshing gadgets to obtain an SNI refresh-
ing is tweaked so that the tuple of shares to refresh is only XORed once, at the end
of the iteration. It therefore slightly differs from the proposal in [5]. We leave the
investigation of such a variant as an interesting scope for further research.

Very High Order Masking: Efficient Implementation and Security Evaluation 639

Table 3. S-box code inspection for the AES and Fantomas∗.

Cipher Operations Total # 2-rep. 3-rep. 4-rep. 5-rep. 6-rep. 7-rep.

AES Linear 115 20 55 18 12 10 0

Non-lin. 32 2 16 2 7 5 0

Fantomas∗ Linear 41 13 18 10 0 0 0

Non-lin. 11 1 5 5 0 0 0

Thanks to the tools in [26], we then bounded the measurement complexity
of adversaries taking advantage of a single tuple (considered in the previous
section), all the tuples, and all the tuples with averaging in Fig. 3. Concretely, the
second adversary is simply captured by relying on an “Independent Operation
Leakage” assumption which considers (pessimistically for the designer) that the
information of all the 32-tuples of shares in the implementation is independent
and therefore can be summed. Taking the example of the Fantomas∗ S-box,
it means that this adversary can exploit the information of 41 encodings for
the linear operations, and 11*32 encodings for the non-linear ones (where the
factor 32 comes from the linear cost of the parallel multiplication algorithm, of
which the leakage was bounded in [38]). And the third adversary is captured by
adapting the encoding leakages depending on the number of repetitions allowed
by the code. Taking the example of the linear operations in Fantomas∗, it means
that this adversary can exploit the information of 13 encodings with double
SNR, 18 encodings with triple SNR, . . . The latter is admittedly pessimistic
too since it considers an averaging based on the most repeated operand only.
Besides, it assumes that sensitive values manipulated multiple times will leak
according to the same model (which is not always the case in practice [19]). The
main observations of this worst-case security evaluation are threefold:

First, the security levels reached for the two first adversaries are significantly
higher than previously reported thanks to “attack-based evaluations”. In partic-
ular, we reach the full codebook (measurement) security if the security order was
31 (as empirically estimated) and maintain > 264 measurement security if this
order was only 15. In this respect, we insist that this order is the only parameter
which could lead to an overstated security level (i.e., all the other assumptions in
our evaluations are pessimistic for the designer). Quite naturally, the figure also
exhibits that masked implementations with lower orders (e.g., 8 or 4) cannot
offer strong security guarantees in case of SNRs in the 0.01 range.

Second, the impact of averaging is much more critical, since the adversary
then essentially cancels the exponential increase of the noise that is the expected
payload of the masking countermeasure. Roughly, for an implementation secure
of order d, doubling the SNR thanks to 2-averaging reduces the security by an
approximate factor 2d. By contrast, multiplying the number of target d-tuples
(without averaging) by α only reduces the security by a factor α.

Third, in front of these optimal adversaries, Fantomas∗ offers (slightly) more
security than the AES despite we assume the same information leakages for their

640 A. Journault and F.-X. Standaert

single tuple all tuples all tuples + avg.

lo
g 2(m

ea
su

re
m

en
t c

om
pl

ex
ity

)

0

20

40

60

80

100

120

140

AES, 31st-order
AES, 15th-order
Fantomas, 31st-order
Fantomas, 15th-order

Fig. 3. Measurement complexity bounds for different attacks.

encodings. This gain is essentially due to the fact that Fantomas∗ implementa-
tions are slightly more efficient, effectively reducing the opportunities for the
adversary to exploit many leakage samples and to average them.

Towards Mitigating Averaging Attacks. As a conclusion of this paper,
we first observe that our experiments raise interesting optimization problems
for finding new representations of block cipher S-boxes, minimizing the num-
ber of non-linear operations and the multiple manipulation of the same inter-
mediate values during their execution. Besides, and quite fundamentally, Fig. 3
recalls that the security of the masking countermeasure is the result of a tradeoff
between an amount of physical noise (reflected by the SNR) and an amount of
digital noise (reflected by the shares’ randomness) in the implementations. In
this respect, there is a simple way to mitigate the previous “averaging attacks”,
namely to add refreshing gadgets to prevent the repetition of the same sensitive
values multiple times in an implementation. Remarkably, the systematic refresh-
ing that we add to one input of each multiplication does contribute positively
to this issue. For example, we show in the ePrint version that the number of
repetitions in our codes increases if one removes these refreshings. By extending
this approach brutally (i.e., by refreshing all the intermediate tuples in an imple-
mentation so that they are never used more than twice: once when generated,
once when used), one can therefore mitigate the “all tuples + avg.” adversary
of Fig. 3. But most interestingly, the latter observations suggest the search for
good tradeoffs between physical and digital noise as a fundamental challenge for
sound masking. That is, how to efficiently ensure composability as mentioned in
Sect. 4.1 (first step) and prevent the averaging attacks in this section?

Very High Order Masking: Efficient Implementation and Security Evaluation 641

Acknowledgments. François-Xavier Standaert is an associate researcher of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). This work has been funded in
parts by the INNOVIRIS project SCAUT and by the European Commission through
the ERC project 724725 and the H2020 project REASSURE.

References

1. http://www.atmel.com/tools/sam4c-ek.aspx
2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost

of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). doi:10.
1007/978-3-319-16763-3 5

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald and Fischlin [37], pp. 457–485

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM
CCS 2016, pp. 116–129. ACM (2016)

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. In: Coron and Nielsen [12], pp. 535–566

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs and Poschmann
[20], pp. 23–39

7. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 22

8. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 16

9. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? Cryptology ePrint
Archive, Report 2016/1080 (2016). http://eprint.iacr.org/2016/1080

10. Cooper, J., De Mulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi,
P.: Test vector leakage assessment (TVLA) methodology in practice (extended
abstract). ICMC 2013. http://icmc-2013.org/wp/wp-content/uploads/2013/09/
goodwillkenworthtestvector.pdf

11. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29912-4 6

12. Coron, J.-S., Nielsen, J.B. (eds.): EUROCRYPT 2017. LNCS, vol. 10210. Springer,
Cham (2017). doi:10.1007/978-3-319-56617-7

13. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
doi:10.1007/978-3-662-04722-4

14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen and Oswald [36], pp. 423–440

http://www.atmel.com/tools/sam4c-ek.aspx
http://dx.doi.org/10.1007/978-3-319-16763-3_5
http://dx.doi.org/10.1007/978-3-319-16763-3_5
http://dx.doi.org/10.1007/978-3-662-49896-5_22
http://dx.doi.org/10.1007/978-3-642-13193-6_16
http://eprint.iacr.org/2016/1080
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://dx.doi.org/10.1007/978-3-642-29912-4_6
http://dx.doi.org/10.1007/978-3-319-56617-7
http://dx.doi.org/10.1007/978-3-662-04722-4

642 A. Journault and F.-X. Standaert

15. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete - or
how to evaluate the security of any leaking device. In: Oswald and Fischlin [37],
pp. 401–429

16. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 10

17. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
In: Gierlichs and Poschmann [20], pp. 40–60

18. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen and Oswald [36], pp. 459–476

19. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptogr. Eng.
3(1), 45–58 (2013)

20. Gierlichs, B., Poschmann, A.Y. (eds.): CHES 2016. LNCS, vol. 9813. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53140-2

21. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

22. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron and Nielsen [12], pp. 567–597

23. Grosso, V., Leurent, G., Standaert, F.-X., Varıcı, K.: LS-Designs: bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46706-0 2

24. Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 12

25. Grosso, V., Standaert, F.-X., Faust, S.: Masking vs. multiparty computation: how
large is the gap for AES? J. Cryptogr. Eng. 4(1), 47–57 (2014)

26. Grosso, V., Standaert, F.-X.: Masking proofs are tight (and how to exploit it in
security evaluations). Cryptology ePrint Archive, Report 2017/116 (2017). http://
eprint.iacr.org/2017/116

27. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

28. Journault, A., Standaert, F.-X., Varici, K.: Improving the security and efficiency of
block ciphers based on LS-designs. Des. Codes Cryptogr. 82(1–2), 495–509 (2017)

29. Leander, G., Minaud, B., Rønjom, S.: A generic approach to invariant subspace
attacks: cryptanalysis of Robin, iSCREAM and Zorro. In: Oswald and Fischlin
[37], pp. 254–283

30. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

31. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS
gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005). doi:10.1007/978-3-540-30574-3 24

32. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao and Sunar [40], pp. 157–171

http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-49890-3_10
http://dx.doi.org/10.1007/978-3-662-53140-2
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/978-3-662-46706-0_2
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://dx.doi.org/10.1007/978-3-662-48800-3_12
http://eprint.iacr.org/2017/116
http://eprint.iacr.org/2017/116
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-540-30574-3_24

Very High Order Masking: Efficient Implementation and Security Evaluation 643

33. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-42033-7 25

34. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE 1997.
LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997). doi:10.1007/BFb0052334

35. Moradi, A., Standaert, F.-X.: Moments-correlating DPA. In: Proceedings of the
2016 ACM Workshop on Theory of Implementation Security, TIS 2016, pp. 5–15.
ACM, New York (2016)

36. Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-55220-5

37. Oswald, E., Fischlin, M. (eds.): EUROCRYPT 2015. LNCS, vol. 9056. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5

38. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9 9

39. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

40. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg
(2005). doi:10.1007/11545262

41. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04138-9 8

42. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15031-9 28

43. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao and Sunar [40], pp. 30–46

44. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

45. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

46. Standaert, F.-X.: How (not) to use Welch’s t-test in side-channel security evalua-
tions. Cryptology ePrint Archive, Report 2017/138 (2017). http://eprint.iacr.org/
2017/138

47. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 3–33. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53890-6 1

48. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45611-8 15

49. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28632-5 1

http://dx.doi.org/10.1007/978-3-642-42033-7_25
http://dx.doi.org/10.1007/BFb0052334
http://dx.doi.org/10.1007/978-3-642-55220-5
http://dx.doi.org/10.1007/978-3-662-46800-5
http://dx.doi.org/10.1007/978-3-642-38348-9_9
http://dx.doi.org/10.1007/11545262
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-15031-9_28
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://eprint.iacr.org/2017/138
http://eprint.iacr.org/2017/138
http://dx.doi.org/10.1007/978-3-662-53890-6_1
http://dx.doi.org/10.1007/978-3-662-45611-8_15
http://dx.doi.org/10.1007/978-3-540-28632-5_1

PRESENT Runs Fast

Efficient and Secure Implementation in Software

Tiago B.S. Reis(B), Diego F. Aranha, and Julio López

Institute of Computing, University of Campinas, Campinas, Brazil
tiagob.reis@gmail.com

Abstract. The PRESENT block cipher was one of the first hardware-
oriented proposals for implementation in extremely resource-constrained
environments. Its design is based on 4-bit S-boxes and a 64-bit permu-
tation, a far from optimal choice to achieve good performance in soft-
ware. As a result, most software implementations require large lookup
tables in order to meet efficiency goals. In this paper, we describe a new
portable and efficient software implementation of PRESENT, fully pro-
tected against timing attacks. Our implementation uses a novel decom-
position of the permutation layer, and bitsliced computation of the
S-boxes using optimized Boolean formulas, not requiring lookup tables.
The implementations are evaluated in embedded ARM CPUs ranging
from microcontrollers to full-featured processors equipped with vector
instructions. Timings for our software implementation show a significant
performance improvement compared to the numbers from the FELICS
benchmarking framework. In particular, encrypting 128 bits using CTR
mode takes about 2100 cycles on a Cortex-M3, improving on the best
Assembly implementation in FELICS by a factor of 8. Additionally, we
present the fastest masked implementation of PRESENT for protection
against timing and other side-channel attacks in the scenario we consider,
improving on related work by 15%. Hence, we conclude that PRESENT
can be remarkably efficient in software if implemented with our tech-
niques, and even compete with a software implementation of AES in
terms of latency while offering a much smaller code footprint.

1 Introduction

The need for secure and efficient implementations of cryptography for embedded
systems has been an active area of research since at least the birth of public-key
cryptography. While considerable progress has been made over the last years, with
development of many cryptographic engineering techniques for optimizing and
protecting implementations of both symmetric [24] and asymmetric algorithms [9],
the emergence of the Internet of Things (IoT) brings new challenges. The concept
assumes an extraordinary amount of devices connected to the Internet and among
themselves in local networks. Devices range from simple radio-frequency identifi-
cation (RFID) tags to complex gadgets like smartwatches, home appliances and
smartphones; and fulfill a wide variety of roles, from the automation of simple
processes to critical tasks such as traffic control and environmental surveillance [5].
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 644–664, 2017.
DOI: 10.1007/978-3-319-66787-4 31

PRESENT Runs Fast 645

In a certain sense, the IoT is already here, as the number of devices stor-
ing and exchanging sensitive data rapidly multiplies. Realizing the scale in which
security issues arise in this scenario poses challenges in terms of software security,
interoperable authentication mechanisms, cryptographic algorithms and proto-
cols. The possible proliferation of weak proprietary standards is particularly
worrying, aggravated by the fact that IoT devices are many times physically
exposed or widely accessible via the network, which opens up new possibilities
of attacks making use of side-channel leakage. These leaks occur through oper-
ational aspects of a concrete realization of the cryptographic algorithm, such
as the execution time of a program [14,25]. Consequently, securely implement-
ing cryptographic algorithms in typical IoT devices remains a relevant research
problem for the next few years, which is further complicated by the limited avail-
ability of resources such as RAM and computational power in these devices.

In order to fulfill the need for cryptographic implementations tailored for
resource-constrained embedded devices, many different lightweight algorithms
have been proposed for various primitives. One such proposal is the PRESENT
block cipher [11], a substitution-permutation network designed by Bogdanov et
al. and published in CHES 2007, that has received a great deal of attention
from the cryptologic community and was standardized by ISO for lightweight
cryptographic methods [37]. The block cipher has two versions: PRESENT-80
with an 80-bit key, and PRESENT-128 with a 128-bit key, both differing only
by the key schedule, being one of its main design goals to optimize the hard-
ware implementation. In this work, we focus on this block cipher, providing an
alternative formulation of the original PRESENT algorithm. We discuss why
our formulation is expected to be more efficient in software and provide imple-
mentation results that support this claim. Also, we analyze the impact of using
a second-order masking scheme as a side-channel leakage countermeasure.

Our Contributions. We introduce a new portable and secure software imple-
mentation of PRESENT that leads to significant performance improvement com-
pared to previous work. The main idea consists in optimizing the computation
of permutation P in two consecutive rounds, by replacing it with two more effi-
cient permutations P0 and P1 in alternated rounds. In this work, side-channel
resistance is implemented through constant time execution and masking coun-
termeasures. Our implementations are evaluated on embedded ARM processors,
but the techniques should remain efficient across platforms. Extensive experi-
mental results provided on both Cortex-M microcontrollers and more powerful
Cortex-A processors indicate that we obtained the fastest side-channel resistant
implementation of PRESENT for our target architectures.

Organization. Section 2 reviews related work on software implementation
of PRESENT and Sect. 3 describes the original specification of the block
cipher. Novel techniques for efficient software implementation are discussed in
Sect. 4, security properties and side-channel countermeasures in Sect. 5. Section 6
describes our target platforms, relevant aspects about our implementation and
present the performance figures we obtained, before comparing them with results
from the open research literature. Conclusions are drawn in Sect. 7.

646 T.B.S. Reis et al.

2 Related Work

The design of PRESENT [11] has motivated an extensive amount of research
in the cryptologic community, both in terms of cryptanalysis and engineering
aspects. The main results in these regards are summarized here.

Starting from the cryptanalytic results, many techniques have been explored
to break PRESENT’s security claims [10,15,27,38], and, yet, the best full-round
attack found is a biclique attack [27] able to recover the secret key based on
279.76 encryptions of PRESENT-80 or 2127.91 encryptions of PRESENT-128.
Although the result is technically a proof that PRESENT is not an ideally secure
block cipher, it actually helps building up confidence in the cipher design. After
extensive research efforts, the best known attack still requires almost as much
computational effort as a brute-force attack.

Regarding the efficient implementation of PRESENT, one of the most com-
prehensive works is the PhD thesis by Axel Poschmann, one of PRESENT’s
designers [33]. The author discusses a plethora of implementation results, both in
hardware and in software, for a wide selection of architectures, ranging from 4-bit
to 64-bit devices. For the software implementations, the author presents differ-
ent versions optimized for either code size or speed. He focuses on implementing
the S-box as a lookup table, which is potentially vulnerable to timing attacks
in processors equipped with cache memory. Hence, the optimizations introduced
to improve the S-box performance cannot be used in our work, because we are
concerned with side-channel security.

In [31], Papapagiannopoulos et al. present efficient bitsliced implementations
of PRESENT, along with implementations for other block ciphers, having as tar-
get architecture the ATtiny family of AVR microcontrollers. This work employs
an extension [17] of Boyar-Peralta heuristics [13] to minimize the complexity
of digital circuits applied to PRESENT, providing a set of 14 instructions to
compute the S-box. Bao et al. [6] adapt the approach to implement the inverse
S-box in 15 instructions for the LED cipher, which shares the same substitution
layer with PRESENT.

Similarly to [31], Benadjila et al. [7] also provide bitsliced implementations
for many different block ciphers, including PRESENT, but this time for Intel
x86 architectures. One of the primary focuses of this work is the usage of SIMD
instructions to speed up the implementations through vectorization.

It is also important to cite the work of Dinu et al. [18], which implements
and optimizes PRESENT alongside with twelve other different block ciphers
for three different platforms: 8-bit ATmega, 16-bit MSP430 and 32-bit ARM
Cortex-M3. Their best results for PRESENT were obtained through a table-
based implementation that merges the permutation layer and the substitution
layer of the cipher in some instances. Since the Cortex-M3 is also one of the target
architectures for our work, it is relevant to observe actual figures in this case.
For this platform, the authors report an execution time of 16,919 clock cycles
for encrypting 128 bits of data in CTR mode and 270,603 cycles for running the
key schedule, encrypting and decrypting 128 bytes of data in CBC mode.

PRESENT Runs Fast 647

Out of all the aforementioned works, none of them discusses side-channel
security and many even explicitly state the usage of large tables to compute
the PRESENT S-box, which is a well-known source of side-channel leakage [12].
However, there are some researchers who address this issue. For example, [22]
presents a bitsliced implementation for PRESENT that uses a masking scheme
to provide second-order protection against side-channel attacks. The authors use
a device endowed with a Cortex-M4 processor and report an execution time of
6,532 cycles to encrypt one 64-bit block, excluding the time consumed by the ran-
dom number generator in the masking routine. They also provide experimental
evidence for the effectiveness of masking as a side-channel attack countermea-
sure in ARM-based architectures. It is worth noting, however, that the masking
scheme used by the authors only aims to protect the S-box computation, hence
leaving the key unmasked and the algorithm open to possible attacks that might
target specific sections of the code.

At last, we mention the paper [32], which applies a technique called Threshold
Implementation to counteract differential power analysis attacks and glitches
on hardware circuitry. This alternative masking scheme, originally proposed by
Nikova et al. [29], has the advantage of not requiring the generation of random
bits for computing operations between shares of secret information, but demands
the evaluation of multiple S-boxes which can become computationally expensive
in software.

3 The PRESENT Block Cipher

The PRESENT block cipher [11] is a substitution-permutation network (SPN)
that encrypts a 64-bit block using a key with 80 or 128 bits. The key is first
processed by the key schedule to generate 32 round keys subkey1, ..., subkey32
with 64 bits each. To encrypt a given block of data, it repeats the following
steps over 31 rounds: the block is XORed with the corresponding round key;
each contiguous set of 4 bits in the block is substituted according to the output
of the substitution box (S-box) S; and then the 64 bits are rearranged by a
permutation P . After the final round, the block is XORed with subkey32. A
high-level description of PRESENT encryption is given in Algorithm1.

The S-box S acts over every 4 bits of the block, as specified in Table 1.
Although the most straightforward way to implement the S-box in software
is by using a lookup table, [31] shows how to simulate one evaluation of this
function by performing 14 Boolean operations over the 4 input bits. Listing 1.1
contains a C-language implementation of the S-box and also of the inverse of
this S-box, which can be useful for the decryption algorithm. The S-box was
directly obtained from [31] using the extended Boyar-Peralta heuristics [13]. We
computed the inverse S-box using the same approach with software from Brian
Gladman [21]. Our inverse S-box has 15 instructions and reproduces the same
number obtained by Bao et al. [6], in which the function was not explicitly given.

648 T.B.S. Reis et al.

Algorithm 1. PRESENT encryption of one message block.
Input: A 64-bit block of plaintext B, a key K.
Output: A 64-bit block of ciphertext C.

1: subkey = (subkey1, subkey2, ..., subkey32) ← keySchedule(K)
2: C ← B
3: for i = 1 to 31 do
4: C ← C ⊕ subkeyi
5: C ← S(C)
6: C ← P (C)
7: end for
8: C ← C ⊕ subkey32
9: return C

Table 1. PRESENT S-box, given in hexadecimal notation.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Listing 1.1. Bitsliced implementation in C for both the direct and inverse S-boxes of
the PRESENT block cipher.

/* Each macro takes as input 4 words and transforms

* them in-place according to the S-box function

* or its inverse.

*/

#define PRESENT_SBOX(x0 ,x1,x2,x3) \

T1 = x2 ^ x1; T2 = x1 & T1; \

T3 = x0 ^ T2; T5 = x3 ^ T3; \

T2 = T1 & T3; T1 = T1 ^ T5; \

T2 = T2 ^ x1; T4 = x3 | T2; \

x2 = T1 ^ T4; x3 = ~x3; \

T2 = T2 ^ x3; x0 = x2 ^ T2; \

T2 = T2 | T1; x1 = T3 ^ T2; \

x3 = T5;

#define PRESENT_INV_SBOX (x0,x1,x2,x3) \

T0 = ~x3; T1 = x2 ^ x0; \

T2 = x2 & x0; T3 = x1 ^ T2; \

T4 = x3 ^ T1; x3 = T0 ^ T3; \

T0 = T1 & x3; T1 = x2 ^ T0; \

T2 = T4 | T1; x0 = T3 ^ T2; \

T5 = T4 ^ T1; T2 = T3 & T5; \

x2 = T4 ^ T2; x1 = T2 ^ (~T1); \

PRESENT Runs Fast 649

The permutation P is specified by Eq. 1 below and moves the i-th bit of the
state to the position P (i):

P (i) =

{
16i mod 63, if i �= 63,
63, if i = 63.

(1)

From the definition of P , one can easily verify that P 2 = P−1. By looking at
Fig. 1, another interesting property of this permutation can be noticed: if the
64-bit state of the cipher is stored in four 16-bit registers, the application of the
permutation P aligns the state in a way that the concatenation of the i-th bit
of each of the four registers of the permuted state corresponds to 4 consecutive
bits of the original state. These properties will be explored by the technique
proposed later.

B =

⎡
⎢⎢⎣

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

⎤
⎥⎥⎦ ,

P (B) =

⎡
⎢⎢⎣

00 04 08 12 16 20 24 28 32 36 40 44 48 52 56 60
01 05 09 13 17 21 25 29 33 37 41 45 49 53 57 61
02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62
03 07 11 15 19 23 27 31 35 39 43 47 51 55 59 63

⎤
⎥⎥⎦ .

Fig. 1. Matrix representation of the 64-bit input block B and its permutation P (B),
both split into four 16-bit rows.

4 Efficient Implementation

The main novelty introduced in this work lies in the techniques devised to
efficiently implement the PRESENT block cipher in software, which are now
described. First, we limit the scope to PRESENT-80, the version using an 80-bit
key, which is better suited for lightweight applications due to a smaller memory
footprint. The encryption and decryption routines are exactly the same for the
128-bit version, the only difference is in the key schedule, which should not be
a critical section of the algorithm in terms of performance. In fact, applying the
same techniques exposed here to PRESENT-128, provides, within a 5% margin,
the same time measurements for all scenarios we consider.

