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Abstract. Learning approaches have shown great success in the task
of super-resolving an image given a low resolution input. Video super-
resolution aims for exploiting additionally the information from multiple
images. Typically, the images are related via optical flow and consecu-
tive image warping. In this paper, we provide an end-to-end video super-
resolution network that, in contrast to previous works, includes the esti-
mation of optical flow in the overall network architecture. We analyze
the usage of optical flow for video super-resolution and find that com-
mon off-the-shelf image warping does not allow video super-resolution
to benefit much from optical flow. We rather propose an operation for
motion compensation that performs warping from low to high resolution
directly. We show that with this network configuration, video super-
resolution can benefit from optical flow and we obtain state-of-the-art
results on the popular test sets. We also show that the processing of
whole images rather than independent patches is responsible for a large
increase in accuracy.

1 Introduction

The task of providing a good estimation of a high-resolution (HR) image from
low-resolution (LR) input with minimum upsampling effects, such as ringing,
noise, and blurring has been studied extensively [4,10,24,25]. In recent years,
deep learning approaches have led to a significant increase in performance on
the task of image super-resolution [7,13–15]. Potentially, multiple frames of a
video provide extra information that allows even higher quality up-sampling than
just a single frame. However, the task of simultaneously super-resolving multiple
frames is inherently harder and thus has not been investigated as extensively.
The key difficulty from a learning perspective is to relate the structures from
multiple frames in order to assemble their information to a new image.

Kappeler et al. [12] were the first who proposed a convolutional network
(CNN) for video super-resolution. They excluded the frame registration from
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the learning problem and rather applied motion compensation (warping) of the
involved frames using precomputed optical flow. Thus, only a small part of the
video super-resolution task was learned by the network, whereas large parts of
the problem rely on classical techniques.

In this work, we provide for the first time an end-to-end network for video
super-resolution that combines motion compensation and super-resolution into
a single network with fast processing time. To this end, we make use of the
FlowNet2-SD for optical flow estimation [11], integrate it into the approach by
Kappeler et al. [12], and train the joint network end-to-end. The integration
requires changing the patch-based training [7,12] to an image-based training
and we show that this has a positive effect. We analyze the resulting approach
and the one from Kappeler et al. [12] on single, multiple, and multiple motion-
compensated frames in order to quantify the effect of using multiple frames and
the effect of motion estimation. The evaluation reveals that with the original app-
roach from Kappeler et al. both effects are surprisingly small. Contrary, when
switching to image-based training we see an improvement if using motion com-
pensated frames and we obtain the best results with the FlowNet2-SD motion
compensation.

The approach of Kappeler et al. [12] follows the common practice of first
upsampling and then warping images. Both operations involve an interpolation
by which high-frequency image information is lost. To avoid this effect, we then
implement a motion compensation operation to directly perform upsampling
and warping in a single step. We compare to the closely related work of Tao
et al. [23] and also perform experiments with their network architecture. Finally,
we show that with this configuration, CNNs for video super-resolution clearly
benefit from optical flow. We obtain state-of-the-art results.

2 Related Work

2.1 Image Super-Resolution

The pioneering work in super-resolving a LR image dates back to Freeman
et al. [10], who used a database of LR/HR patch examples and nearest neigh-
bor search to perform restoration of a HR image. Chang et al. [4] replaced the
nearest neighbor search by a manifold embedding, while Yang et al. built upon
sparse coding [24,25]. Dong et al. [7] proposed a convolutional neural network
(SRCNN) for image super-resolution. They introduced an architecture consisting
of the three steps patch encoding, non-linear mapping, and reconstruction, and
showed that CNNs outperform previous methods. In Dong et al. [5], the three-
layer network was replaced by a convolutional encoder-decoder network with
improved speed and accuracy. Shi et al. [19] showed that performance can be
increased by computing features in the lower resolution space. Recent work has
extended SRCNN to deeper [13] and recursive [14] architectures. Ledig et al. [15]
employed generative adversarial networks.
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2.2 Video Super-Resolution

Performing super-resolution from multiple frames is a much harder task due to
the additional alignment problem. Many approaches impose restrictions, such
as the presence of HR keyframes [20] or affine motion [2]. Only few general
approaches exist. Liu and Sun [16] provided the most extensive approach by using
a Bayesian framework to estimate motion, camera blur kernel, noise level, and
HR frames jointly. Ma et al. [17] extended this work to incorporate motion blur.
Takeda et al. [22] followed an alternative approach by considering the video as a
3D spatio-temporal volume and by applying multidimensional kernel regression.

