
Modular Demand-Driven Analysis of Semantic
Difference for Program Versions

Anna Trostanetski1(B), Orna Grumberg1(B), and Daniel Kroening2(B)

1 Technion – Israel Institute of Technology, Haifa, Israel
{annat,orna}@cs.technion.ac.il
2 University of Oxford, Oxford, UK

kroening@cs.ox.ac.uk

Abstract. In this work we present a modular and demand-driven analy-
sis of the semantic difference between program versions. Our analysis
characterizes initial states for which final states in the program versions
differ. It also characterizes states for which the final states are identical.
Such characterizations are useful for regression verification, for reveal-
ing security vulnerabilities and for identifying changes in the program’s
functionality.

Syntactic changes in program versions are often small and local and
may apply to procedures that are deep in the call graph. Our app-
roach analyses only those parts of the programs that are affected by the
changes. Moreover, the analysis is modular, processing a single pair of
procedures at a time. Called procedures are not inlined. Rather, their pre-
viously computed summaries and difference summaries are used. For effi-
ciency, procedure summaries and difference summaries can be abstracted
and may be refined on demand.

We have compared our method to well established tools and observed
speedups of one order of magnitude and more. Furthermore, in many
cases our tool proves equivalence or finds differences while the others fail
to do so.

1 Introduction

In this work we present a modular and demand-driven algorithm for computing
the semantic difference between two closely-related, syntactically similar imper-
ative programs. The need to identify semantic difference often arises when a new
(patched) program version is built on top of an old one. The difference between
the versions can be used for:

– Regression testing, which checks whether the new version introduces security
bugs or errors. The old version is considered to be a correct, “golden model”
for the new, less-tested version [30].

– Revealing security vulnerabilities that were eliminated by the new version [11].
This information can be used to produce attacks against the old version.

Supported by the ERC project 280053 (CPROVER), the H2020 FET OPEN 712689
SC2 and the Prof. A. Pazy Research Foundation.

c© Springer International Publishing AG 2017
F. Ranzato (Ed.): SAS 2017, LNCS 10422, pp. 405–427, 2017.
DOI: 10.1007/978-3-319-66706-5 20

406 A. Trostanetski et al.

– More generally, identifying and characterizing changes in the program’s func-
tionality [24].

Semantic difference has been widely studied, and a wide range of techniques have
been suggested [11,14–16,20,23–26]. We aim at enhancing the scalability and
precision of existing techniques by exploiting the modular structure of programs
and avoiding unnecessary analysis.

We consider two program versions, consisting of (matched) procedure calls,
arranged in call graphs. Some of the matched procedures are known to be syn-
tactically different while the others are identical. Often, the changes between
versions are small and limited to procedures deep inside the call graph (Fig. 1).
In such cases, it would be helpful to know how these changes affect the program
as a whole, without analysing the full program. To achieve this, we first compute
a difference summary between syntactically different procedures p1, p2 (modified
procedures). Next, we analyse the procedures that call them, using the difference
summary for p1, p2 computed before. No inlining of called procedures is applied.
We also avoid analysing procedures that are not affected by the modified proce-
dures. As a result, the required work may be significantly smaller than analysing
the full program.

P1 P2

q1

p1

q2

p2

Fig. 1. Call graphs of two program versions P1, P2, where their syntactic differences
are local to the procedures p1, p2, and the bodies of procedures q1, q2 are identical

Our work is therefore particularly beneficial when applied to programs that
are syntactically similar. While applicable to programs that are very different
from each other, our technique would yield less savings in those cases.

Our approach is guided by the following ideas. First, the analysis is modular.
That is, it is applied to one pair of procedures at a time, thus it is confined
to small parts of the program. Called procedures are not inlined. Rather, their
previously computed summaries and difference summary are used. We note that
any block of code can be treated as a procedure, not only those defined as
procedures by the programmer. It is beneficial to choose the smallest possible
blocks that were modified between versions, and identify them as “procedures”.

Second, the analysis is restricted to only those pairs of procedures whose
difference affects the behavior of the full programs.

Third, we provide both under- and over-approximations of the input-output
differences between procedures, which can be strengthened on demand.

Modular Demand-Driven Analysis of Semantic Difference 407

Finally, procedures need not be fully analysed. Unanalysed parts are
abstracted and replaced with uninterpreted functions. The abstracted parts are
refined upon demand if calling procedures need a more precise summary of the
called procedures for their own summary.

Our analysis is not guaranteed to terminate. Yet it is an anytime analysis.
That is, its partial results are meaningful. Furthermore, the longer it runs, the
more precise its results are.

In our analysis we do not assume that loops are bounded. We are able to
prove equivalence or provide an under- and over-approximation of the difference
for unbounded behaviors of the programs. We are also able to handle recursive
procedures.

We implemented our method and applied it to computing the semantic dif-
ference between program versions. We compared it to well established tools and
observed speedups of one order of magnitude and more. Furthermore, in many
cases our tool proves equivalence or finds differences while the others failed to
do so.

Our Approach in Detail

We now describe our method in more detail. Our analysis starts by choosing a
pair of matched procedures p1 in program P1 and p2 in program P2 that are
syntactically different.

The basic block of our analysis is a (partial) procedure summary sumpi
with

i ∈ {1, 2} for each procedure pi. The summary is obtained using symbolic execu-
tion. It includes path summarizations (Rπ, Tπ) for a subset of the finite paths π
of pi, where Rπ is the reachability condition for π to be traversed and Tπ is the
state transformation mapping initial states to final states when π is executed.

Next, we compute a (partial) difference summary (C(p1, p2), U(p1, p2)) for
p1, p2, where C(p1, p2) is a set of initial states for which p1 and p2 terminate
with different final states. U(p1, p2) is a set of initial states for which p1 and
p2 terminate with identical final states. Both sets are under-approximations.
However, the complement of U(p1, p2), denoted ¬U(p1, p2), also provides an over-
approximation of the set of initial states for which the procedures are different.

Note that procedure summaries and difference summaries are both partial.
This is because their computation in full is usually infeasible. More importantly,
their full summaries are often unnecessary for computing the difference summary
between programs P1, P2.

If U(p1, p2) ≡ true we can conclude that no differences are propagated from
p1, p2 to their callers. Their callers will not be further analysed then. Otherwise,
we can proceed to analysing pairs of procedures q1, q2 that include calls to p1,
p2, respectively. As mentioned before, for building their procedure summaries
and difference summary, we use the already computed summaries of p1, p2. For
the sake of modularity, we develop a new notion of modular symbolic execu-
tion. We formalize the definitions of symbolic execution and modular symbolic
execution, and show the connections between the two.

408 A. Trostanetski et al.

The analysis terminates when we can fully identify the initial states of P1,
P2 for which the programs agree/disagree on their final states. Alternatively, we
can stop when a predefined threshold is reached. In this case the sets C(p1, p2)
and U(p1, p2) of initial states are guaranteed to represent disagreement and
agreement, respectively.

