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Abstract. We propose a deep learning approach to remove motion blur
from a single image captured in the wild, i.e., in an uncontrolled setting.
Thus, we consider motion blur degradations that are due to both camera
and object motion, and by occlusion and coming into view of objects.
In this scenario, a model-based approach would require a very large set
of parameters, whose fitting is a challenge on its own. Hence, we take
a data-driven approach and design both a novel convolutional neural
network architecture and a dataset for blurry images with ground truth.
The network produces directly the sharp image as output and is built
into three pyramid stages, which allow to remove blur gradually from a
small amount, at the lowest scale, to the full amount, at the scale of the
input image. To obtain corresponding blurry and sharp image pairs, we
use videos from a high frame-rate video camera. For each small video
clip we select the central frame as the sharp image and use the frame
average as the corresponding blurred image. Finally, to ensure that the
averaging process is a sufficient approximation to real blurry images we
estimate optical flow and select frames with pixel displacements smaller
than a pixel. We demonstrate state of the art performance on datasets
with both synthetic and real images.

1 Introduction

This work is concerned with the removal of blur in real images. We consider
the challenging case where objects move in an arbitrary way with respect to the
camera, and might be occluded and/or come into view. Due to the complexity of
this task, prior work has looked at specific cases, where blur is the same every-
where (the shift-invariant case), see e.g., [26,35], or follows given models [20,34]
and scenarios [15,28,38]. Other methods address the modeling complexity by
exploiting multiple frames, as in, for example, [16]. Our objective, however, is to
produce high-quality results as in [16] by using just a single frame (see Fig. 1).
To achieve this goal we use a data-driven approach, where a convolutional neural
network is trained on a large number of blurred-sharp image pairs. This approach
entails addressing two main challenges: first, the design of a realistic dataset of
blurred-sharp image pairs and second, the design of a suitable neural network
that can learn from such dataset. We overcome the first challenge by using a
commercial high frame-rate video camera (a GoPro Hero5 Black). Due to the
high frame-rate, single frames in a video are sharp and motion between frames
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Fig. 1. (a) Blurry video frame. (b) Result of [34] on the single frame (a). (c) Result of
the proposed method on the single frame (a). (d) Result of the multi-frame method [16].

is small. Then, we use the central frame as the sharp image and the average
of all the frames in a video clip as the corresponding blurry image. To avoid
averaging frames with too much motion, which would correspond to unrealistic
motion blurs, we compute the optical flow between subsequent frames and use
a simple thresholding strategy to discard frames with large displacements (more
than 1 pixel). As we show in the Experiments section, a dataset built according
to this procedure allows training a neural network and generalizes to images
from other camera models and scenes. To address the second challenge, we build
a neural network that replicates (scale-space) pyramid schemes used in classical
deblurring methods. The pyramid exploits two main ideas: one is that it is easy
to remove a small amount of blur, and the second is that downsampling can be
used to quickly reduce the blur amount in a blurry image (within some approxi-
mation). The combination of these two contributions leads to a method achieving
state of the art performance on the single image space-varying motion blur case.

1.1 Related Work

Camera Motion. With the success of the variational Bayesian approach of
Fergus et al. [9], a large number of blind deconvolution algorithms have been
developed for motion deblurring [2,5,25,26,29,35,41,44]. Although blind decon-
volution algorithms consider blur to be uniform across the image, some of the
methods are able to handle small variations due to camera shake [23]. Tech-
niques based on blind deconvolution have been adapted to address blur vari-
ations due to camera rotations by defining the blur kernel on a higher dimen-
sional space [11,12,38]. Another approach to handle camera shake induced space-
varying blur is through region-wise blur kernel estimation [13,18]. In 3D scenes,
motion blur at a pixel is also related to its corresponding depth. To address this
dependency, Hu et al. and Xu and Jia [15,42] first estimate a depth map and
then solve for the motion blur and the sharp image. In [45], motion blur due
to forward or backward camera motion has been explicitly addressed. Notice
that blur due to moving objects (see below) cannot be represented by the above
camera motion models.