A first learning approach to the problem was presented by Cheng et al. [6],
who used block matching to find corresponding patches and applied a multi-
layer perceptron to map the LR spatio-temporal patch volumes to HR pixels.
Kappeler et al. [12] proposed a basic CNN approach for video-super-resolution
by extending SRCNN to multiple frames. Given the LR input frames and opti-
cal flow (obtained with the method from [9]), they bicubically upsample and
warp distant time frames to the current one and then apply a slightly modified
SRCNN architecture (called VSR) on this stack. The motion estimation and
motion compensation are provided externally and are not part of the training
procedure.

Caballero et al. [3] proposed a spatio-temporal network with 3D convolutions
and slow fusion to perform video super-resolution. They employ a multi-scale
spatial transformer module for motion compensation, which they train jointly
with the 3D network. Very recently, Tao et al. [23] used the same motion compen-
sation transformer module. Instead of a 3D network, they proposed a recurrent
network with an LSTM unit to process multiple frames. Their work introduces
an operation they call SubPixel Motion Compensation (SPMC), which performs
forward warping and upsampling jointly. This is strongly related to the operation
we propose here, though we use backward warping combined with a confidence
instead of forward warping. Moreover, we use a simple feed-forward network
instead of a recurrent network with an LSTM unit, which is advantageous for
training.

2.3 Motion Estimation

Motion estimation is a longstanding research topic in computer vision, and a
survey is given in [21]. In this work, we aim to perform video super-resolution
with a CNN-only approach. The pioneering FlowNet of Dosovitskiy et al. [8]
showed that motion estimation can be learned end-to-end with a CNN. Later
works [11,18] elaborated on this concept and provided multiscale and multistep
approaches. The FlowNet2 by Ilg et al. [11] yields state-of-the-art accuracy but
is orders of magnitudes faster than traditional methods. We use this network as
a building block for end-to-end training of a video super-resolution network.
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3 Video Super-Resolution with Patch-Based Training

In this section we revisit the work from Kappeler et al. [12], which applies
network-external motion compensation and then extends the single-image
SRCNN [7] to operate on multiple frames. This approach is shown in Fig. 1(a).

Kappeler et al. [12] compare different numbers of input frames and investi-
gate early and late fusion by performing the concatenation of features from the
different frames after different layers. They conclude that fusion after the first
convolution works best. Here, we use this version and furthermore stick to three
input frames and an upsampling factor of four throughout the whole paper.

(a) Architecture as proposed by Kappeler et al. [12]

(b) Architecture with integrated FlowNet2-SD from [11]

Fig. 1. Video super-resolution architectures used by the basic models tested in this
paper. Optical flow is estimated from the center to the outer frames using either an
external method or a CNN. The flow is used to warp all frames to the center frame.
The frames are then input into to the VSR network [12]. The complete network in (b)
can be trained end-to-end including the motion estimation.
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Table 1. Analysis of Kappeler et al. [12] on the different versions of the Myanmar
dataset. Numbers show the PSNR in dB. The first row is with the original code and
test data from [12], while the second and third row are with our re-implementation
and the new test data that was recently downloaded. The third column shows results
when the logo area is cropped off. Fourth and fifth columns show the PSNR when
motion compensation is disabled during testing, by using only the center frame or the
original frames without warping. There is no significant improvement by neither the
use of multiple frames nor by the use of optical flow.

Dataset/model SRCNN [7] VSR [12] VSR [12]

(cropped)

VSR [12]

(only center)

VSR [12]

(no warp.)