Algorithm 2 specifies our proposal for implementing encryption of a single
block with PRESENT. Essentially, every two applications of permutation P are
replaced by evaluations of permutations P0 and P1, which satisfy the property
that P1 ◦ P0 = P 2, a fact that preserves the correctness of the modified algo-
rithm. The way P0 and P1 act upon the cipher state is represented in Fig. 2, and
code in the C programming language to implement both permutations follows

650 T.B.S. Reis et al.

in Listing 1.2. On the description of this algorithm, we use the function SBS ,
which we define as being the same S-box used for PRESENT, but taking as
inputs state bits whose indexes are congruent modulo 16 instead of every four
consecutive bits. In other words, this S-box interprets the state of the cipher as
four 16-bit words and operates on them in a bitsliced fashion.

Algorithm 2. Our proposal for PRESENT encryption of one message block.
Input: A 64-bit block of plaintext B, a key K.
Output: A 64-bit block of ciphertext C.

1: subkey = (subkey1, subkey2, ..., subkey32) ← keySchedule(K)
2: C ← B
3: for i = 1 to 15 do
4: C ← C ⊕ subkey2i−1

5: C ← P0(C)
6: C ← SBS(C)
7: C ← P1(C)
8: C ← C ⊕ P (subkey2i)
9: C ← SBS(C)

10: end for
11: C ← C ⊕ subkey31
12: C ← P (C)
13: C ← SBS(C)
14: C ← C ⊕ subkey32
15: return C

We need to observe two facts to prove the equivalence between Algorithms 1
and 2. First, the S-box S in Algorithm 1 acts on the same quadruplets of bits
that SBS acts on Algorithm 2, since both P0 and P bitslice the state over 16-bit
words. Then note that P (P (X ⊕ subkeyi) ⊕ subkeyi+1) = P 2(X ⊕ subkeyi) ⊕
P (subkeyi+1) = P1(P0(X ⊕ subkeyi)) ⊕P (subkeyi+1), being that leftmost term
exactly the transformation undergone by state X over rounds i and i + 1 on
Algorithm 1 and the rightmost term the transformation undergone by state X
over rounds i and i+ 1, for i odd, on Algorithm2, when we disregard the S-box
step on both algorithms. Since the S-boxes operate equivalently and, without
S-boxes, the algorithms are also equivalent, the proof is concluded.

Now, at first glance, it may not be clear why our alternative version for
PRESENT is faster than the original one, but there are two main advantages.
The first one is due to complexity in software. Permutations P0 and P1 are
simply more software friendly, requiring less operations to be implemented,
when compared to the permutation P . An evidence to corroborate this fact
was obtained from the source code generator for bit permutations provided by
Jasper Neumann in [28], estimating a cost of 14 clock cycles to execute either
P0 or P1 and a cost of 24 cycles to execute P , when implemented optimally.

PRESENT Runs Fast 651

Listing 1.2. Efficient implementation in C of the permutations P0 and P1 of our
proposal for PRESENT encryption.

/* The following macros permute two 64-bit blocks

* simultaneously , using an auxiliary variable t

* and storing one block on the high 16-bit word

* of the 32-bit variables X0, X1 , X2 and X3, and

* the other block on the low 16-bit word of the

* same variables.

*/

#define PRESENT_PERMUTATION_P0(X0 ,X1 ,X2 ,X3) \

t = (X0^(X1 >>1)) & 0x55555555; \

X0 = X0^t; X1 = X1^(t<<1); \

t = (X2^(X3 >>1)) & 0x55555555; \

X2 = X2^t; X3 = X3^(t<<1); \

t = (X0^(X2 >>2)) & 0x33333333; \

X0 = X0^t; X2 = X2^(t<<2); \

t = (X1^(X3 >>2)) & 0x33333333; \

X1 = X1^t; X3 = X3^(t<<2); \

#define PRESENT_PERMUTATION_P1(X0 ,X1 ,X2 ,X3) \

t = (X0^(X1 >>4)) & 0x0F0F0F0F; \

X0 = X0^t; X1 = X1^(t<<4); \

t = (X2^(X3 >>4)) & 0x0F0F0F0F; \

X2 = X2^t; X3 = X3^(t<<4); \

t = (X0^(X2 >>8)) & 0x00FF00FF; \

X0 = X0^t; X2 = X2^(t<<8); \

t = (X1^(X3 >>8)) & 0x00FF00FF; \

X1 = X1^t; X3 = X3^(t<<8); \

The second advantage of our proposal involves the application of the S-box. A
careful analysis of Algorithm 2 leads to the conclusion that, at lines 6, 9 and 13,
where the S-box is applied, the state of the variable C is not the same as the state
to which the S-box is applied in Algorithm1. At line 6, the state has undergone
an extra P0 permutation in relation to the original formulation; and at lines 9
and 13 the state has undergone an extra evaluation of P . By looking at Figs. 1
and 2, it stands clear that, if the ciphertext is stored into four 16-bit registers,
both P and P0 organize the state in such a way that every four consecutive
bits are aligned in columns throughout those four registers, similarly to what
would be seen in a fully bitsliced implementation. Therefore, an implementation
following the structure in Algorithm2 can make use of bitwise operations to
simulate the S-box step, calculating sixteen S-box applications simultaneously.

The same rationale may be applied to generate other alternative versions
of the PRESENT encryption algorithm. Figure 3 illustrates different versions of
PRESENT obtained by interchanging S-box applications and permutations. In
this figure, S represents the S-box applied over every four consecutive bits of the
state and SBS represents the S-box computed in a bitsliced fashion.

652 T.B.S. Reis et al.

B =

⎡
⎢⎢⎣

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

⎤
⎥⎥⎦ ,

P0(B) =

⎡
⎢⎢⎣

00 16 32 48 04 20 36 52 08 24 40 56 12 28 44 60
01 17 33 49 05 21 37 53 09 25 41 57 13 29 45 61
02 18 34 50 06 22 38 54 10 26 42 58 14 30 46 62
03 19 35 51 07 23 39 55 11 27 43 59 15 31 47 63

⎤
⎥⎥⎦ ,

P1(B) =

⎡
⎢⎢⎣

00 01 02 03 16 17 18 19 32 33 34 35 48 49 50 51
04 05 06 07 20 21 22 23 36 37 38 39 52 53 54 55
08 09 10 11 24 25 26 27 40 41 42 43 56 57 58 59
12 13 14 15 28 29 30 31 44 45 46 47 60 61 62 63

⎤
⎥⎥⎦ .

Fig. 2. Matrix representation of the 64-bit input block B and its permutations P0(B)
and P1(B), all of them divided into four 16-bit rows.

S

P

S

P

subkeyi

subkeyi+1

(a)

P

SBS

P

SBS

subkeyi

subkeyi+1

(b)

P

SBS

P

SBS

subkeyi

P (subkeyi+1)

(c)

P0

SBS

P1

SBS

subkeyi

P (subkeyi+1)

(d)

Fig. 3. Diagram showing equivalent ways to implement two consecutive rounds (i and
i + 1) of PRESENT for encryption. The original specification for the block cipher
corresponds to the leftmost diagram and the rightmost one corresponds to the version
proposed here with alternating P0 and P1 permutations.

PRESENT Runs Fast 653

One last observation to further improve performance of the implementation
in a 32-bit architecture is that two blocks of plaintext can be encrypted in
CTR mode at once, organizing the state such that 32 S-boxes are calculated
simultaneously instead of only 16. For a 64-bit architecture, the same strategy
can be carried out to encrypt four blocks at once.

All of the algorithmic observations and implementation techniques discussed
here extend directly to the decryption routine, as shown by Algorithm3. The
inversion of encryption is particularly simplified by the fact that P0 and P1 are
involutory permutations, that is, P−1

0 = P0 and P−1
1 = P1. The involutory

property of P0 and P1 has yet another advantage. Since P1 ◦ P0 = P 2 and
P 2 = P−1, it follows that P = P0 ◦ P1, what might be used to reduce the
code size of the implementation, because the permutation P does not need to
be implemented provided that P0 and P1 have already been coded.

Algorithm 3. Our proposal for PRESENT decryption of one message block.
Input: A 64-bit block of ciphertext C, a key K.
Output: A 64-bit block of plaintext B.

1: subkey = (subkey1, subkey2, ..., subkey32) ← keySchedule(K)
2: B ← C
3: B ← B ⊕ subkey32
4: B ← S−1

BS(B)
5: B ← P−1(B)
6: B ← B ⊕ subkey31
7: for i = 15 to 1 do
8: B ← S−1

BS(B)
9: B ← B ⊕ subkey2i

10: B ← P1(B)
11: B ← S−1

BS(B)
12: B ← P0(B)
13: B ← B ⊕ P (subkey2i−1)
14: end for
15: return B

At last, it is important to notice that our proposal has the drawback of apply-
ing the permutation P to some of the round keys. Although, since typically many
blocks of message are encrypted or decrypted with the same key, the key sched-
ule routine should have a low impact on the algorithm’s practical performance,
since it is executed only once for several executions of encryption/decryption
routines.

5 Side-Channel Countermeasures

As commented previously, there has been extensive work on the cryptanalysis
of PRESENT and the lack of significant advances provides evidence that the
cipher is likely to fulfill the desired security goals. However, even if the block

654 T.B.S. Reis et al.

cipher design is ideally secure, a careless implementation may leak sensitive data
during execution and undermine the security of the algorithm with its insecure
realization.

Particularly, a major concern is side-channel attacks, that is, attacks which
are crafted based on information obtained from the physical implementation
of a cryptographic primitive. For instance, an attacker may gather data such
as execution time of an algorithm [14,19,25], power consumption [30], sound
produced by the hardware [20] or even magnetic radiation emitted during the
computation [26] and, through these data, the attacker may gain access to sen-
sitive information processed by the device under analysis.

It is worth noting that side-channel attacks are limited to situations where
the attacker has physical access to the hardware executing the implementation
or at least can interact with the device through the network. It is not completely
unreasonable to ignore the possibility of such attacks when the implementation
of the algorithm is physically protected from the attacker or not accessible for
any kind of interaction, but reality tends to go in the opposite direction in the
IoT context. In this scenario, devices are frequently accessible to the attacker
by either physical means or through the network and typically lack tamper-
resistance countermeasures for protecting the hardware from external influence.

5.1 Protecting Against Timing Attacks

The focus is primarily on timing attacks, since they are entirely within the scope
of software implementation, and appear to be the most practical side-channel
attack. Furthermore, protecting software implementations from more invasive
side-channel attacks is very challenging, since the software countermeasures can
be typically circumvented by an invasive attacker. Recent work has developed
static analysis tools to detect variances in execution time correlated with secret
information at a rather low level [2,34], allowing implementers to formally guar-
antee constant execution time of their code or at least implement mitigations.

In practice, the main sources of timing vulnerabilities are memory accesses
and conditional branches depending on secret data. Conditional branching, by
definition, may cause different instructions to be executed among different runs
of a program, which, by its turn, may cause the execution time of the algo-
rithm to depend on sensitive data given as input. The effect of branch mispre-
diction in more sophisticated processors may further interfere with pipelined
datapaths and provoke significant variations [1]. In a similar way, if a proces-
sor is equipped with cache memory, the execution time may leak information
about the rate of cache misses or hits during memory accesses, and, clearly, if
these accesses depend on sensitive data, this implementation becomes suscepti-
ble to side-channel attacks [8]. Therefore, by avoiding these situations, a software
implementation can encrypt a message block in constant time, independently of
characteristics about the inputs (plaintext message or cryptographic key). This
runtime property is called isochronicity.

PRESENT Runs Fast 655

5.2 Masking the Implementation

Ensuring that code runs in constant time is sufficient to render timing attacks
impractical, although other side-channel leakages might still be exploited.
Another family of techniques for improving side-channel resistance is called secret
sharing, or masking, which consists in splitting sensitive variables occurring in
the computation into d + 1 shares (or masks) in order to unlink the correla-
tion between environmental information and the secret data being processed.
A masking technique based on d + 1 masks is said to be a d-th order masking
and can only be broken by an attacker who manages to obtain leakage related
to at least d + 1 intermediate variables of the algorithm. It is possible to prove
that the difficulty for a side-channel attack to succeed, in practice, increases
exponentially with d and, hence, the masking order can be considered a sound
criterion to evaluate the robustness of the implementation against side-channel
analysis [16].

The literature presents different alternatives to implement a masked encryp-
tion algorithm [32], but analysis will be restricted to the proposal given by Ishai
et al. in [23], which appears to be the most appropriate for a fast software imple-
mentation. In this proposal, the masked state of a sensitive variable m with d+1
shares is

m =
d⊕

i=0

mi = m0 ⊕ m1 ⊕ . . . ⊕ md, (2)

where each mi is a share of the secret and all shares form together a masked
secret. In order to create a masked implementation on the variable m, one can
randomly generate the d masks m1,m2, ...,md and calculate m0 such that Eq. 2
holds.

From this definition, we can derive ways to calculate different operations over
the masks. The following list contains all operations necessary to implement a
masked version of PRESENT.

1. A NOT operation over a masked secret has to be carried out as a NOT operation
performed on an odd number of masks to preserve the relationship in Eq. 2.
A single mask can just as well be negated:

¬m = ¬m0 ⊕ m1 ⊕ . . . ⊕ md.

2. An XOR operation between masked secrets a =
d⊕

i=0

ai and b =
d⊕

i=0

bi can be

performed by calculating the XOR of all corresponding masks:

a ⊕ b =
d⊕

i=0

(ai ⊕ bi).

3. An AND operation between two masked secrets is more complicated and can
be computed as follows: for every pair (i, j), 1 ≤ i < j ≤ d + 1, generate

656 T.B.S. Reis et al.

a random bit zi,j . Then, compute zi,j = (zi,j ⊕ aibi) ⊕ ajbi. Now, for every
1 ≤ i ≤ d + 1, the i-th share may be computed as

mi = aibi ⊕
⊕
i�=j

zi,j .

4. An OR operation might be calculated using the logical identity OR(a, b) =
¬(¬a · ¬b), which depends only on operations previously defined.

The nonlinear operations OR and AND stand out as the most expensive ones,
requiring O(d2) calls to a random bit generator and memory to store a matrix z of
O(d2) entries. This is the main drawback of the technique in resource-constrained
devices and makes the use of high-order masking impractical in many scenarios.

6 Implementation Details and Results

6.1 Target Architecture

Currently, there is a vast variety of processors under consideration for integra-
tion to the IoT. The focus given in this work is on some representatives of the
ARM architecture, since it is the world leader in the market of microprocessors
and, thus, attracts relevant academic work as well as commercial interest. More
specifically, our implementations were benchmarked on the following platforms:

– Cortex-M0+: Arduino Zero powered by an Atmel SAMD21G18A ARM
Cortex-M0+ CPU, clocked at 48MHz.

– Cortex-M3: Arduino Due powered by an Atmel SAM3X8E ARM Cortex-M3
CPU, clocked at 84MHz.

– Cortex-M4: Teensy 3.2 board containing a MK20DX256VLH7 Cortex-M4
CPU, clocked at 72 MHz.

– Cortex-A7/A15: ODROID-XU4 board containing a Samsung Exynos5422
2GHz Cortex-A15 and Cortex-A7 octa-core CPU.

– Cortex-A53: ODROID-C2 board containing an Amlogic 64-bit ARM 2GHz
Cortex-A53 (ARMv8) quad-core CPU.

Members of the Cortex-M [4] family are commonly used in embedded appli-
cations, being found on devices ranging from medical instrumentation equipment
to domestic household appliances. The design of these processors is optimized
for cost and energy efficiency, making them relatively low-end when compared
to the other targets.

As for the members of Cortex-A [3] family, they are more computationally
powerful than the Cortex-M processors, being able to execute complex tasks
such as running a robust operating system or a high-quality multimedia task.
These processors have access to the NEON engine, a powerful Single Instruc-
tion Multiple Data (SIMD) extension, and may have sophisticated out-of-order
execution.

PRESENT Runs Fast 657

6.2 Main Results

In order to discuss our results, the code size and speed of our implementations
are measured in two scenarios based on what is proposed in the FELICS frame-
work [18], such that results can be comparable in a fair and reliable manner.

Scenario 1 simulates a communication protocol established in sensor networks
or between IoT devices. It is assumed here that the device possesses the master
key stored in RAM, calculates the key schedule and then proceeds to encrypt
and decrypt 128 bytes of sensitive data using the CBC mode of operation. Due
to the employment of the CBC mode, the suggested trick of encrypting more
than one block in parallel does not work, since this mode of operation forces
dependencies between consecutive input blocks. Hence, it stands clear that it is
not the optimal scenario to use our techniques, but we still chose to implement
it exactly as described in [18] for the sake of comparison.

Scenario 2 simulates an authentication protocol in which the block cipher is
used to encrypt 128 bits of data in CTR mode of operation. The round keys are
assumed to be stored in memory and, consequently, no key schedule is required.
This is a very appropriate stance to employ all of the optimizations proposed so
far, since the CTR mode encrypts and decrypts blocks of input independently.

Results for both scenarios are expressed in Tables 2 and 3. All the measure-
ments were based on code fully written in C language, compiled by GCC 6.3.1
in the case of the Cortex-A family and by GCC 4.8.4 for the Cortex-M family,
using the flag -O3 for optimized speed results. The isochronicity property of
the constant time implementations was validated using the FlowTracker static
analysis tool [34]. FlowTracker performs information flow analysis from function
inputs marked as secret to branch instructions and memory addresses, effectively
detecting and thwarting timing attacks. This tool analyzes compiled code at the
LLVM Intermediate Representation level, thus closer to the platform-specific
native code. All timings for Cortex-M processors were reproduced to a reason-
able degree in the ARM Cortex-M Prototyping System (MPS2), an FPGA-based
board with support to microcontrollers ranging from the Cortex-M0 to M7.
However, we only report timings collected in the widely available platforms to
simplify comparisons with future competing implementation efforts.

One of the main observations attained from these measurements is that the
cost to protect the implementations with masking is high, especially in lower-end
processors. In our case, a second-order masking was used and the time consumed
by the random number generator was disregarded. Still, a slowdown of up to 6.8
times was observed in the case of the Cortex-M0+. For higher-end processors,
however, the slowdown can be inferior to a 4-factor. Throughout all processors,
a sensible increase in code size due to masking is observed.

Another fact to notice is that, as expected, even when differences in input
size are taken into account, the performance of PRESENT in Scenario 2 is sub-
stantially better than the performance in Scenario 1, mainly due to the choice
of mode of operation. In Scenario 1, using the CBC mode, only decryption can
be parallelized, and encryption ends up being roughly twice as slow as in CTR
mode.

658 T.B.S. Reis et al.

Table 2. Performance results for Scenario 1 – key schedule, encryption and decryp-
tion of 128 bytes in CBC mode – of side-channel resistant implementations of
PRESENT, encompassing both isochronous (constant time) and second-order masking
countermeasures.

Processor Code size
[bytes]

Key schedule
[cycles]

Encryption
[cycles]

Decryption[cycles]

Isochronous implementation

Cortex-M0+ 1436 6381 46429 23445

Cortex-M3 1320 5043 29442 16291

Cortex-M4 1328 3464 22993 11731

Cortex-A7 2732 3232 21027 10657

Cortex-A15 1792 1740 14780 7050

Cortex-A53 2484 1554 13583 3726

Masked implementation

Cortex-M0+ 8056 7145 332079 204690

Cortex-M3 7048 4628 197601 122521

Cortex-M4 9216 3413 186556 100417

Cortex-A7 9248 2657 116004 64041

Cortex-A15 9248 1894 59474 29130

Cortex-A53 8452 1943 39983 12848

Table 3. Performance results for Scenario 2 – encryption of 128 bits in CTR mode – of
side-channel resistant implementations of PRESENT, encompassing both isochronous
(constant time) and second-order masking countermeasures.

Processor Code size [bytes] Execution time [cycles]

Isochronous implementation

Cortex-M0+ 2524 3183

Cortex-M3 2476 2116

Cortex-M4 2612 1599

Cortex-A7 2456 1708

Cortex-A15 2456 960

Cortex-A53 2536 1052

Masked implementation

Cortex-M0+ 12392 21744

Cortex-M3 9728 12387

Cortex-M4 11012 11096

Cortex-A7 13322 7482

Cortex-A15 13322 3688

Cortex-A53 18028 3681

PRESENT Runs Fast 659

6.3 Vector Implementation Using NEON

For the platforms with access to NEON instructions, parallelism within the
PRESENT encryption algorithm can also be explored for enhancing perfor-
mance. In particular, it is relevant to mention that the NEON instructions VTBL
and VTBX allow the computation of fast table lookups by performing register
operations, without the need of memory accesses.

Besides the original formulation of the algorithm, that implements S-boxes
as lookup tables, we were also able to evaluate the performance of a different
proposal mentioned in [33] and attributed to Gregor Leander. The idea is similar
to ours, in principle, since it decomposes the permutation P into two others.
However, Leander’s decomposition aims to allow a faster lookup table-based
implementation, which is the opposite direction we are looking for. Still, even
using the NEON instructions to implement the lookup tables used in Leander’s
method, our formulation was found to be faster.

NEON implementations can process eight blocks simultaneously due to the
support of 128-bit registers, in the same fashion as processing two blocks in
parallel in 32-bit processors or four blocks in parallel using 64-bit ones. For
this reason, neither scenario used previously is appropriate to evaluate vector
implementations. Scenario 1 does not support parallelism due to the mode of
operation employed and Scenario 2 processes only 128 bits of data, which is only
two blocks of input, not making use of the full capacity of processing eight blocks
at once.

For this reason, we chose to analyze the performance of our NEON imple-
mentations under a third scenario, in which we run the key schedule, encrypt and
decrypt 128 bytes of data. These results are reported in Tables 4 and 5, along-
side with the results of the native implementation, without vector instructions,
to provide a baseline for comparison.

By analyzing the results, we notice that the NEON instructions were able to
provide a meaningful speedup for the 32-bit processors. For the 64-bit Cortex-
A53, however, the efficiency of native instructions associated with the possibility
of processing four blocks in parallel beats the vector implementation by a small
margin. Naturally, these implementations have a substantial impact on code size
when compared to Table 2.

Notice also that the only difference introduced by this third scenario com-
pared to Scenario 1 is the choice of the mode of operation. It further illustrates
how much better CTR performs in this case, in which we can make use of the
parallelism intrinsic to the encryption routine.

6.4 Comparison with Related Work

Although many implementation results for PRESENT are published, we focus
here on comparing our metrics to the works of [18,22], which are, to the
best of our knowledge, the most efficient publicly available implementations of
PRESENT in similar platforms to the ones we use.

660 T.B.S. Reis et al.

Table 4. Performance results for isochronous execution of the key schedule, encryption
and decryption of 128 bytes of data in CTR mode, using both serial and vectorized
code.

Processor Code size [bytes] Key schedule
[cycles]

Encryption+Decryption
[cycles]

Serial implementation

Cortex-M0+ 2524 6381 47884

Cortex-M3 2476 5043 31830

Cortex-M4 2612 3464 26785

Cortex-A7 2456 2732 27161

Cortex-A15 2456 1740 14169

Cortex-A53 2536 1554 7406

Vector implementation using NEON

Cortex-A7 2798 2299 14274

Cortex-A15 2798 1533 8083

Cortex-A53 3908 1552 7322

Table 5. Performance results for execution of the key schedule, encryption and decryp-
tion of 128 bytes of data in CTR mode, using both serial and vectorized code, protected
by second-order masking.

Processor Code size [bytes] Key schedule
[cycles]

Encryption+Decryption
[cycles]

Serial implementation

Cortex-M0+ 12392 7145 345619

Cortex-M3 9728 4628 205244

Cortex-M4 11012 3413 192454

Cortex-A7 13322 2657 119542

Cortex-A15 13322 1894 58635

Cortex-A53 18028 1943 23207

Vector implementation using NEON

Cortex-A7 2798 2671 76286

Cortex-A15 2798 1948 28633

Cortex-A53 3908 1941 28343

PRESENT Runs Fast 661

In [18], a series of implementations is presented for many block ciphers which
are benchmarked on a Cortex-M3 processor. For a scenario identical to the Sce-
nario 2 we described, they report an execution time of 16,786 clock cycles and
a code size of 3,568 bytes. Our results are almost 8 times better considering the
execution time, and over 30% better regarding the code size. They also measure
these metrics for Scenario 1, in which they report the usage of 270,603 cycles of
execution and 2,528 bytes of code, which is slower and more space-consuming
than our implementation, but by a smaller margin, since the CBC mode of oper-
ation employed in this case does not benefit from some of the optimizations.

