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Chapter 3
Oleaginous Biomass for Biofuels, Biomaterials, 
and Chemicals

Simone P. Favaro, Cesar H.B. Miranda, Fabricio Machado, Itânia P. Soares, 
Alan T. Jensen, and Anderson M.M.S. Medeiros

Abstract Concerns about negative environmental impacts and questions of future 
availability surrounding the long-term use of fossil sources as a basis for production 
of fuels, and a plethora of derivatives, are matters of increasing importance. 
Consequently, plant biomass sources capable of efficiently replacing fossil fuel 
resources are gaining relevance as biofuels and in the oleochemical industry. The 
array of chemical compositions of vegetable oils and fats, the possibility of produc-
ing biomass in a sustainable way, and the development of routes for their transfor-
mation are the main drivers of this growing demand. This chapter covers topics of 
global production and consumption of the principal vegetable oil commodities, the 
comparative chemical composition of oils and fats, the potential use of the biologi-
cal storage structures of oils and fats, the main processes of transforming oils into 
biofuels, and the production of bio-based polymers. Also, mechanisms of the func-
tionalization of vegetable oils are stressed.

Keywords Oleochemistry • Fatty acids • Biodiesel • Polymers • Vegetable oils

3.1  Introduction

Lipids are important sources of food and renewable energy (Christie 2017; 
Cyberlipid Center 2017). Lipids encompass oils, fats, greases, steroids, cholester-
ols, lipid-soluble vitamins, and phospholipids and are the basis for a range of prod-
ucts, from personal care to the hardware industry. Conceptually, lipids are 
compounds that are insoluble in water but soluble in organic solvents such as ether, 
benzene, and alcohols. Oils and fats are the main commodities within lipids and are 
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the basis for the oleochemical industry. Their main market and their applications are 
in the food industry, but since 2001 a significant part of their increasing use is for 
biofuels production, especially biodiesel (Knothe 2010; Gunstone 2013).

The world production of fats and vegetable oils has increased steadily in the past 
25 years, reaching 206 million tons in 2016 (USDA 2017). Although many promis-
ing oleaginous plant species are available in the wild, around 94% of the world’s 
production comes from the seven best known sources (Fig. 3.1). Since 2004, palm 
oil (Elaeis guineensis) has become the main commodity produced and consumed, 
surpassing soybean (Glycine max), the long-standing leader. Considering its pulp 
and kernel oil, palm oil accounts for 38% of world production, followed by soy-
beans with 29% (Fig. 3.1).

The hydric and temperature needs of palm oil for productive growth and yield 
require its cultivation to be concentrated between parallels 10° north or south of the 
equator, whereas soybeans can be grown in a wider dispersion area. The main rea-
sons for palm oil predominance as an industry base product are its desirable physi-
cochemical characteristics and oil productivity. Averaging 3500  kg oil/ha 
(10,000 m2), it can produce more than 6000 kg/ha, about tenfold the productivity of 
soybean, which supported the oleochemical industry for several decades and is still 
of great use. The soybean was domesticated in China more than 3000 years ago, and 
for centuries its oil provided light to cities and meal for animal feed. In the first 
quarter of the twentieth century, the soybean arrived in Europe and then the United 
States (USA), being then used mainly for industrial purposes to produce inks, var-
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Fig. 3.1 Overview of the world’s principal vegetable oil sources and production in 2017 (From 
USDA (2017))
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nishes, coatings, soap stocks, lubricants, and textiles. After soybean crushers were 
established in the USA, solvent extraction processes were developed and its oils 
replaced cotton and linseed oils, and, later, tallow. The need to feed the troops and 
the limitations on oil imports during the Second World War led to further develop-
ment of soybean agricultural production systems and technological processes 
(Johnson and Myers 1995; Shurtleff and Aoyagi 2015). Nowadays soybean oil is 
mostly consumed as an edible oil. With the surge in biodiesel production it is filling 
a dual purpose, with strong environmental appeal: oil (food, fuel, oleochemical) and 
the world’s leading source of high-quality vegetable protein.

The oleochemical industry also absorbs around 12 × 106 ton from several other 
oil sources, usually of local importance, which depends on their availability and the 
potential application of their added value. A good example is castor oil (Ricinus 
communis), which is used to produce specialized lubricants and coatings (McKeon 
2016; Patel et al. 2016), and animal fats, used in biodiesel production (Bousba et al. 
2013; Van Gerpen 2014). The usage of a given oil source is basically defined by the 
characteristics and proportions of its fatty acids profile. These fatty acids are the 
drivers of the technological routes that can be used and the final products to be 
obtained. As details on lipid structure and labeling are abundant in the literature 
(Lehninger et al. 2000; Scrimgeour 2005), this chapter focuses on the utilization of 
oils and fats in renewable chemistry.

3.1.1  Oils and Fats

The major components of oils and fats are glycerol-esterified fatty acids, which, as 
triols, can form mono-, di-, or triglycerides. In general, triglycerides (TAGs) pre-
dominate in the composition of oils and fats (Fig. 3.2).

Fatty acids are unbranched carbon chains, varying from 4 to 22 carbons, with a 
terminal carboxyl group. They are called saturated when all carbons are linked by 
single bonds and unsaturated when one or more carbons are linked with double 
bonds. With a single double bond, they are monounsaturated, and polyunsaturated 
when they contain two or more double bonds (Fig. 3.3).