Myanmar validation from [12] 31.26 31.81 32.95 31.71 -

Myanmar validation (ours) 31.30 31.30 32.88 31.23 31.19

Myanmar validation (ours), retrained 31.81 32.76 31.74 31.77

We performed an analysis of their code and model. The results are given in
the first row of Table 1. Using their original code, we conducted an experiment,
where we replaced the three frames from the image sequence by three times the
same center frame (column 4 of Table 1), which corresponds to the information
only from single-image super-resolution. We find that on the Myanmar validation
set the result is still much better than SRCNN [7] but only marginally worse
than VSR [12] on real video information. Since except for a concatenation there
is no difference between the VSR [12] and SRCNN [7] architectures, this shows
that surprisingly the improvement is mainly due to training settings of VSR [12]
rather than the usage of multiple frames.

For training and evaluation, Kappeler et al. [12] used the publicly available
Myanmar video [1]. We used the same training/validation split into 53 and 6
scenes and followed the patch sampling from [12]. However, the publicly avail-
able data has changed by that the overlaid logo at the bottom right corner from
the producing company is now bigger than before. Evaluating on the data with
the different logo gives much worse results (row 2 of Table 1), while when the
logo is cropped off (column 3 of Table 1), results are comparable. The remain-
ing difference stems from a different implementation of the warping operation1.
However, when we retrained the approach with our implementation and training
data (row 3 of Table 1), we achieved results very close to Kappler et al. [12].

To further investigate the effects of motion compensation, we retrained the
approach using only the center frame, the original frames, and frames motion
compensated using FlowNet2 [11] and FlowNet2-SD [11] in addition to the
method from Drulea [9]. For details we refer to the supplemental material. Again
we observed that including or excluding motion compensation with different opti-
cal flow methods has no effect on the Myanmar validation set. We additionally
evaluated on the commonly used Videoset4 dataset [12,16]. In this case we do
see a PSNR increment of 0.1 with Drulea [9] and higher increment of 0.18 with

1 We use the implementation from [11]; it differs from [12] in that it performs bilinear
interpolation instead of bicubic.
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FlowNet2 [11] when using motion compensation. The Videoset4 dataset includes
larger motion and it seems that there is some small improvement when larger
motion is involved. However, the effect of motion compensation is still very small
when compared to the effect of changing other training settings.

4 Video Super-Resolution with Image-Based Training

In contrast to Kappeler et al., we combine motion compensation and super-
resolution in one network. For motion estimation, we used the FlowNet2-SD
variant from [11]. We chose this network, because FlowNet2 itself is too large
to fit into GPU memory besides the super-resolution network and FlowNet2-SD
yields smooth flow predictions and accurate performance for small displacements.
Figure 1(b) shows the integrated network. For the warping operation, we use the
implementation from [11], which also allows a backward pass while training. The
combined network is trained on complete images instead of patches. Thus, we
repeated our experiments from the previous section for the case of image-based
training. The results are given in Table 2. In general, we find that image-based
processing yields much higher PSNRs than patch-based processing. Detailed
comparison of the network and training settings for both variants can be found
in the supplemental material.

Table 2 shows that motion compensation has no effect on the Myanmar vali-
dation set. For Videoset4 there is an increase of 0.12 with motion compensation
using Drulea’s method [9]. For FlowNet2 the increase of 0.42 is even bigger. Since
FlowNet2-SD is completely trainable, it is also possible to refine the optical flow
for the task of video super-resolution by training the whole network end-to-end
with the super-resolution loss. We do so by using a resolution of 256 × 256 to
enable a batch size of 8 and train for 100 k more iterations. The results from
Table 2 again show that for Myanmar there is no significant change. However,
for Videoset4 the joint training further improves the result by 0.1 leading to a
total PSNR increase of 0.52.

We show a qualitative evaluation in Fig. 2. On the enlarged building, one
can see that bicubic upsampling introduces some smearing across the windows.

Table 2. PSNR scores from Myanmar validation (ours) and Videoset4 for image-
based training. For each column of the table we trained the architecture of [7,12] by
applying convolutions over the complete images. We used different types of motion
compensation for training and testing (FN2-SD denotes FlowNet2-SD). For Myanmar,
motion compensation still has no significant effect. However, on Videoset4 an effect for
motion compensation using Drulea’s method [9] is noticeable and is even stronger for
FlowNet2-SD [11].