The work of [22] showcases a bitsliced implementation of PRESENT on a
Cortex-M4, protected by a second-order masking. It claims to be able to encrypt
one input block in 6,532 cycles. We argue that our results are better, since, even
if there is no penalty caused by the tight coupling with a mode of operation, it
would encrypt 128 bits of data in 13,064 cycles, which is slower than the 11,096
cycles we achieved for the same processor on Scenario 2. Furthermore, since this
implementation has a bitslice factor of 32, it cannot actually encrypt only 128
bits of data without having to do extra work, whereas our implementation is not
only faster, but more flexible in the sense that it allows small amounts of data
to be efficiently encrypted.

It is also relevant to take into consideration performance results from other
block ciphers to gauge how useful our techniques may be in practice. In partic-
ular, we take a closer look at AES, arguably the most extensively used block
cipher today and which has been originally praised for its good performance in
software [35]. The current state-of-the-art implementations for AES on Cortex-M
processor are from [36], in which several different results are presented. Table 6
compares our results to theirs when encrypting 128 bits of data through CTR
mode in constant time. We notice that PRESENT is slower than AES on Cortex-
M3, but slightly faster on Cortex-M4 and, on both processors, PRESENT’s code
footprint is several times smaller.

Table 6. Comparison between our results for PRESENT and results from [36] for AES
when encrypting 128 bits of data in CTR mode, in constant time.

Implementation Code size [bytes] Execution time [cycles]

AES on Cortex-M3 12120 1617

PRESENT on Cortex-M3 2476 2116

AES on Cortex-M4 12120 1618

PRESENT on Cortex-M4 2612 1599

7 Conclusion

In this work, we presented a novel technique for accelerating encryption
and decryption using the PRESENT block cipher. Our modified algorithm is

662 T.B.S. Reis et al.

expected to be faster in software when compared to the original PRESENT spec-
ification for many platforms and, indeed, our experimental data supports that
we were able to significantly outperform state-of-the-art results for processors
within the ARM Cortex-M family. This makes PRESENT competitively efficient
even when compared to secure implementations of widely used software-oriented
ciphers such as AES.

Furthermore, our proposal has the advantage to be readily implemented in
constant time, which is relevant in contexts where there is concern regarding side-
channel attacks. For further side-channel security, we implemented and analyzed
the performance impact of a second-order masking scheme.

At last, we show that our technique can also be applied to vector implemen-
tations – using the ARM-NEON extension, for example – to achieve even higher
performance gains in some compatible platforms.

Acknowledgements. The authors gratefully acknowledge financial support from LG
Electronics Inc. during the development of this research, under the project “Efficient
and Secure Cryptography for IoT”. The third author also acknowledges financial sup-
port from CNPq: a research productivity scholarship.

References

1. Aciiçmez, O., Koç, C.K., Seifert, J.P.: On the power of simple branch prediction
analysis. In: Proceedings of the 2nd ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2007, pp. 312–320. ACM, New York
(2007). doi:10.1145/1229285.1266999

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying
constant-time implementations (2016)

3. ARM: Cortex-A Series Family. https://www.arm.com/products/processors/
cortex-a/index.php. Accessed June 2016

4. ARM: Cortex-M Series Family. https://www.arm.com/products/processors/
cortex-m/index.php. Accessed June 2016

5. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010). doi:10.1016/j.comnet.2010.05.010

6. Bao, Z., Luo, P., Lin, D.: Bitsliced implementations of the PRINCE, LED and
RECTANGLE block ciphers on AVR 8-Bit microcontrollers. In: Qing, S., Okamoto,
E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 18–36. Springer, Cham
(2016). doi:10.1007/978-3-319-29814-6 3

7. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block
ciphers on x86 architectures. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 324–351. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-43414-7 17

8. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/papers.
html#cachetiming

9. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). doi:10.1007/11745853 14

http://dx.doi.org/10.1145/1229285.1266999
https://www.arm.com/products/processors/cortex-a/index.php
https://www.arm.com/products/processors/cortex-a/index.php
https://www.arm.com/products/processors/cortex-m/index.php
https://www.arm.com/products/processors/cortex-m/index.php
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1007/978-3-319-29814-6_3
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://dx.doi.org/10.1007/978-3-662-43414-7_17
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://dx.doi.org/10.1007/11745853_14

PRESENT Runs Fast 663

10. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimen-
sional linear properties of block ciphers and underlying attack complexities. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 165–
182. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5 10

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

12. Bonneau, J., Mironov, I.: Cache-Collision timing attacks against AES. In: Goubin,
L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer,
Heidelberg (2006). doi:10.1007/11894063 16

13. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
178–189. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6 16

14. Cheval, V., Cortier, V.: Timing attacks in security protocols: symbolic framework
and proof techniques. In: Focardi, R., Myers, A. (eds.) POST 2015. LNCS, vol.
9036, pp. 280–299. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46666-7 15

15. Cho, J.Y.: Linear cryptanalysis of reduced-round PRESENT. In: Pieprzyk, J. (ed.)
CT-RSA 2010. LNCS, vol. 5985, pp. 302–317. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-11925-5 21

16. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43933-3 21

17. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems
in cryptography and cryptanalysis. IACR Cryptology ePrint Archive 2011, 475
(2011). http://eprint.iacr.org/2011/475

18. Dinu, D., Corre, Y.L., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.:
Triathlon of lightweight block ciphers for the internet of things. IACR Cryptology
ePrint Archive 2015, 209 (2015). http://eprint.iacr.org/2015/209

19. Doychev, G., Köpf, B.: Rational protection against timing attacks. In: Fournet,
C., Hicks, M.W., Viganò, L. (eds.) IEEE 28th Computer Security Foundations
Symposium, CSF 2015, Verona, Italy, 13–17 July 2015, pp. 526–536. IEEE (2015).
doi:10.1109/CSF.2015.39

20. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth
acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014.
LNCS, vol. 8616, pp. 444–461. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 25

21. Gladman, B.: Serpent S Boxes as Boolean Functions. http://www.gladman.me.uk/
22. Groot, W., Papagiannopoulos, K., Piedra, A., Schneider, E., Batina, L.: Bitsliced

masking and ARM: friends or foes? In: Bogdanov, A. (ed.) LightSec 2016. LNCS,
vol. 10098, pp. 91–109. Springer, Cham (2017). doi:10.1007/978-3-319-55714-4 7

23. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

24. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04138-9 1

25. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

http://dx.doi.org/10.1007/978-3-642-55220-5_10
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/11894063_16
http://dx.doi.org/10.1007/978-3-642-13193-6_16
http://dx.doi.org/10.1007/978-3-662-46666-7_15
http://dx.doi.org/10.1007/978-3-642-11925-5_21
http://dx.doi.org/10.1007/978-3-642-11925-5_21
http://dx.doi.org/10.1007/978-3-662-43933-3_21
http://eprint.iacr.org/2011/475
http://eprint.iacr.org/2015/209
http://dx.doi.org/10.1109/CSF.2015.39
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://www.gladman.me.uk/
http://dx.doi.org/10.1007/978-3-319-55714-4_7
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-642-04138-9_1
http://dx.doi.org/10.1007/3-540-68697-5_9

664 T.B.S. Reis et al.

26. Kuhn, M.G.: Electromagnetic eavesdropping risks of flat-panel displays. In:
Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 88–107. Springer,
Heidelberg (2005). doi:10.1007/11423409 7

27. Lee, C.: Biclique cryptanalysis of PRESENT-80 and PRESENT-128. J. Supercom-
put. 70(1), 95–103 (2014). doi:10.1007/s11227-014-1103-3

28. Neumann, J.: Code generator for bit permutations. http://programming.sirrida.
de/calcperm.php

29. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307, pp. 529–545. Springer, Heidelberg (2006). doi:10.1007/11935308 38

30. O’Flynn, C., Chen, Z.D.: Side channel power analysis of an AES-256 bootloader.
In: CCECE, pp. 750–755. IEEE (2015)

31. Papapagiannopoulos, K.: High throughput in slices: the case of PRESENT,
PRINCE and KATAN64 ciphers. In: Saxena, N., Sadeghi, A.-R. (eds.) RFID-
Sec 2014. LNCS, vol. 8651, pp. 137–155. Springer, Cham (2014). doi:10.1007/
978-3-319-13066-8 9

32. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2, 300 GE. J. Cryptol. 24(2), 322–345 (2011). doi:10.
1007/s00145-010-9086-6

33. Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a per-
vasive world. Ph.D. thesis, Ruhr University Bochum (2009). http://d-nb.info/
996578153

34. Rodrigues, B., Pereira, F.M.Q., Aranha, D.F.: Sparse representation of implicit
flows with applications to side-channel detection. In: CC, pp. 110–120. ACM (2016)

35. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C., Ferguson, N., Kohno,
T., Stay, M.: The twofish team’s final comments on AES selection. https://www.
schneier.com/academic/paperfiles/paper-twofish-final.pdf. Accessed Mar 2017

36. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) Selected Areas in Cryptology - SAC 2016. LNCS. Springer,
Heidelberg (2016). To appear

37. For Standardization, I.O.: ISO/IEC 29192–2:2012. https://www.iso.org/standard/
56552.html. Accessed Feb 2017

38. Wang, M.: Differential cryptanalysis of PRESENT. IACR Cryptology ePrint
Archive 2007, 408 (2007). http://eprint.iacr.org/2007/408

http://dx.doi.org/10.1007/11423409_7
http://dx.doi.org/10.1007/s11227-014-1103-3
http://programming.sirrida.de/calcperm.php
http://programming.sirrida.de/calcperm.php
http://dx.doi.org/10.1007/11935308_38
http://dx.doi.org/10.1007/978-3-319-13066-8_9
http://dx.doi.org/10.1007/978-3-319-13066-8_9
http://dx.doi.org/10.1007/s00145-010-9086-6
http://dx.doi.org/10.1007/s00145-010-9086-6
http://d-nb.info/996578153
http://d-nb.info/996578153
https://www.schneier.com/academic/paperfiles/paper-twofish-final.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-final.pdf
https://www.iso.org/standard/56552.html
https://www.iso.org/standard/56552.html
http://eprint.iacr.org/2007/408

FourQ on Embedded Devices with Strong
Countermeasures Against Side-Channel Attacks

Zhe Liu1,2, Patrick Longa3(B), Geovandro C.C.F. Pereira2, Oscar Reparaz4,
and Hwajeong Seo5

1 SnT, University of Luxembourg, Luxembourg City, Luxembourg
2 IQC, University of Waterloo, Waterloo, Canada
{zhelu.liu,geovandro.pereira}@uwaterloo.ca

3 Microsoft Research, Redmond, USA
plonga@microsoft.com

4 imec-COSIC KU Leuven, Leuven, Belgium
oscar.reparaz@esat.kuleuven.be
5 Hansung University, Seoul, Korea

hwajeong84@gmail.com

Abstract. This work deals with the energy-efficient, high-speed and
high-security implementation of elliptic curve scalar multiplication and
elliptic curve Diffie-Hellman (ECDH) key exchange on embedded devices
using FourQ and incorporating strong countermeasures to thwart a wide
variety of side-channel attacks. First, we set new speed records for
constant-time curve-based scalar multiplication and DH key exchange at
the 128-bit security level with implementations targeting 8, 16 and 32-
bit microcontrollers. For example, our software computes a static ECDH
shared secret in ∼6.9 million cycles (or 0.86 s @8 MHz) on a low-power 8-
bit AVR microcontroller which, compared to the fastest Curve25519 and
genus-2 Kummer implementations on the same platform, offers 2× and
1.4× speedups, respectively. Similarly, it computes the same operation
in ∼496 thousand cycles on a 32-bit ARM Cortex-M4 microcontroller,
achieving a factor-2.9 speedup when compared to the fastest Curve25519
implementation targeting the same platform. Second, we engineer a set
of side-channel countermeasures taking advantage of FourQ’s rich arith-
metic and propose a secure implementation that offers protection against
a wide range of sophisticated side-channel attacks. Finally, we perform
a differential power analysis evaluation of our software running on an
ARM Cortex-M4, and report that no leakage was detected with up to
10 million traces. These results demonstrate the potential of deploying
FourQ on low-power applications such as protocols for IoT.

Keywords: Elliptic curves · FourQ · ECDH · Embedded devices · IoT ·
Energy efficiency · Side-channel attacks · Strong countermeasures

1 Introduction

Elliptic curve cryptography (ECC) is a popular public-key system that has
become an attractive candidate to enable strong cryptography on constrained
c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 665–686, 2017.
DOI: 10.1007/978-3-319-66787-4 32

666 Z. Liu et al.

devices. Its reduced key sizes and great performance are nicely matched by its
solid security foundation based on the elliptic curve discrete logarithm problem
(ECDLP). Hence, it is foremost relevant to research ECC-based mechanisms
that could ameliorate efficiency and power limitations with the goal of making
ECC suitable for constrained applications.

FourQ [16] is a high-performance elliptic curve that provides about 128 bits
of security and enables efficient and secure scalar multiplications. Implementa-
tions based on this curve have been shown to achieve the fastest computations of
variable-base, fixed-base and double scalar multiplications to date on a large vari-
ety of x64 and ARMv7–A processors [16,36]. This performance trait is especially
attractive for IoT, when devices need to keep clock frequencies to a minimum (in
order to fulfill limited power budgets) and yet need to minimize the impact on
the device’s response time. Moreover, FourQ’s high speed is expected to have a
direct positive impact in energy savings, since reduced computing time typically
translates to lower energy consumption.

Side-Channel Attacks. Protection against side-channel attacks [32,33] rep-
resents another important aspect of the security in embedded devices. These
attacks, which have been the focus of intense research since Kocher’ seminal
paper [33], can be classified as: passive attacks (a.k.a. side-channel analysis
(SCA)), such as differential side-channel analysis (DSCA) [32], timing [33], cor-
relation [6], collision [23] and template [8] attacks, among many other variants;
and active attacks (a.k.a. fault attacks). Refer to [3,20] for detailed taxonomies
of attacks and countermeasures. Certainly, most of these attacks can be rendered
ineffective (or greatly limited in impact) by restricting the lifespan of secrets,
for instance, by using fully ephemeral ECDH key exchange1. However, some
protocols such as those based on static ECDH or ephemeral ECDH with cached
public keys can be subjected to these attacks and, thus, might require additional
defenses. In this work, we focus on passive attacks.

Our Contributions. We present the first implementations of FourQ-based
scalar multiplication and ECDH key exchange on 8, 16, and 32-bit microcon-
trollers (MCUs), and demonstrate that this curve can deliver the fastest curve-
based computations on embedded IoT devices, potentially helping to achieve
stringent design goals in terms of response time and energy (see Sects. 3 and 4).
For example, a static ECDH shared key is computed 2×, 1.8×, and 2.9× faster
than the fastest Curve25519 implementations on 8-bit AVR, 16-bit MSP430X,
and 32-bit ARM Cortex-M4 MCUs, respectively.

In addition, we present, to the best of our knowledge, the first publicly-
available design and implementation of an elliptic curve-based system that

1 In some contexts, the term “ephemeral ECDH” is used even when public keys are
cached and reused for a certain period of time. We stress that using fresh private and
public keys per each key exchange (which we refer to as “fully ephemeral ECDH”)
greatly increases resilience against side-channel attacks and limits the attack surface.

FourQ on Embedded Devices with Strong Countermeasures 667

includes defenses against a wide variety of passive attacks (see Sect. 5). Our pro-
tected scalar multiplication and ECDH algorithms, which include a set of efficient
countermeasures that have been especially tailored for FourQ, are designed to
minimize the risk of timing attacks, simple and differential side-channel analysis
(SSCA/DSCA), correlation and collision attacks, and specialized attacks such
as the doubling attack [23], the refined power attack (RPA) [25], zero-value
point attacks (ZVP) [1], same value attacks (SVA) [38], exceptional procedure
attacks [29], invalid point attacks [5], and small subgroup attacks. To assess the
soundness of our algorithms, we carry out a differential power analysis evaluation
on an STM32F4Discovery board containing a popular ARM Cortex-M4 MCU.
We perform leakage detection tests and correlation power analysis attacks to
verify that indeed the implemented countermeasures substantially increase the
required attacker effort for unprofiled vertical attacks (see Sect. 6).

Previous works in the literature presenting protected ECC implementations
only include basic countermeasures against a subset of the attacks we deal with
in this paper [40,55]. Moreover, reported implementations (other than implemen-
tations exclusively protected against timing attacks [19]) have not been publicly
released. Our software for ARM Cortex-M4 has been made publicly available as
part of the FourQlib library [17]:

https://github.com/Microsoft/FourQlib.

Likewise, the implementations for AVR and MSP are available at:

https://github.com/geovandro/microFourQ-AVR, and
https://github.com/geovandro/microFourQ-MSP.

Disclaimer. No software implementation can guarantee 100% side-channel
security. In some cases, certain powerful attacks such as template attacks [8]
can be carried out using a single target trace, making any randomization or
masking technique useless [42]. Moreover, the issue gets more complicated for
embedded devices that lack access to a good source of randomness. Since many
SCA attacks closely depend on the underlying hardware, it is recommended to
include additional countermeasures at the software and hardware levels depend-
ing on the targeted platform. Also, note that hardware countermeasures are
usually required to properly deal with most sophisticated invasive attacks.

2 Preliminaries: FourQ

FourQ, introduced by Costello and Longa in 2015 [16], is defined by the com-
plete twisted Edwards [4] equation E/Fp2 : −x2 + y2 = 1 + dx2y2, where the
quadratic extension field Fp2 = Fp(i) for i2 = −1 and p = 2127 − 1, and
d = 125317048443780598345676279555970305165 · i + 4205857648805777768770.
The prime order subgroup E(Fp2)[N], where N is the 246-bit prime correspond-
ing to #E(Fp2) = 392 · N , is used to carry out cryptographic computations. In
this subgroup, the neutral element is given by OE = (0, 1).

https://github.com/Microsoft/FourQlib
https://github.com/geovandro/microFourQ-AVR
https://github.com/geovandro/microFourQ-MSP

668 Z. Liu et al.

Algorithm 1. FourQ’s scalar multiplication on E(Fp2)[N] (from [16]).
Input: Point P ∈ E(Fp2)[N] and integer scalar m ∈ [0, 2256).
Output: [m]P.

Compute endomorphisms and precompute lookup table:
1: Compute φ(P), ψ(P) and ψ(φ(P)).
2: Compute T [u] = P + [u0]φ(P) + [u1]ψ(P) + [u2]ψ(φ(P)) for u = (u2, u1, u0)2 in
0 ≤ u ≤ 7. Write T [u] in coordinates (X + Y, Y − X, 2Z, 2dT).
Scalar decomposition and recoding:
3: Decompose m into the multiscalar (a1, a2, a3, a4) as in [16, Prop. 5].
4: Recode (a1, a2, a3, a4) into (d64, . . . , d0) and (m64, . . . , m0) using [16, Alg. 1].

Write si = 1 if mi = −1 and si = −1 if mi = 0.
Main loop:
5: Q = s64 · T [d64]
6: for i = 63 to 0 do
7: Q = [2]Q + si · T [di]
8: return Q

FourQ is equipped with two efficiently computable endomorphisms, ψ and
φ, which give rise to four-dimensional decompositions. The computation of a
constant-time, exception-free variable-base scalar multiplication with the form
[m]P , where m is an integer in [1, 2256) and P is a point from E(Fp2)[N], proceeds
as follows (see Algorithm 1). First, one needs to prepare an 8-point precomputed
table at Steps 1–2 and execute the decomposition and recoding algorithms at
Steps 3–4. As before, let a scalar m be any integer in [1, 2256). FourQ’s decompo-
sition [16, Prop. 5] maps m to a set of multiscalars (a1, a2, a3, a4) ∈ Z

4 such that
0 ≤ ai < 264 for i = 1, ..., 4 and such that a1 is odd. These multiscalars are then
recoded using [16, Alg. 1] to a representation consisting of exactly 65 “signed
digit-columns” dj and “sign masks” mj for j = 0, ..., 64. Finally, the evaluation
stage consists of an initial point loading and a single loop of 64 iterations, where
each iteration consists of exactly one doubling and one addition.

2.1 Cofactor Elliptic Curve Diffie-Hellman Key Exchange

In this section, we describe the ECDH key exchange using FourQ in two variants:
(i) using 64-byte public keys, and (ii) using compressed 32-byte public keys. Let’s
first define the following function denoted by “DH” [34]:

function DH(m,P)
Check that P is on the curve. If not, return “FAILED”.
Compute Q = [392]P and T = [m]Q.
If T = (0, 1) return “FAILED”.

Return T in affine coordinates.
Note that the function DH validates the input point P against the curve

equation in order to thwart invalid point attacks. The multiplication by 392,
which is not required to be computed in constant-time, clears the cofactor and

FourQ on Embedded Devices with Strong Countermeasures 669

guarantees that the point Q belongs to E(Fp2)[N], as required by Algorithm 1 for
the computation of [m]Q. This measure protects against small subgroup attacks.

An ECDH key exchange with 64-byte public keys can then be carried out as
follows. Two users, Alice and Bob, pick random integers mA and mB (resp.) in
the range [0, 2256), and then compute the public keys A = [mA]G and B = [mB]G
(resp.), where G is the generator. After exchanging public keys, Alice computes
KA = DH(mA, B) and Bob computes KB = DH(mB , A). The y-coordinate of
the value K = KA = KB can then be used as the shared secret.

ECDH Key Exchange with 32-Byte Public Keys. It is possible to reduce
the size of the public keys to only 32 bytes with the approach described next.

An element y = a + b · i ∈ Fp2 encoded as y = (a0, ..., a126, 0, b0, ..., b126) is
defined as “negative” if and only if a126 = 1, or if b126 = 1 and a = 0. We define
Compress(P) as the function that takes as input a point P = (x, y) ∈ E and
encodes it as the 256-bit string P = (x, y), which is the 255-bit encoding of y
followed by a sign bit; this sign bit is 1 if and only if x is negative. We define
Expand(S) as the function that takes a 256-bit string S and recovers P = (x, y)
as follows: parse the first 255 bits as y, compute u/v = (y2 − 1)/(dy2 + 1), and
compute ±x =

√
u/v, where the ± is chosen so that the sign of x matches the

256-th bit of the string S. Refer to [18, Appendix A] and [34, Appendix B] for
low-level details about the decompression procedure.

The ECDH key exchange mechanism then proceeds as follows [34]. Alice
and Bob pick random integers mA and mB (resp.) in the range [0, 2256),
and then compute the public keys A = Compress([mA]G) and B =
Compress([mB]G) (resp.). After exchanging public keys, Alice computes KA =
DH(mA,Expand(B)) and Bob computes KB = DH(mB ,Expand(A)). As before,
the y-coordinate of the value K = KA = KB is the shared secret.

3 Implementation Details on AVR, MSP and ARM

In this section, we briefly describe relevant implementation aspects for three
popular MCUs: 8-bit AVR ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-
M4. For more details, refer to the extended version of the paper [35].

3.1 Implementation of Arithmetic over F(2127−1)2

In contrast to traditional ECC curves, which are defined over a prime field Fp,
FourQ is defined over the quadratic extension field Fp2 for p = 2127 − 1. Let
a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 . Operations in Fp2 are computed as follows

a ± b = (a0 ± b0) + (a1 ± b1) · i,

a × b = (a0 · b0 − a1 · b1) + ((a0 + a1) · (b0 + b1) − a0 · b0 − a1 · b1) · i,

a2 = (a0 + a1) · (a0 − a1) + (2a0 · a1) · i,

a−1 = a0 · (a2
0 + a2

1)
−1 − a1 · (a2

0 + a2
1)

−1 · i,

670 Z. Liu et al.

where operations on the right are carried out in Fp. Näıvely, multiplication
requires three integer multiplications, three modular reductions, two field addi-
tions and three field subtractions, whereas squaring requires only two integer
multiplications, two modular reductions, two field additions and one field sub-
traction.

We improve the performance of multiplication and squaring in Fp2 by trans-
forming field additions into simple integer additions. This is possible because our
integer multiplication accepts inputs in the extended range [0, 2128). For the case
of Cortex-M4, we speed up multiplication in Fp2 by exploiting lazy reduction,
which allows the elimination of one modular reduction by delaying the reductions
of the products until the very end of the computation.