Motion Deblurring in the Wild 67

Dynamic Scenes. This category of blur is the most general one and includes
motion blur due to camera or object motion. Some prior work [6,24] addresses
this problem by assuming that the blurred image is composed of different regions
within which blur is uniform. Techniques based on alpha matting have been
applied to restore scenes with two layers [7,37]. Although these methods can han-
dle moving objects, they require user interaction and cannot be used in general
scenarios where blur varies due to camera motion and scene depth. The scheme
of Kim et al. [19] incorporates alternating minimization to estimate blur kernels,
latent image, and motion segments. Even with a general camera shake model for
blurring, the algorithm fails in certain scenarios such as forward motion or depth
variations [20]. In [20] Kim and Lee, propose a segmentation-free approach but
assume a uniform motion model. The authors propose to simultaneously estimate
motion flow and the latent image using a robust total variation (TV-L1) prior.
Through a variational-Bayesian formulation, Schelten and Roth [30] recover both
defocus as well as object motion blur kernels. Pan et al. [27] propose an efficient
algorithm to jointly estimate object segmentation and camera motion by incor-
porating soft segmentation, but require user input. [4,10,33] address the problem
of segmenting an image into different regions according to blur. Recent works
that use multiple frames are able to handle space-varying blur quite well [16,39].

Deep Learning Methods. The methods in [32,43] address non-blind deconvo-
lution wherein the sharp image is predicted using the blur estimated from other
techniques. In [31], Schuler et al. develop an end-to-end system that learns to
perform blind deconvolution. Their system consists of modules to extract fea-
tures, estimate the blur and to perform deblurring. However, the performance
of this approach degrades for large blurs. The network of Chakrabarti [3] learns
the complex Fourier coefficients of a deconvolution filter for an input patch of
the blurry image. Hradǐs et al. [14] predict clean and sharp images from text
documents that are corrupted by motion blur, defocus and noise through a con-
volutional network without an explicit blur estimation. This approach has been
extended to license plates in [36]. [40] proposes to learn a multi-scale cascade
of shrinkage fields model. This model however does not seem to generalize to
natural images. Sun et al. [34] propose to address non-uniform motion blur rep-
resented in terms of motion vectors.

Our approach is based on deep learning and on a single input image. How-
ever, we directly output the sharp image, rather than the blur, do not require
user input and work directly on real natural images in the dynamic scene case.
Moreover, none of the above deep learning methods builds a dataset from a high
frame-rate video camera. Finally, our proposed scheme achieves state of the art
performance in the dynamic scene case.

2 Blurry Images in the Wild

One of the key ingredients in our method is to train our network with an, as
much as possible, realistic dataset, so that it can generalize well on new data.
As mentioned before, we use a high resolution high frame-rate video camera.
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Fig. 2. A sample image pair from the WILD training set. Left: averaged image (the
blurry image). Right: central frame (the sharp image).

We build blurred images by averaging a set of frames. Similar averaging of frames
has been done in previous work to obtain data for evaluation [1,21], but not
to build a training set. [21] used averaging to simulate blurry videos, and [1]
used averaging to synthesize blurry images, coded exposure images and motion
invariant photographs.

We use a handheld GoPro Hero5 Black camera, which captures 240 frames
per second with a resolution of 1280 × 720 pixels. Our videos have been all shot
outdoors. Firstly, we downsample all the frames in the videos by a factor of 3 in
order to reduce the magnitude of relative motion across frames. Then, we select
the number Ne of averaged frames by randomly picking an odd number between
7 and 23. Out of the Ne frames, the central frame is considered to be the sharp
image. We assume that motion is smooth and, therefore, to avoid artifacts in the
averaging process we consider only frames where optical flow is no more than 1
pixel. We evaluate optical flow using the recent FlowNet algorithm [8] and then
apply a simple thresholding technique on the magnitude of the estimated flow.
Figure 2 shows an example of the sharp and blurred image pair in our training
dataset. In this scene, we find both the camera and objects to be moving. We
also evaluate when the optical flow estimate is reliable by computing the frame
matching error (L2 norm on the grayscale domain). We found that no frames
were discarded in this processing stage (after the previous selection step). We
split our WILD dataset into training and test sets.