The amphiphilic nature of fatty acid molecules causes oil to be stored intracel-
lularly inside the organelles of oleaginous plants, called body oils (BOs) (Fig. 3.4), 
rather than storage as a dispersed continuous layer (Purkrtova et al. 2008). The BO 
structural model shows the TAG matrix encompassed within a phospholipid mono-
layer (Lin and Tzen 2004; Tzen et al. 1993), protected by a layer of structural pro-
teins, predominantly oleosines (Huang 1992; Furse et al. 2013). The polar side is 
exposed to the cytosol, and the acyl group turns inside and interacts with TAGs 
(Beisson et al. 1996).

Figure 3.5 shows an example of body oil (BO) structures in the pulp and nut of 
the fruit of the macauba palm (Acrocomia aculeata), both of which contain high 
levels of oil (Lescano et al. 2015). The spherical fruit contains lipid bodies embed-
ded in the cytoplasm. The oil bodies (OB) are scattered in the pulp, which is rich in 
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fibers (Fig. 3.5a). Nuts, in addition to their richness in oil, also have a significant 
amount of protein that is also stored as individualized structures (protein bodies, 
PB) (Fig. 3.5b).

The emulsifying character of BO allows the development of nano-emulsions 
capable of carrying hydrophobic molecules as functional components, antioxidant 
metabolites, vitamins, and drugs, among others (Zhao et al. 2016). Thus, they can 
be added to the formulation of foodstuffs (Nikiforidis et al. 2014), pharmaceuticals 
(Hou et al. 2003), and cosmetics (Marcoux et al. 2004) or utilized as biotechnologi-
cal tools (Peng et al. 2004; Leng et al. 2016; Montesinos et al. 2016).

In fact, the development of oleaginous biomass-based products goes beyond the 
regular usage of extracted plant oils and fats. The industry of renewable derivatives 
is a fertile ground for the use of the original matrix of the vegetal tissue, or the prod-
ucts obtained by their modification.
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3.1.2  Fatty Acids Composition

There is a broad variety of fatty acids composition in nature, varying as functions of 
oleaginous plant species, the storage organ, and intraspecies variability. Fatty acid 
composition also is influenced by environmental determinants of plant growth, such 
as soil characteristics and climate, as well as general post-harvest conditions. 
Table 3.1 was constructed to show a general view of fatty acids profiles of sources 

Fig. 3.4 Body oil structural model

Fig. 3.5 Body oil (bo) and body protein (pb) in macauba (Acrocomia aculeata) pulp (a) and ker-
nel (b). a Light microscopy of pulp body oil colored in red with Sudan III (Reis et  al. 2012) 
(Reproduced with permission. Copyright © Rodriguesia). b Transmission electron microscopy of 
kernel (Moura et al. 2010) (Reproduced with permission. Copyright © Scientia Agricola)
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Fig. 3.6 Composition of saturated, monounsaturated, and polyunsaturated fatty acids in fats and 
oils

that predominantly produce saturated fatty acids up to those with highly unsaturated 
profiles. The iodine value (IV) is also presented. IV is a reference index for the 
identity of the producing source, and expresses the total unsaturation of a given oil 
or fat. IV is largely utilized by the industry as a referential to estimate the melting 
point and the oxidative stability, being also a quality control measurement of hydro-
genation. More accurate methodologies have been developed to relate fatty acid 
composition to the physicochemical properties of the oils (Knothe 2002), but IV is 
still commonly used in processes with oleaginous plants and as determinant param-
eter in oils and fats trading. The mean values of fatty acids shown in Table 3.1 and 
Fig. 3.6 were assembled to illustrate the composition of the oils in saturated, mono-, 
and polyunsaturated fatty acids. The information contained in both table and figure 
contributes to the selection of an oil, or even to establishing mixtures of oils for 
specific applications.

Palm nuts are the primary sources of saturated fatty acids (Table 3.1 and Fig. 3.6). 
The indaia palm (Attalea dubia) has the lowest IV, with 100% saturated fatty acids, 
followed by coconut (Cocos nucifera), with IV up to 10.6. On the other hand, tallow 
is the most representative saturated animal fat in use, mainly for biodiesel produc-
tion (Esteves et al. 2017). On the other extreme are oils from flaxseed (Linum usita-

S.P. Favaro et al.
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tissimum, IV from 170 to 196) and pomegranate (Punica granatum, IV 212 to 212). 
Oils from crambe (Crambe abyssinica), tung (Vernicia fordii), and castor show less 
than 3% saturation. Tung, pomegranate, and flaxseed are rich polyunsaturated 
sources by the presence of three unsaturations. On the other hand, olive oil and 
macauba pulp oil show a high proportion of monounsaturation, being rich in oleic 
acid. Castor oil monounsaturation is the result of the high proportion of ricinoleic 
fatty acid, which is differentiated from others because it is a hydroxy acid. Erucic 
acid is responsible for the high proportion of monounsaturations in Crambe.

3.2  Vegetable Oils as Biofuels

Research in the usage of vegetable oils as fuel usually aims to replace the fossil 
fuels gasoline, kerosene, and diesel, derived from petrol. Gasoline is mainly a mix-
ture of chained hydrocarbons, varying from 4 to 12 carbons, obtained by distillation 
of petrol in a temperature range of 30 °–220 °C; kerosene is a mixture of chained 
hydrocarbons, varying from 8 to 18 carbons, obtained by distillation within a 
150 °–300 °C temperature range; and diesel is a combination of several classes of 
aliphatic, naphthenic, and aromatic hydrocarbons, and a lower concentration of 
some composts containing sulfur, nitrogen, and oxygen in a chain of 8–40 carbons 
(Haddad et al. 2012).