Field inversions a−1 (mod p) are computed via Fermat’s Little Theorem as
ap−2 (mod p), using a fixed multiplication-and-squaring chain with 126 field
squarings and 10 field multiplications in order to have a constant-time execution.

Modular reduction is particularly efficient on FourQ. Let r = a + b be the
result of adding two operands in Fp. To reduce this result, one only needs to
reset the 128-th bit of r and then perform an addition between that top bit and
the updated value of r, i.e., given 0 ≤ r < 2 ·(2127−1), compute a+b (mod p) as
r (mod 2127)+(r � 127). For example, assume that the intermediate result r of
the addition is stored in the 16 AVR registers r0:r15. Then, modular reduction
can be efficiently implemented using AVR assembly as follows

MOV r16, r15 → ANDI r15, 0x7F → ADD r16, r16 → ADC r0, 0 → · · · → ADC r15, 0

A similar procedure applies to reductions after multiplications and squarings,
with the difference that reduction is, in these cases, applied to an intermediate
result with double precision (i.e., 32 bytes). Specifically, given an input 0 ≤
r < (2127 − 1)2, the fast reduction algorithm requires two consecutive rounds
computing r ← r (mod 2127) + (r � 127).

3.2 Implementation on 8-Bit AVR ATmega

AVR microcontrollers have a modified Harvard architecture that features 32 8-bit
general-purpose registers denoted by r0:r31. From this pool of registers, the last
three pairs, called X (r27:r26), Y (r29:r28), and Z (r31:r30), are used as 16-
bit address pointers to load and store data from memory. The AVR instruction
set supports a total of 133 instructions, and each instruction has a fixed latency;
for example, ordinary arithmetic/logical instructions such as addition (ADD) and
addition with carry (ADC) are executed in a single clock cycle, while unsigned
multiplication (MUL) as well as load/store instructions take two clock cycles.

For our benchmarks, we used the IAR Embedded Workbench – AVR 6.80.7,
which features an assembler and a cycle-accurate graphical simulator, and tar-
geted the ATxmega256A3 model. This specific microcontroller has 256 KB of
programmable flash memory, 16 KB of SRAM and 4 KB of EEPROM, and oper-
ates at a maximum frequency of 32 MHz.

FourQ on Embedded Devices with Strong Countermeasures 671

Finite Field Operations. For the 128-bit integer multiplication, we use 2-
level Karatsuba in a recursive way, with the low level 32-bit multiplications
implemented in product-scanning form. For the 128-bit squaring, we employ
the Sliding Block Doubling (SBD) method [49]. In order to minimize the use of
load/store instructions, integer multiplication and squaring were integrated with
the modular reduction at the assembly level. Modular reduction over the prime
p = 2127 − 1 as well as the arithmetic over Fp2 were implemented as described
in Sect. 3.1.

3.3 Implementation on 16-Bit MSP430X

The ultra-low power MSP430X is a representative 16-bit microcontroller that
includes support for 27 core instructions and 16 registers (r0:r15). It also
includes an external 16-bit or 32-bit hardware multiplier that operates in par-
allel to the CPU. The multiplier offers three different modes: MPY (unsigned
multiplication), MPYS (signed multiplication) and MAC (unsigned multiply-
and-accumulate). In general, other instructions take one cycle when working
with general-purpose registers.

In our benchmarks, we targeted the MSP430FR5969 model, which is suitable
for use in wireless sensor nodes. This MCU features 2 KB of SRAM and 64 KB
of FRAM (code) memory, and operates at up to 16 MHz. We followed the same
methodology for cycle count acquisition that was employed for AVR using the
IAR Embedded Workbench (MSP430 6.50.1).

Finite Field Operations. We make extensive use of the 16-bit MAC operation
available in the targeted MSP430X microcontroller. This operation, which com-
putes 16 × 16 + 32 → 33-bit, was used as basic block to realize a 128-bit integer
multiplication in a column-wise way [26]. Squaring was implemented using the
SBD method, as in the case of AVR. Modular reduction and the arithmetic over
Fp2 were implemented as described in Sect. 3.1.

3.4 Implementation on 32-Bit ARM Cortex–M4

Cortex-M4 [2] is part of the increasingly popular ARM Cortex-M family, which
includes a wide range of 32-bit RISC ARM microcontrollers. It supports the
ARMv7E-M instruction set, which comprises Thumb-2 instructions and addi-
tional saturating/SIMD instructions called the “DSP extension”. The Cortex-M4
architecture has a 3-stage pipeline with branch speculation, includes 16 32-bit
registers (r0:r15), and supports a mix of 16 and 32-bit operations correspond-
ing to Thumb-2. Field arithmetic can take advantage of the powerful single-
cycle multiply and multiply-and-accumulate instructions from the DSP exten-
sion: UMUL, UMLAL, and UMAAL. These instructions compute the product 32 ×
32-bit → 64-bit (UMUL), plus a 64-bit accumulation with a single 64-bit value
(UMLAL) or plus a 64-bit accumulation with two 32-bit values (UMAAL).

672 Z. Liu et al.

To evaluate the performance of our implementation, we use an
STM32F4Discovery board [52] that contains a 32-bit ARM Cortex-M4F
STM32F407VGT6 microcontroller. This MCU has 1 MB of flash memory,
192 KB of SRAM and 64 KB of CCM (core coupled memory) data RAM, and
can be clocked at a frequency of up to 168 MHz. Compilation was performed
with the GNU ARM Embedded toolchain and GNU GCC v4.9.2.

Finite Field Operations. Integer multiplication was implemented using the
schoolbook method and the efficient MAC instructions. The computation of a
field multiplication is then completed with the execution of the modular reduc-
tion described in Sect. 3.1. However, in the case of multiplication in Fp2 we do
much better by applying lazy reduction on a basic schoolbook multiplication
that computes a × b as (a0 · b0 − a1 · b1) + (a0 · b1 + a1 · b0) · i for elements
a = a0 + a1 · i, b = b0 + b1 · i ∈ Fp2 .

4 Results and Analysis of Constant-Time
Implementations

In this section, we summarize implementation results for 8-bit AVR, 16-bit
MSP430X, and 32-bit ARM Cortex-M4 microcontrollers. Our FourQ implemen-
tations are based on Algorithm 1 for the case of variable-base scalar multiplica-
tion. For the case of fixed-base scalar multiplication, we use the modified LSB-
set comb method from [21, Algorithm 5], which requires a table with v · 2w−1

points (v and w denote the number of internal tables and their window size,
respectively).

The implemented algorithms guarantee regular, exception-free execution (see
Sect. 2) and run in constant-time. Hence, they are protected against timing and
exceptional procedure attacks. Note that cache attacks do not apply to the
targeted AVR ATmega MCU, since its architecture does not support the use
of cache memory. Although the MSP430FR MCU family presents some form of
integrated caching, it is activated when the MCU operates at a higher frequency
than the access frequency of the FRAM [54] (i.e., the FRAM can be operated
at up to 8 MHz without use of this cache). Since we fix the frequency at 8 MHz,
our software runs in constant-time with no risk of timing leakage. Finally, the
targeted Cortex-M4 STM32F4 MCU includes a cache memory to accelerate flash
memory accesses [53]. However, our software does not use flash memory to store
the precomputed tables and, therefore, cache attacks do not apply.

FourQ on Embedded Devices with Strong Countermeasures 673

At the high-level, we implemented the ECDH schemes described in Sect. 2.1,
which are protected against invalid point and small subgroup attacks.

Results. Table 1 summarizes the results for variable-base and fixed-base scalar
multiplication, static ECDH and fully ephemeral ECDH key exchange for the
three targeted microcontrollers. In the case of ECDH with FourQ, we evaluate
the use of both 32 and 64-byte public keys. For comparison, we include two
efficient alternatives that have been deployed on various microcontrollers: the
“μKummer” implementation by Renes et al. [46] using the genus-2 Kummer
surface by Gaudry and Schost [24], and the “Curve25519” implementations by
Düll et al. [19] and De Santis et al. [48]. The Kummer surface enables fast static
DH key exchange with a small footprint. However, it does not support efficient,
exception-free fixed-base algorithms which inject a significant speedup in set-
tings such as ephemeral DH key exchange, signature key generation and signing.
μKummer’s DH public keys are also 50% larger (compared to options that use
32-byte public keys). In the case of Curve25519, although this curve supports
efficient fixed-base computations via its isomorphic Edwards form, Curve25519
implementations typically target static ECDH and, thus, do not offer this opti-
mization option (as is the case of [19,48]).

As can be seen in Table 1, our FourQ-based implementations set new speed
records for scalar multiplication and ECDH by a large margin on all of the
targeted platforms. In particular, for variable-base computations, FourQ is
2.1×, 1.9×, and 3× faster than Curve25519 on AVR, MSP430X, and Cortex-M4,
respectively. These results are roughly the same when considering static ECDH.
Similarly, for the case of ephemeral ECDH our implementations are between
2.4× and 3.9× faster than Curve25519 implementations without fixed-base sup-
port. When compared against μKummer on AVR, FourQ achieves roughly factor-
1.4 speedup for computing variable-base scalar multiplication and static ECDH.
This gap has a significant increase to factor-2 speedup when considering the case
of ephemeral ECDH. Note that the Kummer surface has not been implemented
on MSP430X and Cortex-M4 MCUs.

As consequence of the reduction in computing time, our implementations
allow a significant reduction in energy costs. For example, following [44] we esti-
mate that our software demands 41.65mJ of energy to compute a fully ephemeral
ECDH key exchange with 32-byte public keys (or, equivalently, ∼162,064 key
exchanges for the life of a double AA battery) on a MICAz sensor node con-
taining an 8-bit AVR MCU. When comparing against similar calculations for
other curves, we observe that our FourQ implementation on AVR is able to run
2.7× and 1.9× more key exchanges than Curve25519 and μKummer (resp.) for
the same battery budget.

674 Z. Liu et al.

Table 1. Performance (in cycles) of scalar multiplication and ECDH operations on
8-bit AVR ATmega, 16-bit MSP430X, and 32-bit ARM Cortex-M4 microcontrollers
for different state-of-the-art implementations. Cycle counts are rounded to the nearest
102 cycles.

Source Scalar multiplication ECDH

Fixed-base Random Static Ephemeral

8-bit AVR ATmega

Curve25519 [19] 13,900,400a 13,900,400 13,900,400c 27,800,800b,c

μKummer [46] 9,513,500a 9,513,500 9,739,100d 19,027,100b,d

FourQ (this work) 2,980,700 6,505,300 6,886,400e 9,870,500e

7,221,300c 10,206,500c

16-bit MSP430X (16-bit multiplier) @8MHz

Curve25519 [19] 7,933,300a 7,933,300 7,933,300c 15,866,600b,c

FourQ (this work) 1,851,300 4,280,400 4,527,900e 6,379,200e

4,826,100c 6,677,400c

32-bit ARM Cortex-M4

Curve25519 [48] 1,423,700a 1,423,700 1,423,700c 2,847,400b,c

FourQ (this work) 232,900 469,500 496,400e 729,900e

542,900c 776,600c

a Montgomery ladder is used for fixed-base and variable-base scalar
multiplication.
b Estimated, since authors only provided counts for static ECDH.
c,d,e Public key sizes are 32, 48 and 64 bytes, respectively.

5 Side-Channel Countermeasures

This section begins with a description of countermeasures especially tailored for
FourQ. Then, we present our protected scalar multiplication algorithm and cover
implementation aspects of table lookups and a protected ECDH key exchange
scheme. Finally, we discuss the rationale behind our protected algorithms.

5.1 Specialized Side-Channel Countermeasures for FourQ

The use of randomization, if done properly, greatly increases the effort needed
to perform DSCA and other similar attacks, both in terms of data complexity
(number of measurements needed [7]) and computational effort (time to per-
form the attack [47]). In an ECC scalar multiplication operation there is ample
room for randomization of internal computations, especially on curves such as
FourQ because of its rich underlying mathematical structure. Coron proposed
three randomization techniques to protect ECC against DPA attacks: scalar
randomization, point blinding and projective coordinate randomization [15].
Other popular methods include key splitting [10], and random curve and field
isomorphisms [30].

FourQ on Embedded Devices with Strong Countermeasures 675

Next, we describe especially-tailored scalar randomization and point blinding
techniques optimized for use with FourQ.

Scalar Randomization. The typical approach is to randomize the scalar m by
adding a multiple of the curve order #E using a random value r, i.e., computing
m′ = m + r · #E. It is well known that this randomization can be ineffective
if the prime p has a special structure [9,10,41,50]. Indeed, when p is a pseudo-
Mersenne prime with the form 2k − c for small c, by Hasse’s theorem the binary
representation of the top half of the curve order #E consists of either only 1’s or
a 1 followed by 0’s and, thus, the most significant bits of m+r#E are those of m.
As consequence, the random value r must be greater than ≈k/2 as a minimum
requirement, which means that the cost of protected implementations of curves
such as Curve25519 increase by at least 50% when using this countermeasure.

We avoid this significant performance degradation by specializing the GLV-
based scalar randomization by Ciet et al. [11] to FourQ. Our explicit counter-
measure is described below.

Proposition 1 (Scalar Randomization). Let the multiscalars (a′
1, a

′
2, a

′
3, a

′
4)

= (a1, a2, a3, a4) + c be the decomposition result of a given integer m, as defined
in [16, Prop. 5], where c = 5b2 − 3b3 + 2b4 is a vector in the lattice of zero
decompositions L and B = (b1,b2,b3,b4) is the Babai optimal basis in [16,
Prop. 3]. Let V = (v1,v2,v3,v4) = (b2−b3+b4, 2b2−b3+b4,b1+b2+b4,b1+
2b2−b3+b4) be a matrix of four independent vectors in L such that ||vi||∞ < 262

for i = 1, . . . , 4, and let r = (r1, r2, r3, r4) be a vector with random integer
elements in [0, 216). Then, the multiscalar set (a′

1, a
′
2, a

′
3, a

′
4) + r · (v1,v2,v3,v4)

is a valid decomposition of m with all four randomly-generated coordinates less
than 280.

Refer to the extended version of the paper [35] for the proof of Proposition 1.
Proposition 1 specifies the countermeasure procedure with 4 × 16 = 64 bits

of randomization. This brings enough entropy to provide security against sev-
eral attacks, especially when combined with additional countermeasures (see
Sect. 5.2), while requiring a relatively low overhead in comparison with other
curves (the cost of FourQ’s scalar multiplication is only increased by 25% in this
case).

Point Blinding. The typical approach is to compute [m]P as [m](P + R) − S
for a randomly-generated secret point R and a precomputed point S = [m]R.
To avoid the cost of an extra scalar multiplication, Coron suggests that R and S
are updated at each new execution using R = [(−1)b2]R and S = [(−1)b2]S for
a random bit b. Nevertheless, the method still requires storage for two points
and the computation of a full scalar multiplication if the value of m is changed.

It is possible to do better using the extended-binary-based-method with RIP
(called “EBRIP”) due to Mamiya et al. [37]. In this case, [m]P is computed as

676 Z. Liu et al.

([m]P + R) − R using a random point R. The value in parenthesis is computed
by splitting m in t portions of equal length and running a t-way simultaneous
scalar multiplication in which R is represented as [(11̄1̄ . . . 1̄)2]R.

Adapting EBRIP to FourQ is straightforward: it suffices to assume t = 4 and
adjust the precomputed values which, in the case of FourQ, use the endomor-
phisms. The details are shown in Algorithm 2. The overhead of the method is
small: the number of precomputations increases from 8 to 16 points (adding 8
extra point additions to the cost), and a final correction subtracting R is required
at the end of scalar multiplication.

We note that typical update functions for blinding points offer poor random-
ization, making them an easy target of collision-like attacks [23,41]. We improve
resilience against these attacks with an inexpensive change to the new update
function R = [(−1)b3]R for a random bit b.

5.2 Protected Scalar Multiplication

Algorithm 2 details our scalar multiplication routine with SCA countermeasures,
including the scalar randomization and point blinding techniques described
above. Note that we also make extensive use of projective coordinate random-
ization [15]. This technique is a form of multiplicative masking: in our case,
a non-zero element r ∈ F2127−1 is applied to points (X,Y,Z) in homogeneous
projective coordinates to obtain the equivalent randomized tuple (r·X, r·Y, r·Z).

Protected ECDH Key Exchange. In order to use Algorithm 2, the func-
tion DH described in Sect. 2.1 only needs minor changes and the inclusion of a
blinding point B. We assume that a fresh blinding point is generated during key
generation, and the value passed and updated each time the protected ECDH
function is invoked. The modified function is shown below.

function DH SCA(m,P,B)
Check that P and B are on the curve. If not, return “FAILED”.
Compute Q = [392]P .
Compute T = [m]Q and update B using Algorithm 2.
If T = (0, 1) return “FAILED”, else return T and B in affine.

The function DH SCA can be directly used in place of the function DH in
the ECDH key exchange schemes using 32 and 64-byte public keys that were
described in Sect. 2.1. As explained before, these functions are protected against
invalid point and small subgroup attacks.

Reducing Table Lookup Leakage. Table lookups are common to many ECC
algorithms (including the proposed routine) and, hence, their secure implemen-
tation is crucial. Most works in the literature use constant-time table lookups,
which simply perform a linear pass over the whole table, masking out the cor-
rect result using logical instructions. This masking typically employs masks that
are all 0’s or 1’s, which may be relatively easy to distinguish through SPA.

FourQ on Embedded Devices with Strong Countermeasures 677

Algorithm 2. SCA-protected FourQ’s scalar multiplication on E(Fp2)[N].
Input: Point P = (xP , yP), blinding point R = (xR, yR) ∈ E(Fp2)[N], integer scalar m

and random value s ∈ [0, 2256), a random bit b, and random values [r81, r80, . . . , r0] ∈
F
82
p .

Output: [m]P and updated point R.
Randomize input points and update blinding point R:
1: Set R = (r81 · xR, r81 · yR, r81).
2: Compute R = [(−1)b3]R.
3: Set P = (r80 · xP , r80 · yP , r80).
Compute endomorphisms and precompute lookup table:
4: Compute φ(P), ψ(P) and ψ(φ(P)).
5: Compute T [u] = −R + [u0]P + [u1]φ(P) + [u2]ψ(P) + [u3]ψ(φ(P)) for u =
(u3, u2, u1, u0)2 in 0 ≤ u ≤ 15. Write T [u] in coordinates (X, Y, Z).
Scalar decomposition, randomization and recoding:
6: Decompose m into the multiscalar (a1, a2, a3, a4) as in [16, Prop. 5].
7: Randomize (a1, a2, a3, a4) as in Proposition 1 and recode to digit-columns
(d79, . . . , d0) s.t. di = a1[i] + 2a2[i] + 4a3[i] + 8a4[i] for i = 0, ..., 79.
Main loop:
8: Q = R
9: for i = 79 to 0 do
10: S = (ri · XT [di], ri · YT [di], ri · ZT [di]).
11: Q = [2]Q + S
12: return (Q − R) and R in affine coordinates.

One way to reduce the potential leakage is by using masks with the same Ham-
ming weight. For example, one could use the masking strategy shown below (to
extract T [d] from a 16-point table T , as required at Step 10 of Algorithm 2).

v = 0xAA...A, S ← T[0] // Table index (d) is between 0 and 15
for i = 1 to 15

d-- // While d >= 0 mask = 0x55...5, else mask = 0xAA...A
mask = ((top bit(d) - 1) & ∼ v)|(∼ (top bit(d) - 1) & v)
S ← ((mask & (S^T[i]))^S)^(v & (S^T[i]))

return S = T[d]

In this case, the bulk of the extraction procedure is carried out with the
new mask values 0x55...5 (used to update S with the current table entry) and
0xAA...A (used to keep the current value of S). Operations over these masks
are expected to produce traces that are more difficult to distinguish from each
other. Note, however, that this does not eliminate all the potential leakage. For
example, a sophisticated attacker might try to reveal the secret digit by observing
the operation (top bit(d) - 1) inside the derivation of mask, which produces
intermediate all-0 or all-1 values. Nevertheless, this operation happens only once
per iteration (in contrast to the multiple, word-wise use of the other masks), so
the strategy above does reduce the attack surface significantly.

678 Z. Liu et al.

Another potential attack is to apply a horizontal attack on the table out-
puts. By default, our routine applies projective coordinate randomization after
each point extraction (at Step 10). When horizontal collision-correlation attacks
apply, one could reduce the potential leakage by doing a full table randomization
at each iteration and before point extraction. This technique should also increase
the effectiveness of the countermeasures described above.

Analysis of the Protected Algorithms. First, it is easy to see that the
SCA-protected scalar multiplication in Algorithm 2 inherits the properties of
regularity and completeness from Algorithm 1 when using complete twisted
Edwards formulas [28]. This means that computations work for any possible
input point in E(Fp2) and any 32-byte scalar string, which thwarts exceptional
procedure attacks [29]. Likewise, [16, Proposition 5] and Proposition 1 lend
themselves to constant-time implementations of the scalar decomposition and
randomization. This, together with field, extension field and table lookup opera-
tions implemented with no secret-dependent branches and no secret-memory
addresses, guarantees protection against timing [33] and cache attacks [43].
E.g., refer to Sect. 3 for details about our constant-time implementations of
the Fp and Fp2 arithmetic for several MCUs. Additionally, note that the use
of regular, constant-time algorithms also protects against SSCA attacks such as
SPA [32]. In some platforms, however, some computations might have distinctive
operand-dependent power/EM signatures even when the execution flow is con-
stant. Our frequent coordinate randomization and the techniques for minimizing
table lookup leakage discussed before should make SSCA attacks exploiting such
leakage impractical.

The use of point blinding effectively protects against RPA [25], ZVP [1]
and SVA [38] attacks, since the attacker is not able to freely use the input
point P to generate special values or collisions during intermediate computations.
Poorly-randomized update functions for the blinding point has been the target
of collision attacks [23]. We first note that intermediate values in the EBRIP
algorithm [37] have the form R + Q or [2]R + Q for some point Q and blinding
point R. Therefore, a näıve update function such as R = [(−1)b2]R for a random
bit b allows an attacker to find collisions since an updated blinding value [2]R
generates values that match those of the preceding scalar multiplication. The
easy change to the function R = [(−1)b3]R at Step 2 of Algorithm 2 eliminates
the possibility of such collisions, since values calculated with [3]R and [6]R do
not appear in a preceding computation.

Our combined use of different randomization techniques, namely random-
ization of projective coordinates at different stages (Steps 1, 3 and 10), ran-
domization of the scalar and blinding of the base point, injects a high level of
randomization to intermediate computations. This is expected to reduce leak-
age that could be useful to carry out correlation, collision-correlation and tem-
plate attacks. Moreover, in some cases our especially-tailored countermeasures
for FourQ offer better protection in comparison with other elliptic curves. For
example, Feix et al. [22] presents vertical and horizontal collision-correlation

FourQ on Embedded Devices with Strong Countermeasures 679

attacks on ECC implementations with scalar randomization and point blind-
ing countermeasures. They essentially exploit that randomizing with multiples
of the order is ineffective on curves such as the NIST curves and Curve25519,
as we explain in Sect. 5.1. Our 64-bit scalar randomization does not have this
disadvantage and is more cost effective.

As previously discussed, some attacks could target collisions between the
precomputed values in Step 5 of Algorithm 2 and their secret use at Step 11
after point extraction (for example, using techniques from [27]). One way to
increase resilience against this class of attacks is by randomizing the full table
before each point extraction using coordinate randomization, and minimizing the
attack surface through some clever masking via a linear pass over the full table
(this in order to thwart attacks targeting memory accesses [40]). However, other
more sophisticated countermeasures might be required to protect against recent
one-trace template attacks that inspect memory accesses [39]. We remark that
some variants of these attacks are only adequately mitigated at lower abstraction
levels, i.e., the underlying hardware architecture should be noisy enough such
that these attacks become impractical.

Performance. To assess the performance impact of our countermeasures, we
refactored our implementation for ARM Cortex-M4 (Sect. 3.4) using the algo-
rithms proposed in this section. In summary, our software computes a static
ECDH shared secret in about 1.18 and 1.14 million cycles using 32 and 64-
byte public keys, respectively. Therefore, the strong countermeasures induce a
roughly 2× slowdown in comparison with the constant-time-only implementa-
tion. Notably, these results are still up to 1.25x faster than the fastest constant-
time-only Curve25519 results (see Table 1). We comment that, if greater protec-
tion is required, adding full table randomization before point extraction at Step
10 of Algorithm 2 increases the cost of static ECDH to 2.60 and 2.55 million
cycles, resp.