Side results of our analysis are the difference summaries computed for
matched procedures in P1, P2, that can be reused if the procedures are called
by other programs.

The main contributions of this work are:

– We present a modular and demand-driven algorithm for computing semantic
difference between closely related programs.

– Our algorithm is unique in that it provides both under- and over-
approximations of the differences between program versions.

– We introduce abstraction-refinement into the analysis process so that a trade-
off between the amount of computation and the obtained precision will be
manageable.

– We develop a new notion of modular symbolic execution.

2 Preliminaries

We start by defining some basic notions of programs and procedures.

Definition 1. Let P be a program, containing the set of procedures Π = {p1, . . . ,
pn}. The call graph for P is a directed graph with Π as nodes, and there exists an
edge from pi to pj if and only if procedure pi calls procedure pj.

The procedure p1 is a special procedure in the program’s call graph that acts
as an entry point of the program; it is also referred to as the main procedure in
the program P , denoted mainP .

Next we formalize the notions of variables and states of procedures.

– The visible variables of a procedure p are the variables that represent the
arguments to the procedure and its return values, denoted V v

p .
– The hidden variables of a procedure p are the local variables used by the

procedure, denoted V h
p .

– The variables of a procedure p are both its visible and hidden variables,
denoted Vp (Vp = V v

p ∪ V h
p).

– A state σp is a valuation of the procedure’s variables, σp = {v �→ c|v ∈
Vp, c ∈ Dv}, where Dv is the (possibly infinite) domain of variable v.

– A visible state is the projection of a state to the visible variables.

Without loss of generality we assume that programs have no global variables,
since those could be passed as arguments and return values along the entire
program. We also assume, without loss of generality, that all program inputs
are given to the main procedure at the beginning. The programs we analyze
are deterministic, meaning that given a visible state of the main procedure at

Modular Demand-Driven Analysis of Semantic Difference 409

the beginning of an execution (an initial state), the execution of the program
(finite or infinite) is fixed, and for a finite execution the visible state at the end
of the execution is fixed (called final state). The same applies to individual
procedures as well.

In our work, a program is represented by its call graph, and each procedure
p is represented by its control flow graph CFGp (also known as a flow program
in [10]), defined below.

Definition 2. Let p be a procedure with variables Vp. The Control Flow
Graph (CFG) for p is a directed graph CFGp, in which the nodes represent
instructions in p and the edges represent possible flow of control from one instruc-
tion to its successor(s) in the procedure code. Instructions include:

– Assignment: x = e, where x is a variable in Vp and e is an expression over Vp.
An assignment node has one outgoing edge.

– Procedure call: g(Y), where Y ⊆ Vp and the values of variables in Y are
assigned to the visible variables of procedure g.1 The variables in Y are
assigned with the values of the visible variables of g at the end of the execution
of g. A call node has one outgoing edge, to the instruction in p following the
return of procedure g.

– Test: B(Vp), where B(Vp) is a Boolean expression over Vp; a test node has
two outgoing edges, one marked with T, and the other with F.

A CFG contains one node with no incoming edges, called the entry node, and
one node with no outgoing edges, called the exit node.

Definition 3. Given CFGp of procedure p, a path π = l1, l2, . . . is a sequence
of nodes (finite or infinite) in the graph CFGp, such that:

1. For all i there exists an edge from li to li+1 in CFGp.
2. l1 is the entry node of p.

The path π is maximal if it is either infinite or it is finite and ends in the exit
node of p.

We assume that each procedure performs a transformation on the values of
the visible variables, and has no additional side-effects. Procedure p terminates
on a visible state σv

p if the path traversed in p from σv
p is finite and maximal.

A program terminates on a visible state σv
main if its main procedure terminates.

The following semantic characteristics are associated with finite paths, sim-
ilarly to the definitions for flow programs in [10]. The characteristics are given
(for a path in a procedure p) in terms of quantifier-free First-Order Logic (FOL),
defined over the set V v

p of visible variables.

Definition 4. Let π be a finite path in procedure p.

1 We assume that Y = {y1, . . . , yn} and V v
g = {v1, . . . , vn}, yi is assigned to vi at the

entry node, and vi is assigned to yi at the exit node.

410 A. Trostanetski et al.

– The Reachability Condition of π, denoted Rπ(V v
p), is a condition on the

visible states at the beginning of π, which guarantees that the control will
traverse π.

– The State Transformation of π, denoted Tπ(V v
p), describes the final state

of π, obtained if control traverses π starting with some valuation σv
p of V v

p .

Tπ(V v
p) is given by |V v

p | expressions over V v
p , one for each variable x in

V v
p . The expression for x describes the effect of the path on x in terms of the

values of V v
p at the beginning of π. Let Tπ(V v

p) = (f1, . . . , f|V v
p |) and Tπ′(V v

p) =
(f ′

1, . . . , f
′
|V v

p |) be two state transformations. Then, Tπ(V v
p) = Tπ′(V v

p) if and only
if, for every 1 ≤ i ≤ |V v

p |, fi = f ′
i .

1 void p1 (int& x) {
2 i f (x < 0) {
3 x = −1;
4 return ;
5 }
6 i f (x >= 2)
7 return ;
8 while (x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

1 void p2 (int& x) {
2 i f (x < 0) {
3 x = −1;
4 return ;
5 }
6 i f (x > 4)
7 return ;
8 while (x == 2)
9 x = 2 ;

10 x = 3 ;
11 }

Fig. 2. Examples of procedure versions

Example 1. Consider procedure p1 in Fig. 2. Its only visible variable is x, used
as both input and output. Consider the paths that correspond to the following
line numbers: α = (2, 3, 4) and β = (2, 6, 7). Then,

Rα(x) = x < 0 Rβ(x) = ((¬(x < 0)) ∧ x ≥ 2) ≡ x ≥ 2
Tα(x) = (−1) Tβ(x) = (x)

A path π is called feasible if Rπ is satisfiable, meaning that there exists an
input that traverses the path π. Note that, in p1 from Fig. 2, the path (2, 6, 8, 9)
is not feasible.

2.1 Symbolic Execution

Symbolic execution [7,17] (path-based) is an alternative representation of a pro-
cedure execution that aims at systematically traversing the entire path space
of a given procedure. All visible variables are assigned with symbolic values
in place of concrete ones. Then every path is explored individually (in some
heuristic order), checking for its feasibility using a constraint solver. During the

Modular Demand-Driven Analysis of Semantic Difference 411

execution, a symbolic state T and symbolic path constraint R are maintained.
The symbolic state maps procedure variables to symbolic expressions (and is
naturally extended to map expressions over procedure variables), and the path
constraint is a quantifier-free FOL formula over symbolic values.

Given a finite path π = l1, . . . , ln, we use symbolic execution to compute the
reachability condition Rπ(V v

p) and state transformation Tπ(V v
p). The computa-

tion is performed in stages, where for every 1 ≤ i ≤ n+1, Ri
π(Vp) and T i

π(Vp) are
the path condition and state transformation for path l1, . . . , li−1, respectively.
Initialization:

– For every x ∈ Vp, T 1
π (Vp)[x] = x.