It is possible to regulate and optimize engines to work in accordance with the 
characteristics of a given fuel, bearing in mind that combustion is influenced by fuel 
density, viscosity, volatility, and oxidative stability. Apparently, at the beginning of 
the twentieth century, Rudolph Diesel, inventor of the Diesel cycle engine, success-
fully tested vegetable oils (Knothe 2001). However, their direct use in current 
engines may cause carbon deposition, injector blocking, and incomplete combus-
tion because of their high viscosities, low volatilities, and polyunsaturated charac-
ter, among others (Soares et al. 2008). On the other hand, small modifications in the 
injection system, or preheating of the fuel line or the fuel itself, can be an alternative 
solution to run stationary engines and gas turbine engines fully on vegetable oils 
alone, with some “green” advantages such as their low embodied fossil energy and 
renewable performance (Soo-Young 2017).

In this sequence, we present the main processes related to the usage of vegetable 
oils as fuels.

3.2.1  Vegetable Oil Micro-Emulsions

Micro-emulsions are small liquid drops of 100–1000 Å formed when two immiscible 
liquids and a surfactant are mixed, resulting in a system macroscopically homoge-
neous and thermodynamically stable (Attaphong and Sabatini 2012). Oil is used as a 
nonpolar phase, with the polar phase being an alcohol, plus a surfactant of 
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intermediary polarity (Fig. 3.7). The composition of these components can be rear-
ranged in a phase diagram, forming an area of micro-emulsion that can reduce as much 
as ten times the viscosity of a vegetable oil, although it may give incomplete burning.

3.2.2  Vegetable Oil Cracking

Free fatty acids can be obtained from triglycerides of a vegetable oil after thermal 
decomposition in the temperature range 300 °–500 °C, releasing, after deoxygenation, 
chained hydrocarbons such as those present in gasoline, up to diesel (Speight 2008).

Cracking may be thermic or thermocatalytic. In the latter, a catalyst is added to 
redirect the catalytic route and generate a given product, with the advantage of pro-
cessing at a lower temperature (Zhao et al. 2017). An example is the use of mesopo-
rous matrixes of silica to generate hydrocarbons in the diesel range (Soltani et al. 
2017). Several zeolites have also shown activity in cracking reactions, being useful 
as support to some metals (Emori et al. 2017). A scheme for a vegetable oil cracking 
is shown in Fig. 3.8.

3.2.3  Transesterification/Esterification

A transesterification reaction happens between an oil or a fat and an alcohol, usually 
of short length, in the presence of a catalyst and heating with the release of a mono-
alkyl ester (Fig. 3.9). If the reaction is between a free triglyceride and an alcohol, it 
is then called esterification, in which case it is necessary to use an acid catalyst to 
avoid neutralization reactions.
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The resulting monoalkyl ester shows characteristics similar to those of diesel 
derived from petrol (Table 3.2), being then denominated as biodiesel (Knothe 2016). 
Biodiesel may be used as a fuel of its own or in blends with diesel oil. Both their 
specific mass and viscosity are close, but calorific value of biodiesel is lesser, 
because it contains more oxygenated molecules.

In the transesterification/esterification reactions, both homogeneous and hetero-
geneous (acids and bases) catalysts may be used, either chemical or enzymatic 
(Akoh et al. 2007). Nowadays, industrial processes of transesterification mostly use 
homogeneous base catalysts, whereas esterification processes are mostly based on 
homogeneous acid catalysts.

An alternative process is hydroesterification, by which a triglyceride is hydro-
lyzed to glycerol and acid, and then the acid is converted to ester by esterification. 
Such a process is preferred when the fatty raw material shows high acidity, and the 
excess free fatty acids may be an inconvenient path to transesterification 
(Pourzolfaghar et al. 2016).
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Fig. 3.9 Transesterification 
reaction scheme

Table 3.2 Characteristics of 
diesel derived from petrol and 
of biodiesel

Property Diesel oil Biodiesel

Specific mass (kg l−1) 0.883 0.880
Calorific value (MJ−/l−1) 38.3 33.3
Viscosity (mm2/s at 
40 °C)

3.86 4.70
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3.2.4  Biodiesel Production

In the past decade, biodiesel production has gained worldwide projection. Nowadays, 
64 countries around the world have either targets or mandates to use biofuels, a 
broad term that includes biodiesel or bioethanol (Biofuelsdigest 2016). Also, the 
biodiesel production technologies acquired a maturity stage during this time.

The biodiesel industry is based on a few raw material sources, resulting from 
adjusting well-established crop production systems around the world. Thus, soy-
bean, canola oil, palm oil, cotton seed, and sunflower seed are the main sources in 
use. In each case, attention is necessary for their saturated and polyunsaturated fatty 
acids contents, because they may affect the cold flow and stability of the resulting 
biodiesel. Independently of the oleaginous source used, the use of biodiesel as an 
alternative fuel has resulted in important environmental, social, and economic gains. 
The USA (5.5 billion l) and Brazil (3.8 billion l) are the world’s largest producers so 
far, but Argentina, Germany, and Indonesia are also important (Fig.  3.10) (The 
Statistics Portal, 2017).

3.2.4.1  Biodiesel Quality

Despite its physicochemical similarity to diesel oil, biodiesel has some particulari-
ties that need to be looked after when blending it (Rodrigues et al. 2017). It is less 
stable than diesel, because of the unsaturated chains, caused by oxygen; absorbs 
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water in an easier pattern; and may be obtained from several oleaginous sources, 
with different chemical and fatty acids profiles. Because of these characteristics, 
most countries have devised strict policies for quality control of biodiesel use and 
its blend with diesel (seen in Table 3.3).

Most countries have applied their own legislation regarding biodiesel quality, but 
for some parameters there is not a given mandatory specific range. In this case, 
results are monitored and checked for more detailed evaluation if values are far 
outliers.