6 Side-Channel Evaluation: Case Study with Cortex–M4

The main goal of the evaluation is to assess the DPA security of the imple-
mentation. Our randomization techniques are meant to protect mainly against
vertical DPA attacks (cf. [12] for this notation). In a vertical DPA attack, the
adversary collects many traces corresponding to the multiplication of a known
varying input point with a secret scalar. This situation matches, for example,
ECDH key exchange protocols. Vertical DPA attacks are probably the easiest to
carry out.

Assumptions. We assume that the adversary cannot distinguish values from a
single side-channel measurement. In particular, the (small) table indices cannot
be retrieved from a single measurement. This assumption is common in practice
(cf. [31, Sect. 4.1] or [45, Sect. 3.1]) and is usually provided by the underlying
hardware. Note that masking does not make sense if this assumption is violated,

680 Z. Liu et al.

since then it would be trivial to unmask all the required shares to reconstruct
the secrets. Masking needs a minimum level of noise to be meaningful [7,51].

Platform. Our platform is a 32-bit ARM Cortex-M4 STM32F100RB processor
with no dedicated security features. We acquire EM traces from a decoupling
capacitor in the power line with a Langer RF-5U EM probe and 20 dB amplifica-
tion. This platform is very low noise: DPA on an unprotected byte-oriented AES
implementation succeeds with 15 traces. We give a comfortable setting to the
evaluator: he has access to the source code and the code contains extra routines
for triggering that allow precise alignment of traces.

The EM traces comprise two inner iterations of the main loop (Step 9 in
Algorithm 2) as we show in Fig. 1.

Fig. 1. Left: exemplary EM trace. Right: cross correlation of a single trace.

Methodology. We use two complementary techniques: leakage detection and key-
recovery attacks. Failing a leakage detection test [13,14] is a necessary, yet not
sufficient, condition for key-extracting attacks to work. When an implementation
passes a leakage detection test, no data dependency is detected, and hence key-
recovery attacks will not work. For key-recovery attacks, we resort to standard
CPA attacks [6]; the device behavior is modeled as Hamming weight of register
values. As an intermediate targeted sensitive variable we choose the point Q
after execution of Step 11 in Algorithm 2. We first test each randomizing coun-
termeasure described in Sect. 5.1 in isolation (all others switched off); later the
full Algorithm 2 is evaluated. To test the effectiveness of each countermeasure,
we first perform the analysis when the countermeasure is switched off. In this
situation, a key-recovery attack is expected to work and a leakage detection test
is expected to fail. This serves to confirm that the setup is indeed sound. Then,
we repeat the same evaluation when the countermeasure is switched on. The
analysis is expected not to show leakage and the CPA attacks are expected to
fail. This means that the countermeasure (and only it) is effective.

FourQ on Embedded Devices with Strong Countermeasures 681

Fig. 2. Top row: fixed-vs-random leakage detection test on the input point. Bottom:
CPA attacks. Left column: no countermeasure enabled. Right column: point blinding
on/coord. randomization off/scalar randomization off.

No countermeasure. In the first scenario we switch off all countermeasures by
fixing the PRNG output to a constant value known to the evaluator. In Fig. 2
top left, we plot the result of a non-specific leakage detection test (fix-vs-random
on input point) for 5, 000 traces. We can see that the t-statistic clearly exceeds
the threshold C = ±4.5, indicating severe leakage. In Fig. 2, bottom left, we
plot the result of a key-recovery CPA attack (red for correct subkey hypothesis,
green for others). The attack works (sample correlation ρ for the correct subkey
hypothesis stands out at ρ ≈ 0.22).

Point blinding. Here we test the point blinding countermeasure in isolation. We
take 5, 000 traces when the point blinding countermeasure is switched on. The
evaluator does not know the initial PRNG seed that feeds the masks. In Fig. 2,
top right, we plot the t-statistic value of the non-specific fix-vs-random leakage
detection test on the input point. The t-statistic does not surpass the threshold
C. Thus, no first-order leakage is detected.

The results of the CPA attack are in Fig. 2, bottom right. The attack does
not recover the key, as expected. (In this CPA attack and subsequent ones, the
evaluator computes predictions averaging over 210 independent random PRNG
seeds, for each subkey hypothesis. This is possible since the evaluator has access
to the source code).

Projective coordinate randomization. We use the same test fixture (fix-vs-
random on input point) to test the projective coordinate randomization. In
Fig. 3, top left, we plot the result of the leakage detection test. No first-order
leakage is detected. The DPA attack is unsatisfactory as Fig. 3, bottom left,
shows.

682 Z. Liu et al.

Fig. 3. Left: point blinding off/coord. randomization on/scalar randomization off.
Right: point blinding off/coord. randomization off/scalar randomization on.

Scalar randomization. Here we perform a fix-vs-random test on the key when
the input point is kept fix. In this way, we hope to detect leakages coming from
an incomplete randomization of the key. In Fig. 3, top right, we plot the result
of this leakage detection test. No first-order leakage is detected. For the CPA
attack, we keep the key fixed (secret) and vary the input basepoint. The CPA
attack does not work, as Fig. 3, bottom right, shows.

All countermeasures switched on. The implementation is meant to be exe-
cuted with all the countermeasures switched on. We took 10 million traces and
performed a fix-vs-random leakage detection test. No first-order leakage was
detected (Fig. 4).

Fig. 4. Evolution of ρ as function of number of traces. Left to right (point blinding/co-
ord. randomization/scalar randomization): off/off/off, on/off/off, off/on/off, off/off/on.

FourQ on Embedded Devices with Strong Countermeasures 683

Acknowledgments. We would like to thank Craig Costello for helping in the design of
the scalar randomization countermeasure, and Diego F. Aranha, Pedro R.N. Pedruzzi,
Joost Renes and the reviewers for their valuable comments. Geovandro Pereira was
partially supported by NSERC, CryptoWorks21, and Public Works and Government
Services Canada. Oscar Reparaz was partially supported by the Research Council
KU Leuven C16/15/058. Hwajeong Seo was supported by the ICT R&D program
of MSIP/IITP (B0717-16-0097, Development of V2X Service Integrated Security
Technology for Autonomous Driving Vehicle).

References

1. Akishita, T., Takagi, T.: Zero-value point attacks on elliptic curve cryptosystem.
In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 218–233. Springer,
Heidelberg (2003). doi:10.1007/10958513 17

2. ARM Limited: Cortex-M4 technical reference manual (2009–2010). http://
infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B cortex m4
r0p0 trm.pdf

3. Avanzi, R.M.: Side channel attacks on implementations of curve-based crypto-
graphic primitives. IACR Cryptology ePrint Archive, Report 2005/017 (2005).
http://eprint.iacr.org/2005/017

4. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–
405. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68164-9 26

5. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 8

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 26

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

9. Ciet, M.: Aspects of fast and secure arithmetics for elliptic curve cryptography.
Ph.D. thesis, Université Catholique de Louvain, Louvain-la-Neuve (2003)

10. Ciet, M., Joye, M.: (Virtually) Free randomization techniques for elliptic curve
cryptography. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol.
2836, pp. 348–359. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39927-8 32

11. Ciet, M., Quisquater, J.-J., Sica, F.: Preventing differential analysis in GLV elliptic
curve scalar multiplication. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES
2002. LNCS, vol. 2523, pp. 540–550. Springer, Heidelberg (2003). doi:10.1007/
3-540-36400-5 39

12. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal cor-
relation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.)
ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-17650-0 5

http://dx.doi.org/10.1007/10958513_17
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://eprint.iacr.org/2005/017
http://dx.doi.org/10.1007/978-3-540-68164-9_26
http://dx.doi.org/10.1007/3-540-44598-6_8
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/3-540-48405-1_26
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-540-39927-8_32
http://dx.doi.org/10.1007/3-540-36400-5_39
http://dx.doi.org/10.1007/3-540-36400-5_39
http://dx.doi.org/10.1007/978-3-642-17650-0_5
http://dx.doi.org/10.1007/978-3-642-17650-0_5

684 Z. Liu et al.

13. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
Vector Leakage Assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013)

14. Coron, J.-S., Kocher, P., Naccache, D.: Statistics and secret leakage. In: Frankel, Y.
(ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001). doi:10.
1007/3-540-45472-1 12

15. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). doi:10.1007/3-540-48059-5 25

16. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve
over the Mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 214–235. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48797-6 10. Full version: https://eprint.iacr.org/2015/565

17. Costello, C., Longa, P.: FourQlib (2015–2017). https://github.com/Microsoft/
FourQlib

18. Costello, C., Longa, P.: SchnorrQ: Schnorr signatures on FourQ. MSR Technical
report (2016). https://www.microsoft.com/en-us/research/wp-content/uploads/
2016/07/SchnorrQ.pdf

19. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Des. Codes Crypt. 77(2–3), 493–514 (2015)

20. Fan, J., Verbauwhede, I.: An updated survey on secure ECC implementations:
attacks, countermeasures and cost. In: Naccache, D. (ed.) Cryptography and Secu-
rity: From Theory to Applications. LNCS, vol. 6805, pp. 265–282. Springer, Hei-
delberg (2012). doi:10.1007/978-3-642-28368-0 18

21. Faz-Hernández, A., Longa, P., Sánchez, A.H.: Efficient and secure algorithms for
GLV-based scalar multiplication and their implementation on GLV-GLS curves
(extended version). J. Cryptogr. Eng. 5(1), 31–52 (2015)

22. Feix, B., Roussellet, M., Venelli, A.: Side-channel analysis on blinded regular
scalar multiplications. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT
2014. LNCS, vol. 8885, pp. 3–20. Springer, Cham (2014). doi:10.1007/
978-3-319-13039-2 1

23. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45238-6 22

24. Gaudry, P., Schost, E.: Genus 2 point counting over prime fields. J. Symb. Comput.
47(4), 368–400 (2012)

25. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystems. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg
(2003). doi:10.1007/3-540-36288-6 15

26. Gouvêa, C.P.L., López, J.: Software implementation of pairing-based cryptography
on sensor networks using the MSP430 microcontroller. In: Roy, B., Sendrier, N.
(eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 248–262. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-10628-6 17

27. Hanley, N., Kim, H., Tunstall, M.: Exploiting collisions in addition chain-
based exponentiation algorithms using a single trace. In: Nyberg, K. (ed.) CT-
RSA 2015. LNCS, vol. 9048, pp. 431–448. Springer, Cham (2015). doi:10.1007/
978-3-319-16715-2 23

28. Hisil, H., Wong, K.K., Carter, G., Dawson, E.: Twisted Edwards curves revisited.
In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89255-7 20

http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/3-540-45472-1_12
http://dx.doi.org/10.1007/3-540-48059-5_25
http://dx.doi.org/10.1007/978-3-662-48797-6_10
http://dx.doi.org/10.1007/978-3-662-48797-6_10
https://eprint.iacr.org/2015/565
https://github.com/Microsoft/FourQlib
https://github.com/Microsoft/FourQlib
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/07/SchnorrQ.pdf
http://dx.doi.org/10.1007/978-3-642-28368-0_18
http://dx.doi.org/10.1007/978-3-319-13039-2_1
http://dx.doi.org/10.1007/978-3-319-13039-2_1
http://dx.doi.org/10.1007/978-3-540-45238-6_22
http://dx.doi.org/10.1007/3-540-36288-6_15
http://dx.doi.org/10.1007/978-3-642-10628-6_17
http://dx.doi.org/10.1007/978-3-319-16715-2_23
http://dx.doi.org/10.1007/978-3-319-16715-2_23
http://dx.doi.org/10.1007/978-3-540-89255-7_20

FourQ on Embedded Devices with Strong Countermeasures 685

29. Izu, T., Takagi, T.: Exceptional procedure attack on elliptic curve cryptosystems.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 224–239. Springer, Hei-
delberg (2003). doi:10.1007/3-540-36288-6 17

30. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography — an algebraic approach —. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001).
doi:10.1007/3-540-44709-1 31

31. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidel-
berg (2003). doi:10.1007/3-540-36400-5 22

32. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

34. Ladd, W., Longa, P., Barnes, R.: Curve4Q. Internet-Draft, draft-ladd-cfrg-4q-01
(2016–2017). https://www.ietf.org/id/draft-ladd-cfrg-4q-01.txt

35. Liu, Z., Longa, P., Pereira, G., Reparaz, O., Seo, H.: FourQ on embedded devices
with strong countermeasures against side-channel attacks. IACR Cryptology ePrint
Archive, Report 2017/434 (2017). http://eprint.iacr.org/2017/434

36. Longa, P.: FourQNEON: faster elliptic curve scalar multiplications on ARM proces-
sors. In: Avanzi, R., Heys, H. (eds.) Selected Areas in Cryptography - SAC 2016.
LNCS. Springer (2016, to appear). http://eprint.iacr.org/2016/645

37. Mamiya, H., Miyaji, A., Morimoto, H.: Efficient countermeasures against RPA,
DPA, and SPA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol.
3156, pp. 343–356. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 25

38. Murdica, C., Guilley, S., Danger, J., Hoogvorst, P., Naccache, D.: Same values
power analysis using special points on elliptic curves. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 183–198. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29912-4 14

39. Nascimento, E., Chmielewski, L., Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: Selected Areas in Cryptol-
ogy – SAC 2016. Springer (2016, to appear)

40. Nascimento, E., López, J., Dahab, R.: Efficient and secure elliptic curve cryptogra-
phy for 8-bit AVR microcontrollers. In: Chakraborty, R.S., Schwabe, P., Solworth,
J. (eds.) SPACE 2015. LNCS, vol. 9354, pp. 289–309. Springer, Cham (2015).
doi:10.1007/978-3-319-24126-5 17

41. Okeya, K., Sakurai, K.: Power analysis breaks elliptic curve cryptosystems even
secure against the timing attack. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT
2000. LNCS, vol. 1977, pp. 178–190. Springer, Heidelberg (2000). doi:10.1007/
3-540-44495-5 16

42. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006). doi:10.1007/11967668 16

43. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Tech-
nical report CSTR-02-003, Department of Computer Science, University of Bristol
(2002). http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

44. Piotrowski, K., Langendoerfer, P., Peter, S.: How public key cryptography influ-
ences wireless sensor node lifetime. In: Proceedings of the Fourth ACM Workshop
on Security of Ad hoc and Sensor Networks, pp. 169–176. ACM (2006)

http://dx.doi.org/10.1007/3-540-36288-6_17
http://dx.doi.org/10.1007/3-540-44709-1_31
http://dx.doi.org/10.1007/3-540-36400-5_22
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
https://www.ietf.org/id/draft-ladd-cfrg-4q-01.txt
http://eprint.iacr.org/2017/434
http://eprint.iacr.org/2016/645
http://dx.doi.org/10.1007/978-3-540-28632-5_25
http://dx.doi.org/10.1007/978-3-642-29912-4_14
http://dx.doi.org/10.1007/978-3-319-24126-5_17
http://dx.doi.org/10.1007/3-540-44495-5_16
http://dx.doi.org/10.1007/3-540-44495-5_16
http://dx.doi.org/10.1007/11967668_16
http://www.cs.bris.ac.uk/Publications/Papers/1000625.pdf

686 Z. Liu et al.

45. Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-77535-5 17

46. Renes, J., Schwabe, P., Smith, B., Batina, L.: μKummer: Efficient hyperelliptic
signatures and key exchange on microcontrollers. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 301–320. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 15

47. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting time samples for multivariate
DPA attacks. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428,
pp. 155–174. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8 10

48. Santis, F.D., Sigl, G.: Towards side-channel protected X25519 on ARM Cortex-M4
processors. Software Performance Enhancement for Encryption and Decryption,
and Benchmarking (SPEED-B) (2016)

49. Seo, H., Liu, Z., Choi, J., Kim, H.: Multi-precision squaring for public-key
cryptography on embedded microprocessors. In: Paul, G., Vaudenay, S. (eds.)
INDOCRYPT 2013. LNCS, vol. 8250, pp. 227–243. Springer, Cham (2013). doi:10.
1007/978-3-319-03515-4 15

50. Smart, N.P., Oswald, E., Page, D.: Randomised representations. IET Inf. Secur.
2(2), 19–27 (2008)

51. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17373-8 7

52. STMicroelectronics: STM32F4DISCOVERY: Discovery kit with STM32F407VG
MCU, data brief (2016). http://www.st.com/content/ccc/resource/technical/
document/data brief/09/71/8c/4e/e4/da/4b/fa/DM00037955.pdf/files/
DM00037955.pdf/jcr:content/translations/en.DM00037955.pdf

53. STMicroelectronics: Reference manual: STM32F405/415, STM32F407/417,
STM32F427/437 and STM32F429/439 advanced ARM-based 32-bit MCUs
(2017). http://www.st.com/content/ccc/resource/technical/document/reference
manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:
content/translations/en.DM00031020.pdf

54. Texas Instruments: User’s guide: MSP430FR58xx, MSP430FR59xx,
MSP430FR68xx, and MSP430FR69xx family (2012–2017). http://www.ti.
com.cn/cn/lit/ug/slau367m/slau367m.pdf

55. Wenger, E., Unterluggauer, T., Werner, M.: 8/16/32 shades of elliptic curve cryp-
tography on embedded processors. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT
2013. LNCS, vol. 8250, pp. 244–261. Springer, Cham (2013). doi:10.1007/
978-3-319-03515-4 16

http://dx.doi.org/10.1007/978-3-540-77535-5_17
http://dx.doi.org/10.1007/978-3-662-53140-2_15
http://dx.doi.org/10.1007/978-3-642-33027-8_10
http://dx.doi.org/10.1007/978-3-319-03515-4_15
http://dx.doi.org/10.1007/978-3-319-03515-4_15
http://dx.doi.org/10.1007/978-3-642-17373-8_7
http://www.st.com/content/ccc/resource/technical/document/data_brief/09/71/8c/4e/e4/da/4b/fa/DM00037955.pdf/files/DM00037955.pdf/jcr:content/translations/en.DM00037955.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/09/71/8c/4e/e4/da/4b/fa/DM00037955.pdf/files/DM00037955.pdf/jcr:content/translations/en.DM00037955.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/09/71/8c/4e/e4/da/4b/fa/DM00037955.pdf/files/DM00037955.pdf/jcr:content/translations/en.DM00037955.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf
http://www.ti.com.cn/cn/lit/ug/slau367m/slau367m.pdf
http://www.ti.com.cn/cn/lit/ug/slau367m/slau367m.pdf
http://dx.doi.org/10.1007/978-3-319-03515-4_16
http://dx.doi.org/10.1007/978-3-319-03515-4_16

Bit-Sliding: A Generic Technique for Bit-Serial
Implementations of SPN-based Primitives

Applications to AES, PRESENT and SKINNY

Jérémy Jean1(B), Amir Moradi2(B),
Thomas Peyrin3,4(B), and Pascal Sasdrich2(B)

1 ANSSI Crypto Lab, Paris, France
Jeremy.Jean@ssi.gouv.fr

2 Horst Görtz Institute for IT Security,
Ruhr-Universität Bochum, Bochum, Germany
{Amir.Moradi,Pascal.Sasdrich}@rub.de

3 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
Thomas.Peyrin@ntu.edu.sg

4 School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore

Abstract. Area minimization is one of the main efficiency criterion for
lightweight encryption primitives. While reducing the implementation
data path is a natural strategy for achieving this goal, Substitution-
Permutation Network (SPN) ciphers are usually hard to implement in
a bit-serial way (1-bit data path). More generally, this is hard for any
data path smaller than its Sbox size, since many scan flip-flops would
be required for storage, which are more area-expensive than regular flip-
flops.

In this article, we propose the first strategy to obtain extremely small
bit-serial ASIC implementations of SPN primitives. Our technique, which
we call bit-sliding, is generic and offers many new interesting implemen-
tation trade-offs. It manages to minimize the area by reducing the data
path to a single bit, while avoiding the use of many scan flip-flops.

Following this general architecture, we could obtain the first bit-
serial and the smallest implementation of AES-128 to date (1560 GE
for encryption only, and 1738 GE for encryption and decryption with
IBM 130 nm standard-cell library), greatly improving over the smallest
known implementations (about 30% decrease), making AES-128 compet-
itive to many ciphers specifically designed for lightweight cryptography.
To exhibit the generality of our strategy, we also applied it to the PRESENT
and SKINNY block ciphers, again offering the smallest implementations of
these ciphers thus far, reaching an area as low as 1065 GE for a 64-
bit block 128-bit key cipher. It is also to be noted that our bit-sliding
seems to obtain very good power consumption figures, which makes this
implementation strategy a good candidate for passive RFID tags.

Keywords: Bit-serial implementations · Bit-slide · Lightweight
cryptography

c© International Association for Cryptologic Research 2017
W. Fischer and N. Homma (Eds.): CHES 2017, LNCS 10529, pp. 687–707, 2017.
DOI: 10.1007/978-3-319-66787-4 33

688 J. Jean et al.

1 Introduction

Due to the increasing importance of pervasive computing, lightweight cryptogra-
phy has attracted a lot of attention in the last decade among the symmetric-key
community. In particular, we have seen many improvements in both primitive
design and their hardware implementations. We currently know much better
how a lightweight encryption scheme should look like (small block size, small
nonlinear components, very few or even no XORs gates for the linear layer,
etc.).

Lightweight cryptography can have different meanings depending on the appli-
cations and the situations. For example, for passive RFID tags, power consump-
tion is very important, and for battery-driven devices energy consumption is
a top priority. Power and energy consumption depend on both the area and
throughput of the implementation. In this scenario, so-called round-based imple-
mentations (i.e., one cipher round per clock cycle) are usually the most efficient
trade-offs with regards to these metrics. For example, the tweakable block cipher
SKINNY [6] was recently introduced with the goal of reaching the best possible
efficiency for round-based implementations.

Yet, for the obvious reason that many lightweight devices are very strongly
constrained, one of the most important measurement remains simply the imple-
mentation area, regardless of the throughput. It was estimated in 2005 that only
a maximum of 2000 GE can be dedicated to security in an RFID tag [19]. While
these numbers might have evolved a little since then, it is clear that area is a key
aspect when designing/implementing a primitive. In that scenario, round-based
implementations are far from being optimal since the data path is very large. In
contrast, the serial implementation strategy tries to minimize the data path to
reduce the overall area. Some primitives even specialized for this type of imple-
mentation (e.g., LED [15], PHOTON [14]), with a linear layer crafted to be cheap
and easy to perform in a serial way.

In 2013, the National Security Agency (NSA) published two new ciphers [5],
SIMON (tuned for hardware) and SPECK (tuned for software) targeting very low-
area implementations. SIMON is based on a simple Feistel construction with just
a few rotations, ANDs and XORs to build the internal function. The authors
showed that SIMON’s simplicity easily allows many hardware implementation
trade-offs with regards to the data path, going as low as a 1-bit-serial implemen-
tation.

For Substitution-Permutation Network (SPN) primitives, like AES [12] or
PRESENT [7], the situation is more complex. While they can usually provide more
confidence concerning their security, they are known to be harder to implement
in a bit-serial way. To the best of the authors’ knowledge, as of today, there is
no bit-serial implementation of an SPN cipher, mainly due to the underlying
structure organized around their Sbox and linear layers. While this construction
offers efficient and easy implementation trade-offs, it seems nontrivial to build an
architecture with a dapa path below the Sbox size. Thus, there remains a gap to
bridge between SPN primitives and ciphers with a general SIMON-like structure.

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 689

Our Contributions. In this article, we provide the first general bit-serial
Application-Specific Integrated Circuit (ASIC) implementation strategy for SPN
ciphers. Our technique, that we call bit-sliding, allows implementations to use
small data paths, while significantly reducing the number of costly scan flip-flops
(FF) used to store the state and key bits.

