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Abstract. The accuracy of object detectors and trackers is most com-
monly evaluated by the Intersection over Union (IoU) criterion. To date,
most approaches are restricted to axis-aligned or oriented boxes and,
as a consequence, many datasets are only labeled with boxes. Neverthe-
less, axis-aligned or oriented boxes cannot accurately capture an object’s
shape. To address this, a number of densely segmented datasets has
started to emerge in both the object detection and the object tracking
communities. However, evaluating the accuracy of object detectors and
trackers that are restricted to boxes on densely segmented data is not
straightforward. To close this gap, we introduce the relative Intersection
over Union (rIoU) accuracy measure. The measure normalizes the IoU
with the optimal box for the segmentation to generate an accuracy mea-
sure that ranges between 0 and 1 and allows a more precise measurement
of accuracies. Furthermore, it enables an efficient and easy way to under-
stand scenes and the strengths and weaknesses of an object detection or
tracking approach. We display how the new measure can be efficiently
calculated and present an easy-to-use evaluation framework. The frame-
work is tested on the DAVIS and the VOT2016 segmentations and has
been made available to the community.

1 Introduction

Visual object detection and tracking are two rapidly evolving research areas with
dozens of new algorithms being published each year. To compare the performance
of the many different approaches, a vast amount of evaluation datasets and
schemes are available. They include large detection datasets with multiple object
categories, such as PASCAL VOC [8], smaller, more specific detection datasets
with a single category, such as cars [10], and sequences with multiple frames that
are commonly used to evaluate trackers such as VOT2016 [11], OTB-2015 [24],
or MOT16 [14]. Although very different in their nature, all of the benchmarks
use axis-aligned or oriented boxes as ground truth and estimate the accuracy
with the Intersection over Union (IoU) criterion.

Nevertheless, boxes are very crude approximations of many objects and may
introduce an unwanted bias in the evaluation process, as is displayed in Fig. 1.
Furthermore, approaches that are not restricted to oriented or axis-aligned boxes
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Fig. 1. In image (a), both oriented boxes have an identical IoU with the ground truth
segmentation. Nevertheless, their common IoU is only 0.71. Restricting the ground
truth to boxes may introduce an undesired bias in the evaluation. In image (b), the
best possible IoU of an axis-aligned box is only 0.66. Hence, for segmented data, it is
difficult to use the absolute value of the IoU as an accuracy measure since it generally
does not range from 0 to 1. Furthermore, although the object detection (green) in
image (c) has an overlap of 0.62 with the ground truth segmentation, its IoU with the
ground truth axis-aligned bounding box is only 0.45 and would be considered a false
detection in the standard procedure. The proposed rIoU is the same for both boxes in
(a) and 1.0 for the green boxes in (b) and (c). (Color figure online)

will not necessarily have higher accuracy scores in the benchmarks [3–5]. To
address these problems, a number of densely segmented ground truth datasets
has started to emerge [13,16,23].

Unfortunately, evaluating the accuracy of object detectors and trackers that
are restricted to boxes on densely segmented data is not straightforward. For
example, the VOT2016 Benchmark [11] generates plausible oriented boxes from
densely segmented objects and the COCO 2014 Detection challenge [13] uses
axis-aligned bounding boxes of the segmentations to simplify the evaluation pro-
tocol. Hence, approaches may have a relatively low IoU with the ground truth,
although their IoU with the actual object segmentation is the same (or even
better) than that of the ground truth box (see Fig. 1(c)).

To enable a fair evaluation of algorithms restricted to axis-aligned or oriented
boxes on densely segmented data we introduce the relative Intersection over
Union accuracy (rIoU) measure. The rIoU uses the best possible axis-aligned or
oriented box of the segmentation to normalize the IoU score. The normalized
IoU ranges from 0 to 1 for an arbitrary segmentation and allows to determine the
true accuracy of a scheme. For tracking scenarios, the optimal boxes have further
advantages. By determining three different optimal boxes for each sequence,
the optimal oriented box, the optimal axis-aligned box and, the optimal axis-
aligned box for a fixed scale, it is possible to identify scale changes, rotations,
and occlusion in a sequence without the need of by-frame labels.
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The optimal boxes are obtained in a fast and efficient optimization process.
We validate the quality of the boxes in the experiments section by comparing
them to a number of exhaustively determined best boxes for various scenes.