Table 3.3 Biodiesel standards in Europe, USA, and Brazil

Biodiesel standards Europe USA Brazil

Specification EN 14214:2012 ASTM D 6751-15 Res. 45/2014
Density 15 °C g (cm3)−1 0.86–0.90 0.85–0.9 

(20 °C)
Viscosity 40 °C mm2/s 3.5–5.0 1.9–6.0 3.0–6.0
Distillation % / °C 90%, 360 °C
Flashpoint (Fp) °C 101 min 93 min 100 min
CFPP °C aCountry specific aPer region
Cloud point °C areport
Sulfur mg kg−1 10 max 15 max 10 max
Carbon residue %mass 0.05 max
Sulfated ash %mass 0.02 max 0.02 max 0.02 max
Water mg kg−1 500 max 200 max
Total contamination mg kg−1 24 max
Cu corrosion max 3 h/50 °C 1 3 1
Oxidation stability hrs;110 °C 8 h min 3 h min 8 h min
Cetane number 51 min 47 min aReport
Acid value mg KOH 

g−1

0.5 max 0.5 max 0.5 max

Methanol %mass 0.20 max 0.2 max or 
Fp < 130 °C

0.20 max

Ester content %mass 96.5 min 96.5 min
Monoglyceride %mass 0.7 max 0.4 max 0.7 max
Diglyceride %mass 0.2 max 0.2 max
Triglyceride %mass 0.2 max 0.2 max
Free glycerol %mass 0.02 max 0.02 max 0.02 max
Total glycerol %mass 0.25 max 0.24 max 0.25 max
Iodine value 120 max aReport
Linolenic acid ME %mass 12 max
Phosphorus mg kg−1 4 max 10 max 10 max
Na, K mg kg−1 5 max 5 max 5 max
Ca, Mg mg kg−1 5 max 5 max 5 max

aCFPP, cold filter plugging point
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3.2.4.2  Biodiesel Glycerin

Glycerin is an important subproduct of biodiesel production. There is a large market 
for glycerin, which finds use in the food industry as well as cosmetics and pharma-
ceuticals. One kilogram (kg) of raw glycerin is generated for every 10 kg of bio-
diesel produced. As it still contains some residual fatty acids, methanol, and ashes, 
the raw glycerin must be purified for further use, which, depending on the desired 
purity, and hence the required purification process, may result in elevated costs. 
Considering such costs and the large volume produced, several studies are being 
conducted to find other added-value bioproducts from raw glycerin. Most promising 
is the use of microorganisms that produce metabolites such as succinic, citric, pro-
pionic, lactic, and glyceric acids (Vivek et al. 2017).

3.2.5  Hydrotreating

Hydrotreating is the elimination of heteroatoms from organic compounds by reac-
tions with oxygen, under controlled temperature and pressure, and in the presence 
of a catalyst such as nickel and molybdenum in a high specific area material. When 
applied to vegetable oils, a hydroprocessed vegetable oil (HVO) results (Vrtiska and 
Simacek 2016). To convert vegetable oils to hydrocarbons with the physicochemi-
cal characteristics of a diesel oil, which would be then called green diesel, the reac-
tion procedure is of hydrodeoxygenation (HDO) (Pattanaik and Misra 2017; Sugami 
et al. 2017) (Fig. 3.11).

Last, but not the least, there are other relevant issues to be taken into consider-
ation besides the physicochemical characteristics of the biodiesel when planning to 
substitute a petrol-derived fuel, as pointed out by Refaat (2009). Perhaps the most 
important characteristic is the scale of the necessary substitution, as it is a function 
of raw material availability and affordability: this may be the driving force behind 
investors’ evaluations on the technological route and the raw material.
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3.3  Bio-Based Polymers

3.3.1  Functionalization of Vegetable Oils to Produce Bio- 
Based Polymers

The use of vegetable oils to produce biomaterials such as bio-based polymers has 
gained great attention for its versatility and abundant availability as well as eco- 
friendly global initiatives (Lligadas et al. 2013; Fernandes et al. 2017; Mucci et al. 
2017). Plant oils-based polymers have shown a powerful capacity of application in 
varied technological fields to produce coatings, resins, paint, inks, and lubricants 
(Mucci et al. 2017).

Vegetable oils had been employed in paints and coatings since a long time ago 
once the unsaturated bonds are able to polymerize when exposed to the air (Van De 
Mark and Sandefur 2005). Also, biorenewable polymers have been developed by 
using unmodified vegetable oils once the carbon–carbon double bonds are capable 
to react by thermal or cationic polymerization as described by Larock’s research 
group (Li and Larock 2003, 2005).

However, depending on the final application or the polymerization route, it is 
more practical to functionalize its chemical structure. Recently, new strategies to 
achieve vegetable oil-based polymers also involve functionalized vegetable oils. 
Use of modified vegetable oils in free radical polymerization, step-growth polymer-
ization, acyclic diene metathesis polymerization (ADMET), and ring-opening 
metathesis polymerization (ROMP) has been reported in the scientific literature, as 
well as the available commercial materials based on these biosources (e.g., Vikoflex 
7190, Ebecryl 860, Drapex 6.8).

The functionalization of vegetable oils has a fundamental role in polymer chem-
istry because it is possible to modify some final properties of polymeric matrices, 
for example, to impart stiffness, or improve the characteristics of commercial poly-
mers to increase the potential application as resin or coating (Wool and Sun 2005).

Basically, the major component of vegetable oils corresponds to triglycerides, 
whose structure is shown in Fig. 3.12.