– R1
π(Vp) = true.

Assume Ri
π(Vp) and T i

π(Vp) are already defined. Ri+1
π (Vp) and T i+1

π (Vp) are then
defined according to the instruction at node i:

– Assignment x = e: Ri+1
π (Vp) := Ri

π(Vp), T i+1
π (Vp)[x] := e[Vp ← T i

π(Vp)] and
∀y
= x, T i+1

π (Vp)[y] := T i
π(Vp)[y]

– Procedure call g(Y): The procedure g is in-lined with the necessary renaming
and symbolic execution continues along a path in g, returning to p when (if)
g terminates.2

– Test B(Vp): T i+1
π (Vp) := T i

π(Vp), and

Ri+1
π (Vp) :=

{
Ri

π(Vp) ∧ B[Vp ← T i
π(Vp)] if the edge li → li+1 is marked T

Ri
π(Vp) ∧ ¬B[Vp ← T i

π(Vp)] otherwise

As a result, when we reach the last node ln of a finite path π we get3:

Rπ(V v
p) = Rn+1

π (Vp)

Tπ(V v
p) = Tn+1

π (Vp) ↓V v
p

As symbolic execution explores the program one path at a time, we start by
summarizing single paths, and then extend to procedures.

Definition 5. Given a finite maximal path π in p, a Path Summary (also
known as a partition-effect pair in [25]) is the pair (Rπ(V v

p), Tπ(V v
p)).

Definition 6. A Procedure Summary (also known as a symbolic summary
in [25]), for a procedure p, is a set of path summaries

sump ⊆ {(Rπ(V v
p), Tπ(V v

p))|π is a finite maximal path in CFGp}.

2 Current values of Y are assigned to the visible variables of g, and assigned back at
termination of g.

3 Since we assume that all inputs are given through visible variables, and therefore no
hidden variable is used before it is initialized, V h

p will not appear in Rn+1
π (Vp) and

Tn+1
π (Vp) ↓V v

p
.

412 A. Trostanetski et al.

Note that for a given CFG the reachability conditions of any pair of dif-
ferent maximal paths are disjoint, meaning that for every initial state at most
one finite maximal path is traversed in the CFG. Thus, a procedure summary
partitions the set of initial states into disjoint finite paths, and describes the
effect of the procedure p on each path separately. This observation will be useful
when procedure summaries are used to compute difference summaries between
procedures.

Unfortunately, it is not always possible to cover all paths in symbolic exe-
cution due to the path explosion problem (even if all feasible paths are finite,
their number may be very large or even infinite). Therefore we allow for a given
summary sump not to cover all possible paths, meaning

∨
(r,t)∈sump

r may not
be valid (

∨
(r,t)∈sump

r
≡ true).

Definition 7. Given a procedure summary sump, the Uncovered Part of sump

is ¬∨
(r,t)∈sump

r.

For all inputs that satisfy the uncovered part of the summary nothing is
promised: the procedure p might not terminate on such inputs, or terminate
with unknown outputs. A summary for which the uncovered part is unsatisfiable
(
∨

(r,t)∈sump
r ≡ true) is called a full summary. Note that a full summary only

exists for procedures that halt on every input.

Example 2. We return to p1 from Fig. 2. Any subset of the set {(x < 0,−1),
(x ≥ 0 ∧ x ≥ 2, x), (x ≥ 0 ∧ x < 2, 3)} is a summary for p1. For the summary

sump1 = {(x < 0,−1), (x ≥ 0 ∧ x ≥ 2, x)},

the uncovered part is characterized by x ≥ 0 ∧ x < 2.

2.2 Equivalence

We modify the notions of equivalence from [13] to characterize the set of visible
states under which procedures are equivalent, even if they might not be equiva-
lent for every initial state. Let p1 and p2 be two procedures with visible variables
V v

p1
and V v

p2
, respectively. Since their sets of visible variables might be different,

we take the union V v
p1

∪ V v
p2

as their set of visible variables V v
p . Any valuation of

this set can be viewed as a visible state of both procedures.

Definition 8. State-Equivalences
Let σv

p be a visible state for p1 and p2.

– p1 and p2 are partially equivalent for σv
p if and only if the following holds:

If p1 and p2 both terminate on σv
p , then they terminate with the same final

state.
– p1 and p2 mutually terminate for σv

p if and only if the following holds: p1

terminates on σv
p if and only if p2 terminates on σv

p .
– p1 and p2 are fully equivalent for σv

p if and only if p1 and p2 are partially
equivalent for σv

p and mutually terminate for σv
p .

Modular Demand-Driven Analysis of Semantic Difference 413

3 Modular Symbolic Execution

A major component of our analysis is the modular symbolic execution, which
analyses one procedure at a time while avoiding inlining of called procedures.
This prevents unnecessary execution of previously explored paths in called pro-
cedures. Assume procedure p calls procedure g. Also assume that a procedure
summary for g is given by: sumg = {(r1, t1), . . . , (rn, tn)}.

Modular symbolic execution is defined as symbolic execution for assignment
and test instructions (see Sect. 2.1). For procedure call instruction g(Y) (where
Y ⊆ Vp) it is defined as follows. For given Ri

π(Vp) and T i
π(Vp)4:

Ri+1
π = Ri

π ∧ (
∨

(r,t)∈sumg

r(T i
π[Y])) (1)

∀x
∈ Y. T i+1
π [x] = T i

π[x] (2)

∀yj ∈ Y. T i+1
π [yj] = ITE (r1(T i

π[Y]), t1j (T
i
π[Y]), ITE (r2(T i

π[Y]), t2j (T
i
π[Y]),

ITE (. . . , ITE (rn(T i
π[Y]), tnj (T i

π[Y]),UK) . . .))),

where:

– ITE (b, e1, e2) is an expression that returns e1 if the condition b holds and
returns e2, otherwise. It is similar to the conditional operator (?:) in some
programming languages.

– tkj refers to the jth element (for yj) of the path transformation tk.
– UK represents the value that is given if no path condition from sumg is

satisfied. That it, UK is returned when an unexplored path is traversed. Note,
however, that since we added (

∨
(r,t)∈sumg

r(T i
π[Y]) to the path condition Ri

π,
a path that satisfies Ri+1

π will never return UK . Thus, UK is just a place
holder.

Modular symbolic execution, as defined here, restricts the analysis of proce-
dure p to paths along which g is called with inputs traversing paths in g that
have already been analyzed. For other paths, the reachability condition will be
unsatisfiable. In Sect. 6.1 we define an abstraction, which replaces unexplored
paths by uninterpreted functions. Thus, the analysis of p may include unex-
plored (abstracted) paths of g. If the analysis reveals that the unexplored paths
are essential in order to determine difference or similarity on the level of p, then
refinement is applied by symbolically analysing more of g’s paths.