3 The Multiscale Convolutional Neural Network

In Fig. 3 we show our proposed convolutional neural network (CNN) architec-
ture. The network is designed in a pyramid or multi-scale fashion. Inspired by
the multi-scale processing of blind deconvolution algorithms [26,31], we intro-
duce three subgraphs N1, N2, and N3 in our network, where each subgraph
includes several convolution/deconvolution (fractional stride convolution) lay-
ers. The task of each subgraph is to minimize the reconstruction error at a
particular scale. There are two main differences with respect to conventional
CNNs, which play a significant role in generating sharp images without artifacts.
Firstly, the network includes a skip connection at the end of each subgraph. The
idea behind this technique is to reduce the difficulty of the reconstruction task
in the network by using the information already present in the blurry image.
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Fig. 3. The DeblurNet architecture. The multiscale scheme allows the network to han-
dle large blurs. Skip connections (bottom links) facilitate the generation of details.

Table 1. The DeblurNet architecture. Batch normalization and ReLU layers inserted
after every convolutional layer (except for the last layer of N1) are not shown for sim-
plicity. Downsampling (↓) is achieved by using a stride greater than 1 in convolutional
layers. A stride greater than 1 in deconvolutional (↑) layers performs upsampling.

N1 N2 N3
Type conv conv conv conv conv conv conv conv conv conv conv deconv conv conv conv conv deconv

OutCh 96 256 384 384 256 256 3 256 256 256 256 3 256 256 256 256 3

Kernel 11 7 7 7 3 3 3 5 5 5 5 5 5 5 5 5 5

Stride ↓ 2 1 1 ↓ 2 1 1 1 1 1 1 1 ↑ 2 1 1 1 1 ↑ 2

Each subgraph needs to only generate a residual image, which is then added
to the input blurry image (after downsampling, if needed). We observe exper-
imentally that the skip connection technique helps the network in generating
more texture details. Secondly, because the extent of blur decreases with down-
sampling [26], the multi-scale formulation allows the network to deal with small
amounts of blur in each subgraph. In particular, the task for the first subgraph
N1 is to generate a deblurred image residual at 1/4 of the original scale. The
task for the subgraph N2 is to use the output of N1 added to the downsampled
input and generate a sharp image at 1/2 of the original resolution. Finally, the
task for the subgraph N3 is to generate a sharp output at the original resolution
by starting from the output of N2 added to the input scaled by 1/2. We call this
architecture the DeblurNet and give a detailed description in Table 1.

Training. We minimize the reconstruction error of all the scales simultaneously.
The loss function L = L1 + L2 + L3 is defined through the following 3 losses
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where D is the training set, g denotes a blurry image, f denotes a sharp image,
D 1

k
(x) denotes the downsampling operation of the image x by factor of k, and

Ni indicates the i-th subgraph in the DeblurNet, which reconstructs the image
at the i-th scale.

Implementation Details. We used Adam [22] for optimization with momen-
tum parameters as β1 = 0.9, β2 = 0.999, and an initial learning rate of 0.001.
We decrease the learning rate by .75 every 104 iterations. We used 2 Titan X
for training with a batch size of 10. The network needs 5 days to converge using
batch normalization [17].

4 Experiments

We tested DeblurNet on three different types of data: (a) the WILD test set
(GoPro Hero5 Black), (b) real blurry images (Canon EOS 5D Mark II), and (c)
data from prior work.

Synthetic vs Pseudo-Real Training. To verify the impact of using our pro-
posed averaging to approximate space-varying blur, we trained another network
with the same architecture as in Fig. 3. However, we used blurry-sharp image
pairs, where the blurry image is obtained synthetically via a shift-invariant con-
volutional model. As in [3], we prepared a set of 105 different blurs. During train-
ing, we randomly pick one of these motion blurs and convolve it with a sharp
image (from a mixture of 50K sharp frames from our WILD dataset and 100K
cityscapes images1) to generate blurred data. We refer to this trained network as
the DeblurNetSI, where SI stands for shift-invariant blur. A second network is
instead trained only on the blurry-sharp image pairs from our WILD dataset (a
total of 50K image pairs obtained from the selection and averaging process on
the GoPro Hero5 Black videos). This network is called DeblurNetWILD, where
WILD stands for the data from the WILD dataset. As will be seen later in the
experiments, the DeblurNetWILD network outperforms the DeblurNetSI network
despite the smaller training set and the fact that the same sharp frames from
the WILD dataset have been used. Therefore, due to space limitations, often we
will show only results of the DeblurNetWILD network in the comparisons with
other methods.