The three main contributions of this paper are:

1. The introduction of the relative Intersection over Union accuracy (rIoU) mea-
sure, which allows an accurate measurement of object detector and tracker
accuracies on densely segmented data.

2. The proposed evaluation removes the bias introduced by restricting the
ground truth to boxes for densely segmented data (such as COCO 2014 Detec-
tion Challenge [13] or VOT2016 [11]).

3. A compact, easy-to-use, and efficient evaluation scheme for evaluating object
trackers that allows a good interpretability of a trackers strengths and
weaknesses.

The proposed measure and evaluation scheme is evaluated on a handful of state-
of-the-art trackers for the DAVIS [16] and VOT2016 [11] datasets and made
available to the community1.

2 Related Work

In the object detection community, the most commonly used accuracy measure
is the Intersection over Union (IoU), also called Pascal overlap or bounding
box overlap [8]. It is commonly used as the standard requirement for a correct
detection, when the IoU between the predicted detection and the ground truth
is at least 0.5 [13].

In the tracking community, many different accuracy measures have been
proposed, most of them center-based and overlap-based measures [11,12,15,18,
22,24]. To unify the evaluation of trackers, Čehovin et al. [20,22] provide a highly
detailed theoretical and experimental analysis of the most popular performance
measures and show that many of the accuracy measures are highly correlated.
Nevertheless, the appealing property of the IoU measure is that it accounts for
both position and size of the prediction and ground truth simultaneously. This
has lead to the fact that, in recent years, it has been the most commonly used
accuracy measure in the tracking community [11,24]. For example, the VOT2016
[11] evaluation framework uses the IoU as the sole accuracy measure and iden-
tifies tracker failures when the IoU between the predicted detection and the
ground truth is 0.0 [12].

Since bounding boxes are very crude approximations of objects [13] and can-
not accurately capture an object’s shape, location, or characteristics, numerous
datasets with densely segmented ground truth have emerged. For example, the
COCO 2014 dataset [13] includes more than 886,000 densely annotated instances
of 80 categories of objects. Nevertheless, on the COCO detection challenge the
segmentations are approximated by axis-aligned bounding boxes to simplify the

1 http://www.mvtec.com/company/research/.
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evaluation. As stated earlier, this introduces an unwanted bias in the evaluation.
A further dataset with excellent pixel accurate segmentations is the DAVIS
dataset [16], which was released in 2017. It consists of 50 short sequences of
manually segmented objects which, although originally for video object segmen-
tation, can also be used for the evaluation of object trackers. Furthermore, the
segmentations used to generate the VOT2016 ground truths have very recently
been released [23].

In our work, we enable the evaluation of object detection and tracking algo-
rithms that are restricted to output boxes on densely segmented ground truth
data. The proposed approach is easy to add to existing evaluations and improves
the precision of the standard IoU accuracy measure.

3 Relative Intersection over Union (rIoU)

Using segmentations for evaluating the accuracy of detectors or trackers removes
the bias a bounding-box abstraction induces. Nevertheless, the IoU of a box
and an arbitrary segmentation generally does not range from 0 to 1, where the
maximum value depends strongly on the objects’ shape. For example, in Fig. 1(b)
the best possible axis-aligned box only has an IoU of 0.66 with the segmentation.

To enable a more precise measurement of the accuracy, we introduce the
relative Intersection over Union (rIoU) of a box B and a dense segmentation
S as

ΦrIoU (S,B) =
ΦIoU (S,B)

Φopt(S)
, (1)

where ΦIoU is the Intersection over Union (IoU),

ΦIoU (S,B) =
|S ∩ B|
|S ∪ B| , (2)

and Φopt is the best possible IoU a box can achieve for the segmentation S.
In comparison to the usual IoU (ΦIoU ), the rIoU measure (ΦrIoU ) truly ranges
from 0 to 1 for all possible segmentations. Furthermore, the measure makes it
possible to interpret ground truth attributes such as scale change or occlusion,
as is displayed later in Sect. 4.

The calculation of Φopt, required to obtain ΦrIoU , is described in the following
section.