We prove in [29] the connection between modular symbolic execution and
regular symbolic execution on the in-lined version of the program. Intuitively,
as long as the paths taken in called procedures are covered by the summaries of
the called procedures, the following holds: Assume that a path π in p includes a
call to procedure g. Then π corresponds to a set of paths in the in-lined version,
each of which executing a different path in g, more formally:

4 We use r(T i
π[Y]) to indicate that every vk ∈ V v

g is replaced by the expression T i
π[yk].

414 A. Trostanetski et al.

– For every path πin in the in-lined version of p there is a corresponding path
π in p such that:

• Rπin → Rπ

• Rπin → Tπin = Tπ

– For every path π in p, there are paths πin
1 , . . . , πin

n in the in-lined version of
p such that:

• Rπ ↔ ∨n
i=1 Rπin

i• ∀i ∈ [n]. Rπin
i

→ Tπin
i

= Tπ

4 Difference Summary

Throughout the rest of the paper, we refer to a syntactically different pair of pro-
cedures as modified , and to a semantically different pair of procedures (not fully
equivalent for every state) as affected . Note that a modified procedure is not
necessarily affected. Further, an affected procedure is not necessarily modified,
but must call (transitively) a modified and affected procedure.

Our main goal is, given two program versions, to evaluate the difference and
similarity between them. For that purpose we define the notion of difference sum-
mary, in an attempt to capture the semantic difference and similarity between
the programs. A difference summary is defined for procedures and extends to
programs, by computing the difference summary for the main procedures in the
programs.

We start by defining the notion of full difference summary, which precisely
captures the difference and similarity between the behaviors of two given proce-
dures. In this section we give all definitions in terms of sets of states that might
be infinite.

Definition 9. A Full Difference Summary for two procedures p1 and p2 is
a triplet

ΔFullp1,p2 = (chp1,p2 , unchp1,p2 , termin chp1,p2)

where,

– chp1,p2 is the set of visible states for which both procedures terminate with
different final states.

– unchp1,p2 is the set of visible states for which both procedures either terminate
with the same final states, or both do not terminate.

– termin chp1,p2 is the set of visible states for which exactly one procedure ter-
minates.

Note that chp1,p2 ∪ unchp1,p2 ∪ termin chp1,p2 covers the entire visible state
space. The three sets are related to the state equivalence notions of Definition 8
as follows.

– chp1,p2 is the set of the visible states that violate partial equivalence. It only
captures differences between terminating paths.

– termin chp1,p2 is the set of visible states that violate mutual termination.

Modular Demand-Driven Analysis of Semantic Difference 415

– unchp1,p2 is the set of visible states for which the procedures are fully equiv-
alent.

Example 3. Consider the procedures in Fig. 2. The full difference summary for
this pair of procedures is:

chp1,p2 = {{x �→ 4}}
unchp1,p2 = {{x �→ c} | c
= 2 ∧ c
= 4}

termin chp1,p2 = {{x �→ 2}}

For input 2 the old version p1 does not change x, while the new version p2 reaches
an infinite loop, and therefore 2 is in termin chp1,p2 . For input 3, although the
paths taken in the two versions are different, the final value of x is the same (3),
and therefore 3 is in unchp1,p2 . For input 4, p1 does not change x, while p2
changes x to 3, and therefore 4 is in chp1,p2 .

The full difference summary and any of its three components are generally
incomputable, since they require halting information. We therefore suggest to
under-approximate the desired sets. In the next section we present an algo-
rithm that computes under-approximated sets and can also strengthen them.
The strengthening extends the sets with additional states, thus bringing the
computed summary “closer” to the full difference summary.

Definition 10. Given two procedures p1, p2, their Difference Summary

Δp1,p2 = (C(p1, p2), U(p1, p2))

consists of two sets of states where

– C(p1, p2) ⊆ chp1,p2 .
– U(p1, p2) ⊆ unchp1,p2 .

A difference summary gives us both an under-approximation and an over-
approximation of the difference between procedures, given by C(p1, p2) and
¬U(p1, p2)5, respectively.

The algorithm presented in the next section is based on the notion of path
difference, presented below. Recall that for a given path π, its path summary is
the pair (Rπ, Tπ) (see Definition 5).

Definition 11. Let p1 and p2 be two procedures with the same visible variables
V v

p1
= V v

p2
= V v

p , and let π1 and π2 be finite paths in CFGp1 and CFGp2 ,
respectively. Then the Path Difference of π1 and π2 is a triplet (d, Tπ1 , Tπ2),
where d is defined as follows:

d(V v
p) ↔ (Rπ1(V

v
p) ∧ Rπ2(V

v
p) ∧ ¬(Tπ1(V

v
p) = Tπ2(V

v
p))).

5 We use ¬ for set complement with respect to the state space.

416 A. Trostanetski et al.

We call d the condition of the path difference. Note that d implies the reachability
conditions of both paths, meaning that for any visible state σ that satisfies d,
path π1 is traversed from σ in CFGp1 and path π2 is traversed from σ in CFGp2 .
Moreover, when starting from σ, the final state of π1 will be different from the
final state of π2 (at least for one of the variables in V v

p). If d is satisfiable we say
that π1 and π2 show difference .

5 Computing Difference Summaries

5.1 Call Graph Traversal

Assume we are given two program versions, each consisting of one main pro-
cedure and many other procedures that call each other. Assume also a match-
ing function, which associates procedures in one program with procedures in
the other, based on names (added and removed procedures are matched to the
empty procedure). Our objective is to efficiently compute difference summaries
for matching procedures in the programs. We are particularly interested in the
difference of their main procedures. This goal will be achieved gradually, where
precision of the resulting summaries increases, as computation proceeds. In this
section we replace the sets of states describing difference summaries by their
characteristic functions, in the form of FOL formulas.

As mentioned before, any block of code can be treated as a procedure, not
only those defined as procedures by the programmer.

Our main algorithm DiffSummarize, presented in Algorithm 1, provides an
overview of our method. The algorithm does not assume that the call graph is
cycle-free, and therefore is suitable for recursive programs as well.

For each pair of matched procedures, the algorithm computes a Difference
summary Diff[(p1, p2)], which is a pair of C(p1, p2) and U(p1, p2). Sum is a map-
ping from all procedures to their current summary.

The algorithm computes a set workSet, which includes all pairs of procedures
for which Diff should be computed. The set workSet is initialized with all modi-
fied procedures, and all their callers (lines 3–8), as those are the only procedures
suspected to be affected. We initially trivially under-approximate Diff for the
procedures in workSet by (false, false) (line10). We can also safely conclude that
all other procedures are not affected (line 14).

Next we analyse all pairs of procedures in workSet (lines 17–31), where the
order is chosen heuristically. Given procedures p1 and p2, if they are syntactically
identical, and all called procedures have already been proven to be unaffected
(line19) – we can conclude that p1, p2 are also unaffected. Otherwise, we compute
sump1 and sump2 by running ModularSymbolicExecution (presented in
Sect. 3) on the code of each procedure separately, up to a certain bound (chosen
heuristically).