Network SRCNN [7] VSR [12] VSR [12] VSR [12] VSR [12] VSR [12] joint

Motion compensation - Only center No warp. Drulea [9] FN2-SD [11] FN2-SD [11]

Myanmar validation (ours) 32.42 32.41 32.55 32.60 32.62 32.63

Videoset4 24.63 24.66 24.79 24.91 25.12 25.21
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This effect is also present in the methods without motion compensation and
in the original VSR [12] with motion compensation. When using image-based
trained models, the effect is successfully removed. Motion compensation with
FlowNet2 [11] seems to be marginally sharper than motion compensation with
Drulea [9]. We find that the joint training reduces ringing artifacts; an example
is given in the supplemental material.

(a) ground truth (b) SRCNN [7] (c) VSR† (only center) (d) VSR† (Drulea [9]) (e) Baysian [16]

(f) bicubic (g) VSR [12] (h) VSR† (no warp) (i) VSR† (FlowNet2-SD) (j) VSR† (FlowNet2-SD-
joint)

Fig. 2. Comparison of existing super-resolution methods to our trained models. † Indi-
cates models retrained by us using image-based training. Note that (b) and (g) are
patch-based, while (c), (d), (e), (h), (i) and (j) are image-based.

5 Combined Warping and Upsampling Operation

The approach of Kappeler et al. [12] and the VSR architecture discussed so far
follow the common practice of first upsampling and then warping the images.
Both operations involve an interpolation during which image information is lost.
Therefore, we propose a joint operation that performs upsampling and back-
ward warping in a single step, which we name Joint Upsampling and Backward
Warping (JUBW ). This operation does not perform any interpolation at all, but
additionally outputs sub-pixel distances and leaves finding a meaningful inter-
polation to the network itself. Let us consider a pixel p and let xp and yp denote
the coordinates in high resolution space, while xs

p and ys
p denote the source coor-

dinates in low resolution space. First, the mapping from low to high resolution
space using high resolution flow estimations (up, vp) is computed according to
the following equation:

(
xs
p

ys
p

)
=

1
α

(
xp + up + 0.5
yp + vp + 0.5

)
−

(
0.5
0.5

)
, (1)

where α = 4 denotes the scaling factor and subtraction/addition of 0.5 places
the origin at the top left corner of the first pixel. Then the warped image is
computed as:
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Iw(p) =

{
I(

⌊
xs
p

⌉
,
⌊
ys
p

⌉
) if

⌈
xs
p

⌋
,
⌈
ys
p

⌋
is inside I,

0 otherwise,
(2)

where �·� denotes the round to nearest operation. Note, that no interpolation
between pixels is performed. The operation then additionally outputs the fol-
lowing distances per pixel (see Fig. 3 for illustration):

(
dxp
dyp

)
=

(⌊
xs
p

⌉ − xs
p⌈

ys
p

⌉ − ys
p

)
if

⌈
xs
p

⌋
,
⌈
ys
p

⌋
is inside I and

(
0
0

)
otherwise. (3)

LR-Image
Warped Image and 

Distances (red)

HR-Flow

Fig. 3. Illustration of the Joint Upsampling and Backward Warping operation
(JUBW). The output is a dense image (left sparse here for illustration purposes) and
includes x/y distances of the source locations to the source pixel centers.

We also implemented the joint upsampling and forward warping operation
from Tao et al. [23] for comparison and denote it as SPMC-FW. Contrary to
our operation, SMPC-FW still involves two types of interpolation: (1) subpixel-
interpolation for the target position in the high resolution grid and (2) inter-
polation between values if multiple flow vectors point to the same target loca-
tion. For comparison, we replaced the architecture from the previous section
by the encoder-/decoder part from Tao et al. [23] (which we denote here as
SPMC-ED). We also find that this architecture itself performs better than
SRCNN [7]/VSR [12] on the super-resolution only task (see supplementary mate-
rial for details). The resulting configuration is shown in Fig. 4. Furthermore, we
also extended the training set by downloading Youtube videos and downsam-
pling them to create additional training data. The larger dataset comprises 162 k
images and we call it MYT.