3.1 Optimization

An oriented box B can be parameterized with 5 parameters

b = (rc, cc, w, h, φ) , (3)

where rc and cc denote the row and column of the center, w and h denote
the width and height, and φ the orientation of the box with respect to the
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Fig. 2. blackswan from DAVIS [16]. The initial values of the optimization process of
(4) are displayed. We use the axis-aligned bounding box (green), the oriented bounding
box (blue), the inner square of the largest inner circle (magenta), the largest inner axis-
aligned box (black) and the oriented box with the same second order moments as the
segmentation (orange). (Color figure online)

column-axis. An axis-aligned box can equally be parameterized with the above
parameters by fixing the orientation to 0◦.

For a given segmentation S, the box with the best possible IoU is

Φopt(S) = max
b

ΦIoU (S,B(b)) s.t. b ∈ R
4
>0 × [0◦, 90◦). (4)

For a convex segmentation, the above problem can efficiently be optimized with
the method of steepest descent. To handle arbitrary, possibly unconnected, seg-
mentations, we optimize (4) with a multi-start gradient descent with a back-
tracking line search. The gradient is approximated numerically by the symmetric
difference quotient. We use the diverse set of initial values for the optimization
process displayed in Fig. 2. The largest axis-aligned inner box (black) and the
inner box of the largest inner circle (magenta) are completely within the segmen-
tation. Hence, in the optimization process, they will gradually grow and include
background if it improves ΦIoU . On the other hand, the bounding boxes (green
and blue) include the complete segmentation and will gradually shrink in the
optimization to include less of the segmentation. The oriented box with the same
second order moments as the segmentation (orange) serves as an intermediate
starting point [17]. Hence, only if the initial values converge to different optima
do we need to expend more effort. In these cases, we randomly sample further
initial values from the interval spanned by the obtained optima with an added
perturbation. In our experiements we used 50 random samples. Although this
may lead to many different optimizations, the approach is still very efficient.
A single evaluation of ΦIoU (S,B) only requires an average of 0.04 ms for the seg-
mentations within the DAVIS [16] dataset in HALCON2 on an IntelCore i7-4810
CPU @2.8 GHz with 16 GB of RAM with Windows 7 (x64). As a consequence,
the optimization of Φopt requires an average of 1.3 s for the DAVIS [16] and 0.7 s
for the VOT2016 [11] segmentations.

The optimization of the IoU for axis-aligned rectangles bears some similar-
ity to the 2D maximum subarray problem [1]. This might make an alternative
2 MVTec Software GmbH, https://www.mvtec.com/.

https://www.mvtec.com/
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algorithmic approach to the optimization possible. However, a straightforward
adaptation of methods is difficult, since these methods rely on the additive nature
of the maximum subarray problem. In contrast, the IoU is inherently non-linear
due to the quotient in its definition.

3.2 Validation

To validate the optimization process, we exhaustively searched for the best boxes
in a collection of exemplary frames from each of the 50 sequences in the DAVIS
dataset [16]. The validation set consists of frames that were challenging for the
optimization process. In a first step, we validated the optimization for axis-
aligned boxes. The results in Fig. 3 indicate that the optimization is generally
very close or identical to the exhaustively determined boxes.
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Fig. 3. The absolute difference ΔΦIoU of the exhaustively determined best axis-aligned
box and the optimized axis-aligned box for a selected frame in each of the 50 DAVIS [16]
sequences. Most boxes are identical, only a handful of boxes are marginally different
(<0.0001).

For the oriented boxes, one of the restrictions we can make is that the area
must at least be as large as the smallest inner box of the segmentation and
may not be larger than the bounding oriented box. Nevertheless, even with
further heuristics, the number of candidates to test is in the number of billions
for the sequences in the DAVIS dataset. Given a pixel-precise discretization for
rc, cc, w, h and a 0.5◦ discretization of φ, it was impossible to find boxes with a
better IoU than the optimized oriented boxes in the validation set. This is mostly
due to the fact that the sub-pixel precision of the parameterization (especially
in the angle φ) is of paramount importance for the IoU of oriented boxes.