Since it is possible to visit a pair of procedures p1, p2 multiple times we keep
the computed summaries in Sum[p1] and Sum[p2], and re-use them when re-
analyzing the procedures to avoid recomputing path summaries of paths that

Modular Demand-Driven Analysis of Semantic Difference 417

have already been visited. We then call algorithm ConstructProcDiffSum

(explained in Sect. 5.2) for computing a difference summary for p1 and p2.
Each time a difference summary changes (line 27), we need to re-analyse all

its callers to check how this newly learned information propagates (line 29).
Algorithm DiffSummarize is modular. It handles each pair of procedures

separately, without ever considering the full program and without inlining called
procedures.

As mentioned before, Algorithm DiffSummarize is not guaranteed to ter-
minate. Yet it is an anytime algorithm. That is, its partial results are meaningful.
Furthermore, the longer it runs, the more precise its results are.

Algorithm 1. DiffSummarize(P1, P2)

Input: Two program versions P1, P2
Output: Difference Summary and a set of Path Difference Summaries for each pair of matching

procedures, including mainP1 , mainP2
1: match = ComputeProcedureMatching(P1, P2)
2: FoundDiff[(p1, p2)] = ∅, for each (p1, p2) ∈ match
3: workSet := ∅
4: newWorkSet:= {(p1, p2) ∈ match : p1 different syntactically from p2}
5: while newWorkSet �= workSet do
6: workSet := newWorkSet
7: newWorkSet := workSet ∪ {(q1, q2) ∈ match : ∃(p1, p2) ∈ workSet s.t. q1 calls p1 or q2

calls p2}
8: end while
9: for each (p1, p2) ∈workSet do
10: Diff[(p1, p2)] := (false, false)
11: Sum[p1]:=∅, Sum[p2]:=∅
12: end for
13: for each (p1, p2) ∈ match\workSet do
14: Diff[(p1, p2)] := (false, true)
15: Sum[p1]:=∅, Sum[p2]:=∅
16: end for
17: while workSet�= ∅ do
18: (p1, p2) := chooseNext(workSet) � heuristic order
19: if p1, p2 are syntactically identical and for all (g1, g2) ∈ match s.t. p1 calls g1 or p2 calls

g2, Diff[(g1, g2)]=(*,true) then
20: newDiff := (false,true)
21: else
22: Sum[p1] := ModularSymbolicExecution(p1,Sum)
23: Sum[p2] := ModularSymbolicExecution(p2,Sum)
24: (newDiff,newFoundDiff) :=ConstProcDiffSum(Sum[p1],Sum[p2],Diff[(p1, p2)])
25: FoundDiff[(p1, p2)]:=FoundDiff[(p1, p2)] ∪ newFoundDiff
26: end if
27: if Diff[(p1, p2)] �= newDiff then
28: Diff[(p1, p2)] := newDiff
29: workSet := workSet ∪ {(q1, q2) ∈ match: q1 calls p1 or q2 calls p2}
30: end if
31: end while
32: return (Diff, FoundDiff)

5.2 Computing the Difference Summaries for a Pair of Procedures

Algorithm ConstProcDiffSum (presented in Algorithm 2) accepts as input
procedure summaries sump1 , sump2 and also the current difference summary of
p1, p2. It returns an updated difference summary Δp1,p2 . In addition, it returns

418 A. Trostanetski et al.

Algorithm 2. ConstProcDiffSum(sump1 , sump2 ,oldDiff)

Input: Procedure summaries sump1 , sump2 of procedures p1, p2, respectively, and oldDiff, previ-
ously computed Δp1,p2

Output: updated Δp1,p2 , found diff p1,p2
1: (C(p1, p2), U(p1, p2)) := oldDiff
2: found diff p1,p2

= ∅
3: for each (r1, t1) in sump1 do

4: for each (r2, t2) in sump2 do

5: diffCond:= r1 ∧ r2 ∧ t1 �= t2
6: if diffCond is SAT then
7: C(p1, p2):=C(p1, p2)∨ diffCond
8: found diff p1,p2

:= found diff p1,p2
∪{(diffCond, t1, t2)}

9: end if
10: eqCond := r1 ∧ r2 ∧ t1 = t2
11: if eqCond is SAT then
12: U(p1, p2):= U(p1, p2)∨ eqCond
13: end if
14: end for
15: end for
16: return ((C(p1, p2), U(p1, p2)), found diff p1,p2

)

the set found diff p1,p2
of path differences, for every pair of paths in the two

procedure summaries, which shows difference.
The construction of diffCond in line 5 ensures that (diffCond , t1, t2) is a

valid path difference. We add diffCond to C(p1, p2) (line 7), and (diffCond ,
t1, t2) to found diff p1,p2

(line 8). Thus, we not only know under which conditions
the procedures show difference, but also maintain the difference itself (by means
of t1 and t2).

The construction of eqCond in line 10 ensures that for all states that satisfy
it the final states of both procedures are identical, as required by the definition of
U(p1, p2). The satisfiability checks in lines 6, 11 are an optimization that ensures
we do not complicate the computed formulas unnecessarily with unsatisfiable
formulas.

We avoid recomputing previously computed path differences. For simplicity,
we do not show it in the algorithm.

6 Abstraction and Refinement

6.1 Abstraction

In Sect. 3 we show how to define symbolic execution modularly. There, we restrict
ourselves to procedure calls with previously analyzed inputs. However, full analy-
sis of each procedure is usually not feasible and often not needed for difference
analysis at the program level. In this section we show how partial analysis can
be used better.

We abstract the unexplored behaviors of the called procedures by means
of uninterpreted functions [18]. A demand-driven refinement is applied to the
abstraction when greater precision is needed.

We modify the definition of Modular symbolic execution for procedure call
instruction g(Y) in the following manner:

Modular Demand-Driven Analysis of Semantic Difference 419

– First, we now allow the symbolic execution of p to consider paths along which
p calls g with inputs for which g traverses an unexplored path. To do so, we
change the definition from Eq. (1) to Ri+1

π = Ri
π.

– Second, to deal with the lack of knowledge of the output of g, we introduce
a set of uninterpreted functions UF g = {UF j

g|1 ≤ j ≤ |V v
g |}6. The uninter-

preted function UF j
g(T

i
π[Y]) replaces UK in T i+1

π [yj] (Eq. (2)), where yj ∈ Y
is the j-th parameter to g.

We can now improve the precision of Si+1[yj] if we exploit not only the
summaries of g1 and g2 but also their difference summaries. In particular,
we can use the fact that U(g1, g2) characterizes the inputs for which g1 and
g2 behave the same. We thus introduce three sets of uninterpreted functions:
UF g1 ,UF g2 ,UF g1,g2 .

We now revisit Eq. (2) of the modular symbolic execution for procedure call
g1(Y), where we replace UK in T i+1

π [yj] with

ITE (U(g1, g2)(T i
π[Y]),UF j

g1,g2
(T i

π[Y]),UF j
g1

(T i
π[Y])).