WILD Test Set Evaluation. The videos in the test set were captured at
locations different from those where training data was captured. Also, inciden-
tally, the weather conditions during the capture of the test set were significantly
different from those of the training set. We randomly chose 15 images from
the test-set and compared the performance of our method against the meth-
ods in [41], [34], the space-varying implementation of the method in [44], and
DeblurNetWILD trained network. An example image is shown in Fig. 4. As can
be observed, blur variation due to either object motion or depth changes is
the major cause of artifacts. Our DeblurNetWILD network, however, produces

1 www.cityscapes-dataset.com.

www.cityscapes-dataset.com
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Fig. 4. An example from the WILD test set. (a) Blurry image, (b) sharp image (ground
truth), (c) Xu and Jia [41], (d) Xu et al. [44], (e) Sun et al. [34], (f) DeblurNetWILD.

artifact-free sharp images. While the example in Fig. 4 gives only a qualitative
evaluation, in Table 2 we report quantitative results.

Table 2. Average PSNR on our WILD test
set.
[34] [41] [44] DeblurNetSI DeblurNetWILD

25.48 23.61 22.50 25.8 28.1

We measure the performance of
all the above methods in terms of
Peak Signal-to-Noise Ratio (PSNR)
by using the reference sharp image
as in standard image deblurring per-
formance evaluations. We can see that the performance of the DeblurNetWILD

is better than that of the DeblurNetSI. This is not surprising because the shift-
invariant training set does not capture factors such as reflections/specularities,
the space-varying blur, occlusions and coming into view of objects. Notice that
the PSNR values are not comparable to those seen in shift-invariant deconvolu-
tion algorithms.

Qualitative Evaluation. On other available dynamic scene blur datasets the
ground truth is not available. Therefore, we can only evaluate our proposed
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Fig. 5. Test set from [20]. (a, e) Blurry image; (b, f) Kim and Lee [20]; (c, g) Sun
et al. [34]; (d, h) DeblurNetWILD.

network qualitatively. We consider 2 available datasets and images obtained
from a Canon EOS 5D Mark II camera. While Figs. 5 and 7 show data from
[20,34] respectively, Fig. 6 shows images from the Canon camera. In Fig. 6, we
compare the methods of [41], [34] and [44] to both our DeblurNetSI and Deblur-
NetWILD networks. In all datasets, we observe that our method is able to return
sharper images with fine details. Furthermore, we observe that in Fig. 6 the
DeblurNetWILD network produces better results than the DeblurNetSI network,
which confirms once more our expectations.

Shift-Invariant Blur Evaluation. We provide a brief analysis on the differ-
ences between dynamic scene deblurring and shift-invariant motion deblurring.
We use an example from the standard dataset of [23], where blur is due to cam-
era shake (see Fig. 8). In the case of a shift-invariant blur, there are infinite
{blur, sharp image} pairs that yield the same blurry image when convolved.
More precisely, an unknown 2D translation (shift) in a sharp image f can be
compensated by an opposite 2D translation in the blur kernel k, that is, ∀Δ,
g(x) =

∫
f(y+Δ)k(x−y−Δ)dy. Because of such ambiguity, current evaluations

compute the PSNR for all possible 2D shifts of f and pick the highest PSNR. The
analogous search is done for camera shake [23]. However, with a dynamic scene
we have ambiguous shifts at every pixel (see Fig. 8) and such search is unfeasible
(the image deformation is undefined). Therefore, all methods for dynamic scene
blur would be at a disadvantage with the current shift-invariant blur evaluation
methods, although their results might look qualitatively good.
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Fig. 6. Test set from the Canon camera. (a) Blurry image; (b) Xu et al. [44]; (c) Sun
et al. [34]; (d) Xu and Jia [41]; (e) DeblurNetSI; (f) DeblurNetWILD.