4 Theoretical Trackers

The concept of theoretical trackers was first introduced by Čehovin et al. [22] as
an “excellent interpretation guide in the graphical representation of results”. In
their paper, they use perfectly robust or accurate theoretical trackers to create
bounds for the comparison of the performance of different trackers. In our case,
we use the boxes with an optimal IoU to create upper bounds for the accuracy
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Fig. 4. motorbike from DAVIS [16]. The increasing gap between the box-no-scale

and the other two theoretical trackers indicates a scale change of the motorbike. The
drop in all three theoretical trackers around frame 25 indicates that the object is being
occluded. The best possible IoU is never above 0.80 for the complete sequence.

of trackers that underlie the box-world assumption. We introduce three the-
oretical trackers that are obtained by optimizing (4) for a complete sequence.
Given the segmentation S, the first tracker returns the best possible axis-aligned
box (box-axis-aligned), the second tracker returns the optimal oriented box
(box-rot) and the third tracker returns the optimal axis-aligned box with a
fixed scale (box-no-scale). The scale is initialized in the first frame with the
scale of the box determined by box-axis-aligned.

The theoretical tracker can be used to normalize a tracker’s IoU for a com-
plete sequence, which enables a fair interpretation of a tracker’s accuracy and
removes the bias from the box-world assumption. Furthermore, the three differ-
ent theoretical trackers make it possible to interpret a tracking scene without
the need of by-frame labels. As is displayed in Fig. 4, the difference between
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Fig. 5. dog from DAVIS [16]. The gaps between the box-axis-aligned and box-rot

tracker indicate a rotation of the otherwise relatively compact segmentation of the dog.
The best possible IoU is never above 0.80 for the complete sequence.
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the box-no-scale, box-axis-aligned, and box-rot trackers indicates that the
object is undergoing a scale change. Furthermore, the decreasing IoUs of all the-
oretical trackers indicate that the object is either being occluded or deforming to
a shape that can be approximated less well by a box. For compact objects, the
difference of the box-rot tracker and the box-axis-aligned tracker indicates
a rotation or change of perspective, as displayed in Fig. 5.

5 Experiments

We evaluate the accuracy of a handful of state-of-the art trackers on the DAVIS
[16] and VOT2016 [11] datasets with the new rIoU measure. We initialize the
trackers with the best possible axis-aligned box for the given segmentation. Since
we are primarily interested in the accuracy and not in the trackers robustness, we
do not reinitialize the trackers when they move off target. Please note that the
accuracy of the robustness measure is also improved when using segmentations;
The failure cases (hence ΦIoU = 0) are identified earlier since ΦIoU is zero when
the tracker has no overlap with the segmentation and not with a bounding box
abstraction of the object (which may contain a large amount of background, see,
e.g., Fig. 1).

We restrict our evaluation to the handful of (open source) state-of-the-art
trackers displayed in Table 1. A thorough evaluation and comparison of all top
ranking trackers is beyond the scope of this paper. The evaluation framework is
made available and constructed such that it is easy to add new trackers from
MATLAB3, Python4 or HALCON.

We include the Kernelized Correlation Filter (KCF) [9] tracker since it was a
top ranked tracker in the VOT2014 challenge even though it assumes the scale
of the object to stay constant. The Discriminative Scale Space Tracker (DSST)
[6] tracker is essentially an extension of KCF that can handle scale changes and
outperformed the KCF by a small margin in the VOT2014 challenge. As further
axis-aligned trackers, we include ANT [21], L1APG [2], and the best performing
tracker from the VOT2016 challenge, the continuous convolution filters (CCOT)
from Danelljan et al. [7]. We include the LGT [19] as one of the few open source
trackers that estimates the object position as an oriented box.

In Table 1, we compare the average IoU with the average rIoU for the DAVIS
and the VOT2016 datasets. Please note that we normalize each tracker with
the IoU of the theoretical tracker that has the same abilities. Hence, the KCF
tracker is normalized with the box-no-scale tracker, the LGT tracker with
box-rot, and the others with box-axis-aligned. By these means, it is possible
to observe how well each tracker is doing with respect to its abilities. For the
DAVIS dataset, the KCF, ANT, L1APG, and LGT trackers all have the same
absolute IoU, but when normalized by Φopt, differences are visible. Hence, it is
evident that the KCF is performing very well, given the fact that it does not
estimate the scale. On the other hand, the LGT tracker, which has three more
3 The MathWorks, Inc., https://www.mathworks.com/.
4 Python Software Foundation, https://www.python.org/.

https://www.mathworks.com/
https://www.python.org/
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Table 1. Comparison of different tracking approaches and their average absolute (ΦIoU )
and relative IoU (ΦrIoU ) for the DAVIS [16] and the VOT2016 [11] segmentations