Similarly, for a procedure call g2(Y) we replace UK with

ITE (U(g1, g2)(T i
π[Y]),UF j

g1,g2
(T i

π[Y]),UF j
g2

(T i
π[Y])).

The set UF g1,g2 includes common uninterpreted functions, representing our
knowledge of equivalence between g1 and g2 when called with inputs T i

π[Y],
even though their behavior in this case is unknown. In some cases this could
be enough to prove the equivalence of the calling procedures p1, p2. The sets
UF g1 and UF g2 are separate uninterpreted functions, which give us no addi-
tional information on the differences or similarities of g1, g2.

Example 4. Consider again procedures p1, p2 in Fig. 2. Let their procedure sum-
maries be

sump1(x) = {(x < 0,−1), (x ≥ 2, x)}
sump2(x) = {(x < 0,−1), (x > 4, x)}

and their difference summary be Δp1,p2 = (false, x < 2∨x > 4). When symbolic
execution of a procedure g reaches a procedure call p1(a), where a is a variable
of the calling procedure g, we will perform:

Ri+1
π = Ri

π

∀yj
= a. T i+1
π [yj] = T i

π[yj]

T i+1
π [a] = ITE (T i

π[a] < 0,−1, ITE (T i
π[a] ≥ 2, T i

π[a],

ITE (T i
π[a] < 2 ∨ T i

π[a] > 4,UFx
p1,p2(T

i
π[a]),UFx

p1(T
i
π[a])))).

6 An obvious optimization is to use the previous symbolic state for visible variables of
p that are only used by g as inputs but are not changed in g. However, for simplicity
of discussion we will not go into those details.

420 A. Trostanetski et al.

6.2 Refinement

Using the described abstraction, the computed Rπ, Tπ may contain symbols of
uninterpreted functions, and therefore so could diffCond= r1 ∧ r2 ∧ t1
= t2 and
eqCond = r1∧r2∧t1 = t2 (lines 5, 10 in Algorithm ConstProcDiffSum). As a
result, C(p1, p2) and U(p1, p2) may include constraints that are spurious, that
is, constraints that do not represent real differences or similarities between p1

and p2. This could occur due to the abstraction introduced by the uninterpreted
functions. Thus, before adding diffCond to C(p1, p2) or eqCond to U(p1, p2), we
need to check whether it is spurious. To address spuriousness, we may then need
to apply refinement by further analysing unexplored parts of the procedures.
This includes procedures that are known to be identical in both versions, since
their behavior may affect the reachability or the final states, as demonstrated
by the example below.

1 void f 1 (int& x) {
2 i f (x == 5) {
3 abs (x) ;
4 i f (x == 0) {
5 x = 0 ;
6 return ;
7 }
8 }
9 }

1 void f 2 (int& x) {
2 i f (x == 5) {
3 abs (x) ;
4 i f (x == 0) {
5 x = 1 ;
6 return ;
7 }
8 }
9 }

1 void abs (int& x) {
2 i f (x >= 1)
3 return ;
4 else
5 x = −x ;
6 }

Fig. 3. Procedure versions in need of refinement

Example 5. To conclude that the procedures in Fig. 3 are equivalent, we need to
know that abs(5) cannot be zero. Therefore, we need to analyse abs, even though
it was not changed or affected.

We use the technique introduced in [4]: Let ϕ be a formula we wish to add
to either C(p1, p2) or U(p1, p2) (ϕ ∈ {diffCond , eqCond}) such that ϕ includes
symbols of uninterpreted functions. Before being added, it should be checked for
spuriousness.

For every k ∈ {1, 2}, assume procedure pk calls procedure gk(Yk) at location
lik on the single path π′ from pk, described by ϕ. For every k ∈ {1, 2} apply
symbolic execution up to a certain limit on gk with the pre-condition

ϕ ∧ ¬
⎛
⎝ ∨

(r,t)∈sumgk

r
(
T ik−1

π′ [Yk]
)⎞
⎠ ∧ V v

g = T ik−1
π′ [Yk].

When the reachability checks are performed with this precondition, only new
paths reachable from this call in pk are explored. For every such new path π,

Modular Demand-Driven Analysis of Semantic Difference 421

add (Rπ, Tπ) to sumgk
, replace the old sumgk

with the new sumgk
in ϕ and check

for satisfiability again. As a result, we either find a real difference or similarity, or
eliminate all the spurious path differences that involve the explored path π in gk.
The refinement suggested above can be extended in a straightforward manner
to any number of function calls along a path.

Example 6. Consider again the procedures in Fig. 3. Assume that the current
summaries of abs1 = abs2 = abs are empty, but it is known that both versions
are identical (unmodified syntactically). We get (using symbolic execution and
Algorithm 2) the diffCond for p1 and p2:

diffCond =

[
x = 5 ∧

(
ITE (true,UFabs1,abs2(x),UFabs1(x)) = 0

)

∧ x = 5 ∧
(
ITE (true,UFabs1,abs2(x),UFabs2(x)) = 0

)
∧ 0 �= 1

]

≡
[
x = 5 ∧ UFabs1,abs2(x) = 0

]

Next we use x = 5 as a pre-condition, and perform symbolic execution, updating
the summary for abs: (x ≥ 1, x). Now diffCond is:
[
x = 5 ∧

(
ITE
(
x ≥ 1, x, ITE(true,UFabs1,abs2(x),UFabs1(x))

)
= 0

)

∧ x = 5 ∧
(

ITE
(
x ≥ 1, x, ITE (true,UFabs1,abs2(x),UFabs2(x))

)
= 0

)
∧ 0 �= 1

]

≡
[
x = 5 ∧

(
ITE
(
x ≥ 1, x,UFabs1,abs2(x)

)
= 0

)]
≡ x = 5 ∧ x = 0

which is now unsatisfiable. We thus managed to eliminate a spurious difference
without computing the full summary of abs.

Once a difference summary is computed, we can choose whether to refine the
difference by exploring more paths in the individual procedures; or, if diffCond
or eqCond contains uninterpreted functions, to explore in a demand driven man-
ner the procedures summarized by the uninterpreted functions; or continue the
analysis in a calling procedure, where possibly the unknown parts of the cur-
rent procedures will not be reachable. In Sect. 8 we describe the results on our
benchmarks in two extreme modes: running refinement always immediately when
needed (ModDiffRef), and always delaying the refinement (ModDiff).

7 Related Work

A formal definition of equivalence between programs is given in [13]. We extend
these definitions to obtain a finer-grained characterization of the differences.

We extend the path-wise symbolic summaries and deltas given in [25],
and show how to use them in modular symbolic execution, while abstracting
unknown parts.

422 A. Trostanetski et al.

The SymDiff [20] tool and the Regression Verification Tool (RVT) [14] both
check for partial equivalence between pairs of procedures in a program, while
abstracting procedure calls (after transforming loops into recursive calls). Unlike
our tool, both SymDiff and RVT are only capable of proving equivalences,
not disproving them. In [16], a work that has similar ideas to ours, conditional
equivalence is used to characterize differences with SymDiff. The algorithm
presented in [16] is able to deal with loops and recursion; however, the algorithm
is not fully implemented in SymDiff. Our tool is capable of dealing soundly
with loops, and as our experiments show, is often able to produce full difference
summaries for programs with unbounded loops. We also provide a finer-grained
result, by characterizing the inputs for which there are (no) semantic differences.