Results are given in Table 3. First, we note that our feed-forward implemen-
tation of FlowNet2-SD with SPMC-ED, which simply stacks frames and does
not include an LSTM unit, outperforms the original recurrent implementation
from Tao et al. [23]. Second, we see that our proposed JUBW operation generally
outperforms SPMC-FW. We again performed experiments where we excluded
temporal information, by inputting zero flows and duplicates of the center image.
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Fig. 4. Network setup with FlowNet2-SD and joint upsampling and warping operation
(JUBW or SPMC-FW). Upsampling before feeding into FlowNet2-SD happens only
for JUBW. The output of the upsampling and warping operation is stacked and then
fed into the SPMC-ED network.

Table 3. PSNR values for different joint upsampling and warping approaches. The
first column shows the original results from Tao et al. [23] using the SPMC upsam-
pling, forward warping, and the SPMC-ED architecture with an LSTM unit. Columns
two to four show our reimplementation of the SPMC-FW operation [23] without an
LSTM unit. Columns five to eight show our joint upsampling and backward warping
operation with the same encoder-decoder network on top. With ours we denote our
implementation according to Fig. 4. In only center we input zero-flows and the dupli-
cated center image three times (no temporal information). The entry joint includes
joint training of FlowNet2-SD and the super-resolution network. For columns two to
eight, the networks are retrained on MYT and tested for each setting respectively.

SPMC SPMC-FW JUBW

original [23] Ours Only center Joint Ours No dist. Only center Joint

Myanmar (ours) - 32.90 32.45 33.05 33.13 33.02 32.55 32.69

Videoset4 25.52 25.68 24.94 25.62 25.85 25.74 24.96 25.09

We now observe that including temporal information yields large improvements
and increases the PSNR by 0.5 to 0.9. In contrast to the previous sections, we see
such increase also for the Myanmar dataset. This shows that the proposed motion
compensation can also exploit small motion vectors. The qualitative results in
Fig. 5 confirm these findings.

Including the sub-pixel distance outputs from JUBW layer to enable bet-
ter interpolation to the network leads to a smaller improvement than expected.
Notably, without these distances the JUBW operation degrades to a simple near-
est neighbor upsampling and nearest neighbor warping, but it still outperforms
SPMC-FW. We conclude from this that one should generally avoid any kind
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(a) ground truth (b) FN2-SD+VSR joint (c) FN2-SD+SPMC-FW (d) FN2-SD+JUBW

Fig. 5. Examples of a reconstructed image from Videoset4 using different warping
methods. FN2-SD stands for FlowNet2-SD. Clearly using JUBW yields sharper and
more accurate reconstruction of the estimated frames compared to SPMC-FW [23] and
the best VSR [12] result.

of interpolation and leave it to the network. Finally, fine-tuning FlowNet2 on
the video super-resolution task decreases the PSNR in some cases and does not
provide the best results. We conjecture that this is due to the nature of opti-
mization of the gradient through the warping operation, which is based on the
reconstruction error and is prone to local minima.

6 Conclusions

In this paper, we performed an evaluation of different video super-resolution
approaches using CNNs including motion compensation. We found that the
common practice of patch-based training and upsampling and warping sepa-
rately yields almost no improvement when comparing the video super-resolution
setting against the single-image setting. We obtained a significant improvement
over prior work by replacing the patch-based approach by a network that ana-
lyzes the whole image. As a remedy for the lacking standard motion compen-
sation, we proposed a joint upsampling and backward warping operation and
combined it with FlowNet2-SD [11] and the SPMC-ED [23] architecture. This
combination outperforms all previous work on video super-resolution. In conclu-
sion, our results show that: (1) we can achieve the same or better performance
with a formulation as a feed-forward instead of a recurrent network; (2) perform-
ing joint upsampling and backward warping with no interpolation outperforms
joint upsampling and forward warping and the common backward warping with
interpolation; (3) including sub-pixel distances yields a small additional improve-
ment; and (4) joint training with FlowNet2-SD so far does not lead to consistent
improvements and we leave a more detailed analysis to future work.
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