DAVIS VOT2016

ΦIoU ΦrIoU ΦIoU ΦrIoU

Axis-aligned boxes (fixed scale)

KCF [9] 0.40 0.78 0.23 0.45

Axis-aligned boxes

DSST [6] 0.43 0.67 0.24 0.32

CCOT [7] 0.47 0.73 0.41 0.56

ANT [21] 0.40 0.64 0.26 0.37

L1APG [2] 0.40 0.63 0.18 0.25

Oriented boxes

LGT [19] 0.40 0.60 0.25 0.34

DSST [6] CCOT [7] ANT [21] L1APG [2]

Fig. 6. bmx-trees from DAVIS [16]. On the left, differences between box-no-scale

and box-axis-aligned indicate that the object is changing scale and is occluded at
frame 18 and around frames 60–70. In the middle plot, we compare the IoU of the axis-
aligned box trackers and box-axis-aligned. The corresponding rIoU plot is shown on
the right. It becomes evident that the ANT tracker fails when the object is occluded
for the first time and the L1APG tracker at the second occlusion. The rIoU shows that
DSST and CCOT perform well, while the IoU would imply they are weak.

degrees of freedom, is relatively weak. A more detailed example analysis of the
bmx-trees sequence from DAVIS [16] is displayed in Fig. 6. Please note, the
significantly higher difference between the IoU and the rIoU for KCF compared
to the other trackers is due to the different normalization factors used in the rIoU
measure. The optimal IoU value for a box with fixed size is usually considerably
lower than for a general axis-aligned box.
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Fig. 7. Examples from VOT2016 [11] where the segmentations are degenerated. Some-
times due to motion blur (e.g., (a) and (b)) or a weak contrast of the object and its
background (c). (Color figure online)

For the VOT2016 dataset, the overall accuracies are significantly worse than
for DAVIS. On the one hand, this is due to the longer, more difficult sequences,
and, on the other hand, due to the less accurate and noisier segmentations (see
Fig. 7). Nevertheless, the rIoU allows a more reliable comparison of different
trackers. For example, ANT, LGT and DSST have almost equal average IoU
value, while ANT clearly outperforms LGT and DSST with respect to rIoU.
Again, we can see that the KCF tracker is quite strong regarding the fact that
it cannot estimate the scale.

6 Conclusion

In this paper, we have proposed a new accuracy measure that closes the gap
between densely segmented ground truths and box detectors and trackers. We
have presented an efficient optimization scheme to obtain the best possible detec-
tion boxes for arbitrary segmentations that are required for the new measure.
The optimization was validated on a diverse set of segmentations from the DAVIS
dataset [16]. The new accuracy measure can be used to generate three very
expressive theoretical trackers, which can be used to obtain meaningful accu-
racies and help to interpret scenes without requiring by-frame labels. We have
evaluated state-of-the-art trackers with the new accuracy measure on all seg-
mentations within the DAVIS [16] and VOT2016 [11] datasets to display its
advantages. The complete code and evaluation system will be made available to
the community to encourage its use and make it easy to reproduce our results.
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gybacked on object detection. In: IEEE International Conference on Computer
Vision, pp. 2381–2389 (2015)

11. Kristan, M., et al.: The visual object tracking VOT2016 challenge results. In: Hua,
G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 777–823. Springer, Cham
(2016). doi:10.1007/978-3-319-48881-3 54

12. Kristan, M., Matas, J., Leonardis, A., Voj́ır, T., Pflugfelder, R.P., Fernández, G.,
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14. Milan, A., Leal-Taixé, L., Reid, I., Roth, S., Schindler, K.: MOT16: a benchmark
for multi-object tracking. arXiv:1603.00831 [cs], March 2016

15. Nawaz, T., Cavallaro, A.: A protocol for evaluating video trackers under real-world
conditions. IEEE Trans. Image Process. 22(4), 1354–1361 (2013)

16. Perazzi, F., Jordi Pont-Tuset, B., McWilliams, L.J., Gool, V., Gross, M.H., Sorkine-
Hornung, A.: A benchmark dataset and evaluation methodology for video object
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 724–732 (2016)

17. Rosin, P.L.: Measuring rectangularity. Mach. Vis. Appl. 11(4), 191–196 (1999)
18. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah,

M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach.
Intell. 36(7), 1442–1468 (2014)
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