Both SymDiff and RVT lack refinement, which often causes them to fail
at proving equivalence, as shown by our experiments in Sect. 8. Both tools are,
however, capable of proving equivalence between programs (using, among others,
invariants and proof rules) that cannot be handled by our method. Our tech-
niques can be seen as an orthogonal improvement. SymDiff also has a mode that
infers common invariants, as descried in [21], but it failed to infer the required
invariants for our examples.

Under-constrained symbolic execution, meaning symbolic execution of a pro-
cedure that is not the entry point of the program is presented in [27,28], where it
is used to improve scalability while using the old version as a golden model. The
algorithm presented in [27,28] does not provide any guarantees on its result, and
it does not attempt to propagate found differences to inputs of the programs.
By contrast, our algorithm does not stop after analysing only the syntactically
modified procedures, but continues to their calling procedures. On the other
hand, procedures that do not call modified procedures (transitively) are imme-
diately marked as equivalent. Thus, we avoid unnecessary work. In [27], the new
program version is checked, while assuming that the old version is correct. We
do not use such assumptions, as we are interested in all differences: new bugs,
bug fixes, and functional differences such as new features.

In [5,26] summaries and symbolic execution are also used to compute differ-
ences. The technique there leverages a light-weight static analysis to help guide
symbolic execution only to potentially differing paths. In [6], symbolic execution
is applied simultaneously on both versions, with the purpose of guiding sym-
bolic execution to changed paths. Both techniques, however, lack modularity
and abstractions. A possible direction for new research would be to integrate
our approach with one of the two.

Our approach is similar to the compositional symbolic execution presented
in [4,12], that is applied to single programs. However, the analysis in [4,12]
is top-down while ours works bottom-up, starting from syntactically different
procedures, proceeding to calling procedures only as long as they are affected by
the difference of previously analyzed procedures. The analysis stops as soon as
unaffected procedures are reached.

Modular Demand-Driven Analysis of Semantic Difference 423

Our algorithm is unique in that it provides both an under- and over-
approximations of the differences, while all the described methods have no guar-
antees or only provide one of the two.

8 Experimental Results

We implemented the algorithm presented in Sect. 5 with the abstractions from
Sect. 6 on top of the CProver framework (version 787889a), which also forms
the foundation of the verification tools CBMC [8], SatAbs [9], Impact [22] and
Wolverine [19]. The implementation is available online [2]. Since we analyse
programs at the level of an intermediate language (goto-language, the intermedi-
ate language used in the CProver framework), we can support any language that
can be translated to this language (currently Java and C). We report results for
two variants of our tool – without refinement (ModDiff for Modular Demand-
driven Difference), and with refinement (ModDiffRef). The unwinding limit
is set to 5 in both variants.

SYMDIFF and RVT: We compared our results to two well established tools,
SymDiff and RVT. For SymDiff, we used the smack [3] tool to translate the C
programs into the Boogie language, and then passed the generated Boogie files
to the latest available online version of SymDiff.

8.1 Benchmarks and Results

We analysed 28 C benchmarks, where each benchmark includes a pair of syntac-
tically similar versions. Our benchmarks are available online [1]. Our benchmarks
were chosen to demonstrate some of the benefits of our technique, as explained
below. A total of 16 benchmarks are semantically equivalent (Table 1), while
some benchmarks contain semantically different procedures. When using refine-
ment, our algorithm was able to prove all equivalences between programs but not
between all procedures (although some were actually equivalent). RVT’s refine-
ment is limited to loop unrolling, and its summaries are limited as well. Thus, it
cannot prove equivalence of ancestors of recursive procedures or loops that are
semantically different. Also, if it fails to prove equivalence of semantically equiv-
alent recursive procedures or loops, it cannot succeed in proving equivalence of
their ancestors. As previously mentioned, RVT can sometimes prove equivalence
when our tool cannot. The latest available version of SymDiff failed to prove
most examples, possibly also for lack of refinement.

8.2 Analysis

We now explain in detail the benefit of our method on specific benchmarks. The
LoopUnrch benchmarks illustrate the advantages of summaries. Our tool analy-
ses foo1 and foo2 from Fig. 4c, finds a condition under which those procedures
are different (for example inputs −1, 1), and a condition under which they are

424 A. Trostanetski et al.

Table 1. Experimental results. Numbers are time in seconds, F indicates a failure to
prove equivalence in (a), and that the difference summary of main was not full (some
differences were not found) in (b).

Benchmark ModDiff ModDiffRef RVT SymDiff

Const 0.545s 0.541s 4.06s 14.562s

Add 0.213s 0.2s 3.85s 14.549s

Sub 0.258s 0.308s 5.01s F

Comp 0.841s 0.539s 5.19s F

LoopSub 0.847s 1.179s F F

UnchLoop F 2.838s F F

LoopMult2 1.666s 1.689s F F

LoopMult5 F 3.88s F F

LoopMult10 F 9.543s F F

LoopMult15 F 21.55s F F

LoopMult20 F 49.031s F F

LoopUnrch2 0.9s 0.941s F F

LoopUnrch5 1.131s 1.126s F F

LoopUnrch10 1.147s 1.168s F F

LoopUnrch15 1.132s 1.191s F F

LoopUnrch20 1.157s 1.215s F F

(a) Semantically equivalent

Benchmark ModDiff MDDiffRef

LoopSub 1.187s 2.426s

UnchLoop F 8.053s

LoopMult2 3.01s 3.451s

LoopMult5 F 5.914s

LoopMult10 F 10.614s

LoopMult15 F 14.024s

LoopMult20 F 25.795s

LoopUnrch2 2.157s 2.338s

LoopUnrch5 2.609s 3.216s

LoopUnrch10 2.658s 3.481s

LoopUnrch15 2.835s 3.446s

LoopUnrch20 3.185s 3.342s

(b) Semantically different

equivalent (a ≥ 0). In all versions of this benchmark, foo1 and foo2 are called
with positive (increasing) values of a (and b), and hence the loop is never per-
formed. We are able to prove equivalence efficiently in all versions, both with
and without refinement.

The LoopMult benchmarks illustrate the advantages of refinement. Our tool
analyses foo1 and foo2 from Fig. 4a, finds a condition under which those proce-
dures are different (for example inputs 1,−1), and a condition under which they
are equivalent. We also summarise all behaviors that correspond to unwinding of
the loop 5 times. This unwinding is sufficient when the procedures are calls with
inputs 2, 2 (benchmark LoopMult2, the first main from Fig. 4b), and therefore
both MD-Diff and MD-DiffRef are able to prove equivalence quickly. This
unwinding is, however, not sufficient for benchmark LoopMult5 (the second main
from Fig. 4b). Thus, MD-Diff is not able to prove equivalence (the summary
of foo1/2 does not cover the necessary paths), while MD-DiffRef analyses the
missing paths (where 5 ≤ a < 7∧b = 5), and is able to prove equivalence. As the
index of the LoopMult benchmark increases, the length of the required paths
and their number increases, and the analysis takes more time, accordingly, but
only necessary paths are explored.