Although our technique mainly focuses on 1-bit-serial implementations, it
easily scales and supports many other trade-offs, e.g., data paths of 2 bits, 4
bits, etc. This agility turns to be very valuable in practice, where one wants
to map the best possible implementation to a set of constraints combining a
particular scenario and specific devices. We applied our strategy to AES, and
together with other minor implementation tricks, we obtained extremely small
AES-128 implementations on ASIC: only 1560 Gate Equivalent (GE) for encryp-
tion (incl. 75% for storage), and 1738 GE for encryption and decryption using
IBM 130 nm library (incl. 67% for storage).1 By comparison, using the same
library, the smallest ASIC implementation of AES-128 previously known requires
2182 GE for encryption [22] (incl. 64% of storage), and 2402 GE for encryption
and decryption [3] (incl. 55% of storage).2 Our results show that AES-128 could
almost be considered as a lightweight cipher.

Since our strategy is very generic, we also applied it to the cases of PRESENT
and SKINNY, again obtaining the smallest known implementations. More pre-
cisely, for the 64-bit block 128-bit key versions and using the IBM 130 nm library,
we could reach 1065 GE for PRESENT and 1054 GE for SKINNY compared to the
to-date smallest PRESENT-128 with 1230 GE [31]. Our work shows that the gap
between the design strategy of SIMON and a classical SPN is smaller than previ-
ously thought, as SIMON can reach 958 GE for the same block/key sizes.

In terms of power consumption, it turns out that bit-sliding provides good
results when compared to currently known implementation strategies. This
makes it potentially interesting for passive RFID tags for which power is a key
constraint. However, as for any bit-serial implementation, due to the many cycles
required to execute the circuit, the energy consumption figures will not be as
good as one can obtain with round-based implementations.

We emphasize that for fairness, we compare the various implementations
to ours using five standard libraries: namely, UMC 180 nm, UMC 130 nm,
UMC 90 nm, NanGate 45 nm and IBM 130 nm.

2 Bit-Sliding Implementation Technique

We describe in this section the conducting idea of our technique, which allows
to significantly decrease the area required to serially implement any SPN-based
cryptographic primitive. To clearly expose our strategy, we first describe the
general structure of SPN primitives in Sect. 2.1 and we recall the most common
1 The same library used to benchmark SIMON area footprints in [5].
2 We note that the 2400 GE reported in [22] are done on a different library, namely

UMC 180 nm. The numbers we report here are obtained by re-synthesizing the code
from [22] on IBM 130 nm.

690 J. Jean et al.

types of hardware implementation trade-offs in Sect. 2.2. Then, in Sect. 2.3, we
explain the effect of reducing the data path of an SPN implementation, in par-
ticular how the choice of the various flip-flops used for state storage strongly
affects the total area. Finally, we describe our bit-sliding implementation strat-
egy in Sect. 2.4 and we tackle the problem of bit-serializing any Sbox in Sect. 2.5.
Applications of these techniques to AES-128 and PRESENT block ciphers are con-
ducted in the subsequent sections of the paper (the case of SKINNY is provided
in the long version of the paper [17]). For completeness, we provide in Sect. 2.6
a quick summary of previous low-area implementations of SPN ciphers such as
AES-128 and PRESENT.

2.1 Substitution-Permutation Networks

Even though our results apply to any SPN-based construction (block cipher,
hash function, stream cipher, public permutation, etc.), for simplicity of the
description, we focus on block ciphers.

A block cipher corresponds to a keyed family of permutations over a fixed
domain, E : {0, 1}k ×{0, 1}n → {0, 1}n. The value k denotes the key size in bits,
n the dimension of the domain on which the permutation applies, and for each
key K ∈ {0, 1}k, the mapping E(K, •), that we usually denote EK(•), defines a
permutation over {0, 1}n.

From a high-level perspective, an SPN-based block cipher relies on a round
function f that consists of the mathematical composition of a nonlinear permu-
tation S and a linear permutation P , which can be seen as a direct application
of Shannon’s confusion (nonlinear) and diffusion (linear) paradigm [27].

From a practical point of view, the problem of implementing the whole cipher
then reduces to implementing the small permutations S and P , that can either be
chosen for their good cryptographic properties, and/or for their low hardware or
software costs. In most known ciphers, the nonlinear permutation S : {0, 1}n →
{0, 1}n relies on an even smaller permutation called Sbox, that is applied several
times in parallel on independent portions on the internal n-bit state. We denote
by s the bit-size of these Sboxes. Similarly, the linear layer often comprises
identical functions applied several times in parallel on independent portions on
the internal state. We denote by l the bit-size of these functions.

2.2 Implementation Trade-Offs

We usually classify ASIC implementations of cryptographic algorithms in three
categories: round-based implementations, fully unrolled implementations and
serial implementations. A round-based implementation typically offers a very
good area/throughput trade-off, by providing the cryptographic functionalities
(e.g., encryption and decryption). The idea is this case consists in simply imple-
menting the full round function f of the block cipher in one clock cycle and to
reuse the circuit to produce the output of the cipher. In contrast, to minimize
the latency a fully unrolled implementation would implement all the rounds at
the expense of a much larger area, essentially proportional to the number of the

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 691

cipher rounds (for instance PRINCE [8] or MANTIS [6] have been designed to sat-
isfy such low-latency requirements). Finally, serial implementations (the focus
of this article) trade throughput by only implementing a small fraction of the
round function f , for applications that require to minimize the area as much as
possible.

2.3 Data Path Reduction and Flip-Flops

From round-based to serial implementations, the data path is usually reduced.
In the case of SPN primitives, reducing this data path is natural as long as
the application independence of the various sub-components of the cipher (s-
bit Sboxes and l-bit linear functions) is respected. This is the reason why all
the smallest known SPN implementations are serial implementations with an
s-bit data path (l being most of the time a multiple of s). Many trade-offs lying
between an s-bit implementation and a round-based implementation can easily
be reached. For example, in the case of AES, depending on the efficiency targets,
one can trivially go from a byte-wise implementation, to a row- or column-wise
implementation, up to a full round-based implementation.

The data path reduction in an ASIC implementation offers area reduction at
two levels. First, it allows to reduce the number of sub-components to implement
(n/s Sboxes in the case of a round-based implementation versus only a single
Sbox for a s-bit serial implementation), directly reducing the total area cost.
Second, it offers an opportunity to reduce the number of scan flip-flops (scan FF),
at the benefit of regular flip-flops (FF) for storage. A scan FF contains a 2-
to-1 multiplexer to select either the data input or the scan input. This scan
feature allows to drive the FF data input with an alternate source of data,
thus greatly increasing the possibilities for the implementer about where the
data navigates. In short: in an ASIC architecture, when a storage bit receives
data only from a single source, regular FF can be used. If another source must
potentially be selected, then a scan FF is required (with extra multiplexers
in case of multiple sources). However, the inner multiplexer comes at a non-
negligible price, as scan FF cost about 20–30% more GE than regular ones.

2.4 The Bit-Sliding Strategy

Because of the difference between scan FF and regular FF, when minimizing
the area is the main goal, there is a natural incentive in trying to use as many
regular FF as possible. In other words, the data should flow in such a way that
many storage bits only have a single input source. This is hard to achieve with
a classical s-bit data path, since the data usually moves from all bits of an
Sbox to all bits of another Sbox. Thus, the complex wiring due to the cipher
specifications impacts all the Sbox storage bits at the same time. For example,
in the case of AES, the ShiftRows forces most internal state storage bits to use
scan FFs.

This is where the bit-sliding strategy comes into play. When enabling the
bit-serial implementation by reducing the data path from s bits to a single bit,

692 J. Jean et al.

we make the data bits slide. All the complex data wiring due to the cipher
specifications becomes handled only by the very first bit of the cipher state.
Therefore, this first bit has to be stored in a scan FF, while the other bits can
simply use regular FF. Depending on the cipher sub-components, other state
bits should also make use of scan FF, but the effect is obviously stronger as the
size of the Sbox grows larger.

We emphasize that minimizing the ratio of scan FF is really the relevant way
to look at the problem of area minimization. Most previous works concentrated
on the optimization of the ciphers sub-components. Yet, in the case of lightweight
cryptography where implementations are already very optimized for area, these
sub-components represent a relatively small portion of the total area cost, in
opposition to the storage costs. For example, for our PRESENT implementations,
the storage represents about 80–90% of the total area cost. For AES-128, the
same ratio is about 65–75%.

2.5 Bit-Serializing Any Sbox

A key issue when going from an s-bit data path to a single bit data path, is
to find a way to implement the Sbox in a bit-serial way. For some ciphers,
like PICCOLO [28] or SKINNY [6], this is easy as their Sbox can naturally be
decomposed into an iterative 1-bit data path process. However, for most ciphers,
this is not the case and we cannot assume such a decomposition always exists.

We therefore propose to emulate this bit-serial Sbox by making use of s
scan FFs to serially shift out the Sbox output bits at each clock cycle, while
reusing the classical s-bit data path circuit of the entire Sbox to store its output.

Although the cost of this strategy is probably not optimal (extra regular FFs
should change to scan FF), we nevertheless argue that this is not a real issue
since the overall cost of this bit-serial Sbox implementation is very small when
compared to the total area cost of the entire cipher. Moreover, this strategy has
the important advantage that it is very simple to put into place and that it
generically works for any Sbox.

2.6 Previous Serial SPN Implementations

Most of the existing SPN ciphers such as AES or PRESENT have been implemented
using word-wise serialization, with 4- or 8-bit data paths. For AES, after two
small implementations of the encryption core by Feldhofer et al. [13] in 2005
and Hämäläinen et al. [16] in 2006, one can emphasize the work by Moradi
et al. [22] in 2011, which led to an encryption-only implementation of AES-128
with 2400 GE for the UMC 180 nm standard-cell library. More recently, a follow-
up work by Banik et al. [2] added the decryption functionality, while keeping the
overhead as small as possible: they reached a total of 2645 GE on STM 90 nm
library. According to our estimations (see Sect. 3), this implementation requires
around 2760 GE on UMC 180 nm, which therefore adds decryption to [22] for a
small overhead of about 15%. In [3] Banik et al. further improved this to 2227 GE
on STM 90 nm (about 2590 GE on UMC 180 nm).

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 693

As for PRESENT, the first result appeared in the specifications [7], where
the authors report a 4-bit serial implementation using about 1570 GE on
UMC 180 nm. In 2008, Rolfes et al. [25] presented an optimization reaching
about 1075 GE on the same library, which was further decreased to 1032 GE by
Yap et al. [31].

Finally, we remark that bit-serial implementations of SKINNY and GIFT [4]
have already been reported, which are based on the work described in this article.

3 Application to AES-128

3.1 Optimizations of the Components

Since its standardization, the AES has received many different kind of contri-
butions including the attempts to optimize its implementations on many plat-
forms. We review here the main results that we use in our implementations,
which specifically target two internal components of the AES: the 8-bit Sbox
from SubBytes and the matrix multiplication applied in the MixColumns.

SubBytes. One crucial design choice of any SPN-based cipher lies in the Sbox
and its cryptographic strength. In the AES, Daemen and Rijmen chose to rely on
the algebraic inversion in the field GF(28) for its good resistance to classical dif-
ferential and linear cryptanalysis. Based on this strong mathematical structure,
Satoh et al. in [26] used the tower field decomposition to implement the field
inversion using only 2-bit operations, later improved by Mentens et al. in [21].
Then, in 2005, Canright reported a smaller implementation of the combined Sbox
and its inverse by enumerating all possible normal bases to perform the decom-
position, which resulted in the landmark paper [10]. In our serial implementation
supporting both encryption and decryption, we use this implementation.

However, when the inverse Sbox is not required, especially for inverse-free
mode of operations like CTR that do not require the decryption operation, the
implementation cost can be further reduced. Indeed, Boyar, Matthews and Per-
alta have shown in [9] that solving an instance of the so-called Shortest Lin-
ear Program NP-hard problem yields optimized AES Sbox implementations. In
particular, they introduce a 115-operation implementation of the Sbox, further
refined to 113 logical operations in [11], which is, to the best of our knowledge,
the smallest known to date. We use this implementation in our encryption-only
AES cores, which allows to save 20–30 GE over Canright’s implementation.

We should also refer to [29], where the constructed Sbox with small footprint
needs in average 127 clock cycles. The work has been later improved in [30],
where the presented Sbox finishes the operation after at most 16 (in average
7) clock cycles. Regardless of the vulnerability of such a construction to timing
attacks [20], we could not use them in our architecture due to their latency
higher than 8 clock cycles.

MixColumns. Linear layers of SPN-based primitives have attracted lots of atten-
tion in the past few years, mostly from the design point of view. Here, we are

694 J. Jean et al.

interested in finding an efficient implementation of the fixed MixColumns trans-
formation, which can either be seen as multiplication by a 4 × 4 matrix over
GF(28) or by a 32 × 32 matrix over GF(2). For 8-bit data path, similar to
previous works like [1,2,33], we have considered the 32 × 32 binary matrix to
implement the MixColumns. An already-reported strategy can implement it in
108 XORs, but we tried to slightly improve this by using a heuristic search tool
from [18], which yielded two implementations using 103 and 104 XORs, where
the 104-XOR one turned to be more area efficient.

3.2 Bit-Serial Implementations of AES-128 Encryption

We first begin by describing an implementation that only supports encryption,
and then complete it to derive one that achieves both encryption and decryption.

Data Path. The design architecture of our bit-serial implementation of AES-128
is shown in Fig. 1. The entire 128-bit state register forms a shift register,
which is triggered at every clock cycle. The white register cells indicate reg-
ular FFs, while the gray ones scan FFs. The plaintext bits are serially fed from
most significant bit (MSB) down to least significant bit (LSB) of the Bytes
0,4,8,12,1,5,9,13,2,6,10,14,3,7,11,15. In other words, during the first
128 clock cycles, first 8 bits (MSB downto LSB) of plaintext Byte 0 and then
that of Byte 4 are given till the 8 bits (MSB downto LSB) of plaintext Byte 15.

MC3

MC2

MC0

MC1

Ciphertext
Sbox

Plaintext

RoundKey

PolynotLSB

7

7

Byte 0 Byte 4 Byte 8 Byte 12

Byte 1

M
S

B

L
S

B

MC3

MC2

MC1

MC0

Fig. 1. Bit-serial architecture for AES-128 (encryption only, data path).

The AddRoundKey is also performed in a bit serial form, i.e., realized by one 2-
input XOR gate. For each byte, during the first 7 clock cycles, the AddRoundKey
result is fed into the rotating shift register, and at the 8th clock cycle, the Sbox
output is saved at the last 8 bits of the shift register and at the same time the
rest of the state register is shifted. Therefore, we had to use scan FFs for the
last 8 bits of the state shift register (see Fig. 1). For the Sbox module, as stated

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 695

before, we made use of the 113-gate description given in [11] by Cagdas Calik.
After 128 clock cycles, the SubBytes is completely performed.

The ShiftRows is also performed bit-serially. The scan FFs enable us to per-
form the entire ShiftRows in 8 clock cycles. We should emphasize that we have
examined two different design architectures. In our design, in contrast to [2,3,22],
the state register is always shifted without any exception. This avoids extra logic
to enable and disable the registers. In [3], an alternative solution is used, where
each row of the state register is controlled by clock gating. Hence, by freezing
the first row, shifting the second row once, the third row twice and the forth row
three times, the ShiftRows can be performed. We have examined this fashion
in our bit-serial architecture as well. It allows us to turn 9 scan FFs to regular
FFs, but it needs 4 clock gating circuits and the corresponding control logic.
For the bit-serial architecture, it led to more area consumption. We discuss this
architecture in Sect. 3.4, when we extend our serial architecture to higher bit
lengths.

For the MixColumns, we also provide a bit-serial version. More precisely, each
column is processed in 8 clock cycles, i.e., the entire MixColumns is performed in
32 clock cycles. In order to enable such a scenario, when processing a column,
we need to store the MSB of all four bytes, which are used to determine whether
the extra reduction for the xtime (i.e., multiplication by 2 in GF(28) under
AES polynomial) is required. The green cells in Fig. 1 indicate the extra register
cells which are used for this purpose. The input of the green register cells come
from the 2nd MSB of column bytes. Therefore, these registers should store the
MSB one clock cycle before the operation on each column is started. During
the ShiftRows and at the 8th clock cycle of MixColumns on each column, these
registers are enabled. This enables us to fulfill our goal, i.e., always clocking the
state shift register. The bit-serial MixColumns circuit needs two control signals:
Poly, which provides the bit representation of the AES polynomial 0x1B serially
(MSB downto LSB) and notLSB, which enables xtime for the LSB.

Therefore, one full round of the AES is performed in 128+8+32 = 168 clock
cycles. During the last round, MixColumns is ignored, and the last AddRound-
Key is performed while the ciphertext bits are given out. Therefore, the entire
encryption takes 9× 168+128+8+128 = 1776 clock cycles. Similar to [2,3,22],
while the ciphertext bits are given out, the next plaintext can be fed inside.
Therefore, similar to their reported numbers, the clock cycles required to fed
plaintext inside are not counted.

Key Path. The key register is similar to the state register and is shifted one bit
per clock cycle, and gives one bit of the RoundKey to be used by AddRoundKey
(see Fig. 2). The key schedule is performed in parallel to the AddRoundKey and
SubBytes, i.e., in 128 clock cycles. In other words, while the RoundKey bit is
given out the next RoundKey is generated. Therefore, the key shift register
needs to be frozen during ShiftRows and MixColumns operations, which is done
by means of clock gating. As shown in Fig. 2, the entire key register except the
last one is made by regular FFs, which led to a large area saving. During key

696 J. Jean et al.

AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

7

Sbox

8

Rcon

Fig. 2. Bit-serial architecture for AES-128 (encryption only, key path).

schedule, the Sbox module, which is shared with the data path,3 is required 4
times. We instantiate 7 extra scan FFs, those marked by green, which save 7
bits of the Sbox output and can shift serially as well. It is noteworthy that 4
of such register cells are shared with the data path circuit to store the MSBs
required in MixColumns.4 At the first clock cycle of the key schedule, the Sbox
is used and its output is stored in the dedicated green register. It is indeed a
perfect sharing of the Sbox module between the data path and key path circuits.
During every 8 clock cycles, the Sbox is used by the key path at the first clock
cycle and by the data path at the last clock cycle. During the first 8 clock cycles,
the Sbox output S(Byte13) is added to Byte0, which is already the first byte of
the next Roundkey. Note that the RoundConstant Rcon is also provided serially
by the control logic. During the next 16 clock cycles, by means of AddRow4
signal, S(Byte13) ⊕ Byte0 ⊕ Byte4 and S(Byte13) ⊕ Byte0 ⊕ Byte4 ⊕ Byte8 are
calculated, which are the next 2 bytes of the next RoundKey. The next 8 clock
cycles, Byte12 is fed unchanged into the shift register, that is required to go
through the Sbox later. This process is repeated 4 times and at the last 8 clock
cycles, i.e., clock cycles 121 to 128, by means of AddRow1to3, the last XORs are
performed to make the Bytes 12, 13, 14, and 15 of the next RoundKey. During
the next 8+32 clock cycles, when the data path circuit is performing ShiftRows
and MixColumns, the entire key shift register is frozen.

3.3 Bit-Serial AES-128 Encryption and Decryption Core

Data Path. In order to add decryption, we slightly changed the architecture
(see Fig. 3). First, we replaced the last 7 regular FFs by scan FFs, where Byte0
is stored. Then, as said before, we made use of Canright AES Sbox [10].

The encryption functionality of the circuit stays unchanged, while the decryp-
tion needs several more clock cycles. After serially loading the ciphertext bits,
at the first 128 clock cycles, the AddRoundKey is performed. Afterwards, the
3 Eight 2-to-1 MUX at the Sbox input are not shown.
4 It requires four 2-to-1 MUX which are not shown.

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 697

MC3

MC2

MC1

Output

Sbox
Sbox-1

Input77

Byte 8 Byte 12

Byte 1

MSB

7

88

L
SB

LSB

RoundKey

Byte 4M
SB

L
SB MC0

8

Fig. 3. Bit-serial architecture for AES-128 (encryption and decryption, data path).

ShiftRows−1 should be done. To do so, we perform the ShiftRows three times since
ShiftRows3 = ShiftRows−1. This helps us to not modify the design architecture,
i.e., no extra scan FF or MUX. Therefore, the entire ShiftRows−1 takes 3×8 = 24
clock cycles. The next SubBytes−1 and AddRoundKey are performed at the same
time. For the first clock cycle, the Sbox inverse is stored in 7 scan FFs, where
Byte0 is stored, and the same time the XOR with the RoundKey bit and the shift
in the sate register happen. In the next 7 clock cycles, the AddRoundKey is per-
formed. This is repeated 16 times, i.e., 128 clock cycles. For the MixColumns−1,
we followed the principle used in [3] that MixColumns3 = MixColumns−1. In
other words, we repeat the MixColumns process explained above 3 times, in
3 × 32 = 96 clock cycles. Note that for simplicity, the MixColumns circuit is not
shown in Fig. 3. At the last decryption round, first the ShiftRows−1 is performed,
in 24 clock cycles, and afterwards, when the SubBytes−1 and AddRoundKey are
simultaneously performed, the plaintext bits are given out. Therefore, the entire
decryption takes 128 + 9 × (24 + 128 + 96) + 24 + 128 = 2512 clock cycles. Note
that the state register, similar to the encryption-only variant, is always active.

AddRow4Key

RoundKey

8

Byte 0M
S

B

L
S

B Byte 4 Byte 8 Byte 12

Byte 1

AddRow1to3

8

Sbox

8

Rcon

MSB

7
LSB

7

AddInvnotLastByte

Fig. 4. Bit-serial architecture for AES-128 (encryption and decryption, key path).

698 J. Jean et al.

Key Path. Enabling the inverse key schedule in our bit-serial architecture is a
bit more involved than in the data path. According to Fig. 4, we still make use of
only one scan FF and the rest of the key shift register is made by regular FFs. We
only extended the 7 green scan FFs to 8. At the first 8 clock cycles, Byte1⊕Byte5
is serially computed and shifted into the green scan FFs, and at the 8th clock
cycle the entire 8-bit Sbox output is stored in the green scan FFs. Within the next
16 clock cycles, the key state is just rotated. During the next 8 clock cycles, the
green scan FFs are serially shifted out and its XOR results with Byte0 is stored.
At the same time, by means of AddInv signal, Byte0 ⊕ Byte4, Byte4 ⊕ Byte8,
and Byte8 ⊕ Byte12 are serially computed, that are the first 4 bytes of the
next RoundKey upwards. For sure, RoundConstant is also provided (serially)
in reverse order (by the control logic). This process is repeated 4 times with
one exception. At the last time, i.e., at Clock cycles 97 to 104, by means of the
notLastByte signal, the XOR is bypassed when the green scan FFs are serially
loaded. This is due to the fact that such an XOR has already been performed.
Hence, the key scheduleinv takes again 128 clock cycles, and is synchronized
with the AddRoundKey of the data path circuit. During other clock cycles, where
ShiftRows−1 and MixColumns−1 are performed, the key shift register is disabled.

3.4 Extension to Higher Bit Lengths

We could relatively easily extend our design architecture(s) to higher bit lengths.
More precisely, instead of shifting 1 bit at every clock cycle, we can process either
2, 4, or 8 bits. The design architectures stay the same, but every computing
module provides 2, 4, or 8 bits at every clock cycle. More importantly, the number
of scan FFs increases almost linearly. For the 2-bit version, the 9 scan FFs that
enabled ShiftRows must be doubled. Its required number of clock cycles is also
half of the 1-bit version, i.e., 888 for encryption and 1256 for decryption.

However, we observed that in 4-bit (resp. 8-bit) serial version almost half
(resp. full) of the FFs of the state register need to be changed to scan FF, that
in fact contradicts our desire to use as much regular FFs as possible instead
of scan FFs. In these two settings (4- and 8-bit serial), we have achieved more
efficient designs if the ShiftRows is realized by employing 4 different clock gating,
each of which for a row in state shift register. This allows us to avoid replacing
36 (resp. 72) regular FFs by scan FF. This architecture forces us to spend 4 more
clock cycles during MixColumns since not all state registers during ShiftRows are
shifted, and the MSB for the MixColumns cannot be saved beforehand. Therefore,
for the 4-bit version, the AddRoundKey and SubBytes are performed in 32 clock
cycles, the ShiftRows in 6 cycles, and the MixColumns in 4 × (1 + 2) = 12 cycles,
hence 9× (32+6+12)+32+6+32 = 520 clock cycles for the entire encryption.