The potential sites to functionalize the triglycerides are (i) double bonds, (ii) 
allylic carbons, (iii) ester group, and (iv) carbons alpha to the ester group (Bonnaillie 
and Wool 2007). According to the open literature, the most important pathways to 
modify the vegetable oils for production of bio-based polymers can be organized in 
these three methods (Khot et al. 2001):

 i. Functionalization of double bonds of triglycerides by epoxidation or maleiniza-
tion followed by attaching of vinyl functionalities to the triglyceride chains

 ii. Conversion of triglycerides to monoglycerides through glycerolysis or amida-
tion reaction (ester/glycerol linkage)

 iii. Synthesis of monoglycerides or diglycerides through glycerolysis or amidation 
reaction and functionalization of unsaturations by hydroxylation/acrylation 
(combination of methods i and ii).
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Figure 3.13 reviews schematically some important routes of vegetable oil 
functionalization.

Depending on the modification strategy, the modified monomers are able to 
polymerize through free radical polymerization or step-growth polymerization. It is 
noteworthy that natural epoxy or hydroxyl functional triglycerides such as castor 
oil, Sterculia striata (chicha oil), and Exocarpos cupressiformis are also easily mod-
ified by these cited pathways (Mangas et al. 2012).

Functionalized monomers from vegetable oils as soybean, sunflower, and castor 
oil are extensively employed to produce bio-based monomers through free radical 
polymerization (Bonnaillie and Wool 2007; Scala and Wool 2002; Campanella et al. 
2010; Jensen et al. 2014; Medeiros et al. 2015). In this scenario, the work developed 
by Wool (Bonnaillie and Wool 2007), La Scala (Scala and Wool 2002), Campanella 
(Campanella et al. 2010), Jensen (Jensen et al. 2014), and Medeiros et al. (2015) are 
examples of functionalization of triglycerides/monoglycerides with in situ gener-
ated organic peracid followed by a ring-opening reaction with acrylic acid (Fig. 3.14).

GLYCEROLISIS

O

OHO

O

O

O

OHHO

O

EPOXIDATION 

O

OO

O

O O

O

O

O

TRANSESTERIFICATION 

FORMYLATION 

O

OO

O

O O

CH2OH

CH2OH

O

OO

O

O O

O

O
O

O

O

O

MALEINIZATION 

N

O
OH

OH

AMIDATION 

O
O

VINYLATION/ACRYLATION HYDROXILATION 

O

OO

O

O O

OH

OH OH

OH

O

OO

O

O OCH2

R

H2C

R

O
O

O

O
OH

O

O

O

OO

O

O O

Fig. 3.13 Illustrative scheme with some possibilities of modifying the structure of vegetable oils

Fig. 3.12 Generic structure of triglycerides

S.P. Favaro et al.



47

Can et al. (2001, 2002) have reported studies on the functionalization of vegeta-
ble oil to produce bio-based thermosettings. In accordance with these studies, male-
ate half-ester monoglycerides from soybean oil are obtained by two steps. First, the 
glycerolysis process is carried out to obtain monoglycerides (SOMGs), followed by 
reaction with maleic anhydride (Fig. 3.15).

In the same way, triglycerides can be functionalized by dicarboxylic acids such 
as maleic acid and cyclohexane dicarboxylic anhydride to generate oligomers 
(Fig. 3.16) (Khot et al. 2001). The introduction of cyclic rings into the structure 
provokes the increase of the entanglement density as well as the stiffness of the 
polymeric material. According to the authors, the oligomers can be blended with 
styrene and cured in the same manner as an unmodified AESO resin (Khot et al. 
2001).

The use of unsaturated vegetable oils in the polymer field intended to produce 
bio-based polymeric materials has several advantages, as, for instance, low cost 
associated with the production process, a large range of structural changes of the 
vegetable oil and/or polymers, and reduction of the environmental impact by using 
renewable resources.

Fig. 3.14 Epoxidation reaction of triglycerides from vegetable oil (i) and ring-opening reaction 
with acrylic acid (ii) (Medeiros et al. 2015) (Adapted and reproduced with permission. Copyright 
© 2015 Elsevier Ltd.)
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Fig. 3.15 Synthesis of (i) SOMGs and (ii) modified maleinated SOMGs (Can et  al. 2002) 
(Adapted and reproduced with permission. Copyright © 2002 Wiley Periodicals)
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Copyright © 2017 Wiley Periodicals, Inc.)

In this field, the combination of modified vegetable oils with traditional vinylic 
monomers is very attractive as new polymeric materials can be successfully synthe-
sized with tailor-made final properties by using the classical industrial polymeriza-
tion processes, such as, for instance, mass, solution, suspension, emulsion, or 
mini-emulsion.

Medeiros et  al. (2017) have described the synthesis of a bio-based monomer, 
acrylated fatty acid methyl ester (AFAME), from soybean oil by the epoxidation 
reaction followed by ring-opening using acrylic acid (see Fig. 3.17). It was demon-
strated that the synthesis of poly(styrene-co-AFAME) is easily accomplished by 
free radical copolymerization of styrene and AFAME in a mini-emulsion polymer-
ization process.

Research has shown that increase of AFAME content in the polymeric structure 
led to a significant decrease in the glass transition temperature of the poly(styrene- 
co- AFAME). As stated by the authors, as the glass transition temperature decreased 
with increase of AFAME content, the synthesized polymers exhibited improved 
softness and malleability features (Fig. 3.18).

Ferreira et  al. (2015) have evaluated the copolymerization reaction between 
epoxy-acrylated fatty acids from soybean oil and methyl methacrylate. Figure 3.19 
illustrates the experimental steps used for the synthesis of bio-based polymers. It 
was demonstrated that copolymerization reactions exhibiting high reaction rates can 
be performed with excellent colloidal stability. In addition, the polymer particles 
obtained showed a very narrow particle-size distribution, and both average molar 
mass and glass transition temperature were very dependent on the epoxy-acrylated 
fatty acid mixture composition in the reaction medium.