The remaining 12 benchmarks are not equivalent, and our algorithm is able
to find inputs for which they differ (presented in Table 1). Since both SymDiff

and RVT are only capable of proving equivalences, not disproving them, we did
not compare to those tools.

Modular Demand-Driven Analysis of Semantic Difference 425

int foo1 (int a , int b) {
int c=0;
for (int i =1; i<=b ; ++i)

c+=a ;
return c ;

}

int foo2 (int a , int b) {
int c=0;
for (int i =1; i<=a ; ++i)

c+=b ;
return c ;

}
(a) procedures foo1 and foo2 in
LoopMult benchmarks

int main (int x ,
char∗argv []) {

//LoopMult2
return f oo (2 , 2) ;

}

int main (int x ,
char∗argv []) {

//LoopMult5
i f (x>=5 && x<7)

return f oo (x , 5) ;
return 0 ;

}
(b) main functions of
LoopMult2 and Loop-
Mult5

int foo1 (int a , int b) {
int c=0;
i f (a<0) {

for (int i =1;
i<=b;++ i)

c+=a ;
}
return c ;

}

int foo2 (int a , int b) {
int c=0;
i f (a<0) {

for (int i =1;
i<=a;++ i)

c+=b ;
}
return c ;

}
(c) procedures foo1 and foo2
in LoopUnrch benchmarks

Fig. 4. LoopMult and LoopUnrch benchmarks

9 Conclusion

We developed a modular and demand-driven method for finding semantic dif-
ferences and similarities between program versions. It is able to soundly analyse
programs with loops and guide the analysis towards “interesting” paths. Our
method is based on (partially abstracted) procedure summarizations, which can
be refined on demand. Our experimental results demonstrate the advantage of
our approach due to these features.

References

1. ModDiff benchmarks. https://github.com/AnnaTrost/ModDiff/tree/master/bench
marks

2. ModDiff tool. https://github.com/AnnaTrost/ModDiff
3. SMACK software verifier and verification toolchain. https://github.com/smackers/

smack
4. Anand, S., Godefroid, P., Tillmann, N.: Demand-driven compositional symbolic

execution. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol.
4963, pp. 367–381. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3 28

5. Backes, J., Person, S., Rungta, N., Tkachuk, O.: Regression verification
using impact summaries. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN
2013. LNCS, vol. 7976, pp. 99–116. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39176-7 7

6. Cadar, C., Palikareva, H.: Shadow symbolic execution for better testing of evolv-
ing software. In: Companion Proceedings of the 36th International Conference on
Software Engineering, pp. 432–435. ACM (2014)

7. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56(2), 82–90 (2013)

https://github.com/AnnaTrost/ModDiff/tree/master/benchmarks
https://github.com/AnnaTrost/ModDiff/tree/master/benchmarks
https://github.com/AnnaTrost/ModDiff
https://github.com/smackers/smack
https://github.com/smackers/smack
http://dx.doi.org/10.1007/978-3-540-78800-3_28
http://dx.doi.org/10.1007/978-3-642-39176-7_7
http://dx.doi.org/10.1007/978-3-642-39176-7_7

426 A. Trostanetski et al.

8. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

9. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31980-1 40

10. Francez, N.: Program Verification. Addison-Wesley Longman, Boston (1992)
11. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic dif-

ferences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS
2008. LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-88625-9 16

12. Godefroid, P.: Compositional dynamic test generation. In: ACM SigPlan Notices,
vol. 42, pp. 47–54. ACM (2007)

13. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

14. Godlin, B., Strichman, O.: Regression verification. In: Proceedings of the 46th
Annual Design Automation Conference, pp. 466–471. ACM (2009)

15. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of sim-
ilar programs. Softw. Test. Verif. Reliab. 23(3), 241–258 (2013)

16. Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Conditional equivalence. Technical report,
MSR-TR-2010-119 (2010)

17. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

18. Kroening, D., Strichman, O.: Equality logic and uninterpreted functions. Decision
Procedures. Texts in Theoretical Computer Science (An Eatcs Series), pp. 59–80.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-74105-3 3

19. Kroening, D., Weissenbacher, G.: Interpolation-based software verification with
Wolverine. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 573–578. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 45

20. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: a language-
agnostic semantic Diff tool for imperative programs. In: Madhusudan, P., Seshia,
S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-31424-7 54

21. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 345–355. ACM (2013)

22. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

23. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs.
In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 238–258.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 14

24. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correlation.
In: ACM SIGPLAN Notices, vol. 49, pp. 811–828. ACM (2014)

25. Person, S., Dwyer, M.B., Elbaum, S., Pasareanu, C.S.: Differential symbolic exe-
cution. In: Foundations of Software Engineering, pp. 226–237. ACM (2008)

26. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic
execution. In: ACM SIGPLAN Notices, vol. 46, pp. 504–515. ACM (2011)

27. Ramos, D.A., Engler, D.: Under-constrained symbolic execution: correctness check-
ing for real code. In: 24th USENIX Security Symposium, pp. 49–64 (2015)

http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1007/978-3-540-88625-9_16
http://dx.doi.org/10.1007/978-3-540-74105-3_3
http://dx.doi.org/10.1007/978-3-642-22110-1_45
http://dx.doi.org/10.1007/978-3-642-31424-7_54
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-642-38856-9_14

Modular Demand-Driven Analysis of Semantic Difference 427

28. Ramos, D.A., Engler, D.R.: Practical, low-effort equivalence verification of real
code. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
669–685. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 55

29. Trostanetski, A., Grumberg, O., Kroening, D.: Modular demand-driven analysis
of semantic difference for program versions. Technical report, CS-2017-02. http://
www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2017/CS/CS-2017-02

30. Wong, W.E., Horgan, J.R., London, S., Agrawal, H.: A study of effective regression
testing in practice. In: The Eighth International Symposium on Software Reliability
Engineering, Proceedings, pp. 264–274. IEEE (1997)

http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2017/CS/CS-2017-02
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2017/CS/CS-2017-02

	Modular Demand-Driven Analysis of Semantic Difference for Program Versions
	1 Introduction
	2 Preliminaries
	2.1 Symbolic Execution
	2.2 Equivalence

	3 Modular Symbolic Execution
	4 Difference Summary
	5 Computing Difference Summaries
	5.1 Call Graph Traversal
	5.2 Computing the Difference Summaries for a Pair of Procedures

	6 Abstraction and Refinement
	6.1 Abstraction
	6.2 Refinement

	7 Related Work
	8 Experimental Results
	8.1 Benchmarks and Results
	8.2 Analysis

	9 Conclusion
	References