Fig. 7. Test dataset from [34]. (a) Blurry image, (b) Sun et al. [34], (c) DeblurNetWILD.

Fig. 8. Kohler dataset [23] (image 1, blur 4). (a) our result. (b) ground truth. (c, d)
Zoomed-in patches. Local ambiguous shifts are marked with white arrows.
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Fig. 9. Normalized average blur size versus normalized residual magnitude plot. Notice
the high level of correlation between the blur size and the residual magnitude.

Fig. 10. The images with highest (first row) and lowest (second row) residual norm in
the output layer. The image in the first column is the input, the second column shows
the estimated residual (the network output), the third column is the deblurred image
(first column + second column), and finally the forth column is the ground truth.

Analysis. Our network generates a residual image that when added to the
blurry input yields the sharp image. Therefore, we expect the magnitude of the
residual to be large for very blurry images, as more changes will be required.
To validate this hypothesis we perform both quantitative and qualitative exper-
iments. We take 700 images from another WILD test set (different from the 15
images used in the previous quantitative evaluation), provide them as input to
the DeblurNetWILD network, and calculate the L1 norm of the network residuals
(the output of the last layer of N3). In Fig. 10 we show two images, one with
the highest and one with the lowest L1 norm. We see that the residuals with
the highest norms correspond to highly blurred images, and vice versa for the
low norm residuals. We also show quantitatively that there is a clear correlation
between the amount of blur and the residual L1 norm. As mentioned earlier on,
our WILD dataset also computes an estimate of the blurs by integrating the opti-
cal flow. We use this blur estimate to calculate the average blur size across the
blurry image. This gives us an approximation of the overall amount of blur in an
image. In Fig. 9 we show the plot of the L1 norm of the residual versus the aver-
age estimated blur size for all 700 images. The residual magnitudes and blur sizes
are normalized so that mean and standard deviation are 0 and 1 respectively.
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5 Conclusions

We proposed DeblurNet, a novel CNN architecture that regresses a sharp image
given a blurred one. DeblurNet is able to restore blurry images under challenging
conditions, such as occlusions, motion parallax and camera rotations. The net-
work consists of a chain of 3 subgraphs, which implement a multiscale strategy
to break down the complexity of the deblurring task. Moreover, each subgraph
outputs only a residual image that yields the sharp image when added to the
input image. This allows the subgraph to focus on small details as confirmed
experimentally. An important part of our solution is the design of a sufficiently
realistic dataset. We find that simple frame averaging combined with a very
high frame-rate video camera produces reasonable blurred-sharp image pairs for
the training of our DeblurNet network. Indeed, both quantitative and qualitative
results show state of the art performance when compared to prior dynamic scene
deblurring work. We observe that our network does not generate artifacts, but
may leave extreme blurs untouched.

Acknowledgements. Paolo Favaro acknowledges support from the Swiss National
Science Foundation on project 200021 153324.
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14. Hradǐs, M., Kotera, J., Zemćık, P., Šroubek, F.: Convolutional neural networks for
direct text deblurring. In: BMVC (2015)

15. Hu, Z., Xu, L., Yang, M.H.: Joint depth estimation and camera shake removal from
single blurry image. In: CVPR (2014)

16. Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In:
CVPR (2015)

17. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

18. Ji, H., Wang, K.: A two-stage approach to blind spatially-varying motion deblur-
ring. In: CVPR (2012)

19. Kim, T.H., Ahn, B., Lee, K.M.: Dynamic scene deblurring. In: ICCV (2013)
20. Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: CVPR

(2014)
21. Kim, T.H., Nah, S., Lee, K.M.: Dynamic scene deblurring using a locally adaptive

linear blur model. arXiv preprint arXiv:1603.04265 (2016)
22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint

arXiv:1412.6980 (2014)
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