In addition, the synthesis of bio-based polymers derived from plant oils has been 
extensively studied for pressure-sensitive adhesive (PSA) purposes. Numerous 
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studies have described the synthesis of PSAs from biorenewable feedstock with 
compatible or improved properties compared to commercial PSAs (Meier et  al. 
2007; Sharmin et al. 2015; Li and Sun 2015; Maassen et al. 2016; Peykova et al. 
2012).

Meier and co-authors have demonstrated the excellent adhesion properties of 
synthesized bio-based polymers from plant oils. Bio-based polymers were obtained 
by polymerization of monomers derived from acrylated methyl oleate (AMO). The 
researchers proposed the modification of bio-based monomer precursors via a one- 
step, two-step, or three-step route (Fig. 3.20) (Maaßen et al. 2015).

As illustrated in Fig. 3.21, the synthesized AMO homopolymer p(AMO) pre-
sented cohesive forces (left in the figure) in relation to cure time. The authors 
affirmed that p(AMO) exhibited pronounced maximum peel strength and tack in 
about 5 h of curing time because of spanning network formation.

In addition, it was also shown in the study by Meier et al. (Maassen et al. 2016) 
that better performance, such as adhesive force and peel strength (Fig. 3.22a), and 
in presence of water (Fig. 3.21b), occurred on low-energy substrates of plant oils- 
based PSAs as compared with commercial PSAs.

As displayed in Fig. 3.22, it is reasonable to affirm that the homopolymer based 
on plant oil feedstock (pAMO and pAMO/MMA) achieved better results when 
compared to commercial PSAs, such as Acronal V212. The graphs indicate that 
pAMO and pAMO/MMA showed higher adhesive capacity and retained peel 
strength in water immersion.

Fig. 3.18 Images of poly(styrene-co-AFAME): 100/0 (a), 95/5 (b), 75/25 e (c), 50/50 (d) 
(Medeiros et al. 2017) (Reproduced with permission. Copyright © 2017 Wiley Periodicals, Inc.)
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Fig. 3.19 Main experimental steps employed for the synthesis of soybean-based polymeric com-
pounds (Ferreira et al. 2015) (Reproduced with permission. Copyright 2014 © Elsevier)

Fig. 3.20 Schematic route related to the synthesis pathways to oleate and erucate derivatives: 4AC 
(AMO), 4AD, 4BC, 5AB, and 6AB (Maaßen et al. 2015) (Reproduced with permission. Copyright 
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
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Fig. 3.21 Photographs of cohesive (left) and adhesive (right) failure in tack and peel measure-
ments of cured p(AMO) (Maassen et al. 2016) (Reproduced with permission. Copyright © 2015 
Elsevier Ltd.)
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strength after 24 h water immersion of acrylate copolymer Acronal V212, a standard office tape 
(tesa SE product), and cured p(AMO) after 5.5 h and 25.5 h of curing time, respectively (Maassen 
et al. 2016) (Reproduced with permission. Copyright © 2015 Elsevier Ltd.)
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Modified bio-based monomers have been also used to synthesize polymers from 
a condensation process (Das et al. 2013; Ng et al. 2017; Fan et al. 1999; Deng et al. 
1999; Koch 1977; Nayak 2000). Polyurethanes, polyesters, and polyamides obtained 
from modified bio-based monomers, mainly those derived from castor, soybean, 
and rapeseed oil, have exhibited suitable properties compared to the commercial 
products, as, for instance, nylon 22, which has been developed by Noordover and 
co-authors (Noordover 2011). According to the authors, they have developed a bio- 
based polyamide from castor oil, one of the most important bio-based polymers, 
which is used in the manufacture of automotive and engineering components.

Bio-based polyesters from castor oil that have the potential to replace industrial 
polyester resins have been reported. Slivniak and co-authors (Slivniak et al. 2005, 
2006; Slivniak and Domb 2005) demonstrated the synthesis of copolyester produced 
by different ratios of ricinoleic acid (RA) and lactic acid (LA). The authors achieved 
liquid polyester at room temperature by random polymerization, using 15% or more 
than 50% RA, with potential application as a sealant or an injectable drug carrier.

Petrovic et al. (2010) have demonstrated the synthesis of thermoplastic with high 
molecular weight linear polyester (HNME) by ozonolysis followed by methanolysis 
of castor oil according to the route depicted in Fig. 3.23. The authors affirmed that 
the bio-based polyester obtained by self-transesterification of HNME leads to for-
mation of high molecular weight polymeric chains with a structure similar to poly-
caprolactone (PCL). The presence of long hydrocarbon chains between ester groups 
allowed it to display better thermal stability (~250 °C), higher melting point (70 °C), 
higher glass transition temperature (−31 °C), and lower solubility in chlorinated 
solvents than PCL.

Fig. 3.23 Synthesis of 
high molecular weight 
linear polyester (HNME) 
from castor oil (Petrovic 
et al. 2010) (Adapted and 
reproduced with 
permission. Copyright © 
2010, American Chemical 
Society)
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Waterborne polyurethanes based on soybean, castor, and rapeseed oil have been 
also synthesized for use as coating materials (Akram et al. 2017; Das et al. 2013; Ng 
et al. 2017; Philipp and Eschig 2012; Xia and Larock 2011). Philipp and co-authors 
(Philipp and Eschig 2012) have evaluated the use of fatty acid methyl esters as alter-
natives to technical fatty acids and vegetable oils in the synthesis of polyester poly-
urethane coatings (see Fig.  3.24) and converted to polyurethane dispersions. 
According to the authors, the use of fatty acid methyl esters leads to a significant 
reduction of the reaction time during polycondensation. However, as stated by 
Philipp and collaborators, the use of fatty acids is more favored in coating 
 applications when compared to fatty acid methyl esters because of the unsaturation(s) 
of some fatty acids (for example, when esters are derived from oleic, linoleic, lino-
lenic, ricinoleic, and other unsaturated compounds).