For the decryption, the ShiftRows−1 does not need to be performed as
ShiftRows3, and it can also be done in 6 clock cycles. However, the MixColumns−1

still requires to apply 3 times MixColumns, i.e., 3 × 12 = 36 cycles. Thus, the
entire decryption needs 32 + 9 × (6 + 32 + 36) + 6 + 32 = 736 clock cycles.

In the 8-bit serial version, since the Sbox is required during the entire 16 clock
cycles of SubBytes, we had to disable the state shift register 4 times to allow the

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 699

Sbox module to be used by the key schedule. Since MixColumns now computes
the entire column in 1 clock cycle, there is no need for extra registers (as well
as clock cycles) to save the MSBs. Therefore, AddRoundKey and SubBytes need
20 clock cycles, ShiftRows 3 clock cycles, and MixColumns 4 clock cycles, i.e.,
9 × (20 + 3 + 4) + 20 + 3 + 16 = 282 clock cycles in total. The first step of
decryption is AddRoundKey, but at the same time the next RoundKey should
be provided. In order to simplify the control logic, the first sole AddRoundKey
also takes 20 clock cycles, and MixColumns−1 12 clock cycles. Hence, the entire
decryption is performed in 20 + 9 × (3 + 20 + 12) + 3 + 16 = 354 clock cycles.

Compared to [2,3,22], our design is different with respect to how we han-
dle the key schedule. For example, our entire key state register needs only 8
scan FFs; we could reduce the area, but with a higher number of clock cycles. It
is noteworthy that we have manually optimized most of the control logic (e.g.,
generation of Rcon) to obtain the most compact design.

Table 1. AES-128 implementations for a data path of δ bits @ 100 KHz.

Func. δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE µW GE µW GE µW GE µW GE µW Cycles

NAND µm2 9.677 5.120 3.136 0.798 5.760

Enc 1 1727 3.510 1902 0.845 1596 0.666 1982 100.2 1560 0.823 1776 New

Enc 2 1796 3.640 1992 0.904 1667 0.699 2054 104.6 1625 0.842 888 New

Enc 4 1920 4.040 2168 1.040 1784 0.800 2146 111.4 1731 0.892 520 New

Enc 8 2112 3.990 2360 1.020 1968 0.784 2337 122.2 1912 0.874 282 New

Enc 8 2400 6.240 3574 1.270 2292 0.768 2768 136.6 2182 0.984 226 [22]

EncDec 1 1917 3.670 2142 0.944 1794 0.713 2171 112.1 1738 0.852 1776/2512 New

EncDec 2 2028 3.920 2269 0.972 1916 0.761 2286 119.8 1855 0.922 888/1256 New

EncDec 4 2212 4.590 2509 1.200 2097 0.942 2436 130.4 2069 1.070 520/736 New

EncDec 8 2416 4.490 2713 1.170 2329 0.945 2621 142.3 2293 1.070 282/354 New

EncDec 8 2577 3.560 2893 0.915 2332 0.645 2793 139.1 2402 0.753 246/326 [3]

EncDec 8 2772 5.860 3233 1.280 2639 0.832 3105 160.2 2503 1.110 226/226 [2]

3.5 Results

The synthesis result of our designs under five different standard cell libraries
and the corresponding power consumption values – estimated at 100 KHz – are
shown in Table 1. We have also shown that of the designs reported in [2,3,22]. It
should be noted that we had access to their designs and did the syntheses by our
considered libraries. It can be seen that in all cases our constructions outper-
form the smallest designs reported in literature. The numbers listed in Table 1
obtained under the highest optimization level (for area) of the synthesizer. For all
designs (including [2,3,22]), we further forced the synthesizer to make use of the
dedicated scan FFs of the underlying library when needed. It can be seen that
all of our designs need smaller area footprints compared to the other designs.

700 J. Jean et al.

In case of the estimated power consumption, our designs also outperform the
others except the one in [3]. However, as an important observation by increasing
the δ, the estimated power consumption is increased. We should highlight that
our target is the smallest footprint, and our designs would not provide better
results if either area×time or energy is considered as the metric.

Based on the results presented in Table 1, it can be seen that comparing
the area based on GE in different libraries does not make much sense. For
instance, the synthesis results reported in [2,3] that are based on STM 65 nm and
STM 90 nm libraries cannot be compared with that of another design under a
different library. Indeed, such a huge difference comes from the definition of GE,
i.e., the relative area of the NAND gate compared to the other gates: an efficient
NAND gate (compared to the other gates in the library) will yield larger GE
numbers than an inefficient one. The area of the NAND gate under our consid-
ered libraries are also listed in Table 1. The designs synthesized by Nangate 45 nm
show almost the highest GE numbers, that is due to its extremely small NAND
gate. More interestingly, using IBM 130 nm, it shows the smallest GE numbers
while the results with UMC 130 nm (with the same technology size) are amongst
the largest ones. One reason is the larger NAND gate in IBM 130 nm.

4 Application to PRESENT

4.1 Optimization of the Components

Substitution Layer. To help the synthesizer reach an area-optimized imple-
mentation, we use the tool described in [18] to look for an efficient implementa-
tion of the PRESENT Sbox. We have found several ones that allow to significantly
decrease the area of the Sbox, in comparison to a LUT-based VHDL descrip-
tion: namely, while the LUT description yields an area equivalent to 60–70 GE,
our Sbox implementation decreases it to about 20–30 GE. In our serial imple-
mentations described below, we have selected the PRESENT Sbox implementation
described in [18] using 21.33 GE on UMC 180 nm In our serial implementations
described below, we have selected the PRESENT Sbox implementation described
in [18] using 21.33 GE on UMC 180 nm, which is the world’s smallest known
implementation to date of the PRESENT S-box, about 1 GE smaller than the one
provided in [32].

Permutation Layer. The diffusion layer of PRESENT is designed as a bit permu-
tation that is cheap and efficient in hardware, particularly for round-based archi-
tectures since then the permutation simply breaks down to wired connections.
However, for serialized architectures, such as for our bit-sliding technique, the bit
permutation seems to be an obstacle. Although the permutation layer has some
underlying structure, adapting it for a bit-serial implementation seems nontriv-
ial. However, we present in the following an approach that allows to decompose
the permutation into two independent operations that can be easily performed
in a bit-serial fashion. We note that a two-stage decomposition of the PRESENT

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 701

permutation has also been described in [23]. The first operation performs a local
permutation at the bit-level, whereas the second operation performs a global per-
mutation at the nibble-level, comparable to ShiftRows in the AES.

Local Permutation. Essentially, the local permutation sorts all bits of a single row
of the state (in its matrix representation) according to their significance as show
in Fig. 5. Hence, given four nibbles 0,1,2,3 (with bit-order: MSB downto LSB),
the first nibble will contain the most significant bits (in order 0,1,2,3) after
the sorting operation, whereas the fourth nibble will hold the least significant
bits. Fortunately, this operation can be applied to each row individually and
independently. As a direct consequence, only one row of the state register needs
to implement the local permutation, which can then be applied to the state
successively.

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

M
SB

L
SB

M
SB

M
SB

M
SB

M
SB

L
SB

L
SB

L
SB

L
SB

SORT

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Fig. 5. Local Permutation (SORT). Re-ordering of bits according to their significance.

Global Permutation. After the local permutation has been performed on all rows
of the state, all bits are sorted according to their significance and, for instance,
the first column will contain all MSBs. However, for a correct implementation of
the permutation layer, the bits should be sorted row-wise instead of column-wise.
Therefore, the global permutation restores the correct ordering by rearranging
the nibbles as shown in Fig. 6, which can also be visualized as a mirroring of
the state to its diagonal. Then, either by swapping two nibbles or by holding a
nibble in its position, the global permutation can be mapped to structures that
are very similar to the ShiftRows operation of AES or SKINNY and we can adapt
some design strategies.

SWAP

13 14 151213 14 151213 14 151213 14 1512

9 10 1189 10 1189 10 1189 10 118

5 6 745 6 745 6 745 6 74

1 2 301 2 301 2 301 2 30 13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

13 14 15129 1185 6 741 2 30 10

Fig. 6. Global Permutation (SWAP). Column- and row-wise re-ordering of nibbles.

4.2 Bit-Serial Implementations of PRESENT

Data Path. We illustrate in Fig. 7 the basic architecture of our bit-serial imple-
mentation of PRESENT. Similar to the bit-serial AES design described in Sect. 3,
the 64-bit state of PRESENT is held in a shift register and shifted at every
clock cycle. Again, the white cells represent regular FFs, while the gray ones

702 J. Jean et al.

indicate the positions of scan FFs. During the initialization phase, the plain-
text is provided starting from its MSB to its LSB of each nibble in the order
of 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. Hence, each nibble is provided
within 4 clock cycles, starting from MSB to LSB and the entire plaintext is stored
in the state register after 64 clock cycles starting from Nibble0 to Nibble15.

Similar to our bit-serial AES implementation, the addition of the round key is
performed in a bit serial fashion using a single 2-input XOR gate. However, since
PRESENT has a 64-bit state of 16 nibbles, only during the first 3 clock cycles, the
result of the XOR-operation is fed into the state register. At the 4th clock cycle,
the Sbox is applied and the result is saved in the last 4 bits of the state register
(using the indicated scan FFs) while the remaining part of the state is shifted.

At the 16th clock cycle, the first stage of the permutation (local permutation)
is applied to the last row in parallel to the 4th Sbox operation. The red lines
in Fig. 7 indicate the data flow that realizes the sorting of the bits according to
their significance. Since this operation could be interleaved with the continuous
shifting of the state register, we could save a few scan FFs for the last row.

After 64 clock cycles, the round key has been added, all 16 Sboxes have been
evaluated, and each row has been sorted according to the local permutation.
To finalize the round computation, the second stage of the permutation (global
permutation) is performed in 4 clock cycles by means of the blue lines in Fig. 7.
In total, a full round of the cipher is performed in 4 × 16 + 4 = 68 clock cycles.
After 31 rounds (2108 clock cycles), the ciphertext is returned as the result of
the final key addition, whereby the next plaintext can be loaded into the state
register simultaneously.

Key Path. The state register of the key update function is implemented as
shift register, which is shifted and rotated one bit per clock cycle, similar to the
state of the data path (see Fig. 8 for the 80-bit version). At each clock cycle, one
bit of the round key is extracted and given to the data path module.

M
SB

L
SB

Sbox

Input

Output

RoundKey

Nibble 1 Nibble 2 Nibble 3

Nibble 4

2

2

4

3
1

3

Fig. 7. Bit-serial architecture for PRESENT (encryption only, data path).

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 703

M
SB

L
SBByte 0 Byte 1 Byte 2 Byte 3 Byte 4

Byte 5 Byte 6 Byte 7 Byte 8 Byte 9

RoundConst

Key

Sbox

44

55

RoundKey

Fig. 8. Bit-serial architecture for PRESENT-80 (encryption only, key path).

Besides, in order to derive the next round key, the current state has to be
rotated by 61 bits to the left which can be done in parallel to the round key
addition and Sbox computation of the data path. However, these operation takes
64 clock cycles in total, and the rotation of the round key needs only 61 clock
cycles. Hence, we have to stop the shifting of the key register using a gated clock
signal. However, since we would loose synchronization between key schedule and
round function for the last 3 bits of the round key, we have to partition the key
register into a higher (7 bits) and a lower part (73 bits). Then, after 61 clock
cycles, the lower part is stopped, while the higher part still is rotated using an
additional scan FF (see blue line in Fig. 8) to provide the remaining 3 bits of
the round key. Then, while the data path module performs the finalization of
the permutation layer, the remaining 4 bits of the higher part are rotated to
restore the correct order of the bits. In addition, during the last clock cycle, the
round constant is added as well as the Sbox is applied (which is shared with the
data path module5). Eventually, the key register holds the next round key and is
synchronized with the round function in order to continue with the next round.

4.3 Extension to Higher Bit Lengths

In this section, we discuss necessary changes of our architectures to extend and
scale the data path to higher bit lengths in order to increase the throughput and
decrease the latency.

2-Bit Serial. Expansion of our 1-bit serial data path to a 2-bit serial one is
straightforward. Essentially, every component is adapted such that it provides
2 bits at a time, i.e., the state register is shifted for two bits per clock cycle,
while the Sbox is applied every 2 clock cycles. Similarly, the local permutation
is performed every 8 clock cycles, and the finalization of the permutation takes
another 2 clock cycles. Hence, an entire round is computed within 16 × 2 +
2 = 34 clock cycles, which is exactly half of the clock cycles of the 1-bit serial
architecture.

5 Again, necessary 2-to-1 MUX at the inputs are not shown.

704 J. Jean et al.

Unfortunately, adaption of the key path to a 2-bit serial one is more complex.
In particular the rotation of 61 bits is difficult since shifting 2 bits at a time does
not allow a rotation of an odd number of bits. In order to overcome this issue,
we decided to distinguish between odd and even rounds. During an odd round
we use a rotation of 60 bits, while during even rounds the key state is rotated
by 62 bits. However, this approach implies the need for additional multiplexers
in order to select the correct round key as well as the correct positions to inject
the round constant and the Sbox computation. Apart from that, the key state
register is shifted 2 bits per clock cycle, still uses a gated clock signal for the
lower part and a rotation of the most significant bits (eight or six, depending on
the round) for synchronization.

4-Bit Serial. Further, we considered extending the data path to 4 bits using
our bit-sliding technique and replacing all FFs of the state registers by scan FFs.
Unfortunately, the bit permutation layer prevents an efficient scaling of our app-
roach, which would result in an architecture that is even larger than the results
reported in the literature (for nibble-serial implementations). In particular, the
decomposition of the permutation layer, that allowed us an efficient realization
for 1- and 2-bit serial data paths, is rather inefficient for nibble-serial structures.
Although the global permutation could be realized using only scan FFs for the
entire state, the local permutation would require additional multiplexers for the
last row of the state. Eventually, performing the entire permutation in a single
clock cycle after the substitution layer (as it is done in existing nibble-serial
architectures), would be possible solely using scan FFs and without the need of
further multiplexers. Hence, although our bit-sliding approach offers outstanding
results for 1- and 2-bit serial data paths, it does not scale for larger structures
and classical approaches appear to be more efficient.

4.4 Results

In Table 2 we report synthesis results and estimated power consumption of our
designed architectures using the aforementioned five standard cell libraries based
on various technologies (from 45 nm to 180 nm). We also report the results for
the design published in [31] which is, to the best of our knowledge, the smallest
PRESENT architecture reported in the literature. We emphasize again that we
had access to the design sources from [31] and performed the syntheses using
our considered libraries with the same set of parameters as for our architectures.
It can be seen that our constructions outperform the smallest designs reported
in the literature in terms of area and power.

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 705

Table 2. Encryption-only PRESENT implementations for a data path of δ bits @
100KHz.

Key δ UMC180 UMC130 UMC90 Ngate45 IBM130 Latency Ref.

bits GE µW GE µW GE µW GE µW GE µW Cycles

80 1 934 1.82 1006 0.44 872 0.32 1113 55.43 847 0.43 2252 New

80 2 1004 2.05 1096 0.47 949 0.33 1191 59.33 913 0.45 1126 New

80 4 1032 3.13 1088 0.53 990 0.33 1279 59.69 942 0.49 516 [31]

128 1 1172 2.41 1268 0.59 1090 0.43 1397 69.26 1065 0.57 2300 New

128 2 1265 2.61 1366 0.61 1189 0.44 1499 74.92 1150 0.58 1150 New

128 4 1344 4.00 1416 0.67 1289 0.53 1672 77.54 1230 0.71 528 [31]

5 Conclusion

In this paper, we have introduced a new ASIC implementation strategy, so-
called bit-sliding, that allows to obtain efficient bit-serial implementations of
SPN ciphers. Apart from the area savings due to a small data path, the bit-
sliding strategy reduces the proportion of scan-flip flops to store the cipher state
and key, greatly improving the performances compared to state-of-the-art area-
optimized implementations.

We have successfully applied bit-sliding to AES-128, PRESENT and SKINNY,
and in some cases reduced the area figures by more than 25%. Even though
area optimization was our main objective, it turns out that power consumption
figures are also improved, which indicates that bit-sliding can be used especially
for passive RFID tags, where area and power consumption are the key measures
to optimize, notably affecting the proximity requirements.

However, as for any bit-serial implementation, it is to be noted that energy
consumption necessarily increases when compared to round-based implementa-
tions, due to the higher latency. Therefore, depending on the area available for
security on the device, bit-sliding might not be the best choice for battery-driven
devices. All in all, this work shows that for some scenarios, AES-128 can be con-
sidered as a lightweight cipher and can now easily fit in less than 2000 GE.

Acknowledgements. The authors would like to thank the anonymous referees for
their helpful comments. The authors would like to thank B. Jungk for early discussions
and his input on the bitserial implementations of PRESENT. Additionally, we would like
to thank S. Banik, A. Bogdanov and F. Regazzoni for providing us their implementation
of AES from [2,3]. We also thank H. Yap, K. Khoo, A. Poschmann and M. Henricksen for
sharing with us their implementation of PRESENT described in [32]. This work is partly
supported by the Singapore National Research Foundation Fellowship 2012 (NRF-
NRFF2012-06).

706 J. Jean et al.

References

1. Banik, S., Bogdanov, A., Regazzoni, F.: Exploring energy efficiency of lightweight
block ciphers. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 178–194. Springer, Cham (2016). doi:10.1007/978-3-319-31301-6 10

2. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES: a compact implementation
of the AES encryption/decryption core. In: Dunkelman, O., Sanadhya, S.K. (eds.)
INDOCRYPT 2016. LNCS, vol. 10095, pp. 173–190. Springer, Cham (2016). doi:10.
1007/978-3-319-49890-4 10

3. Banik, S., Bogdanov, A., Regazzoni, F.: Atomic-AES v 2.0. IACR Cryptology
ePrint Archive 2016:1005 (2016)

4. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a
small PRESENT. In: Cryptographic Hardware and Embedded Systems - CHES
2017, Taipei, Taiwan, September 25–28, 2017 (2017)

5. Beaulieu, R., Treatman-Clark, S., Shors, D., Weeks, B., Smith, J., Wingers, L.: The
SIMON and SPECK lightweight block ciphers. In: 2015 52nd ACM/EDAC/IEEE
on Design Automation Conference (DAC), pp. 1–6. IEEE (2015)

6. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

8. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

9. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

10. Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). doi:10.
1007/11545262 32

11. CMT: Circuit Minimization Team. http://www.cs.yale.edu/homes/peralta/
CircuitStuff/CMT.html

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

13. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEE Proc. Inf. Secur. 152(1), 13–20 (2005)

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22792-9 13

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. [24],
pp. 326–341

16. Hamalainen, P., Alho, T., Hannikainen, M., Hamalainen, T.D.: Design and imple-
mentation of low-area and low-power AES encryption hardware core. In: 9th
EUROMICRO Conference on Digital System Design: Architectures, Methods and
Tools, DSD 2006, pp. 577–583. IEEE (2006)

http://dx.doi.org/10.1007/978-3-319-31301-6_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/11545262_32
http://dx.doi.org/10.1007/11545262_32
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://dx.doi.org/10.1007/978-3-642-22792-9_13

Bit-Sliding: A Generic Technique for Bit-Serial Implementations 707

17. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique
for bit-serial implementations of SPN-based primitives - applications to AES,
PRESENT and SKINNY. Cryptology ePrint Archive, Report 2017/600 (2017)

18. Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building
blocks. Cryptology ePrint Archive, Report 2017/101 (2017)

19. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005). doi:10.1007/11535218 18

20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

21. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the Rijndael S-Box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005). doi:10.
1007/978-3-540-30574-3 22

22. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-20465-4 6

23. Poschmann, A.: Lightweight cryptography - cryptographic engineering for a per-
vasive world. Cryptology ePrint Archive, Report 2009/516 (2009)

24. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011)

25. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85893-5 7

26. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware
architecture with S-Box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 15

27. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Techn. J.
28(4), 656–715 (1949)

28. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. [24], pp. 342–357

29. Wamser, M.S.: Ultra-small designs for inversion-based s-boxes. In: 17th Euromicro
Conference on Digital System Design, DSD 2014, Verona, Italy, August 27–29,
2014, pp. 512–519. IEEE Computer Society (2014)

30. Wamser, M.S., Holzbaur, L., Sigl, G.: A petite and power saving design for the
AES s-box. In: 2015 Euromicro Conference on Digital System Design, DSD 2015,
Madeira, Portugal, August 26–28, 2015, pp. 661–667. IEEE Computer Society
(2015)

31. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25513-7 7

32. Yap, H., Khoo, K., Poschmann, A., Henricksen, M.: EPCBC - a block cipher suit-
able for electronic product code encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.)
CANS 2011. LNCS, vol. 7092, pp. 76–97. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25513-7 7

33. Zhang, X., Parhi, K.K.: High-speed VLSI architectures for the AES algorithm.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(9), 957–967 (2004)

http://dx.doi.org/10.1007/11535218_18
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-540-30574-3_22
http://dx.doi.org/10.1007/978-3-642-20465-4_6
http://dx.doi.org/10.1007/978-3-540-85893-5_7
http://dx.doi.org/10.1007/3-540-45682-1_15
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7
http://dx.doi.org/10.1007/978-3-642-25513-7_7

Author Index

Anceau, Stéphanie 175
Aranha, Diego F. 644

Banik, Subhadeep 321
Bernstein, Daniel J. 299, 555
Bleuet, Pierre 175
Bonte, Charlotte 579
Bootland, Carl 579
Bos, Joppe W. 579
Breitner, Joachim 555

Cagli, Eleonora 45
Capkun, Srdjan 468, 490
Castryck, Wouter 579
Chakraborti, Avik 277
Chou, Tung 213
Choudary, Marios O. 367
Clavier, Christophe 24
Clédière, Jessy 175
Coron, Jean-Sébastien 93

Daemen, Joan 137
Dumas, Cécile 45

Eisenbarth, Thomas 69

Forte, Domenic 189

Genkin, Daniel 555
Gierlichs, Benedikt 387
Goudarzi, Dahmun 154
Groot Bruinderink, Leon 555
Gross, Hannes 115

Haase, Björn 346
Hamburg, Mike 3
Heninger, Nadia 555
Heyszl, Johann 425
Hiller, Matthias 601
Hülsing, Andreas 232
Hutter, Michael 3

Iliashenko, Ilia 579
Immler, Vincent 403

Irazoqui, Gorka 69
Iwata, Tetsu 277

Jacob, Nisha 425
Jean, Jérémy 687
Journault, Anthony 623

Kim, Dohyun 445
Kim, Yongdae 445
Knell, Thomas 468
Kölbl, Stefan 299
Kostiainen, Kari 468
Kwon, Yujin 445

Labrique, Benoît 346
Lange, Tanja 555
Liu, Zhe 665
Longa, Patrick 665
López, Julio 644
Lucks, Stefan 299

Maingault, Laurent 175
Malisa, Luka 468
Mangard, Stefan 115, 513
Marson, Mark E. 3
Massolino, Pedro Maat Costa 299
Mendel, Florian 299
Minematsu, Kazuhiko 277
Moghimi, Ahmad 69
Moradi, Amir 687

Nandi, Mridul 277
Nawaz, Kashif 299
Niederhagen, Ruben 253

Ólafsdóttir, Hildur 490
Önalan, Aysun Gurur 601

Pandey, Sumit Kumar 321
Pereira, Geovandro C.C.F. 665
Pessl, Peter 513
Peyrin, Thomas 321, 687
Popescu, P.G. 367

Poussier, Romain 534
Primas, Robert 513
Prouff, Emmanuel 45

Rainard, Jean-luc 175
Ranganathan, Aanjhan 490
Reis, Tiago B.S. 644
Reparaz, Oscar 387, 665
Reynaud, Léo 24
Rijneveld, Joost 232
Rivain, Matthieu 154
Rolfes, Carsten 425
Rossi, Mélissa 3

Sasaki, Yu 321
Sasdrich, Pascal 687
Schanck, John 232
Schneider, Tobias 299
Schwabe, Peter 232, 299
Seo, Hwajeong 665
Shakya, Bicky 189
Shin, Hocheol 445
Sigl, Georg 425
Sim, Siang Meng 321
Sommer, David 468