Fig. 3.24 Equimolar use of fatty acid methyl esters and 2-(Hydroxymethyl)-2-ethylpropane-1,3- 
diol (TMP) leads statistically to a fictive diol (Philipp and Eschig 2012) (Adapted and reproduced 
with permission. Copyright © 2011 Elsevier B.V.)
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3.3.2  Vegetable Oil-Based Polymers

Currently, several lines of research are being focused on the potential of vegetable oils 
and their derivatives in the polymer materials industry. These studies have been aimed 
mainly at obtaining thermoplastic or thermosetting polymers with different or supe-
rior properties in relation to commercial products, as well as the reduction or elimina-
tion of the use of petroleum raw material and the possibility of obtaining biodegradable 
materials that lead to a better response to current principles of sustainability.

In this sense, this section discusses the main polymerization reactions and modi-
fications of synthetic routes of the various plant oils, derivatives, and constituents 
that are being studied and have potential use in the chemical and polymer industries 
(Fig. 3.25).

The industrial production of thermosetting polymers achieved approximately 35 
million tons in 2015 (MordorIntelligence 2017), which corresponds to 13% of the 
world production of plastic materials in the same year (about 269 million tons: 
related to thermoplastics, thermosets, adhesives, coatings, sealants, fibers, and bio-
polymers, among others), according to PlasticsEurope (the Association of Plastics 
Manufacturers in Europe) (PlasticsEurope 2016). The value of 13% of the total of a 
market is impressive and justifies that financial investments be made to incorporate 
and produce biopolymers from renewable matrices.

Thermosetting polymeric materials generally have good chemical resistance, 
high stiffness, and excellent thermomechanical properties, and they decompose at 
high temperatures. These properties are closely related to the cross-linking ability of 
the multifunctional monomers to form cross-linked materials during the polymer-
ization reaction. The main types of thermoset polymer materials are epoxy resins, 
polyurethane networks, polybenzoxazines, and unsaturated polyesters. Production 
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Fig. 3.25 Flowchart for the production, procurement, modification, and use of materials from 
renewable sources to produce polymers
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is mainly focused on the market for adhesives, coatings, molding parts, automotive 
parts, flooring, electrical insulation, mortars, and other items (Llevot 2017).

Thermoplastic materials have in common the fact that they are formed by an 
arrangement of linear chains that present as their main characteristic the possibility 
of being moldable several times when submitted to temperature action. These 
 materials are generally obtained through a chain-growth polymerization mechanism, 
and the use of monomers from renewable sources has contributed to the development 
of bio-based and biodegradable thermoplastic elastomers (Maisonneuve et al. 2013).

3.3.3  Analytical Techniques

Regardless of the classification of the polymer material, the final, physical, and 
chemical properties of polymers define the commercial and industrial applications, 
as well as the route of manufacture. Properties such as average molar mass, glass 
transition temperature, thermal stability, tensile and impact strength, stiffness, cohe-
sion, and adhesion are extremely important and require different analytical tech-
niques for characterization.

To produce biomaterials that may replace some commercial polymers obtained 
from nonrenewable feedstocks, rheological studies essential to characterize the 
mechanical properties have been carried out by several authors (Li et al. 2017; Hu 
et al. 2015; Garrison et al. 2014; Lu and Larock 2008; Tüzün et al. 2016). Lu and 
Larock (2008) and Garrison and collaborators (Garrison et al. 2014) have studied 
the effect of the fraction of unsaturated compounds (carbon–carbon double bonds), 
degree of hydroxylation, and ring-opening method on the mechanical properties of 
polymer films obtained from polyurethane dispersions that were synthesized from 
polyols derived from vegetable oils (peanuts, soybeans, etc.). Tüzün and coworkers 
(Tüzün et al. 2016) have obtained films of thermoset polymers based on  benzoxazine 
with different degrees of hardness and flexibility through thermal curing of bis-
benzoxazine monomers via the fatty acid metathesis reaction.

Dynamic mechanical analyses that evaluate such factors as tension, hardness, 
tensile strength, impact and compression, adhesion, cohesion, and tack (Fig. 3.26) 
are of extreme importance to the characterization of physical properties. For exam-
ple, the experimental results obtained by Lu and Larock (2008) showed that the 
mechanical properties (stress–strain) of oil-based polymeric materials can be 
 modulated, varying from elastomers to rigid plastics (Fig.  3.26a), and that the 
increase of the residual double content raises the glass transition temperature val-
ues, toughness, rupture resistance, modulus, and reductions in breakdown stress 
values. However, enhancement in the degree of hydroxylation and rigid sequencing 
lead to a rise in the degree of cross-linking and an effective improvement of the 
hydrogen bonds between the chains.