Specht, Robert 403
Standaert, François-Xavier 299, 534, 623
Szefer, Jakub 253

Tehranipoor, Mark M. 189
Todo, Yosuke 299, 321
Tucoulou, Rémi 175

Unterstein, Florian 403

van Vredendaal, Christine 555
Verbauwhede, Ingrid 387
Vercauteren, Frederik 579
Vergnaud, Damien 154
Viguier, Benoît 299
Vivek, Srinivas 154

Wang, Wen 253

Xu, Xiaolin 189

Yarom, Yuval 555

Zankl, Andreas 425
Zhou, Yuanyuan 534

710 Author Index

	Preface
	CHES 2017
	Contents
	Side Channel Analysis I
	A Side-Channel Assisted Cryptanalytic Attack Against QcBits
	1 Introduction
	1.1 Quantum Computers and Post-Quantum Cryptography
	1.2 Previous Related Work
	1.3 Our Contribution
	1.4 Paper Roadmap

	2 Description of the QcBits Cryptosystem
	2.1 Definitions
	2.2 QC-MDPC Codes Used for QcBits
	2.3 QcBits Encryption and Decryption Algorithms

	3 Differential Power Analysis Attack Against QcBits
	3.1 General Leakage Model
	3.2 The Experiment Setup
	3.3 DPA Results
	3.4 About the Index Search Intervals Zi

	4 Recovering the Rest of the Key
	4.1 Cryptanalytic Attack Using Partial Information of Secret Key
	4.2 Attack Complexity
	4.3 Experimental Results

	5 Attack Countermeasure
	6 Conclusions
	References

	Improved Blind Side-Channel Analysis by Exploitation of Joint Distributions of Leakages
	1 Introduction
	2 Background and Original Linge's Attack
	2.1 Notations
	2.2 The Original Attack

	3 Improved Joint Distribution Analysis
	3.1 Maximum Likelihood Criterion
	3.2 Estimating the Hamming Weights
	3.3 Experimental Results

	4 Implementations Protected by Boolean Masking
	4.1 Variants m-y and m-x-y
	4.2 Variant m-x

	5 Joint Distribution Analysis with Knowledge of the Plaintext
	5.1 First-Order Attack
	5.2 Second-Order Attack

	6 Concrete Experiments
	7 Applications and Possible Countermeasures
	7.1 Applications
	7.2 Possible Countermeasures

	8 Conclusion
	References
	A Determination of the Sign of

	Convolutional Neural Networks with Data Augmentation Against Jitter-Based Countermeasures
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Profiling Side-Channel Attack
	2.3 Neural Networks and the Multi-layer Perceptron
	2.4 Practical Aspects of the Training Phase and Overfitting

	3 Convolutional Neural Networks
	3.1 Description of the CNNs
	3.2 Data Augmentation

	4 Application to Software Countermeasures
	5 Application to Hardware Countermeasures
	5.1 Performances over Artificial Augmented Clock Jitter
	5.2 Performances on a Secure Smartcard

	6 Conclusions
	References
	A Discussion about Software Countermeasures

	CacheZoom: How SGX Amplifies the Power of Cache Attacks
	1 Motivation
	1.1 Our Contribution

	2 Background
	2.1 How Intel SGX Works
	2.2 Microarchitectural Attacks in SGX
	2.3 The Prime+Probe Attack

	3 Related Work
	4 Creating a High-Resolution Side Channel on Intel SGX
	4.1 Attacker Capabilities
	4.2 CacheZoom Design
	4.3 CacheZoom Implementation
	4.4 Testing the Performance of CacheZoom

	5 Attack on AES
	5.1 Cache Attacks on Different AES Implementations
	5.2 Non-vulnerable AES Implementations
	5.3 Cache Prefetching as a Countermeasure

	6 CacheZooming SGX-Based AES
	6.1 T-Table Implementations
	6.2 S-Box Implementation

	7 Conclusion
	References

	Higher Order Countermeasures
	High-Order Conversion from Boolean to Arithmetic Masking
	1 Introduction
	2 Security Definitions
	3 Goubin's First-Order Conversion and Previous Works
	3.1 Goubin's Algorithm
	3.2 t-SNI Variant of Goubin's Algorithm
	3.3 High-Order Conversion Between Boolean and Arithmetic Masking

	4 High-order Conversion from Boolean to Arithmetic Masking
	4.1 A Simple but Insecure Algorithm
	4.2 Mask Refreshing
	4.3 Secure Conversion from Boolean to Arithmetic Masking
	4.4 Basic Properties of RefreshMasks
	4.5 Property of the Initial RefreshMasks
	4.6 More Results on RefreshMasks
	4.7 Proof of Theorem 3

	5 Cryptanalysis of the Hutter-Tunstall Boolean to Arithmetic Conversion Algorithm
	5.1 Attack of Order 4 Against n-th Order Countermeasure
	5.2 Attack of Order n Against the n-th Order Countermeasure

	6 Operation Count and Implementation
	References
	A Formal Description of the High-order Boolean to Arithmetic Conversion

	Reconciling d+1 Masking in Hardware and Software
	1 Introduction
	2 Boolean Masked Multiplication
	3 A Unified Masked Multiplication Algorithm
	3.1 Full Description of UMA

	4 UMA in Hardware
	5 Practical Evaluation on Ascon
	5.1 Proposed Hardware Design
	5.2 Implementation Results

	6 Side-Channel Evaluation
	7 Discussion on the Randomness Costs and Conclusions
	References

	Changing of the Guards: A Simple and Efficient Method for Achieving Uniformity in Threshold Sharing
	1 Introduction
	1.1 The ``Changing of the Guards'' Idea in a Nutshell
	1.2 Notation
	1.3 Overview of the Paper

	2 The Basic Method Applied to 3-Share Threshold Schemes
	3 Generalization to Any Invertible S-box Layer
	4 Application to the Sharing ' for Keccak
	4.1 The Sharing ' of the Nonlinear Layer in Keccak
	4.2 The Multi-transformation Property
	4.3 Using the Multi-transformation Property of '

	5 Implementation Aspects
	5.1 Compatibility with Serial Decomposition of S-boxes
	5.2 Implementation Cost in Parallel Architectures
	5.3 Implementation Cost in Serial Architectures

	6 Conclusions
	References

	Generalized Polynomial Decomposition for S-boxes with Application to Side-Channel Countermeasures
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 Notations and Notions
	2.2 S-box Characterization

	3 Multiplicative Complexity Lower Bound
	4 Generalized Decomposition Method
	4.1 Decomposition of a Single Coordinate Function
	4.2 S-box Decomposition
	4.3 Basis Selection
	4.4 Optimal Parameters

	5 Experimental Results
	6 Implementation
	References

	Emerging Attacks I
	Nanofocused X-Ray Beam to Reprogram Secure Circuits
	1 Introduction
	2 Nanofocused X-Ray Beam
	2.1 Experiment Setup
	2.2 Local Positioning on the Device Under Test by X-Ray Fluorescence
	2.3 X-Ray Interaction

	3 Experimental Results
	3.1 RAM
	3.2 Non Volatile Memories
	3.3 Comparison with Laser Attacks

	4 Real Attack on Flash Program
	5 Conclusion
	References

	Novel Bypass Attack and BDD-based Tradeoff Analysis Against All Known Logic Locking Attacks
	1 Introduction
	2 Background and Related Work
	2.1 SAT Attacks on Logic Locking
	2.2 Notation and Terminology
	2.3 SAT-Resistant Logic Locking
	2.4 Other Attacks

	3 Bypass Attack: Definition and Methodologies
	3.1 Adversarial Model/Capabilities
	3.2 Our Method: Bypass Attack
	3.3 Bypass Attack on SARLock
	3.4 Bypass Attack on SARLock+SLL
	3.5 Bypass Attack on Anti-SAT

	4 Experimental Results and Discussion
	4.1 Experimental Setup
	4.2 Comparison to State-of-the-Art

	5 Countermeasure Exploration and Trade-Off Assessment
	5.1 Binary Decision Diagram
	5.2 Parametric Tests

	6 Conclusion
	References
	A Bypass Attack on Anti-SAT with Secure Integration

	Post Quantum Implementations
	McBits Revisited
	1 Introduction
	2 Building Blocks
	3 The Beneš Network
	4 The Gao--Mateer Additive FFT
	5 The Berlekamp-Massey Algorithm
	6 The Complete Cryptosystem
	References

	High-Speed Key Encapsulation from NTRU
	1 Introduction
	2 Preliminaries
	3 OW-CPA-secure NTRU Encryption
	3.1 Parameters
	3.2 Key Generation
	3.3 OW-CPA Encryption
	3.4 Simplified Sampling
	3.5 Correctness

	4 NTRU Parameters for 128-bit Post-quantum Security
	5 CCA2-secure Key-Encapsulation Mechanism
	6 Implementation
	6.1 Polynomial Multiplication
	6.2 Inverting Polynomials

	7 Results and Comparison
	References

	FPGA-based Key Generator for the Niederreiter Cryptosystem Using Binary Goppa Codes
	1 Introduction
	2 Niederreiter Cryptosystem and Key Generation
	2.1 Key Generation Algorithm
	2.2 Structure of the Paper
	2.3 Reference Parameters and Reference Platform

	3 Field Arithmetic
	3.1 GF(2m) Finite Field Arithmetic
	3.2 GF(2m)[x]/f Polynomial Arithmetic

	4 Key Generator Modules
	4.1 Gaussian Systemizer
	4.2 Gao-Mateer Additive FFT
	4.3 Random Permutation: Fisher-Yates Shuffle

	5 Key Generator for the Niederreiter Cryptosystem
	5.1 Private Key Generation
	5.2 Public Key Generation

	6 Design Testing
	7 Evaluation
	8 Conclusion
	References

	Cipher & Protocol Design
	Blockcipher-Based Authenticated Encryption: How Small Can We Go?
	1 Introduction
	2 Preliminaries
	3 Combined Feedback Mode
	4 COFB: A Small-State, Rate-1, Inverse-Free AE Mode
	5 Security of COFB
	6 Hardware Implementation of COFB
	6.1 Overview
	6.2 Hardware Architecture
	6.3 Implementation Results
	6.4 Comparison with ATHENa Database

	7 Conclusion
	References

	GIMLI: A Cross-Platform Permutation
	1 Introduction
	2 GIMLI Specification
	3 Understanding the GIMLI Design
	4 Security Analysis
	4.1 Diffusion
	4.2 Differential Cryptanalysis
	4.3 Algebraic Degree and Integral Attacks

	5 Implementations
	5.1 FPGA and ASIC
	5.2 SP-box in Assembly
	5.3 8-bit Microcontroller: AVR ATmega
	5.4 32-bit Low-End Embedded Microcontroller: ARM Cortex-M0
	5.5 32-bit High-End Embedded Microcontroller: ARM Cortex-M3
	5.6 32-bit Smartphone CPU: ARM Cortex-A8 with NEON
	5.7 64-bit Server CPU: Intel Haswell

	References
	A Appendices

	GIFT: A Small Present
	1 Introduction
	2 Specifications
	3 Design Rationale
	3.1 The Designing of GIFT
	3.2 Designing of GIFT Bit Permutation
	3.3 Selection of GIFT Sbox
	3.4 Designing of GIFT Key Schedule

	4 Security Analysis
	4.1 Differential and Linear Cryptanalysis
	4.2 Integral Attacks
	4.3 Impossible Differential Attacks
	4.4 Meet-in-the-Middle Attacks
	4.5 Invariant Subspace Attacks
	4.6 Nonlinear Invariant Attacks
	4.7 Algebraic Attacks

	5 Hardware Implementation
	5.1 Round Based Implementation
	5.2 Serial Implementation

	6 Software Implementation
	References

	Making Password Authenticated Key Exchange Suitable for Resource-Constrained Industrial Control Devices
	Abstract
	1 Introduction and Motivation
	2 Organization of This Paper
	3 Security Requirements and Implementation Constraints
	4 Review of PAKE Protocols from the Perspective of Resource-Constrained Devices
	5 Review of the Password-Authenticated Connection Establishment (PACE) Protocol
	6 Tailoring of PACE for Resource-Constrained Devices
	6.1 Choosing the Field
	6.2 Selection of Appropriate Elliptic Curve Groups
	6.3 Tailoring on the Protocol Level
	6.4 Exploring the Potential of Reduced Security Parameters

	7 Curve19119: A Little Brother of Curve25519
	8 Putting It Together: PACE on the ARM Cortex M0
	8.1 Symmetric Encryption
	8.2 Cryptographic Hash
	8.3 Point Verification for PACE
	8.4 Map2Point Protocol Substep
	8.5 Diffie-Hellman Protocol
	8.6 Implementation Strategy Regarding Absence of Energy Buffers: Asynchronous Crypto Engine (ACE)

	9 Experimental Results and Discussion
	9.1 Environment Used for Collecting Experimental Data
	9.2 Efficiency Results for Asymmetric Cryptography
	9.3 Efficiency Figures Regarding the Asynchronous ACE Engine
	9.4 Assessment of the User-Perceived Login Delay

	10 Summary
	Acknowledgements
	Concluding remark
	References

	Security Evaluation
	Back to Massey: Impressively Fast, Scalable and Tight Security Evaluation Tools
	1 Introduction
	2 Background: Side-Channel Attacks and Key Enumeration
	3 Experimental Data
	3.1 Template Attacks

	4 Security Metrics
	4.1 Guessing Entropy
	4.2 Conditional Entropy

	5 Tight Bounds for Guessing Entropy
	5.1 Bounds for Massey's Guessing Entropy from Probabilities
	5.2 Bounds from Conditional Entropy

	6 Impressive Scaling: Scalable Bounds for Guessing Entropy
	6.1 Using Bounds of GM for Evaluation of Full Key
	6.2 Using Bounds of H(K|L) for Evaluation of Full Key
	6.3 GM Bounds from Element Positioning
	6.4 GM Bounds Versus the FSE 2015 Rank Estimation
	6.5 GM Bounds Versus Rank Estimation Algorithms

	7 Conclusion
	References
	A GM bounds from element positioning

	Fast Leakage Assessment
	1 Introduction
	2 Leakage Assessment
	3 Fast Leakage Assessment
	4 Implementation
	5 Performance Analysis
	5.1 Analytical
	5.2 Empirical
	5.3 Scaling

	6 Discussion
	6.1 Comparison with Other Approaches
	6.2 Parallelization
	6.3 Bonuses
	6.4 DPA Attacks
	6.5 Deployment

	7 Conclusion
	A Benchmark of Schneider and Moradi
	References

	FPGA Security
	Your Rails Cannot Hide from Localized EM: How Dual-Rail Logic Fails on FPGAs
	1 Introduction
	2 Dual-Rail Routing and Placement
	3 Placement on FPGAs
	3.1 Simulated Annealing
	3.2 Cost Functions

	4 Custom Placer and Design Implementation
	4.1 Custom Placer
	4.2 Design Implementation

	5 Measurement Setups
	5.1 Notations
	5.2 Signal-to-Noise-Ratio (SNR)
	5.3 High Resolution EM Measurement Setup
	5.4 Power Measurement Setup

	6 Practical Investigations
	6.1 Concept of Investigations
	6.2 Power Measurement Results for Default ISE Placement (Set 1)
	6.3 Localized-EM Measurement for Default ISE Placement (Set 1)
	6.4 Comparing Localized EM and Power Measurements
	6.5 Security Analysis of the Custom Placement

	7 Conclusion
	References

	How to Break Secure Boot on FPGA SoCs Through Malicious Hardware
	1 Introduction
	2 On the Security of Embedded Systems
	3 Attacking the Secure Boot on FPGA SoCs
	4 Relevant Properties of the Xilinx Zynq-7000
	4.1 Secure Boot Process on the Xilinx Zynq-7000

	5 Proof of Concept: Breaking the Secure Boot on Xilinx Zynq-7000
	5.1 Discussions and Generalizations

	6 Wrapper Countermeasure
	7 Conclusion
	References

	Emerging Attacks II
	Illusion and Dazzle: Adversarial Optical Channel Exploits Against Lidars for Automotive Applications
	1 Introduction
	2 Background
	2.1 Lidar
	2.2 Sensor Attacks

	3 Attack Methods
	3.1 Target System
	3.2 Attack Model
	3.3 Saturating
	3.4 Spoofing by Relaying

	4 Experiments
	4.1 Experimental Setup
	4.2 Saturating
	4.3 Spoofing by Relaying

	5 Discussion
	5.1 Practical Consideration for Attack Deployment
	5.2 Potential Countermeasures
	5.3 Other Points

	6 Related Work
	7 Conclusion
	References

	Hacking in the Blind: (Almost) Invisible Runtime User Interface Attacks
	1 Introduction
	2 Problem Statement
	2.1 Limitations of Known Attacks
	2.2 Our Goal: Adaptive Runtime Attacks

	3 Hacking in the Blind
	3.1 Simple Techniques
	3.2 State Tracking
	3.3 User Interface Fingerprinting
	3.4 Attack Launch Techniques
	3.5 Attack Device Protoype

	4 Case Study: Pacemaker Programmer UI
	5 Case Study: Online Banking UI
	6 Countermeasures
	7 Discussion
	8 Related Work
	9 Conclusions
	References

	On the Security of Carrier Phase-Based Ranging
	1 Introduction
	2 Background
	2.1 Phase-Based Ranging
	2.2 Multicarrier Phase Ranging
	2.3 Commercial Phase Ranging Systems

	3 Security of Phase Ranging Systems
	3.1 Distance Decreasing Relay Attacks
	3.2 Phase-Slope Rollover Attack
	3.3 RF Cycle Slip Attack
	3.4 On-the-fly Phase Manipulation Attack

	4 Experimental Evaluation
	4.1 Practical Demonstration of the Attack
	4.2 Theoretical Evaluation

	5 Effectiveness of Countermeasures
	5.1 Frequency Hopping
	5.2 Rough Time-of-Flight Estimation
	5.3 Phase-Shifted Response Signal

	6 Related Work
	7 Conclusion
	References

	Side Channel Analysis II
	Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption
	1 Introduction
	2 Lattice-Based Encryption and Implementation
	2.1 Lattice-Based Public-Key Encryption
	2.2 Efficient Implementation
	2.3 Side-Channel Protection of RLWE Encryption

	3 Soft-Analytical Side-Channel Attacks
	3.1 Belief Propagation

	4 Attack Step 1: Side-Channels in an NTT Butterfly
	4.1 The NTT as Side-Channel Target
	4.2 Measurement Setup and Implementation
	4.3 Real-Device Side-Channel Analysis
	4.4 A Simplified Model

	5 Attack Step 2: Belief Propagation in the NTT
	5.1 Factor-Graph Construction
	5.2 BP Runtime Estimation Without Optimization
	5.3 Runtime Optimizations
	5.4 BP on Subgraphs

	6 Attack Step 3: Lattice Decoding
	6.1 Generating Linear Equations in the Key
	6.2 Key Recovery Using Lattice Reduction

	7 Attack Results and Conclusion
	7.1 Real Device
	7.2 Hamming-Weight Model
	7.3 Conclusion

	References

	A Systematic Approach to the Side-Channel Analysis of ECC Implementations with Worst-Case Horizontal Attacks
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Elliptic Curves Cryptography (ECC)

	3 Systematic Approach
	3.1 Generic Scalar Multiplication Architecture
	3.2 Information Extraction
	3.3 Information Combination
	3.4 ECDH vs. ECDSA

	4 Experimental Results on Cortex-M4
	4.1 Target Implementation
	4.2 Device and Setup
	4.3 Identifying and Extracting the Information
	4.4 Information Combination

	5 Experimental Results on Cortex-A8
	5.1 Device and Setup
	5.2 Preprocessing
	5.3 Information Combination

	6 Conclusion
	References

	Sliding Right into Disaster:Left-to-Right Sliding Windows Leak
	1 Introduction
	1.1 Contributions
	1.2 Targeted Software and Current Status

	2 Preliminaries
	2.1 RSA-CRT
	2.2 Sliding Window Modular Exponentiation
	2.3 Sliding Window Conversion
	2.4 GnuPG's Sliding Window Exponentiation

	3 Sliding Right Versus Sliding Left Analysis
	3.1 Analyzing the Square and Multiply Sequence
	3.2 Analyzing Recovery Rules
	3.3 Experimental Verification
	3.4 Full RSA Key Recovery from Known Bits

	4 RSA Key Recovery from Squares and Multiplies
	4.1 Pruning from Squares and Multiplies
	4.2 Algorithm Analysis
	4.3 Experimental Evaluation for w=4
	4.4 Experimental Evaluation for w=5

	5 Attacking Libgcrypt
	5.1 The Side-Channel Attack
	5.2 Results

	References

	Encoding Techniques
	Faster Homomorphic Function Evaluation Using Non-integral Base Encoding
	1 Introduction
	2 Encoding Data Using w-NIBNAF
	3 Analysis of Coefficient Growth During Computation
	4 Practical Impact
	5 Conclusions
	References
	A Proofs

	Hiding Secrecy Leakage in Leaky Helper Data
	1 Introduction
	1.1 Contributions
	1.2 Organization
	1.3 Notation

	2 State of the Art Debiasing Approaches for PUFs
	2.1 Index-Based Syndrome Coding
	2.2 Von Neumann Corrector

	3 Wiretap Channel and Coset Codes
	4 Wiretap Channel Model for PUFs
	5 Wiretap Coset Codes for PUFs
	6 Evaluation
	6.1 Exact Computations for Short Codes
	6.2 Upper Bounds for Long Codes
	6.3 Comparison with the State of the Art

	7 Conclusion
	References

	Efficient Implementations
	Very High Order Masking: Efficient Implementation and Security Evaluation
	1 Introduction
	2 Background
	2.1 Barthe et al.'s Parallel Masking Algorithm
	2.2 Target Algorithms
	2.3 Target Device and Measurement Setups

	3 Efficient Implementations
	3.1 Cipher Independent Components
	3.2 Cipher Dependent Components
	3.3 Performance Evaluation

	4 Side-Channel Security Evaluation
	4.1 Rationale: A Multi-model Approach
	4.2 Bounded Moment Security and Security Order
	4.3 Noisy Leakage Security and Information Theoretic Analysis

	References

	PRESENT Runs Fast
	1 Introduction
	2 Related Work
	3 The PRESENT Block Cipher
	4 Efficient Implementation
	5 Side-Channel Countermeasures
	5.1 Protecting Against Timing Attacks
	5.2 Masking the Implementation

	6 Implementation Details and Results
	6.1 Target Architecture
	6.2 Main Results
	6.3 Vector Implementation Using NEON
	6.4 Comparison with Related Work

	7 Conclusion
	References

	FourQ on Embedded Devices with Strong Countermeasures Against Side-Channel Attacks
	1 Introduction
	2 Preliminaries: FourQ
	2.1 Cofactor Elliptic Curve Diffie-Hellman Key Exchange

	3 Implementation Details on AVR, MSP and ARM
	3.1 Implementation of Arithmetic over F(2127-1)2
	3.2 Implementation on 8-Bit AVR ATmega
	3.3 Implementation on 16-Bit MSP430X
	3.4 Implementation on 32-Bit ARM Cortex--M4

	4 Results and Analysis of Constant-Time Implementations
	5 Side-Channel Countermeasures
	5.1 Specialized Side-Channel Countermeasures for FourQ
	5.2 Protected Scalar Multiplication

	6 Side-Channel Evaluation: Case Study with Cortex--M4
	References

	Bit-Sliding: A Generic Technique for Bit-Serial Implementations of SPN-based Primitives
	1 Introduction
	2 Bit-Sliding Implementation Technique
	2.1 Substitution-Permutation Networks
	2.2 Implementation Trade-Offs
	2.3 Data Path Reduction and Flip-Flops
	2.4 The Bit-Sliding Strategy
	2.5 Bit-Serializing Any Sbox
	2.6 Previous Serial SPN Implementations

	3 Application to AES-128
	3.1 Optimizations of the Components
	3.2 Bit-Serial Implementations of AES-128 Encryption
	3.3 Bit-Serial AES-128 Encryption and Decryption Core
	3.4 Extension to Higher Bit Lengths
	3.5 Results

	4 Application to PRESENT
	4.1 Optimization of the Components
	4.2 Bit-Serial Implementations of PRESENT
	4.3 Extension to Higher Bit Lengths
	4.4 Results

	5 Conclusion
	References

	Author Index