Stress–strain measurements performed by Tüzün et al. (2016) indicate that mate-
rials exhibiting different mechanical properties can be tailor made (Fig. 3.26b) from 
the ideal choice of a monomer precursor (benzoxazine) containing stiffened ester 
groups in its main chain.
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Nuclear magnetic resonance (NMR) appears to be one of the main analytical 
techniques for monitoring reactions of modification of the reagents/monomers 
(Bunker and Wool 2002; Sehlinger et al. 2015; Medeiros et al. 2015), being funda-
mental for the characterization of bio-based materials obtained through the polym-
erization processes (Medeiros et al. 2015; Lluch et al. 2015; Gratia et al. 2015). 
NMR allows the analysis of several properties of a polymer (global conversion, 
microstructure, composition, sequences, etc.) and can also be used in the monitor-

Fig. 3.26 (A) Soybean-oil-based waterborne polyurethane (SPU) films from methoxylated soy-
bean oil polyols(MSOLs) with different OH numbers; (B) Dynamic mechanical thermal analysis 
(DMTA) measurements of bis-NPhenybenzoxazine derivatives (MB1, MB4, and MB5) and 
N-Propyl benzoxazine derivative (MB3) samples [N. B. In Figure (B) the letter (a) corresponds to 
the curve ends at the DMTA measurement limit (no sample break)]
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Fig. 3.27 (a) Off-line monitoring of the polymerization reaction via quantitative nuclear magnetic 
resonance (NMR) and the composition profile of methacrylated methyl oleate (MAMO) (b) with 
polymerization reaction (Jensen et  al. 2016) (Reproduced with permission. Copyright © 2016 
Wiley Periodicals, Inc.)
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ing and characterization of the molar fraction and reactivity of the monomers in 
copolymerization reactions. Figure 3.27 portrays experimental results obtained by 
Jensen et al. (2016) during classic emulsion copolymerization of a modified fatty 
acid (methacrylated methyl oleate, MAMO) with a vinyl monomer, vinyl pivalate 
(VPi), where the copolymer composition was monitored off line via quantitative 
NMR. Based on the NMR measurements, it was verified that MAMO was effec-
tively incorporated into the polymer chains and that this vegetable oil-based mono-
mer presents significant reactivity compared to VPi, which means that oleic 
acid-derived monomers can be successfully used in dispersed medium polymeriza-
tions, such as suspension, emulsion, or mini-emulsion.

The final properties of a polymer are directly influenced by both the average molar 
masses and molar mass dispersity. In spite of the existence of different forms of char-
acterization [for instance, dynamic light scattering and NMR (Türünç et al. 2011)], 
gel permeation chromatography (GPC) (Türünç and Meier 2010; Kolb et al. 2014) is 
currently the most widely used characterization technique despite the need for par-
ticular solvent solubility and/or external calibration standards, depending on the type 
of detector. The molar mass of a polymer can be controlled by several methods and 
can also vary with the polymerization process being employed. Thus, Ferreira et al. 
(2015) evaluated the emulsion copolymerization of an acrylated monomers mixture 
(AFFAM) from soybean oil (see Fig. 3.18). The molar mass distributions obtained 
via GPC (Fig. 3.28) indicate that a reduction of the mass- average molar mass occurs 
as a result of the increase in the AFFAM fraction in the copolymer chains.
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Fig. 3.28 Molar mass distributions of copolymers characterized by gel permeation chromatogra-
phy (GPC) (Ferreira et al. 2015) (Reproduced with permission. Copyright 2014 © Elsevier)
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Thermal analyses such as thermogravimetry (TG) and differential scanning calo-
rimetry (DSC) are important for the characterization of some properties of the poly-
meric materials, such as glass transition temperature of amorphous or semi-crystalline 
polymers and melting and crystallization temperatures. In this scenario, glass transi-
tion temperature appears as one of the most important features of copolymeric 
materials, because these materials may have distinct characteristics that depend on 
the organization of the polymer chains. Thus, studies of substances from renewable 
sources as monomers in polymerization reactions use DSC to evaluate different 
thermal events, as well as to establish a relationship between the renewable mono-
mer content and the physical and chemical properties of the bio-based material.

Miao et al. (2013) have synthesized polymers based on soybean oil that present 
structural memory properties and which may have their shape altered at tempera-
tures that vary according to the glass transition temperature (Tg) of the materials. 
Caillol et al. (2012) and Miao et al. (2010) have observed an increase in the Tg of 
thermosetting materials because there is an increase in the fraction of hydroxyl 
groups in the chains of polymerizable vegetable oils, whereas several studies (Liu 
et al. 2015; Ferreira et al. 2015; Jensen et al. 2014, 2016) have shown that reduction 
in the Tg of the polymer may reflect a primary effect of the increase in the fraction 
of modified vegetable oils incorporated into the polymer chains (Fig. 3.29) (Jensen 
et al. 2016).

Péres and collaborators (2014) have developed a superparamagnetic biopolyester 
based on ricinoleic acid and magnetite nanoparticles. It was observed that the 
polymerization of ricinoleic acid with surface-modified iron oxide magnetic 
nanoparticles presented a high reaction rate, indicating a catalytic effect attributed 
to the presence of the magnetite nanoparticles. As additional information, the mag-
netic nano-composites exhibited good magnetic response and superparamagnetic 
behavior.

More recently, Péres and coworkers (2017) have evaluated the synthesis of a new 
bio-based magnetic poly(urethane ester) from ricinoleic acid, 1,6- diisocyanatehexane, 
and glycerol (Fig. 3.30). According to the authors, the observed increase in the poly-
mer chains enhances the thermal stability of the final material. It was also observed 
that the glass transition temperature of the superparamagnetic bio-based 
poly(urethane ester) was significantly increased in comparison to that observed in 
poly(urethane ester).
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Fig. 3.30 Representation of the magnetic poly(urethane ester) based on ricinoleic acid, 
1,6- diisocyanatehexane, and glycerol (Péres et al. 2017) (Reproduced with permission. Copyright 
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
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Fig. 3.29 Glass transition temperatures (Tg) and the effect of increasing the MAMO fraction on 
the copolymer chains obtained with vinyl pivalate (VPi) (Jensen et al. 2016) (Reproduced with 
permission. Copyright © 2016 Wiley Periodicals, Inc.)
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